Science.gov

Sample records for cysteine-rich domain protein

  1. Cysteine-rich domains related to Frizzled receptors and Hedgehog-interacting proteins

    PubMed Central

    Pei, Jimin; Grishin, Nick V

    2012-01-01

    Frizzled and Smoothened are homologous seven-transmembrane proteins functioning in the Wnt and Hedgehog signaling pathways, respectively. They harbor an extracellular cysteine-rich domain (FZ-CRD), a mobile evolutionary unit that has been found in a number of other metazoan proteins and Frizzled-like proteins in Dictyostelium. Domains distantly related to FZ-CRDs, in Hedgehog-interacting proteins (HHIPs), folate receptors and riboflavin-binding proteins (FRBPs), and Niemann-Pick Type C1 proteins (NPC1s), referred to as HFN-CRDs, exhibit similar structures and disulfide connectivity patterns compared with FZ-CRDs. We used computational analyses to expand the homologous set of FZ-CRDs and HFN-CRDs, providing a better understanding of their evolution and classification. First, FZ-CRD-containing proteins with various domain compositions were identified in several major eukaryotic lineages including plants and Chromalveolata, revealing a wider phylogenetic distribution of FZ-CRDs than previously recognized. Second, two new and distinct groups of highly divergent FZ-CRDs were found by sensitive similarity searches. One of them is present in the calcium channel component Mid1 in fungi and the uncharacterized FAM155 proteins in metazoans. Members of the other new FZ-CRD group occur in the metazoan-specific RECK (reversion-inducing-cysteine-rich protein with Kazal motifs) proteins that are putative tumor suppressors acting as inhibitors of matrix metalloproteases. Finally, sequence and three-dimensional structural comparisons helped us uncover a divergent HFN-CRD in glypicans, which are important morphogen-binding heparan sulfate proteoglycans. Such a finding reinforces the evolutionary ties between the Wnt and Hedgehog signaling pathways and underscores the importance of gene duplications in creating essential signaling components in metazoan evolution. PMID:22693159

  2. The cysteine-rich region and the whey acidic protein domain are essential for anosmin-1 biological functions.

    PubMed

    Esteban, Pedro F; Murcia-Belmonte, Verónica; García-González, Diego; de Castro, Fernando

    2013-03-01

    The protein anosmin-1, coded by the KAL1 gene responsible for the X-linked form of Kallmann syndrome (KS), exerts its biological effects mainly through the interaction with and signal modulation of fibroblast growth factor receptor 1 (FGFR1). We have previously shown the interaction of the third fibronectin-like type 3 (FnIII) domain and the N-terminal region of anosmin-1 with FGFR1. Here, we demonstrate that missense mutations reported in patients with KS, C172R and N267K did not alter or substantially reduce, respectively, the binding to FGFR1. These substitutions annulled the chemoattraction of the full-length protein over subventricular zone (SVZ) neuronal precursors (NPs), but they did not annul it in the N-terminal-truncated protein (A1Nt). We also show that although not essential for binding to FGFR1, the cysteine-rich (CR) region is necessary for anosmin-1 function and that FnIII.3 cannot substitute for FnIII.1 function. Truncated proteins recapitulating nonsense mutations found in KS patients did not show the chemotropic effect on SVZ NPs, suggesting that the presence behind FnIII.1 of any part of anosmin-1 produces an unstable protein incapable of action. We also identify the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway as necessary for the chemotropic effect exerted by FGF2 and anosmin-1 on rat SVZ NPs.

  3. Targeting cysteine rich C1 domain of Scaffold protein Kinase Suppressor of Ras (KSR) with anthocyanidins and flavonoids - a binding affinity characterization study.

    PubMed

    Karthik, Dhananjayan; Majumder, Pulak; Palanisamy, Sivanandy; Khairunnisa, Kalathil; Venugopal, Varsha

    2014-01-01

    Kinase Suppressor of Ras (KSR) is a molecular scaffold that interacts with the core kinase components of the ERK cascade, Raf, MEK, ERK to provide spatial and temporal regulation of Ras-dependent ERK cascade signaling. Interruption of this mechanism can have a high influence in inhibiting the downstream signaling of the mutated tyrosine kinase receptor kinase upon ligand binding. Still none of the studies targeted to prevent the binding of Raf, MEK binding on kinase suppressor of RAS. In that perspective the cysteine rich C1 domain of scaffold proteins kinase suppressor of Ras-1 was targeted rather than its ATP binding site with small ligand molecules like flavones and anthocyanidins and analyzed through insilico docking studies. The binding energy evaluation shows the importance of hydroxyl groups at various positions on the flavone and anthocyanidin nucleus. Over all binding interaction shows these ligands occupied the potential sites of cysteine rich C1 domain of scaffold protein KSR. PMID:25352726

  4. Green fluorescent protein (GFP)-tagged cysteine-rich domains from protein kinase C as fluorescent indicators for diacylglycerol signaling in living cells.

    PubMed

    Oancea, E; Teruel, M N; Quest, A F; Meyer, T

    1998-02-01

    Cysteine-rich domains (Cys-domains) are approximately 50-amino acid-long protein domains that complex two zinc ions and include a consensus sequence with six cysteine and two histidine residues. In vitro studies have shown that Cys-domains from several protein kinase C (PKC) isoforms and a number of other signaling proteins bind lipid membranes in the presence of diacylglycerol or phorbol ester. Here we examine the second messenger functions of diacylglycerol in living cells by monitoring the membrane translocation of the green fluorescent protein (GFP)-tagged first Cys-domain of PKC-gamma (Cys1-GFP). Strikingly, stimulation of G-protein or tyrosine kinase-coupled receptors induced a transient translocation of cytosolic Cys1-GFP to the plasma membrane. The plasma membrane translocation was mimicked by addition of the diacylglycerol analogue DiC8 or the phorbol ester, phorbol myristate acetate (PMA). Photobleaching recovery studies showed that PMA nearly immobilized Cys1-GFP in the membrane, whereas DiC8 left Cys1-GFP diffusible within the membrane. Addition of a smaller and more hydrophilic phorbol ester, phorbol dibuterate (PDBu), localized Cys1-GFP preferentially to the plasma and nuclear membranes. This selective membrane localization was lost in the presence of arachidonic acid. GFP-tagged Cys1Cys2-domains and full-length PKC-gamma also translocated from the cytosol to the plasma membrane in response to receptor or PMA stimuli, whereas significant plasma membrane translocation of Cys2-GFP was only observed in response to PMA addition. These studies introduce GFP-tagged Cys-domains as fluorescent diacylglycerol indicators and show that in living cells the individual Cys-domains can trigger a diacylglycerol or phorbol ester-mediated translocation of proteins to selective lipid membranes.

  5. A cysteine-rich metal-binding domain from rubella virus non-structural protein is essential for viral protease activity and virus replication.

    PubMed

    Zhou, Yubin; Tzeng, Wen-Pin; Ye, Yiming; Huang, Yun; Li, Shunyi; Chen, Yanyi; Frey, Teryl K; Yang, Jenny J

    2009-01-15

    The protease domain within the RUBV (rubella virus) NS (non-structural) replicase proteins functions in the self-cleavage of the polyprotein precursor into the two mature proteins which form the replication complex. This domain has previously been shown to require both zinc and calcium ions for optimal activity. In the present study we carried out metal-binding and conformational experiments on a purified cysteine-rich minidomain of the RUBV NS protease containing the putative Zn(2+)-binding ligands. This minidomain bound to Zn(2+) with a stoichiometry of approximately 0.7 and an apparent dissociation constant of <500 nM. Fluorescence quenching and 8-anilinonaphthalene-1-sulfonic acid fluorescence methods revealed that Zn(2+) binding resulted in conformational changes characterized by shielding of hydrophobic regions from the solvent. Mutational analyses using the minidomain identified residues Cys(1175), Cys(1178), Cys(1225) and Cys(1227) were required for the binding of Zn(2+). Corresponding mutational analyses using a RUBV replicon confirmed that these residues were necessary for both proteolytic activity of the NS protease and viability. The present study demonstrates that the CXXC(X)(48)CXC Zn(2+)-binding motif in the RUBV NS protease is critical for maintaining the structural integrity of the protease domain and essential for proteolysis and virus replication. PMID:18795894

  6. Human Dickkopf-1 (huDKK1) protein: characterization of glycosylation and determination of disulfide linkages in the two cysteine-rich domains.

    PubMed

    Haniu, Mitsuru; Horan, Tom; Spahr, Chris; Hui, John; Fan, Wei; Chen, Ching; Richards, William G; Lu, Hsieng S

    2011-11-01

    Human Dickkopf-1 (huDKK1), an inhibitor of the canonical Wnt-signaling pathway that has been implicated in bone metabolism and other diseases, was expressed in engineered Chinese hamster ovary cells and purified. HuDKK1 is biologically active in a TCF/lef-luciferase reporter gene assay and is able to bind LRP6 coreceptor. In SDS-PAGE, huDKK1 exhibits molecular weights of 27-28 K and 30 K at ∼ 1:9 ratio. By MALDI-MS analysis, the observed molecular weights of 27.4K and 29.5K indicate that the low molecular weight form may contain O-linked glycans while the high molecular weight form contains both N- and O-linked glycans. LC-MS/MS peptide mapping indicates that ∼ 92% of huDKK1 is glycosylated at Asn²²⁵ with three N-linked glycans composed of two biantennary forms with 1 and 2 sialic acid (23% and 60%, respectively), and one triantennary structure with 2 sialic acids (9%). HuDKK1 contains two O-linked glycans, GalNAc (sialic acid)-Gal-sialic acid (65%) and GalNAc-Gal[sialic acid] (30%), attached at Ser³⁰ as confirmed by β-elimination and targeted LC-MS/MS. The 10 intramolecular disulfide bonds at the N- and C-terminal cysteine-rich domains were elucidated by analyses including multiple proteolytic digestions, isolation and characterization of disulfide-containing peptides, and secondary digestion and characterization of selected disulfide-containing peptides. The five disulfide bonds within the huDKK1 N-terminal domain are unique to the DKK family proteins; there are no exact matches in disulfide positioning when compared to other known disulfide clusters. The five disulfide bonds assigned in the C-terminal domain show the expected homology with those found in colipase and other reported disulfide clusters. PMID:21805521

  7. Niemann-Pick C1 Disease: Correlations between NPC1 Mutations, Levels of NPC1 Protein, and Phenotypes Emphasize the Functional Significance of the Putative Sterol-Sensing Domain and of the Cysteine-Rich Luminal Loop

    PubMed Central

    Millat, Gilles; Marçais, Christophe; Tomasetto, Catherine; Chikh, Karim; Fensom, Anthony H.; Harzer, Klaus; Wenger, David A.; Ohno, K.; Vanier, Marie T.

    2001-01-01

    To obtain more information of the functional domains of the NPC1 protein, the mutational spectrum and the level of immunoreactive protein were investigated in skin fibroblasts from 30 unrelated patients with Niemann-Pick C1 disease. Nine of them were characterized by mild alterations of cellular cholesterol transport (the “variant” biochemical phenotype). The mutations showed a wide distribution to nearly all NPC1 domains, with a cluster (11/32) in a conserved NPC1 cysteine-rich luminal loop. Homozygous mutations in 14 patients and a phenotypically defined allele, combined with a new mutation, in a further 10 patients allowed genotype/phenotype correlations. Premature-termination–codon mutations, the three missense mutations in the sterol-sensing domain (SSD), and A1054T in the cysteine-rich luminal loop all occurred in patients with infantile neurological onset and “classic” (severe) cholesterol-trafficking alterations. By western blot, NPC1 protein was undetectable in the SSD missense mutations studied (L724P and Q775P) and essentially was absent in the A1054T missense allele. Our results thus enhance the functional significance of the SSD and demonstrate a correlation between the absence of NPC1 protein and the most severe neurological form. In the remaining missense mutations studied, corresponding to other disease presentations (including two adults with nonneurological disease), NPC1 protein was present in significant amounts of normal size, without clear-cut correlation with either the clinical phenotype or the “classic”/“variant” biochemical phenotype. Missense mutations in the cysteine-rich luminal loop resulted in a wide array of clinical and biochemical phenotypes. Remarkably, all five mutant alleles (I943M, V950M, G986S, G992R, and the recurrent P1007A) definitively correlated with the “variant” phenotype clustered within this loop, providing new insight on the functional complexity of the latter domain. PMID:11333381

  8. Mutational analysis of Raf-1 cysteine rich domain: requirement for a cluster of basic aminoacids for interaction with phosphatidylserine.

    PubMed

    Improta-Brears, T; Ghosh, S; Bell, R M

    1999-08-01

    Activation of Raf-1 kinase is preceded by a translocation of Raf-1 to the plasma membrane in response to external stimuli. The membrane localization of Raf-1 is facilitated through its interaction with activated Ras and with membrane phospholipids. Previous evidence suggests that the interaction of Raf-1 with Ras is mediated by two distinct domains within the N-terminal region of Raf-1 comprising amino acid residues 51-131 and residues 139-184, the latter of which codes for a zinc containing cysteine-rich domain. The cysteine-rich domain of Raf-1 is also reported to associate with other proteins, such as 14-3-3, and for selectively binding acidic phospholipids, particularly phosphatidylserine (PS). In the present study, we have investigated the consequences of progressive deletions and point mutations within the cysteine-rich domain of Raf-1 on its ability to bind PS. A reduced interaction with PS was observed in vitro for all deletion mutants of Raf-1 expressed either as full-length proteins or as fragments containing the isolated cysteine-rich domain. In particular, the cluster of basic amino acids R143, K144, and K148 appeared to be critical for interaction with PS, since substitution of all three residues to alanine resulted in a protein that failed to interact with liposomes enriched for PS. Expression of Raf-1 in vivo, containing point mutations in the cysteine-rich domain resulted in a truncated polypeptide that lacked both the Ras and PS binding sites and could no longer translocate to the plasma membrane upon serum stimulation. These results indicate that the basic residues 143, 144 and 148 in the anterior half of Raf-1 cysteine-rich domain play a role in the association with the lipid bilayer and possibly in protein stability, therefore they might contribute to Raf-1 localization and subsequent activation.

  9. Crystallization and preliminary X-ray analysis of ginkbilobin-2 from Ginkgo biloba seeds: a novel antifungal protein with homology to the extracellular domain of plant cysteine-rich receptor-like kinases

    PubMed Central

    Miyakawa, Takuya; Sawano, Yoriko; Miyazono, Ken-ichi; Hatano, Ken-ichi; Tanokura, Masaru

    2007-01-01

    The antifungal protein ginkbilobin-2 (Gnk2) from Ginkgo biloba seeds does not show homology to other pathogenesis-related proteins, but does show homology to the extracellular domain of plant cysteine-rich receptor-like kinases. Native Gnk2 purified from ginkgo nuts and the selenomethionine derivative of recombinant Gnk2 (SeMet-rGnk2) were crystallized by the sitting-drop vapour-diffusion method using different precipitants. X-ray diffraction data were collected from Gnk2 at 2.38 Å resolution and from SeMet-rGnk2 at 2.79 Å resolution using a synchrotron-radiation source. The crystals of both proteins belonged to the primitive cubic space group P213, with unit-cell parameters a = b = c = 143.2 Å. PMID:17768341

  10. Metal binding ability of cysteine-rich peptide domain of ZIP13 Zn2+ ions transporter.

    PubMed

    Potocki, Slawomir; Rowinska-Zyrek, Magdalena; Valensin, Daniela; Krzywoszynska, Karolina; Witkowska, Danuta; Luczkowski, Marek; Kozlowski, Henryk

    2011-07-01

    The coordination modes and thermodynamic stabilities of the complexes of the cysteine-rich N-terminal domain fragment of the ZIP13 zinc transporter (MPGCPCPGCG-NH(2)) with Zn(2+), Cd(2+), Bi(3+), and Ni(2+) have been studied by potentiometric, mass spectrometric, NMR, CD, and UV-vis spectroscopic methods. All of the studied metals had similar binding modes, with the three thiol sulfurs of cysteine residues involved in metal ion coordination. The stability of the complexes formed in solution changes in the series Bi(3+) ≫ Cd(2+) > Zn(2+) > Ni(2+), the strongest being for bismuth and the weakest for nickel. The N-terminal fragment of the human metalothionein-3 (MDPETCPCP-NH(2)) and unique histidine- and cysteine-rich domain of the C-terminus of Helicobacter pyroli HspA protein (Ac-ACCHDHKKH-NH(2)) have been chosen for the comparison studies. It confirmed indirectly which groups were the anchoring ones of ZIP13 domain. Experimental data from all of the used techniques and comparisons allowed us to propose possible coordination modes for all of the studied ZIP13 complexes.

  11. Metal binding ability of cysteine-rich peptide domain of ZIP13 Zn2+ ions transporter.

    PubMed

    Potocki, Slawomir; Rowinska-Zyrek, Magdalena; Valensin, Daniela; Krzywoszynska, Karolina; Witkowska, Danuta; Luczkowski, Marek; Kozlowski, Henryk

    2011-07-01

    The coordination modes and thermodynamic stabilities of the complexes of the cysteine-rich N-terminal domain fragment of the ZIP13 zinc transporter (MPGCPCPGCG-NH(2)) with Zn(2+), Cd(2+), Bi(3+), and Ni(2+) have been studied by potentiometric, mass spectrometric, NMR, CD, and UV-vis spectroscopic methods. All of the studied metals had similar binding modes, with the three thiol sulfurs of cysteine residues involved in metal ion coordination. The stability of the complexes formed in solution changes in the series Bi(3+) ≫ Cd(2+) > Zn(2+) > Ni(2+), the strongest being for bismuth and the weakest for nickel. The N-terminal fragment of the human metalothionein-3 (MDPETCPCP-NH(2)) and unique histidine- and cysteine-rich domain of the C-terminus of Helicobacter pyroli HspA protein (Ac-ACCHDHKKH-NH(2)) have been chosen for the comparison studies. It confirmed indirectly which groups were the anchoring ones of ZIP13 domain. Experimental data from all of the used techniques and comparisons allowed us to propose possible coordination modes for all of the studied ZIP13 complexes. PMID:21630642

  12. Crystallization and preliminary X-ray analysis of ginkbilobin-2 from Ginkgo biloba seeds: a novel antifungal protein with homology to the extracellular domain of plant cysteine-rich receptor-like kinases

    SciTech Connect

    Miyakawa, Takuya; Sawano, Yoriko; Miyazono, Ken-ichi; Hatano, Ken-ichi; Tanokura, Masaru

    2007-09-01

    Purification and crystallization of ginkbilobin-2 and its selenomethionine derivative allowed the collection of complete data to 2.38 Å resolution and multiwavelength anomalous diffraction data sets, respectively. The antifungal protein ginkbilobin-2 (Gnk2) from Ginkgo biloba seeds does not show homology to other pathogenesis-related proteins, but does show homology to the extracellular domain of plant cysteine-rich receptor-like kinases. Native Gnk2 purified from ginkgo nuts and the selenomethionine derivative of recombinant Gnk2 (SeMet-rGnk2) were crystallized by the sitting-drop vapour-diffusion method using different precipitants. X-ray diffraction data were collected from Gnk2 at 2.38 Å resolution and from SeMet-rGnk2 at 2.79 Å resolution using a synchrotron-radiation source. The crystals of both proteins belonged to the primitive cubic space group P2{sub 1}3, with unit-cell parameters a = b = c = 143.2 Å.

  13. Identification and characterization of a cell surface scavenger receptor cysteine-rich protein of Sciaenops ocellatus: bacterial interaction and its dependence on the conserved structural features of the SRCR domain.

    PubMed

    Qiu, Reng; Sun, Bo-Guang; Li, Jun; Liu, Xiao; Sun, Li

    2013-03-01

    The scavenger receptor cysteine-rich (SRCR) proteins are secreted or membrane-bound receptors with one or multiple SRCR domains. Members of the SRCR superfamily are known to have diverse functions that include pathogen recognition and immunoregulation. In teleost, although protein sequences with SRCR structure have been identified in some species, very little functional investigation has been carried out. In this study, we identified and characterized a teleost SRCR protein from red drum Sciaenops ocellatus. The protein was named S. ocellatus SRCR1 (SoSRCRP1). SoSRCRP1 is 410-residue in length and was predicted to be a transmembrane protein, with the extracellular region containing a collagen triple helix repeat and a SRCR domain. The SRCR domain has six conserved cysteines, of which, C338 and C399, C351 and C409, and C379 and C389 were predicted to form three disulfide bonds. SoSRCRP1 expression was detected mainly in immune-relevant tissues and upregulated by bacterial and viral infection. In head kidney leukocytes, bacterial infection stimulated the expression of SoSRCRP1, and the expressed SoSRCRP1 was localized on cell surface. Recombinant SoSRCRP1 (rSoSRCRP1) corresponding to the SRCR domain was purified from Escherichia coli and found to be able to bind Gram-negative and Gram-positive bacteria. To examine the structure-function relationship of SoSRCRP1, the mutant proteins SoSRCRP1M1, SoSRCRP1M2, SoSRCRP1M3, and SoSRCRP1M4 were created, which bear C351S and C409S, C338S, C379S, and R325A mutations respectively. Compared to rSoSRCRP1, all mutants were significantly reduced in the ability of bacterial interaction, with the highest reduction observed with SoSRCRP1M4. Taken together, these results indicate that SoSRCRP1 is a cell surface-localized SRCR protein that binds bacterial ligands in a manner that depends on the conserved structural features of the SRCR domain. PMID:23291106

  14. The disulfide bond pattern of catrocollastatin C, a disintegrin-like/cysteine-rich protein isolated from Crotalus atrox venom.

    PubMed Central

    Calvete, J. J.; Moreno-Murciano, M. P.; Sanz, L.; Jürgens, M.; Schrader, M.; Raida, M.; Benjamin, D. C.; Fox, J. W.

    2000-01-01

    The disulfide bond pattern of catrocollastatin-C was determined by N-terminal sequencing and mass spectrometry. The N-terminal disintegrin-like domain is a compact structure including eight disulfide bonds, seven of them in the same pattern as the disintegrin bitistatin. The protein has two extra cysteine residues (XIII and XVI) that form an additional disulfide bond that is characteristically found in the disintegrin-like domains of cellular metalloproteinases (ADAMs) and PIII snake venom Zn-metalloproteinases (SVMPs). The C-terminal cysteine-rich domain of catrocollastatin-C contains five disulfide bonds between nearest-neighbor cysteines and a long range disulfide bridge between CysV and CysX. These results provide structural evidence for a redefinition of the disintegrin-like and cysteine-rich domain boundaries. An evolutionary pathway for ADAMs, PIII, and PII SVMPs based on disulfide bond engineering is also proposed. PMID:10933502

  15. Minicollagen cysteine-rich domains encode distinct modes of polymerization to form stable nematocyst capsules

    PubMed Central

    Tursch, Anja; Mercadante, Davide; Tennigkeit, Jutta; Gräter, Frauke; Özbek, Suat

    2016-01-01

    The stinging capsules of cnidarians, nematocysts, function as harpoon-like organelles with unusual biomechanical properties. The nanosecond discharge of the nematocyst requires a dense protein network of the capsule structure withstanding an internal pressure of up to 150 bar. Main components of the capsule are short collagens, so-called minicollagens, that form extended polymers by disulfide reshuffling of their cysteine-rich domains (CRDs). Although CRDs have identical cysteine patterns, they exhibit different structures and disulfide connectivity at minicollagen N and C-termini. We show that the structurally divergent CRDs have different cross-linking potentials in vitro and in vivo. While the C-CRD can participate in several simultaneous intermolecular disulfides and functions as a cystine knot after minicollagen synthesis, the N-CRD is monovalent. Our combined experimental and computational analyses reveal the cysteines in the C-CRD fold to exhibit a higher structural propensity for disulfide bonding and a faster kinetics of polymerization. During nematocyst maturation, the highly reactive C-CRD is instrumental in efficient cross-linking of minicollagens to form pressure resistant capsules. The higher ratio of C-CRD folding types evidenced in the medusozoan lineage might have fostered the evolution of novel, predatory nematocyst types in cnidarians with a free-swimming medusa stage. PMID:27166560

  16. Wide distribution of cysteine-rich secretory proteins in snake venoms: isolation and cloning of novel snake venom cysteine-rich secretory proteins.

    PubMed

    Yamazaki, Yasuo; Hyodo, Fumiko; Morita, Takashi

    2003-04-01

    Cysteine-rich secretory proteins (CRISPs) are found in epididymis and granules of mammals, and they are thought to function in sperm maturation and in the immune system. Recently, we isolated and obtained clones for novel snake venom proteins that are classified as CRISP family proteins. To elucidate the distribution of snake venom CRISP family proteins, we evaluated a wide range of venoms for immuno-cross-reactivity. Then we isolated, characterized, and cloned genes for three novel CRISP family proteins (piscivorin, ophanin, and catrin) from the venom of eastern cottonmouth (Agkistrodon piscivorus piscivorus), king cobra (Ophiophagus hannah), and western diamondback rattlesnake (Crotalus atrox). Our results show the wide distribution of snake venom CRISP family proteins among Viperidae and Elapidae from different continents, indicating that CRISP family proteins compose a new group of snake venom proteins. PMID:12646276

  17. Soluble cysteine-rich tick saliva proteins Salp15 and Iric-1 from E. coli

    PubMed Central

    Kolb, Philipp; Vorreiter, Jolanta; Habicht, Jüri; Bentrop, Detlef; Wallich, Reinhard; Nassal, Michael

    2014-01-01

    Ticks transmit numerous pathogens, including borreliae, which cause Lyme disease. Tick saliva contains a complex mix of anti-host defense factors, including the immunosuppressive cysteine-rich secretory glycoprotein Salp15 from Ixodes scapularis ticks and orthologs like Iric-1 from Ixodesricinus. All tick-borne microbes benefit from the immunosuppression at the tick bite site; in addition, borreliae exploit the binding of Salp15 to their outer surface protein C (OspC) for enhanced transmission. Hence, Salp15 proteins are attractive targets for anti-tick vaccines that also target borreliae. However, recombinant Salp proteins are not accessible in sufficient quantity for either vaccine manufacturing or for structural characterization. As an alternative to low-yield eukaryotic systems, we investigated cytoplasmic expression in Escherichia coli, even though this would not result in glycosylation. His-tagged Salp15 was efficiently expressed but insoluble. Among the various solubility-enhancing protein tags tested, DsbA was superior, yielding milligram amounts of soluble, monomeric Salp15 and Iric-1 fusions. Easily accessible mutants enabled epitope mapping of two monoclonal antibodies that, importantly, cross-react with glycosylated Salp15, and revealed interaction sites with OspC. Free Salp15 and Iric-1 from protease-cleavable fusions, despite limited solubility, allowed the recording of 1H–15N 2D NMR spectra, suggesting partial folding of the wild-type proteins but not of Cys-free variants. Fusion to the NMR-compatible GB1 domain sufficiently enhanced solubility to reveal first secondary structure elements in 13C/15N double-labeled Iric-1. Together, E. coli expression of appropriately fused Salp15 proteins may be highly valuable for the molecular characterization of the function and eventually the 3D structure of these medically relevant tick proteins. PMID:25628987

  18. The role of the ADAMTS13 cysteine-rich domain in VWF binding and proteolysis

    PubMed Central

    Lane, David A.; Crawley, James T. B.

    2015-01-01

    ADAMTS13 proteolytically regulates the platelet-tethering function of von Willebrand factor (VWF). ADAMTS13 function is dependent upon multiple exosites that specifically bind the unraveled VWF A2 domain and enable proteolysis. We carried out a comprehensive functional analysis of the ADAMTS13 cysteine-rich (Cys-rich) domain using engineered glycans, sequence swaps, and single point mutations in this domain. Mutagenesis of Cys-rich domain–charged residues had no major effect on ADAMTS13 function, and 5 out of 6 engineered glycans on the Cys-rich domain also had no effect on ADAMTS13 function. However, a glycan attached at position 476 appreciably reduced both VWF binding and proteolysis. Substitution of Cys-rich sequences for the corresponding regions in ADAMTS1 identified a hydrophobic pocket involving residues Gly471-Val474 as being of critical importance for both VWF binding and proteolysis. Substitution of hydrophobic VWF A2 domain residues to serine in a region (residues 1642-1659) previously postulated to interact with the Cys-rich domain revealed the functional importance of VWF residues Ile1642, Trp1644, Ile1649, Leu1650, and Ile1651. Furthermore, the functional deficit of the ADAMTS13 Cys-rich Gly471-Val474 variant was dependent on these same hydrophobic VWF residues, suggesting that these regions form complementary binding sites that directly interact to enhance the efficiency of the proteolytic reaction. PMID:25564400

  19. Sclerostin binds and regulates the activity of cysteine-rich protein 61

    SciTech Connect

    Craig, Theodore A.; Bhattacharya, Resham; Mukhopadhyay, Debabrata; Kumar, Rajiv

    2010-01-29

    Sclerostin, a secreted glycoprotein, regulates osteoblast function. Using yeast two-hybrid and direct protein interaction analyses, we demonstrate that sclerostin binds the Wnt-modulating and Wnt-modulated, extracellular matrix protein, cysteine-rich protein 61 (Cyr61, CCN1), which regulates mesenchymal stem cell proliferation and differentiation, osteoblast and osteoclast function, and angiogenesis. Sclerostin was shown to inhibit Cyr61-mediated fibroblast attachment, and Cyr61 together with sclerostin increases vascular endothelial cell migration and increases osteoblast cell division. The data show that sclerostin binds to and influences the activity of Cyr61.

  20. Cysteine-rich intestinal protein binds zinc during transmucosal zinc transport.

    PubMed Central

    Hempe, J M; Cousins, R J

    1991-01-01

    The mechanism of zinc absorption has not been delineated, but kinetic studies show that both passive and carrier-mediated processes are involved. We have identified a low molecular mass zinc-binding protein in the soluble fraction of rat intestinal mucosa that could function as an intracellular zinc carrier. The protein was not detected in liver or pancreas, suggesting a role specific to the intestine. The protein binds zinc during transmucosal zinc transport and shows signs of saturation at higher luminal zinc concentrations, characteristics consistent with a role in carrier-mediated zinc absorption. Microsequence analysis of the protein purified by gel-filtration HPLC and SDS/PAGE showed complete identity within the first 41 N-terminal amino acids with the deduced protein sequence of cysteine-rich intestinal protein [Birkenmeier, E. H. & Gordon, J. I. (1986) Proc. Natl. Acad. Sci. USA 83, 2516-2520]. These investigators showed that the gene for this protein is developmentally regulated in neonates during the suckling period, conserved in many vertebrate species, and predominantly expressed in the small intestine. Cysteine-rich intestinal protein contains a recently identified conserved sequence of histidine and cysteine residues, the LIM motif, which our results suggest confers metal-binding properties that are important for zinc transport and/or functions of this micronutrient. Images PMID:1946385

  1. Purification and cloning of cysteine-rich proteins from Trimeresurus jerdonii and Naja atra venoms.

    PubMed

    Jin, Yang; Lu, Qiumin; Zhou, Xingding; Zhu, Shaowen; Li, Rui; Wang, Wanyu; Xiong, Yuliang

    2003-10-01

    Three 26 kDa proteins, named as TJ-CRVP, NA-CRVP1 and NA-CRVP2, were isolated from the venoms of Trimeresurus jerdonii and Naja atra, respectively. The N-terminal sequences of TJ-CRVP and NA-CRVPs were determined. These components were devoid of the enzymatic activities tested, such as phospholipase A(2), arginine esterase, proteolysis, L-amino acid oxidase, 5'nucleotidase, acetylcholinesterase. Furthermore, these three components did not have the following biological activities: coagulant and anticoagulant activities, lethal activity, myotoxicity, hemorrhagic activity, platelet aggregation and platelet aggregation-inhibiting activities. These proteins are named as cysteine-rich venom protein (CRVP) because their sequences showed high level of similarity with mammalian cysteine-rich secretory protein (CRISP) family. Recently, some CRISP-like proteins were also isolated from several different snake venoms, including Agkistrodon blomhoffi, Trimeresurus flavoviridis, Lanticauda semifascita and king cobra. We presumed that CRVP might be a common component in snake venoms. Of particular interest, phylogenetic analysis and sequence alignment showed that NA-CRVP1 and ophanin, both from elapid snakes, share higher similarity with CRVPs from Viperidae snakes. PMID:14529736

  2. The Cysteine-rich Domain of the DHHC3 Palmitoyltransferase Is Palmitoylated and Contains Tightly Bound Zinc.

    PubMed

    Gottlieb, Colin D; Zhang, Sheng; Linder, Maurine E

    2015-12-01

    DHHC palmitoyltransferases catalyze the addition of the fatty acid palmitate to proteins on the cytoplasmic leaflet of cell membranes. There are 23 members of the highly diverse mammalian DHHC protein family, all of which contain a conserved catalytic domain called the cysteine-rich domain (CRD). DHHC proteins transfer palmitate via a two-step catalytic mechanism in which the enzyme first modifies itself with palmitate in a process termed autoacylation. The enzyme then transfers palmitate from itself onto substrate proteins. The number and location of palmitoylated cysteines in the autoacylated intermediate is unknown. In this study, we present evidence using mass spectrometry that DHHC3 is palmitoylated at the cysteine in the DHHC motif. Mutation of highly conserved CRD cysteines outside the DHHC motif resulted in activity deficits and a structural perturbation revealed by limited proteolysis. Treatment of DHHC3 with chelating agents in vitro replicated both the specific structural perturbations and activity deficits observed in conserved cysteine mutants, suggesting metal ion-binding in the CRD. Using the fluorescent indicator mag-fura-2, the metal released from DHHC3 was identified as zinc. The stoichiometry of zinc binding was measured as 2 mol of zinc/mol of DHHC3 protein. Taken together, our data demonstrate that coordination of zinc ions by cysteine residues within the CRD is required for the structural integrity of DHHC proteins.

  3. Crystal Structure of the Frizzled-Like Cysteine-Rich Domain of the Receptor Tyrosine Kinase MuSK

    SciTech Connect

    Stiegler, A.; Burden, S; Hubbard, S

    2009-01-01

    Muscle-specific kinase (MuSK) is an essential receptor tyrosine kinase for the establishment and maintenance of the neuromuscular junction (NMJ). Activation of MuSK by agrin, a neuronally derived heparan-sulfate proteoglycan, and LRP4 (low-density lipoprotein receptor-related protein-4), the agrin receptor, leads to clustering of acetylcholine receptors on the postsynaptic side of the NMJ. The ectodomain of MuSK comprises three immunoglobulin-like domains and a cysteine-rich domain (Fz-CRD) related to those in Frizzled proteins, the receptors for Wnts. Here, we report the crystal structure of the MuSK Fz-CRD at 2.1 {angstrom} resolution. The structure reveals a five-disulfide-bridged domain similar to CRDs of Frizzled proteins but with a divergent C-terminal region. An asymmetric dimer present in the crystal structure implicates surface hydrophobic residues that may function in homotypic or heterotypic interactions to mediate co-clustering of MuSK, rapsyn, and acetylcholine receptors at the NMJ.

  4. Crystal structure of the frizzled-like cysteine-rich domain of the receptor tyrosine kinase MuSK.

    PubMed

    Stiegler, Amy L; Burden, Steven J; Hubbard, Stevan R

    2009-10-16

    Muscle-specific kinase (MuSK) is an essential receptor tyrosine kinase for the establishment and maintenance of the neuromuscular junction (NMJ). Activation of MuSK by agrin, a neuronally derived heparan-sulfate proteoglycan, and LRP4 (low-density lipoprotein receptor-related protein-4), the agrin receptor, leads to clustering of acetylcholine receptors on the postsynaptic side of the NMJ. The ectodomain of MuSK comprises three immunoglobulin-like domains and a cysteine-rich domain (Fz-CRD) related to those in Frizzled proteins, the receptors for Wnts. Here, we report the crystal structure of the MuSK Fz-CRD at 2.1 A resolution. The structure reveals a five-disulfide-bridged domain similar to CRDs of Frizzled proteins but with a divergent C-terminal region. An asymmetric dimer present in the crystal structure implicates surface hydrophobic residues that may function in homotypic or heterotypic interactions to mediate co-clustering of MuSK, rapsyn, and acetylcholine receptors at the NMJ. PMID:19664639

  5. Characterization of an aphid-specific, cysteine-rich protein enriched in salivary glands.

    PubMed

    Guo, Kun; Wang, Wei; Luo, Lan; Chen, Jun; Guo, Ya; Cui, Feng

    2014-05-01

    Aphids secrete saliva into the phloem during their infestation of plants. Previous studies have identified numerous saliva proteins, but little is known about the characteristics (physical and chemical) and functions of these proteins in aphid-plant interactions. This study characterized an unknown protein (ACYPI39568) that was predicted to be enriched in the salivary glands of pea aphid. This protein belongs to an aphid-specific, cysteine-rich protein family that contains 14 conserved cysteines. ACYPI39568 is a monomeric globular protein with a high beta strand extent. The binding stoichiometric ratios for Zn(2+) and ACYPI39568 were approximately 3:1 and 1:1 at two binding sites. ACYPI39568 was predominantly expressed in the first instar stage and in the salivary glands. Aphids required more ACYPI39568 when feeding on plants than when feeding on an artificial diet. However, the interference of ACYPI39568 expression did not affect the survival rate of aphids on plants.

  6. Crystal Structure of the Frizzled-like Cysteine-rich Domain of the Receptor Tyrosine Kinase MuSK

    PubMed Central

    Stiegler, Amy L.; Burden, Steven J.; Hubbard, Stevan R.

    2009-01-01

    Muscle-specific kinase (MuSK) is an essential receptor tyrosine kinase for establishment and maintenance of the neuromuscular junction (NMJ). Activation of MuSK by agrin, a neuronally derived heparan-sulfate proteoglycan, and LRP4, the agrin receptor, leads to clustering of acetylcholine receptors on the postsynaptic side of the NMJ. The ectodomain of MuSK comprises three immunoglobulin-like domains and a cysteine-rich domain (Fz-CRD) related to those in Frizzled proteins, the receptors for Wnts. Here, we report the crystal structure of the MuSK Fz-CRD at 2.1 Å resolution. The structure reveals a five disulfide-bridged domain similar to CRDs of Frizzled proteins, but with a divergent C-terminal region. An asymmetric dimer present in the crystal structure implicates surface hydrophobic residues that may function in homotypic or heterotypic interactions to mediate co-clustering of MuSK, rapsyn, and acetylcholine receptors at the NMJ. PMID:19664639

  7. Recognition of host proteins by Helicobacter cysteine-rich protein C.

    PubMed

    Roschitzki, Bernd; Schauer, Stefan; Mittl, Peer R E

    2011-09-01

    Tetratricopeptide- and sel1-like repeat (SLR) proteins modulate various cellular activities, ranging from transcription regulation to cell-fate control. Helicobacter cysteine-rich proteins (Hcp) consist of several SLRs that are cross-linked by disulfide bridges and have been implicated in host/pathogen interactions. Using pull-down proteomics, several human proteins including Nek9, Hsp90, and Hsc71 have been identified as putative human interaction partners for HcpC. The interaction between the NimA-like protein kinase Nek9 and HcpC has been validated by ELISA and surface plasmon resonance. Recombinant Nek9 is recognized by HcpC with a dissociation constant in the lower micromolar range. This interaction is formed either directly between Nek9 and HcpC or via the formation of a complex with Hsc71. The HcpC homologue HcpA possesses no affinity for Nek9, suggesting that the reported interaction is rather specific for HcpC. These results are consistent with previous observations where Nek9 was targeted upon bacterial or viral invasion. However, further experiments will be required to show that the reported interactions also occur in vivo. PMID:21735226

  8. The solution structure of the Raf-1 cysteine-rich domain: a novel ras and phospholipid binding site.

    PubMed

    Mott, H R; Carpenter, J W; Zhong, S; Ghosh, S; Bell, R M; Campbell, S L

    1996-08-01

    The Raf-1 protein kinase is the best-characterized downstream effector of activated Ras. Interaction with Ras leads to Raf-1 activation and results in transduction of cell growth and differentiation signals. The details of Raf-1 activation are unclear, but our characterization of a second Ras-binding site in the cysteine-rich domain (CRD) and the involvement of both Ras-binding sites in effective Raf-1-mediated transformation provides insight into the molecular aspects and consequences of Ras-Raf interactions. The Raf-1 CRD is a member of an emerging family of domains, many of which are found within signal transducing proteins. Several contain binding sites for diacylglycerol (or phorbol esters) and phosphatidylserine and are believed to play a role in membrane translocation and enzyme activation. The CRD from Raf-1 does not bind diacylglycerol but interacts with Ras and phosphatidylserine. To investigate the ligand-binding specificities associated with CRDs, we have determined the solution structure of the Raf-1 CRD using heteronuclear multidimensional NMR. We show that there are differences between this structure and the structures of two related domains from protein kinase C (PKC). The differences are confined to regions of the CRDs involved in binding phorbol ester in the PKC domains. Since phosphatidylserine is a common ligand, we expect its binding site to be located in regions where the structures of the Raf-1 and PKC domains are similar. The structure of the Raf-1 CRD represents an example of this family of domains that does not bind diacylglycerol and provides a framework for investigating its interactions with other molecules.

  9. Cysteine-Rich Atrial Secretory Protein from the Snail Achatina achatina: Purification and Structural Characterization

    PubMed Central

    Shabelnikov, Sergey; Kiselev, Artem

    2015-01-01

    Despite extensive studies of cardiac bioactive peptides and their functions in molluscs, soluble proteins expressed in the heart and secreted into the circulation have not yet been reported. In this study, we describe an 18.1-kDa, cysteine-rich atrial secretory protein (CRASP) isolated from the terrestrial snail Achatina achatina that has no detectable sequence similarity to any known protein or nucleotide sequence. CRASP is an acidic, 158-residue, N-glycosylated protein composed of eight alpha-helical segments stabilized with five disulphide bonds. A combination of fold recognition algorithms and ab initio folding predicted that CRASP adopts an all-alpha, right-handed superhelical fold. CRASP is most strongly expressed in the atrium in secretory atrial granular cells, and substantial amounts of CRASP are released from the heart upon nerve stimulation. CRASP is detected in the haemolymph of intact animals at nanomolar concentrations. CRASP is the first secretory protein expressed in molluscan atrium to be reported. We propose that CRASP is an example of a taxonomically restricted gene that might be responsible for adaptations specific for terrestrial pulmonates. PMID:26444993

  10. Dragline silk: a fiber assembled with low-molecular-weight cysteine-rich proteins.

    PubMed

    Pham, Thanh; Chuang, Tyler; Lin, Albert; Joo, Hyun; Tsai, Jerry; Crawford, Taylor; Zhao, Liang; Williams, Caroline; Hsia, Yang; Vierra, Craig

    2014-11-10

    Dragline silk has been proposed to contain two main protein constituents, MaSp1 and MaSp2. However, the mechanical properties of synthetic spider silks spun from recombinant MaSp1 and MaSp2 proteins have yet to approach natural fibers, implying the natural spinning dope is missing critical factors. Here we report the discovery of novel molecular constituents within the spinning dope that are extruded into dragline silk. Protein studies of the liquid spinning dope from the major ampullate gland, coupled with the analysis of dragline silk fibers using mass spectrometry, demonstrate the presence of a new family of low-molecular-weight cysteine-rich proteins (CRPs) that colocalize with the MA fibroins. Expression of the CRP family members is linked to dragline silk production, specifically MaSp1 and MaSp2 mRNA synthesis. Biochemical data support that CRP molecules are secreted into the spinning dope and assembled into macromolecular complexes via disulfide bond linkages. Sequence analysis supports that CRP molecules share similarities to members that belong to the cystine slipknot superfamily, suggesting that these factors may have evolved to increase fiber toughness by serving as molecular hubs that dissipate large amounts of energy under stress. Collectively, our findings provide molecular details about the components of dragline silk, providing new insight that will advance materials development of synthetic spider silk for industrial applications. PMID:25259849

  11. Mesocestoides corti (syn. vogae, cestoda): characterization of genes encoding cysteine-rich secreted proteins (CRISP).

    PubMed

    Britos, Leticia; Lalanne, Ana Inés; Castillo, Estela; Cota, Germán; Señorale, Mario; Marín, Mónica

    2007-06-01

    With the aim of identifying genes involved in development and parasite adaptation in cestodes, four coding sequences were isolated from the cyclophyllidean Mesocestoides corti larval stage (tetrathyridium). Genes showed significant similarity to the cysteine-rich secreted protein (CRISP) encoding genes, a large family that includes stage and tissue-specific genes from diverse organisms, many associated with crucial biological processes. The full-length McCrisp2 cDNA encodes a predicted protein of 202 residues in length, containing 10 cysteines and a putative signal peptide. The expression level of McCrisp2 was estimated by Real-time PCR, relative to GAPDH, showing an increase of 75% in segmented worms compared to tetrathyridia. By in situ hybridization, McCrisp2 expression was localized mainly at the larvae apical region of tetrathyridia and in the proglottids of segmented worms. Taken together our results suggest a possible role for M. corti CRISP proteins as ES products, potentially involved in differentiation processes as proposed for homologs in other organisms.

  12. Dengue Virus Infection of Aedes aegypti Requires a Putative Cysteine Rich Venom Protein

    PubMed Central

    Londono-Renteria, Berlin; Troupin, Andrea; Conway, Michael J; Vesely, Diana; Ledizet, Michael; Roundy, Christopher M.; Cloherty, Erin; Jameson, Samuel; Vanlandingham, Dana; Higgs, Stephen; Fikrig, Erol; Colpitts, Tonya M.

    2015-01-01

    Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious human disease and mortality worldwide. There is no specific antiviral therapy or vaccine for DENV infection. Alterations in gene expression during DENV infection of the mosquito and the impact of these changes on virus infection are important events to investigate in hopes of creating new treatments and vaccines. We previously identified 203 genes that were ≥5-fold differentially upregulated during flavivirus infection of the mosquito. Here, we examined the impact of silencing 100 of the most highly upregulated gene targets on DENV infection in its mosquito vector. We identified 20 genes that reduced DENV infection by at least 60% when silenced. We focused on one gene, a putative cysteine rich venom protein (SeqID AAEL000379; CRVP379), whose silencing significantly reduced DENV infection in Aedes aegypti cells. Here, we examine the requirement for CRVP379 during DENV infection of the mosquito and investigate the mechanisms surrounding this phenomenon. We also show that blocking CRVP379 protein with either RNAi or specific antisera inhibits DENV infection in Aedes aegypti. This work identifies a novel mosquito gene target for controlling DENV infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses. PMID:26491875

  13. Therapeutic potential of cysteine-rich protein 61 in rheumatoid arthritis.

    PubMed

    Xu, Tao; He, Ying-Hua; Wang, Ming-Quan; Yao, Hong-Wei; Ni, Ming-Ming; Zhang, Lei; Meng, Xiao-Ming; Huang, Cheng; Ge, Yun-Xuan; Li, Jun

    2016-10-30

    Cysteine-rich protein 61 (Cyr61)/CCN1, a product of an immediate early gene, can directly accommodate cell adhesion and migratory processes whilst simultaneously regulating the production of other cytokines and chemokines through paracrine and autocrine feedback loops. This intricate functionality of Cyr61 indicate its important role in targeting components of the infectious or chronic inflammatory disease processes including rheumatoid arthritis (RA). Recent work has focused on the role of Cyr61 in RA. For example, Cyr61 induced proIL-1β production in FLS via the AKT-dependent NF-κB signaling pathway. Moreover, Cyr61-siRNA decreased the levels of matrix metalloproteinase (MMP)-3 and MMP-13, and induced apoptosis in RA-FLS cells. These results indicated that Cyr61 may represent a novel target for the treatment of RA. In this article we will introduce the molecular properties of Cyr61, discuss the function of Cyr61, and the therapeutic potential of modulating the Cyr61 in RA. PMID:27457285

  14. Cysteine-rich secretory protein-3: a potential biomarker for prostate cancer.

    PubMed

    Kosari, Farhad; Asmann, Yan W; Cheville, John C; Vasmatzis, George

    2002-11-01

    Electronic profiling of publicly available expressed sequence tag databases identified a gene, cysteine-rich secretoryprotein-3 (CRISP-3), that is up-regulated in prostate cancer, and of which the expression is relatively prostate-specific. The objective of this study was to examine the potential of CRISP-3 as a biomarker for prostate cancer. In transient transfection studies, CRISP-3 was found to be a secretory protein. Using a multiple tissue dot blot experiment, CRISP-3 transcript was identified in a limited number of human tissues including the prostate. In situ hybridization experiments indicated that CRISP-3 mRNA is epithelial-specific and is up-regulated in prostate adenocarcinoma compared with benign prostate tissue. CRISP-3 mRNA overexpression in cancer was confirmed using quantitative real-time reverse-transcription-PCR using benign prostatic epithelia and adenocarcinoma (in 5 of 5 cases) isolated by laser capture microdissection, as well as bulk tissues (in 20 of 23 cases) from surgically resected human prostates. These findings suggest that CRISP-3 is a potential biomarker for prostate cancer.

  15. Amyloid-β Binds to the Extracellular Cysteine-rich Domain of Frizzled and Inhibits Wnt/β-Catenin Signaling*S⃞

    PubMed Central

    Magdesian, Margaret H.; Carvalho, Milena M. V. F.; Mendes, Fabio A.; Saraiva, Leonardo M.; Juliano, Maria A.; Juliano, Luiz; Garcia-Abreu, José; Ferreira, Sérgio T.

    2008-01-01

    The amyloid-β peptide (Aβ) plays a major role in neuronal dysfunction and neurotoxicity in Alzheimer disease. However, the signal transduction mechanisms involved in Aβ-induced neuronal dysfunction remain to be fully elucidated. A major current unknown is the identity of the protein receptor(s) involved in neuronal Aβ binding. Using phage display of peptide libraries, we have identified a number of peptides that bind Aβ and are homologous to neuronal receptors putatively involved in Aβ interactions. We report here on a cysteine-linked cyclic heptapeptide (denominated cSP5) that binds Aβ with high affinity and is homologous to the extracellular cysteine-rich domain of several members of the Frizzled (Fz) family of Wnt receptors. Based on this homology, we investigated the interaction between Aβ and Fz. The results show that Aβ binds to the Fz cysteine-rich domain at or in close proximity to the Wnt-binding site and inhibits the canonical Wnt signaling pathway. Interestingly, the cSP5 peptide completely blocks Aβ binding to Fz and prevents inhibition of Wnt signaling. These results indicate that the Aβ-binding site in Fz is homologous to cSP5 and that this is a relevant target for Aβ-instigated neurotoxicity. Furthermore, they suggest that blocking the interaction of Aβ with Fz might lead to novel therapeutic approaches to prevent neuronal dysfunction in Alzheimer disease. PMID:18234671

  16. Critical but Distinct Roles for the Pleckstrin Homology and Cysteine-Rich Domains as Positive Modulators of Vav2 Signaling and Transformation

    PubMed Central

    Booden, Michelle A.; Campbell, Sharon L.; Der, Channing J.

    2002-01-01

    Vav2, like all Dbl family proteins, possesses tandem Dbl homology (DH) and pleckstrin homology (PH) domains and functions as a guanine nucleotide exchange factor for Rho family GTPases. Whereas the PH domain is a critical positive regulator of DH domain function for a majority of Dbl family proteins, the PH domains of the related Vav and Vav3 proteins are dispensable for DH domain activity. Instead, Vav proteins contain a cysteine-rich domain (CRD) critical for DH domain function. We evaluated the contribution of the PH domain and the CRD to Vav2 guanine nucleotide exchange, signaling, and transforming activity. Unexpectedly, we found that mutations of the PH domain impaired Vav2 signaling, transforming activity, and membrane association. However, these mutations do not influence exchange activity on Rac and only slightly affect exchange on RhoA and Cdc42. We also found that the CRD was critical for the exchange activity in vitro and contributed to Vav2 membrane localization. Finally, we found that phosphoinositol 3-kinase activation synergistically enhanced Vav2 transforming and signaling activity by stimulating exchange activity but not membrane association. In conclusion, the PH domain and CRD are mechanistically distinct, positive modulators of Vav2 DH domain function in vivo. PMID:11909943

  17. Characterization of a family of cysteine rich proteins and development of a MaSp1 derived miniature fibroin

    NASA Astrophysics Data System (ADS)

    Chuang, Tyler Casey

    Spider silk displays a unique balance of high tensile strength and extensibility, making it one of the toughest materials on the planet. Dragline silk, also known as the lifeline of the spider, represents one of the best studied fiber types and many labs are attempting to produce synthetic dragline silk fibers for commercial applications. In these studies, we develop a minifibroin for expression studies in bacteria. Using recombinant DNA methodology and protein expression studies, we develop a natural minifibroin that contains the highly conserved N- and C-terminal domains, along with several internal block repeats of MaSp1. We also characterize a family of small cysteine-rich proteins (CRPs) and demonstrate that these factors are present within the spinning dope of the major ampullate gland using MS analysis. Biochemical studies and characterization of one of the family members, CRP1, demonstrate that this factor can self-polymerize into higher molecular weight complexes under oxidizing conditions, but can be converted into a monomeric species under reducing conditions. Self-polymerization of CRP1 is also shown to be independent of pH and salt concentration, two important chemical cues that help fibroin aggregation. Overall, our data demonstrate that the polymerization state of CRP1 is dependent upon redox state, suggesting that the redox environment during fiber extrusion may help regulate the oligomerization of CRP molecules during dragline silk production.

  18. The impact of Cysteine-Rich Intestinal Protein 1 (CRIP1) in human breast cancer

    PubMed Central

    2013-01-01

    Background CRIP1 (cysteine-rich intestinal protein 1) has been found in several tumor types, its prognostic impact and its role in cellular processes, particularly in breast cancer, are still unclear. Methods To elucidate the prognostic impact of CRIP1, we analyzed tissues from 113 primary invasive ductal breast carcinomas using immunohistochemistry. For the functional characterization of CRIP1, its endogenous expression was transiently downregulated in T47D and BT474 breast cancer cells and the effects analyzed by immunoblotting, WST-1 proliferation assay and invasion assay. Results We found a significant correlation between CRIP1 and HER2 (human epidermal growth factor receptor 2) expression levels (p = 0.016) in tumor tissues. In Kaplan Meier analyses, CRIP1 expression was significantly associated with the distant metastases-free survival of patients, revealing a better prognosis for high CRIP1 expression (p = 0.039). Moreover, in multivariate survival analyses, the expression of CRIP1 was an independent negative prognostic factor, along with the positive prognosticators nodal status and tumor size (p = 0.029). CRIP1 knockdown in the T47D and BT474 breast cancer cell lines led to the increased phosphorylation of MAPK and Akt, to the reduced phosphorylation of cdc2, and to a significantly elevated cell proliferation in vitro (p < 0.001). These results indicate that reduced CRIP1 levels may increase cell proliferation and activate cell growth. In addition, CRIP1 knockdown increased cell invasion in vitro. Conclusions Because the lack of CRIP1 expression in breast cancer tissue is significantly associated with a worse prognosis for patients and low endogenous CRIP1 levels in vitro increased the malignant potential of breast cancer cells, we hypothesize that CRIP1 may act as a tumor suppressor in proliferation and invasion processes. Therefore, CRIP1 may be an independent prognostic marker with significant predictive power for use in breast cancer

  19. Quantitation of Human Metallothionein Isoforms: A Family of Small, Highly Conserved, Cysteine-rich Proteins*

    PubMed Central

    Mehus, Aaron A.; Muhonen, Wallace W.; Garrett, Scott H.; Somji, Seema; Sens, Donald A.; Shabb, John B.

    2014-01-01

    Human metallothioneins (MTs) are important regulators of metal homeostasis and protectors against oxidative damage. Their altered mRNA expression has been correlated with metal toxicity and a variety of cancers. Current immunodetection methods lack the specificity to distinguish all 12 human isoforms. Each, however, can be distinguished by the mass of its acetylated, cysteine-rich, hydrophilic N-terminal tryptic peptides. These properties were exploited to develop a bottom-up MALDI-TOF/TOF-MS-based method for their simultaneous quantitation. Key features included enrichment of N-terminal acetylated peptides by strong cation exchange chromatography, optimization of C18 reversed-phase chromatography, and control of methionine oxidation. Combinations of nine isoforms were identified in seven cell lines and two tissues. Relative quantitation was accomplished by comparing peak intensities of peptides generated from pooled cytosolic proteins alkylated with 14N- or 15N-iodoacetamide. Absolute quantitation was achieved using 15N-iodoacetamide-labeled synthetic peptides as internal standards. The method was applied to the cadmium induction of MTs in human kidney HK-2 epithelial cells expressing recombinant MT-3. Seven isoforms were detected with abundances spanning almost 2 orders of magnitude and inductions up to 12-fold. The protein-to-mRNA ratio for MT-1E was one-tenth that of other MTs, suggesting isoform-specific differences in protein expression efficiency. Differential expression of MT-1G1 and MT-1G2 suggested tissue- and cell-specific alternative splicing for the MT-1G isoform. Protein expression of MT isoforms was also evaluated in human breast epithelial cancer cell lines. Estrogen-receptor-positive cell lines expressed only MT-2 and MT-1X, whereas estrogen-receptor-negative cell lines additionally expressed MT-1E. The combined expression of MT isoforms was 38-fold greater in estrogen-receptor-negative cell lines than in estrogen-receptor-positive cells. These

  20. The Cysteine-Rich Interdomain Region from the Highly Variable Plasmodium falciparum Erythrocyte Membrane Protein-1 Exhibits a Conserved Structure

    PubMed Central

    Su, Hua-Poo; Makobongo, Morris O.; Moore, Jaime M.; Singh, Sanjay; Miller, Louis H.; Garboczi, David N.

    2008-01-01

    Plasmodium falciparum malaria parasites, living in red blood cells, express proteins of the erythrocyte membrane protein-1 (PfEMP1) family on the red blood cell surface. The binding of PfEMP1 molecules to human cell surface receptors mediates the adherence of infected red blood cells to human tissues. The sequences of the 60 PfEMP1 genes in each parasite genome vary greatly from parasite to parasite, yet the variant PfEMP1 proteins maintain receptor binding. Almost all parasites isolated directly from patients bind the human CD36 receptor. Of the several kinds of highly polymorphic cysteine-rich interdomain region (CIDR) domains classified by sequence, only the CIDR1α domains bind CD36. Here we describe the CD36-binding portion of a CIDR1α domain, MC179, as a bundle of three α-helices that are connected by a loop and three additional helices. The MC179 structure, containing seven conserved cysteines and 10 conserved hydrophobic residues, predicts similar structures for the hundreds of CIDR sequences from the many genome sequences now known. Comparison of MC179 with the CIDR domains in the genome of the P. falciparum 3D7 strain provides insights into CIDR domain structure. The CIDR1α three-helix bundle exhibits less than 20% sequence identity with the three-helix bundles of Duffy-binding like (DBL) domains, but the two kinds of bundles are almost identical. Despite the enormous diversity of PfEMP1 sequences, the CIDR1α and DBL protein structures, taken together, predict that a PfEMP1 molecule is a polymer of three-helix bundles elaborated by a variety of connecting helices and loops. From the structures also comes the insight that DBL1α domains are approximately 100 residues larger and that CIDR1α domains are approximately 100 residues smaller than sequence alignments predict. This new understanding of PfEMP1 structure will allow the use of better-defined PfEMP1 domains for functional studies, for the design of candidate vaccines, and for understanding the

  1. The Cysteine-Rich Domain of Human Adam 12 Supports Cell Adhesion through Syndecans and Triggers Signaling Events That Lead to β1 Integrin–Dependent Cell Spreading

    PubMed Central

    Iba, Kousuke; Albrechtsen, Reidar; Gilpin, Brent; Fröhlich, Camilla; Loechel, Frosty; Zolkiewska, Anna; Ishiguro, Kazuhiro; Kojima, Tetsuhito; Liu, Wei; Langford, J. Kevin; Sanderson, Ralph D.; Brakebusch, Cord; Fässler, Reinhard; Wewer, Ulla M.

    2000-01-01

    The ADAMs (a disintegrin and metalloprotease) family of proteins is involved in a variety of cellular interactions, including cell adhesion and ecto- domain shedding. Here we show that ADAM 12 binds to cell surface syndecans. Three forms of recombinant ADAM 12 were used in these experiments: the cys-teine-rich domain made in Escherichia coli (rADAM 12-cys), the disintegrin-like and cysteine-rich domain made in insect cells (rADAM 12-DC), and full-length human ADAM 12-S tagged with green fluorescent protein made in mammalian cells (rADAM 12-GFP). Mesenchymal cells specifically and in a dose-dependent manner attach to ADAM 12 via members of the syndecan family. After binding to syndecans, mesenchymal cells spread and form focal adhesions and actin stress fibers. Integrin β1 was responsible for cell spreading because function-blocking monoclonal antibodies completely inhibited cell spreading, and chondroblasts lacking β1 integrin attached but did not spread. These data suggest that mesenchymal cells use syndecans as the initial receptor for the ADAM 12 cysteine-rich domain–mediated cell adhesion, and then the β1 integrin to induce cell spreading. Interestingly, carcinoma cells attached but did not spread on ADAM 12. However, spreading could be efficiently induced by the addition of either 1 mM Mn2+ or the β1 integrin–activating monoclonal antibody 12G10, suggesting that in these carcinoma cells, the ADAM 12–syndecan complex fails to modulate the function of β1 integrin. PMID:10831617

  2. The cysteine-rich core domain of REIC/Dkk-3 is critical for its effect on monocyte differentiation and tumor regression.

    PubMed

    Kinoshita, Rie; Watanabe, Masami; Huang, Peng; Li, Shun-Ai; Sakaguchi, Masakiyo; Kumon, Hiromi; Futami, Junichiro

    2015-06-01

    Reduced expression in immortalized cells (REIC)/Dickkopf (Dkk)-3 is a tumor-suppressor gene and has been studied as a promising therapeutic gene for cancer gene therapy. Intratumoral injection of an adenovirus vector carrying the human REIC/Dkk-3 gene (Ad-REIC) elicits cancer cell-specific apoptosis and anticancer immune responses. The cytokine-like effect of secretory REIC/Dkk-3 on the induction of dendritic cell (DC)-like cell differentiation from monocytes plays a role in systemic anticancer immunity. In the present study, we generated recombinant full-length and N-terminally truncated REIC/Dkk-3 to characterize the biological activity of the protein. During the purification procedure, we identified a 17 kDa cysteine-rich stable product (C17-REIC) showing limited degradation. Further analysis showed that the C17-REIC domain was sufficient for the induction of DC-like cell differentiation from monocytes. Concomitant with the differentiation of DCs, the REIC/Dkk-3 protein induced the phosphorylation of glycogen synthase kinase 3β (GSK-3β) and signal transducers and activators of transcription (STAT) at a level comparable to that of granulocyte/macrophage colony-stimulating factor. In a mouse model of subcutaneous renal adenocarcinoma, intraperitoneal injection of full-length and C17-REIC proteins exerted anticancer effects in parallel with the activation of immunocompetent cells such as DCs and cytotoxic T lymphocytes in peripheral blood. Taken together, our results indicate that the stable cysteine-rich core region of REIC/Dkk-3 is responsible for the induction of anticancer immune responses. Because REIC/Dkk-3 is a naturally circulating serum protein, the upregulation REIC/Dkk-3 protein expression could be a promising option for cancer therapy.

  3. Sorting Signals Required for Trafficking of the Cysteine-Rich Acidic Repetitive Transmembrane Protein in Trypanosoma brucei

    PubMed Central

    Qiao, Xugang; Chuang, Bin-Fay; Jin, Yamei; Muranjan, Madhavi; Hung, Chien-Hui; Lee, Pei-Tseng; Lee, Mary Gwo-Shu

    2006-01-01

    In trypanosomatids, endocytosis and exocytosis are restricted to the flagellar pocket (FP). The cysteine-rich acidic repetitive transmembrane (CRAM) protein is located at the FP of Trypanosoma brucei and potentially functions as a receptor or an essential component for lipoprotein uptake. We characterized sorting determinants involved in efficient trafficking of CRAM to and from the FP of T. brucei. Previous studies indicated the presence of signals in the CRAM C terminus, specific for its localization to the FP and for efficient endocytosis (H. Yang, D. G. Russell, B. Zeng, M. Eiki, and M.G.-S. Lee, Mol. Cell. Biol. 20:5149-5163, 2000.) To delineate functional domains of putative sorting signals, we performed a mutagenesis series of the CRAM C terminus. Subcellular localization of CRAM mutants demonstrated that the amino acid sequence between −5 and −14 (referred to as a transport signal) is essential for exporting CRAM from the endoplasmic reticulum to the FP, and mutations of amino acids at −12 (V), −10 (V), or −5 (D) led to retention of CRAM in the endoplasmic reticulum. Comparison of the endocytosis efficiency of CRAM mutants demonstrated that the sequence from amino acid −5 to −23 (referred to as a putative endocytosis signal) is required for efficient endocytosis and overlaps with the transport signal. Apparently the CRAM-derived sorting signal can efficiently interact with the T. brucei μ1 adaptin, and mutations at amino acids essential for the function of the transport signal abolished the interaction of the signal with T. brucei μ1, strengthening the hypothesis of the involvement of the clathrin- and adaptor-dependent pathway in trafficking of CRAM via the FP. PMID:16896208

  4. S cysteine-rich (SCR) binding domain analysis of the Brassica self-incompatibility S-locus receptor kinase.

    PubMed

    Kemp, Benjamin P; Doughty, James

    2007-01-01

    Brassica self-incompatibility, a highly discriminating outbreeding mechanism, has become a paradigm for the study of plant cell-cell communications. When self-pollen lands on a stigma, the male ligand S cysteine-rich (SCR), which is present in the pollen coat, is transmitted to the female receptor, S-locus receptor kinase (SRK). SRK is a membrane-spanning serine/threonine receptor kinase present in the stigmatic papillar cell membrane. Haplotype-specific binding of SCR to SRK brings about pollen rejection. The extracellular receptor domain of SRK (eSRK) is responsible for binding SCR. Based on sequence homology, eSRK can be divided into three subdomains: B lectin-like, hypervariable, and PAN. Biochemical analysis of these subdomains showed that the hypervariable subdomain is responsible for most of the SCR binding capacity of eSRK, whereas the B lectin-like and PAN domains have little, if any, affinity for SCR. Fine mapping of the SCR binding region of SRK using a peptide array revealed a region of the hypervariable subdomain that plays a key role in binding the SCR molecule. We show that residues within the hypervariable subdomain define SRK binding and are likely to be involved in defining haplotype specificity.

  5. NFAP2, a novel cysteine-rich anti-yeast protein from Neosartorya fischeri NRRL 181: isolation and characterization.

    PubMed

    Tóth, Liliána; Kele, Zoltán; Borics, Attila; Nagy, László G; Váradi, Györgyi; Virágh, Máté; Takó, Miklós; Vágvölgyi, Csaba; Galgóczy, László

    2016-12-01

    The increasing incidence of fungal infections and damages due to drug-resistant fungi urges the development of new antifungal strategies. The cysteine-rich antifungal proteins from filamentous ascomycetes provide a feasible base for protection against molds due to their potent antifungal activity on them. In contrast to this, they show no or weak activity on yeasts, hence their applicability against this group of fungi is questionable. In the present study a 5.6 kDa anti-yeast protein (NFAP2) is isolated, identified and characterized from the ferment broth of Neosartorya fischeri NRRL 181. Based on a phylogenetic analysis, NFAP2 and its putative homologs represent a new group of ascomycetous cysteine-rich antifungal proteins. NFAP2 proved to be highly effective against tested yeasts involving clinically relevant Candida species. NFAP2 did not cause metabolic inactivity and apoptosis induction, but its plasma membrane disruption ability was observed on Saccharomyces cerevisiae. The antifungal activity was maintained after high temperature treatment presumably due to the in silico predicted stable tertiary structure. The disulfide bond-stabilized, heat-resistant folded structure of NFAP2 was experimentally proved. After further investigations of antifungal mechanism, structure and toxicity, NFAP2 could be applicable as a potent antifungal agent against yeasts. PMID:27637945

  6. Genome-wide analysis of small secreted cysteine-rich proteins identifies candidate effector proteins potentially involved in Fusarium graminearum-wheat interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogen-derived, small secreted cysteine-rich proteins (SSCPs) are known to be a common source of fungal effectors that trigger resistance or susceptibility in specific host plants. This group of proteins has not been well studied in Fusarium graminearum, the primary cause of Fusarium head blight ...

  7. Identification and Gene Expression Analysis of a Taxonomically Restricted Cysteine-Rich Protein Family in Reef-Building Corals

    PubMed Central

    Sunagawa, Shinichi; DeSalvo, Michael K.; Voolstra, Christian R.; Reyes-Bermudez, Alejandro; Medina, Mónica

    2009-01-01

    The amount of genomic sequence information continues to grow at an exponential rate, while the identification and characterization of genes without known homologs remains a major challenge. For non-model organisms with limited resources for manipulative studies, high-throughput transcriptomic data combined with bioinformatics methods provide a powerful approach to obtain initial insights into the function of unknown genes. In this study, we report the identification and characterization of a novel family of putatively secreted, small, cysteine-rich proteins herein named Small Cysteine-Rich Proteins (SCRiPs). Their discovery in expressed sequence tag (EST) libraries from the coral Montastraea faveolata required the performance of an iterative search strategy based on BLAST and Hidden-Markov-Model algorithms. While a discernible homolog could neither be identified in the genome of the sea anemone Nematostella vectensis, nor in a large EST dataset from the symbiotic sea anemone Aiptasia pallida, we identified SCRiP sequences in multiple scleractinian coral species. Therefore, we postulate that this gene family is an example of lineage-specific gene expansion in reef-building corals. Previously published gene expression microarray data suggest that a sub-group of SCRiPs is highly responsive to thermal stress. Furthermore, data from microarray experiments investigating developmental gene expression in the coral Acropora millepora suggest that different SCRiPs may play distinct roles in the development of corals. The function of these proteins remains to be elucidated, but our results from in silico, transcriptomic, and phylogenetic analyses provide initial insights into the evolution of SCRiPs, a novel, taxonomically restricted gene family that may be responsible for a lineage-specific trait in scleractinian corals. PMID:19283069

  8. Low affinity binding of phorbol esters to protein kinase C and its recombinant cysteine-rich region in the absence of phospholipids.

    PubMed

    Kazanietz, M G; Barchi, J J; Omichinski, J G; Blumberg, P M

    1995-06-16

    Binding of phorbol esters to protein kinase C (PKC) has been regarded as dependent on phospholipids, with phosphatidylserine being the most effective for reconstituting binding. By using a purified single cysteine-rich region from PKC delta expressed in Escherichia coli we were able to demonstrate that specific binding of [3H]phorbol 12,13-dibutyrate to the receptor still takes place in the absence of the phospholipid cofactor. However, [3H]phorbol 12,13-dibutyrate bound to the cysteine-rich region with 80-fold lower affinity in the absence than in the presence of 100 micrograms/ml phosphatidylserine. Similar results were observed with the intact recombinant PKC delta isolated from insect cells. When different phorbol derivatives were examined, distinct structure-activity relations for the cysteine-rich region were found in the presence and absence of phospholipid. Our results have potential implications for PKC translocation, for inhibitor design, and for PKC structural determination. PMID:7782331

  9. The RafC1 cysteine-rich domain contains multiple distinct regulatory epitopes which control Ras-dependent Raf activation.

    PubMed

    Daub, M; Jöckel, J; Quack, T; Weber, C K; Schmitz, F; Rapp, U R; Wittinghofer, A; Block, C

    1998-11-01

    Activation of c-Raf-1 (referred to as Raf) by Ras is a pivotal step in mitogenic signaling. Raf activation is initiated by binding of Ras to the regulatory N terminus of Raf. While Ras binding to residues 51 to 131 is well understood, the role of the RafC1 cysteine-rich domain comprising residues 139 to 184 has remained elusive. To resolve the function of the RafC1 domain, we have performed an exhaustive surface scanning mutagenesis. In our study, we defined a high-resolution map of multiple distinct functional epitopes within RafC1 that are required for both negative control of the kinase and the positive function of the protein. Activating mutations in three different epitopes enhanced Ras-dependent Raf activation, while only some of these mutations markedly increased Raf basal activity. One contiguous inhibitory epitope consisting of S177, T182, and M183 clearly contributed to Ras-Raf binding energy and represents the putative Ras binding site of the RafC1 domain. The effects of all RafC1 mutations on Ras binding and Raf activation were independent of Ras lipid modification. The inhibitory mutation L160A is localized to a position analogous to the phorbol ester binding site in the protein kinase C C1 domain, suggesting a function in cofactor binding. Complete inhibition of Ras-dependent Raf activation was achieved by combining mutations K144A and L160A, which clearly demonstrates an absolute requirement for correct RafC1 function in Ras-dependent Raf activation.

  10. A Secreted Protein with Plant-Specific Cysteine-Rich Motif Functions as a Mannose-Binding Lectin That Exhibits Antifungal Activity1[W

    PubMed Central

    Miyakawa, Takuya; Hatano, Ken-ichi; Miyauchi, Yumiko; Suwa, You-ichi; Sawano, Yoriko; Tanokura, Masaru

    2014-01-01

    Plants have a variety of mechanisms for defending against plant pathogens and tolerating environmental stresses such as drought and high salinity. Ginkbilobin2 (Gnk2) is a seed storage protein in gymnosperm that possesses antifungal activity and a plant-specific cysteine-rich motif (domain of unknown function26 [DUF26]). The Gnk2-homologous sequence is also observed in an extracellular region of cysteine-rich repeat receptor-like kinases that function in response to biotic and abiotic stresses. Here, we report the lectin-like molecular function of Gnk2 and the structural basis of its monosaccharide recognition. Nuclear magnetic resonance experiments showed that mannan was the only yeast (Saccharomyces cerevisiae) cell wall polysaccharide that interacted with Gnk2. Gnk2 also interacted with mannose, a building block of mannan, with a specificity that was similar to those of mannose-binding legume lectins, by strictly recognizing the configuration of the hydroxy group at the C4 position of the monosaccharide. The crystal structure of Gnk2 in complex with mannose revealed that three residues (asparagine-11, arginine-93, and glutamate-104) recognized mannose by hydrogen bonds, which defined the carbohydrate-binding specificity. These interactions were directly related to the ability of Gnk2 to inhibit the growth of fungi, including the plant pathogenic Fusarium spp., which were disrupted by mutation of arginine-93 or the presence of yeast mannan in the assay system. In addition, Gnk2 did not inhibit the growth of a yeast mutant strain lacking the α1,2-linked mannose moiety. These results provide insights into the molecular basis of the DUF26 protein family. PMID:25139159

  11. A Small Cysteine-Rich Protein from the Asian Soybean Rust Fungus, Phakopsora pachyrhizi, Suppresses Plant Immunity

    PubMed Central

    Qi, Mingsheng; Link, Tobias I.; Müller, Manuel; Hirschburger, Daniela; Pudake, Ramesh N.; Pedley, Kerry F.; Braun, Edward; Voegele, Ralf T.; Baum, Thomas J.

    2016-01-01

    The Asian soybean rust fungus, Phakopsora pachyrhizi, is an obligate biotrophic pathogen causing severe soybean disease epidemics. Molecular mechanisms by which P. pachyrhizi and other rust fungi interact with their host plants are poorly understood. The genomes of all rust fungi encode many small, secreted cysteine-rich proteins (SSCRP). While these proteins are thought to function within the host, their roles are completely unknown. Here, we present the characterization of P. pachyrhizi effector candidate 23 (PpEC23), a SSCRP that we show to suppress plant immunity. Furthermore, we show that PpEC23 interacts with soybean transcription factor GmSPL12l and that soybean plants in which GmSPL12l is silenced have constitutively active immunity, thereby identifying GmSPL12l as a negative regulator of soybean defenses. Collectively, our data present evidence for a virulence function of a rust SSCRP and suggest that PpEC23 is able to suppress soybean immune responses and physically interact with soybean transcription factor GmSPL12l, a negative immune regulator. PMID:27676173

  12. A single gamma-carboxyglutamic acid residue in a novel cysteine-rich secretory protein without propeptide.

    PubMed

    Hansson, Karin; Thämlitz, Ann-Marie; Furie, Bruce; Furie, Barbara C; Stenflo, Johan

    2006-10-24

    Gamma-glutamyl carboxylase catalyzes the modification of specific glutamyl residues to gamma-carboxyglutamyl (Gla) residues in precursor proteins that possess the appropriate gamma-carboxylation recognition signal within the propeptide region. We describe the immunopurification and first biochemical characterization of an invertebrate high molecular weight Gla-containing protein with homologues in mammals. The protein, named GlaCrisp, was isolated from the venom of the marine cone snail Conus marmoreus. GlaCrisp gave intense signals in Western blot experiments employing the Gla-specific antibody M3B, and the presence of Gla was chemically confirmed by amino acid analysis after alkaline hydrolysis. Characterization of a full-length cDNA clone encoding GlaCrisp deduced a precursor containing an N-terminal signal peptide but, unlike other Gla-containing proteins, no apparent propeptide. The predicted mature protein of 265 amino acid residues showed considerable sequence similarity to the widely distributed cysteine-rich secretory protein family and closest similarity (65% identity) to the recently described substrate-specific protease Tex31. In addition, two cDNA clones encoding the precursors of two isoforms of GlaCrisp were identified. The predicted precursor isoforms differed at three amino acid positions (-6, 9, and 25). Analysis by Edman degradation and nanoelectrospray ionization mass spectrometry, before and after methyl esterfication, identified a Gla residue at amino acid position 9 in GlaCrisp. This is the first example of a Gla-containing protein without an obvious gamma-carboxylation recognition site. The results define a new class of Gla proteins and support the notion that gamma-carboxylation of glutamyl residues is phylogenetically older than blood coagulation and the vertebrate lineage.

  13. Genome-Wide Analysis of Small Secreted Cysteine-Rich Proteins Identifies Candidate Effector Proteins Potentially Involved in Fusarium graminearum-Wheat Interactions.

    PubMed

    Lu, Shunwen; Edwards, Michael C

    2016-02-01

    Pathogen-derived, small secreted cysteine-rich proteins (SSCPs) are known to be a common source of fungal effectors that trigger resistance or susceptibility in specific host plants. This group of proteins has not been well studied in Fusarium graminearum, the primary cause of Fusarium head blight (FHB), a devastating disease of wheat. We report here a comprehensive analysis of SSCPs encoded in the genome of this fungus and selection of candidate effector proteins through proteomics and sequence/transcriptional analyses. A total of 190 SSCPs were identified in the genome of F. graminearum (isolate PH-1) based on the presence of N-terminal signal peptide sequences, size (≤200 amino acids), and cysteine content (≥2%) of the mature proteins. Twenty-five (approximately 13%) SSCPs were confirmed to be true extracellular proteins by nanoscale liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) analysis of a minimal medium-based in vitro secretome. Sequence analysis suggested that 17 SSCPs harbor conserved functional domains, including two homologous to Ecp2, a known effector produced by the tomato pathogen Cladosporium fulvum. Transcriptional analysis revealed that at least 34 SSCPs (including 23 detected in the in vitro secretome) are expressed in infected wheat heads; about half are up-regulated with expression patterns correlating with the development of FHB. This work provides a solid candidate list for SSCP-derived effectors that may play roles in mediating F. graminearum-wheat interactions. The in vitro secretome-based method presented here also may be applicable for identifying candidate effectors in other ascomycete pathogens of crop plants. PMID:26524547

  14. Genome-Wide Analysis of Small Secreted Cysteine-Rich Proteins Identifies Candidate Effector Proteins Potentially Involved in Fusarium graminearum-Wheat Interactions.

    PubMed

    Lu, Shunwen; Edwards, Michael C

    2016-02-01

    Pathogen-derived, small secreted cysteine-rich proteins (SSCPs) are known to be a common source of fungal effectors that trigger resistance or susceptibility in specific host plants. This group of proteins has not been well studied in Fusarium graminearum, the primary cause of Fusarium head blight (FHB), a devastating disease of wheat. We report here a comprehensive analysis of SSCPs encoded in the genome of this fungus and selection of candidate effector proteins through proteomics and sequence/transcriptional analyses. A total of 190 SSCPs were identified in the genome of F. graminearum (isolate PH-1) based on the presence of N-terminal signal peptide sequences, size (≤200 amino acids), and cysteine content (≥2%) of the mature proteins. Twenty-five (approximately 13%) SSCPs were confirmed to be true extracellular proteins by nanoscale liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) analysis of a minimal medium-based in vitro secretome. Sequence analysis suggested that 17 SSCPs harbor conserved functional domains, including two homologous to Ecp2, a known effector produced by the tomato pathogen Cladosporium fulvum. Transcriptional analysis revealed that at least 34 SSCPs (including 23 detected in the in vitro secretome) are expressed in infected wheat heads; about half are up-regulated with expression patterns correlating with the development of FHB. This work provides a solid candidate list for SSCP-derived effectors that may play roles in mediating F. graminearum-wheat interactions. The in vitro secretome-based method presented here also may be applicable for identifying candidate effectors in other ascomycete pathogens of crop plants.

  15. Presence of a glycine-cysteine-rich beta-protein in the oberhautchen layer of snake epidermis marks the formation of the shedding layer.

    PubMed

    Alibardi, Lorenzo

    2014-11-01

    The complex differentiation of snake epidermis largely depends on the variation in the production of glycine-cysteine-rich versus glycine-rich beta-proteins (beta-keratins) that are deposited on a framework of alpha-keratins. The knowledge of the amino acid sequences of beta-proteins in the snake Pantherophis guttatus has allowed the localization of a glycine-cysteine-rich beta-protein in the spinulated oberhautchen layer of the differentiating shedding complex before molting takes place. This protein decreases in the beta-layer and disappears in mesos and alpha-layers. Conversely, while the mRNA for a glycine-rich beta-protein is highly expressed in differentiating beta-cells, the immunolocalization for this protein is low in these cells. This discrepancy between expression and localization suggests that the epitope in glycine-rich beta-proteins is cleaved or modified by posttranslational processes that take place during the differentiation and maturation of the beta-layer. The present study suggests that among the numerous beta-proteins coded in the snake genome to produce epidermal layers with different textures, the glycine-cysteine-rich beta-protein marks the shedding complex formed between alpha- and beta-layers that allows for molting while its disappearance between the beta- and alpha-layers (mesos region for scale growth) is connected to the formation of the alpha-layers.

  16. Transcriptomic screening for cyclotides and other cysteine-rich proteins in the metallophyte Viola baoshanensis.

    PubMed

    Zhang, Jun; Li, Jintian; Huang, Zebo; Yang, Bing; Zhang, Xiaojie; Li, Dehua; Craik, David J; Baker, Alan J M; Shu, Wensheng; Liao, Bin

    2015-04-15

    Cysteine (Cys)-rich proteins (CRPs) are frequently associated with plant defense and stress resistance. Viola baoshanensis is a cadmium (Cd) hyper-accumulating plant whose CRPs-based defense systems are so far poorly understood. Next generation sequencing (NGS) techniques and a specialist searching tool, CrpExcel, were employed for identifying CRPs in V. baoshanensis. The transcriptome sequences of V. baoshanensis were assembled primarily from 454FLX/Hiseq2000 reads of plant cDNA sequencing libraries. CrpExcel was then used to search the ORFs and 9687 CRPs were identified, and included zinc finger (ZF) proteins, lipid transfer proteins, thaumatins and cyclotide precursors. Real-time PCR results showed that all CRP genes tested are constitutively expressed, but the genes of defensive peptides showed greater up-regulated expression than those of ZF-proteins in Cd- and/or wounding (Wd) treatments of V. baoshanensis seedlings. The NGS-derived sequences of cyclotide precursor genes were verified by RT-PCR and ABI3730 sequencing studies, and 32 novel cyclotides were identified in V. baoshanensis. In general, the metal-binding sites of ZF-containing CRPs also represented the potential vulnerable targets of toxic metals. This study provides broad insights into CRPs-based defense systems and stress-vulnerable targets in V. baoshanensis. It now brings the number of cyclotide sequences in V. baoshanensis to 53 and based on projections from this work, the number of cyclotides in the Violaceae is now conservatively estimated to be >30000.

  17. New Cysteine-Rich Ice-Binding Protein Secreted from Antarctic Microalga, Chloromonas sp.

    PubMed

    Jung, Woongsic; Campbell, Robert L; Gwak, Yunho; Kim, Jong Im; Davies, Peter L; Jin, EonSeon

    2016-01-01

    Many microorganisms in Antarctica survive in the cold environment there by producing ice-binding proteins (IBPs) to control the growth of ice around them. An IBP from the Antarctic freshwater microalga, Chloromonas sp., was identified and characterized. The length of the Chloromonas sp. IBP (ChloroIBP) gene was 3.2 kb with 12 exons, and the molecular weight of the protein deduced from the ChloroIBP cDNA was 34.0 kDa. Expression of the ChloroIBP gene was up- and down-regulated by freezing and warming conditions, respectively. Western blot analysis revealed that native ChloroIBP was secreted into the culture medium. This protein has fifteen cysteines and is extensively disulfide bonded as shown by in-gel mobility shifts between oxidizing and reducing conditions. The open-reading frame of ChloroIBP was cloned and over-expressed in Escherichia coli to investigate the IBP's biochemical characteristics. Recombinant ChloroIBP produced as a fusion protein with thioredoxin was purified by affinity chromatography and formed single ice crystals of a dendritic shape with a thermal hysteresis activity of 0.4±0.02°C at a concentration of 5 mg/ml. In silico structural modeling indicated that the three-dimensional structure of ChloroIBP was that of a right-handed β-helix. Site-directed mutagenesis of ChloroIBP showed that a conserved region of six parallel T-X-T motifs on the β-2 face was the ice-binding region, as predicted from the model. In addition to disulfide bonding, hydrophobic interactions between inward-pointing residues on the β-1 and β-2 faces, in the region of ice-binding motifs, were crucial to maintaining the structural conformation of ice-binding site and the ice-binding activity of ChloroIBP. PMID:27097164

  18. New Cysteine-Rich Ice-Binding Protein Secreted from Antarctic Microalga, Chloromonas sp.

    PubMed

    Jung, Woongsic; Campbell, Robert L; Gwak, Yunho; Kim, Jong Im; Davies, Peter L; Jin, EonSeon

    2016-01-01

    Many microorganisms in Antarctica survive in the cold environment there by producing ice-binding proteins (IBPs) to control the growth of ice around them. An IBP from the Antarctic freshwater microalga, Chloromonas sp., was identified and characterized. The length of the Chloromonas sp. IBP (ChloroIBP) gene was 3.2 kb with 12 exons, and the molecular weight of the protein deduced from the ChloroIBP cDNA was 34.0 kDa. Expression of the ChloroIBP gene was up- and down-regulated by freezing and warming conditions, respectively. Western blot analysis revealed that native ChloroIBP was secreted into the culture medium. This protein has fifteen cysteines and is extensively disulfide bonded as shown by in-gel mobility shifts between oxidizing and reducing conditions. The open-reading frame of ChloroIBP was cloned and over-expressed in Escherichia coli to investigate the IBP's biochemical characteristics. Recombinant ChloroIBP produced as a fusion protein with thioredoxin was purified by affinity chromatography and formed single ice crystals of a dendritic shape with a thermal hysteresis activity of 0.4±0.02°C at a concentration of 5 mg/ml. In silico structural modeling indicated that the three-dimensional structure of ChloroIBP was that of a right-handed β-helix. Site-directed mutagenesis of ChloroIBP showed that a conserved region of six parallel T-X-T motifs on the β-2 face was the ice-binding region, as predicted from the model. In addition to disulfide bonding, hydrophobic interactions between inward-pointing residues on the β-1 and β-2 faces, in the region of ice-binding motifs, were crucial to maintaining the structural conformation of ice-binding site and the ice-binding activity of ChloroIBP.

  19. New Cysteine-Rich Ice-Binding Protein Secreted from Antarctic Microalga, Chloromonas sp.

    PubMed Central

    Jung, Woongsic; Gwak, Yunho; Kim, Jong Im; Davies, Peter L.; Jin, EonSeon

    2016-01-01

    Many microorganisms in Antarctica survive in the cold environment there by producing ice-binding proteins (IBPs) to control the growth of ice around them. An IBP from the Antarctic freshwater microalga, Chloromonas sp., was identified and characterized. The length of the Chloromonas sp. IBP (ChloroIBP) gene was 3.2 kb with 12 exons, and the molecular weight of the protein deduced from the ChloroIBP cDNA was 34.0 kDa. Expression of the ChloroIBP gene was up- and down-regulated by freezing and warming conditions, respectively. Western blot analysis revealed that native ChloroIBP was secreted into the culture medium. This protein has fifteen cysteines and is extensively disulfide bonded as shown by in-gel mobility shifts between oxidizing and reducing conditions. The open-reading frame of ChloroIBP was cloned and over-expressed in Escherichia coli to investigate the IBP’s biochemical characteristics. Recombinant ChloroIBP produced as a fusion protein with thioredoxin was purified by affinity chromatography and formed single ice crystals of a dendritic shape with a thermal hysteresis activity of 0.4±0.02°C at a concentration of 5 mg/ml. In silico structural modeling indicated that the three-dimensional structure of ChloroIBP was that of a right-handed β-helix. Site-directed mutagenesis of ChloroIBP showed that a conserved region of six parallel T-X-T motifs on the β-2 face was the ice-binding region, as predicted from the model. In addition to disulfide bonding, hydrophobic interactions between inward-pointing residues on the β-1 and β-2 faces, in the region of ice-binding motifs, were crucial to maintaining the structural conformation of ice-binding site and the ice-binding activity of ChloroIBP. PMID:27097164

  20. Crovirin, a Snake Venom Cysteine-Rich Secretory Protein (CRISP) with Promising Activity against Trypanosomes and Leishmania

    PubMed Central

    Adade, Camila M.; Carvalho, Ana Lúcia O.; Tomaz, Marcelo A.; Costa, Tatiana F. R.; Godinho, Joseane L.; Melo, Paulo A.; Lima, Ana Paula C. A.; Rodrigues, Juliany C. F.; Zingali, Russolina B.; Souto-Padrón, Thaïs

    2014-01-01

    Background The neglected human diseases caused by trypanosomatids are currently treated with toxic therapy with limited efficacy. In search for novel anti-trypanosomatid agents, we showed previously that the Crotalus viridis viridis (Cvv) snake venom was active against infective forms of Trypanosoma cruzi. Here, we describe the purification of crovirin, a cysteine-rich secretory protein (CRISP) from Cvv venom with promising activity against trypanosomes and Leishmania. Methodology/Principal Findings Crude venom extract was loaded onto a reverse phase analytical (C8) column using a high performance liquid chromatographer. A linear gradient of water/acetonitrile with 0.1% trifluoroacetic acid was used. The peak containing the isolated protein (confirmed by SDS-PAGE and mass spectrometry) was collected and its protein content was measured. T. cruzi trypomastigotes and amastigotes, L. amazonensis promastigotes and amastigotes and T. brucei rhodesiense procyclic and bloodstream trypomastigotes were challenged with crovirin, whose toxicity was tested against LLC-MK2 cells, peritoneal macrophages and isolated murine extensor digitorum longus muscle. We purified a single protein from Cvv venom corresponding, according to Nano-LC MS/MS sequencing, to a CRISP of 24,893.64 Da, henceforth referred to as crovirin. Human infective trypanosomatid forms, including intracellular amastigotes, were sensitive to crovirin, with low IC50 or LD50 values (1.10–2.38 µg/ml). A considerably higher concentration (20 µg/ml) of crovirin was required to elicit only limited toxicity on mammalian cells. Conclusions This is the first report of CRISP anti-protozoal activity, and suggests that other members of this family might have potential as drugs or drug leads for the development of novel agents against trypanosomatid-borne neglected diseases. PMID:25330220

  1. Unfolding Thermodynamics of Cysteine-Rich Proteins and Molecular Thermal-Adaptation of Marine Ciliates

    PubMed Central

    Cazzolli, Giorgia; Škrbić, Tatjana; Guella, Graziano; Faccioli, Pietro

    2013-01-01

    Euplotes nobilii and Euplotes raikovi are phylogenetically closely allied species of marine ciliates, living in polar and temperate waters, respectively. Their evolutional relation and the sharply different temperatures of their natural environments make them ideal organisms to investigate thermal-adaptation. We perform a comparative study of the thermal unfolding of disulfide-rich protein pheromones produced by these ciliates. Recent circular dichroism (CD) measurements have shown that the two psychrophilic (E. nobilii) and mesophilic (E. raikovi) protein families are characterized by very different melting temperatures, despite their close structural homology. The enhanced thermal stability of the E. raikovi pheromones is realized notwithstanding the fact that these proteins form, as a rule, a smaller number of disulfide bonds. We perform Monte Carlo (MC) simulations in a structure-based coarse-grained (CG) model to show that the higher stability of the E. raikovi pheromones is due to the lower locality of the disulfide bonds, which yields a lower entropy increase in the unfolding process. Our study suggests that the higher stability of the mesophilic E. raikovi phermones is not mainly due to the presence of a strongly hydrophobic core, as it was proposed in the literature. In addition, we argue that the molecular adaptation of these ciliates may have occurred from cold to warm, and not from warm to cold. To provide a testable prediction, we identify a point-mutation of an E. nobilii pheromone that should lead to an unfolding temperature typical of that of E. raikovi pheromones. PMID:24970199

  2. Overexpression of an Arabidopsis cysteine-rich receptor-like protein kinase, CRK5, enhances abscisic acid sensitivity and confers drought tolerance

    PubMed Central

    Lu, Kai; Liang, Shan; Wu, Zhen; Bi, Chao; Yu, Yong-Tao; Wang, Xiao-Fang; Zhang, Da-Peng

    2016-01-01

    Receptor-like kinases (RLKs) have been reported to regulate many developmental and defense process, but only a few members have been functionally characterized. In the present study, our observations suggest that one of the RLKs, a membrane-localized cysteine-rich receptor-like protein kinase, CRK5, is involved in abscisic acid (ABA) signaling in Arabidopsis thaliana. Overexpression of CRK5 increases ABA sensitivity in ABA-induced early seedling growth arrest and promotion of stomatal closure and inhibition of stomatal opening. Interestingly, and importantly, overexpression of CRK5 enhances plant drought tolerance without affecting plant growth at the mature stages and plant productivity. Transgenic lines overexpressing a mutated form of CRK5, CRK5 K372E with the change of the 372nd conserved amino acid residue from lysine to glutamic acid in its kinase domain, result in wild-type ABA and drought responses, supporting the role of CRK5 in ABA signaling. The loss-of-function mutation of the CRK5 gene does not affect the ABA response, while overexpression of two homologs of CRK5, CRK4 and CRK19, confers ABA responses, suggesting that these CRK members function redundantly. We further showed that WRKY18, WRKY40 and WRKY60 transcription factors repress the expression of CRK5, and that CRK5 likely functions upstream of ABI2 in ABA signaling. These findings help in understanding the complex ABA signaling network. PMID:27406784

  3. Convergent solid-phase and solution approaches in the synthesis of the cysteine-rich Mdm2 RING finger domain.

    PubMed

    Vasileiou, Zoe; Barlos, Kostas; Gatos, Dimitrios

    2009-12-01

    The RING finger domain of the Mdm2, located at the C-terminus of the protein, is necessary for regulation of p53, a tumor suppressor protein. The 48-residues long Mdm2 peptide is an important target for studying its interaction with small anticancer drug candidates. For the chemical synthesis of the Mdm2 RING finger domain, the fragment condensation on solid-phase and the fragment condensation in solution were studied. The latter method was performed using either protected or free peptides at the C-terminus as the amino component. Best results were achieved using solution condensation where the N-component was applied with the C-terminal carboxyl group left unprotected. The developed method is well suited for large-scale synthesis of Mdm2 RING finger domain, combining the advantages of both solid-phase and solution synthesis. PMID:19824037

  4. Divergent signaling pathways cooperatively regulate TGFβ induction of cysteine-rich protein 2 in vascular smooth muscle cells

    PubMed Central

    2014-01-01

    Background Vascular smooth muscle cells (VSMCs) of the arterial wall play a critical role in the development of occlusive vascular diseases. Cysteine-rich protein 2 (CRP2) is a VSMC-expressed LIM-only protein, which functionally limits VSMC migration and protects against pathological vascular remodeling. The multifunctional cytokine TGFβ has been implicated to play a role in the pathogenesis of atherosclerosis through numerous downstream signaling pathways. We showed previously that TGFβ upregulates CRP2 expression; however, the detailed signaling mechanisms remain unclear. Results TGFβ treatment of VSMCs activated both Smad2/3 and ATF2 phosphorylation. Individually knocking down Smad2/3 or ATF2 pathways with siRNA impaired the TGFβ induction of CRP2, indicating that both contribute to CRP2 expression. Inhibiting TβRI kinase activity by SB431542 or TβRI knockdown abolished Smad2/3 phosphorylation but did not alter ATF2 phosphorylation, indicating while Smad2/3 phosphorylation was TβRI-dependent ATF2 phosphorylation was independent of TβRI. Inhibiting Src kinase activity by SU6656 suppressed TGFβ-induced RhoA and ATF2 activation but not Smad2 phosphorylation. Blocking ROCK activity, the major downstream target of RhoA, abolished ATF2 phosphorylation and CRP2 induction but not Smad2 phosphorylation. Furthermore, JNK inhibition with SP600125 reduced TGFβ-induced ATF2 (but not Smad2) phosphorylation and CRP2 protein expression while ROCK inhibition blocked JNK activation. These results indicate that downstream of TβRII, Src family kinase-RhoA-ROCK-JNK signaling pathway mediates TβRI-independent ATF2 activation. Promoter analysis revealed that the TGFβ induction of CRP2 was mediated through the CRE and SBE promoter elements that were located in close proximity. Conclusions Our results demonstrate that two signaling pathways downstream of TGFβ converge on the CRE and SBE sites of the Csrp2 promoter to cooperatively control CRP2 induction in VSMCs, which

  5. An optimized intein-mediated protein ligation approach for the efficient cyclization of cysteine-rich proteins.

    PubMed

    Tarasava, Katsiaryna; Freisinger, Eva

    2014-12-01

    Head-to-tail backbone cyclization of proteins is a widely used approach for the improvement of protein stability. One way to obtain cyclic proteins via recombinant expression makes use of engineered Intein tags, which are self-cleaving protein domains. In this approach, pH-induced self-cleavage of the N-terminal Intein tag generates an N-terminal cysteine residue at the target protein, which then attacks in an intramolecular reaction the C-terminal thioester formed by the second C-terminal Intein tag resulting in the release of the cyclic target protein. In the current work we aimed to produce a cyclic analog of the small γ-Ec-1 domain of the wheat metallothionein, which contains six cysteine residues. During the purification process we faced several challenges, among them premature cleavage of one or the other Intein tag resulting in decreasing yields and contamination with linear species. To improve efficiency of the system we applied a number of optimizations such as the introduction of a Tobacco etch virus cleavage site and an additional poly-histidine tag. Our efforts resulted in the production of a cyclic protein in moderate yields without any contamination with linear protein species.

  6. Immunogold labeling shows that glycine-cysteine-rich beta-proteins are deposited in the Oberhäutchen layer of snake epidermis in preparation to shedding.

    PubMed

    Alibardi, Lorenzo

    2015-02-01

    Shedding in snakes is cyclical and derives from the differentiation of an intraepidermal shedding complex made of two different layers, termed clear and Oberhäutchen that determine the separation between the outer from the inner epidermal generation that produces a molt. The present comparative immunocytochemical study on the epidermis and molts of different species of snakes shows that a glycine-cysteine-rich corneous beta-protein in a snake is prevalently accumulated in cells of the Oberhäutchen layer and decreases in those of the beta-layer. The protein is variably distributed in the mature beta-layer of species representing some snake families when the beta-layer merges with the Oberhäutchen but disappears in alpha-layers. Therefore, this protein represents an early marker of the transition between the outer and the inner epidermal generations in the epidermis of snakes in general. It is hypothesized that specific gene activation for glycine-cysteine-rich corneous beta-proteins occurs during the passage from the clear layer of the outer epidermal generation to the Oberhäutchen layer of the replacing inner epidermal generation. It is suggested that in the epidermis of most species glycine-cysteine-rich corneous beta-proteins form part of the dense corneous material that rapidly accumulates in the differentiating Oberhäutchen cells but decreases in the following beta-layer of the inner epidermal generation destined to be separated from the previous outer generation in the process of shedding. The regulation of the synthesis of these and other proteins is, therefore, crucial in timing the different stages of the shedding cycle in lepidosaurian reptiles.

  7. The N-terminal cysteine-rich domain of tobacco class I chitinase is essential for chitin binding but not for catalytic or antifungal activity.

    PubMed

    Iseli, B; Boller, T; Neuhaus, J M

    1993-09-01

    The vacuolar chitinases of class I possess an N-terminal cysteine-rich domain homologous to hevein and chitin-binding lectins such as wheat germ agglutinin and Urtica dioica lectin. To investigate the significance of this domain for the biochemical and functional characteristics of chitinase, chimeric genes encoding the basic chitinase A of tobacco (Nicotiana tabacum) with and without this domain were constructed and constitutively expressed in transgenic Nicotiana sylvestris. The chitinases were subsequently isolated and purified to homogeneity from the transgenic plants. Chromatography on colloidal chitin revealed that only the form with the N-terminal domain, and not the one without it, had chitin-binding properties, demonstrating directly that the domain is a chitin-binding domain (CBD). Under standard assay conditions with radioactive colloidal chitin, both forms of chitinase had approximately the same catalytic activity. However, kinetic analysis demonstrated that the enzyme without CBD had a considerably lower apparent affinity for its substrate. The pH and temperature optima of the two chitinases were similar, but the form with the CBD had an approximately 3-fold higher activation energy and retained a higher activity at low pH values. Both chitinases were capable of inhibiting growth of Trichoderma viride, although the form with the CBD was about three times more effective than the one without it. Thus, the CBD is not necessary for catalytic or antifungal activity of chitinase. PMID:8208848

  8. Expression of Magnaporthe oryzae genes encoding cysteine-rich proteins secreted during nitrogen starvation and interaction with its host, Oryza sativa.

    PubMed

    Yang, J; Liang, M L; Yan, J L; Yang, Y Q; Liu, L; Liu, C; Yang, L J; L, C Y

    2015-12-16

    Previous studies have shown that the blast fungus, Magnaporthe oryzae, may experience nitrogen starvation during infection of its plant host (rice,Oryza sativa). Here, we studied the expression of seven genes encoding cysteine-rich proteins with N-terminal signal peptides during nitrogen limitation and throughout the infection process. Some genes were upregulated to a greater extent in weak pathogenic strains than in strong pathogenic strains when they were cultured in complete media, and the expression of some genes was higher in both weak and strong pathogenic strains cultured in 1/10-N and nitrogen starvation media. Furthermore, the expression of these genes was upregulated to different extents in the early stages of M. oryzae infection. These data demonstrate that the genes of interest are highly expressed in weak and strong pathogenic strains cultured under nitrogen limitation and at the early stage of the infection process. This indicates that cysteine-rich secreted proteins in the blast fungus might be involved in establishing disease in the host and that they are sensitive to nitrogen levels. Thus, their role in sensing nitrogen availability within the host is implied, which provides a basis for further functional identification of these genes and their products during plant infection.

  9. Characterization of the human mucin gene MUC5AC: a consensus cysteine-rich domain for 11p15 mucin genes?

    PubMed Central

    Guyonnet Duperat, V; Audie, J P; Debailleul, V; Laine, A; Buisine, M P; Galiegue-Zouitina, S; Pigny, P; Degand, P; Aubert, J P; Porchet, N

    1995-01-01

    To date five human mucin cDNAs (MUC2, 5A, 5B, 5C and 6) mapped to 11p15.3-15.5, so it appears that this chromosome region might contain several distinct gene loci for mucins. Three of these cDNAs, MUC5A, B and C, were cloned in our laboratory and previously published. A common number, 5, was recommended by the Human Gene Mapping Nomenclature Committee to designate them because of their common provenance from human tracheobronchial mucosa. In order to define whether they are products of the same gene locus or distinct loci, we describe in this paper physical mapping of these cDNAs using the strategy of analysis of CpG islands by pulse-field gel electrophoresis. The data suggest that MUC5A and MUC5C are part of the same gene (called MUC5AC) which is distinct from MUC5B. In the second part of this work, complete sequences of the inserts corresponding to previously described (JER47, JER58) and novel (JER62, JUL32, MAR2, MAR10 and MAR11) cDNAs of the so-called MUC5AC gene are presented and analysed. The data show that in this mucin gene, the tandem repeat domain is interrupted several times with a subdomain encoding a 130 amino acid cysteine-rich peptide in which the TR3A and TR3B peptides previously isolated by Rose et al. [Rose, Kaufman and Martin (1989) J. Biol. Chem., 264, 8193-8199] from airway mucins are found. A consensus peptide sequence for these subdomains involving invariant positions of most of the cysteines is proposed. The consensus nucleotide sequence of this subdomain is also found in the MUC2 gene and in the MUC5B gene, two other mucin genes mapped to 11p15. The functional significance for secreted mucins of these cysteine-rich subdomains and the modular organization of mucin peptides are discussed. Images Figure 3 Figure 4 Figure 5 Figure 8 PMID:7826332

  10. Characterization of the human mucin gene MUC5AC: a consensus cysteine-rich domain for 11p15 mucin genes?

    PubMed

    Guyonnet Duperat, V; Audie, J P; Debailleul, V; Laine, A; Buisine, M P; Galiegue-Zouitina, S; Pigny, P; Degand, P; Aubert, J P; Porchet, N

    1995-01-01

    To date five human mucin cDNAs (MUC2, 5A, 5B, 5C and 6) mapped to 11p15.3-15.5, so it appears that this chromosome region might contain several distinct gene loci for mucins. Three of these cDNAs, MUC5A, B and C, were cloned in our laboratory and previously published. A common number, 5, was recommended by the Human Gene Mapping Nomenclature Committee to designate them because of their common provenance from human tracheobronchial mucosa. In order to define whether they are products of the same gene locus or distinct loci, we describe in this paper physical mapping of these cDNAs using the strategy of analysis of CpG islands by pulse-field gel electrophoresis. The data suggest that MUC5A and MUC5C are part of the same gene (called MUC5AC) which is distinct from MUC5B. In the second part of this work, complete sequences of the inserts corresponding to previously described (JER47, JER58) and novel (JER62, JUL32, MAR2, MAR10 and MAR11) cDNAs of the so-called MUC5AC gene are presented and analysed. The data show that in this mucin gene, the tandem repeat domain is interrupted several times with a subdomain encoding a 130 amino acid cysteine-rich peptide in which the TR3A and TR3B peptides previously isolated by Rose et al. [Rose, Kaufman and Martin (1989) J. Biol. Chem., 264, 8193-8199] from airway mucins are found. A consensus peptide sequence for these subdomains involving invariant positions of most of the cysteines is proposed. The consensus nucleotide sequence of this subdomain is also found in the MUC2 gene and in the MUC5B gene, two other mucin genes mapped to 11p15. The functional significance for secreted mucins of these cysteine-rich subdomains and the modular organization of mucin peptides are discussed.

  11. Deficiency of syntrophin, dystroglycan, and merosin in a female infant with a congenital muscular dystrophy phenotype lacking cysteine-rich and C-terminal domains of dystrophin.

    PubMed

    Tachi, N; Ohya, K; Chiba, S; Matsuo, M; Patria, S Y; Matsumura, K

    1997-08-01

    Primary deficiency of merosin is the cause of the classic form of congenital muscular dystrophy (CMD) accompanied by brain white matter abnormalities. We report a female infant with dystrophinopathy who was deficient in merosin in skeletal muscle. The patient had a phenotype of typical CMD and white matter abnormalities on brain MRI. Merosin was greatly reduced in the biopsied skeletal muscle. However, the expression of dystroglycan and syntrophin was also greatly reduced, and the immunoreactivity for the antibodies against the cysteine-rich/C-terminal domains of dystrophin was absent in the sarcolemma. Reverse transcriptase polymerase chain reaction analysis of the dystrophin gene revealed a complete lack of exons 71 through 74. In skeletal muscle, only the mutant gene was expressed. These results suggest that the patient is a symptomatic Duchenne muscular dystrophy carrier with skewed X-inactivation. This patient illustrates for the first time that a dystrophin abnormality can cause a secondary deficiency of merosin in dystrophinopathy. The reduction of merosin may account for the clinical phenotype of CMD and correlate with the white matter abnormalities in our patient.

  12. Introgression of leginsulin, a cysteine-rich protein, and high-protein trait from an Asian soybean plant introduction genotype into a North American experimental soybean line.

    PubMed

    Krishnan, Hari B; Kim, Won-Seok; Oehrle, Nathan W; Alaswad, Alaa A; Baxter, Ivan; Wiebold, William J; Nelson, Randall L

    2015-03-25

    Soybean is an important protein source for both humans and animals. However, soybean proteins are relatively poor in the sulfur-containing amino acids, cysteine and methionine. Improving the content of endogenous proteins rich in sulfur-containing amino acids could enhance the nutritive value of soybean meal. Leginsulin, a cysteine-rich peptide, predominantly accumulates in Asian soybean accessions but not in most North American cultivars. By screening diverse soybean accessions from the USDA Soybean Germplasm Collection, we were able to identify one plant introduction, PI 427138, as a high-protein line with relatively high amounts of both elemental sulfur and leginsulin. We introgressed these desirable traits from PI 427138 into an experimental line with the aim of improving the overall protein content and quality of seed proteins. Biochemical characterization of inbred progenies from the cross of LD00-3309 with PI 427138 grown at six locations revealed stable ingression of high protein, high elemental sulfur, and high leginsulin accumulation. Comparison of soybean seed proteins resolved by high-resolution 2-D gel electrophoresis in combination with Delta2D image analysis software revealed preferential accumulation of a few glycinin subunits contributed to the increased protein content in the introgressed lines. Amino acid analysis revealed that even though the leginsulin introgressed lines had higher protein, leginsulin, and elemental sulfur, the overall concentration of sulfur-containing amino acids was not significantly altered when compared with the parental lines. The experimental soybean lines developed during this study (Leg-3, Leg-7, and Leg-8) lack A5, A4, and B3 glycinin subunits and could be utilized in breeding programs to develop high-quality tofu cultivars.

  13. Potential Role of Reversion-Inducing Cysteine-Rich Protein with Kazal Motifs (RECK) in Regulation of Matrix Metalloproteinases (MMPs) Expression in Periodontal Diseases

    PubMed Central

    Liu, Nian; Zhou, Bin; Zhu, Guangxun

    2016-01-01

    Periodontal diseases are characterized by pathological destruction of extracellular matrix (ECM) of periodontal tissues. Matrix metalloproteinases (MMPs) are a significant part of the degradation of ECM. However, the regulation of MMPs expression level in periodontal diseases is as yet undetermined. RECK (reversion-inducing cysteine-rich protein with Kazal motifs), a novel membrane-anchored inhibitor of MMPs, could regulate the expressions of MMP-2, 9 and MT1-MMP as a cell surface-signaling molecule. Thus, we propose that RECK may play an important role in regulating MMPs in the ECM degradation of periodontal diseases. The RECK/MMPs signaling pathway could provide a new approach for prevention and treatment of RECK in periodontal diseases by blocking MMPs. PMID:27272560

  14. A New Family of Giardial Cysteine-Rich Non-VSP Protein Genes and a Novel Cyst Protein

    PubMed Central

    Birkeland, Shanda R.; Preheim, Sarah P.; Cipriano, Michael J.; McArthur, Andrew G.; Gillin, Frances D.

    2006-01-01

    Since the Giardia lamblia cyst wall is necessary for survival in the environment and host infection, we tested the hypothesis that it contains proteins other than the three known cyst wall proteins. Serial analysis of gene expression during growth and encystation revealed a gene, “HCNCp” (High Cysteine Non-variant Cyst protein), that was upregulated late in encystation, and that resembled the classic Giardia variable surface proteins (VSPs) that cover the trophozoite plasmalemma. HCNCp is 13.9% cysteine, with many “CxxC” tetrapeptide motifs and a transmembrane sequence near the C-terminus. However, HCNCp has multiple “CxC” motifs rarely found in VSPs, and does not localize to the trophozoite plasmalemma. Moreover, the HCNCp C-terminus differed from the canonical VSP signature. Full-length epitope-tagged HCNCp expressed under its own promoter was upregulated during encystation with highest expression in cysts, including 42 and 21 kDa C-terminal fragments. Tagged HCNCp targeted to the nuclear envelope in trophozoites, and co-localized with cyst proteins to encystation-specific secretory vesicles during encystation. HCNCp defined a novel trafficking pathway as it localized to the wall and body of cysts, while the cyst proteins were exclusively in the wall. Unlike VSPs, HCNCp is expressed in at least five giardial strains and four WB subclones expressing different VSPs. Bioinformatics identified 60 additional large high cysteine membrane proteins (HCMp) containing ≥20 CxxC/CxC's lacking the VSP-specific C-terminal CRGKA. HCMp were absent or rare in other model or parasite genomes, except for Tetrahymena thermophila with 30. MEME analysis classified the 61 gHCMp genes into nine groups with similar internal motifs. Our data suggest that HCNCp is a novel invariant cyst protein belonging to a new HCMp family that is abundant in the Giardia genome. HCNCp and the other HCMp provide a rich source for developing parasite-specific diagnostic reagents, vaccine

  15. The CUG-initiated larger form coat protein of Chinese wheat mosaic virus binds to the cysteine-rich RNA silencing suppressor.

    PubMed

    Sun, Liying; Andika, Ida Bagus; Shen, Jiangfeng; Yang, Di; Ratti, Claudio; Chen, Jianping

    2013-10-01

    Some viruses use alternative translation initiation at non-AUG codons as a strategy to produce multiple proteins during gene expression. Here we show that, using this strategy, Chinese wheat mosaic virus (CWMV; Furovirus) expresses a larger form of coat protein (N-ext/CP) in infected plants. Site-directed mutagenesis and transient expression analysis confirmed that CWMV N-ext/CP is initiated at an upstream in-frame CUG codon at nucleotide position 207-209 of RNA 2, which adds a 39 amino acid (aa) N-terminal extension to the major CP. Interestingly, in planta and in vitro analyses indicated that CWMV N-ext/CP but not CP interacts with the CWMV cysteine-rich protein (CRP), an RNA silencing suppressor. We further determined that the N-terminal 39 aa extension, particularly the 10 aa region immediately upstream of the major CP coding region is responsible for the interaction of N-ext/CP with CRP. In an Agrobacterium co-infiltration assay, co-expression with N-ext/CP did not affect CRP silencing suppression activity. Thus the alternative translation initiation at a CUG codon provides the CWMV N-ext/CP with the ability to bind to the viral silencing suppressor.

  16. Elevated cysteine-rich protein 61 (CCN1) promotes skin aging via upregulation of IL-1β in chronically sun-exposed human skin.

    PubMed

    Qin, Zhaoping; Okubo, Toru; Voorhees, John J; Fisher, Gary J; Quan, Taihao

    2014-02-01

    Chronic exposure of human skin to solar ultraviolet (UV) irradiation causes premature skin aging, which is characterized by reduced type I collagen production and increased fragmentation of the dermal collagenous extracellular matrix. This imbalance of collagen homeostasis is mediated, in part, by elevated expression of the matricellular protein cysteine-rich protein 61 (CCN1), in dermal fibroblasts, the primary collagen producing cell type in human skin. Here, we report that the actions of CCN1 are mediated by induction of interleukin 1β (IL-1β). CCN1 and IL-1β are strikingly induced by acute UV irradiation, and constitutively elevated in sun-exposed prematurely aged human skin. Elevated CCN1 rapidly induces IL-1β, inhibits type I collagen production, and upregulates matrix metalloproteinase-1, which degrades collagen fibrils. Blockade of IL-1β actions by IL-1 receptor antagonist largely prevents the deleterious effects of CCN1 on collagen homeostasis. Furthermore, knockdown of CCN1 significantly reduces induction of IL-1β by UV irradiation, and thereby partially prevents collagen loss. These data demonstrate that elevated CCN1promotes inflammaging and collagen loss via induction of IL-1β and thereby contributes to the pathophysiology of premature aging in chronically sun-exposed human skin.

  17. DMSA-Coated Iron Oxide Nanoparticles Greatly Affect the Expression of Genes Coding Cysteine-Rich Proteins by Their DMSA Coating.

    PubMed

    Zhang, Ling; Wang, Xin; Zou, Jinglu; Liu, Yingxun; Wang, Jinke

    2015-10-19

    The dimercaptosuccinic acid (DMSA) was widely used to coat iron oxide nanoparticles (FeNPs); however, its intracellular cytotoxicity remains to be adequately elucidated. This study analyzed the differentially expressed genes (DEGs) in four mammalian cells treated by a DMSA-coated magnetite FeNP at various doses at different times. The results revealed that about one-fourth of DEGs coded cysteine-rich proteins (CRPs) in all cells under each treatment, indicating that the nanoparticles greatly affected the expressions of CRP-coding genes. Additionally, about 26% of CRP-coding DEGs were enzyme genes in all cells, indicating that the nanoparticles greatly affected the expression of enzyme genes. Further experiments with the nanoparticles and a polyethylenimine (PEI)-coated magnetite FeNP revealed that the effect mainly resulted from DMSA carried into cells by the nanoparticles. This study thus first reported the cytotoxicity of DMSA at the gene transcription level as coating molecules of FeNPs. This study provides new insight into the molecular mechanism by which the DMSA-coated nanoparticles resulted in the transcriptional changes of many CRP-coding genes in cells. This study draws attention toward the intracellular cytotoxicity of DMSA as a coating molecule of nanoparticles, which has very low toxicity as an orally administered antidote due to its extracellular distribution.

  18. Genetic characterization of cysteine-rich type-b avenin-like protein coding genes in common wheat

    PubMed Central

    Chen, X. Y.; Cao, X. Y.; Zhang, Y. J.; Islam, S.; Zhang, J. J.; Yang, R. C.; Liu, J. J.; Li, G. Y.; Appels, R.; Keeble-Gagnere, G.; Ji, W. Q.; He, Z. H.; Ma, W. J.

    2016-01-01

    The wheat avenin-like proteins (ALP) are considered atypical gluten constituents and have shown positive effects on dough properties revealed using a transgenic approach. However, to date the genetic architecture of ALP genes is unclear, making it impossible to be utilized in wheat breeding. In the current study, three genes of type-b ALPs were identified and mapped to chromosomes 7AS, 4AL and 7DS. The coding gene sequence of both TaALP-7A and TaALP-7D was 855 bp long, encoding two identical homologous 284 amino acid long proteins. TaALP-4A was 858 bp long, encoding a 285 amino acid protein variant. Three alleles were identified for TaALP-7A and four for TaALP-4A. TaALP-7A alleles were of two types: type-1, which includes TaALP-7A1 andTaALP-7A2, encodes mature proteins, while type-2, represented byTaALP-7A3, contains a stop codon in the coding region and thus does not encode a mature protein. Dough quality testing of 102 wheat cultivars established a highly significant association of the type-1 TaALP-7A allele with better wheat processing quality. This allelic effects were confirmed among a range of commercial wheat cultivars. Our research makes the ALP be the first of such genetic variation source that can be readily utilized in wheat breeding. PMID:27503660

  19. Genetic characterization of cysteine-rich type-b avenin-like protein coding genes in common wheat.

    PubMed

    Chen, X Y; Cao, X Y; Zhang, Y J; Islam, S; Zhang, J J; Yang, R C; Liu, J J; Li, G Y; Appels, R; Keeble-Gagnere, G; Ji, W Q; He, Z H; Ma, W J

    2016-01-01

    The wheat avenin-like proteins (ALP) are considered atypical gluten constituents and have shown positive effects on dough properties revealed using a transgenic approach. However, to date the genetic architecture of ALP genes is unclear, making it impossible to be utilized in wheat breeding. In the current study, three genes of type-b ALPs were identified and mapped to chromosomes 7AS, 4AL and 7DS. The coding gene sequence of both TaALP-7A and TaALP-7D was 855 bp long, encoding two identical homologous 284 amino acid long proteins. TaALP-4A was 858 bp long, encoding a 285 amino acid protein variant. Three alleles were identified for TaALP-7A and four for TaALP-4A. TaALP-7A alleles were of two types: type-1, which includes TaALP-7A1 andTaALP-7A2, encodes mature proteins, while type-2, represented byTaALP-7A3, contains a stop codon in the coding region and thus does not encode a mature protein. Dough quality testing of 102 wheat cultivars established a highly significant association of the type-1 TaALP-7A allele with better wheat processing quality. This allelic effects were confirmed among a range of commercial wheat cultivars. Our research makes the ALP be the first of such genetic variation source that can be readily utilized in wheat breeding. PMID:27503660

  20. Cysteine- rich secretory protein 3 (CRISP3), ERG and PTEN define a molecular subtype of prostate cancer with implication to patients' prognosis.

    PubMed

    Al Bashir, Samir; Alshalalfa, Mohammed; Hegazy, Samar A; Dolph, Michael; Donnelly, Bryan; Bismar, Tarek A

    2014-01-01

    Cysteine- rich secretory protein 3 (CRISP3) prognostic significance in prostate cancer (PCA) has generated mixed result. Herein, we investigated and independently validated CRISP3 expression in relation to ERG and PTEN genomic aberrations and clinical outcome. CRISP3 protein expression was examined by immunohistochemistry using a cohort of patients with localized PCA (n = 215) and castration resistant PCA (CRPC) (n = 46). The Memorial Sloan Kettering (MSKCC) and Swedish cohorts were used for prognostic validation. Results showed, CRISP3 protein intensity to be significantly associated with neoplastic epithelium, being highest in CRPC vs. benign prostate tissue (p < 0.0001), but was not related to Gleason score (GS). CRISP3 mRNA was significantly associated with higher GS (p = 0.022 in MSKCC, p = 1.1e-4 in Swedish). Significant association between CRISP3 expression and clinical outcome was documented at the mRNA but not the protein expression levels. CRISP3 mRNA expression was related to biochemical recurrence in the MSKCC (p = 0.038) and lethal disease in the Swedish cohort (p = 0.0086) and retained its prognostic value in the subgroup of patients with GS 6 & 7. Furthermore, CRISP3 protein and mRNA expression was significantly associated with positive ERG status and with PTEN deletions. Functional biology analysis documented phenylalanine metabolism as the most significant pathway governing high CRISP3 and ERG expression in this subtype of PCA. In conclusion, the combined status of CRISP3, ERG and PTEN define a molecular subtype of PCA with poorest and lethal outcome. Assessing their combined value may be of added value in stratifying patients into different prognostic groups and identify those with poorest clinical outcome.

  1. The matricellular "cysteine-rich protein 61" is released from activated platelets and increased in the circulation during experimentally induced sepsis.

    PubMed

    Hviid, Claus Vinter B; Samulin Erdem, Johanna; Drechsler, Susanne; Weixelbaumer, Katrin; Ahmed, M Shakil; Attramadal, Håvard; Redl, Heinz; Bahrami, Soheyl; Osuchowski, Marcin F; Aasen, Ansgar O

    2014-03-01

    Sepsis and sepsis-induced organ dysfunction remain lethal and common conditions among intensive care patients. Accumulating evidence suggests that the matricellular Cyr61/CCN1 (cysteine-rich, angiogenic-inducer, 61) protein is involved in the regulation of inflammatory responses and possesses organ-protective capabilities in diseases of an inflammatory etiology. However, its regulation in sepsis remains largely unexplored. The present study provides a comprehensive description of CCN1 regulation in the circulation and vital organs during experimentally induced sepsis with developing organ dysfunction. Female CD-1 mice served as baseline controls or were subjected to cecal ligation and puncture (CLP) for 18 to 96 h, and CCN1 regulation was analyzed in selected organs and in the circulation. A 5-, 5-, and 3-fold increases in circulating CCN1 protein were observed at 18, 48, and 96 h after CLP, respectively. Hepatic and pulmonary CCN1 mRNA expression was down-regulated by 80%, 60%, and 55% and 85%, 80%, and 65% at 18, 48, and 96 h after CLP and undetectable in circulating white blood cells. To identify a potential source for the circulating protein, mouse and human platelets were explored and revealed to contain CCN1. Human platelets were stimulated by thrombin and a specific PAR1 agonist (SFLLRN) in vitro. Both agonists induced an instant CCN1 release, and the effect of SFLLRN was blocked by the specific antagonist RWJ56110. The current study demonstrates that experimental sepsis is associated with a robust increase in circulating CCN1 protein levels and a paradoxical downregulation of CCN1 mRNA expression in vital organs. It provides evidence that CCN1 is released from activated platelets, suggesting that platelets constitute a novel source for CCN1 release to the circulation during sepsis. PMID:24430538

  2. The matricellular "cysteine-rich protein 61" is released from activated platelets and increased in the circulation during experimentally induced sepsis.

    PubMed

    Hviid, Claus Vinter B; Samulin Erdem, Johanna; Drechsler, Susanne; Weixelbaumer, Katrin; Ahmed, M Shakil; Attramadal, Håvard; Redl, Heinz; Bahrami, Soheyl; Osuchowski, Marcin F; Aasen, Ansgar O

    2014-03-01

    Sepsis and sepsis-induced organ dysfunction remain lethal and common conditions among intensive care patients. Accumulating evidence suggests that the matricellular Cyr61/CCN1 (cysteine-rich, angiogenic-inducer, 61) protein is involved in the regulation of inflammatory responses and possesses organ-protective capabilities in diseases of an inflammatory etiology. However, its regulation in sepsis remains largely unexplored. The present study provides a comprehensive description of CCN1 regulation in the circulation and vital organs during experimentally induced sepsis with developing organ dysfunction. Female CD-1 mice served as baseline controls or were subjected to cecal ligation and puncture (CLP) for 18 to 96 h, and CCN1 regulation was analyzed in selected organs and in the circulation. A 5-, 5-, and 3-fold increases in circulating CCN1 protein were observed at 18, 48, and 96 h after CLP, respectively. Hepatic and pulmonary CCN1 mRNA expression was down-regulated by 80%, 60%, and 55% and 85%, 80%, and 65% at 18, 48, and 96 h after CLP and undetectable in circulating white blood cells. To identify a potential source for the circulating protein, mouse and human platelets were explored and revealed to contain CCN1. Human platelets were stimulated by thrombin and a specific PAR1 agonist (SFLLRN) in vitro. Both agonists induced an instant CCN1 release, and the effect of SFLLRN was blocked by the specific antagonist RWJ56110. The current study demonstrates that experimental sepsis is associated with a robust increase in circulating CCN1 protein levels and a paradoxical downregulation of CCN1 mRNA expression in vital organs. It provides evidence that CCN1 is released from activated platelets, suggesting that platelets constitute a novel source for CCN1 release to the circulation during sepsis.

  3. A Cysteine-Rich CCG Domain Contains a Novel [4Fe-4S] Cluster Binding Motif As Deduced From Studies With Subunit B of Heterodisulfide Reductase From Methanothermobacter Marburgensis

    SciTech Connect

    Hamann, N.; Mander, G.J.; Shokes, J.E.; Scott, R.A.; Bennati, M.; Hedderich, R.

    2009-06-01

    Heterodisulfide reductase (HDR) of methanogenic archaea with its active-site [4Fe-4S] cluster catalyzes the reversible reduction of the heterodisulfide (CoM-S-S-CoB) of the methanogenic coenzyme M (CoM-SH) and coenzyme B (CoB-SH). CoM-HDR, a mechanistic-based paramagnetic intermediate generated upon half-reaction of the oxidized enzyme with CoM-SH, is a novel type of [4Fe-4S]{sup 3+} cluster with CoM-SH as a ligand. Subunit HdrB of the Methanothermobacter marburgensis HdrABC holoenzyme contains two cysteine-rich sequence motifs (CX{sub 31-39}CCX{sub 35-36}CXXC), designated as CCG domain in the Pfam database and conserved in many proteins. Here we present experimental evidence that the C-terminal CCG domain of HdrB binds this unusual [4Fe-4S] cluster. HdrB was produced in Escherichia coli, and an iron-sulfur cluster was subsequently inserted by in vitro reconstitution. In the oxidized state the cluster without the substrate exhibited a rhombic EPR signal (g{sub zyx} = 2.015, 1.995, and 1.950) reminiscent of the CoM-HDR signal. {sup 57}Fe ENDOR spectroscopy revealed that this paramagnetic species is a [4Fe-4S] cluster with {sup 57}Fe hyperfine couplings very similar to that of CoM-HDR. CoM-{sup 33}SH resulted in a broadening of the EPR signal, and upon addition of CoM-SH the midpoint potential of the cluster was shifted to values observed for CoM-HDR, both indicating binding of CoM-SH to the cluster. Site-directed mutagenesis of all 12 cysteine residues in HdrB identified four cysteines of the C-terminal CCG domain as cluster ligands. Combined with the previous detection of CoM-HDR-like EPR signals in other CCG domain-containing proteins our data indicate a general role of the C-terminal CCG domain in coordination of this novel [4Fe-4S] cluster. In addition, Zn K-edge X-ray absorption spectroscopy identified an isolated Zn site with an S{sub 3}(O/N){sub 1} geometry in HdrB and the HDR holoenzyme. The N-terminal CCG domain is suggested to provide ligands to the Zn

  4. Cysteine-rich secretory protein 3 plays a role in prostate cancer cell invasion and affects expression of PSA and ANXA1.

    PubMed

    Pathak, Bhakti R; Breed, Ananya A; Apte, Snehal; Acharya, Kshitish; Mahale, Smita D

    2016-01-01

    Cysteine-rich secretory protein 3 (CRISP-3) is upregulated in prostate cancer as compared to the normal prostate tissue. Higher expression of CRISP-3 has been linked to poor prognosis and hence it has been thought to act as a prognostic marker for prostate cancer. It is proposed to have a role in innate immunity but its role in prostate cancer is still unknown. In order to understand its function, its expression was stably knocked down in LNCaP cells. CRISP-3 knockdown did not affect cell viability but resulted in reduced invasiveness. Global gene expression changes upon CRISP-3 knockdown were identified by microarray analysis. Microarray data were quantitatively validated by evaluating the expression of seven candidate genes in three independent stable clones. Functional annotation of the differentially expressed genes identified cell adhesion, cell motility, and ion transport to be affected among other biological processes. Prostate-specific antigen (PSA, also known as Kallikrein 3) was the top most downregulated gene whose expression was also validated at protein level. Interestingly, expression of Annexin A1 (ANXA1), a known anti-inflammatory protein, was upregulated upon CRISP-3 knockdown. Re-introduction of CRISP-3 into the knockdown clone reversed the effect on invasiveness and also led to increased PSA expression. These results suggest that overexpression of CRISP-3 in prostate tumor may maintain higher PSA expression and lower ANXA1 expression. Our data also indicate that poor prognosis associated with higher CRISP-3 expression could be due to its role in cell invasion. PMID:26369530

  5. Cysteine-rich secretory protein 3 plays a role in prostate cancer cell invasion and affects expression of PSA and ANXA1.

    PubMed

    Pathak, Bhakti R; Breed, Ananya A; Apte, Snehal; Acharya, Kshitish; Mahale, Smita D

    2016-01-01

    Cysteine-rich secretory protein 3 (CRISP-3) is upregulated in prostate cancer as compared to the normal prostate tissue. Higher expression of CRISP-3 has been linked to poor prognosis and hence it has been thought to act as a prognostic marker for prostate cancer. It is proposed to have a role in innate immunity but its role in prostate cancer is still unknown. In order to understand its function, its expression was stably knocked down in LNCaP cells. CRISP-3 knockdown did not affect cell viability but resulted in reduced invasiveness. Global gene expression changes upon CRISP-3 knockdown were identified by microarray analysis. Microarray data were quantitatively validated by evaluating the expression of seven candidate genes in three independent stable clones. Functional annotation of the differentially expressed genes identified cell adhesion, cell motility, and ion transport to be affected among other biological processes. Prostate-specific antigen (PSA, also known as Kallikrein 3) was the top most downregulated gene whose expression was also validated at protein level. Interestingly, expression of Annexin A1 (ANXA1), a known anti-inflammatory protein, was upregulated upon CRISP-3 knockdown. Re-introduction of CRISP-3 into the knockdown clone reversed the effect on invasiveness and also led to increased PSA expression. These results suggest that overexpression of CRISP-3 in prostate tumor may maintain higher PSA expression and lower ANXA1 expression. Our data also indicate that poor prognosis associated with higher CRISP-3 expression could be due to its role in cell invasion.

  6. The matri-cellular proteins 'cysteine-rich, angiogenic-inducer, 61' and 'connective tissue growth factor' are regulated in experimentally-induced sepsis with multiple organ dysfunction.

    PubMed

    Hviid, Claus V B; Erdem, Johanna Samulin; Kunke, David; Ahmed, Shakil M; Kjeldsen, Signe F; Wang, Yun Yong; Attramadal, Håvard; Aasen, Ansgar O

    2012-10-01

    Organ failure is a severe complication in sepsis for which the pathophysiology remains incompletely understood. Recently, the matri-cellular cysteine-rich, angiogenic induced, 61 (Cyr61/CCN1); connective tissue growth factor (Ctgf/CCN2); and nephroblastoma overexpressed gene (Nov/CCN3) (CCN)-protein family have been attributed organ-protective properties. Their expression is sensitive to mediators of sepsis pathophysiology but a potential role in sepsis remains elusive. To provide an initial assessment, 50 rats were subjected to 18 h of cecal-ligation and puncture or sham operation. Hepatic and pulmonary CCN1 mRNA displayed an average 7.4- and 3.3-fold induction, while its cardiac expression was unchanged. The changes coincided with excessive hepatic and pulmonary inflammatory gene activation and a restricted cardiac inflammation. Furthermore, hepatocytes displayed a dosage-dependent CCN1 mRNA response in vitro, supporting a cytokine-mediated CCN1 regulation in sepsis. CCN2 mRNA was 2.2-fold induced in the liver, while 2.0-fold and 1.4-fold repressed in the heart and lung. Meanwhile, it did not respond to TNF-α exposure in vitro, which indicates different means of regulation than for CCN1. Taken together, this study provides the first evidence for multi-organ regulation of CCN1 and CCN2 in early stages of sepsis, and implies the eruption of inflammatory mediators as a potential mechanism behind the observed CCN1 regulation.

  7. A tomato xylem sap protein represents a new family of small cysteine-rich proteins with structural similarity to lipid transfer proteins.

    PubMed

    Rep, Martijn; Dekker, Henk L; Vossen, Jack H; de Boer, Albert D; Houterman, Petra M; de Koster, Chris G; Cornelissen, Ben J C

    2003-01-16

    The coding sequence of a major xylem sap protein of tomato was identified with the aid of mass spectrometry. The protein, XSP10, represents a novel family of extracellular plant proteins with structural similarity to plant lipid transfer proteins. The XSP10 gene is constitutively expressed in roots and lower stems. The decline of XSP10 protein levels in tomato infected with a fungal vascular pathogen may reflect breakdown or modification by the pathogen.

  8. The cysteine-rich region of raf-1 kinase contains zinc, translocates to liposomes, and is adjacent to a segment that binds GTP-ras.

    PubMed

    Ghosh, S; Xie, W Q; Quest, A F; Mabrouk, G M; Strum, J C; Bell, R M

    1994-04-01

    Different domains of the serine/threonine kinase, raf-1, were expressed as fusion proteins with glutathione S-transferase (GST) in Escherichia coli and purified to near homogeneity by affinity chromatography. A cysteine-rich domain of raf-1 was found to contain 2 mol of zinc (molar basis), similar to analogous cysteine-rich domains of protein kinase C. GST-fusion proteins, containing the cysteine-rich domain of raf-1, bound to liposomes in a phosphatidylserine-dependent manner. In contrast to protein kinase C, the translocation of raf-1 was not dependent upon diacylglycerol, phorbol ester, or calcium, nor did raf-1 bind phorbol esters. A GST-fusion protein encoding residues 1-147 of raf-1 bound to normal GTP-ras with high affinity, but not to mutant GTP-Ala35 ras; no binding was detected to GDP-ras. The binding of a smaller fusion protein (residues 1-130 of raf-1) was about 10-fold weaker, inferring that a 17-amino acid sequence represents a critical binding determinant in intact raf-1. These residues are adjacent to the amino-terminal end of, and partially extend into, the cysteine-rich domain (amino acids 139-184). A synthetic peptide corresponding to this 17-amino acid sequence blocked the interaction of raf-1 with ras. The function of the cysteine-rich region of raf-1 homologous to protein kinase C is to promote translocation of raf-1 kinase to membranes and to form part of the high affinity binding site for GTP-ras.

  9. Transcriptome Analysis Revealed Highly Expressed Genes Encoding Secondary Metabolite Pathways and Small Cysteine-Rich Proteins in the Sclerotium of Lignosus rhinocerotis.

    PubMed

    Yap, Hui-Yeng Y; Chooi, Yit-Heng; Fung, Shin-Yee; Ng, Szu-Ting; Tan, Chon-Seng; Tan, Nget-Hong

    2015-01-01

    Lignosus rhinocerotis (Cooke) Ryvarden (tiger milk mushroom) has long been known for its nutritional and medicinal benefits among the local communities in Southeast Asia. However, the molecular and genetic basis of its medicinal and nutraceutical properties at transcriptional level have not been investigated. In this study, the transcriptome of L. rhinocerotis sclerotium, the part with medicinal value, was analyzed using high-throughput Illumina HiSeqTM platform with good sequencing quality and alignment results. A total of 3,673, 117, and 59,649 events of alternative splicing, novel transcripts, and SNP variation were found to enrich its current genome database. A large number of transcripts were expressed and involved in the processing of gene information and carbohydrate metabolism. A few highly expressed genes encoding the cysteine-rich cerato-platanin, hydrophobins, and sugar-binding lectins were identified and their possible roles in L. rhinocerotis were discussed. Genes encoding enzymes involved in the biosynthesis of glucans, six gene clusters encoding four terpene synthases and one each of non-ribosomal peptide synthetase and polyketide synthase, and 109 transcribed cytochrome P450 sequences were also identified in the transcriptome. The data from this study forms a valuable foundation for future research in the exploitation of this mushroom in pharmacological and industrial applications. PMID:26606395

  10. Transcriptome Analysis Revealed Highly Expressed Genes Encoding Secondary Metabolite Pathways and Small Cysteine-Rich Proteins in the Sclerotium of Lignosus rhinocerotis

    PubMed Central

    Yap, Hui-Yeng Y.; Chooi, Yit-Heng; Fung, Shin-Yee; Ng, Szu-Ting; Tan, Chon-Seng; Tan, Nget-Hong

    2015-01-01

    Lignosus rhinocerotis (Cooke) Ryvarden (tiger milk mushroom) has long been known for its nutritional and medicinal benefits among the local communities in Southeast Asia. However, the molecular and genetic basis of its medicinal and nutraceutical properties at transcriptional level have not been investigated. In this study, the transcriptome of L. rhinocerotis sclerotium, the part with medicinal value, was analyzed using high-throughput Illumina HiSeqTM platform with good sequencing quality and alignment results. A total of 3,673, 117, and 59,649 events of alternative splicing, novel transcripts, and SNP variation were found to enrich its current genome database. A large number of transcripts were expressed and involved in the processing of gene information and carbohydrate metabolism. A few highly expressed genes encoding the cysteine-rich cerato-platanin, hydrophobins, and sugar-binding lectins were identified and their possible roles in L. rhinocerotis were discussed. Genes encoding enzymes involved in the biosynthesis of glucans, six gene clusters encoding four terpene synthases and one each of non-ribosomal peptide synthetase and polyketide synthase, and 109 transcribed cytochrome P450 sequences were also identified in the transcriptome. The data from this study forms a valuable foundation for future research in the exploitation of this mushroom in pharmacological and industrial applications. PMID:26606395

  11. Probing conformational changes in the I-like domain and the cysteine-rich repeat of human beta 3 integrins following disulfide bond disruption by cysteine mutations: identification of cysteine 598 involved in alphaIIbbeta3 activation.

    PubMed

    Chen, P; Melchior, C; Brons, N H; Schlegel, N; Caen, J; Kieffer, N

    2001-10-19

    We have investigated receptor function and epitope expression of recombinant alpha(IIb)beta(3) mutated at Cys(177) or Cys(273) in the I-like domain as well as Cys(598), located in the fourth repeat of the membrane-proximal cysteine-rich region and mutated in a Glanzmann's thrombasthenia type II patient. The beta(3) mutants beta(3)C177A, beta(3)C273A, and beta(3)C598Y exhibited a decreased electrophoretic mobility in SDS-polyacrylamide gel electrophoresis under nonreducing conditions, confirming the disruption of the respective disulfide loops. Despite reduced surface expression, the alpha(IIb)beta(3)C177A, alpha(IIb)beta(3)C273A, and alpha(IIb)beta(3)C598Y receptors mediated cell adhesion to immobilized fibrinogen and translocated into focal adhesion plaques. The beta(3)C598Y mutation, but not the beta(3)C177A or beta(3)C273A mutations, induced spontaneous binding of the ligand mimetic monoclonal antibody PAC-1, while the beta(3)C177A and beta(3)C273A mutants exhibited reduced complex stability in the absence of Ca(2+). Epitope mapping of function-blocking monoclonal antibodies (mAbs) allowed the identification of two distinct subgroups; mAbs A2A9, pl2-46, 10E5, and P256 did not interact with alpha(IIb)beta(3)C273A and bound only weakly to alpha(IIb)beta(3)C177A, while mAbs AP2, LM609 and 7E3 bound normally to mutant alpha(IIb)beta(3)C273A, but interacted only weakly with mutant alpha(IIb)beta(3)C177A. Furthermore, a cryptic epitope recognized by mAb 4D10G3 and not exposed on wild type alpha(IIb)beta(3) became accessible only on mutant alpha(IIb)beta(3)C177A and was mapped to the 60-kDa chymotrypsin fragment of beta(3). Finally, the ligand-induced binding site (LIBS) epitopes AP5, D3, LIBS1, and LIBS2 were spontaneously expressed on all three mutants independent of RGDS or dithiothreitol treatment. Our results provide evidence that disruption of a single cysteine disulfide bond in the cysteine-rich repeat domain, but not in the I-like domain, activates integrin

  12. Substitution of a conserved cysteine-996 in a cysteine-rich motif of the laminin {alpha}2-chain in congenital muscular dystrophy with partial deficiency of the protein

    SciTech Connect

    Nissinen, M.; Xu Zhang; Tryggvason, K.

    1996-06-01

    Congenital muscular dystrophies (CMDs) are autosomal recessive muscle disorders of early onset. Approximately half of CMD patients present laminin {alpha}2-chain (merosin) deficiency in muscle biopsies, and the disease locus has been mapped to the region of the LAMA2 gene (6q22-23) in several families. Recently, two nonsense mutations in the laminin {alpha}2-chain gene were identified in CMD patients exhibiting complete deficiency of the laminin {alpha}2-chain in muscle biopsies. However, a subset of CMD patients with linkage to LAMA2 show only partial absence of the laminin {alpha}2-chain around muscle fibers, by immunocytochemical analysis. In the present study we have identified a homozygous missense mutation in the {alpha}2-chain gene of a consanguineous Turkish family with partial laminin {alpha}2-chain deficiency. The T{r_arrow}C transition at position 3035 in the cDNA sequence results in a Cys996{r_arrow}Arg substitution. The mutation that affects one of the conserved cysteine-rich repeats in the short arm of the laminin {alpha}2-chain should result in normal synthesis of the chain and in formation and secretion of a heterotrimeric laminin molecule. Muscular dysfunction is possibly caused either by abnormal disulfide cross-links and folding of the laminin repeat, leading to the disturbance of an as yet unknown binding function of the laminin {alpha}2-chain and to shorter half-life of the muscle-specific laminin-2 and laminin-4 isoforms, or by increased proteolytic sensitivity, leading to truncation of the short arm. 42 refs., 7 figs.

  13. Introgression of leginsulin, a cysteine-rich protein, and high-protein trait from an Asian soybean plant introduction genotype into a North American experimental soybean line

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean is an important protein source for both humans and animals. However, soybean proteins are relatively poor in the sulfur-containing amino acids, cysteine and methionine. Improving the content of endogenous proteins rich in sulfur containing amino acids could enhance the nutritive value of soy...

  14. Identification of a Novel Small Cysteine-Rich Protein in the Fraction from the Biocontrol Fusarium oxysporum Strain CS-20 that Mitigates Fusarium Wilt Symptoms and Triggers Defense Responses in Tomato

    PubMed Central

    Shcherbakova, Larisa A.; Odintsova, Tatyana I.; Stakheev, Alexander A.; Fravel, Deborah R.; Zavriev, Sergey K.

    2016-01-01

    The biocontrol effect of the non-pathogenic Fusarium oxysporum strain CS-20 against the tomato wilt pathogen F. oxysporum f. sp. lycopersici (FOL) has been previously reported to be primarily plant-mediated. This study shows that CS-20 produces proteins, which elicit defense responses in tomato plants. Three protein-containing fractions were isolated from CS-20 biomass using size exclusion chromatography. Exposure of seedling roots to one of these fractions prior to inoculation with pathogenic FOL strains significantly reduced wilt severity. This fraction initiated an ion exchange response in cultured tomato cells resulting in a reversible alteration of extracellular pH; increased tomato chitinase activity, and induced systemic resistance by enhancing PR-1 expression in tomato leaves. Two other protein fractions were inactive in seedling protection. The main polypeptide (designated CS20EP), which was specifically present in the defense-inducing fraction and was not detected in inactive protein fractions, was identified. The nucleotide sequence encoding this protein was determined, and its complete amino acid sequence was deduced from direct Edman degradation (25 N-terminal amino acid residues) and DNA sequencing. The CS20EP was found to be a small basic cysteine-rich protein with a pI of 9.87 and 23.43% of hydrophobic amino acid residues. BLAST search in the NCBI database showed that the protein is new; however, it displays 48% sequence similarity with a hypothetical protein FGSG_10784 from F. graminearum strain PH-1. The contribution of CS20EP to elicitation of tomato defense responses resulting in wilt mitigating is discussed. PMID:26779237

  15. S-nitrosoglutathione reductases are low-copy number, cysteine-rich proteins in plants that control multiple developmental and defense responses in Arabidopsis

    PubMed Central

    Xu, Shengbao; Guerra, Damian; Lee, Ung; Vierling, Elizabeth

    2013-01-01

    S-nitrosoglutathione reductase (GSNOR) is believed to modulate effects of reactive oxygen and nitrogen species through catabolism of S-nitrosoglutathione (GSNO). We combined bioinformatics of plant GSNOR genes, localization of GSNOR in Arabidopsis thaliana, and microarray analysis of a GSNOR null mutant to gain insights into the function and regulation of this critical enzyme in nitric oxide (NO) homeostasis. GSNOR-encoding genes are known to have high homology across diverse eukaryotic taxa, but contributions of specific conserved residues have not been assessed. With bioinformatics and structural modeling, we show that plant GSNORs likely localize to the cytosol, contain conserved, solvent-accessible cysteines, and tend to be encoded by a single gene. Arabidopsis thaliana homozygous for GSNOR loss-of-function alleles exhibited defects in stem and trichome branching, and complementation with Green fluorescent protein (GFP) -tagged GSNOR under control of the native promoter quantitatively rescued these phenotypes. GSNOR-GFP showed fluorescence throughout Arabidopsis seedlings, consistent with ubiquitous expression of the protein, but with especially high fluorescence in the root tip, apical meristem, and flowers. At the cellular level we observed cytosolic and nuclear fluorescence, with exclusion from the nucleolus. Microarray analysis identified 99 up- and 170 down-regulated genes (≥2-fold; p ≤ 0.01) in a GSNOR null mutant compared to wild type. Six members of the plant specific, ROXY glutaredoxins and three BHLH transcription factors involved in iron homeostasis were strongly upregulated, supporting a role for GSNOR in redox and iron metabolism. One third of downregulated genes are linked to pathogen resistance, providing further basis for the reported pathogen sensitivity of GSNOR null mutants. Together, these findings indicate GSNOR regulates multiple developmental and metabolic programs in plants and offer insight into putative routes of post

  16. Bovine gall-bladder mucin contains two distinct tandem repeating sequences: evidence for scavenger receptor cysteine-rich repeats.

    PubMed

    Nunes, D P; Keates, A C; Afdhal, N H; Offner, G D

    1995-08-15

    Gall-bladder mucin is a densely glycosylated macromolecule which is the primary secretory product of the gall-bladder epithelium. It has been shown to bind cholesterol and other biliary lipids and to promote cholesterol crystal nucleation in vitro. In order to understand the molecular basis for mucin-lipid interactions, bovine gall-bladder mucin cDNAs were identified by expression cloning and were isolated and sequenced. The nucleotide sequences of these cDNAs revealed two distinct tandem repeating domains. One of these domains contained a 20-amino acid tandem repeating sequence enriched in threonine, serine and proline. This sequence was similar to, but not identical with, the short tandem repeating sequences identified previously in other mammalian mucins. The other domain contained a 127-amino acid tandem repeating sequence enriched in cysteine and glycine. This repeat displayed considerable sequence similarity to a family of receptor- and ligand-binding proteins containing scavenger receptor cysteine-rich repeats. By analogy with other proteins containing these cysteine-rich repeats, it is possible that, in gall-bladder mucin, this domain serves as a binding site for hydrophobic ligands such as bilirubin, cholesterol and other biliary lipids.

  17. A multifaceted study of stigma/style cysteine-rich adhesin (SCA)-like Arabidopsis lipid transfer proteins (LTPs) suggests diversified roles for these LTPs in plant growth and reproduction.

    PubMed

    Chae, Keun; Gonong, Benedict J; Kim, Seung-Chul; Kieslich, Chris A; Morikis, Dimitrios; Balasubramanian, Shruthi; Lord, Elizabeth M

    2010-10-01

    Lily stigma/style cysteine-rich adhesin (SCA), a plant lipid transfer protein (LTP) which is secreted into the extracellular matrix, functions in pollen tube guidance in fertilization. A gain-of-function mutant (ltp5-1) for Arabidopsis LTP5, an SCA-like molecule, was recently shown to display defects in sexual reproduction. In the current study, it is reported that ltp5-1 plants have dwarfed primary shoots, delayed hypocotyl elongation, various abnormal tissue fusions, and display multibranching. These mutant phenotypes in vegetative growth are recessive. No abnormality was found in ltp5-1/+ plants. In a phylogenetic analysis of plant LTPs, SCA-like Arabidopsis LTPs were classified with conventional plant LTPs. Homology modelling-based electrostatic similarity index (ESI) clustering was used to show diversity in spatial distributions of electrostatic potentials of SCA-like LTPs, suggestive of their various roles in interaction in the extracellular matrix space. β-Glucuronidase (GUS) analysis showed that SCA-like Arabidopsis LTP genes are diversely present in various tissues. LTP4 was found specifically in the guard cells and LTP6 in trichomes as well as in other tissues. LTP1 levels were specifically abundant in the stigma, and both LTP3 and LTP6 in the ovules. LTP2 and LTP4 gene levels were up-regulated in whole seedlings with 20% polyethylene glycol (PEG) and 300 mM NaCl treatments, respectively. LTP5 was up-regulated in the hypocotyl with 3 d dark growth conditions. LTP6 was specifically expressed in the tip of the cotyledon under drought stress conditions. The results suggest that SCA-like Arabidopsis LTPs are multifunctional, with diversified roles in plant growth and reproduction.

  18. A multifaceted study of stigma/style cysteine-rich adhesin (SCA)-like Arabidopsis lipid transfer proteins (LTPs) suggests diversified roles for these LTPs in plant growth and reproduction

    PubMed Central

    Chae, Keun; Gonong, Benedict J.; Kim, Seung-Chul; Kieslich, Chris A.; Morikis, Dimitrios; Balasubramanian, Shruthi; Lord, Elizabeth M.

    2010-01-01

    Lily stigma/style cysteine-rich adhesin (SCA), a plant lipid transfer protein (LTP) which is secreted into the extracellular matrix, functions in pollen tube guidance in fertilization. A gain-of-function mutant (ltp5-1) for Arabidopsis LTP5, an SCA-like molecule, was recently shown to display defects in sexual reproduction. In the current study, it is reported that ltp5-1 plants have dwarfed primary shoots, delayed hypocotyl elongation, various abnormal tissue fusions, and display multibranching. These mutant phenotypes in vegetative growth are recessive. No abnormality was found in ltp5-1/+ plants. In a phylogenetic analysis of plant LTPs, SCA-like Arabidopsis LTPs were classified with conventional plant LTPs. Homology modelling-based electrostatic similarity index (ESI) clustering was used to show diversity in spatial distributions of electrostatic potentials of SCA-like LTPs, suggestive of their various roles in interaction in the extracellular matrix space. β-Glucuronidase (GUS) analysis showed that SCA-like Arabidopsis LTP genes are diversely present in various tissues. LTP4 was found specifically in the guard cells and LTP6 in trichomes as well as in other tissues. LTP1 levels were specifically abundant in the stigma, and both LTP3 and LTP6 in the ovules. LTP2 and LTP4 gene levels were up-regulated in whole seedlings with 20% polyethylene glycol (PEG) and 300 mM NaCl treatments, respectively. LTP5 was up-regulated in the hypocotyl with 3 d dark growth conditions. LTP6 was specifically expressed in the tip of the cotyledon under drought stress conditions. The results suggest that SCA-like Arabidopsis LTPs are multifunctional, with diversified roles in plant growth and reproduction. PMID:20667964

  19. A C-terminal, cysteine-rich site in poliovirus 2CATPase is required for morphogenesis

    PubMed Central

    Wang, Chunling; Ma, Hsin-Chieh; Wimmer, Eckard; Paul, Aniko V.

    2014-01-01

    The morphogenesis of viruses belonging to the genus Enterovirus in the family Picornaviridae is still poorly understood despite decades-long investigations. However, we recently provided evidence that 2CATPase gives specificity to poliovirus encapsidation through an interaction with capsid protein VP3. The polypeptide 2CATPase is a highly conserved non-structural protein of enteroviruses with important roles in RNA replication, encapsidation and uncoating. We have identified a site (K279/R280) near the C terminus of the polypeptide that is required for morphogenesis. The aim of the current project was to search for additional functional sites near the C terminus of the 2CATPase polypeptide, with particular interest in those that are required for encapsidation. We selected for analysis a cysteine-rich site of the polypeptide and constructed four mutants in which cysteines or a histidine was changed to an alanine. The RNA transcripts were transfected into HeLa cells yielding two lethal, one temperature-sensitive and one quasi-infectious mutants. All four mutants exhibited normal protein translation in vitro and three of them possessed severe RNA replication defects. The quasi-infectious mutant (C286A) yielded variants with a pseudo-reversion at the original site (A286D), but some also contained one additional mutation: A138V or M293V. The temperature-sensitive mutant (C272A/H273A) exhibited an encapsidation and possibly also an uncoating defect at 37 °C. Variants of this mutant revealed suppressor mutations at three different sites in the 2CATPase polypeptide: A138V, M293V and K295R. We concluded that the cysteine-rich site near the C terminus of 2CATPase is involved in encapsidation, possibly through an interaction with an upstream segment located between boxes A and B of the nucleotide-binding domain. PMID:24558221

  20. SMALL CYSTEINE-RICH PEPTIDES RESEMBLING ANTIMICROBIAL PEPTIDES HAVE BEEN UNDER-PREDICTED IN PLANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Multicellular organisms produce small cysteine-rich anti-microbial peptides as an innate defense against pathogens. While defensins, a well-known class of such peptides, are common among eukaryotes, there are classes restricted to the plant kingdom. These include thionins, lipid transfer proteins,...

  1. Isolation and characterization of a novel wheat cysteine-rich receptor-like kinase gene induced by Rhizoctonia cerealis

    NASA Astrophysics Data System (ADS)

    Yang, Kun; Rong, Wei; Qi, Lin; Li, Jiarui; Wei, Xuening; Zhang, Zengyan

    2013-10-01

    Cysteine-rich receptor kinases (CRKs) belong to the receptor-like kinase family. Little is known about CRK genes in wheat. We isolated a wheat CRK gene TaCRK1 from Rhizoctonia cerealis-resistant wheat CI12633 based on a differentially expressed sequence identified by RNA-Sequencing (RNA-Seq) analysis. TaCRK1 was more highly expressed in CI12633 than in susceptible Wenmai 6. Transcription of TaCRK1 in wheat was induced in CI12633 after R. cerealis infection and exogenous abscisic acid (ABA) treatment. The deduced TaCRK1 protein contained a signal peptide, two DUF26 domains, a transmembrane domain, and a serine/threonine protein kinase domain. Transient expression of a green fluorescence protein fused with TaCRK1 in wheat and onion indicated that TaCRK1 may localize to plasma membranes. Characterization of TaCRK1 silencing induced by virus-mediated method in CI12633 showed that the downregulation of TaCRK1 transcript did not obviously impair resistance to R. cerealis. This study paves the way to further CRK research in wheat.

  2. Deletion mapping of the rotavirus metalloprotein NS53 (NSP1): the conserved cysteine-rich region is essential for virus-specific RNA binding.

    PubMed Central

    Hua, J; Chen, X; Patton, J T

    1994-01-01

    NS53 (NSP1), the gene 5 product of the group A rotaviruses, is a minor nonstructural protein of 486 to 495 amino acids which binds zinc and contains an amino-terminal highly conserved cysteine-rich region that may form one or two zinc fingers. To study the structure-function of the gene 5 product, wild-type and mutant forms of NS53 were produced by using a recombinant baculovirus expression system and a recombinant vaccinia virus/T7 (vTF7-3) expression system. Analysis of the RNA-binding activity of the wild-type NS53 immobilized onto protein A-Sepharose beads with NS53-specific antiserum showed that the protein exhibited specific affinity for all 11 rotavirus mRNAs. The use of short virus-specific RNA probes indicated that NS53 specifically recognizes an element located near the 5' ends of viral mRNAs. Analysis of the RNA-binding activity of deletion mutants of NS53 showed that the RNA-binding domain resides within the first 81 amino acids of the protein and that the highly conserved cysteine-rich region within this region of the protein is essential for the activity. Gel electrophoresis and Western immunoblot analyses of intracellular fractions derived from infected cells revealed that large amounts of NS53 were present in the cytosol and in association with the cytoskeletal matrix. Indirect immunofluorescence analysis of cells programmed to transiently express mutant forms of NS53 using vTF7-3 indicated that the intracellular localization domain resides between amino acids 84 and 176 of NS53. Together, these data show that the RNA-binding domain and the intracellular localization domain lie upstream from the region of NS53 previously determined not to be essential for replication of rotaviruses in cell culture (J. Hua and J. T. Patton, Virology 198:567-576, 1994). Images PMID:8189533

  3. Protein domain architectures.

    PubMed

    Mulder, Nicola J

    2010-01-01

    Proteins are composed of functional units, or domains, that can be found alone or in combination with other domains. Analysis of protein domain architectures and the movement of protein domains within and across different genomes provide clues about the evolution of protein function. The classification of proteins into families and domains is provided through publicly available tools and databases that use known protein domains to predict other members in new proteins sequences. Currently at least 80% of the main protein sequence databases can be classified using these tools, thus providing a large data set to work from for analyzing protein domain architectures. Each of the protein domain databases provide intuitive web interfaces for viewing and analyzing their domain classifications and provide their data freely for downloading. Some of the main protein family and domain databases are described here, along with their Web-based tools for analyzing domain architectures.

  4. Localization of human platelet autoantigens to the cysteine-rich region of glycoprotein IIIa.

    PubMed Central

    Kekomaki, R; Dawson, B; McFarland, J; Kunicki, T J

    1991-01-01

    The object of this study was to further localize autoantigenic structures on IIb-IIIa and, if possible, to precisely identify the epitopes recognized by human autoantibodies. In this paper, we identify a 50-kD chymotryptic fragment of IIIa that is recognized by a high percentage of human autoantibodies, typified by the prototype IgG autoantibody RA, which binds to IIIa on intact platelets as well as in an immunoblot assay under nonreduced conditions. Using an immunoblot assay, a carboxy-terminal region of this fragment (33 kD) that contains the cysteine-rich domains of IIIa was found to carry the epitope(s) recognized by the prototype autoantibody RA. The amino-terminal amino acid sequence of the reduced 33-kD fragment, the smallest fragment that retains the RA epitope, is XPSQQDEXSP, and that of the reduced 50-kD fragment is IVQVTFD. This indicates that the 33-kD fragment consists of approximately 175 amino acids beginning at residue 479 and extending at least through residues 636-654, while the 50-kD fragment spans the same region but begins at residue 427. It is apparent that the 33-kD fragment is generated from the 50-kD fragment by additional chymotryptic hydrolysis but remains associated because of the multiple disulfide bonds that are characteristic of this cysteine-rich domain. Sera from 48% of patients with chronic ITP and 2 of 8 patients with acute ITP contain antibodies that bind to the 50-kD fragment in an ELISA. Antibodies of the same specificity are also found in one-third of patients with either secondary immune thrombocytopenia or apparent non-immune thrombocytopenia. We conclude that the 50-kD cysteine-rich region of IIIa is a frequent target of autoantibodies in ITP, but that such antibodies may also be present in cases of thrombocytopenia that cannot be linked to an apparent autoimmune process. Images PMID:1715887

  5. Unfolding the fold of cyclic cysteine-rich peptides

    PubMed Central

    Shehu, Amarda; Kavraki, Lydia E.; Clementi, Cecilia

    2008-01-01

    We propose a method to extensively characterize the native state ensemble of cyclic cysteine-rich peptides. The method uses minimal information, namely, amino acid sequence and cyclization, as a topological feature that characterizes the native state. The method does not assume a specific disulfide bond pairing for cysteines and allows the possibility of unpaired cysteines. A detailed view of the conformational space relevant for the native state is obtained through a hierarchic multi-resolution exploration. A crucial feature of the exploration is a geometric approach that efficiently generates a large number of distinct cyclic conformations independently of one another. A spatial and energetic analysis of the generated conformations associates a free-energy landscape to the explored conformational space. Application to three long cyclic peptides of different folds shows that the conformational ensembles and cysteine arrangements associated with free energy minima are fully consistent with available experimental data. The results provide a detailed analysis of the native state features of cyclic peptides that can be further tested in experiment. PMID:18287281

  6. The cysteine rich necrotrophic effector SnTox1 produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The gene encoding SnTox1, a necrotrophic effector from Stagonospora nodorum that causes necrosis of wheat lines expressing Snn1, has been verified by heterologous expression in Pichia pastoris. SnTox1 encodes a 117 amino acid cysteine rich protein with the first 17 amino acids predicted as a signal ...

  7. The evolutionary analysis reveals domain fusion of proteins with Frizzled-like CRD domain.

    PubMed

    Yan, Jun; Jia, Haibo; Ma, Zhaowu; Ye, Huashan; Zhou, Mi; Su, Li; Liu, Jianfeng; Guo, An-Yuan

    2014-01-01

    Frizzleds (FZDs) are transmembrane receptors in the Wnt signaling pathway and they play pivotal roles in developments. The Frizzled-like extracellular Cysteine-rich domain (Fz-CRD) has been identified in FZDs and other proteins. The origin and evolution of these proteins with Fz-CRD is the main interest of this study. We found that the Fz-CRD exists in FZD, SFRP, RTK, MFRP, CPZ, CORIN, COL18A1 and other proteins. Our systematic analysis revealed that the Fz-CRD domain might have originated in protists and then fused with the Frizzled-like seven-transmembrane domain (7TM) to form the FZD receptors, which duplicated and diversified into about 11 members in Vertebrates. The SFRPs and RTKs with the Fz-CRD were found in sponge and expanded in Vertebrates. Other proteins with Fz-CRD may have emerged during Vertebrate evolution through domain fusion. Moreover, we found a glycosylation site and several conserved motifs in FZDs, which may be related to Wnt interaction. Based on these results, we proposed a model showing that the domain fusion and expansion of Fz-CRD genes occurred in Metazoa and Vertebrates. Our study may help to pave the way for further research on the conservation and diversification of Wnt signaling functions during evolution.

  8. Modeling Protein Domain Function

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton "Buck"; Hull, Elizabeth

    2007-01-01

    This simple but effective laboratory exercise helps students understand the concept of protein domain function. They use foam beads, Styrofoam craft balls, and pipe cleaners to explore how domains within protein active sites interact to form a functional protein. The activity allows students to gain content mastery and an understanding of the…

  9. Dipeptide frequency/bias analysis identifies conserved sites of nonrandomness shared by cysteine-rich motifs.

    PubMed

    Campion, S R; Ameen, A S; Lai, L; King, J M; Munzenmaier, T N

    2001-08-15

    This report describes the application of a simple computational tool, AAPAIR.TAB, for the systematic analysis of the cysteine-rich EGF, Sushi, and Laminin motif/sequence families at the two-amino acid level. Automated dipeptide frequency/bias analysis detects preferences in the distribution of amino acids in established protein families, by determining which "ordered dipeptides" occur most frequently in comprehensive motif-specific sequence data sets. Graphic display of the dipeptide frequency/bias data revealed family-specific preferences for certain dipeptides, but more importantly detected a shared preference for employment of the ordered dipeptides Gly-Tyr (GY) and Gly-Phe (GF) in all three protein families. The dipeptide Asn-Gly (NG) also exhibited high-frequency and bias in the EGF and Sushi motif families, whereas Asn-Thr (NT) was distinguished in the Laminin family. Evaluation of the distribution of dipeptides identified by frequency/bias analysis subsequently revealed the highly restricted localization of the G(F/Y) and N(G/T) sequence elements at two separate sites of extreme conservation in the consensus sequence of all three sequence families. The similar employment of the high-frequency/bias dipeptides in three distinct protein sequence families was further correlated with the concurrence of these shared molecular determinants at similar positions within the distinctive scaffolds of three structurally divergent, but similarly employed, motif modules.

  10. Nerve growth factor binding domain of the nerve growth factor receptor

    SciTech Connect

    Welcher, A.A.; Bitler, C.M.; Radeke, M.J.; Shooter, E.M. )

    1991-01-01

    A structural analysis of the rat low-affinity nerve growth factor (NGF) receptor was undertaken to define the NGF binding domain. Mutant NGF receptor DNA constructs were expressed in mouse fibroblasts or COS cells, and the ability of the mutant receptors to bind NGF was assayed. In the first mutant, all but 16 amino acid residues of the intracellular domain of the receptor were removed. This receptor bound NGF with a K{sub d} comparable to that of the wild-type receptor. A second mutant contained only the four cysteine-rich sequences from the extracellular portion of the protein. This mutant was expressed in COS cells and the resultant protein was a secreted soluble form of the receptor that was able to bind NGF. Two N-terminal deletions, in which either the first cystein-rich sequence or the first and part of the second cystein-rich sequences were removed, bound NGF. However, a mutant lacking all four cysteine-rich sequences was unable to bind NGF. These results show that the four cysteine-rich sequences of the NGF receptor contain the NGF binding domain.

  11. Identification and Characterization of a Novel Family of Cysteine-Rich Peptides (MgCRP-I) from Mytilus galloprovincialis

    PubMed Central

    Gerdol, Marco; Puillandre, Nicolas; Moro, Gianluca De; Guarnaccia, Corrado; Lucafò, Marianna; Benincasa, Monica; Zlatev, Ventislav; Manfrin, Chiara; Torboli, Valentina; Giulianini, Piero Giulio; Sava, Gianni; Venier, Paola; Pallavicini, Alberto

    2015-01-01

    We report the identification of a novel gene family (named MgCRP-I) encoding short secreted cysteine-rich peptides in the Mediterranean mussel Mytilus galloprovincialis. These peptides display a highly conserved pre-pro region and a hypervariable mature peptide comprising six invariant cysteine residues arranged in three intramolecular disulfide bridges. Although their cysteine pattern is similar to cysteines-rich neurotoxic peptides of distantly related protostomes such as cone snails and arachnids, the different organization of the disulfide bridges observed in synthetic peptides and phylogenetic analyses revealed MgCRP-I as a novel protein family. Genome- and transcriptome-wide searches for orthologous sequences in other bivalve species indicated the unique presence of this gene family in Mytilus spp. Like many antimicrobial peptides and neurotoxins, MgCRP-I peptides are produced as pre-propeptides, usually have a net positive charge and likely derive from similar evolutionary mechanisms, that is, gene duplication and positive selection within the mature peptide region; however, synthetic MgCRP-I peptides did not display significant toxicity in cultured mammalian cells, insecticidal, antimicrobial, or antifungal activities. The functional role of MgCRP-I peptides in mussel physiology still remains puzzling. PMID:26201648

  12. Identification and Characterization of a Novel Family of Cysteine-Rich Peptides (MgCRP-I) from Mytilus galloprovincialis.

    PubMed

    Gerdol, Marco; Puillandre, Nicolas; De Moro, Gianluca; Guarnaccia, Corrado; Lucafò, Marianna; Benincasa, Monica; Zlatev, Ventislav; Manfrin, Chiara; Torboli, Valentina; Giulianini, Piero Giulio; Sava, Gianni; Venier, Paola; Pallavicini, Alberto

    2015-08-01

    We report the identification of a novel gene family (named MgCRP-I) encoding short secreted cysteine-rich peptides in the Mediterranean mussel Mytilus galloprovincialis. These peptides display a highly conserved pre-pro region and a hypervariable mature peptide comprising six invariant cysteine residues arranged in three intramolecular disulfide bridges. Although their cysteine pattern is similar to cysteines-rich neurotoxic peptides of distantly related protostomes such as cone snails and arachnids, the different organization of the disulfide bridges observed in synthetic peptides and phylogenetic analyses revealed MgCRP-I as a novel protein family. Genome- and transcriptome-wide searches for orthologous sequences in other bivalve species indicated the unique presence of this gene family in Mytilus spp. Like many antimicrobial peptides and neurotoxins, MgCRP-I peptides are produced as pre-propeptides, usually have a net positive charge and likely derive from similar evolutionary mechanisms, that is, gene duplication and positive selection within the mature peptide region; however, synthetic MgCRP-I peptides did not display significant toxicity in cultured mammalian cells, insecticidal, antimicrobial, or antifungal activities. The functional role of MgCRP-I peptides in mussel physiology still remains puzzling.

  13. Cysteine-rich receptor-like kinase CRK5 as a regulator of growth, development, and ultraviolet radiation responses in Arabidopsis thaliana

    PubMed Central

    Burdiak, Paweł; Rusaczonek, Anna; Witoń, Damian; Głów, Dawid; Karpiński, Stanisław

    2015-01-01

    In plants, receptor-like protein kinases play essential roles in signal transduction by recognizing extracellular stimuli and activating the downstream signalling pathways. Cysteine-rich receptor-like kinases (CRKs) constitute a large subfamily of receptor-like protein kinases, with 44 members in Arabidopsis thaliana. They are distinguished by the novel C-X8-C-X2-C motif (DUF26) in the extracellular domains. One of them, CRK5, is an important component of the biochemical machinery involved in the regulation of essential physiological processes. Functional characterization of crk5 mutant plants showed their clear phenotype, manifested by impaired stomatal conductance and accelerated senescence. This phenotype correlated with accumulation of reactive oxygen species, higher foliar levels of ethylene and salicylic acid, and increased transcript abundance for genes associated with signalling pathways corresponding to these hormones. Moreover, the crk5 plants displayed enhanced cell death and oxidative damage in response to ultraviolet radiation. Complementation of CRK5 mutation managed to recover the wild-type phenotype, indicating an essential role of this gene in the regulation of growth, development, and acclimatory responses. PMID:25969551

  14. Cysteine-rich receptor-like kinase CRK5 as a regulator of growth, development, and ultraviolet radiation responses in Arabidopsis thaliana.

    PubMed

    Burdiak, Paweł; Rusaczonek, Anna; Witoń, Damian; Głów, Dawid; Karpiński, Stanisław

    2015-06-01

    In plants, receptor-like protein kinases play essential roles in signal transduction by recognizing extracellular stimuli and activating the downstream signalling pathways. Cysteine-rich receptor-like kinases (CRKs) constitute a large subfamily of receptor-like protein kinases, with 44 members in Arabidopsis thaliana. They are distinguished by the novel C-X8-C-X2-C motif (DUF26) in the extracellular domains. One of them, CRK5, is an important component of the biochemical machinery involved in the regulation of essential physiological processes. Functional characterization of crk5 mutant plants showed their clear phenotype, manifested by impaired stomatal conductance and accelerated senescence. This phenotype correlated with accumulation of reactive oxygen species, higher foliar levels of ethylene and salicylic acid, and increased transcript abundance for genes associated with signalling pathways corresponding to these hormones. Moreover, the crk5 plants displayed enhanced cell death and oxidative damage in response to ultraviolet radiation. Complementation of CRK5 mutation managed to recover the wild-type phenotype, indicating an essential role of this gene in the regulation of growth, development, and acclimatory responses.

  15. Ligand binding to the PDZ domains of postsynaptic density protein 95.

    PubMed

    Toto, Angelo; Pedersen, Søren W; Karlsson, O Andreas; Moran, Griffin E; Andersson, Eva; Chi, Celestine N; Strømgaard, Kristian; Gianni, Stefano; Jemth, Per

    2016-05-01

    Cellular scaffolding and signalling is generally governed by multidomain proteins, where each domain has a particular function. Postsynaptic density protein 95 (PSD-95) is involved in synapse formation and is a typical example of such a multidomain protein. Protein-protein interactions of PSD-95 are well studied and include the following three protein ligands: (i)N-methyl-d-aspartate-type ionotropic glutamate receptor subunit GluN2B, (ii) neuronal nitric oxide synthase and (iii) cysteine-rich protein (CRIPT), all of which bind to one or more of the three PDZ domains in PSD-95. While interactions for individual PDZ domains of PSD-95 have been well studied, less is known about the influence of neighbouring domains on the function of the respective individual domain. We therefore performed a systematic study on the ligand-binding kinetics of PSD-95 using constructs of different size for PSD-95 and its ligands. Regarding the canonical peptide-binding pocket and relatively short peptides (up to 15-mer), the PDZ domains in PSD-95 by and large work as individual binding modules. However, in agreement with previous studies, residues outside of the canonical binding pocket modulate the affinity of the ligands. In particular, the dissociation of the 101 amino acid CRIPT from PSD-95 is slowed down at least 10-fold for full-length PSD-95 when compared with the individual PDZ3 domain. PMID:26941280

  16. Structure of a two-CAP-domain protein from the human hookworm parasite Necator americanus

    SciTech Connect

    Asojo, Oluwatoyin A.

    2011-05-01

    The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite N. americanus refined to a resolution limit of 2.2 Å is presented. Major proteins secreted by the infective larval stage hookworms upon host entry include Ancylostoma secreted proteins (ASPs), which are characterized by one or two CAP (cysteine-rich secretory protein/antigen 5/pathogenesis related-1) domains. The CAP domain has been reported in diverse phylogenetically unrelated proteins, but has no confirmed function. The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite Necator americanus was refined to a resolution limit of 2.2 Å. The structure was solved by molecular replacement (MR) using Na-ASP-2, a one-CAP-domain ASP, as the search model. The correct MR solution could only be obtained by truncating the polyalanine model of Na-ASP-2 and removing several loops. The structure reveals two CAP domains linked by an extended loop. Overall, the carboxyl-terminal CAP domain is more similar to Na-ASP-2 than to the amino-terminal CAP domain. A large central cavity extends from the amino-terminal CAP domain to the carboxyl-terminal CAP domain, encompassing the putative CAP-binding cavity. The putative CAP-binding cavity is a characteristic cavity in the carboxyl-terminal CAP domain that contains a His and Glu pair. These residues are conserved in all single-CAP-domain proteins, but are absent in the amino-terminal CAP domain. The conserved His residues are oriented such that they appear to be capable of directly coordinating a zinc ion as observed for CAP proteins from reptile venoms. This first structure of a two-CAP-domain ASP can serve as a template for homology modeling of other two-CAP-domain proteins.

  17. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.; Doi, R.

    1998-11-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  18. Cellulose binding domain proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc; Doi, Roy

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  19. The CRP/MLP/TLP family of LIM domain proteins: acting by connecting.

    PubMed

    Weiskirchen, Ralf; Günther, Kalle

    2003-02-01

    In vertebrates, members of the cysteine-rich protein (CRP) family are characterized by the presence of two LIM domains linked to short glycine-rich repeats. These proteins mediate protein-protein interactions and are of fundamental importance for cell differentiation, cytoskeletal remodeling, and transcriptional regulation. To date, a vast amount of information about vertebrate CRPs has become available, including their biological functions, interacting partners, and three-dimensional structures. Compatible with a molecular adapter role, structural data reveal that the LIM domains within these proteins represent completely independent folded units bridged by flexible linker regions. The physiological roles for individual CRPs was determined by targeted gene disruption analysis and by identification of common and specific binding partners by means of yeast and mammalian two-hybrid screens. Several CRP-like LIM domain proteins with close structural and sequence similarity were identified in arthropods, protozoas and plants, supporting the notion that this subset of LIM domain proteins has been highly conserved over the span of evolution thereby emphasizing the importance of their function.

  20. A high-throughput peptidomic strategy to decipher the molecular diversity of cyclic cysteine-rich peptides.

    PubMed

    Serra, Aida; Hemu, Xinya; Nguyen, Giang K T; Nguyen, Ngan T K; Sze, Siu Kwan; Tam, James P

    2016-01-01

    Cyclotides are plant cyclic cysteine-rich peptides (CRPs). The cyclic nature is reported to be gene-determined with a precursor containing a cyclization-competent domain which contains an essential C-terminal Asn/Asp (Asx) processing signal recognized by a cyclase. Linear forms of cyclotides are rare and are likely uncyclizable because they lack this essential C-terminal Asx signal (uncyclotide). Here we show that in the cyclotide-producing plant Clitoria ternatea, both cyclic and acyclic products, collectively named cliotides, can be bioprocessed from the same cyclization-competent precursor. Using an improved peptidomic strategy coupled with the novel Asx-specific endopeptidase butelase 2 to linearize cliotides at a biosynthetic ligation site for transcriptomic analysis, we characterized 272 cliotides derived from 38 genes. Several types of post-translational modifications of the processed cyclotides were observed, including deamidation, oxidation, hydroxylation, dehydration, glycosylation, methylation, and truncation. Taken together, our results suggest that cyclotide biosynthesis involves 'fuzzy' processing of precursors into both cyclic and linear forms as well as post-translational modifications to achieve molecular diversity, which is a commonly found trait of natural product biosynthesis. PMID:26965458

  1. A high-throughput peptidomic strategy to decipher the molecular diversity of cyclic cysteine-rich peptides

    PubMed Central

    Serra, Aida; Hemu, Xinya; Nguyen, Giang K. T.; Nguyen, Ngan T. K.; Sze, Siu Kwan; Tam, James P.

    2016-01-01

    Cyclotides are plant cyclic cysteine-rich peptides (CRPs). The cyclic nature is reported to be gene-determined with a precursor containing a cyclization-competent domain which contains an essential C-terminal Asn/Asp (Asx) processing signal recognized by a cyclase. Linear forms of cyclotides are rare and are likely uncyclizable because they lack this essential C-terminal Asx signal (uncyclotide). Here we show that in the cyclotide-producing plant Clitoria ternatea, both cyclic and acyclic products, collectively named cliotides, can be bioprocessed from the same cyclization-competent precursor. Using an improved peptidomic strategy coupled with the novel Asx-specific endopeptidase butelase 2 to linearize cliotides at a biosynthetic ligation site for transcriptomic analysis, we characterized 272 cliotides derived from 38 genes. Several types of post-translational modifications of the processed cyclotides were observed, including deamidation, oxidation, hydroxylation, dehydration, glycosylation, methylation, and truncation. Taken together, our results suggest that cyclotide biosynthesis involves ‘fuzzy’ processing of precursors into both cyclic and linear forms as well as post-translational modifications to achieve molecular diversity, which is a commonly found trait of natural product biosynthesis. PMID:26965458

  2. cDNA sequence analysis of a 29-kDa cysteine-rich surface antigen of pathogenic Entamoeba histolytica

    SciTech Connect

    Torian, B.E.; Stroeher, V.L.; Stamm, W.E. ); Flores, B.M. ); Hagen, F.S. )

    1990-08-01

    A {lambda}gt11 cDNA library was constructed from poly(U)-Spharose-selected Entamoeba histolytica trophozoite RNA in order to clone and identify surface antigens. The library was screened with rabbit polyclonal anti-E. histolytica serum. A 700-base-pair cDNA insert was isolated and the nucleotide sequence was determined. The deduced amino acid sequence of the cDNA revealed a cysteine-rich protein. DNA hybridizations showed that the gene was specific to E. histolytica since the cDNA probe reacted with DNA from four axenic strains of E. histolytica but did not react with DNA from Entamoeba invadens, Acanthamoeba castellanii, or Trichomonas vaginalis. The insert was subcloned into the expression vector pGEX-1 and the protein was expressed as a fusion with the C terminus of glutathione S-transferase. Purified fusion protein was used to generate 22 monoclonal antibodies (mAbs) and a mouse polyclonal antiserum specific for the E. histolytica portion of the fusion protein. A 29-kDa protein was identified as a surface antigen when mAbs were used to immunoprecipitate the antigen from metabolically {sup 35}S-labeled live trophozoites. The surface location of the antigen was corroborated by mAb immunoprecipitation of a 29-kDa protein from surface-{sup 125}I-labeled whole trophozoites as well as by the reaction of mAbs with live trophozoites in an indirect immunofluorescence assay performed at 4{degree}C. Immunoblotting with mAbs demonstrated that the antigen was present on four axenic isolates tested. mAbs recognized epitopes on the 29-kDa native antigen on some but not all clinical isolates tested.

  3. Zyxin and cCRP: two interactive LIM domain proteins associated with the cytoskeleton

    PubMed Central

    1992-01-01

    Interaction with extracellular matrix can trigger a variety of responses by cells including changes in specific gene expression and cell differentiation. The mechanism by which cell surface events are coupled to the transcriptional machinery is not understood, however, proteins localized at sites of cell-substratum contact are likely to function as signal transducers. We have recently purified and characterized a low abundance adhesion plaque protein called zyxin (Crawford, A. W., and M. C. Beckerle. 1991. J. Biol. Chem. 266:5847- 5853; Crawford, A. W., J. W. Michelsen, and M. C. Beckerle. 1992. J. Cell Biol. 116:1381-1393). We have now isolated and sequenced zyxin cDNA and we report here that zyxin exhibits an unusual proline-rich NH2- terminus followed by three tandemly arrayed LIM domains. LIM domains have previously been identified in proteins that play important roles in transcriptional regulation and cellular differentiation. LIM domains have been proposed to coordinate metal ions and we have demonstrated by atomic absorption spectroscopy that purified zyxin binds zinc, a result consistent with the idea that zyxin has zinc fingers. In addition, we have discovered that zyxin interacts in vitro with a 23-kD protein that also exhibits LIM domains. Microsequence analysis has revealed that the 23-kD protein (or cCRP) is the chicken homologue of the human cysteine- rich protein (hCRP). By double-label indirect immunofluorescence, we found that zyxin and cCRP are extensively colocalized in chicken embryo fibroblasts, consistent with the idea that they interact in vivo. We conclude that LIM domains are zinc-binding sequences that may be involved in protein-protein interactions. The demonstration that two cytoskeletal proteins, zyxin and cCRP, share a sequence motif with proteins important for transcriptional regulation raises the possibility that zyxin and cCRP are components of a signal transduction pathway that mediates adhesion-stimulated changes in gene

  4. Recombinant expression of the precursor of the hemorrhagic metalloproteinase HF3 and its non-catalytic domains using a cell-free synthesis system.

    PubMed

    Menezes, Milene C; Imbert, Lionel; Kitano, Eduardo S; Vernet, Thierry; Serrano, Solange M T

    2016-09-01

    Snake venom metalloproteinases (SVMPs) participate in snakebite pathology such as hemorrhage, inflammation, and necrosis. They are synthesized as latent multi-domain precursors whose processing generates either catalytically active enzymes or free non-enzymatic domains. Recombinant expression of the precursor of P-III class SVMPs has failed due to the instability of the multi-domain polypeptide structure. Conversely, functional recombinant non-catalytic domains were obtained by prokaryotic expression systems. Here, we show for the first time the recombinant expression of the precursor of HF3, a highly hemorrhagic SVMP from Bothrops jararaca, and its non-catalytic domains, using an E. coli-based cell-free synthesis system. The precursor of HF3, composed of pro-, metalloproteinase-, disintegrin-like-, and cysteine-rich domains, and containing 38 Cys residues, was successfully expressed and purified. A protein composed of the disintegrin-like and cysteine-rich domains (DC protein) and the cysteine-rich domain alone (C protein) were expressed in vitro individually and purified. Both proteins were shown to be functional in assays monitoring the interaction with matrix proteins and in modulating the cleavage of fibrinogen by HF3. These data indicate that recombinant expression using prokaryotic-based cell-free synthesis emerges as an attractive alternative for the study of the structure and function of multi-domain proteins with a high content of Cys residues. PMID:27209197

  5. The inhibition of calcium carbonate crystal growth by the cysteine-rich Mdm2 peptide.

    PubMed

    Dalas, E; Chalias, A; Gatos, D; Barlos, K

    2006-08-15

    The crystal growth of calcite, the most stable calcium carbonate polymorph, in the presence of the cysteine-rich Mdm2 peptide (containing 48 amino acids in the ring finger configuration), has been investigated by the constant composition technique. Crystallization took place exclusively on well-characterized calcite crystals in solutions supersaturated only with respect to this calcium carbonate salt. The kinetic results indicated a surface diffusion spiral growth mechanism. The presence of the Mdm2 peptide inhibited the crystal growth of calcite by 22-58% in the concentration range tested, through adsorption onto the active growth sites of the calcite crystal surface. The kinetic results favored a Langmuir-type adsorption model, and the value of the calculated affinity constant was k(aff)=147x10(4) dm(3)mol(-1), a(ads)=0.29. PMID:16678843

  6. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice.

    PubMed

    Mao, Hailiang; Sun, Shengyuan; Yao, Jialing; Wang, Chongrong; Yu, Sibin; Xu, Caiguo; Li, Xianghua; Zhang, Qifa

    2010-11-01

    Grain yield in many cereal crops is largely determined by grain size. Here we report the genetic and molecular characterization of GS3, a major quantitative trait locus for grain size. It functions as a negative regulator of grain size and organ size. The wild-type isoform is composed of four putative domains: a plant-specific organ size regulation (OSR) domain in the N terminus, a transmembrane domain, a tumor necrosis factor receptor/nerve growth factor receptor (TNFR/NGFR) family cysteine-rich domain, and a von Willebrand factor type C (VWFC) in the C terminus. These domains function differentially in grain size regulation. The OSR domain is both necessary and sufficient for functioning as a negative regulator. The wild-type allele corresponds to medium grain. Loss of function of OSR results in long grain. The C-terminal TNFR/NGFR and VWFC domains show an inhibitory effect on the OSR function; loss-of-function mutations of these domains produced very short grain. This study linked the functional domains of the GS3 protein to natural variation of grain size in rice. PMID:20974950

  7. Identification of nodule-specific cysteine-rich plant peptides in endosymbiotic bacteria.

    PubMed

    Durgo, Hajnalka; Klement, Eva; Hunyadi-Gulyas, Eva; Szucs, Attila; Kereszt, Attila; Medzihradszky, Katalin F; Kondorosi, Eva

    2015-07-01

    The symbiosis of Medicago truncatula with Sinorhizobium meliloti or Sinorhizobium medicae soil bacteria results in the formation of root nodules where bacteria inside the plant cells are irreversibly converted to polyploid, nondividing nitrogen-fixing bacteroids. Bacteroid differentiation is host-controlled and the plant effectors are symbiosis-specific secreted plant peptides. In the M. truncatula genome there are more than 600 symbiotic peptide genes including 500 small genes coding for nodule-specific cysteine-rich (NCR) peptides. While NCR transcripts represent >5% of the nodule transcriptome, the existence of only eight NCR peptides has been demonstrated so far. The predicted NCRs are secreted peptides targeted to the endosymbionts. Correspondingly, all the eight detected peptides were present in the bacteroids. Here, we report on large-scale detection of NCR peptides from nodules and from isolated, semipurified endosymbionts at various stages of their differentiation. In total 138 NCRs were detected in the bacteroids; 38 were cationic while the majority was anionic. The presence of early NCRs in nitrogen-fixing bacteroids indicates their high stability, and their long-term maintenance suggests persisting biological roles in the bacteroids.

  8. Induction of cysteine-rich motor neuron 1 mRNA expression in vascular endothelial cells.

    PubMed

    Nakashima, Yukiko; Takahashi, Satoru

    2014-08-22

    Cysteine-rich motor neuron 1 (CRIM1) is expressed in vascular endothelial cells and plays a crucial role in angiogenesis. In this study, we investigated the expression of CRIM1 mRNA in human umbilical vein endothelial cells (HUVECs). CRIM1 mRNA levels were not altered in vascular endothelial growth factor (VEGF)-stimulated monolayer HUVECs or in cells in collagen gels without VEGF. In contrast, the expression of CRIM1 mRNA was elevated in VEGF-stimulated cells in collagen gels. The increase in CRIM1 mRNA expression was observed even at 2h when HUVECs did not form tubular structures in collagen gels. Extracellular signal-regulated kinase (Erk) 1/2, Akt and focal adhesion kinase (FAK) were activated by VEGF in HUVECs. The VEGF-induced expression of CRIM1 mRNA was significantly abrogated by PD98059 or PF562271, but was not affected by LY294002. These results demonstrate that CRIM1 is an early response gene in the presence of both angiogenic stimulation (VEGF) and environmental (extracellular matrix) factors, and Erk and FAK might be involved in the upregulation of CRIM1 mRNA expression in vascular endothelial cells.

  9. Diversity in protein domain superfamilies

    PubMed Central

    Das, Sayoni; Dawson, Natalie L; Orengo, Christine A

    2015-01-01

    Whilst ∼93% of domain superfamilies appear to be relatively structurally and functionally conserved based on the available data from the CATH-Gene3D domain classification resource, the remainder are much more diverse. In this review, we consider how domains in some of the most ubiquitous and promiscuous superfamilies have evolved, in particular the plasticity in their functional sites and surfaces which expands the repertoire of molecules they interact with and actions performed on them. To what extent can we identify a core function for these superfamilies which would allow us to develop a ‘domain grammar of function’ whereby a protein's biological role can be proposed from its constituent domains? Clearly the first step is to understand the extent to which these components vary and how changes in their molecular make-up modifies function. PMID:26451979

  10. Structure of Protein Having Inhibitory Disintegrin and Leukotriene Scavenging Functions Contained in Single Domain

    SciTech Connect

    Xu, Xueqing; Francischetti, Ivo M.B.; Lai, Ren; Ribeiro, José M.C.; Andersen, John F.

    2012-08-10

    The antihemostatic/antiangiogenic protein tablysin-15 is a member of the CAP (cysteine-rich secretory, antigen 5, and pathogenesis-related 1 protein) superfamily and has been shown to bind the integrins {alpha}{sub IIb}{beta}{sub 3} and {alpha}{sub V}{beta}{sub 3} by means of an Arg-Gly-Asp (RGD) tripeptide sequence. Here we describe the x-ray crystal structure of tablysin-15 and show that the RGD motif is located in a novel structural context. The motif itself is contained in a type II {beta}-turn structure that is similar in its conformation to the RGD sequence of the cyclic pentapeptide cilengitide when bound to integrin {alpha}V{beta}3. The CAP domain also contains a hydrophobic channel that appears to bind a fatty acid molecule in the crystal structure after purification from Escherichia coli. After delipidation of the protein, tablysin-15 was found to bind proinflammatory cysteinyl leukotrienes with submicromolar affinities. The structure of the leukotriene E{sub 4}-tablysin-15 complex shows that the ligand binds with the nonfunctionalized end of the fatty acid chain buried in the hydrophobic pocket, whereas the carboxylate end of the ligand binds forms hydrogen bond/salt bridge interactions with polar side chains at the channel entrance. Therefore, tablysin-15 functions as an inhibitor of integrin function and as an anti-inflammatory scavenger of eicosanoids.

  11. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, O.; Yosef, K.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1998-02-17

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  12. Cellulose binding domain fusion proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1998-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  13. Structural and Immunological Characterization of Recombinant 6-Cysteine Domains of the Plasmodium falciparum Sexual Stage Protein Pfs230.

    PubMed

    MacDonald, Nicholas J; Nguyen, Vu; Shimp, Richard; Reiter, Karine; Herrera, Raul; Burkhardt, Martin; Muratova, Olga; Kumar, Krishan; Aebig, Joan; Rausch, Kelly; Lambert, Lynn; Dawson, Nikiah; Sattabongkot, Jetsumon; Ambroggio, Xavier; Duffy, Patrick E; Wu, Yimin; Narum, David L

    2016-09-16

    Development of a Plasmodium falciparum (Pf) transmission blocking vaccine (TBV) has the potential to significantly impact malaria control. Antibodies elicited against sexual stage proteins in the human bloodstream are taken up with the blood meal of the mosquitoes and inactivate parasite development in the mosquito. In a phase 1 trial, a leading TBV identified as Pfs25-EPA/Alhydrogel® appeared safe and immunogenic, however, the level of Pfs25-specific antibodies were likely too low for an effective vaccine. Pfs230, a 230-kDa sexual stage protein expressed in gametocytes is an alternative vaccine candidate. A unique 6-cysteine-rich domain structure within Pfs230 have thwarted its recombinant expression and characterization for clinical evaluation for nearly a quarter of a century. Here, we report on the identification, biochemical, biophysical, and immunological characterization of recombinant Pfs230 domains. Rabbit antibodies generated against recombinant Pfs230 domains blocked mosquito transmission of a laboratory strain and two field isolates using an ex vivo assay. A planned clinical trial of the Pfs230 vaccine is a significant step toward the potential development of a transmission blocking vaccine to eliminate malaria. PMID:27432885

  14. Anti-tumour effects of antibodies targeting the extracellular cysteine-rich region of the receptor tyrosine kinase EphB4.

    PubMed

    Stephenson, Sally-Anne; Douglas, Evelyn L; Mertens-Walker, Inga; Lisle, Jessica E; Maharaj, Mohanan S N; Herington, Adrian C

    2015-04-10

    EphB4 is a membrane-bound receptor tyrosine kinase (RTK) commonly over-produced by many epithelial cancers but with low to no expression in most normal adult tissues. EphB4 over-production promotes ligand-independent signaling pathways that increase cancer cell viability and stimulate migration and invasion. Several studies have shown that normal ligand-dependent signaling is tumour suppressive and therefore novel therapeutics which block the tumour promoting ligand-independent signaling and/or stimulate tumour suppressive ligand-dependent signaling will find application in the treatment of cancer. An EphB4-specific polyclonal antibody, targeting a region of 200 amino acids in the extracellular portion of EphB4, showed potent in vitro anti-cancer effects measured by an increase in apoptosis and a decrease in anchorage independent growth. Peptide exclusion was used to identify the epitope targeted by this antibody within the cysteine-rich region of the EphB4 protein, a sequence defined as a potential ligand interacting interface. Addition of antibody to cancer cells resulted in phosphorylation and subsequent degradation of the EphB4 protein, suggesting a mechanism that is ligand mimetic and tumour suppressive. A monoclonal antibody which specifically targets this identified extracellular epitope of EphB4 significantly reduced breast cancer xenograft growth in vivo confirming that EphB4 is a useful target for ligand-mimicking antibody-based anti-cancer therapies. PMID:25831049

  15. Anti-tumour effects of antibodies targeting the extracellular cysteine-rich region of the receptor tyrosine kinase EphB4

    PubMed Central

    Stephenson, Sally-Anne; Douglas, Evelyn L.; Mertens-Walker, Inga; Lisle, Jessica E.; Maharaj, Mohanan S.N.; Herington, Adrian C.

    2015-01-01

    EphB4 is a membrane-bound receptor tyrosine kinase (RTK) commonly over-produced by many epithelial cancers but with low to no expression in most normal adult tissues. EphB4 over-production promotes ligand-independent signaling pathways that increase cancer cell viability and stimulate migration and invasion. Several studies have shown that normal ligand-dependent signaling is tumour suppressive and therefore novel therapeutics which block the tumour promoting ligand-independent signaling and/or stimulate tumour suppressive ligand-dependent signaling will find application in the treatment of cancer. An EphB4-specific polyclonal antibody, targeting a region of 200 amino acids in the extracellular portion of EphB4, showed potent in vitro anti-cancer effects measured by an increase in apoptosis and a decrease in anchorage independent growth. Peptide exclusion was used to identify the epitope targeted by this antibody within the cysteine-rich region of the EphB4 protein, a sequence defined as a potential ligand interacting interface. Addition of antibody to cancer cells resulted in phosphorylation and subsequent degradation of the EphB4 protein, suggesting a mechanism that is ligand mimetic and tumour suppressive. A monoclonal antibody which specifically targets this identified extracellular epitope of EphB4 significantly reduced breast cancer xenograft growth in vivo confirming that EphB4 is a useful target for ligand-mimicking antibody-based anti-cancer therapies. PMID:25831049

  16. Structural and functional characterization of the CAP domain of pathogen-related yeast 1 (Pry1) protein

    NASA Astrophysics Data System (ADS)

    Darwiche, Rabih; Kelleher, Alan; Hudspeth, Elissa M.; Schneiter, Roger; Asojo, Oluwatoyin A.

    2016-06-01

    The production, crystal structure, and functional characterization of the C-terminal cysteine-rich secretory protein/antigen 5/pathogenesis related-1 (CAP) domain of pathogen-related yeast protein-1 (Pry1) from Saccharomyces cerevisiae is presented. The CAP domain of Pry1 (Pry1CAP) is functional in vivo as its expression restores cholesterol export to yeast mutants lacking endogenous Pry1 and Pry2. Recombinant Pry1CAP forms dimers in solution, is sufficient for in vitro cholesterol binding, and has comparable binding properties as full-length Pry1. Two crystal structures of Pry1CAP are reported, one with Mg2+ coordinated to the conserved CAP tetrad (His208, Glu215, Glu233 and His250) in spacegroup I41 and the other without divalent cations in spacegroup P6122. The latter structure contains four 1,4-dioxane molecules from the crystallization solution, one of which sits in the cholesterol binding site. Both structures reveal that the divalent cation and cholesterol binding sites are connected upon dimerization, providing a structural basis for the observed Mg2+-dependent sterol binding by Pry1.

  17. Structural and functional characterization of the CAP domain of pathogen-related yeast 1 (Pry1) protein

    PubMed Central

    Darwiche, Rabih; Kelleher, Alan; Hudspeth, Elissa M.; Schneiter, Roger; Asojo, Oluwatoyin A.

    2016-01-01

    The production, crystal structure, and functional characterization of the C-terminal cysteine-rich secretory protein/antigen 5/pathogenesis related-1 (CAP) domain of pathogen-related yeast protein-1 (Pry1) from Saccharomyces cerevisiae is presented. The CAP domain of Pry1 (Pry1CAP) is functional in vivo as its expression restores cholesterol export to yeast mutants lacking endogenous Pry1 and Pry2. Recombinant Pry1CAP forms dimers in solution, is sufficient for in vitro cholesterol binding, and has comparable binding properties as full-length Pry1. Two crystal structures of Pry1CAP are reported, one with Mg2+ coordinated to the conserved CAP tetrad (His208, Glu215, Glu233 and His250) in spacegroup I41 and the other without divalent cations in spacegroup P6122. The latter structure contains four 1,4-dioxane molecules from the crystallization solution, one of which sits in the cholesterol binding site. Both structures reveal that the divalent cation and cholesterol binding sites are connected upon dimerization, providing a structural basis for the observed Mg2+-dependent sterol binding by Pry1. PMID:27344972

  18. Structural consequences of disease-causing mutations in the ATRX-DNMT3-DNMT3L (ADD) domain of the chromatin-associated protein ATRX

    PubMed Central

    Argentaro, Anthony; Yang, Ji-Chun; Chapman, Lynda; Kowalczyk, Monika S.; Gibbons, Richard J.; Higgs, Douglas R.; Neuhaus, David; Rhodes, Daniela

    2007-01-01

    The chromatin-associated protein ATRX was originally identified because mutations in the ATRX gene cause a severe form of syndromal X-linked mental retardation associated with α-thalassemia. Half of all of the disease-associated missense mutations cluster in a cysteine-rich region in the N terminus of ATRX. This region was named the ATRX-DNMT3-DNMT3L (ADD) domain, based on sequence homology with a family of DNA methyltransferases. Here, we report the solution structure of the ADD domain of ATRX, which consists of an N-terminal GATA-like zinc finger, a plant homeodomain finger, and a long C-terminal α-helix that pack together to form a single globular domain. Interestingly, the α-helix of the GATA-like finger is exposed and highly basic, suggesting a DNA-binding function for ATRX. The disease-causing mutations fall into two groups: the majority affect buried residues and hence affect the structural integrity of the ADD domain; another group affects a cluster of surface residues, and these are likely to perturb a potential protein interaction site. The effects of individual point mutations on the folding state and stability of the ADD domain correlate well with the levels of mutant ATRX protein in patients, providing insights into the molecular pathophysiology of ATR-X syndrome. PMID:17609377

  19. Is the LIM-domain protein HaWLIM1 associated with cortical microtubules in sunflower protoplasts?

    PubMed

    Brière, Christian; Bordel, Anne-Claire; Barthou, Henri; Jauneau, Alain; Steinmetz, André; Alibert, Gilbert; Petitprez, Michel

    2003-10-01

    Flowering plants express several LIM-domain proteins related to the animal cystein-rich proteins. The expression of sunflower LIM genes was followed by RT-PCR in cultured sunflower protoplasts. A transcript was detected only for HaWLIM1, but not for the other two genes HaPLIM1 and HaPLIM2. Polyclonal antibodies raised against either full length recombinant HaWLIM1 protein or peptides recognized a 27 kDa polypeptide on Western blots. Immunocytolocalization studies showed that HaWLIM1 is located in the cytoplasm and in the nucleus. In the cytoplasm, HaWLIM1 is localized in punctate structures, distributed along microtubule bundles. Depolymerizing microtubules with oryzalin resulted in a strong modification of the HaWLIM1 cortical pattern. In contrast, treatment of protoplasts with latrunculin B, which disrupts actin filaments, had no effect on HaWLIM1 localization. HaWLIM1 was also located within the nucleus of interphase protoplasts. During mitosis, nuclear labelling was observed in prophase, which decreased in metaphase, disappeared in anaphase, and recovered in telophase. These results suggest a dual role for HaWLIM1: in the cytoplasm, as a component of molecular complexes which may interact with microtubules, and in the nucleus, as a partner of transcription factors during interphase. PMID:14581630

  20. Palmitoylation of the cysteine-rich endodomain of the SARS-coronavirus spike glycoprotein is important for spike-mediated cell fusion

    SciTech Connect

    Petit, Chad M.; Chouljenko, Vladimir N.; Iyer, Arun; Colgrove, Robin; Farzan, Michael; Knipe, David M.; Kousoulas, K.G. . E-mail: vtgusk@lsu.edu

    2007-04-10

    The SARS-coronavirus (SARS-CoV) is the etiological agent of the severe acute respiratory syndrome (SARS). The SARS-CoV spike (S) glycoprotein mediates membrane fusion events during virus entry and virus-induced cell-to-cell fusion. The cytoplasmic portion of the S glycoprotein contains four cysteine-rich amino acid clusters. Individual cysteine clusters were altered via cysteine-to-alanine amino acid replacement and the modified S glycoproteins were tested for their transport to cell-surfaces and ability to cause cell fusion in transient transfection assays. Mutagenesis of the cysteine cluster I, located immediately proximal to the predicted transmembrane, domain did not appreciably reduce cell-surface expression, although S-mediated cell fusion was reduced by more than 50% in comparison to the wild-type S. Similarly, mutagenesis of the cysteine cluster II located adjacent to cluster I reduced S-mediated cell fusion by more than 60% compared to the wild-type S, while cell-surface expression was reduced by less than 20%. Mutagenesis of cysteine clusters III and IV did not appreciably affect S cell-surface expression or S-mediated cell fusion. The wild-type S was palmitoylated as evidenced by the efficient incorporation of {sup 3}H-palmitic acid in wild-type S molecules. S glycoprotein palmitoylation was significantly reduced for mutant glycoproteins having cluster I and II cysteine changes, but was largely unaffected for cysteine cluster III and IV mutants. These results show that the S cytoplasmic domain is palmitoylated and that palmitoylation of the membrane proximal cysteine clusters I and II may be important for S-mediated cell fusion.

  1. Terminal bacteroid differentiation in the legume-rhizobium symbiosis: nodule-specific cysteine-rich peptides and beyond.

    PubMed

    Alunni, Benoît; Gourion, Benjamin

    2016-07-01

    Contents 411 I. 411 II. 412 III. 412 IV. 413 V. 414 VI. 414 VII. 415 VIII. 415 416 References 416 SUMMARY: Terminal bacteroid differentiation (TBD) is a remarkable case of bacterial cell differentiation that occurs after rhizobia are released intracellularly within plant cells of symbiotic legume organs called nodules. The hallmarks of TBD are cell enlargement, genome amplification and membrane permeabilization. This plant-driven process is governed by a large family of bacteroid-targeted nodule-specific cysteine-rich (NCR) peptides that were until recently thought to be restricted to a specific lineage of the legume family, including the model plant Medicago truncatula. Recently, new plant and bacterial factors involved in TBD have been identified, challenging our view of this phenomenon at mechanistic and evolutionary levels. Here, we review the recent literature and discuss emerging questions about the mechanisms and the role(s) of TBD. PMID:27241115

  2. J domain independent functions of J proteins.

    PubMed

    Ajit Tamadaddi, Chetana; Sahi, Chandan

    2016-07-01

    Heat shock proteins of 40 kDa (Hsp40s), also called J proteins, are obligate partners of Hsp70s. Via their highly conserved and functionally critical J domain, J proteins interact and modulate the activity of their Hsp70 partners. Mutations in the critical residues in the J domain often result in the null phenotype for the J protein in question. However, as more J proteins have been characterized, it is becoming increasingly clear that a significant number of J proteins do not "completely" rely on their J domains to carry out their cellular functions, as previously thought. In some cases, regions outside the highly conserved J domain have become more important making the J domain dispensable for some, if not for all functions of a J protein. This has profound effects on the evolution of such J proteins. Here we present selected examples of J proteins that perform J domain independent functions and discuss this in the context of evolution of J proteins with dispensable J domains and J-like proteins in eukaryotes.

  3. Cytoskeleton-interacting LIM-domain protein CRP1 suppresses cell proliferation and protects from stress-induced cell death

    SciTech Connect

    Latonen, Leena; Jaervinen, Paeivi M.; Laiho, Marikki

    2008-02-15

    Members of the cysteine-rich protein (CRP) family are actin cytoskeleton-interacting LIM-domain proteins known to act in muscle cell differentiation. We have earlier found that CRP1, a founding member of this family, is transcriptionally induced by UV radiation in human diploid fibroblasts [M. Gentile, L. Latonen, M. Laiho, Cell cycle arrest and apoptosis provoked by UV radiation-induced DNA damage are transcriptionally highly divergent responses, Nucleic Acids Res. 31 (2003) 4779-4790]. Here we show that CRP1 is induced by growth-inhibitory signals, such as increased cellular density, and cytotoxic stress induced by UV radiation or staurosporine. We found that high levels of CRP1 correlate with differentiation-associated morphology towards the myofibroblast lineage and that expression of ectopic CRP1 suppresses cell proliferation. Following UV- and staurosporine-induced stresses, expression of CRP1 provides a survival advantage evidenced by decreased cellular death and increased cellular metabolic activity and attachment. Our studies identify that CRP1 is a novel stress response factor, and provide evidence for its growth-inhibitory and cytoprotective functions.

  4. Structural studies of human glioma pathogenesis-related protein 1

    SciTech Connect

    Asojo, Oluwatoyin A.; Koski, Raymond A.; Bonafé, Nathalie

    2011-10-01

    Structural analysis of a truncated soluble domain of human glioma pathogenesis-related protein 1, a membrane protein implicated in the proliferation of aggressive brain cancer, is presented. Human glioma pathogenesis-related protein 1 (GLIPR1) is a membrane protein that is highly upregulated in brain cancers but is barely detectable in normal brain tissue. GLIPR1 is composed of a signal peptide that directs its secretion, a conserved cysteine-rich CAP (cysteine-rich secretory proteins, antigen 5 and pathogenesis-related 1 proteins) domain and a transmembrane domain. GLIPR1 is currently being investigated as a candidate for prostate cancer gene therapy and for glioblastoma targeted therapy. Crystal structures of a truncated soluble domain of the human GLIPR1 protein (sGLIPR1) solved by molecular replacement using a truncated polyalanine search model of the CAP domain of stecrisp, a snake-venom cysteine-rich secretory protein (CRISP), are presented. The correct molecular-replacement solution could only be obtained by removing all loops from the search model. The native structure was refined to 1.85 Å resolution and that of a Zn{sup 2+} complex was refined to 2.2 Å resolution. The latter structure revealed that the putative binding cavity coordinates Zn{sup 2+} similarly to snake-venom CRISPs, which are involved in Zn{sup 2+}-dependent mechanisms of inflammatory modulation. Both sGLIPR1 structures have extensive flexible loop/turn regions and unique charge distributions that were not observed in any of the previously reported CAP protein structures. A model is also proposed for the structure of full-length membrane-bound GLIPR1.

  5. Functional domains required for tat-induced transcriptional activation of the HIV-1 long terminal repeat.

    PubMed

    Garcia, J A; Harrich, D; Pearson, L; Mitsuyasu, R; Gaynor, R B

    1988-10-01

    The transcriptional regulation of the human immunodeficiency virus (HIV) type I involves the interaction of both viral and cellular proteins. The viral protein tat is important in increasing the amount of viral steady-state mRNA and may also play a role in regulating the translational efficiency of viral mRNA. To identify distinct functional domains of tat, oligonucleotide-directed mutagenesis of the tat gene was performed. Point mutations of cysteine residues in three of the four Cys-X-X-Cys sequences in the tat protein resulted in a marked decrease in transcriptional activation of the HIV long terminal repeat. Point mutations which altered the basic C-domain of the protein also resulted in decreases in transcriptional activity, as did a series of mutations that repositioned either the N or C termini of the protein. Conservative mutations of other amino acids in the cysteine-rich or basic regions and in a series of proline residues in the N terminus of the molecule resulted in minimal changes in tat activation. These results suggest that several domains of tat protein are involved in transcriptional activation with the cysteine-rich domain being required for complete activity of the tat protein.

  6. The architecture of the protein domain universe.

    PubMed

    Dokholyan, Nikolay V

    2005-03-14

    Understanding the design of the universe of protein structures may provide insights into protein evolution. We study the architecture of the protein domain universe, which has been found to poses peculiar scale-free properties. We examine the origin of these scale-free properties of the graph of protein domain structures (PDUG) and determine that that the PDUG is not modular, i.e. it does not consist of modules with uniform properties. Instead, we find the PDUG to be self-similar at all scales. We further characterize the PDUG architecture by studying the properties of the hub nodes that are responsible for the scale-free connectivity of the PDUG. We introduce a measure of the betweenness centrality of protein domains in the PDUG and find a power-law distribution of the betweenness centrality values. The scale-free distribution of hubs in the protein universe suggests that a set of specific statistical mechanics models, such as the self-organized criticality model, can potentially identify the principal driving forces of protein evolution. We also find a gatekeeper protein domain, removal of which partitions the largest cluster into two large sub-clusters. We suggest that the loss of such gatekeeper protein domains in the course of evolution is responsible for the creation of new fold families.

  7. A novel cysteine-rich neurotrophic factor in Aplysia facilitates growth, MAPK activation, and long-term synaptic facilitation.

    PubMed

    Pu, Lu; Kopec, Ashley M; Boyle, Heather D; Carew, Thomas J

    2014-04-01

    Neurotrophins are critically involved in developmental processes such as neuronal cell survival, growth, and differentiation, as well as in adult synaptic plasticity contributing to learning and memory. Our previous studies examining neurotrophins and memory formation in Aplysia showed that a TrkB ligand is required for MAPK activation, long-term synaptic facilitation (LTF), and long-term memory (LTM) for sensitization. These studies indicate that neurotrophin-like molecules in Aplysia can act as key elements in a functionally conserved TrkB signaling pathway. Here we report that we have cloned and characterized a novel neurotrophic factor, Aplysia cysteine-rich neurotrophic factor (apCRNF), which shares classical structural and functional characteristics with mammalian neurotrophins. We show that apCRNF (1) is highly enriched in the CNS, (2) enhances neurite elongation and branching, (3) interacts with mammalian TrkB and p75(NTR), (4) is released from Aplysia CNS in an activity-dependent fashion, (5) facilitates MAPK activation in a tyrosine kinase dependent manner in response to sensitizing stimuli, and (6) facilitates the induction of LTF. These results show that apCRNF is a native neurotrophic factor in Aplysia that can engage the molecular and synaptic mechanisms underlying memory formation.

  8. A novel cysteine-rich antifungal peptide ToAMP4 from Taraxacum officinale Wigg. flowers.

    PubMed

    Astafieva, A A; Rogozhin, Eugene A; Andreev, Yaroslav A; Odintsova, T I; Kozlov, S A; Grishin, Eugene V; Egorov, Tsezi A

    2013-09-01

    A novel peptide named ToAMP4 was isolated from Taraxacum officinale Wigg. flowers by a combination of acetic acid extraction and different types of chromatography: affinity, size-exclusion, and RP-HPLC. The amino acid sequence of ToAMP4 was determined by automated Edman degradation. The peptide is basic, consists of 41 amino acids, and incorporates three disulphide bonds. Due to the unusual cysteine spacing pattern, ToAMP4 does not belong to any known plant AMP family, but classifies together with two other antimicrobial peptides ToAMP1 and ToAMP2 previously isolated from the dandelion flowers. To study the biological activity of ToAMP4, it was successfully produced in a prokaryotic expression system as a fusion protein with thioredoxin. The recombinant peptide was shown to be identical to the native ToAMP4 by chromatographic behavior, molecular mass, and N-terminal amino acid sequence. The peptide displays broad-spectrum antifungal activity against important phytopathogens. Two ToAMP4-mediated inhibition strategies depending on the fungus were demonstrated. The results obtained add to our knowledge on the structural and functional diversity of AMPs in plants.

  9. Discovering interacting domains and motifs in protein-protein interactions.

    PubMed

    Hugo, Willy; Sung, Wing-Kin; Ng, See-Kiong

    2013-01-01

    Many important biological processes, such as the signaling pathways, require protein-protein interactions (PPIs) that are designed for fast response to stimuli. These interactions are usually transient, easily formed, and disrupted, yet specific. Many of these transient interactions involve the binding of a protein domain to a short stretch (3-10) of amino acid residues, which can be characterized by a sequence pattern, i.e., a short linear motif (SLiM). We call these interacting domains and motifs domain-SLiM interactions. Existing methods have focused on discovering SLiMs in the interacting proteins' sequence data. With the recent increase in protein structures, we have a new opportunity to detect SLiMs directly from the proteins' 3D structures instead of their linear sequences. In this chapter, we describe a computational method called SLiMDIet to directly detect SLiMs on domain interfaces extracted from 3D structures of PPIs. SLiMDIet comprises two steps: (1) interaction interfaces belonging to the same domain are extracted and grouped together using structural clustering and (2) the extracted interaction interfaces in each cluster are structurally aligned to extract the corresponding SLiM. Using SLiMDIet, de novo SLiMs interacting with protein domains can be computationally detected from structurally clustered domain-SLiM interactions for PFAM domains which have available 3D structures in the PDB database.

  10. The LIM domain-containing Dbm1 GTPase-activating protein is required for normal cellular morphogenesis in Saccharomyces cerevisiae.

    PubMed Central

    Chen, G C; Zheng, L; Chan, C S

    1996-01-01

    Normal cell growth in the yeast Saccharomyces cerevisiae involves the selection of genetically determined bud sites where most growth is localized. Previous studies have shown that BEM2, which encodes a GTPase-activating protein (GAP) that is specific for the Rho-type GTPase Rho1p in vitro, is required for proper bud site selection and bud emergence. We show here that DBM1, which encodes another putative Rho-type GAP with two tandemly arranged cysteine-rich LIM domains, also is needed for proper bud site selection, as haploid cells lacking Dbm1p bud predominantly in a bipolar, rather than the normal axial, manner. Furthermore, yeast cells lacking both Bem2p and Dbm1p are inviable. The nonaxial budding defect of dbm1 mutants can be rescued partially by overproduction of Bem3p and is exacerbated by its absence. Since Bem3p has previously been shown to function as a GAP for Cdc42p, and also less efficiently for Rho1p, our results suggest that Dbm1p, like Bem2p and Bem3p, may function in vivo as a GAP for Cdc42p and/or Rho1p. Both LIM domains of Dbm1p are essential for its normal function. Point mutations that alter single conserved cysteine residues within either LIM domain result in mutant forms of Dbm1p that can no longer function in bud site selection but instead are capable of rescuing the inviability of bem2 mutants at 35 degrees C. PMID:8657111

  11. Functional innovation from changes in protein domains and their combinations.

    PubMed

    Lees, Jonathan G; Dawson, Natalie L; Sillitoe, Ian; Orengo, Christine A

    2016-06-01

    Domains are the functional building blocks of proteins. In this work we discuss how domains can contribute to the evolution of new functions. Domains themselves can evolve through various mechanisms, altering their intrinsic function. Domains can also facilitate functional innovations by combining with other domains to make novel proteins. We discuss the mechanisms by which domain and domain combinations support functional innovations. We highlight interesting examples where changes in domain combination promote changes at the domain level. PMID:27309309

  12. ECOD: An Evolutionary Classification of Protein Domains

    PubMed Central

    Kinch, Lisa N.; Pei, Jimin; Shi, Shuoyong; Kim, Bong-Hyun; Grishin, Nick V.

    2014-01-01

    Understanding the evolution of a protein, including both close and distant relationships, often reveals insight into its structure and function. Fast and easy access to such up-to-date information facilitates research. We have developed a hierarchical evolutionary classification of all proteins with experimentally determined spatial structures, and presented it as an interactive and updatable online database. ECOD (Evolutionary Classification of protein Domains) is distinct from other structural classifications in that it groups domains primarily by evolutionary relationships (homology), rather than topology (or “fold”). This distinction highlights cases of homology between domains of differing topology to aid in understanding of protein structure evolution. ECOD uniquely emphasizes distantly related homologs that are difficult to detect, and thus catalogs the largest number of evolutionary links among structural domain classifications. Placing distant homologs together underscores the ancestral similarities of these proteins and draws attention to the most important regions of sequence and structure, as well as conserved functional sites. ECOD also recognizes closer sequence-based relationships between protein domains. Currently, approximately 100,000 protein structures are classified in ECOD into 9,000 sequence families clustered into close to 2,000 evolutionary groups. The classification is assisted by an automated pipeline that quickly and consistently classifies weekly releases of PDB structures and allows for continual updates. This synchronization with PDB uniquely distinguishes ECOD among all protein classifications. Finally, we present several case studies of homologous proteins not recorded in other classifications, illustrating the potential of how ECOD can be used to further biological and evolutionary studies. PMID:25474468

  13. Inhibition of the proliferation and acceleration of migration of vascular endothelial cells by increased cysteine-rich motor neuron 1

    SciTech Connect

    Nakashima, Yukiko; Morimoto, Mayuka; Toda, Ken-ichi; Shinya, Tomohiro; Sato, Keizo; Takahashi, Satoru

    2015-07-03

    Cysteine-rich motor neuron 1 (CRIM1) is upregulated only in extracellular matrix gels by angiogenic factors such as vascular endothelial growth factor (VEGF). It then plays a critical role in the tube formation of endothelial cells. In the present study, we investigated the effects of increased CRIM1 on other endothelial functions such as proliferation and migration. Knock down of CRIM1 had no effect on VEGF-induced proliferation or migration of human umbilical vein endothelial cells (HUVECs), indicating that basal CRIM1 is not involved in the proliferation or migration of endothelial cells. Stable CRIM1-overexpressing endothelial F-2 cells, termed CR1 and CR2, were constructed, because it was difficult to prepare monolayer HUVECs that expressed high levels of CRIM1. Proliferation was reduced and migration was accelerated in both CR1 and CR2 cells, compared with normal F-2 cells. Furthermore, the transient overexpression of CRIM1 resulted in decreased proliferation and increased migration of bovine aortic endothelial cells. In contrast, neither proliferation nor migration of COS-7 cells were changed by the overexpression of CRIM1. These results demonstrate that increased CRIM1 reduces the proliferation and accelerates the migration of endothelial cells. These CRIM1 effects might contribute to tube formation of endothelial cells. CRIM1 induced by angiogenic factors may serve as a regulator in endothelial cells to switch from proliferating cells to morphological differentiation. - Highlights: • CRIM1 was upregulated only in tubular endothelial cells, but not in monolayers. • Increased CRIM1 reduced the proliferation of endothelial cells. • Increased CRIM1 accelerated the migration of endothelial cells. • Increased CRIM1 had no effect on the proliferation or migration of COS-7 cells.

  14. cDNA cloning of a mouse mammary epithelial cell surface protein reveals the existence of epidermal growth factor-like domains linked to factor VIII-like sequences

    SciTech Connect

    Stubbs, J.D.; Bui, A. San Francisco State Univ., CA ); Lekutis, C.; Singer, K.L.; Srinivasan, U.; Parry, G. ); Yuzuki, D. )

    1990-11-01

    A 2.1-kilobase cDNA coding for a surface protein of mammary epithelial cells has been isolated from a mouse mammary gland {lambda}gt11 cDNA library. Sequence analysis of this cDNA reveals an open reading frame of 1,389 base pairs that defines a protein with a molecular mass of 51.5 dKa. Structural analysis of the predicted sequence identifies two putative functional domains of the protein: (i) an N-terminal cysteine-rich region that is similar to epidermal growth factor-like domains of Drosophila Notch-1 protein and (ii) a large segment of the sequence that exhibited 54.5% identify with C-terminal domains of human coagulation factors VIII and V. These similarities in structure are used to predict the possible functions of the protein and its means of interaction with the cell surface. mRNA expression was detectable in mammary tissue from nonpregnant animals but was maximal in the lactating gland. In cultured cells, mRNA levels also correlated with the degree of cellular differentiation.

  15. Genetic variability and natural selection at the ligand domain of the Duffy binding protein in brazilian Plasmodium vivax populations

    PubMed Central

    2010-01-01

    Background Plasmodium vivax malaria is a major public health challenge in Latin America, Asia and Oceania, with 130-435 million clinical cases per year worldwide. Invasion of host blood cells by P. vivax mainly depends on a type I membrane protein called Duffy binding protein (PvDBP). The erythrocyte-binding motif of PvDBP is a 170 amino-acid stretch located in its cysteine-rich region II (PvDBPII), which is the most variable segment of the protein. Methods To test whether diversifying natural selection has shaped the nucleotide diversity of PvDBPII in Brazilian populations, this region was sequenced in 122 isolates from six different geographic areas. A Bayesian method was applied to test for the action of natural selection under a population genetic model that incorporates recombination. The analysis was integrated with a structural model of PvDBPII, and T- and B-cell epitopes were localized on the 3-D structure. Results The results suggest that: (i) recombination plays an important role in determining the haplotype structure of PvDBPII, and (ii) PvDBPII appears to contain neutrally evolving codons as well as codons evolving under natural selection. Diversifying selection preferentially acts on sites identified as epitopes, particularly on amino acid residues 417, 419, and 424, which show strong linkage disequilibrium. Conclusions This study shows that some polymorphisms of PvDBPII are present near the erythrocyte-binding domain and might serve to elude antibodies that inhibit cell invasion. Therefore, these polymorphisms should be taken into account when designing vaccines aimed at eliciting antibodies to inhibit erythrocyte invasion. PMID:21092207

  16. Linking in domain-swapped protein dimers

    PubMed Central

    Baiesi, Marco; Orlandini, Enzo; Trovato, Antonio; Seno, Flavio

    2016-01-01

    The presence of knots has been observed in a small fraction of single-domain proteins and related to their thermodynamic and kinetic properties. The exchanging of identical structural elements, typical of domain-swapped proteins, makes such dimers suitable candidates to validate the possibility that mutual entanglement between chains may play a similar role for protein complexes. We suggest that such entanglement is captured by the linking number. This represents, for two closed curves, the number of times that each curve winds around the other. We show that closing the curves is not necessary, as a novel parameter G′, termed Gaussian entanglement, is strongly correlated with the linking number. Based on 110 non redundant domain-swapped dimers, our analysis evidences a high fraction of chains with a significant intertwining, that is with |G′| > 1. We report that Nature promotes configurations with negative mutual entanglement and surprisingly, it seems to suppress intertwining in long protein dimers. Supported by numerical simulations of dimer dissociation, our results provide a novel topology-based classification of protein-swapped dimers together with some preliminary evidence of its impact on their physical and biological properties. PMID:27659606

  17. MBT domain proteins in development and disease

    PubMed Central

    Bonasio, Roberto; Lecona, Emilio; Reinberg, Danny

    2013-01-01

    The Malignant Brain Tumor (MBT) domain is a “chromatin reader”, a protein module that binds to post-translational modifications on histone tails that are thought to affect a variety of chromatin processes, including transcription. More specifically, MBT domains recognize mono- and di-methylated lysines at a number of different positions on histone H3 and H4 tails. Three Drosophila proteins, SCM, L(3)MBT and SFMBT contain multiple adjacent MBT repeats and have critical roles in development, maintenance of cell identity, and tumor suppression. Although they function in different pathways, these proteins all localize to chromatin in vivo and repress transcription by a currently unknown molecular mechanism that requires the MBT domains. The human genome contains several homologues of these MBT proteins, some of which have been linked to important gene regulatory pathways, such as E2F/Rb- and Polycomb-mediated repression, and to the insurgence of certain neurological tumors. Here, we review the genetics, biochemistry, and cell biology of MBT proteins and their role in development and disease. PMID:19778625

  18. LOB Domain Proteins: Beyond Lateral Organ Boundaries.

    PubMed

    Xu, Changzheng; Luo, Feng; Hochholdinger, Frank

    2016-02-01

    LATERAL ORGAN BOUNDARIES DOMAIN (LBD) proteins defined by a conserved LATERAL ORGAN BOUNDARIES (LOB) domain are key regulators of plant organ development. Recent studies have expanded their functional diversity beyond the definition of lateral organ boundaries to pollen development, plant regeneration, photomorphogenesis, pathogen response, and specific developmental functions in non-model plants, such as poplar and legumes. The identification of a range of upstream regulators, protein partners, and downstream targets of LBD family members has unraveled the molecular networks of LBD-dependent processes. Moreover, it has been demonstrated that LBD proteins have essential roles in integrating developmental changes in response to phytohormone signaling or environmental cues. As we discuss here, these novel discoveries of LBD functions and their molecular contexts promote a better understanding of this plant-specific transcription factor family. PMID:26616195

  19. The matricellular protein CCN1 controls retinal angiogenesis by targeting VEGF, Src homology 2 domain phosphatase-1 and Notch signaling.

    PubMed

    Chintala, Hemabindu; Krupska, Izabela; Yan, Lulu; Lau, Lester; Grant, Maria; Chaqour, Brahim

    2015-07-01

    Physiological angiogenesis depends on the highly coordinated actions of multiple angiogenic regulators. CCN1 is a secreted cysteine-rich and integrin-binding matricellular protein required for proper cardiovascular development. However, our understanding of the cellular origins and activities of this molecule is incomplete. Here, we show that CCN1 is predominantly expressed in angiogenic endothelial cells (ECs) at the leading front of actively growing vessels in the mouse retina. Endothelial deletion of CCN1 in mice using a Cre-Lox system is associated with EC hyperplasia, loss of pericyte coverage and formation of dense retinal vascular networks lacking the normal hierarchical arrangement of arterioles, capillaries and venules. CCN1 is a product of an immediate-early gene that is transcriptionally induced in ECs in response to stimulation by vascular endothelial growth factor (VEGF). We found that CCN1 activity is integrated with VEGF receptor 2 (VEGF-R2) activation and downstream signaling pathways required for tubular network formation. CCN1-integrin binding increased the expression of and association between Src homology 2 domain-containing protein tyrosine phosphatase-1 (SHP-1) and VEGF-R2, which leads to rapid dephosphorylation of VEGF-R2 tyrosine, thus preventing EC hyperproliferation. Predictably, CCN1 further brings receptors/signaling molecules into proximity that are otherwise spatially separated. Furthermore, CCN1 induces integrin-dependent Notch activation in cultured ECs, and its targeted gene inactivation in vivo alters Notch-dependent vascular specification and remodeling, suggesting that functional levels of Notch signaling requires CCN1 activity. These data highlight novel functions of CCN1 as a naturally optimized molecule, fine-controlling key processes in physiological angiogenesis and safeguarding against aberrant angiogenic responses.

  20. Phylogenetic Analysis of Brassica rapa MATH-Domain Proteins.

    PubMed

    Zhao, Liming; Huang, Yong; Hu, Yan; He, Xiaoli; Shen, Wenhui; Liu, Chunlin; Ruan, Ying

    2013-05-01

    The MATH (meprin and TRAF-C homology) domain is a fold of seven anti-parallel β-helices involved in protein-protein interaction. Here, we report the identification and characterization of 90 MATH-domain proteins from the Brassica rapa genome. By sequence analysis together with MATH-domain proteins from other species, the B. rapa MATH-domain proteins can be grouped into 6 classes. Class-I protein has one or several MATH domains without any other recognizable domain; Class-II protein contains a MATH domain together with a conserved BTB (Broad Complex, Tramtrack, and Bric-a-Brac ) domain; Class-III protein belongs to the MATH/Filament domain family; Class-IV protein contains a MATH domain frequently combined with some other domains; Class-V protein has a relative long sequence but contains only one MATH domain; Class-VI protein is characterized by the presence of Peptidase and UBQ (Ubiquitinylation) domains together with one MATH domain. As part of our study regarding seed development of B. rapa, six genes are screened by SSH (Suppression Subtractive Hybridization) and their expression levels are analyzed in combination with seed developmental stages, and expression patterns suggested that Bra001786, Bra03578 and Bra036572 may be seed development specific genes, while Bra001787, Bra020541 and Bra040904 may be involved in seed and flower organ development. This study provides the first characterization of the MATH domain proteins in B. rapa.

  1. A small cysteine-rich protein from the Asian soybean rust fungus, Phakopsora pachyrhizi, suppresses plant immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Asian soybean rust fungus, Phakopsora pachyrhizi, is an obligate pathogen capable of causing explosive disease epidemics that drastically reduce the yield of soybean (Glycine max). Currently, the molecular mechanisms by which P. pachyrhizi and other rust fungi cause disease are poorly understood...

  2. Evaluating, comparing, and interpreting protein domain hierarchies.

    PubMed

    Neuwald, Andrew F

    2014-04-01

    Arranging protein domain sequences hierarchically into evolutionarily divergent subgroups is important for investigating evolutionary history, for speeding up web-based similarity searches, for identifying sequence determinants of protein function, and for genome annotation. However, whether or not a particular hierarchy is optimal is often unclear, and independently constructed hierarchies for the same domain can often differ significantly. This article describes methods for statistically evaluating specific aspects of a hierarchy, for probing the criteria underlying its construction and for direct comparisons between hierarchies. Information theoretical notions are used to quantify the contributions of specific hierarchical features to the underlying statistical model. Such features include subhierarchies, sequence subgroups, individual sequences, and subgroup-associated signature patterns. Underlying properties are graphically displayed in plots of each specific feature's contributions, in heat maps of pattern residue conservation, in "contrast alignments," and through cross-mapping of subgroups between hierarchies. Together, these approaches provide a deeper understanding of protein domain functional divergence, reveal uncertainties caused by inconsistent patterns of sequence conservation, and help resolve conflicts between competing hierarchies.

  3. Cloning and identification of a cDNA that encodes a novel human protein with thrombospondin type I repeat domain, hPWTSR.

    PubMed

    Chen, Jin-Zhong; Wang, Shu; Tang, Rong; Yang, Quan-Sheng; Zhao, Enpeng; Chao, Yaoqiong; Ying, Kang; Xie, Yi; Mao, Yu-Min

    2002-09-01

    A cDNA was isolated from the fetal brain cDNA library by high throughput cDNA sequencing. The 2390 bp cDNA with an open reading fragment (ORF) of 816 bp encodes a 272 amino acids putative protein with a thrombospondin type I repeat (TSR) domain and a cysteine-rich region at the N-terminus, so it is named hPWTSR. We used Northern blot detected two bands with length of about 3 kb and 4 kb respectively, which expressed in human adult tissues with different intensities. The expression pattern was verified by RT-PCR, revealing that the transcripts were expressed ubiquitously in fetal tissues and human tumor tissues too. However, the transcript was detected neither in ovarian carcinoma GI-102 nor in lung carcinoma LX-1. Blast analysis against NCBI database revealed that the new gene contained at least 5 exons and located in human chromosome 6q22.33. Our results demonstrate that the gene is a novel member of TSR supergene family.

  4. Cloning and subcellular location of an Arabidopsis receptor-like protein that shares common features with protein-sorting receptors of eukaryotic cells.

    PubMed Central

    Ahmed, S U; Bar-Peled, M; Raikhel, N V

    1997-01-01

    Many receptors involved in clathrin-mediated protein transport through the endocytic and secretory pathways of yeast and animal cells share common features. They are all type I integral membrane proteins containing cysteine-rich lumenal domains and cytoplasmic tails with tyrosine-containing sorting signals. The cysteine-rich domains are thought to be involved in ligand binding, whereas the cytoplasmic tyrosine motifs interact with clathrin-associated adaptor proteins during protein sorting along these pathways. In addition, tyrosine-containing signals are required for the retention and recycling of some of these membrane proteins to the trans-Golgi network. Here we report the characterization of an approximately 80-kD epidermal growth factor receptor-like type I integral membrane protein containing all of these functional motifs from Arabidopsis thaliana (called AtELP for A. thaliana Epidermal growth factor receptor-Like Protein). Biochemical analysis indicates that AtELP is a membrane protein found at high levels in the roots of both monocots and dicots. Subcellular fractionation studies indicate that the AtELP protein is present in two membrane fractions corresponding to a novel, undefined compartment and a fraction enriched in vesicles containing clathrin and its associated adaptor proteins. AtELP may therefore serve as a marker for compartments involved in intracellular protein trafficking in the plant cell. PMID:9159954

  5. Domains in folding of model proteins.

    PubMed Central

    Abkevich, V. I.; Gutin, A. M.; Shakhnovich, E. I.

    1995-01-01

    By means of Monte Carlo simulation, we investigated the equilibrium between folded and unfolded states of lattice model proteins. The amino acid sequences were designed to have pronounced energy minimum target conformations of different length and shape. For short fully compact (36-mer) proteins, the all-or-none transition from the unfolded state to the native state was observed. This was not always the case for longer proteins. Among 12 designed sequences with the native structure of a fully compact 48-mer, a simple all-or-none transition was observed in only three cases. For the other nine sequences, three states of behavior-the native, denatured, and intermediate states-were found. The contiguous part of the native structure (domain) was conserved in the intermediate state, whereas the remaining part was completely unfolded and structureless. These parts melted separately from each other. PMID:7549881

  6. In the Multi-domain Protein Adenylate Kinase, Domain Insertion Facilitates Cooperative Folding while Accommodating Function at Domain Interfaces

    PubMed Central

    Giri Rao, V. V. Hemanth; Gosavi, Shachi

    2014-01-01

    Having multiple domains in proteins can lead to partial folding and increased aggregation. Folding cooperativity, the all or nothing folding of a protein, can reduce this aggregation propensity. In agreement with bulk experiments, a coarse-grained structure-based model of the three-domain protein, E. coli Adenylate kinase (AKE), folds cooperatively. Domain interfaces have previously been implicated in the cooperative folding of multi-domain proteins. To understand their role in AKE folding, we computationally create mutants with deleted inter-domain interfaces and simulate their folding. We find that inter-domain interfaces play a minor role in the folding cooperativity of AKE. On further analysis, we find that unlike other multi-domain proteins whose folding has been studied, the domains of AKE are not singly-linked. Two of its domains have two linkers to the third one, i.e., they are inserted into the third one. We use circular permutation to modify AKE chain-connectivity and convert inserted-domains into singly-linked domains. We find that domain insertion in AKE achieves the following: (1) It facilitates folding cooperativity even when domains have different stabilities. Insertion constrains the N- and C-termini of inserted domains and stabilizes their folded states. Therefore, domains that perform conformational transitions can be smaller with fewer stabilizing interactions. (2) Inter-domain interactions are not needed to promote folding cooperativity and can be tuned for function. In AKE, these interactions help promote conformational dynamics limited catalysis. Finally, using structural bioinformatics, we suggest that domain insertion may also facilitate the cooperative folding of other multi-domain proteins. PMID:25393408

  7. Protein-Protein Interactions Inferred from Domain-Domain Interactions in Genogroup II Genotype 4 Norovirus Sequences

    PubMed Central

    Huang, Chuan-Ching

    2013-01-01

    Severe gastroenteritis and foodborne illness caused by Noroviruses (NoVs) during the winter are a worldwide phenomenon. Vulnerable populations including young children and elderly and immunocompromised people often require hospitalization and may die. However, no efficient vaccine for NoVs exists because of their variable genome sequences. This study investigates the infection processes in protein-protein interactions between hosts and NoVs. Protein-protein interactions were collected from related Pfam NoV domains. The related Pfam domains were accumulated incrementally from the protein domain interaction database. To examine the influence of domain intimacy, the 7 NoV domains were grouped by depth. The number of domain-domain interactions increased exponentially as the depth increased. Many protein-protein interactions were relevant; therefore, cloud techniques were used to analyze data because of their computational capacity. The infection relationship between hosts and NoVs should be used in clinical applications and drug design. PMID:23738320

  8. Tetramer formation in Arabidopsis MADS domain proteins: analysis of a protein-protein interaction network

    PubMed Central

    2014-01-01

    Background MADS domain proteins are transcription factors that coordinate several important developmental processes in plants. These proteins interact with other MADS domain proteins to form dimers, and it has been proposed that they are able to associate as tetrameric complexes that regulate transcription of target genes. Whether the formation of functional tetramers is a widespread property of plant MADS domain proteins, or it is specific to few of these transcriptional regulators remains unclear. Results We analyzed the structure of the network of physical interactions among MADS domain proteins in Arabidopsis thaliana. We determined the abundance of subgraphs that represent the connection pattern expected for a MADS domain protein heterotetramer. These subgraphs were significantly more abundant in the MADS domain protein interaction network than in randomized analogous networks. Importantly, these subgraphs are not significantly frequent in a protein interaction network of TCP plant transcription factors, when compared to expectation by chance. In addition, we found that MADS domain proteins in tetramer-like subgraphs are more likely to be expressed jointly than proteins in other subgraphs. This effect is mainly due to proteins in the monophyletic MIKC clade, as there is no association between tetramer-like subgraphs and co-expression for proteins outside this clade. Conclusions Our results support that the tendency to form functional tetramers is widespread in the MADS domain protein-protein interaction network. Our observations also suggest that this trend is prevalent, or perhaps exclusive, for proteins in the MIKC clade. Because it is possible to retrodict several experimental results from our analyses, our work can be an important aid to make new predictions and facilitates experimental research on plant MADS domain proteins. PMID:24468197

  9. The Kringle-like Domain Facilitates Post-endoplasmic Reticulum Changes to Premelanosome Protein (PMEL) Oligomerization and Disulfide Bond Configuration and Promotes Amyloid Formation.

    PubMed

    Ho, Tina; Watt, Brenda; Spruce, Lynn A; Seeholzer, Steven H; Marks, Michael S

    2016-02-12

    The formation of functional amyloid must be carefully regulated to prevent the accumulation of potentially toxic products. Premelanosome protein (PMEL) forms non-toxic functional amyloid fibrils that assemble into sheets upon which melanins ultimately are deposited within the melanosomes of pigment cells. PMEL is synthesized in the endoplasmic reticulum but forms amyloid only within post-Golgi melanosome precursors; thus, PMEL must traverse the secretory pathway in a non-amyloid form. Here, we identified two pre-amyloid PMEL intermediates that likely regulate the timing of fibril formation. Analyses by non-reducing SDS-PAGE, size exclusion chromatography, and sedimentation velocity revealed two native high Mr disulfide-bonded species that contain Golgi-modified forms of PMEL. These species correspond to disulfide bond-containing dimeric and monomeric PMEL isoforms that contain no other proteins as judged by two-dimensional PAGE of metabolically labeled/immunoprecipitated PMEL and by mass spectrometry of affinity-purified complexes. Metabolic pulse-chase analyses, small molecule inhibitor treatments, and evaluation of site-directed mutants suggest that the PMEL dimer forms around the time of endoplasmic reticulum exit and is resolved by disulfide bond rearrangement into a monomeric form within the late Golgi or a post-Golgi compartment. Mutagenesis of individual cysteine residues within the non-amyloid cysteine-rich Kringle-like domain stabilizes the disulfide-bonded dimer and impairs fibril formation as determined by electron microscopy. Our data show that the Kringle-like domain facilitates the resolution of disulfide-bonded PMEL dimers and promotes PMEL functional amyloid formation, thereby suggesting that PMEL dimers must be resolved to monomers to generate functional amyloid fibrils. PMID:26694611

  10. Expression, purification and crystallization of human CD5 domain III, a nano-scale crystallization example.

    PubMed

    Rodamilans, Bernardo; Ibañez, Sonia; Bragado-Nilsson, Elisabeth; Sarrias, Maria Rosa; Lozano, Francisco; Blanco, Francisco J; Montoya, Guillermo

    2007-07-01

    The human lymphocyte receptor CD5, a key regulator of immune responses, is involved in the modulation of antigen specific receptor-mediated T cell activation and differentiation signals. CD5 is a membrane glycoprotein which belongs to the group B scavenger receptor cysteine-rich (SRCR) superfamily for which no structural information is available. The most conserved membrane-proximal SRCR domain of CD5 (domain III) has been expressed in HEK-EBNA-293 cells. Although the yield of the purified protein was at the level of micrograms, well diffracting crystals have been obtained. The crystals belong to a tetragonal space group P4(1)22 or P4(3)22. They contain two molecules per asymmetric unit and diffracted to 2.5A resolution using synchrotron radiation. The strategy shown here to produce, isolate and crystallize CD5 domain III can be used for other mammalian proteins difficult to produce for structural or other biophysical studies.

  11. Biological Diversity and Molecular Plasticity of FIC Domain Proteins.

    PubMed

    Harms, Alexander; Stanger, Frédéric V; Dehio, Christoph

    2016-09-01

    The ubiquitous proteins with FIC (filamentation induced by cyclic AMP) domains use a conserved enzymatic machinery to modulate the activity of various target proteins by posttranslational modification, typically AMPylation. Following intensive study of the general properties of FIC domain catalysis, diverse molecular activities and biological functions of these remarkably versatile proteins are now being revealed. Here, we review the biological diversity of FIC domain proteins and summarize the underlying structure-function relationships. The original and most abundant genuine bacterial FIC domain proteins are toxins that use diverse molecular activities to interfere with bacterial physiology in various, yet ill-defined, biological contexts. Host-targeted virulence factors have evolved repeatedly out of this pool by exaptation of the enzymatic FIC domain machinery for the manipulation of host cell signaling in favor of bacterial pathogens. The single human FIC domain protein HypE (FICD) has a specific function in the regulation of protein stress responses. PMID:27482742

  12. Purification and Structural Analysis of LEM-Domain Proteins.

    PubMed

    Herrada, Isaline; Bourgeois, Benjamin; Samson, Camille; Buendia, Brigitte; Worman, Howard J; Zinn-Justin, Sophie

    2016-01-01

    LAP2-emerin-MAN1 (LEM)-domain proteins are modular proteins characterized by the presence of a conserved motif of about 50 residues. Most LEM-domain proteins localize at the inner nuclear membrane, but some are also found in the endoplasmic reticulum or nuclear interior. Their architecture has been analyzed by predicting the limits of their globular domains, determining the 3D structure of these domains and in a few cases calculating the 3D structure of specific domains bound to biological targets. The LEM domain adopts an α-helical fold also found in SAP and HeH domains of prokaryotes and unicellular eukaryotes. The LEM domain binds to BAF (barrier-to-autointegration factor; BANF1), which interacts with DNA and tethers chromatin to the nuclear envelope. LAP2 isoforms also share an N-terminal LEM-like domain, which binds DNA. The structure and function of other globular domains that distinguish LEM-domain proteins from each other have been characterized, including the C-terminal dimerization domain of LAP2α and C-terminal WH and UHM domains of MAN1. LEM-domain proteins also have large intrinsically disordered regions that are involved in intra- and intermolecular interactions and are highly regulated by posttranslational modifications in vivo.

  13. The architectural design of networks of protein domain architectures.

    PubMed

    Hsu, Chia-Hsin; Chen, Chien-Kuo; Hwang, Ming-Jing

    2013-08-23

    Protein domain architectures (PDAs), in which single domains are linked to form multiple-domain proteins, are a major molecular form used by evolution for the diversification of protein functions. However, the design principles of PDAs remain largely uninvestigated. In this study, we constructed networks to connect domain architectures that had grown out from the same single domain for every single domain in the Pfam-A database and found that there are three main distinctive types of these networks, which suggests that evolution can exploit PDAs in three different ways. Further analysis showed that these three different types of PDA networks are each adopted by different types of protein domains, although many networks exhibit the characteristics of more than one of the three types. Our results shed light on nature's blueprint for protein architecture and provide a framework for understanding architectural design from a network perspective.

  14. Fold of the conserved DTC domain in deltex proteins

    SciTech Connect

    Obiero, Josiah; Walker, John R.; Dhe-Paganon, Sirano

    2012-04-30

    Human Deltex 3-like (DTX3L) is a member of the Deltex family of proteins. Initially identified as a B-lymphoma and BAL-associated protein, DTX3L is an E3 ligase that regulates subcellular localization of its partner protein, BAL, by a dynamic nucleocytoplasmic trafficking mechanism. Unlike other members of the Deltex family of proteins, DTX3L lacks the highly basic N-terminal motif and the central proline-rich motif present in other Deltex proteins, and instead contains other unique N-terminal domains. The C-terminal domains are, however, homologous with other members of the Deltex family of proteins; these include a RING domain and a previously unidentified C-terminal domain. In this study, we report the high-resolution crystal structure of this previously uncharacterized C-terminal domain of human DTX3L, which we term the Deltex C-terminal domain.

  15. Comparative analysis of ATRX, a chromatin remodeling protein.

    PubMed

    Park, Daniel J; Pask, Andrew J; Huynh, Kim; Renfree, Marilyn B; Harley, Vincent R; Graves, Jennifer A Marshall

    2004-09-15

    The ATRX protein, associated with X-linked alpha-thalassaemia, mental retardation and developmental abnormalities including genital dysgenesis, has been proposed to function as a global transcriptional regulator within a multi-protein complex. However, an understanding of the composition and mechanics of this machinery has remained elusive. We applied inter-specific comparative analysis to identify conserved elements which may be involved in regulating the conformation of chromatin. As part of this study, we cloned and sequenced the entire translatable coding region (7.4 kb) of the ATRX gene from a model marsupial (tammar wallaby, Macropus eugenii). We identify an ATRX ancestral core, conserved between plants, fish and mammals, comprising the cysteine-rich and SWI2/SNF2 helicase-like regions and protein interaction domains. Our data are consistent with the model of the cysteine-rich region as a DNA-binding zinc finger adjacent to a protein-binding (plant homeodomain-like) domain. Alignment of vertebrate ATRX sequences highlights other conserved elements, including a negatively charged mammalian sequence which we propose to be involved in binding of positively charged histone tails.

  16. A systematic analysis reveals an essential role for high-affinity iron uptake system, haemolysin and CFEM domain-containing protein in iron homoeostasis and virulence in Candida glabrata.

    PubMed

    Srivastava, Vivek Kumar; Suneetha, Korivi Jyothiraj; Kaur, Rupinder

    2014-10-01

    Iron is an essential nutrient for all living organisms and human pathogens employ a battery of factors to scavenge iron from the high-affinity iron-binding host proteins. In the present study, we have elucidated, via a candidate gene approach, major iron acquisition and homoeostatic mechanisms operational in an opportunistic human fungal pathogen Candida glabrata. Phenotypic, biochemical and molecular analysis of a set of 13 C. glabrata strains, deleted for proteins potentially implicated in iron metabolism, revealed that the high-affinity reductive iron uptake system is required for utilization of alternate carbon sources and for growth under both in vitro iron-limiting and in vivo conditions. Furthermore, we show for the first time that the cysteine-rich CFEM (common in fungal extracellular membranes) domain-containing cell wall structural protein, CgCcw14, and a putative haemolysin, CgMam3, are essential for maintenance of intracellular iron content, adherence to epithelial cells and virulence. Consistent with their roles in iron homoeostasis, mitochondrial aconitase activity was lower and higher in mutants disrupted for high-affinity iron transport, and haemolysin respectively. Additionally, we present evidence that the mitochondrial frataxin, CgYfh1, is pivotal to iron metabolism. Besides yielding insights into major in vitro and in vivo iron acquisition strategies, our findings establish high-affinity iron uptake mechanisms as critical virulence determinants in C. glabrata.

  17. A non-chromatographic protein purification strategy using Src 3 homology domains as generalized capture domains.

    PubMed

    Kim, Heejae; Chen, Wilfred

    2016-09-20

    Protein purification using inverse phase transition of elastin-like polypeptide (ELP) domains is a useful alternative to chromatography. Genetic fusions of ELP domains to various proteins have the ability to reversibly transition between soluble monomers and micron-sized aggregates and this has been used to selectively purify many ELP fusions. Affinity domains can enhance this technology by using specific protein binding domains to enable ELP mediated affinity capture (EMAC) of proteins of interest (POI) that have been fused to corresponding affinity ligands. In this paper, we highlight the use of Src homology 3 (SH3) domains and corresponding peptide ligands in EMAC that have differential binding affinities towards SH3 for efficient capture and elution of proteins. Furthermore, differences between capture and elution of a monomeric and a multimeric protein were also studied. PMID:27457699

  18. Selectivity filters and cysteine-rich extracellular loops in voltage-gated sodium, calcium, and NALCN channels

    PubMed Central

    Stephens, Robert F.; Guan, W.; Zhorov, Boris S.; Spafford, J. David

    2015-01-01

    How nature discriminates sodium from calcium ions in eukaryotic channels has been difficult to resolve because they contain four homologous, but markedly different repeat domains. We glean clues from analyzing the changing pore region in sodium, calcium and NALCN channels, from single-cell eukaryotes to mammals. Alternative splicing in invertebrate homologs provides insights into different structural features underlying calcium and sodium selectivity. NALCN generates alternative ion selectivity with splicing that changes the high field strength (HFS) site at the narrowest level of the hourglass shaped pore where the selectivity filter is located. Alternative splicing creates NALCN isoforms, in which the HFS site has a ring of glutamates contributed by all four repeat domains (EEEE), or three glutamates and a lysine residue in the third (EEKE) or second (EKEE) position. Alternative splicing provides sodium and/or calcium selectivity in T-type channels with extracellular loops between S5 and P-helices (S5P) of different lengths that contain three or five cysteines. All eukaryotic channels have a set of eight core cysteines in extracellular regions, but the T-type channels have an infusion of 4–12 extra cysteines in extracellular regions. The pattern of conservation suggests a possible pairing of long loops in Domains I and III, which are bridged with core cysteines in NALCN, Cav, and Nav channels, and pairing of shorter loops in Domains II and IV in T-type channel through disulfide bonds involving T-type specific cysteines. Extracellular turrets of increasing lengths in potassium channels (Kir2.2, hERG, and K2P1) contribute to a changing landscape above the pore selectivity filter that can limit drug access and serve as an ion pre-filter before ions reach the pore selectivity filter below. Pairing of extended loops likely contributes to the large extracellular appendage as seen in single particle electron cryo-microscopy images of the eel Nav1 channel. PMID

  19. Modelling protein functional domains in signal transduction using Maude

    NASA Technical Reports Server (NTRS)

    Sriram, M. G.

    2003-01-01

    Modelling of protein-protein interactions in signal transduction is receiving increased attention in computational biology. This paper describes recent research in the application of Maude, a symbolic language founded on rewriting logic, to the modelling of functional domains within signalling proteins. Protein functional domains (PFDs) are a critical focus of modern signal transduction research. In general, Maude models can simulate biological signalling networks and produce specific testable hypotheses at various levels of abstraction. Developing symbolic models of signalling proteins containing functional domains is important because of the potential to generate analyses of complex signalling networks based on structure-function relationships.

  20. Putative Domain-Domain Interactions in the Vesicular Stomatitis Virus L Polymerase Protein Appendage Region

    PubMed Central

    Ruedas, John B.

    2014-01-01

    ABSTRACT The multidomain polymerase protein (L) of nonsegmented negative-strand (NNS) RNA viruses catalyzes transcription and replication of the virus genome. The N-terminal half of the protein forms a ring-like polymerase structure, while the C-terminal half encoding viral mRNA transcript modifications consists of a flexible appendage with three distinct globular domains. To gain insight into putative transient interactions between L domains during viral RNA synthesis, we exchanged each of the four distinct regions encompassing the appendage region of vesicular stomatitis virus (VSV) Indiana serotype L protein with their counterparts from VSV New Jersey and analyzed effects on virus polymerase activity in a minigenome system. The methyltransferase domain exchange yielded a fully active polymerase protein, which functioned as well as wild-type L in the context of a recombinant virus. Exchange of the downstream C-terminal nonconserved region abolished activity, but coexchanging it with the methyltransferase domain generated a polymerase favoring replicase over transcriptase activity, providing strong evidence of interaction between these two regions. Exchange of the capping enzyme domain or the adjacent nonconserved region thought to function as an “unstructured” linker also abrogated polymerase activity even when either domain was coexchanged with other appendage domains. Further probing of the putative linker segment using in-frame enhanced green fluorescent protein (EGFP) insertions similarly abrogated activity. We discuss the implications of these findings with regard to L protein appendage domain structure and putative domain-domain interactions required for polymerase function. IMPORTANCE NNS viruses include many well-known human pathogens (e.g., rabies, measles, and Ebola viruses), as well as emerging viral threats (e.g., Nipah and Hendra viruses). These viruses all encode a large L polymerase protein similarly organized into multiple domains that work in

  1. Repeated evolution of identical domain architecture in metazoan netrin domain-containing proteins.

    PubMed

    Leclère, Lucas; Rentzsch, Fabian

    2012-01-01

    The majority of proteins in eukaryotes are composed of multiple domains, and the number and order of these domains is an important determinant of protein function. Although multidomain proteins with a particular domain architecture were initially considered to have a common evolutionary origin, recent comparative studies of protein families or whole genomes have reported that a minority of multidomain proteins could have appeared multiple times independently. Here, we test this scenario in detail for the signaling molecules netrin and secreted frizzled-related proteins (sFRPs), two groups of netrin domain-containing proteins with essential roles in animal development. Our primary phylogenetic analyses suggest that the particular domain architectures of each of these proteins were present in the eumetazoan ancestor and evolved a second time independently within the metazoan lineage from laminin and frizzled proteins, respectively. Using an array of phylogenetic methods, statistical tests, and character sorting analyses, we show that the polyphyly of netrin and sFRP is well supported and cannot be explained by classical phylogenetic reconstruction artifacts. Despite their independent origins, the two groups of netrins and of sFRPs have the same protein interaction partners (Deleted in Colorectal Cancer/neogenin and Unc5 for netrins and Wnts for sFRPs) and similar developmental functions. Thus, these cases of convergent evolution emphasize the importance of domain architecture for protein function by uncoupling shared domain architecture from shared evolutionary history. Therefore, we propose the terms merology to describe the repeated evolution of proteins with similar domain architecture and discuss the potential of merologous proteins to help understanding protein evolution. PMID:22813778

  2. Emerging Roles of JmjC Domain-Containing Proteins.

    PubMed

    Accari, Sandra L; Fisher, Paul R

    2015-01-01

    Jumonji C (JmjC) domain-containing proteins are a diverse superfamily of proteins containing a characteristic, evolutionarily conserved β-barrel structure that normally contains binding sites for Fe(II) and α-ketoglutarate. In the best studied JmjC-domain proteins, the JmjC barrel has a histone demethylase catalytic activity. Histones are evolutionarily conserved proteins intimately involved in the packaging of DNA within the nucleus of eukaryotic organisms. The N-termini ("tails") of the histone proteins are subject to a diverse array of posttranslational modifications including methylation. Unlike many of the other histone modifications which are transient, methylation was thought to be permanent, until the relatively recent identification of the first demethylases. Jumonji C domain-containing proteins were first identified with a role in the modulation of histone methylation marks. This family of proteins is broken up into seven distinct subgroups based on domain architecture and their ability to antagonize specific histone methylation marks. Their biological functions derive from their ability to regulate gene expression and include roles in cell differentiation, growth, proliferation, and stress responses. However, one subgroup remains, the largest, in which the JmjC domain has no known biochemical function. These proteins belong to the JmjC-domain-only subgroup and as their name suggests, the only bioinformatically recognizable domain they contain is the highly conserved JmjC domain. PMID:26404469

  3. Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains

    NASA Astrophysics Data System (ADS)

    Milovanovic, Dragomir; Honigmann, Alf; Koike, Seiichi; Göttfert, Fabian; Pähler, Gesa; Junius, Meike; Müllar, Stefan; Diederichsen, Ulf; Janshoff, Andreas; Grubmüller, Helmut; Risselada, Herre J.; Eggeling, Christian; Hell, Stefan W.; van den Bogaart, Geert; Jahn, Reinhard

    2015-01-01

    The clustering of proteins and lipids in distinct microdomains is emerging as an important principle for the spatial patterning of biological membranes. Such domain formation can be the result of hydrophobic and ionic interactions with membrane lipids as well as of specific protein-protein interactions. Here using plasma membrane-resident SNARE proteins as model, we show that hydrophobic mismatch between the length of transmembrane domains (TMDs) and the thickness of the lipid membrane suffices to induce clustering of proteins. Even when the TMDs differ in length by only a single residue, hydrophobic mismatch can segregate structurally closely homologous membrane proteins in distinct membrane domains. Domain formation is further fine-tuned by interactions with polyanionic phosphoinositides and homo and heterotypic protein interactions. Our findings demonstrate that hydrophobic mismatch contributes to the structural organization of membranes.

  4. The history of the CATH structural classification of protein domains

    PubMed Central

    Sillitoe, Ian; Dawson, Natalie; Thornton, Janet; Orengo, Christine

    2015-01-01

    This article presents a historical review of the protein structure classification database CATH. Together with the SCOP database, CATH remains comprehensive and reasonably up-to-date with the now more than 100,000 protein structures in the PDB. We review the expansion of the CATH and SCOP resources to capture predicted domain structures in the genome sequence data and to provide information on the likely functions of proteins mediated by their constituent domains. The establishment of comprehensive function annotation resources has also meant that domain families can be functionally annotated allowing insights into functional divergence and evolution within protein families. PMID:26253692

  5. Unusual cold denaturation of a small protein domain.

    PubMed

    Buchner, Ginka S; Shih, Natalie; Reece, Amy E; Niebling, Stephan; Kubelka, Jan

    2012-08-21

    A thermal unfolding study of the 45-residue α-helical domain UBA(2) using circular dichroism is presented. The protein is highly thermostable and exhibits a clear cold unfolding transition with the onset near 290 K without denaturant. Cold denaturation in proteins is rarely observed in general and is quite unique among small helical protein domains. The cold unfolding was further investigated in urea solutions, and a simple thermodynamic model was used to fit all thermal and urea unfolding data. The resulting thermodynamic parameters are compared to those of other small protein domains. Possible origins of the unusual cold unfolding of UBA(2) are discussed.

  6. Molecular modelling and experimental studies of mutation and cell-adhesion sites in the fibronectin type III and whey acidic protein domains of human anosmin-1.

    PubMed Central

    Robertson, A; MacColl, G S; Nash, J A; Boehm, M K; Perkins, S J; Bouloux, P M

    2001-01-01

    Anosmin-1, the gene product of the KAL gene, is implicated in the pathogenesis of X-linked Kallmann's syndrome. Anosmin-1 protein expression is restricted to the basement membrane and interstitial matrix of tissues affected in this syndrome during development. The anosmin-1 sequence indicates an N-terminal cysteine-rich domain, a whey acidic protein (WAP) domain, four fibronectin type III (FnIII) domains and a C-terminal histidine-rich region, and shows similarity with cell-adhesion molecules, such as neural cell-adhesion molecule, TAG-1 and L1. We investigated the structural and functional significance of three loss-of-function missense mutations of anosmin-1 using comparative modelling of the four FnIII and the WAP domains based on known NMR and crystal structures. Three missense mutation-encoded amino acid substitutions, N267K, E514K and F517L, were mapped to structurally defined positions on the GFCC' beta-sheet face of the first and third FnIII domains. Electrostatic maps demonstrated large basic surfaces containing clusters of conserved predicted heparan sulphate-binding residues adjacent to these mutation sites. To examine these modelling results anosmin-1 was expressed in insect cells. The incorporation of the three mutations into recombinant anosmin-1 had no effect on its secretion. The removal of two dibasic motifs that may constitute potential physiological cleavage sites for anosmin-1 had no effect on cleavage. Peptides based on the anosmin-1 sequences R254--K285 and P504--K527 were then synthesized in order to assess the effect of the three mutations on cellular adhesion, using cell lines that represented potential functional targets of anosmin-1. Peptides (10 microg/ml) incorporating the N267K and E514K substitutions promoted enhanced adhesion to 13.S.1.24 rat olfactory epithelial cells and canine MDCK1 kidney epithelial cells (P<0.01) compared with the wild-type peptides. This result was attributed to the introduction of a lysine residue adjacent to

  7. Small protein domains fold inside the ribosome exit tunnel.

    PubMed

    Marino, Jacopo; von Heijne, Gunnar; Beckmann, Roland

    2016-03-01

    Cotranslational folding of small protein domains within the ribosome exit tunnel may be an important cellular strategy to avoid protein misfolding. However, the pathway of cotranslational folding has so far been described only for a few proteins, and therefore, it is unclear whether folding in the ribosome exit tunnel is a common feature for small protein domains. Here, we have analyzed nine small protein domains and determined at which point during translation their folding generates sufficient force on the nascent chain to release translational arrest by the SecM arrest peptide, both in vitro and in live E. coli cells. We find that all nine protein domains initiate folding while still located well within the ribosome exit tunnel. PMID:26879042

  8. Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains

    PubMed Central

    Milovanovic, Dragomir; Honigmann, Alf; Koike, Seiichi; Göttfert, Fabian; Pähler, Gesa; Junius, Meike; Müllar, Stefan; Diederichsen, Ulf; Janshoff, Andreas; Grubmüller, Helmut; Risselada, Herre J.; Eggeling, Christian; Hell, Stefan W.; van den Bogaart, Geert; Jahn, Reinhard

    2015-01-01

    The clustering of proteins and lipids in distinct microdomains is emerging as an important principle for the spatial patterning of biological membranes. Such domain formation can be the result of hydrophobic and ionic interactions with membrane lipids as well as of specific protein–protein interactions. Here using plasma membrane-resident SNARE proteins as model, we show that hydrophobic mismatch between the length of transmembrane domains (TMDs) and the thickness of the lipid membrane suffices to induce clustering of proteins. Even when the TMDs differ in length by only a single residue, hydrophobic mismatch can segregate structurally closely homologous membrane proteins in distinct membrane domains. Domain formation is further fine-tuned by interactions with polyanionic phosphoinositides and homo and heterotypic protein interactions. Our findings demonstrate that hydrophobic mismatch contributes to the structural organization of membranes. PMID:25635869

  9. Protein domain definition should allow for conditional disorder

    PubMed Central

    Yegambaram, Kavestri; Bulloch, Esther MM; Kingston, Richard L

    2013-01-01

    Abstract: Proteins are often classified in a binary fashion as either structured or disordered. However this approach has several deficits. Firstly, protein folding is always conditional on the physiochemical environment. A protein which is structured in some circumstances will be disordered in others. Secondly, it hides a fundamental asymmetry in behavior. While all structured proteins can be unfolded through a change in environment, not all disordered proteins have the capacity for folding. Failure to accommodate these complexities confuses the definition of both protein structural domains and intrinsically disordered regions. We illustrate these points with an experimental study of a family of small binding domains, drawn from the RNA polymerase of mumps virus and its closest relatives. Assessed at face value the domains fall on a structural continuum, with folded, partially folded, and near unstructured members. Yet the disorder present in the family is conditional, and these closely related polypeptides can access the same folded state under appropriate conditions. Any heuristic definition of the protein domain emphasizing conformational stability divides this domain family in two, in a way that makes no biological sense. Structural domains would be better defined by their ability to adopt a specific tertiary structure: a structure that may or may not be realized, dependent on the circumstances. This explicitly allows for the conditional nature of protein folding, and more clearly demarcates structural domains from intrinsically disordered regions that may function without folding. PMID:23963781

  10. Structure and Function of CW Domain Containing Proteins.

    PubMed

    Liu, Yanli; Liu, Shasha; Zhang, Xinxin; Liang, Xiao; Zahid, Kashif Rafiq; Liu, Ke; Liu, Jinlin; Deng, Lingfu; Yang, Jihong; Qi, Chao

    2016-01-01

    The CW domain is a zinc binding domain, composed of approximately 50- 60 amino acid residues with four conserved cysteine (C) and two to four conserved tryptophan (W) residues. The members of the superfamily of CW domain containing proteins, comprised of 12 different eukaryotic nuclear protein families, are extensively expressed in vertebrates, vertebrate-infecting parasites and higher plants, where they are often involved in chromatin remodeling, methylation recognition, epigenetic regulation and early embryonic development. Since the first CW domain structure was determined 5 years ago, structures of five CW domains have been solved so far. In this review, we will discuss these recent advances in understanding the identification, definition, structure, and functions of the CW domain containing proteins. PMID:26806410

  11. Bacteria–zinc co-localization implicates enhanced synthesis of cysteine-rich peptides in zinc detoxification when Brassica juncea is inoculated with Rhizobium leguminosarum

    PubMed Central

    Adediran, Gbotemi A; Ngwenya, Bryne T; Mosselmans, J Frederick W; Heal, Kate V

    2016-01-01

    Some plant growth promoting bacteria (PGPB) are enigmatic in enhancing plant growth in the face of increased metal accumulation in plants. Since most PGPB colonize the plant root epidermis, we hypothesized that PGPB confer tolerance to metals through changes in speciation at the root epidermis. We employed a novel combination of fluorophore-based confocal laser scanning microscopic imaging and synchrotron based microscopic X-ray fluorescence mapping with X-ray absorption spectroscopy to characterize bacterial localization, zinc (Zn) distribution and speciation in the roots of Brassica juncea grown in Zn contaminated media (400 mg kg−1 Zn) with the endophytic Pseudomonas brassicacearum and rhizospheric Rhizobium leguminosarum. PGPB enhanced epidermal Zn sequestration relative to PGBP-free controls while the extent of endophytic accumulation depended on the colonization mode of each PGBP. Increased root accumulation of Zn and increased tolerance to Zn was associated predominantly with R. leguminosarum and was likely due to the coordination of Zn with cysteine-rich peptides in the root endodermis, suggesting enhanced synthesis of phytochelatins or glutathione. Our mechanistic model of enhanced Zn accumulation and detoxification in plants inoculated with R. leguminosarum has particular relevance to PGPB enhanced phytoremediation of soils contaminated through mining and oxidation of sulphur-bearing Zn minerals or engineered nanomaterials such as ZnS. PMID:26263508

  12. Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant

    PubMed Central

    Horváth, Beatrix; Domonkos, Ágota; Szűcs, Attila; Ábrahám, Edit; Ayaydin, Ferhan; Bóka, Károly; Chen, Yuhui; Chen, Rujin; Murray, Jeremy D.; Udvardi, Michael K.; Kondorosi, Éva; Kaló, Péter

    2015-01-01

    Host compatible rhizobia induce the formation of legume root nodules, symbiotic organs within which intracellular bacteria are present in plant-derived membrane compartments termed symbiosomes. In Medicago truncatula nodules, the Sinorhizobium microsymbionts undergo an irreversible differentiation process leading to the development of elongated polyploid noncultivable nitrogen fixing bacteroids that convert atmospheric dinitrogen into ammonia. This terminal differentiation is directed by the host plant and involves hundreds of nodule specific cysteine-rich peptides (NCRs). Except for certain in vitro activities of cationic peptides, the functional roles of individual NCR peptides in planta are not known. In this study, we demonstrate that the inability of M. truncatula dnf7 mutants to fix nitrogen is due to inactivation of a single NCR peptide, NCR169. In the absence of NCR169, bacterial differentiation was impaired and was associated with early senescence of the symbiotic cells. Introduction of the NCR169 gene into the dnf7-2/NCR169 deletion mutant restored symbiotic nitrogen fixation. Replacement of any of the cysteine residues in the NCR169 peptide with serine rendered it incapable of complementation, demonstrating an absolute requirement for all cysteines in planta. NCR169 was induced in the cell layers in which bacteroid elongation was most pronounced, and high expression persisted throughout the nitrogen-fixing nodule zone. Our results provide evidence for an essential role of NCR169 in the differentiation and persistence of nitrogen fixing bacteroids in M. truncatula. PMID:26401023

  13. Loss of the nodule-specific cysteine rich peptide, NCR169, abolishes symbiotic nitrogen fixation in the Medicago truncatula dnf7 mutant.

    PubMed

    Horváth, Beatrix; Domonkos, Ágota; Kereszt, Attila; Szűcs, Attila; Ábrahám, Edit; Ayaydin, Ferhan; Bóka, Károly; Chen, Yuhui; Chen, Rujin; Murray, Jeremy D; Udvardi, Michael K; Kondorosi, Éva; Kaló, Péter

    2015-12-01

    Host compatible rhizobia induce the formation of legume root nodules, symbiotic organs within which intracellular bacteria are present in plant-derived membrane compartments termed symbiosomes. In Medicago truncatula nodules, the Sinorhizobium microsymbionts undergo an irreversible differentiation process leading to the development of elongated polyploid noncultivable nitrogen fixing bacteroids that convert atmospheric dinitrogen into ammonia. This terminal differentiation is directed by the host plant and involves hundreds of nodule specific cysteine-rich peptides (NCRs). Except for certain in vitro activities of cationic peptides, the functional roles of individual NCR peptides in planta are not known. In this study, we demonstrate that the inability of M. truncatula dnf7 mutants to fix nitrogen is due to inactivation of a single NCR peptide, NCR169. In the absence of NCR169, bacterial differentiation was impaired and was associated with early senescence of the symbiotic cells. Introduction of the NCR169 gene into the dnf7-2/NCR169 deletion mutant restored symbiotic nitrogen fixation. Replacement of any of the cysteine residues in the NCR169 peptide with serine rendered it incapable of complementation, demonstrating an absolute requirement for all cysteines in planta. NCR169 was induced in the cell layers in which bacteroid elongation was most pronounced, and high expression persisted throughout the nitrogen-fixing nodule zone. Our results provide evidence for an essential role of NCR169 in the differentiation and persistence of nitrogen fixing bacteroids in M. truncatula.

  14. Bacteria-zinc co-localization implicates enhanced synthesis of cysteine-rich peptides in zinc detoxification when Brassica juncea is inoculated with Rhizobium leguminosarum.

    PubMed

    Adediran, Gbotemi A; Ngwenya, Bryne T; Mosselmans, J Frederick W; Heal, Kate V

    2016-01-01

    Some plant growth promoting bacteria (PGPB) are enigmatic in enhancing plant growth in the face of increased metal accumulation in plants. Since most PGPB colonize the plant root epidermis, we hypothesized that PGPB confer tolerance to metals through changes in speciation at the root epidermis. We employed a novel combination of fluorophore-based confocal laser scanning microscopic imaging and synchrotron based microscopic X-ray fluorescence mapping with X-ray absorption spectroscopy to characterize bacterial localization, zinc (Zn) distribution and speciation in the roots of Brassica juncea grown in Zn contaminated media (400 mg kg(-1) Zn) with the endophytic Pseudomonas brassicacearum and rhizospheric Rhizobium leguminosarum. PGPB enhanced epidermal Zn sequestration relative to PGBP-free controls while the extent of endophytic accumulation depended on the colonization mode of each PGBP. Increased root accumulation of Zn and increased tolerance to Zn was associated predominantly with R. leguminosarum and was likely due to the coordination of Zn with cysteine-rich peptides in the root endodermis, suggesting enhanced synthesis of phytochelatins or glutathione. Our mechanistic model of enhanced Zn accumulation and detoxification in plants inoculated with R. leguminosarum has particular relevance to PGPB enhanced phytoremediation of soils contaminated through mining and oxidation of sulphur-bearing Zn minerals or engineered nanomaterials such as ZnS. PMID:26263508

  15. Toward consistent assignment of structural domains in proteins.

    PubMed

    Veretnik, Stella; Bourne, Philip E; Alexandrov, Nickolai N; Shindyalov, Ilya N

    2004-06-01

    The assignment of protein domains from three-dimensional structure is critically important in understanding protein evolution and function, yet little quality assurance has been performed. Here, the differences in the assignment of structural domains are evaluated using six common assignment methods. Three human expert methods (AUTHORS (authors' annotation), CATH and SCOP) and three fully automated methods (DALI, DomainParser and PDP) are investigated by analysis of individual methods against the author's assignment as well as analysis based on the consensus among groups of methods (only expert, only automatic, combined). The results demonstrate that caution is recommended in using current domain assignments, and indicates where additional work is needed. Specifically, the major factors responsible for conflicting domain assignments between methods, both experts and automatic, are: (1) the definition of very small domains; (2) splitting secondary structures between domains; (3) the size and number of discontinuous domains; (4) closely packed or convoluted domain-domain interfaces; (5) structures with large and complex architectures; and (6) the level of significance placed upon structural, functional and evolutionary concepts in considering structural domain definitions. A web-based resource that focuses on the results of benchmarking and the analysis of domain assignments is available at

  16. The human mannose-binding protein functions as an opsonin

    PubMed Central

    1989-01-01

    The human mannose-binding protein (MBP) is a multimeric serum protein that is divided into three domains: a cysteine-rich NH2-terminal domain that stabilizes the alpha-helix of the second collagen-like domain, and a third COOH-terminal carbohydrate binding region. The function of MBP is unknown, although a role in host defense is suggested by its ability to bind yeast mannans. In this report we show that native and recombinant human MBP can serve in an opsonic role in serum and thereby enhance clearance of mannose rich pathogens by phagocytes. MBP binds to wild-type virulent Salmonella montevideo that express a mannose-rich O- polysaccharide. Interaction of MBP with these organisms results in attachment, uptake, and killing of the opsonized bacteria by phagocytes. These results demonstrate that MBP plays a role in first line host defense against certain pathogenic organisms. PMID:2469767

  17. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily

    PubMed Central

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-01-01

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer. PMID:26512702

  18. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily.

    PubMed

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-01-01

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  19. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily.

    PubMed

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-01-01

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer. PMID:26512702

  20. Proteasomes and protein conjugation across domains of life

    PubMed Central

    Maupin-Furlow, Julie

    2012-01-01

    Like other energy-dependent proteases, proteasomes, which are found across the three domains of life, are self-compartmentalized and important in the early steps of proteolysis. Proteasomes degrade improperly synthesized, damaged or misfolded proteins and hydrolyse regulatory proteins that must be specifically removed or cleaved for cell signalling. In eukaryotes, proteins are typically targeted for proteasome-mediated destruction through polyubiquitylation, although ubiquitin-independent pathways also exist. Interestingly, actinobacteria and archaea also covalently attach small proteins (prokaryotic ubiquitin-like protein (Pup) and small archaeal modifier proteins (Samps), respectively) to certain proteins, and this may serve to target the modified proteins for degradation by proteasomes. PMID:22183254

  1. Complete 1H, 15N and 13C assignment of trappin-2 and 1H assignment of its two domains, elafin and cementoin.

    PubMed

    Loth, Karine; Alami, Soha Abou Ibrahim; Habès, Chahrazed; Garrido, Solène; Aucagne, Vincent; Delmas, Agnès F; Moreau, Thierry; Zani, Marie-Louise; Landon, Céline

    2016-04-01

    Trappin-2 is a serine protease inhibitor with a very narrow inhibitory spectrum and has significant anti-microbial activities. It is a 10 kDa cationic protein composed of two distinct domains. The N-terminal domain (38 residues) named cementoin is known to be intrinsically disordered when it is not linked to the elafin. The C-terminal domain (57 residues), corresponding to elafin, is a cysteine-rich domain stabilized by four disulfide bridges and is characterized by a flat core and a flexible N-terminal part. To our knowledge, there is no structural data available on trappin-2. We report here the complete (1)H, (15)N and (13)C resonance assignment of the recombinant trappin-2 and the (1)H assignments of cementoin and elafin, under the same experimental conditions. This is the first step towards the 3D structure determination of the trappin-2.

  2. Domain view: a web tool for protein domain visualization and analysis.

    PubMed

    Pan, Xiaokang; Bingman, Craig A; Wesenberg, Gary E; Sun, Zhaohui; Phillips, George N

    2010-12-01

    The identification of sequence-based protein domains and their boundaries is often a prelude to structure determination. An accurate prediction of disordered regions, secondary structures and low complexity segments of target protein sequences can improve the efficiency of selection in structural genomics and also aid in design of constructs for directed structural biology studies. At the Center for Eukaryotic Structural Genomics (CESG) we have developed DomainView, a web tool to visualize and analyze predicted protein domains, disordered regions, secondary structures and low complexity segments of target protein sequences for selection of experimental protein structure attempts. DomainView consists of a relational database and a web graphical-user interface. The database was developed based on MySQL, which stores data from target protein sequences and their domains, disordered regions, secondary structures and low complexity segments. The program of the web user interface is a Perl CGI script. When a user searches for a target protein sequence, the script displays the combinational information about the domains and other features of that target sequence graphically on a web page by querying the database. The graphical representation for each feature is linked to a web page showing more detailed annotation information or to a new window directly running the corresponding prediction program to show further information about that feature.

  3. Sequence and structural analysis of BTB domain proteins

    PubMed Central

    Stogios, Peter J; Downs, Gregory S; Jauhal, Jimmy JS; Nandra, Sukhjeen K; Privé, Gilbert G

    2005-01-01

    Background The BTB domain (also known as the POZ domain) is a versatile protein-protein interaction motif that participates in a wide range of cellular functions, including transcriptional regulation, cytoskeleton dynamics, ion channel assembly and gating, and targeting proteins for ubiquitination. Several BTB domain structures have been experimentally determined, revealing a highly conserved core structure. Results We surveyed the protein architecture, genomic distribution and sequence conservation of BTB domain proteins in 17 fully sequenced eukaryotes. The BTB domain is typically found as a single copy in proteins that contain only one or two other types of domain, and this defines the BTB-zinc finger (BTB-ZF), BTB-BACK-kelch (BBK), voltage-gated potassium channel T1 (T1-Kv), MATH-BTB, BTB-NPH3 and BTB-BACK-PHR (BBP) families of proteins, among others. In contrast, the Skp1 and ElonginC proteins consist almost exclusively of the core BTB fold. There are numerous lineage-specific expansions of BTB proteins, as seen by the relatively large number of BTB-ZF and BBK proteins in vertebrates, MATH-BTB proteins in Caenorhabditis elegans, and BTB-NPH3 proteins in Arabidopsis thaliana. Using the structural homology between Skp1 and the PLZF BTB homodimer, we present a model of a BTB-Cul3 SCF-like E3 ubiquitin ligase complex that shows that the BTB dimer or the T1 tetramer is compatible in this complex. Conclusion Despite widely divergent sequences, the BTB fold is structurally well conserved. The fold has adapted to several different modes of self-association and interactions with non-BTB proteins. PMID:16207353

  4. A domain specific data management architecture for protein structure data.

    PubMed

    Wang, Yanchao; Sunderraman, R; Tian, Hao

    2006-01-01

    In this paper, we propose an architecture that extends the Object-Oriented Database (OODB) system architecture by adding domain specific additional layers to manage protein structure data. The two layers introduced above OODB are Protein-QL, domain-specific query language and Protein-OODB, a domain-specific data layer. This architecture is designed specifically for the protein domain, but it is the first step in building a general Bio-OODBMS for biological applications. Three internal data types are defined for the primary, secondary, and tertiary protein structures, respectively, to simplify queries in Protein-QL. This enables the domain scientists to easily formulate data requests. We use lambda-DB as the back-end database to implement Protein-QL. Queries in Protein-QL are compiled into OQL which are then executed against the database. In order to make the underlying OODB system (lambda-DB) more powerful, we introduce additional constraints to check the integrity of protein data. PMID:17945914

  5. Domain fusion analysis by applying relational algebra to protein sequence and domain databases

    PubMed Central

    Truong, Kevin; Ikura, Mitsuhiko

    2003-01-01

    Background Domain fusion analysis is a useful method to predict functionally linked proteins that may be involved in direct protein-protein interactions or in the same metabolic or signaling pathway. As separate domain databases like BLOCKS, PROSITE, Pfam, SMART, PRINTS-S, ProDom, TIGRFAMs, and amalgamated domain databases like InterPro continue to grow in size and quality, a computational method to perform domain fusion analysis that leverages on these efforts will become increasingly powerful. Results This paper proposes a computational method employing relational algebra to find domain fusions in protein sequence databases. The feasibility of this method was illustrated on the SWISS-PROT+TrEMBL sequence database using domain predictions from the Pfam HMM (hidden Markov model) database. We identified 235 and 189 putative functionally linked protein partners in H. sapiens and S. cerevisiae, respectively. From scientific literature, we were able to confirm many of these functional linkages, while the remainder offer testable experimental hypothesis. Results can be viewed at . Conclusion As the analysis can be computed quickly on any relational database that supports standard SQL (structured query language), it can be dynamically updated along with the sequence and domain databases, thereby improving the quality of predictions over time. PMID:12734020

  6. The acidic domains of the Toc159 chloroplast preprotein receptor family are intrinsically disordered protein domains

    PubMed Central

    2009-01-01

    Background The Toc159 family of proteins serve as receptors for chloroplast-destined preproteins. They directly bind to transit peptides, and exhibit preprotein substrate selectivity conferred by an unknown mechanism. The Toc159 receptors each include three domains: C-terminal membrane, central GTPase, and N-terminal acidic (A-) domains. Although the function(s) of the A-domain remains largely unknown, the amino acid sequences are most variable within these domains, suggesting they may contribute to the functional specificity of the receptors. Results The physicochemical properties of the A-domains are characteristic of intrinsically disordered proteins (IDPs). Using CD spectroscopy we show that the A-domains of two Arabidopsis Toc159 family members (atToc132 and atToc159) are disordered at physiological pH and temperature and undergo conformational changes at temperature and pH extremes that are characteristic of IDPs. Conclusions Identification of the A-domains as IDPs will be important for determining their precise function(s), and suggests a role in protein-protein interactions, which may explain how these proteins serve as receptors for such a wide variety of preprotein substrates. PMID:20042108

  7. CDD: a Conserved Domain Database for protein classification.

    PubMed

    Marchler-Bauer, Aron; Anderson, John B; Cherukuri, Praveen F; DeWeese-Scott, Carol; Geer, Lewis Y; Gwadz, Marc; He, Siqian; Hurwitz, David I; Jackson, John D; Ke, Zhaoxi; Lanczycki, Christopher J; Liebert, Cynthia A; Liu, Chunlei; Lu, Fu; Marchler, Gabriele H; Mullokandov, Mikhail; Shoemaker, Benjamin A; Simonyan, Vahan; Song, James S; Thiessen, Paul A; Yamashita, Roxanne A; Yin, Jodie J; Zhang, Dachuan; Bryant, Stephen H

    2005-01-01

    The Conserved Domain Database (CDD) is the protein classification component of NCBI's Entrez query and retrieval system. CDD is linked to other Entrez databases such as Proteins, Taxonomy and PubMed, and can be accessed at http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=cdd. CD-Search, which is available at http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi, is a fast, interactive tool to identify conserved domains in new protein sequences. CD-Search results for protein sequences in Entrez are pre-computed to provide links between proteins and domain models, and computational annotation visible upon request. Protein-protein queries submitted to NCBI's BLAST search service at http://www.ncbi.nlm.nih.gov/BLAST are scanned for the presence of conserved domains by default. While CDD started out as essentially a mirror of publicly available domain alignment collections, such as SMART, Pfam and COG, we have continued an effort to update, and in some cases replace these models with domain hierarchies curated at the NCBI. Here, we report on the progress of the curation effort and associated improvements in the functionality of the CDD information retrieval system. PMID:15608175

  8. Characterization of the spore surface and exosporium proteins of Clostridium sporogenes; implications for Clostridium botulinum group I strains.

    PubMed

    Janganan, Thamarai K; Mullin, Nic; Tzokov, Svetomir B; Stringer, Sandra; Fagan, Robert P; Hobbs, Jamie K; Moir, Anne; Bullough, Per A

    2016-10-01

    Clostridium sporogenes is a non-pathogenic close relative and surrogate for Group I (proteolytic) neurotoxin-producing Clostridium botulinum strains. The exosporium, the sac-like outermost layer of spores of these species, is likely to contribute to adhesion, dissemination, and virulence. A paracrystalline array, hairy nap, and several appendages were detected in the exosporium of C. sporogenes strain NCIMB 701792 by EM and AFM. The protein composition of purified exosporium was explored by LC-MS/MS of tryptic peptides from major individual SDS-PAGE-separated protein bands, and from bulk exosporium. Two high molecular weight protein bands both contained the same protein with a collagen-like repeat domain, the probable constituent of the hairy nap, as well as cysteine-rich proteins CsxA and CsxB. A third cysteine-rich protein (CsxC) was also identified. These three proteins are also encoded in C. botulinum Prevot 594, and homologues (75-100% amino acid identity) are encoded in many other Group I strains. This work provides the first insight into the likely composition and organization of the exosporium of Group I C. botulinum spores. PMID:27375261

  9. The oligodendrocyte-myelin glycoprotein belongs to a distinct family of proteins and contains the HNK-1 carbohydrate

    PubMed Central

    1990-01-01

    The complete primary structure of the human oligodendrocyte-myelin glycoprotein (OMgp), a glycophospholipid-linked membrane protein of oligodendrocytes and central nervous system myelin, has been determined. The deduced amino acid sequence predicts a polypeptide of 433 amino acids which includes a 17-amino acid leader sequence. OMgp consists of four domains: (a) a short cysteine-rich motif at the NH2 terminus; (b) a series of tandem leucine-rich repeats (LRs) present in several other proteins where they may play roles in adhesion; (c) a serine/threonine-rich region that contains probable attachment sites for O-linked carbohydrates; and (d) a hydrophobic COOH-terminal segment that is likely to be cleaved concomitant with the attachment of lipid during biosynthesis of OMgp. OMgp shares the first three of its four domains with the platelet glycoprotein Ib, which is responsible for the initial adhesion of platelets to the exposed subendothelium during hemostasis. Together with glycoprotein Ib and several other proteins, OMgp belongs to a family of proteins that contain both an NH2-terminal cysteine-rich motif and an adjacent series of LRs. In addition, we report that a subpopulation of OMgp molecules contains the HNK-1 carbohydrate, which has been shown to mediate interactions among cells in the central nervous system. PMID:1688857

  10. Tandem-repeat protein domains across the tree of life

    PubMed Central

    Jernigan, Kristin K.

    2015-01-01

    Tandem-repeat protein domains, composed of repeated units of conserved stretches of 20–40 amino acids, are required for a wide array of biological functions. Despite their diverse and fundamental functions, there has been no comprehensive assessment of their taxonomic distribution, incidence, and associations with organismal lifestyle and phylogeny. In this study, we assess for the first time the abundance of armadillo (ARM) and tetratricopeptide (TPR) repeat domains across all three domains in the tree of life and compare the results to our previous analysis on ankyrin (ANK) repeat domains in this journal. All eukaryotes and a majority of the bacterial and archaeal genomes analyzed have a minimum of one TPR and ARM repeat. In eukaryotes, the fraction of ARM-containing proteins is approximately double that of TPR and ANK-containing proteins, whereas bacteria and archaea are enriched in TPR-containing proteins relative to ARM- and ANK-containing proteins. We show in bacteria that phylogenetic history, rather than lifestyle or pathogenicity, is a predictor of TPR repeat domain abundance, while neither phylogenetic history nor lifestyle predicts ARM repeat domain abundance. Surprisingly, pathogenic bacteria were not enriched in TPR-containing proteins, which have been associated within virulence factors in certain species. Taken together, this comparative analysis provides a newly appreciated view of the prevalence and diversity of multiple types of tandem-repeat protein domains across the tree of life. A central finding of this analysis is that tandem repeat domain-containing proteins are prevalent not just in eukaryotes, but also in bacterial and archaeal species. PMID:25653910

  11. Insights into Hox protein function from a large scale combinatorial analysis of protein domains.

    PubMed

    Merabet, Samir; Litim-Mecheri, Isma; Karlsson, Daniel; Dixit, Richa; Saadaoui, Mehdi; Monier, Bruno; Brun, Christine; Thor, Stefan; Vijayraghavan, K; Perrin, Laurent; Pradel, Jacques; Graba, Yacine

    2011-10-01

    Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences.

  12. Structural and biochemical characterization of an RNA/DNA binding motif in the N-terminal domain of RecQ4 helicases

    PubMed Central

    Marino, Francesca; Mojumdar, Aditya; Zucchelli, Chiara; Bhardwaj, Amit; Buratti, Emanuele; Vindigni, Alessandro; Musco, Giovanna; Onesti, Silvia

    2016-01-01

    The RecQ4 helicase belongs to the ubiquitous RecQ family but its exact role in the cell is not completely understood. In addition to the helicase domain, RecQ4 has a unique N-terminal part that is essential for viability and is constituted by a region homologous to the yeast Sld2 replication initiation factor, followed by a cysteine-rich region, predicted to fold as a Zn knuckle. We carried out a structural and biochemical analysis of both the human and Xenopus laevis RecQ4 cysteine-rich regions, and showed by NMR spectroscopy that the Xenopus fragment indeed assumes the canonical Zn knuckle fold, whereas the human sequence remains unstructured, consistent with the mutation of one of the Zn ligands. Both the human and Xenopus Zn knuckles bind to a variety of nucleic acid substrates, with a mild preference for RNA. We also investigated the effect of a segment located upstream the Zn knuckle that is highly conserved and rich in positively charged and aromatic residues, partially overlapping with the C-terminus of the Sld2-like domain. In both the human and Xenopus proteins, the presence of this region strongly enhances binding to nucleic acids. These results reveal novel possible roles of RecQ4 in DNA replication and genome stability. PMID:26888063

  13. Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA.

    PubMed Central

    Diamond, G; Zasloff, M; Eck, H; Brasseur, M; Maloy, W L; Bevins, C L

    1991-01-01

    Extracts of the bovine tracheal mucosa have an abundant peptide with potent antimicrobial activity. The 38-amino acid peptide, which we have named tracheal antimicrobial peptide (TAP), was isolated by a sequential use of size-exclusion, ion-exchange, and reverse-phase chromatographic fractionations using antimicrobial activity as a functional assay. The yield was approximately 2 micrograms/g of wet mucosa. The complete peptide sequence was determined by a combination of peptide and cDNA analysis. The amino acid sequence of TAP is H-Asn-Pro-Val-Ser-Cys-Val-Arg-Asn-Lys-Gly-Ile-Cys-Val-Pro-Ile-Arg-Cys-Pr o- Gly-Ser-Met-Lys-Gln-Ile-Gly-Thr-Cys-Val-Gly-Arg-Ala-Val-Lys-Cys-Cys-Arg- Lys-Lys - OH. Mass spectral analysis of the isolated peptide was consistent with this sequence and indicated the participation of six cysteine residues in the formation of intramolecular disulfide bonds. The size, basic charge, and presence of three intramolecular disulfide bonds is similar to, but clearly distinct from, the defensins, a well-characterized class of antimicrobial peptides from mammalian circulating phagocytic cells. The putative TAP precursor is predicted to be relatively small (64 amino acids), and the mature peptide resides at the extreme carboxyl terminus and is bracketed by a short putative propeptide region and an inframe stop codon. The mRNA encoding this peptide is more abundant in the respiratory mucosa than in whole lung tissue. The purified peptide had antibacterial activity in vitro against Escherichia coli, Staphylococcus aureus, Klebsiella pneumonia, and Pseudomonas aeruginosa. In addition, the peptide was active against Candida albicans, indicating a broad spectrum of activity. This peptide appears to be, based on structure and activity, a member of a group of cysteine-rich, cationic, antimicrobial peptides found in animals, insects, and plants. The isolation of TAP from the mammalian respiratory mucosa may provide insight into our understanding of host defense of

  14. Domain organizations of modular extracellular matrix proteins and their evolution.

    PubMed

    Engel, J

    1996-11-01

    Multidomain proteins which are composed of modular units are a rather recent invention of evolution. Domains are defined as autonomously folding regions of a protein, and many of them are similar in sequence and structure, indicating common ancestry. Their modular nature is emphasized by frequent repetitions in identical or in different proteins and by a large number of different combinations with other domains. The extracellular matrix is perhaps the largest biological system composed of modular mosaic proteins, and its astonishing complexity and diversity are based on them. A cluster of minireviews on modular proteins is being published in Matrix Biology. These deal with the evolution of modular proteins, the three-dimensional structure of domains and the ways in which these interact in a multidomain protein. They discuss structure-function relationships in calcium binding domains, collagen helices, alpha-helical coiled-coil domains and C-lectins. The present minireview is focused on some general aspects and serves as an introduction to the cluster.

  15. Multiple regulatory domains on the Byr2 protein kinase.

    PubMed Central

    Tu, H; Barr, M; Dong, D L; Wigler, M

    1997-01-01

    Byr2 protein kinase, a homolog of mammalian mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEKK) and Saccharomyces cerevisiae STE11, is required for pheromone-induced sexual differentiation in the fission yeast Schizosaccharomyces pombe. Byr2 functions downstream of Ste4, Ras1, and the membrane-associated receptor-coupled heterotrimeric G-protein alpha subunit, Gpa1. Byr2 has a distinctive N-terminal kinase regulatory domain and a characteristic C-terminal kinase catalytic domain. Ste4 and Ras1 interact with the regulatory domain of Byr2 directly. Here, we define the domains of Byr2 that bind Ste4 and Ras1 and show that the Byr2 regulatory domain binds to the catalytic domain in the two-hybrid system. Using Byr2 mutants, we demonstrate that these direct physical interactions are all required for proper signaling. In particular, the physical association between Byr2 regulatory and catalytic domains appears to result in autoinhibition, the loss of which results in kinase activation. Furthermore, we provide evidence that Shk1, the S. pombe homolog of the STE20 protein kinase, can directly antagonize the Byr2 intramolecular interaction, possibly by phosphorylating Byr2. PMID:9315645

  16. Neuregulin 1 Expression and Electrophysiological Abnormalities in the Neuregulin 1 Transmembrane Domain Heterozygous Mutant Mouse

    PubMed Central

    Frank, Elisabeth; Shaw, Alex; Liu, Shijie; Huang, Xu-Feng; Pinault, Didier; Karl, Tim; O’Brien, Terence J.; Shannon Weickert, Cynthia; Jones, Nigel C.

    2015-01-01

    Background The Neuregulin 1 transmembrane domain heterozygous mutant (Nrg1 TM HET) mouse is used to investigate the role of Nrg1 in brain function and schizophrenia-like behavioural phenotypes. However, the molecular alterations in brain Nrg1 expression that underpin the behavioural observations have been assumed, but not directly determined. Here we comprehensively characterise mRNA Nrg1 transcripts throughout development of the Nrg1 TM HET mouse. In addition, we investigate the regulation of high-frequency (gamma) electrophysiological oscillations in this mutant mouse to associate molecular changes in Nrg1 with a schizophrenia-relevant neurophysiological profile. Methods Using exonic probes spanning the cysteine-rich, epidermal growth factor (EGF)-like, transmembrane and intracellular domain encoding regions of Nrg1, mRNA levels were measured using qPCR in hippocampus and frontal cortex from male and female Nrg1 TM HET and wild type-like (WT) mice throughout development. We also performed electrophysiological recordings in adult mice and analysed gamma oscillatory at baseline, in responses to auditory stimuli and to ketamine. Results In both hippocampus and cortex, Nrg1 TM HET mice show significantly reduced expression of the exon encoding the transmembrane domain of Nrg1 compared with WT, but unaltered mRNA expression encoding the extracellular bioactive EGF-like and the cysteine-rich (type III) domains, and development-specific and region-specific reductions in the mRNA encoding the intracellular domain. Hippocampal Nrg1 protein expression was not altered, but NMDA receptor NR2B subunit phosphorylation was lower in Nrg1 TM HET mice. We identified elevated ongoing and reduced sensory-evoked gamma power in Nrg1 TM HET mice. Interpretation We found no evidence to support the claim that the Nrg1 TM HET mouse represents a simple haploinsufficient model. Further research is required to explore the possibility that mutation results in a gain of Nrg1 function. PMID

  17. A novel Sushi domain-containing protein of Plasmodium falciparum.

    PubMed

    O'Keeffe, Aisling H; Green, Judith L; Grainger, Munira; Holder, Anthony A

    2005-03-01

    Using bioinformatics analyses of the completed malaria genome sequence, we have identified a novel protein with a potential role in erythrocyte invasion. The protein (PFD0295c, ) has a predicted signal sequence and transmembrane domain and a sequence near the C-terminus of the protein shows significant similarity with Sushi domains. These domains, which exist in a wide variety of complement and adhesion proteins, have previously been shown to be involved in protein-protein and protein-ligand interactions. Orthologous genes have also been identified in the genomes of several other Plasmodium species, suggesting a conserved function for this protein in Plasmodium. Our results show that this protein is located in apical organelles and we have therefore designated the protein apical Sushi protein (ASP). We show that the expression of ASP is tightly regulated in the intraerythrocytic stages of the parasite and that it undergoes post-translational proteolytic processing. Based on our observations of timing of expression, location and proteolytic processing, we propose a role for ASP in erythrocyte invasion.

  18. Neuronal cell-surface protein neurexin 1 interaction with multi-PDZ domain protein MUPP1.

    PubMed

    Jang, Won Hee; Choi, Sun Hee; Jeong, Joo Young; Park, Jung-Hwa; Kim, Sang-Jin; Seog, Dae-Hyun

    2014-01-01

    Location of membrane proteins is often stabilized by PDZ domain-containing scaffolding proteins. Using the yeast two-hybrid screening, we found that neurexin 1 interacted with multi-PDZ domain protein 1 (MUPP1) through PDZ domain. Neurexin 2 and 3 also interacted with MUPP1. MUPP1 and neurexin 1 were co-localized in cultured cells. These results suggest a novel mechanism for localizing neurexin 1 to synaptic sites.

  19. Specific inhibition of sensitized protein tyrosine phosphatase 1B (PTP1B) with a biarsenical probe

    PubMed Central

    Davis, Oliver B.; Bishop, Anthony C.

    2012-01-01

    Protein tyrosine phosphatase 1B (PTP1B) is a key regulator of the insulin-receptor and leptin-receptor signaling pathways, and it has therefore emerged as a critical anti-type-II-diabetes and anti-obesity drug target. Toward the goal of generating a covalent modulator of PTP1B activity that can be used for investigating its roles in cell signaling and disease progression, we report that the biarsenical probe FlAsH-EDT2 can be used to inhibit PTP1B variants that contain cysteine point mutations in a key catalytic loop of the enzyme. The site-specific cysteine mutations have little effect on the catalytic activity of the enzyme in the absence of FlAsH-EDT2. Upon addition of FlAsH-EDT2, however, the activity of the engineered PTP1B is strongly inhibited, as assayed with either small-molecule or phosphorylated-peptide PTP substrates. We show that the cysteine-rich PTP1B variants can be targeted with the biarsenical probe in either whole-cell lysates or intact cells. Together, our data provide an example of a biarsenical probe controlling the activity of a protein that does not contain the canonical tetra-cysteine biarsenical-labeling sequence CCXXCC. The targeting of “incomplete” cysteine-rich motifs could provide a general means for controlling protein activity by targeting biarsenical compounds to catalytically important loops in conserved protein domains. PMID:22263876

  20. Cloning, Expression and Purification of the SRCR domains of glycoprotein 340

    PubMed Central

    Purushotham, Sangeetha; Deivanayagam, Champion

    2013-01-01

    Glycoprotein 340 (gp340), an innate immunity molecule is secreted luminally by monolayered epithelia and associated glands within the human oral cavity. Gp340 contains 14 scavenger receptor cysteine rich (SRCR) domains, two CUB (C1r/C1s Uegf Bmp1) domains and one zona - pellucida (ZP) domain. Oral streptococci are known to adhere to the tooth immobilized gp340 via its surface protein Antigen I/II (AgI/II), which is considered to be the critical first step in pathogenesis that eventually results in colonization and infection. In order to decipher the interactions between gp340's domains and oral streptococcal AgI/II domains, we undertook to express human gp340's first SRCR domain (SRCR1) and the first three tandem SRCR domains (SRCR123) in Drosophila S2 cells. While our initial attempts with human codons did not produce optimal results, codon-optimization for expression in Drosophila S2 cells and usage of inducible/secretory Drosophila Expression System (DES) pMT/BiP/V5-HisA vector greatly enhanced the expression of the SRCR domains. Here we report the successful cloning, expression, and purification of the SRCR domains of gp340. Recognition of expressed SRCRs by the conformational dependent gp340 antibody indicate that these domains are appropriately folded and furthermore, surface plasmon resonance studies confirmed functional adherence of the SRCR domains to AgI/II. PMID:23707657

  1. Structural basis of Smoothened regulation by its extracellular domains

    NASA Astrophysics Data System (ADS)

    Byrne, Eamon F. X.; Sircar, Ria; Miller, Paul S.; Hedger, George; Luchetti, Giovanni; Nachtergaele, Sigrid; Tully, Mark D.; Mydock-McGrane, Laurel; Covey, Douglas F.; Rambo, Robert P.; Sansom, Mark S. P.; Newstead, Simon; Rohatgi, Rajat; Siebold, Christian

    2016-07-01

    Developmental signals of the Hedgehog (Hh) and Wnt families are transduced across the membrane by Frizzled-class G-protein-coupled receptors (GPCRs) composed of both a heptahelical transmembrane domain (TMD) and an extracellular cysteine-rich domain (CRD). How the large extracellular domains of GPCRs regulate signalling by the TMD is unknown. We present crystal structures of the Hh signal transducer and oncoprotein Smoothened, a GPCR that contains two distinct ligand-binding sites: one in its TMD and one in the CRD. The CRD is stacked atop the TMD, separated by an intervening wedge-like linker domain. Structure-guided mutations show that the interface between the CRD, linker domain and TMD stabilizes the inactive state of Smoothened. Unexpectedly, we find a cholesterol molecule bound to Smoothened in the CRD binding site. Mutations predicted to prevent cholesterol binding impair the ability of Smoothened to transmit native Hh signals. Binding of a clinically used antagonist, vismodegib, to the TMD induces a conformational change that is propagated to the CRD, resulting in loss of cholesterol from the CRD-linker domain-TMD interface. Our results clarify the structural mechanism by which the activity of a GPCR is controlled by ligand-regulated interactions between its extracellular and transmembrane domains.

  2. Structural basis of Smoothened regulation by its extracellular domains.

    PubMed

    Byrne, Eamon F X; Sircar, Ria; Miller, Paul S; Hedger, George; Luchetti, Giovanni; Nachtergaele, Sigrid; Tully, Mark D; Mydock-McGrane, Laurel; Covey, Douglas F; Rambo, Robert P; Sansom, Mark S P; Newstead, Simon; Rohatgi, Rajat

    2016-07-28

    Developmental signals of the Hedgehog (Hh) and Wnt families are transduced across the membrane by Frizzledclass G-protein-coupled receptors (GPCRs) composed of both a heptahelical transmembrane domain (TMD) and an extracellular cysteine-rich domain (CRD). How the large extracellular domains of GPCRs regulate signalling by the TMD is unknown. We present crystal structures of the Hh signal transducer and oncoprotein Smoothened, a GPCR that contains two distinct ligand-binding sites: one in its TMD and one in the CRD. The CRD is stacked a top the TMD, separated by an intervening wedge-like linker domain. Structure-guided mutations show that the interface between the CRD, linker domain and TMD stabilizes the inactive state of Smoothened. Unexpectedly, we find a cholesterol molecule bound to Smoothened in the CRD binding site. Mutations predicted to prevent cholesterol binding impair the ability of Smoothened to transmit native Hh signals. Binding of a clinically used antagonist, vismodegib, to the TMD induces a conformational change that is propagated to the CRD, resulting in loss of cholesterol from the CRD-linker domain-TMD interface. Our results clarify the structural mechanism by which the activity of a GPCR is controlled by ligand-regulated interactions between its extracellular and transmembrane domains. PMID:27437577

  3. The BTB domains of the potassium channel tetramerization domain proteins prevalently assume pentameric states.

    PubMed

    Smaldone, Giovanni; Pirone, Luciano; Pedone, Emilia; Marlovits, Thomas; Vitagliano, Luigi; Ciccarelli, Luciano

    2016-06-01

    Potassium channel tetramerization domain-containing (KCTD) proteins are involved in fundamental physio-pathological processes. Here, we report an analysis of the oligomeric state of the Bric-à-brack, Tram-track, Broad complex (BTB) domains of seven distinct KCTDs belonging to five major clades of the family evolution tree. Despite their functional and sequence variability, present electron microscopy data highlight the occurrence of well-defined pentameric states for all domains. Our data also show that these states coexist with alternative forms which include open pentamers. Thermal denaturation analyses conducted using KCTD1 as a model suggest that, in these proteins, different domains cooperate to their overall stability. Finally, negative-stain electron micrographs of KCTD6(BTB) in complex with Cullin3 show the presence of assemblies with a five-pointed pinwheel shape. PMID:27152988

  4. A new and unexpected domain-domain interaction in the AraC protein.

    PubMed

    Cole, Stephanie Dirla; Schleif, Robert

    2012-05-01

    An interaction between the dimerization domains and DNA binding domains of the dimeric AraC protein has previously been shown to facilitate repression of the Escherichia coli araBAD operon by AraC in the absence of arabinose. A new interaction between the domains of AraC in the presence of arabinose is reported here, the regulatory consequences of which are unknown. Evidence for the interaction is the following: the dissociation rate of arabinose-bound AraC from half-site DNA is considerably faster than that of free DNA binding domain, and the affinity of the dimerization domains for arabinose is increased when half-site DNA is bound. In addition, an increase in the fluorescence intensity of tryptophan residues located in the arabinose-bound dimerization domain is observed upon binding of half-site DNA to the DNA binding domains. Direct physical evidence of the new domain-domain interaction is demonstrated by chemical crosslinking and NMR experiments. PMID:22383259

  5. Characterization of Two Dinoflagellate Cold Shock Domain Proteins

    PubMed Central

    Beauchemin, Mathieu; Roy, Sougata; Pelletier, Sarah; Averback, Alexandra; Lanthier, Frederic

    2016-01-01

    ABSTRACT Roughly two-thirds of the proteins annotated as transcription factors in dinoflagellate transcriptomes are cold shock domain-containing proteins (CSPs), an uncommon condition in eukaryotic organisms. However, no functional analysis has ever been reported for a dinoflagellate CSP, and so it is not known if they do in fact act as transcription factors. We describe here some of the properties of two CSPs from the dinoflagellate Lingulodinium polyedrum, LpCSP1 and LpCSP2, which contain a glycine-rich C-terminal domain and an N-terminal cold shock domain phylogenetically related to those in bacteria. However, neither of the two LpCSPs act like the bacterial CSP, since they do not functionally complement the Escherichia coli quadruple cold shock domain protein mutant BX04, and cold shock does not induce LpCSP1 and LpCSP2 to detectable levels, based on two-dimensional gel electrophoresis. Both CSPs bind to RNA and single-stranded DNA in a nonspecific manner in electrophoretic mobility shift assays, and both proteins also bind double-stranded DNA nonspecifically, albeit more weakly. These CSPs are thus unlikely to act alone as sequence-specific transcription factors. IMPORTANCE Dinoflagellate transcriptomes contain cold shock domain proteins as the major component of the proteins annotated as transcription factors. We show here that the major family of cold shock domain proteins in the dinoflagellate Lingulodinium do not bind specific sequences, suggesting that transcriptional control is not a predominant mechanism for regulating gene expression in this group of protists. PMID:27303711

  6. Characterization of Two Dinoflagellate Cold Shock Domain Proteins.

    PubMed

    Beauchemin, Mathieu; Roy, Sougata; Pelletier, Sarah; Averback, Alexandra; Lanthier, Frederic; Morse, David

    2016-01-01

    Roughly two-thirds of the proteins annotated as transcription factors in dinoflagellate transcriptomes are cold shock domain-containing proteins (CSPs), an uncommon condition in eukaryotic organisms. However, no functional analysis has ever been reported for a dinoflagellate CSP, and so it is not known if they do in fact act as transcription factors. We describe here some of the properties of two CSPs from the dinoflagellate Lingulodinium polyedrum, LpCSP1 and LpCSP2, which contain a glycine-rich C-terminal domain and an N-terminal cold shock domain phylogenetically related to those in bacteria. However, neither of the two LpCSPs act like the bacterial CSP, since they do not functionally complement the Escherichia coli quadruple cold shock domain protein mutant BX04, and cold shock does not induce LpCSP1 and LpCSP2 to detectable levels, based on two-dimensional gel electrophoresis. Both CSPs bind to RNA and single-stranded DNA in a nonspecific manner in electrophoretic mobility shift assays, and both proteins also bind double-stranded DNA nonspecifically, albeit more weakly. These CSPs are thus unlikely to act alone as sequence-specific transcription factors. IMPORTANCE Dinoflagellate transcriptomes contain cold shock domain proteins as the major component of the proteins annotated as transcription factors. We show here that the major family of cold shock domain proteins in the dinoflagellate Lingulodinium do not bind specific sequences, suggesting that transcriptional control is not a predominant mechanism for regulating gene expression in this group of protists.

  7. Characterization of Two Dinoflagellate Cold Shock Domain Proteins.

    PubMed

    Beauchemin, Mathieu; Roy, Sougata; Pelletier, Sarah; Averback, Alexandra; Lanthier, Frederic; Morse, David

    2016-01-01

    Roughly two-thirds of the proteins annotated as transcription factors in dinoflagellate transcriptomes are cold shock domain-containing proteins (CSPs), an uncommon condition in eukaryotic organisms. However, no functional analysis has ever been reported for a dinoflagellate CSP, and so it is not known if they do in fact act as transcription factors. We describe here some of the properties of two CSPs from the dinoflagellate Lingulodinium polyedrum, LpCSP1 and LpCSP2, which contain a glycine-rich C-terminal domain and an N-terminal cold shock domain phylogenetically related to those in bacteria. However, neither of the two LpCSPs act like the bacterial CSP, since they do not functionally complement the Escherichia coli quadruple cold shock domain protein mutant BX04, and cold shock does not induce LpCSP1 and LpCSP2 to detectable levels, based on two-dimensional gel electrophoresis. Both CSPs bind to RNA and single-stranded DNA in a nonspecific manner in electrophoretic mobility shift assays, and both proteins also bind double-stranded DNA nonspecifically, albeit more weakly. These CSPs are thus unlikely to act alone as sequence-specific transcription factors. IMPORTANCE Dinoflagellate transcriptomes contain cold shock domain proteins as the major component of the proteins annotated as transcription factors. We show here that the major family of cold shock domain proteins in the dinoflagellate Lingulodinium do not bind specific sequences, suggesting that transcriptional control is not a predominant mechanism for regulating gene expression in this group of protists. PMID:27303711

  8. Replication of murine coronavirus requires multiple cysteines in the endodomain of spike protein

    SciTech Connect

    Yang, Jinhua; Lv, Jun; Wang, Yuyan; Gao, Shuang; Yao, Qianqian; Qu, Di; Ye, Rong

    2012-06-05

    A conserved cysteine-rich motif located between the transmembrane domain and the endodomain is essential for membrane fusion and assembly of coronavirus spike (S) protein. Here, we proved that three cysteines within the motif, but not dependent on position, are minimally required for the survival of the recombinant mouse hepatitis virus. When the carboxy termini with these mutated motifs of S proteins were respectively introduced into a heterogeneous protein, both incorporation into lipid rafts and S-palmitoylation of these recombinant proteins showed a similar quantity requirement to cysteine residues. Meanwhile, the redistribution of these proteins on cellular surface indicated that the absence of the positively charged rather than cysteine residues in the motif might lead the dramatic reduction in syncytial formation of some mutants with the deleted motifs. These results suggest that multiple cysteine as well as charged residues concurrently improves the membrane-associated functions of S protein in viral replication and cytopathogenesis.

  9. Pan-Cancer Analysis of Mutation Hotspots in Protein Domains.

    PubMed

    Miller, Martin L; Reznik, Ed; Gauthier, Nicholas P; Aksoy, Bülent Arman; Korkut, Anil; Gao, Jianjiong; Ciriello, Giovanni; Schultz, Nikolaus; Sander, Chris

    2015-09-23

    In cancer genomics, recurrence of mutations in independent tumor samples is a strong indicator of functional impact. However, rare functional mutations can escape detection by recurrence analysis owing to lack of statistical power. We enhance statistical power by extending the notion of recurrence of mutations from single genes to gene families that share homologous protein domains. Domain mutation analysis also sharpens the functional interpretation of the impact of mutations, as domains more succinctly embody function than entire genes. By mapping mutations in 22 different tumor types to equivalent positions in multiple sequence alignments of domains, we confirm well-known functional mutation hotspots, identify uncharacterized rare variants in one gene that are equivalent to well-characterized mutations in another gene, detect previously unknown mutation hotspots, and provide hypotheses about molecular mechanisms and downstream effects of domain mutations. With the rapid expansion of cancer genomics projects, protein domain hotspot analysis will likely provide many more leads linking mutations in proteins to the cancer phenotype. PMID:27135912

  10. Structural correlations in the family of small leucine-rich repeat proteins and proteoglycans.

    PubMed

    McEwan, Paul A; Scott, Paul G; Bishop, Paul N; Bella, Jordi

    2006-08-01

    The family of small leucine-rich repeat proteins and proteoglycans (SLRPs) contains several extracellular matrix molecules that are structurally related by a protein core composed of leucine-rich repeats (LRRs) flanked by two conserved cysteine-rich regions. The small proteoglycan decorin is the archetypal SLRP. Decorin is present in a variety of connective tissues, typically "decorating" collagen fibrils, and is involved in important biological functions, including the regulation of the assembly of fibrillar collagens and modulation of cell adhesion. Several SLRPs are known to regulate collagen fibrillogenesis and there is evidence that they may share other biological functions. We have recently determined the crystal structure of the protein core of decorin, the first such determination of a member of the SLRP family. This structure has highlighted several correlations: (1) SLRPs have similar internal repeat structures; (2) SLRP molecules are far less curved than an early model of decorin based on the three-dimensional structure of ribonuclease inhibitor; (3) the N-terminal and C-terminal cysteine-rich regions are conserved capping motifs. Furthermore, the structure shows that decorin dimerizes through the concave surface of its LRR domain, which has been implicated previously in its interaction with collagen. We have established that both decorin and opticin, another SLRP, form stable dimers in solution. Conservation of residues involved in decorin dimerization suggests that the mode of dimerization for other SLRPs will be similar. Taken together these results suggest the need for reevaluation of currently accepted models of SLRP interaction with their ligands.

  11. When a domain isn’t a domain, and why it’s important to properly filter proteins in databases

    PubMed Central

    Towse, Clare-Louise; Daggett, Valerie

    2013-01-01

    Summary Membership in a protein domain database does not a domain make; a feature we realized when generating a consensus view of protein fold space with our Consensus Domain Dictionary (CDD). This dictionary was used to select representative structures for characterization of the protein dynameome: the Dynameomics initiative. Through this endeavor we rejected a surprising 40% of the 1695 folds in the CDD as being non-autonomous folding units. Although some of this was due to the challenges of grouping similar fold topologies, the dissonance between the cataloguing and structural qualification of protein domains remains surprising. Another potential factor is previously overlooked intrinsic disorder; predicted estimates suggest 40% of proteins to have either local or global disorder. One thing is clear, filtering a structural database and ensuring a consistent definition for protein domains is crucial, and caution is prescribed when generalizations of globular domains are drawn from unfiltered protein domain datasets. PMID:23108912

  12. An Algebro-Topological Description of Protein Domain Structure

    PubMed Central

    Penner, Robert Clark; Knudsen, Michael; Wiuf, Carsten; Andersen, Jørgen Ellegaard

    2011-01-01

    The space of possible protein structures appears vast and continuous, and the relationship between primary, secondary and tertiary structure levels is complex. Protein structure comparison and classification is therefore a difficult but important task since structure is a determinant for molecular interaction and function. We introduce a novel mathematical abstraction based on geometric topology to describe protein domain structure. Using the locations of the backbone atoms and the hydrogen bonds, we build a combinatorial object – a so-called fatgraph. The description is discrete yet gives rise to a 2-dimensional mathematical surface. Thus, each protein domain corresponds to a particular mathematical surface with characteristic topological invariants, such as the genus (number of holes) and the number of boundary components. Both invariants are global fatgraph features reflecting the interconnectivity of the domain by hydrogen bonds. We introduce the notion of robust variables, that is variables that are robust towards minor changes in the structure/fatgraph, and show that the genus and the number of boundary components are robust. Further, we invesigate the distribution of different fatgraph variables and show how only four variables are capable of distinguishing different folds. We use local (secondary) and global (tertiary) fatgraph features to describe domain structures and illustrate that they are useful for classification of domains in CATH. In addition, we combine our method with two other methods thereby using primary, secondary, and tertiary structure information, and show that we can identify a large percentage of new and unclassified structures in CATH. PMID:21629687

  13. Bpur, the Lyme Disease Spirochete's PUR Domain Protein

    PubMed Central

    Jutras, Brandon L.; Chenail, Alicia M.; Carroll, Dustin W.; Miller, M. Clarke; Zhu, Haining; Bowman, Amy; Stevenson, Brian

    2013-01-01

    The PUR domain is a nucleic acid-binding motif found in critical regulatory proteins of higher eukaryotes and in certain species of bacteria. During investigations into mechanisms by which the Lyme disease spirochete controls synthesis of its Erp surface proteins, it was discovered that the borrelial PUR domain protein, Bpur, binds with high affinity to double-stranded DNA adjacent to the erp transcriptional promoter. Bpur was found to enhance the effects of the erp repressor protein, BpaB. Bpur also bound single-stranded DNA and RNA, with relative affinities RNA > double-stranded DNA > single-stranded DNA. Rational site-directed mutagenesis of Bpur identified amino acid residues and domains critical for interactions with nucleic acids, and it revealed that the PUR domain has a distinct mechanism of interaction with each type of nucleic acid ligand. These data shed light on both gene regulation in the Lyme spirochete and functional mechanisms of the widely distributed PUR domain. PMID:23846702

  14. Arabidopsis thaliana expresses two functional isoforms of Arvp, a protein involved in the regulation of cellular lipid homeostasis.

    PubMed

    Forés, Oriol; Arró, Montserrat; Pahissa, Albert; Ferrero, Sergi; Germann, Melody; Stukey, Joseph; McDonough, Virginia; Nickels, Joseph T; Campos, Narciso; Ferrer, Albert

    2006-07-01

    Arv1p is involved in the regulation of cellular lipid homeostasis in the yeast Saccharomyces cerevisiae. Here, we report the characterization of the two Arabidopsis thaliana ARV genes and the encoded proteins, AtArv1p and AtArv2p. The functional identity of AtArv1p and AtArv2p was demonstrated by complementation of the thermosensitive phenotype of the arv1Delta yeast mutant strain YJN1756. Both A. thaliana proteins contain the bipartite Arv1 homology domain (AHD), which consists of an NH(2)-terminal cysteine-rich subdomain with a putative zinc-binding motif followed by a C-terminal subdomain of 33 amino acids. Removal of the cysteine-rich subdomain has no effect on Arvp activity, whereas the presence of the C-terminal subdomain of the AHD is critical for Arvp function. Localization experiments of AtArv1p and AtArv2p tagged with green fluorescent protein (GFP) and expressed in onion epidermal cells demonstrated that both proteins are exclusively targeted to the endoplasmic reticulum. Analysis of beta-glucuronidase (GUS) activity in transgenic A. thaliana plants carrying chimeric ARV1::GUS and ARV2::GUS genes showed that ARV gene promoters direct largely overlapping patterns of expression that are restricted to tissues in which cells are actively dividing or expanding. The results of this study support the notion that plants, yeast and mammals share common molecular mechanisms regulating intracellular lipid homeostasis.

  15. The mammalian autophagy initiator complex contains 2 HORMA domain proteins

    PubMed Central

    Michel, Max; Schwarten, Melanie; Decker, Christina; Nagel-Steger, Luitgard; Willbold, Dieter; Weiergräber, Oliver H

    2015-01-01

    ATG101 is an essential component of the ULK complex responsible for initiating cellular autophagy in mammalian cells; its 3-dimensional structure and molecular function, however, are currently unclear. Here we present the X-ray structure of human ATG101. The protein displays an open HORMA domain fold. Both structural properties and biophysical evidence indicate that ATG101 is locked in this conformation, in contrast to the prototypical HORMA domain protein MAD2. Moreover, we discuss a potential mode of dimerization with ATG13 as a fundamental aspect of ATG101 function. PMID:26236954

  16. BAG4/SODD Protein Contains a Short BAG Domain

    SciTech Connect

    Briknarova, Klara; Takayama, Shinichi; Homma, Sachiko; Baker, Kelly; Cabezas, Edelmira; Hoyt, David W.; Li, Zhen; Satterthwait, Arnold C.; Ely, Kathryn R.

    2002-08-23

    BAG proteins are molecular chaperone regulators that affect diverse cellular pathways. All members share a conserved motif, called the ''BAG domain'' (BD), which binds to Hsp70/Hsc70 family proteins and modulates their activity. We have determined the solution structure of BD from BAG4/SODD (Bcl-2 ? Associated Athanogene / Silencer of Death Domains) by multidimensional nuclear magnetic resonance methods and compared it to the corresponding domain in BAG1 (Briknarova et al., Nature Struct. Biol. 8:349-352). The difference between BDs from these two BAG proteins is striking and the structural comparison defines two subfamilies of mammalian BD-containing proteins. One subfamily includes the closely related BAG3, BAG4 and BAG5 proteins, and the other is represented by BAG1 which contains a structurally and evolutionarily distinct BD. BDs from both BAG1 and BAG4 are three-helix bundles; however, in BAG4, each helix in this bundle is three to four turns shorter than its counterpart in BAG1, which reduces the length of the domain by one-third. BAG4 BD thus represents a prototype of the minimal functional fragment that is capable of binding to Hsc70 and modulating its chaperone activity.

  17. Structural basis of Smoothened regulation by its extracellular domains

    NASA Astrophysics Data System (ADS)

    Byrne, Eamon F. X.; Sircar, Ria; Miller, Paul S.; Hedger, George; Luchetti, Giovanni; Nachtergaele, Sigrid; Tully, Mark D.; Mydock-McGrane, Laurel; Covey, Douglas F.; Rambo, Robert P.; Sansom, Mark S. P.; Newstead, Simon; Rohatgi, Rajat; Siebold, Christian

    2016-07-01

    Developmental signals of the Hedgehog (Hh) and Wnt families are transduced across the membrane by Frizzled-class G-protein-coupled receptors (GPCRs) composed of both a heptahelical transmembrane domain (TMD) and an extracellular cysteine-rich domain (CRD). How the large extracellular domains of GPCRs regulate signalling by the TMD is unknown. We present crystal structures of the Hh signal transducer and oncoprotein Smoothened, a GPCR that contains two distinct ligand-binding sites: one in its TMD and one in the CRD. The CRD is stacked atop the TMD, separated by an intervening wedge-like linker domain. Structure-guided mutations show that the interface between the CRD, linker domain and TMD stabilizes the inactive state of Smoothened. Unexpectedly, we find a cholesterol molecule bound to Smoothened in the CRD binding site. Mutations predicted to prevent cholesterol binding impair the ability of Smoothened to transmit native Hh signals. Binding of a clinically used antagonist, vismodegib, to the TMD induces a conformational change that is propagated to the CRD, resulting in loss of cholesterol from the CRD–linker domain–TMD interface. Our results clarify the structural mechanism by which the activity of a GPCR is controlled by ligand-regulated interactions between its extracellular and transmembrane domains.

  18. Facilitation of Endosomal Recycling by an IRG Protein Homolog Maintains Apical Tubule Structure in Caenorhabditis elegans.

    PubMed

    Grussendorf, Kelly A; Trezza, Christopher J; Salem, Alexander T; Al-Hashimi, Hikmat; Mattingly, Brendan C; Kampmeyer, Drew E; Khan, Liakot A; Hall, David H; Göbel, Verena; Ackley, Brian D; Buechner, Matthew

    2016-08-01

    Determination of luminal diameter is critical to the function of small single-celled tubes. A series of EXC proteins, including EXC-1, prevent swelling of the tubular excretory canals in Caenorhabditis elegans In this study, cloning of exc-1 reveals it to encode a homolog of mammalian IRG proteins, which play roles in immune response and autophagy and are associated with Crohn's disease. Mutants in exc-1 accumulate early endosomes, lack recycling endosomes, and exhibit abnormal apical cytoskeletal structure in regions of enlarged tubules. EXC-1 interacts genetically with two other EXC proteins that also affect endosomal trafficking. In yeast two-hybrid assays, wild-type and putative constitutively active EXC-1 binds to the LIM-domain protein EXC-9, whose homolog, cysteine-rich intestinal protein, is enriched in mammalian intestine. These results suggest a model for IRG function in forming and maintaining apical tubule structure via regulation of endosomal recycling. PMID:27334269

  19. Methods of use of cellulose binding domain proteins

    DOEpatents

    Shoseyov, O.; Shpiegl, I.; Goldstein, M.A.; Doi, R.H.

    1997-09-23

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques. 16 figs.

  20. Methods of use of cellulose binding domain proteins

    DOEpatents

    Shoseyov, Oded; Shpiegl, Itai; Goldstein, Marc A.; Doi, Roy H.

    1997-01-01

    A cellulose binding domain (CBD) having a high affinity for crystalline cellulose and chitin is disclosed, along with methods for the molecular cloning and recombinant production thereof. Fusion products comprising the CBD and a second protein are likewise described. A wide range of applications are contemplated for both the CBD and the fusion products, including drug delivery, affinity separations, and diagnostic techniques.

  1. Self-organization of protein with helical domains

    NASA Astrophysics Data System (ADS)

    Frenkel, Zakhar M.; Melker, Alexander I.

    2002-02-01

    In this contribution, we report on a study of the self- organization of isolated polypeptides. The process is computer simulated by the method of molecular dynamics. We observed that the helical structures have a very impotent role in the protein self-organization. We have found conditions under which such structures to be stable. The process and result of self-organization under these conditions were sharply different from others, unable to maintain the helical structures. The structures obtained have a strong resemblance to the native conformations of the corresponding real proteins in a case of proteins composed by helical domains.

  2. Proposed acquisition of an animal protein domain by bacteria.

    PubMed Central

    Bork, P; Doolittle, R F

    1992-01-01

    A systematic screen of a protein sequence data base confirms that the fibronectin type III (Fn3) domain is widely distributed among animal proteins and occurs also in several bacterial carbohydrate-splitting enzymes. The motif has yet to be identified in proteins from plants or fungi. All indications are that the bacterial sequences are much too similar to the animal type to be the result of conventional vertical descent. Rather, it is likely that the bacterial units were initially acquired from an animal source and are being spread further by horizontal transfers between distantly related bacteria. PMID:1409594

  3. Cooperation of phosphoinositides and BAR domain proteins in endosomal tubulation.

    PubMed

    Shinozaki-Narikawa, Naeko; Kodama, Tatsuhiko; Shibasaki, Yoshikazu

    2006-11-01

    Phosphorylated derivatives of phosphatidylinositol (PtdIns) regulate many intracellular events, including vesicular trafficking and actin remodeling, by recruiting proteins to their sites of function. PtdIns(4,5)-bisphosphate [PI(4,5)P2] and related phosphoinositides are mainly synthesized by type I PtdIns-4-phosphate 5-kinases (PIP5Ks). We found that PIP5K induces endosomal tubules in COS-7 cells. ADP-ribosylation factor (ARF) 6 has been shown to act upstream of PIP5K and regulate endocytic transport and tubulation. ARF GAP with coiled-coil, ankyrin repeat, and pleckstrin homology domains 1 (ACAP1) has guanosine triphosphatase-activating protein (GAP) activity for ARF6. While there were few tubules induced by the expression of ACAP1 alone, numerous endosomal tubules were induced by coexpression of PIP5K and ACAP1. ACAP1 has a pleckstrin homology (PH) domain known to bind phosphoinositide and a Bin/amphiphysin/Rvs (BAR) domain that has been reported to detect membrane curvature. Truncated and point mutations in the ACAP1 BAR and PH domains revealed that both BAR and PH domains are required for tubulation. These results suggest that two ARF6 downstream molecules, PIP5K and ACAP1, function together in endosomal tubulation and that phosphoinositide levels may regulate endosomal dynamics. PMID:17010122

  4. TOPDOM: database of conservatively located domains and motifs in proteins

    PubMed Central

    Varga, Julia; Dobson, László; Tusnády, Gábor E.

    2016-01-01

    Summary: The TOPDOM database—originally created as a collection of domains and motifs located consistently on the same side of the membranes in α-helical transmembrane proteins—has been updated and extended by taking into consideration consistently localized domains and motifs in globular proteins, too. By taking advantage of the recently developed CCTOP algorithm to determine the type of a protein and predict topology in case of transmembrane proteins, and by applying a thorough search for domains and motifs as well as utilizing the most up-to-date version of all source databases, we managed to reach a 6-fold increase in the size of the whole database and a 2-fold increase in the number of transmembrane proteins. Availability and implementation: TOPDOM database is available at http://topdom.enzim.hu. The webpage utilizes the common Apache, PHP5 and MySQL software to provide the user interface for accessing and searching the database. The database itself is generated on a high performance computer. Contact: tusnady.gabor@ttk.mta.hu. Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153630

  5. A strategy for shuffling numerous Bacillus thuringiensis crystal protein domains.

    PubMed

    Knight, Jacqueline S; Broadwell, Andrew H; Grant, Warwick N; Shoemaker, Charles B

    2004-12-01

    Bacillus thuringiensis that produce Cry1Ba are toxic to Lucilia cuprina Wiedemann blow fly maggots in vivo, and when applied in quantity to sheep fleece, provide up to 6 wk protection against flystrike in the field. These strains also are toxic to Epiphyas postvittana (Walker) light brown apple moth caterpillars. B. thuringiensis expressing Cry1Db are toxic only to E. postvittana. When Cry1Ba and Cry1Db proteins are expressed within Escherichia coli, the recombinant bacteria have the same toxicity profile as the wild-type B. thuringiensis strain. In an effort to develop a Cry protein with improved blow fly toxicity, three different internal regions of Cry1Ba coding DNA, encoding all or part of domains I, II and III respectively were systematically exchanged with the corresponding region from a pool of other Cry protein coding DNAs. The chimeric products were then expressed in recombinant E. coli, and the resulting bacteria assayed for toxicity on L. cuprina and E. postvittana. Clones having insecticide bioactivity were characterized to identify the source of the replacement Cry domain. Despite successfully expressing a large number and variety of chimeric proteins within E. coli, many with measurable insecticidal activity, none of the chimeras had greater potency against L. cuprina than the wild-type Cry1Ba. Chimeric replacements involving domains I and II were rarely active, whereas a much higher proportion of domain III chimeras had some bioactivity. We conclude that shuffling of Cry coding regions through joining at the major conserved sequence motifs is an effective means for the production of a diverse number of chimeric Cry proteins but that such toxins with enhanced bioactive properties will be rare or nonexistent. PMID:15666731

  6. Binding of Y-box proteins to RNA: involvement of different protein domains.

    PubMed Central

    Ladomery, M; Sommerville, J

    1994-01-01

    Eukaryotic Y-box proteins are reported to interact with a wide variety of nucleic acid structures to act as transcription factors and mRNA masking proteins. The modular structure of Y-box proteins includes a highly conserved N-terminal cold-shock domain (CSD, equivalent to the bacterial cold-shock proteins) plus four basic C-terminal domains containing arginine clusters and aromatic residues. In addition, the basic domains are separated by acidic regions which contain several potential sites for serine/threonine phosphorylation. The interaction of Y-box proteins, isolated from Xenopus oocytes (FRGY2 type), with RNA molecules has been studied by UV crosslinking and protein fragmentation. We have identified two distinct binding activities. The CSD interacts preferentially with the polypurines poly(A,G) and poly(G) but not poly(A), this activity being sensitive to 5 mM MgCl2 but not to 5 mM spermidine. In the presence of 1 mM MgCl2 or 1 mM spermidine, the basic domains interact preferentially with poly(C,U), this activity being sensitive to 0.5 M NaCl. Binding of the basic domains is also sensitive to low concentrations of heparin. The basic domains can be crosslinked individually to labelled RNA. These results are discussed with reference to the various specificities noted in the binding of Y-box proteins to RNA and DNA. Images PMID:7530842

  7. Evolutionary History and Genome Organization of DUF1220 Protein Domains

    PubMed Central

    O’Bleness, Majesta S.; Dickens, C. Michael; Dumas, Laura J.; Kehrer-Sawatzki, Hildegard; Wyckoff, Gerald J.; Sikela, James M.

    2012-01-01

    DUF1220 protein domains exhibit the most extreme human lineage–specific (HLS) copy number increase of any protein coding region in the human genome and have recently been linked to evolutionary and pathological changes in brain size (e.g., 1q21‐associated microcephaly). These findings lend support to the view that DUF1220 domain dosage is a key factor in the determination of primate (and human) brain size. Here we analyze 41 animal genomes and present the most complete account to date of the evolutionary history and genome organization of DUF1220 domains and the gene family that encodes them (NBPF). Included among the novel features identified by this analysis is a DUF1220 domain precursor in nonmammalian vertebrates, a unique predicted promoter common to all mammalian NBPF genes, six distinct clades into which DUF1220 sequences can be subdivided, and a previously unknown member of the NBPF gene family (NBPF25). Most importantly, we show that the exceptional HLS increase in DUF1220 copy number (from 102 in our last common ancestor with chimp to 272 in human; an average HLS increase of ∼28 copies every million years since the Homo/Pan split) was driven by intragenic domain hyperamplification. This increase primarily involved a 4.7 kb, tandemly repeated three DUF1220 domain unit we have named the HLS DUF1220 triplet, a motif that is a likely candidate to underlie key properties unique to the Homo sapiens brain. Interestingly, all copies of the HLS DUF1220 triplet lie within a human-specific pericentric inversion that also includes the 1q12 C‐band, a polymorphic heterochromatin expansion that is unique to the human genome. Both cytogenetic features likely played key roles in the rapid HLS DUF1220 triplet hyperamplification, which is among the most striking genomic changes specific to the human lineage. PMID:22973535

  8. Evolutionary history and genome organization of DUF1220 protein domains.

    PubMed

    O'Bleness, Majesta S; Dickens, C Michael; Dumas, Laura J; Kehrer-Sawatzki, Hildegard; Wyckoff, Gerald J; Sikela, James M

    2012-09-01

    DUF1220 protein domains exhibit the most extreme human lineage-specific (HLS) copy number increase of any protein coding region in the human genome and have recently been linked to evolutionary and pathological changes in brain size (e.g., 1q21-associated microcephaly). These findings lend support to the view that DUF1220 domain dosage is a key factor in the determination of primate (and human) brain size. Here we analyze 41 animal genomes and present the most complete account to date of the evolutionary history and genome organization of DUF1220 domains and the gene family that encodes them (NBPF). Included among the novel features identified by this analysis is a DUF1220 domain precursor in nonmammalian vertebrates, a unique predicted promoter common to all mammalian NBPF genes, six distinct clades into which DUF1220 sequences can be subdivided, and a previously unknown member of the NBPF gene family (NBPF25). Most importantly, we show that the exceptional HLS increase in DUF1220 copy number (from 102 in our last common ancestor with chimp to 272 in human; an average HLS increase of ~28 copies every million years since the Homo/Pan split) was driven by intragenic domain hyperamplification. This increase primarily involved a 4.7 kb, tandemly repeated three DUF1220 domain unit we have named the HLS DUF1220 triplet, a motif that is a likely candidate to underlie key properties unique to the Homo sapiens brain. Interestingly, all copies of the HLS DUF1220 triplet lie within a human-specific pericentric inversion that also includes the 1q12 C-band, a polymorphic heterochromatin expansion that is unique to the human genome. Both cytogenetic features likely played key roles in the rapid HLS DUF1220 triplet hyperamplification, which is among the most striking genomic changes specific to the human lineage. PMID:22973535

  9. Control of domain swapping in bovine odorant-binding protein.

    PubMed Central

    Ramoni, Roberto; Vincent, Florence; Ashcroft, Alison E; Accornero, Paolo; Grolli, Stefano; Valencia, Christel; Tegoni, Mariella; Cambillau, Christian

    2002-01-01

    As revealed by the X-ray structure, bovine odorant-binding protein (OBPb) is a domain swapped dimer [Tegoni, Ramoni, Bignetti, Spinelli and Cambillau (1996) Nat. Struct. Biol. 3, 863-867; Bianchet, Bains, Petosi, Pevsner, Snyder, Monaco and Amzel (1996) Nat. Struct. Biol. 3, 934-939]. This contrasts with all known mammalian OBPs, which are monomers, and in particular with porcine OBP (OBPp), sharing 42.3% identity with OBPb. By the mechanism of domain swapping, monomers are proposed to evolve into dimers and oligomers, as observed in human prion. Comparison of bovine and porcine OBP sequences pointed at OBPp glycine 121, in the hinge linking the beta-barrel to the alpha-helix. The absence of this residue in OBPb might explain why the normal lipocalin beta-turn is not formed. In order to decipher the domain swapping determinants we have produced a mutant of OBPb in which a glycine residue was inserted after position 121, and a mutant of OBPp in which glycine 121 was deleted. The latter mutation did not result in dimerization, while OBPb-121Gly+ became monomeric, suggesting that domain swapping was reversed. Careful structural analysis revealed that besides the presence of a glycine in the hinge, the dimer interface formed by the C-termini and by the presence of the lipocalins conserved disulphide bridge may also control domain swapping. PMID:11931632

  10. PSCL: predicting protein subcellular localization based on optimal functional domains.

    PubMed

    Wang, Kai; Hu, Le-Le; Shi, Xiao-He; Dong, Ying-Song; Li, Hai-Peng; Wen, Tie-Qiao

    2012-01-01

    It is well known that protein subcellular localizations are closely related to their functions. Although many computational methods and tools are available from Internet, it is still necessary to develop new algorithms in this filed to gain a better understanding of the complex mechanism of plant subcellular localization. Here, we provide a new web server named PSCL for plant protein subcellular localization prediction by employing optimized functional domains. After feature optimization, 848 optimal functional domains from InterPro were obtained to represent each protein. By calculating the distances to each of the seven categories, PSCL showing the possibilities of a protein located into each of those categories in ascending order. Toward our dataset, PSCL achieved a first-order predicted accuracy of 75.7% by jackknife test. Gene Ontology enrichment analysis showing that catalytic activity, cellular process and metabolic process are strongly correlated with the localization of plant proteins. Finally, PSCL, a Linux Operate System based web interface for the predictor was designed and is accessible for public use at http://pscl.biosino.org/.

  11. Deployment of membrane fusion protein domains during fusion.

    PubMed

    Bentz, J; Mittal, A

    2000-01-01

    It is clear that both viral and intracellular membrane fusion proteins contain a minimal set of domains which must be deployed at the appropriate time during the fusion process. An account of these domains and their functions is given here for the four best-described fusion systems: influenza HA, sendai virus F1, HIV gp120/41 and the neuronal SNARE core composed of synaptobrevin (syn), syntaxin (stx) and the N- and C-termini of SNAP25 (sn25), together with the Ca(2+)binding protein synaptotagmin (syt). Membrane fusion begins with the binding of the virion or vesicle to the target membrane via receptors. The committed step in influenza HA- mediated fusion begins with an aggregate of HAs (at least eight) with some of their HA2 N-termini, a.k.a. fusion peptides, embedded into the viral bilayer (Bentz, 2000 a). The hypothesis presented in Bentz (2000 b) is that the conformational change of HA to the extended coiled coil extracts the fusion peptides from the viral bilayer. When this extraction occurs from the center of the site of restricted lipid flow, it exposes acyl chains and parts of the HA transmembrane domains to the aqueous media, i.e. a hydrophobic defect is formed. This is the 'transition state' of the committed step of fusion. It is stabilized by a 'dam' of HAs, which are inhibited from diffusing away by the rest of the HAs in the aggregate and because that would initially expose more acyl chains to water. Recruitment of lipids from the apposed target membrane can heal this hydrophobic defect, initiating lipid mixing and fusion. The HA transmembrane domains are required to be part of the hydrophobic defect, because the HA aggregate must be closely packed enough to restrict lipid flow. This hypothesis provides a simple and direct coupling between the energy released by the formation of the coiled coil to the energy needed to create and stabilize the high energy intermediates of fusion. Several of these essential domains have been described for the viral fusion

  12. A database of domain definitions for proteins with complex interdomain geometry.

    PubMed

    Majumdar, Indraneel; Kinch, Lisa N; Grishin, Nick V

    2009-01-01

    Protein structural domains are necessary for understanding evolution and protein folding, and may vary widely from functional and sequence based domains. Although, various structural domain databases exist, defining domains for some proteins is non-trivial, and definitions of their domain boundaries are not available. Here, we present a novel database of manually defined structural domains for a representative set of proteins from the SCOP "multi-domain proteins" class. (http://prodata.swmed.edu/multidom/). We consider our domains as mobile evolutionary units, which may rearrange during protein evolution. Additionally, they may be visualized as structurally compact and possibly independently folding units. We also found that representing domains as evolutionary and folding units do not always lead to a unique domain definition. However, unlike existing databases, we retain and refine these "alternate" domain definitions after careful inspection of structural similarity, functional sites and automated domain definition methods. We provide domain definitions, including actual residue boundaries, for proteins that well known databases like SCOP and CATH do not attempt to split. Our alternate domain definitions are suitable for sequence and structure searches by automated methods. Additionally, the database can be used for training and testing domain delineation algorithms. Since our domains represent structurally compact evolutionary units, the database may be useful for studying domain properties and evolution. PMID:19352501

  13. Using support vector machine for improving protein-protein interaction prediction utilizing domain interactions

    SciTech Connect

    Singhal, Mudita; Shah, Anuj R.; Brown, Roslyn N.; Adkins, Joshua N.

    2010-10-02

    Understanding protein interactions is essential to gain insights into the biological processes at the whole cell level. The high-throughput experimental techniques for determining protein-protein interactions (PPI) are error prone and expensive with low overlap amongst them. Although several computational methods have been proposed for predicting protein interactions there is definite room for improvement. Here we present DomainSVM, a predictive method for PPI that uses computationally inferred domain-domain interaction values in a Support Vector Machine framework to predict protein interactions. DomainSVM method utilizes evidence of multiple interacting domains to predict a protein interaction. It outperforms existing methods of PPI prediction by achieving very high explanation ratios, precision, specificity, sensitivity and F-measure values in a 10 fold cross-validation study conducted on the positive and negative PPIs in yeast. A Functional comparison study using GO annotations on the positive and the negative test sets is presented in addition to discussing novel PPI predictions in Salmonella Typhimurium.

  14. Normalized Cut Algorithm for Automated Assignment of Protein Domains

    NASA Technical Reports Server (NTRS)

    Samanta, M. P.; Liang, S.; Zha, H.; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    We present a novel computational method for automatic assignment of protein domains from structural data. At the core of our algorithm lies a recently proposed clustering technique that has been very successful for image-partitioning applications. This grap.,l-theory based clustering method uses the notion of a normalized cut to partition. an undirected graph into its strongly-connected components. Computer implementation of our method tested on the standard comparison set of proteins from the literature shows a high success rate (84%), better than most existing alternative In addition, several other features of our algorithm, such as reliance on few adjustable parameters, linear run-time with respect to the size of the protein and reduced complexity compared to other graph-theory based algorithms, would make it an attractive tool for structural biologists.

  15. The KP4 killer protein gene family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Killer protein 4 (KP4) is a well studied toxin secreted by the maize smut fungus Ustilago maydis that kills sensitive Ustilago strains as well as inhibits Fusarium and plant root growth. This small, cysteine rich protein is encoded by a virus that depends on host survival for replication. KP4 functi...

  16. Ribosome-mediated translational pause and protein domain organization.

    PubMed Central

    Thanaraj, T. A.; Argos, P.

    1996-01-01

    Because regions on the messenger ribonucleic acid differ in the rate at which they are translated by the ribosome and because proteins can fold cotranslationally on the ribosome, a question arises as to whether the kinetics of translation influence the folding events in the growing nascent polypeptide chain. Translationally slow regions were identified on mRNAs for a set of 37 multidomain proteins from Escherichia coli with known three-dimensional structures. The frequencies of individual codons in mRNAs of highly expressed genes from E. coli were taken as a measure of codon translation speed. Analysis of codon usage in slow regions showed a consistency with the experimentally determined translation rates of codons; abundant codons that are translated with faster speeds compared with their synonymous codons were found to be avoided; rare codons that are translated at an unexpectedly higher rate were also found to be avoided in slow regions. The statistical significance of the occurrence of such slow regions on mRNA spans corresponding to the oligopeptide domain termini and linking regions on the encoded proteins was assessed. The amino acid type and the solvent accessibility of the residues coded by such slow regions were also examined. The results indicated that protein domain boundaries that mark higher-order structural organization are largely coded by translationally slow regions on the RNA and are composed of such amino acids that are stickier to the ribosome channel through which the synthesized polypeptide chain emerges into the cytoplasm. The translationally slow nucleotide regions on mRNA possess the potential to form hairpin secondary structures and such structures could further slow the movement of ribosome. The results point to an intriguing correlation between protein synthesis machinery and in vivo protein folding. Examination of available mutagenic data indicated that the effects of some of the reported mutations were consistent with our hypothesis

  17. AMIN domains have a predicted role in localization of diverse periplasmic protein complexes

    PubMed Central

    de Souza, Robson Francisco; Anantharaman, Vivek; de Souza, Sandro José; Aravind, L.; Gueiros-Filho, Frederico J.

    2008-01-01

    We describe AMIN (Amidase N-terminal domain), a novel protein domain found specifically in bacterial periplasmic proteins. AMIN domains are widely distributed among peptidoglycan hydrolases and transporter protein families. Based on experimental data, contextual information and phyletic profiles, we suggest that AMIN domains mediate the targeting of periplasmic or extracellular proteins to specific regions of the bacterial envelope. Contact: fgueiros@iq.usp.br Supplementary information: Supplementary data are available at Bioinformatics online. PMID:18723522

  18. Purification and Aggregation of the Amyloid Precursor Protein Intracellular Domain

    PubMed Central

    El Ayadi, Amina; Stieren, Emily S.; Barral, José M.; Oberhauser, Andres F.; Boehning, Darren

    2012-01-01

    Amyloid precursor protein (APP) is a type I transmembrane protein associated with the pathogenesis of Alzheimer's disease (AD). APP is characterized by a large extracellular domain and a short cytosolic domain termed the APP intracellular domain (AICD). During maturation through the secretory pathway, APP can be cleaved by proteases termed α, β, and γ-secretases1. Sequential proteolytic cleavage of APP with β and γ-secretases leads to the production of a small proteolytic peptide, termed Aβ, which is amyloidogenic and the core constituent of senile plaques. The AICD is also liberated from the membrane after secretase processing, and through interactions with Fe65 and Tip60, can translocate to the nucleus to participate in transcription regulation of multiple target genes2,3. Protein-protein interactions involving the AICD may affect trafficking, processing, and cellular functions of holo-APP and its C-terminal fragments. We have recently shown that AICD can aggregate in vitro, and this process is inhibited by the AD-implicated molecular chaperone ubiquilin-14. Consistent with these findings, the AICD has exposed hydrophobic domains and is intrinsically disordered in vitro5,6, however it obtains stable secondary structure when bound to Fe657. We have proposed that ubiquilin-1 prevents inappropriate inter- and intramolecular interactions of AICD, preventing aggregation in vitro and in intact cells4. While most studies focus on the role of APP in the pathogenesis of AD, the role of AICD in this process is not clear. Expression of AICD has been shown to induce apoptosis8, to modulate signaling pathways9, and to regulate calcium signaling10. Over-expression of AICD and Fe65 in a transgenic mouse model induces Alzheimer's like pathology11, and recently AICD has been detected in brain lysates by western blotting when using appropriate antigen retrieval techniques12. To facilitate structural, biochemical, and biophysical studies of the AICD, we have developed a

  19. Method for identification of rigid domains and hinge residues in proteins based on exhaustive enumeration.

    PubMed

    Sim, Jaehyun; Sim, Jun; Park, Eunsung; Lee, Julian

    2015-06-01

    Many proteins undergo large-scale motions where relatively rigid domains move against each other. The identification of rigid domains, as well as the hinge residues important for their relative movements, is important for various applications including flexible docking simulations. In this work, we develop a method for protein rigid domain identification based on an exhaustive enumeration of maximal rigid domains, the rigid domains not fully contained within other domains. The computation is performed by mapping the problem to that of finding maximal cliques in a graph. A minimal set of rigid domains are then selected, which cover most of the protein with minimal overlap. In contrast to the results of existing methods that partition a protein into non-overlapping domains using approximate algorithms, the rigid domains obtained from exact enumeration naturally contain overlapping regions, which correspond to the hinges of the inter-domain bending motion. The performance of the algorithm is demonstrated on several proteins.

  20. A Database of Domain Definitions for Proteins with Complex Interdomain Geometry

    PubMed Central

    Majumdar, Indraneel; Kinch, Lisa N.; Grishin, Nick V.

    2009-01-01

    Protein structural domains are necessary for understanding evolution and protein folding, and may vary widely from functional and sequence based domains. Although, various structural domain databases exist, defining domains for some proteins is non-trivial, and definitions of their domain boundaries are not available. Here, we present a novel database of manually defined structural domains for a representative set of proteins from the SCOP “multi-domain proteins” class. (http://prodata.swmed.edu/multidom/). We consider our domains as mobile evolutionary units, which may rearrange during protein evolution. Additionally, they may be visualized as structurally compact and possibly independently folding units. We also found that representing domains as evolutionary and folding units do not always lead to a unique domain definition. However, unlike existing databases, we retain and refine these “alternate” domain definitions after careful inspection of structural similarity, functional sites and automated domain definition methods. We provide domain definitions, including actual residue boundaries, for proteins that well known databases like SCOP and CATH do not attempt to split. Our alternate domain definitions are suitable for sequence and structure searches by automated methods. Additionally, the database can be used for training and testing domain delineation algorithms. Since our domains represent structurally compact evolutionary units, the database may be useful for studying domain properties and evolution. PMID:19352501

  1. Protein-protein interaction domains of Bacillus subtilis DivIVA.

    PubMed

    van Baarle, Suey; Celik, Ilkay Nazli; Kaval, Karan Gautam; Bramkamp, Marc; Hamoen, Leendert W; Halbedel, Sven

    2013-03-01

    DivIVA proteins are curvature-sensitive membrane binding proteins that recruit other proteins to the poles and the division septum. They consist of a conserved N-terminal lipid binding domain fused to a less conserved C-terminal domain. DivIVA homologues interact with different proteins involved in cell division, chromosome segregation, genetic competence, or cell wall synthesis. It is unknown how DivIVA interacts with these proteins, and we used the interaction of Bacillus subtilis DivIVA with MinJ and RacA to investigate this. MinJ is a transmembrane protein controlling division site selection, and the DNA-binding protein RacA is crucial for chromosome segregation during sporulation. Initial bacterial two-hybrid experiments revealed that the C terminus of DivIVA appears to be important for recruiting both proteins. However, the interpretation of these results is limited since it appeared that C-terminal truncations also interfere with DivIVA oligomerization. Therefore, a chimera approach was followed, making use of the fact that Listeria monocytogenes DivIVA shows normal polar localization but is not biologically active when expressed in B. subtilis. Complementation experiments with different chimeras of B. subtilis and L. monocytogenes DivIVA suggest that MinJ and RacA bind to separate DivIVA domains. Fluorescence microscopy of green fluorescent protein-tagged RacA and MinJ corroborated this conclusion and suggests that MinJ recruitment operates via the N-terminal lipid binding domain, whereas RacA interacts with the C-terminal domain. We speculate that this difference is related to the cellular compartments in which MinJ and RacA are active: the cell membrane and the cytoplasm, respectively.

  2. Protein-Protein Interaction Domains of Bacillus subtilis DivIVA

    PubMed Central

    van Baarle, Suey; Celik, Ilkay Nazli; Kaval, Karan Gautam; Bramkamp, Marc

    2013-01-01

    DivIVA proteins are curvature-sensitive membrane binding proteins that recruit other proteins to the poles and the division septum. They consist of a conserved N-terminal lipid binding domain fused to a less conserved C-terminal domain. DivIVA homologues interact with different proteins involved in cell division, chromosome segregation, genetic competence, or cell wall synthesis. It is unknown how DivIVA interacts with these proteins, and we used the interaction of Bacillus subtilis DivIVA with MinJ and RacA to investigate this. MinJ is a transmembrane protein controlling division site selection, and the DNA-binding protein RacA is crucial for chromosome segregation during sporulation. Initial bacterial two-hybrid experiments revealed that the C terminus of DivIVA appears to be important for recruiting both proteins. However, the interpretation of these results is limited since it appeared that C-terminal truncations also interfere with DivIVA oligomerization. Therefore, a chimera approach was followed, making use of the fact that Listeria monocytogenes DivIVA shows normal polar localization but is not biologically active when expressed in B. subtilis. Complementation experiments with different chimeras of B. subtilis and L. monocytogenes DivIVA suggest that MinJ and RacA bind to separate DivIVA domains. Fluorescence microscopy of green fluorescent protein-tagged RacA and MinJ corroborated this conclusion and suggests that MinJ recruitment operates via the N-terminal lipid binding domain, whereas RacA interacts with the C-terminal domain. We speculate that this difference is related to the cellular compartments in which MinJ and RacA are active: the cell membrane and the cytoplasm, respectively. PMID:23264578

  3. Tubulin-G protein interactions involve microtubule polymerization domains

    SciTech Connect

    Nan Wang; Rasenick, M.M. )

    1991-11-12

    It has been suggested that elements of the cytoskeleton contribute to the signal transduction process and that they do so in association with one or more members of the signal-transducing G protein family. Relatively high-affinity binding between dimeric tubulin and the {alpha} subunits of G{sub s} and G{sub i1} has also been reported. Tubulin molecules, which exist in solution as {alpha}{beta} dimers, have binding domains for microtubule-associated proteins as well as for other tubulin dimers. This study represents an attempt to ascertain whether the association between G proteins and tubulin occurs at one of these sites. Removal of the binding site for MAP2 and tau from tubulin by subtilisin proteolysis did not influence the association of tubulin with G protein, as demonstrated in overlay studies with ({sup 125}I)tubulin. However, ring structures formed from subtilisin-treated tubulin were incapable of effecting such inhibition. Stable G protein-tubulin complexes were formed, and these were separated from free tubulin by Octyl-Sepharose chromatography. Using this methodology, it was demonstrated that assembled microtubules bound G protein quite weakly compared with tubulin dimers. The {alpha} subunit of G{sub i1} and, to a lesser extent, that of G{sub o} were demonstrated to inhibit microtubule polymerization. In aggregate, these data suggest that dimeric tubulin binds to the {alpha} subunits of G protein at the sites where it binds to other tubulin dimers during microtubule polymerization. Interaction with signal-transducing G proteins, thus, might represent a role for tubulin dimers which is independent of microtubule formation.

  4. Targeting the inhibitor of Apoptosis Protein BIR3 binding domains.

    PubMed

    Jaquith, James B

    2014-05-01

    The Inhibitor of Apoptosis Proteins (IAPs) play a critical role in the regulation of cellular apoptosis and cytokine signaling. IAP family members include XIAP, cIAP1, cIAP2, NAIP, survivin, Apollon/Bruce, ML-IAP/livin and TIAP. The IAPs have been targeted using both antisense oligonucleotides and small molecule inhibitors. Several research teams have advanced compounds that bind the highly conserved BIR3 domains of the IAPs into clinical trials, as single agents and in combination with standard of care. This patent review highlights the medicinal chemistry strategies that have been applied to the development of clinical compounds. PMID:24998289

  5. Basic Endochitinases Are Major Proteins in Castanea sativa Cotyledons 1

    PubMed Central

    Collada, Carmen; Casado, Rosa; Fraile, Aurora; Aragoncillo, Cipriano

    1992-01-01

    Basic endochitinases are abundant proteins in Castanea sativa Mill. cotyledons. Three basic chitinases were purified with molecular masses of 25, 26, and 32 kD (Ch1, Ch2, and Ch3) and with isoelectric points between 8 and 9.5. Antibodies raised against Ch1 cross-reacted with Ch2 and Ch3. However, Ch3 showed differences when compared with the other two enzymes, especially in its higher cysteine content. The size, amino acid composition, and N-terminal sequence of Ch1 indicate that it is a class II endochitinase and, therefore, has no cysteine-rich hevein domain. Ch1 inhibits the growth of the fungus Trichoderma viride. The biological role of these endochitinases is discussed. Images Figure 2 Figure 4 Figure 5 Figure 6 PMID:16653058

  6. Basic Endochitinases Are Major Proteins in Castanea sativa Cotyledons.

    PubMed

    Collada, C; Casado, R; Fraile, A; Aragoncillo, C

    1992-10-01

    Basic endochitinases are abundant proteins in Castanea sativa Mill. cotyledons. Three basic chitinases were purified with molecular masses of 25, 26, and 32 kD (Ch1, Ch2, and Ch3) and with isoelectric points between 8 and 9.5. Antibodies raised against Ch1 cross-reacted with Ch2 and Ch3. However, Ch3 showed differences when compared with the other two enzymes, especially in its higher cysteine content. The size, amino acid composition, and N-terminal sequence of Ch1 indicate that it is a class II endochitinase and, therefore, has no cysteine-rich hevein domain. Ch1 inhibits the growth of the fungus Trichoderma viride. The biological role of these endochitinases is discussed.

  7. Investigating the Role of Large-Scale Domain Dynamics in Protein-Protein Interactions

    PubMed Central

    Delaforge, Elise; Milles, Sigrid; Huang, Jie-rong; Bouvier, Denis; Jensen, Malene Ringkjøbing; Sattler, Michael; Hart, Darren J.; Blackledge, Martin

    2016-01-01

    Intrinsically disordered linkers provide multi-domain proteins with degrees of conformational freedom that are often essential for function. These highly dynamic assemblies represent a significant fraction of all proteomes, and deciphering the physical basis of their interactions represents a considerable challenge. Here we describe the difficulties associated with mapping the large-scale domain dynamics and describe two recent examples where solution state methods, in particular NMR spectroscopy, are used to investigate conformational exchange on very different timescales. PMID:27679800

  8. Investigating the Role of Large-Scale Domain Dynamics in Protein-Protein Interactions.

    PubMed

    Delaforge, Elise; Milles, Sigrid; Huang, Jie-Rong; Bouvier, Denis; Jensen, Malene Ringkjøbing; Sattler, Michael; Hart, Darren J; Blackledge, Martin

    2016-01-01

    Intrinsically disordered linkers provide multi-domain proteins with degrees of conformational freedom that are often essential for function. These highly dynamic assemblies represent a significant fraction of all proteomes, and deciphering the physical basis of their interactions represents a considerable challenge. Here we describe the difficulties associated with mapping the large-scale domain dynamics and describe two recent examples where solution state methods, in particular NMR spectroscopy, are used to investigate conformational exchange on very different timescales. PMID:27679800

  9. Investigating the Role of Large-Scale Domain Dynamics in Protein-Protein Interactions

    PubMed Central

    Delaforge, Elise; Milles, Sigrid; Huang, Jie-rong; Bouvier, Denis; Jensen, Malene Ringkjøbing; Sattler, Michael; Hart, Darren J.; Blackledge, Martin

    2016-01-01

    Intrinsically disordered linkers provide multi-domain proteins with degrees of conformational freedom that are often essential for function. These highly dynamic assemblies represent a significant fraction of all proteomes, and deciphering the physical basis of their interactions represents a considerable challenge. Here we describe the difficulties associated with mapping the large-scale domain dynamics and describe two recent examples where solution state methods, in particular NMR spectroscopy, are used to investigate conformational exchange on very different timescales.

  10. d-Omix: a mixer of generic protein domain analysis tools.

    PubMed

    Wichadakul, Duangdao; Numnark, Somrak; Ingsriswang, Supawadee

    2009-07-01

    Domain combination provides important clues to the roles of protein domains in protein function, interaction and evolution. We have developed a web server d-Omix (a Mixer of Protein Domain Analysis Tools) aiming as a unified platform to analyze, compare and visualize protein data sets in various aspects of protein domain combinations. With InterProScan files for protein sets of interest provided by users, the server incorporates four services for domain analyses. First, it constructs protein phylogenetic tree based on a distance matrix calculated from protein domain architectures (DAs), allowing the comparison with a sequence-based tree. Second, it calculates and visualizes the versatility, abundance and co-presence of protein domains via a domain graph. Third, it compares the similarity of proteins based on DA alignment. Fourth, it builds a putative protein network derived from domain-domain interactions from DOMINE. Users may select a variety of input data files and flexibly choose domain search tools (e.g. hmmpfam, superfamily) for a specific analysis. Results from the d-Omix could be interactively explored and exported into various formats such as SVG, JPG, BMP and CSV. Users with only protein sequences could prepare an InterProScan file using a service provided by the server as well. The d-Omix web server is freely available at http://www.biotec.or.th/isl/Domix.

  11. The SBASE protein domain library, release 3.0: a collection of annotated protein sequence segments.

    PubMed

    Pongor, S; Hátsági, Z; Degtyarenko, K; Fábián, P; Skerl, V; Hegyi, H; Murvai, J; Bevilacqua, V

    1994-09-01

    SBASE 3.0 is the third release of SBASE, a collection of annotated protein domain sequences. SBASE entries represent various structural, functional, ligand-binding and topogenic segments of proteins as defined by their publishing authors. SBASE can be used for establishing domain homologies using different database-search tools such as FASTA [Lipman and Pearson (1985) Science, 227, 1436-1441], and BLAST3 [Altschul and Lipman (1990) Proc. Natl. Acad. Sci. USA, 87, 5509-5513] which is especially useful in the case of loosely defined domain types for which efficient consensus patterns can not be established. The present release contains 41,749 entries provided with standardized names and cross-referenced to the major protein and nucleic acid databanks as well as to the PROSITE catalogue of protein sequence patterns. The entries are clustered into 2285 groups using the BLAST algorithm for computing similarity measures. SBASE 3.0 is freely available on request to the authors or by anonymous 'ftp' file transfer from < ftp.icgeb.trieste.it >. Individual records can be retrieved with the gopher server at < icgeb.trieste.it > and with a www-server at < http:@www.icgeb.trieste.it >. Automated searching of SBASE by BLAST can be carried out with the electronic mail server < sbase@icgeb.trieste.it >. Another mail server < domain@hubi.abc.hu > assigns SBASE domain homologies on the basis of SWISS-PROT searches. A comparison of pertinent search strategies is presented.

  12. The binding domain structure of retinoblastoma-binding proteins.

    PubMed Central

    Figge, J.; Breese, K.; Vajda, S.; Zhu, Q. L.; Eisele, L.; Andersen, T. T.; MacColl, R.; Friedrich, T.; Smith, T. F.

    1993-01-01

    The retinoblastoma gene product (Rb), a cellular growth suppressor, complexes with viral and cellular proteins that contain a specific binding domain incorporating three invariant residues: Leu-X-Cys-X-Glu, where X denotes a nonconserved residue. Hydrophobic and electrostatic properties are strongly conserved in this segment even though the nonconserved amino acids vary considerably from one Rb-binding protein to another. In this report, we present a diagnostic computer pattern for a high-affinity Rb-binding domain featuring the three conserved residues as well as the conserved physico-chemical properties. Although the pattern encompasses only 10 residues (with only 4 of these explicitly defined), it exhibits 100% sensitivity and 99.95% specificity in database searches. This implies that a certain pattern of structural and physico-chemical properties encoded by this short sequence is sufficient to govern specific Rb binding. We also present evidence that the secondary structural conformation through this region is important for effective Rb binding. PMID:8382993

  13. Protein domain analysis of genomic sequence data reveals regulation of LRR related domains in plant transpiration in Ficus.

    PubMed

    Lang, Tiange; Yin, Kangquan; Liu, Jinyu; Cao, Kunfang; Cannon, Charles H; Du, Fang K

    2014-01-01

    Predicting protein domains is essential for understanding a protein's function at the molecular level. However, up till now, there has been no direct and straightforward method for predicting protein domains in species without a reference genome sequence. In this study, we developed a functionality with a set of programs that can predict protein domains directly from genomic sequence data without a reference genome. Using whole genome sequence data, the programming functionality mainly comprised DNA assembly in combination with next-generation sequencing (NGS) assembly methods and traditional methods, peptide prediction and protein domain prediction. The proposed new functionality avoids problems associated with de novo assembly due to micro reads and small single repeats. Furthermore, we applied our functionality for the prediction of leucine rich repeat (LRR) domains in four species of Ficus with no reference genome, based on NGS genomic data. We found that the LRRNT_2 and LRR_8 domains are related to plant transpiration efficiency, as indicated by the stomata index, in the four species of Ficus. The programming functionality established in this study provides new insights for protein domain prediction, which is particularly timely in the current age of NGS data expansion.

  14. Hydrophobic and Basic Domains Target Proteins to Lipid Droplets

    PubMed Central

    Ingelmo-Torres, Mercedes; González-Moreno, Elena; Kassan, Adam; Hanzal-Bayer, Michael; Tebar, Francesc; Herms, Albert; Grewal, Thomas; Hancock, John F.; Enrich, Carlos; Bosch, Marta; Gross, Steven P.; Parton, Robert G.; Pol, Albert

    2010-01-01

    In recent years, progress in the study of the lateral organization of the plasma membrane has led to the proposal that mammalian cells use two different organelles to store lipids: intracellular lipid droplets (LDs) and plasma membrane caveolae. Experimental evidence suggests that caveolin (CAV) may act as a sensitive lipid-organizing molecule that physically connects these two lipid-storing organelles. Here, we determine the sequences necessary for efficient sorting of CAV to LDs. We show that targeting is a process cooperatively mediated by two motifs. CAV's central hydrophobic domain (Hyd) anchors CAV to the endoplasmic reticulum (ER). Next, positively charged sequences (Pos-Seqs) mediate sorting of CAVs into LDs. Our findings were confirmed by identifying an equivalent, non-conserved but functionally interchangeable Pos-Seq in ALDI, a bona fide LD-resident protein. Using this information, we were able to retarget a cytosolic protein and convert it to an LD-resident protein. Further studies suggest three requirements for targeting via this mechanism: the positive charge of the Pos-Seq, physical proximity between Pos-Seq and Hyd and a precise spatial orientation between both motifs. The study uncovers remarkable similarities with the signals that target proteins to the membrane of mitochondria and peroxisomes PMID:19874557

  15. A Protein Domain Co-Occurrence Network Approach for Predicting Protein Function and Inferring Species Phylogeny

    PubMed Central

    Wang, Zheng; Zhang, Xue-Cheng; Le, Mi Ha; Xu, Dong; Stacey, Gary; Cheng, Jianlin

    2011-01-01

    Protein Domain Co-occurrence Network (DCN) is a biological network that has not been fully-studied. We analyzed the properties of the DCNs of H. sapiens, S. cerevisiae, C. elegans, D. melanogaster, and 15 plant genomes. These DCNs have the hallmark features of scale-free networks. We investigated the possibility of using DCNs to predict protein and domain functions. Based on our experiment conducted on 66 randomly selected proteins, the best of top 3 predictions made by our DCN-based aggregated neighbor-counting method achieved a semantic similarity score of 0.81 to the actual Gene Ontology terms of the proteins. Moreover, the top 3 predictions using neighbor-counting, χ2, and a SVM-based method achieved an accuracy of 66%, 59%, and 61%, respectively, when used to predict specific Gene Ontology terms of human target domains. These predictions on average had a semantic similarity score of 0.82, 0.80, and 0.79 to the actual Gene Ontology terms, respectively. We also used DCNs to predict whether a domain is an enzyme domain, and our SVM-based and neighbor-inference method correctly classified 79% and 77% of the target domains, respectively. When using DCNs to classify a target domain into one of the six enzyme classes, we found that, as long as there is one EC number available in the neighboring domains, our SVM-based and neighboring-counting method correctly classified 92.4% and 91.9% of the target domains, respectively. Furthermore, we benchmarked the performance of using DCNs to infer species phylogenies on six different combinations of 398 single-chromosome prokaryotic genomes. The phylogenetic tree of 54 prokaryotic taxa generated by our DCNs-alignment-based method achieved a 93.45% similarity score compared to the Bergey's taxonomy. In summary, our studies show that genome-wide DCNs contain rich information that can be effectively used to decipher protein function and reveal the evolutionary relationship among species. PMID:21455299

  16. [Interface domain of hepatitis E virus capsid protein homodimer].

    PubMed

    Li, Shao-Wei; He, Zhi-Qiang; Wang, Ying-Bin; Chen, Yi-Xin; Liu, Ru-Shi; Lin, Jian; Gu, Ying; Zhang, Jun; Xia, Ning-Shao

    2004-01-01

    Hepatitis E is a main cause of acute viral hepatitis in developing countries where it occurs as sporadic cases and in epidemics form. The causative agent, hepatitis E virus, is transmitted primarily by the fecal-oral route. The approximately 7.5 kb positive-sense single-strand RNA genome includes three open reading frames (ORFs), one of which (ORF2) is postulated to encode the major viral capsid protein (pORF2) of 660 amino acid residues. We earlier showed that a bacterially expressed peptide, designated as NE2, located from amino acid residues 394 to 606 of ORF2, was found to aggregate into homodimer to at least hexamer. To understand the interface domains within this peptide vital for dimerization and formation of major neutralizing epitopes, NE2 protein underwent terminal-truncated and site-directed mutation. The hydrophobic region, ORF2 aa597-aa602 (AVAVLA), played a key role in oligomerization. Any amino acid residue of this region replaced with glutamic acid residue, the peptide can not refold as homodimer and/or oligomer. The immunoreactivities of these mutant peptides, blotted with anti-HEV neutralizing monoclonal antibody (8C11) and convalescent human sera, show associated to the formation of homodimer. The intermolecular contact region on homodimer was investigated by chemical cross-linking of two site-directed cysteines. When the alanine on aa597 site mutated with cysteine, two different homodimers were found in SDS-PAGE analysis. One (42kD) can be disassociated with 8mol/L urea, which is postulated to form by virtue of hydrophobic interaction, and the other (60kD) falls apart with the reductant DTT present. The exact conformation, generating the cross-linking reaction of cysteines, was further investigated by induced-oxidation on monomer and hydrophobic homodimer of A597C protein with GSH/GSSG. And the results revealed, it is the conformation of hydrophobic homodimer that induces the disulfide bond come into being, instead of the one of monomer. So the

  17. Improving protein-protein interaction article classification using biological domain knowledge.

    PubMed

    Chen, Yifei; Guo, Hongjian; Liu, Feng; Manderick, Bernard

    2015-01-01

    Interaction Article Classification (IAC) is a specific text classification application in biological domain that tries to find out which articles describe Protein-Protein Interactions (PPIs) to help extract PPIs from biological literature more efficiently. However, the existing text representation and feature weighting schemes commonly used for text classification are not well suited for IAC. We capture and utilise biological domain knowledge, i.e. gene mentions also known as protein or gene names in the articles, to address the problem. We put forward a new gene mention order-based approach that highlights the important role of gene mentions to represent the texts. Furthermore, we also incorporate the information concerning gene mentions into a novel feature weighting scheme called Gene Mention-based Term Frequency (GMTF). By conducting experiments, we show that using the proposed representation and weighting schemes, our Interaction Article Classifier (IACer) performs better than other leading systems for the moment.

  18. Tagging of MADS domain proteins for chromatin immunoprecipitation

    PubMed Central

    de Folter, Stefan; Urbanus, Susan L; van Zuijlen, Lisette GC; Kaufmann, Kerstin; Angenent, Gerco C

    2007-01-01

    Background Most transcription factors fulfill their role in complexes and regulate their target genes upon binding to DNA motifs located in upstream regions or introns. To date, knowledge about transcription factor target genes and their corresponding transcription factor binding sites are still very limited. Two related methods that allow in vivo identification of transcription factor binding sites are chromatin immunoprecipitation (ChIP) and chromatin affinity purification (ChAP). For ChAP, the protein of interest is tagged with a peptide or protein, which can be used for affinity purification of the protein-DNA complex and hence, the identification of the target gene. Results Here, we present the results of experiments aiming at the development of a generic tagging approach for the Arabidopsis MADS domain proteins AGAMOUS, SEPALLATA3, and FRUITFULL. For this, Arabidopsis wild type plants were transformed with constructs containing a MADS-box gene fused to either a double Strep-tag® II-FLAG-tag, a triple HA-tag, or an eGFP-tag, all under the control of the constitutive double 35S Cauliflower Mosaic Virus (CaMV) promoter. Strikingly, in all cases, the number of transformants with loss-of-function phenotypes was much larger than those with an overexpression phenotype. Using endogenous promoters in stead of the 35S CaMV resulted in a dramatic reduction in the frequency of loss-of-function phenotypes. Furthermore, pleiotropic defects occasionally caused by an overexpression strategy can be overcome by using the native promoter of the gene. Finally, a ChAP result is presented using GFP antibody on plants carrying a genomic fragment of a MADS-box gene fused to GFP. Conclusion This study revealed that MADS-box proteins are very sensitive to fusions with small peptide tags and GFP tags. Furthermore, for the expression of chimeric versions of MADS-box genes it is favorable to use the entire genomic region in frame to the tag of choice. Interestingly, though unexpected

  19. Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I.

    PubMed Central

    Takeshita, S; Kikuno, R; Tezuka, K; Amann, E

    1993-01-01

    A cDNA library prepared from the mouse osteoblastic cell line MC3T3-E1 was screened for the presence of specifically expressed genes by employing a combined subtraction hybridization/differential screening approach. A cDNA was identified and sequenced which encodes a protein designated osteoblast-specific factor 2 (OSF-2) comprising 811 amino acids. OSF-2 has a typical signal sequence, followed by a cysteine-rich domain, a fourfold repeated domain and a C-terminal domain. The protein lacks a typical transmembrane region. The fourfold repeated domain of OSF-2 shows homology with the insect protein fasciclin I. RNA analyses revealed that OSF-2 is expressed in bone and to a lesser extent in lung, but not in other tissues. Mouse OSF-2 cDNA was subsequently used as a probe to clone the human counterpart. Mouse and human OSF-2 show a high amino acid sequence conservation except for the signal sequence and two regions in the C-terminal domain in which 'in-frame' insertions or deletions are observed, implying alternative splicing events. On the basis of the amino acid sequence homology with fasciclin I, we suggest that OSF-2 functions as a homophilic adhesion molecule in bone formation. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:8363580

  20. The BAR domain proteins: molding membranes in fission, fusion, and phagy.

    PubMed

    Ren, Gang; Vajjhala, Parimala; Lee, Janet S; Winsor, Barbara; Munn, Alan L

    2006-03-01

    The Bin1/amphiphysin/Rvs167 (BAR) domain proteins are a ubiquitous protein family. Genes encoding members of this family have not yet been found in the genomes of prokaryotes, but within eukaryotes, BAR domain proteins are found universally from unicellular eukaryotes such as yeast through to plants, insects, and vertebrates. BAR domain proteins share an N-terminal BAR domain with a high propensity to adopt alpha-helical structure and engage in coiled-coil interactions with other proteins. BAR domain proteins are implicated in processes as fundamental and diverse as fission of synaptic vesicles, cell polarity, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, signal transduction, apoptosis, secretory vesicle fusion, excitation-contraction coupling, learning and memory, tissue differentiation, ion flux across membranes, and tumor suppression. What has been lacking is a molecular understanding of the role of the BAR domain protein in each process. The three-dimensional structure of the BAR domain has now been determined and valuable insight has been gained in understanding the interactions of BAR domains with membranes. The cellular roles of BAR domain proteins, characterized over the past decade in cells as distinct as yeasts, neurons, and myocytes, can now be understood in terms of a fundamental molecular function of all BAR domain proteins: to sense membrane curvature, to bind GTPases, and to mold a diversity of cellular membranes. PMID:16524918

  1. The BAR Domain Proteins: Molding Membranes in Fission, Fusion, and Phagy

    PubMed Central

    Ren, Gang; Vajjhala, Parimala; Lee, Janet S.; Winsor, Barbara; Munn, Alan L.

    2006-01-01

    The Bin1/amphiphysin/Rvs167 (BAR) domain proteins are a ubiquitous protein family. Genes encoding members of this family have not yet been found in the genomes of prokaryotes, but within eukaryotes, BAR domain proteins are found universally from unicellular eukaryotes such as yeast through to plants, insects, and vertebrates. BAR domain proteins share an N-terminal BAR domain with a high propensity to adopt α-helical structure and engage in coiled-coil interactions with other proteins. BAR domain proteins are implicated in processes as fundamental and diverse as fission of synaptic vesicles, cell polarity, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, signal transduction, apoptosis, secretory vesicle fusion, excitation-contraction coupling, learning and memory, tissue differentiation, ion flux across membranes, and tumor suppression. What has been lacking is a molecular understanding of the role of the BAR domain protein in each process. The three-dimensional structure of the BAR domain has now been determined and valuable insight has been gained in understanding the interactions of BAR domains with membranes. The cellular roles of BAR domain proteins, characterized over the past decade in cells as distinct as yeasts, neurons, and myocytes, can now be understood in terms of a fundamental molecular function of all BAR domain proteins: to sense membrane curvature, to bind GTPases, and to mold a diversity of cellular membranes. PMID:16524918

  2. Myelin basic protein domains involved in the interaction with actin.

    PubMed

    Roth, G A; Gonzalez, M D; Monferran, C G; De Santis, M L; Cumar, F A

    1993-11-01

    A fluorescence assay was used to measure the interaction of myelin basic protein (MBP) with monomeric actin labeled with a fluorescent compound (IAEDANS). The complex actin-IAEDANS increase the fluorescence in presence of MBP. The enhancement of the fluorescence has a sigmoidal dependence on the concentration of MBP and the fluorescence maximum is reached at a MBP:actin molar ratio of 1:20. The fluorescence maximum in absence of Ca2+ and ATP is 4 times lower than that in their presence although it is reached at the same MBP:actin molar ratio. Similar behavior is observed when synapsin replaces MBP, while acetylated MBP and bovine serum albumin fail to induce any fluorescence change. To define possible interacting domains on MBP involved in the actin-MBP interaction, experiments were performed using MBP-derived peptides obtained under controlled proteolysis of the whole molecule. The fluorescence changes induced by the different peptides depend on their location in the native protein and can not be explained simply by a difference in the net charge of the peptides. The results suggest that two sites are involved in the interaction. A Ca2+/ATP-dependent site located in the amino-terminal region (peptide 1-44) and a Ca2+/ATP-independent one near the carboxyl terminus of the MBP molecule. The actin-MBP interaction was also observed using immunoblot and ELISA techniques.

  3. Noncatalytic Docking Domains of Cellulosomes of Anaerobic Fungi

    PubMed Central

    Steenbakkers, Peter J. M.; Li, Xin-Liang; Ximenes, Eduardo A.; Arts, Jorik G.; Chen, Huizhong; Ljungdahl, Lars G.; Op den Camp, Huub J. M.

    2001-01-01

    A method is presented for the specific isolation of genes encoding cellulosome components from anaerobic fungi. The catalytic components of the cellulosome of anaerobic fungi typically contain, besides the catalytic domain, mostly two copies of a 40-amino-acid cysteine-rich, noncatalytic docking domain (NCDD) interspaced by short linkers. Degenerate primers were designed to anneal to the highly conserved region within the NCDDs of the monocentric fungus Piromyces sp. strain E2 and the polycentric fungus Orpinomyces sp. strain PC-2. Through PCR using cDNA from Orpinomyces sp. and genomic DNA from Piromyces sp. as templates, respectively, 9 and 19 PCR products were isolated encoding novel NCDD linker sequences. Screening of an Orpinomyces sp. cDNA library with four of these PCR products resulted in the isolation of new genes encoding cellulosome components. An alignment of the partial NCDD sequence information obtained and an alignment of database-accessible NCDD sequences, focusing on the number and position of cysteine residues, indicated the presence of three structural subfamilies within fungal NCDDs. Furthermore, evidence is presented that the NCDDs in CelC from the polycentric fungus Orpinomyces sp. strain PC-2 specifically recognize four proteins in a cellulosome preparation, indicating the presence of multiple scaffoldins. PMID:11514516

  4. The Leptospiral Antigen Lp49 is a Two-Domain Protein with Putative Protein Binding Function

    SciTech Connect

    Oliveira Giuseppe,P.; Oliveira Neves, F.; Nascimento, A.; Gomes Guimaraes, B.

    2008-01-01

    Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Currently available vaccines have limited effectiveness and therapeutic interventions are complicated by the difficulty in making an early diagnosis of leptospirosis. The genome of Leptospira interrogans was recently sequenced and comparative genomic analysis contributed to the identification of surface antigens, potential candidates for development of new vaccines and serodiagnosis. Lp49 is a membrane-associated protein recognized by antibodies present in sera from early and convalescent phases of leptospirosis patients. Its crystal structure was determined by single-wavelength anomalous diffraction using selenomethionine-labelled crystals and refined at 2.0 Angstroms resolution. Lp49 is composed of two domains and belongs to the all-beta-proteins class. The N-terminal domain folds in an immunoglobulin-like beta-sandwich structure, whereas the C-terminal domain presents a seven-bladed beta-propeller fold. Structural analysis of Lp49 indicates putative protein-protein binding sites, suggesting a role in Leptospira-host interaction. This is the first crystal structure of a leptospiral antigen described to date.

  5. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi.

    PubMed

    Saunders, Diane G O; Win, Joe; Cano, Liliana M; Szabo, Les J; Kamoun, Sophien; Raffaele, Sylvain

    2012-01-01

    Rust fungi are obligate biotrophic pathogens that cause considerable damage on crop plants. Puccinia graminis f. sp. tritici, the causal agent of wheat stem rust, and Melampsora larici-populina, the poplar leaf rust pathogen, have strong deleterious impacts on wheat and poplar wood production, respectively. Filamentous pathogens such as rust fungi secrete molecules called disease effectors that act as modulators of host cell physiology and can suppress or trigger host immunity. Current knowledge on effectors from other filamentous plant pathogens can be exploited for the characterisation of effectors in the genome of recently sequenced rust fungi. We designed a comprehensive in silico analysis pipeline to identify the putative effector repertoire from the genome of two plant pathogenic rust fungi. The pipeline is based on the observation that known effector proteins from filamentous pathogens have at least one of the following properties: (i) contain a secretion signal, (ii) are encoded by in planta induced genes, (iii) have similarity to haustorial proteins, (iv) are small and cysteine rich, (v) contain a known effector motif or a nuclear localization signal, (vi) are encoded by genes with long intergenic regions, (vii) contain internal repeats, and (viii) do not contain PFAM domains, except those associated with pathogenicity. We used Markov clustering and hierarchical clustering to classify protein families of rust pathogens and rank them according to their likelihood of being effectors. Using this approach, we identified eight families of candidate effectors that we consider of high value for functional characterization. This study revealed a diverse set of candidate effectors, including families of haustorial expressed secreted proteins and small cysteine-rich proteins. This comprehensive classification of candidate effectors from these devastating rust pathogens is an initial step towards probing plant germplasm for novel resistance components.

  6. Using Hierarchical Clustering of Secreted Protein Families to Classify and Rank Candidate Effectors of Rust Fungi

    PubMed Central

    Saunders, Diane G. O.; Win, Joe; Cano, Liliana M.; Szabo, Les J.; Kamoun, Sophien; Raffaele, Sylvain

    2012-01-01

    Rust fungi are obligate biotrophic pathogens that cause considerable damage on crop plants. Puccinia graminis f. sp. tritici, the causal agent of wheat stem rust, and Melampsora larici-populina, the poplar leaf rust pathogen, have strong deleterious impacts on wheat and poplar wood production, respectively. Filamentous pathogens such as rust fungi secrete molecules called disease effectors that act as modulators of host cell physiology and can suppress or trigger host immunity. Current knowledge on effectors from other filamentous plant pathogens can be exploited for the characterisation of effectors in the genome of recently sequenced rust fungi. We designed a comprehensive in silico analysis pipeline to identify the putative effector repertoire from the genome of two plant pathogenic rust fungi. The pipeline is based on the observation that known effector proteins from filamentous pathogens have at least one of the following properties: (i) contain a secretion signal, (ii) are encoded by in planta induced genes, (iii) have similarity to haustorial proteins, (iv) are small and cysteine rich, (v) contain a known effector motif or a nuclear localization signal, (vi) are encoded by genes with long intergenic regions, (vii) contain internal repeats, and (viii) do not contain PFAM domains, except those associated with pathogenicity. We used Markov clustering and hierarchical clustering to classify protein families of rust pathogens and rank them according to their likelihood of being effectors. Using this approach, we identified eight families of candidate effectors that we consider of high value for functional characterization. This study revealed a diverse set of candidate effectors, including families of haustorial expressed secreted proteins and small cysteine-rich proteins. This comprehensive classification of candidate effectors from these devastating rust pathogens is an initial step towards probing plant germplasm for novel resistance components. PMID:22238666

  7. Direct DNA Methylation Profiling Using Methyl Binding Domain Proteins

    PubMed Central

    Yu, Yinni; Blair, Steve; Gillespie, David; Jensen, Randy; Myszka, David G.; Badran, Ahmed H.; Ghosh, Indraneel; Chagovetz, Alexander

    2010-01-01

    Methylation of DNA is responsible for gene silencing by establishing heterochromatin structure that represses transcription, and studies have shown that cytosine methylation of CpG islands in promoter regions acts as a precursor to early cancer development. The naturally occurring methyl binding domain (MBD) proteins from mammals are known to bind to the methylated CpG dinucleotide (mCpG), and subsequently recruit other chromatin-modifying proteins to suppress transcription. Conventional methods of detection for methylated DNA involve bisulfite treatment or immunoprecipitation prior to performing an assay. We focus on proof-of-concept studies for a direct microarray-based assay using surface-bound methylated probes. The recombinant protein 1xMBD-GFP recognizes hemi-methylation and symmetric methylation of the CpG sequence of hybridized dsDNA, while displaying greater affinity for the symmetric methylation motif, as evaluated by SPR. From these studies, for symmetric mCpG, the KD for 1xMBD-GFP ranged from 106 nM to 870 nM, depending upon the proximity of the methylation site to the sensor surface. The KD values for non-symmetrical methylation motifs were consistently greater (> 2 µM), but the binding selectivity between symmetric and hemi-methylation motifs ranged from 4 to 30, with reduced selectivity for sites close to the surface or multiple sites in proximity, which we attribute to steric effects. Fitting skew normal probability density functions to our data, we estimate an accuracy of 97.5% for our method in identifying methylated CpG loci, which can be improved through optimization of probe design and surface density. PMID:20507169

  8. Grain sorghum proteomics: An integrated approach towards characterization of seed storage proteins in kafirin allelic variants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Seed protein composition determines quality traits, such as value for food, feedstock and biomaterials uses. Sorghum seed proteins are predominantly prolamins known as kafirins. Located primarily on the periphery of storage protein bodies, cysteine-rich ß- and gama-kafirins are thought to prevent en...

  9. Metalation kinetics of the human α-metallothionein 1a fragment is dependent on the fluxional structure of the apo-protein.

    PubMed

    Irvine, Gordon W; Duncan, Kelly E R; Gullons, Meredith; Stillman, Martin J

    2015-01-12

    Mammalian metallothioneins are cysteine rich metal-binding proteins comprising, when fully metalated, two metal-binding domains: the α-domain binds with M4(II)S(Cys)11 stoichiometry and the β domain binds as M3(II)S(Cys)9 stoichiometry. While the fully metalated species have been widely studied, the metalation of the apoprotein is poorly understood. Key to a description of the metalation pathway(s) is the initial conformation of the apoprotein and the arrangement of the metal-coordinating cysteines prior to metalation. We report the effect of the ill-defined, globular structure of apoMT on metalation rates. In order to overcome the experimental limitations inherent in structural determinations of a fluxional protein we used a detailed analysis of the apo-α-metallothionein conformation based on the differential rate of cysteine modification with benzoquinone. The ESI mass spectral data show the presence of two distinct conformational families: one a folded conformational family at neutral pH and a second an unfolded family of conformations at low pH. The Cd(II) metalation properties of these two conformationally distinct families were studied using stopped-flow kinetics. Surprisingly, the unfolded apoprotein metalated significantly slower than the folded apoprotein, a result interpreted as being due to the longer time required to fold into the cluster structure when the fourth Cd(II) binds. These results provide the first evidence for the role of the structure of the apo-αMT in the metalation reaction pathways and show that cysteine modification coupled with ESI-MS can be used to probe structure in cysteine-rich proteins.

  10. Setting the PAS, the role of circadian PAS domain proteins during environmental adaptation in plants

    PubMed Central

    Vogt, Julia H. M.; Schippers, Jos H. M.

    2015-01-01

    The per-ARNT-sim (PAS) domain represents an ancient protein module that can be found across all kingdoms of life. The domain functions as a sensing unit for a diverse array of signals, including molecular oxygen, small metabolites, and light. In plants, several PAS domain-containing proteins form an integral part of the circadian clock and regulate responses to environmental change. Moreover, these proteins function in pathways that control development and plant stress adaptation responses. Here, we discuss the role of PAS domain-containing proteins in anticipation, and adaptation to environmental changes in plants. PMID:26217364

  11. Systematic Identification of Novel Protein Domain Families Associated with Nuclear Functions

    PubMed Central

    Doerks, Tobias; Copley, Richard R.; Schultz, Jörg; Ponting, Chris P.; Bork, Peer

    2002-01-01

    A systematic computational analysis of protein sequences containing known nuclear domains led to the identification of 28 novel domain families. This represents a 26% increase in the starting set of 107 known nuclear domain families used for the analysis. Most of the novel domains are present in all major eukaryotic lineages, but 3 are species specific. For about 500 of the 1200 proteins that contain these new domains, nuclear localization could be inferred, and for 700, additional features could be predicted. For example, we identified a new domain, likely to have a role downstream of the unfolded protein response; a nematode-specific signalling domain; and a widespread domain, likely to be a noncatalytic homolog of ubiquitin-conjugating enzymes. PMID:11779830

  12. Fluorescence Anisotropy Reveals Order and Disorder of Protein Domains in the Nuclear Pore Complex

    PubMed Central

    Mattheyses, Alexa L.; Kampmann, Martin; Atkinson, Claire E.; Simon, Sanford M.

    2010-01-01

    We present a new approach for studying individual protein domains within the nuclear pore complex (NPC) using fluorescence polarization microscopy. The NPC is a large macromolecular complex, the size and complexity of which presents experimental challenges. Using fluorescence anisotropy and exploiting the symmetry of the NPC and its organization in the nuclear envelope, we have resolved order and disorder of individual protein domains. Fluorescently tagging specific domains of individual nucleoporins revealed both rigid and flexible domains: the tips of the FG domains are disordered, whereas the NPC-anchored domains are ordered. Our technique allows the collection of structural information in vivo, providing the ability to probe the organization of protein domains within the NPC. This has particular relevance for the FG domain nucleoporins, which are crucial for nucleocytoplasmic transport. PMID:20858414

  13. A Role for Lipid Shells in Targeting Proteins to Caveolae, Rafts, and Other Lipid Domains

    NASA Astrophysics Data System (ADS)

    Anderson, Richard G. W.; Jacobson, Ken

    2002-06-01

    The surface membrane of cells is studded with morphologically distinct regions, or domains, like microvilli, cell-cell junctions, and coated pits. Each of these domains is specialized for a particular function, such as nutrient absorption, cell-cell communication, and endocytosis. Lipid domains, which include caveolae and rafts, are one of the least understood membrane domains. These domains are high in cholesterol and sphingolipids, have a light buoyant density, and function in both endocytosis and cell signaling. A major mystery, however, is how resident molecules are targeted to lipid domains. Here, we propose that the molecular address for proteins targeted to lipid domains is a lipid shell.

  14. CDvist: A webserver for identification and visualization of conserved domains in protein sequences

    DOE PAGESBeta

    Adebali, Ogun; Ortega, Davi R.; Zhulin, Igor B.

    2014-12-18

    Identification of domains in protein sequences allows their assigning to biological functions. Several webservers exist for identification of protein domains using similarity searches against various databases of protein domain models. However, none of them provides comprehensive domain coverage while allowing bulk querying and their visualization schemes can be improved. To address these issues, we developed CDvist (a comprehensive domain visualization tool), which combines the best available search algorithms and databases into a user-friendly framework. First, a given protein sequence is matched to domain models using high-specificity tools and only then unmatched segments are subjected to more sensitive algorithms resulting inmore » a best possible comprehensive coverage. In conclusion, bulk querying and rich visualization and download options provide improved functionality to domain architecture analysis.« less

  15. CDvist: A webserver for identification and visualization of conserved domains in protein sequences

    SciTech Connect

    Adebali, Ogun; Ortega, Davi R.; Zhulin, Igor B.

    2014-12-18

    Identification of domains in protein sequences allows their assigning to biological functions. Several webservers exist for identification of protein domains using similarity searches against various databases of protein domain models. However, none of them provides comprehensive domain coverage while allowing bulk querying and their visualization schemes can be improved. To address these issues, we developed CDvist (a comprehensive domain visualization tool), which combines the best available search algorithms and databases into a user-friendly framework. First, a given protein sequence is matched to domain models using high-specificity tools and only then unmatched segments are subjected to more sensitive algorithms resulting in a best possible comprehensive coverage. In conclusion, bulk querying and rich visualization and download options provide improved functionality to domain architecture analysis.

  16. A protein domain-based view of the virosphere-host relationship.

    PubMed

    Abroi, Aare

    2015-12-01

    Despite being an important and inseparable part of the biosphere, viruses are too often overlooked in several life sciences, including evolutionary biology, systems biology, and non-marine ecology. In this review, a protein domain-based view of viral proteomes, the proteomes of other organisms and the overlap between them is presented. The data show that in many viral species, viral proteins are not very well annotated with protein domains. Compared with viral proteomes, cellular proteomes are covered quite uniformly with respect to protein domains and show higher coverage. A tremendous number of virally coded domains exist; in fact, the number of protein domains in the characterised virosphere is approaching that found in Archaea, a well-accepted superkingdom. Proteins encoded by viruses contain virosphere-specific domains (i.e., not found in cellular proteomes) and/or many domains shared by viral and cellular proteomes. Virosphere-specific domains are structurally peculiar with respect to different structural measures, making them a clear source of structural and functional novelty. Viral families with RNA genomes tend to harbour more virosphere-specific domains than other viruses. Interestingly, host range preferences of different viral classes are, for the most part, not reflected by domains shared between viruses and different superkingdoms. The role of viruses in the genesis of the cellular domain repertoire is reviewed to bring them more confidently and firmly into the larger biological picture. PMID:26296474

  17. Impact of Protein Domains on PE_PGRS30 Polar Localization in Mycobacteria

    PubMed Central

    Minerva, Mariachiara; Anoosheh, Saber; Palucci, Ivana; Iantomasi, Raffaella; Palmieri, Valentina; Camassa, Serena; Sali, Michela; Sanguinetti, Maurizio; Bitter, Wilbert; Manganelli, Riccardo; De Spirito, Marco; Delogu, Giovanni

    2014-01-01

    PE_PGRS proteins are unique to the Mycobacterium tuberculosis complex and a number of other pathogenic mycobacteria. PE_PGRS30, which is required for the full virulence of M. tuberculosis (Mtb), has three main domains, i.e. an N-terminal PE domain, repetitive PGRS domain and the unique C-terminal domain. To investigate the role of these domains, we expressed a GFP-tagged PE_PGRS30 protein and a series of its functional deletion mutants in different mycobacterial species (Mtb, Mycobacterium bovis BCG and Mycobacterium smegmatis) and analysed protein localization by confocal microscopy. We show that PE_PGRS30 localizes at the mycobacterial cell poles in Mtb and M. bovis BCG but not in M. smegmatis and that the PGRS domain of the protein strongly contributes to protein cellular localization in Mtb. Immunofluorescence studies further showed that the unique C-terminal domain of PE_PGRS30 is not available on the surface, except when the PGRS domain is missing. Immunoblot demonstrated that the PGRS domain is required to maintain the protein strongly associated with the non-soluble cellular fraction. These results suggest that the repetitive GGA-GGN repeats of the PGRS domain contain specific sequences that contribute to protein cellular localization and that polar localization might be a key step in the PE_PGRS30-dependent virulence mechanism. PMID:25390359

  18. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    SciTech Connect

    Simarro, Maria; Gimenez-Cassina, Alfredo; Kedersha, Nancy; Lazaro, Jean-Bernard; Adelmant, Guillaume O.; Marto, Jarrod A.; Rhee, Kirsten; Tisdale, Sarah; Danial, Nika; Benarafa, Charaf; Orduna, Anonio; Anderson, Paul

    2010-10-22

    Research highlights: {yields} Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. {yields} The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. {yields} Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.

  19. Functional domains of plant chimeric calcium/calmodulin-dependent protein kinase: regulation by autoinhibitory and visinin-like domains

    NASA Technical Reports Server (NTRS)

    Ramachandiran, S.; Takezawa, D.; Wang, W.; Poovaiah, B. W.

    1997-01-01

    A novel calcium-binding calcium/calmodulin-dependent protein kinase (CCaMK) with a catalytic domain, calmodulin-binding domain, and a neural visinin-like domain was cloned and characterized from plants [Patil et al., (1995) Proc. Natl. Acad. Sci. USA 92, 4797-4801; Takezawa et al. (1996) J. Biol. Chem. 271, 8126-8132]. The mechanisms of CCaMK activation by calcium and calcium/calmodulin were investigated using various deletion mutants. The use of deletion mutants of CCaMK lacking either one, two, or all three calcium-binding EF hands indicated that all three calcium-binding sites in the visinin-like domain were crucial for the full calcium/calmodulin-dependent kinase activity. As each calcium-binding EF hand was deleted, there was a gradual reduction in calcium/calmodulin-dependent kinase activity from 100 to 4%. Another mutant (amino acids 1-322) which lacks both the visinin-like domain containing three EF hands and the calmodulin-binding domain was constitutively active, indicating the presence of an autoinhibitory domain around the calmodulin-binding domain. By using various synthetic peptides and the constitutively active mutant, we have shown that CCaMK contains an autoinhibitory domain within the residues 322-340 which overlaps its calmodulin-binding domain. Kinetic studies with both ATP and the GS peptide substrate suggest that the autoinhibitory domain of CCaMK interacts only with the peptide substrate binding motif of the catalytic domain, but not with the ATP-binding motif.

  20. ADAM and ADAMTS Family Proteins and Snake Venom Metalloproteinases: A Structural Overview

    PubMed Central

    Takeda, Soichi

    2016-01-01

    A disintegrin and metalloproteinase (ADAM) family proteins constitute a major class of membrane-anchored multidomain proteinases that are responsible for the shedding of cell-surface protein ectodomains, including the latent forms of growth factors, cytokines, receptors and other molecules. Snake venom metalloproteinases (SVMPs) are major components in most viper venoms. SVMPs are primarily responsible for hemorrhagic activity and may also interfere with the hemostatic system in envenomed animals. SVMPs are phylogenetically most closely related to ADAMs and, together with ADAMs and related ADAM with thrombospondin motifs (ADAMTS) family proteinases, constitute adamalysins/reprolysins or the M12B clan (MEROPS database) of metalloproteinases. Although the catalytic domain structure is topologically similar to that of other metalloproteinases such as matrix metalloproteinases, the M12B proteinases have a modular structure with multiple non-catalytic ancillary domains that are not found in other proteinases. Notably, crystallographic studies revealed that, in addition to the conserved metalloproteinase domain, M12B members share a hallmark cysteine-rich domain designated as the “ADAM_CR” domain. Despite their name, ADAMTSs lack disintegrin-like structures and instead comprise two ADAM_CR domains. This review highlights the current state of our knowledge on the three-dimensional structures of M12B proteinases, focusing on their unique domains that may collaboratively participate in directing these proteinases to specific substrates. PMID:27196928

  1. The role of internal duplication in the evolution of multi-domain proteins.

    PubMed

    Nacher, J C; Hayashida, M; Akutsu, T

    2010-08-01

    Many proteins consist of several structural domains. These multi-domain proteins have likely been generated by selective genome growth dynamics during evolution to perform new functions as well as to create structures that fold on a biologically feasible time scale. Domain units frequently evolved through a variety of genetic shuffling mechanisms. Here we examine the protein domain statistics of more than 1000 organisms including eukaryotic, archaeal and bacterial species. The analysis extends earlier findings on asymmetric statistical laws for proteome to a wider variety of species. While proteins are composed of a wide range of domains, displaying a power-law decay, the computation of domain families for each protein reveals an exponential distribution, characterizing a protein universe composed of a thin number of unique families. Structural studies in proteomics have shown that domain repeats, or internal duplicated domains, represent a small but significant fraction of genome. In spite of its importance, this observation has been largely overlooked until recently. We model the evolutionary dynamics of proteome and demonstrate that these distinct distributions are in fact rooted in an internal duplication mechanism. This process generates the contemporary protein structural domain universe, determines its reduced thickness, and tames its growth. These findings have important implications, ranging from protein interaction network modeling to evolutionary studies based on fundamental mechanisms governing genome expansion.

  2. A Simple Model of Protein Domain Swapping in Crowded Cellular Environments.

    PubMed

    Woodard, Jaie C; Dunatunga, Sachith; Shakhnovich, Eugene I

    2016-06-01

    Domain swapping in proteins is an important mechanism of functional and structural innovation. However, despite its ubiquity and importance, the physical mechanisms that lead to domain swapping are poorly understood. Here, we present a simple two-dimensional coarse-grained model of protein domain swapping in the cytoplasm. In our model, two-domain proteins partially unfold and diffuse in continuous space. Monte Carlo multiprotein simulations of the model reveal that domain swapping occurs at intermediate temperatures, whereas folded dimers and folded monomers prevail at low temperatures, and partially unfolded monomers predominate at high temperatures. We use a simplified amino acid alphabet consisting of four residue types, and find that the oligomeric state at a given temperature depends on the sequence of the protein. We also show that hinge strain between domains can promote domain swapping, consistent with experimental observations for real proteins. Domain swapping depends nonmonotonically on the protein concentration, with domain-swapped dimers occurring at intermediate concentrations and nonspecific interactions between partially unfolded proteins occurring at high concentrations. For folded proteins, we recover the result obtained in three-dimensional lattice simulations, i.e., that functional dimerization is most prevalent at intermediate temperatures and nonspecific interactions increase at low temperatures. PMID:27276255

  3. Amide temperature coefficients in the protein G B1 domain.

    PubMed

    Tomlinson, Jennifer H; Williamson, Mike P

    2012-01-01

    Temperature coefficients have been measured for backbone amide (1)H and (15)N nuclei in the B1 domain of protein G (GB1), using temperatures in the range 283-313 K, and pH values from 2.0 to 9.0. Many nuclei display pH-dependent coefficients, which were fitted to one or two pK(a) values. (1)H coefficients showed the expected behaviour, in that hydrogen-bonded amides have less negative values, but for those amides involved in strong hydrogen bonds in regular secondary structure there is a negative correlation between strength of hydrogen bond and size of temperature coefficient. The best correlation to temperature coefficient is with secondary shift, indicative of a very approximately uniform thermal expansion. The largest pH-dependent changes in coefficient are for amides in loops adjacent to sidechain hydrogen bonds rather than the amides involved directly in hydrogen bonds, indicating that the biggest determinant of the temperature coefficient is temperature-dependent loss of structure, not hydrogen bonding. Amide (15)N coefficients have no clear relationship with structure.

  4. Forced unfolding of protein domains determines cytoskeletal rheology

    NASA Astrophysics Data System (ADS)

    Crocker, John

    2005-03-01

    Cells have recently been shown to have a power-law dynamic shear modulus over wide frequency range; the value of the exponent being non-universal, varying from 0.1-0.25 depending on cell type. This observation has been interpreted as evidence for the Soft Glassy Rheology (SGR) model, a trap-type glass model with an effective granular temperature. We propose a simple, alternative model of cytoskeletal mechanics based on the thermally activated, forced unfolding of domains in proteins cross-linking a stressed semi-flexible polymer gel. It directly relates a cell’s mechanical response to biophysical parameters of the cytoskeleton’s molecular constituents. Simulations indicate that unfolding events in a random network display a collective self-organization, giving rise to an exponential distribution of crosslink stress that can reproduce cell viscoelasticity. The model suggests natural explanations for the observed correlation between cell rheology and intracellular static stress, including those previously explained using the tensegrity concept. Moreover, our model provides insight into potential mechanisms of mechanotransduction as well as cell shape sensing and maintenance.

  5. Development of a protein microarray using sequence-specific DNA binding domain on DNA chip surface

    SciTech Connect

    Choi, Yoo Seong; Pack, Seung Pil; Yoo, Young Je . E-mail: yjyoo@snu.ac.kr

    2005-04-22

    A protein microarray based on DNA microarray platform was developed to identify protein-protein interactions in vitro. The conventional DNA chip surface by 156-bp PCR product was prepared for a substrate of protein microarray. High-affinity sequence-specific DNA binding domain, GAL4 DNA binding domain, was introduced to the protein microarray as fusion partner of a target model protein, enhanced green fluorescent protein. The target protein was oriented immobilized directly on the DNA chip surface. Finally, monoclonal antibody of the target protein was used to identify the immobilized protein on the surface. This study shows that the conventional DNA chip can be used to make a protein microarray directly, and this novel protein microarray can be applicable as a tool for identifying protein-protein interactions.

  6. A multi-objective optimization approach accurately resolves protein domain architectures

    PubMed Central

    Bernardes, J.S.; Vieira, F.R.J.; Zaverucha, G.; Carbone, A.

    2016-01-01

    Motivation: Given a protein sequence and a number of potential domains matching it, what are the domain content and the most likely domain architecture for the sequence? This problem is of fundamental importance in protein annotation, constituting one of the main steps of all predictive annotation strategies. On the other hand, when potential domains are several and in conflict because of overlapping domain boundaries, finding a solution for the problem might become difficult. An accurate prediction of the domain architecture of a multi-domain protein provides important information for function prediction, comparative genomics and molecular evolution. Results: We developed DAMA (Domain Annotation by a Multi-objective Approach), a novel approach that identifies architectures through a multi-objective optimization algorithm combining scores of domain matches, previously observed multi-domain co-occurrence and domain overlapping. DAMA has been validated on a known benchmark dataset based on CATH structural domain assignments and on the set of Plasmodium falciparum proteins. When compared with existing tools on both datasets, it outperforms all of them. Availability and implementation: DAMA software is implemented in C++ and the source code can be found at http://www.lcqb.upmc.fr/DAMA. Contact: juliana.silva_bernardes@upmc.fr or alessandra.carbone@lip6.fr Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26458889

  7. Structure of the C-terminal heme-binding domain of THAP domain containing protein 4 from Homo sapiens

    SciTech Connect

    Bianchetti, Christopher M.; Bingman, Craig A.; Phillips, Jr., George N.

    2012-03-15

    The thanatos (the Greek god of death)-associated protein (THAP) domain is a sequence-specific DNA-binding domain that contains a C2-CH (Cys-Xaa{sub 2-4}-Cys-Xaa{sub 35-50}-Cys-Xaa{sub 2}-His) zinc finger that is similar to the DNA domain of the P element transposase from Drosophila. THAP-containing proteins have been observed in the proteome of humans, pigs, cows, chickens, zebrafish, Drosophila, C. elegans, and Xenopus. To date, there are no known THAP domain proteins in plants, yeast, or bacteria. There are 12 identified human THAP domain-containing proteins (THAP0-11). In all human THAP protein, the THAP domain is located at the N-terminus and is {approx}90 residues in length. Although all of the human THAP-containing proteins have a homologous N-terminus, there is extensive variation in both the predicted structure and length of the remaining protein. Even though the exact function of these THAP proteins is not well defined, there is evidence that they play a role in cell proliferation, apoptosis, cell cycle modulation, chromatin modification, and transcriptional regulation. THAP-containing proteins have also been implicated in a number of human disease states including heart disease, neurological defects, and several types of cancers. Human THAP4 is a 577-residue protein of unknown function that is proposed to bind DNA in a sequence-specific manner similar to THAP1 and has been found to be upregulated in response to heat shock. THAP4 is expressed in a relatively uniform manner in a broad range of tissues and appears to be upregulated in lymphoma cells and highly expressed in heart cells. The C-terminal domain of THAP4 (residues 415-577), designated here as cTHAP4, is evolutionarily conserved and is observed in all known THAP4 orthologs. Several single-domain proteins lacking a THAP domain are found in plants and bacteria and show significant levels of homology to cTHAP4. It appears that cTHAP4 belongs to a large class of proteins that have yet to be fully

  8. Structure of the DBL3X-DBL4ε region of the VAR2CSA placental malaria vaccine candidate: insight into DBL domain interactions.

    PubMed

    Gangnard, Stéphane; Lewit-Bentley, Anita; Dechavanne, Sébastien; Srivastava, Anand; Amirat, Faroudja; Bentley, Graham A; Gamain, Benoît

    2015-01-01

    The human malaria parasite, Plasmodium falciparum, is able to evade spleen-mediated clearing from blood stream by sequestering in peripheral organs. This is due to the adhesive properties conferred by the P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) family exported by the parasite to the surface of infected erythrocytes. Expression of the VAR2CSA variant of PfEMP1 leads to pregnancy-associated malaria, which occurs when infected erythrocytes massively sequester in the placenta by binding to low-sulfated Chondroitin Sulfate A (CSA) present in the intervillous spaces. VAR2CSA is a 350 kDa protein that carries six Duffy-Binding Like (DBL) domains, one Cysteine-rich Inter-Domain Regions (CIDR) and several inter-domain regions. In the present paper, we report for the first time the crystal structure at 2.9 Å of a VAR2CSA double domain, DBL3X-DBL4ε, from the FCR3 strain. DBL3X and DBL4ε share a large contact interface formed by residues that are invariant or highly conserved in VAR2CSA variants, which suggests that these two central DBL domains (DBL3X-DBL4ε) contribute significantly to the structuring of the functional VAR2CSA extracellular region. We have also examined the antigenicity of peptides corresponding to exposed loop regions of the DBL4ε structure. PMID:26450557

  9. Structure of the DBL3X-DBL4ε region of the VAR2CSA placental malaria vaccine candidate: insight into DBL domain interactions

    PubMed Central

    Gangnard, Stéphane; Lewit-Bentley, Anita; Dechavanne, Sébastien; Srivastava, Anand; Amirat, Faroudja; Bentley, Graham A.; Gamain, Benoît

    2015-01-01

    The human malaria parasite, Plasmodium falciparum, is able to evade spleen-mediated clearing from blood stream by sequestering in peripheral organs. This is due to the adhesive properties conferred by the P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1) family exported by the parasite to the surface of infected erythrocytes. Expression of the VAR2CSA variant of PfEMP1 leads to pregnancy-associated malaria, which occurs when infected erythrocytes massively sequester in the placenta by binding to low-sulfated Chondroitin Sulfate A (CSA) present in the intervillous spaces. VAR2CSA is a 350 kDa protein that carries six Duffy-Binding Like (DBL) domains, one Cysteine-rich Inter-Domain Regions (CIDR) and several inter-domain regions. In the present paper, we report for the first time the crystal structure at 2.9 Å of a VAR2CSA double domain, DBL3X-DBL4ε, from the FCR3 strain. DBL3X and DBL4ε share a large contact interface formed by residues that are invariant or highly conserved in VAR2CSA variants, which suggests that these two central DBL domains (DBL3X-DBL4ε) contribute significantly to the structuring of the functional VAR2CSA extracellular region. We have also examined the antigenicity of peptides corresponding to exposed loop regions of the DBL4ε structure. PMID:26450557

  10. Evolutionary versatility of eukaryotic protein domains revealed by their bigram networks

    PubMed Central

    2011-01-01

    Background Protein domains are globular structures of independently folded polypeptides that exert catalytic or binding activities. Their sequences are recognized as evolutionary units that, through genome recombination, constitute protein repertoires of linkage patterns. Via mutations, domains acquire modified functions that contribute to the fitness of cells and organisms. Recent studies have addressed the evolutionary selection that may have shaped the functions of individual domains and the emergence of particular domain combinations, which led to new cellular functions in multi-cellular animals. This study focuses on modeling domain linkage globally and investigates evolutionary implications that may be revealed by novel computational analysis. Results A survey of 77 completely sequenced eukaryotic genomes implies a potential hierarchical and modular organization of biological functions in most living organisms. Domains in a genome or multiple genomes are modeled as a network of hetero-duplex covalent linkages, termed bigrams. A novel computational technique is introduced to decompose such networks, whereby the notion of domain "networking versatility" is derived and measured. The most and least "versatile" domains (termed "core domains" and "peripheral domains" respectively) are examined both computationally via sequence conservation measures and experimentally using selected domains. Our study suggests that such a versatility measure extracted from the bigram networks correlates with the adaptivity of domains during evolution, where the network core domains are highly adaptive, significantly contrasting the network peripheral domains. Conclusions Domain recombination has played a major part in the evolution of eukaryotes attributing to genome complexity. From a system point of view, as the results of selection and constant refinement, networks of domain linkage are structured in a hierarchical modular fashion. Domains with high degree of networking

  11. Structural and functional investigation of the intermolecular interaction between NRPS adenylation and carrier protein domains

    PubMed Central

    Sundlov, Jesse A.; Shi, Ce; Wilson, Daniel J.; Aldrich, Courtney C.; Gulick, Andrew M.

    2012-01-01

    Summary Non-ribosomal peptide synthetases (NRPSs) are modular proteins that produce peptide antibiotics and siderophores. These enzymes act as catalytic assembly lines where substrates, covalently bound to integrated carrier domains, are delivered to adjacent catalytic domains. The carrier domains are initially loaded by adenylation domains, which use two distinct conformations to catalyze sequentially the adenylation of the substrate and the thioesterification of the pantetheine cofactor. We have used a mechanism-based inhibitor to determine the crystal structure of an engineered adenylation-carrier domain protein illustrating the intermolecular interaction between the adenylation and carrier domains. This structure enabled directed mutations to improve the interaction between non-native partner proteins. Comparison with prior NRPS adenylation domain structures provides insights into the assembly line dynamics of these modular enzymes. PMID:22365602

  12. Apoptosis induced by the nuclear death domain protein p84N5 is inhibited by association with Rb protein.

    PubMed

    Doostzadeh-Cizeron, J; Evans, R; Yin, S; Goodrich, D W

    1999-10-01

    Rb protein inhibits both cell cycle progression and apoptosis. Interaction of specific cellular proteins, including E2F1, with Rb C-terminal domains mediates cell cycle regulation. In contrast, the nuclear N5 protein associates with an Rb N-terminal domain with unknown function. The N5 protein contains a region of sequence similarity to the death domain of proteins involved in apoptotic signaling. We demonstrate here that forced N5 expression potently induces apoptosis in several tumor cell lines. Mutation of conserved residues within the death domain homology compromise N5-induced apoptosis, suggesting that it is required for normal function. Endogenous N5 protein is specifically altered in apoptotic cells treated with ionizing radiation. Furthermore, dominant interfering death domain mutants compromise cellular responses to ionizing radiation. Finally, physical association with Rb protein inhibits N5-induced apoptosis. We propose that N5 protein plays a role in the regulation of apoptosis and that Rb directly coordinates cell proliferation and apoptosis by binding specific proteins involved in each process through distinct protein binding domains. PMID:10512864

  13. NMR solution structure of a dsRNA binding domain from Drosophila staufen protein reveals homology to the N-terminal domain of ribosomal protein S5.

    PubMed Central

    Bycroft, M; Grünert, S; Murzin, A G; Proctor, M; St Johnston, D

    1995-01-01

    The double-stranded RNA binding domain (dsRBD) is an approximately 65 amino acid motif that is found in a variety of proteins that interact with double-stranded (ds) RNA, such as Escherichia coli RNase III and the dsRNA-dependent kinase, PKR. Drosophila staufen protein contains five copies of this motif, and the third of these binds dsRNA in vitro. Using multinuclear/multidimensional NMR methods, we have determined that staufen dsRBD3 forms a compact protein domain with an alpha-beta-beta-beta-alpha structure in which the two alpha-helices lie on one face of a three-stranded anti-parallel beta-sheet. This structure is very similar to that of the N-terminal domain of a prokaryotic ribosomal protein S5. Furthermore, the consensus derived from all known S5p family sequences shares several conserved residues with the dsRBD consensus sequence, indicating that the two domains share a common evolutionary origin. Using in vitro mutagenesis, we have identified several surface residues which are important for the RNA binding of the dsRBD, and these all lie on the same side of the domain. Two residues that are essential for RNA binding, F32 and K50, are also conserved in the S5 protein family, suggesting that the two domains interact with RNA in a similar way. Images PMID:7628456

  14. IQGAP Proteins Reveal an Atypical Phosphoinositide (aPI) Binding Domain with a Pseudo C2 Domain Fold

    SciTech Connect

    Dixon, Miles J.; Gray, Alexander; Schenning, Martijn; Agacan, Mark; Tempel, Wolfram; Tong, Yufeng; Nedyalkova, Lyudmila; Park, Hee-Won; Leslie, Nicholas R.; van Aalten, Daan M.F.; Downes, C. Peter; Batty, Ian H.

    2012-10-16

    Class I phosphoinositide (PI) 3-kinases act through effector proteins whose 3-PI selectivity is mediated by a limited repertoire of structurally defined, lipid recognition domains. We describe here the lipid preferences and crystal structure of a new class of PI binding modules exemplified by select IQGAPs (IQ motif containing GTPase-activating proteins) known to coordinate cellular signaling events and cytoskeletal dynamics. This module is defined by a C-terminal 105-107 amino acid region of which IQGAP1 and -2, but not IQGAP3, binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3). The binding affinity for PtdInsP3, together with other, secondary target-recognition characteristics, are comparable with those of the pleckstrin homology domain of cytohesin-3 (general receptor for phosphoinositides 1), an established PtdInsP3 effector protein. Importantly, the IQGAP1 C-terminal domain and the cytohesin-3 pleckstrin homology domain, each tagged with enhanced green fluorescent protein, were both re-localized from the cytosol to the cell periphery following the activation of PI 3-kinase in Swiss 3T3 fibroblasts, consistent with their common, selective recognition of endogenous 3-PI(s). The crystal structure of the C-terminal IQGAP2 PI binding module reveals unexpected topological similarity to an integral fold of C2 domains, including a putative basic binding pocket. We propose that this module integrates select IQGAP proteins with PI 3-kinase signaling and constitutes a novel, atypical phosphoinositide binding domain that may represent the first of a larger group, each perhaps structurally unique but collectively dissimilar from the known PI recognition modules.

  15. Crystal Structure of the Protein Kinase Domain of Yeast AMP-Activated Protein Kinase Snf1

    SciTech Connect

    Rudolph,M.; Amodeo, G.; Bai, Y.; Tong, L.

    2005-01-01

    AMP-activated protein kinase (AMPK) is a master metabolic regulator, and is an important target for drug development against diabetes, obesity, and other diseases. AMPK is a hetero-trimeric enzyme, with a catalytic ({alpha}) subunit, and two regulatory ({beta} and {gamma}) subunits. Here we report the crystal structure at 2.2 Angstrom resolution of the protein kinase domain (KD) of the catalytic subunit of yeast AMPK (commonly known as SNF1). The Snf1-KD structure shares strong similarity to other protein kinases, with a small N-terminal lobe and a large C-terminal lobe. Two negative surface patches in the structure may be important for the recognition of the substrates of this kinase.

  16. Formation of functional cell membrane domains: the interplay of lipid- and protein-mediated interactions.

    PubMed Central

    Harder, Thomas

    2003-01-01

    Numerous cell membrane associated processes, including signal transduction, membrane sorting, protein processing and virus trafficking take place in membrane subdomains. Protein-protein interactions provide the frameworks necessary to generate biologically functional membrane domains. For example, coat proteins define membrane areas destined for sorting processes, viral proteins self-assemble to generate a budding virus, and adapter molecules organize multimolecular signalling assemblies, which catalyse downstream reactions. The concept of raft lipid-based membrane domains provides a different principle for compartmentalization and segregation of membrane constituents. Accordingly, rafts are defined by the physical properties of the lipid bilayer and function by selective partitioning of membrane lipids and proteins into membrane domains of specific phase behaviour and lipid packing. Here, I will discuss the interplay of these independent principles of protein scaffolds and raft lipid microdomains leading to the generation of biologically functional membrane domains. PMID:12803918

  17. Altered Specificity of DNA-Binding Proteins with Transition Metal Dimerization Domains

    NASA Astrophysics Data System (ADS)

    Cuenoud, Bernard; Schepartz, Alanna

    1993-01-01

    The bZIP motif is characterized by a leucine zipper domain that mediates dimerization and a basic domain that contacts DNA. A series of transition metal dimerization domains were used to alter systematically the relative orientation of basic domain peptides. Both the affinity and the specificity of the peptide-DNA interaction depend on domain orientation. These results indicate that the precise configuration linking the domains is important; dimerization is not always sufficient for DNA binding. This approach to studying the effect of orientation on protein function complements mutagenesis and could be used in many systems.

  18. Identification of a mastigoneme protein from Phytophthora nicotianae.

    PubMed

    Blackman, Leila M; Arikawa, Mikihiko; Yamada, Shuhei; Suzaki, Toshinobu; Hardham, Adrienne R

    2011-01-01

    Tripartite tubular hairs (mastigonemes) on the anterior flagellum of protists in the stramenopile taxon are responsible for reversing the thrust of flagellar beat and for cell motility. Immunoprecipitation experiments using antibodies directed towards mastigonemes on the flagella of zoospores ofPhytophthora nicotianaehave facilitated the cloning of a gene encoding a mastigoneme shaft protein in this Oomycete. Expression of the gene, designatedPnMas2, is up-regulated during asexual sporulation, a period during which many zoospore components are synthesized. Analysis of the sequence of the PnMas2 protein has revealed that, like other stramenopile mastigoneme proteins, PnMas2 has an N-terminal secretion signal and contains four cysteine-rich epidermal growth factor (EGF)-like domains. Evidence from non-denaturing gels indicates that PnMas2 forms large oligomeric complexes, most likely through disulphide bridging. Bioinformatic analysis has revealed thatPhytophthoraspecies typically contain three or four putative mastigoneme proteins containing the four EGF-like domains. These proteins are similar in sequence to mastigoneme proteins in other stramenopile protists including the algaeOchromonas danica,Aureococcus anophagefferensandScytosiphon lomentariaand the diatomsThalassiosira pseudonana and T. weissflogii.

  19. Identification of in vivo-interacting domains of the murine coronavirus nucleocapsid protein.

    PubMed

    Hurst, Kelley R; Koetzner, Cheri A; Masters, Paul S

    2009-07-01

    The coronavirus nucleocapsid protein (N), together with the large, positive-strand RNA viral genome, forms a helically symmetric nucleocapsid. This ribonucleoprotein structure becomes packaged into virions through association with the carboxy-terminal endodomain of the membrane protein (M), which is the principal constituent of the virion envelope. Previous work with the prototype coronavirus mouse hepatitis virus (MHV) has shown that a major determinant of the N-M interaction maps to the carboxy-terminal domain 3 of the N protein. To explore other domain interactions of the MHV N protein, we expressed a series of segments of the MHV N protein as fusions with green fluorescent protein (GFP) during the course of viral infection. We found that two of these GFP-N-domain fusion proteins were selectively packaged into virions as the result of tight binding to the N protein in the viral nucleocapsid, in a manner that did not involve association with either M protein or RNA. The nature of each type of binding was further explored through genetic analysis. Our results defined two strongly interacting regions of the N protein. One is the same domain 3 that is critical for M protein recognition during assembly. The other is domain N1b, which corresponds to the N-terminal domain that has been structurally characterized in detail for two other coronaviruses, infectious bronchitis virus and the severe acute respiratory syndrome coronavirus.

  20. Identification of candidate effector proteins potentially involved in Fusarium graminearum-wheat interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogen-derived small secreted cysteine-rich proteins (SSCPs) are known to be a common source of fungal effectors that trigger resistance or susceptibility in specific host plants. This group of proteins has not been well studied in Fusarium graminearum, the primary cause of Fusarium head blight (...

  1. Polydom: a secreted protein with pentraxin, complement control protein, epidermal growth factor and von Willebrand factor A domains.

    PubMed Central

    Gilgès, D; Vinit, M A; Callebaut, I; Coulombel, L; Cacheux, V; Romeo, P H; Vigon, I

    2000-01-01

    To identify extracellular proteins with epidermal growth factor (EGF) domains that are potentially involved in the control of haemopoiesis, we performed degenerate reverse-transcriptase-mediated PCR on the murine bone-marrow stromal cell line MS-5 and isolated a new partial cDNA encoding EGF-like domains related to those in the Notch proteins. Cloning and sequencing of the full-length cDNA showed that it encoded a new extracellular multi-domain protein that we named polydom. This 387 kDa mosaic protein contained a signal peptide followed by a new association of eight different protein domains, including a pentraxin domain and a von Willebrand factor type A domain, ten EGF domains, and 34 complement control protein modules. The human polydom mRNA is strongly expressed in placenta, its expression in the other tissues being weak or undetectable. The particular multidomain structure of the encoded protein suggests an important biological role in cellular adhesion and/or in the immune system. PMID:11062057

  2. Versatile TPR domains accommodate different modes of target protein recognition and function.

    PubMed

    Allan, Rudi Kenneth; Ratajczak, Thomas

    2011-07-01

    The tetratricopeptide repeat (TPR) motif is one of many repeat motifs that form structural domains in proteins that can act as interaction scaffolds in the formation of multi-protein complexes involved in numerous cellular processes such as transcription, the cell cycle, protein translocation, protein degradation and host defence against invading pathogens. The crystal structures of many TPR domain-containing proteins have been determined, showing TPR motifs as two anti-parallel α-helices packed in tandem arrays to form a structure with an amphipathic groove which can bind a target peptide. This is however not the only mode of target recognition by TPR domains, with short amino acid insertions and alternative TPR motif conformations also shown to contribute to protein interactions, highlighting diversity in TPR domains and the versatility of this structure in mediating biological events.

  3. Cytoplasmic Ig-Domain Proteins: Cytoskeletal Regulators with a Role in Human Disease

    PubMed Central

    Otey, Carol A.; Dixon, Richard; Stack, Christianna; Goicoechea, Silvia M.

    2009-01-01

    Immunoglobulin domains are found in a wide variety of functionally diverse transmembrane proteins, and also in a smaller number of cytoplasmic proteins. Members of this latter group are usually associated with the actin cytoskeleton, and most of them bind directly to either actin or myosin, or both. Recently, studies of inherited human disorders have identified disease-causing mutations in five cytoplasmic Ig-domain proteins: myosin-binding protein C, titin, myotilin, palladin, and myopalladin. Together with results obtained from cultured cells and mouse models, these clinical studies have yielded novel insights into the unexpected roles of Ig domain proteins in mechanotransduction and signaling to the nucleus. An emerging theme in this field is that cytoskeleton-associated Ig domain proteins are more than structural elements of the cell, and may have evolved to fill different needs in different cellular compartments. PMID:19466753

  4. Occurrence of protein disulfide bonds in different domains of life: a comparison of proteins from the Protein Data Bank.

    PubMed

    Bošnjak, I; Bojović, V; Šegvić-Bubić, T; Bielen, A

    2014-03-01

    Disulfide bonds (SS bonds) are important post-translational modifications of proteins. They stabilize a three-dimensional (3D) structure (structural SS bonds) and also have the catalytic or regulatory functions (redox-active SS bonds). Although SS bonds are present in all groups of organisms, no comparative analyses of their frequency in proteins from different domains of life have been made to date. Using the Protein Data Bank, the number and subcellular locations of SS bonds in Archaea, Bacteria and Eukarya have been compared. Approximately three times higher frequency of proteins with SS bonds in eukaryotic secretory organelles (e.g. endoplasmic reticulum) than in bacterial periplasmic/secretory pathways was calculated. Protein length also affects the SS bond frequency: the average number of SS bonds is positively correlated with the length for longer proteins (>200 amino acids), while for the shorter and less stable proteins (<200 amino acids) this correlation is negative. Medium-sized proteins (250-350 amino acids) indicated a high number of SS bonds only in Archaea which could be explained by the need for additional protein stabilization in hyperthermophiles. The results emphasize higher capacity for the SS bond formation and isomerization in Eukarya when compared with Archaea and Bacteria.

  5. Pinkbar is an epithelial-specific BAR domain protein that generates planar membrane structures

    SciTech Connect

    Pykäläinen, Anette; Boczkowska, Malgorzata; Zhao, Hongxia; Saarikangas, Juha; Rebowski, Grzegorz; Jansen, Maurice; Hakanen, Janne; Koskela, Essi V.; Peränen, Johan; Vihinen, Helena; Jokitalo, Eija; Salminen, Marjo; Ikonen, Elina; Dominguez, Roberto; Lappalainen, Pekka

    2013-05-29

    Bin/amphipysin/Rvs (BAR)-domain proteins sculpt cellular membranes and have key roles in processes such as endocytosis, cell motility and morphogenesis. BAR domains are divided into three subfamilies: BAR- and F-BAR-domain proteins generate positive membrane curvature and stabilize cellular invaginations, whereas I-BAR-domain proteins induce negative curvature and stabilize protrusions. We show that a previously uncharacterized member of the I-BAR subfamily, Pinkbar, is specifically expressed in intestinal epithelial cells, where it localizes to Rab13-positive vesicles and to the plasma membrane at intercellular junctions. Notably, the BAR domain of Pinkbar does not induce membrane tubulation but promotes the formation of planar membrane sheets. Structural and mutagenesis analyses reveal that the BAR domain of Pinkbar has a relatively flat lipid-binding interface and that it assembles into sheet-like oligomers in crystals and in solution, which may explain its unique membrane-deforming activity.

  6. BEACH-domain proteins act together in a cascade to mediate vacuolar protein trafficking and disease resistance in Arabidopsis.

    PubMed

    Teh, Ooi-kock; Hatsugai, Noriyuki; Tamura, Kentaro; Fuji, Kentaro; Tabata, Ryo; Yamaguchi, Katsushi; Shingenobu, Shuji; Yamada, Masashi; Hasebe, Mitsuyasu; Sawa, Shinichiro; Shimada, Tomoo; Hara-Nishimura, Ikuko

    2015-03-01

    Membrane trafficking to the protein storage vacuole (PSV) is a specialized process in seed plants. However, this trafficking mechanism to PSV is poorly understood. Here, we show that three types of Beige and Chediak-Higashi (BEACH)-domain proteins contribute to both vacuolar protein transport and effector-triggered immunity (ETI). We screened a green fluorescent seed (GFS) library of Arabidopsis mutants with defects in vesicle trafficking and isolated two allelic mutants gfs3 and gfs12 with a defect in seed protein transport to PSV. The gene responsible for the mutant phenotype was found to encode a putative protein belonging to group D of BEACH-domain proteins, which possess kinase domains. Disruption of other BEACH-encoding loci in the gfs12 mutant showed that BEACH homologs acted in a cascading manner for PSV trafficking. The epistatic genetic interactions observed among BEACH homologs were also found in the ETI responses of the gfs12 and gfs12 bchb-1 mutants, which showed elevated avirulent bacterial growth. The GFS12 kinase domain interacted specifically with the pleckstrin homology domain of BchC1. These results suggest that a cascade of multiple BEACH-domain proteins contributes to vacuolar protein transport and plant defense.

  7. BEACH-domain proteins act together in a cascade to mediate vacuolar protein trafficking and disease resistance in Arabidopsis.

    PubMed

    Teh, Ooi-kock; Hatsugai, Noriyuki; Tamura, Kentaro; Fuji, Kentaro; Tabata, Ryo; Yamaguchi, Katsushi; Shingenobu, Shuji; Yamada, Masashi; Hasebe, Mitsuyasu; Sawa, Shinichiro; Shimada, Tomoo; Hara-Nishimura, Ikuko

    2015-03-01

    Membrane trafficking to the protein storage vacuole (PSV) is a specialized process in seed plants. However, this trafficking mechanism to PSV is poorly understood. Here, we show that three types of Beige and Chediak-Higashi (BEACH)-domain proteins contribute to both vacuolar protein transport and effector-triggered immunity (ETI). We screened a green fluorescent seed (GFS) library of Arabidopsis mutants with defects in vesicle trafficking and isolated two allelic mutants gfs3 and gfs12 with a defect in seed protein transport to PSV. The gene responsible for the mutant phenotype was found to encode a putative protein belonging to group D of BEACH-domain proteins, which possess kinase domains. Disruption of other BEACH-encoding loci in the gfs12 mutant showed that BEACH homologs acted in a cascading manner for PSV trafficking. The epistatic genetic interactions observed among BEACH homologs were also found in the ETI responses of the gfs12 and gfs12 bchb-1 mutants, which showed elevated avirulent bacterial growth. The GFS12 kinase domain interacted specifically with the pleckstrin homology domain of BchC1. These results suggest that a cascade of multiple BEACH-domain proteins contributes to vacuolar protein transport and plant defense. PMID:25618824

  8. Protein Domain-Level Landscape of Cancer-Type-Specific Somatic Mutations

    PubMed Central

    Yang, Fan; Petsalaki, Evangelia; Rolland, Thomas; Hill, David E.; Vidal, Marc; Roth, Frederick P.

    2015-01-01

    Identifying driver mutations and their functional consequences is critical to our understanding of cancer. Towards this goal, and because domains are the functional units of a protein, we explored the protein domain-level landscape of cancer-type-specific somatic mutations. Specifically, we systematically examined tumor genomes from 21 cancer types to identify domains with high mutational density in specific tissues, the positions of mutational hotspots within these domains, and the functional and structural context where possible. While hotspots corresponding to specific gain-of-function mutations are expected for oncoproteins, we found that tumor suppressor proteins also exhibit strong biases toward being mutated in particular domains. Within domains, however, we observed the expected patterns of mutation, with recurrently mutated positions for oncogenes and evenly distributed mutations for tumor suppressors. For example, we identified both known and new endometrial cancer hotspots in the tyrosine kinase domain of the FGFR2 protein, one of which is also a hotspot in breast cancer, and found new two hotspots in the Immunoglobulin I-set domain in colon cancer. Thus, to prioritize cancer mutations for further functional studies aimed at more precise cancer treatments, we have systematically correlated mutations and cancer types at the protein domain level. PMID:25794154

  9. Clustering amino acid contents of protein domains: biochemical functions of proteins and implications for origin of biological macromolecules.

    PubMed

    Torshin, I Y

    2001-04-01

    Structural classes of protein domains correlate with their amino acid compositions. Several successful algorithms (that use only amino acid composition) have been elaborated for the prediction of structural class or potential biochemical significance. This work deals with dynamic classification (clustering) of the domains on the basis of their amino acid composition. Amino acid contents of domains from a non-redundant PDB set were clustered in 20-dimensional space of amino acid contents. Despite the variations of an empirical parameter and non-redundancy of the set, only one large cluster (tens-hundreds of proteins) surrounded by hundreds of small clusters (1-5 proteins), was identified. The core of the largest cluster contains at least 64% DNA (nucleotide)-interacting protein domains from various sources. About 90% of the proteins of the core are intracellular proteins. 83% of the DNA/nucleotide interacting domains in the core belong to the mixed alpha-beta folds (a+b, a/b), 14% are all-alpha (mostly helices) and all-beta (mostly beta-strands) proteins. At the same time, when core domains that belong to one organism (E.coli) are considered, over 80% of them prove to be DNA/nucleotide interacting proteins. The core is compact: amino acid contents of domains from the core lie in relatively narrow and specific ranges. The core also contains several Fe-S cluster-binding domains, amino acid contents of the core overlap with ferredoxin and CO-dehydrogenase clusters, the oldest known proteins. As Fe-S clusters are thought to be the first biocatalysts, the results are discussed in relation to contemporary experiments and models dealing with the origin of biological macromolecules. The origin of most primordial proteins is considered here to be a result of co-adsorption of nucleotides and amino acids on specific clays, followed by en-block polymerization of the adsorbed mixtures of amino acids.

  10. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5.

    PubMed

    Yang, Jing; Roe, S Mark; Cliff, Matthew J; Williams, Mark A; Ladbury, John E; Cohen, Patricia T W; Barford, David

    2005-01-12

    Protein phosphatase 5 (Ppp5) is a serine/threonine protein phosphatase comprising a regulatory tetratricopeptide repeat (TPR) domain N-terminal to its phosphatase domain. Ppp5 functions in signalling pathways that control cellular responses to stress, glucocorticoids and DNA damage. Its phosphatase activity is suppressed by an autoinhibited conformation maintained by the TPR domain and a C-terminal subdomain. By interacting with the TPR domain, heat shock protein 90 (Hsp90) and fatty acids including arachidonic acid stimulate phosphatase activity. Here, we describe the structure of the autoinhibited state of Ppp5, revealing mechanisms of TPR-mediated phosphatase inhibition and Hsp90- and arachidonic acid-induced stimulation of phosphatase activity. The TPR domain engages with the catalytic channel of the phosphatase domain, restricting access to the catalytic site. This autoinhibited conformation of Ppp5 is stabilised by the C-terminal alphaJ helix that contacts a region of the Hsp90-binding groove on the TPR domain. Hsp90 activates Ppp5 by disrupting TPR-phosphatase domain interactions, permitting substrate access to the constitutively active phosphatase domain, whereas arachidonic acid prompts an alternate conformation of the TPR domain, destabilising the TPR-phosphatase domain interface.

  11. Cooperative folding of intrinsically disordered domains drives assembly of a strong elongated protein

    NASA Astrophysics Data System (ADS)

    Gruszka, Dominika T.; Whelan, Fiona; Farrance, Oliver E.; Fung, Herman K. H.; Paci, Emanuele; Jeffries, Cy M.; Svergun, Dmitri I.; Baldock, Clair; Baumann, Christoph G.; Brockwell, David J.; Potts, Jennifer R.; Clarke, Jane

    2015-06-01

    Bacteria exploit surface proteins to adhere to other bacteria, surfaces and host cells. Such proteins need to project away from the bacterial surface and resist significant mechanical forces. SasG is a protein that forms extended fibrils on the surface of Staphylococcus aureus and promotes host adherence and biofilm formation. Here we show that although monomeric and lacking covalent cross-links, SasG maintains a highly extended conformation in solution. This extension is mediated through obligate folding cooperativity of the intrinsically disordered E domains that couple non-adjacent G5 domains thermodynamically, forming interfaces that are more stable than the domains themselves. Thus, counterintuitively, the elongation of the protein appears to be dependent on the inherent instability of its domains. The remarkable mechanical strength of SasG arises from tandemly arrayed `clamp' motifs within the folded domains. Our findings reveal an elegant minimal solution for the assembly of monomeric mechano-resistant tethers of variable length.

  12. Chaperone ligand-discrimination by the TPR-domain protein Tah1.

    PubMed

    Millson, Stefan H; Vaughan, Cara K; Zhai, Chao; Ali, Maruf M U; Panaretou, Barry; Piper, Peter W; Pearl, Laurence H; Prodromou, Chrisostomos

    2008-07-15

    Tah1 [TPR (tetratricopeptide repeat)-containing protein associated with Hsp (heat-shock protein) 90] has been identified as a TPR-domain protein. TPR-domain proteins are involved in protein-protein interactions and a number have been characterized that interact either with Hsp70 or Hsp90, but a few can bind both chaperones. Independent studies suggest that Tah1 interacts with Hsp90, but whether it can also interact with Hsp70/Ssa1 has not been investigated. Amino-acid-sequence alignments suggest that Tah1 is most similar to the TPR2b domain of Hop (Hsp-organizing protein) which when mutated reduces binding to both Hsp90 and Hsp70. Our alignments suggest that there are three TPR-domain motifs in Tah1, which is consistent with the architecture of the TPR2b domain. In the present study we find that Tah1 is specific for Hsp90, and is able to bind tightly the yeast Hsp90, and the human Hsp90alpha and Hsp90beta proteins, but not the yeast Hsp70 Ssa1 isoform. Tah1 acheives ligand discrimination by favourably binding the methionine residue in the conserved MEEVD motif (Hsp90) and positively discriminating against the first valine residue in the VEEVD motif (Ssa1). In the present study we also show that Tah1 can affect the ATPase activity of Hsp90, in common with some other TPR-domain proteins.

  13. Proteins with Intrinsically Disordered Domains Are Preferentially Recruited to Polyglutamine Aggregates

    PubMed Central

    O’Meally, Robert; Sonnenberg, Jason L.; Cole, Robert N.; Shewmaker, Frank P.

    2015-01-01

    Intracellular protein aggregation is the hallmark of several neurodegenerative diseases. Aggregates formed by polyglutamine (polyQ)-expanded proteins, such as Huntingtin, adopt amyloid-like structures that are resistant to denaturation. We used a novel purification strategy to isolate aggregates formed by human Huntingtin N-terminal fragments with expanded polyQ tracts from both yeast and mammalian (PC-12) cells. Using mass spectrometry we identified the protein species that are trapped within these polyQ aggregates. We found that proteins with very long intrinsically-disordered (ID) domains (≥100 amino acids) and RNA-binding proteins were disproportionately recruited into aggregates. The removal of the ID domains from selected proteins was sufficient to eliminate their recruitment into polyQ aggregates. We also observed that several neurodegenerative disease-linked proteins were reproducibly trapped within the polyQ aggregates purified from mammalian cells. Many of these proteins have large ID domains and are found in neuronal inclusions in their respective diseases. Our study indicates that neurodegenerative disease-associated proteins are particularly vulnerable to recruitment into polyQ aggregates via their ID domains. Also, the high frequency of ID domains in RNA-binding proteins may explain why RNA-binding proteins are frequently found in pathological inclusions in various neurodegenerative diseases. PMID:26317359

  14. Structure of the GH1 domain of guanylate kinase-associated protein from Rattus norvegicus

    SciTech Connect

    Tong, Junsen; Yang, Huiseon; Eom, Soo Hyun; Chun, ChangJu; Im, Young Jun

    2014-09-12

    Graphical abstract: - Highlights: • The crystal structure of GKAP homology domain 1 (GH1) was determined. • GKAP GH1 is a three-helix bundle connected by short flexible loops. • The predicted helix α4 associates weakly with the helix α3, suggesting dynamic nature of the GH1 domain. - Abstract: Guanylate-kinase-associated protein (GKAP) is a scaffolding protein that links NMDA receptor-PSD-95 to Shank–Homer complexes by protein–protein interactions at the synaptic junction. GKAP family proteins are characterized by the presence of a C-terminal conserved GKAP homology domain 1 (GH1) of unknown structure and function. In this study, crystal structure of the GH1 domain of GKAP from Rattus norvegicus was determined in fusion with an N-terminal maltose-binding protein at 2.0 Å resolution. The structure of GKAP GH1 displays a three-helix bundle connected by short flexible loops. The predicted helix α4 which was not visible in the crystal structure associates weakly with the helix α3 suggesting dynamic nature of the GH1 domain. The strict conservation of GH1 domain across GKAP family members and the lack of a catalytic active site required for enzyme activity imply that the GH1 domain might serve as a protein–protein interaction module for the synaptic protein clustering.

  15. Differential activities of cellular and viral macro domain proteins in binding of ADP-ribose metabolites.

    PubMed

    Neuvonen, Maarit; Ahola, Tero

    2009-01-01

    Macro domain is a highly conserved protein domain found in both eukaryotes and prokaryotes. Macro domains are also encoded by a set of positive-strand RNA viruses that replicate in the cytoplasm of animal cells, including coronaviruses and alphaviruses. The functions of the macro domain are poorly understood, but it has been suggested to be an ADP-ribose-binding module. We have here characterized three novel human macro domain proteins that were found to reside either in the cytoplasm and nucleus [macro domain protein 2 (MDO2) and ganglioside-induced differentiation-associated protein 2] or in mitochondria [macro domain protein 1 (MDO1)], and compared them with viral macro domains from Semliki Forest virus, hepatitis E virus, and severe acute respiratory syndrome coronavirus, and with a yeast macro protein, Poa1p. MDO2 specifically bound monomeric ADP-ribose with a high affinity (K(d)=0.15 microM), but did not bind poly(ADP-ribose) efficiently. MDO2 also hydrolyzed ADP-ribose-1'' phosphate, resembling Poa1p in all these properties. Ganglioside-induced differentiation-associated protein 2 did not show affinity for ADP-ribose or its derivatives, but instead bound poly(A). MDO1 was generally active in these reactions, including poly(A) binding. Individual point mutations in MDO1 abolished monomeric ADP-ribose binding, but not poly(ADP-ribose) binding; in poly(ADP-ribose) binding assays, the monomer did not compete against polymer binding. The viral macro proteins bound poly(ADP-ribose) and poly(A), but had a low affinity for monomeric ADP-ribose. Thus, the viral proteins do not closely resemble any of the human proteins in their biochemical functions. The differential activity profiles of the human proteins implicate them in different cellular pathways, some of which may involve RNA rather than ADP-ribose derivatives.

  16. Biophysical Analysis of the MHR Motif in Folding and Domain Swapping of the HIV Capsid Protein C-Terminal Domain

    PubMed Central

    Bocanegra, Rebeca; Fuertes, Miguel Ángel; Rodríguez-Huete, Alicia; Neira, José Luis; Mateu, Mauricio G.

    2015-01-01

    Infection by human immunodeficiency virus (HIV) depends on the function, in virion morphogenesis and other stages of the viral cycle, of a highly conserved structural element, the major homology region (MHR), within the carboxyterminal domain (CTD) of the capsid protein. In a modified CTD dimer, MHR is swapped between monomers. While no evidence for MHR swapping has been provided by structural models of retroviral capsids, it is unknown whether it may occur transiently along the virus assembly pathway. Whatever the case, the MHR-swapped dimer does provide a novel target for the development of anti-HIV drugs based on the concept of trapping a nonnative capsid protein conformation. We have carried out a thermodynamic and kinetic characterization of the domain-swapped CTD dimer in solution. The analysis includes a dissection of the role of conserved MHR residues and other amino acids at the dimerization interface in CTD folding, stability, and dimerization by domain swapping. The results revealed some energetic hotspots at the domain-swapped interface. In addition, many MHR residues that are not in the protein hydrophobic core were nevertheless found to be critical for folding and stability of the CTD monomer, which may dramatically slow down the swapping reaction. Conservation of MHR residues in retroviruses did not correlate with their contribution to domain swapping, but it did correlate with their importance for stable CTD folding. Because folding is required for capsid protein function, this remarkable MHR-mediated conformational stabilization of CTD may help to explain the functional roles of MHR not only during immature capsid assembly but in other processes associated with retrovirus infection. This energetic dissection of the dimerization interface in MHR-swapped CTD may also facilitate the design of anti-HIV compounds that inhibit capsid assembly by conformational trapping of swapped CTD dimers. PMID:25606682

  17. Redox-coupled structural changes of the catalytic a' domain of protein disulfide isomerase.

    PubMed

    Inagaki, Koya; Satoh, Tadashi; Yagi-Utsumi, Maho; Le Gulluche, Anne-Charlotte; Anzai, Takahiro; Uekusa, Yoshinori; Kamiya, Yukiko; Kato, Koichi

    2015-09-14

    Protein disulfide isomerase functions as a folding catalyst in the endoplasmic reticulum. Its b' and a' domains provide substrate-binding sites and undergo a redox-dependent domain rearrangement coupled to an open-closed structural change. Here we determined the first solution structure of the a' domain in its oxidized form and thereby demonstrate that oxidation of the a' domain induces significant conformational changes not only in the vicinity of the active site but also in the distal b'-interfacial segment. Based on these findings, we propose that this conformational transition triggers the domain segregation coupled with the exposure of the hydrophobic surface.

  18. Mass spectrometric-based revision of the structure of a cysteine-rich peptide toxin with gamma-carboxyglutamic acid, TxVIIA, from the sea snail, Conus textile.

    PubMed Central

    Nakamura, T.; Yu, Z.; Fainzilber, M.; Burlingame, A. L.

    1996-01-01

    A mollusk-specific toxin, TxVIIA, having potent paralytic activity was isolated from the venom of sea snail Conus textile (Fainzilber M et al., 1991, Eur J Biochem 202:589-595). The structure reported above was based upon amino acid analysis and the Edman degradation. We have recently reinvestigated this toxin employing some of the most novel techniques in mass spectrometry. We now report a revised structure based primarily on high-energy collision-induced dissociation analysis of the two Asp17-N peptides of the reduced, pyridinylethyl derivative representing the entire sequence using matrix-assisted laser desorption ionization (MALDI) as CGGYSTYC gamma VDS gamma CCSDNCVRSYCTLF-NH2 (gamma, gamma-carboxyglutamic acid or Gla). The N-terminus of the previous sequence was incorrect, apparently due to a side reaction of reduction and alkylation, which led to the erroneous assignment of Trp for the N-terminal residue. In addition, the last two C-terminal amino acids and the C-terminal amidation had not been detected. Also, a combination of electrospray ionization mass spectrometry and positive and negative ion MALDI mass spectrometry provided information on the molecular weights of the native and derivatized toxin and presence of two Gla residues. Thus, TxVIIA does not have an "unusual" sequence as previously reported, but in fact belongs to the conserved Cys framework for omega- and delta-conotoxins. However, the four net negative charges with the cysteine-rich structure of this revised sequence is highly unusual for conopeptides. PMID:8868490

  19. REST/NRSF-Interacting LIM Domain Protein, a Putative Nuclear Translocation Receptor

    PubMed Central

    Shimojo, Masahito; Hersh, Louis B.

    2003-01-01

    The transcriptional repressor REST/NRSF (RE-1 silencing transcription factor/neuron-restrictive silencer factor) and the transcriptional regulator REST4 share an N-terminal zinc finger domain structure involved in nuclear targeting. Using this domain as bait in a yeast two-hybrid screen, a novel protein that contains three LIM domains, putative nuclear localization sequences, protein kinase A phosphorylation sites, and a CAAX prenylation motif was isolated. This protein, which is localized around the nucleus, is involved in determining the nuclear localization of REST4 and REST/NRSF. We propose the name RILP, for REST/NRSF-interacting LIM domain protein, to label this novel protein. RILP appears to serve as a nuclear receptor for REST/NRSF, REST4, and possibly other transcription factors. PMID:14645515

  20. Polypeptide Modulators of Caspase Recruitment Domain (CARD)-CARD-mediated Protein-Protein Interactions*

    PubMed Central

    Palacios-Rodríguez, Yadira; García-Laínez, Guillermo; Sancho, Mónica; Gortat, Anna; Orzáez, Mar; Pérez-Payá, Enrique

    2011-01-01

    The caspase recruitment domain (CARD) is present in a large number of proteins. Initially, the CARD was recognized as part of the caspase activation machinery. CARD-CARD interactions play a role in apoptosis and are responsible for the Apaf-1-mediated activation of procaspase-9 in the apoptosome. CARD-containing proteins mediate the inflammasome-dependent activation of proinflammatory caspase-1. More recently, new roles for CARD-containing proteins have been reported in signaling pathways associated with immune responses. The functional role of CARD-containing proteins and CARDs in coordinating apoptosis and inflammatory and immune responses is not completely understood. We have explored the putative cross-talk between apoptosis and inflammation by analyzing the modulatory activity on both the Apaf-1/procaspase-9 interaction and the inflammasome-mediated procaspase-1 activation of CARD-derived polypeptides. To this end, we analyzed the activity of individual recombinant CARDs, rationally designed CARD-derived peptides, and peptides derived from phage display. PMID:22065589

  1. Structure of the GAT domain of the endosomal adapter protein Tom1.

    PubMed

    Xiao, Shuyan; Ellena, Jeffrey F; Armstrong, Geoffrey S; Capelluto, Daniel G S

    2016-06-01

    Cellular homeostasis requires correct delivery of cell-surface receptor proteins (cargo) to their target subcellular compartments. The adapter proteins Tom1 and Tollip are involved in sorting of ubiquitinated cargo in endosomal compartments. Recruitment of Tom1 to the endosomal compartments is mediated by its GAT domain's association to Tollip's Tom1-binding domain (TBD). In this data article, we report the solution NMR-derived structure of the Tom1 GAT domain. The estimated protein structure exhibits a bundle of three helical elements. We compare the Tom1 GAT structure with those structures corresponding to the Tollip TBD- and ubiquitin-bound states. PMID:26977434

  2. Destabilization of Heterologous Proteins Mediated by the GSK3β Phosphorylation Domain of the β-Catenin Protein

    PubMed Central

    Kong, Yuhan; Zhang, Hongyu; Chen, Xian; Zhang, Wenwen; Zhao, Chen; Wang, Ning; Wu, Ningning; He, Yunfeng; Nan, Guoxin; Zhang, Hongmei; Wen, Sheng; Deng, Fang; Liao, Zhan; Wu, Di; Zhang, Junhui; Qin, Xinyue; Haydon, Rex C.; Luu, Hue H.; He, Tong-Chuan; Zhou, Lan

    2014-01-01

    Background and Aims Wnt/β-catenin signaling plays important roles in development and cellular processes. The hallmark of canonical Wnt signaling activation is the stabilization of β-catenin protein in cytoplasm and/or nucleus. The stability of β-catenin is the key to its biological functions and is controlled by the phosphorylation of its amino-terminal degradation domain. Aberrant activation of β-catenin signaling has been implicated in the development of human cancers. It has been recently suggested that GSK3β may play an essential role in regulating global protein turnover. Here, we investigate if the GSK3β phosphorylation site-containing degradation domain of β-catenin is sufficient to destabilize heterologous proteins. Methods and Results We engineer chimeric proteins by fusing β-catenin degradation domain at the N- and/or C-termini of the enhanced green fluorescent protein (eGFP). In both transient and stable expression experiments, the chimeric GFP proteins exhibit a significantly decreased stability, which can be effectively antagonized by lithium and Wnt1. An activating mutation in the destruction domain significantly stabilizes the fusion protein. Furthermore, GSK3 inhibitor SB-216763 effectively increases the GFP signal of the fusion protein. Conversely, the inhibition of Wnt signaling with tankyrase inhibitor XAV939 results in a decrease in GFP signal of the fusion proteins, while these small molecules have no significant effects on the mutant destruction domain-GFP fusion protein. Conclusion Our findings strongly suggest that the β-catenin degradation domain may be sufficient to destabilize heterologous proteins in Wnt signaling-dependent manner. It is conceivable that the chimeric GFP proteins may be used as a functional reporter to measure the dynamic status of β-catenin signaling, and to identify potential anticancer drugs that target β-catenin signaling. PMID:24335169

  3. Two distinct domains of protein 4.1 critical for assembly of functional nuclei in vitro.

    PubMed

    Krauss, Sharon Wald; Heald, Rebecca; Lee, Gloria; Nunomura, Wataru; Gimm, J Aura; Mohandas, Narla; Chasis, Joel Anne

    2002-11-15

    Protein 4.1R, a multifunctional structural protein, acts as an adaptor in mature red cell membrane skeletons linking spectrin-actin complexes to plasma membrane-associated proteins. In nucleated cells protein 4.1 is not associated exclusively with plasma membrane but is also detected at several important subcellular locations crucial for cell division. To identify 4.1 domains having critical functions in nuclear assembly, 4.1 domain peptides were added to Xenopus egg extract nuclear reconstitution reactions. Morphologically disorganized, replication deficient nuclei assembled when spectrin-actin-binding domain or NuMA-binding C-terminal domain peptides were present. However, control variant spectrin-actin-binding domain peptides incapable of binding actin or mutant C-terminal domain peptides with reduced NuMA binding had no deleterious effects on nuclear reconstitution. To test whether 4.1 is required for proper nuclear assembly, 4.1 isoforms were depleted with spectrin-actin binding or C-terminal domain-specific antibodies. Nuclei assembled in the depleted extracts were deranged. However, nuclear assembly could be rescued by the addition of recombinant 4.1R. Our data establish that protein 4.1 is essential for nuclear assembly and identify two distinct 4.1 domains, initially characterized in cytoskeletal interactions, that have crucial and versatile functions in nuclear assembly.

  4. A Protein Domain and Family Based Approach to Rare Variant Association Analysis

    PubMed Central

    Richardson, Tom G.; Shihab, Hashem A.; Rivas, Manuel A.; McCarthy, Mark I.; Campbell, Colin; Timpson, Nicholas J.; Gaunt, Tom R.

    2016-01-01

    Background It has become common practice to analyse large scale sequencing data with statistical approaches based around the aggregation of rare variants within the same gene. We applied a novel approach to rare variant analysis by collapsing variants together using protein domain and family coordinates, regarded to be a more discrete definition of a biologically functional unit. Methods Using Pfam definitions, we collapsed rare variants (Minor Allele Frequency ≤ 1%) together in three different ways 1) variants within single genomic regions which map to individual protein domains 2) variants within two individual protein domain regions which are predicted to be responsible for a protein-protein interaction 3) all variants within combined regions from multiple genes responsible for coding the same protein domain (i.e. protein families). A conventional collapsing analysis using gene coordinates was also undertaken for comparison. We used UK10K sequence data and investigated associations between regions of variants and lipid traits using the sequence kernel association test (SKAT). Results We observed no strong evidence of association between regions of variants based on Pfam domain definitions and lipid traits. Quantile-Quantile plots illustrated that the overall distributions of p-values from the protein domain analyses were comparable to that of a conventional gene-based approach. Deviations from this distribution suggested that collapsing by either protein domain or gene definitions may be favourable depending on the trait analysed. Conclusion We have collapsed rare variants together using protein domain and family coordinates to present an alternative approach over collapsing across conventionally used gene-based regions. Although no strong evidence of association was detected in these analyses, future studies may still find value in adopting these approaches to detect previously unidentified association signals. PMID:27128313

  5. The human lysyl oxidase-like 2 protein functions as an amine oxidase toward collagen and elastin.

    PubMed

    Kim, Young-Mi; Kim, Eun-Cheol; Kim, Youngho

    2011-01-01

    The lysyl oxidase-like 2 (LOXL2) protein is a human paralogue of lysyl oxidase (LOX) that functions as an amine oxidase for formation of lysine-derived cross-links found in collagen and elastin. In addition to the C-terminal domains characteristic to the LOX family members, LOXL2 contains four scavenger receptor cysteine-rich (SRCR) domains in the N-terminus. In order to assess the amine oxidase activity of LOXL2, we expressed a series of recombinant LOXL2 proteins with deletions in the SRCR domains, using an Escherichia coli expression system. All of the purified recombinant LOXL2 proteins, with or without the SRCR domains in the N-terminus, showed significant amine oxidase activity toward several different types of collagen and elastin in in vitro amine oxidase assays, indicating deletion of the SRCR domains does not interfere with amine oxidase activity of LOXL2. Further, amine oxidase activity of LOXL2 was not susceptible to inhibition by β-aminopropionitrile, an irreversible inhibitor of LOX, suggesting a different enzymatic mechanism between these two paralogues.

  6. Protein complex prediction via improved verification methods using constrained domain-domain matching.

    PubMed

    Zhao, Yang; Hayashida, Morihiro; Nacher, Jose C; Nagamochi, Hiroshi; Akutsu, Tatsuya

    2012-01-01

    Identification of protein complexes within protein-protein interaction networks is one of the important objectives in functional genomics. Ozawa et al. proposed a verification method of protein complexes by introducing a structural constraint. In this paper, we propose an improved integer programming-based method based on the idea that a candidate complex should not be divided into many small complexes, and combination methods with maximal components and extreme sets. The results of computational experiments suggest that our methods outperform the method by Ozawa et al. We prove that the verification problems are NP-hard, which justifies the use of integer programming. PMID:22961452

  7. Differential Occurrence of Interactions and Interaction Domains in Proteins Containing Homopolymeric Amino Acid Repeats.

    PubMed

    Pelassa, Ilaria; Fiumara, Ferdinando

    2015-01-01

    Homopolymeric amino acids repeats (AARs), which are widespread in proteomes, have often been viewed simply as spacers between protein domains, or even as "junk" sequences with no obvious function but with a potential to cause harm upon expansion as in genetic diseases associated with polyglutamine or polyalanine expansions, including Huntington disease and cleidocranial dysplasia. A growing body of evidence indicates however that at least some AARs can form organized, functional protein structures, and can regulate protein function. In particular, certain AARs can mediate protein-protein interactions, either through homotypic AAR-AAR contacts or through heterotypic contacts with other protein domains. It is still unclear however, whether AARs may have a generalized, proteome-wide role in shaping protein-protein interaction networks. Therefore, we have undertaken here a bioinformatics screening of the human proteome and interactome in search of quantitative evidence of such a role. We first identified the sets of proteins that contain repeats of any one of the 20 amino acids, as well as control sets of proteins chosen at random in the proteome. We then analyzed the connectivity between the proteins of the AAR-containing protein sets and we compared it with that observed in the corresponding control networks. We find evidence for different degrees of connectivity in the different AAR-containing protein networks. Indeed, networks of proteins containing polyglutamine, polyglutamate, polyproline, and other AARs show significantly increased levels of connectivity, whereas networks containing polyleucine and other hydrophobic repeats show lower degrees of connectivity. Furthermore, we observed that numerous protein-protein, -nucleic acid, and -lipid interaction domains are significantly enriched in specific AAR protein groups. These findings support the notion of a generalized, combinatorial role of AARs, together with conventional protein interaction domains, in shaping

  8. Visna virus Tat protein: a potent transcription factor with both activator and suppressor domains.

    PubMed Central

    Carruth, L M; Hardwick, J M; Morse, B A; Clements, J E

    1994-01-01

    Visna virus is a pathogenic lentivirus of sheep tat is distantly related to the primate lentiviruses, including human immunodeficiency virus type 1. The visna virus genome encodes a small regulatory protein, Tat, which is necessary for efficient viral replication and enhanced viral transcription. To investigate the mechanism of action of the visna Tat protein and to localize the protein domain(s) responsible for transcriptional activation, chimeric proteins containing visna virus Tat sequences fused to the DNA binding domain of the yeast transactivation factor GAL4 (residues 1 to 147) were made. The GAL4-Tat fusion proteins were transfected into cells and tested for the ability to activate the adenovirus E1b promoter via upstream GAL4 DNA binding sites. Full-length GAL4-Tat fusion proteins were weak transactivators in this system, giving only a two- to fourfold increase in transcription in several cell types, including HeLa and sheep choroid plexus cells. In contrast, fusion of the N-terminal region of the Tat protein to GAL4 revealed a potent activation domain. Amino acids 13 to 38 appeared to be the most critical for activation. No other region of the protein showed any activation in the GAL4 system. This N-terminal region of the visna virus Tat protein has a large number of acidic and hydrophobic residues, suggesting that Tat has an acidic activation domain common to many transcriptional transactivators. Mutations in hydrophobic and bulky aromatic residues dramatically reduced the activity of the chimeric protein. Competition experiments suggest that mechanism of the visna virus Tat activation domain may closely resemble that of the herpesvirus activator VP16 and human immunodeficiency virus Tat, a related lentivirus activator, since both significantly reduce the level of visna virus Tat activation. Finally, a domain between residues 39 and 53 was identified in the Tat protein that, in the GAL4 system, negatively regulates activation by Tat. Images PMID:8083955

  9. Eukaryotic cold shock domain proteins: highly versatile regulators of gene expression.

    PubMed

    Mihailovich, Marija; Militti, Cristina; Gabaldón, Toni; Gebauer, Fátima

    2010-02-01

    Cold shock domain (CSD)-containing proteins have been found in all three domains of life and function in a variety of processes that are related, for the most part, to post-transcriptional gene regulation. The CSD is an ancient beta-barrel fold that serves to bind nucleic acids. The CSD is structurally and functionally similar to the S1 domain, a fold with otherwise unrelated primary sequence. The flexibility of the CSD/S1 domain for RNA recognition confers an enormous functional versatility to the proteins that contain them. This review summarizes the current knowledge on eukaryotic CSD/S1 domain-containing proteins with a special emphasis on UNR (upstream of N-ras), a member of this family with multiple copies of the CSD.

  10. Recognition of the disordered p53 transactivation domain by the transcriptional adapter zinc finger domains of CREB-binding protein.

    PubMed

    Krois, Alexander S; Ferreon, Josephine C; Martinez-Yamout, Maria A; Dyson, H Jane; Wright, Peter E

    2016-03-29

    An important component of the activity of p53 as a tumor suppressor is its interaction with the transcriptional coactivators cyclic-AMP response element-binding protein (CREB)-binding protein (CBP) and p300, which activate transcription of p53-regulated stress response genes and stabilize p53 against ubiquitin-mediated degradation. The highest affinity interactions are between the intrinsically disordered N-terminal transactivation domain (TAD) of p53 and the TAZ1 and TAZ2 domains of CBP/p300. The NMR spectra of simple binary complexes of the TAZ1 and TAZ2 domains with the p53TAD suffer from exchange broadening, but innovations in construct design and isotopic labeling have enabled us to obtain high-resolution structures using fusion proteins, uniformly labeled in the case of the TAZ2-p53TAD fusion and segmentally labeled through transintein splicing for the TAZ1-p53TAD fusion. The p53TAD is bipartite, with two interaction motifs, termed AD1 and AD2, which fold to form short amphipathic helices upon binding to TAZ1 and TAZ2 whereas intervening regions of the p53TAD remain flexible. Both the AD1 and AD2 motifs bind to hydrophobic surfaces of the TAZ domains, with AD2 making more extensive hydrophobic contacts consistent with its greater contribution to the binding affinity. Binding of AD1 and AD2 is synergistic, and structural studies performed with isolated motifs can be misleading. The present structures of the full-length p53TAD complexes demonstrate the versatility of the interactions available to an intrinsically disordered domain containing bipartite interaction motifs and provide valuable insights into the structural basis of the affinity changes that occur upon stress-related posttranslational modification. PMID:26976603

  11. Recognition of the disordered p53 transactivation domain by the transcriptional adapter zinc finger domains of CREB-binding protein

    PubMed Central

    Krois, Alexander S.; Ferreon, Josephine C.; Martinez-Yamout, Maria A.; Wright, Peter E.

    2016-01-01

    An important component of the activity of p53 as a tumor suppressor is its interaction with the transcriptional coactivators cyclic-AMP response element-binding protein (CREB)-binding protein (CBP) and p300, which activate transcription of p53-regulated stress response genes and stabilize p53 against ubiquitin-mediated degradation. The highest affinity interactions are between the intrinsically disordered N-terminal transactivation domain (TAD) of p53 and the TAZ1 and TAZ2 domains of CBP/p300. The NMR spectra of simple binary complexes of the TAZ1 and TAZ2 domains with the p53TAD suffer from exchange broadening, but innovations in construct design and isotopic labeling have enabled us to obtain high-resolution structures using fusion proteins, uniformly labeled in the case of the TAZ2–p53TAD fusion and segmentally labeled through transintein splicing for the TAZ1–p53TAD fusion. The p53TAD is bipartite, with two interaction motifs, termed AD1 and AD2, which fold to form short amphipathic helices upon binding to TAZ1 and TAZ2 whereas intervening regions of the p53TAD remain flexible. Both the AD1 and AD2 motifs bind to hydrophobic surfaces of the TAZ domains, with AD2 making more extensive hydrophobic contacts consistent with its greater contribution to the binding affinity. Binding of AD1 and AD2 is synergistic, and structural studies performed with isolated motifs can be misleading. The present structures of the full-length p53TAD complexes demonstrate the versatility of the interactions available to an intrinsically disordered domain containing bipartite interaction motifs and provide valuable insights into the structural basis of the affinity changes that occur upon stress-related posttranslational modification. PMID:26976603

  12. Host cell proteins binding to domain IV of the 5' noncoding region of poliovirus RNA.

    PubMed Central

    Blyn, L B; Chen, R; Semler, B L; Ehrenfeld, E

    1995-01-01

    Translation of poliovirus RNA occurs by the binding of ribosomes to an internal segment of RNA sequence within the 5' untranslated region of the viral RNA. This region is predicted to consist of six domains (I to VI) that possess complex secondary and tertiary structures. Domain IV is a large region in which alterations in the sequence or structure markedly reduce translational efficiency. In this study, we employed RNA mobility shift assays to demonstrate that a protein(s) from uninfected HeLa cell extracts, as well as from neuroblastoma extracts, interacts with the domain IV structure. A mutation in domain IV caused reduced binding of HeLa cell proteins and reduced translation both in vitro and in vivo, suggesting that the binding of at least one of these proteins plays a role in the mechanism of viral translation. UV cross-linking indicated that a protein(s) with a size of approximately 40 kDa interacted directly with the RNA. Using streptavidin beads to capture biotinylated RNA bound to proteins, we were able to visualize a number of HeLa and neuroblastoma cell proteins that interact with domain IV. These proteins have molecular masses of approximately 39, approximately 40, and approximately 42 kDa. PMID:7769700

  13. The methyltransferase domain of dengue virus protein NS5 ensures efficient RNA synthesis initiation and elongation by the polymerase domain.

    PubMed

    Potisopon, Supanee; Priet, Stéphane; Collet, Axelle; Decroly, Etienne; Canard, Bruno; Selisko, Barbara

    2014-10-01

    Viral RNA-dependent RNA polymerases (RdRps) responsible for the replication of single-strand RNA virus genomes exert their function in the context of complex replication machineries. Within these replication complexes the polymerase activity is often highly regulated by RNA elements, proteins or other domains of multi-domain polymerases. Here, we present data of the influence of the methyltransferase domain (NS5-MTase) of dengue virus (DENV) protein NS5 on the RdRp activity of the polymerase domain (NS5-Pol). The steady-state polymerase activities of DENV-2 recombinant NS5 and NS5-Pol are compared using different biochemical assays allowing the dissection of the de novo initiation, transition and elongation steps of RNA synthesis. We show that NS5-MTase ensures efficient RdRp activity by stimulating the de novo initiation and the elongation phase. This stimulation is related to a higher affinity of NS5 toward the single-strand RNA template indicating NS5-MTase either completes a high-affinity RNA binding site and/or promotes the correct formation of the template tunnel. Furthermore, the NS5-MTase increases the affinity of the priming nucleotide ATP upon de novo initiation and causes a higher catalytic efficiency of the polymerase upon elongation. The complex stimulation pattern is discussed under the perspective that NS5 adopts several conformations during RNA synthesis. PMID:25209234

  14. The methyltransferase domain of dengue virus protein NS5 ensures efficient RNA synthesis initiation and elongation by the polymerase domain

    PubMed Central

    Potisopon, Supanee; Priet, Stéphane; Collet, Axelle; Decroly, Etienne; Canard, Bruno; Selisko, Barbara

    2014-01-01

    Viral RNA-dependent RNA polymerases (RdRps) responsible for the replication of single-strand RNA virus genomes exert their function in the context of complex replication machineries. Within these replication complexes the polymerase activity is often highly regulated by RNA elements, proteins or other domains of multi-domain polymerases. Here, we present data of the influence of the methyltransferase domain (NS5-MTase) of dengue virus (DENV) protein NS5 on the RdRp activity of the polymerase domain (NS5-Pol). The steady-state polymerase activities of DENV-2 recombinant NS5 and NS5-Pol are compared using different biochemical assays allowing the dissection of the de novo initiation, transition and elongation steps of RNA synthesis. We show that NS5-MTase ensures efficient RdRp activity by stimulating the de novo initiation and the elongation phase. This stimulation is related to a higher affinity of NS5 toward the single-strand RNA template indicating NS5-MTase either completes a high-affinity RNA binding site and/or promotes the correct formation of the template tunnel. Furthermore, the NS5-MTase increases the affinity of the priming nucleotide ATP upon de novo initiation and causes a higher catalytic efficiency of the polymerase upon elongation. The complex stimulation pattern is discussed under the perspective that NS5 adopts several conformations during RNA synthesis. PMID:25209234

  15. Targeting of a histone acetyltransferase domain to a promoter enhances protein expression levels in mammalian cells.

    PubMed

    Kwaks, T H J; Sewalt, R G A B; van Blokland, R; Siersma, T J; Kasiem, M; Kelder, A; Otte, A P

    2005-01-12

    Silencing of transfected genes in mammalian cells is a fundamental problem that probably involves the (in)accessibility status of chromatin. A potential solution to this problem is to provide a cell with protein factors that make the chromatin of a promoter more open or accessible for transcription. We tested this by targeting such proteins to different promoters. We found that targeting the p300 histone acetyltransferase (HAT) domain to strong viral or cellular promoters is sufficient to result in higher expression levels of a reporter protein. In contrast, targeting the chromatin-remodeling factor Brahma does not result in stable, higher protein expression levels. The long-term effects of the targeted p300HAT domain on protein expression levels are positively reinforced, when also anti-repressor elements are applied to flank the reporter construct. These elements were previously shown to be potent blockers of chromatin-associated repressors. The simultaneous application of the targeted p300HAT domain and anti-repressor elements conveys long-term stability to protein expression. Whereas no copy number dependency is achieved by targeting of the p300HAT domain alone, copy number dependency is improved when anti-repressor elements are included. We conclude that targeting of protein domains such as HAT domains helps to facilitate expression of transfected genes in mammalian cells. However, the simultaneous application of other genomic elements such as the anti-repressor elements prevents silencing more efficiently.

  16. Modulation of neurotransmitter receptors and synaptic differentiation by proteins containing complement-related domains.

    PubMed

    Nakayama, Minoru; Hama, Chihiro

    2011-02-01

    Neurotransmitter receptors play central roles in basic neurotransmission and synaptic plasticity. Recent studies have revealed that some transmembrane and extracellular proteins bind to neurotransmitter receptors, forming protein complexes that are required for proper synaptic localization or gating of core receptor molecules. Consequently, the components of these complexes contribute to long-term potentiation, a process that is critical for learning and memory. Here, we review factors that regulate neurotransmitter receptors, with a focus on proteins containing CUB (complement C1r/C1s, Uegf, Bmp1) or CCP (complement control protein) domains, which are frequently found in complement system proteins. Proteins that contain these domains are structurally distinct from TARPs (transmembrane AMPA receptor regulatory proteins), and may constitute new protein families that modulate either the localization or function of neurotransmitter receptors. In addition, other CCP domain-containing proteins participate in dendritic patterning and/or synaptic differentiation, although current evidence has not identified any direct activities on neurotransmitter receptors. Some of these proteins are involved in pathologic conditions such as epileptic seizure and mental retardation. Together, these lines of information have shown that CUB and CCP domain-containing proteins contribute to a wide variety of neuronal events that ultimately establish neural circuits.

  17. Coupling between overall rotational diffusion and domain motions in proteins and its effect on dielectric spectra.

    PubMed

    Ryabov, Yaroslav

    2015-09-01

    In this work, we formulate a closed-form solution of the model of a semirigid molecule for the case of fluctuating and reorienting molecular electric dipole moment. We illustrate with numeric calculations the impact of protein domain motions on dielectric spectra using the example of the 128 kDa protein dimer of Enzyme I. We demonstrate that the most drastic effect occurs for situations when the characteristic time of protein domain dynamics is comparable to the time of overall molecular rotational diffusion. We suggest that protein domain motions could be a possible explanation for the high-frequency contribution that accompanies the major relaxation dispersion peak in the dielectric spectra of protein aqueous solutions. We propose that the presented computational methodology could be used for the simultaneous analysis of dielectric spectroscopy and nuclear magnetic resonance data. Proteins 2015; 83:1571-1581. © 2015 Wiley Periodicals, Inc.

  18. A novel Aurelia aurita protein mesoglein contains DSL and ZP domains.

    PubMed

    Matveev, I V; Shaposhnikova, T G; Podgornaya, O I

    2007-09-01

    Body of the scyphoid jellyfish Aurelia aurita consists of 2 epithelia -- epidermis and gastroderm. The layers are separated by a thick layer of extracellular matrix -- mesoglea. A. aurita has a lot of cells in the mesoglea unlike many other Cnidarians. The major protein of the mesoglea with apparent molecular mass of 47 kDa was detected by SDS-PAGE. A partial mRNA of the protein 1421 bp long was cloned and sequenced. The search for homologous nucleotide and protein sequences shows that the mRNA sequence is novel. Deduced amino acid sequence of 416 aa contains zona pellucida (ZP) domain and Delta/Serrate/Lag-2 (DSL) domain. The protein was named mesoglein. According to reverse transcription PCR analysis it is expressed in the mature medusa exclusively in the mesogleal cells. Mesoglein belongs to the lowest phyla among ZP domain-containing proteins. The protein is supposed to be a structural element of the mesoglea extracellular matrix.

  19. Vascular endothelial growth factor-related protein: a ligand and specific activator of the tyrosine kinase receptor Flt4.

    PubMed Central

    Lee, J; Gray, A; Yuan, J; Luoh, S M; Avraham, H; Wood, W I

    1996-01-01

    The tyrosine kinases Flt4, Flt1, and Flk1 (or KDR) constitute a family of endothelial cell-specific receptors with seven immunoglobulin-like domains and a split kinase domain. Flt1 and Flk1 have been shown to play key roles in vascular development; these two receptors bind and are activated by vascular endothelial growth factor (VEGF). No ligand has been identified for Flt4, whose expression becomes restricted during development to the lymphatic endothelium. We have identified cDNA clones from a human glioma cell line that encode a secreted protein with 32% amino acid identity to VEGF. This protein, designated VEGF-related protein (VRP), specifically binds to the extracellular domain of Flt4, stimulates the tyrosine phosphorylation of Flt4 expressed in mammalian cells, and promotes the mitogenesis of human lung endothelial cells. VRP fails to bind appreciably to the extracellular domain of Flt1 or Flk1. The protein contains a C-terminal, cysteine-rich region of about 180 amino acids that is not found in VEGF. A 2.4-kb VRP mRNA is found in several human tissues including adult heart, placenta, ovary, and small intestine and in fetal lung and kidney. Images Fig. 1 Fig. 2 Fig. 3 Fig. 6 PMID:8700872

  20. FAST KINASE DOMAIN-CONTAINING PROTEIN 3 IS A MITOCHONDRIAL PROTEIN ESSENTIAL FOR CELLULAR RESPIRATION

    PubMed Central

    Simarro, Maria; Gimenez-Cassina, Alfredo; Kedersha, Nancy; Lazaro, Jean-Bernard; Adelmant, Guillaume O; Marto, Jarrod A; Rhee, Kirsten; Tisdale, Sarah; Danial, Nika; Benarafa, Charaf; Orduña, Anonio; Anderson, Paul

    2010-01-01

    Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration. PMID:20869947

  1. Retinoblastoma-binding protein 1 has an interdigitated double Tudor domain with DNA binding activity.

    PubMed

    Gong, Weibin; Wang, Jinfeng; Perrett, Sarah; Feng, Yingang

    2014-02-21

    Retinoblastoma-binding protein 1 (RBBP1) is a tumor and leukemia suppressor that binds both methylated histone tails and DNA. Our previous studies indicated that RBBP1 possesses a Tudor domain, which cannot bind histone marks. In order to clarify the function of the Tudor domain, the solution structure of the RBBP1 Tudor domain was determined by NMR and is presented here. Although the proteins are unrelated, the RBBP1 Tudor domain forms an interdigitated double Tudor structure similar to the Tudor domain of JMJD2A, which is an epigenetic mark reader. This indicates the functional diversity of Tudor domains. The RBBP1 Tudor domain structure has a significant area of positively charged surface, which reveals a capability of the RBBP1 Tudor domain to bind nucleic acids. NMR titration and isothermal titration calorimetry experiments indicate that the RBBP1 Tudor domain binds both double- and single-stranded DNA with an affinity of 10-100 μM; no apparent DNA sequence specificity was detected. The DNA binding mode and key interaction residues were analyzed in detail based on a model structure of the Tudor domain-dsDNA complex, built by HADDOCK docking using the NMR data. Electrostatic interactions mediate the binding of the Tudor domain with DNA, which is consistent with NMR experiments performed at high salt concentration. The DNA-binding residues are conserved in Tudor domains of the RBBP1 protein family, resulting in conservation of the DNA-binding function in the RBBP1 Tudor domains. Our results provide further insights into the structure and function of RBBP1.

  2. Reciprocal Influence of Protein Domains in the Cold-Adapted Acyl Aminoacyl Peptidase from Sporosarcina psychrophila

    PubMed Central

    Parravicini, Federica; Natalello, Antonino; Papaleo, Elena; De Gioia, Luca; Doglia, Silvia Maria; Lotti, Marina; Brocca, Stefania

    2013-01-01

    Acyl aminoacyl peptidases are two-domain proteins composed by a C-terminal catalytic α/β-hydrolase domain and by an N-terminal β-propeller domain connected through a structural element that is at the N-terminus in sequence but participates in the 3D structure of the C-domain. We investigated about the structural and functional interplay between the two domains and the bridge structure (in this case a single helix named α1-helix) in the cold-adapted enzyme from Sporosarcina psychrophila (SpAAP) using both protein variants in which entire domains were deleted and proteins carrying substitutions in the α1-helix. We found that in this enzyme the inter-domain connection dramatically affects the stability of both the whole enzyme and the β-propeller. The α1-helix is required for the stability of the intact protein, as in other enzymes of the same family; however in this psychrophilic enzyme only, it destabilizes the isolated β-propeller. A single charged residue (E10) in the α1-helix plays a major role for the stability of the whole structure. Overall, a strict interaction of the SpAAP domains seems to be mandatory for the preservation of their reciprocal structural integrity and may witness their co-evolution. PMID:23457536

  3. Molecular insights into the WW domain of the Golabi-Ito-Hall syndrome protein PQBP1.

    PubMed

    Sudol, Marius; McDonald, Caleb B; Farooq, Amjad

    2012-08-14

    The WW domain-containing PQBP1 (polyglutamine tract-binding protein 1) protein regulates mRNA processing and gene transcription. Mutations in the PQBP1 gene were reported in several X chromosome-linked intellectual disability (XLID) disorders, including Golabi-Ito-Hall (GIH) syndrome. The missense mutation in the GIH syndrome maps within a functional region of the PQBP1 protein known as the WW domain. The causative mutation of PQBP1 replaces the conserved tyrosine (Y) at position 65 within the aromatic core of the WW domain to cysteine (C), which is a chemically significant change. In this short review, we analyze structural models of the Y65C mutated and wild type WW domains of PQBP1 in order to infer potential molecular mechanisms that render the mutated PQBP1 protein inactive in terms of ligand binding and its function as a regulator of mRNA splicing.

  4. A Proteome-wide Domain-centric Perspective on Protein Phosphorylation *

    PubMed Central

    Palmeri, Antonio; Ausiello, Gabriele; Ferrè, Fabrizio; Helmer-Citterich, Manuela; Gherardini, Pier Federico

    2014-01-01

    Phosphorylation is a widespread post-translational modification that modulates the function of a large number of proteins. Here we show that a significant proportion of all the domains in the human proteome is significantly enriched or depleted in phosphorylation events. A substantial improvement in phosphosites prediction is achieved by leveraging this observation, which has not been tapped by existing methods. Phosphorylation sites are often not shared between multiple occurrences of the same domain in the proteome, even when the phosphoacceptor residue is conserved. This is partly because of different functional constraints acting on the same domain in different protein contexts. Moreover, by augmenting domain alignments with structural information, we were able to provide direct evidence that phosphosites in protein-protein interfaces need not be positionally conserved, likely because they can modulate interactions simply by sitting in the same general surface area. PMID:24830415

  5. The Ubiquitin-associated Domain of Cellular Inhibitor of Apoptosis Proteins Facilitates Ubiquitylation*

    PubMed Central

    Budhidarmo, Rhesa; Day, Catherine L.

    2014-01-01

    The cellular inhibitor of apoptosis (cIAP) proteins are essential RING E3 ubiquitin ligases that regulate apoptosis and inflammatory responses. cIAPs contain a ubiquitin-associated (UBA) domain that binds ubiquitin and is implicated in the regulation of cell survival and proteasomal degradation. Here we show that mutation of the MGF and LL motifs in the UBA domain of cIAP1 caused unfolding and increased cIAP1 multimonoubiquitylation. By developing a UBA mutant that disrupted ubiquitin binding but not the structure of the UBA domain, we found that the UBA domain enhances cIAP1 and cIAP2 ubiquitylation. We demonstrate that the UBA domain binds to the UbcH5b∼Ub conjugate, and this promotes RING domain-dependent monoubiquitylation. This study establishes ubiquitin-binding modules, such as the UBA domain, as important regulatory modules that can fine tune the activity of E3 ligases. PMID:25065467

  6. Recombinant disintegrin domain of human ADAM9 inhibits migration and invasion of DU145 prostate tumor cells

    PubMed Central

    Martin, Ana Carolina Baptista Moreno; Cardoso, Ana Carolina Ferreira; Selistre-de-Araujo, Heloisa Sobreiro; Cominetti, Márcia Regina

    2015-01-01

    One of the most important features of malignant cells is their capacity to invade adjacent tissues and metastasize to distant organs. This process involves the creation, by tumor and stroma cells, of a specific microenvironment, suitable for proliferation, migration and invasion of tumor cells. The ADAM family of proteins has been involved in these processes. This work aimed to investigate the role of the recombinant disintegrin domain of the human ADAM9 (rADAM9D) on the adhesive and mobility properties of DU145 prostate tumor cells. rADAM9D was able to support DU145 cell adhesion, inhibit the migration of DU145 cells, as well as the invasion of this cell line through matrigel in vitro. Overall this work demonstrates that rADAM9D induces specific cellular migratory properties when compared with different constructs having additional domains, specially those of metalloproteinase and cysteine-rich domains. Furthermore, we showed that rADAM9D was able to inhibit cell adhesion, migration and invasion mainly through interacting with α6β1 in DU145 tumor cell line. These results may contribute to the development of new therapeutic strategies for prostate cancer. PMID:26211476

  7. Association of a novel human FE65-like protein with the cytoplasmic domain of the beta-amyloid precursor protein.

    PubMed Central

    Guénette, S Y; Chen, J; Jondro, P D; Tanzi, R E

    1996-01-01

    We identified a novel human homologue of the rat FE65 gene, hFE65L, by screening the cytoplasmic domain of beta-amyloid precursor protein (beta PP) with the "interaction trap." The cytoplasmic domains of the beta PP homologues, APLP1 and APLP2 (amyloid precursor-like proteins), were also tested for interaction with hFE65L. APLP2, but not APLP1, was found to interact with hFE65L. We confirmed these interactions in vivo by successfully coimmunoprecipatating endogenous beta PP and APLP2 from mammalian cells overexpressing a hemagglutinin-tagged fusion of the C-terminal region of hFE65L. We report the existence of a human FE65 gene family and evidence supporting specific interactions between members of the beta PP and FE65 protein families. Sequence analysis of the FE65 human gene family reveals the presence of two phosphotyrosine interaction (PI) domains. Our data show that a single PI domain is sufficient for binding of hFE65L to the cytoplasmic domain of beta PP and APLP2. The PI domain of the protein, Shc, is known to interact with the NPXYp motif found in the cytoplasmic domain of a number of different growth factor receptors. Thus, it is likely that the PI domains present in the C-terminal moiety of the hFE65L protein bind the NPXY motif located in the cytoplasmic domain of beta PP and APLP2. Images Fig. 1 Fig. 2 Fig. 3 PMID:8855266

  8. Direct interaction of the N-terminal domain of ribosomal protein S1 with protein S2 in Escherichia coli.

    PubMed

    Byrgazov, Konstantin; Manoharadas, Salim; Kaberdina, Anna C; Vesper, Oliver; Moll, Isabella

    2012-01-01

    Despite of the high resolution structure available for the E. coli ribosome, hitherto the structure and localization of the essential ribosomal protein S1 on the 30 S subunit still remains to be elucidated. It was previously reported that protein S1 binds to the ribosome via protein-protein interaction at the two N-terminal domains. Moreover, protein S2 was shown to be required for binding of protein S1 to the ribosome. Here, we present evidence that the N-terminal domain of S1 (amino acids 1-106; S1(106)) is necessary and sufficient for the interaction with protein S2 as well as for ribosome binding. We show that over production of protein S1(106) affects E. coli growth by displacing native protein S1 from its binding pocket on the ribosome. In addition, our data reveal that the coiled-coil domain of protein S2 (S2α(2)) is sufficient to allow protein S1 to bind to the ribosome. Taken together, these data uncover the crucial elements required for the S1/S2 interaction, which is pivotal for translation initiation on canonical mRNAs in gram-negative bacteria. The results are discussed in terms of a model wherein the S1/S2 interaction surface could represent a possible target to modulate the selectivity of the translational machinery and thereby alter the translational program under distinct conditions.

  9. Functional characterization of candidate effector proteins identified from the wheat scab fungus Fusarium graminearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal pathogens often produce certain small secreted cysteine-rich proteins (SSCPs) during pathogenesis that may function in triggering resistance or susceptibility in specific host plants. We have recently identified a total of 190 SSCPs encoded in the genome of the wheat scab fungus Fusarium gra...

  10. Travelling lipid domains in a dynamic model for protein-induced pattern formation in biomembranes

    NASA Astrophysics Data System (ADS)

    John, Karin; Bär, Markus

    2005-06-01

    Cell membranes are composed of a mixture of lipids. Many biological processes require the formation of spatial domains in the lipid distribution of the plasma membrane. We have developed a mathematical model that describes the dynamic spatial distribution of acidic lipids in response to the presence of GMC proteins and regulating enzymes. The model encompasses diffusion of lipids and GMC proteins, electrostatic attraction between acidic lipids and GMC proteins as well as the kinetics of membrane attachment/detachment of GMC proteins. If the lipid-protein interaction is strong enough, phase separation occurs in the membrane as a result of free energy minimization and protein/lipid domains are formed. The picture is changed if a constant activity of enzymes is included into the model. We chose the myristoyl-electrostatic switch as a regulatory module. It consists of a protein kinase C that phosphorylates and removes the GMC proteins from the membrane and a phosphatase that dephosphorylates the proteins and enables them to rebind to the membrane. For sufficiently high enzymatic activity, the phase separation is replaced by travelling domains of acidic lipids and proteins. The latter active process is typical for nonequilibrium systems. It allows for a faster restructuring and polarization of the membrane since it acts on a larger length scale than the passive phase separation. The travelling domains can be pinned by spatial gradients in the activity; thus the membrane is able to detect spatial clues and can adapt its polarity dynamically to changes in the environment.

  11. Vertebrate DM domain proteins bind similar DNA sequences and can heterodimerize on DNA

    PubMed Central

    Murphy, Mark W; Zarkower, David; Bardwell, Vivian J

    2007-01-01

    Background: The DM domain is a zinc finger-like DNA binding motif first identified in the sexual regulatory proteins Doublesex (DSX) and MAB-3, and is widely conserved among metazoans. DM domain proteins regulate sexual differentiation in at least three phyla and also control other aspects of development, including vertebrate segmentation. Most DM domain proteins share little similarity outside the DM domain. DSX and MAB-3 bind partially overlapping DNA sequences, and DSX has been shown to interact with DNA via the minor groove without inducing DNA bending. DSX and MAB-3 exhibit unusually high DNA sequence specificity relative to other minor groove binding proteins. No detailed analysis of DNA binding by the seven vertebrate DM domain proteins, DMRT1-DMRT7 has been reported, and thus it is unknown whether they recognize similar or diverse DNA sequences. Results: We used a random oligonucleotide in vitro selection method to determine DNA binding sites for six of the seven proteins. These proteins selected sites resembling that of DSX despite differences in the sequence of the DM domain recognition helix, but they varied in binding efficiency and in preferences for particular nucleotides, and some behaved anomalously in gel mobility shift assays. DMRT1 protein from mouse testis extracts binds the sequence we determined, and the DMRT proteins can bind their in vitro-defined sites in transfected cells. We also find that some DMRT proteins can bind DNA as heterodimers. Conclusion: Our results suggest that target gene specificity of the DMRT proteins does not derive exclusively from major differences in DNA binding specificity. Instead target specificity may come from more subtle differences in DNA binding preference between different homodimers, together with differences in binding specificity between homodimers versus heterodimers. PMID:17605809

  12. Functional analysis of the zinc cluster domain of the CYP1 (HAP1) complex regulator in heme-sufficient and heme-deficient yeast cells.

    PubMed

    Defranoux, N; Gaisne, M; Verdière, J

    1994-03-01

    CYP1 determines the expression of several genes whose transcription is heme-dependent in yeast. It exerts regulatory functions even in the absence of heme, usually considered to be its effector. It mediates both positive and negative effects, depending on the target gene and on the redox state of the cell. In the presence of heme, it binds through a cysteine-rich domain in which a histidine residue occupies the position of the sixth and essential cysteine of the otherwise classical zinc cluster DNA-binding domain exemplified by GAL4. We constructed specific missense mutations in the potential CYP1 zinc cluster domain by site-directed mutagenesis and looked for regulatory effects of the mutated proteins under specific physiological conditions. We show that CYP1 does belong to the zinc cluster regulatory family since a sixth essential cysteine residue is indeed present, albeit at a modified position when compared to the consensus sequence. We also show that the amino acid preceding the first cysteine residue of the DNA-binding domain critically affects the efficiency of regulation both in the presence and in the absence of heme: mutations known to affect DNA binding under heme-sufficient conditions also affect regulation under heme-deficient conditions. We therefore surmise that regulation under heme-deficient conditions is dependent upon DNA binding. PMID:8152420

  13. The HPr Proteins from the Thermophile Bacillus stearothermophilus Can Form Domain-swapped Dimers

    SciTech Connect

    Sridharan, Sudharsan; Razvi, Abbas; Scholtz, J. Martin; Sacchettini, James C.

    2010-07-20

    The study of proteins from extremophilic organisms continues to generate interest in the field of protein folding because paradigms explaining the enhanced stability of these proteins still elude us and such studies have the potential to further our knowledge of the forces stabilizing proteins. We have undertaken such a study with our model protein HPr from a mesophile, Bacillus subtilis, and a thermophile, Bacillus stearothermophilus. We report here the high-resolution structures of the wild-type HPr protein from the thermophile and a variant, F29W. The variant proved to crystallize in two forms: a monomeric form with a structure very similar to the wild-type protein as well as a domain-swapped dimer. Interestingly, the structure of the domain-swapped dimer for HPr is very different from that observed for a homologous protein, Crh, from B. subtilis. The existence of a domain-swapped dimer has implications for amyloid formation and is consistent with recent results showing that the HPr proteins can form amyloid fibrils. We also characterized the conformational stability of the thermophilic HPr proteins using thermal and solvent denaturation methods and have used the high-resolution structures in an attempt to explain the differences in stability between the different HPr proteins. Finally, we present a detailed analysis of the solution properties of the HPr proteins using a variety of biochemical and biophysical methods.

  14. An alternative scenario for the formation of specialized protein nano-domains (cluster phases) in biomembranes

    NASA Astrophysics Data System (ADS)

    Destainville, N.

    2010-09-01

    We discuss a realistic scenario, accounting for the existence of sub-micrometric protein domains in cell membranes. At the biological level, such membrane domains have been shown to be specialized, in order to perform a determined biological task, in the sense that they gather one or a few protein species out of the hundreds of different ones that a cell membrane may contain. By analyzing the balance between mixing entropy and protein affinities, we propose that such protein sorting in distinct domains can be explained without appealing to pre-existing lipidic micro-phase separations, as in the lipid raft scenario. We show that the proposed scenario is compatible with known physical interactions between membrane proteins, even if thousands of different species coexist.

  15. Protein domain of unknown function 3233 is a translocation domain of autotransporter secretory mechanism in gamma proteobacteria.

    PubMed

    Prakash, Ananth; Yogeeshwari, S; Sircar, Sanchari; Agrawal, Shipra

    2011-01-01

    Vibrio cholerae, the enteropathogenic gram negative bacteria is one of the main causative agents of waterborne diseases like cholera. About 1/3(rd) of the organism's genome is uncharacterised with many protein coding genes lacking structure and functional information. These proteins form significant fraction of the genome and are crucial in understanding the organism's complete functional makeup. In this study we report the general structure and function of a family of hypothetical proteins, Domain of Unknown Function 3233 (DUF3233), which are conserved across gram negative gammaproteobacteria (especially in Vibrio sp. and similar bacteria). Profile and HMM based sequence search methods were used to screen homologues of DUF3233. The I-TASSER fold recognition method was used to build a three dimensional structural model of the domain. The structure resembles the transmembrane beta-barrel with an axial N-terminal helix and twelve antiparallel beta-strands. Using a combination of amphipathy and discrimination analysis we analysed the potential transmembrane beta-barrel forming properties of DUF3233. Sequence, structure and phylogenetic analysis of DUF3233 indicates that this gram negative bacterial hypothetical protein resembles the beta-barrel translocation unit of autotransporter Va secretory mechanism with a gene organisation that differs from the conventional Va system. PMID:22073138

  16. Eukaryotic RNAse H shares a conserved domain with caulimovirus proteins that facilitate translation of polycistronic RNA.

    PubMed Central

    Mushegian, A R; Edskes, H K; Koonin, E V

    1994-01-01

    RNAse H (RNH1 protein) from the trypanosomatid Crithidia fasciculata has a functionally uncharacterized N-terminal domain dispensable for the RNAse H activity. Using computer methods for database search and multiple alignment, we show that the N-terminal domains of RNH1 and its homologue encoded by a cDNA from chicken lens are related to the conserved domain in caulimovirus ORF VI product that facilitates translation of polycistronic virus RNA in plant cells. We hypothesize that the N-terminal domain of eukaryotic RNAse H performs an as yet uncharacterized regulatory function, possibly in mRNA translation or turnover. PMID:7937142

  17. Surface derivatization strategy for combinatorial analysis of cell response to mixtures of protein domains.

    PubMed

    Chiang, Chunyi; Karuri, Stella W; Kshatriya, Pradnya P; Schwartz, Jeffrey; Schwarzbauer, Jean E; Karuri, Nancy W

    2012-01-10

    We report a robust strategy for conjugating mixtures of two or more protein domains to nonfouling polyurethane surfaces. In our strategy, the carbamate groups of polyurethane are reacted with zirconium alkoxide from the vapor phase to give a surface-bound oxide that serves as a chemical layer that can be used to bond organics to the polymer substrate. A hydroxyalkylphosphonate monolayer was synthesized on this layer, which was then used to covalently bind primary amine groups in protein domains using chloroformate-derived cross-linking. The effectiveness of this synthesis strategy was gauged by using an ELISA to measure competitive, covalent bonding of cell-binding (III(9-10)) and fibronectin-binding (III(1-2)) domains of the cell adhesion protein fibronectin. Cell adhesion, spreading, and fibronectin matrix assembly were examined on surfaces conjugated with single domains, a 1:1 surface mixture of III(1-2) and III(9-10), and a recombinant protein "duplex" containing both domains in one fusion protein. The mixture performed as well as or better than the other surfaces in these assays. Our surface activation strategy is amenable to a wide range of polymer substrates and free amino group-containing protein fragments. As such, this technique may be used to create biologically specific materials through the immobilization of specific protein groups or mixtures thereof on a substrate surface.

  18. Ancient conserved domains shared by animal soluble guanylyl cyclases and bacterial signaling proteins

    PubMed Central

    Iyer, Lakshminarayan M; Anantharaman, Vivek; Aravind, L

    2003-01-01

    Background Soluble guanylyl cyclases (SGCs) are dimeric enzymes that transduce signals downstream of nitric oxide (NO) in animals. They sense NO by means of a heme moiety that is bound to their N-terminal extensions. Results Using sequence profile searches we show that the N-terminal extensions of the SGCs contain two globular domains. The first of these, the HNOB (Heme NO Binding) domain, is a predominantly α-helical domain and binds heme via a covalent linkage to histidine. Versions lacking this conserved histidine and are likely to interact with heme non-covalently. We detected HNOB domains in several bacterial lineages, where they occur fused to methyl accepting domains of chemotaxis receptors or as standalone proteins. The standalone forms are encoded by predicted operons that also contain genes for two component signaling systems and GGDEF-type nucleotide cyclases. The second domain, the HNOB associated (HNOBA) domain occurs between the HNOB and the cyclase domains in the animal SGCs. The HNOBA domain is also detected in bacteria and is always encoded by a gene, which occurs in the neighborhood of a gene for a HNOB domain. Conclusion The HNOB domain is predicted to function as a heme-dependent sensor for gaseous ligands, and transduce diverse downstream signals, in both bacteria and animals. The HNOBA domain functionally interacts with the HNOB domain, and possibly binds a ligand, either in cooperation, or independently of the latter domain. Phyletic profiles and phylogenetic analysis suggest that the HNOB and HNOBA domains were acquired by the animal lineage via lateral transfer from a bacterial source. PMID:12590654

  19. ERAD of proteins containing aberrant transmembrane domains requires ubiquitylation of cytoplasmic lysine residues

    PubMed Central

    Briant, Kit; Koay, Yee-Hui; Otsuka, Yuka; Swanton, Eileithyia

    2015-01-01

    ABSTRACT Clearance of misfolded proteins from the endoplasmic reticulum (ER) is mediated by the ubiquitin-proteasome system in a process known as ER-associated degradation (ERAD). The mechanisms through which proteins containing aberrant transmembrane domains are degraded by ERAD are poorly understood. To address this question, we generated model ERAD substrates based on CD8 with either a non-native transmembrane domain but a folded ER luminal domain (CD8TMD*), or the native transmembrane domain but a misfolded luminal domain (CD8LUM*). Although both chimeras were degraded by ERAD, we found that the location of the folding defect determined the initial site of ubiquitylation. Ubiquitylation of cytoplasmic lysine residues was required for the extraction of CD8TMD* from the ER membrane during ERAD, whereas CD8LUM* continued to be degraded in the absence of cytoplasmic lysine residues. Cytoplasmic lysine residues were also required for degradation of an additional ERAD substrate containing an unassembled transmembrane domain and when a non-native transmembrane domain was introduced into CD8LUM*. Our results suggest that proteins with defective transmembrane domains are removed from the ER through a specific ERAD mechanism that depends upon ubiquitylation of cytoplasmic lysine residues. PMID:26446255

  20. Predicting three-dimensional structures of transmembrane domains of β-barrel membrane proteins

    PubMed Central

    Naveed, Hammad; Xu, Yun; Jackups, Ronald; Liang, Jie

    2012-01-01

    β-barrel membrane proteins are found in the outer membrane of gram-negative bacteria, mitochondria, and chloroplasts. They are important for pore formation, membrane anchoring, enzyme activity, and are often responsible for bacterial virulence. Due to difficulties in experimental structure determination, they are sparsely represented in the protein structure databank. We have developed a computational method for predicting structures of the trans-membrane (TM) domains of β-barrel membrane proteins. Our method based on key organization principles, can predict structures of the TM domain of β-barrel membrane proteins of novel topology, including those from eukaryotic mitochondria. Our method is based on a model of physical interactions, a discrete conformational state-space, an empirical potential function, as well as a model to account for interstrand loop entropy. We are able to construct three dimensional atomic structure of the TM-domains from sequences for a set of 23 non-homologous proteins (resolution 1.8 – 3.0 Å). The median RMSD of TM-domains containing 75–222 residues between predicted and measured structures is 3.9 Å for main chain atoms. In addition, stability determinants and protein-protein interaction sites can be predicted. Such predictions on eukaryotic mitochondria outer membrane protein Tom40 and VDAC are confirmed by independent mutagenesis and chemical cross-linking studies. These results suggest that our model captures key components of the organization principles of β-barrel membrane protein assembly. PMID:22148174

  1. Three structural representatives of the PF06855 protein domain family from Staphyloccocus aureus and Bacillus subtilis have SAM domain-like folds and different functions

    PubMed Central

    Swapna, G.V.T.; Rossi, Paolo; Montelione, Alexander F.; Benach, Jordi; Yu, Bomina; Abashidze, Mariam; Seetharaman, Jayaraman; Xiao, Rong; Acton, Thomas B.; Tong, Liang

    2014-01-01

    Protein domain family PF06855 (DUF1250) is a family of small domains of unknown function found only in bacteria, and mostly in the order Bacillales and Lactobacillales. Here we describe the solution NMR or X-ray crystal structures of three representatives of this domain family, MW0776 and MW1311 from Staphyloccocus aureus and yozE from Bacillus subtilis. All three proteins adopt a four-helix motif similar to sterile alpha motif (SAM) domains. Phylogenetic analysis classifies MW1311 and yozE as functionally equivalent proteins of the UPF0346 family of unknown function, but excludes MW0776, which likely has a different biological function. Our structural characterization of the three domains supports this separation of function. The structures of MW0776, MW1311, and yozE constitute the first structural representatives from this protein domain family. PMID:22843344

  2. The small GTP-binding protein Rho binds to and activates a 160 kDa Ser/Thr protein kinase homologous to myotonic dystrophy kinase.

    PubMed Central

    Ishizaki, T; Maekawa, M; Fujisawa, K; Okawa, K; Iwamatsu, A; Fujita, A; Watanabe, N; Saito, Y; Kakizuka, A; Morii, N; Narumiya, S

    1996-01-01

    The small GTP-binding protein Rho functions as a molecular switch in the formation of focal adhesions and stress fibers, cytokinesis and transcriptional activation. The biochemical mechanism underlying these actions remains unknown. Using a ligand overlay assay, we purified a 160 kDa platelet protein that bound specifically to GTP-bound Rho. This protein, p160, underwent autophosphorylation at its serine and threonine residues and showed the kinase activity to exogenous substrates. Both activities were enhanced by the addition of GTP-bound Rho. A cDNA encoding p160 coded for a 1354 amino acid protein. This protein has a Ser/Thr kinase domain in its N-terminus, followed by a coiled-coil structure approximately 600 amino acids long, and a cysteine-rich zinc finger-like motif and a pleckstrin homology region in the C-terminus. The N-terminus region including a kinase domain and a part of coiled-coil structure showed strong homology to myotonic dystrophy kinase over 500 residues. When co-expressed with RhoA in COS cells, p160 was co-precipitated with the expressed Rho and its kinase activity was activated, indicating that p160 can associate physically and functionally with Rho both in vitro and in vivo. Images PMID:8617235

  3. Fusion protein of retinol-binding protein and albumin domain III reduces liver fibrosis.

    PubMed

    Lee, Hongsik; Jeong, Hyeyeun; Park, Sangeun; Yoo, Wonbaek; Choi, Soyoung; Choi, Kyungmin; Lee, Min-Goo; Lee, Mihwa; Cha, DaeRyong; Kim, Young-Sik; Han, Jeeyoung; Kim, Wonkon; Park, Sun-Hwa; Oh, Junseo

    2015-04-11

    Activated hepatic stellate cells (HSCs) play a key role in liver fibrosis, and inactivating HSCs has been considered a promising therapeutic approach. We previously showed that albumin and its derivative designed for stellate cell-targeting, retinol-binding protein-albumin domain III fusion protein (referred to as R-III), inactivate cultured HSCs. Here, we investigated the mechanism of action of albumin/R-III in HSCs and examined the anti-fibrotic potential of R-III in vivo. R-III treatment and albumin expression downregulated retinoic acid (RA) signaling which was involved in HSC activation. RA receptor agonist and retinaldehyde dehydrogenase overexpression abolished the anti-fibrotic effect of R-III and albumin, respectively. R-III uptake into cultured HSCs was significantly decreased by siRNA-STRA6, and injected R-III was localized predominantly in HSCs in liver. Importantly, R-III administration reduced CCl4- and bile duct ligation-induced liver fibrosis. R-III also exhibited a preventive effect against CCl4-inducd liver fibrosis. These findings suggest that the anti-fibrotic effect of albumin/R-III is, at least in part, mediated by downregulation of RA signaling and that R-III is a good candidate as a novel anti-fibrotic drug.

  4. In planta localisation patterns of MADS domain proteins during floral development in Arabidopsis thaliana

    PubMed Central

    Urbanus, Susan L; de Folter, Stefan; Shchennikova, Anna V; Kaufmann, Kerstin; Immink, Richard GH; Angenent, Gerco C

    2009-01-01

    Background MADS domain transcription factors play important roles in various developmental processes in flowering plants. Members of this family play a prominent role in the transition to flowering and the specification of floral organ identity. Several studies reported mRNA expression patterns of the genes encoding these MADS domain proteins, however, these studies do not provide the necessary information on the temporal and spatial localisation of the proteins. We have made GREEN FLUORESCENT PROTEIN (GFP) translational fusions with the four MADS domain proteins SEPALLATA3, AGAMOUS, FRUITFULL and APETALA1 from the model plant Arabidopsis thaliana and analysed the protein localisation patterns in living plant tissues by confocal laser scanning microscopy (CLSM). Results We unravelled the protein localisation patterns of the four MADS domain proteins at a cellular and subcellular level in inflorescence and floral meristems, during development of the early flower bud stages, and during further differentiation of the floral organs. The protein localisation patterns revealed a few deviations from known mRNA expression patterns, suggesting a non-cell autonomous action of these factors or alternative control mechanisms. In addition, we observed a change in the subcellular localisation of SEPALLATA3 from a predominantly nuclear localisation to a more cytoplasmic localisation, occurring specifically during petal and stamen development. Furthermore, we show that the down-regulation of the homeodomain transcription factor WUSCHEL in ovular tissues is preceded by the occurrence of both AGAMOUS and SEPALLATA3 proteins, supporting the hypothesis that both proteins together suppress WUSCHEL expression in the ovule. Conclusion This approach provides a highly detailed in situ map of MADS domain protein presence during early and later stages of floral development. The subcellular localisation of the transcription factors in the cytoplasm, as observed at certain stages during

  5. Molecular Architecture of a Complex between an Adhesion Protein from the Malaria Parasite and Intracellular Adhesion Molecule 1*

    PubMed Central

    Brown, Alan; Turner, Louise; Christoffersen, Stig; Andrews, Katrina A.; Szestak, Tadge; Zhao, Yuguang; Larsen, Sine; Craig, Alister G.; Higgins, Matthew K.

    2013-01-01

    The adhesion of Plasmodium falciparum-infected erythrocytes to human tissues or endothelium is central to the pathology caused by the parasite during malaria. It contributes to the avoidance of parasite clearance by the spleen and to the specific pathologies of cerebral and placental malaria. The PfEMP1 family of adhesive proteins is responsible for this sequestration by mediating interactions with diverse human ligands. In addition, as the primary targets of acquired, protective immunity, the PfEMP1s are potential vaccine candidates. PfEMP1s contain large extracellular ectodomains made from CIDR (cysteine-rich interdomain regions) and DBL (Duffy-binding-like) domains and show extensive variation in sequence, size, and domain organization. Here we use biophysical methods to characterize the entire ∼300-kDa ectodomain from IT4VAR13, a protein that interacts with the host receptor, intercellular adhesion molecule-1 (ICAM-1). We show through small angle x-ray scattering that IT4VAR13 is rigid, elongated, and monomeric. We also show that it interacts with ICAM-1 through the DBLβ domain alone, forming a 1:1 complex. These studies provide a first low resolution structural view of a PfEMP1 ectodomain in complex with its ligand. They show that it combines a modular domain arrangement consisting of individual ligand binding domains, with a defined higher order architecture that exposes the ICAM-1 binding surface to allow adhesion. PMID:23297413

  6. Selection on Network Dynamics Drives Differential Rates of Protein Domain Evolution.

    PubMed

    Mannakee, Brian K; Gutenkunst, Ryan N

    2016-07-01

    The long-held principle that functionally important proteins evolve slowly has recently been challenged by studies in mice and yeast showing that the severity of a protein knockout only weakly predicts that protein's rate of evolution. However, the relevance of these studies to evolutionary changes within proteins is unknown, because amino acid substitutions, unlike knockouts, often only slightly perturb protein activity. To quantify the phenotypic effect of small biochemical perturbations, we developed an approach to use computational systems biology models to measure the influence of individual reaction rate constants on network dynamics. We show that this dynamical influence is predictive of protein domain evolutionary rate within networks in vertebrates and yeast, even after controlling for expression level and breadth, network topology, and knockout effect. Thus, our results not only demonstrate the importance of protein domain function in determining evolutionary rate, but also the power of systems biology modeling to uncover unanticipated evolutionary forces.

  7. The Pilus Usher Controls Protein Interactions via Domain Masking and is Functional as an Oligomer

    PubMed Central

    Werneburg, Glenn T.; Henderson, Nadine S.; Portnoy, Erica B.; Sarowar, Samema; Hultgren, Scott J.; Li, Huilin; Thanassi, David G.

    2015-01-01

    The chaperone-usher (CU) pathway assembles organelles termed pili or fimbriae in Gram-negative bacteria. Type 1 pili expressed by uropathogenic Escherichia coli are prototypical structures assembled by the CU pathway. Biogenesis of pili by the CU pathway requires a periplasmic chaperone and an outer membrane protein termed the usher (FimD). We show that the FimD C-terminal domains provide the high-affinity substrate binding site, but that these domains are masked in the resting usher. Domain masking requires the FimD plug domain, which serves as a switch controlling usher activation. We demonstrate that usher molecules can act in trans for pilus biogenesis, providing conclusive evidence for a functional usher oligomer. These results reveal mechanisms by which molecular machines such as the usher regulate and harness protein-protein interactions, and suggest that ushers may interact in a cooperative manner during pilus assembly in bacteria. PMID:26052892

  8. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains

    PubMed Central

    Shi, Junwei; Wang, Eric; Milazzo, Joseph P.; Wang, Zhihua; Kinney, Justin B.; Vakoc, Christopher R.

    2015-01-01

    CRISPR-Cas9 genome editing technology holds great promise for discovering therapeutic targets in cancer and other diseases. Current screening strategies target CRISPR-induced mutations to the 5’ exons of candidate genes1–5, but this approach often produces in-frame variants that retain functionality, which can obscure even strong genetic dependencies. Here we overcome this limitation by targeting CRISPR mutagenesis to exons encoding functional protein domains. This generates a higher proportion of null mutations and substantially increases the potency of negative selection. We show that the magnitude of negative selection reports the functional importance of individual protein domains of interest. A screen of 192 chromatin regulatory domains in murine acute myeloid leukemia cells identifies six known drug targets and 19 additional dependencies. A broader application of this approach may allow comprehensive identification of protein domains that sustain cancer cells and are suitable for drug targeting. PMID:25961408

  9. Recent improvements of the ProDom database of protein domain families.

    PubMed

    Corpet, F; Gouzy, J; Kahn, D

    1999-01-01

    The ProDom database contains protein domain families generated from the SWISS-PROT database by automated sequence comparisons. The current version was built with a new improved procedure based on recursive PSI-BLAST homology searches. ProDom can be searched on the World Wide Web to study domain arrangements within either known families or new proteins, with the help of a user-friendly graphical interface (http://www.toulouse.inra.fr/prodom.html). Recent improvements to the ProDom server include: ProDom queries under the SRS Sequence Retrieval System; links to the PredictProtein server; phylogenetic trees and condensed multiple alignments for a better representation of large domain families, with zooming in and out capabilities. In addition, a similar server was set up to display the outcome of whole genome domain analysis as applied to 17 completed microbial genomes (http://www.toulouse.inra.fr/prodomCG.html ).

  10. Molecular evolution of monotreme and marsupial whey acidic protein genes.

    PubMed

    Sharp, Julie A; Lefèvre, Christophe; Nicholas, Kevin R

    2007-01-01

    Whey acidic protein (WAP), a major whey protein present in milk of a number of mammalian species has characteristic cysteine-rich domains known as four-disulfide cores (4-DSC). Eutherian WAP, expressed in the mammary gland throughout lactation, has two 4-DSC domains, (DI-DII) whereas marsupial WAP, expressed only during mid-late lactation, contains an additional 4-DSC (DIII), and has a DIII-D1-DII configuration. We report the expression and evolution of echidna (Tachyglossus aculeatus) and platypus (Onithorhynchus anatinus) WAP cDNAs. Predicted translation of monotreme cDNAs showed echidna WAP contains two 4-DSC domains corresponding to DIII-DII, whereas platypus WAP contains an additional domain at the C-terminus with homology to DII and has the configuration DIII-DII-DII. Both monotreme WAPs represent new WAP protein configurations. We propose models for evolution of the WAP gene in the mammalian lineage either through exon loss from an ancient ancestor or by rapid evolution via the process of exon shuffling. This evolutionary outcome may reflect differences in lactation strategy between marsupials, monotremes, and eutherians, and give insight to biological function of the gene products. WAP four-disulfide core domain 2 (WFDC2) proteins were also identified in echidna, platypus and tammar wallaby (Macropus eugenii) lactating mammary cells. WFDC2 proteins are secreted proteins not previously associated with lactation. Mammary gland expression of tammar WFDC2 during the course of lactation showed WFDC2 was elevated during pregnancy, reduced in early lactation and absent in mid-late lactation.

  11. Matricellular protein Cfl1 regulates cell differentiation.

    PubMed

    Tian, Xiuyun; Lin, Xiaorong

    2013-11-01

    Like higher eukaryotic cells in tissues, microbial cells in a community act in concert in response to environmental stimuli. They coordinate gene expression and their physiological and morphological states through intercellular communication mediated by matricellular signals. The adhesion protein Cfl1 was recently shown to be a matricellular signal in regulating morphogenesis and biofilm formation in the eukaryotic microbe Cryptococcus neoformans. Cfl1 is naturally highly expressed in the hyphal subpopulation during the mating colony development. Some Cfl1 proteins are cleaved and released to the ECM (extracellular matrix). The released exogenous Cfl1 activates Cryptococcus cells to express their endogenous Cfl1, to undergo filamentation, and to form structured biofilm colonies. In this study, we demonstrate that the N-terminal signal peptide and the novel conserved cysteine-rich SIGC domain at the C-terminus are critical for the adherence property and the signaling activity of this multifunctional protein. The investigation of this fungal matricellular signaling network involving Cfl1 and the master regulator of morphogenesis Znf2 provides a foundation to further elucidate intercellular communication in microbial development.

  12. Accurate prediction of interfacial residues in two-domain proteins using evolutionary information: implications for three-dimensional modeling.

    PubMed

    Bhaskara, Ramachandra M; Padhi, Amrita; Srinivasan, Narayanaswamy

    2014-07-01

    With the preponderance of multidomain proteins in eukaryotic genomes, it is essential to recognize the constituent domains and their functions. Often function involves communications across the domain interfaces, and the knowledge of the interacting sites is essential to our understanding of the structure-function relationship. Using evolutionary information extracted from homologous domains in at least two diverse domain architectures (single and multidomain), we predict the interface residues corresponding to domains from the two-domain proteins. We also use information from the three-dimensional structures of individual domains of two-domain proteins to train naïve Bayes classifier model to predict the interfacial residues. Our predictions are highly accurate (∼85%) and specific (∼95%) to the domain-domain interfaces. This method is specific to multidomain proteins which contain domains in at least more than one protein architectural context. Using predicted residues to constrain domain-domain interaction, rigid-body docking was able to provide us with accurate full-length protein structures with correct orientation of domains. We believe that these results can be of considerable interest toward rational protein and interaction design, apart from providing us with valuable information on the nature of interactions.

  13. N-terminal domains of native multidomain proteins have the potential to assist de novo folding of their downstream domains in vivo by acting as solubility enhancers

    PubMed Central

    Kim, Chul Woo; Han, Kyoung Sim; Ryu, Ki-Sun; Kim, Byung Hee; Kim, Kyun-Hwan; Choi, Seong Il; Seong, Baik L.

    2007-01-01

    The fusion of soluble partner to the N terminus of aggregation-prone polypeptide has been popularly used to overcome the formation of inclusion bodies in the E. coli cytosol. The chaperone-like functions of the upstream fusion partner in the artificial multidomain proteins could occur in de novo folding of native multidomain proteins. Here, we show that the N-terminal domains of three E. coli multidomain proteins such as lysyl-tRNA synthetase, threonyl-tRNA synthetase, and aconitase are potent solubility enhancers for various C-terminal heterologous proteins. The results suggest that the N-terminal domains could act as solubility enhancers for the folding of their authentic C-terminal domains in vivo. Tandem repeat of N-terminal domain or insertion of aspartic residues at the C terminus of the N-terminal domain also increased the solubility of fusion proteins, suggesting that the solubilizing ability correlates with the size and charge of N-terminal domains. The solubilizing ability of N-terminal domains would contribute to the autonomous folding of multidomain proteins in vivo, and based on these results, we propose a model of how N-terminal domains solubilize their downstream domains. PMID:17384228

  14. Predicting physiologically relevant SH3 domain mediated protein–protein interactions in yeast

    PubMed Central

    Jain, Shobhit; Bader, Gary D.

    2016-01-01

    Motivation: Many intracellular signaling processes are mediated by interactions involving peptide recognition modules such as SH3 domains. These domains bind to small, linear protein sequence motifs which can be identified using high-throughput experimental screens such as phage display. Binding motif patterns can then be used to computationally predict protein interactions mediated by these domains. While many protein–protein interaction prediction methods exist, most do not work with peptide recognition module mediated interactions or do not consider many of the known constraints governing physiologically relevant interactions between two proteins. Results: A novel method for predicting physiologically relevant SH3 domain-peptide mediated protein–protein interactions in S. cerevisae using phage display data is presented. Like some previous similar methods, this method uses position weight matrix models of protein linear motif preference for individual SH3 domains to scan the proteome for potential hits and then filters these hits using a range of evidence sources related to sequence-based and cellular constraints on protein interactions. The novelty of this approach is the large number of evidence sources used and the method of combination of sequence based and protein pair based evidence sources. By combining different peptide and protein features using multiple Bayesian models we are able to predict high confidence interactions with an overall accuracy of 0.97. Availability and implementation: Domain-Motif Mediated Interaction Prediction (DoMo-Pred) command line tool and all relevant datasets are available under GNU LGPL license for download from http://www.baderlab.org/Software/DoMo-Pred. The DoMo-Pred command line tool is implemented using Python 2.7 and C ++. Contact: gary.bader@utoronto.ca Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26861823

  15. Fitting hidden Markov models of protein domains to a target species: application to Plasmodium falciparum

    PubMed Central

    2012-01-01

    Background Hidden Markov Models (HMMs) are a powerful tool for protein domain identification. The Pfam database notably provides a large collection of HMMs which are widely used for the annotation of proteins in new sequenced organisms. In Pfam, each domain family is represented by a curated multiple sequence alignment from which a profile HMM is built. In spite of their high specificity, HMMs may lack sensitivity when searching for domains in divergent organisms. This is particularly the case for species with a biased amino-acid composition, such as P. falciparum, the main causal agent of human malaria. In this context, fitting HMMs to the specificities of the target proteome can help identify additional domains. Results Using P. falciparum as an example, we compare approaches that have been proposed for this problem, and present two alternative methods. Because previous attempts strongly rely on known domain occurrences in the target species or its close relatives, they mainly improve the detection of domains which belong to already identified families. Our methods learn global correction rules that adjust amino-acid distributions associated with the match states of HMMs. These rules are applied to all match states of the whole HMM library, thus enabling the detection of domains from previously absent families. Additionally, we propose a procedure to estimate the proportion of false positives among the newly discovered domains. Starting with the Pfam standard library, we build several new libraries with the different HMM-fitting approaches. These libraries are first used to detect new domain occurrences with low E-values. Second, by applying the Co-Occurrence Domain Discovery (CODD) procedure we have recently proposed, the libraries are further used to identify likely occurrences among potential domains with higher E-values. Conclusion We show that the new approaches allow identification of several domain families previously absent in the P. falciparum proteome

  16. Exploring metazoan evolution through dynamic and holistic changes in protein families and domains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding proteome evolution is important for deciphering processes that drive species diversity and adaptation. Herein, the dynamics of change in protein families and protein domains over the course of metazoan evolution was explored. Change, as defined by birth/death and duplication/deletion ...

  17. Insights into the evolution and domain structure of ataxin-2 proteins across eukaryotes

    PubMed Central

    2014-01-01

    Background Ataxin-2 is an evolutionarily conserved protein first identified in humans as responsible for spinocerebellar ataxia type 2 (SCA2). The molecular basis of SCA2 is the expansion of a polyglutamine tract in Ataxin-2, encoding a Lsm domain that may bind RNA and a PAM2 motif that enables interaction with the poly (A) binding protein. Although the association with SCA2 has been verified, a detailed molecular function for Ataxin-2 has not been established. Results We have undertaken a survey of Ataxin-2 proteins across all eukaryotic domains. In eukaryotes, except for vertebrates and land plants, a single ortholog was identified. Notably, with the exception of birds, two Ataxin-2 genes exist in vertebrates. Expansion was observed in land plants and a novel class lacking the LsmAD domain was identified. Large polyQ tracts appear limited to primates and insects of the orders Hymenoptera and Diptera. A common feature across Ataxin-2 orthologs is the presence of proline-rich motifs, formerly described in the human protein. Conclusion Our analysis provides valuable information on the evolution and domain structure of Ataxin-2 proteins. Proline-rich motifs that may mediate protein interactions are widespread in Ataxin-2 proteins, but expansion of polyglutamine tracts associated with spinocerebellar ataxia type 2, is present only in primates, as well as some insects. Our analysis of Ataxin-2 proteins provides also a source to examine orthologs in a number of different species. PMID:25027299

  18. Use of a Probabilistic Motif Search to Identify Histidine Phosphotransfer Domain-Containing Proteins.

    PubMed

    Surujon, Defne; Ratner, David I

    2016-01-01

    The wealth of newly obtained proteomic information affords researchers the possibility of searching for proteins of a given structure or function. Here we describe a general method for the detection of a protein domain of interest in any species for which a complete proteome exists. In particular, we apply this approach to identify histidine phosphotransfer (HPt) domain-containing proteins across a range of eukaryotic species. From the sequences of known HPt domains, we created an amino acid occurrence matrix which we then used to define a conserved, probabilistic motif. Examination of various organisms either known to contain (plant and fungal species) or believed to lack (mammals) HPt domains established criteria by which new HPt candidates were identified and ranked. Search results using a probabilistic motif matrix compare favorably with data to be found in several commonly used protein structure/function databases: our method identified all known HPt proteins in the Arabidopsis thaliana proteome, confirmed the absence of such motifs in mice and humans, and suggests new candidate HPts in several organisms. Moreover, probabilistic motif searching can be applied more generally, in a manner both readily customized and computationally compact, to other protein domains; this utility is demonstrated by our identification of histones in a range of eukaryotic organisms. PMID:26751210

  19. Use of a Probabilistic Motif Search to Identify Histidine Phosphotransfer Domain-Containing Proteins

    PubMed Central

    Surujon, Defne; Ratner, David I.

    2016-01-01

    The wealth of newly obtained proteomic information affords researchers the possibility of searching for proteins of a given structure or function. Here we describe a general method for the detection of a protein domain of interest in any species for which a complete proteome exists. In particular, we apply this approach to identify histidine phosphotransfer (HPt) domain-containing proteins across a range of eukaryotic species. From the sequences of known HPt domains, we created an amino acid occurrence matrix which we then used to define a conserved, probabilistic motif. Examination of various organisms either known to contain (plant and fungal species) or believed to lack (mammals) HPt domains established criteria by which new HPt candidates were identified and ranked. Search results using a probabilistic motif matrix compare favorably with data to be found in several commonly used protein structure/function databases: our method identified all known HPt proteins in the Arabidopsis thaliana proteome, confirmed the absence of such motifs in mice and humans, and suggests new candidate HPts in several organisms. Moreover, probabilistic motif searching can be applied more generally, in a manner both readily customized and computationally compact, to other protein domains; this utility is demonstrated by our identification of histones in a range of eukaryotic organisms. PMID:26751210

  20. Dual amyloid domains promote differential functioning of the chaplin proteins during Streptomyces aerial morphogenesis

    PubMed Central

    Capstick, David S.; Jomaa, Ahmad; Hanke, Chistopher; Ortega, Joaquin; Elliot, Marie A.

    2011-01-01

    The chaplin proteins are functional amyloids found in the filamentous Streptomyces bacteria. These secreted proteins are required for the aerial development of Streptomyces coelicolor, and contribute to an intricate rodlet ultrastructure that decorates the surfaces of aerial hyphae and spores. S. coelicolor encodes eight chaplin proteins. Previous studies have revealed that only three of these proteins (ChpC, ChpE, and ChpH) are necessary for promoting aerial development, and of these three, ChpH is the primary developmental determinant. Here, we show that the model chaplin, ChpH, contains two amyloidogenic domains: one in the N terminus and one in the C terminus of the mature protein. These domains have different polymerization properties as determined using fluorescence spectroscopy, secondary structure analyses, and electron microscopy. We coupled these in vitro assays with in vivo genetic studies to probe the connection between ChpH amyloidogenesis and its biological function. Using mutational analyses, we demonstrated that both N- and C-terminal amyloid domains of ChpH were required for promoting aerial hypha formation, while the N-terminal domain was dispensable for assembly of the rodlet ultrastructure. These results suggest that there is a functional differentiation of the dual amyloid domains in the chaplin proteins. PMID:21628577

  1. Cortical geometry may influence placement of interface between Par protein domains in early Caenorhabditis elegans embryos.

    PubMed

    Dawes, Adriana T; Iron, David

    2013-09-21

    During polarization, proteins and other polarity determinants segregate to the opposite ends of the cell (the poles) creating biochemically and dynamically distinct regions. Embryos of the nematode worm Caenorhabditis elegans (C. elegans) polarize shortly after fertilization, creating distinct regions of Par protein family members. These regions are maintained through to first cleavage when the embryo divides along the plane specified by the interface between regions, creating daughter cells with different protein content. In wild type single cell embryos the interface between these Par protein regions is reliably positioned at approximately 60% egg length, however, it is not known what mechanisms are responsible for specifying the position of the interface. In this investigation, we use two mathematical models to investigate the movement and positioning of the interface: a biologically based reaction-diffusion model of Par protein dynamics, and the analytically tractable perturbed Allen-Cahn equation. When we numerically simulate the models on a static 2D domain with constant thickness, both models exhibit a persistently moving interface that specifies the boundary between distinct regions. When we modify the simulation domain geometry, movement halts and the interface is stably positioned where the domain thickness increases. Using asymptotic analysis with the perturbed Allen-Cahn equation, we show that interface movement depends explicitly on domain geometry. Using a combination of analytic and numeric techniques, we demonstrate that domain geometry, a historically overlooked aspect of cellular simulations, may play a significant role in spatial protein patterning during polarization.

  2. Calcium binding domains and calcium-induced conformational transition of SPARC/BM-40/osteonectin, an extracellular glycoprotein expressed in mineralized and nonmineralized tissues

    SciTech Connect

    Engel, J.; Taylor, W.; Paulsson, M.; Sage, H.; Hogan, B.

    1987-11-03

    PSARC, BM-40, and osteonectin are identical or very closely related extracellular proteins of apparent M/sub r/ 43,000 (M/sub r/ 33,000 predicted from sequence). They were originally isolated from parietal endoderm cells, basement membrane producing tumors, and bone, respectively, but are rather widely distributed in various tissues. In view of the calcium binding activity reported for osteonectin, the authors analyzed the SPARC sequence and found two putative calcium binding domains. One is an N-terminal acid region with clusters of glutamic acid residues. This region, although neither ..gamma..-carboxylated nor homologous, resembles the ..gamma..-carboxyglutamic acid (Gla) domain of vitamin K dependent proteins of the blood clotting system in charge density, size of negatively charged clusters, and linkage to the rest of the molecule by a cysteine-rich domain. The other region is an EF-hand calcium binding domain located near the C-terminus. A disulfide bond between the E and F helix is predicted from modeling the EF-hand structure with the known coordinates of intestinal calcium binding protein. The disulfide bridge apparently serves to stabilize the isolated calcium loop in the extracellular protein. As observed for cytoplasmic EF-hand-containing proteins and for Gla domain containing proteins, a major conformational transition is induced in BM-40 upon binding of several Ca/sup 2 +/ ions. This is accompanied by a 35% increase in ..cap alpha..-helicity. A pronounced sigmoidicity of the dependence of the circular dichroism signal at 220 nm on calcium concentration indicates that the process is cooperative. In view of its properties, abundance, and wide distribution, it is proposed that SPARC/BM-40/osteonectin has a rather general regulatory function in calcium-dependent processes of the extra-cellular matrix.

  3. Engineered staphylococcal protein A's IgG-binding domain with cathepsin L inhibitory activity

    SciTech Connect

    Bratkovic, Tomaz . E-mail: tomaz.bratkovic@ffa.uni-lj.si; Berlec, Ales; Popovic, Tatjana; Lunder, Mojca; Kreft, Samo; Urleb, Uros; Strukelj, Borut

    2006-10-13

    Inhibitory peptide of papain-like cysteine proteases, affinity selected from a random disulfide constrained phage-displayed peptide library, was grafted to staphylococcal protein A's B domain. Scaffold protein was additionally modified in order to allow solvent exposed display of peptide loop. Correct folding of fusion proteins was confirmed by CD-spectroscopy and by the ability to bind the Fc-region of rabbit IgG, a characteristic of parent domain. The recombinant constructs inhibited cathepsin L with inhibitory constants in the low-micromolar range.

  4. Review the role of terminal domains during storage and assembly of spider silk proteins.

    PubMed

    Eisoldt, Lukas; Thamm, Christopher; Scheibel, Thomas

    2012-06-01

    Fibrous proteins in nature fulfill a wide variety of functions in different structures ranging from cellular scaffolds to very resilient structures like tendons and even extra-corporal fibers such as silks in spider webs or silkworm cocoons. Despite their different origins and sequence varieties many of these fibrous proteins share a common building principle: they consist of a large repetitive core domain flanked by relatively small non-repetitive terminal domains. Amongst protein fibers, spider dragline silk shows prominent mechanical properties that exceed those of man-made fibers like Kevlar. Spider silk fibers assemble in a spinning process allowing the transformation from an aqueous solution into a solid fiber within milliseconds. Here, we highlight the role of the non-repetitive terminal domains of spider dragline silk proteins during storage in the gland and initiation of the fiber assembly process.

  5. Sparc Protein Is Required for Normal Growth of Zebrafish Otoliths

    PubMed Central

    Kang, Young-Jin; Stevenson, Amy K.; Yau, Peter M.

    2008-01-01

    Otoliths and the homologous otoconia in the inner ear are essential for balance. Their morphogenesis is less understood than that of other biominerals, such as bone, and only a small number of their constituent proteins have been characterized. As a novel approach to identify unknown otolith proteins, we employed shotgun proteomics to analyze crude extracts from trout and catfish otoliths. We found three proteins that had not been associated previously with otolith or otoconia formation: ‘Secreted acidic cysteine rich glycoprotein’ (Sparc), an important bone protein that binds collagen and Ca2+; precerebellin-like protein, which contains a C1q domain and may associate with the collagenous otolin-1 during its assembly into a framework; and neuroserpin, a serine protease inhibitor that may regulate local protease activity during framework assembly. We then used the zebrafish to investigate whether Sparc plays a role in otolith morphogenesis. Immunodetection demonstrated that Sparc is a true constituent of otoliths. Knockdown of Sparc expression in morphant zebrafish resulted in four principal types of defective otoliths: smaller, extra and ectopic, missing and fused, or completely absent. Smaller size was the predominant phenotype and independent of the severity of otic-vesicle defects. These results suggested that Sparc is directly required for normal otolith growth. PMID:18784957

  6. The conserved KNOX domain mediates specificity of tobacco KNOTTED1-type homeodomain proteins.

    PubMed Central

    Sakamoto, T; Nishimura, A; Tamaoki, M; Kuba, M; Tanaka, H; Iwahori, S; Matsuoka, M

    1999-01-01

    Overproduction of the tobacco KNOTTED1-type homeodomain proteins NTH1, NTH15, and NTH23 in transgenic tobacco plants causes mild, severe, and no morphological alterations, respectively. The deduced amino acid sequences of the homeodomains and adjacent ELK domains are highly conserved, and the N-terminal KNOX domains also are moderately conserved. To investigate the contributions of both the conserved and divergent regions to the severity of morphological alterations, we generated chimeric proteins by exchanging different regions of NTH1, NTH15, and NTH23. The severity of the abnormal phenotype was dependent upon the synergistic action of both the N terminus, containing the KNOX domain, and the C terminus, containing the ELK homeodomain. Detailed analysis focusing on the C terminus revealed that the C-terminal half of the ELK domain is more effective in inducing the abnormal phenotypes than are the homeodomains. For the N terminus, severe morphological alterations were induced by exchanging a part of the KNOX domain of NTH1 with the corresponding region of NTH15. This limited region in the KNOX domain of all homeodomain proteins includes a predicted alpha-helical region, but only that in NTH15 is predicted to form a typical amphipathic structure. We discuss the possibility, based on these results, that the secondary structure of the KNOX domain is important for the induction of abnormal morphology in transgenic tobacco plants. PMID:10449577

  7. Identification of domains mediating transcriptional activation and cytoplasmic export in the caudal homeobox protein Cdx-3.

    PubMed

    Trinh, K Y; Jin, T; Drucker, D J

    1999-02-26

    The caudal genes have important functions in embryonic development and cell differentiation. The caudal-related protein Cdx-2/3 (the protein designated Cdx-2 in the mouse and Cdx-3 in the hamster) is expressed in the gastrointestinal epithelium and in islet and enteroendocrine cells, where it activates proglucagon gene transcription. We show here that Cdx-3 sequences amino-terminal to the homeodomain (amino acids 1-180) function as a heterologous transcriptional activation domain when fused to the LexA DNA binding domain. A Cdx-3-Pit-1 fusion protein containing only the first 83 amino acids of Cdx-3 linked to the POU domain of Pit-1 markedly stimulated the transcriptional activity of a Pit-1-responsive promoter. Analysis of the transcriptional properties of Cdx-3 mutants in fibroblasts and islet cells revealed distinct amino-terminal subdomains that function in a cell-specific manner. Point mutations within the amino-terminal A domain were associated with reduced transcriptional activity. Furthermore, internal deletions and selected point mutations within domain A, but not the B or C domains, resulted in accumulation of mutant Cdx-3 in the cytoplasm. Unexpectedly, mutation of an Asp-Lys-Asp motif within domain A identified a putative cytoplasmic membrane-associated export signal that mediates Cdx-3 compartmentalization. These experiments delineate unique activities for specific amino-terminal sequences that are functionally important for Cdx-3 biological activity.

  8. Selection on Network Dynamics Drives Differential Rates of Protein Domain Evolution

    PubMed Central

    Mannakee, Brian K.; Gutenkunst, Ryan N.

    2016-01-01

    The long-held principle that functionally important proteins evolve slowly has recently been challenged by studies in mice and yeast showing that the severity of a protein knockout only weakly predicts that protein’s rate of evolution. However, the relevance of these studies to evolutionary changes within proteins is unknown, because amino acid substitutions, unlike knockouts, often only slightly perturb protein activity. To quantify the phenotypic effect of small biochemical perturbations, we developed an approach to use computational systems biology models to measure the influence of individual reaction rate constants on network dynamics. We show that this dynamical influence is predictive of protein domain evolutionary rate within networks in vertebrates and yeast, even after controlling for expression level and breadth, network topology, and knockout effect. Thus, our results not only demonstrate the importance of protein domain function in determining evolutionary rate, but also the power of systems biology modeling to uncover unanticipated evolutionary forces. PMID:27380265

  9. Genome-wide analysis and functional characterization of candidate effector proteins potentially involved in Fusarium graminearum-wheat interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungal pathogens often produce certain small secreted cysteine-rich proteins (SSCPs) during pathogenesis that may function in triggering resistance or susceptibility in specific host plants. We have identified a total of 190 SSCPs encoded in the genome of the wheat scab fungus Fusarium graminearum a...

  10. The SWIRM domain: a conserved module found in chromosomal proteins points to novel chromatin-modifying activities

    PubMed Central

    Aravind, L; Iyer, Lakshminarayan M

    2002-01-01

    Background Eukaryotic chromosomal components, especially histones, are subject to a wide array of covalent modifications and catalytic reorganization. These modifications have an important role in the regulation of chromatin structure and are mediated by large multisubunit complexes that contain modular proteins with several conserved catalytic and noncatalytic adaptor domains. Results Using computational sequence-profile analysis methods, we identified a previously uncharacterized, predicted α-helical domain of about 85 residues in chromosomal proteins such as Swi3p, Rsc8p, Moira and several other uncharacterized proteins. This module, termed the SWIRM domain, is predicted to mediate specific protein-protein interactions in the assembly of chromatin-protein complexes. In one group of proteins, which are highly conserved throughout the crown-group eukaryotes, the SWIRM domain is linked to a catalytic domain related to the monoamine and polyamine oxidases. Another human protein has the SWIRM domain linked to a JAB domain that is involved in protein degradation through the ubiquitin pathway. Conclusions Identification of the SWIRM domain could help in directed experimental analysis of specific interactions in chromosomal proteins. We predict that the proteins in which it is combined with an amino-oxidase domain define a novel class of chromatin-modifying enzymes, which are likely to oxidize either the amino group of basic residues in histones and other chromosomal proteins or the polyamines in chromatin, and thereby alter the charge distribution. Other forms, such as KIAA1915, may link chromatin modification to ubiquitin-dependent protein degradation. PMID:12186646

  11. Flexible DNA binding of the BTB/POZ-domain protein FBI-1.

    PubMed

    Pessler, Frank; Hernandez, Nouria

    2003-08-01

    POZ-domain transcription factors are characterized by the presence of a protein-protein interaction domain called the POZ or BTB domain at their N terminus and zinc fingers at their C terminus. Despite the large number of POZ-domain transcription factors that have been identified to date and the significant insights that have been gained into their cellular functions, relatively little is known about their DNA binding properties. FBI-1 is a BTB/POZ-domain protein that has been shown to modulate HIV-1 Tat trans-activation and to repress transcription of some cellular genes. We have used various viral and cellular FBI-1 binding sites to characterize the interaction of a POZ-domain protein with DNA in detail. We find that FBI-1 binds to inverted sequence repeats downstream of the HIV-1 transcription start site. Remarkably, it binds efficiently to probes carrying these repeats in various orientations and spacings with no particular rotational alignment, indicating that its interaction with DNA is highly flexible. Indeed, FBI-1 binding sites in the adenovirus 2 major late promoter, the c-fos gene, and the c-myc P1 and P2 promoters reveal variously spaced direct, inverted, and everted sequence repeats with the consensus sequence G(A/G)GGG(T/C)(C/T)(T/C)(C/T) for each repeat.

  12. Analysis of the Nse3/MAGE-Binding Domain of the Nse4/EID Family Proteins

    PubMed Central

    Guerineau, Marc; Kriz, Zdenek; Kozakova, Lucie; Bednarova, Katerina; Janos, Pavel; Palecek, Jan

    2012-01-01

    Background The Nse1, Nse3 and Nse4 proteins form a tight sub-complex of the large SMC5-6 protein complex. hNSE3/MAGEG1, the mammalian ortholog of Nse3, is the founding member of the MAGE (melanoma-associated antigen) protein family and the Nse4 kleisin subunit is related to the EID (E1A-like inhibitor of differentiation) family of proteins. We have recently shown that human MAGE proteins can interact with NSE4/EID proteins through their characteristic conserved hydrophobic pocket. Methodology/Principal Findings Using mutagenesis and protein-protein interaction analyses, we have identified a new Nse3/MAGE-binding domain (NMBD) of the Nse4/EID proteins. This short domain is located next to the Nse4 N-terminal kleisin motif and is conserved in all NSE4/EID proteins. The central amino acid residues of the human NSE4b/EID3 domain were essential for its binding to hNSE3/MAGEG1 in yeast two-hybrid assays suggesting they form the core of the binding domain. PEPSCAN ELISA measurements of the MAGEC2 binding affinity to EID2 mutant peptides showed that similar core residues contribute to the EID2-MAGEC2 interaction. In addition, the N-terminal extension of the EID2 binding domain took part in the EID2-MAGEC2 interaction. Finally, docking and molecular dynamic simulations enabled us to generate a structure model for EID2-MAGEC2. Combination of our experimental data and the structure modeling showed how the core helical region of the NSE4/EID domain binds into the conserved pocket characteristic of the MAGE protein family. Conclusions/Significance We have identified a new Nse4/EID conserved domain and characterized its binding to Nse3/MAGE proteins. The conservation and binding of the interacting surfaces suggest tight co-evolution of both Nse4/EID and Nse3/MAGE protein families. PMID:22536443

  13. The Structure of PA1221, a Non-Ribosomal Peptide Synthetase containing Adenylation and Peptidyl Carrier Protein Domains

    PubMed Central

    Mitchell, Carter A.; Shi, Ce; Aldrich, Courtney C.; Gulick, Andrew M.

    2012-01-01

    Many bacteria use large modular enzymes for the synthesis of polyketide and peptide natural products. These multidomain enzymes contain integrated carrier domains that deliver bound substrates to multiple catalytic domains, requiring coordination of these chemical steps. Non-Ribosomal Peptide Synthetases (NRPSs) load amino acids onto carrier domains through the activity of an upstream adenylation domain. Our lab recently determined the structure of an engineered two-domain NRPS containing fused adenylation and carrier domains. This structure adopted a domain swapped dimer that illustrated the interface between these two domains. To continue our investigation, we now examine PA1221, a natural two-domain protein from Pseudomonas aeruginosa. We have determined the amino acid specificity of this new enzyme and used domain specific mutations to demonstrate that loading the downstream carrier domain within a single protein molecule occurs more quickly than loading of a non-fused carrier domain inter-molecularly. Finally, we have determined crystal structures of both the apo- and holo-PA1221 protein, the latter using a valine-adenosine vinylsulfonamide inhibitor that traps the adenylation-carrier domain interaction. The protein adopts a similar interface to that seen with the prior adenylation-carrier protein construct. A comparison of these structures with previous structures of multidomain NRPSs suggests that a large conformational change within the NRPS adenylation domains guides the carrier domain into the active site for thioester formation. PMID:22452656

  14. PDZ Affinity Chromatography: A general method for affinity purification of proteins based on PDZ domains and their ligands

    PubMed Central

    Walkup, Ward G.; Kennedy, Mary B.

    2014-01-01

    PDZ (PSD-95, DiscsLarge, ZO1) domains function in nature as protein binding domains within scaffold and membrane-associated proteins. They comprise ~ 90 residues and make specific, high affinity interactions with complementary C-terminal peptide sequences, with other PDZ domains, and with phospholipids. We hypothesized that the specific, strong interactions of PDZ domains with their ligands would make them well suited for use in affinity chromatography. Here we describe a novel affinity chromatography method applicable for the purification of proteins that contain PDZ domain-binding ligands, either naturally or introduced by genetic engineering. We created a series of affinity resins comprised of PDZ domains from the scaffold protein PSD-95, or from neuronal nitric oxide synthase (nNOS), coupled to solid supports. We used them to purify heterologously expressed neuronal proteins or protein domains containing endogenous PDZ domain ligands, eluting the proteins with free PDZ domain peptide ligands. We show that Proteins of Interest (POIs) lacking endogenous PDZ domain ligands can be engineered as fusion products containing C-terminal PDZ domain ligand peptides or internal, N- or C-terminal PDZ domains and then can be purified by the same method. Using this method, we recovered recombinant GFP fused to a PDZ-domain ligand in active form as verified by fluorescence yield. Similarly, chloramphenicol acetyltransferase (CAT) and β-Galactosidase (LacZ) fused to a C-terminal PDZ domain ligand or an N-terminal PDZ domain were purified in active form as assessed by enzymatic assay. In general, PDZ domains and ligands derived from PSD-95 were superior to those from nNOS for this method. PDZ Domain Affinity Chromatography promises to be a versatile and effective method for purification of a wide variety of natural and recombinant proteins. PMID:24607360

  15. Bacterially expressed and refolded envelope protein (domain III) of dengue virus type-4 binds heparan sulfate.

    PubMed

    Pattnaik, Priyabrata; Babu, J Pradeep; Verma, Shailendra Kumar; Tak, Vijay; Rao, P V Lakshmana

    2007-02-01

    An arboviral infection like dengue fever/dengue hemorrhagic fever (DHF) with high morbidity and mortality rate are extensively prevalent in several parts of the world. Global efforts have been directed towards development of vaccine for prevention of dengue. However, lack of thorough understanding about biology and pathogenesis of dengue virus restricts us from development of an effective vaccine. Here we report molecular interaction of domain III of envelope protein of dengue virus type-4 with heparan sulfate. A codon optimized synthetic gene encoding domain III of dengue virus type-4 envelope protein was expressed in Escherichia coli and purified under denaturing conditions, refolded and purified to homogeneity. Refolded Den4-DIII was characterized using biochemical and biophysical methods and shown to be pure and homogeneous. The purified protein was recognized in Western analyses by monoclonal antibody specific for the 6x His tag as well as the H241 monoclonal antibody. The in vitro refolded recombinant protein preparation was biologically functional and found to bind cell free heparan sulfate. This is the first report providing molecular evidence on binding of dengue-4 envelope protein to heparan sulfate. We developed a homology model of dengue-4 envelope protein (domain III) and mapped the possible amino acid residues critical for binding to heparan sulfate. Domain III envelope protein of dengue virus is a lead vaccine candidate. Our findings further the understanding on biology of dengue virus and will help in development of bioassay for the proposed vaccine candidate.

  16. Signal Activation and Inactivation by the Gα Helical Domain: A Long-Neglected Partner in G Protein Signaling

    PubMed Central

    Dohlman, Henrik G.; Jones, Janice C.

    2013-01-01

    Heterotrimeric guanine nucleotide–binding proteins (G proteins) are positioned at the top of many signal transduction pathways. The G protein α subunit is composed of two domains, one that resembles Ras and another that is composed entirely of α helices. Historically, most attention has focused on the Ras-like domain, but emerging evidence reveals that the helical domain is an active participant in G protein signaling. PMID:22649098

  17. Variant-specific surface proteins of Giardia lamblia are zinc-binding proteins.

    PubMed Central

    Nash, T E; Mowatt, M R

    1993-01-01

    Giardia lamblia undergoes surface antigenic variation. The variant-specific surface proteins (VSPs) are a distinct family of cysteine-rich proteins. Characteristically, cysteine residues occur mostly as CXXC tetrapeptides. Four of the reported five VSPs contain a putative metal-binding domain that resembles other metal-binding motifs; the fifth is closely related but lacks an essential histidine. Three different native VSPs bound Zn2+. Co2+, Cu2+, and Cd2+ inhibited Zn2+ binding. Analysis of recombinant VSP fusion proteins showed that the putative binding motif bound Zn2+. Surprisingly, peptide fragments from other regions of the VSP contain numerous CXXCXnCXXC motifs that also bound Zn2+. Analysis of deduced amino acid sequences showed well-conserved CXXC spacing in three out of five VSPs, suggesting conservation of structure despite amino acid sequence divergence. The function of VSPs is unknown, but by binding Zn2+ or other metals in the intestine, VSPs may contribute to Zn2+ malnutrition or inhibition of metal-dependent intestinal enzymes, which would lead to malabsorption, a well-known consequence of giardiasis. Images Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8516291

  18. Structural Basis for Ubiquitin Recognition by the Otu1 Ovarian Tumor Domain Protein

    SciTech Connect

    T Messick; N Russel; A Iwata; K Sarachan; R Shiekhattar; I Shanks; F Reyes-Turcu; K Wilkinson; R Marmorstein

    2011-12-31

    Ubiquitination of proteins modifies protein function by either altering their activities, promoting their degradation, or altering their subcellular localization. Deubiquitinating enzymes are proteases that reverse this ubiquitination. Previous studies demonstrate that proteins that contain an ovarian tumor (OTU) domain possess deubiquitinating activity. This domain of {approx}130 amino acids is weakly similar to the papain family of proteases and is highly conserved from yeast to mammals. Here we report structural and functional studies on the OTU domain-containing protein from yeast, Otu1. We show that Otu1 binds polyubiquitin chain analogs more tightly than monoubiquitin and preferentially hydrolyzes longer polyubiquitin chains with Lys{sup 48} linkages, having little or no activity on Lys{sup 63}- and Lys{sup 29}-linked chains. We also show that Otu1 interacts with Cdc48, a regulator of the ER-associated degradation pathway. We also report the x-ray crystal structure of the OTU domain of Otu1 covalently complexed with ubiquitin and carry out structure-guided mutagenesis revealing a novel mode of ubiquitin recognition and a variation on the papain protease catalytic site configuration that appears to be conserved within the OTU family of ubiquitin hydrolases. Together, these studies provide new insights into ubiquitin binding and hydrolysis by yeast Otu1 and other OTU domain-containing proteins.

  19. TreeDomViewer: a tool for the visualization of phylogeny and protein domain structure.

    PubMed

    Alako, Blaise T F; Rainey, Daphne; Nijveen, Harm; Leunissen, Jack A M

    2006-07-01

    Phylogenetic analysis and examination of protein domains allow accurate genome annotation and are invaluable to study proteins and protein complex evolution. However, two sequences can be homologous without sharing statistically significant amino acid or nucleotide identity, presenting a challenging bioinformatics problem. We present TreeDomViewer, a visualization tool available as a web-based interface that combines phylogenetic tree description, multiple sequence alignment and InterProScan data of sequences and generates a phylogenetic tree projecting the corresponding protein domain information onto the multiple sequence alignment. Thereby it makes use of existing domain prediction tools such as InterProScan. TreeDomViewer adopts an evolutionary perspective on how domain structure of two or more sequences can be aligned and compared, to subsequently infer the function of an unknown homolog. This provides insight into the function assignment of, in terms of amino acid substitution, very divergent but yet closely related family members. Our tool produces an interactive scalar vector graphics image that provides orthological relationship and domain content of proteins of interest at one glance. In addition, PDF, JPEG or PNG formatted output is also provided. These features make TreeDomViewer a valuable addition to the annotation pipeline of unknown genes or gene products. TreeDomViewer is available at http://www.bioinformatics.nl/tools/treedom/.

  20. Improvement in Protein Domain Identification Is Reached by Breaking Consensus, with the Agreement of Many Profiles and Domain Co-occurrence.

    PubMed

    Bernardes, Juliana; Zaverucha, Gerson; Vaquero, Catherine; Carbone, Alessandra

    2016-07-01

    Traditional protein annotation methods describe known domains with probabilistic models representing consensus among homologous domain sequences. However, when relevant signals become too weak to be identified by a global consensus, attempts for annotation fail. Here we address the fundamental question of domain identification for highly divergent proteins. By using high performance computing, we demonstrate that the limits of state-of-the-art annotation methods can be bypassed. We design a new strategy based on the observation that many structural and functional protein constraints are not globally conserved through all species but might be locally conserved in separate clades. We propose a novel exploitation of the large amount of data available: 1. for each known protein domain, several probabilistic clade-centered models are constructed from a large and differentiated panel of homologous sequences, 2. a decision-making protocol combines outcomes obtained from multiple models, 3. a multi-criteria optimization algorithm finds the most likely protein architecture. The method is evaluated for domain and architecture prediction over several datasets and statistical testing hypotheses. Its performance is compared against HMMScan and HHblits, two widely used search methods based on sequence-profile and profile-profile comparison. Due to their closeness to actual protein sequences, clade-centered models are shown to be more specific and functionally predictive than the broadly used consensus models. Based on them, we improved annotation of Plasmodium falciparum protein sequences on a scale not previously possible. We successfully predict at least one domain for 72% of P. falciparum proteins against 63% achieved previously, corresponding to 30% of improvement over the total number of Pfam domain predictions on the whole genome. The method is applicable to any genome and opens new avenues to tackle evolutionary questions such as the reconstruction of ancient domain

  1. Improvement in Protein Domain Identification Is Reached by Breaking Consensus, with the Agreement of Many Profiles and Domain Co-occurrence

    PubMed Central

    Bernardes, Juliana; Zaverucha, Gerson; Vaquero, Catherine; Carbone, Alessandra

    2016-01-01

    Traditional protein annotation methods describe known domains with probabilistic models representing consensus among homologous domain sequences. However, when relevant signals become too weak to be identified by a global consensus, attempts for annotation fail. Here we address the fundamental question of domain identification for highly divergent proteins. By using high performance computing, we demonstrate that the limits of state-of-the-art annotation methods can be bypassed. We design a new strategy based on the observation that many structural and functional protein constraints are not globally conserved through all species but might be locally conserved in separate clades. We propose a novel exploitation of the large amount of data available: 1. for each known protein domain, several probabilistic clade-centered models are constructed from a large and differentiated panel of homologous sequences, 2. a decision-making protocol combines outcomes obtained from multiple models, 3. a multi-criteria optimization algorithm finds the most likely protein architecture. The method is evaluated for domain and architecture prediction over several datasets and statistical testing hypotheses. Its performance is compared against HMMScan and HHblits, two widely used search methods based on sequence-profile and profile-profile comparison. Due to their closeness to actual protein sequences, clade-centered models are shown to be more specific and functionally predictive than the broadly used consensus models. Based on them, we improved annotation of Plasmodium falciparum protein sequences on a scale not previously possible. We successfully predict at least one domain for 72% of P. falciparum proteins against 63% achieved previously, corresponding to 30% of improvement over the total number of Pfam domain predictions on the whole genome. The method is applicable to any genome and opens new avenues to tackle evolutionary questions such as the reconstruction of ancient domain

  2. Improvement in Protein Domain Identification Is Reached by Breaking Consensus, with the Agreement of Many Profiles and Domain Co-occurrence.

    PubMed

    Bernardes, Juliana; Zaverucha, Gerson; Vaquero, Catherine; Carbone, Alessandra

    2016-07-01

    Traditional protein annotation methods describe known domains with probabilistic models representing consensus among homologous domain sequences. However, when relevant signals become too weak to be identified by a global consensus, attempts for annotation fail. Here we address the fundamental question of domain identification for highly divergent proteins. By using high performance computing, we demonstrate that the limits of state-of-the-art annotation methods can be bypassed. We design a new strategy based on the observation that many structural and functional protein constraints are not globally conserved through all species but might be locally conserved in separate clades. We propose a novel exploitation of the large amount of data available: 1. for each known protein domain, several probabilistic clade-centered models are constructed from a large and differentiated panel of homologous sequences, 2. a decision-making protocol combines outcomes obtained from multiple models, 3. a multi-criteria optimization algorithm finds the most likely protein architecture. The method is evaluated for domain and architecture prediction over several datasets and statistical testing hypotheses. Its performance is compared against HMMScan and HHblits, two widely used search methods based on sequence-profile and profile-profile comparison. Due to their closeness to actual protein sequences, clade-centered models are shown to be more specific and functionally predictive than the broadly used consensus models. Based on them, we improved annotation of Plasmodium falciparum protein sequences on a scale not previously possible. We successfully predict at least one domain for 72% of P. falciparum proteins against 63% achieved previously, corresponding to 30% of improvement over the total number of Pfam domain predictions on the whole genome. The method is applicable to any genome and opens new avenues to tackle evolutionary questions such as the reconstruction of ancient domain

  3. Assessing the Metabolic Diversity of Streptococcus from a Protein Domain Point of View

    PubMed Central

    Koehorst, Jasper J.; Martins dos Santos, Vitor A. P.; Schaap, Peter J.

    2015-01-01

    Understanding the diversity and robustness of the metabolism of bacteria is fundamental for understanding how bacteria evolve and adapt to different environments. In this study, we characterised 121 Streptococcus strains and studied metabolic diversity from a protein domain perspective. Metabolic pathways were described in terms of the promiscuity of domains participating in metabolic pathways that were inferred to be functional. Promiscuity was defined by adapting existing measures based on domain abundance and versatility. The approach proved to be successful in capturing bacterial metabolic flexibility and species diversity, indicating that it can be described in terms of reuse and sharing functional domains in different proteins involved in metabolic activity. Additionally, we showed striking differences among metabolic organisation of the pathogenic serotype 2 Streptococcus suis and other strains. PMID:26366735

  4. Structure of the Bro1 Domain Protein BROX and Functional Analyses of the ALIX Bro1 Domain in HIV-1 Budding

    SciTech Connect

    Zhai Q.; Robinson H.; Landesman M. B.; Sundquist W. I.; Hill C. P.

    2011-12-01

    Bro1 domains are elongated, banana-shaped domains that were first identified in the yeast ESCRT pathway protein, Bro1p. Humans express three Bro1 domain-containing proteins: ALIX, BROX, and HD-PTP, which function in association with the ESCRT pathway to help mediate intraluminal vesicle formation at multivesicular bodies, the abscission stage of cytokinesis, and/or enveloped virus budding. Human Bro1 domains share the ability to bind the CHMP4 subset of ESCRT-III proteins, associate with the HIV-1 NC{sup Gag} protein, and stimulate the budding of viral Gag proteins. The curved Bro1 domain structure has also been proposed to mediate membrane bending. To date, crystal structures have only been available for the related Bro1 domains from the Bro1p and ALIX proteins, and structures of additional family members should therefore aid in the identification of key structural and functional elements. We report the crystal structure of the human BROX protein, which comprises a single Bro1 domain. The Bro1 domains from BROX, Bro1p and ALIX adopt similar overall structures and share two common exposed hydrophobic surfaces. Surface 1 is located on the concave face and forms the CHMP4 binding site, whereas Surface 2 is located at the narrow end of the domain. The structures differ in that only ALIX has an extended loop that projects away from the convex face to expose the hydrophobic Phe105 side chain at its tip. Functional studies demonstrated that mutations in Surface 1, Surface 2, or Phe105 all impair the ability of ALIX to stimulate HIV-1 budding. Our studies reveal similarities in the overall folds and hydrophobic protein interaction sites of different Bro1 domains, and show that a unique extended loop contributes to the ability of ALIX to function in HIV-1 budding.

  5. Plant homologs of mammalian MBT-domain protein-regulated KDM1 histone lysine demethylases do not interact with plant Tudor/PWWP/MBT-domain proteins.

    PubMed

    Sadiq, Irfan; Keren, Ido; Citovsky, Vitaly

    2016-02-19

    Histone lysine demethylases of the LSD1/KDM1 family play important roles in epigenetic regulation of eukaryotic chromatin, and they are conserved between plants and animals. Mammalian LSD1 is thought to be targeted to its substrates, i.e., methylated histones, by an MBT-domain protein SFMBT1 that represents a component of the LSD1-based repressor complex and binds methylated histones. Because MBT-domain proteins are conserved between different organisms, from animals to plants, we examined whether the KDM1-type histone lysine demethylases KDM1C and FLD of Arabidopsis interact with the Arabidopsis Tudor/PWWP/MBT-domain SFMBT1-like proteins SL1, SL2, SL3, and SL4. No such interaction was detected using the bimolecular fluorescence complementation assay in living plant cells. Thus, plants most likely direct their KDM1 chromatin-modifying enzymes to methylated histones of the target chromatin by a mechanism different from that employed by the mammalian cells.

  6. The Canine Papillomavirus and Gamma HPV E7 Proteins Use an Alternative Domain to Bind and Destabilize the Retinoblastoma Protein

    PubMed Central

    Wang, Jingang; Zhou, Dan; Prabhu, Anjali; Schlegel, Richard; Yuan, Hang

    2010-01-01

    The high-risk HPV E6 and E7 proteins cooperate to immortalize primary human cervical cells and the E7 protein can independently transform fibroblasts in vitro, primarily due to its ability to associate with and degrade the retinoblastoma tumor suppressor protein, pRb. The binding of E7 to pRb is mediated by a conserved Leu-X-Cys-X-Glu (LXCXE) motif in the conserved region 2 (CR2) of E7 and this domain is both necessary and sufficient for E7/pRb association. In the current study, we report that the E7 protein of the malignancy-associated canine papillomavirus type 2 encodes an E7 protein that has serine substituted for cysteine in the LXCXE motif. In HPV, this substitution in E7 abrogates pRb binding and degradation. However, despite variation at this critical site, the canine papillomavirus E7 protein still bound and degraded pRb. Even complete deletion of the LXSXE domain of canine E7 failed to interfere with binding to pRb in vitro and in vivo. Rather, the dominant binding site for pRb mapped to the C-terminal domain of canine E7. Finally, while the CR1 and CR2 domains of HPV E7 are sufficient for degradation of pRb, the C-terminal region of canine E7 was also required for pRb degradation. Screening of HPV genome sequences revealed that the LXSXE motif of the canine E7 protein was also present in the gamma HPVs and we demonstrate that the gamma HPV-4 E7 protein also binds pRb in a similar way. It appears, therefore, that the type 2 canine PV and gamma-type HPVs not only share similar properties with respect to tissue specificity and association with immunosuppression, but also the mechanism by which their E7 proteins interact with pRb. PMID:20824099

  7. Requirement of the FATC domain of protein kinase Tel1 for localization to DNA ends and target protein recognition.

    PubMed

    Ogi, Hiroo; Goto, Greicy H; Ghosh, Avik; Zencir, Sevil; Henry, Everett; Sugimoto, Katsunori

    2015-10-01

    Two large phosphatidylinositol 3-kinase-related protein kinases (PIKKs), ATM and ATR, play a central role in the DNA damage response pathway. PIKKs contain a highly conserved extreme C-terminus called the FRAP-ATM-TRRAP-C-terminal (FATC) domain. In budding yeast, ATM and ATR correspond to Tel1 and Mec1, respectively. In this study, we characterized functions of the FATC domain of Tel1 by introducing substitution or truncation mutations. One substitution mutation, termed tel1-21, and a truncation mutation, called tel1-ΔC, did not significantly affect the expression level. The tel1-21 mutation impaired the cellular response to DNA damage and conferred moderate telomere maintenance defect. In contrast, the tel1-ΔC mutation behaved like a null mutation, conferring defects in both DNA damage response and telomere maintenance. Tel1-21 protein localized to DNA ends as effectively as wild-type Tel1 protein, whereas Tel1-ΔC protein failed. Introduction of a hyperactive TEL1-hy mutation suppressed the tel1-21 mutation but not the tel1-ΔC mutation. In vitro analyses revealed that both Tel1-21 and Tel1-ΔC proteins undergo efficient autophosphorylation but exhibit decreased kinase activities toward the exogenous substrate protein, Rad53. Our results show that the FATC domain of Tel1 mediates localization to DNA ends and contributes to phosphorylation of target proteins.

  8. The macro domain protein family: structure, functions, and their potential therapeutic implications.

    PubMed

    Han, Weidong; Li, Xiaolei; Fu, Xiaobing

    2011-01-01

    Macro domains are ancient, highly evolutionarily conserved domains that are widely distributed throughout all kingdoms of life. The 'macro fold' is roughly 25kDa in size and is composed of a mixed α-β fold with similarity to the P loop-containing nucleotide triphosphate hydrolases. They function as binding modules for metabolites of NAD(+), including poly(ADP-ribose) (PAR), which is synthesized by PAR polymerases (PARPs). Although there is a high degree of sequence similarity within this family, particularly for residues that might be involved in catalysis or substrates binding, it is likely that the sequence variation that does exist among macro domains is responsible for the specificity of function of individual proteins. Recent findings have indicated that macro domain proteins are functionally promiscuous and are implicated in the regulation of diverse biological functions, such as DNA repair, chromatin remodeling and transcriptional regulation. Significant advances in the field of macro domain have occurred in the past few years, including biological insights and the discovery of novel signaling pathways. To provide a framework for understanding these recent findings, this review will provide a comprehensive overview of the known and proposed biochemical, cellular and physiological roles of the macro domain family. Recent data that indicate a critical role of macro domain regulation for the proper progression of cellular differentiation programs will be discussed. In addition, the effect of dysregulated expression of macro domain proteins will be considered in the processes of tumorigenesis and bacterial pathogenesis. Finally, a series of observations will be highlighted that should be addressed in future efforts to develop macro domains as effective therapeutic targets.

  9. The Frizzled Extracellular Domain Is a Ligand for Van Gogh/Stbm during Nonautonomous Planar Cell Polarity Signaling

    PubMed Central

    Wu, Jun; Mlodzik, Marek

    2009-01-01

    SUMMARY The Frizzled (Fz) receptor is required cell autonomously in Wnt/β-catenin and planar cell polarity (PCP) signaling. In addition to these requirements, Fz acts nonautonomously during PCP establishment: wild-type cells surrounding fz− patches reorient toward the fz− cells. The molecular mechanism(s) of nonautonomous Fz signaling are unknown. Our in vivo studies identify the extracellular domain (ECD) of Fz, in particular its CRD (cysteine rich domain), as critical for nonautonomous Fz-PCP activity. Importantly, we demonstrate biochemical and physical interactions between the FzECD and the transmembrane protein Van Gogh/Strabismus (Vang/Stbm). We show that this function precedes cell-autonomous interactions and visible asymmetric PCP factor localization. Our data suggest that Vang/Stbm can act as a FzECD receptor, allowing cells to sense Fz activity/levels of their neighbors. Thus, direct Fz-Vang/Stbm interactions represent an intriguing mechanism that may account for the global orientation of cells within the plane of their epithelial field. PMID:18804440

  10. The frizzled extracellular domain is a ligand for Van Gogh/Stbm during nonautonomous planar cell polarity signaling.

    PubMed

    Wu, Jun; Mlodzik, Marek

    2008-09-01

    The Frizzled (Fz) receptor is required cell autonomously in Wnt/beta-catenin and planar cell polarity (PCP) signaling. In addition to these requirements, Fz acts nonautonomously during PCP establishment: wild-type cells surrounding fz(-) patches reorient toward the fz(-) cells. The molecular mechanism(s) of nonautonomous Fz signaling are unknown. Our in vivo studies identify the extracellular domain (ECD) of Fz, in particular its CRD (cysteine rich domain), as critical for nonautonomous Fz-PCP activity. Importantly, we demonstrate biochemical and physical interactions between the FzECD and the transmembrane protein Van Gogh/Strabismus (Vang/Stbm). We show that this function precedes cell-autonomous interactions and visible asymmetric PCP factor localization. Our data suggest that Vang/Stbm can act as a FzECD receptor, allowing cells to sense Fz activity/levels of their neighbors. Thus, direct Fz-Vang/Stbm interactions represent an intriguing mechanism that may account for the global orientation of cells within the plane of their epithelial field.

  11. Crystal Structure of the Human, FIC-Domain Containing Protein HYPE and Implications for Its Functions

    PubMed Central

    Bunney, Tom D.; Cole, Ambrose R.; Broncel, Malgorzata; Esposito, Diego; Tate, Edward W.; Katan, Matilda

    2014-01-01

    Summary Protein AMPylation, the transfer of AMP from ATP to protein targets, has been recognized as a new mechanism of host-cell disruption by some bacterial effectors that typically contain a FIC-domain. Eukaryotic genomes also encode one FIC-domain protein, HYPE, which has remained poorly characterized. Here we describe the structure of human HYPE, solved by X-ray crystallography, representing the first structure of a eukaryotic FIC-domain protein. We demonstrate that HYPE forms stable dimers with structurally and functionally integrated FIC-domains and with TPR-motifs exposed for protein-protein interactions. As HYPE also uniquely possesses a transmembrane helix, dimerization is likely to affect its positioning and function in the membrane vicinity. The low rate of autoAMPylation of the wild-type HYPE could be due to autoinhibition, consistent with the mechanism proposed for a number of putative FIC AMPylators. Our findings also provide a basis to further consider possible alternative cofactors of HYPE and distinct modes of target-recognition. PMID:25435325

  12. Functional characterization of the Cdc42p binding domain of yeast Ste20p protein kinase.

    PubMed Central

    Leberer, E; Wu, C; Leeuw, T; Fourest-Lieuvin, A; Segall, J E; Thomas, D Y

    1997-01-01

    Ste20p from Saccharomyces cerevisiae belongs to the Ste20p/p65PAK family of protein kinases which are highly conserved from yeast to man and regulate conserved mitogen-activated protein kinase pathways. Ste20p fulfills multiple roles in pheromone signaling, morphological switching and vegetative growth and binds Cdc42p, a Rho-like small GTP binding protein required for polarized morphogenesis. We have analyzed the functional consequences of mutations that prevent binding of Cdc42p to Ste20p. The complete amino-terminal, non-catalytic half of Ste20p, including the conserved Cdc42p binding domain, was dispensable for heterotrimeric G-protein-mediated pheromone signaling. However, the Cdc42p binding domain was necessary for filamentous growth in response to nitrogen starvation and for an essential function that Ste20p shares with its isoform Cla4p during vegetative growth. Moreover, the Cdc42p binding domain was required for cell-cell adhesion during conjugation. Subcellular localization of wild-type and mutant Ste20p fused to green fluorescent protein showed that the Cdc42p binding domain is needed to direct localization of Ste20p to regions of polarized growth. These results suggest that Ste20p is regulated in different developmental pathways by different mechanisms which involve heterotrimeric and small GTP binding proteins. PMID:9009270

  13. Protein domain mapping by internal labeling and single particle electron microscopy.

    PubMed

    Ciferri, Claudio; Lander, Gabriel C; Nogales, Eva

    2015-11-01

    In recent years, electron microscopy (EM) and single particle analysis have emerged as essential tools for investigating the architecture of large biological complexes. When high resolution is achievable, crystal structure docking and de-novo modeling allows for precise assignment of individual protein domain sequences. However, the achievable resolution may limit the ability to do so, especially when small or flexible complexes are under study. In such cases, protein labeling has emerged as an important complementary tool to characterize domain architecture and elucidate functional mechanistic details. All labeling strategies proposed to date are either focused on the identification of the position of protein termini or require multi-step labeling strategies, potentially interfering with the final labeling efficiency. Here we describe a strategy for determining the position of internal protein domains within EM maps using a recombinant one-step labeling approach named Efficient Mapping by Internal Labeling (EMIL). EMIL takes advantage of the close spatial proximity of the GFP's N- and C-termini to generate protein chimeras containing an internal GFP at desired locations along the main protein chain. We apply this method to characterize the subunit domain localization of the human Polycomb Repressive Complex 2. PMID:26431894

  14. Modular organization of the PDZ domains in the human discs-large protein suggests a mechanism for coupling PDZ domain-binding proteins to ATP and the membrane cytoskeleton

    PubMed Central

    1996-01-01

    The human homologue (hDIg) of the Drosophila discs-large tumor suppressor (DIg) is a multidomain protein consisting of a carboxyl- terminal guanylate kinase-like domain, an SH3 domain, and three slightly divergent copies of the PDZ (DHR/GLGF) domain. Here have examined the structural organization of the three PDZ domains of hDIg using a combination of protease digestion and in vitro binding measurements. Our results show that the PDZ domains are organized into two conformationally stable modules one (PDZ, consisting of PDZ domains 1 and 2, and the other (PDZ) corresponding to the third PDZ domain. Using amino acid sequencing and mass spectrometry, we determined the boundaries of the PDZ domains after digestion with endoproteinase Asp- N, trypsin, and alpha-chymotrypsin. The purified PDZ1+2, but not the PDZ3 domain, contains a high affinity binding site for the cytoplasmic domain of Shaker-type K+ channels. Similarly, we demonstrate that the PDZ1+2 domain can also specifically bind to ATP. Furthermore, we provide evidence for an in vivo interaction between hDIg and protein 4.1 and show that the hDIg protein contains a single high affinity protein 4.1-binding site that is not located within the PDZ domains. The results suggest a mechanism by which PDZ domain-binding proteins may be coupled to ATP and the membrane cytoskeleton via hDlg. PMID:8909548

  15. Cloning and expression of a cDNA for the T-cell-activating protein TAP.

    PubMed Central

    Reiser, H; Coligan, J; Palmer, E; Benacerraf, B; Rock, K L

    1988-01-01

    The T-cell-activating protein TAP is a murine phosphatidylinositol-anchored glycoprotein whose expression is controlled by the Ly-6 locus. Previous studies have suggested an important role for this protein in physiological T-cell activation. Using oligonucleotide probes, we have now isolated a cDNA clone whose predicted sequence would encode a protein with an NH2-terminal sequence identical to that of the TAP molecule. Further analysis of the predicted protein sequence revealed a cysteine-rich protein with a hydrophobic domain at the COOH terminus and without N-linked glycosylation sites--all features consistent with our previous analysis of the TAP protein. In Southern blot analysis, the Ly-6.2 cDNA clone detects a multigene family and a restriction fragment length polymorphism that maps precisely to the Ly-6 locus. Expression of the cDNA clone in COS cells demonstrates that it codes for TAP and clarifies the relationship between the epitopes recognized by various alpha Ly-6 monoclonal antibodies. Finally, we have studied the expression of Ly-6 mRNA in a variety of cell lineages. Ly-6 transcripts were detected in all organs examined, including spleen, kidney, lung, brain, and heart. This demonstrates that the Ly-6 locus is transcriptionally active in a wide range of organs and suggests that the role of TAP or TAP-like proteins might extend to other tissues. Images PMID:2895473

  16. Family-wide Characterization of Histone Binding Abilities of Human CW Domain-containing Proteins.

    PubMed

    Liu, Yanli; Tempel, Wolfram; Zhang, Qi; Liang, Xiao; Loppnau, Peter; Qin, Su; Min, Jinrong

    2016-04-22

    Covalent modifications of histone N-terminal tails play a critical role in regulating chromatin structure and controlling gene expression. These modifications are controlled by histone-modifying enzymes and read out by histone-binding proteins. Numerous proteins have been identified as histone modification readers. Here we report the family-wide characterization of histone binding abilities of human CW domain-containing proteins. We demonstrate that the CW domains in ZCWPW2 and MORC3/4 selectively recognize histone H3 trimethylated at Lys-4, similar to ZCWPW1 reported previously, while the MORC1/2 and LSD2 lack histone H3 Lys-4 binding ability. Our crystal structures of the CW domains of ZCWPW2 and MORC3 in complex with the histone H3 trimethylated at Lys-4 peptide reveal the molecular basis of this interaction. In each complex, two tryptophan residues in the CW domain form the "floor" and "right wall," respectively, of the methyllysine recognition cage. Our mutation results based on ZCWPW2 reveal that the right wall tryptophan residue is essential for binding, and the floor tryptophan residue enhances binding affinity. Our structural and mutational analysis highlights the conserved roles of the cage residues of CW domain across the histone methyllysine binders but also suggests why some CW domains lack histone binding ability. PMID:26933034

  17. Structure of the SCAN Domain of Human Paternally Expressed Gene 3 Protein

    PubMed Central

    Rimsa, Vadim; Eadsforth, Thomas C.; Hunter, William N.

    2013-01-01

    Human paternally expressed gene 3 protein (PEG3) is a large multi-domain entity with diverse biological functions, including acting as a transcription factor. PEG3 contains twelve Cys2-His2 type zinc finger domains, extended regions of predicted disorder and at the N-terminus a SCAN domain. PEG3 has been identified as partner of the E3 ubiquitin-protein ligase Siah1, an association we sought to investigate. An efficient bacterial recombinant expression system of the human PEG3-SCAN domain was prepared and crystals appeared spontaneously when the protein was being concentrated after purification. The structure was determined at 1.95 Å resolution and reveals a polypeptide fold of five helices in an extended configuration. An extensive dimerization interface, using almost a quarter of the solvent accessible surface, and key salt bridge interactions explain the stability of the dimer. Comparison with other SCAN domains reveals a high degree of conservation involving residues that contribute to the dimer interface. The PEG3-SCAN domain appears to constitute an assembly block, enabling PEG3 homo- or heterodimerization to control gene expression in a combinatorial fashion. PMID:23936039

  18. Expression of the mouse PR domain protein Prdm8 in the developing central nervous system.

    PubMed

    Komai, Tae; Iwanari, Hiroko; Mochizuki, Yasuhiro; Hamakubo, Takao; Shinkai, Yoichi

    2009-10-01

    It was first shown in the PR (PRDI-BF1 and RIZ homology) domain family proteins that the PR domain has homology to the SET (Su(var)3-9, Enhancer-of-zeste and Trithorax) domain, a catalytic domain of the histone lysine methyltransferases. Recently, there are many reports that the PR domain proteins have important roles in development and/or cell differentiation. In this report, we show the expression patterns of one of the mouse PR domain proteins, Prdm8, in the developing central nervous system. In the developing retina, Prdm8 expression was detected in postmitotic neurons in the inner nuclear layer and the ganglion cell layer, and its expression became restricted predominantly to the rod bipolar cells when retinogenesis was completed. In the developing spinal cord, Prdm8 was expressed first in the progenitor populations of ventral interneurons and motor neurons, and later in a subpopulation of interneurons. In the developing brain, Prdm8 expression was observed in postmitotic neurons in the intermediate zone and the cortical plate. In the postnatal brain, Prdm8 was expressed mainly in layer 4 neurons of the cerebral cortex. These results show that Prdm8 expression is tightly regulated in a spatio-temporal manner during neural development and mainly restricted to postmitotic neurons, except in the spinal cord. PMID:19616129

  19. Calmodulin-binding domains in Alzheimer's disease proteins: extending the calcium hypothesis.

    PubMed

    O'Day, Danton H; Myre, Michael A

    2004-08-01

    The calcium hypothesis of Alzheimer's disease (AD) invokes the disruption of calcium signaling as the underlying cause of neuronal dysfunction and ultimately apoptosis. As a primary calcium signal transducer, calmodulin (CaM) responds to cytosolic calcium fluxes by binding to and regulating the activity of target CaM-binding proteins (CaMBPs). Ca(2+)-dependent CaMBPs primarily contain domains (CaMBDs) that can be classified into motifs based upon variations on the basic amphiphilic alpha-helix domain involving conserved hydrophobic residues at positions 1-10, 1-14 or 1-16. In contrast, an IQ or IQ-like domain often mediates Ca(2+)-independent CaM-binding. Based on these attributes, a search for CaMBDs reveals that many of the proteins intimately linked to AD may be calmodulin-binding proteins, opening new avenues for research on this devastating disease. PMID:15249195

  20. Biological effects of individually synthesized TNF-binding domain of variola virus CrmB protein.

    PubMed

    Tsyrendorzhiev, D D; Orlovskaya, I A; Sennikov, S V; Tregubchak, T V; Gileva, I P; Tsyrendorzhieva, M D; Shchelkunov, S N

    2014-06-01

    The biological characteristics of a 17-kDa protein synthesized in bacterial cells, a TNF-binding domain (VARV-TNF-BP) of a 47-kDa variola virus CrmB protein (VARV-CrmB) consisting of TNF-binding and chemokine-binding domains, were studied. Removal of the C-terminal chemokine-binding domain from VARV-CrmB protein was inessential for the efficiency of its inhibition of TNF cytotoxicity towards L929 mouse fibroblast culture and for TNF-induced oxidative metabolic activity of mouse blood leukocytes. The results of this study could form the basis for further studies of VARV-TNF-BP mechanisms of activity for prospective use in practical medicine.

  1. Design, synthesis and characterization of peptidomimetic conjugate of BODIPY targeting HER2 protein extracellular domain

    PubMed Central

    Banappagari, Sashikanth; McCall, Alecia; Fontenot, Krystal; Vicente, M. Graca H.; Gujar, Amit; Satyanarayanajois, Seetharama

    2013-01-01

    Among the EGFRs, HER2 is a major heterodimer partner and also has important implications in the formation of particular tumors. Interaction of HER2 protein with other EGFR proteins can be modulated by small molecule ligands and, hence, these protein-protein interactions play a key role in biochemical reactions related to control of cell growth. A peptidomimetic (compound 5-1) that binds to HER2 protein extracellular domain and inhibits protein-protein interactions of EGFRs was conjugated with BODIPY (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene). Conjugation of BODIPY to the peptidomimetic was investigated by different approaches. The conjugate was characterized for its ability to bind to HER2 overexpressing SKBR-3 and BT-474 cells. Furthermore, cellular uptake of conjugate of BODIPY was studied in the presence of membrane tracker and Lyso tracker using confocal microscopy. Our results suggested that fluorescently labeled compound 5-7 binds to the extracellular domain and stays in the membrane for nearly 24 h. After 24 h there is an indication of internalization of the conjugate. Inhibition of protein-protein interaction and downstream signaling effect of compound 5-1 was also studied by proximity ligation assay and western blot analysis. Results suggested that compound 5-1 inhibits protein-protein interactions of HER2-HER3 and phosphorylation of HER2 in a time-dependent manner. PMID:23688700

  2. Extensive exploration of conformational space improves Rosetta results for short protein domains.

    PubMed

    Li, Yaohang; Bordner, Andrew J; Tian, Yuan; Tao, Xiuping; Gorin, Andrey A

    2008-01-01

    With some simplifications, computational protein folding can be understood as an optimization problem of a potential energy function on a variable space consisting of all conformation for a given protein molecule. It is well known that realistic energy potentials are very "rough" functions, when expressed in the standard variables, and the folding trajectories can be easily trapped in multiple local minima. We have integrated our variation of Parallel Tempering optimization into the protein folding program Rosetta in order to improve its capability to overcome energy barriers and estimate how such improvement will influence the quality of the folded protein domains. Here we report that (1) Parallel Tempering Rosetta (PTR) is significantly better in the exploration of protein structures than previous implementations of the program; (2) systematic improvements are observed across a large benchmark set in the parameters that are normally followed to estimate robustness of the folding; (3) these improvements are most dramatic in the subset of the shortest domains, where high-quality structures have been obtained for >75% of all tested sequences. Further analysis of the results will improve our understanding of protein conformational space and lead to new improvements in the protein folding methodology, while the current PTR implementation should be very efficient for short (up to approximately 80 a.a.) protein domains and therefore may find practical application in system biology studies.

  3. A structure-specific nucleic acid-binding domain conserved among DNA repair proteins

    PubMed Central

    Mason, Aaron C.; Rambo, Robert P.; Greer, Briana; Pritchett, Michael; Tainer, John A.; Cortez, David; Eichman, Brandt F.

    2014-01-01

    SMARCAL1, a DNA remodeling protein fundamental to genome integrity during replication, is the only gene associated with the developmental disorder Schimke immuno-osseous dysplasia (SIOD). SMARCAL1-deficient cells show collapsed replication forks, S-phase cell cycle arrest, increased chromosomal breaks, hypersensitivity to genotoxic agents, and chromosomal instability. The SMARCAL1 catalytic domain (SMARCAL1CD) is composed of an SNF2-type double-stranded DNA motor ATPase fused to a HARP domain of unknown function. The mechanisms by which SMARCAL1 and other DNA translocases repair replication forks are poorly understood, in part because of a lack of structural information on the domains outside of the common ATPase motor. In the present work, we determined the crystal structure of the SMARCAL1 HARP domain and examined its conformation and assembly in solution by small angle X-ray scattering. We report that this domain is conserved with the DNA mismatch and damage recognition domains of MutS/MSH and NER helicase XPB, respectively, as well as with the putative DNA specificity motif of the T4 phage fork regression protein UvsW. Loss of UvsW fork regression activity by deletion of this domain was rescued by its replacement with HARP, establishing the importance of this domain in UvsW and demonstrating a functional complementarity between these structurally homologous domains. Mutation of predicted DNA-binding residues in HARP dramatically reduced fork binding and regression activities of SMARCAL1CD. Thus, this work has uncovered a conserved substrate recognition domain in DNA repair enzymes that couples ATP-hydrolysis to remodeling of a variety of DNA structures, and provides insight into this domain’s role in replication fork stability and genome integrity. PMID:24821763

  4. Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread.

    PubMed

    Kroj, Thomas; Chanclud, Emilie; Michel-Romiti, Corinne; Grand, Xavier; Morel, Jean-Benoit

    2016-04-01

    Plant immune receptors of the class of nucleotide-binding and leucine-rich repeat domain (NLR) proteins can contain additional domains besides canonical NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 (NB-ARC)) and leucine-rich repeat (LRR) domains. Recent research suggests that these additional domains act as integrated decoys recognizing effectors from pathogens. Proteins homologous to integrated decoys are suspected to be effector targets and involved in disease or resistance. Here, we scrutinized 31 entire plant genomes to identify putative integrated decoy domains in NLR proteins using the Interpro search. The involvement of the Zinc Finger-BED type (ZBED) protein containing a putative decoy domain, called BED, in rice (Oryza sativa) resistance was investigated by evaluating susceptibility to the blast fungus Magnaporthe oryzae in rice over-expression and knock-out mutants. This analysis showed that all plants tested had integrated various atypical protein domains into their NLR proteins (on average 3.5% of all NLR proteins). We also demonstrated that modifying the expression of the ZBED gene modified disease susceptibility. This study suggests that integration of decoy domains in NLR immune receptors is widespread and frequent in plants. The integrated decoy model is therefore a powerful concept to identify new proteins involved in disease resistance. Further in-depth examination of additional domains in NLR proteins promises to unravel many new proteins of the plant immune system. PMID:26848538

  5. Structural mapping of the coiled-coil domain of a bacterial condensin and comparative analyses across all domains of life suggest conserved features of SMC proteins.

    PubMed

    Waldman, Vincent M; Stanage, Tyler H; Mims, Alexandra; Norden, Ian S; Oakley, Martha G

    2015-06-01

    The structural maintenance of chromosomes (SMC) proteins form the cores of multisubunit complexes that are required for the segregation and global organization of chromosomes in all domains of life. These proteins share a common domain structure in which N- and C- terminal regions pack against one another to form a globular ATPase domain. This "head" domain is connected to a central, globular, "hinge" or dimerization domain by a long, antiparallel coiled coil. To date, most efforts for structural characterization of SMC proteins have focused on the globular domains. Recently, however, we developed a method to map interstrand interactions in the 50-nm coiled-coil domain of MukB, the divergent SMC protein found in γ-proteobacteria. Here, we apply that technique to map the structure of the Bacillus subtilis SMC (BsSMC) coiled-coil domain. We find that, in contrast to the relatively complicated coiled-coil domain of MukB, the BsSMC domain is nearly continuous, with only two detectable coiled-coil interruptions. Near the middle of the domain is a break in coiled-coil structure in which there are three more residues on the C-terminal strand than on the N-terminal strand. Close to the head domain, there is a second break with a significantly longer insertion on the same strand. These results provide an experience base that allows an informed interpretation of the output of coiled-coil prediction algorithms for this family of proteins. A comparison of such predictions suggests that these coiled-coil deviations are highly conserved across SMC types in a wide variety of organisms, including humans.

  6. Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation.

    PubMed

    Hao, Yu-Jun; Song, Qing-Xin; Chen, Hao-Wei; Zou, Hong-Feng; Wei, Wei; Kang, Xu-Sheng; Ma, Biao; Zhang, Wan-Ke; Zhang, Jin-Song; Chen, Shou-Yi

    2010-10-01

    Plant-specific transcription factor NAC proteins play essential roles in many biological processes such as development, senescence, morphogenesis, and stress signal transduction pathways. In the NAC family, some members function as transcription activators while others act as repressors. In the present study we found that though the full-length GmNAC20 from soybean did not have transcriptional activation activity, the carboxy-terminal activation domain of GmNAC20 had high transcriptional activation activity in the yeast assay system. Deletion experiments revealed an active repression domain with 35 amino acids, named NARD (NAC Repression Domain), in the d subdomain of NAC DNA-binding domain. NARD can reduce the transcriptional activation ability of diverse transcription factors when fused to either the amino-terminal or the carboxy-terminal of the transcription factors. NARD-like sequences are also present in other NAC family members and they are functional repression domain when fused to VP16 in plant protoplast assay system. Mutation analysis of conserved amino acid residues in NARD showed that the hydrophobic LVFY motif may partially contribute to the repression function. It is hypothesized that the interactions between the repression domain NARD and the carboxy-terminal activation domain may finally determine the ability of NAC family proteins to regulate downstream gene expressions.

  7. A major determinant for membrane protein interaction localizes to the carboxy-terminal domain of the mouse coronavirus nucleocapsid protein.

    PubMed

    Hurst, Kelley R; Kuo, Lili; Koetzner, Cheri A; Ye, Rong; Hsue, Bilan; Masters, Paul S

    2005-11-01

    The two major constituents of coronavirus virions are the membrane (M) and nucleocapsid (N) proteins. The M protein is anchored in the viral envelope by three transmembrane segments flanked by a short amino-terminal ectodomain and a large carboxy-terminal endodomain. The M endodomain interacts with the viral nucleocapsid, which consists of the positive-strand RNA genome helically encapsidated by N protein monomers. In previous work with the coronavirus mouse hepatitis virus (MHV), a highly defective M protein mutant, MDelta2, was constructed. This mutant contained a 2-amino-acid carboxy-terminal truncation of the M protein. Analysis of second-site revertants of MDelta2 revealed mutations in the carboxy-terminal region of the N protein that compensated for the defect in the M protein. To seek further genetic evidence corroborating this interaction, we generated a comprehensive set of clustered charged-to-alanine mutants in the carboxy-terminal domain 3 of N protein. One of these mutants, CCA4, had a highly defective phenotype similar to that of MDelta2. Transfer of the CCA4 mutation into a partially diploid MHV genome showed that CCA4 was a loss-of-function mutation rather than a dominant-negative mutation. Analysis of multiple second-site revertants of CCA4 revealed mutations in both the M protein and the N protein that could compensate for the original lesion in N. These data more precisely define the region of the N protein that interacts with the M protein. Further, we found that fusion of domain 3 of the N protein to the carboxy terminus of a heterologous protein caused it to be incorporated into MHV virions.

  8. Francisella tularensis RipA Protein Topology and Identification of Functional Domains

    PubMed Central

    Mortensen, Brittany L.; Fuller, James R.; Taft-Benz, Sharon; Collins, Edward J.

    2012-01-01

    Francisella tularensis is a Gram-negative coccobacillus and is the etiological agent of the disease tularemia. Expression of the cytoplasmic membrane protein RipA is required for Francisella replication within macrophages and other cell types; however, the function of this protein remains unknown. RipA is conserved among all sequenced Francisella species, and RipA-like proteins are present in a number of individual strains of a wide variety of species scattered throughout the prokaryotic kingdom. Cross-linking studies revealed that RipA forms homoligomers. Using a panel of RipA-green fluorescent protein and RipA-PhoA fusion constructs, we determined that RipA has a unique topology within the cytoplasmic membrane, with the N and C termini in the cytoplasm and periplasm, respectively. RipA has two significant cytoplasmic domains, one composed roughly of amino acids 1 to 50 and the second flanked by the second and third transmembrane domains and comprising amino acids 104 to 152. RipA functional domains were identified by measuring the effects of deletion mutations, amino acid substitution mutations, and spontaneously arising intragenic suppressor mutations on intracellular replication, induction of interleukin-1β (IL-1β) secretion by infected macrophages, and oligomer formation. Results from these experiments demonstrated that each of the cytoplasmic domains and specific amino acids within these domains are required for RipA function. PMID:22267515

  9. Cooperative folding of intrinsically disordered domains drives assembly of a strong elongated protein

    PubMed Central

    Gruszka, Dominika T.; Whelan, Fiona; Farrance, Oliver E.; Fung, Herman K. H.; Paci, Emanuele; Jeffries, Cy M.; Svergun, Dmitri I.; Baldock, Clair; Baumann, Christoph G.; Brockwell, David J.; Potts, Jennifer R.; Clarke, Jane

    2015-01-01

    Bacteria exploit surface proteins to adhere to other bacteria, surfaces and host cells. Such proteins need to project away from the bacterial surface and resist significant mechanical forces. SasG is a protein that forms extended fibrils on the surface of Staphylococcus aureus and promotes host adherence and biofilm formation. Here we show that although monomeric and lacking covalent cross-links, SasG maintains a highly extended conformation in solution. This extension is mediated through obligate folding cooperativity of the intrinsically disordered E domains that couple non-adjacent G5 domains thermodynamically, forming interfaces that are more stable than the domains themselves. Thus, counterintuitively, the elongation of the protein appears to be dependent on the inherent instability of its domains. The remarkable mechanical strength of SasG arises from tandemly arrayed ‘clamp' motifs within the folded domains. Our findings reveal an elegant minimal solution for the assembly of monomeric mechano-resistant tethers of variable length. PMID:26027519

  10. NMR assignments for the telokin-like domain of bacteriophage P22 coat protein

    PubMed Central

    Rizzo, Alessandro A.; Fraser, LaTasha C. R.; Sheftic, Sarah R.; Suhanovsky, Margaret M.; Teschke, Carolyn M.; Alexandrescu, Andrei T.

    2012-01-01

    The bacteriophage P22 virion is assembled from identical coat protein monomers in a complex reaction that is generally conserved among tailed, double-stranded DNA bacteriophages and viruses. Many coat proteins of dsDNA viruses have structures based on the HK97 fold, but in some viruses and phages there are additional domains. In the P22 coat protein a “telokin-like” domain was recently identified, whose structure has not yet been characterized at high-resolution. Two recently published low-resolution cryo-EM reconstructions suggest markedly different folds for the telokin-like domain, that lead to alternative conclusions about its function in capsid assembly and stability. Here we report 1H, 15N, and 13C NMR resonance assignments for the telokin-like domain. The secondary structure predicted from the chemical shift values obtained in this work shows significant discrepancies from both cryo-EM models but agrees better with one of the models. In particular, the functionally important “D-loop” in one model shows chemical shifts and solvent exchange protection more consistent with β-sheet structure. Our work will set the basis for a high-resolution NMR structure determination of the telokin-like domain that will help improve the cryo-EM models, and in turn lead to a better understanding of how coat protein monomers assemble into the icosahedral capsids required for virulence. PMID:22987227

  11. MutationAligner: a resource of recurrent mutation hotspots in protein domains in cancer

    PubMed Central

    Gauthier, Nicholas Paul; Reznik, Ed; Gao, Jianjiong; Sumer, Selcuk Onur; Schultz, Nikolaus; Sander, Chris; Miller, Martin L.

    2016-01-01

    The MutationAligner web resource, available at http://www.mutationaligner.org, enables discovery and exploration of somatic mutation hotspots identified in protein domains in currently (mid-2015) more than 5000 cancer patient samples across 22 different tumor types. Using multiple sequence alignments of protein domains in the human genome, we extend the principle of recurrence analysis by aggregating mutations in homologous positions across sets of paralogous genes. Protein domain analysis enhances the statistical power to detect cancer-relevant mutations and links mutations to the specific biological functions encoded in domains. We illustrate how the MutationAligner database and interactive web tool can be used to explore, visualize and analyze mutation hotspots in protein domains across genes and tumor types. We believe that MutationAligner will be an important resource for the cancer research community by providing detailed clues for the functional importance of particular mutations, as well as for the design of functional genomics experiments and for decision support in precision medicine. MutationAligner is slated to be periodically updated to incorporate additional analyses and new data from cancer genomics projects. PMID:26590264

  12. Knowledge-Guided Docking of WW Domain Proteins and Flexible Ligands

    NASA Astrophysics Data System (ADS)

    Lu, Haiyun; Li, Hao; Banu Bte Sm Rashid, Shamima; Leow, Wee Kheng; Liou, Yih-Cherng

    Studies of interactions between protein domains and ligands are important in many aspects such as cellular signaling. We present a knowledge-guided approach for docking protein domains and flexible ligands. The approach is applied to the WW domain, a small protein module mediating signaling complexes which have been implicated in diseases such as muscular dystrophy and Liddle’s syndrome. The first stage of the approach employs a substring search for two binding grooves of WW domains and possible binding motifs of peptide ligands based on known features. The second stage aligns the ligand’s peptide backbone to the two binding grooves using a quasi-Newton constrained optimization algorithm. The backbone-aligned ligands produced serve as good starting points to the third stage which uses any flexible docking algorithm to perform the docking. The experimental results demonstrate that the backbone alignment method in the second stage performs better than conventional rigid superposition given two binding constraints. It is also shown that using the backbone-aligned ligands as initial configurations improves the flexible docking in the third stage. The presented approach can also be applied to other protein domains that involve binding of flexible ligand to two or more binding sites.

  13. Differential Subcellular Localization of Leishmania Alba-Domain Proteins throughout the Parasite Development

    PubMed Central

    Dupé, Aurélien; Dumas, Carole; Papadopoulou, Barbara

    2015-01-01

    Alba-domain proteins are RNA-binding proteins found in archaea and eukaryotes and recently studied in protozoan parasites where they play a role in the regulation of virulence factors and stage-specific proteins. This work describes in silico structural characterization, cellular localization and biochemical analyses of Alba-domain proteins in Leishmania infantum. We show that in contrast to other protozoa, Leishmania have two Alba-domain proteins, LiAlba1 and LiAlba3, representative of the Rpp20- and the Rpp25-like eukaryotic subfamilies, respectively, which share several sequence and structural similarities but also important differences with orthologs in other protozoa, especially in sequences targeted for post-translational modifications. LiAlba1 and LiAlba3 proteins form a complex interacting with other RNA-binding proteins, ribosomal subunits, and translation factors as supported by co-immunoprecipitation and sucrose gradient sedimentation analysis. A higher co-sedimentation of Alba proteins with ribosomal subunits was seen upon conditions of decreased translation, suggesting a role of these proteins in translational repression. The Leishmania Alba-domain proteins display differential cellular localization throughout the parasite development. In the insect promastigote stage, Alba proteins co-localize predominantly to the cytoplasm but they translocate to the nucleolus and the flagellum upon amastigote differentiation in the mammalian host and are found back to the cytoplasm once amastigote differentiation is completed. Heat-shock, a major signal of amastigote differentiation, triggers Alba translocation to the nucleolus and the flagellum. Purification of the Leishmania flagellum confirmed LiAlba3 enrichment in this organelle during amastigote differentiation. Moreover, partial characterization of the Leishmania flagellum proteome of promastigotes and differentiating amastigotes revealed the presence of other RNA-binding proteins, as well as differences in

  14. Differential Subcellular Localization of Leishmania Alba-Domain Proteins throughout the Parasite Development.

    PubMed

    Dupé, Aurélien; Dumas, Carole; Papadopoulou, Barbara

    2015-01-01

    Alba-domain proteins are RNA-binding proteins found in archaea and eukaryotes and recently studied in protozoan parasites where they play a role in the regulation of virulence factors and stage-specific proteins. This work describes in silico structural characterization, cellular localization and biochemical analyses of Alba-domain proteins in Leishmania infantum. We show that in contrast to other protozoa, Leishmania have two Alba-domain proteins, LiAlba1 and LiAlba3, representative of the Rpp20- and the Rpp25-like eukaryotic subfamilies, respectively, which share several sequence and structural similarities but also important differences with orthologs in other protozoa, especially in sequences targeted for post-translational modifications. LiAlba1 and LiAlba3 proteins form a complex interacting with other RNA-binding proteins, ribosomal subunits, and translation factors as supported by co-immunoprecipitation and sucrose gradient sedimentation analysis. A higher co-sedimentation of Alba proteins with ribosomal subunits was seen upon conditions of decreased translation, suggesting a role of these proteins in translational repression. The Leishmania Alba-domain proteins display differential cellular localization throughout the parasite development. In the insect promastigote stage, Alba proteins co-localize predominantly to the cytoplasm but they translocate to the nucleolus and the flagellum upon amastigote differentiation in the mammalian host and are found back to the cytop