Science.gov

Sample records for cytochrome b5 reductase

  1. Cytochrome b5 and NADH cytochrome b5 reductase: genotype-phenotype correlations for hydroxylamine reduction.

    PubMed

    Sacco, James C; Trepanier, Lauren A

    2010-01-01

    NADH cytochrome b5 reductase (b5R) and cytochrome b5 (b5) catalyze the reduction of sulfamethoxazole hydroxylamine (SMX-HA), which can contribute to sulfonamide hypersensitivity, to the parent drug sulfamethoxazole. Variability in hydroxylamine reduction could thus play a role in adverse drug reactions. The aim of this study was to characterize variability in SMX-HA reduction in 111 human livers, and investigate its association with single nucleotide polymorphisms (SNPs) in b5 and b5R cDNA. Liver microsomes were assayed for SMX-HA reduction activity, and b5 and b5R expression was semiquantified by immunoblotting. The coding regions of the b5 (CYB5A) and b5R (CYB5R3) genes were resequenced. Hepatic SMX-HA reduction displayed a 19-fold range of individual variability (0.06-1.11 nmol/min/mg protein), and a 17-fold range in efficiency (Vmax/Km) among outliers. SMX-HA reduction was positively correlated with b5 and b5R protein content (P<0.0001, r=0.42; P=0.01, r=0.23, respectively), and expression of both proteins correlated with one another (P<0.0001; r=0.74). A novel cSNP in CYB5A (S5A) was associated with very low activity and protein expression. Two novel CYB5R3 SNPs, R59H and R297H, displayed atypical SMX-HA reduction kinetics and decreased SMX-HA reduction efficiency. These studies indicate that although novel cSNPs in CYB5A and CYB5R3 are associated with significantly altered protein expression and/or hydroxylamine reduction activities, these low-frequency cSNPs seem to only minimally impact overall observed phenotypic variability. Work is underway to characterize polymorphisms in other regions of these genes to further account for individual variability in hydroxylamine reduction.

  2. Reductive Detoxication of Arylhydroxylamine Carcinogens by Human NADH Cytochrome b5 Reductase and Cytochrome b5

    PubMed Central

    Kurian, Joseph R.; Chin, Nathaniel A.; Longlais, Brett J.; Hayes, Kristie L.; Trepanier, Lauren A.

    2008-01-01

    Heterocyclic and aromatic amine carcinogens are thought to lead to tumor initiation via the formation of DNA adducts, and bioactivation to arylhydroxylamine metabolites is necessary for reactivity with DNA. Carcinogenic arylhydroxylamine metabolites are cleared by a microsomal, NADH-dependent, oxygen-insensitive reduction pathway in humans, which may be a source of inter-individual variability in response to aromatic amine carcinogens. The purpose of this study was to characterize the identity of this reduction pathway in human liver. Based on our findings with structurally similar arylhydroxylamine metabolites of therapeutic drugs, we hypothesized that the reductive detoxication of arylhydroxylamine carcinogens was catalyzed by NADH cytochrome b5 reductase (b5R) and cytochrome b5 (cyt b5). We found that reduction of the carcinogenic hydroxylamines of the aromatic amine 4-aminobiphenyl (4-ABP; found in cigarette smoke) and the heterocyclic amine 2- amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP; found in grilled meats) was indeed catalyzed by a purified system containing only human b5R and cyt b5. Specific activities were 56 to 346-fold higher in the purified system compared to human liver microsomes (HLM), with similar Michaelis-Menten constants (Km values) in both systems. The stoichiometry for b5R and cyt b5 that yielded the highest activity in the purified system was also similar to that found in native HLM (∼1:8 to 1:10). Polyclonal antisera to either b5R or cyt b5 significantly inhibited N-hydroxy-4-aminobiphenyl (NHOH-4-ABP) reduction by 95 and 89%, respectively, and immunoreactive cyt b5 protein content in individual HLM was significantly correlated with individual reduction of both NHOH-4-ABP and N-hydroxy-PhIP (NHOH-PhIP). Finally, titration of HLM into the purified b5R/cyt b5 system did not enhance the efficiency of reduction activity. We conclude that b5R and cyt b5 are together solely capable of the reduction of arylhydroxylamine carcinogens

  3. Reductive detoxification of arylhydroxylamine carcinogens by human NADH cytochrome b5 reductase and cytochrome b5.

    PubMed

    Kurian, Joseph R; Chin, Nathaniel A; Longlais, Brett J; Hayes, Kristie L; Trepanier, Lauren A

    2006-10-01

    Heterocyclic and aromatic amine carcinogens are thought to lead to tumor initiation via the formation of DNA adducts, and bioactivation to arylhydroxylamine metabolites is necessary for reactivity with DNA. Carcinogenic arylhydroxylamine metabolites are cleared by a microsomal, NADH-dependent, oxygen-insensitive reduction pathway in humans, which may be a source of interindividual variability in response to aromatic amine carcinogens. The purpose of this study was to characterize the identity of this reduction pathway in human liver. On the basis of our findings with structurally similar arylhydroxylamine metabolites of therapeutic drugs, we hypothesized that the reductive detoxification of arylhydroxylamine carcinogens was catalyzed by NADH cytochrome b5 reductase (b5R) and cytochrome b5 (cyt b5). We found that reduction of the carcinogenic hydroxylamines of the aromatic amine 4-aminobiphenyl (4-ABP; found in cigarette smoke) and the heterocyclic amine 2-amino-1-methyl-6-phenylimidazo [4,5-b] pyridine (PhIP; found in grilled meats) was indeed catalyzed by a purified system containing only human b5R and cyt b5. Specific activities were 56-346-fold higher in the purified system as compared to human liver microsomes (HLM), with similar Michaelis-Menten constants (K(m) values) in both systems. The stoichiometry for b5R and cyt b5 that yielded the highest activity in the purified system was also similar to that found in native HLM ( approximately 1:8 to 1:10). Polyclonal antisera to either b5R or cyt b5 significantly inhibited N-hydroxy-4-aminobiphenyl (NHOH-4-ABP) reduction by 95 and 89%, respectively, and immunoreactive cyt b5 protein content in individual HLM was significantly correlated with individual reduction of both NHOH-4-ABP and N-hydroxy-PhIP (NHOH-PhIP). Finally, titration of HLM into the purified b5R/cyt b5 system did not enhance the efficiency of reduction activity. We conclude that b5R and cyt b5 are together solely capable of the reduction of

  4. Cytochrome b5 and NADH cytochrome b5 reductase: genotype-phenotype correlations for hydroxylamine reduction

    PubMed Central

    Sacco, James C.; Trepanier, Lauren A.

    2010-01-01

    Objectives NADH cytochrome b5 reductase (b5R) and cytochrome b5 (b5) catalyze the reduction of sulfamethoxazole hydroxylamine (SMX-HA), which can contribute to sulfonamide hypersensitivity, to the parent drug sulfamethoxazole. Variability in hydroxylamine reduction could thus play a role in adverse drug reactions. The aim of this study was to characterize variability in SMX-HA reduction in 111 human livers, and investigate its association with single nucleotide polymorphisms (SNPs) in b5 and b5R cDNA. Methods Liver microsomes were assayed for SMX-HA reduction activity, and b5 and b5R expression was semi-quantified by immunoblotting. The coding regions of the b5 (CYB5A) and b5R (CYB5R3) genes were resequenced. Results Hepatic SMX-HA reduction displayed a 19-fold range of individual variability (0.06–1.11 nmol/min/mg protein), and a 17-fold range in efficiency (Vmax/Km) among outliers. SMX-HA reduction was positively correlated with b5 and b5R protein content (p < 0.0001, r = 0.42; p = 0.01, r = 0.23, respectively), and expression of both proteins correlated with one another (p < 0.0001; r = 0.74). A novel cSNP in CYB5A (S5A) was associated with very low activity and protein expression. Two novel CYB5R3 SNPs, R59H and R297H, displayed atypical SMX-HA reduction kinetics and decreased SMX-HA reduction efficiency. Conclusion These studies indicate that while novel cSNPs in CYB5A and CYB5R3 are associated with significantly altered protein expression and/or hydroxylamine reduction activities, these low frequency cSNPs only appear to minimally impact overall observed phenotypic variability. Work is underway to characterize polymorphisms in other regions of these genes to further account for individual variability in hydroxylamine reduction. PMID:19997042

  5. Structure of Physarum polycephalum cytochrome b5 reductase at 1.56 A resolution.

    PubMed

    Kim, Sangwoo; Suga, Michihiro; Ogasahara, Kyoko; Ikegami, Terumi; Minami, Yoshiko; Yubisui, Toshitsugu; Tsukihara, Tomitake

    2007-04-01

    Physarum polycephalum cytochrome b(5) reductase catalyzes the reduction of cytochrome b(5) by NADH. The structure of P. polycephalum cytochrome b(5) reductase was determined at a resolution of 1.56 A. The molecular structure was compared with that of human cytochrome b(5) reductase, which had previously been determined at 1.75 A resolution [Bando et al. (2004), Acta Cryst. D60, 1929-1934]. The high-resolution structure revealed conformational differences between the two enzymes in the adenosine moiety of the FAD, the lid region and the linker region. The structural properties of both proteins were inspected in terms of hydrogen bonding, ion pairs, accessible surface area and cavity volume. The differences in these structural properties between the two proteins were consistent with estimates of their thermostabilities obtained from differential scanning calorimetry data.

  6. Cytochrome P450 3A, NADPH cytochrome P450 reductase and cytochrome b5 in the upper airways in horse.

    PubMed

    Tydén, E; Olsén, L; Tallkvist, J; Tjälve, H; Larsson, P

    2008-08-01

    Gene and protein expression as well as catalytic activity of cytochrome P450 (CYP) 3A were studied in the nasal olfactory and respiratory mucosa and the tracheal mucosa of the horse. We also examined the activity of NADPH cytochrome P450 reductase (NADPH P450 reductase), the amount of cytochrome b(5) and the total CYP content in these tissues. Comparative values for the above were obtained using liver as a control. The CYP3A related catalytic activity in the tissues of the upper airways was considerably higher than in the liver. The CYP3A gene and protein expression, on the other hand, was higher in the liver than in the upper airway tissues. Thus, the pattern of CYP3A metabolic activity does not correlate with the CYP3A gene and protein expression. Our results showed that the activity of NADPH P450 reductase and the level of cytochrome b(5) in the relation to the gene and protein expression of CYP3A were higher in the tissues of the upper airways than in the liver. It is concluded that CYP3A related metabolism in horse is not solely dependent on the expression of the enzyme but also on adequate levels of NADPH P450 reductase and cytochrome b(5).

  7. In vitro effects of myricetin, morin, apigenin, (+)-taxifolin, (+)-catechin, (-)-epicatechin, naringenin and naringin on cytochrome b5 reduction by purified NADH-cytochrome b5 reductase.

    PubMed

    Çelik, Haydar; Koşar, Müberra; Arinç, Emel

    2013-06-07

    The microsomal NADH-dependent electron transport system consisting of cytochrome b5 reductase and cytochrome b5 participates in a number of physiologically important processes including lipid metabolism as well as is involved in the metabolism of various drug and xenobiotics. In the present study, we assessed the inhibitory effects of eight dietary flavonoids representing five distinct chemical classes on cytochrome b5 reduction by purified cytochrome b5 reductase. From the flavonoids tested, myricetin was the most potent in inhibiting cytochrome b5 reduction with an IC50 value of 0.35μM. Myricetin inhibited b5 reductase noncompetitively with a Ki of 0.21μM with respect to cofactor NADH, and exhibited a non-linear relationship indicating non-Michaelis-Menten kinetic binding with respect to cytochrome b5. In contrast to the potent inhibitory activity of myricetin, (+)-taxifolin was found to be a weak inhibitor (IC50=9.8μM). The remaining flavonoids were inactive within the concentration range tested (1-50μM). Analysis of structure-activity data suggested that simultaneous presence of three OH groups in ring B is a primary structural determinant for a potent enzyme inhibition. Our results suggest that inhibition of the activity of this system by myricetin or myricetin containing diets may influence the metabolism of therapeutic drugs as well as detoxification of xenobiotics. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. The Interaction of Microsomal Cytochrome P450 2B4 with its Redox Partners, Cytochrome P450 Reductase and Cytochrome b5

    PubMed Central

    Im, Sang-Choul; Waskell, Lucy

    2010-01-01

    1 Cytochrome P450 2B4 is a microsomal protein with a multi-step reaction cycle similar to that observed in the majority of other cytochromes P450. The cytochrome P450 2B4-substrate complex is reduced from the ferric to the ferrous form by cytochrome P450 reductase. After binding oxygen, the oxyferrous protein accepts a second electron which is provided by either cytochrome P450 reductase or cytochrome b5. In both instances, product formation occurs. When the second electron is donated by cytochrome b5, catalysis (product formation) is ∼ 10 to 100-fold faster than in the presence of cytochrome P450 reductase. This allows less time for side product formation (hydrogen peroxide and superoxide) and improves by ∼ 15% the coupling of NADPH consumption to product formation. Cytochrome b5 has also been shown to compete with cytochrome P450 reductase for a binding site on the proximal surface of cytochrome P450 2B4. These two different effects of cytochrome b5 on cytochrome P450 2B4 reactivity can explain how cytochrome b5 is able to stimulate, inhibit, or have no effect on cytochrome P450 2B4 activity. At low molar ratios (<1) of cytochrome b5 to cytochrome P450 reductase, the more rapid catalysis results in enhanced substrate metabolism. In contrast, at high molar ratios (>1) of cytochome b5 to cytochrome P450 reductase, cytochrome b5 inhibits activity by binding to the proximal surface of cytochrome P450 and preventing the reductase from reducing ferric cytochrome P450 to the ferrous protein, thereby aborting the catalytic reaction cycle. When the stimulatory and inhibitory effects of cytochrome b5 are equal, it will appear to have no effect on the enzymatic activity. It is hypothesized that cytochrome b5 stimulates catalysis by causing a conformational change in the active site, which allows the active oxidizing oxyferryl species of cytochrome P450 to be formed more rapidly than in the presence of reductase. PMID:21055385

  9. Visinin-Like Protein-3 Modulates the Interaction Between Cytochrome b 5 and NADH-Cytochrome b 5 Reductase in a Ca(2+)-Dependent Manner.

    PubMed

    Oikawa, Kensuke; Odero, Gary L; Nafez, Solmaz; Ge, Ning; Zhang, Dali; Kobayashi, Hiroya; Sate, Keisuke; Kimura, Shoji; Tateno, Masatoshi; Albensi, Benedict C

    2016-12-01

    Visinin-like proteins (VILIPs) belong to the calcium sensor protein family. VILIP-1 has been examined as a cerebrospinal fluid biomarker and as a potential indicator for cognitive decline in Alzheimer's disease (AD). However, little is known about VILIP-3 protein biochemistry. We performed co-immunoprecipitation experiments to examine whether VILIP-3 can interact with reduced nicotine adenine dinucleotide (NADH)-cytochrome b 5 reductase. We also evaluated the specificity of cytochrome b 5 within the visinin-like protein subfamily and identified cytochrome P450 isoforms in the brain. In this study, we show that cytochrome b 5 has an affinity for hippocalcin, neurocalcin-δ, and VILIP-3, but not visinin-like protein-1. VILIP-3 was also shown to interact with NADH-cytochrome b 5 reductase in a Ca(2+)-dependent manner. These results suggest that VILIP-3, hippocalcin, and neurocalcin-δ provide a Ca(2+)-dependent modulation to the NADH-dependent microsomal electron transport. The results also suggest that future therapeutic strategies that target calcium-signaling pathways and VILIPs may be of value.

  10. Structure and properties of the recombinant NADH-cytochrome b5 reductase of Physarum polycephalum.

    PubMed

    Ikegami, Terumi; Kameyama, Eiji; Yamamoto, Shin-ya; Minami, Yoshiko; Yubisui, Toshitsugu

    2007-03-01

    A cDNA for NADH-cytochrome b(5) reductase of Physarum polycephalum was cloned from a cDNA library, and the nucleotide sequence of the cDNA was determined (accession no. AB259870). The DNA of 943 base pairs contains 5'- and 3'-noncoding sequences, including a polyadenylation sequence, and a coding sequence of 843 base pairs. The amino acid sequence (281 residues) deduced from the nucleotide sequence was 25 residues shorter than those of vertebrate enzymes. Nevertheless, the recombinant Physarum enzyme showed enzyme activity comparable to that of the human enzyme. The recombinant Physarum enzyme showed a pH optimum of around 6.0, and apparent K(m) values of 2 microM and 14 microM for NADH and cytochrome b(5) respectively. The purified recombinant enzyme showed a typical FAD-derived absorption peak of cytochrome b(5) reductase at around 460 nm, with a shoulder at 480 nm. These results suggest that the Physarum enzyme plays an important role in the organism.

  11. The cytochrome b5 reductase HPO-19 is required for biosynthesis of polyunsaturated fatty acids in Caenorhabditis elegans.

    PubMed

    Zhang, Yuru; Wang, Haizhen; Zhang, Jingjing; Hu, Ying; Zhang, Linqiang; Wu, Xiaoyun; Su, Xiong; Li, Tingting; Zou, Xiaoju; Liang, Bin

    2016-04-01

    Polyunsaturated fatty acids (PUFAs) are fatty acids with backbones containing more than one double bond, which are introduced by a series of desaturases that insert double bonds at specific carbon atoms in the fatty acid chain. It has been established that desaturases need flavoprotein-NADH-dependent cytochrome b5 reductase (simplified as cytochrome b5 reductase) and cytochrome b5 to pass through electrons for activation. However, it has remained unclear how this multi-enzyme system works for distinct desaturases. The model organism Caenorhabditis elegans contains seven desaturases (FAT-1, -2, -3, -4, -5, -6, -7) for the biosynthesis of PUFAS, providing an excellent model in which to characterize different desaturation reactions. Here, we show that RNAi inactivation of predicted cytochrome b5 reductases hpo-19 and T05H4.4 led to increased levels of C18:1n-9 but decreased levels of PUFAs, small lipid droplets, decreased fat accumulation, reduced brood size and impaired development. Dietary supplementation with different fatty acids showed that HPO-19 and T05H4.4 likely affect the activity of FAT-1, FAT-2, FAT-3, and FAT-4 desaturases, suggesting that these four desaturases use the same cytochrome b5 reductase to function. Collectively, these findings indicate that cytochrome b5 reductase HPO-19/T05H4.4 is required for desaturation to biosynthesize PUFAs in C. elegans. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Distribution of valence electrons of the flavin cofactor in NADH-cytochrome b5 reductase

    PubMed Central

    Takaba, Kiyofumi; Takeda, Kazuki; Kosugi, Masayuki; Tamada, Taro; Miki, Kunio

    2017-01-01

    Flavin compounds such as flavin adenine dinucleotide (FAD), flavin mononucleotide and riboflavin make up the active centers in flavoproteins that facilitate various oxidoreductive processes. The fine structural features of the hydrogens and valence electrons of the flavin molecules in the protein environment are critical to the functions of the flavoproteins. However, information on these features cannot be obtained from conventional protein X-ray analyses at ordinary resolution. Here we report the charge density analysis of a flavoenzyme, NADH-cytochrome b5 reductase (b5R), at an ultra-high resolution of 0.78 Å. Valence electrons on the FAD cofactor as well as the peptide portion, which are clearly visualized even after the conventional refinement, are analyzed by the multipolar atomic model refinement. The topological analysis for the determined electron density reveals the valence electronic structure of the isoalloxazine ring of FAD and hydrogen-bonding interactions with the protein environment. The tetrahedral electronic distribution around the N5 atom of FAD in b5R is stabilized by hydrogen bonding with CαH of Tyr65 and amide-H of Thr66. The hydrogen bonding network leads to His49 composing the cytochrome b5-binding site via non-classical hydrogen bonds between N5 of FAD and CαH of Tyr65 and O of Tyr65 and CβH of His49. PMID:28225078

  13. Cytochrome b5 Reductase Encoded by CBR1 Is Essential for a Functional Male Gametophyte in Arabidopsis[C][W

    PubMed Central

    Wayne, Laura L.; Wallis, James G.; Kumar, Rajesh; Markham, Jonathan E.; Browse, John

    2013-01-01

    In all eukaryotes, NADH:cytochrome b5 reductase provides electrons, via cytochrome b5, for a range of biochemical reactions in cellular metabolism, including for fatty acid desaturation in the endoplasmic reticulum. Studies in mammals, yeast, and in vitro plant systems have shown that cytochrome b5 can, at least in some circumstances, also accept electrons from NADPH:cytochrome P450 reductase, potentially allowing for redundancy in reductase function. Here, we report characterization of three T-DNA insertional mutants of the gene encoding cytochrome b5 reductase in Arabidopsis thaliana, CBR1. The progeny of plants heterozygous for the cbr1-2 allele segregated 6% homozygous mutants, while cbr1-3 and cbr1-4 heterozygotes segregated 1:1 heterozygous:wild type, indicating a gametophyte defect. Homozygous cbr1-2 seeds were deformed and required Suc for successful germination and seedling establishment. Vegetative growth of cbr1-2 plants was relatively normal, and they produced abundant flowers, but very few seeds. The pollen produced in cbr1-2 anthers was viable, but when germinated on cbr1-2 or wild-type stigmas, most of the resulting pollen tubes did not extend into the transmitting tract, resulting in a very low frequency of fertilization. These results indicate that cytochrome b5 reductase is not essential during vegetative growth but is required for correct pollen function and seed maturation. PMID:23995085

  14. Cytochrome b5 reductase and the control of lipid metabolism and healthspan.

    PubMed

    Martin-Montalvo, Alejandro; Sun, Yaning; Diaz-Ruiz, Alberto; Ali, Ahmed; Gutierrez, Vincent; Palacios, Hector H; Curtis, Jessica; Siendones, Emilio; Ariza, Julia; Abulwerdi, Gelareh A; Sun, Xiaoping; Wang, Annie X; Pearson, Kevin J; Fishbein, Kenneth W; Spencer, Richard G; Wang, Miao; Han, Xianlin; Scheibye-Knudsen, Morten; Baur, Joe A; Shertzer, Howard G; Navas, Placido; Villalba, Jose Manuel; Zou, Sige; Bernier, Michel; de Cabo, Rafael

    2016-01-01

    Cytochrome b5 reductases (CYB5R) are required for the elongation and desaturation of fatty acids, cholesterol synthesis and mono-oxygenation of cytochrome P450 enzymes, all of which are associated with protection against metabolic disorders. However, the physiological role of CYB5R in the context of metabolism, healthspan and aging remains ill-defined. We generated CYB5R-overexpressing flies (CYB5R-OE) and created a transgenic mouse line overexpressing CYB5R3 (CYB5R3-Tg) in the C57BL/6J background to investigate the function of this class of enzymes as regulators of metabolism and age-associated pathologies. Gender- and/or stage-specific induction of CYB5R, and pharmacological activation of CYB5R with tetrahydroindenoindole extended fly lifespan. Increased expression of CYB5R3 was associated with significant improvements in several metabolic parameters that resulted in modest lifespan extension in mice. Diethylnitrosamine-induced liver carcinogenesis was reduced in CYB5R3-Tg mice. Accumulation of high levels of long-chain polyunsaturated fatty acids, improvement in mitochondrial function, decrease in oxidative damage and inhibition of chronic pro-inflammatory pathways occurred in the transgenic animals. These results indicate that CYB5R represents a new target in the study of genes that regulate lipid metabolism and healthspan.

  15. Cytochrome b5 reductase and the control of lipid metabolism and healthspan

    PubMed Central

    Martin-Montalvo, Alejandro; Sun, Yaning; Diaz-Ruiz, Alberto; Ali, Ahmed; Gutierrez, Vincent; Palacios, Hector H; Curtis, Jessica; Siendones, Emilio; Ariza, Julia; Abulwerdi, Gelareh A; Sun, Xiaoping; Wang, Annie X; Pearson, Kevin J; Fishbein, Kenneth W; Spencer, Richard G; Wang, Miao; Han, Xianlin; Scheibye-Knudsen, Morten; Baur, Joe A; Shertzer, Howard G; Navas, Placido; Villalba, Jose Manuel; Zou, Sige; Bernier, Michel; de Cabo, Rafael

    2016-01-01

    Cytochrome b5 reductases (CYB5R) are required for the elongation and desaturation of fatty acids, cholesterol synthesis and mono-oxygenation of cytochrome P450 enzymes, all of which are associated with protection against metabolic disorders. However, the physiological role of CYB5R in the context of metabolism, healthspan and aging remains ill-defined. We generated CYB5R-overexpressing flies (CYB5R-OE) and created a transgenic mouse line overexpressing CYB5R3 (CYB5R3-Tg) in the C57BL/6J background to investigate the function of this class of enzymes as regulators of metabolism and age-associated pathologies. Gender- and/or stage-specific induction of CYB5R, and pharmacological activation of CYB5R with tetrahydroindenoindole extended fly lifespan. Increased expression of CYB5R3 was associated with significant improvements in several metabolic parameters that resulted in modest lifespan extension in mice. Diethylnitrosamine-induced liver carcinogenesis was reduced in CYB5R3-Tg mice. Accumulation of high levels of long-chain polyunsaturated fatty acids, improvement in mitochondrial function, decrease in oxidative damage and inhibition of chronic pro-inflammatory pathways occurred in the transgenic animals. These results indicate that CYB5R represents a new target in the study of genes that regulate lipid metabolism and healthspan. PMID:28721264

  16. NADH-cytochrome b5 reductase in a Turkish family with recessive congenital methaemoglobinaemia type I.

    PubMed

    Percy, M J; Aslan, D

    2008-10-01

    The development of cyanosis at birth, the so-called blue baby syndrome, alerts paediatricians to the presence of congenital heart disease. In rare cases where the arterial blood gas analysis is normal the cyanosis is a consequence of methaemoglobinaemia. There are three distinct origins of methaemoglobinaemia; the presence of a haemoglobin variant, environmental toxicity and deficiency of cytochrome b5 reductase (cb(5)r). Two children born to two sets of first-degree related parents were cyanotic from birth. Differential diagnosis eliminated cardiac and pulmonary abnormalities. Measurement of methaemoglobin levels confirmed recessive congenital methaemoglobinaemia (RCM) and treatment with ascorbic acid was commenced. In the absence of neurological defects, type I disease was diagnosed. Sequence analysis of CYB5R3 revealed two different missense mutations (one which is novel, Ile85Ser) in the two families. Neither of the mutations was located in the FAD or the NADH binding sites of cb(5)r, thus supporting a diagnosis of type I disease.

  17. Evaluation of bioreductive activation of anticancer drugs idarubicin and mitomycin C by NADH-cytochrome b5 reductase and cytochrome P450 2B4.

    PubMed

    Celik, Haydar; Arinç, Emel

    2013-03-01

    This study attempted to investigate the ability of microsomal NADH-cytochrome b5 reductase and cytochrome P450 2B4 to reductively activate idarubicin and mitomycin C. In vitro plasmid DNA damage experiments and assays using purified hepatic enzymes were employed to examine their respective roles in the metabolic activation of anticancer drugs. Mitomycin C was found to be not a good substrate for microsomal b5 reductase unlike P450 reductase. It produced low amounts of strand breaks in DNA when incubated with b5 reductase and its one-electron reduction by purified enzyme was found as negligible. Our findings revealed that P450 reductase-mediated metabolism of idarubicin resulted in a large increase in single-strand DNA breaks, whereas, b5 reductase neither catalyzed the reduction of idarubicin nor mediated the formation of DNA damage in the presence of idarubicin. The reconstitution studies, on the other hand, have identified rabbit liver CYP2B4 isozyme as being a potential candidate enzyme for reductive bioactivation of idarubicin and mitomycin C. Thus, the present novel findings strongly suggest that while b5 reductase could not play a key role in the cytotoxic and/or antitumor effects of idarubicin and mitomycin C, CYP2B4 could potentiate their activity in combination with P450 reductase.

  18. Evaluation of data in terms of two-dimensional random walk model: interaction between NADH-cytochrome b5 reductase and cytochrome b5.

    PubMed

    Tonegawa, Yoshihiro; Umeda, Noriaki; Hayakawa, Tohru; Ishibashi, Teruo

    2005-10-01

    Normally, bimolecular reactions are analyzed in terms of the Smoluchowski theory. However, when one attempts to generalize this analysis to cases where diffusion proceeds in two other than in three dimensions, one soon encounters severe conceptual difficulties. Although kinetic studies of membrane enzymes are generally difficult because the usual kinetic formalism refers to nonaggregated homogenous solutions, a major goal of our research is to define the molecular mechanism(s) by which alterations in membrane-bound substrate contents affect the enzyme activity in the same membrane. For that purpose, a simplified random-walk model was adopted in the present work. The enzyme reaction in the two-dimensional membrane could be calculated theoretically by applying the classical analysis of heat equation. As a result, the theoretical rate equation well accounting experimental findings was derived on the model of the liver microsomal NADH-cytochrome b5 reductase reaction. Furthermore, it was found that the modification of the simple rigid-sphere collision theory by including a term called the steric factor was not necessary in this derived equation.

  19. Cytochrome b5 reductase 2 suppresses tumor formation in nasopharyngeal carcinoma by attenuating angiogenesis.

    PubMed

    Ming, Huixin; Lan, Ying; He, Feng; Xiao, Xue; Zhou, Xiaoying; Zhang, Zhe; Li, Ping; Huang, Guangwu

    2015-08-15

    Cytochrome b5 reductase 2 (CYB5R2) is a potential tumor suppressor that inhibits cell proliferation and motility in nasopharyngeal carcinoma (NPC). Inactivation of CYB5R2 is associated with lymph node metastasis in NPC. This study aimed to explore the mechanisms contributing to the anti-neoplastic effects of CYB5R2. Polymerase chain reaction (PCR) assays were used to analyze the transcription of 84 genes known to be involved in representative cancer pathways in the NPC cell line HONE1. NPC cell lines CNE2 and HONE1 were transiently transfected with CYB5R2, and data was validated by real-time PCR. A chick chorioallantoic membrane (CAM) embryo model was implanted with CYB5R2-expressing CNE2 and HONE1 cells to evaluate the effect of CYB5R2 on angiogenesis. An immunohistochemical assay of the CAM model was used to analyze the protein expression of vascular endothelial growth factor (VEGF). In CYB5R2-transfected NPC cells, PCR assays revealed up-regulated mRNA levels of Fas cell surface death receptor (FAS), FBJ murine osteosarcoma viral oncogene homolog (FOS), phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), integrin beta 3 (ITGB3), metastasis suppressor 1 (MTSS1), interferon beta 1 (IFNB1), and cyclin-dependent kinase inhibitor 2A (CDKN2A) and down-regulated levels of integrin beta 5 (ITGB5), insulin-like growth factor 1 (IGF1), TEK tyrosine kinase (TEK), transforming growth factor beta receptor 1 (TGFBR1), and VEGF. The angiogenesis in the CAM model implanted with CYB5R2-transfected NPC cells was inhibited. Down-regulation of VEGF by CYB5R2 in NPC cells was confirmed by immunohistochemical staining in the CAM model. CYB5R2 up-regulates the expression of genes that negatively modulate angiogenesis in NPC cells and down-regulates the expression of VEGF to reduce angiogenesis, thereby suppressing tumor formation.

  20. Cloning and characterization of a maize cytochrome-b5 reductase with Fe3+-chelate reduction capability.

    PubMed

    Bagnaresi, P; Thoiron, S; Mansion, M; Rossignol, M; Pupillo, P; Briat, J F

    1999-03-01

    We previously purified an NADH-dependent Fe3+-chelate reductase (NFR) from maize roots with biochemical features of a cytochrome-b5 reductase (b5R) [Sparla, Bagnaresi, Scagliarini and Trost (1997) FEBS Lett. 414, 571-575]. We have now cloned a maize root cDNA that, on the basis of sequence information, calculated parameters and functional assay, codes for NFR. Maize NFR has 66% and 65% similarity to mammal and yeast b5R respectively. It has a deduced molecular mass of 31.17 kDa and a pI of 8.53. An uncharged region is observed at its N-terminus but no myristoylation consensus site is present. Taken together, these results, coupled with previous biochemical evidence, prove that NFR belongs to the b5R class and document b5R from a plant at the molecular level for the first time. We have also identified a putative Arabidopsis thaliana NFR gene. Its organization (nine exons) closely resembles mammalian b5Rs. Several NFR isoforms are expected to exist in maize. They are probably not produced by alternative translational mechanisms as occur in mammals, because of specific constraints observed in the maize NFR cDNA sequence. In contrast with yeast and mammals, tissue-specific and various subcellular localizations of maize b5R isoforms could result from differential expression of the various members of a multigene family. The first molecular characterization of a plant b5R indicates an overall remarkable evolutionary conservation for these versatile reductase systems. In addition, the well-characterized Fe3+-chelate reduction capabilities of NFR, in addition to known Fe3+-haemoglobin reduction roles for mammal b5R isoforms, suggest further and more generalized roles for the b5R class in endocellular iron reduction.

  1. NADH:Cytochrome b5 Reductase and Cytochrome b5 Can Act as Sole Electron Donors to Human Cytochrome P450 1A1-Mediated Oxidation and DNA Adduct Formation by Benzo[a]pyrene

    PubMed Central

    2016-01-01

    Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after activation by cytochrome P450 (P450). Here, we investigated whether NADH:cytochrome b5 reductase (CBR) in the presence of cytochrome b5 can act as sole electron donor to human P450 1A1 during BaP oxidation and replace the canonical NADPH:cytochrome P450 reductase (POR) system. We also studied the efficiencies of the coenzymes of these reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of CBR, to mediate BaP oxidation. Two systems containing human P450 1A1 were utilized: human recombinant P450 1A1 expressed with POR, CBR, epoxide hydrolase, and cytochrome b5 in Supersomes and human recombinant P450 1A1 reconstituted with POR and/or with CBR and cytochrome b5 in liposomes. BaP-9,10-dihydrodiol, BaP-7,8-dihydrodiol, BaP-1,6-dione, BaP-3,6-dione, BaP-9-ol, BaP-3-ol, a metabolite of unknown structure, and two BaP-DNA adducts were generated by the P450 1A1-Supersomes system, both in the presence of NADPH and in the presence of NADH. The major BaP-DNA adduct detected by 32P-postlabeling was characterized as 10-(deoxyguanosin-N2-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP (assigned adduct 1), while the minor adduct is probably a guanine adduct derived from 9-hydroxy-BaP-4,5-epoxide (assigned adduct 2). BaP-3-ol as the major metabolite, BaP-9-ol, BaP-1,6-dione, BaP-3,6-dione, an unknown metabolite, and adduct 2 were observed in the system using P450 1A1 reconstituted with POR plus NADPH. When P450 1A1 was reconstituted with CBR and cytochrome b5 plus NADH, BaP-3-ol was the predominant metabolite too, and an adduct 2 was also generated. Our results demonstrate that the NADH/cytochrome b5/CBR system can act as the sole electron donor both for the first and second reduction of P450 1A1 during the oxidation of BaP in vitro. They suggest that NADH-dependent CBR can replace NADPH-dependent POR in the P450 1A1-catalyzed metabolism of BaP. PMID:27404282

  2. NADH:Cytochrome b5 Reductase and Cytochrome b5 Can Act as Sole Electron Donors to Human Cytochrome P450 1A1-Mediated Oxidation and DNA Adduct Formation by Benzo[a]pyrene.

    PubMed

    Stiborová, Marie; Indra, Radek; Moserová, Michaela; Frei, Eva; Schmeiser, Heinz H; Kopka, Klaus; Philips, David H; Arlt, Volker M

    2016-08-15

    Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after activation by cytochrome P450 (P450). Here, we investigated whether NADH:cytochrome b5 reductase (CBR) in the presence of cytochrome b5 can act as sole electron donor to human P450 1A1 during BaP oxidation and replace the canonical NADPH:cytochrome P450 reductase (POR) system. We also studied the efficiencies of the coenzymes of these reductases, NADPH as a coenzyme of POR, and NADH as a coenzyme of CBR, to mediate BaP oxidation. Two systems containing human P450 1A1 were utilized: human recombinant P450 1A1 expressed with POR, CBR, epoxide hydrolase, and cytochrome b5 in Supersomes and human recombinant P450 1A1 reconstituted with POR and/or with CBR and cytochrome b5 in liposomes. BaP-9,10-dihydrodiol, BaP-7,8-dihydrodiol, BaP-1,6-dione, BaP-3,6-dione, BaP-9-ol, BaP-3-ol, a metabolite of unknown structure, and two BaP-DNA adducts were generated by the P450 1A1-Supersomes system, both in the presence of NADPH and in the presence of NADH. The major BaP-DNA adduct detected by (32)P-postlabeling was characterized as 10-(deoxyguanosin-N(2)-yl)-7,8,9-trihydroxy-7,8,9,10-tetrahydro-BaP (assigned adduct 1), while the minor adduct is probably a guanine adduct derived from 9-hydroxy-BaP-4,5-epoxide (assigned adduct 2). BaP-3-ol as the major metabolite, BaP-9-ol, BaP-1,6-dione, BaP-3,6-dione, an unknown metabolite, and adduct 2 were observed in the system using P450 1A1 reconstituted with POR plus NADPH. When P450 1A1 was reconstituted with CBR and cytochrome b5 plus NADH, BaP-3-ol was the predominant metabolite too, and an adduct 2 was also generated. Our results demonstrate that the NADH/cytochrome b5/CBR system can act as the sole electron donor both for the first and second reduction of P450 1A1 during the oxidation of BaP in vitro. They suggest that NADH-dependent CBR can replace NADPH-dependent POR in the P450 1A1-catalyzed metabolism of BaP.

  3. Inhibitory effects of dietary flavonoids on purified hepatic NADH-cytochrome b5 reductase: structure-activity relationships.

    PubMed

    Çelik, Haydar; Koşar, Müberra

    2012-05-30

    The structure-activity relationships of flavonoids with regard to their inhibitory effects on NADH-cytochrome b5 reductase (E.C. 1.6.2.2), a clinically and toxicologically important enzyme, are not known. In the present study, the inhibitory effects of fourteen selected flavonoids of variable structure on the activity of purified bovine liver cytochrome b5 reductase, which shares a high degree of homology with the human counterpart, were investigated and the relationship between structure and inhibition was examined. Of all the compounds tested, the flavone luteolin was the most potent in inhibiting b5 reductase with an IC50 value of 0.11 μM, whereas naringenin, naringin and chrysin were inactive within the concentration range tested. Most of the remaining flavonoids (morin, quercetin, quercitrin, myricetin, luteolin-7-O-glucoside, (-)-epicatechin, and (+)-catechin) produced a considerable inhibition of enzyme activity with IC50 values ranging from 0.81 to 4.5 μM except apigenin (36 μM), rutin (57 μM) and (+)-taxifolin (IC50 not determined). The magnitude of inhibition was found to be closely related to the chemical structures of flavonoids. Analysis of structure-activity data revealed that flavonoids containing two hydroxyl groups in ring B and a carbonyl group at C-4 in combination with a double bond between C-2 and C-3 produced a much stronger inhibition, whereas substitution of a hydroxyl group at C-3 was associated with a less inhibitory effect. The physiologically relevant IC50 values for most of the flavonoids tested regarding b5 reductase inhibition indicate a potential for significant flavonoid-drug and/or flavonoid-xenobiotic interactions which may have important therapeutic and toxicological outcomes for certain drugs and/or xenobiotics. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Molecular Characterization and Functional Analysis of Cytochrome b5 Reductase (CBR) Encoding Genes from the Carotenogenic Yeast Xanthophyllomyces dendrorhous

    PubMed Central

    Gutiérrez, María Soledad; Rojas, María Cecilia; Sepúlveda, Dionisia; Baeza, Marcelo; Cifuentes, Víctor; Alcaíno, Jennifer

    2015-01-01

    The eukaryotic microsomal cytochrome P450 systems consist of a cytochrome P450 enzyme (P450) and a cytochrome P450 redox partner, which generally is a cytochrome P450 reductase (CPR) that supplies electrons from NADPH. However, alternative electron donors may exist such as cytochrome b5 reductase and cytochrome b5 (CBR and CYB5, respectively) via, which is NADH-dependent and are also anchored to the endoplasmic reticulum. In the carotenogenic yeast Xanthophyllomyces dendrorhous, three P450-encoding genes have been described: crtS is involved in carotenogenesis and the CYP51 and CYP61 genes are both implicated in ergosterol biosynthesis. This yeast has a single CPR (encoded by the crtR gene), and a crtR- mutant does not produce astaxanthin. Considering that this mutant is viable, the existence of alternative cytochrome P450 electron donors like CBR and CYB5 could operate in this yeast. The aim of this work was to characterize the X. dendrorhous CBR encoding gene and to study its involvement in P450 reactions in ergosterol and carotenoid biosynthesis. Two CBRs genes were identified (CBR.1 and CBR.2), and deletion mutants were constructed. The two mutants and the wild-type strain showed similar sterol production, with ergosterol being the main sterol produced. The crtR- mutant strain produced a lower proportion of ergosterol than did the parental strain. These results indicate that even though one of the two CBR genes could be involved in ergosterol biosynthesis, crtR complements their absence in the cbr- mutant strains, at least for ergosterol production. The higher NADH-dependent cytochrome c reductase activity together with the higher transcript levels of CBR.1 and CYB5 in the crtR- mutant as well as the lower NADH-dependent activity in CBS-cbr.1- strongly suggest that CBR.1-CYB5 via participates as an alternative electron donor pathway for P450 enzymes involved in ergosterol biosynthesis in X. dendrorhous. PMID:26466337

  5. Molecular Characterization and Functional Analysis of Cytochrome b5 Reductase (CBR) Encoding Genes from the Carotenogenic Yeast Xanthophyllomyces dendrorhous.

    PubMed

    Gutiérrez, María Soledad; Rojas, María Cecilia; Sepúlveda, Dionisia; Baeza, Marcelo; Cifuentes, Víctor; Alcaíno, Jennifer

    2015-01-01

    The eukaryotic microsomal cytochrome P450 systems consist of a cytochrome P450 enzyme (P450) and a cytochrome P450 redox partner, which generally is a cytochrome P450 reductase (CPR) that supplies electrons from NADPH. However, alternative electron donors may exist such as cytochrome b5 reductase and cytochrome b5 (CBR and CYB5, respectively) via, which is NADH-dependent and are also anchored to the endoplasmic reticulum. In the carotenogenic yeast Xanthophyllomyces dendrorhous, three P450-encoding genes have been described: crtS is involved in carotenogenesis and the CYP51 and CYP61 genes are both implicated in ergosterol biosynthesis. This yeast has a single CPR (encoded by the crtR gene), and a crtR- mutant does not produce astaxanthin. Considering that this mutant is viable, the existence of alternative cytochrome P450 electron donors like CBR and CYB5 could operate in this yeast. The aim of this work was to characterize the X. dendrorhous CBR encoding gene and to study its involvement in P450 reactions in ergosterol and carotenoid biosynthesis. Two CBRs genes were identified (CBR.1 and CBR.2), and deletion mutants were constructed. The two mutants and the wild-type strain showed similar sterol production, with ergosterol being the main sterol produced. The crtR- mutant strain produced a lower proportion of ergosterol than did the parental strain. These results indicate that even though one of the two CBR genes could be involved in ergosterol biosynthesis, crtR complements their absence in the cbr- mutant strains, at least for ergosterol production. The higher NADH-dependent cytochrome c reductase activity together with the higher transcript levels of CBR.1 and CYB5 in the crtR- mutant as well as the lower NADH-dependent activity in CBS-cbr.1- strongly suggest that CBR.1-CYB5 via participates as an alternative electron donor pathway for P450 enzymes involved in ergosterol biosynthesis in X. dendrorhous.

  6. Long-term Treatment with Methylene Blue in a Dog with Hereditary Methemoglobinemia Caused by Cytochrome b5 Reductase Deficiency.

    PubMed

    Jaffey, J A; Harmon, M R; Villani, N A; Creighton, E K; Johnson, G S; Giger, U; Dodam, J R

    2017-09-29

    A juvenile male mixed breed dog was presented for lethargy, exercise intolerance, and aggression when touched on the head. Cyanosis, tachycardia, and tachypnea were observed and persisted during oxygen supplementation. Arterial blood gas analysis by co-oximetry identified an increased methemoglobin concentration (27%; normal, <2%) with normal arterial oxygen tension. The methemoglobinemia and associated clinical signs resolved after administration of methylene blue (1 mg/kg) IV, and the dog was discharged. The affected dog's whole-genome sequence contained 2 potentially causal heterozygous CYB5R3 missense mutations suggesting that cytochrome b5 reductase deficiency was responsible for the methemoglobinemia. This hypothesis was confirmed by enzyme analysis that identified cytochrome b5 reductase activity in the affected dog's erythrocytes to only approximately 6% of that in a control sample. Clinical signs recurred 11 days after discharge but normalized and the methemoglobin concentration decreased with methylene blue administration PO (1.5 mg/kg, initially daily and then every other day). Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  7. Adaptation of cytochrome-b5 reductase activity and methaemoglobinaemia in areas with a high nitrate concentration in drinking-water.

    PubMed Central

    Gupta, S. K.; Gupta, R. C.; Seth, A. K.; Gupta, A. B.; Bassin, J. K.; Gupta, A.

    1999-01-01

    An epidemiological investigation was undertaken in India to assess the prevalence of methaemoglobinaemia in areas with high nitrate concentration in drinking-water and the possible association with an adaptation of cytochrome-b5 reductase. Five areas were selected, with average nitrate ion concentrations in drinking-water of 26, 45, 95, 222 and 459 mg/l. These areas were visited and house schedules were prepared in accordance with a statistically designed protocol. A sample of 10% of the total population was selected in each of the areas, matched for age and weight, giving a total of 178 persons in five age groups. For each subject, a detailed history was documented, a medical examination was conducted and blood samples were taken to determine methaemoglobin level and cytochrome-b5 reductase activity. Collected data were subjected to statistical analysis to test for a possible relationship between nitrate concentration, cytochrome-b5 reductase activity and methaemoglobinaemia. High nitrate concentrations caused methaemoglobinaemia in infants and adults. The reserve of cytochrome-b5 reductase activity (i.e. the enzyme activity not currently being used, but which is available when needed; for example, under conditions of increased nitrate ingestion) and its adaptation with increasing water nitrate concentration to reduce methaemoglobin were more pronounced in children and adolescents. PMID:10534899

  8. Adaptation of cytochrome-b5 reductase activity and methaemoglobinaemia in areas with a high nitrate concentration in drinking-water.

    PubMed

    Gupta, S K; Gupta, R C; Seth, A K; Gupta, A B; Bassin, J K; Gupta, A

    1999-01-01

    An epidemiological investigation was undertaken in India to assess the prevalence of methaemoglobinaemia in areas with high nitrate concentration in drinking-water and the possible association with an adaptation of cytochrome-b5 reductase. Five areas were selected, with average nitrate ion concentrations in drinking-water of 26, 45, 95, 222 and 459 mg/l. These areas were visited and house schedules were prepared in accordance with a statistically designed protocol. A sample of 10% of the total population was selected in each of the areas, matched for age and weight, giving a total of 178 persons in five age groups. For each subject, a detailed history was documented, a medical examination was conducted and blood samples were taken to determine methaemoglobin level and cytochrome-b5 reductase activity. Collected data were subjected to statistical analysis to test for a possible relationship between nitrate concentration, cytochrome-b5 reductase activity and methaemoglobinaemia. High nitrate concentrations caused methaemoglobinaemia in infants and adults. The reserve of cytochrome-b5 reductase activity (i.e. the enzyme activity not currently being used, but which is available when needed; for example, under conditions of increased nitrate ingestion) and its adaptation with increasing water nitrate concentration to reduce methaemoglobin were more pronounced in children and adolescents.

  9. Protonation of the Hydroperoxo Intermediate of Cytochrome P450 2B4 Is Slower in the Presence of Cytochrome P450 Reductase Than in the Presence of Cytochrome b5.

    PubMed

    Pearl, Naw May; Wilcoxen, Jarett; Im, Sangchoul; Kunz, Ryan; Darty, Joseph; Britt, R David; Ragsdale, Stephen W; Waskell, Lucy

    2016-11-29

    Microsomal cytochromes P450 (P450) require two electrons and two protons for the oxidation of substrates. Although the two electrons can be provided by cytochrome P450 reductase, the second electron can also be donated by cytochrome b5 (b5). The steady-state activity of P450 2B4 is increased up to 10-fold by b5. To improve our understanding of the molecular basis of the stimulatory effect of b5 and to test the hypothesis that b5 stimulates catalysis by more rapid protonation of the anionic ferric hydroperoxo heme intermediate of P450 (Fe(3+)OOH)(-) and subsequent formation of the active oxidizing species (Fe(+4)═O POR(•+)), we have freeze-quenched the reaction mixture during a single turnover following reduction of oxyferrous P450 2B4 by each of its redox partners, b5 and P450 reductase. The electron paramagnetic resonance spectra of the freeze-quenched reaction mixtures lacked evidence of a hydroperoxo intermediate when b5 was the reductant presumably because hydroperoxo protonation and catalysis occurred within the dead time of the instrument. However, when P450 reductase was the reductant, a hydroperoxo P450 intermediate was observed. The effect of b5 on the enzymatic efficiency in D2O and the kinetic solvent isotope effect under steady-state conditions are both consistent with the ability of b5 to promote rapid protonation of the hydroperoxo species and more efficient catalysis. In summary, by binding to the proximal surface of P450, b5 stimulates the activity of P450 2B4 by enhancing the rate of protonation of the hydroperoxo intermediate and formation of Compound I, the active oxidizing species, which allows less time for side product formation.

  10. The N-reductive system composed of mitochondrial amidoxime reducing component (mARC), cytochrome b5 (CYB5B) and cytochrome b5 reductase (CYB5R) is regulated by fasting and high fat diet in mice.

    PubMed

    Jakobs, Heyka H; Mikula, Michal; Havemeyer, Antje; Strzalkowska, Adriana; Borowa-Chmielak, Monika; Dzwonek, Artur; Gajewska, Marta; Hennig, Ewa E; Ostrowski, Jerzy; Clement, Bernd

    2014-01-01

    The mitochondrial amidoxime reducing component mARC is the fourth mammalian molybdenum enzyme. The protein is capable of reducing N-oxygenated structures, but requires cytochrome b5 and cytochrome b5 reductase for electron transfer to catalyze such reactions. It is well accepted that the enzyme is involved in N-reductive drug metabolism such as the activation of amidoxime prodrugs. However, the endogenous function of the protein is not fully understood. Among other functions, an involvement in lipogenesis is discussed. To study the potential involvement of the protein in energy metabolism, we tested whether the mARC protein and its partners are regulated due to fasting and high fat diet in mice. We used qRT-PCR for expression studies, Western Blot analysis to study protein levels and an N-reductive biotransformation assay to gain activity data. Indeed all proteins of the N-reductive system are regulated by fasting and its activity decreases. To study the potential impact of these changes on prodrug activation in vivo, another mice experiment was conducted. Model compound benzamidoxime was injected to mice that underwent fasting and the resulting metabolite of the N-reductive reaction, benzamidine, was determined. Albeit altered in vitro activity, no changes in the metabolite concentration in vivo were detectable and we can dispel concerns that fasting alters prodrug activation in animal models. With respect to high fat diet, changes in the mARC proteins occur that result in increased N-reductive activity. With this study we provide further evidence that the endogenous function of the mARC protein is linked with lipid metabolism.

  11. A role for N-myristoylation in protein targeting: NADH-cytochrome b5 reductase requires myristic acid for association with outer mitochondrial but not ER membranes

    PubMed Central

    1996-01-01

    N-myristoylation is a cotranslational modification involved in protein- protein interactions as well as in anchoring polypeptides to phospholipid bilayers; however, its role in targeting proteins to specific subcellular compartments has not been clearly defined. The mammalian myristoylated flavoenzyme NADH-cytochrome b5 reductase is integrated into ER and mitochondrial outer membranes via an anchor containing a stretch of 14 uncharged amino acids downstream to the NH2- terminal myristoylate glycine. Since previous studies suggested that the anchoring function could be adequately carried out by the 14 uncharged residues, we investigated a possible role for myristic acid in reductase targeting. The wild type (wt) and a nonmyristoylatable reductase mutant (gly2-->ala) were stably expressed in MDCK cells, and their localization was investigated by immunofluorescence, immuno-EM, and cell fractionation. By all three techniques, the wt protein localized to ER and mitochondria, while the nonmyristoylated mutant was found only on ER membranes. Pulse-chase experiments indicated that this altered steady state distribution was due to the mutant's inability to target to mitochondria, and not to its enhanced instability in that location. Both wt and mutant reductase were resistant to Na2CO3 extraction and partitioned into the detergent phase after treatment of a membrane fraction with Triton X-114, demonstrating that myristic acid is not required for tight anchoring of reductase to membranes. Our results indicate that myristoylated reductase localizes to ER and mitochondria by different mechanisms, and reveal a novel role for myristic acid in protein targeting. PMID:8978818

  12. Molecular basis of recessive congenital methemoglobinemia, types I and II: Exon skipping and three novel missense mutations in the NADH-cytochrome b5 reductase (diaphorase 1) gene.

    PubMed

    Kugler, W; Pekrun, A; Laspe, P; Erdlenbruch, B; Lakomek, M

    2001-04-01

    Hereditary methemoglobinemia due to reduced nicotin amide adenine dinucleotide (NADH)-cytochrome b5 reductase (b5r) deficiency is classified into an erythrocyte type (I) and a generalized type (II). We investigated the b5r gene of three unrelated patients with types I and II and found four novel mutations. The patient with type I was homozygous for a c.535 G-->A exchange in exon 6 (A179T). The patients with type II were found to be homozygous for a c.757 G-->A transition in exon 9 (V253M) and compound heterozygous for two mutations, respectively. One allele presented a c.379 A-->G transition (M127V). The second allele carried a sequence difference at the invariant 3' splice-acceptor dinucleotide of intron 4 (IVS4-2A-->G) resulting in skipping of exon 5. To characterize a possible effect of this mutation on RNA metabolism, poly(A)(+) RNA was analyzed by RT-PCR and sequencing. The results show that RNA is made from the allele harboring the 3'-splice site mutation. Furthermore, western blot analysis revealed a complete absence of immunologically detectable b5r in skin fibroblasts of this patient. The compound heterozygosity for the splice site and the missense mutations apparently caused hereditary methemoglobinemia type II in this patient. Hum Mutat 17:348, 2001. Copyright 2001 Wiley-Liss, Inc.

  13. A single mRNA, transcribed from an alternative, erythroid-specific, promoter, codes for two non-myristylated forms of NADH-cytochrome b5 reductase

    PubMed Central

    1992-01-01

    Two forms of NADH-cytochrome b5 reductase are produced from one gene: a myristylated membrane-bound enzyme, expressed in all tissues, and a soluble, erythrocyte-specific, isoform. The two forms are identical in a large cytoplasmic domain (Mr approximately 30,000) and differ at the NH2-terminus, which, in the membrane form, is responsible for binding to the bilayer, and which contains the myristylation consensus sequence and an additional 14 uncharged amino acids. To investigate how the two differently targeted forms of the reductase are produced, we cloned a reductase transcript from reticulocytes, and studied its relationship to the previously cloned liver cDNA. The reticulocyte transcript differs from the liver transcript in the 5' non-coding portion and at the beginning of the coding portion, where the seven codons specifying the myristoylation consensus are replaced by a reticulocyte-specific sequence which codes for 13 non-charged amino acids. Analysis of genomic reductase clones indicated that the ubiquitous transcript is generated from an upstream "housekeeping" type promoter, while the reticulocyte transcript originates from a downstream, erythroid- specific, promoter. In vitro translation of the reticulocyte-specific mRNA generated two products: a minor one originating from the first AUG, and a major one starting from a downstream AUG, as indicated by mutational analysis. Both the AUGs used as initiation codons were in an unfavorable sequence context. The major, lower relative molecular mass product behaved as a soluble protein, while the NH2-terminally extended minor product interacted with microsomes in vitro. The generation of soluble reductase from a downstream AUG was confirmed in vivo, in Xenopus oocytes. Thus, differently localized products, with respect both to tissues and to subcellular compartments, are generated from the same gene by a combination of transcriptional and translational mechanisms. PMID:1577871

  14. Identification of three new mutations in the NADH-cytochrome b5 reductase gene responsible for recessive congenital methemoglobinemia type II

    SciTech Connect

    Mota-Vieira, L.; Kaplan, J.C.; Kahn, A.; Leroux, A.

    1994-09-01

    Recessive congenital methemoglobinemia (RCM; McKusick N{degrees}25800) due to NADH-cytochrome b5 reductase (cytb5r) deficiency leads to two different types of diseases: in type I form, cyanosis is the only symptom and the enzyme is only defective in red blood cells; in type II form, cyanosis is associated with severe mental retardation and neurological impairment and the enzyme defect is systemic. We have identified three new molecular defects in two unrelated patients with type II RCM. A homozygous C{r_arrow}T transition in codon 218 (Arg) was detected in the cDNA of one patient, resulting in a premature stop codon (TGA) in exon 8. Restriction enzyme analysis of genomic DNA confirmed the homozygosity of the propositus and heterozygosity for an identical defect in both parents. The second patient was found to be a compound heterozygote, carrying two different mutant alleles in the cyb5r gene. One allele presented a missense mutation (T{r_arrow}C) with substitution of Cys-203 (TGC) by Arg (CGC) in exon 7. The second allele showed a 3 bp deletion of nucleotides 815-817 of the cDNA. The CTG ATG sequence at position 814-819 in exon 9 coding for Leu-271 and Met-272 was replaced by the CTG triplet, with conservation of the Leu-271 and loss of the Met-272. To our knowledge, these are the first examples of a homozygous nonsense mutation and of a compound heterozygous mutation detected in the cytb5r gene. This finding supports the diversity of genetic defects in the cytb5r gene leading to the severe form of the disease.

  15. Analysis of cytochrome b5 reductase-mediated metabolism in the phytopathogenic fungus Zymoseptoria tritici reveals novel functionalities implicated in virulence

    PubMed Central

    Derbyshire, Mark C.; Michaelson, Louise; Parker, Josie; Kelly, Steven; Thacker, Urvashi; Powers, Stephen J.; Bailey, Andy; Hammond-Kosack, Kim; Courbot, Mikael; Rudd, Jason

    2015-01-01

    Septoria tritici blotch (STB) caused by the Ascomycete fungus Zymoseptoria tritici is one of the most economically damaging diseases of wheat worldwide. Z. tritici is currently a major target for agricultural fungicides, especially in temperate regions where it is most prevalent. Many fungicides target electron transfer enzymes because these are often important for cell function. Therefore characterisation of genes encoding such enzymes may be important for the development of novel disease intervention strategies. Microsomal cytochrome b5 reductases (CBRs) are an important family of electron transfer proteins which in eukaryotes are involved in the biosynthesis of fatty acids and complex lipids including sphingolipids and sterols. Unlike the model yeast Saccharomyces cerevisiae which possesses only one microsomal CBR, the fully sequenced genome of Z. tritici bears three possible microsomal CBRs. RNA sequencing analysis revealed that ZtCBR1 is the most highly expressed of these genes under all in vitro and in planta conditions tested, therefore ΔZtCBR1 mutant strains were generated through targeted gene disruption. These strains exhibited delayed disease symptoms on wheat leaves and severely limited asexual sporulation. ΔZtCBR1 strains also exhibited aberrant spore morphology and hyphal growth in vitro. These defects coincided with alterations in fatty acid, sphingolipid and sterol biosynthesis observed through GC–MS and HPLC analyses. Data is presented which suggests that Z. tritici may use ZtCBR1 as an additional electron donor for key steps in ergosterol biosynthesis, one of which is targeted by azole fungicides. Our study reports the first functional characterisation of CBR gene family members in a plant pathogenic filamentous fungus. This also represents the first direct observation of CBR functional ablation impacting upon fungal sterol biosynthesis. PMID:26074495

  16. Proteolytic processing of CmPP36, a protein from the cytochrome b(5) reductase family, is required for entry into the phloem translocation pathway.

    PubMed

    Xoconostle-Cázares, B; Ruiz-Medrano, R; Lucas, W J

    2000-12-01

    Cucurbita maxima (pumpkin) phloem sap contains a 31 kDa protein that cross-reacts with antibodies directed against the red clover necrotic mosaic virus movement protein (RCNMV MP). Microsequence data from phloem-purified 31 kDa protein were used to isolate a complementary DNA: the open reading frame encodes a 36 kDa protein belonging to the cytochrome b(5) reductase (Cb5R) family; the gene was termed CmPP36. Western analyses established that CmPP36, RCNMV MP and CmPP16 (Xoconostle-Cázares et al., 1999, Science 283, 94-98) are immunologically related, probably due to a common epitope, represented by the NADH(+)-binding domain of CmPP36. An N-terminal 5 kDa membrane-targeting domain is cleaved to produce the 31 kDa Delta N-CmPP36 detected in the phloem sap. Microinjection experiments established that Delta N-CmPP36, but not CmPP36, is able to interact with plasmodesmata to mediate its cell-to-cell transport. Thus, intercellular movement of CmPP36 requires proteolytic processing in the companion cell to produce a soluble, movement-competent, protein. In contrast to RCNMV and CmPP16, Delta N-CmPP36 interacts with but does not mediate the trafficking of RNA. Northern and in situ RT-PCR studies established that CmPP36 mRNA is present in all plant organs, being highly abundant within vascular tissues. In roots of hydroponically grown pumpkin plants, CmPP36 mRNA levels respond to changes in available iron in the culture solution. Finally, enzymatic assays established that both CmPP36 and Delta N-CmPP36 could reduce Fe(3+)-citrate and Fe(3+)-EDTA in the presence of NADH(+). These findings are discussed in terms of the possible roles played by CmPP36 in phloem function.

  17. Cytochrome b5 from Giardia lamblia.

    PubMed

    Alam, Samiah; Yee, Janet; Couture, Manon; Takayama, Shin-ichi J; Tseng, Wan-Hsin; Mauk, A Grant; Rafferty, Steven

    2012-12-01

    The protozoan intestinal parasite Giardia lamblia lacks mitochondria and the ability to make haem yet encodes several putative haem-binding proteins, including three of the cytochrome b(5) family. We cloned one of these (gCYTb5-I) and expressed it within Escherichia coli as a soluble holoprotein. UV-visible and resonance Raman spectra of gCYTb5-I resemble those of microsomal cytochrome b(5), and homology modelling supports a structure in which a pair of invariant histidine residues act as axial ligands to the haem iron. The reduction potential of gCYTb5-I is -165 mV vs. SHE and is relatively low compared to most values (-110 to +80 mV) for this class of protein. The amino- and carboxy-terminal sequences that flank the central haem-binding core of the Giardia cytochromes are highly charged and differ from those of other family members. A core gCYTb5-I variant lacking these flanking sequences was also able to bind haem. The presence of one actual and two probable functional cytochromes b(5) in Giardia is evidence of uncharacterized cytochrome-mediated metabolic processes within this medically important protist.

  18. Discovery and characterization of a cytochrome b5 variant in humans with impaired hydroxylamine reduction capacity.

    PubMed

    Kurian, Joseph R; Longlais, Brett J; Trepanier, Lauren A

    2007-08-01

    We have shown that cytochrome b5 (cyt b5), along with its reductase, NADH cytochrome b5 reductase (b5R), is capable of direct xenobiotic biotransformation. We hypothesized that functionally significant genetic variability in cyt b5 could be found in healthy individuals. Cyt b5 cDNAs were prepared from peripheral blood mononuclear cells from 63 individuals. One individual was heterozygous for a sequence variant in cyt b5 (A178G), with a predicted amino acid substitution of T60A. This variant, when expressed in Escherichia. coli, maintained a similar Vmax for the hydroxylamines of sulfamethoxazole, 4-aminobiphenyl, and 2-amino-l-methyl-6-phenylimidazo[4,5-b] pyridine (PhIP), compared with wild type cyt b5, with a modestly increased Km (2 to 3.5-fold) for each substrate. When expressed in a mammalian system (HeLa cells), however, T60A was associated with a 70% reduction in cyt b5 protein expression compared with wild type. mRNA expression for both isoforms were comparable in HeLa cells, and translation of these mRNAs in a rabbit reticulocyte lysate system with inhibited proteasomal machinery were also similar. Incubation of these translated enzymes with uninhibited rabbit reticulocyte lysate, however, indicated greater susceptibility of T60A to proteasomal degradation. These data indicate that a naturally occurring variant in cyt b5, T60A, leads to modestly altered affinity for hydroxylamine substrates and dramatically reduced cyt b5 expression. Work is underway to determine the prevalence of this and other variants in cyt b5 or b5R in a larger population, and to determine the association of such variants with differences in hydroxylamine reduction in vivo.

  19. Bilayer structure and physical dynamics of the cytochrome b5 dimyristoylphosphatidylcholine interaction.

    PubMed Central

    Chester, D W; Skita, V; Young, H S; Mavromoustakos, T; Strittmatter, P

    1992-01-01

    Cytochrome b5 is a microsomal membrane protein which provides reducing potential to delta 5-, delta 6-, and delta 9-fatty acid desaturases through its interaction with cytochrome b5 reductase. Low angle x-ray diffraction has been used to determine the structure of an asymmetrically reconstituted cytochrome b5:DMPC model membrane system. Differential scanning calorimetry and fluorescence anisotropy studies were performed to examine the bilayer physical dynamics of this reconstituted system. These latter studies allow us to constrain structural models to those which are consistent with physical dynamics data. Additionally, because the nonpolar peptide secondary structure remains unclear, we tested the sensitivity of our model to different nonpolar peptide domain configurations. In this modeling approach, the nonpolar peptide moiety was arranged in the membrane to meet such chemically determined criteria as protease susceptibility of carboxyl- and amino-termini, tyrosine availability for pH titration and tryptophan 109 location, et cetera. In these studies, we have obtained a reconstituted cytochrome b5:DMPC bilayer structure at approximately 6.3 A resolution and conclude that the nonpolar peptide does not penetrate beyond the bilayer midplane. Structural correlations with calorimetry, fluorescence anisotropy and acyl chain packing data suggest that asymmetric cytochrome b5 incorporation into the bilayer increases acyl chain order. Additionally, we suggest that the heme peptide:bilayer interaction facilitates a discreet heme peptide orientation which would be dependent upon phospholipid headgroup composition. Images FIGURE 1 FIGURE 2 FIGURE 7 PMID:1600082

  20. Comparison of cytochromes b5 from insects and vertebrates.

    PubMed

    Wang, Lijun; Cowley, Aaron B; Terzyan, Simon; Zhang, Xuejun; Benson, David R

    2007-05-01

    We report a 1.55 A X-ray crystal structure of the heme-binding domain of cytochrome b(5) from Musca domestica (house fly; HF b(5)), and compare it with previously published structures of the heme-binding domains of bovine microsomal cytochrome b(5) (bMc b(5)) and rat outer mitochondrial membrane cytochrome b(5) (rOM b(5)). The structural comparison was done in the context of amino acid sequences of all known homologues of the proteins under study. We show that insect b(5)s contain an extended hydrophobic patch at the base of the heme binding pocket, similar to the one previously shown to stabilize mammalian OM b(5)s relative to their Mc counterparts. The hydrophobic patch in insects includes a residue with a bulky hydrophobic side chain at position 71 (Met). Replacing Met71 in HF b(5) with Ser, the corresponding residue in all known mammalian Mc b(5)s, is found to substantially destabilize the holoprotein. The destabilization is a consequence of two related factors: (1) a large decrease in apoprotein stability and (2) extension of conformational disruption in the apoprotein beyond the empty heme binding pocket (core 1) and into the heme-independent folding core (core 2). Analogous changes have previously been shown to accompany replacement of Leu71 in rOM b(5) with Ser. That the stabilizing role of Met71 in HF b(5) is manifested primarily in the apo state is highlighted by the fact that its crystallographic Calpha B factor is modestly larger than that of Ser71 in bMc b(5), indicating that it slightly destabilizes local polypeptide conformation when heme is in its binding pocket. Finally, we show that the final unit of secondary structure in the cytochrome b(5) heme-binding domain, a 3(10) helix known as alpha6, differs substantially in length and packing interactions not only for different protein isoforms but also for given isoforms from different species.

  1. Electron transfer properties and catalytic competence of cytochrome b5 in the fusion protein Hmwb5-EGFP in reactions catalyzed by cytochrome P450 3A4.

    PubMed

    Yantsevich, A V; Gilep, A A; Usanov, S A

    2009-08-01

    In the present paper we describe studies on molecular mechanisms of protein-protein interactions between cytochrome P450 3A4 (CYP3A4) and cytochrome b(5), the latter being incorporated into the artificial recombinant protein Hmwb(5)-EGFP containing full-length cytochrome b(5) (functional module) and a mutant form of the green fluorescent protein EGFP (signal module) fused into a single polypeptide chain. It is shown that cytochrome b(5) within the fusion protein Hmwb(5)-EGFP can be reduced by NADPH-cytochrome P450 reductase in the presence of NADPH, the rate of reduction being dependent on solution ionic strength, indicating that the signal module does not prevent the interaction of the flavo- and hemeproteins. Interaction of cytochrome P450 3A4 and Hmwb(5)-EGFP was estimated based on spin equilibrium shift of cytochrome P450 3A4 to high-spin state in the presence of Hmwb(5)-EGFP, as well as based on steady-state fluorescence anisotropy of the EGFP component of the fusion protein in the presence of CYP3A4. The engineering of chimeric protein Hmwb(5)-EGFP gives an independent method to determine dissociation constant for the complex of cytochrome P450 and cytochrome b(5) that is less sensitive to environmental factors compared to spectrophotometric titration used before. Reconstitution of catalytic activity of cytochrome P450 3A4 in the reaction of testosterone 6beta-hydroxylation in the presence of Hmwb(5)-EGFP indicates that cytochrome b(5) in the fusion protein is able to stimulate the hydroxylation reaction. Using other fusion proteins containing either cytochrome b(5) or its hydrophilic domain to reconstitute catalytic activity of cytochrome P450 3A4 showed that the hydrophobic domain of cytochrome b(5) participates not only in hemeprotein interaction, but also in electron transfer from cytochrome b(5) to cytochrome P450.

  2. Low reduction potential cytochrome b5 isotypes of Giardia intestinalis.

    PubMed

    Pazdzior, Robert; Yang, Zhen Alice; Mesbahuddin, Mirfath Sultana; Yee, Janet; van der Est, Art; Rafferty, Steven

    2015-10-01

    Despite lacking mitochondria and a known pathway for heme biosynthesis the micro-aerotolerant anaerobic protozoan parasite Giardia intestinalis encodes four members of the cytochrome b5 family of electron transfer proteins, three of which are small, single-domain proteins. While these are similar in size and fold to their better-known mammalian counterparts the Giardia proteins have distinctly lower reduction potentials, ranging from -140 to -171 mV compared to +6 mV for the bovine microsomal protein. This difference is accounted for by a more polar heme environment in the Giardia proteins, as mutation of a conserved heme pocket tyrosine residue to phenylalanine in the Giardia cytochrome b5 isotype-I (gCYTb5-I Y61F) raises its reduction potential by nearly 100 mV. All three isotypes have UV-visible spectra consistent with axial coordination of the heme by a pair of histidine residues, but electron paramagnetic spectroscopy indicates that the planes of their imidazole rings are nearly perpendicular rather than coplanar as observed in mammalian cytochrome b5, which may be due to geometrical constraints imposed by a one-residue shorter spacing between the ligand pair in the Giardia proteins. Although no function has yet to be ascribed to any Giardia cytochrome b5, the presence of similar sequences in many other eukaryotes indicates that these represent an under-characterized class of low reduction potential family members.

  3. Effects of membrane mimetics on cytochrome P450-cytochrome b5 interactions characterized by NMR spectroscopy.

    PubMed

    Zhang, Meng; Huang, Rui; Im, Sang-Choul; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2015-05-15

    Mammalian cytochrome P450 (P450) is a membrane-bound monooxygenase whose catalytic activities require two electrons to be sequentially delivered from its redox partners: cytochrome b5 (cytb5) and cytochrome P450 reductase, both of which are membrane proteins. Although P450 functional activities are known to be affected by lipids, experimental evidence to reveal the effect of membrane on P450-cytb5 interactions is still lacking. Here, we present evidence for the influence of phospholipid bilayers on complex formation between rabbit P450 2B4 (CYP2B4) and rabbit cytb5 at the atomic level, utilizing NMR techniques. General line broadening and modest chemical shift perturbations of cytb5 resonances characterize CYP2B4-cytb5 interactions on the intermediate time scale. More significant intensity attenuation and a more specific protein-protein binding interface are observed in bicelles as compared with lipid-free solution, highlighting the importance of the lipid bilayer in stabilizing stronger and more specific interactions between CYP2B4 and cytb5, which may lead to a more efficient electron transfer. Similar results observed for the interactions between CYP2B4 lacking the transmembrane domain (tr-CYP2B4) and cytb5 imply interactions between tr-CYP2B4 and the membrane surface, which might assist in CYP2B4-cytb5 complex formation by orienting tr-CYP2B4 for efficient contact with cytb5. Furthermore, the observation of weak and nonspecific interactions between CYP2B4 and cytb5 in micelles suggests that lipid bilayer structures and low curvature membrane surface are preferable for CYP2B4-cytb5 complex formation. Results presented in this study provide structural insights into the mechanism behind the important role that the lipid bilayer plays in the interactions between P450s and their redox partners. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. The role of cytochrome b5 structural domains in interaction with cytochromes P450.

    PubMed

    Sergeev, G V; Gilep, A A; Usanov, S A

    2014-05-01

    To understand the role of the structural elements of cytochrome b5 in its interaction with cytochrome P450 and the catalysis performed by this heme protein, we carried out comparative structural and functional analysis of the two major mammalian forms of membrane-bound cytochrome b5 - microsomal and mitochondrial, designed chimeric forms of the heme proteins in which the hydrophilic domain of one heme protein is replaced by the hydrophilic domain of another one, and investigated the effect of the highly purified native and chimeric heme proteins on the enzymatic activity of recombinant cytochromes P4503A4 and P45017A1 (CYP3A4 and CYP17A1). We show that the presence of a hydrophobic domain in the structure of cytochrome b5 is necessary for its effective interaction with its redox partners, while the nature of the hydrophobic domain has no significant effect on the ability of cytochrome b5 to stimulate the activity of cytochrome P450-catalyzed reactions. Thus, the functional properties of cytochrome b5 are mainly determined by the structure of the heme-binding domain.

  5. Evidence for cytochrome b5 as an electron donor in ricinoleic acid biosynthesis in microsomal preparations from developing castor bean (Ricinus communis L.).

    PubMed Central

    Smith, M A; Jonsson, L; Stymne, S; Stobart, K

    1992-01-01

    The major b-type cytochrome in microsomal membrane preparations from developing endosperm of castor bean (Ricinus communis) was cytochrome b5. Cytochrome P-450 was also present. The microsomal membranes had delta 12-hydroxylase activity and catalysed the NAD(P)H-dependent hydroxylation of oleate to yield ricinoleic acid. CO had no effect on the hydroxylase activity. Rabbit polyclonal antibodies were raised against the hydrophilic cytochrome b5 fragment purified from cauliflower (Brassica oleracea) floret microsomes. The anti-(cytochrome b5) IgG inhibited delta 12-hydroxylase, delta 12-desaturase and cytochrome c reductase activity in the microsomes. The results indicate that electrons from NAD(P)H were transferred to the site of hydroxylation via cytochrome b5 and that cytochrome P-450 was not involved. Images Fig. 1. PMID:1417766

  6. Kinetics of flavin semiquinone reduction of the components of the cytochrome c-cytochrome b5 complex.

    PubMed

    Eltis, L; Mauk, A G; Hazzard, J T; Cusanovich, M A; Tollin, G

    1988-07-26

    The kinetics of flavin semiquinone reduction of the components of the 1:1 complex formed by cytochrome c with either cytochrome b5 or a derivative of cytochrome b5 in which the heme propionates are esterified (DME-cytochrome b5) have been studied. The rate constant for the reduction of horse heart cytochrome c by the electrostatically neutral lumiflavin semiquinone (LfH) is unaffected by complexation with native cytochrome b5 at pH 7. However, complex formation with DME-cytochrome b5 (pH 7) decreases by 35% the rate constant for cytochrome c reduction by LfH. At pH 8, complex formation with native cytochrome b5 decreases the rate constant for cytochrome c reduction by LfH markedly, whereas the rate constant for cytochrome c reduction, either unbound or in the complex formed with DME-cytochrome b5, is increased 2-fold relative to pH 7. These results indicate that the accessibility of the cytochrome c heme is not the same in the complexes formed with the two cytochrome b5 derivatives and that the docking geometry of the complex formed by the two native cytochromes is pH dependent. Binding of horse heart and tuna cytochromes c to native and DME-cytochromes b5 decreases the rate constants for reduction of cytochrome c by the negatively charged flavin mononucleotide semiquinone (FMNH) by approximately 30% and approximately 40%, respectively. This finding is attributed to substantial neutralization of the positive electrostatic potential surface of cytochrome c that occurs when it binds to either form of cytochrome b5.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Bioinformatic identification of cytochrome b5 homologues from the parasitic nematode Ascaris suum and the free-living nematode Caenorhabditis elegans highlights the crucial role of A. suum adult-specific secretory cytochrome b₅ in parasitic adaptation.

    PubMed

    Takamiya, Shinzaburo; Hashimoto, Muneaki; Mita, Toshihiro; Yokota, Takehiro; Nakajima, Yoshitaka; Yamakura, Fumiyuki; Sugio, Shigetoshi; Fujimura, Tsutomu; Ueno, Takashi; Yamasaki, Hiroshi

    2016-04-01

    We previously reported that adult Ascaris suum possesses NADH-metmyoglobin and NADH-methaemoglobin reductase systems that are located in the cells of the body wall and in the extracellular perienteric fluid, respectively, which helps them adapt to environmental hypoxia by recovering the differential functions of myoglobin and haemoglobin. A. suum cytochrome b5, an adult-specific secretory protein and an essential component of the NADH-metmyo (haemo) globin reductase system, has been extensively studied, and its unique nature has been determined. However, the relationship between A. suum cytochrome b5 and the canonical cytochrome b5 proteins, from the free-living nematode Caenorhabditis elegans is unclear. Here, we have characterised four cytochrome b5-like proteins from C. elegans (accession numbers: CAB01732, CCD68984, CAJ58492, and CAA98498) and three from A. suum (accession numbers: ADY48796, ADY46277, and ADY48338) and compared them with A. suum cytochrome b5 in silico. Bioinformatic and molecular analyses showed that CAA98498 from C. elegans is equivalent of A. suum cytochrome b5, which was not expressed as a mature mRNA. Further, the CAA98498 possessed no secretory signal peptide, which occurs in A. suum cytochrome b5 precursor. These results suggest that this free-living nematode does not need a haemoprotein such as the A. suum cytochrome b5 and highlight the crucial function of this A. suum adult-specific secretory cytochrome b5 in parasitic adaptation.

  8. A spectroscopic study of uranyl-cytochrome b5/cytochrome c interactions

    NASA Astrophysics Data System (ADS)

    Sun, Mei-Hui; Liu, Shuang-Quan; Du, Ke-Jie; Nie, Chang-Ming; Lin, Ying-Wu

    2014-01-01

    Uranium is harmful to human health due to its radiation damage and the ability of uranyl ion (UO22+) to interact with various proteins and disturb their biological functions. Cytochrome b5 (cyt b5) is a highly negatively charged heme protein and plays a key role in mediating cytochrome c (cyt c) signaling in apoptosis by forming a dynamic cyt b5-cyt c complex. In previous molecular modeling study in combination with UV-Vis studies, we found that UO22+ is capable of binding to cyt b5 at surface residues, Glu37 and Glu43. In this study, we further investigated the structural consequences of cyt b5 and cyt c, as well as cyt b5-cyt c complex, upon uranyl binding, by fluorescence spectroscopic and circular dichroism techniques. Moreover, we proposed a uranyl binding site for cyt c at surface residues, Glu66 and Glu69, by performing a molecular modeling study. It was shown that uranyl binds to cyt b5 (KD = 10 μM), cyt c (KD = 87 μM), and cyt b5-cyt c complex (KD = 30 μM) with a different affinity, which slightly alters the protein conformation and disturbs the interaction of cyt b5-cyt c complex. Additionally, we investigated the functional consequences of uranyl binding to the protein surface, which decreases the inherent peroxidase activity of cyt c. The information of uranyl-cyt b5/cyt c interactions gained in this study likely provides a clue for the mechanism of uranyl toxicity.

  9. A spectroscopic study of uranyl-cytochrome b5/cytochrome c interactions.

    PubMed

    Sun, Mei-Hui; Liu, Shuang-Quan; Du, Ke-Jie; Nie, Chang-Ming; Lin, Ying-Wu

    2014-01-24

    Uranium is harmful to human health due to its radiation damage and the ability of uranyl ion (UO2(2+)) to interact with various proteins and disturb their biological functions. Cytochrome b5 (cyt b5) is a highly negatively charged heme protein and plays a key role in mediating cytochrome c (cyt c) signaling in apoptosis by forming a dynamic cyt b5-cyt c complex. In previous molecular modeling study in combination with UV-Vis studies, we found that UO2(2+) is capable of binding to cyt b5 at surface residues, Glu37 and Glu43. In this study, we further investigated the structural consequences of cyt b5 and cyt c, as well as cyt b5-cyt c complex, upon uranyl binding, by fluorescence spectroscopic and circular dichroism techniques. Moreover, we proposed a uranyl binding site for cyt c at surface residues, Glu66 and Glu69, by performing a molecular modeling study. It was shown that uranyl binds to cyt b5 (KD=10 μM), cyt c (KD=87 μM), and cyt b5-cyt c complex (KD=30 μM) with a different affinity, which slightly alters the protein conformation and disturbs the interaction of cyt b5-cyt c complex. Additionally, we investigated the functional consequences of uranyl binding to the protein surface, which decreases the inherent peroxidase activity of cyt c. The information of uranyl-cyt b5/cyt c interactions gained in this study likely provides a clue for the mechanism of uranyl toxicity.

  10. The cytochrome bd respiratory oxygen reductases.

    PubMed

    Borisov, Vitaliy B; Gennis, Robert B; Hemp, James; Verkhovsky, Michael I

    2011-11-01

    Cytochrome bd is a respiratory quinol: O₂ oxidoreductase found in many prokaryotes, including a number of pathogens. The main bioenergetic function of the enzyme is the production of a proton motive force by the vectorial charge transfer of protons. The sequences of cytochromes bd are not homologous to those of the other respiratory oxygen reductases, i.e., the heme-copper oxygen reductases or alternative oxidases (AOX). Generally, cytochromes bd are noteworthy for their high affinity for O₂ and resistance to inhibition by cyanide. In E. coli, for example, cytochrome bd (specifically, cytochrome bd-I) is expressed under O₂-limited conditions. Among the members of the bd-family are the so-called cyanide-insensitive quinol oxidases (CIO) which often have a low content of the eponymous heme d but, instead, have heme b in place of heme d in at least a majority of the enzyme population. However, at this point, no sequence motif has been identified to distinguish cytochrome bd (with a stoichiometric complement of heme d) from an enzyme designated as CIO. Members of the bd-family can be subdivided into those which contain either a long or a short hydrophilic connection between transmembrane helices 6 and 7 in subunit I, designated as the Q-loop. However, it is not clear whether there is a functional consequence of this difference. This review summarizes current knowledge on the physiological functions, genetics, structural and catalytic properties of cytochromes bd. Included in this review are descriptions of the intermediates of the catalytic cycle, the proposed site for the reduction of O₂, evidence for a proton channel connecting this active site to the bacterial cytoplasm, and the molecular mechanism by which a membrane potential is generated. 2011 Elsevier B.V. All rights reserved.

  11. The cytochrome bd respiratory oxygen reductases

    PubMed Central

    Borisov, Vitaliy B.; Gennis, Robert B.; Hemp, James; Verkhovsky, Michael I.

    2011-01-01

    Summary Cytochrome bd is a respiratory quinol:O2 oxidoreductase found in many prokaryotes, including a number of pathogens. The main bioenergetic function of the enzyme is the production of a proton motive force by the vectorial charge transfer of protons. The sequences of cytochromes bd are not homologous to those of the other respiratory oxygen reductases, i.e., the heme-copper oxygen reductases or alternative oxidases (AOX). Generally, cytochromes bd are noteworthy for their high affinity for O2 and resistance to inhibition by cyanide. In E. coli, for example, cytochrome bd (specifically, cytochrome bd-I) is expressed under O2-limited conditions. Among the members of the bd-family are the so-called cyanide-insensitive quinol oxidases (CIO) which often have a low content of the eponymous heme d but, instead, have heme b in place of heme d in at least a majority of the enzyme population. However, at this point, no sequence motif has been identified to distinguish cytochrome bd (with a stoichiometric complement of heme d) from an enzyme designated as CIO. Members of the bd-family can be subdivided into those which contain either a long or a short hydrophilic connection between transmembrane helices 6 and 7 in subunit I, designated as the Q-loop. However, it is not clear whether there is a functional consequence of this difference. This review summarizes current knowledge on the physiological functions, genetics, structural and catalytic properties of cytochromes bd. Included in this review are descriptions of the intermediates of the catalytic cycle, the proposed site for the reduction of O2, evidence for a proton channel connecting this active site to the bacterial cytoplasm, and the molecular mechanism by which a membrane potential is generated. PMID:21756872

  12. Production of a recombinant hybrid hemoflavoprotein: engineering a functional NADH:cytochrome c reductase.

    PubMed

    Barber, M J; Quinn, G B

    2001-11-01

    A gene has been constructed coding for a unique fusion protein, NADH:cytochrome c reductase, that comprises the soluble heme-containing domain of rat hepatic cytochrome b(5) as the amino-terminal portion of the protein and the soluble flavin-containing domain of rat hepatic cytochrome b(5) reductase as the carboxyl terminus. The gene has been expressed in Escherichia coli resulting in the highly efficient production of a functional hybrid hemoflavoprotein which has been purified to homogeneity by a combination of ammonium sulfate precipitation, affinity chromatography on 5'-ADP agarose, and size-exclusion chromatography. The purified protein exhibited a molecular mass of approximately 46 kDa by polyacrylamide gel electrophoresis and 40,875 Da, for the apoprotein, using mass spectrometry which also confirmed the presence of both heme and FAD prosthetic groups. The fusion protein showed immunological cross-reactivity with both anti-rat cytochrome b(5) and anti-rat cytochrome b(5) reductase antibodies indicating the conservation of antigenic determinants from both native domains. Spectroscopic analysis indicated the fusion protein contained both a b-type cytochrome and flavin chromophors with properties identical to those of the native proteins. Amino-terminal and internal amino acid sequencing confirmed the identity of peptides derived from both the heme- and flavin-binding domains with sequences identical to the deduced amino acid sequence. The isolated fusion protein retained NADH:ferricyanide reductase activity (k(cat) = 8.00 x 10(2) s(-1), K(NADH)(m) = 4 microM, K(FeCN(6))(m) = 11 microM) comparable to that of that of native NADH:cytochrome b(5) reductase and also exhibited both NADH:cytochrome c reductase activity (k(cat) = 2.17 x 10(2) s(-1), K(NADH)(m) = 2 microM, K(FeCN(6))(m) = 11 microM, K(Cyt.c)(m) = 1 microM) and NADH:methemoglobin reductase activity (k(cat) = 4.40 x 10(-1) s(-1), K(NADH)(m) = 3 microM, K(mHb)(m) = 47 microM), the latter two activities

  13. Cytochrome b5 promotes the synthesis of delta 16-C19 steroids by homogeneous cytochrome P-450 C21 side-chain cleavage from pig testis.

    PubMed

    Nakajin, S; Takahashi, M; Shinoda, M; Hall, P F

    1985-10-30

    Conversion of progesterone to 17 alpha-hydroxyprogesterone plus androstenedione (17 alpha-hydroxylation) and to androstadienone (delta 16 synthetase activity) by microsomes from neonatal pig testis, were both inhibited by antibodies raised against homogeneous cytochrome P-450 C21 side-chain cleavage. Inhibition of the two activities showed the same relationship to the concentration of antibody added. Analogous results were obtained with pregnenolone as substrate. In a reconstituted enzyme system consisting of the homogeneous cytochrome P-450 C21 side-chain cleavage enzyme, P-450 reductase and NADPH, addition of cytochrome b5 resulted in the synthesis of the corresponding delta 16-C19-steroid from progesterone (androstadienone) and pregnenolone (androstadienol). The effect of cytochrome b5 was concentration-dependent and prevented by anti-cytochrome b5. It is concluded that the cytochrome P-450 C21 side-chain cleavage enzyme from pig testicular microsomes is also capable of synthesizing delta 16-C19-steroids and is, therefore, likely to be responsible for the large amounts of the pherormone androstadienone produced by male pigs.

  14. Electrostatic analysis of the interaction of cytochrome c with native and dimethyl ester heme substituted cytochrome b5.

    PubMed

    Mauk, M R; Mauk, A G; Weber, P C; Matthew, J B

    1986-11-04

    The stability of the complex formed between cytochrome c and dimethyl ester heme substituted cytochrome b5 (DME-cytochrome b5) has been determined under a variety of experimental conditions to evaluate the role of the cytochrome b5 heme propionate groups in the interaction of the two native proteins. Interaction between cytochrome c and the modified cytochrome b5 was found to produce a difference spectrum in the visible range that is very similar to that generated by the interaction of the native proteins and that can be used to monitor complex formation between the two proteins. At pH 8 [25 degrees C (HEPPS), I = 5 mM], DME-cytochrome b5 and cytochrome c form a 1:1 complex with an association constant KA of 3 (1) X 10(6) M-1. This pH is the optimal pH for complex formation between these two proteins and is significantly higher than that observed for the interaction between the two native proteins. The stability of the complex formed between DME-cytochrome b5 and cytochrome c is strongly dependent on ionic strength with KA ranging from 2.4 X 10(7) M-1 at I = 1 mM to 8.2 X 10(4) M-1 at I = 13 mM [pH 8.0 (HEPPS), 25 degrees C]. Calculations for the native, trypsin-solubilized form of cytochrome b5 and cytochrome c confirm that the intermolecular complex proposed by Salemme [Salemme, F. R. (1976) J. Mol. Biol. 102, 563] describes the protein-protein orientation that is electrostatically favored at neutral pH.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Detection of cytochrome b5 from the house-fly, Musca domestica: comparison of immunological and spectrophotometric methods.

    PubMed

    Wheelock, G D; Scott, J G

    1994-06-01

    Spectrophotometric assay of microsomal cytochrome b5 in house-flies produces different results depending on whether sodium dithionite or NADH is used as the reducing agent and whether or not detergent is present. Microsomes assayed for cytochrome b5 with dithionite in the presence of detergent gave the highest values, followed by dithionite alone, NADH plus detergent, and then NADH alone. Isopropanol treatment of microsomes extracted cytochrome b5 free of spectrophotometrically interfering cytochrome P-450. Studies using immunoblotting and rocket immunoelectrophoresis with polyclonal antisera raised against the purified cytochrome b5 showed that isopropanol treatment quantitatively extracted cytochrome b5.

  16. Reduction of Hexavalent Chromium by Human Cytochrome b5: Generation of Hydroxyl Radical and Superoxide

    PubMed Central

    Borthiry, Griselda R.; Antholine, William E.; Kalyanaraman, B.; Myers, Judith M.; Myers, Charles R.

    2007-01-01

    The reduction of hexavalent chromium, Cr(VI), can generate reactive Cr intermediates and various types of oxidative stress. The potential role of human microsomal enzymes in free radical generation was examined using reconstituted proteoliposomes (PLs) containing purified cytochrome b5 and NADPH:P450 reductase. Under aerobic conditions, the PLs reduced Cr(VI) to Cr(V) which was confirmed by ESR using isotopically pure 53Cr(VI). When 5-Diethoxyphos-phoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) was included as a spin trap, a very prominent signal for the hydroxyl radical (HO•) adduct was observed as well as a smaller signal for the superoxide (O2•−) adduct. These adducts were observed even at very low Cr(VI) concentrations (10 μM). NADPH, Cr(VI), O2 and the PLs were all required for significant HO• generation. Superoxide dismutase eliminated the O2• − adduct and resulted in a 30% increase in the HO• adduct. Catalase largely diminished the HO• adduct signal indicating its dependence on H2O2. Some sources of catalase were found to have Cr(VI)-reducing contaminants which could confound results, but a source of catalase free of these contaminants was used for these studies. Exogenous H2O2 was not needed, indicating that it was generated by the PLs. Adding exogenous H2O2, however, did increase the amount of DEPMPO/HO• adduct. The inclusion of formate yielded the carbon dioxide radical adduct of DEPMPO, and experiments with dimethylsulfoxide (DMSO) plus the spin trap α-phenyl-N-tert-butylnitrone (PBN) yielded the methoxy and methyl radical adducts of PBN, confirming the generation of HO•. Quantification of the various species over time was consistent with a stoichiometric excess of HO• relative to the net amount of Cr(VI) reduced. This also represents the first demonstration of a role for cytochrome b5 in the generation of HO•. Overall, the simultaneous generation of Cr(V) and H2O2 by the PLs and the resulting generation of HO• at low Cr

  17. Combined ascorbate and glutathione deficiency leads to decreased cytochrome b5 expression and impaired reduction of sulfamethoxazole hydroxylamine

    PubMed Central

    Bhusari, Sachin; Abouraya, Mahmoud; Padilla, Marcia L.; Pinkerton, Marie E.; Drescher, Nicholas J.; Sacco, James C.; Trepanier, Lauren A.

    2010-01-01

    Sulfonamide antimicrobials such as sulfamethoxazole (SMX) have been associated with drug hypersensitivity reactions, particularly in patients with AIDS. A reactive oxidative metabolite, sulfamethoxazole-nitroso (SMX-NO), forms drug-tissue adducts that elicit a T cell response. Antioxidants such as ascorbic acid (AA) and glutathione (GSH) reduce SMX-NO to the less reactive hydroxylamine metabolite (SMX-HA), which is further reduced to the non-immunogenic parent compound by cytochrome b5 (b5) and its reductase (b5R). We hypothesized that deficiencies in AA and GSH would enhance drug-tissue adduct formation and immunogenicity towards SMX-NO, and that these antioxidant deficiencies might also impair the activity of the b5/b5R pathway. We tested these hypotheses in guinea pigs fed either a normal or AA-restricted diet, followed by buthionine sulfoximine treatment (250 mg/kg SC daily, or vehicle); and SMX-NO (1 mg/kg IP 4 days per week, or vehicle), for 2 weeks. Guinea pigs did not show any biochemical or histopathologic evidence of SMX-NO related toxicity. Combined AA and GSH deficiency in this model did not significantly increase tissue drug-adduct formation, or splenocyte proliferation in response to SMX-NO. However, combined antioxidant deficiency was associated with decreased mRNA and protein expression of cytochrome b5, as well as significant decreases in SMX-HA reduction in SMX-NO treated pigs. These results suggest that SMX-HA detoxification may be down-regulated in combined AA and GSH deficiency. This mechanism could contribute to the higher risk of SMX hypersensitivity in AIDS patients with antioxidant depletion. PMID:20221587

  18. Combined ascorbate and glutathione deficiency leads to decreased cytochrome b5 expression and impaired reduction of sulfamethoxazole hydroxylamine.

    PubMed

    Bhusari, Sachin; Abouraya, Mahmoud; Padilla, Marcia L; Pinkerton, Marie E; Drescher, Nicholas J; Sacco, James C; Trepanier, Lauren A

    2010-08-01

    Sulfonamide antimicrobials such as sulfamethoxazole (SMX) have been associated with drug hypersensitivity reactions, particularly in patients with AIDS. A reactive oxidative metabolite, sulfamethoxazole-nitroso (SMX-NO), forms drug-tissue adducts that elicit a T-cell response. Antioxidants such as ascorbic acid (AA) and glutathione (GSH) reduce SMX-NO to the less reactive hydroxylamine metabolite (SMX-HA), which is further reduced to the non-immunogenic parent compound by cytochrome b (5) (b5) and its reductase (b5R). We hypothesized that deficiencies in AA and GSH would enhance drug-tissue adduct formation and immunogenicity toward SMX-NO and that these antioxidant deficiencies might also impair the activity of the b5/b5R pathway. We tested these hypotheses in guinea pigs fed either a normal or AA-restricted diet, followed by buthionine sulfoximine treatment (250 mg/kg SC daily, or vehicle); and SMX-NO (1 mg/kg IP 4 days per week, or vehicle), for 2 weeks. Guinea pigs did not show any biochemical or histopathologic evidence of SMX-NO-related toxicity. Combined AA and GSH deficiency in this model did not significantly increase tissue-drug adduct formation, or splenocyte proliferation in response to SMX-NO. However, combined antioxidant deficiency was associated with decreased mRNA and protein expression of cytochrome b (5), as well as significant decreases in SMX-HA reduction in SMX-NO-treated pigs. These results suggest that SMX-HA detoxification may be down-regulated in combined AA and GSH deficiency. This mechanism could contribute to the higher risk of SMX hypersensitivity in patients with AIDS with antioxidant depletion.

  19. Cross-linking Mass Spectrometry and Mutagenesis Confirm the Functional Importance of Surface Interactions between CYP3A4 and Holo/Apo Cytochrome b5

    PubMed Central

    Zhao, Chunsheng; Gao, Qiuxia; Roberts, Arthur G.; Shaffer, Scott A.; Doneanu, Catalin E.; Xue, Song; Goodlett, David R.; Nelson, Sidney D.; Atkins, William M.

    2012-01-01

    Cytochrome b5 (cyt b5) is one of the key components in the microsomal cytochrome P450 monooxygenase system. Consensus has not been reached on the underlying mechanism of cyt b5 modulation of CYP catalysis. Both cyt b5 and apo b5, are reported to stimulate the activity of several P450 isoforms. In the present study, the surface interactions of both holo and apo b5 with CYP3A4 were investigated and compared for the first time. Chemical cross-linking coupled with mass spectrometric analysis was used to identify the potential electrostatic interactions between the protein surfaces. Subsequently, the interaction models of holo/apo b5 with CYP3A4 were built using the identified interacting sites as constraints. Both cyt b5 and apo b5 were predicted to bind to the same groove on CYP3A4 with close contacts to the B-B’ loop of CYP3A4, a substrate recognition site (SRS). Mutagenesis studies further confirmed that the interacting sites on CYP3A4 (Lys96, Lys127 and Lys421) are of functional importance. Mutation of these residues reduced or abolished cyt b5 binding affinity. The critical role of Arg446 on CYP3A4 in binding to cyt b5 and/or cytochrome P450 reductase (CPR) was also discovered. The results indicated that electrostatic interactions on the interface of the two proteins are functionally important. The results indicate that the apo cyt b5 can dock with CYP3A4 in a manner analogous to holo cyt b5 so electron transfer from cyt b5 is not required for its effects. PMID:23150942

  20. Cross-linking mass spectrometry and mutagenesis confirm the functional importance of surface interactions between CYP3A4 and holo/apo cytochrome b(5).

    PubMed

    Zhao, Chunsheng; Gao, Qiuxia; Roberts, Arthur G; Shaffer, Scott A; Doneanu, Catalin E; Xue, Song; Goodlett, David R; Nelson, Sidney D; Atkins, William M

    2012-11-27

    Cytochrome b(5) (cyt b(5)) is one of the key components in the microsomal cytochrome P450 monooxygenase system. Consensus has not been reached about the underlying mechanism of cyt b(5) modulation of CYP catalysis. Both cyt b(5) and apo b(5) are reported to stimulate the activity of several P450 isoforms. In this study, the surface interactions of both holo and apo b(5) with CYP3A4 were investigated and compared for the first time. Chemical cross-linking coupled with mass spectrometric analysis was used to identify the potential electrostatic interactions between the protein surfaces. Subsequently, the models of interaction of holo/apo b(5) with CYP3A4 were built using the identified interacting sites as constraints. Both cyt b(5) and apo b(5) were predicted to bind to the same groove on CYP3A4 with close contacts to the B-B' loop of CYP3A4, a substrate recognition site. Mutagenesis studies further confirmed that the interacting sites on CYP3A4 (Lys96, Lys127, and Lys421) are functionally important. Mutation of these residues reduced or abolished cyt b(5) binding affinity. The critical role of Arg446 on CYP3A4 in binding to cyt b(5) and/or cytochrome P450 reductase was also discovered. The results indicated that electrostatic interactions on the interface of the two proteins are functionally important. The results indicate that apo b(5) can dock with CYP3A4 in a manner analogous to that of holo b(5), so electron transfer from cyt b(5) is not required for its effects.

  1. Catalytically Relevant Electrostatic Interactions of Cytochrome P450c17 (CYP17A1) and Cytochrome b5*

    PubMed Central

    Peng, Hwei-Ming; Liu, Jiayan; Forsberg, Sarah E.; Tran, Hong T.; Anderson, Sean M.; Auchus, Richard J.

    2014-01-01

    Two acidic residues, Glu-48 and Glu-49, of cytochrome b5 (b5) are essential for stimulating the 17,20-lyase activity of cytochrome P450c17 (CYP17A1). Substitution of Ala, Gly, Cys, or Gln for these two glutamic acid residues abrogated all capacity to stimulate 17,20-lyase activity. Mutations E49D and E48D/E49D retained 23 and 38% of wild-type activity, respectively. Using the zero-length cross-linker ethyl-3-(3-dimethylaminopropyl)carbodiimide, we obtained cross-linked heterodimers of b5 and CYP17A1, wild-type, or mutations R347K and R358K. In sharp contrast, the b5 double mutation E48G/E49G did not form cross-linked complexes with wild-type CYP17A1. Mass spectrometric analysis of the CYP17A1-b5 complexes identified two cross-linked peptide pairs as follows: CYP17A1-WT: 84EVLIKK89-b5: 53EQAGGDATENFEDVGHSTDAR73 and CYP17A1-R347K: 341TPTISDKNR349-b5: 40FLEEHPGGEEVLR52. Using these two sites of interaction and Glu-48/Glu-49 in b5 as constraints, protein docking calculations based on the crystal structures of the two proteins yielded a structural model of the CYP17A1-b5 complex. The appositional surfaces include Lys-88, Arg-347, and Arg-358/Arg-449 of CYP17A1, which interact with Glu-61, Glu-42, and Glu-48/Glu-49 of b5, respectively. Our data reveal the structural basis of the electrostatic interactions between these two proteins, which is critical for 17,20-lyase activity and androgen biosynthesis. PMID:25315771

  2. NADPH: cytochrome P-450 reductase in olfactory epithelium. Relevance to cytochrome P-450-dependent reactions.

    PubMed Central

    Reed, C J; Lock, E A; De Matteis, F

    1986-01-01

    The presence of a very active cytochrome P-450-dependent drug-metabolizing system in the olfactory epithelium has been confirmed by using 7-ethoxycoumarin, 7-ethoxyresorufin, hexobarbitone and aniline as substrates, and the reasons for the marked activity of the cytochrome P-450 in this tissue have been investigated. The spectral interaction of hexobarbitone and aniline with hepatic and olfactory microsomes has been examined. By this criterion there was no evidence for marked differences in the spin state of the cytochromes of the two tissues, or for the olfactory epithelium containing a greater amount of cytochrome capable of binding hexobarbitone, a very actively metabolized substrate. Rates of NADPH and NADH: cytochrome c reductase activity were found to be higher in the olfactory epithelium than in the liver, and direct evidence was obtained for a greater amount of the NADPH-dependent flavoprotein in the olfactory microsomes. Investigation of male rats and male and female mice, as well as male hamsters, demonstrated that, in all cases, the cytochrome P-450 levels of the olfactory epithelium were lower than those of the liver, while the 7-ethoxycoumarin de-ethylase and NADPH:cytochrome c reductase activities were higher. A correlation was found between 7-ethoxycoumarin de-ethylase and NADPH:cytochrome c reductase activities for both tissues in all species examined. The ratio of reductase to cytochrome P-450 was found to be considerably higher in the olfactory epithelium (1:2-1:3) than in the liver (1:11-1:15), regardless of the species examined, suggesting that facilitated electron flow may contribute significantly to the cytochrome P-450 catalytic turnover in the olfactory tissue. Images Fig. 1. PMID:3101674

  3. [Protein-protein interactions of cytochromes P450 3A4 and 3A5 with their intermediate redox partners cytochromes b5].

    PubMed

    Gnedenko, O V; Ivanov, A S; Iablokov, E O; Usanov, S A; Mukha, D V; Sergeev, G V; Kuzikov, A V; Moskaleva, N E; Bulko, T V; Shumiantseva, V V; Archakov, A I

    2014-01-01

    Molecular interactions between proteins redox partners (cytochromes P450 3A4, 3A5 and cytochrome b5) within the monooxygenase system, which is known to be involved in drug biotransformation, were investigated. Human cytochromes P450 3A4 and 3A5 (CYP3A4 and CYP3A5) form complexes with various cytochromes b5: the microsomal (b5mc) and mitochondrial (b5om) forms of this protein, as well as with 2 "chimeric" proteins, b5(om-mc), b5(mc-om). Kinetic constants and equilibrium dissociation constants were determined by the SPR biosensor. Essential distinction between CYP3A4 and CYP3A5 was only observed upon their interactions with cytochrome b5om. Electroanalytical characteristics of electrodes with immobilized hemoproteins were obtained. The electrochemical analysis of CYP3A4, CYP3A5, b5mc, b5om, b5(om-mc), and b5(mc-om) immobilized on screen printed graphite electrodes modified with membranous matrix revealed that these proteins have very close reduction potentials -0.435 - -0.350 V (vs. Ag/AgCl). Cytochrome b5mc was shown to be capable of stimulating the electrocatalytic activity of CYP3A4 to testosterone.

  4. [Protein-protein interactions of cytochromes P450 3A4 and 3A5 with their intermediate redox partners cytochromes b5].

    PubMed

    Gnedenko, O V; Ivanov, A S; Yablokov, E O; Usanov, S A; Mukha, D V; Sergeev, G V; Kuzikov, A V; Bulko, T V; Moskaleva, N E; Shumyantseva, V V; Archakov, A I

    2015-01-01

    Molecular interactions between proteins redox partners (cytochromes Р450 3А4, 3А5 and cytochrome b5) within the monooxygenase system, which is known to be involved in drug biotransformation, were investigated. Human cytochromes Р450 3А4 and 3А5 (CYP3A4 and CYP3A5) form complexes with various cytochromes b5: the microsomal (b5mc) and mitochondrial (b5om) forms of this protein, as well as with 2 "chimeric" proteins, b5(om-mc), b5(mc-om). Kinetic constants and equilibrium dissociation constants were determined by the SPR biosensor. Essential distinction between CYP3A4 and CYP3A5 was only observed upon their interactions with cytochrome b5om. Electroanalytical characteristics of electrodes with immobilized hemoproteins were obtained. The electrochemical analysis of CYP3A4, CYP3A5, b5mc, b5om, b5(om-mc), and b5(mc-om) immobilized on screen printed graphite electrodes modified with membranous matrix revealed that these proteins have very close reduction potentials -0.435  -0.350 V (vs. Ag/AgCl). Cytochrome b5mc was shown to be capable of stimulating the electrocatalytic activity of CYP3A4 in the presence of its substrate testosterone.

  5. Observation of heme transfer from cytochrome b5 to DNA aptamer.

    PubMed

    Lin, Ying-Wu; Sun, Mei-Hui; Wan, Dun; Liao, Li-Fu

    2012-10-01

    Heme transfer is commonly observed from one heme protein to the other such as from cytochrome b(5) (cyt b(5)) to apo-myoglobin. In this study, instead of to another heme protein, we observed the heme transfer from wild-type (WT) cyt b(5), H39C cyt b(5) with heme axial ligand His39 mutated to Cys39, and DME cyt b(5) with heme replaced by protoporphyrin IX dimethyl ester, to a heme DNA aptamer, PS2.M, respectively, with a different rate constant. The heme transfer was further confirmed by the enhancement of peroxidase activity of the cyt b(5)s-PS2.M system due to the formation of catalytic PS2.M-heme complex. This study provides valuable insights into both cyt b(5)-heme and PS2.M-heme interactions and shows that heme transfer from heme protein to heme-aptamer can be used to evaluate the relative stability of heme proteins. In addition, this study sheds light on the maturation of heme proteins in vivo by interacting with DNA/RNA enzymes. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  6. The role of cytochrome b5 in delta 12 desaturation of oleic acid by microsomes of safflower (Carthamus tinctorius L.).

    PubMed

    Kearns, E V; Hugly, S; Somerville, C R

    1991-02-01

    The electron donors for the membrane-bound fatty acid desaturases of higher plants have not previously been identified. In order to assess the participation of cytochrome b5 in microsomal fatty acid desaturation, the cytoplasmic domain of microsomal cytochrome b5 was purified from Brassica oleracea, and murine polyclonal antibodies were prepared. The IgG fraction from ascites fluid inhibited 62% of NADH-dependent cytochrome c reduction in safflower (Carthamus tinctorius L.) microsomes. These antibodies also blocked desaturation of oleic acid to linoleic acid in lipids of C. tinctorius microsomes by 93%, suggesting that cytochrome b5 is the electron donor for the delta 12 desaturase.

  7. Impaired 17,20-Lyase Activity in Male Mice Lacking Cytochrome b5 in Leydig Cells

    PubMed Central

    Sondhi, Varun; Owen, Bryn M.; Liu, Jiayan; Chomic, Robert; Kliewer, Steven A.; Hughes, Beverly A.; Arlt, Wiebke; Mangelsdorf, David J.

    2016-01-01

    Androgen and estrogen biosynthesis in mammals requires the 17,20-lyase activity of cytochrome P450 17A1 (steroid 17-hydroxylase/17,20-lyase). Maximal 17,20-lyase activity in vitro requires the presence of cytochrome b5 (b5), and rare cases of b5 deficiency in human beings causes isolated 17,20-lyase deficiency. To study the consequences of conditional b5 removal from testicular Leydig cells in an animal model, we generated Cyb5flox/flox:Sf1-Cre (LeyKO) mice. The LeyKO male mice had normal body weights, testis and sex organ weights, and fertility compared with littermates. Basal serum and urine steroid profiles of LeyKO males were not significantly different than littermates. In contrast, marked 17-hydroxyprogesterone accumulation (100-fold basal) and reduced testosterone synthesis (27% of littermates) were observed after human chorionic gonadotropin stimulation in LeyKO animals. Testis homogenates from LeyKO mice showed reduced 17,20-lyase activity and a 3-fold increased 17-hydroxylase to 17,20-lyase activity ratio, which were restored to normal upon addition of recombinant b5. We conclude that Leydig cell b5 is required for maximal androgen synthesis and to prevent 17-hydroxyprogesterone accumulation in the mouse testis; however, the b5-independent 17,20-lyase activity of mouse steroid 17-hydroxylase/17,20-lyase is sufficient for normal male genital development and fertility. LeyKO male mice are a good model for the biochemistry but not the physiology of isolated 17,20-lyase deficiency in human beings. PMID:26974035

  8. In vitro membrane-inserted conformation of the cytochrome b(5) tail.

    PubMed Central

    Hanlon, M R; Begum, R R; Newbold, R J; Whitford, D; Wallace, B A

    2000-01-01

    The cytochrome b(5) tail is a 43-residue membrane-embedded domain that is responsible for anchoring the catalytic domain of cytochrome b(5) to the endoplasmic reticulum membrane. Different models for the structure of the membrane domain of cytochrome b(5) have been proposed, including a helical hairpin and a single transmembrane helix. In the present study, CD spectroscopy was used to investigate the conformation of the tail in different environments, and as a function of temperature, with the goal of understanding the nature of the membrane-bound conformation. Whereas residue property profiling indicates that bending of a helix in the middle of the peptide might be possible, the experimental results in small unilamellar vesicles and lysophosphatidylcholine micelles are more consistent with a single transmembrane helix. Furthermore, although there is evidence for some refolding of the polypeptide with temperature, this is not consistent with a hairpin-to-transmembrane transition. Rather, it appears to represent an increase in helical content in fluid lipid environments, perhaps involving residues at the ends of the transmembrane segment. PMID:11062064

  9. Determination of the hemoglobin surface domains that react with cytochrome b5.

    PubMed

    Naito, N R; Hui, H L; Noble, R W; Hoffman, B M

    2001-02-20

    We have compared the photoinitiated electron-transfer (ET) reaction between cytochrome b(5) (b(5)) and zinc mesoporphyrin-substituted hemoglobin [(ZnM)Hb] and Hb variants in order to determine whether b(5) binds to the subunit surface of either or both Hb chains, or to sites which span the dimer--dimer interface. Because the dimer--dimer interface would be disrupted for monomers or alpha beta dimers, we studied the reaction of b(5) with alpha ZnM chains and (ZnM)Hb beta W37E, which exists as alpha beta dimers in solution. Triplet quenching titrations of the ZnHb proteins with Fe(3+)b(5) show that the binding affinity and ET rate constants for the alpha-chains are the same when they are incorporated into a Hb tetramer or dimer, or exist as monomers. Likewise, the parameters for beta-chains in tetramers and dimers differ minimally. In parallel, we have modified the surface of the Hb chains by neutralizing the heme propionates through the preparation of zinc deuterioporphyrin dimethyl ester hemoglobin, (ZnD-DME)Hb. The charge neutralization increases the ET rate constants 100-fold for the alpha-chains and 40-fold for the beta-chains (but has has little effect on the affinity of either chain type for b(5), similar to earlier results for myoglobin). Together, these results indicate that b(5) binds to sites at the subunit surface of each chain rather than to sites which span the dimer-dimer interface. The charge-neutralization results further suggest that b(5) binds over a broad area of the subunit face, but reacts only in a minority population of binding geometries.

  10. Role of cytochrome b5 in the modulation of the enzymatic activities of cytochrome P450 17α-hydroxylase/17,20-lyase (P450 17A1).

    PubMed

    Bhatt, Megh Raj; Khatri, Yogan; Rodgers, Raymond J; Martin, Lisandra L

    2017-06-01

    Cytochrome b5 (cyt b5) is a small hemoprotein that plays a significant role in the modulation of activities of an important steroidogenic enzyme, cytochrome P450 17α-hydroxylase/17,20-lyase (P450 17A1, CYP17A1). Located in the zona fasciculata and zona reticularis of the adrenal cortex and in the gonads, P450 17A1 catalyzes two different reactions in the steroidogenic pathway; the 17α-hydroxylation and 17,20-lyase, in the endoplasmic reticulum of these respective tissues. The activities of P450 17A1 are regulated by cyt b5 that enhances the 17,20-lyase reaction by promoting the coupling of P450 17A1 and cytochrome P450 reductase (CPR), allosterically. Cyt b5 can also act as an electron donor to enhance the 16-ene-synthase activity of human P450 17A1. In this review, we discuss the many roles of cyt b5 and focus on the modulation of CYP17A1 activities by cyt b5 and the mechanisms involved. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. SPR and electrochemical analyses of interactions between CYP3A4 or 3A5 and cytochrome b5

    NASA Astrophysics Data System (ADS)

    Gnedenko, O. V.; Yablokov, E. O.; Usanov, S. A.; Mukha, D. V.; Sergeev, G. V.; Bulko, T. V.; Kuzikov, A. V.; Moskaleva, N. E.; Shumyantseva, V. V.; Ivanov, A. S.; Archakov, A. I.

    2014-02-01

    The combination of SPR biosensor with electrochemical analysis was used for the study of protein-protein interaction between cytochromes CYP3A4 or 3А5 and cytochromes b5: the microsomal, mitochondrial forms of this protein, and 2 ≪chimeric≫ proteins. Kinetic constants of CYP3A4 and CYP3А5 complex formation with cytochromes b5 were determined by the SPR biosensor. Essential distinction between CYP3A4 and CYP3A5 was observed upon their interactions with mitochondrial cytochrome b5. The electrochemical analysis of CYP3A4, CYP3A5, and cytochromes b5 immobilized on screen printed graphite electrodes modified with membranous matrix revealed that these proteins have very close reduction potentials -0.435 to -0.350 V (vs. Ag/AgCl).

  12. Mechanistic Scrutiny Identifies a Kinetic Role for Cytochrome b5 Regulation of Human Cytochrome P450c17 (CYP17A1, P450 17A1)

    PubMed Central

    Simonov, Alexandr N.; Holien, Jessica K.; Yeung, Joyee Chun In; Nguyen, Ann D.; Corbin, C. Jo; Zheng, Jie; Kuznetsov, Vladimir L.; Auchus, Richard J.; Conley, Alan J.; Bond, Alan M.; Parker, Michael W.; Rodgers, Raymond J.; Martin, Lisandra L.

    2015-01-01

    Cytochrome P450c17 (P450 17A1, CYP17A1) is a critical enzyme in the synthesis of androgens and is now a target enzyme for the treatment of prostate cancer. Cytochrome P450c17 can exhibit either one or two physiological enzymatic activities differentially regulated by cytochrome b5. How this is achieved remains unknown. Here, comprehensive in silico, in vivo and in vitro analyses were undertaken. Fluorescence Resonance Energy Transfer analysis showed close interactions within living cells between cytochrome P450c17 and cytochrome b5. In silico modeling identified the sites of interaction and confirmed that E48 and E49 residues in cytochrome b5 are essential for activity. Quartz crystal microbalance studies identified specific protein-protein interactions in a lipid membrane. Voltammetric analysis revealed that the wild type cytochrome b5, but not a mutated, E48G/E49G cyt b5, altered the kinetics of electron transfer between the electrode and the P450c17. We conclude that cytochrome b5 can influence the electronic conductivity of cytochrome P450c17 via allosteric, protein-protein interactions. PMID:26587646

  13. Cytochrome b5 gene and protein of Candida tropicalis and methods relating thereto

    DOEpatents

    Craft, David L.; Madduri, Krishna M.; Loper, John C.

    2003-01-01

    A novel gene has been isolated which encodes cytochrome b5 (CYTb5) protein of the .omega.-hydroxylase complex of C. tropicalis 20336. Vectors including this gene, and transformed host cells are provided. Methods of increasing the production of a CYTb5 protein are also provided which involve transforming a host cell with a gene encoding this protein and culturing the cells. Methods of increasing the production of a dicarboxylic acid are also provided which involve increasing in the host cell the number of genes encoding this protein.

  14. Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain

    SciTech Connect

    Iyanagi, Takashi . E-mail: iyanagi@spring8.or.jp

    2005-12-09

    NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH {sup {center_dot}}/FMNH{sub 2} couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form can function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.

  15. Do cytochromes function as oxygen sensors in the regulation of nitrate reductase biosynthesis?

    PubMed Central

    MacGregor, C H; Bishop, C W

    1977-01-01

    The observation that oxygen represses nitrate reductase biosynthesis in a hemA mutant grown aerobically with or without delta-aminolevulinic acid indicates that cytochromes are not responsible for nitrate reductase repression in aerobically grown cells. PMID:326768

  16. The orientations of cytochrome c in the highly dynamic complex with cytochrome b5 visualized by NMR and docking using HADDOCK

    PubMed Central

    Volkov, Alexander N.; Ferrari, Davide; Worrall, Jonathan A.R.; Bonvin, Alexandre M.J.J.; Ubbink, Marcellus

    2005-01-01

    The interaction of bovine microsomal ferricytochrome b5 with yeast iso-1-ferri and ferrocytochrome c has been investigated using heteronuclear NMR techniques. Chemical-shift perturbations for 1H and 15N nuclei of both cytochromes, arising from the interactions with the unlabeled partner proteins, were used for mapping the interacting surfaces on both proteins. The similarity of the binding shifts observed for oxidized and reduced cytochrome c indicates that the complex formation is not influenced by the oxidation state of the cytochrome c. Protein–protein docking simulations have been performed for the binary cytochrome b5cytochrome c and ternary (cytochrome b5)–(cytochrome c)2 complexes using a novel HADDOCK approach. The docking procedure, which makes use of the experimental data to drive the docking, identified a range of orientations assumed by the proteins in the complex. It is demonstrated that cytochrome c uses a confined surface patch for interaction with a much more extensive surface area of cytochrome b5. Taken together, the experimental data suggest the presence of a dynamic ensemble of conformations assumed by the proteins in the complex. PMID:15689516

  17. Purification and characterization of an NADPH-cytochrome P450 (cytochrome c) reductase from spearmint (Mentha spicata) glandular trichomes.

    PubMed

    Ponnamperuma, K; Croteau, R

    1996-05-01

    Solubilized NADPH-cytochrome c (P450) reductase was purified to homogeneity from an extract of spearmint (Mentha spicata) glandular trichomes by dye-ligand interaction chromatography on Matrex-Gel Red A and affinity chromatography on 2', 5'-adenosine diphosphate agarose. SDS-PAGE of the purified enzyme preparation revealed the presence of two similar proteins with masses of 82 kDa (major) and 77 kDa (minor) that crossreacted on immunoblot analysis with polyclonal antibodies directed against NADPH-cytochrome P450 reductase from Jerusalem artichoke and from mung bean. Complete immunoinhibition of reductase activity was observed with both types of polyclonal antibodies, while only partial inhibition of activity resulted using a family of monoclonal antibodies directed against the Jerusalem artichoke cytochrome P450 reductase. Inhibition of the spearmint oil gland cytochrome c reductase was also observed with the diphenyliodonium ion. The K(m) values for the cosubstrates NADPH and cytochrome c were 6.2 and 3.7 microM, respectively, and the pH optimum for activity was at 8.5. The NADPH-cytochrome c reductase reconstituted NADPH-dependent (-)-4S-limonene-6-hydroxylase activity in the presence of cytochrome P450, purified from the microsomal fraction of spearmint oil gland cells and dilauroyl phosphatidyl choline. These characteristics establish the identity of the purified enzyme as a NADPH-cytochrome P450 reductase.

  18. [The effect of isatin on protein-protein interactions between cytochrome b5 and cytochromes P450].

    PubMed

    Ershov, P V; Yablokov, E O; Mezentsev, Yu V; Kalushskiy, L A; Florinskaya, A V; Veselovsky, A V; Gnedenko, O V; Gilep, A A; Usanov, S A; Medvedev, A E; Ivanov, A S

    2017-03-01

    Cytochromes P450 (CYP) are involved in numerous biochemical processes including metabolism of xenobiotics, biosynthesis of cholesterol, steroid hormones etc. Since some CYP catalyze indol oxidation to isatin, we have hypothesized that isatin can regulate protein-protein interactions (PPI) between components of the CYP system thus representing a (negative?) feedback mechanism. The aim of this study was to investigate a possible effect of isatin on interaction of human CYP with cytochrome b5 (CYB5A). Using the optical biosensor test system employing surface plasmon resonance (SPR) we have investigated interaction of immobilized CYB5A with various CYP in the absence and in the presence of isatin. The SPR-based experiments have shown that a high concentration of isatin (270 mM) increases Kd values for complexes CYB5A/CYP3А5 and CYB5A/CYP3A4 (twofold and threefold, respectively), but has no influence on complex formation between CYB5A and other CYP (including indol-metabolizing CYP2C19 and CYP2E1). Isatin injection to the optical biosensor chip with the preformed molecular complex CYB5A/CYP3A4 caused a 30%-increase in its dissociation rate. Molecular docking manipulations have shown that isatin can influence interaction of CYP3А5 or CYP3A4 with CYB5A acting at the contact region of CYB5A/CYP.

  19. Expression in Escherichia coli of Cytochrome c Reductase Activity from a Maize NADH:Nitrate Reductase Complementary DNA 1

    PubMed Central

    Campbell, Wilbur H.

    1992-01-01

    A cDNA clone was isolated from a maize (Zea mays L. cv W64A×W183E) scutellum λgt11 library using maize leaf NADH:nitrate reductase Zmnr1 cDNA clone as a hybridization probe; it was designated Zmnr1S. Zmnr1S was shown to be an NADH:nitrate reductase clone by nucleotide sequencing and comparison of its deduced amino acid sequence to Zmnr1. Zmnr1S, which is 1.8 kilobases in length and contains the code for both the cytochrome b and flavin adenine dinucleotide domains of nitrate reductase, was cloned into the EcoRI site of the Escherichia coli expression vector pET5b and expressed. The cell lysate contained NADH:cytochrome c reductase activity, which is a characteristic partial activity of NADH:nitrate reductase dependent on the cytochrome b and flavin adenine dinucleotide domains. Recombinant cytochrome c reductase was purified by immunoaffinity chromatography on monoclonal antibody Zm2(69) Sepharose. The purified cytochrome c reductase, which had a major size of 43 kilodaltons, was inhibited by polyclonal antibodies for maize leaf NADH:nitrate reductase and bound these antibodies when blotted to nitrocellulose. Ultraviolet and visible spectra of oxidized and NADH-reduced recombinant cytochrome c reductase were nearly identical with those of maize leaf NADH:nitrate reductase. These two enzyme forms also had very similar kinetic properties with respect to NADH-dependent cytochrome c and ferricyanide reduction. ImagesFigure 2Figure 3 PMID:16668941

  20. Dynamic docking and electron transfer between Zn-myoglobin and cytochrome b(5).

    PubMed

    Liang, Zhao-Xun; Nocek, Judith M; Huang, Kai; Hayes, Ryan T; Kurnikov, Igor V; Beratan, David N; Hoffman, Brian M

    2002-06-19

    large "target" with a small "bullseye" for the cyt b(5) "arrow". This paradigm differs sharply from the more familiar, "simple" docking within a single, or narrow range of conformations, where binding strength and ET reactivity increase in parallel. Likewise, it is distinct from, although complementary to, the well-known picture of conformational control of ET through "gating", or a related picture of "conformational coupling". The new model describes situations in which tight binding does not correlate with efficient ET reactivity, and explains how it is possible to modulate reactivity without changing affinity. Such "decoupling" of reactivity from binding clearly is of physiological relevance for the reduction of met-Mb in muscle and of met-Hb in a red cell, where tight binding of cyt b(5) to the high concentration of ferrous-Mb/Hb would prevent the cytochrome from finding and reducing the oxidized proteins; it likely is of physiological relevance in other situations, as well.

  1. Cytochrome b5 is a major determinant of human cytochrome P450 CYP2D6 and CYP3A4 activity in vivo.

    PubMed

    Henderson, Colin J; McLaughlin, Lesley A; Scheer, Nico; Stanley, Lesley A; Wolf, C Roland

    2015-04-01

    The cytochrome P450-dependent mono-oxygenase system is responsible for the metabolism and disposition of chemopreventive agents, chemical toxins and carcinogens, and >80% of therapeutic drugs. Cytochrome P450 (P450) activity is regulated transcriptionally and by the rate of electron transfer from P450 reductase. In vitro studies have demonstrated that cytochrome b5 (Cyb5) also modulates P450 function. We recently showed that hepatic deletion of Cyb5 in the mouse (HBN) markedly alters in vivo drug pharmacokinetics; a key outstanding question is whether Cyb5 modulates the activity of the major human P450s in drug disposition in vivo. To address this, we crossed mice humanized for CYP2D6 or CYP3A4 with mice carrying a hepatic Cyb5 deletion. In vitro triazolam 4-hydroxylation (probe reaction for CYP3A4) was reduced by >50% in hepatic microsomes from CYP3A4-HBN mice compared with controls. Similar reductions in debrisoquine 4-hydroxylation and metoprolol α-hydroxylation were observed using CYP2D6-HBN microsomes, indicating a significant role for Cyb5 in the activity of both enzymes. This effect was confirmed by the concentration-dependent restoration of CYP3A4-mediated triazolam turnover and CYP2D6-mediated bufuralol and debrisoquine turnover on addition of Escherichia coli membranes containing recombinant Cyb5. In vivo, the peak plasma concentration and area under the concentration time curve from 0 to 8 hours (AUC0-8 h) of triazolam were increased 4- and 5.7-fold, respectively, in CYP3A4-HBN mice. Similarly, the pharmacokinetics of bufuralol and debrisoquine were significantly altered in CYP2D6-HBN mice, the AUC0-8 h being increased ∼1.5-fold and clearance decreased by 40-60%. These data demonstrate that Cyb5 can be a major determinant of CYP3A4 and CYP2D6 activity in vivo, with a potential impact on the metabolism, efficacy, and side effects of numerous therapeutic drugs.

  2. Thermodynamics of interactions between mammalian cytochromes P450 and b5.

    PubMed

    Yablokov, Evgeny; Florinskaya, Anna; Medvedev, Alexei; Sergeev, Gennady; Strushkevich, Natallia; Luschik, Alexander; Shkel, Tatsiana; Haidukevich, Irina; Gilep, Andrei; Usanov, Sergey; Ivanov, Alexis

    2017-04-01

    Cytochromes P450 (CYPs) play an important role in the metabolism of xenobiotics and various endogenous substrates. Being a crucial component of the microsomal monooxygenase system, CYPs are involved in numerous protein-protein interactions. However, mechanisms underlying molecular interactions between components of the monooxygenase system still need better characterization. In this study thermodynamic parameters of paired interactions between mammalian CYPs and cytochromes b5 (CYB5) have been evaluated using a Surface Plasmon Resonance (SPR) based biosensor Biacore 3000. Analysis of 18 pairs of CYB5-CYP complexes formed by nine different isoforms of mammalian CYPs and two isoforms of human CYB5 has shown that thermodynamically these complexes can be subdivided into enthalpy-driven and entropy-driven groups. Formation of the enthalpy-driven complexes was observed in the case of microsomal CYPs allosterically regulated by CYB5 (CYB5A-CYP3A4, CYB5A-CYP3A5, CYB5A-CYP17A1). The entropy-driven complexes were formed when CYB5 had no effect on the CYP activity (CYB5A-CYP51A1, CYB5A-CYP1B1, CYB5B-CYP11A1). Results of this study suggest that such interactions determining protein clustering are indirectly linked to the monooxygenase functioning. Positive ΔH values typical for such interactions may be associated with displacement of the solvation shells of proteins upon clustering. CYB5-CYP complex formation accompanied by allosteric regulation of CYP activity by CYB5 is enthalpy-dependent. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Relationship between hepatic phenotype and changes in gene expression in cytochrome P450 reductase (POR) null mice

    PubMed Central

    Wang, Xiu Jun; Chamberlain, Mark; Vassieva, Olga; Henderson, Colin J.; Wolf, C. Roland

    2005-01-01

    Cytochrome P450 reductase is the unique electron donor for microsomal cytochrome P450s; these enzymes play a major role in the metabolism of endogenous and xenobiotic compounds. In mice with a liver-specific deletion of cytochrome P450 reductase, hepatic cytochrome P450 activity is ablated, with consequent changes in bile acid and lipid homoeostasis. In order to gain insights into the metabolic changes resulting from this phenotype, we have analysed changes in hepatic mRNA expression using microarray analysis and real-time PCR. In parallel with the perturbations in bile acid levels, changes in the expression of key enzymes involved in cholesterol and lipid homoeostasis were observed in hepatic cytochrome P450 reductase null mice. This was characterized by a reduced expression of Cyp7b1, and elevation of Cyp7a1 and Cyp8b1 expression. The levels of mRNAs for other cytochrome P450 genes, including Cyp2b10, Cyp2c29, Cyp3a11 and Cyp3a16, were increased, demonstrating that endogenous factors play a role in regulating the expression of these proteins and that the increases are due, at least in part, to altered levels of transcripts. In addition, levels of mRNAs encoding genes involved in glycolysis and lipid transport were also increased; the latter may provide an explanation for the increased hepatic lipid content observed in the hepatic null mice. Serum testosterone and oestradiol levels were lowered, accompanied by significantly decreased expression of Hsd3b2 (3β-hydroxy-Δ5-steroid dehydrogenase-2), Hsd3b5 (3β-hydroxy-Δ5-steroid dehydrogenase-5) and Hsd11b1 (11β-hydroxysteroid dehydrogenase type 1), key enzymes in steroid hormone metabolism. These microarray data provide important insights into the control of metabolic pathways by the cytochrome system. PMID:15717863

  4. Insights into the Role of Substrates on the Interaction between Cytochrome b5 and Cytochrome P450 2B4 by NMR

    NASA Astrophysics Data System (ADS)

    Zhang, Meng; Le Clair, Stéphanie V.; Huang, Rui; Ahuja, Shivani; Im, Sang-Choul; Waskell, Lucy; Ramamoorthy, Ayyalusamy

    2015-02-01

    Mammalian cytochrome b5 (cyt b5) is a membrane-bound protein capable of donating an electron to cytochrome P450 (P450) in the P450 catalytic cycle. The interaction between cyt b5 and P450 has been reported to be affected by the substrates of P450; however, the mechanism of substrate modulation on the cyt b5-P450 complex formation is still unknown. In this study, the complexes between full-length rabbit cyt b5 and full-length substrate-free/substrate-bound cytochrome P450 2B4 (CYP2B4) are investigated using NMR techniques. Our findings reveal that the population of complexes is ionic strength dependent, implying the importance of electrostatic interactions in the complex formation process. The observation that the cyt b5-substrate-bound CYP2B4 complex shows a weaker dependence on ionic strength than the cyt b5-substrate-free CYP2B4 complex suggests the presence of a larger fraction of steoreospecific complexes when CYP2B4 is substrate-bound. These results suggest that a CYP2B4 substrate likely promotes specific interactions between cyt b5 and CYP2B4. Residues D65, V66, T70, D71 and A72 are found to be involved in specific interactions between the two proteins due to their weak response to ionic strength change. These findings provide insights into the mechanism underlying substrate modulation on the cyt b5-P450 complexation process.

  5. Association of cytochrome b5 with ETR1 ethylene receptor signaling through RTE1 in Arabidopsis

    PubMed Central

    Chang, Jianhong; Clay, John M.; Chang, Caren

    2014-01-01

    Summary Ethylene plays important roles in plant growth, development and stress responses and is perceived by a family of receptors that repress ethylene responses when ethylene is absent. Repression by the ethylene receptor ETR1 depends on an integral membrane protein, REVERSION-TO-ETHYLENE SENSITIVITY1 (RTE1), which acts upstream of ETR1 in the endoplasmic reticulum (ER) membrane and Golgi apparatus. To investigate RTE1 function, we screened for RTE1-interacting proteins using the yeast split ubiquitin assay, which yielded the ER-localized cytochrome b5 (Cb5) isoform D. Cb5s are small hemoproteins that carry out electron transfer reactions in all eukaryotes, but their roles in plants are relatively uncharacterized. Using bimolecular fluorescence complementation (BiFC), we found that all four ER-localized Arabidopsis Cb5 isoforms (AtCb5-B, -C, -D and –E) can interact with RTE1 in plant cells. In support of this interaction, atcb5 mutants exhibited phenotypic parallels with rte1 mutants in Arabidopsis. Phenotypes included partial suppression of etr1-2 ethylene insensitivity and no suppression of RTE1-independent ethylene receptor isoforms. Single loss-of-function mutants, atcb5-b, -c and -d, appeared similar to the wild type, but double mutant combinations displayed a slight ethylene hypersensitivity. Overexpression of AtCb5-D conferred reduced ethylene sensitivity similar to that conferred by RTE1 overexpression, and genetic analyses suggested that AtCb5-D acts upstream of RTE1 in ethylene response. These findings uncover an unexpected role for Cb5, in which Cb5 and RTE1 are functional partners in promoting ETR1-mediated repression of ethylene signaling. PMID:24635651

  6. Cytochrome b5 Expression in Gonadectomy-induced Adrenocortical Neoplasms of the Domestic Ferret (Mustela putorius furo)

    PubMed Central

    Wagner, S.; Kiupel, M.; Peterson, R.A.; Heikinheimo, M.; Wilson, D.B.

    2008-01-01

    Whereas the adrenal glands of healthy ferrets produce only limited amounts of androgenic steroids, adrenocortical neoplasms that arise in neutered ferrets typically secrete androgens or their derivative, estrogen. The 17,20-lyase activity of cytochrome P450 17α-hydroxylase/17,20-lyase (P450c17) must increase to permit androgen biosynthesis in neoplastic adrenal tissue. We screened ferret adrenocortical tumor specimens for expression of cytochrome b5 (cyt b5), an allosteric regulator that selectively enhances the 17,20-lyase activity of P450c17. Cyt b5 immunoreactivity was evident in 24 of 25 (96 %) adrenocortical adenomas/carcinomas from ferrets with signs of ectopic sex steroid production. Normal adrenocortical cells lacked cyt b5, which may account for the low production of adrenal androgens in healthy ferrets. Other markers characteristic of gonadal somatic cells, such as luteinizing hormone receptor, aromatase, and GATA4, were co-expressed with cyt b5 in some of the tumors. We conclude that cyt b5 is upregulated during gonadectomy-induced adrenocortical neoplasia and is a marker of androgen synthetic potential in these tumors. PMID:18587089

  7. A mutant cytochrome b5 with a lengthened membrane anchor escapes from the endoplasmic reticulum and reaches the plasma membrane.

    PubMed Central

    Pedrazzini, E; Villa, A; Borgese, N

    1996-01-01

    Many resident membrane proteins of the endoplasmic reticulum (ER) do not have known retrieval sequences. Among these are the so-called tail-anchored proteins, which are bound to membranes by a hydrophobic tail close to the C terminus and have most of their sequence as a cytosolically exposed N-terminal domain. Because ER tail-anchored proteins generally have short (< or = 17 residues) hydrophobic domains, we tested whether this feature is important for localization, using cytochrome b5 as a model. The hydrophobic domain of cytochrome b5 was lengthened by insertion of five amino acids (ILAAV), and the localization of the mutant was analyzed by immunofluorescence in transiently transfected mammalian cells. While the wild-type cytochrome was localized to the ER, the mutant was relocated to the surface. This relocation was not due to the specific sequence introduced, as demonstrated by the ER localization of a second mutant, in which the original length of the membrane anchor was restored, while maintaining the inserted ILAAV sequence. Experiments with brefeldin A and with cycloheximide demonstrated that the extended anchor mutant reached the plasma membrane by transport along the secretory pathway. We conclude that the short membrane anchor of cytochrome b5 is important for its ER residency, and we discuss the relevance of this finding for other ER tail-anchored proteins. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8633042

  8. Evolving the [myoglobin, cytochrome b(5)] complex from dynamic toward simple docking: charging the electron transfer reactive patch.

    PubMed

    Trana, Ethan N; Nocek, Judith M; Knutson, Amanda K; Hoffman, Brian M

    2012-10-30

    We describe photoinitiated electron transfer (ET) from a suite of Zn-substituted myoglobin (Mb) variants to cytochrome b(5) (b(5)). An electrostatic interface redesign strategy has led to the introduction of positive charges into the vicinity of the heme edge through D/E → K charge-reversal mutation combinations at "hot spot" residues (D44, D60, and E85), augmented by the elimination of negative charges from Mb or b(5) by neutralization of heme propionates. These variations create an unprecedentedly large range in the product of the ET partners' total charges (-5 < -q(Mb)q(b(5)) < 40). The binding affinity (K(a)) increases 1000-fold as -q(Mb)q(b(5)) increases through this range and exhibits a surprisingly simple, exponential dependence on -q(Mb)q(b(5)). This is explained in terms of electrostatic interactions between a "charged reactive patch" (crp) on each partner's surface, defined as a compact region around the heme edge that (i) contains the total protein charge of each variant and (ii) encompasses a major fraction of the "reactive region" (Rr) comprising surface atoms with large matrix elements for electron tunneling to the heme. As -q(Mb)q(b(5)) increases, the complex undergoes a transition from fast to slow-exchange dynamics on the triplet ET time scale, with a correlated progression in the rate constants for intracomplex (k(et)) and bimolecular (k(2)) ET. This progression is analyzed by integrating the crp and Rr descriptions of ET into the textbook steady-state treatment of reversible binding between partners that undergo intracomplex ET and found to encompass the full range of behaviors predicted by the model. The generality of this approach is demonstrated by its application to the extensive body of data for the ET complex between the photosynthetic reaction center and cytochrome c(2). Deviations from this model also are discussed.

  9. Identification by proton nuclear magnetic resonance of the histidines in cytochrome b5 modified by diethyl pyrocarbonate

    SciTech Connect

    Altman, J.; Lipka, J.J.; Kuntz, I.; Waskell, L. )

    1989-09-19

    Diethyl pyrocarbonate (DEP) is an electrophilic reagent that is used to modify reversibly the histidine residues of proteins. Unfortunately, the lability of the acylated histidine adduct usually does not permit the isolation and identification of the modified histidine. By use of 500-MHz proton NMR spectroscopy, it has been possible to identify the C-H resonances of the nonaxial histidines of trypsin-solubilized bovine, rabbit, and porcine cytochrome b5 and therefore observe the interaction of DEP with specific histidine residues of cytochrome b5. In addition, the pKa of the peripheral histidines of bovine and rabbit cytochrome b5 have been measured in D2O. In the bovine protein it was found that the histidines are modified sequentially with increasing DEP concentration in the order His-26 greater than His-15 greater than His-80. This order is maintained in the rabbit protein with the following additions: His-26 approximately His-27 greater than His-15 greater than or equal to His-17 greater than His-80. The relative reactivity of the peripheral histidines with DEP was rationalized by considering three of their characteristics: (1) the pKa of the histidine, (2) the fraction of the side chain exposed to the solvent, and (3) the hydrogen-bond interactions of the imidazole ring.

  10. Cytochrome b5 and cytokeratin 17 are biomarkers in bronchoalveolar fluid signifying onset of acute lung injury.

    PubMed

    Ménoret, Antoine; Kumar, Sanjeev; Vella, Anthony T

    2012-01-01

    Acute lung injury (ALI) is characterized by pulmonary edema and acute inflammation leading to pulmonary dysfunction and potentially death. Early medical intervention may ameliorate the severity of ALI, but unfortunately, there are no reliable biomarkers for early diagnosis. We screened for biomarkers in a mouse model of ALI. In this model, inhalation of S. aureus enterotoxin A causes increased capillary permeability, cell damage, and increase protein and cytokine concentration in the lungs. We set out to find predictive biomarkers of ALI in bronchoalveolar lavage (BAL) fluid before the onset of clinical manifestations. A cutting edge proteomic approach was used to compare BAL fluid harvested 16 h post S. aureus enterotoxin A inhalation versus BAL fluid from vehicle alone treated mice. The proteomic PF 2D platform permitted comparative analysis of proteomic maps and mass spectrometry identified cytochrome b5 and cytokeratin 17 in BAL fluid of mice challenged with S. aureus enterotoxin A. Validation of cytochrome b5 showed tropic expression in epithelial cells of the bronchioles. Importantly, S. aureus enterotoxin A inhalation significantly decreased cytochrome b5 during the onset of lung injury. Validation of cytokeratin 17 showed ubiquitous expression in lung tissue and increased presence in BAL fluid after S. aureus enterotoxin A inhalation. Therefore, these new biomarkers may be predictive of ALI onset in patients and could provide insight regarding the basis of lung injury and inflammation.

  11. Heterologous expression of fungal cytochromes P450 (CYP5136A1 and CYP5136A3) from the white-rot basidiomycete Phanerochaete chrysosporium: Functionalization with cytochrome b5 in Escherichia coli.

    PubMed

    Hatakeyama, Mayumi; Kitaoka, Takuya; Ichinose, Hirofumi

    2016-07-01

    Cytochromes P450 from the white-rot basidiomycete Phanerochaete chrysosporium, CYP5136A1 and CYP5136A3, are capable of catalyzing oxygenation reactions of a wide variety of exogenous compounds, implying their significant roles in the metabolism of xenobiotics by the fungus. It is therefore interesting to explore their biochemistry to better understand fungal biology and to enable the use of fungal enzymes in the biotechnology sector. In the present study, we developed heterologous expression systems for CYP5136A1 and CYP5136A3 using the T7 RNA polymerase/promoter system in Escherichia coli. Expression levels of recombinant P450s were dramatically improved by modifications and optimization of their N-terminal amino acid sequences. A CYP5136A1 reaction system was reconstructed in E. coli whole cells by coexpression of CYP5136A1 and a redox partner, NADPH-dependent P450 reductase (CPR). The catalytic activity of CYP5136A1 was significantly increased when cytochrome b5 (Cyt-b5) was further coexpressed with CPR, indicating that Cyt-b5 supports electron transfer reactions from NAD(P)H to CYP5136A1. Notably, P450 reaction occurred in E. coli cells that harbored CYP5136A1 and Cyt-b5 but not CPR, implying that the reducing equivalents required for the P450 catalytic cycle were transferred via a CPR-independent pathway. Such an "alternative" electron transfer system in CYP5136A1 reaction was also demonstrated using purified enzymes in vitro. The fungal P450 reaction system may be associated with sophisticated electron transfer pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Functional characterization of a soluble NADPH-cytochrome P450 reductase from Fusarium graminearum.

    PubMed

    Etzerodt, Thomas; Wetterhorn, Karl; Dionisio, Giuseppe; Rayment, Ivan

    2017-10-01

    Fusarium head blight is a devastating disease in wheat caused by some fungal pathogens of the Fusarium genus mainly F. graminearum, due to accumulation of toxic trichothecenes. Most of the trichothecene biosynthetic pathway has been mapped, although some proteins of the pathway remain uncharacterized, including an NADPH-cytochrome P450 reductase. We subcloned a F. graminearum cytochrome P450 reductase that might be involved in the trichothecene biosynthesis. It was expressed heterologously in E. coli as N-terminal truncated form with an octahistidine tag for purification. The construct yielded a soluble apoprotein and its incubation with flavins yielded the corresponding monomeric holoprotein. It was characterized for activity in the pH range 5.5-9.5, using thiazolyl blue tetrazolium bromide (MTT) or cytochrome c as substrates. Binding of the small molecule MTT was weaker than for cytochrome c, however, the rate of MTT reduction was faster. Contrary to other studies of cytochrome reductase proteins, MTT reduction proceeded in a cooperative manner in our studies. Optimum kinetic activity was found at pH 7.5-8.5 for bothMTT and cytochrome c. This is the first paper presenting characterization of a cytochrome P450 reductase from F. graminearum which most likely is involved in mycotoxin biosynthesis or some primary metabolic pathway such as sterol biosynthesis in F. graminearum. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Structure of Physarum polycephalum cytochrome b{sub 5} reductase at 1.56 Å resolution

    SciTech Connect

    Kim, Sangwoo; Suga, Michihiro; Ogasahara, Kyoko; Ikegami, Terumi; Minami, Yoshiko; Yubisui, Toshitsugu; Tsukihara, Tomitake

    2007-04-01

    The structure of P. polycephalum cytochrome b{sub 5} reductase, an enzyme which catalyzes the reduction of cytochrome b{sub 5} by NADH, was determined at a resolution of 1.56 Å. Physarum polycephalum cytochrome b{sub 5} reductase catalyzes the reduction of cytochrome b{sub 5} by NADH. The structure of P. polycephalum cytochrome b{sub 5} reductase was determined at a resolution of 1.56 Å. The molecular structure was compared with that of human cytochrome b{sub 5} reductase, which had previously been determined at 1.75 Å resolution [Bando et al. (2004 ▶), Acta Cryst. D60, 1929–1934]. The high-resolution structure revealed conformational differences between the two enzymes in the adenosine moiety of the FAD, the lid region and the linker region. The structural properties of both proteins were inspected in terms of hydrogen bonding, ion pairs, accessible surface area and cavity volume. The differences in these structural properties between the two proteins were consistent with estimates of their thermostabilities obtained from differential scanning calorimetry data.

  14. [Purification of cytochrome P-450 and NADPH cytochrome p-450 reductase from human liver].

    PubMed

    Isa, M; Cumps, J; Fossoul, C; Atassi, G

    1990-01-01

    Two methods for the purification of cytochromes-P450 from microsomes of human liver are described. Method A: Cyt-P450 were solubilized from microsomes using a non ionic detergent, the Lubrol. The Cyt-P450 were purified by affinity, hydrophobicity followed by ion-exchange chromatography on DEAE-5PW column (HPLC) with an overall yield of 18% and a specific activity of 10 nmole/mg of protein. The recovery of NADPH Cyt-P450 reductase by method A (affinity) is about 60% with a specific activity of 16.2 U.I./mg of protein. Method B: Cyt-P450 were solubilized from microsomes using a zwitterionic detergent, the CHAPS. Cyt-P450 were filtered and separated by chromatofocusing on Mono-P column (HPLC). By this method it was possible to increase strongly the specific activity keeping a yield of 50% of Cyt-P450. Also it was possible to apply this method to small samples of human liver like biopsies (0.5 to 2.5 g).

  15. Unique structure of Ascaris suum b5-type cytochrome: an additional α-helix and positively charged residues on the surface domain interact with redox partners

    PubMed Central

    Yokota, Takehiro; Nakajima, Yoshitaka; Yamakura, Fumiyuki; Sugio, Shigetoshi; Hashimoto, Muneaki; Takamiya, Shinzaburo

    2005-01-01

    Cytochrome b5 of the body wall of adult Ascaris suum, a porcine parasitic nematode, is a soluble protein that lacks a C-terminal membrane-anchoring domain, but possesses an N-terminal pre-sequence of 30 amino acids. During the maturation of cytochrome b5, the N-terminal pre-sequence is proteolytically cleaved to form the mature protein of 82 amino acid residues. A. suum cytochrome b5 is a basic protein containing more lysine residues and exhibiting a higher midpoint redox potential than its mammalian counterparts. We developed an expression system for the production of the recombinant nematode cytochrome b5, which is chemically and functionally identical with the native protein. Using this recombinant protein, we have determined the X-ray crystal structure of A. suum cytochrome b5 at 1.8 Å (1 Å=0.1 nm) resolution, and we have shown that this protein is involved in the reduction of nematode body-wall metmyoglobin. The crystal structure of A. suum cytochrome b5 consists of six α-helices and five β-strands. It differs from its mammalian counterparts by having a head-to-tail disulphide bridge, as well as a four-residue insertion in the vicinity of the sixth ligating histidine, which forms an additional α-helix, α4A, between helices α4 and α5. A. suum cytochrome b5 exists predominantly as a haem-orientation B isomer. Furthermore, the haem plane is rotated approx. 80° relative to the axis formed by haem-Fe and Nϵ atoms of the two histidine residues that are ligated to haem-Fe. The charge distribution around the haem crevice of A. suum cytochrome b5 is remarkably different from that of mammalian cytochrome b5 in that the nematode protein bears positively charged lysine residues surrounding the haem crevice. Using immunohistochemistry, we found that A. suum cytochrome b5 is present in the nematode hypodermis. Based on this histochemical and structural information, the physiological function of A. suum cytochrome b5 and its interaction with nematode

  16. A role for cytochrome b5 in the In vivo disposition of anticancer and cytochrome P450 probe drugs in mice.

    PubMed

    Henderson, Colin J; McLaughlin, Lesley A; Finn, Robert D; Ronseaux, Sebastien; Kapelyukh, Yury; Wolf, C Roland

    2014-01-01

    The role of microsomal cytochrome b5 (Cyb5) in defining the rate of drug metabolism and disposition has been intensely debated for several decades. Recently we described mouse models involving the hepatic or global deletion of Cyb5, demonstrating its central role in in vivo drug disposition. We have now used the cytochrome b5 complete null (BCN) model to determine the role of Cyb5 in the metabolism of ten pharmaceuticals metabolized by a range of cytochrome P450s, including five anticancer drugs, in vivo and in vitro. The extent to which metabolism was significantly affected by the absence of Cyb5 was substrate-dependent; AUC increased (75-245%) and clearance decreased (35-72%) for phenacetin, metoprolol, and chlorzoxazone. Tolbutamide disposition was not significantly altered by Cyb5 deletion, while for midazolam clearance was decreased by 66%. The absence of Cyb5 had no effect on gefitinib and paclitaxel disposition, while significant changes in the in vivo pharmacokinetics were measured for: cyclophosphamide [maximum plasma concentration (Cmax) and terminal half-life increased 55% and 40%, respectively], tamoxifen (AUClast and Cmax increased 370% and 233%, respectively), and anastrozole (AUC and terminal half-life increased 125% and 62%, respectively; clearance down 80%). These data provide strong evidence that both hepatic and extrahepatic Cyb5 levels are an important determinant of in vivo drug disposition catalyzed by a range of cytochrome P450s, including currently prescribed anticancer agents, and that individuality in Cyb5 expression could be a significant determinant in rates of drug disposition in man.

  17. A role for cytochrome b5 in the in vivo disposition of anti-cancer and cytochrome P450 probe drugs in mice

    PubMed Central

    Henderson, Colin J.; McLaughlin, Lesley A.; Finn, Robert D.; Ronseaux, Sebastien; Kapelyukh, Yury; Wolf, C. Roland

    2014-01-01

    The role of microsomal cytochrome b5 (Cyb5) in defining the rate of drug metabolism and disposition has been intensely debated for several decades. Recently we described mouse models involving the hepatic or global deletion of Cyb5, demonstrating its central role in in vivo drug disposition. We have now used the cytochrome b5 complete null (BCN) model to determine the role of Cyb5 in the metabolism of ten pharmaceuticals metabolised by a range of cytochrome P450s, including five anti-cancer drugs, in vivo and in vitro. The extent to which metabolism was significantly affected by the absence of Cyb5 was substrate-dependent, with AUC increased (75-245%), and clearance decreased (35-72%), for phenacetin, metoprolol and chlorzoxazone. Tolbutamide disposition was not significantly altered by Cyb5 deletion, while for midazolam clearance was decreased by 66%. The absence of Cyb5 had no effect on gefitinib and paclitaxel disposition, while significant changes in the in vivo pharmacokinetics of cyclophosphamide were measured (Cmax and terminal half-life increased 55% and 40%, respectively), tamoxifen (AUClast and Cmax increased 370% and 233%, respectively) and anastrozole (AUC and terminal half-life increased 125% and 62%, respectively; clearance down 80%). These data from provide strong evidence that both hepatic and extra-hepatic Cyb5 levels are an important determinant of in vivo drug disposition catalysed by a range of cytochrome P450s, including currently-prescribed anti-cancer agents, and that individuality in Cyb5 expression could be a significant determinant in rates of drug disposition in man. PMID:24115751

  18. Studies on NADH (NADPH)-cytochrome c reductase (FMN-containing) from yeast. Isolation and physicochemical properties of the enzyme from top-fermenting ale yeast.

    PubMed

    Johnson, M S; Kuby, S A

    1985-10-05

    Only three major NADPH-nitrotetrazolium blue (NTB) reductases may be detected in a unique top-ale yeast (Saccharomyces cerevisiae, Narragansett strain), which appears to be of a near anaerobic type with the absence of cytochromes c and a/a3 and the presence of cytochromes P-450 and b5. Two of these three major NADPH-NTB reductases possessed NADH-NTB reductase activity; the third was specific for NADPH and was isolated in this laboratory (Tryon, E., Cress, M. C., Hamada, M., and Kuby, S. A. (1979) Arch. Biochem. Biophys. 197, 104-118) vis. NADPH-cytochrome c reductase (FAD-containing). A description of the isolation procedure is provided for one of these two NADH(NADPH)-NTB reductases, viz. NADH(NADPH)-cytochrome c reductase (FMN-containing), which accounts for about one-half of the total cyanide-insensitive menadione-activated respiration of this yeast. This NADH(NADPH)-cytochrome c reductase has been isolated from an extract of an acetone powder of the top-fermenting ale yeast, with an apparent purification of more than 67-fold and a final specific activity of 0.41 and 0.31 mumol/min/mg for NADH- and NADPH-dependent reduction, respectively. The isolated enzyme proved to be homogeneous by electrophoresis on cellulose acetate and on polyacrylamide gels. It had a pI of 5.25 (at gamma/2 = 0.05) and a molecular size under nondenaturing conditions (as determined by chromatography on Sephadex G-100 and Sephacryl S-200) of 70,000 daltons. On denaturation, the enzyme dissociated into two similar, if not identical, subunits which possessed a molecular weight of 34,000 by sodium dodecyl sulfate/urea-polyacrylamide gel electrophoresis and a weight average molecular weight of 35,000 by sedimentation equilibrium in the presence of 4.0 M guanidinium chloride. The absorbance spectrum of NADH(NADPH)-cytochrome c reductase (FMN-containing) showed three maxima at 464, 383, and 278 nm, with extinction coefficients of 9.88, 9.98, and 64.6 mM-1 cm-1, respectively. The reductase, as

  19. The Desulfuromonas acetoxidans Triheme Cytochrome c7 Produced in Desulfovibrio desulfuricans Retains Its Metal Reductase Activity

    PubMed Central

    Aubert, Corinne; Lojou, Elisabeth; Bianco, Pierre; Rousset, Marc; Durand, Marie-Claire; Bruschi, Mireille; Dolla, Alain

    1998-01-01

    Multiheme cytochrome c proteins that belong to class III have been recently shown to exhibit a metal reductase activity, which could be of great environmental interest, especially in metal bioremediation. To get a better understanding of these activities, the gene encoding cytochrome c7 from the sulfur-reducing bacterium Desulfuromonas acetoxidans was cloned from genomic DNA by PCR and expressed in Desulfovibrio desulfuricans G201. The expression system was based on the cyc transcription unit from Desulfovibrio vulgaris Hildenborough and led to the synthesis of holocytochrome c7 when transferred by electrotransformation into the sulfate reducer Desulfovibrio desulfuricans G201. The produced cytochrome was indistinguishable from the protein purified from Desulfuromonas acetoxidans cells with respect to several biochemical and biophysical criteria and exhibited the same metal reductase activities as determined from electrochemical experiments. This suggests that the molecule was correctly folded in the host organism. Desulfovibrio desulfuricans produces functional multiheme c-type cytochromes from bacteria belonging to a different genus and may be considered a suitable host for the heterologous biogenesis of multiheme c-type cytochromes for either structural or engineering studies. This report, which presents the first example of the transformation of a Desulfovibrio desulfuricans strain by electrotransformation, describes work that is the first necessary step of a protein engineering program that aims to specify the structural features that are responsible for the metal reductase activities of multiheme cytochrome c7. PMID:9546165

  20. Evolving the [Myoglobin, Cytochrome b5] Complex from Dynamic Toward Simple Docking: Charging the Electron-Transfer Reactive Patch

    PubMed Central

    Trana, Ethan N.; Nocek, Judith M.; Knutson, Amanda K.; Hoffman, Brian M.

    2012-01-01

    We describe photo-initiated electron transfer (ET) from a suite of Zn-substituted myoglobin (1Mb) variants to cytochrome b5 (b5). An electrostatic interface redesign strategy has led to the introduction of positive charges in the vicinity of the heme edge through D/E → K charge-reversal mutation combinations at `hotspot' residues (D44, D60, E85), augmented by the elimination of negative charges from Mb or b5 by neutralization of heme propionates. These variations create an unprecedentedly large range in the product of the ET partners' total charges: −5 < −qMbqb5 < 40. The binding affinity (Ka) increases a thousand-fold as −qMbqb5 increases through this range, and exhibits a surprisingly simple, exponential dependence on −qMbqb5. This is explained in terms of electrostatic interactions between a `charged reactive patch' (crp) on each partner's surface, defined as a compact region around the heme edge that (i) contains the total protein charge of each variant, and (ii) encompasses a major fraction of the `reactive region' (Rr) comprising surface atoms with large matrix elements for electron tunneling to the heme. As −qMbqb5 increases, the complex undergoes a transition from fast to slow exchange dynamics on the triplet ET timescale, with a correlated progression in the rate constants for intracomplex (ket) and bimolecular (k2) ET. This progression is analyzed by integrating the crp and Rr descriptions of ET into the textbook steady-state treatment of reversible binding between partners that undergo intracomplex ET, and found to encompass the full range of behaviors predicted by the model. The generality of this approach is demonstrated by applying it to the extensive body of data for the ET complex between the photosynthetic reaction center and cytochrome c2. Deviations from this model also are discussed. PMID:23067206

  1. Ellipticine oxidation and DNA adduct formation in human hepatocytes is catalyzed by human cytochromes P450 and enhanced by cytochrome b5.

    PubMed

    Stiborová, Marie; Poljaková, Jitka; Martínková, Eva; Ulrichová, Jitka; Simánek, Vilím; Dvořák, Zdeněk; Frei, Eva

    2012-12-16

    Ellipticine is an antineoplastic agent considered a pro-drug, the pharmacological and genotoxic effects of which are dependent on cytochrome P450 (CYP)- and/or peroxidase-mediated activation to covalent DNA adducts. We investigated whether ellipticine-DNA adducts are formed in human hepatic microsomes and human hepatocytes. We then identified which human CYPs oxidize ellipticine to metabolites forming DNA adducts and the effect of cytochrome b(5) on this oxidation. 13-Hydroxyellipticine, the metabolite forming the major ellipticine-DNA adduct, was generated mainly by CYP3A4 and 1A1, followed by CYP2D6>2C19>1B1>1A2>2E1 and >2C9. Cytochrome b(5) increased formation of this metabolite by human CYPs, predominantly by CYP1A1, 3A4, 1A2 and 2C19. Formation of 12-hydroxyellipticine is generated mainly by CYP2C19, followed by CYP2C9>3A4>2D6>2E1 and >2A6. Other CYPs were less active (CYP2C8 and 2B6) or did not oxidize ellipticine to this metabolite (CYP1A1, 1A2 and 1B1). CYP2D6 was the most efficient enzyme generating ellipticine N(2)-oxide. CYP3A4 and 1A1 in the presence of cytochrome b(5) are mainly responsible for bioactivation of ellipticine to DNA adduct 1 (formed by ellipticine-13-ylium from 13-hydroxyellipticine), while 12-hydroxyellipticine generated during the CYP2C19-mediated ellipticine oxidation is the predominant metabolite forming ellipticine-12-ylium that generates ellipticine-DNA adduct 2. These ellipticine-DNA adducts were also generated by human hepatic microsomes and in primary human hepatocytes exposed to ellipticine. Ellipticine is toxic to these hepatocytes, decreasing their viability; the IC(50) value of ellipticine in these cells was 0.7 μM. In liver CYP3A4 is the predominant ellipticine activating CYP species, which is expected to result in efficient metabolism after oral ingestion of ellipticine in humans. Copyright © 2012. Published by Elsevier Ireland Ltd.

  2. Probing the substrate binding site of Candida tenuis xylose reductase (AKR2B5) with site-directed mutagenesis.

    PubMed

    Kratzer, Regina; Leitgeb, Stefan; Wilson, David K; Nidetzky, Bernd

    2006-01-01

    Little is known about how substrates bind to CtXR (Candida tenuis xylose reductase; AKR2B5) and other members of the AKR (aldo-keto reductase) protein superfamily. Modelling of xylose into the active site of CtXR suggested that Trp23, Asp50 and Asn309 are the main components of pentose-specific substrate-binding recognition. Kinetic consequences of site-directed substitutions of these residues are reported. The mutants W23F and W23Y catalysed NADH-dependent reduction of xylose with only 4 and 1% of the wild-type efficiency (kcat/K(m)) respectively, but improved the wild-type selectivity for utilization of ketones, relative to xylose, by factors of 156 and 471 respectively. Comparison of multiple sequence alignment with reported specificities of AKR members emphasizes a conserved role of Trp23 in determining aldehyde-versus-ketone substrate selectivity. D50A showed 31 and 18% of the wild-type catalytic-centre activities for xylose reduction and xylitol oxidation respectively, consistent with a decrease in the rates of the chemical steps caused by the mutation, but no change in the apparent substrate binding constants and the pattern of substrate specificities. The 30-fold preference of the wild-type for D-galactose compared with 2-deoxy-D-galactose was lost completely in N309A and N309D mutants. Comparison of the 2.4 A (1 A=0.1 nm) X-ray crystal structure of mutant N309D bound to NAD+ with the previous structure of the wild-type holoenzyme reveals no major structural perturbations. The results suggest that replacement of Asn309 with alanine or aspartic acid disrupts the function of the original side chain in donating a hydrogen atom for bonding with the substrate C-2(R) hydroxy group, thus causing a loss of transition-state stabilization energy of 8-9 kJ/mol.

  3. A Novel NADPH-dependent flavoprotein reductase from Bacillus megaterium acts as an efficient cytochrome P450 reductase.

    PubMed

    Milhim, Mohammed; Gerber, Adrian; Neunzig, Jens; Hannemann, Frank; Bernhardt, Rita

    2016-08-10

    Cytochromes P450 (P450s) require electron transfer partners to catalyze substrate conversions. With regard to biotechnological approaches, the elucidation of novel electron transfer proteins is of special interest, as they can influence the enzymatic activity and specificity of the P450s. In the current work we present the identification and characterization of a novel soluble NADPH-dependent diflavin reductase from Bacillus megaterium with activity towards a bacterial (CYP106A1) and a microsomal (CYP21A2) P450 and, therefore, we referred to it as B. megaterium cytochrome P450 reductase (BmCPR). Sequence analysis of the protein revealed besides the conserved FMN-, FAD- and NADPH-binding motifs, the presence of negatively charged cluster, which is thought to represent the interaction domain with P450s and/or cytochrome c. BmCPR was expressed and purified to homogeneity in Escherichia coli. The purified BmCPR exhibited a characteristic diflavin reductase spectrum, and showed a cytochrome c reducing activity. Furthermore, in an in vitro reconstituted system, the BmCPR was able to support the hydroxylation of testosterone and progesterone with CYP106A1 and CYP21A2, respectively. Moreover, in view of the biotechnological application, the BmCPR is very promising, as it could be successfully utilized to establish CYP106A1- and CYP21A2-based whole-cell biotransformation systems, which yielded 0.3g/L hydroxy-testosterone products within 8h and 0.16g/L 21-hydroxyprogesterone within 6h, respectively. In conclusion, the BmCPR reported herein owns a great potential for further applications and studies and should be taken into consideration for bacterial and/or microsomal CYP-dependent bioconversions.

  4. Processing of chimeric mammalian cytochrome b5 precursors in Escherichia coli: reaction specificity of signal peptidase and identification of an aminopeptidase in post-translocational processing.

    PubMed Central

    Harding, V; Karim, A; Kaderbhai, N; Jones, A; Evans, A; Kaderbhai, M A

    1993-01-01

    A chimeric precursor interlinked by an arginine residue between the full-length signal sequence of alkaline phosphatase and the eukaryotic cytoplasmic cytochrome b5 was constructed. Expression of the chimeric precursor protein in Escherichia coli resulted in efficient export of spectrally authentic cytochrome b5 into the periplasm [Karim, Harding, Evans, Kaderbhai and Kaderbhai (1993) Bio/Technology 11, 612-618]. On sequencing, the apparent absence of arginine at the N-terminus of the secreted cytochrome b5 implied that the chimera was either miscleaved by signal peptidase or further processed following signal excision by an uncharacterized peptidase. The influence of the N-terminal region of cytochrome b5 on the unusual processing of the chimeric precursor was investigated by engineering a number of variant forms in which the region between Arg+1 and the mature portion of cytochrome b5 was extended and varied. Observations of the in vivo processed patterns of these variant cytochrome b5 forms exported into the periplasm revealed that the absence of arginine was due to neither miscleavage of the translocated precursor by the signal peptidase nor the nature of the early region of cytochrome b5. In fact, the selective excision of the arginine residue occurred subsequent to signal sequence deletion by an aminopeptidase which was sensitive to the metal chelator o-phenanthroline. We show that this aminopeptidase also participates in the trimming of the N-terminal arginine residue of the bacterial alkaline phosphatase to generate the three isoenzymes in the periplasm. Images Figure 4 Figure 5 Figure 6 PMID:8352742

  5. Interfacial Hydration, Dynamics and Electron Transfer: Multi-Scale ET Modeling of the Transient [Myoglobin, Cytochrome b5] Complex

    PubMed Central

    Keinan, Shahar; Nocek, Judith M.; Beratan, David N.; Hoffman, Brian M.

    2012-01-01

    Formation of a transient [myoglobin (Mb), cytochrome b5 (cyt b5)] complex is required for the reductive repair of inactive ferri-Mb to its functional ferro-Mb state. The [Mb, cyt b5] complex exhibits dynamic docking (DD), with its cyt b5 partner in rapid exchange at multiple sites on the Mb surface. A triple mutant (Mb(3M)) was designed as part of efforts to shift the electron-transfer process to the simple docking (SD) regime, in which reactive binding occurs at a restricted, reactive region on the Mb surface that dominates the docked ensemble.1 An electrostatically-guided Brownian dynamics (BD) docking protocol was used to generate an initial ensemble of reactive configurations of the complex between unrelaxed partners. This ensemble samples a broad and diverse array of heme-heme distances and orientations. These configurations seeded all-atom constrained molecular dynamics simulations (MD) to generate relaxed complexes for the calculation of electron tunneling matrix elements (TDA) through tunneling-pathway analysis. This procedure for generating an ensemble of relaxed complexes combines the ability of BD calculations to sample the large variety of available conformations and interprotein distances, with the ability of MD to generate the atomic level information, especially regarding the structure of water molecules at the protein-protein interface, that defines electron-tunneling pathways. We used the calculated TDA values to compute ET rates for the [Mb(wt), cyt b5] complex and for the complex with a mutant that has a binding free energy strengthened by three D/E → K charge-reversal mutations, [Mb(3M), cyt b5]. The calculated rate constants are in agreement with the measured values, and the mutant complex ensemble has many more geometries with higher TDA values than does the wild-type Mb complex. Interestingly, water plays a double role in this electron-transfer system, lowering the tunneling barrier as well as inducing protein interface remodeling that

  6. A cytochrome cd1-type nitrite reductase mediates the first step of denitrification in Alcaligenes eutrophus.

    PubMed

    Sann, R; Kostka, S; Friedrich, B

    1994-01-01

    Respiratory nitrite reductase (NIR) has been purified from the soluble extract of denitrifying cells of Alcaligenes eutrophus strain H16 to apparent electrophoretic homogeneity. The enzyme was induced under anoxic conditions in the presence of nitrite. Purified NIR showed typical features of a cytochrome cd1-type nitrite reductase. It appeared to be a dimer of kDa subunits, its activity was only weakly inhibited by the copper chelator diethyldithiocarbamate, and spectral analysis revealed absorption maxima which were characteristic for the presence of heme c and heme d1. The isoelectric point of 8.6 was considerably higher than the pI determined for cd1 nitrite reductases from pseudomonads. Eighteen amino acids at the N-terminus of the A. eutrophus NIR, obtained by protein sequencing, showed no significant homology to the N-terminal region of nitrite reductases from Pseudomonas stutzeri and Pseudomonas aeruginosa.

  7. Differential cytochrome content and reductase activity in Geospirillum barnesii strain SeS3

    USGS Publications Warehouse

    Stolz, J.F.; Gugliuzza, T.; Switzer, Blum J.; Oremland, R.; Martinez, Murillo F.

    1997-01-01

    The protein composition, cytochrome content, and reductase activity in the dissimilatory selenate-reducing bacterium Geospirillum barnesii strain SeS3, grown with thiosulfate, nitrate, selenate, or fumarate as the terminal electron acceptor, was investigated. Comparison of seven high-molecular-mass membrane proteins (105.3, 90.3, 82.6, 70.2, 67.4, 61.1, and 57.3 kDa) by SDS-PAGE showed that their detection was dependent on the terminal electron acceptor used. Membrane fractions from cells grown on thiosulfate contained a 70.2-kDa c-type cytochrome with absorbance maxima at 552, 522, and 421 nm. A 61.1-kDa c-type cytochrome with absorption maxima at 552, 523, and 423 nm was seen in membrane fractions from cells grown on nitrate. No c-type cytochromes were detected in membrane fractions of either selenate- or fumarate-grown cells. Difference spectra, however, revealed the presence of a cytochrome b554 (absorption maxima at 554, 523, and 422 nm) in membrane fractions from selenate-grown cells and a cytochrome b556 (absorption maxima at 556, 520, and 416 nm) in membrane fractions from fumarate-grown cells. Analysis of reductase activity in the different membrane fractions showed variability in substrate specificity. However, enzyme activity was greatest for the substrate on which the cells had been grown (e.g., membranes from nitrate-grown cells exhibited the greatest activity with nitrate). These results show that protein composition, cytochrome content, and reductase activity are dependent on the terminal electron acceptor used for growth.

  8. Probing the substrate binding site of Candida tenuis xylose reductase (AKR2B5) with site-directed mutagenesis

    PubMed Central

    Kratzer, Regina; Leitgeb, Stefan; Wilson, David K.; Nidetzky, Bernd

    2005-01-01

    Little is known about how substrates bind to CtXR (Candida tenuis xylose reductase; AKR2B5) and other members of the AKR (aldo–keto reductase) protein superfamily. Modelling of xylose into the active site of CtXR suggested that Trp23, Asp50 and Asn309 are the main components of pentose-specific substrate-binding recognition. Kinetic consequences of site-directed substitutions of these residues are reported. The mutants W23F and W23Y catalysed NADH-dependent reduction of xylose with only 4 and 1% of the wild-type efficiency (kcat/Km) respectively, but improved the wild-type selectivity for utilization of ketones, relative to xylose, by factors of 156 and 471 respectively. Comparison of multiple sequence alignment with reported specificities of AKR members emphasizes a conserved role of Trp23 in determining aldehyde-versus-ketone substrate selectivity. D50A showed 31 and 18% of the wild-type catalytic-centre activities for xylose reduction and xylitol oxidation respectively, consistent with a decrease in the rates of the chemical steps caused by the mutation, but no change in the apparent substrate binding constants and the pattern of substrate specificities. The 30-fold preference of the wild-type for D-galactose compared with 2-deoxy-D-galactose was lost completely in N309A and N309D mutants. Comparison of the 2.4 Å (1 Å=0.1 nm) X-ray crystal structure of mutant N309D bound to NAD+ with the previous structure of the wild-type holoenzyme reveals no major structural perturbations. The results suggest that replacement of Asn309 with alanine or aspartic acid disrupts the function of the original side chain in donating a hydrogen atom for bonding with the substrate C-2(R) hydroxy group, thus causing a loss of transition-state stabilization energy of 8–9 kJ/mol. PMID:16336198

  9. Analytical study of microsomes and isolated subcellular membranes from rat liver. V. Immunological localization of cytochrome b5 by electron microscopy: methodology and application to various subcellular fractions

    PubMed Central

    1976-01-01

    The localization of cytochrome b5 on the membranes of various subcellular organelles of rat liver was studied by a cytoimmunological procedure using anti-cytochrome b5/anti-ferritin hybrid antibodies and ferritin as label. For this study, highly purified and biochemically characterized membrane preparations were employed. Outer mitochondrial membranes were found to be heavily labeled by the hybrid antibodies whereas Golgi and plasma membranes were not marked by the reagent. Peroxisome membranes were moderately labeled by the hybrid antibodies, suggesting that they may contain some cytochrome b5. The preparation and purification of hybrid antibodies without peptic digestion is described and an analysis made of the composition of the final reagent product. PMID:791954

  10. Chapter 10 Purification of the cytochrome C reductase/cytochrome C oxidase super complex of yeast mitochondria.

    PubMed

    Braun, Hans-Peter; Sunderhaus, Stephanie; Boekema, Egbert J; Kouril, Roman

    2009-01-01

    The protein complexes of the respiratory chain interact by forming large protein particles called respiratory supercomplexes or "respirasomes". Biochemical characterization of these particles proved to be difficult because of their instability. Here we describe a strategy to isolate and characterize the cytochrome c reductase/cytochrome c oxidase supercomplex of yeast, also termed the III + IV supercomplex, which is based on lactate cultivation of yeast, gentle isolation of mitochondria, membrane solubilization by digitonin, sucrose gradient ultracentrifugation, and native gel electrophoresis. The procedure yields pure forms of two varieties of the III + IV supercomplex composed of dimeric complex III and one or two copies of monomeric complex IV. Supercomplex preparations can be used for physiological or structural investigations.

  11. Studies on NADH(NADPH)-cytochrome c reductase (FMN-containing) from yeast: steady-state kinetic properties of the flavoenzyme from top-fermenting ale yeast.

    PubMed

    Johnson, M S; Kuby, S A

    1986-02-15

    A study of the steady-state kinetics of NADH(NADPH)-cytochrome c reductase (FMN-containing) from ale yeast (M. S. Johnson and S. A. Kuby (1985) J. Biol. Chem. 260, 12341-12350) has led to a postulated three-substrate random-ordered hybrid mechanism, where NAD(P)H and FMN add randomly and very likely in a steady-state fashion, followed by an ordered addition of cytochrome c. Kinetic parameters have been derived from this mechanism. Arrhenius plots showed large differences between NADH and NADPH, as the substrate-reductant. Menadione accelerated cytochrome c reduction and also O2 uptake, but vitamin K1 and coenzyme Q10 were ineffective as electron mediators, possibly as a result of their insolubility. With NADPH as the substrate-reductant, the order of the rate of reduction of electron acceptors was ferricyanide greater than DCIP greater than cytochrome c greater than oxygen; with menadione, the specificity sequence was cytochrome c greater than ferricyanide greater than DCIP greater than oxygen. With NADH, the order was ferricyanide greater than cytochrome c greater than oxygen greater than DCIP, which changed to cytochrome c greater than ferricyanide greater than oxygen greater than DCIP on addition of menadione. Cytochrome b5 was also reduced in the absence of oxygen. No transhydrogenase activity was observed, but the reduced thionicotinamide analogs of NADH and NADPH acted as substrates. Superoxide dismutase inhibited cytochrome c reduction in air by 50%, but O2-. was not necessary for cytochrome c reduction, as evidenced by the increase in rate in the absence of O2. The product of the reaction with oxygen appeared to be H2O2.

  12. Purification of NADPH-cytochrome c reductase from swine testis microsomes by chromatofocusing and characterization of the purified reductase.

    PubMed

    Kuwada, M; Ohsawa, Y; Horie, S

    1985-07-18

    A purified NADPH-cytochrome c reductase (NADPH: ferricytochrome oxidoreductase, EC 1.6.2.4) was prepared from swine testis microsomes by detergent solubilization followed by a procedure including chromatofocusing. The reductase was eluted at an isoelectric point of 4.8 from the chromatofocusing column. 730-fold purification was achieved with an overall yield of 1.2%. The preparation was found to be homogeneous upon polyacrylamide gel electrophoresis in the absence of sodium dodecyl sulfate (SDS). Upon SDS-polyacrylamide gel electrophoresis, however, the purified preparation resolved into one major band (Mr 78 000) and two minor bands (Mr 60 000 and 15 000). The enzyme contained about 1 mol each of FMN and FAD, which were both extractable with trichloroacetic acid and also boiling water. The oxidized form of the enzyme showed the absorption spectrum of a typical flavoprotein. Aerobic reduction with NADPH resulted in conversion of the spectrum into one of an air-stable semiquinone form. The activity of the purified preparation was 26 mumol cytochrome c reduced/min per mg protein under the standard assay conditions at 22 degrees C. The enzyme catalyzed the reaction through a ping-pong mechanism.

  13. Cytochrome b(5) shifts oxidation of the anticancer drug ellipticine by cytochromes P450 1A1 and 1A2 from its detoxication to activation, thereby modulating its pharmacological efficacy.

    PubMed

    Kotrbová, Věra; Mrázová, Barbora; Moserová, Michaela; Martínek, Václav; Hodek, Petr; Hudeček, Jiří; Frei, Eva; Stiborová, Marie

    2011-09-15

    Ellipticine is a pro-drug, whose activation is dependent on its oxidation by cytochromes P450 (CYP) and peroxidases. Cytochrome b(5) alters the ratio of ellipticine metabolites formed by isolated reconstituted CYP1A1 and 1A2, favoring formation of 12-hydroxy- and 13-hydroxyellipticine metabolites implicated in ellipticine-DNA adduct formation, at the expense of 9-hydroxy- and 7-hydroxyellipticine that are detoxication products. Cytochrome b(5) enhances the production of 12-hydroxy and 13-hydroxyellipticine. The change in metabolite ratio results in an increased formation of covalent ellipticine-DNA adducts, one of the DNA-damaging mechanisms of ellipticine antitumor action. This finding explains previous apparent discrepancies found with isolated enzymes and in vivo, where CYP1A enzymatic activation correlated with ellipticine-DNA-adduct levels while isolated CYP1A1 or 1A2 in reconstituted systems were much less effective than CYP3A4. The effect of cytochrome b(5) might be even more pronounced in vivo, since, as we show here, ellipticine increases levels of cytochrome b(5) in rat liver. Our results demonstrate that both the native 3D structure of cytochrome b(5) and the presence of the heme as an electron transfer agent in this protein enable a shift in ellipticine metabolites formed by CYP1A1/2. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. B5, a thioredoxin reductase inhibitor, induces apoptosis in human cervical cancer cells by suppressing the thioredoxin system, disrupting mitochondrion-dependent pathways and triggering autophagy.

    PubMed

    Shao, Fang-Yuan; Du, Zhi-Yun; Ma, Dong-Lei; Chen, Wen-Bo; Fu, Wu-Yu; Ruan, Bi-Bo; Rui, Wen; Zhang, Jia-Xuan; Wang, Sheng; Wong, Nai Sum; Xiao, Hao; Li, Man-Mei; Liu, Xiao; Liu, Qiu-Ying; Zhou, Xiao-Dong; Yan, Hai-Zhao; Wang, Yi-Fei; Chen, Chang-Yan; Liu, Zhong; Chen, Hong-Yuan

    2015-10-13

    The synthetic curcumin analog B5 is a potent inhibitor of thioredoxin reductase (TrxR) that has potential anticancer effects. The molecular mechanism underlying B5 as an anticancer agent is not yet fully understood. In this study, we report that B5 induces apoptosis in two human cervical cancer cell lines, CaSki and SiHa, as evidenced by the downregulation of XIAP, activation of caspases and cleavage of PARP. The involvement of the mitochondrial pathway in B5-induced apoptosis was suggested by the dissipation of mitochondrial membrane potential and increased expression of pro-apoptotic Bcl-2 family proteins. In B5-treated cells, TrxR activity was markedly inhibited with concomitant accumulation of oxidized thioredoxin, increased formation of reactive oxygen species (ROS), and activation of ASK1 and its downstream regulatory target p38/JNK. B5-induced apoptosis was significantly inhibited in the presence of N-acetyl-l-cysteine. Microscopic examination of B5-treated cells revealed increased presence of cytoplasmic vacuoles. The ability of B5 to activate autophagy in cells was subsequently confirmed by cell staining with acridine orange, accumulation of LC3-II, and measurement of autophagic flux. Unlike B5-induced apoptosis, autophagy induced by B5 is not ROS-mediated but a role for the AKT and AMPK signaling pathways is implied. In SiHa cells but not CaSki cells, B5-induced apoptosis was promoted by autophagy. These data suggest that the anticarcinogenic effects of B5 is mediated by complex interplay between cellular mechanisms governing redox homeostasis, apoptosis and autophagy.

  15. The comparative study on the solution structures of the oxidized bovine microsomal cytochrome b5 and mutant V45H

    PubMed Central

    Zhang, Qi; Cao, Chunyang; Wang, Zhi-Qiang; Wang, Yun-Hua; Wu, Houming; Huang, Zhong-Xian

    2004-01-01

    A comparative study on the solution structures of bovine microsomal cytochrome b5 (Tb5) and the mutant V45H has been achieved by 1D and 2D 1H-NMR spectroscopy to clarify the differences in the solution conformations between these two proteins. The results reveal that the global folding of the V45H mutant in solution is unchanged, but the subtle changes exist in the orientation of the axial ligand His39, and heme vinyl groups. The side chain of His45 in V45H mutant extends to the outer edge of the heme pocket leaving a cavity at the site originally occupied by the inner methyl group of Val45 residue. In addition, the imidazole ring of axial ligand His39 rotates counterclockwise by ~3° around the His-Fe-His axis, and the 4-heme vinyl group turns to the space vacated by the removed side chain due to the mutation. Furthermore, the helix III of the heme pocket undergoes outward displacement, while the linkage between helix II and III is shifted leftward. These observations are not only consistent with the pattern of the pseudocontact shifts of the heme protons, but also well account for the lower stability of V45H mutant against heat and urea. PMID:15273310

  16. DISRUPTION OF THE SACCHAROMYCES CEREVISIAE GENE FOR NADPH-CYTOCHROME P450-REDUCTASE CAUSES INCREASED SENSITIVITY TO KETOCONAZOLE

    EPA Science Inventory

    Strains of Saccharomyces cerevisiae deleted in the NADPH-cytochrome P450 reductase gene by transplacement are 200-fold more sensitive to ketoconazole, an inhibitor of the cytochrome P450 lanosterol 14-demethylase. Resistance is restored through complementation by the plasmid-born...

  17. DISRUPTION OF THE SACCHAROMYCES CEREVISIAE GENE FOR NADPH-CYTOCHROME P450-REDUCTASE CAUSES INCREASED SENSITIVITY TO KETOCONAZOLE

    EPA Science Inventory

    Strains of Saccharomyces cerevisiae deleted in the NADPH-cytochrome P450 reductase gene by transplacement are 200-fold more sensitive to ketoconazole, an inhibitor of the cytochrome P450 lanosterol 14-demethylase. Resistance is restored through complementation by the plasmid-born...

  18. Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species

    SciTech Connect

    Gray, Joshua P.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2010-09-01

    Inhalation of vesicants including sulfur mustard can cause significant damage to the upper airways. This is the result of vesicant-induced modifications of proteins important in maintaining the integrity of the lung. Cytochrome P450s are the major enzymes in the lung mediating detoxification of sulfur mustard and its metabolites. NADPH cytochrome P450 reductase is a flavin-containing electron donor for cytochrome P450. The present studies demonstrate that the sulfur mustard analog, 2-chloroethyl ethyl sulfide (CEES), is a potent inhibitor of human recombinant cytochrome P450 reductase, as well as native cytochrome P450 reductase from liver microsomes of saline and {beta}-naphthoflavone-treated rats, and cytochrome P450 reductase from type II lung epithelial cells. Using rat liver microsomes from {beta}-naphthoflavone-treated rats, CEES was found to inhibit CYP 1A1 activity. This inhibition was overcome by microsomal cytochrome P450 reductase from saline-treated rats, which lack CYP 1A1 activity, demonstrating that the CEES inhibitory activity was selective for cytochrome P450 reductase. Cytochrome P450 reductase also generates reactive oxygen species (ROS) via oxidation of NADPH. In contrast to its inhibitory effects on the reduction of cytochrome c and CYP1A1 activity, CEES was found to stimulate ROS formation. Taken together, these data demonstrate that sulfur mustard vesicants target cytochrome P450 reductase and that this effect may be an important mechanism mediating oxidative stress and lung injury.

  19. Inhibition of NADPH cytochrome P450 reductase by the model sulfur mustard vesicant 2-chloroethyl ethyl sulfide is associated with increased production of reactive oxygen species

    PubMed Central

    Gray, Joshua P.; Mishin, Vladimir; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2015-01-01

    Inhalation of vesicants including sulfur mustard can cause significant damage to the upper airways. This is the result of vesicant-induced modifications of proteins important in maintaining the integrity of the lung. Cytochrome P450’s are the major enzymes in the lung mediating detoxification of sulfur mustard and its metabolites. NADPH cytochrome P450 reductase is a flavin-containing electron donor for cytochrome P450. The present studies demonstrate that the sulfur mustard analog, 2-chloroethyl ethyl sulfide (CEES), is a potent inhibitor of human recombinant cytochrome P450 reductase, as well as native cytochrome P450 reductase from liver microsomes of saline and β-naphthoflavone treated rats, and cytochrome P450 reductase from type II lung epithelial cells. Using rat liver microsomes from β-naphthoflavone-treated rats, CEES was found to inhibit CYP 1A1 activity. This inhibition was overcome by microsomal cytochrome P450 reductase from saline-treated rats, which lack CYP 1A1 activity, demonstrating that the CEES inhibitory activity was selective for cytochrome P450 reductase. Cytochrome P450 reductase also generates reactive oxygen species (ROS) via oxidation of NADPH. In contrast to its inhibitory effects on the reduction of cytochrome c and CYP1A1 activity, CEES was found to stimulate ROS formation. Taken together, these data demonstrate that sulfur mustard vesicants target cytochrome P450 reductase and that this effect may be an important mechanism mediating oxidative stress and lung injury. PMID:20561902

  20. Identification and expression analysis of NADH-cytochrome b₅ reductase gene in the cotton bollworm, Helicoverpa armigera.

    PubMed

    Zhao, Chunqing; Tang, Tao; Liu, Jiqin; Feng, Xiaoyun; Qiu, Lihong

    2012-12-10

    NADH-cytochrome b(5) reductase (CBR) is one of the most important components of cytochrome P450s, which play an essential role in the detoxification of xenobiotics as well as insecticide resistance in insect pest. In the present study, two novel full-length cDNAs of CBR of the cotton bollworm, Helicoverpa armigera (Hübner) were amplified by means of reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) techniques. The sequencing results showed that the transcripts were 1809bp and 1518bp for HaCBR1 and HaCBR2, respectively, including 969bp and 939bp of complete open reading frame (ORF), which encoded 322 and 312 amino acids respectively. The putative structure and function of HaCBR1 and HaCBR2 were preliminarily analyzed by SMART program. HaCBR1 and HaCBR2 (GenBank accession numbers: HQ638220 and HQ190046HQ638220HQ190046) showed high identities with CBRs of other species. The expression of HaCBR1 and HaCBR2 mRNA was detected by real-time quantitative polymerase chain reaction (RT-qPCR) in most developmental stages of H. armigera with the exception of eggs, as well as in tissues such as cuticle, fatbody and midgut. The expression level of the two genes was significantly induced by phenobarbital (PB). These results would contribute to the understanding of CBR function in H. armigera and provide information for further study on the interactions of different components of cytochrome P450 enzyme systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. The purification and properties of a cd-cytochrome nitrite reductase from Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Mancinelli, R. L.; Cronin, S.; Hochstein, L. I.

    1986-01-01

    Paracoccus halodenitrificans, grown anaerobically in the presence of nitrite, contained membrane and cytoplasmic nitrite reductases. When assayed in the presence of phenazine methosulfate and ascorbate, the membrane-bound enzyme produced nitrous oxide whereas the cytoplasmic enzyme produced nitric oxide. When both enzymes were assayed in the presence of methyl viologen and dithionite, the cytoplasmic enzyme produced ammonia. Following solubilization, the membrane-bound enzyme behaved like the cytoplasmic enzyme, producing nitric oxide in the presence of phenazine methosulfate and ascorbate, and ammonia when assayed in the presence of methyl viologen and dithionite. The cytoplasmic and membrane-bound enzymes were purified to essentially the same specific activity. Only a single nitrite-reductase activity was detected on electrophoretic gels and the electrophoretic behavior of both enzymes suggested they were identical. The spectral properties of both enzymes suggested they were cd-type cytochromes. These data suggest that the products of nitrite reduction by the cd-cytochrome nitrite reductase are determined by the location of the enzyme and the redox potential of the electron donor.

  2. The purification and properties of a cd-cytochrome nitrite reductase from Paracoccus halodenitrificans.

    PubMed

    Mancinelli, R L; Cronin, S; Hochstein, L I

    1986-01-01

    Paracoccus halodenitrificans, grown anaerobically in the presence of nitrite, contained membrane and cytoplasmic nitrite reductases. When assayed in the presence of phenazine methosulfate and ascorbate, the membrane-bound enzyme produced nitrous oxide whereas the cytoplasmic enzyme produced nitric oxide. When both enzymes were assayed in the presence of methyl viologen and dithionite, the cytoplasmic enzyme produced ammonia. Following solubilization, the membrane-bound enzyme behaved like the cytoplasmic enzyme, producing nitric oxide in the presence of phenazine methosulfate and ascorbate, and ammonia when assayed in the presence of methyl viologen and dithionite. The cytoplasmic and membrane-bound enzymes were purified to essentially the same specific activity. Only a single nitrite-reductase activity was detected on electrophoretic gels and the electrophoretic behavior of both enzymes suggested they were identical. The spectral properties of both enzymes suggested they were cd-type cytochromes. These data suggest that the products of nitrite reduction by the cd-cytochrome nitrite reductase are determined by the location of the enzyme and the redox potential of the electron donor.

  3. The purification and properties of a cd-cytochrome nitrite reductase from Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Mancinelli, R. L.; Cronin, S.; Hochstein, L. I.

    1986-01-01

    Paracoccus halodenitrificans, grown anaerobically in the presence of nitrite, contained membrane and cytoplasmic nitrite reductases. When assayed in the presence of phenazine methosulfate and ascorbate, the membrane-bound enzyme produced nitrous oxide whereas the cytoplasmic enzyme produced nitric oxide. When both enzymes were assayed in the presence of methyl viologen and dithionite, the cytoplasmic enzyme produced ammonia. Following solubilization, the membrane-bound enzyme behaved like the cytoplasmic enzyme, producing nitric oxide in the presence of phenazine methosulfate and ascorbate, and ammonia when assayed in the presence of methyl viologen and dithionite. The cytoplasmic and membrane-bound enzymes were purified to essentially the same specific activity. Only a single nitrite-reductase activity was detected on electrophoretic gels and the electrophoretic behavior of both enzymes suggested they were identical. The spectral properties of both enzymes suggested they were cd-type cytochromes. These data suggest that the products of nitrite reduction by the cd-cytochrome nitrite reductase are determined by the location of the enzyme and the redox potential of the electron donor.

  4. NADPH-Cytochrome P450 Oxidoreductase: Prototypic Member of the Diflavin Reductase Family

    PubMed Central

    Iyanagi, Takashi; Xia, Chuanwu; Kim, Jung-Ja P.

    2012-01-01

    NADPH-cytochrome P450 oxidoreductase (CYPOR) and nitric oxide synthase (NOS), two members of the diflavin oxidoreductase family, are multi-domain enzymes containing distinct FAD and FMN domains connected by a flexible hinge. FAD accepts a hydride ion from NADPH, and reduced FAD donates electrons to FMN, which in turn transfers electrons to the heme center of cytochrome P450 or NOS oxygenase domain. Structural analysis of CYPOR, the prototype of this enzyme family, has revealed the exact nature of the domain arrangement and the role of residues involved in cofactor binding. Recent structural and biophysical studies of CYPOR have shown that the two flavin domains undergo large domain movements during catalysis. NOS isoforms contain additional regulatory elements within the reductase domain that control electron transfer through Ca2+-dependent calmodulin (CaM) binding. The recent crystal structure of an iNOS Ca2+/CaM-FMN construct, containing the FMN domain in complex with Ca2+/CaM, provided structural information on the linkage between the reductase and oxgenase domains of NOS, making it possible to model the holo iNOS structure. This review summarizes recent advances in our understanding of the dynamics of domain movements during CYPOR catalysis and the role of the NOS diflavin reductase domain in the regulation of NOS isozyme activities. PMID:22982532

  5. Genomic and bioinformatic analysis of NADPH-cytochrome P450 reductase in Anopheles stephensi (Diptera: Culicidae).

    PubMed

    Suwanchaichinda, C; Brattsten, L B

    2014-01-01

    The cytochrome P450 monooxygenase (P450) enzyme system is a major mechanism of xenobiotic biotransformation. The nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CPR) is required for transfer of electrons from NADPH to P450. One CPR gene was identified in the genome of the malaria-transmitting mosquito Anopheles stephensi Liston (Diptera: Culicidae). The gene encodes a polypeptide containing highly conserved flavin mononucleotide-, flavin adenine dinucleotide-, and NADPH-binding domains, a unique characteristic of the reductase. Phylogenetic analysis revealed that the A. stephensi and other known mosquito CPRs belong to a monophyletic group distinctly separated from other insects in the same order, Diptera. Amino acid residues of CPRs involved in binding of P450 and cytochrome c are conserved between A. stephensi and the Norway rat Rattus norvegicus Berkenhout (Rodentia: Muridae). However, gene structure particularly within the coding region is evidently different between the two organisms. Such difference might arise during the evolution process as also seen in the difference of P450 families and isoforms found in these organisms. CPR in the mosquito A. stephensi is expected to be active and serve as an essential component of the P450 system. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  6. Genomic and Bioinformatic Analysis of NADPH-Cytochrome P450 Reductase in Anopheles stephensi (Diptera: Culicidae)

    PubMed Central

    Suwanchaichinda, C.; Brattsten, L. B.

    2014-01-01

    Abstract The cytochrome P450 monooxygenase (P450) enzyme system is a major mechanism of xenobiotic biotransformation. The nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CPR) is required for transfer of electrons from NADPH to P450. One CPR gene was identified in the genome of the malaria-transmitting mosquito Anopheles stephensi Liston (Diptera: Culicidae). The gene encodes a polypeptide containing highly conserved flavin mononucleotide-, flavin adenine dinucleotide-, and NADPH-binding domains, a unique characteristic of the reductase. Phylogenetic analysis revealed that the A. stephensi and other known mosquito CPRs belong to a monophyletic group distinctly separated from other insects in the same order, Diptera. Amino acid residues of CPRs involved in binding of P450 and cytochrome c are conserved between A. stephensi and the Norway rat Rattus norvegicus Berkenhout (Rodentia: Muridae). However, gene structure particularly within the coding region is evidently different between the two organisms. Such difference might arise during the evolution process as also seen in the difference of P450 families and isoforms found in these organisms. CPR in the mosquito A. stephensi is expected to be active and serve as an essential component of the P450 system. PMID:25368081

  7. Molecular interactions between multihaem cytochromes: probing the protein-protein interactions between pentahaem cytochromes of a nitrite reductase complex.

    PubMed

    Lockwood, Colin; Butt, Julea N; Clarke, Thomas A; Richardson, David J

    2011-01-01

    The cytochrome c nitrite reductase NrfA is a 53 kDa pentahaem enzyme that crystallizes as a decahaem homodimer. NrfA catalyses the reduction of NO2- to NH4+ through a six electron reduction pathway that is of major physiological significance to the anaerobic metabolism of enteric and sulfate reducing bacteria. NrfA receives electrons from the 21 kDa pentahaem NrfB donor protein. This requires that redox complexes form between the NrfA and NrfB pentahaem cytochromes. The formation of these complexes can be monitored using a range of methodologies for studying protein-protein interactions, including dynamic light scattering, gel filtration, analytical ultracentrifugation and visible spectroscopy. These methods have been used to show that oxidized NrfA exists in dynamic monomer-dimer equilibrium with a Kd (dissociation constant) of 4 μM. Significantly, the monomeric and dimeric forms of NrfA are equally active for either the six electron reduction of NO2- or HSO3-. When mixed together, NrfA and NrfB exist in equilibrium with NrfAB, which is described by a Kd of 50 nM. Thus, since NrfA and NrfB are present in micromolar concentrations in the periplasmic compartment, it is likely that NrfB remains tightly associated with its NrfA redox partner under physiological conditions.

  8. Apple Sucrose Transporter SUT1 and Sorbitol Transporter SOT6 Interact with Cytochrome b5 to Regulate Their Affinity for Substrate Sugars1[W][OA

    PubMed Central

    Fan, Ren-Chun; Peng, Chang-Cao; Xu, Yan-Hong; Wang, Xiao-Fang; Li, Yan; Shang, Yi; Du, Shu-Yuan; Zhao, Rui; Zhang, Xiao-Yan; Zhang, Ling-Yun; Zhang, Da-Peng

    2009-01-01

    Sugar transporters are central machineries to mediate cross-membrane transport of sugars into the cells, and sugar availability may serve as a signal to regulate the sugar transporters. However, the mechanisms of sugar transport regulation by signal sugar availability remain unclear in plant and animal cells. Here, we report that a sucrose transporter, MdSUT1, and a sorbitol transporter, MdSOT6, both localized to plasma membrane, were identified from apple (Malus domestica) fruit. Using a combination of the split-ubiquitin yeast two-hybrid, immunocoprecipitation, and bimolecular fluorescence complementation assays, the two distinct sugar transporters were shown to interact physically with an apple endoplasmic reticulum-anchored cytochrome b5 MdCYB5 in vitro and in vivo. In the yeast systems, the two different interaction complexes function to up-regulate the affinity of the sugar transporters, allowing cells to adapt to sugar starvation. An Arabidopsis (Arabidopsis thaliana) homolog of MdCYB5, AtCYB5-A, also interacts with the two sugar transporters and functions similarly. The point mutations leucine-73 → proline in MdSUT1 and leucine-117 → proline in MdSOT6, disrupting the bimolecular interactions but without significantly affecting the transporter activities, abolish the stimulating effects of the sugar transporter-cytochrome b5 complex on the affinity of the sugar transporters. However, the yeast (Saccharomyces cerevisiae) cytochrome b5 ScCYB5, an additional interacting partner of the two plant sugar transporters, has no function in the regulation of the sugar transporters, indicating that the observed biological functions in the yeast systems are specific to plant cytochrome b5s. These findings suggest a novel mechanism by which the plant cells tailor sugar uptake to the surrounding sugar availability. PMID:19502355

  9. Succinate-cytochrome c reductase: assessment of its value in the investigation of defects of the respiratory chain.

    PubMed

    Taylor, R W; Birch-Machin, M A; Bartlett, K; Turnbull, D M

    1993-06-19

    Defects of the respiratory chain are important causes of human disease and one of the most commonly used assays in the investigation of these patients is the measurement of succinate-cytochrome c reductase. However, this assay measures several components of the respiratory chain and the ability to detect a partial defect in one enzyme complex will depend on the amount of control exerted by that enzyme step on overall electron flux. We show that measurement of succinate-cytochrome c reductase activity may fail to detect partial defects of complex III and therefore is of limited diagnostic value in the identification of complex III defects. However, complex II is a major point of control of flux through succinate-cytochrome reductase and it is likely that measurement of the latter will detect defects of complex II.

  10. The haem-copper oxygen reductase of Desulfovibrio vulgaris contains a dihaem cytochrome c in subunit II.

    PubMed

    Lobo, Susana A L; Almeida, Claúdia C; Carita, João N; Teixeira, Miguel; Saraiva, Lígia M

    2008-12-01

    The genome of the sulphate reducing bacterium Desulfovibrio vulgaris Hildenborough, still considered a strict anaerobe, encodes two oxygen reductases of the bd and haem-copper types. The haem-copper oxygen reductase deduced amino acid sequence reveals that it is a Type A2 enzyme, which in its subunit II contains two c-type haem binding motifs. We have characterized the cytochrome c domain of subunit II and confirmed the binding of two haem groups, both with Met-His iron coordination. Hence, this enzyme constitutes the first example of a ccaa3 haem-copper oxygen reductase. The expression of D. vulgaris haem-copper oxygen reductase was found to be independent of the electron donor and acceptor source and is not altered by stress factors such as oxygen exposure, nitrite, nitrate, and iron; therefore the haem-copper oxygen reductase seems to be constitutive. The KCN sensitive oxygen reduction by D. vulgaris membranes demonstrated in this work indicates the presence of an active haem-copper oxygen reductase. D. vulgaris membranes perform oxygen reduction when accepting electrons from the monohaem cytochrome c553, thus revealing the first possible electron donor to the terminal oxygen reductase of D. vulgaris. The physiological implication of the presence of the oxygen reductase in this organism is discussed.

  11. Structural study of the X-ray-induced enzymatic reaction of octahaem cytochrome C nitrite reductase.

    PubMed

    Trofimov, A A; Polyakov, K M; Lazarenko, V A; Popov, A N; Tikhonova, T V; Tikhonov, A V; Popov, V O

    2015-05-01

    Octahaem cytochrome c nitrite reductase from the bacterium Thioalkalivibrio nitratireducens catalyzes the reduction of nitrite to ammonium and of sulfite to sulfide. The reducing properties of X-ray radiation and the high quality of the enzyme crystals allow study of the catalytic reaction of cytochrome c nitrite reductase directly in a crystal of the enzyme, with the reaction being induced by X-rays. Series of diffraction data sets with increasing absorbed dose were collected from crystals of the free form of the enzyme and its complexes with nitrite and sulfite. The corresponding structures revealed gradual changes associated with the reduction of the catalytic haems by X-rays. In the case of the nitrite complex the conversion of the nitrite ions bound in the active sites to NO species was observed, which is the beginning of the catalytic reaction. For the free form, an increase in the distance between the oxygen ligand bound to the catalytic haem and the iron ion of the haem took place. In the case of the sulfite complex no enzymatic reaction was detected, but there were changes in the arrangement of the active-site water molecules that were presumably associated with a change in the protonation state of the sulfite ions.

  12. Cloning and expression of koala (Phascolarctos cinereus) liver cytochrome P450 reductase.

    PubMed

    Kong, Sandra; Ngo, Suong N T; McKinnon, Ross A; Stupans, Ieva

    2009-07-01

    The cloning, expression and characterization of hepatic NADPH-cytochrome P450 reductase (CPR) from koala (Phascolarctos cinereus) is described. Two 2059 bp koala liver CPR cDNAs, designated CPR1 and CPR2, were cloned by reverse transcription-polymerase chain reaction and rapid amplification of cDNA ends. The koala CPR cDNAs encode proteins of 678 amino acids and share 85% amino acid sequence identity to human CPR. Transfection of the koala CPR cDNAs into Cos-7 cells resulted in the expression of proteins, which were recognized by a goat-antihuman CPR antibody. The koala CPR1 and 2 cDNA-expressed enzymes catalysed cytochrome c reductase at the rates of 4.9 +/- 0.5 and 2.6 +/- 0.4 nmol/min/mg protein (mean +/- SD, n = 3), respectively which were comparable to that of rat CPR cDNA-expressed enzyme. The apparent Km value for CPR activity in koala liver microsomes was 11.61 +/- 6.01 microM, which is consistent with that reported for rat CPR enzyme. Northern analysis detected a CPR mRNA band of approximately 2.6 kb. Southern analysis suggested a single PCR gene across species. The present study provides primary molecular data regarding koala CPR1 and CPR2 genes in this unique marsupial species.

  13. Stabilization of cytochrome b5 by a conserved tyrosine in the secondary sphere of heme active site: A spectroscopic and computational study

    NASA Astrophysics Data System (ADS)

    Hu, Shan; He, Bo; Wang, Xiao-Juan; Gao, Shu-Qin; Wen, Ge-Bo; Lin, Ying-Wu

    2017-03-01

    Heme proteins perform a large array of biological functions, with the heme group bound non-covalently or covalently. To probe the stabilization role of conserved tyrosine residue in the secondary sphere of heme site in heme proteins, we herein used cytochrome b5 (Cyt b5) as a model protein, and mutated Tyr30 to Phe or His by removal of Tyr30 associated H-bond network and hydrophobic interaction. We performed thermal-induced unfolding studies for the two mutants, Y30F Cyt b5 and Y30H Cyt b5, as monitored by both UV-Vis and CD spectroscopy, as well as heme transfer studies from these proteins to apo-myoglobin, with wild-type Cyt b5 under the same conditions for comparison. The reduced stability of both mutants indicates that both the H-bonding and hydrophobic interactions associated with Tyr30 contribute to the protein stability. Moreover, we performed molecular modeling studies, which revealed that the hydrophobic interaction in the local region of Y30F Cyt b5 was well-remained, whereas Y30H Cyt b5 formed an H-bond network. These observations suggest that the conserved Tyr30 in Cyt b5 is not replaceable due to the presence of both the H-bond network and hydrophobic interaction in the secondary sphere of the heme active site. As demonstrated here for Cyt b5, it may be of practical importance for design of artificial heme proteins by engineering a Tyr in the secondary sphere with improved properties and functions.

  14. Potential-dependent surface-enhanced resonance Raman spectroscopy at nanostructured TiO2 : a case study on cytochrome b5.

    PubMed

    Han, Xiao Xia; Köhler, Christopher; Kozuch, Jacek; Kuhlmann, Uwe; Paasche, Lars; Sivanesan, Arumugam; Weidinger, Inez M; Hildebrandt, Peter

    2013-12-20

    Nanostructured titanium dioxide (TiO2 ) electrodes, prepared by anodization of titanium, are employed to probe the electron-transfer process of cytochrome b5 (cyt b5 ) by surface-enhanced resonance Raman (SERR) spectroscopy. Concomitant with the increased nanoscopic surface roughness of TiO2 , achieved by raising the anodization voltage from 10 to 20 V, the enhancement factor increases from 2.4 to 8.6, which is rationalized by calculations of the electric field enhancement. Cyt b5 is immobilized on TiO2 under preservation of its native structure but it displays a non-ideal redox behavior due to the limited conductivity of the electrode material. The electron-transfer efficiency which depends on the crystalline phase of TiO2 has to be improved by appropriate doping for applications in bioelectrochemistry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Kinetics and mechanism of electron transfer from dithionite to microsomal cytochrome b5 and to forms of the protein associated with charged and neutral vesicles.

    PubMed Central

    Davies, D M; Lawther, J M

    1989-01-01

    The kinetics of the dithionite reduction of calf liver microsomal cytochrome b5, both free in solution and bound to dimyristoyl phosphatidylcholine vesicles, are consistent with electron transfer between SO2- and the exposed haem edge of the protein. The vesicle membrane does not hinder the approach of SO2- to the site of electron transfer on the protein. In 0.01 M-Tris/HCl buffer, pH 8.1, ket (25 degrees C), delta H et and delta S et are estimated to be 1.44 x 10(6) M-1.s-1, 7.8 kJ.mol-1 and -92.3 J.K-1.mol-1 respectively. The cytochrome exhibits an acid dissociation, pKa 9.3 +/- 0.3, and the rate of electron transfer from dithionite to the high-pH form is about one-third of that to the neutral-pH form. The effect of ionic strength on the kinetics is consistent with a reaction between like-charged species and is discussed in terms of a number of theoretical models. In systems comprising cytochrome b5 and negatively charged vesicles, the effect of increasing the charge density of mixed dimyristoyl phosphatidylcholine/dicetyl phosphate vesicles and of increasing the concentration of dicetyl phosphate vesicles is to lower the rate of electron transfer from dithionite to the haem moiety of the cytochrome. With vesicles of high charge density, however, the kinetics are complicated by vesicle-induced conformation changes of the cytochrome. PMID:2705988

  16. Cytochrome P450s and cytochrome P450 reductase in the olfactory organ of the cotton leafworm Spodoptera littoralis.

    PubMed

    Pottier, M-A; Bozzolan, F; Chertemps, T; Jacquin-Joly, E; Lalouette, L; Siaussat, D; Maïbèche-Coisne, M

    2012-12-01

    Cytochrome P450 enzymes (P450s) are involved in many physiological functions in insects, such as the metabolism of signal molecules, adaptation to host plants and insecticide resistance. Several P450s have been reported in the olfactory organs of insects, the antennae, and have been proposed to play a role in odorant processing and/or xenobiotic metabolism. Despite recent transcriptomic analyses in several species, the diversity of antennal P450s in insects has not yet been investigated. Here, we report the identification of 37 putative P450s expressed in the antennae of the pest moth Spodoptera littoralis, as well as the characterization of a redox partner, cytochrome P450 reductase (CPR). Phylogenetic analysis revealed that S. littoralis P450s belong to four clades defined by their conservation with vertebrate P450s and their cellular localization. Interestingly, the CYP3 and CYP4 clans, which have been described to be mainly involved in the metabolism of plant compounds and xenobiotics, were largely predominant. More surprisingly, two P450s related to ecdysteroid metabolism were also identified. Expression patterns in adult and larval tissues were studied. Eight P450s appeared to be specific to the chemosensory organs, ie the antennae and proboscis, suggesting a specific role in odorant and tastant processing. Moreover, exposure of males to a plant odorant down-regulated the transcript level of CPR, revealing for the first time the regulation of this gene by odorants within insect antennae. This work suggests that the antennae of insects are a key site for P450-mediated metabolism of a large range of exogenous and endogenous molecules. © 2012 Royal Entomological Society.

  17. Cytochrome b5 and epoxide hydrolase contribute to benzo[a]pyrene-DNA adduct formation catalyzed by cytochrome P450 1A1 under low NADPH:P450 oxidoreductase conditions.

    PubMed

    Stiborová, Marie; Moserová, Michaela; Černá, Věra; Indra, Radek; Dračínský, Martin; Šulc, Miroslav; Henderson, Colin J; Wolf, C Roland; Schmeiser, Heinz H; Phillips, David H; Frei, Eva; Arlt, Volker M

    2014-04-06

    In previous studies we had administered benzo[a]pyrene (BaP) to genetically engineered mice (HRN) which do not express NADPH:cytochrome P450 oxidoreductase (POR) in hepatocytes and observed higher DNA adduct levels in livers of these mice than in wild-type mice. To elucidate the reason for this unexpected finding we have used two different settings for in vitro incubations; hepatic microsomes from control and BaP-pretreated HRN mice and reconstituted systems with cytochrome P450 1A1 (CYP1A1), POR, cytochrome b5, and epoxide hydrolase (mEH) in different ratios. In microsomes from BaP-pretreated mice, in which Cyp1a1 was induced, higher levels of BaP metabolites were formed, mainly of BaP-7,8-dihydrodiol. At a low POR:CYP1A1 ratio of 0.05:1 in the reconstituted system, the amounts of BaP diones and BaP-9-ol formed were essentially the same as at an equimolar ratio, but formation of BaP-3-ol was ∼ 1.6-fold higher. Only after addition of mEH were BaP dihydrodiols found. Two BaP-DNA adducts were formed in the presence of mEH, but only one when CYP1A1 and POR were present alone. At a ratio of POR:CYP1A1 of 0.05:1, addition of cytochrome b5 increased CYP1A1-mediated BaP oxidation to most of its metabolites indicating that cytochrome b5 participates in the electron transfer from NADPH to CYP1A1 required for enzyme activity of this CYP. BaP-9-ol was formed even by CYP1A1 reconstituted with cytochrome b5 without POR. Our results suggest that in livers of HRN mice Cyp1a1, cytochrome b5 and mEH can effectively activate BaP to DNA binding species, even in the presence of very low amounts of POR.

  18. Cytochrome cb-type nitric oxide reductase with cytochrome c oxidase activity from Paracoccus denitrificans ATCC 35512.

    PubMed

    Fujiwara, T; Fukumori, Y

    1996-04-01

    A highly active nitric oxide reductase was purified from Paracoccus denitrificans ATCC 35512, formerly named Thiosphaera pantotropha, which was anaerobically cultivated in the presence of nitrate. The enzyme was composed of two subunits with molecular masses of 34 and 15 kDa and contained two hemes b and one heme c per molecule. Copper was not found in the enzyme. The spectral properties suggested that one of the two hemes b and heme c were in six-coordinated low-spin states and another heme b was in a five-coordinated high-spin state and reacted with carbon monoxide. The enzyme showed high cytochrome c-nitric oxide oxidoreductase activity and formed nitrous oxide from nitric oxide with the expected stoichiometry when P. denitrificans ATCC 35512 ferrocytochrome c-550 was used as the electron donor. The V max and Km values for nitric oxide were 84 micromol of nitric oxide per min/mg of protein and 0.25 microM, respectively. Furthermore, the enzyme showed ferrocytochrome c-550-O2 oxidoreductase activity with a V max of 8.4 micromol of O2 per min/mg of protein and a Km value of 0.9 mM. Both activities were 50% inhibited by about 0.3 mM KCN.

  19. Aminoglycoside-resistant mutants of Pseudomonas aeruginosa deficient in cytochrome d, nitrite reductase, and aerobic transport.

    PubMed Central

    Bryan, L E; Kwan, S

    1981-01-01

    Two gentamicin-resistant mutants of Pseudomonas aeruginosa PAO 503 were selected after ethyl methane sulfonate mutagenesis. Mutant PAO 2403 had significantly increased resistance to aminoglycoside but not to other antibiotics. Mutant PAO 2402 showed a similar spectrum of resistance but of lower magnitude. Both mutants showed no detectable cytochrome d and had a high frequency of reversion to a fully wild-type phenotype. PAO 2403 had a marked decrease and PAO 2402 had a moderate decrease in nitrite reductase activity. Both mutants had reduced uptake of gentamicin and dihydrostreptomycin. Mutant PAO 2403 showed a general decrease in transport rate of cationic compounds, whereas mutant PAO 2402 had only deficient glucose transport. Both mutants showed enhanced rates of glutamine transport and no change in glutamic acid transport. Other components of electron transport and oxidative phosphorylation were normal. These mutants involve ferrocytochrome C551 oxidoreductase formed only on anaerobic growth but illustrate transport defects in aerobically grown cells. PMID:6791588

  20. Discovery of potent and novel S-nitrosoglutathione reductase inhibitors devoid of cytochrome P450 activities.

    PubMed

    Sun, Xicheng; Qiu, Jian; Strong, Sarah A; Green, Louis S; Wasley, Jan W F; Blonder, Joan P; Colagiovanni, Dorothy B; Mutka, Sarah C; Stout, Adam M; Richards, Jane P; Rosenthal, Gary J

    2011-10-01

    The pyrrole based N6022 was recently identified as a potent, selective, reversible, and efficacious S-nitrosoglutathione reductase (GSNOR) inhibitor and is currently undergoing clinical development for the treatment of acute asthma. GSNOR is a member of the alcohol dehydrogenase family (ADH) and regulates the levels of S-nitrosothiols (SNOs) through catabolism of S-nitrosoglutathione (GSNO). Reduced levels of GSNO, as well as other nitrosothiols (SNOs), have been implicated in the pathogenesis of many diseases including those of the respiratory, cardiovascular, and gastrointestinal systems. Preservation of endogenous SNOs through GSNOR inhibition presents a novel therapeutic approach with broad applicability. We describe here the synthesis and structure-activity relationships (SAR) of novel pyrrole based analogues of N6022 focusing on removal of cytochrome P450 inhibition activities. We identified potent and novel GSNOR inhibitors having reduced CYP inhibition activities and demonstrated efficacy in a mouse ovalbumin (OVA) model of asthma.

  1. Drug-enhanced carbon monoxide production from heme by cytochrome P450 reductase.

    PubMed

    Vukomanovic, Dragic; Rahman, Mona N; Jia, Zongchao; Nakatsu, Kanji

    2017-01-01

    Carbon monoxide (CO) formed endogenously is considered to be cytoprotective, and the vast majority of CO formation is attributed to the degradation of heme by heme oxygenases-1 and -2 (HO-1, HO-2). Previously, we observed that brain microsomes containing HO-2 produced many-fold more CO in the presence of menadione and its congeners; herein we explored these observations further. We determined the effects of various drugs on CO production of rat brain microsomes and recombinant human cytochrome P450 reductase (CPR); CO was measured by gas chromatography with reductive detection. Brain microsomes of Sprague-Dawley rats or recombinant human cytochrome P450 reductase (CPR) were incubated with NADPH and various drugs in closed vials in phosphate buffer at pH 7.4 and 37°C. After 15 minutes, the reaction was stopped by cooling in dry ice, and the headspace gas was analyzed for CO production using gas chromatography with reductive (mercuric oxide) detection. We observed drug-enhanced CO production in the presence of both microsomes and recombinant CPR alone; the presence of HO was not required. A range of structurally diverse drugs were capable of amplifying this CO formation; these molecules had structures consistent with redox cycling capability. The addition of catalase to a reaction mixture, that contained activating drugs, inhibited the production of CO. Drug-enhanced CO formation can be catalyzed by CPR. The mechanism of CPR activation was not through classical drug-receptor mediation. Redox cycling may be involved in the drug-induced amplification of CO production by CPR through the production of reactive oxygen species.

  2. Catalysis of nitrosyl transfer reactions by a dissimilatory nitrite reductase (cytochrome c,d1).

    PubMed

    Kim, C H; Hollocher, T C

    1984-02-25

    The dissimilatory nitrite reductase (cytochrome c,d1) from Pseudomonas aeruginosa was observed at pH 7.5 to catalyze nitrosyl transfer (nitrosation) between [15N]nitrite and several N-nucleophiles or H2 18O, with rate enhancement of the order of 10(8) relative to analogous chemical reactions. The reducing system (ascorbate, N,N,N',N'-tetramethylphenylenediamine) could reduce nitrite (but not NO) enzymatically and had essentially no direct chemical reactivity toward nitrite or NO. The N-nitrosations showed saturation kinetics with respect to the nucleophile and, while exhibiting Vmax values which varied by about 40-fold, nevertheless showed little or no dependence of Vmax on nucleophile pKa. The N-nitrosations and NO-2/H2O-18O exchange required the reducing system, whereas NO/H2O-18O exchange was inhibited by the reducing system. NO was not detected to serve as a nitrosyl donor to N-nucleophiles. These and other kinetic observations suggest that the enzymatic nitrosyl donor is an enzyme-bound species derived from reduced enzyme and one molecule of nitrite, possibly a heme-nitrosyl compound (E-FeII X NO+) for which there is precedence. Nitrosyl transfer to N-nucleophiles may occur within a ternary complex of enzyme, nitrite, and nucleophile. Catalysis of nitrosyl transfer by nitrite reductase represents a new class of enzymatic reactions and may present another example of electrophilic catalysis by a metal center. The nitrosyl donor trapped by these reactions is believed to represent an intermediate in the reduction of nitrite by cytochrome c,d1.

  3. Iron stimulation of chemiluminescence by microsomes and purified NADPH-cytochrome P-450 reductase

    SciTech Connect

    Puntarulo, S.; Clejan, L.; Palakodety, R.; Cederbaum, A.I.

    1987-05-01

    Low level chemiluminescence (CL) was measured as an assay of the steady state level of production of oxygen radicals during microsomal electron transfer. In the presence of an NADPH-generating system, antioxidant-sensitive CL was observed with isolated rat liver microsomes. Depending on the nature of the chelating agent, ferric iron markedly affected this CL. For example, ferric-EDTA inhibited, whereas ferric-ADP stimulated CL. This response to iron chelators was identical to that found when measuring microsomal lipid peroxidation, but was opposite to the catalytic effectiveness of ferric-chelates in stimulating microsomal generation of hydroxyl radicals. Similar studies were conducted with purified NADPH-cytochrome P-450 reductase in the presence of t-butyl hydroperoxide (t-BOOH). No CL was observed in the absence of added iron. The addition of ferric-EDTA or ferric-detapac stimulated production of CL, whereas ferric chloride or ferric-ATP has little or no effect. This pattern of response to iron chelates is opposite to that found with the microsomes. CL was inhibited by catalase and OH scavengers such as ethanol and DMSO but not by superoxide dismutase. Thus, CL by the reductase system appears to involve the generation of OH via a Fenton-type of reaction, and subsequent interaction of OH with t-BOOH to produce excited species.

  4. Diversity in mechanisms of substrate oxidation by cytochrome P450 2D6. Lack of an allosteric role of NADPH-cytochrome P450 reductase in catalytic regioselectivity.

    PubMed

    Hanna, I H; Krauser, J A; Cai, H; Kim, M S; Guengerich, F P

    2001-10-26

    Cytochrome P450 (P450) 2D6 was first identified as the polymorphic human debrisoquine hydroxylase and subsequently shown to catalyze the oxidation of a variety of drugs containing a basic nitrogen. Differences in the regioselectivity of oxidation products formed in systems containing NADPH-P450 reductase/NADPH and the model oxidant cumene hydroperoxide have been proposed by others to be due to an allosteric influence of the reductase on P450 2D6 (Modi, S., Gilham, D. E., Sutcliffe, M. J., Lian, L.-Y., Primrose, W. U., Wolf, C. R., and Roberts, G. C. K. (1997) Biochemistry 36, 4461-4470). We examined the differences in the formation of oxidation products of N-methyl-4-phenyl-1,2,5,6-tetrahydropyridine, metoprolol, and bufuralol between reductase-, cumene hydroperoxide-, and iodosylbenzene-supported systems. Catalytic regioselectivity was not influenced by the presence of the reductase in any of the systems supported by model oxidants, ruling out allosteric influences. The presence of the reductase had little effect on the affinity of P450 2D6 for any of these three substrates. The addition of the reaction remnants of the model oxidants (cumyl alcohol and iodobenzene) to the reductase-supported system did not affect reaction patterns, arguing against steric influences of these products on catalytic regioselectivity. Label from H(2)18O was quantitatively incorporated into 1'-hydroxybufuralol in the iodosylbenzene- but not in the reductase- or cumene hydroperoxide-supported reactions. We conclude that the P450 systems utilizing NADPH-P450 reductase, cumene hydroperoxide, and iodosylbenzene use similar but distinct chemical mechanisms. These differences are the basis for the variable product distributions, not an allosteric influence of the reductase.

  5. NO Reductase Activity of the Tetraheme Cytochrome c554 of Nitrosomonas europaea

    PubMed Central

    Upadhyay, Anup K.; Hooper, Alan B.; Hendrich, Michael P.

    2009-01-01

    The tetraheme cytochrome c554 (cyt c554) from Nitrosomonas europaea is believed to function as an electron-transfer protein from hydroxylamine oxidoreductase (HAO). We show here that cyt c554 also has significant NO reductase activity. The protein contains one high-spin and three low-spin c-type hemes. HAO catalyzed reduction of the cyt c554, ligand binding, intermolecular electron transfer, and kinetics of NO reduction by cyt c554 have been investigated. We detect the formation of a NO-bound ferrous heme species in cyt c554 by EPR and Mössbauer spectroscopies during the HAO catalyzed oxidation of hydroxylamine, indicating that N-oxide intermediates produced from HAO readily bind to cyt c554. In the half-reduced state of cyt c554, we detect a spin interaction between the [FeNO]7 state of heme 2 and the low-spin ferric state of heme 4. We find that ferrous cyt c554 will reduce NO at a rate greater than 16 s−1, which is comparable to rates of other known NO reductases. Carbon monoxide or nitrite are shown not to bind to the reduced protein, and previous results indicate the reactions with O2 are slow and that a variety of ligands will not bind in the oxidized state. Thus, the enzymatic site is highly selective for NO. The NO reductase activity of cyt c554 may be important during ammonia oxidation in N. europaea at low oxygen concentrations to detoxify NO produced by reduction of nitrite or incomplete oxidation of hydroxylamine. PMID:16569009

  6. Activation of misonidazole by rat liver microsomes and purified NADPH-cytochrome c reductase.

    PubMed

    McManus, M E; Lang, M A; Stuart, K; Strong, J

    1982-02-15

    Rat liver microsomes and purified NADPH-cytochrome c reductase metabolized [14C]misonidazole anaerobically to a reactive intermediate that covalently binds to tissue macromolecules. Air strongly inhibited the binding whereas carbon monoxide had no effect, indicating that misonidazole is activated via reduction and not by cytochrome P-450-dependent oxidation. Both systems showed an absolute requirement for NADPH and were stimulated by flavine (FAD) and paraquat. The apparent Km for misonidazole binding to microsomal protein was 0.74 mM the apparent Vmax was 0.64 nmole 14C bound . mg-1 . min-1. At a single substrate concentration, nitrofurantoin, nitrofurazone and desmethylmisonidazole inhibited the covalent binding of misonidazole to microsomal protein by 47, 26, and 38% respectively. The effect of nitrofurantoin on the kinetics of misonidazole binding gave a complex interaction indicative of uncompetitive inhibition. Glutathione reduced the binding of misonidazole to microsomal protein below the level observed for boiled microsomes while ascorbic acid had no effect. Compared to nitrofurantoin and paraquat, misonidazole was a poor stimulator of superoxide production as measured by adrenochrome formation.

  7. Silencing NADPH-cytochrome P450 reductase results in reduced acaricide resistance in Tetranychus cinnabarinus (Boisduval)

    PubMed Central

    Shi, Li; Zhang, Jiao; Shen, Guangmao; Xu, Zhifeng; Wei, Peng; Zhang, Yichao; Xu, Qiang; He, Lin

    2015-01-01

    Cytochrome P450 monooxygenases (P450s) are involved in metabolic resistance to insecticides and require NADPH cytochrome P450 reductase (CPR) to transfer electrons when they catalyze oxidation reactions. The carmine spider mite, Tetranychus cinnabarinus is an important pest mite of crop and vegetable plants worldwide, and its resistance to acaricides has quickly developed. However, the role of CPR on the formation of acaricide-resistance in T. cinnabarinus is still unclear. In this study, a full-length cDNA encoding CPR was cloned and characterized from T. cinnabarinus (designated TcCPR). TcCPR expression was detectable in all developmental stages of T. cinnabarinus, but it’s much lower in eggs. TcCPR was up-regulated and more inducible with fenpropathrin treatment in the fenpropathrin-resistant (FeR) strain compared with the susceptible SS strain. Feeding of double-strand RNA was effective in silencing the transcription of TcCPR in T. cinnabarinus, which resulted in decreasing the activity of P450s and increasing the susceptibility to fenpropathrin in the FeR strain but not in the susceptible strain. The current results provide first evidence that the down-regulation of TcCPR contributed to an increase of the susceptibility to fenpropathrin in resistant mites. TcCPR could be considered as a novel target for the development of new pesticides. PMID:26493678

  8. Differential expression and functional characterization of the NADPH cytochrome P450 reductase genes from Nothapodytes foetida.

    PubMed

    Huang, Fong-Chin; Sung, Pin-Hui; Do, Yi-Yin; Huang, Pung-Ling

    2012-07-01

    Three unique NADPH:cytochrome P450 reductase (CPR) cDNAs have been isolated from a Nothapodytes foetida cDNA library and characterized. Phylogenetic analysis showed that NfCPR1 is a class I isoform, whereas NfCPR2 and NfCPR3 are class II isoforms. Both NfCPR1 and NfCPR2 transcripts were detected in all examined organs of N. foetida, with the highest level for NfCPR1 being in the seeds whereas for NfCPR2 predominantly in leaves. In contrast, NfCPR3 transcripts were only detected in flower buds and seeds at almost equal expression levels. Moreover, NfCPR1 expression did not change during wounding treatment, whereas NfCPR2 and NfCPR3 were induced in response to wounding. Microsomes isolated from insect cells co-expressing NfCPR2 and cytochrome P450 enzyme geraniol 10-hydroxylase (G10H) enhanced the production of eriodictyol from naringenin approximately 11-fold relative to control G10H-only insect cells, indicating the supportive role of NfCPR2 for G10H activity in insect cells. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. Molecular cloning and functional characterization of multiple NADPH-cytochrome P450 reductases from Andrographis paniculata.

    PubMed

    Lin, Huixin; Wang, Jian; Qi, Mengdie; Guo, Juan; Rong, Qixian; Tang, Jinfu; Wu, Yisheng; Ma, Xiaojing; Huang, Luqi

    2017-04-11

    Andrographis paniculata (Burm.f.) Wall. ex Nees is widely used as medicinal herb in Southern and Southeastern Asia and andrographolide is its main medicinal constituent. Based on the structure of andrographolide, it has been proposed that cytochrome P450 enzymes play vital roles on its biosynthesis. NADPH:cytochrome P450 reductase (CPR) is the most important redox partner of multiple P450s. In this study, three CPRs were identified in the genomic data of A. paniculata (namely ApCPR1, ApCPR2, and ApCPR3), and their coding regions were cloned. They varied from 62% to 70% identities to each other at the amino acid sequence level. ApCPR1 belongs to Class I of dicotyledonous CPR while both ApCPR2 and ApCPR3 are grouped to Class II. The recombinant enzymes ApCPR1 and ApCPR2 reduced cytochrome c and ferricyanide in an NADPH-dependent manner. In yeast, they supported the activity of CYP76AH1, a ferruginol-forming enzyme. However, ApCPR3 did not show any enzymatic activities either in vitro or in vivo. Quantitative real-time PCR analysis showed that both ApCPR1 and ApCPR2 expressed in all tissues examined, but ApCPR2 showed higher expression in leaves. Expression of ApCPR2 was inducible by MeJA and its pattern matched with andrographolide accumulation. Present investigation suggested ApCPR2 involves in the biosynthesis of secondary metabolites including andrographolide.

  10. Membrane Tetraheme Cytochrome cm552 of the Ammonia-Oxidizing Nitrosomonas europaea: A Ubiquinone Reductase

    PubMed Central

    Kim, Hyung J.; Zatsman, Anna; Upadhyay, Anup K.; Whittaker, Mark; Bergmann, David; Hendrich, Michael P.; Hooper, Alan B.

    2009-01-01

    Cytochrome cm552 (cyt cm552) from the ammonia-oxidizing Nitrosomonas europaea is encoded by the cycB gene, which is preceded in a gene cluster by three genes encoding proteins involved in the oxidation of hydroxylamine: hao, hydroxylamine oxidoreductase; orf2, a putative membrane protein; cycA, cyt c554. By amino acid sequence alignment of the core tetraheme domain, cyt cm552 belongs to the NapC/TorC family of tetra- or pentaheme cytochrome c species involved in electron transport from membrane quinols to a variety of periplasmic electron shuttles leading to terminal reductases. However, cyt cm552 is thought to reduce quinone with electrons originating from HAO. In this work, the tetrahemic 27 kDa cyt cm552 from N. europaea was purified after extraction from membranes using Triton X-100 with subsequent exchange into n-dodecyl β-D-maltoside. The cytochrome had a propensity to form strong SDS-resistant dimers likely mediated by a conserved GXXXG motif present in the putative transmembrane segment. Optical spectra of the ferric protein contained a broad ligand–metal charge transfer band at ~625 nm indicative of a high-spin heme. Mössbauer spectroscopy of the reduced 57Fe-enriched protein revealed the presence of high-spin and low-spin hemes in a 1:3 ratio. Multimode EPR spectroscopy of the native state showed signals from an electronically interacting high-spin/low-spin pair of hemes. Upon partial reduction, a typical high-spin heme EPR signal was observed. No EPR signals were observed from the other two low-spin hemes, indicating an electronic interaction between these hemes as well. UV–vis absorption data indicate that CO (ferrous enzyme) or CN− (ferric or ferrous enzyme) bound to more than one and possibly all hemes. Other anionic ligands did not bind. The four ferrous hemes of the cytochrome were rapidly oxidized in the presence of oxygen. Comparative modeling, based on the crystal structure and conserved residues of the homologous NrfH protein from

  11. Histidine-41 of the cytochrome b5 domain of the borage delta6 fatty acid desaturase is essential for enzyme activity.

    PubMed

    Sayanova, O; Shewry, P R; Napier, J A

    1999-10-01

    Unlike most other plant microsomal desaturases, the Delta6-fatty acid desaturase from borage (Borago officinalis) contains an N-terminal extension that shows homology to the small hemoprotein cytochrome (Cyt) b5. To determine if this domain serves as a functional electron donor for the Delta6-fatty acid desaturase, mutagenesis and functional analysis by expression in transgenic Arabidopsis was carried out. Although expression of the wild-type borage Delta6-fatty acid desaturase resulted in the synthesis and accumulation of Delta6-unsaturated fatty acids, this was not observed in plants transformed with N-terminally deleted forms of the desaturase. Site-directed mutagenesis was used to disrupt one of the axial heme-binding residues (histidine-41) of the Cyt b5 domain; expression of this mutant form of the Delta6-desaturase in transgenic plants failed to produce Delta6-unsaturated fatty acids. These data indicate that the Cyt b5 domain of the borage Delta6-fatty acid desaturase is essential for enzymatic activity.

  12. Histidine-41 of the Cytochrome b5 Domain of the Borage Δ6 Fatty Acid Desaturase Is Essential for Enzyme Activity1

    PubMed Central

    Sayanova, Olga; Shewry, Peter R.; Napier, Johnathan A.

    1999-01-01

    Unlike most other plant microsomal desaturases, the Δ6-fatty acid desaturase from borage (Borago officinalis) contains an N-terminal extension that shows homology to the small hemoprotein cytochrome (Cyt) b5. To determine if this domain serves as a functional electron donor for the Δ6-fatty acid desaturase, mutagenesis and functional analysis by expression in transgenic Arabidopsis was carried out. Although expression of the wild-type borage Δ6-fatty acid desaturase resulted in the synthesis and accumulation of Δ6-unsaturated fatty acids, this was not observed in plants transformed with N-terminally deleted forms of the desaturase. Site-directed mutagenesis was used to disrupt one of the axial heme-binding residues (histidine-41) of the Cyt b5 domain; expression of this mutant form of the Δ6-desaturase in transgenic plants failed to produce Δ6-unsaturated fatty acids. These data indicate that the Cyt b5 domain of the borage Δ6-fatty acid desaturase is essential for enzymatic activity. PMID:10517856

  13. Production of a highly active, soluble form of the cytochrome P450 reductase (CPR A) from Candida tropicalis

    DOEpatents

    Donnelly, Mark

    2006-08-01

    The present invention provides soluble cytochrome p450 reductase (CPR) proteins from Candida sp. having an altered N-terminal region which results in reduced hydrophobicity of the N-terminal region. Also provided are host cells comprising the subject soluble CPR proteins. In addition, the present invention provides nucleotide and corresponding amino acid sequences for soluble CPR proteins and vectors comprising the nucleotide sequences. Methods for producing a soluble CPR, for increasing production of a dicarboxylic acid, and for detecting a cytochrome P450 are also provided.

  14. Definition of cytochrome c binding domains by chemical modification: Kinetics of reaction with beef mitochondrial reductase and functional organization of the respiratory chain*

    PubMed Central

    Speck, Samuel H.; Ferguson-Miller, Shelagh; Osheroff, Neil; Margoliash, E.

    1979-01-01

    An assay has been developed to study the steady-state kinetics of the reduction of cytochrome c by purified beef heart mitochondrial cytochrome c reductase (cytochrome bc1 complex, complex III). An analogue of coenzyme Q2 (2,3-dimethoxy-5-methyl-6-decylhydroquinone) was employed as an antimycin-sensitive reductant. The kinetics of reaction of ten different mono(4-carboxy-2,6-dinitrophenyl) derivatives of horse cytochrome c were determined. The modified proteins showed higher apparent Km values than the native protein and greater sensitivity to ionic strength, defining an interaction domain on cytochrome c for purified cytochrome c reductase. This interaction site is located on the front surface of the molecule (which contains the exposed heme edge) and surrounds the point at which the positive end of the dipole axis crosses the surface of the protein. The site is similar to that previously determined for mitochondrial cytochrome c oxidase and yeast cytochrome c peroxidase, suggesting that the primary interaction with redox partners is directed by the dipolar charge distribution on cytochrome c. The extensive overlapping of the interaction domains for the mitochondrial cytochrome c oxidase and reductase indicates that cytochrome c must be mobile in order to transfer electrons between them, depending on their relative positions in the membrane. Whether such mobility is necessary in intact mitochondria depends on whether the interactions with the complete membrane-bound system are the same as with the purified components. PMID:218193

  15. Cytochrome P450 Reductase: A Harbinger of Diffusible Reduced Oxygen Species

    PubMed Central

    Manoj, Kelath Murali; Gade, Sudeep Kumar; Mathew, Lazar

    2010-01-01

    The bi-enzymatic system of cytochrome P450 (CYP, a hemoprotein) and cytochrome P450 reductase (CPR, a diflavoenzyme) mediate the redox metabolism of diverse indigenous and xenobiotic molecules in various cellular and organ systems, using oxygen and NADPH. Curiously, when a 1∶1 ratio is seen to be optimal for metabolism, the ubiquitous CYP:CPR distribution ratio is 10 to 100∶1 or higher. Further, the NADPH equivalents consumed in these in vitro or in situ assemblies usually far exceeded the amount of substrate metabolized. We aimed to find the rationale to explain for these two oddities. We report here that CPR is capable of activating molecular oxygen on its own merit, generating diffusible reduced oxygen species (DROS). Also, in the first instance for a flavoprotein, CPR is shown to deplete peroxide via diffusible radical mediated process, thereby leading to the formation of water (but without significant evolution of oxygen). We also quantitatively demonstrate that the rate of oxygen activation and peroxide depletion by CPR accounts for the major reactivity in the CYP+CPR mixture. We show unambiguously that CPR is able to regulate the concentration of diffusible reduced oxygen species in the reaction milieu. These findings point out that CPR mediated processes are bound to be energetically ‘wasteful’ and potentially ‘hazardous’ owing to the unavoidable nature of the CPR to generate and deplete DROS. Hence, we can understand that CPR is distributed at low densities in cells. Some of the activities that were primarily attributed to the heme-center of CYP are now established to be a facet of the flavins of CPR. The current approach of modeling drugs to minimize “uncoupling” on the basis of erstwhile hypothesis stands questionable, considering the ideas brought forth in this work. PMID:20967245

  16. Isoelectrophoretic characterization of Pseudomonas cytochrome oxidase/nitrite reductase and its heme d1-containing domain.

    PubMed

    Hull, H H; Wharton, D C

    1993-02-15

    The cytochrome oxidase/nitrite reductase of Pseudomonas aeruginosa has been purified to homogeneity as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When this "homogeneous" protein is subjected to electrophoretic titration curve analysis in ampholines or to isoelectric focusing in immobilized pH gradient gels it is resolved into several bands, each of which possesses the olive-green color of the holoenzyme. Although the patterns of resolution replicate for a given enzyme preparation differences occur among different preparations. Furthermore, storage for several months at -20 degrees C leads to an increase in the number of isoelectrophoretic forms. All preparations, however, have two primary bands, one with a pI of 6.97 and the other of 7.02. Both these bands possess significant cytochrome oxidase activity after elution from the gels. When each of the primary bands is eluted and again subjected to isoelectric focusing under the same conditions as before, each band interconverts into two bands with pIs of 6.97 and 7.02. The addition of the ligand cyanide to the holoenzyme produces a shift in the pI of the two bands to pIs 7.04 and 7.12 while the addition of nitrite shifts some of the band at pI 6.97 into that at pI 7.02. The heme d1-containing dipeptide of the enzyme, produced by treatment with subtilisin, also exhibits considerable heterogeneity upon electrophoretic titration curve analysis and by isoelectric focusing in immobiline gels. Possible explanations for the observed isoelectrophoretic behavior in terms of protein conformation and heme chemistry are discussed.

  17. Excess NO Predisposes Mitochondrial Succinate-Cytochrome c Reductase to Produce Hydroxyl Radical†

    PubMed Central

    Chen, Jingfeng; Chen, Chwen-Lih; Alevriadou, B. Rita; Zweier, Jay L.; Chen, Yeong-Renn

    2011-01-01

    Mitochondria–derived oxygen free radical(s) are important mediators of oxidative cellular injury. It is widely hypothesized that excess NO enhances O2•− generated by mitochondria under certain pathological conditions. In the mitochondrial electron transport chain, succinate-cytochrome c reductase (SCR) catalyzes the electron transfer reaction from succinate to cytochrome c. To gain the insights into the molecular mechanism of how NO overproduction may mediate the oxygen free radical generation by SCR, we employed isolated SCR, cardiac myoblast H9c2, and endothelial cells to study the interaction of NO with SCR in vitro and ex vivo. Under the conditions of enzyme turnover in the presence of NO donor (DEANO), SCR gained pro-oxidant function for generating hydroxyl radical as detected by EPR spin trapping using DEPMPO. The EPR signal associated with DEPMPO/•OH adduct was nearly completely abolished in the presence of catalase or an iron chelator and partially inhibited by SOD, suggesting the involvement of the iron-H2O2 dependent Fenton reaction or O2•−–dependent Haber-Weiss mechanism. Direct EPR measurement of SCR at 77 °K indicated the formation of a nonheme iron-NO complex, implying that electron leakage to molecular oxygen was enhanced at the FAD cofactor, and that excess NO predisposed SCR to produce •OH. In H9c2 cells, SCR dependent oxygen free radical generation was stimulated by NO released from DEANO or produced by the cells following exposure to hypoxia/reoxygenation. With shear exposure that led to overproduction of NO by the endothelium, SCR mediated oxygen free radical production was also detected in cultured vascular endothelial cells. PMID:21406178

  18. Structure of octaheme cytochrome c nitrite reductase from Thioalkalivibrio nitratireducens in a complex with phosphate

    SciTech Connect

    Trofimov, A. A.; Polyakov, K. M.; Boiko, K. M.; Filimonenkov, A. A.; Dorovatovskii, P. V.; Tikhonova, T. V.; Popov, V. O.; Koval'chuk, M. V.

    2010-01-15

    Octaheme cytochrome c nitrite reductase from Thioalkalivibrio nitratireducens (TvNiR) catalyzes the reduction of nitrite and hydroxylamine to ammonia. The structures of the free enzyme and of the enzyme in complexes with the substrate (nitrite ion) and the inhibitor (azide ion) have been solved previously. In this study we report the structures of the oxidized complex of TvNiR with phosphate and of this complex reduced by europium(II) chloride (1.8- and 2.0-A resolution, the R factors are 15.9 and 16.7%, respectively) and the structure of the enzyme in the complex with cyanide (1.76-A resolution, the R factor is 16.5%), which was prepared by soaking a crystal of the oxidized phosphate complex of TvNiR. In the active site of the enzyme, the phosphate ion binds to the iron ion of the catalytic heme and to the side chains of the catalytic residues Arg131, Tyr303, and His361. The cyanide ion is coordinated to the heme-iron ion and is hydrogen bonded to the residue His361. In the structure of reduced TvNiR, the phosphate ion is bound in the same manner as in the structure of oxidized TvNiR, and the nine{sub c}oordinated europium ion is located on the surface of one of the crystallographically independent monomers of the enzyme.

  19. Controlling the formation of a monolayer of cytochrome P450 reductase onto Au surfaces

    NASA Astrophysics Data System (ADS)

    Convery, J. H.; Smith, C. I.; Khara, B.; Scrutton, N. S.; Harrison, P.; Farrell, T.; Martin, D. S.; Weightman, P.

    2012-07-01

    The conditions necessary for the formation of a monolayer and a bilayer of a mutated form (P499C) of human cytochrome P450 reductase on a Au(110)/electrolyte interface have been determined using a quartz crystal microbalance with dissipation, atomic force microscopy, and reflection anisotropy spectroscopy (RAS). The molecules adsorb through a Au-S linkage and, for the monolayer, adopt an ordered structure on the Au(110) substrate in which the optical axes of the dipoles contributing to the RAS signal are aligned roughly along the optical axes of the Au(110) substrate. Differences between the absorption spectrum of the molecules in a solution and the RAS profile of the adsorbed monolayer are attributed to surface order in the orientation of dipoles that contribute in the low energy region of the spectrum, a roughly vertical orientation on the surface of the long axes of the isoalloxazine rings and the lack of any preferred orientation in the molecular structure of the dipoles in the aromatic amino acids. Our studies establish an important proof of principle for immobilizing large biological macromolecules to gold surfaces. This opens up detailed studies of the dynamics of biological macromolecules by RAS, which have general applications in studies of biological redox chemistry that are coupled to protein dynamics.

  20. Identification of ubiquinol cytochrome c reductase hinge (UQCRH) as a potential diagnostic biomarker for lung adenocarcinoma

    PubMed Central

    Gao, Feng; Liu, Qicai; Li, Guoping; Dong, Feng; Qiu, Minglian; Lv, Xiaoting; Zhang, Sheng; Guo, Zheng

    2016-01-01

    Ubiquinol cytochrome c reductase hinge (UQCRH) is a novel protein that localizes in the mitochondrial membrane and induces mitochondrial reactive oxygen species (ROS) generation. It had a high expression rate of 87.10% (108/124) in lung adenocarcinoma. Moreover, serum UQCRH level in patients with lung adenocarcinoma was significantly increased compared with that of pneumonia patients (p < 0.0001) and normal control subjects (p < 0.0001). Receiver operating characteristic curve analysis using an optimal cut-off value of 162.65 pg ml−1 revealed sensitivity and specificity for the diagnosis of lung adenocarcinoma of 88.7% and 85.7%, respectively, with an area under the curve of 0.927 (95% CI: 0.892 to 0.962, p < 0.0001). Serum UQCRH discriminates lung adenocarcinoma patients from the population without cancer with considerable sensitivity and specificity, but it does not distinguish between heavy smokers and lung adenocarcinoma patients. Serum UQCRH could be a potential diagnostic biomarker for lung adenocarcinoma. PMID:27358292

  1. Crystallization and preliminary structure determination of the membrane-bound complex cytochrome c nitrite reductase from Desulfovibrio vulgaris Hildenborough

    SciTech Connect

    Rodrigues, M. L.; Oliveira, T.; Matias, P. M.; Martins, I. C.; Valente, F. M. A.; Pereira, I. A. C.; Archer, M.

    2006-06-01

    The cytochrome c nitrite reductase complex from D. vulgaris Hildenborough has been crystallized. The preliminary crystallographic structure reveals a 2:1 NrfA:NrfH complex stoichiometry. The cytochrome c nitrite reductase (cNiR) isolated from Desulfovibrio vulgaris Hildenborough is a membrane-bound complex formed of NrfA and NrfH subunits. The catalytic subunit NrfA is a soluble pentahaem cytochrome c that forms a physiological dimer of about 120 kDa. The electron-donor subunit NrfH is a membrane-anchored tetrahaem cytochrome c of about 18 kDa molecular weight and belongs to the NapC/NirT family of quinol dehydrogenases, for which no structures are known. Crystals of the native cNiR membrane complex, solubilized with dodecylmaltoside detergent (DDM), were obtained using PEG 4K as precipitant. Anomalous diffraction data were measured at the Swiss Light Source to 2.3 Å resolution. Crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 79.5, b = 256.7, c = 578.2 Å. Molecular-replacement and MAD methods were combined to solve the structure. The data presented reveal that D. vulgaris cNiR contains one NrfH subunit per NrfA dimer.

  2. The cytochrome b5 tail anchors and stabilizes subdomains of human DNA topoisomerase II alpha in the cytoplasm of retrovirally infected mammalian cells.

    PubMed

    Soltermann, A; Ernst, A; Leroy, D; Stahel, R A; Gasser, S M

    1999-06-15

    DNA topoisomerase II (topo II) is the target of many anticancer drugs and is often altered in drug-resistant cell lines. In some tumor cell lines truncated isoforms of topo IIalpha are localized to the cytoplasm. To study the localization and function of individual enzyme domains, we have epitope-tagged several fragments of human topo IIalpha and expressed them by retroviral infection of rodent and human cells. We find that fusion of the topo II fragments to the hydrophobic tail of human liver cytochrome b5 anchors the fusion protein to the outer face of cytoplasmic membranes, as determined by colocalization with calnexin and selective detergent permeabilization. Moreover, whereas the minimal ATPase domain (aa 1-266) is weakly and diffusely expressed, addition of the cytb5 anchor (1-266-b5) increases its steady-state level 16-fold with no apparent toxicity. Similar results are obtained with the complete ATPase domain (aa 1-426). A C-terminal domain (aa 1030-1504) of human topo IIalpha containing an intact dimerization motif is stably expressed and accumulates in the nucleus. Fusion to the cytb5 anchor counteracts the nuclear localization signal and relocalizes the protein to cytoplasmic membranes. In conclusion, we describe a technique that stabilizes and targets retrovirally expressed proteins such that they are exposed on the cytoplasmic surface of cellular membranes. This approach may be of general use for regulating the nuclear accumulation of drugs or proteins in living cells.

  3. Cardiac contractility in Antarctic teleost is modulated by nitrite through xanthine oxidase and cytochrome p-450 nitrite reductase.

    PubMed

    Garofalo, Filippo; Amelio, Daniela; Gattuso, Alfonsina; Cerra, Maria Carmela; Pellegrino, Daniela

    2015-09-15

    In mammalian and non-mammalian vertebrates, nitrite anion, the largest pool of intravascular and tissue nitric oxide storage, represents a key player of many biological processes, including cardiac modulation. As shown by our studies on Antarctic teleosts, nitrite-dependent cardiac regulation is of great relevance also in cold-blooded vertebrates. This study analysed the influence elicited by nitrite on the performance of the perfused beating heart of two Antarctic stenotherm teleosts, the haemoglobinless Chionodraco hamatus (icefish) and the red-blooded Trematomus bernacchii. Since haemoglobin is crucial in nitric oxide homeostasis, the icefish, a naturally occurring genetic knockout for this protein, provides exclusive opportunities to investigate nitric oxide/nitrite signaling. In vivo, nitrite conversion to nitric oxide requires the nitrite reductase activity of xanthine oxidase and cytochrome P-450, thus the involvement of these enzymes was also evaluated. We showed that, in C. hamatus and T. bernacchii, nitrite influenced cardiac performance by inducing a concentration-dependent positive inotropic effect which was unaffected by nitric oxide scavenging by PTIO in C. hamatus, while it was abolished in T. bernacchii. Specific inhibition of xanthine oxidase and cytochrome P-450 revealed, in the two teleosts, that the nitrite-dependent inotropism required the nitrite reductase activity of both enzymes. We also found that xanthine oxidase is more expressed in C. hamatus than in T. bernacchii, while the opposite was observed concerning cytochrome P-450. Results suggested that in the heart of C. hamatus and T. bernacchii, nitrite is an integral physiological source of nitric oxide with important signaling properties, which require the nitrite reductase activity of xanthine oxidase and cytochrome P-450.

  4. Mechanism of inhibition of purified leaping mullet (Liza saliens) NADPH-cytochrome P450 reductase by toxic metals: aluminum and thallium.

    PubMed

    Bozcaarmutlu, Azra

    2007-01-01

    Aluminum and thallium may reach life-threatening levels in aquatic systems in the near future because of their extensive use in various industrial fields. It is therefore important to study the mechanism of toxicity of aluminum and thallium on fish enzymes. To this aim, the effects of aluminum and thallium on the activity of purified leaping mullet (Liza saliens) cytochrome P450 reductase, an essential component of the important cytochrome P450 system, have been studied. Results indicated that both metal ions strongly inhibited the NADPH-cytochrome P450 reductase. The IC50 values of AlCl3 and TlCl3 were estimated to be 34 microM and 3 microM, respectively. The Lineweaver-Burk plot and Dixon plot revealed that both metal ions noncompetitively inhibited the purified mullet cytochrome P450 reductase. The K(i) values of Al3+ and Tl3+ were calculated from Dixon plots as 8.9 and 5.6 microM, respectively. The inhibitory effects of Al3+ and Tl3+ on purified cytochrome P450 reductase were partially recovered by 1 mM EDTA. Additionally, tin and magnesium were shown to have no apparent effect on purified mullet cytochrome P450 reductase.

  5. Biological activity of phenolic compounds. Hepatic cytochrome P-450, cytochrome b/sub 5/ and NADPH cytochrome c reductase in chicks and rats fed phenolic monomers, polymers, and glycosides

    SciTech Connect

    Klasing, S.A.; Mora, M.I.; Wilson, W.C.; Fahey, G.C. Jr.; Garst, J.E.

    1985-09-01

    Experiments were conducted to determine effects of a phenolic polymer (Kraft wood lignin, Indulin), phenolic glycosides (cane molasses and wood molasses), and phenolic monomers (vanillin, vanillic acid, ferulic acid, and p-coumaric acid) on liver cytochromes P-450, cytochrome b/sub 5/, and NADPH cytochrome c reductase in chicks and rats. Chicks fed 6.0% lignin had a higher cytochromes P-450 content than did chicks fed 0% fiber, 6.0% wood cellulose, or 6.0% arenaceous flour. Chicks fed 12.0% wood molasses had a higher cytochromes P-450 level than did chicks fed 0% fiber or 6.0% wood molasses. Cane molasses incorporated at both 6.0 and 12.0% of the diet induced cytochromes P-450 content over those of control-fed birds. Chicks fed 6.0% lignin, with or without antibiotic, had a higher cytochromes P-450 level than did chicks fed control diets, with or without antibiotic. Additionally, chicks fed 6.0% lignin had lower intestinal diaminopimelic acid (DAP) levels than did chicks fed 0% fiber. Rats fed 0% fiber, 6.0% wood cellulose, 6.0% arenaceous flour, or 6.0% lignin exhibited no difference in cytochrome level or activity among treatments. Chicks fed 0.5% vanillin, 0.5% vanillic acid, 0.5% ferulic acid, or 0.5% p-coumaric acid had comparable cytochromes level and activity compared with chicks fed no phenolics. Chicks fed 0.5% p-coumaric acid had lower rates of gain than did chicks fed control or other phenolic-containing diets. Rats fed these phenolics had similar cytochromes P-450 content among treatments.

  6. Molecular population genetics of the NADPH cytochrome P450 reductase (CPR) gene in Anopheles minimus.

    PubMed

    Srivastava, Hemlata; Huong, Ngo Thi; Arunyawat, Uraiwan; Das, Aparup

    2014-08-01

    Development of insecticide resistance (IR) in mosquito vectors is a primary huddle to malaria control program. Since IR has genetic basis, and genes constantly evolve with response to environment for adaptation to organisms, it is important to know evolutionary pattern of genes conferring IR in malaria vectors. The mosquito Anopheles minimus is a major malaria vector of the Southeast (SE) Asia and India and is susceptible to all insecticides, and thus of interest to know if natural selection has shaped variations in the gene conferring IR. If not, the DNA fragment of such a gene could be used to infer population structure and demography of this species of malaria vector. We have therefore sequenced a ~569 bp DNA segment of the NADPH cytochrome P450 reductase (CPR) gene (widely known to confer IR) in 123 individuals of An. minimus collected in 10 different locations (eight Indian, one Thai and one Vietnamese). Two Indian population samples were completely mono-morphic in the CPR gene. In general, low genetic diversity was found with no evidence of natural selection in this gene. The data were therefore analyzed to infer population structure and demography of this species. The 10 populations could be genetically differentiated into four different groups; the samples from Thailand and Vietnam contained high nucleotide diversity. All the 10 populations conform to demographic equilibrium model with signature of past population expansion in four populations. The results in general indicate that the An. minimus mosquitoes sampled in the two SE Asian localities contain several genetic characteristics of being parts of the ancestral population.

  7. H-rev107 Regulates Cytochrome P450 Reductase Activity and Increases Lipid Accumulation

    PubMed Central

    Tsai, Fu-Ming; Chen, Mao-Liang; Wang, Lu-Kai; Lee, Ming-Cheng

    2015-01-01

    H-rev107 is a member of the HREV107 type II tumor suppressor gene family and acts as a phospholipase to catalyze the release of fatty acids from glycerophospholipid. H-rev107 has been shown to play an important role in fat metabolism in adipocytes through the PGE2/cAMP pathway, but the detailed molecular mechanism underlying H-rev107-mediated lipid degradation has not been studied. In this study, the interaction between H-rev107 and cytochrome P450 reductase (POR), which is involved in hepatic lipid content regulation, was determined by yeast two-hybrid screen and confirmed by using in vitro pull down assays and immunofluorescent staining. The expression of POR in H-rev107-expressing cells enhanced the H-rev107-mediated release of arachidonic acid. However, H-rev107 inhibited POR activity and relieved POR-mediated decreased triglyceride content in HtTA and HeLa cervical cells. The inhibitory effect of H-rev107 will be abolished when POR-expressing cells transfected with PLA2-lacking pH-rev107 or treated with PLA2 inhibitor. Silencing of H-rev107 using siRNA resulted in increased glycerol production and reversion of free fatty acid-mediated growth suppression in Huh7 hepatic cells. In summary, our results revealed that H-rev107 is also involved in lipid accumulation in liver cells through the POR pathway via its PLA2 activity. PMID:26381418

  8. The Cytochrome b5 dependent C-5(6) sterol desaturase DES5A from the endoplasmic reticulum of Tetrahymena thermophila complements ergosterol biosynthesis mutants in Saccharomyces cerevisiae

    PubMed Central

    Poklepovich, Tomas J.; Rinaldi, Mauro A.; Tomazic, Mariela L.; Favale, Nicolas O.; Turkewitz, Aaron P.; Nudel, Clara B.; Nusblat, Alejandro D.

    2012-01-01

    Tetrahymena thermophila is a free-living ciliate with no exogenous sterol requirement. However, it can perform several modifications on externally added sterols including desaturation at C5(6), C7(8), and C22(23). Sterol desaturases in Tetrahymena are microsomal enzymes that require Cyt b5, Cyt b5 reductase, oxygen, and reduced NAD(P)H for their activity, and some of the genes encoding these functions have recently been identified. The DES5A gene encodes a C-5(6) sterol desaturase, as shown by gene knockout in Tetrahymena. To confirm and extend that result, and to develop new approaches to gene characterization in Tetrahymena, we have now, expressed DES5A in Saccharomyces cerevisiae. The DES5A gene was codon optimized and expressed in a yeast mutant, erg3Δ, which is disrupted for the gene encoding the S. cerevisiae C-5(6) sterol desaturase ERG3. The complemented strain was able to accumulate 74% of the wild type level of ergosterol, and also lost the hypersensitivity to cycloheximide associated with the lack of ERG3 function. C-5(6) sterol desaturases are expected to function at the endoplasmic reticulum. Consistent with this, a GFP-tagged copy of Des5Ap was localized to the endoplasmic reticulum in both Tetrahymena and yeast. This work shows for the first time that both function and localization are conserved for a microsomal enzyme between ciliates and fungi, notwithstanding the enormous evolutionary distance between these lineages. The results suggest that heterologous expression of ciliate genes in S. cerevisiae provides a useful tool for the characterization of genes in Tetrahymena, including genes encoding membrane protein complexes. PMID:22982564

  9. Kinetic and spectroscopic probes of motions and catalysis in the cytochrome P450 reductase family of enzymes.

    PubMed

    Pudney, Christopher R; Heyes, Derren J; Khara, Basile; Hay, Sam; Rigby, Stephen E J; Scrutton, Nigel S

    2012-05-01

    There is a mounting body of evidence to suggest that enzyme motions are linked to function, although the design of informative experiments aiming to evaluate how this motion facilitates reaction chemistry is challenging. For the family of diflavin reductase enzymes, typified by cytochrome P450 reductase, accumulating evidence suggests that electron transfer is somehow coupled to large-scale conformational change and that protein motions gate the electron transfer chemistry. These ideas have emerged from a variety of experimental approaches, including structural biology methods (i.e. X-ray crystallography, electron paramagnetic/NMR spectroscopies and solution X-ray scattering) and advanced spectroscopic techniques that have employed the use of variable pressure kinetic methodologies, together with solvent perturbation studies (i.e. ionic strength, deuteration and viscosity). Here, we offer a personal perspective on the importance of motions to electron transfer in the cytochrome P450 reductase family of enzymes, drawing on the detailed insight that can be obtained by combining these multiple structural and biophysical approaches.

  10. Effects of 3G cell phone exposure on the structure and function of the human cytochrome P450 reductase.

    PubMed

    Tanvir, Shazia; Thuróczy, György; Selmaoui, Brahim; Silva Pires Antonietti, Viviane; Sonnet, Pascal; Arnaud-Cormos, Delia; Lévêque, Philippe; Pulvin, Sylviane; de Seze, René

    2016-10-01

    Cell phones increase exposure to radiofrequency (RF) electromagnetic fields (EMFs). Whether EMFs exert specific effects on biological systems remains debatable. This study investigated the effect of cell phone exposure on the structure and function of human NADPH-cytochrome P450 reductase (CPR). CPR plays a key role in the electron transfer to cytochrome P450, which takes part in a wide range of oxidative metabolic reactions in various organisms from microbes to humans. Human CPR was exposed for 60min to 1966-MHz RF inside a transverse electromagnetic cell (TEM-cell) placed in an incubator. The specific absorption rate (SAR) was 5W·kg(-1). Conformation changes have been detected through fluorescent spectroscopy of flavin and tryptophan residues, and investigated through circular dichroism, dynamic light scattering and microelectrophoresis. These showed that CPR was narrowed. By using cytochrome C reductase activity to assess the electron flux through the CPR, the Michaelis Menten constant (Km) and the maximum initial velocity (Vmax) decreased by 22% as compared with controls. This change was due to small changes in the tertiary and secondary structures of the protein at 37°C. The relevance of these findings to an actual RF exposure scenario demands further biochemical and in-vivo confirmation.

  11. Distinct Conformational Behaviors of Four Mammalian Dual-Flavin Reductases (Cytochrome P450 Reductase, Methionine Synthase Reductase, Neuronal Nitric Oxide Synthase, Endothelial Nitric Oxide Synthase) Determine their Unique Catalytic Profiles

    PubMed Central

    Haque, Mohammad Mahfuzul; Bayachou, Mekki; Tejero, Jesus; Kenney, Claire; Pearl, Naw May; Im, Sang-Choul; Waskell, Lucy; Stuehr, Dennis J.

    2014-01-01

    Multi-domain enzymes often rely on large conformational motions to function. However, the conformational setpoints, rates of domain motions, and relationships between these parameters and catalytic activity is not well understood. To address this, we determined and compared the conformational setpoints and the rates of conformational switching between closed unreactive and open reactive states in four mammalian di-flavin NADPH oxidoreductases that catalyze important biological electron transfer reactions: cytochrome P450 reductase (CPR), methionine synthase reductase (MSR), and endothelial and neuronal NO synthase (eNOS & nNOS). We used stopped-flow spectroscopy, single turnover methods, and a kinetic model that relates electron flux through each enzyme to its conformational setpoint and its rates of conformational switching. Results show that the four flavoproteins, when fully-reduced, have a broad range of conformational setpoints (from 12 to 72% open state) and also vary 100-fold regarding their rates of conformational switching between unreactive closed and reactive open states (CPR > nNOS > MSR > eNOS). Furthermore, simulations of the kinetic model could explain how each flavoprotein can support its given rate of electron flux (cytochrome c reductase activity) based on its unique conformational setpoint and switching rates. Our study is the first to quantify these conformational parameters among the di-flavin enzymes, and suggests how the parameters might be manipulated to speed or slow biological electron flux. PMID:25265015

  12. Crystal structure of the FMN-binding domain of human cytochrome P450 reductase at 1.93 A resolution.

    PubMed Central

    Zhao, Q.; Modi, S.; Smith, G.; Paine, M.; McDonagh, P. D.; Wolf, C. R.; Tew, D.; Lian, L. Y.; Roberts, G. C.; Driessen, H. P.

    1999-01-01

    The crystal structure of the FMN-binding domain of human NADPH-cytochrome P450 reductase (P450R-FMN), a key component in the cytochrome P450 monooxygenase system, has been determined to 1.93 A resolution and shown to be very similar both to the global fold in solution (Barsukov I et al., 1997, J Biomol NMR 10:63-75) and to the corresponding domain in the 2.6 A crystal structure of intact rat P450R (Wang M et al., 1997, Proc Nat Acad Sci USA 94:8411-8416). The crystal structure of P450R-FMN reported here confirms the overall similarity of its alpha-beta-alpha architecture to that of the bacterial flavodoxins, but reveals differences in the position, number, and length of the helices relative to the central beta-sheet. The marked similarity between P450R-FMN and flavodoxins in the interactions between the FMN and the protein, indicate a striking evolutionary conservation of the FMN binding site. The P450R-FMN molecule has an unusual surface charge distribution, leading to a very strong dipole, which may be involved in docking cytochrome P450 into place for electron transfer near the FMN. Several acidic residues near the FMN are identified by mutagenesis experiments to be important for electron transfer to P4502D6 and to cytochrome c, a clear indication of the part of the molecular surface that is likely to be involved in substrate binding. Somewhat different parts are found to be involved in binding cytochrome P450 and cytochrome c. PMID:10048323

  13. Studies on NADPH-cytochrome c reductase. II. Steady-state kinetic properties of the crystalline enzyme from ale yeast.

    PubMed

    Tryon, E; Kuby, S A

    1984-01-01

    From a study of the steady-state kinetics (at pH 7.6, 30 degrees C) of the reduction of cytochrome c, a 'ping-pong' mechanism may be postulated for the crystalline NADPH-cytochrome c reductase from ale yeast, Saccharomyces cerevisiae [1], a result derivable from a three-substrate ordered system with a rapid equilibrium random sequence in substrates, NADPH and FAD, followed by reactions of the third substrate, Cyt C3+. On this basis, estimates for the kinetic parameters were made together with the inhibitor dissociation constants for NADP+ (competitive with respect to NADPH as variable substrate, but noncompetitive with respect to cytochrome c3+ as the variable substrate). A noncompetitive type of inhibition was also found for cytochrome c2+ with NADPH as variable substrate, in confirmation of the proposed mechanism. With 2,6-dichloroindophenol as the acceptor, in place of cytochrome c3+, a value for KNADPH could be estimated which agreed with that estimated above, with cytochrome c3+ as the acceptor, again, in confirmation of the postulated mechanism. The reactions with molecular O2 catalyzed by the enzyme with NADPH as the reductant have been studied polarographically, and its Km for O2 estimated to be about 0.15 mmol/l at pH 7.6, 25 degrees C. The product of the reaction appears to be H2O2, which acts as a noncompetitive inhibitor for NADPH (Ki = 0.5 mmol/l), and tentatively an enzyme ternary complex containing oxygen and FADoh (semiquinone of FAD) may be assumed to be the kinetically important intermediate, which may be postulated to be in quasi-equilibrium with an enzyme ternary complex containing Oo2 (superoxide) and FAD.

  14. Kinetic studies of the induction of nitrate reductase and cytochrome c reductase in the fungus Aspergillus nidulans

    PubMed Central

    Cove, D. J.

    1967-01-01

    In an earlier paper (Cove, 1966) it was reported that the kinetics of appearance of nitrate reductase (NADPH–nitrate oxidoreductase, EC 1.6.6.3) on the addition of nitrate to a growing culture of Aspergillus nidulans were different in certain respects from those found for many Escherichia coli enzymes. When urea is used as an initial nitrogen source, a further difference is found: enzyme synthesis is no longer continuous. This interruption of synthesis does not appear to be due to synchronous cell division in the culture, nor to be due to accumulation of ammonia. Fluctuations in the intracellular concentration of nitrate, though appearing to be partly responsible for the discontinuity of enzyme syntheses, cannot account for all the observations. Two related hypotheses are put forward to explain this discontinuity of synthesis; each suggests that nitrate reductase is intimately concerned with its own synthesis. One possibility is that the enzyme when it is not in the form of a complex with nitrate is a co-repressor of its own synthesis, and the other that the enzyme is its own repressor. PMID:6049855

  15. A bifunctional delta-fatty acyl acetylenase/desaturase from the moss Ceratodon purpureus. A new member of the cytochrome b5 superfamily.

    PubMed

    Sperling, P; Lee, M; Girke, T; Zähringer, U; Stymne, S; Heinz, E

    2000-06-01

    Many plant genes have been cloned that encode regioselective desaturases catalyzing the formation of cis-unsaturated fatty acids. However, very few genes have been cloned that encode enzymes catalyzing the formation of the functional groups found in unusual fatty acids (e.g. hydroxy, epoxy or acetylenic fatty acids). Here, we describe the characterization of an acetylenase from the moss Ceratodon purpureus with a regioselectivity differing from the previously described Delta12-acetylenase. The gene encoding this protein, together with a Delta6-desaturase, was cloned by a PCR-based approach with primers derived from conserved regions in Delta5-, Delta6-fatty-acid desaturases and Delta8-sphingolipid desaturases. The proteins that are encoded by the two cloned cDNAs are likely to consist of a N-terminal extension of unknown function, a cytochrome b5-domain, and a C-terminal domain that is similar to acyl lipid desaturases with characteristic histidine boxes. The proteins were highly homologous in sequence to the Delta6-desaturase from the moss Physcomitrella patens. When these two cDNAs were expressed in Saccharomyces cerevisiae, both transgenic yeast cultures desaturated Delta9-unsaturated C16- and C18-fatty acids by inserting an additional Delta6cis-double bond. One of these transgenic yeast clones was also able to introduce a Delta6-triple bond into gamma-linolenic and stearidonic acid. This resulted in the formation of 9,12,15-(Z,Z,Z)-octadecatrien-6-ynoic acid, the main fatty acid found in C. pupureus. These results demonstrate that the Delta6-acetylenase from C. pupureus is a bifunctional enzyme, which can introduce a Delta6cis-double bond into 9,12,(15)-C18-polyenoic acids as well as converting a Delta6cis-double bond to a Delta6-triple bond.

  16. Functional characterization of NADPH-cytochrome P450 reductase from Bactrocera dorsalis: Possible involvement in susceptibility to malathion.

    PubMed

    Huang, Yong; Lu, Xue-Ping; Wang, Luo-Luo; Wei, Dong; Feng, Zi-Jiao; Zhang, Qi; Xiao, Lin-Fan; Dou, Wei; Wang, Jin-Jun

    2015-12-18

    NADPH cytochrome P450 reductase (CPR) is essential for cytochrome P450 catalysis, which is important in the detoxification and activation of xenobiotics. In this study, two transcripts of Bactrocera dorsalis CPR (BdCPR) were cloned, and the deduced amino-acid sequence had an N-terminus membrane anchor for BdCPR-X1 and three conserved binding domains (FMN, FAD, and NADP), as well as an FAD binding motif and catalytic residues for both BdCPR-X1 and BdCPR-X2. BdCPR-X1 was detected to have the high expression levels in adults and in Malpighian tubules, fat bodies, and midguts of adults, but BdCPR-X2 expressed lowly in B. dorsalis. The levels of BdCPRs were similar in malathion-resistant strain compared to susceptible strain. However, injecting adults with double-stranded RNA against BdCPR significantly reduced the transcript levels of the mRNA, and knockdown of BdCPR increased adult susceptibility to malathion. Expressing complete BdCPR-X1 cDNA in Sf9 cells resulted in high activity determined by cytochrome c reduction and these cells had higher viability after exposure to malathion than control. The results suggest that BdCPR could affect the susceptibility of B. dorsalis to malathion and eukaryotic expression of BdCPR would lay a solid foundation for further investigation of P450 in B. dorsalis.

  17. Functional characterization of NADPH-cytochrome P450 reductase from Bactrocera dorsalis: Possible involvement in susceptibility to malathion

    PubMed Central

    Huang, Yong; Lu, Xue-Ping; Wang, Luo-Luo; Wei, Dong; Feng, Zi-Jiao; Zhang, Qi; Xiao, Lin-Fan; Dou, Wei; Wang, Jin-Jun

    2015-01-01

    NADPH cytochrome P450 reductase (CPR) is essential for cytochrome P450 catalysis, which is important in the detoxification and activation of xenobiotics. In this study, two transcripts of Bactrocera dorsalis CPR (BdCPR) were cloned, and the deduced amino-acid sequence had an N-terminus membrane anchor for BdCPR-X1 and three conserved binding domains (FMN, FAD, and NADP), as well as an FAD binding motif and catalytic residues for both BdCPR-X1 and BdCPR-X2. BdCPR-X1 was detected to have the high expression levels in adults and in Malpighian tubules, fat bodies, and midguts of adults, but BdCPR-X2 expressed lowly in B. dorsalis. The levels of BdCPRs were similar in malathion-resistant strain compared to susceptible strain. However, injecting adults with double-stranded RNA against BdCPR significantly reduced the transcript levels of the mRNA, and knockdown of BdCPR increased adult susceptibility to malathion. Expressing complete BdCPR-X1 cDNA in Sf9 cells resulted in high activity determined by cytochrome c reduction and these cells had higher viability after exposure to malathion than control. The results suggest that BdCPR could affect the susceptibility of B. dorsalis to malathion and eukaryotic expression of BdCPR would lay a solid foundation for further investigation of P450 in B. dorsalis. PMID:26681597

  18. SERR Spectroelectrochemical Study of Cytochrome cd1 Nitrite Reductase Co-Immobilized with Physiological Redox Partner Cytochrome c552 on Biocompatible Metal Electrodes.

    PubMed

    Silveira, Célia M; Quintas, Pedro O; Moura, Isabel; Moura, José J G; Hildebrandt, Peter; Almeida, M Gabriela; Todorovic, Smilja

    2015-01-01

    Cytochrome cd1 nitrite reductases (cd1NiRs) catalyze the one-electron reduction of nitrite to nitric oxide. Due to their catalytic reaction, cd1NiRs are regarded as promising components for biosensing, bioremediation and biotechnological applications. Motivated by earlier findings that catalytic activity of cd1NiR from Marinobacter hydrocarbonoclasticus (Mhcd1) depends on the presence of its physiological redox partner, cytochrome c552 (cyt c552), we show here a detailed surface enhanced resonance Raman characterization of Mhcd1 and cyt c552 attached to biocompatible electrodes in conditions which allow direct electron transfer between the conducting support and immobilized proteins. Mhcd1 and cyt c552 are co-immobilized on silver electrodes coated with self-assembled monolayers (SAMs) and the electrocatalytic activity of Ag // SAM // Mhcd1 // cyt c552 and Ag // SAM // cyt c552 // Mhcd1 constructs is tested in the presence of nitrite. Simultaneous evaluation of structural and thermodynamic properties of the immobilized proteins reveals that cyt c552 retains its native properties, while the redox potential of apparently intact Mhcd1 undergoes a ~150 mV negative shift upon adsorption. Neither of the immobilization strategies results in an active Mhcd1, reinforcing the idea that subtle and very specific interactions between Mhcd1 and cyt c552 govern efficient intermolecular electron transfer and catalytic activity of Mhcd1.

  19. SERR Spectroelectrochemical Study of Cytochrome cd1 Nitrite Reductase Co-Immobilized with Physiological Redox Partner Cytochrome c552 on Biocompatible Metal Electrodes

    PubMed Central

    Silveira, Célia M.; Quintas, Pedro O.; Moura, Isabel; Moura, José J. G.; Hildebrandt, Peter; Almeida, M. Gabriela; Todorovic, Smilja

    2015-01-01

    Cytochrome cd1 nitrite reductases (cd1NiRs) catalyze the one-electron reduction of nitrite to nitric oxide. Due to their catalytic reaction, cd1NiRs are regarded as promising components for biosensing, bioremediation and biotechnological applications. Motivated by earlier findings that catalytic activity of cd1NiR from Marinobacter hydrocarbonoclasticus (Mhcd1) depends on the presence of its physiological redox partner, cytochrome c552 (cyt c552), we show here a detailed surface enhanced resonance Raman characterization of Mhcd1 and cyt c552 attached to biocompatible electrodes in conditions which allow direct electron transfer between the conducting support and immobilized proteins. Mhcd1 and cyt c552 are co-immobilized on silver electrodes coated with self-assembled monolayers (SAMs) and the electrocatalytic activity of Ag // SAM // Mhcd1 // cyt c552 and Ag // SAM // cyt c552 // Mhcd1 constructs is tested in the presence of nitrite. Simultaneous evaluation of structural and thermodynamic properties of the immobilized proteins reveals that cyt c552 retains its native properties, while the redox potential of apparently intact Mhcd1 undergoes a ~150 mV negative shift upon adsorption. Neither of the immobilization strategies results in an active Mhcd1, reinforcing the idea that subtle and very specific interactions between Mhcd1 and cyt c552 govern efficient intermolecular electron transfer and catalytic activity of Mhcd1. PMID:26091174

  20. Effect of mercury, cadmium, nickel, chromium and zinc on kinetic properties of NADPH-cytochrome P450 reductase purified from leaping mullet (Liza saliens).

    PubMed

    Bozcaarmutlu, Azra; Arinç, Emel

    2007-04-01

    Information on the mechanism of metal ion inhibition of NADPH-cytochrome P450 reductase is limited. The purpose of the present paper was to elucidate in vitro effect of Hg(+2), Cd(+2), Ni(+2), Cr(+3) and Zn(+2) ions on the purified mullet NADPH-cytochrome P450 reductase. NADPH-cytochrome P450 reductase was purified from detergent-solubilized liver microsomes from leaping mullet (Liza saliens). All of the metal ions caused inhibition of the enzyme activity except Zn(+2). At 50 microM metal concentration, Hg(+2) inhibited the cytochrome P450 reductase activity completely (100%), while, at the same concentrations, Cd(+2), Cr(+3) and Ni(+2) caused 66%, 65% and 37% inhibition, respectively. At 50 microM metal concentration, Zn(+2) had no apparent effect on cytochrome P450 reductase activity. The IC(50) values of HgCl(2), CrCl(3), CdCl(2) and NiCl(2) were estimated to be 0.07 microM, 24 microM, 33 microM and 143 microM, respectively. Of the metal ions tested, Hg(+2) exhibited much higher inhibitory effect at lower concentrations, so it was evidently a more potent inhibitor than the others. All four metal ions displayed noncompetitive type of inhibition mechanism for the purified reductase as analyzed by Dixon plot. K(i) values of Hg(+2), Cr(+3), Cd(+2), and Ni(+2) were calculated from Dixon plots as 0.048 microM, 18 microM, 73 microM and 329 microM, respectively.

  1. Role of hepatic cytochromes P450 in bioactivation of the anticancer drug ellipticine: Studies with the hepatic NADPH:Cytochrome P450 reductase null mouse

    SciTech Connect

    Stiborova, Marie Arlt, Volker M.; Henderson, Colin J.; Wolf, C. Roland; Kotrbova, Vera; Moserova, Michaela; Hudecek, Jiri; Phillips, David H.; Frei, Eva

    2008-02-01

    Ellipticine is an antineoplastic agent, which forms covalent DNA adducts mediated by cytochromes P450 (CYP) and peroxidases. We evaluated the role of hepatic versus extra-hepatic metabolism of ellipticine, using the HRN (Hepatic Cytochrome P450 Reductase Null) mouse model, in which cytochrome P450 oxidoreductase (POR) is deleted in hepatocytes, resulting in the loss of essentially all hepatic CYP function. HRN and wild-type (WT) mice were treated i.p. with 1 and 10 mg/kg body weight of ellipticine. Multiple ellipticine-DNA adducts detected by {sup 32}P-postlabelling were observed in organs from both mouse strains. Highest total DNA binding levels were found in liver, followed by lung, kidney, urinary bladder, colon and spleen. Ellipticine-DNA adduct levels in the liver of HRN mice were up to 65% lower relative to WT mice, confirming the importance of CYP enzymes for the activation of ellipticine in livers, recently shown in vitro with human and rat hepatic microsomes. When hepatic microsomes of both mouse strains were incubated with ellipticine, ellipticine-DNA adduct levels with WT microsomes were up to 2.9-fold higher than with those from HRN mice. The ratios of ellipticine-DNA adducts in extra-hepatic organs between HRN and WT mice of up to 4.7 suggest that these organs can activate ellipticine and that more ellipticine is available in the circulation. These results and the DNA adduct patterns found in vitro and in vivo demonstrate that both CYP1A or 3A and peroxidases participate in activation of ellipticine to reactive species forming DNA adducts in the mouse model used in this study.

  2. Solution structure of oxidized rat microsomal cytochrome b5 in the presence of 2 M guanidinium chloride: monitoring the early steps in protein unfolding.

    PubMed

    Arnesano, F; Banci, L; Bertini, I; Koulougliotis, D

    1998-12-01

    One- and two-dimensional proton NMR spectroscopy has been employed in order to study the denaturation effect of guanidinium chloride (GdmCl) on the oxidized state of the A-form of rat microsomal cytochrome b5 (cyt b5). The protein rapidly starts losing the heme at denaturant concentrations larger than approximately 2.0 M and a largely unfolded protein is eventually obtained. An estimate of the unfolding kinetics is obtained and, by use of a two-state model (folded left and right arrow unfolded), a value for DeltaG degrees. Below this concentration, small (

  3. Tricistronic Overexpression of Cytochrome P450cam, Putidaredoxin, and Putidaredoxin Reductase Provides a Useful Cell-based Catalytic System

    PubMed Central

    Kim, Donghak; Ortiz de Montellano, Paul R.

    2010-01-01

    The catalytic turnover of cytochrome P450cam from Pseudomonas putida requires two auxiliary reduction partners, putidaredoxin (Pd) and putidaredoxin reductase (PdR). We report the functional expression in Escherichia coli of tricistronic constructs consisting of P450cam encoded by the first cistron and the auxiliary proteins, Pd and PdR by the second and the third. Transformed bacterial whole cells efficiently oxidized (1R)- (+)-camphor to 5-exo-hydroxycamphor and interestingly limonene to (−)-perillyl alcohol. These bioengineered E. coli cells possess a heterologous self-sufficient P450 catalytic system that may have advantages in terms of low cost and high yield for the production of fine chemicals. PMID:19458919

  4. NADPH-Cytochrome P450 Reductase: Molecular Cloning and Functional Characterization of Two Paralogs from Withania somnifera (L.) Dunal

    PubMed Central

    Rana, Satiander; Lattoo, Surrinder K.; Dhar, Niha; Razdan, Sumeer; Bhat, Wajid Waheed; Dhar, Rekha S.; Vishwakarma, Ram

    2013-01-01

    Withania somnifera (L.) Dunal, a highly reputed medicinal plant, synthesizes a large array of steroidal lactone triterpenoids called withanolides. Although its chemical profile and pharmacological activities have been studied extensively during the last two decades, limited attempts have been made to decipher the biosynthetic route and identification of key regulatory genes involved in withanolide biosynthesis. Cytochrome P450 reductase is the most imperative redox partner of multiple P450s involved in primary and secondary metabolite biosynthesis. We describe here the cloning and characterization of two paralogs of cytochrome P450 reductase from W. somnifera. The full length paralogs of WsCPR1 and WsCPR2 have open reading frames of 2058 and 2142 bp encoding 685 and 713 amino acid residues, respectively. Phylogenetic analysis demonstrated that grouping of dual CPRs was in accordance with class I and class II of eudicotyledon CPRs. The corresponding coding sequences were expressed in Escherichia coli as glutathione-S-transferase fusion proteins, purified and characterized. Recombinant proteins of both the paralogs were purified with their intact membrane anchor regions and it is hitherto unreported for other CPRs which have been purified from microsomal fraction. Southern blot analysis suggested that two divergent isoforms of CPR exist independently in Withania genome. Quantitative real-time PCR analysis indicated that both genes were widely expressed in leaves, stalks, roots, flowers and berries with higher expression level of WsCPR2 in comparison to WsCPR1. Similar to CPRs of other plant species, WsCPR1 was un-inducible while WsCPR2 transcript level increased in a time-dependent manner after elicitor treatments. High performance liquid chromatography of withanolides extracted from elicitor-treated samples showed a significant increase in two of the key withanolides, withanolide A and withaferin A, possibly indicating the role of WsCPR2 in withanolide biosynthesis

  5. Domain motion in cytochrome P450 reductase: conformational equilibria revealed by NMR and small-angle x-ray scattering.

    PubMed

    Ellis, Jacqueline; Gutierrez, Aldo; Barsukov, Igor L; Huang, Wei-Cheng; Grossmann, J Günter; Roberts, Gordon C K

    2009-12-25

    NADPH-cytochrome P450 reductase (CPR), a diflavin reductase, plays a key role in the mammalian P450 mono-oxygenase system. In its crystal structure, the two flavins are close together, positioned for interflavin electron transfer but not for electron transfer to cytochrome P450. A number of lines of evidence suggest that domain motion is important in the action of the enzyme. We report NMR and small-angle x-ray scattering experiments addressing directly the question of domain organization in human CPR. Comparison of the (1)H-(15)N heteronuclear single quantum correlation spectrum of CPR with that of the isolated FMN domain permitted identification of residues in the FMN domain whose environment differs in the two situations. These include several residues that are solvent-exposed in the CPR crystal structure, indicating the existence of a second conformation in which the FMN domain is involved in a different interdomain interface. Small-angle x-ray scattering experiments showed that oxidized and NADPH-reduced CPRs have different overall shapes. The scattering curve of the reduced enzyme can be adequately explained by the crystal structure, whereas analysis of the data for the oxidized enzyme indicates that it exists as a mixture of approximately equal amounts of two conformations, one consistent with the crystal structure and one a more extended structure consistent with that inferred from the NMR data. The correlation between the effects of adenosine 2',5'-bisphosphate and NADPH on the scattering curve and their effects on the rate of interflavin electron transfer suggests that this conformational equilibrium is physiologically relevant.

  6. NADPH-cytochrome P450 reductase: molecular cloning and functional characterization of two paralogs from Withania somnifera (L.) dunal.

    PubMed

    Rana, Satiander; Lattoo, Surrinder K; Dhar, Niha; Razdan, Sumeer; Bhat, Wajid Waheed; Dhar, Rekha S; Vishwakarma, Ram

    2013-01-01

    Withania somnifera (L.) Dunal, a highly reputed medicinal plant, synthesizes a large array of steroidal lactone triterpenoids called withanolides. Although its chemical profile and pharmacological activities have been studied extensively during the last two decades, limited attempts have been made to decipher the biosynthetic route and identification of key regulatory genes involved in withanolide biosynthesis. Cytochrome P450 reductase is the most imperative redox partner of multiple P450s involved in primary and secondary metabolite biosynthesis. We describe here the cloning and characterization of two paralogs of cytochrome P450 reductase from W. somnifera. The full length paralogs of WsCPR1 and WsCPR2 have open reading frames of 2058 and 2142 bp encoding 685 and 713 amino acid residues, respectively. Phylogenetic analysis demonstrated that grouping of dual CPRs was in accordance with class I and class II of eudicotyledon CPRs. The corresponding coding sequences were expressed in Escherichia coli as glutathione-S-transferase fusion proteins, purified and characterized. Recombinant proteins of both the paralogs were purified with their intact membrane anchor regions and it is hitherto unreported for other CPRs which have been purified from microsomal fraction. Southern blot analysis suggested that two divergent isoforms of CPR exist independently in Withania genome. Quantitative real-time PCR analysis indicated that both genes were widely expressed in leaves, stalks, roots, flowers and berries with higher expression level of WsCPR2 in comparison to WsCPR1. Similar to CPRs of other plant species, WsCPR1 was un-inducible while WsCPR2 transcript level increased in a time-dependent manner after elicitor treatments. High performance liquid chromatography of withanolides extracted from elicitor-treated samples showed a significant increase in two of the key withanolides, withanolide A and withaferin A, possibly indicating the role of WsCPR2 in withanolide biosynthesis

  7. Monitoring Shifts in the Conformation Equilibrium of the Membrane Protein Cytochrome P450 Reductase (POR) in Nanodiscs*

    PubMed Central

    Wadsäter, Maria; Laursen, Tomas; Singha, Aparajita; Hatzakis, Nikos S.; Stamou, Dimitrios; Barker, Robert; Mortensen, Kell; Feidenhans'l, Robert; Møller, Birger Lindberg; Cárdenas, Marité

    2012-01-01

    Nanodiscs are self-assembled ∼50-nm2 patches of lipid bilayers stabilized by amphipathic belt proteins. We demonstrate that a well ordered dense film of nanodiscs serves for non-destructive, label-free studies of isolated membrane proteins in a native like environment using neutron reflectometry (NR). This method exceeds studies of membrane proteins in vesicle or supported lipid bilayer because membrane proteins can be selectively adsorbed with controlled orientation. As a proof of concept, the mechanism of action of the membrane-anchored cytochrome P450 reductase (POR) is studied here. This enzyme is responsible for catalyzing the transfer of electrons from NADPH to cytochrome P450s and thus is a key enzyme in the biosynthesis of numerous primary and secondary metabolites in plants. Neutron reflectometry shows a coexistence of two different POR conformations, a compact and an extended form with a thickness of 44 and 79 Å, respectively. Upon complete reduction by NADPH, the conformational equilibrium shifts toward the compact form protecting the reduced FMN cofactor from engaging in unspecific electron transfer reaction. PMID:22891242

  8. Monitoring shifts in the conformation equilibrium of the membrane protein cytochrome P450 reductase (POR) in nanodiscs.

    PubMed

    Wadsäter, Maria; Laursen, Tomas; Singha, Aparajita; Hatzakis, Nikos S; Stamou, Dimitrios; Barker, Robert; Mortensen, Kell; Feidenhans'l, Robert; Møller, Birger Lindberg; Cárdenas, Marité

    2012-10-05

    Nanodiscs are self-assembled ∼50-nm(2) patches of lipid bilayers stabilized by amphipathic belt proteins. We demonstrate that a well ordered dense film of nanodiscs serves for non-destructive, label-free studies of isolated membrane proteins in a native like environment using neutron reflectometry (NR). This method exceeds studies of membrane proteins in vesicle or supported lipid bilayer because membrane proteins can be selectively adsorbed with controlled orientation. As a proof of concept, the mechanism of action of the membrane-anchored cytochrome P450 reductase (POR) is studied here. This enzyme is responsible for catalyzing the transfer of electrons from NADPH to cytochrome P450s and thus is a key enzyme in the biosynthesis of numerous primary and secondary metabolites in plants. Neutron reflectometry shows a coexistence of two different POR conformations, a compact and an extended form with a thickness of 44 and 79 Å, respectively. Upon complete reduction by NADPH, the conformational equilibrium shifts toward the compact form protecting the reduced FMN cofactor from engaging in unspecific electron transfer reaction.

  9. Mutation of the inducible ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE2 alters lignin composition and improves saccharification.

    PubMed

    Sundin, Lisa; Vanholme, Ruben; Geerinck, Jan; Goeminne, Geert; Höfer, René; Kim, Hoon; Ralph, John; Boerjan, Wout

    2014-12-01

    ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE1 (ATR1) and ATR2 provide electrons from NADPH to a large number of CYTOCHROME P450 (CYP450) enzymes in Arabidopsis (Arabidopsis thaliana). Whereas ATR1 is constitutively expressed, the expression of ATR2 appears to be induced during lignin biosynthesis and upon stresses. Therefore, ATR2 was hypothesized to be preferentially involved in providing electrons to the three CYP450s involved in lignin biosynthesis: CINNAMATE 4-HYDROXYLASE (C4H), p-COUMARATE 3-HYDROXYLASE1 (C3H1), and FERULATE 5-HYDROXYLASE1 (F5H1). Here, we show that the atr2 mutation resulted in a 6% reduction in total lignin amount in the main inflorescence stem and a compositional shift of the remaining lignin to a 10-fold higher fraction of p-hydroxyphenyl units at the expense of syringyl units. Phenolic profiling revealed shifts in lignin-related phenolic metabolites, in particular with the substrates of C4H, C3H1 and F5H1 accumulating in atr2 mutants. Glucosinolate and flavonol glycoside biosynthesis, both of which also rely on CYP450 activities, appeared less affected. The cellulose in the atr2 inflorescence stems was more susceptible to enzymatic hydrolysis after alkaline pretreatment, making ATR2 a potential target for engineering plant cell walls for biofuel production. © 2014 American Society of Plant Biologists. All Rights Reserved.

  10. Cloning, Functional Expression, and Subcellular Localization of Multiple NADPH-Cytochrome P450 Reductases from Hybrid Poplar1

    PubMed Central

    Ro, Dae-Kyun; Ehlting, Jürgen; Douglas, Carl J.

    2002-01-01

    NADPH:cytochrome P450 reductase (CPR) provides reducing equivalents to diverse cytochrome P450 monooxygenases. We isolated cDNAs for three CPR genes (CPR1, CPR2, and CPR3) from hybrid poplar (Populus trichocarpa × Populus deltoides). Deduced CPR2 and CPR3 amino acid sequences were 91% identical, but encoded isoforms divergent from CPR1 (72% identity). CPR1 and CPR2 were co-expressed together with the P450 enzyme cinnamate-4-hydroxylase (C4H) in yeast (Saccharomyces cerevisiae). Microsomes isolated from strains expressing CPR1/C4H or CPR2/C4H enhanced C4H activities approximately 10-fold relative to the C4H-only control strain, and catalyzed NADPH-dependent cytochrome c reduction. The divergent CPR isoforms (CPR1 and CPR2/3) contained entirely different N-terminal sequences, which are conserved in other plant CPRs and are diagnostic for two distinct classes of CPRs within the angiosperms. C-terminal green fluorescent protein fusions to CPR1 and CPR2 were constructed and expressed in both yeast and Arabidopsis. The fusion proteins expressed in yeast retained the ability to support C4H activity and, thus, were catalytically active. Both CPR::green fluorescent protein fusion proteins were strictly localized to the endoplasmic reticulum in transgenic Arabidopsis. The lack of localization of either isoform to chloroplasts, where P450s are known to be present, suggests that an alternative P450 reduction system may be operative in this organelle. Transcripts for the three poplar CPR genes were present ubiquitously in all tissues examined, but CPR2 showed highest expression in young leaf tissue. PMID:12481067

  11. Flavin-binding and protein structural integrity studies on NADPH-cytochrome P450 reductase are consistent with the presence of distinct domains.

    PubMed

    Narayanasami, R; Horowitz, P M; Masters, B S

    1995-01-10

    NADPH-cytochrome P450 reductase (reductase) contains FMN and FAD in 1:1 stoichiometry as tightly bound cofactors. Electrons from NADPH are transferred to cytochrome P450 through the intermediacy of reductase. A knowledge of the interactions which must occur to allow the intermolecular and intramolecular transfer of electrons is not only of intrinsic interest but is necessary to understand the regulation of the overall oxidation-reduction processes in which cytochromes P450 participate in the endoplasmic reticulum of many organs. In the present study, urea has been employed as a chaotropic agent to study the dissociation of flavins from NADPH-cytochrome P450 reductase. The results show that dissociation of FMN occurs at concentrations of urea between 0 and 1 M and that, as the concentrations of urea approach 1 M, the intrinsic protein fluorescence increases, indicating a change in protein conformation. Above 2 M urea protein fluorescence increases, reaching a plateau at 3 M urea, and FAD begins to dissociate from the enzyme. In the range of 0-1 M urea, a completely reversible dissociation of FMN occurs and, at 3 M urea, the fluorescence values representing flavin dissociation and protein conformation changes have reached a maximum. Thus, the definition of various states of the flavoprotein with both, one, or no flavins bound and the ability to remove the flavins reversibly under specific conditions have permitted the construction of a simple model to explain the various unfolding intermediates of this enzyme. Our experiments suggest that reductase is composed of distinct domains which can be examined independently by the application of chaotropic agents.

  12. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine as a substrate of cytochrome P450 2D6: allosteric effects of NADPH-cytochrome P450 reductase.

    PubMed

    Modi, S; Gilham, D E; Sutcliffe, M J; Lian, L Y; Primrose, W U; Wolf, C R; Roberts, G C

    1997-04-15

    1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin that produces Parkinsonism symptoms in man, has been examined as a substrate of recombinant human cytochrome P450 2D6. When cumene hydroperoxide is used as an oxygen and electron donor, a single product is formed, identified as 4-phenyl-1,2,3,6-tetrahydropyridine. The K(m) for formation of this product (130 microM) is in agreement with the dissociation constants for MPTP binding to the enzyme determined by optical and nuclear magnetic resonance (NMR) spectroscopy. When the reaction is carried out with nicotinamide adenine dinucleotide phosphate (reduced) (NADPH) and recombinant human NADPH-cytochrome P450 reductase, a second product, identified as 1-methyl-4-(4'-hydroxyphenyl)-1,2,3,6-tetrahydropyridine, is formed in addition to 4-phenyl-1,2,3,6-tetrahydropyridine. The K(m) values for formation of these two products are 19 microM and 120 microM, respectively. Paramagnetic relaxation experiments have been used to measure distances between the protons of bound MPTP and the heme iron, and these have been used to construct models for the position and orientation of MPTP in the active site. For the cytochrome alone, a single mode of binding was observed, with the N-methyl close to the heme iron in a position appropriate for the observed N-demethylation reaction. In the presence of the reductase, the data were not consistent with a single mode of binding but could be explained by the existence of two alternative orientations of MPTP in the active site. One of these, characterized by a dissociation constant of 150 microM, is essentially identical to that observed in the absence of the reductase. In the second, which has a K(d) of 25 microM, the MPTP is oriented so that the aromatic ring is close to the heme iron, in a position appropriate for p-hydroxylation leading to the formation of the product seen only in the presence of the reductase. In the case of codeine, another substrate for cytochrome P450 2D6

  13. Characterization of mutations in the cytochrome b subunit of the bc1 complex of Rhodobacter sphaeroides that affect the quinone reductase site (Qc).

    PubMed

    Hacker, B; Barquera, B; Crofts, A R; Gennis, R B

    1993-04-27

    The cytochrome b subunit of the bc1 complex contains two heme components, cytochrome bL and cytochrome bH, and is the locus of both a quinol oxidizing site (Qo or Qz) and a quinone reducing site (Qi or Qc). The quinone reductase site has been previously characterized as the site of interaction for a set of inhibitors including antimycin A, diuron, funiculosin, and HQNO. In this paper, four highly conserved residues in the cytochrome b subunit of Rhodobacter sphaeroides (A52, H217, K251, and D252) were targeted for site-directed mutagenesis. These residues were chosen as being likely to be at or near the quinone reductase site, on the basis of known locations of missense mutations in the homologous yeast subunit that confer resistance to Qc-directed inhibitors. The site-directed mutants all exhibit a normal rate of reduction of cytochrome bH, suggesting a fully functional quinol oxidizing site. However, each of the mutants is impaired, to varying degrees, in the rate of reoxidation of cytochrome bH. Two mutants (H217A and D252A) are unable to grow photosynthetically, indicating a severe defect in the bc1 complex. In both cases, the cause of the defect is the lack of reoxidation of cytochrome bH by ubiquinone. This is the first report of mutations that selectively impair the rate of electron transfer from cytochrome bH to the Qc-site. This set of mutations will be useful not only for modeling the structure of the quinone reducing site but also in elucidating the catalytic mechanism of this portion of the Q-cycle.

  14. Membrane tetraheme cytochrome c(m552) of the ammonia-oxidizing nitrosomonas europaea: a ubiquinone reductase.

    PubMed

    Kim, Hyung J; Zatsman, Anna; Upadhyay, Anup K; Whittaker, Mark; Bergmann, David; Hendrich, Michael P; Hooper, Alan B

    2008-06-24

    Cytochrome c(m552) (cyt c(m552)) from the ammonia-oxidizing Nitrosomonas europaea is encoded by the cycB gene, which is preceded in a gene cluster by three genes encoding proteins involved in the oxidation of hydroxylamine: hao, hydroxylamine oxidoreductase; orf2, a putative membrane protein; cycA, cyt c(554). By amino acid sequence alignment of the core tetraheme domain, cyt c(m552) belongs to the NapC/TorC family of tetra- or pentaheme cytochrome c species involved in electron transport from membrane quinols to a variety of periplasmic electron shuttles leading to terminal reductases. However, cyt c(m552) is thought to reduce quinone with electrons originating from HAO. In this work, the tetrahemic 27 kDa cyt c(m552) from N. europaea was purified after extraction from membranes using Triton X-100 with subsequent exchange into n-dodecyl beta-d-maltoside. The cytochrome had a propensity to form strong SDS-resistant dimers likely mediated by a conserved GXXXG motif present in the putative transmembrane segment. Optical spectra of the ferric protein contained a broad ligand-metal charge transfer band at approximately 625 nm indicative of a high-spin heme. Mossbauer spectroscopy of the reduced (57)Fe-enriched protein revealed the presence of high-spin and low-spin hemes in a 1:3 ratio. Multimode EPR spectroscopy of the native state showed signals from an electronically interacting high-spin/low-spin pair of hemes. Upon partial reduction, a typical high-spin heme EPR signal was observed. No EPR signals were observed from the other two low-spin hemes, indicating an electronic interaction between these hemes as well. UV-vis absorption data indicate that CO (ferrous enzyme) or CN(-) (ferric or ferrous enzyme) bound to more than one and possibly all hemes. Other anionic ligands did not bind. The four ferrous hemes of the cytochrome were rapidly oxidized in the presence of oxygen. Comparative modeling, based on the crystal structure and conserved residues of the homologous

  15. Purification of Pseudomonas cytochrome oxidase (or nitrite reductase) by immunological methods.

    PubMed

    Silvestrini, M C; Citro, G; Colosimo, A; Chersi, A; Zito, R; Brunori, M

    1983-03-01

    A new purification procedure for the cytochrome oxidase from Pseudomonas aeruginosa based on immunoaffinity chromatography has been compared with the biochemical method and shown to be (i) fully competitive in terms of chemical homogeneity and enzymatic properties of the purified protein (ii) slightly less efficient in terms of total recovery and (iii) much more convenient in terms of the time required. A further evolution of the method that minimizes the number of purification steps and any stress to the native structure of the protein is suggested.

  16. Overexpression of human NADPH:cytochrome c (P450) reductase confers enhanced sensitivity to both tirapazamine (SR 4233) and RSU 1069.

    PubMed Central

    Patterson, A. V.; Saunders, M. P.; Chinje, E. C.; Talbot, D. C.; Harris, A. L.; Strafford, I. J.

    1997-01-01

    P450 reductase (NADPH: cytochrome c (P450) reductase, EC 1.6.2.4) plays an important role in the reductive activation of the bioreductive drug tirapazamine (SR4233). Thus, in a panel of human breast cancer cell lines, expression of P450 reductase correlated with both the hypoxic toxicity and the metabolism of tirapazamine [Patterson et al (1995) Br J Cancer 72: 1144-1150]. To examine this dependence in more detail, the MDA231 cell line, which has the lowest activity of P450 reductase in our breast cell line panel, was transfected with the human P450 reductase cDNA. Isolated clones expressed a 78-kDa protein, which was detected with anti-P450 reductase antibody, and were shown to have up to a 53-fold increase in activity of the enzyme. Using six stable transfected clones covering the 53-fold range of activity of P450 reductase, it was shown that the enzyme activity correlated directly with both hypoxic and aerobic toxicity of tirapazamine, and metabolism of the drug under hypoxic conditions. No metabolism was detected under aerobic conditions. For RSU1069, toxicity was also correlated with P450 reductase activity, but only under hypoxic conditions. Measurable activity of P450 reductase was found in a selection of 14 primary human breast tumours. Activity covered an 18-fold range, which was generally higher than that seen in cell lines but within the range of activity measured in the transfected clones. These results suggest that if breast tumours have significant areas of low oxygen tension, then they are likely to be highly sensitive to the cytotoxic action of tirapazamine and RSU 1069. Images Figure 1 PMID:9374381

  17. Overexpression of human NADPH:cytochrome c (P450) reductase confers enhanced sensitivity to both tirapazamine (SR 4233) and RSU 1069.

    PubMed

    Patterson, A V; Saunders, M P; Chinje, E C; Talbot, D C; Harris, A L; Strafford, I J

    1997-01-01

    P450 reductase (NADPH: cytochrome c (P450) reductase, EC 1.6.2.4) plays an important role in the reductive activation of the bioreductive drug tirapazamine (SR4233). Thus, in a panel of human breast cancer cell lines, expression of P450 reductase correlated with both the hypoxic toxicity and the metabolism of tirapazamine [Patterson et al (1995) Br J Cancer 72: 1144-1150]. To examine this dependence in more detail, the MDA231 cell line, which has the lowest activity of P450 reductase in our breast cell line panel, was transfected with the human P450 reductase cDNA. Isolated clones expressed a 78-kDa protein, which was detected with anti-P450 reductase antibody, and were shown to have up to a 53-fold increase in activity of the enzyme. Using six stable transfected clones covering the 53-fold range of activity of P450 reductase, it was shown that the enzyme activity correlated directly with both hypoxic and aerobic toxicity of tirapazamine, and metabolism of the drug under hypoxic conditions. No metabolism was detected under aerobic conditions. For RSU1069, toxicity was also correlated with P450 reductase activity, but only under hypoxic conditions. Measurable activity of P450 reductase was found in a selection of 14 primary human breast tumours. Activity covered an 18-fold range, which was generally higher than that seen in cell lines but within the range of activity measured in the transfected clones. These results suggest that if breast tumours have significant areas of low oxygen tension, then they are likely to be highly sensitive to the cytotoxic action of tirapazamine and RSU 1069.

  18. Laue Crystal Structure of Shewanella oneidensis Cytochrome c Nitrite Reductase from a High-yield Expression System

    PubMed Central

    Youngblut, Matthew; Judd, Evan T.; Srajer, Vukica; Sayyed, Bilal; Goelzer, Tyler; Elliott, Sean J.; Schmidt, Marius; Pacheco, A. Andrew

    2012-01-01

    The high-yield expression and purification of Shewanella oneidensis cytochrome c nitrite reductase (ccNiR), and its characterization by a variety of methods, notably Laue crystallography, is reported. A key component of the expression system is an artificial ccNiR gene in which the N-terminal signal peptide from the highly expressed S. oneidensis protein “Small Tetra-heme c” replaces the wild-type signal peptide. This gene, inserted into the plasmid pHSG298 and expressed in S. oneidensis TSP-1 strain, generated ~20 mg crude ccNiR/L culture, compared with 0.5–1 mg/L for untransformed cells. Purified ccNiR has nitrite and hydroxylamine reductase activities comparable to those previously reported for E. coli ccNiR, and is stable for over two weeks in pH 7 solution at 4° C. UV/Vis spectropotentiometric titrations and protein film voltammetry identified 5 independent 1-electron reduction processes. Global analysis of the spectropotentiometric data also allowed determination of the extinction coefficient spectra for the 5 reduced ccNiR species. The characteristics of the individual extinction coefficient spectra suggest that, within each reduced species, the electrons are distributed amongst the various hemes, rather than being localized on specific heme centers. The purified ccNiR yielded good quality crystals, with which the 2.59 Å resolution structure was solved at room temperature using the Laue diffraction method. The structure is similar to that of E. coli ccNiR, except in the region where the enzyme interacts with its physiological electron donor (CymA in the case of S. oneidensis ccNiR, NrfB in the case of the E. coli protein). PMID:22382353

  19. Laue crystal structure of Shewanella oneidensis cytochrome c nitrite reductase from a high-yield expression system

    SciTech Connect

    Youngblut, Matthew; Judd, Evan T.; Srajer, Vukica; Sayyed, Bilal; Goelzer, Tyler; Elliott, Sean J.; Schmidt, Marius; Pacheco, A. Andrew

    2012-09-11

    The high-yield expression and purification of Shewanella oneidensis cytochrome c nitrite reductase (ccNiR) and its characterization by a variety of methods, notably Laue crystallography, are reported. A key component of the expression system is an artificial ccNiR gene in which the N-terminal signal peptide from the highly expressed S. oneidensis protein 'small tetraheme c' replaces the wild-type signal peptide. This gene, inserted into the plasmid pHSG298 and expressed in S. oneidensis TSP-1 strain, generated approximately 20 mg crude ccNiR per liter of culture, compared with 0.5-1 mg/L for untransformed cells. Purified ccNiR has nitrite and hydroxylamine reductase activities comparable to those previously reported for Escherichia coli ccNiR, and is stable for over 2 weeks in pH 7 solution at 4 C. UV/vis spectropotentiometric titrations and protein film voltammetry identified five independent one-electron reduction processes. Global analysis of the spectropotentiometric data also allowed determination of the extinction coefficient spectra for the five reduced ccNiR species. The characteristics of the individual extinction coefficient spectra suggest that, within each reduced species, the electrons are distributed among the various hemes, rather than being localized on specific heme centers. The purified ccNiR yielded good-quality crystals, with which the 2.59-{angstrom}-resolution structure was solved at room temperature using the Laue diffraction method. The structure is similar to that of E. coli ccNiR, except in the region where the enzyme interacts with its physiological electron donor (CymA in the case of S. oneidensis ccNiR, NrfB in the case of the E. coli protein).

  20. RNA Interference of NADPH-Cytochrome P450 Reductase Results in Reduced Insecticide Resistance in the Bed Bug, Cimex lectularius

    PubMed Central

    Zhu, Fang; Sams, Sarah; Moural, Tim; Haynes, Kenneth F.; Potter, Michael F.; Palli, Subba R.

    2012-01-01

    Background NADPH-cytochrome P450 reductase (CPR) plays a central role in cytochrome P450 action. The genes coding for P450s are not yet fully identified in the bed bug, Cimex lectularius. Hence, we decided to clone cDNA and knockdown the expression of the gene coding for CPR which is suggested to be required for the function of all P450s to determine whether or not P450s are involved in resistance of bed bugs to insecticides. Methodology/Principal Findings The full length Cimex lectularius CPR (ClCPR) cDNA was isolated from a deltamethrin resistant bed bug population (CIN-1) using a combined PCR strategy. Bioinformatics and in silico modeling were employed to identify three conserved binding domains (FMN, FAD, NADP), a FAD binding motif, and the catalytic residues. The critical amino acids involved in FMN, FAD, NADP binding and their putative functions were also analyzed. No signal peptide but a membrane anchor domain with 21 amino acids which facilitates the localization of ClCPR on the endoplasmic reticulum was identified in ClCPR protein. Phylogenetic analysis showed that ClCPR is closer to the CPR from the body louse, Pediculus humanus corporis than to the CPRs from the other insect species studied. The ClCPR gene was ubiquitously expressed in all tissues tested but showed an increase in expression as immature stages develop into adults. We exploited the traumatic insemination mechanism of bed bugs to inject dsRNA and successfully knockdown the expression of the gene coding for ClCPR. Suppression of the ClCPR expression increased susceptibility to deltamethrin in resistant populations but not in the susceptible population of bed bugs. Conclusions/Significance These data suggest that P450-mediated metabolic detoxification may serve as one of the resistance mechanisms in bed bugs. PMID:22347424

  1. Electron transfer and docking between cytochrome cd1 nitrite reductase and different redox partners - A comparative study.

    PubMed

    Pedroso, Humberto A; Silveira, Célia M; Almeida, Rui M; Almeida, Ana; Besson, Stéphane; Moura, Isabel; Moura, José J G; Almeida, M Gabriela

    2016-09-01

    Cytochrome cd1 nitrite reductases (cd1NiRs) catalyze the reduction of nitrite to nitric oxide in denitrifying bacteria, such as Marinobacter hydrocarbonoclasticus. Previous work demonstrated that the enzymatic activity depends on a structural pre-activation triggered by the entry of electrons through the electron transfer (ET) domain, which houses a heme c center. The catalytic activity of M. hydrocarbonoclasticus cd1NiR (Mhcd1NiR) was tested by mediated electrochemistry, using small ET proteins and chemical redox mediators. The rate of enzymatic reaction depends on the nature of the redox partner, with cytochrome (cyt) c552 providing the highest value. In situations where cyt c552 is replaced by either a biological (cyt c from horse heart) or a chemical mediator the catalytic response was only observed at very low scan rates, suggesting that the intermolecular ET rate is much slower. Molecular docking simulations with the 3D model structure of Mhcd1NiR and cyt c552 or cyt c showed that hydrophobic interactions favor the formation of complexes where the heme c domain of the enzyme is the principal docking site. However, only in the case of cyt c552 the preferential areas of contact and Fe-Fe distances between heme c groups of the redox partners allow establishing competent ET pathways. The coupling of the enzyme with chemical redox mediators was also found not to be energetically favorable. These results indicate that although low activity functional complexes can be formed between Mhcd1NiR and different types of redox mediators, efficient ET is only observed with the putative physiological electron donor cyt c552.

  2. Cloning and characterisation of NADPH-dependent cytochrome P450 reductase gene in the cotton bollworm, Helicoverpa armigera.

    PubMed

    Zhao, Chunqing; Tang, Tao; Feng, Xiaoyun; Qiu, Lihong

    2014-01-01

    Previous studies in our laboratory showed that cytochrome P450 CYP6B7 plays a critical role in a Handan fenvalerate resistant strain (HDFR) of Helicoverpa armigera. As an important component of P450 enzyme systems, cytochrome P450 reductase (CPR) plays an essential role in transferring electrons from NADPH to the P450-substrate complex. However, little information about CPR in H. armigera (HaCPR) has been reported. A full-length cDNA (3525 bp) of HaCPR was cloned. The open reading frame of the HaCPR gene encoded 687 amino acids and shared 27.87-95.21% identities with other known CPRs. Bioinformatic analysis showed that HaCPR is a transmembrane protein with Mw of 77.4 kDa and contains conserved features. The results of real-time quantitative polymerase chain reaction showed that the expression level of HaCPR mRNA was 1.84-fold higher in midgut of 5th instars of the Handan susceptible strain than that in pupae, and the level in the midgut of HDFR strain was 2.02-fold higher than that of the Handan susceptible strain. The levels of HaCPR mRNA were induced by phenobarbital at concentrations of 2 and 4 mg g(-1) , which enhanced 5.20- and 17.45-fold, respectively, compared to that of the control after 48 h of phenobarbital treatment. The results indicate that HaCPR is important for the development of H. armigera and may play an essential role in the P450-mediated insecticide resistance of H. armigera to fenvalerate. © 2013 Society of Chemical Industry.

  3. Effects of various compounds on lipid peroxidation mediated by detergent-solubilized rat liver NADPH-cytochrome C reductase.

    PubMed

    Kamataki, T; Sugita, O; Naminohira, S; Kitagawa, H

    1978-12-01

    A reconstituted lipid peroxidation system containing NADPH-cytochrome c reductase isolated from detergent-solubilized rat liver microsomes was used to determine the effects of several compounds, including drugs, on the lipid peroxidation activity. EDTA and ferrous ion were essential requirements for reconstitution of the activity. The addition of 1,10-phenanthroline to the system containing both EDTA and ferrous ion further enhanced the activity. Pyrocatecol, thymol, p-aminophenol, imipramine, p-chloromercuribenzoate (PCMB) and alpha-tocopherol exhibited strong inhibition, aniline, N-monomethylaniline, aminopyrine, benzphetamine, SKF 525-A and NADP exhibited moderate inhibition, and phenol, benzoic acid, acetanilide and nicotinamide exhibited less or no inhibition at the concentrations lower than 1000 micron M. Metal ions such as Hg+, Hg2+, Co2+, Cu2+, Mn2+ and U6+ inhibited lipid peroxidation strongly. In addition, Cd2+, St2+ and Ca2+ exhibited less potent to moderate inhibition, and Ba2+ and Mg2+ were without effects on the activity. Among sulfhydryl compounds tested, dithiothreitol inhibited lipid peroxidation to a greater extent than did the other three compounds, glutathione, cysteine and mercaptoethanol.

  4. Improved free energy profile for reduction of NO in cytochrome c dependent nitric oxide reductase (cNOR).

    PubMed

    Blomberg, Margareta R A; Siegbahn, Per E M

    2016-07-15

    Quantum chemical calculations play an essential role in the elucidation of reaction mechanisms for redox-active metalloenzymes. For example, the cleavage and the formation of covalent bonds can usually not be described only on the basis of experimental information, but can be followed by the calculations. Conversely, there are properties, like reduction potentials, which cannot be accurately calculated. Therefore, computational and experimental data has to be carefully combined to obtain reliable descriptions of entire catalytic cycles involving electron and proton uptake from donors outside the enzyme. Such a procedure is illustrated here, for the reduction of nitric oxide (NO) to nitrous oxide and water in the membrane enzyme, cytochrome c dependent nitric oxide reductase (cNOR). A surprising experimental observation is that this reaction is nonelectrogenic, which means that no energy is conserved. On the basis of hybrid density functional calculations a free energy profile for the entire catalytic cycle is obtained, which agrees much better with experimental information on the active site reduction potentials than previous ones. Most importantly the energy profile shows that the reduction steps are endergonic and that the entire process is rate-limited by high proton uptake barriers during the reduction steps. This result implies that, if the reaction were electrogenic, it would become too slow when the gradient is present across the membrane. This explains why this enzyme does not conserve any of the free energy released. © 2016 Wiley Periodicals, Inc.

  5. Global effects of the energetics of coenzyme binding: NADPH controls the protein interaction properties of human cytochrome P450 reductase.

    PubMed

    Grunau, Alex; Paine, Mark J; Ladbury, John E; Gutierrez, Aldo

    2006-02-07

    The thermodynamics of coenzyme binding to human cytochrome P450 reductase (CPR) and its isolated FAD-binding domain have been studied by isothermal titration calorimetry. Binding of 2',5'-ADP, NADP(+), and H(4)NADP, an isosteric NADPH analogue, is described in terms of the dissociation binding constant (K(d)), the enthalpy (DeltaH(B)) and entropy (TDeltaS(B)) of binding, and the heat capacity change (DeltaC(p)). This systematic approach allowed the effect of coenzyme redox state on binding to CPR to be determined. The recognition and stability of the coenzyme-CPR complex are largely determined by interaction with the adenosine moiety (K(d2)(')(,5)(')(-ADP) = 76 nM), regardless of the redox state of the nicotinamide moiety. Similar heat capacity change (DeltaC(p)) values for 2',5'-ADP (-210 cal mol(-)(1) K(-)(1)), NADP(+) (-230 cal mol(-)(1) K(-)(1)), and H(4)NADP (-220 cal mol(-)(1) K(-)(1)) indicate no significant contribution from the nicotinamide moiety to the binding interaction surface. The coenzyme binding stoichiometry to CPR is 1:1. This result validates a recently proposed one-site kinetic model [Daff, S. (2004) Biochemistry 43, 3929-3932] as opposed to a two-site model previously suggested by us [Gutierrez, A., Lian, L.-Y., Wolf, C. R., Scrutton, N. S., and Roberts, C. G. K. (2001) Biochemistry 40, 1964-1975]. Calorimetric studies in which binding of 2',5'-ADP to CPR (TDeltaS(B) = -13400 +/- 200 cal mol(-)(1), 35 degrees C) was compared with binding of the same ligand to the isolated FAD-binding domain (TDeltaS(B) = -11200 +/- 300 cal mol(-)(1), 35 degrees C) indicate that the number of accessible conformational substates of the protein increases upon 2',5'-ADP binding in the presence of the FMN-binding domain. This pattern was consistently observed along the temperature range that was studied (5-35 degrees C). This contribution of coenzyme binding energy to domain dynamics in CPR agrees with conclusions from previous temperature-jump studies [Gutierrez

  6. Conformational dynamics and the energetics of protein--ligand interactions: role of interdomain loop in human cytochrome P450 reductase.

    PubMed

    Grunau, Alex; Geraki, Kalotina; Grossmann, J Günter; Gutierrez, Aldo

    2007-07-17

    A combination of mutagenesis, calorimetry, kinetics, and small-angle X-ray scattering (SAXS) has been used to study the mechanism of ligand binding energy propagation through human cytochrome P450 reductase (CPR). Remarkably, the energetics of 2',5'-ADP binding to R597 at the FAD-binding domain are affected by mutations taking place at an interdomain loop located 60 A away. Either deletion of a 7 amino acid long segment (T236-G237-E238-E239-S240-S241-I242) or its replacement by poly-proline repeats (5 and 10 residues) results in a significant increase in 2',5'-ADP enthalpy of binding (DeltaHB). This is accompanied by a decrease in the number of thermodynamic microstates available for the ligand-CPR complex. Moreover, the estimated heat capacity change (DeltaCp) for this interaction changes from -220 cal mol-1 K-1 in the wild-type enzyme to -580 cal mol-1 K-1 in the deletion mutant. Pre-steady-state kinetics measurements reveal a 50-fold decrease in the microscopic rate for interdomain (FAD --> FMN) electron transfer in the deletion mutant (kobs = 0.4 s-1). Multiple turnover cytochome c reduction assays indicate that these mutations impair the ability of the FMN-binding domain to shuttle electrons from the FAD-binding domain to the cytochrome partner. Binding of 2',5'-ADP to wild-type CPR triggers a large-scale structural rearrangement resulting in the complex having a more compact domain organization, and the maximum molecular dimension (Dmax) decreases from 110 A in ligand-free enzyme to 100 A in the ligand-bound CPR. The SAXS experiments also demonstrate that what is affected by the mutations is indeed the relative diffusional motion of the domains. Furthemore, ab initio shape reconstruction and homology modeling would suggest that-in the deletion mutant-hindering of domain motion occurs concomitantly with dimerization. The results presented here show that the energetics of this highly localized interaction (2',5'-ADP binding) have a global character, and are

  7. ARM-microcontroller based portable nitrite electrochemical analyzer using cytochrome c reductase biofunctionalized onto screen printed carbon electrode.

    PubMed

    Santharaman, Paulraj; Venkatesh, Krishna Arun; Vairamani, Kanagavel; Benjamin, Alby Robson; Sethy, Niroj K; Bhargava, Kalpana; Karunakaran, Chandran

    2017-04-15

    Nitrite (NO2(-)) supplementation limits hypoxia-induced oxidative stress and activates the alternate NO pathway which may partially account for the nitrite-mediated cardioprotection. So, sensitive and selective biosensors with point-of-care devices need to be explored to detect the physiological nitrite level due to its important role in human pathophysiology. In this work, cytochrome c reductase (CcR) biofunctionalized self assembled monolayer (SAM) functionalized on gold nanoparticles (GNPs) in polypyrrole (PPy) nanocomposite onto the screen printed carbon electrode (SPCE) was investigated as a biosensor for the detection of nitrite based on its electrochemical and catalytic properties. CcR was covalently coupled with SAM layers on GNPs by using EDC and NHS. Direct electrochemical response of CcR biofunctionalized electrodes showed a couple of well-defined and nearly reversible cyclic voltammetric peaks at -0.34 and -0.45 vs. Ag/AgCl. Under optimal conditions, the biosensor could be used for the determination of NO2(-) with a linear range from 0.1-1600µm and a detection limit of 60nM with a sensitivity of 0.172µAµM(-1)cm(-2). Further, we have designed and developed a novel and cost effective portable electrochemical analyzer for the measurement of NO2(-) in hypoxia induced H9c2 cardiac cells using ARM microcontroller. The results obtained here using the developed portable electrochemical nitrite analyzer were also compared with the standard cyclic voltammetry instrument and found in agreement with each other. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Regulation of p-nitroanisole O-demethylation in perfused rat liver. Adenine nucleotide inhibition of NADP+-dependent dehydrogenases and NADPH-cytochrome c reductase.

    PubMed Central

    Kauffman, F C; Evans, R K; Reinke, L A; Thurman, R G

    1979-01-01

    Perfusion of rat livers with 10 mM-fructose or pretreatment of the rat with 6-aminonicotinamide (70 mg/kg) 6 h before perfusion decreased intracellular ATP concentrations and increased the rate of p-nitroanisole O-demethylation. This increase was accompanied by a decrease in the free [NADP+]/[NADPH] ratio calculated from concentrations of substrates assumed to be in near-equilibrium with isocitrate dehydrogenase. After pretreatment with 6-aminonicotinamide the [NADP+]/[NADPH] ratio also declined. Reduction of NADP+ during mixed-function oxidation may be explained by inhibition of of one or more NADPH-generating enzymes. Glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, isocitrate dehydrogenase and "malic" enzyme, partially purified from livers of phenobarbital-treated rats, were inhibited by ATP and ADP. Inhibitor constants of ATP for the four dehydrogenases varied considerably, ranging from 9 micrometer for "malic" enzyme to 1.85 mM for glucose 6-phosphate dehydrogenase. NADPH-cytochrome c reductase was also inhibited by ATP (Ki 2.8 mM) and by ADP (Ki 0.9 mM), but not by AMP. Concentrations of ATP and ADP that inhibited glucose 6-phosphate dehydrogenase and the reductase were comparable with concentrations in the intact liver. Thus agents that lower intracellular ATP may accelerate rates of mixed-function oxidation by a concerted mechanism involving deinhibition of NADPH-cytochrome c reductase and one or more NADPH-generating enzymes. PMID:44195

  9. Cytochrome cd1 Nitrite Reductase NirS Is Involved in Anaerobic Magnetite Biomineralization in Magnetospirillum gryphiswaldense and Requires NirN for Proper d1 Heme Assembly

    PubMed Central

    Li, Yingjie; Bali, Shilpa; Borg, Sarah; Katzmann, Emanuel

    2013-01-01

    The alphaproteobacterium Magnetospirillum gryphiswaldense synthesizes magnetosomes, which are membrane-enveloped crystals of magnetite. Here we show that nitrite reduction is involved in redox control during anaerobic biomineralization of the mixed-valence iron oxide magnetite. The cytochrome cd1-type nitrite reductase NirS shares conspicuous sequence similarity with NirN, which is also encoded within a larger nir cluster. Deletion of any one of these two nir genes resulted in impaired growth and smaller, fewer, and aberrantly shaped magnetite crystals during nitrate reduction. However, whereas nitrite reduction was completely abolished in the ΔnirS mutant, attenuated but significant nitrite reduction occurred in the ΔnirN mutant, indicating that only NirS is a nitrite reductase in M. gryphiswaldense. However, the ΔnirN mutant produced a different form of periplasmic d1 heme that was not noncovalently bound to NirS, indicating that NirN is required for full reductase activity by maintaining a proper form of d1 heme for holo-cytochrome cd1 assembly. In conclusion, we assign for the first time a physiological function to NirN and demonstrate that effective nitrite reduction is required for biomineralization of wild-type crystals, probably by contributing to oxidation of ferrous iron under oxygen-limited conditions. PMID:23893106

  10. Redox Cycling and Increased Oxygen Utilization Contribute to Diquat-induced Oxidative Stress and Cytotoxicity in Chinese Hamster Ovary Cells Overexpressing NADPH-cytochrome P450 Reductase

    PubMed Central

    Fussell, Karma C.; Udasin, Ronald G.; Gray, Joshua P.; Mishin, Vladimir; Smith, Peter J.S.; Heck, Diane E.; Laskin, Jeffrey D.

    2011-01-01

    Diquat and paraquat are non-specific defoliants that induce toxicity in many organs including the lung, liver, kidney and brain. This toxicity is thought to be due to the generation of reactive oxygen species (ROS). An important pathway leading to ROS production by these compounds is redox cycling. In the present studies, diquat and paraquat redox cycling was characterized using human recombinant NADPH-cytochrome P450 reductase, rat liver microsomes, and Chinese Hamster Ovary (CHO) cells constructed to overexpress cytochrome P450 reductase (CHO-OR) and wild type control cells (CHO-WT). In redox cycling assays with recombinant cytochrome P450 reductase and microsomes, diquat was 10-40 times more effective in generating ROS when compared to paraquat (KM = 1.0 and 44.2 μM, respectively for H2O2 generation by diquat and paraquat using recombinant enzyme, and 15.1 and 178.5 μM, respectively for microsomes). In contrast, at saturating concentrations, these compounds showed similar redox cycling activity (Vmax ≈ 6.0 nmoles H2O2/min/mg protein) for recombinant enzyme and microsomes. Diquat and paraquat also redox cycle in CHO cells. Significantly more activity was evident in CHO-OR cells than CHO-WT cells. Diquat redox cycling in CHO cells was associated with marked increases in protein carbonyl formation, a marker of protein oxidation, as well as cellular oxygen consumption, measured using oxygen microsensors; greater activity was detected in CHO-OR cells than CHO-WT cells. These data demonstrate that ROS formation during diquat redox cycling can generate oxidative stress. Enhanced oxygen utilization during redox cycling may reduce intracellular oxygen available for metabolic reactions and contribute to toxicity. PMID:21215309

  11. Redox cycling and increased oxygen utilization contribute to diquat-induced oxidative stress and cytotoxicity in Chinese hamster ovary cells overexpressing NADPH-cytochrome P450 reductase.

    PubMed

    Fussell, Karma C; Udasin, Ronald G; Gray, Joshua P; Mishin, Vladimir; Smith, Peter J S; Heck, Diane E; Laskin, Jeffrey D

    2011-04-01

    Diquat and paraquat are nonspecific defoliants that induce toxicity in many organs including the lung, liver, kidney, and brain. This toxicity is thought to be due to the generation of reactive oxygen species (ROS). An important pathway leading to ROS production by these compounds is redox cycling. In this study, diquat and paraquat redox cycling was characterized using human recombinant NADPH-cytochrome P450 reductase, rat liver microsomes, and Chinese hamster ovary (CHO) cells constructed to overexpress cytochrome P450 reductase (CHO-OR) and wild-type control cells (CHO-WT). In redox cycling assays with recombinant cytochrome P450 reductase and microsomes, diquat was 10-40 times more effective at generating ROS compared to paraquat (K(M)=1.0 and 44.2μM, respectively, for H(2)O(2) generation by diquat and paraquat using recombinant enzyme, and 15.1 and 178.5μM, respectively for microsomes). In contrast, at saturating concentrations, these compounds showed similar redox cycling activity (V(max)≈6.0nmol H(2)O(2)/min/mg protein) for recombinant enzyme and microsomes. Diquat and paraquat also redox cycle in CHO cells. Significantly more activity was evident in CHO-OR cells than in CHO-WT cells. Diquat redox cycling in CHO cells was associated with marked increases in protein carbonyl formation, a marker of protein oxidation, as well as cellular oxygen consumption, measured using oxygen microsensors; greater activity was detected in CHO-OR cells than in CHO-WT cells. These data demonstrate that ROS formation during diquat redox cycling can generate oxidative stress. Enhanced oxygen utilization during redox cycling may reduce intracellular oxygen available for metabolic reactions and contribute to toxicity. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Conformational change induced by electron transfer in a monolayer of cytochrome P450 reductase adsorbed at the Au(110)-phosphate buffer interface.

    PubMed

    Weightman, P; Smith, C I; Convery, J H; Harrison, P; Khara, B; Scrutton, N S

    2013-09-01

    The reflection anisotropy spectroscopy profiles of a variant of cytochrome P450 reductase adsorbed at the Au(110)-phosphate buffer interface depend on the sequence of potentials applied to the Au(110) electrode. It is suggested that this dependence arises from changes in the orientation of the isoalloxazine ring structures in the protein with respect to the Au(110) surface. This offers a method of monitoring conformational change in this protein by measuring variations in the reflection anisotropy spectrum arising from changes in the redox potential.

  13. Conformational change induced by electron transfer in a monolayer of cytochrome P450 reductase adsorbed at the Au(110)-phosphate buffer interface

    NASA Astrophysics Data System (ADS)

    Weightman, P.; Smith, C. I.; Convery, J. H.; Harrison, P.; Khara, B.; Scrutton, N. S.

    2013-09-01

    The reflection anisotropy spectroscopy profiles of a variant of cytochrome P450 reductase adsorbed at the Au(110)-phosphate buffer interface depend on the sequence of potentials applied to the Au(110) electrode. It is suggested that this dependence arises from changes in the orientation of the isoalloxazine ring structures in the protein with respect to the Au(110) surface. This offers a method of monitoring conformational change in this protein by measuring variations in the reflection anisotropy spectrum arising from changes in the redox potential.

  14. Electron transfer complex between nitrous oxide reductase and cytochrome c552 from Pseudomonas nautica: kinetic, nuclear magnetic resonance, and docking studies.

    PubMed

    Dell'acqua, Simone; Pauleta, Sofia R; Monzani, Enrico; Pereira, Alice S; Casella, Luigi; Moura, José J G; Moura, Isabel

    2008-10-14

    The multicopper enzyme nitrous oxide reductase (N 2OR) catalyzes the final step of denitrification, the two-electron reduction of N 2O to N 2. This enzyme is a functional homodimer containing two different multicopper sites: CuA and CuZ. CuA is a binuclear copper site that transfers electrons to the tetranuclear copper sulfide CuZ, the catalytic site. In this study, Pseudomonas nautica cytochrome c 552 was identified as the physiological electron donor. The kinetic data show differences when physiological and artificial electron donors are compared [cytochrome vs methylviologen (MV)]. In the presence of cytochrome c 552, the reaction rate is dependent on the ET reaction and independent of the N 2O concentration. With MV, electron donation is faster than substrate reduction. From the study of cytochrome c 552 concentration dependence, we estimate the following kinetic parameters: K m c 552 = 50.2 +/- 9.0 muM and V max c 552 = 1.8 +/- 0.6 units/mg. The N 2O concentration dependence indicates a K mN 2 O of 14.0 +/- 2.9 muM using MV as the electron donor. The pH effect on the kinetic parameters is different when MV or cytochrome c 552 is used as the electron donor (p K a = 6.6 or 8.3, respectively). The kinetic study also revealed the hydrophobic nature of the interaction, and direct electron transfer studies showed that CuA is the center that receives electrons from the physiological electron donor. The formation of the electron transfer complex was observed by (1)H NMR protein-protein titrations and was modeled with a molecular docking program (BiGGER). The proposed docked complexes corroborated the ET studies giving a large number of solutions in which cytochrome c 552 is placed near a hydrophobic patch located around the CuA center.

  15. Elastic rotation of Escherichia coli F{sub O}F{sub 1} having ε subunit fused with cytochrome b{sub 562} or flavodoxin reductase

    SciTech Connect

    Oka, Hideyuki; Hosokawa, Hiroyuki; Nakanishi-Matsui, Mayumi; Dunn, Stanley D.; Futai, Masamitsu; Iwamoto-Kihara, Atsuko

    2014-04-18

    Highlights: • Intra-molecular rotation of F{sub O}F{sub 1} ATP synthase was observed using a small bead probe. • Carboxyl-terminus of the ε subunit was fused to cytochrome b{sub 562} or flavodoxin reductase. • The F{sub O}F{sub 1} showed continual rotation with similar rate to the wild-type enzyme. • The intra-molecular rotation is flexible and elastic. - Abstract: Intra-molecular rotation of F{sub O}F{sub 1} ATP synthase enables cooperative synthesis and hydrolysis of ATP. In this study, using a small gold bead probe, we observed fast rotation close to the real rate that would be exhibited without probes. Using this experimental system, we tested the rotation of F{sub O}F{sub 1} with the ε subunit connected to a globular protein [cytochrome b{sub 562} (ε-Cyt) or flavodoxin reductase (ε-FlavR)], which is apparently larger than the space between the central and the peripheral stalks. The enzymes containing ε-Cyt and ε-FlavR showed continual rotations with average rates of 185 and 148 rps, respectively, similar to the wild type (172 rps). However, the enzymes with ε-Cyt or ε-FlavR showed a reduced proton transport. These results indicate that the intra-molecular rotation is elastic but proton transport requires more strict subunit/subunit interaction.

  16. Purification and Preliminary Characterization of Tetraheme Cytochrome c3 and Adenylylsulfate Reductase from the Peptidolytic Sulfate-Reducing Bacterium Desulfovibrio aminophilus DSM 12254

    PubMed Central

    Bursakov, Sergey; Figueiredo, Angelo; Thapper, Anders E.; Todorovic, Smilja; Moura, José J. G.; Ollivier, Bernard; Moura, Isabel; Fauque, Guy

    2005-01-01

    Two proteins were purified and preliminarily characterized from the soluble extract of cells (310 g, wet weight) of the aminolytic and peptidolytic sulfate-reducing bacterium Desulfovibrio (D.) aminophilus DSM 12254. The iron-sulfur flavoenzyme adenylylsulfate (adenosine 5'-phosphosulfate, APS) reductase, a key enzyme in the microbial dissimilatory sulfate reduction, has been purified in three chromatographic steps (DEAE-Biogel A, Source 15, and Superdex 200 columns). It contains two different subunits with molecular masses of 75 and 18 kDa. The fraction after the last purification step had a purity index (A278nm / A388nm) of 5.34, which was used for further EPR spectroscopic studies. The D. aminophilus APS reductase is very similar to the homologous enzymes isolated from D. gigas and D. desulfuricans ATCC 27774. A tetraheme cytochrome c3 (His-heme iron-His) has been purified in three chromatographic steps (DEAE- Biogel A, Source 15, and Biogel-HTP columns) and preliminarily characterized. It has a purity index ([A553nm - A570nm]red / A280nm) of 2.9 and a molecular mass of around 15 kDa, and its spectroscopic characterization (NMR and EPR) has been carried out. This hemoprotein presents similarities with the tetraheme cytochrome c3 from Desulfomicrobium (Des.) norvegicum (NMR spectra, and N-terminal amino acid sequence). PMID:18365091

  17. Renal reduced nicotinamide adenine dinucleotide phosphate:cytochrome c reductase-mediated metabolism of the carcinogen N-(4-(5-nitro-2-furyl)-2-thiazolyl)acetamide

    SciTech Connect

    Mattammal, M.B.; Zenser, T.V.; Palmier, M.O.; Davis, B.B.

    1985-01-01

    N-(4-(5-Nitro-2-furyl)-2-thiazolyl)acetamide (NFTA) metabolism was examined in vitro using microsomes prepared from rat liver and renal cortex and from rabbit liver and renal cortex and outer and inner medulla. NFTA nitroreduction was observed with each tissue. Three mol of NADPH were used per mol of NFTA reduced. Substrate and inhibitor specificity suggested that the microsomal nitroreduction was due to NADPH:cytochrome c reductase. Metabolite(s) formed bound to protein, RNA, DNA, and synthetic polyribonucleotides. Maximum covalent binding was seen with polyguanylic acid. A guanosine-NFTA adduct was isolated. Binding was inhibited by sulfhydryl compounds and vitamin E. The (/sup 14/C)NFTA:glutathione or (/sup 3/H)glutathione:NFTA conjugates obtained from microsomal incubations showed identical chromatographic properties as the product obtained by the reaction of synthetic N-hydroxy-NFTA with (/sup 3/H)glutathione. Structures of synthetic N-hydroxy-NFTA and the microsomal reduction product 1-(4-(2-acetylaminothiazolyl))-3-cyano-1-propanone were established by mass spectrometry. The latter reduction product did not bind macromolecules. These results suggest that renal NADPH:cytochrome c reductase reduces NFTA to an N-hydroxy-NFTA intermediate that binds nucleophilic sites on macromolecules.

  18. Sequence-specific DNA damage induced by carcinogenic danthron and anthraquinone in the presence of Cu(II), cytochrome P450 reductase and NADPH.

    PubMed

    Ohkuma, Y; Hiraku, Y; Kawanishi, S

    2001-06-01

    The mechanism of metal-mediated DNA damage by carcinogenic danthron (1,8-dihydroxyanthraquinone) and anthraquinone was investigated by the DNA sequencing technique using 32P-labeled human DNA fragments obtained from the human c-Ha-ras-1 protooncogene and the p53 tumor suppressor gene. Danthron caused DNA damage particularly at guanines in the 5'-GG-3', 5'-GGGG-3', 5'-GGGGG-3' sequences (damaged bases are underlined) in the presence of Cu(II), cytochrome P450 reductase and the NADPH-generating system. The DNA damage was inhibited by catalase and bathocuproine, suggesting the involvement of H2O2 and Cu(I). The formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine increased with increasing concentration of danthron. On the other hand, carcinogenic anthraquinone induced less oxidative DNA damage than danthron. Electron spin resonance study showed that the semiquinone radical could be produced by P450 reductase plus NADPH-mediated reduction of danthron, while little signal was observed with anthraquinone. These results suggest that danthron is much more likely to be reduced by P450 reductase and generate reactive oxygen species through the redox cycle, leading to more extensive Cu(II)-mediated DNA damage than anthraquinone. In the case of anthraquinone, its hydroxylated metabolites with similar reactivity to danthron may participate in DNA damage in vivo. We conclude that oxidative DNA damage by danthron and anthraquinone seems to be relevant for the expression of their carcinogenicity.

  19. Decreased bile-acid synthesis in livers of hepatocyte-conditional NADPH-cytochrome P450 reductase-null mice results in increased bile acids in serum.

    PubMed

    Cheng, Xingguo; Zhang, Youcai; Klaassen, Curtis D

    2014-10-01

    NADPH-cytochrome P450 reductase (Cpr) is essential for the function of microsomal cytochrome P450 monooxygenases (P450), including those P450s involved in bile acid (BA) synthesis. Mice with hepatocyte-specific deletion of NADPH-cytochrome P450 reductase (H-Cpr-null) have been engineered to understand the in vivo function of hepatic P450s in the metabolism of xenobiotics and endogenous compounds. However, the impact of hepatic Cpr on BA homeostasis is not clear. The present study revealed that H-Cpr-null mice had a 60% decrease in total BA concentration in liver, whereas the total BA concentration in serum was almost doubled. The decreased level of cholic acid (CA) in both serum and livers of H-Cpr-null mice is likely due to diminished enzyme activity of Cyp8b1 that is essential for CA biosynthesis. Feedback mechanisms responsible for the reduced liver BA concentrations and/or increased serum BA concentrations in H-Cpr-null mice included the following: 1) enhanced alternative BA synthesis pathway, as evidenced by the fact that classic BA synthesis is diminished but chenodeoxycholic acid still increases in both serum and livers of H-Cpr-null mice; 2) inhibition of farnesoid X receptor activation, which increased the mRNA of Cyp7a1 and 8b1; 3) induction of intestinal BA transporters to facilitate BA absorption from the intestine to the circulation; 4) induction of hepatic multidrug resistance-associated protein transporters to increase BA efflux from the liver to blood; and 5) increased generation of secondary BAs. In summary, the present study reveals an important contribution of the alternative BA synthesis pathway and BA transporters in regulating BA concentrations in H-Cpr-null mice.

  20. Fine tuning of coenzyme specificity in family 2 aldo-keto reductases revealed by crystal structures of the Lys-274 → Arg mutant of Candida tenuis xylose reductase (AKR2B5) bound to NAD + and NADP +

    SciTech Connect

    Leitgeb, Stefan; Petschacher, Barbara; Wilson, David K.; Nidetzky, Bernd

    2005-01-11

    Aldo-keto reductases of family 2 employ single site replacement Lys → Arg to switch their cosubstrate preference from NADPH to NADH. X-ray crystal structures of Lys-274 → Arg mutant of Candida tenuis xylose reductase (AKR2B5) bound to NAD+ and NADP+ were determined at a resolution of 2.4 and 2.3 Å, respectively. Due to steric conflicts in the NADP+-bound form, the arginine side chain must rotate away from the position of the original lysine side chain, thereby disrupting a network of direct and water-mediated interactions between Glu-227, Lys-274 and the cofactor 2'-phosphate and 3'-hydroxy groups. Because anchoring contacts of its Glu-227 are lost, the coenzyme-enfolding loop that becomes ordered upon binding of NAD(P)+ in the wild-type remains partly disordered in the NADP+-bound mutant. The results delineate a catalytic reaction profile for the mutant in comparison to wild-type.

  1. Mutants of Cytochrome P450 Reductase Lacking Either Gly-141 or Gly-143 Destabilize Its FMN Semiquinone.

    PubMed

    Rwere, Freeborn; Xia, Chuanwu; Im, Sangchoul; Haque, Mohammad M; Stuehr, Dennis J; Waskell, Lucy; Kim, Jung-Ja P

    2016-07-08

    NADPH-cytochrome P450 oxidoreductase transfers electrons from NADPH to cytochromes P450 via its FAD and FMN. To understand the biochemical and structural basis of electron transfer from FMN-hydroquinone to its partners, three deletion mutants in a conserved loop near the FMN were characterized. Comparison of oxidized and reduced wild type and mutant structures reveals that the basis for the air stability of the neutral blue semiquinone is protonation of the flavin N5 and strong H-bond formation with the Gly-141 carbonyl. The ΔGly-143 protein had moderately decreased activity with cytochrome P450 and cytochrome c It formed a flexible loop, which transiently interacts with the flavin N5, resulting in the generation of both an unstable neutral blue semiquinone and hydroquinone. The ΔGly-141 and ΔG141/E142N mutants were inactive with cytochrome P450 but fully active in reducing cytochrome c In the ΔGly-141 mutants, the backbone amide of Glu/Asn-142 forms an H-bond to the N5 of the oxidized flavin, which leads to formation of an unstable red anionic semiquinone with a more negative potential than the hydroquinone. The semiquinone of ΔG141/E142N was slightly more stable than that of ΔGly-141, consistent with its crystallographically demonstrated more rigid loop. Nonetheless, both ΔGly-141 red semiquinones were less stable than those of the corresponding loop in cytochrome P450 BM3 and the neuronal NOS mutant (ΔGly-810). Our results indicate that the catalytic activity of cytochrome P450 oxidoreductase is a function of the length, sequence, and flexibility of the 140s loop and illustrate the sophisticated variety of biochemical mechanisms employed in fine-tuning its redox properties and function. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Mutants of Cytochrome P450 Reductase Lacking Either Gly-141 or Gly-143 Destabilize Its FMN Semiquinone*

    PubMed Central

    Rwere, Freeborn; Xia, Chuanwu; Im, Sangchoul; Haque, Mohammad M.; Stuehr, Dennis J.; Waskell, Lucy; Kim, Jung-Ja P.

    2016-01-01

    NADPH-cytochrome P450 oxidoreductase transfers electrons from NADPH to cytochromes P450 via its FAD and FMN. To understand the biochemical and structural basis of electron transfer from FMN-hydroquinone to its partners, three deletion mutants in a conserved loop near the FMN were characterized. Comparison of oxidized and reduced wild type and mutant structures reveals that the basis for the air stability of the neutral blue semiquinone is protonation of the flavin N5 and strong H-bond formation with the Gly-141 carbonyl. The ΔGly-143 protein had moderately decreased activity with cytochrome P450 and cytochrome c. It formed a flexible loop, which transiently interacts with the flavin N5, resulting in the generation of both an unstable neutral blue semiquinone and hydroquinone. The ΔGly-141 and ΔG141/E142N mutants were inactive with cytochrome P450 but fully active in reducing cytochrome c. In the ΔGly-141 mutants, the backbone amide of Glu/Asn-142 forms an H-bond to the N5 of the oxidized flavin, which leads to formation of an unstable red anionic semiquinone with a more negative potential than the hydroquinone. The semiquinone of ΔG141/E142N was slightly more stable than that of ΔGly-141, consistent with its crystallographically demonstrated more rigid loop. Nonetheless, both ΔGly-141 red semiquinones were less stable than those of the corresponding loop in cytochrome P450 BM3 and the neuronal NOS mutant (ΔGly-810). Our results indicate that the catalytic activity of cytochrome P450 oxidoreductase is a function of the length, sequence, and flexibility of the 140s loop and illustrate the sophisticated variety of biochemical mechanisms employed in fine-tuning its redox properties and function. PMID:27189945

  3. Human adrenal cells that express both 3β-hydroxysteroid dehydrogenase type 2 (HSD3B2) and cytochrome b5 (CYB5A) contribute to adrenal androstenedione production

    PubMed Central

    Nakamura, Yasuhiro; Xing, Yewei; Hui, Xiao-Gang; Kurotaki, Yumi; Ono, Katsuhiko; Cohen, Tony; Sasano, Hironobu; Rainey, William E

    2014-01-01

    Androstenedione is one of several weak androgens produced in the human adrenal gland. 3β-hydroxysteroid dehydrogenase type 2 (HSD3B2) and cytochrome b5 (CYB5A) are both required for androstenedione production. However, previous studies demonstrated the expression of HSD3B2 within the zona glomerulosa (ZG) and fasciculata (ZF) but low levels in the zona reticularis. In contrast, CYB5A expression increases in the zona reticularis (ZR) in human adrenal glands. Although their colocalization has been reported in gonadal theca and Leydig cells this has not been studied in the human adrenal. Therefore, we immonolocalized HSD3B2 and CYB5A in normal human adrenal glands and first demonstrated their co-expression in the cortical cells located at the border between the ZF and ZR in normal human adrenal. Results of in vitro studies using the human adrenal H295R cells treated with the HSD3B2 inhibitor, trilostane, also demonstrated a markedly decreased androstenedione production. Decreasing CYB5A mRNA using its corresponding siRNA also resulted in significant inhibition of androstenedione production in the H295R cells. These findings together indicate that there are a group of cells co-expressing HSD3B2 and CYB5A with hybrid features of both ZF and ZR in human adrenal cortex, and these hybrid cortical cells may play an important role in androstenedione production in human adrenal gland. PMID:21185375

  4. Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of high levels of Δ6-desaturated fatty acids in transgenic tobacco

    PubMed Central

    Sayanova, Olga; Smith, Mark A.; Lapinskas, Peter; Stobart, A. Keith; Dobson, Gary; Christie, William W.; Shewry, Peter R.; Napier, Johnathan A.

    1997-01-01

    γ-Linolenic acid (GLA; C18:3 Δ6,9,12) is a component of the seed oils of evening primrose (Oenothera spp.), borage (Borago officinalis L.), and some other plants. It is widely used as a dietary supplement and for treatment of various medical conditions. GLA is synthesized by a Δ6-fatty acid desaturase using linoleic acid (C18:2 Δ9,12) as a substrate. To enable the production of GLA in conventional oilseeds, we have isolated a cDNA encoding the Δ6-fatty acid desaturase from developing seeds of borage and confirmed its function by expression in transgenic tobacco plants. Analysis of leaf lipids from a transformed plant demonstrated the accumulation of GLA and octadecatetraenoic acid (C18:4 Δ6,9,12,15) to levels of 13.2% and 9.6% of the total fatty acids, respectively. The borage Δ6-fatty acid desaturase differs from other desaturase enzymes, characterized from higher plants previously, by the presence of an N-terminal domain related to cytochrome b5. PMID:9108131

  5. Expression of a borage desaturase cDNA containing an N-terminal cytochrome b5 domain results in the accumulation of high levels of delta6-desaturated fatty acids in transgenic tobacco.

    PubMed

    Sayanova, O; Smith, M A; Lapinskas, P; Stobart, A K; Dobson, G; Christie, W W; Shewry, P R; Napier, J A

    1997-04-15

    gamma-Linolenic acid (GLA; C18:3 delta(6,9,12)) is a component of the seed oils of evening primrose (Oenothera spp.), borage (Borago officinalis L.), and some other plants. It is widely used as a dietary supplement and for treatment of various medical conditions. GLA is synthesized by a delta6-fatty acid desaturase using linoleic acid (C18:2 delta(9,12)) as a substrate. To enable the production of GLA in conventional oilseeds, we have isolated a cDNA encoding the delta6-fatty acid desaturase from developing seeds of borage and confirmed its function by expression in transgenic tobacco plants. Analysis of leaf lipids from a transformed plant demonstrated the accumulation of GLA and octadecatetraenoic acid (C18:4 delta(6,9,12,15)) to levels of 13.2% and 9.6% of the total fatty acids, respectively. The borage delta6-fatty acid desaturase differs from other desaturase enzymes, characterized from higher plants previously, by the presence of an N-terminal domain related to cytochrome b5.

  6. Conformational change in cytochrome P450 reductase adsorbed at a Au(110)—phosphate buffer interface induced by interaction with nicotinamide adenine dinucleotide phosphate

    NASA Astrophysics Data System (ADS)

    Smith, C. I.; Convery, J. H.; Harrison, P.; Khara, B.; Scrutton, N. S.; Weightman, P.

    2014-08-01

    Changes observed in the reflection anisotropy spectroscopy (RAS) profiles of monolayers of cytochrome P450 reductase adsorbed at Au(110)-electrolyte interfaces at 0.056 V following the addition of nicotinamide adenine dinucleotide phosphate (NADP+) are explained in terms of a simple model as arising from changes in the orientation of an isoalloxazine ring located in the flavin mononucleotide binding domain of the protein. The model also accounts for the changes observed in the RAS as the potential applied to the Au(110) surface is varied and suggests that differences in the dependence of the RAS profile of the adsorbed protein on the potential applied to the electrode in the absence and presence of NADP+ are explicable as arising from a competition between the applied potential acting to reduce the protein and the NADP+ to oxidize it.

  7. Engineering class I cytochrome P450 by gene fusion with NADPH-dependent reductase and S. avermitilis host development for daidzein biotransformation.

    PubMed

    Choi, Kwon-Young; Jung, EunOk; Yun, Hyungdon; Yang, Yung-Hun; Kim, Byung-Gee

    2014-10-01

    Daidzein C6 hydroxylase (6-DH, nfa12130), which is a class I type of cytochrome P450 enzyme, catalyzes a hydroxylation reaction at the C6-position of the daidzein A-ring and requires auxiliary electron transfer proteins. Current utilization of cytochrome P450 (CYP) enzymes is limited by low coupling efficiency, which necessitates extramolecular electron transfers, and low driving forces, which derive electron flows from tightly regulated NADPH redox balances into the heterogeneous CYP catalytic cycle. To overcome such limitations, the heme domain of the 6-DH enzyme was genetically fused with the NADPH-reductase domain of self-sufficient CYP102D1 to enhance electron transfer efficiencies through intramolecular electron transfer and switching cofactor preference from NADH into NADPH. 6-DH-reductase fusion enzyme displayed distinct spectral properties of both flavoprotein and heme proteins and catalyzed daidzein hydroxylation more efficiently with a k cat/K m value of 120.3 ± 11.5 [10(3) M(-1) s(-1)], which was about three times higher than that of the 6-DH-FdxC-FdrA reconstituted system. Moreover, to obtain a higher redox driving force, a Streptomyces avermitilis host system was developed for heterologous expression of fusion 6-DH enzyme and whole cell biotransformation of daidzein. The whole cell reaction using the final recombinant strain, S. avermitilisΔcyp105D7::fusion 6-DH (nfa12130), resulted in 8.3 ± 1.4 % of 6-OHD yield from 25.4 mg/L of daidzein.

  8. Chlorate reductase is cotranscribed with cytochrome c and other downstream genes in the gene cluster for chlorate respiration of Ideonella dechloratans.

    PubMed

    Hellberg Lindqvist, Miriam; Nilsson, Thomas; Sundin, Pontus; Rova, Maria

    2015-03-01

    The chlorate-respiring bacterium Ideonella dechloratans is a facultative anaerobe that can use both oxygen and chlorate as terminal electron acceptors. The genes for the enzymes chlorate reductase (clrABDC) and chlorite dismutase, necessary for chlorate metabolism and probably acquired by lateral gene transfer, are located in a gene cluster that also includes other genes potentially important for chlorate metabolism. Among those are a gene for cytochrome c (cyc) whose gene product may serve as an electron carrier during chlorate reduction, a cofactor biosynthesis gene (mobB) and a predicted transcriptional regulator (arsR). Only chlorate reductase and chlorite dismutase have been shown to be expressed in vivo. Here, we report the in vivo production of a single polycistronic transcript covering eight open reading frames including clrABDC, cyc, mobB and arsR. Transcription levels of the cyc and clrA genes were compared to each other by the use of qRT-PCR in RNA preparations from cells grown under aerobic or chlorate reducing anaerobic conditions. The two genes showed the same mRNA levels under both growth regimes, indicating that no transcription termination occurs between them. Higher transcription levels were observed at growth without external oxygen supply. Implications for electron pathway integration following lateral gene transfer are discussed.

  9. Enhanced heterologous expression of two Streptomyces griseolus cytochrome P450s and Streptomyces coelicolor ferredoxin reductase as potentially efficient hydroxylation catalysts.

    PubMed

    Hussain, Haitham A; Ward, John M

    2003-01-01

    The herbicide-inducible, soluble cytochrome P450s CYP105A1 and CYP105B1 and their adjacent ferredoxins, Fd1 and Fd2, of Streptomyces griseolus were expressed in Escherichia coli to high levels. Conditions for high-level expression of active enzyme able to catalyze hydroxylation have been developed. Analysis of the expression levels of the P450 proteins in several different E. coli expression hosts identified E. coli BL21 Star(DE3)pLysS as the optimal host cell to express CYP105B1 as judged by CO difference spectra. Examination of the codons used in the CYP1051A1 sequence indicated that it contains a number of codons corresponding to rare E. coli tRNA species. The level of its expression was improved in the modified forms of E. coli BL21(DE3), which contain extra copies of rare codon E. coli tRNA genes. The activity of correctly folded cytochrome P450s was further enhanced by cloning a ferredoxin reductase from Streptomyces coelicolor downstream of CYP105A1 and CYP105B1 and their adjacent ferredoxins. Expression of CYP105A1 and CYP105B1 was also achieved in Streptomyces lividans 1326 by cloning the P450 genes and their ferredoxins into the expression vector pBW160. S. lividans 1326 cells containing CYP105A1 or CYP105B1 were able efficiently to dealkylate 7-ethoxycoumarin.

  10. Single-Protein Tracking Reveals That NADPH Mediates the Insertion of Cytochrome P450 Reductase into a Biomimetic of the Endoplasmic Reticulum.

    PubMed

    Barnaba, Carlo; Martinez, Michael J; Taylor, Evan; Barden, Adam O; Brozik, James A

    2017-04-06

    Cytochrome P450 reductase (CPR) is the redox partner for most human cytochrome P450 enzymes. It is also believed that CPR is an integral membrane protein exclusively. Herein, we report that, contrary to this belief, CPR can exist as a peripheral membrane protein in the absence of NADPH and will transition to an integral membrane protein in the presence of stoichiometric amounts of NADPH or greater. All experiments were performed in a solid-supported cushioned lipid bilayer that closely matched the chemical composition of the human endoplasmic reticulum and served as an ER biomimetic. The phase characteristics and fluidity of the ER biomimetic was characterized with fluorescence micrographs and temperature-dependent fluorescence recovery after photobleaching. The interactions of CPR with the ER biomimetic were directly observed by tracking single CPR molecules using time-lapse single-molecule fluorescence imaging and subsequent analysis of tracks. These studies revealed dramatic changes in diffusion coefficient and the degree of partitioning of CPR as a function of NADPH concentration.

  11. Mutation of the Inducible ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE2 Alters Lignin Composition and Improves Saccharification1[W][OPEN

    PubMed Central

    Sundin, Lisa; Vanholme, Ruben; Geerinck, Jan; Goeminne, Geert; Höfer, René; Kim, Hoon; Ralph, John; Boerjan, Wout

    2014-01-01

    ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE1 (ATR1) and ATR2 provide electrons from NADPH to a large number of CYTOCHROME P450 (CYP450) enzymes in Arabidopsis (Arabidopsis thaliana). Whereas ATR1 is constitutively expressed, the expression of ATR2 appears to be induced during lignin biosynthesis and upon stresses. Therefore, ATR2 was hypothesized to be preferentially involved in providing electrons to the three CYP450s involved in lignin biosynthesis: CINNAMATE 4-HYDROXYLASE (C4H), p-COUMARATE 3-HYDROXYLASE1 (C3H1), and FERULATE 5-HYDROXYLASE1 (F5H1). Here, we show that the atr2 mutation resulted in a 6% reduction in total lignin amount in the main inflorescence stem and a compositional shift of the remaining lignin to a 10-fold higher fraction of p-hydroxyphenyl units at the expense of syringyl units. Phenolic profiling revealed shifts in lignin-related phenolic metabolites, in particular with the substrates of C4H, C3H1 and F5H1 accumulating in atr2 mutants. Glucosinolate and flavonol glycoside biosynthesis, both of which also rely on CYP450 activities, appeared less affected. The cellulose in the atr2 inflorescence stems was more susceptible to enzymatic hydrolysis after alkaline pretreatment, making ATR2 a potential target for engineering plant cell walls for biofuel production. PMID:25315601

  12. Cloning of the cytochrome p450 reductase (crtR) gene and its involvement in the astaxanthin biosynthesis of Xanthophyllomyces dendrorhous

    PubMed Central

    Alcaíno, Jennifer; Barahona, Salvador; Carmona, Marisela; Lozano, Carla; Marcoleta, Andrés; Niklitschek, Mauricio; Sepúlveda, Dionisia; Baeza, Marcelo; Cifuentes, Víctor

    2008-01-01

    Background The yeast Xanthophyllomyces dendrorhous synthesizes astaxanthin, a carotenoid with high commercial interest. The proposed biosynthetic route in this organism is isopentenyl-pyrophosphate (IPP) → geranyleranyl pyrophosphate (GGPP) → phytoene → lycopene → β-carotene → astaxanthin. Recently, it has been published that the conversion of β-carotene into astaxanthin requires only one enzyme, astaxanthin synthase or CrtS, encoded by crtS gene. This enzyme belongs to the cytochrome P450 protein family. Results In this work, a crtR gene was isolated from X. dendrorhous yeast, which encodes a cytochrome P450 reductase (CPR) that provides CrtS with the necessary electrons for substrate oxygenation. We determined the structural organization of the crtR gene and its location in the yeast electrophoretic karyotype. Two transformants, CBSTr and T13, were obtained by deleting the crtR gene and inserting a hygromycin B resistance cassette. The carotenoid composition of the transformants was altered in relation to the wild type strain. CBSTr forms yellow colonies because it is unable to produce astaxanthin, hence accumulating β-carotene. T13 forms pale colonies because its astaxanthin content is reduced and its β-carotene content is increased. Conclusion In addition to the crtS gene, X. dendrorhous requires a novel gene, crtR, for the conversion of β-carotene to astaxanthin. PMID:18837978

  13. Cloning, functional characterization, and expression profiles of NADPH-cytochrome P450 reductase gene from the Asiatic rice striped stem borer, Chilo suppressalis (Lepidoptera: Pyralidae).

    PubMed

    Liu, Su; Liang, Qing-Mei; Huang, Yuan-Jie; Yuan, Xin; Zhou, Wen-Wu; Qiao, Fei; Cheng, Jiaan; Gurr, Geoff M; Zhu, Zeng-Rong

    2013-01-01

    NADPH-cytochrome P450 reductase (CPR) is one of the most important components of the cytochrome P450 enzyme system. It catalyzes electron transfer from NADPH to all known P450s, thus plays central roles not only in the metabolism of exogenous xenobiotics but also in the regulation of endogenous hormones in insects. In this study, a full-length cDNA encoding of a CPR (named CsCPR) was isolated from the Asiatic rice striped stem borer, Chilo suppressalis, by using reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) methods. The cDNA contains a 2061 bp open reading frame, which encodes an enzyme of 686 amino acid residues, with a calculated molecular mass of 77.6 kDa. The deduced peptide has hallmarks of typical CPR, including an N-terminal membrane anchor and the FMN, FAD and NADPH binding domains. The N-terminal-truncated protein fused with a 6 × His·tag was heterologously expressed in Escherichia coli Rosetta (DE3) cells and purified, specific activity and the Km values of the recombinant enzyme were determined. Tissue- and developmental stage-dependent expression of CsCPR mRNA was investigated by real-time quantitative PCR. The CsCPR mRNA was noticeably expressed in the digestive, metabolic, and olfactory organs of the larvae and adults of C. suppressalis. Our initial results would provide valuable information for further study on the interactions between CPR and cytochrome P450 enzyme systems.

  14. Engineering out motion: a surface disulfide bond alters the mobility of tryptophan 22 in cytochrome b5 as probed by time-resolved fluorescence and 1H NMR experiments.

    PubMed

    Storch, E M; Grinstead, J S; Campbell, A P; Daggett, V; Atkins, W M

    1999-04-20

    In the accompanying paper [Storch et al. (1999) Biochemistry 38, 5054-5064] equilibrium denaturation studies and molecular dynamics (MD) simulations were used to investigate localized dynamics on the surface of cytochrome b5 (cyt b5) that result in the formation of a cleft. In those studies, an S18C:R47C disulfide mutant was engineered to inhibit cleft mobility. Temperature- and urea-induced denaturation studies revealed significant differences in Trp 22 fluorescence between the wild-type and mutant proteins. On the basis of the results, it was proposed that wild type populates a conformational ensemble that is unavailable to the disulfide mutant and is mediated by cleft mobility. As a result, the solvent accessibility of Trp 22 is decreased in S18C:R47C, suggesting that the local environment of this residue is less mobile due to the constraining effects of the disulfide on cleft dynamics. To further probe the structural effects on the local environment of Trp 22 caused by inhibition of cleft formation, we report here the results of steady-state and time-resolved fluorescence quenching, differential phase/modulation fluorescence anisotropy, and 1H NMR studies. In Trp fluorescence experiments, the Stern-Volmer quenching constant increases in wild type versus the oxidized disulfide mutant with increasing temperature. At 50 degrees C, KSV is nearly 1.5-fold greater in wild type compared to the oxidized disulfide mutant. In the reduced disulfide mutant, KSV was the same as wild type. The bimolecular collisional quenching constant, kq, for acrylamide quenching of Trp 22 increases 2.7-fold for wild type and only 1.8-fold for S18C:R47C, upon increasing the temperature from 25 to 50 degrees C. The time-resolved anisotropy decay at 25 degrees C was fit to a double-exponential decay for both the wild type and S18C:R47C. Both proteins exhibited a minor contribution from a low-amplitude fast decay, consistent with local motion of Trp 22. This component was more prevalent in

  15. Regulation of cytochrome P450 expression by inhibitors of hydroxymethylglutaryl-coenzyme A reductase in primary cultured rat hepatocytes and in rat liver.

    PubMed

    Kocarek, T A; Reddy, A B

    1996-11-01

    It was previously demonstrated that treatment of primary cultured rat hepatocytes with lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase, induced the mRNAs for several cytochromes P450 (P450s), including CYP2B1/2, CYP3A1/2, and CYP4A. In this study, we have compared the effects of lovastatin with those of three additional HMG-CoA reductase inhibitors (simvastatin, pravastatin, and the structurally dissimilar drug fluvastatin) on P450 expression in primary cultured rat hepatocytes, and we have also characterized the effects of in vivo treatment with fluvastatin on P450 expression in rat liver. Treatment of cultured hepatocytes with lovastatin, simvastatin, or fluvastatin increased CYP2B1/2, CYP3A1/2, and CYP4A mRNA and immunoreactive protein levels over the dose range (3 x 10(-6) to 3 x 10(-5) M) required to increase the amount of HMG-CoA reductase mRNA. The increases in CYP2B1/2 levels produced by 3 x 10(-5) M fluvastatin treatment were larger than those produced by lovastatin or simvastatin treatment or by treatment with 10(-4) M phenobarbital. In contrast, treatment of cultured hepatocytes with 3 x 10(-5) M lovastatin, simvastatin, or fluvastatin increased CYP3A1/2 and CYP4A mRNA and immunoreactive protein to lower levels than those produced by treatment with 10(-5) M dexamethasone or 10(-4) M ciprofibrate. Treatment of cultured hepatocytes with pravastatin had little or no effect on the amount of any of the P450s examined, although this drug induced HMG-CoA reductase mRNA as effectively as did fluvastatin. Incubation of hepatocytes with 10(-4) M fluvastatin increased CYP1A1 mRNA to 67% of the level induced by treatment with 10(-5) M beta-naphthoflavone. Doses of 50 or 100 mg/ kg/day fluvastatin administered for 3 days to rats increased the hepatic levels of CYP2B1/2 and CYP4A mRNA and immunoreactive protein, although to much lower levels than those produced by treatment with phenobarbital or ciprofibrate, respectively. Treatment of

  16. Soluble ascorbate free radical reductase in the human lens.

    PubMed

    Bando, M; Obazawa, H

    1994-01-01

    A major and a minor ascorbate free radical (AFR) reductase were separated from the soluble fraction in the human lens cortex by DEAE-cellulose ion-exchange column chromatography. These AFR reductases also exhibited diaphorase activity using dichlorophenolindophenol and ferricyanide as electron acceptors. The major AFR reductase was partially purified by 5'AMP-Sepharose 4B affinity column chromatography. This partially purified AFR reductase showed a single band of diaphorase activity in native polyacrylamide disc gel electrophoresis. This activity band corresponded to the major protein observed in protein staining by Coomassie Brilliant Blue. However, the protein staining by Coomassie Brilliant Blue showed this activity band surrounded by diffused staining. Molecular weight of the partially purified AFR reductase was determined to be 32 kDa by gel filtration, and the apparent Km value for AFR was about 15 microM. This major lens AFR reductase could be distinguished from soluble Neurospora, Euglena and cucumber AFR reductases, and from two ubiquitous enzymes with reduction activity of AFR and/or foreign compounds, ie, NADH-cytochrome b5 reductase and DT-diaphorase, by their molecular weights, Km values and/or ion-exchange chromatographic behaviors.

  17. The inhibitory effect of tannic acid on cytochrome P450 enzymes and NADPH-CYP reductase in rat and human liver microsomes.

    PubMed

    Yao, Hsien-Tsung; Chang, Yi-Wei; Lan, Shih-Jung; Yeh, Teng-Kuang

    2008-02-01

    Tannic acid has been shown to decrease mutagenicity and/or carcinogenicity of several amine derivatives and polycyclic aromatic hydrocarbons in rodents. The purpose of this study was to evaluate the effect of tannic acid on cytochrome P450 (CYP)-catalyzed oxidations using rat liver microsomes (RLM) and human liver microsomes (HLM) as the enzyme sources. In RLM, tannic acid showed a non-selective inhibitory effect on 7-methoxyresorufin O-demethylation (MROD), 7-ethoxyresorufin O-deethylation (EROD), tolbutamide hydroxylation, p-nitrophenol hydroxylation and testosterone 6beta-hydroxylation activities with IC(50) values ranged from 14.9 to 27.4 microM. In HLM, tannic acid inhibited EROD, MROD and phenacetin O-deethylation activities with IC(50) values ranged from 5.1 to 7.5 microM, and diclofenac 4-hydroxylation, dextromethorphan O-demethylation, chlorzoxazone 6-hydroxylation and testosterone 6beta-hydroxylation with IC(50) values ranged from 20 to 77 microM. In baculovirus-insect cell-expressed human CYP 1A1 and 1A2, the IC(50) values of tannic acid for CYP 1A1- and 1A2-catalyzed EROD activities were 23.1 and 2.3 microM, respectively, indicating that tannic acid preferably inhibited the activity of CYP1A2. Tannic acid inhibited human CYP1A2 non-competitively with a Ki value of 4.8 microM. Tannic acid was also found to inhibit NADPH-CYP reductase in RLM and HLM with IC(50) values of 11.8 and 17.4 microM, respectively. These results suggested that the inhibition of CYP enzyme activities by tannic acid may be partially attributed to its inhibition of NADPH-CYP reductase activity.

  18. Molecular Cloning, Heterologous Expression, and Functional Characterization of an NADPH-Cytochrome P450 Reductase Gene from Camptotheca acuminata, a Camptothecin-Producing Plant

    PubMed Central

    Chen, Fei; Yang, Yun; Yang, Lixia; Zhang, Guolin; Luo, Yinggang

    2015-01-01

    Camptothecin (CAM), a complex pentacyclic pyrroloqinoline alkaloid, is the starting material for CAM-type drugs that are well-known antitumor plant drugs. Although many chemical and biological research efforts have been performed to produce CAM, a few attempts have been made to uncover the enzymatic mechanism involved in the biosynthesis of CAM. Enzyme-catalyzed oxidoreduction reactions are ubiquitously presented in living organisms, especially in the biosynthetic pathway of most secondary metabolites such as CAM. Due to a lack of its reduction partner, most catalytic oxidation steps involved in the biosynthesis of CAM have not been established. In the present study, an NADPH-cytochrome P450 reductase (CPR) encoding gene CamCPR was cloned from Camptotheca acuminata, a CAM-producing plant. The full length of CamCPR cDNA contained an open reading frame of 2127-bp nucleotides, corresponding to 708-amino acid residues. CamCPR showed 70 ~ 85% identities to other characterized plant CPRs and it was categorized to the group II of CPRs on the basis of the results of multiple sequence alignment of the N-terminal hydrophobic regions. The intact and truncate CamCPRs with N- or C-terminal His6-tag were heterologously overexpressed in Escherichia coli. The recombinant enzymes showed NADPH-dependent reductase activity toward a chemical substrate ferricyanide and a protein substrate cytochrome c. The N-terminal His6-tagged CamCPR showed 18- ~ 30-fold reduction activity higher than the C-terminal His6-tagged CamCPR, which supported a reported conclusion, i.e., the last C-terminal tryptophan of CPRs plays an important role in the discrimination between NADPH and NADH. Co-expression of CamCPR and a P450 monooxygenase, CYP73A25, a cinnamate 4-hydroxylase from cotton, and the following catalytic formation of p-coumaric acid suggested that CamCPR transforms electrons from NADPH to the heme center of P450 to support its oxidation reaction. Quantitative real-time PCR analysis showed that

  19. Molecular Cloning, Heterologous Expression, and Functional Characterization of an NADPH-Cytochrome P450 Reductase Gene from Camptotheca acuminata, a Camptothecin-Producing Plant.

    PubMed

    Qu, Xixing; Pu, Xiang; Chen, Fei; Yang, Yun; Yang, Lixia; Zhang, Guolin; Luo, Yinggang

    2015-01-01

    Camptothecin (CAM), a complex pentacyclic pyrroloqinoline alkaloid, is the starting material for CAM-type drugs that are well-known antitumor plant drugs. Although many chemical and biological research efforts have been performed to produce CAM, a few attempts have been made to uncover the enzymatic mechanism involved in the biosynthesis of CAM. Enzyme-catalyzed oxidoreduction reactions are ubiquitously presented in living organisms, especially in the biosynthetic pathway of most secondary metabolites such as CAM. Due to a lack of its reduction partner, most catalytic oxidation steps involved in the biosynthesis of CAM have not been established. In the present study, an NADPH-cytochrome P450 reductase (CPR) encoding gene CamCPR was cloned from Camptotheca acuminata, a CAM-producing plant. The full length of CamCPR cDNA contained an open reading frame of 2127-bp nucleotides, corresponding to 708-amino acid residues. CamCPR showed 70 ~ 85% identities to other characterized plant CPRs and it was categorized to the group II of CPRs on the basis of the results of multiple sequence alignment of the N-terminal hydrophobic regions. The intact and truncate CamCPRs with N- or C-terminal His6-tag were heterologously overexpressed in Escherichia coli. The recombinant enzymes showed NADPH-dependent reductase activity toward a chemical substrate ferricyanide and a protein substrate cytochrome c. The N-terminal His6-tagged CamCPR showed 18- ~ 30-fold reduction activity higher than the C-terminal His6-tagged CamCPR, which supported a reported conclusion, i.e., the last C-terminal tryptophan of CPRs plays an important role in the discrimination between NADPH and NADH. Co-expression of CamCPR and a P450 monooxygenase, CYP73A25, a cinnamate 4-hydroxylase from cotton, and the following catalytic formation of p-coumaric acid suggested that CamCPR transforms electrons from NADPH to the heme center of P450 to support its oxidation reaction. Quantitative real-time PCR analysis showed that

  20. Molecular cloning, bacterial expression and functional characterisation of cytochrome P450 monooxygenase, CYP97C27, and NADPH-cytochrome P450 reductase, CPR I, from Croton stellatopilosus Ohba.

    PubMed

    Sintupachee, Siriluk; Ngamrojanavanich, Nattaya; Sitthithaworn, Worapan; De-Eknamkul, Wanchai

    2014-12-01

    The cDNAs for cytochrome P450 monooxygenase (designated as CYP97C27 by D. Nelson's group) and NADPH-cytochrome P450 reductase (designated as CPR I based on its classification) were isolated from Croton stellatopilosus leaves, which actively biosynthesise plaunotol (18-OH geranylgeraniol). CYP97C27 and CPR I contain open reading frames encoding proteins of 471 and 711 amino acids with predicted molecular masses of 53 and 79kDa, respectively. By aligning the deduced sequences of CYP97C27 and CPR I with other plant species, all functional domains of CYP97C27 (heme and oxygen binding) and CPR I (CYP- and FMN, FAD, and NADPH cofactor binding) were identified. Amino acid sequence comparison indicated that both CYP97C27 (85-93%) and CPR I (79-83%) share high sequence identities with homologous proteins in other plant species, suggesting that CYP97C27 belongs to the CYP97C subfamily and that CPR I belongs to class I of the dicotyledonous CPR. Functional characterisation of both enzymes, produced in Escherichia coli (pET32a/BL21(DE3)) as recombinant proteins, showed that simultaneous incubation of CYP97C27 and CPR I with the substrate geranylgeraniol (GGOH) and coenzyme NADPH led to formation of the product plaunotol. In C. stellatopilosus, the levels of the CYP97C27 and CPR I transcripts were highly correlated with those of several mRNAs involved in the plaunotol biosynthetic pathway, suggesting that CYP97C27 and CPR I are the enzymes that catalyse the last hydroxylation step of the pathway.

  1. Suppression of cytochrome P450 reductase (POR) expression in hepatoma cells replicates the hepatic lipidosis observed in hepatic POR-null mice.

    PubMed

    Porter, Todd D; Banerjee, Subhashis; Stolarczyk, Elzbieta I; Zou, Ling

    2011-06-01

    Cytochrome P450 reductase (POR) is a microsomal electron transport protein essential to cytochrome P450-mediated drug metabolism and sterol and bile acid synthesis. The conditional deletion of hepatic POR gene expression in mice results in a marked decrease in plasma cholesterol levels counterbalanced by the accumulation of triglycerides in lipid droplets in hepatocytes. To evaluate the role of cholesterol and bile acid synthesis in this hepatic lipidosis, as well as the possible role of lipid transport from peripheral tissues, we developed a stable, small interfering RNA (siRNA)-mediated cell culture model for the suppression of POR. POR mRNA and protein expression were decreased by greater than 50% in McArdle-RH7777 rat hepatoma cells 10 days after transfection with a POR-siRNA expression plasmid, and POR expression was nearly completely extinguished by day 20. Immunofluorescent analysis revealed a marked accumulation of lipid droplets in cells by day 15, accompanied by a nearly 2-fold increase in cellular triglyceride content, replicating the lipidosis seen in hepatic POR-null mouse liver. In contrast, suppression of CYP51A1 (lanosterol demethylase) did not result in lipid accumulation, indicating that loss of cholesterol synthesis is not the basis for this lipidosis. Indeed, addition of cholesterol to the medium appeared to augment the lipidosis in POR-suppressed cells, whereas removal of lipids from the medium reversed the lipidosis. Oxysterols did not accumulate in POR-suppressed cells, discounting a role for liver X receptor in stimulating triglyceride synthesis, but addition of chenodeoxycholate significantly repressed lipid accumulation, suggesting that the absence of bile acids and loss of farnesoid X receptor stimulation lead to excessive triglyceride synthesis.

  2. Suppression of Cytochrome P450 Reductase (POR) Expression in Hepatoma Cells Replicates the Hepatic Lipidosis Observed in Hepatic POR-Null Mice

    PubMed Central

    Banerjee, Subhashis; Stolarczyk, Elzbieta I.; Zou, Ling

    2011-01-01

    Cytochrome P450 reductase (POR) is a microsomal electron transport protein essential to cytochrome P450-mediated drug metabolism and sterol and bile acid synthesis. The conditional deletion of hepatic POR gene expression in mice results in a marked decrease in plasma cholesterol levels counterbalanced by the accumulation of triglycerides in lipid droplets in hepatocytes. To evaluate the role of cholesterol and bile acid synthesis in this hepatic lipidosis, as well as the possible role of lipid transport from peripheral tissues, we developed a stable, small interfering RNA (siRNA)-mediated cell culture model for the suppression of POR. POR mRNA and protein expression were decreased by greater than 50% in McArdle-RH7777 rat hepatoma cells 10 days after transfection with a POR-siRNA expression plasmid, and POR expression was nearly completely extinguished by day 20. Immunofluorescent analysis revealed a marked accumulation of lipid droplets in cells by day 15, accompanied by a nearly 2-fold increase in cellular triglyceride content, replicating the lipidosis seen in hepatic POR-null mouse liver. In contrast, suppression of CYP51A1 (lanosterol demethylase) did not result in lipid accumulation, indicating that loss of cholesterol synthesis is not the basis for this lipidosis. Indeed, addition of cholesterol to the medium appeared to augment the lipidosis in POR-suppressed cells, whereas removal of lipids from the medium reversed the lipidosis. Oxysterols did not accumulate in POR-suppressed cells, discounting a role for liver X receptor in stimulating triglyceride synthesis, but addition of chenodeoxycholate significantly repressed lipid accumulation, suggesting that the absence of bile acids and loss of farnesoid X receptor stimulation lead to excessive triglyceride synthesis. PMID:21368239

  3. The mechanism for oxygen reduction in cytochrome c dependent nitric oxide reductase (cNOR) as obtained from a combination of theoretical and experimental results.

    PubMed

    Blomberg, Margareta R A; Ädelroth, Pia

    2017-11-01

    Bacterial NO-reductases (NOR) belong to the heme-copper oxidase (HCuO) superfamily, in which most members are O2-reducing, proton-pumping enzymes. This study is one in a series aiming to elucidate the reaction mechanisms of the HCuOs, including the mechanisms for cellular energy conservation. One approach towards this goal is to compare the mechanisms for the different types of HCuOs, cytochrome c oxidase (CcO) and NOR, reducing the two substrates O2 and NO. Specifically in this study, we describe the mechanism for oxygen reduction in cytochrome c dependent NOR (cNOR). Hybrid density functional calculations were performed on large cluster models of the cNOR binuclear active site. Our results are used, together with published experimental information, to construct a free energy profile for the entire catalytic cycle. Although the overall reaction is quite exergonic, we show that during the reduction of molecular oxygen in cNOR, two of the reduction steps are endergonic with high barriers for proton uptake, which is in contrast to oxygen reduction in CcO, where all reduction steps are exergonic. This difference between the two enzymes is suggested to be important for their differing capabilities for energy conservation. An additional result from this study is that at least three of the four reduction steps are initiated by proton transfer to the active site, which is in contrast to CcO, where electrons always arrive before the protons to the active site. The roles of the non-heme metal ion and the redox-active tyrosine in the active site are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Molecular Cloning, Expression Pattern and Polymorphisms of NADPH-Cytochrome P450 Reductase in the Bird Cherry-Oat Aphid Rhopalosiphum padi (L.)

    PubMed Central

    Zuo, Yayun; Li, Yuting

    2016-01-01

    NADPH–cytochrome P450 reductase (CPR) plays an important role in the cytochrome P450 (CYP)-mediated metabolism of endogenous and exogenous substrates. CPR has been found to be associated with insecticide metabolism and resistance in many insects. However, information regarding CPR in the bird cherry-oat aphid, Rhopalosiphum padi, is unavailable. In the current study, a full-length cDNA (2,476 bp) of CPR (RpCPR) encoding 681 amino acids was cloned from R. padi. Nucleotide sequence and deduced amino acid sequence analysis showed that RpCPR exhibits characteristics of classical CPRs and shares high identities with those of other insects, especially with the pea aphid, Acyrthosiphon pisum. The mRNA of RpCPR was expressed at all developmental stages, with the highest expression level found in the second instar and the lowest in adult. Expression levels of RpCPR in isoprocarb-resistant and imidacloprid-resistant strains were 3.74- and 3.53-fold higher, respectively, than that of a susceptible strain. RpCPR expression could also be induced by low concentrations (LC30) of isoprocarb and imidacloprid. Moreover, we sequenced the open reading frame (ORF) of RpCPR from 167 field samples collected in 11 geographical populations. Three hundred and thirty-four SNPs were detected, of which, 65 were found in more than two individuals. One hundred and ninety-four missense mutations were present in the amino acid sequence, of which, the P484S mutant had an allele frequency of 35.1%. The present results suggest that RpCPR may play an important role in the P450-mediated insecticide resistance of R. padi to isoprocarb and imidacloprid and possibly other insecticides. Meanwhile, RpCPRmaintains high genetic diversity in natural individuals, which provides the possibility of studying potential correlations between variants and certain special physiological characters. PMID:27124302

  5. Altered heme catabolism by heme oxygenase-1 caused by mutations in human NADPH cytochrome P450 reductase

    SciTech Connect

    Pandey, Amit V.; Flueck, Christa E.; Mullis, Primus E.

    2010-09-24

    Research highlights: {yields} Mutations in POR identified from patients lead to reduced HO-1 activities. {yields} POR mutation Y181D affecting FMN binding results in total loss of HO-1 activity. {yields} POR mutations A287P, C569Y and V608F, lost 50-70% activity. {yields} Mutations in FAD binding domain, R457H, Y459H and V492E lost all HO-1 activity. {yields} POR polymorphisms P228L, R316W, G413S, A503V and G504R have normal activity. -- Abstract: Human heme oxygenase-1 (HO-1) carries out heme catabolism supported by electrons supplied from the NADPH through NADPH P450 reductase (POR, CPR). Previously we have shown that mutations in human POR cause a rare form of congenital adrenal hyperplasia. In this study, we have evaluated the effects of mutations in POR on HO-1 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified HO-1 to measure heme degradation in a coupled assay using biliverdin reductase. Here we show that mutations in POR found in patients may reduce HO-1 activity, potentially influencing heme catabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had total loss of HO-1 activity, while POR mutations A287P, C569Y and V608F lost 50-70% activity. The POR variants P228L, R316W and G413S, A503V and G504R identified as polymorphs had close to WT activity. Loss of HO-1 activity may result in increased oxidative neurotoxicity, anemia, growth retardation and iron deposition. Further examination of patients affected with POR deficiency will be required to assess the metabolic effects of reduced HO-1 activity in affected individuals.

  6. Isolation of ascorbate free radical reductase from rabbit lens soluble fraction.

    PubMed

    Bando, Masayasu; Inoue, Takashi; Oka, Mikako; Nakamura, Kayako; Kawai, Kenji; Obazawa, Hajime; Kobayashi, Shizuko; Takehana, Makoto

    2004-12-01

    Ascorbate free radical (AFR) reductase with diaphorase activity was isolated from the rabbit lens soluble fraction to characterise some molecular properties of the enzyme. The isolation was accomplished using gel filtration (Sephadex G-75 superfine or Sephacryl S-200 HR), affinity chromatography (Affi-Gel Blue), native isoelectric focusing and two-dimensional gel electrophoresis. A major soluble AFR reductase was found at an isoelectric point of 8.4 and a molecular weight of 31 kDa, and a few minor enzymes were also detected in the range of pI 7.0-8.6. An unknown N-terminal partial amino acid sequence was determined in one peptide fragment prepared from the major enzyme fraction. From the sequence analysis, it is discussed that the lens soluble AFR reductase may differ from NADH-cytochrome b5 reductase reported to be involved in the membrane-bound AFR reductase activity of mitochondria, microsomes and plasma membrane.

  7. Metabolic conditions determining the composition and catalytic activity of cytochrome P-450 monooxygenases in Candida tropicalis.

    PubMed Central

    Sanglard, D; Käppeli, O; Fiechter, A

    1984-01-01

    In the microsomal fraction of Candida tropicalis cells, two distinct monooxygenases were detected, depending on the growth conditions. The distinction of the two monooxygenases was evident from: (i) the absorption maxima in the reduced CO difference spectra of the terminal oxidases (cytochromes P-450 and P-448); (ii) the contents of the monooxygenase components (cytochromes P-450/P-448, NADPH-cytochrome c (P-450) reductase, and cytochrome b5) and (iii) the catalytic activity of the complete system (aliphatic hydroxylation and N-demethylation activity). The occurrence of the respective monooxygenases could be related to the carbon source (n-alkanes or glucose). Oxygen limitation led to a significant increase of cytochrome P-450/P-448 content, independent of the carbon source utilized by the cells. An improved method for the isolation of microsomes enabled us to demonstrate the presence of cytochrome P-448 in glucose-grown cells. PMID:6690424

  8. A tricistronic human adrenodoxin reductase-adrenodoxin–cytochrome P450 27A1 vector system for substrate hydroxylation in Escherichia coli

    PubMed Central

    Salamanca-Pinzón, S. Giovanna; Guengerich, F. Peter

    2011-01-01

    Cytochrome P450 (P450) 27A1 catalyzes 27-hydroxylation of cholesterol and 25-hydroxylation of vitamin D3, serving as an important component for the maintenance of lipid homeostasis. In eukaryotic cells P450 27A1 is a membrane-bound protein located on the inner mitochondrial membrane and requires two auxiliary reduction partners, adrenodoxin (Adx) and NADPH-adrenodoxin reductase (Adr), for catalysis in the bile acid biosynthesis pathway. A strategy was developed for the functional coexpression of P450 27A1 with Adr and Adx in a tricistronic fashion (single RNA, three proteins) in Escherichia coli, mimicking the mitochondrial P450 system. Intact bacterial cells coexpressing the P450 vector (pTC27A1) efficiently hydroxylated cholesterol at the 27 position as well as vitamin D3 at the 25 position when supplemented with glycerol as a carbon source. Thus, E. coli containing pTC27A1 is able to hydroxylate cholesterol in a self-sufficient fashion and is suitable for further applications of protein interaction, drug discovery, and inhibitor evaluation and for the study of other mitochondrial P450s and oxysterol production in microorganisms without a need for membrane reconstitution, membrane simulation by detergents, or purification of the components. PMID:21621619

  9. Shewanella oneidensis cytochrome c nitrite reductase (ccNiR) does not disproportionate hydroxylamine to ammonia and nitrite, despite a strongly favorable driving force.

    PubMed

    Youngblut, Matthew; Pauly, Daniel J; Stein, Natalia; Walters, Daniel; Conrad, John A; Moran, Graham R; Bennett, Brian; Pacheco, A Andrew

    2014-04-08

    Cytochrome c nitrite reductase (ccNiR) from Shewanella oneidensis, which catalyzes the six-electron reduction of nitrite to ammonia in vivo, was shown to oxidize hydroxylamine in the presence of large quantities of this substrate, yielding nitrite as the sole free nitrogenous product. UV-visible stopped-flow and rapid-freeze-quench electron paramagnetic resonance data, along with product analysis, showed that the equilibrium between hydroxylamine and nitrite is fairly rapidly established in the presence of high initial concentrations of hydroxylamine, despite said equilibrium lying far to the left. By contrast, reduction of hydroxylamine to ammonia did not occur, even though disproportionation of hydroxylamine to yield both nitrite and ammonia is strongly thermodynamically favored. This suggests a kinetic barrier to the ccNiR-catalyzed reduction of hydroxylamine to ammonia. A mechanism for hydroxylamine reduction is proposed in which the hydroxide group is first protonated and released as water, leaving what is formally an NH2(+) moiety bound at the heme active site. This species could be a metastable intermediate or a transition state but in either case would exist only if it were stabilized by the donation of electrons from the ccNiR heme pool into the empty nitrogen p orbital. In this scenario, ccNiR does not catalyze disproportionation because the electron-donating hydroxylamine does not poise the enzyme at a sufficiently low potential to stabilize the putative dehydrated hydroxylamine; presumably, a stronger reductant is required for this.

  10. Novel Substrate Specificity and Temperature-Sensitive Activity of Mycosphaerella graminicola CYP51 Supported by the Native NADPH Cytochrome P450 Reductase

    PubMed Central

    Price, Claire L.; Warrilow, Andrew G. S.; Parker, Josie E.; Mullins, Jonathan G. L.; Nes, W. David

    2015-01-01

    Mycosphaerella graminicola (Zymoseptoria tritici) is an ascomycete filamentous fungus that causes Septoria leaf blotch in wheat crops. In Europe the most widely used fungicides for this major disease are demethylation inhibitors (DMIs). Their target is the essential sterol 14α-demethylase (CYP51), which requires cytochrome P450 reductase (CPR) as its redox partner for functional activity. The M. graminicola CPR (MgCPR) is able to catalyze the sterol 14α-demethylation of eburicol and lanosterol when partnered with Candida albicans CYP51 (CaCYP51) and that of eburicol only with M. graminicola CYP51 (MgCYP51). The availability of the functional in vivo redox partner enabled the in vitro catalytic activity of MgCYP51 to be demonstrated for the first time. MgCYP51 50% inhibitory concentration (IC50) studies with epoxiconazole, tebuconazole, triadimenol, and prothioconazole-desthio confirmed that MgCYP51 bound these azole inhibitors tightly. The characterization of the MgCPR/MgCYP51 redox pairing has produced a functional method to evaluate the effects of agricultural azole fungicides, has demonstrated eburicol specificity in the activity observed, and supports the conclusion that prothioconazole is a profungicide. PMID:25746994

  11. Carbon tetrachloride changes the activity of cytochrome P450 system in the liver of male rats: role of antioxidants.

    PubMed

    Sheweita, S A; El-Gabar, M A; Bastawy, M

    2001-12-14

    The cytochrome P-450 enzymes are responsible for the oxidation of xenobiotic chemicals including drugs, pesticides, and carcinogens. These enzymes include cytochrome P450, cytochrome b(5), arylhydrocarbon (benzo[a]pyrene) hydroxylase (AHH), NADPH-cytochrome C reductase and dimethylnitrosamine N-demethylase I (DMN-dI). Changes in the activities of the above mentioned enzymes were studied in the liver microsomes of rats treated with antioxidants (ascorbic acid (AA), DL-a-tocopherol (vitamin E, VE), garlic) as single- and repeated doses prior to the administration of a single dose of CCl(4). Pretreatment of rats with single doses of AA, VE, or garlic prior to the administration of CCl(4) was found to decrease the hepatic content of cytochrome P450, and the activities of DMN-dI and AHH. On the other hand, these treatments induced the hepatic content of cytochrome b(5) and the activity of NADPH-cytochrome c reductase. Pretreatment of rats with repeated doses of AA, VE, or garlic for 12 consecutive days prior to the administration of CCl(4) as single dose was potentially decreased the activities of cytochrome P450, DMN-dI and NADPH-cytochrome c reductase. Also, the activity of AHH decreased after treatments of rats with repeated doses of garlic prior to the administration of CCl(4). It was noted that repeated doses of antioxidants are more effective than single dose in decreasing the activity of drug-metabolizing enzymes. It is concluded that repeated doses of antioxidants or garlic could reduce the toxic effects exerted by CCl(4) upon the liver, and probably other organs, through inhibition of cytochrome P450 system that activates CCl(4) into its active metabolite, trichloromethyl radical. Moreover, inhibition of cytochrome P450 system could also reduce the toxic and carcinogenic effects of chemical carcinogens such as benzo(a)pyrene and dimethylnitrosamine. The mechanisms of antioxidant protection were discussed in the text.

  12. Knockdown of NADPH-cytochrome P450 reductase results in reduced resistance to buprofezin in the small brown planthopper, Laodelphax striatellus (fallén).

    PubMed

    Zhang, Yueliang; Wang, Yaming; Wang, Lihua; Yao, Jing; Guo, Huifang; Fang, Jichao

    2016-02-01

    NADPH-cytochrome P450 reductase (CPR) plays an important role in cytochrome P450 function, and CPR knockdown in several insects leads to increased susceptibility to insecticides. However, a putative CPR gene has not yet been fully characterized in the small brown planthopper Laodelphax striatellus, a notorious agricultural pest in rice that causes serious damage by transmitting rice stripe and rice black-streaked dwarf viruses. The objective of this study was to clone the cDNA and to knock down the expression of the gene that encodes L. striatellus CPR (LsCPR) to further determine whether P450s are involved in the resistance of L. striatellus to buprofezin. First, the full-length cDNA of LsCPR was cloned and found to contain an open reading frame (ORF) encoding a polypeptide of 679 amino acids with a calculated molecular mass and isoelectric point of 76.92kDa and 5.37, respectively. The deduced amino acid sequence shares high identity with the CPRs of other insects (98%, 97%, 75% and 68% for Sogatella furcifera, Nilaparvata lugens, Cimex lectularius and Anopheles gambiae, respectively) and possesses the characteristic features of classical CPRs, such as an N-terminal membrane anchor and conserved domains for flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD) and nicotinamide adenine dinucleotide phosphate (NADPH) binding. Phylogenetic analysis revealed that LsCPR is located in a branch along with the CPRs of other hemipteran insects. LsCPR mRNA was detectable in all examined body parts and developmental stages of L. striatellus, as determined by real-time quantitative PCR (qPCR), and transcripts were most abundant in the adult abdomen and in first-instar nymphs and adults. Ingestion of 200μg/mL of LsCPR double-stranded RNA (dsLsCPR) by the planthopper for 5days significantly reduced the transcription level of LsCPR. Moreover, silencing of LsCPR caused increased susceptibility to buprofezin in a buprofezin-resistant (YN-BPF) strain but not in a

  13. Correlations between the Electronic Properties of Shewanella oneidensis Cytochrome c Nitrite Reductase (ccNiR) and Its Structure: Effects of Heme Oxidation State and Active Site Ligation.

    PubMed

    Stein, Natalia; Love, Daniel; Judd, Evan T; Elliott, Sean J; Bennett, Brian; Pacheco, A Andrew

    2015-06-23

    The electrochemical properties of Shewanella oneidensis cytochrome c nitrite reductase (ccNiR), a homodimer that contains five hemes per protomer, were investigated by UV-visible and electron paramagnetic resonance (EPR) spectropotentiometries. Global analysis of the UV-vis spectropotentiometric results yielded highly reproducible values for the heme midpoint potentials. These midpoint potential values were then assigned to specific hemes in each protomer (as defined in previous X-ray diffraction studies) by comparing the EPR and UV-vis spectropotentiometric results, taking advantage of the high sensitivity of EPR spectra to the structural microenvironment of paramagnetic centers. Addition of the strong-field ligand cyanide led to a 70 mV positive shift of the active site's midpoint potential, as the cyanide bound to the initially five-coordinate high-spin heme and triggered a high-spin to low-spin transition. With cyanide present, three of the remaining hemes gave rise to distinctive and readily assignable EPR spectral changes upon reduction, while a fourth was EPR-silent. At high applied potentials, interpretation of the EPR spectra in the absence of cyanide was complicated by a magnetic interaction that appears to involve three of five hemes in each protomer. At lower applied potentials, the spectra recorded in the presence and absence of cyanide were similar, which aided global assignment of the signals. The midpoint potential of the EPR-silent heme could be assigned by default, but the assignment was also confirmed by UV-vis spectropotentiometric analysis of the H268M mutant of ccNiR, in which one of the EPR-silent heme's histidine axial ligands was replaced with a methionine.

  14. Why orange Guaymas Basin Beggiatoa spp. are orange: single-filament-genome-enabled identification of an abundant octaheme cytochrome with hydroxylamine oxidase, hydrazine oxidase, and nitrite reductase activities.

    PubMed

    MacGregor, Barbara J; Biddle, Jennifer F; Siebert, Jason R; Staunton, Eric; Hegg, Eric L; Matthysse, Ann G; Teske, Andreas

    2013-02-01

    Orange, white, and yellow vacuolated Beggiatoaceae filaments are visually dominant members of microbial mats found near sea floor hydrothermal vents and cold seeps, with orange filaments typically concentrated toward the mat centers. No marine vacuolate Beggiatoaceae are yet in pure culture, but evidence to date suggests they are nitrate-reducing, sulfide-oxidizing bacteria. The nearly complete genome sequence of a single orange Beggiatoa ("Candidatus Maribeggiatoa") filament from a microbial mat sample collected in 2008 at a hydrothermal site in Guaymas Basin (Gulf of California, Mexico) was recently obtained. From this sequence, the gene encoding an abundant soluble orange-pigmented protein in Guaymas Basin mat samples (collected in 2009) was identified by microcapillary reverse-phase high-performance liquid chromatography (HPLC) nano-electrospray tandem mass spectrometry (μLC-MS-MS) of a pigmented band excised from a denaturing polyacrylamide gel. The predicted protein sequence is related to a large group of octaheme cytochromes whose few characterized representatives are hydroxylamine or hydrazine oxidases. The protein was partially purified and shown by in vitro assays to have hydroxylamine oxidase, hydrazine oxidase, and nitrite reductase activities. From what is known of Beggiatoaceae physiology, nitrite reduction is the most likely in vivo role of the octaheme protein, but future experiments are required to confirm this tentative conclusion. Thus, while present-day genomic and proteomic techniques have allowed precise identification of an abundant mat protein, and its potential activities could be assayed, proof of its physiological role remains elusive in the absence of a pure culture that can be genetically manipulated.

  15. Heme-bound nitroxyl, hydroxylamine, and ammonia ligands as intermediates in the reaction cycle of cytochrome c nitrite reductase: a theoretical study.

    PubMed

    Bykov, Dmytro; Plog, Matthias; Neese, Frank

    2014-01-01

    In this article, we consider, in detail, the second half-cycle of the six-electron nitrite reduction mechanism catalyzed by cytochrome c nitrite reductase. In total, three electrons and four protons must be provided to reach the final product, ammonia, starting from the HNO intermediate. According to our results, the first event in this half-cycle is the reduction of the HNO intermediate, which is accomplished by two PCET reactions. Two isomeric radical intermediates, HNOH(•) and H2NO(•), are formed. Both intermediates are readily transformed into hydroxylamine, most likely through intramolecular proton transfer from either Arg114 or His277. An extra proton must enter the active site of the enzyme to initiate heterolytic cleavage of the N-O bond. As a result of N-O bond cleavage, the H2N(+) intermediate is formed. The latter readily picks up an electron, forming H2N(+•), which in turn reacts with Tyr218. Interestingly, evidence for Tyr218 activity was provided by the mutational studies of Lukat (Biochemistry 47:2080, 2008), but this has never been observed in the initial stages of the overall reduction process. According to our results, an intramolecular reaction with Tyr218 in the final step of the nitrite reduction process leads directly to the final product, ammonia. Dissociation of the final product proceeds concomitantly with a change in spin state, which was also observed in the resonance Raman investigations of Martins et al. (J Phys Chem B 114:5563, 2010).

  16. Why Orange Guaymas Basin Beggiatoa spp. Are Orange: Single-Filament-Genome-Enabled Identification of an Abundant Octaheme Cytochrome with Hydroxylamine Oxidase, Hydrazine Oxidase, and Nitrite Reductase Activities

    PubMed Central

    Biddle, Jennifer F.; Siebert, Jason R.; Staunton, Eric; Hegg, Eric L.; Matthysse, Ann G.; Teske, Andreas

    2013-01-01

    Orange, white, and yellow vacuolated Beggiatoaceae filaments are visually dominant members of microbial mats found near sea floor hydrothermal vents and cold seeps, with orange filaments typically concentrated toward the mat centers. No marine vacuolate Beggiatoaceae are yet in pure culture, but evidence to date suggests they are nitrate-reducing, sulfide-oxidizing bacteria. The nearly complete genome sequence of a single orange Beggiatoa (“Candidatus Maribeggiatoa”) filament from a microbial mat sample collected in 2008 at a hydrothermal site in Guaymas Basin (Gulf of California, Mexico) was recently obtained. From this sequence, the gene encoding an abundant soluble orange-pigmented protein in Guaymas Basin mat samples (collected in 2009) was identified by microcapillary reverse-phase high-performance liquid chromatography (HPLC) nano-electrospray tandem mass spectrometry (μLC–MS-MS) of a pigmented band excised from a denaturing polyacrylamide gel. The predicted protein sequence is related to a large group of octaheme cytochromes whose few characterized representatives are hydroxylamine or hydrazine oxidases. The protein was partially purified and shown by in vitro assays to have hydroxylamine oxidase, hydrazine oxidase, and nitrite reductase activities. From what is known of Beggiatoaceae physiology, nitrite reduction is the most likely in vivo role of the octaheme protein, but future experiments are required to confirm this tentative conclusion. Thus, while present-day genomic and proteomic techniques have allowed precise identification of an abundant mat protein, and its potential activities could be assayed, proof of its physiological role remains elusive in the absence of a pure culture that can be genetically manipulated. PMID:23220958

  17. Isolation and Expression Analysis of CYP9A11 and Cytochrome P450 Reductase Gene in the Beet Armyworm (Lepidoptera: Noctuidae)

    PubMed Central

    Zhao, Chunqing; Feng, Xiaoyun; Tang, Tao; Qiu, Lihong

    2015-01-01

    Cytochrome P450 monooxygenases (CYPs), as an enzyme superfamily, is widely distributed in organisms and plays a vital function in the metabolism of exogenous and endogenous compounds by interacting with its obligatory redox partner, CYP reductase (CPR). A novel CYP gene (CYP9A11) and CPR gene from the agricultural pest insect Spodoptera exigua were cloned and characterized. The complete cDNA sequences of SeCYP9A11 and SeCPR are 1,931 and 3,919 bp in length, respectively, and contain open reading frames of 1,593 and 2,070 nucleotides, respectively. Analysis of the putative protein sequences indicated that SeCYP9A11 contains a heme-binding domain and the unique characteristic sequence (SRFALCE) of the CYP9 family, in addition to a signal peptide and transmembrane segment at the N-terminal. Alignment analysis revealed that SeCYP9A11 shares the highest sequence similarity with CYP9A13 from Mamestra brassicae, which is 66.54%. The putative protein sequence of SeCPR has all of the classical CPR features, such as an N-terminal membrane anchor; three conserved domain flavin adenine dinucleotide (FAD), flavin mononucleotide (FMN), and nicotinamide adenine dinucleotide phosphate (NADPH) domain; and characteristic binding motifs. Phylogenetic analysis revealed that SeCPR shares the highest identity with HaCPR, which is 95.21%. The SeCYP9A11 and SeCPR genes were detected in the midgut, fat body, and cuticle tissues, and throughout all of the developmental stages of S. exigua. The mRNA levels of SeCYP9A11 and SeCPR decreased remarkably after exposure to plant secondary metabolites quercetin and tannin. The results regarding SeCYP9A11 and SeCPR genes in the current study provide foundation for the further study of S. exigua P450 system. PMID:26320261

  18. NADPH-cytochrome P450 reductase-mediated denitration reaction of 2,4,6-trinitrotoluene to yield nitrite in mammals.

    PubMed

    Shinkai, Yasuhiro; Nishihara, Yuya; Amamiya, Masahiro; Wakayama, Toshihiko; Li, Song; Kikuchi, Tomohiro; Nakai, Yumi; Shimojo, Nobuhiro; Kumagai, Yoshito

    2016-02-01

    While the biodegradation of 2,4,6-trinitrotoluene (TNT) via the release of nitrite is well established, mechanistic details of the reaction in mammals are unknown. To address this issue, we attempted to identify the enzyme from rat liver responsible for the production of nitrite from TNT. A NADPH-cytochrome P450 reductase (P450R) was isolated and identified from rat liver microsomes as the enzyme responsible for not only the release of nitrite from TNT but also formation of superoxide and 4-hydroxyamino-2,6-dinitrotoluene (4-HADNT) under aerobic conditions. In this context, reactive oxygen species generated during P450R-catalyzed TNT reduction were found to be, at least in part, a mediator for the production of 4-HADNT from TNT via formation of 4-nitroso-2,6-dinitrotoluene. P450R did not catalyze the formation of the hydride-Meisenheimer complex (H(-)-TNT) that is thought to be an intermediate for nitrite release from TNT. Furthermore, in a time-course experiment, 4-HADNT formation reached a plateau level and then declined during the reaction between TNT and P450R with NADPH, while the release of nitrite was subjected to a lag period. Notably, the produced 4-HADNT can react with the parent compound TNT to produce nitrite and dimerized products via formation of a Janovsky complex. Our results demonstrate for the first time that P450R-mediated release of nitrite from TNT results from the process of chemical interaction of TNT and its 4-electron reduction metabolite 4-HADNT. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Reduction of amphetamine hydroxylamine and other aliphatic hydroxylamines by benzamidoxime reductase and human liver microsomes.

    PubMed

    Clement, B; Behrens, D; Möller, W; Cashman, J R

    2000-10-01

    For the reduction of N-hydroxylated derivatives of strongly basic functional groups, such as amidines, guanidines, and aminohydrazones, an oxygen-insensitive liver microsomal system, the benzamidoxime reductase, has been described. To reconstitute the complete activity of the benzamidoxime reductase, the system required cytochrome b(5), NADH-cytochrome b(5)-reductase, and the benzamidoxime reductase, a cytochrome P450 enzyme, which has been purified to homogeneity from pig liver. It was not known if this enzyme system was also capable of reducing aliphatic hydroxylamines. The N-hydroxylation of aliphatic amines is a well-known metabolic process. It was of interest to study the possibility of benzamidoxime reductase reducing N-hydroxylated metabolites of aliphatic amines back to the parent compound. Overall, N-hydroxylation and reduction would constitute a futile metabolic cycle. As examples of medicinally relevant compounds, the hydroxylamines of methamphetamine, amphetamine, and N-methylamine as model compounds were investigated. Formation of methamphetamine and amphetamine was analyzed by newly developed HPLC methods. All three hydroxylamines were easily reduced by benzamidoxime reductase to their parent amines with reduction rates of 220.6 nmol min(-1) (mg of protein)(-1) for methamphetamine, 5.25 nmol min(-1) (mg of protein)(-1) for amphetamine, and 153 nmol min(-1) (mg of protein)(-1) for N-methylhydroxylamine. Administration of synthetic hydroxylamines of amphetamine and methamphetamine to primary rat neuronal cultures produced frank cell toxicity. Compared with amphetamine or the oxime of amphetamine, the hydroxylamines were significantly more toxic to primary neuronal cells. The benzamidoxime reductase is therefore involved in the detoxication of these reactive hydroxylamines.

  20. Co-expression of human cytochrome P4501A1 (CYP1A1) variants and human NADPH-cytochrome P450 reductase in the baculovirus/insect cell system.

    PubMed

    Schwarz, D; Kisselev, P; Honeck, H; Cascorbi, I; Schunck, W H; Roots, I

    2001-06-01

    1. Three human cytochrome P4501A1 (CYP1A1) variants, wild-type (CYP1A1.1), CYP1A1.2 (1462V) and CYP1A1.4 (T461N), were co-expressed with human NADPH-P450 reductase (OR) in Spodoptera frugiperda (Sf9) insect cells by baculovirus co-infection to elaborate a suitable system for studying the role of CYPA1 polymorphism in the metabolism of exogenous and endogenous substrates. 2. A wide range of conditions was examined to optimize co-expression with regard to such parameters as relative multiplicity of infection (MOI), time of harvest, haem precursor supplementation and post-translational stabilization. tinder optimized conditions, almost identical expression levels and molar OR/CYP1A1 ratios (20:1) were attained for all CYP1A1 variants. 3. Microsomes isolated from co-infected cells demonstrated ethoxyresorufin deethlylase activities (nmol/min(-1) nmol(-1) CYP1A1) of 16.0 (CYP1A1.1), 20.5 (CYP1A1.2) and 22.5 (CYP1A1.4). Pentoxyresorufin was dealkylated approximately 10-20 times slower with all enzyme variants. 4. All three CYP1A1 variants were active in metabolizing the precarcinogen benzo[a]pyrene (B[a]P), with wild-type enzyme showing the highest activity, followed by CYP1A1.4 (60%) and CYP1A1.2 (40%). Each variant produced all major metabolites including B[a]P-7,8-dihydrodiol, the precursor of the ultimate carcinogenic species. 5. These studies demonstrate that the baculovirus-mediated co-expression-by-co-infection approach all CYP1A1 variants yields functionally active enzyme systems with similar molar OR/CYP1A1 ratios, thus providing suitable preconditions to examine the metabolism of and environmental chemicals by the different CY1A1 variants.

  1. An examination of the effect of cytochrome P450 drug interactions of hydroxymethylglutaryl-coenzyme A reductase inhibitors on health care utilization: a Canadian population-based study.

    PubMed

    Einarson, Thomas R; Metge, Colleen J; Iskedjian, Michael; Mukherjee, Jayanti

    2002-12-01

    Cytochrome P450-related drug interactions can lead to adverse effects that may affect health care resource utilization. The purpose of this study was to quantify the impact of drug interactions involving hydroxymethylglutaryl-coenzyme A reductase inhibitors (statins) on health care resource utilization. Using the Manitoba Health Research database, we identified patients who had used statins between January 1, 1995, and March 31, 1998. New statin users (NSUs) were those who received a first prescription for a statin after April 30, 1995; old statin users (OSUs) were those who had a statin prescription before January 1, 1995. The number of hospitalizations, physician visits, and prescriptions, and their associated costs to the Manitoba health care system were calculated. Statin interacters were defined as users with >1 prescription for an interacting drug while receiving a statin. Interacting drugs were classified into 2 groups: group A included drugs whose levels increased as a result of the statin prescription; drugs in group B increased statin levels. The Wilcoxon rank-sum test was used to analyze differences by statin on health care resource use. A total of 28,705 statin users (18, 181 NSUs and 10,524 OSUs) were identified. During the study period, 24,496 (85.3%) individuals took 1 statin, 3751 (13.1%) took 2 statins, and 458 (1.6%) took 3 to 5 statins. The most common coadministered group A interacting drugs were diclofenac (5.8%), amitriptyline (4.9%), warfarin (4.5%), and ibuprofen (1.8%). The most common group B interacting drugs were erythromycin (8.2%), omeprazole (5.5%), cimetidine (3.6%), and clarithromycin (3.5%). Statin interacters consumed significantly more health care resources than did noninteracters for both incident and prevalent analyses (P < 0.001). In the prevalent analysis (NSUs + OSUs), pravastatin users taking interacting drugs had significantly fewer hospitalizations (mean, 1.3), fewer physician visits (mean, 24.2), and lower health care

  2. Kinetics of nirS Expression (Cytochrome cd1 Nitrite Reductase) in Pseudomonas stutzeri during the Transition from Aerobic Respiration to Denitrification: Evidence for a Denitrification-Specific Nitrate- and Nitrite-Responsive Regulatory System

    PubMed Central

    Härtig, Elisabeth; Zumft, Walter G.

    1999-01-01

    After shifting an oxygen-respiring culture of Pseudomonas stutzeri to nitrate or nitrite respiration, we directly monitored the expression of the nirS gene by mRNA analysis. nirS encodes the 62-kDa subunit of the homodimeric cytochrome cd1 nitrite reductase involved in denitrification. Information was sought about the requirements for gene activation, potential regulators of such activation, and signal transduction pathways triggered by the alternative respiratory substrates. We found that nirS, together with nirT and nirB (which encode tetra- and diheme cytochromes, respectively), is part of a 3.4-kb operon. In addition, we found a 2-kb monocistronic transcript. The half-life of each of these messages was approximately 13 min in denitrifying cells with a doubling time of around 2.5 h. When the culture was subjected to a low oxygen tension, we observed a transient expression of nirS lasting for about 30 min. The continued transcription of the nirS operon required the presence of nitrate or nitrite. This anaerobically manifested N-oxide response was maintained in nitrate sensor (NarX) and response regulator (NarL) knockout strains. Similar mRNA stability and transition kinetics were observed for the norCB operon, encoding the NO reductase complex, and the nosZ gene, encoding nitrous oxide reductase. Our results suggest that a nitrate- and nitrite-responsive regulatory circuit independent of NarXL is necessary for the activation of denitrification genes. PMID:9864326

  3. Toxic dark effects of protoporphyrin on the cytochrome P-450 system in rat liver microsomes.

    PubMed Central

    Williams, M; Van der Zee, J; Van Steveninck, J

    1992-01-01

    In erythropoietic protoporphyria, accumulation of protoporphyrin has been found in various tissues and liver cirrhosis occurs frequently in this disease, probably due to toxic dark effects of protoporphyrin. We have studied the effect of porphyrins on various enzymic functions in rat liver microsomes. Incubation of microsomes with protoporphyrin resulted in a concentration-dependent inhibition of the oxidation of 7-ethoxycoumarin and aminopyrine by the cytochrome P-450 system. Kinetic analysis showed a decrease in Vmax., whereas the Km was not affected (non-competitive inhibition). Furthermore, reduction of cytochrome c by the NADPH-cytochrome P-450 reductase and by the NADH-cytochrome b5 reductase was inhibited. However, the activity of the reductases was only affected when the microsomes were pre-incubated with protoporphyrin, and it was found that the inhibition was dependent on the duration of the pre-incubation. Kinetic analysis again revealed non-competitive inhibition. When these experiments were repeated with uroporphyrin, no inhibition could be observed. With Stern-Volmer plots it was demonstrated that this was most likely caused by the localization of the porphyrins: protoporphyrin is localized in the membrane, whereas uroporphyrin remains in solution. From these results it is concluded that accumulation of protoporphyrin in the liver may markedly affect the cytochrome P-450 system and thus its detoxification function. PMID:1332695

  4. Genetic localization of diuron- and mucidin-resistant mutants relative to a group of loci of the mitochondrial DNA controlling coenzyme QH2-cytochrome c reductase in Saccharomyces cerevisiae.

    PubMed

    Colson, A M; Slonimski, P P

    1979-01-02

    Diuron-resistance, DIU (Colson et al., 1977), antimycin-resistance, ANA (Michaelis, 1976; Burger et al., 1976), funiculosin-resistance, FUN (Pratje and Michaelis, 1977; Burger et al., 1977) and mucidin-resistance, MUC (Subik et al., 1977) are each coded by a pair of genetic loci on the mit DNA of S. cerevisiae. In the present paper, these respiratiory-competent, drug-resistant loci are localized relative to respiratory-deficient BOX mutants deficient in coenzyme QH2-cytochrome c reductase (Kotylak and Slonimski, 1976, 1977) using deletion and recombination mapping. Three drug-resistant loci possessing distinct mutated allelic forms are distinguished. DIU1 is allelic or closely linked to ANA2, FUN1 and BOX1; DIU2 is allelic or closely linked to ANA1, MUC1 and BOX4/5; MUC2 is allelic to BOX6. The high recombinant frequencies observed between the three loci (13% on the average for 33 various combinations analyzed) suggest the existence of either three genes coding for three distinct polypeptides or of a single gene coding for a single polypeptide but subdivided into three easily separable segments. The resistance of the respiratory-chain observed in vitro in the drug-resistant mutants and the allelism relationships between respiratory-competent, drug-resistant loci and coQH2-cyt c reductase deficient, BOX, loci strongly suggest that each of the three drug-resistant loci codes for a structural gene-product which is essential for the normal coQH2-cyt c reductase activity and is obviously a good candidate for a gene product of the drug-resistant loci mapped in this paper. Polypeptide length modifications of cytochrome b were observed in mutants deficient in the coQH2-cyt c red and localized at the BOX1, BOX4 and BOX6 genetic loci (Claisse et al., 1977, 1978) which are precisely the loci allelic to drug resistant mutants as shown in the present work. Taken together these two sets of data provide a strong evidence in favor of the idea that there exist three non contiguous

  5. Reasons for reduced activities of 17 alpha-hydroxylase and C17-C20 lyase in spite of increased contents of cytochrome P-450 in mature rat testis fetally irradiated with 60Co.

    PubMed

    Inano, H; Ishii-Ohba, H; Suzuki, K; Ikeda, K

    1990-05-01

    Pregnant rats received whole body irradiation with 2.6 Gy gamma-ray from a 60Co source at Day 20 of gestation. When pups were 4 months old, activities of electron transport system and steroid monooxygenase in tests were assayed. The content of total cytochrome P-450 in the irradiated testes had increased to 170% of that in non-irradiated rats, but NADPH-cytochrome P-450 reductase activity had reduced to 36% of the control. Also, amounts of cytochrome b5 in testicular microsomal fraction were decreased markedly after irradiation, but no significant change of NADH-cytochrome b5 reductase activity was observed in the treated pups. Because both 17 alpha-hydroxylase and C17-C20 lyase activities tended to be decreased by fetal irradiation, testosterone production from progesterone and 17 alpha-hydroxyprogesterone was reduced to about 30% of the control. From these results, it has been suggested that the testicular cytochrome P-450 is radioresistant but steroid monooxygenase activities are reduced after the fetal irradiation. We propose that the discrepancy arises from the marked decrement of NADPH-cytochrome P-450 reductase activity.

  6. A novel point mutation in a 3{prime} splice site of the NADH-cytochrome b{sub 5} reductase gene results in immunologically undetectable enzyme and impaired NADH-dependent ascorbate regeneration in cultured fibroblasts of a patient with type II hereditary methemoglobinemia

    SciTech Connect

    Shirabe, Komie; Takeshita, Masazumi; Landi, M.T.

    1995-08-01

    Hereditary methemoglobinemia with generalized deficiency of NADH-cytochrome b{sub 5} reductase (b{sub 5}R) (type II) is a rare disease characterized by severe developmental abnormalities, which often lead to premature death. Although the molecular relationship between the symptoms of this condition and the enzyme deficit are not understood, it is thought that an important cause is the loss of the lipid metabolizing activities of the endoplasmic reticulum-located reductase. However, the functions of the form located on outer mitochondrial membranes have not been considered previously. In this study, we have analyzed the gene of an Italian patient and identified a novel G{r_arrow}T transversion at the splice-acceptor site of the 9th exon, which results in the complete absence of immunologically detectable b{sub 5}R in blood cells and skin fibroblasts. In cultured fibroblasts of the patient, NADH-dependent cytochrome c reductase, ferricyanide reductase, and semidehydroascorbate reductase activities were severely reduced. The latter activity is known to be due to b{sub 5}R located on outer mitochondrial membranes. Thus, our results demonstrate that the reductase in its two membrane locations, endoplasmic reticulum and outer mitochondrial membranes, is the product of the same gene and suggest that a defect in ascorbate regeneration may contribute to the phenotype of hereditary methemoglobinemia of generalized type. 37 refs., 5 figs., 2 tabs.

  7. The cytochrome ba3 oxygen reductase from Thermus thermophilus uses a single input channel for proton delivery to the active site and for proton pumping

    PubMed Central

    Chang, Hsin-Yang; Hemp, James; Chen, Ying; Fee, James A.; Gennis, Robert B.

    2009-01-01

    The heme-copper oxygen reductases are redox-driven proton pumps that generate a proton motive force in both prokaryotes and mitochondria. These enzymes have been divided into 3 evolutionarily related groups: the A-, B- and C-families. Most experimental work on proton-pumping mechanisms has been performed with members of the A-family. These enzymes require 2 proton input pathways (D- and K-channels) to transfer protons used for oxygen reduction chemistry and for proton pumping, with the D-channel transporting all pumped protons. In this work we use site-directed mutagenesis to demonstrate that the ba3 oxygen reductase from Thermus thermophilus, a representative of the B-family, does not contain a D-channel. Rather, it utilizes only 1 proton input channel, analogous to that of the A-family K-channel, and it delivers protons to the active site for both O2 chemistry and proton pumping. Comparison of available subunit I sequences reveals that the only structural elements conserved within the oxygen reductase families that could perform these functions are active-site components, namely the covalently linked histidine-tyrosine, the CuB and its ligands, and the active-site heme and its ligands. Therefore, our data suggest that all oxygen reductases perform the same chemical reactions for oxygen reduction and comprise the essential elements of the proton-pumping mechanism (e.g., the proton-loading and kinetic-gating sites). These sites, however, cannot be located within the D-channel. These results along with structural considerations point to the A-propionate region of the active-site heme and surrounding water molecules as the proton-loading site. PMID:19805275

  8. The cytochrome ba3 oxygen reductase from Thermus thermophilus uses a single input channel for proton delivery to the active site and for proton pumping.

    PubMed

    Chang, Hsin-Yang; Hemp, James; Chen, Ying; Fee, James A; Gennis, Robert B

    2009-09-22

    The heme-copper oxygen reductases are redox-driven proton pumps that generate a proton motive force in both prokaryotes and mitochondria. These enzymes have been divided into 3 evolutionarily related groups: the A-, B- and C-families. Most experimental work on proton-pumping mechanisms has been performed with members of the A-family. These enzymes require 2 proton input pathways (D- and K-channels) to transfer protons used for oxygen reduction chemistry and for proton pumping, with the D-channel transporting all pumped protons. In this work we use site-directed mutagenesis to demonstrate that the ba(3) oxygen reductase from Thermus thermophilus, a representative of the B-family, does not contain a D-channel. Rather, it utilizes only 1 proton input channel, analogous to that of the A-family K-channel, and it delivers protons to the active site for both O2 chemistry and proton pumping. Comparison of available subunit I sequences reveals that the only structural elements conserved within the oxygen reductase families that could perform these functions are active-site components, namely the covalently linked histidine-tyrosine, the Cu(B) and its ligands, and the active-site heme and its ligands. Therefore, our data suggest that all oxygen reductases perform the same chemical reactions for oxygen reduction and comprise the essential elements of the proton-pumping mechanism (e.g., the proton-loading and kinetic-gating sites). These sites, however, cannot be located within the D-channel. These results along with structural considerations point to the A-propionate region of the active-site heme and surrounding water molecules as the proton-loading site.

  9. Histochemical demonstration of folic acid metabolism, some lysosomal activities and NADH2-cytochrome-C-reductase in corpora mammillaria in the ageing process.

    PubMed

    Onicescu, D; Popescu, M

    1993-01-01

    In bovine corpora mammillaria of young animals, a folic acid positive reaction was found in the neurons and in the neuroglia, in parallel with high dihydrofolate-reductase activity in the nerve cells. In old animals, folate and lysosome enzymes were different in the lateral and in medial nucleus, the highest amount being observed in the lateral nucleus; in the glial cells the lysosomal enzymes increased and in the nerve cells the concentration of folic acid increased. In the medial nucleus only relatively few enzyme modifications in the process of senescence were noticed.

  10. Role of protein-protein interactions in cytochrome P450-mediated drug metabolism and toxicity.

    PubMed

    Kandel, Sylvie E; Lampe, Jed N

    2014-09-15

    Through their unique oxidative chemistry, cytochrome P450 monooxygenases (CYPs) catalyze the elimination of most drugs and toxins from the human body. Protein-protein interactions play a critical role in this process. Historically, the study of CYP-protein interactions has focused on their electron transfer partners and allosteric mediators, cytochrome P450 reductase and cytochrome b5. However, CYPs can bind other proteins that also affect CYP function. Some examples include the progesterone receptor membrane component 1, damage resistance protein 1, human and bovine serum albumin, and intestinal fatty acid binding protein, in addition to other CYP isoforms. Furthermore, disruption of these interactions can lead to altered paths of metabolism and the production of toxic metabolites. In this review, we summarize the available evidence for CYP protein-protein interactions from the literature and offer a discussion of the potential impact of future studies aimed at characterizing noncanonical protein-protein interactions with CYP enzymes.

  11. Role of Protein–Protein Interactions in Cytochrome P450-Mediated Drug Metabolism and Toxicity

    PubMed Central

    2015-01-01

    Through their unique oxidative chemistry, cytochrome P450 monooxygenases (CYPs) catalyze the elimination of most drugs and toxins from the human body. Protein–protein interactions play a critical role in this process. Historically, the study of CYP–protein interactions has focused on their electron transfer partners and allosteric mediators, cytochrome P450 reductase and cytochrome b5. However, CYPs can bind other proteins that also affect CYP function. Some examples include the progesterone receptor membrane component 1, damage resistance protein 1, human and bovine serum albumin, and intestinal fatty acid binding protein, in addition to other CYP isoforms. Furthermore, disruption of these interactions can lead to altered paths of metabolism and the production of toxic metabolites. In this review, we summarize the available evidence for CYP protein–protein interactions from the literature and offer a discussion of the potential impact of future studies aimed at characterizing noncanonical protein–protein interactions with CYP enzymes. PMID:25133307

  12. Pantothenic acid (Vitamin B5)

    MedlinePlus

    ... B1 (thiamine), vitamin B2 (riboflavin), vitamin B3 (niacin/niacinamide), vitamin B5 (pantothenic acid), vitamin B6 (pyridoxine), vitamin ... to colds and other infections, retarded growth, shingles, skin disorders, stimulating adrenal glands, chronic fatigue syndrome, salicylate ...

  13. Instability of the Human Cytochrome P450 Reductase A287P Variant Is the Major Contributor to Its Antley-Bixler Syndrome-like Phenotype*

    PubMed Central

    McCammon, Karen M.; Panda, Satya P.; Xia, Chuanwu; Kim, Jung-Ja P.; Moutinho, Daniela; Kranendonk, Michel; Auchus, Richard J.; Lafer, Eileen M.; Ghosh, Debashis; Martasek, Pavel; Kar, Rekha; Masters, Bettie Sue; Roman, Linda J.

    2016-01-01

    Human NADPH-cytochrome P450 oxidoreductase (POR) gene mutations are associated with severe skeletal deformities and disordered steroidogenesis. The human POR mutation A287P presents with disordered sexual development and skeletal malformations. Difficult recombinant expression and purification of this POR mutant suggested that the protein was less stable than WT. The activities of cytochrome P450 17A1, 19A1, and 21A2, critical in steroidogenesis, were similar using our purified, full-length, unmodified A287P or WT POR, as were those of several xenobiotic-metabolizing cytochromes P450, indicating that the A287P protein is functionally competent in vitro, despite its functionally deficient phenotypic behavior in vivo. Differential scanning calorimetry and limited trypsinolysis studies revealed a relatively unstable A287P compared with WT protein, leading to the hypothesis that the syndrome observed in vivo results from altered POR protein stability. The crystal structures of the soluble domains of WT and A287P reveal only subtle differences between them, but these differences are consistent with the differential scanning calorimetry results as well as the differential susceptibility of A287P and WT observed with trypsinolysis. The relative in vivo stabilities of WT and A287P proteins were also examined in an osteoblast cell line by treatment with cycloheximide, a protein synthesis inhibitor, showing that the level of A287P protein post-inhibition is lower than WT and suggesting that A287P may be degraded at a higher rate. Current studies demonstrate that, unlike previously described mutations, A287P causes POR deficiency disorder due to conformational instability leading to proteolytic susceptibility in vivo, rather than through an inherent flavin-binding defect. PMID:27496950

  14. NADPH-Cytochrome P450 Reductase Is Regulated by All-Trans Retinoic Acid and by 1,25-Dihydroxyvitamin D3 in Human Acute Myeloid Leukemia Cells

    PubMed Central

    Gocek, Elżbieta; Marchwicka, Aleksandra; Bujko, Kamila; Marcinkowska, Ewa

    2014-01-01

    Acute myeloid leukemia (AML) cell lines can be driven to differentiate to monocyte-like cells by 1,25- dihydroxyvitamin D3 (1,25D) and to granulocyte-like cells by all-trans-retinoic acid (ATRA). Both compounds activate their specific intracellular receptors, vitamin D receptor (VDR) and retinoic acid receptors (RARs) respectively. Inside the cells 1,25D is degraded to calcitrioic acid by a mitochondrial enzyme CYP24A1, while ATRA is degraded to several polar metabolites by CYP26. NADPH-cytochrome P450 oxidoreductase (POR) is a membrane-bound enzyme required for electron transfer to cytochrome P450 (CYP), vital in the processes of the metabolism of drugs and steroid production in humans. In this paper we report that POR in AML cells, from both cell lines and patients, is upregulated by ATRA and by 1,25D at the level of mRNA and protein. Partial silencing of POR in HL60 cells resulted in augmented differentiation response to 1,25D. PMID:24642534

  15. Prevention of LDL-suppression of HMG-CoA reductase (HMGR) activity by progesterone (PG): evidence for cytochrome P-450 involvement

    SciTech Connect

    Sexton, R.C.; Gupta, A.; Panini, S.R.; Rudney, H.

    1987-05-01

    Incubation of rat intestinal epithelial cells (IEC-6) with PG has been reported by us to prevent the suppression of HMGR activity by LDL. In the present study, addition of LDL and PG to IEC-6 cells resulted in a 2 fold increase in cellular free cholesterol (CH) in 24 h, while HMGR activity remained elevated. PG did not affect the internalization and degradation of (/sup 125/I) LDL nor the accumulation of free (/sup 3/H) CH in cells incubated with (/sup 3/H-cholesteryl linoleate)-LDL. Also, PG did not affect the intracellular transport of LDL-derived (/sup 3/H) CH to the plasma membrane nor the efflux of the (/sup 3/H) CH into medium containing human high density lipoprotein. Addition of LDL to cells, in which the cellular CH was radiolabeled from (/sup 3/H) acetate, resulted in an increased formation of radiolabeled oxysterols, detected by HPLC, and a corresponding decrease in HMGR activity. PG attenuated both the LDL-induced formation of oxysterols and suppression of HMGR activity. PG inhibited cytochrome P-450 dependent oxidation of benzphetamine, aminopyrine and aniline by liver microsomes from phenobarbitol treated rats. These results suggest PG may prevent LDL suppression of HMGR activity in IEC-6 cells by inhibiting cytochrome P-450 dependent formation of regulatory oxysterols.

  16. Functional expression of a putative geraniol 8-hydroxylase by reconstitution of bacterially expressed plant CYP76F45 and NADPH-cytochrome P450 reductase CPR I from Croton stellatopilosus Ohba.

    PubMed

    Sintupachee, Siriluk; Promden, Worrawat; Ngamrojanavanich, Nattaya; Sitthithaworn, Worapan; De-Eknamkul, Wanchai

    2015-10-01

    While attempting to isolate the enzyme geranylgeraniol 18-hydroxylase, which is involved in plaunotol biosynthesis in Croton stellatopilosus (Cs), the cDNAs for a cytochrome P450 monooxygenase(designated as CYP76F45) and an NADPH-cytochrome P450 reductase (designated as CPR I based on its classification) were isolated from the leaf. The CYP76F45 and CsCPR I genes have open reading frames (ORFs) encoding 507- and 711-amino acid proteins with predicted relative molecular weights of 56.7 and 79.0 kDa,respectively. Amino acid sequence comparison showed that both CYP76F45 (63–73%) and CsCPR I (79–83%) share relatively high sequence identities with homologous proteins in other plant species.Phylogenetic tree analysis confirmed that CYP76F45 belongs to the CYP76 family and that CsCPR I belongs to Class I of dicotyledonous CPRs, with both being closely related to Ricinus communis genes. Functional characterization of both enzymes, each expressed separately in Escherichia coli as recombinant proteins,showed that only simultaneous incubation of the membrane bound proteins with the substrate geraniol (GOH) and the coenzyme NADPH could form 8-hydroxygeraniol. The enzyme mixture could also utilize acyclic sesquiterpene farnesol (FOH) with a comparable substrate preference ratio (GOH:FOH) of 54:46. The levelsof the CYP76F45 and CsCPR I transcripts in the shoots, leaves and twigs of C. stellatopilosus were correlated with the levels of a major monoterpenoid indole alkaloid, identified tentatively as 19-Evallesamine,that accumulated in these plant parts. These results suggested that CYP76F45 and CPR I function as the enzyme geraniol-8-hydroxylase (G8H), which is likely to be involved in the biosynthesis of the indole alkaloid in C. stellatopilosus [corrected].

  17. Conditional Deletion of Cytochrome P450 Reductase in Osteoprogenitor Cells Affects Long Bone and Skull Development in Mice Recapitulating Antley-Bixler Syndrome: Role of a Redox Enzyme in Development

    PubMed Central

    Panda, Satya P.; Guntur, Anyonya R.; Polusani, Srikanth R.; Fajardo, Roberto J.; Gakunga, Peter T.; Roman, Linda J.; Masters, Bettie Sue

    2013-01-01

    NADPH-cytochrome P450 oxidoreductase (POR) is the primary electron donor for cytochromes P450, dehydrocholesterol reductase, heme oxygenase, and squalene monooxygenase. Human patients with specific mutations in POR exhibit severe developmental malformations including disordered steroidogenesis, sexual ambiguities and various bone defects, similar to those seen in patients with Antley-Bixler syndrome (ABS). To probe the role of POR during bone development, we generated a conditional knockout mouse (CKO) by cross breeding Porlox/lox and Dermo1 Cre mice. CKO mice were smaller than their littermate controls and exhibited significant craniofacial and long bone abnormalities. Differential staining of the CKO mice skull bases shows premature fusion of the sphenooccipital and basioccipital-exoccipital synchondroses. Class III malocclusion was noted in adult knockout mice with an unusual overgrowth of the lower incisors. Shorter long bones were observed along with a reduction in the bone volume fraction, measured by microCT, in the Por-deleted mice compared to age- and sex-matched littermate controls. Concerted up- or down-regulation of proteins in the FGF signaling pathway observed by immunohistochemistry in the tibia samples of CKO mice compared to wild type controls shows a decrease in the FGF signaling pathway. To our knowledge, this is the first report of a mouse model that recapitulates both skull and long bone defects upon Por deletion, offering an approach to study the sequelae of POR mutations. This unique model demonstrates that P450 metabolism in bone itself is potentially important for proper bone development, and that an apparent link exists between the POR and FGF signaling pathways, begging the question of how an oxidation-reduction flavoprotein affects developmental and cellular signaling processes. PMID:24086598

  18. Conditional deletion of cytochrome p450 reductase in osteoprogenitor cells affects long bone and skull development in mice recapitulating antley-bixler syndrome: role of a redox enzyme in development.

    PubMed

    Panda, Satya P; Guntur, Anyonya R; Polusani, Srikanth R; Fajardo, Roberto J; Gakunga, Peter T; Roman, Linda J; Masters, Bettie Sue

    2013-01-01

    NADPH-cytochrome P450 oxidoreductase (POR) is the primary electron donor for cytochromes P450, dehydrocholesterol reductase, heme oxygenase, and squalene monooxygenase. Human patients with specific mutations in POR exhibit severe developmental malformations including disordered steroidogenesis, sexual ambiguities and various bone defects, similar to those seen in patients with Antley-Bixler syndrome (ABS). To probe the role of POR during bone development, we generated a conditional knockout mouse (CKO) by cross breeding Por (lox/lox) and Dermo1 Cre mice. CKO mice were smaller than their littermate controls and exhibited significant craniofacial and long bone abnormalities. Differential staining of the CKO mice skull bases shows premature fusion of the sphenooccipital and basioccipital-exoccipital synchondroses. Class III malocclusion was noted in adult knockout mice with an unusual overgrowth of the lower incisors. Shorter long bones were observed along with a reduction in the bone volume fraction, measured by microCT, in the Por-deleted mice compared to age- and sex-matched littermate controls. Concerted up- or down-regulation of proteins in the FGF signaling pathway observed by immunohistochemistry in the tibia samples of CKO mice compared to wild type controls shows a decrease in the FGF signaling pathway. To our knowledge, this is the first report of a mouse model that recapitulates both skull and long bone defects upon Por deletion, offering an approach to study the sequelae of POR mutations. This unique model demonstrates that P450 metabolism in bone itself is potentially important for proper bone development, and that an apparent link exists between the POR and FGF signaling pathways, begging the question of how an oxidation-reduction flavoprotein affects developmental and cellular signaling processes.

  19. Effect of NADPH-cytochrome P450 reductase on all-trans-retinoic acid efficacy and cytochrome P450 26A1 expression in human myeloid leukaemia HL-60 cells.

    PubMed

    Hu, Lei; Lv, Jin-Feng; Zhuo, Wei; Zhang, Cong-Min; Zhou, Hong-Hao; Fan, Lan

    2016-09-01

    All-trans-retinoic acid (ATRA), a naturally occurring metabolite of vitamin A, has been shown to have great potential as an antitumorigenic drug to treat acute leukaemia by promoting cancer cell differentiation. Cytochrome P450 oxidoreductase (POR) is the only obligate electron donor for all of the microsomal cytochrome P450 enzymes including CYP26A1 which is highly specific for ATRA metabolism and efficacy in human myeloid leukaemia cells. In this study, we aimed to investigate the effect of POR on ATRA efficacy and CYP26A1 expression in human myeloid leukaemia HL-60 cells. Stably expressed POR and POR-RNAi HL-60 cell lines were established by transfecting POR overexpression or RNAi (RNA interference) vectors mediated by lentivirus. The protein expression of POR and CYP26A1 was examined by Western blot. The potential roles of POR on ATRA efficacy in HL-60 cells were explored by cell viability assay, cell cycle distribution, cellular differentiation and apoptosis analysis. All-trans-retinoic acid treatment caused the expression of POR upregulation and CYP26A1 downregulation in dose- and time-dependent manners. POR overexpression decreased CYP26A1 expression in HL-60 cells. When POR gene was interfered, the downregulation of CYP26A1 expression by ATRA was abolished. In addition, POR overexpression in HL-60 cells significantly compromised ATRA-induced cell proliferation inhibition, cell cycle arrest, differentiation and apoptosis, whereas downregulation of POR significantly potentiated ATRA effects. Our study therefore suggested that POR played an important role in regulating ATRA efficacy and CYP26A1 expression in HL-60 cells. © 2016 Royal Pharmaceutical Society.

  20. Hepatic effects of repeated oral administration of diclofenac to hepatic cytochrome P450 reductase null (HRN™) and wild-type mice.

    PubMed

    Akingbasote, James A; Foster, Alison J; Wilson, Ian; Sarda, Sunil; Jones, Huw B; Kenna, J Gerry

    2016-04-01

    Hepatic NADPH-cytochrome P450 oxidoreductase null (HRN™) mice exhibit normal hepatic and extrahepatic biotransformation enzyme activities when compared to wild-type (WT) mice, but express no functional hepatic cytochrome P450 activities. When incubated in vitro with [(14)C]-diclofenac, liver microsomes from WT mice exhibited extensive biotransformation to oxidative and glucuronide metabolites and covalent binding to proteins was also observed. In contrast, whereas glucuronide conjugates and a quinone-imine metabolite were formed when [(14)C]-diclofenac was incubated with HRN™ mouse liver, only small quantities of P450-derived oxidative metabolites were produced in these samples and covalent binding to proteins was not observed. Livers from vehicle-treated HRN™ mice exhibited enhanced lipid accumulation, bile duct proliferation, hepatocellular degeneration and necrosis and inflammatory cell infiltration, which were not present in livers from WT mice. Elevated liver-derived alanine aminotransferase, glutamate dehydrogenase and alkaline phosphatase activities were also observed in plasma from HRN™ mice. When treated orally with diclofenac for 7 days, at 30 mg/kg/day, the severities of the abnormal liver histopathology and plasma liver enzyme findings in HRN™ mice were reduced markedly. Oral diclofenac administration did not alter the liver histopathology or elevate plasma enzyme activities of WT mice. These findings indicate that HRN™ mice are valuable for exploration of the role played by hepatic P450s in drug biotransformation, but poorly suited to investigations of drug-induced liver toxicity. Nevertheless, studies in HRN™ mice could provide novel insights into the role played by inflammation in liver injury and may aid the evaluation of new strategies for its treatment.

  1. The rabbit pulmonary cytochrome P450 arachidonic acid metabolic pathway: characterization and significance.

    PubMed Central

    Zeldin, D C; Plitman, J D; Kobayashi, J; Miller, R F; Snapper, J R; Falck, J R; Szarek, J L; Philpot, R M; Capdevila, J H

    1995-01-01

    Cytochrome P450 metabolizes arachidonic acid to several unique and biologically active compounds in rabbit liver and kidney. Microsomal fractions prepared from rabbit lung homogenates metabolized arachidonic acid through cytochrome P450 pathways, yielding cis-epoxyeicosatrienoic acids (EETs) and their hydration products, vic-dihydroxyeicosatrienoic acids, mid-chain cis-trans conjugated dienols, and 19- and 20-hydroxyeicosatetraenoic acids. Inhibition studies using polyclonal antibodies prepared against purified CYP2B4 demonstrated 100% inhibition of arachidonic acid epoxide formation. Purified CYP2B4, reconstituted in the presence of NADPH-cytochrome P450 reductase and cytochrome b5, metabolized arachidonic acid, producing primarily EETs. EETs were detected in lung homogenate using gas chromatography/mass spectroscopy, providing evidence for the in vivo pulmonary cytochrome P450 epoxidation of arachidonic acid. Chiral analysis of these lung EETs demonstrated a preference for the 14(R),15(S)-, 11(S),12(R)-, and 8(S),9(R)-EET enantiomers. Both EETs and vic-dihydroxyeicosatrienoic acids were detected in bronchoalveolar lavage fluid. At micromolar concentrations, methylated 5,6-EET and 8,9-EET significantly relaxed histamine-contracted guinea pig hilar bronchi in vitro. In contrast, 20-hydroxyeicosatetraenoic acid caused contraction to near maximal tension. We conclude that CYP2B4, an abundant rabbit lung cytochrome P450 enzyme, is the primary constitutive pulmonary arachidonic acid epoxygenase and that these locally produced, biologically active eicosanoids may be involved in maintaining homeostasis within the lung. Images PMID:7738183

  2. Can Reduction of NO to N2O in Cytochrome c Dependent Nitric Oxide Reductase Proceed through a Trans-Mechanism?

    PubMed

    Blomberg, Margareta R A

    2017-01-10

    As part of microbial denitrification, NO is reduced to N2O in the membrane bound enzyme nitric oxide reductase, NOR. The N-N coupling occurs in the diiron binuclear active site, BNC, and different mechanisms for this reaction step have been suggested. Computational studies have supported a so-called cis:b3-mechanism, in which the hyponitrite product of the reductive N-N bond formation coordinates with one nitrogen to the heme iron and with both oxygens to the non-heme iron in the BNC. In contrast, experimental results have been interpreted to support a so-called trans-mechanism, in which the hyponitrite intermediate coordinates with one nitrogen atom to each of the two iron ions. Hybrid density functional theory is used here to perform an extensive search for possible intermediates of the NO reduction in the cNOR enzyme. It is found that hyponitrite structures coordinating with their negatively charged oxygens to the positively charged iron ions are the most stable ones. The hyponitrite intermediate involved in the suggested trans-mechanism, which only coordinates with the nitrogens to the iron ions, is found to be prohibitively high in energy, leading to a too slow reaction, which should rule out this mechanism. Furthermore, intermediates binding one NO molecule to each iron ion in the BNC, which have been suggested to initiate the trans-mechanism, are found to be too high in energy to be observable, indicating that the experimentally observed electron paramagnetic resonance signals, taken to support such an iron-nitrosyl dimer intermediate, should be reinterpreted.

  3. Targeted protein degradation of outer membrane decaheme cytochrome MtrC metal reductase in Shewanella oneidensis MR-1 measured using biarsenical probe CrAsH-EDT(2).

    PubMed

    Xiong, Yijia; Chen, Baowei; Shi, Liang; Fredrickson, James K; Bigelow, Diana J; Squier, Thomas C

    2011-11-15

    Development of efficient microbial biofuel cells requires an ability to exploit interfacial electron transfer reactions to external electron acceptors, such as metal oxides; such reactions occur in the facultative anaerobic Gram-negative bacterium Shewanella oneidensis MR-1 through the catalytic activity of the outer membrane decaheme c-type cytochrome MtrC. Central to the utility of this pathway to synthetic biology is an understanding of cellular mechanisms that maintain optimal MtrC function, cellular localization, and renewal by degradation and resynthesis. In order to monitor trafficking to the outer membrane, and the environmental sensitivity of MtrC, we have engineered a tetracysteine tag (i.e., CCPGCC) at its C-terminus that permits labeling by the cell impermeable biarsenical fluorophore carboxy-FlAsH (CrAsH) of MtrC at the surface of living Shewanella oneidensis MR-1 cells. In comparison, the cell permeable reagent FlAsH permits labeling of the entire population of MtrC, including proteolytic fragments resulting from incorrect maturation. We demonstrate specific labeling by CrAsH of engineered MtrC (MtrC*) which is dependent on the presence of a functional type 2 secretion system (T2S), as evidenced by T2S system gspD or gspG deletion mutants which are incapable of CrAsH labeling. Under these latter conditions, MtrC* undergoes proteolytic degradation to form a large 35-38 kDa fragment; this degradation product is also resolved during normal turnover of the CrAsH-labeled MtrC protein. No MtrC protein is released into the medium during turnover, suggesting the presence of cellular turnover systems involving MtrC reuptake and degradation. The mature MtrC localized on the outer membrane is a long-lived protein, with a turnover rate of 0.043 h(-1) that is insensitive to O(2) concentration. Maturation of MtrC is relatively inefficient, with substantial rates of turnover of the immature protein prior to export to the outer membrane (i.e., 0.028 h(-1)) that are

  4. Targeted Protein Degradation of Outer Membrane Decaheme Cytochrome MtrC Metal Reductase in Shewanella oneidensis MR-1 Measured Using Biarsenical Probe CrAsH-EDT2

    SciTech Connect

    Xiong, Yijia; Chen, Baowei; Shi, Liang; Fredrickson, Jim K.; Bigelow, Diana J.; Squier, Thomas C.

    2011-10-14

    Development of efficient microbial biofuel cells requires an ability to exploit interfacial electron transfer reactions to external electron acceptors, such as metal oxides; such reactions occur in the facultative anaerobic gram-negative bacterium Shewanella oneidensis MR-1 through the catalytic activity of the outer membrane decaheme c-type cytochrome MtrC. Central to the utility of this pathway to synthetic biology is an understanding of cellular mechanisms that maintain optimal MtrC function, cellular localization, and renewal by degradation and resynthesis. In order to monitor trafficking to the outer membrane, and the environmental sensitivity of MtrC, we have engineered a tetracysteine tag (i.e., CCPGCC) at its C-terminus that permits labeling by the cell impermeable biarsenical fluorophore, carboxy-FlAsH (CrAsH) of MtrC at the surface of living Shewanella oneidensis MR-1 cells. In comparison, the cell permeable reagent FlAsH permits labeling of the entire population of MtrC, including proteolytic fragments resulting from incorrect maturation. We demonstrate specific labeling by CrAsH of engineered MtrC which is dependent on the presence of a functional type-2 secretion system (T2S), as evidenced by T2S system gspD or gspG deletion mutants which are incapable of CrAsH labeling. Under these latter conditions, MtrC undergoes proteolytic degradation to form a large 35-38 kDa fragment; this degradation product is also resolved during normal turnover of the CrAsH-labeled MtrC protein. No MtrC protein is released into the medium during turnover, suggesting the presence of cellular turnover systems involving MtrC reuptake and degradation. The mature MtrC localized on the outer membrane is a long-lived protein, with a turnover rate of 0.043 hr-1 that is insensitive to O2 concentration. Maturation of MtrC is relatively inefficient, with substantial rates of turnover of the immature protein prior to export to the outer membrane (i.e., 0.028 hr-1) that are consistent

  5. The iron chaperone poly(rC)-binding protein 2 forms a metabolon with the heme oxygenase 1/cytochrome P450 reductase complex for heme catabolism and iron transfer.

    PubMed

    Yanatori, Izumi; Richardson, Des R; Toyokuni, Shinya; Kishi, Fumio

    2017-08-11

    Mammals incorporate a major proportion of absorbed iron as heme, which is catabolized by the heme oxygenase 1 (HO1)-NADPH-cytochrome P450 reductase (CPR) complex into biliverdin, carbon monoxide, and ferrous iron. Moreover, intestinal iron is incorporated as ferrous iron, which is transported via the iron importer, divalent metal transporter 1 (DMT1). Recently, we demonstrated that the iron chaperone poly(rC)-binding protein 2 (PCBP2) can directly receive ferrous iron from DMT1 or transfer iron to the iron exporter, ferroportin 1. To promote intracellular iron flux, an iron chaperone may be essential for receiving iron generated by heme catabolism, but this hypothesis is untested so far. Herein, we demonstrate that HO1 binds to PCBP2, but not to other PCBP family members, namely PCBP1, PCBP3, or PCBP4. Interestingly, HO1 formed a complex with either CPR or PCBP2, and it was demonstrated that PCBP2 competes with CPR for HO1 binding. Using PCBP2-deletion mutants, we demonstrated that the PCBP2 K homology 3 domain is important for the HO1/PCBP2 interaction. In heme-loaded cells, heme prompted HO1-CPR complex formation and decreased the HO1/PCBP2 interaction. Furthermore, in vitro reconstitution experiments with purified recombinant proteins indicated that HO1 could bind to PCBP2 in the presence of heme, whereas loading of PCBP2 with ferrous iron caused PCBP2 to lose its affinity for HO1. These results indicate that ferrous iron released from heme can be bound by PCBP2 and suggest a model for an integrated heme catabolism and iron transport metabolon. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. NADPH:cytochrome c (P450) reductase activates tirapazamine (SR4233) to restore hypoxic and oxic cytotoxicity in an aerobic resistant derivative of the A549 lung cancer cell line

    PubMed Central

    Saunders, M P; Patterson, A V; Chinje, E C; Harris, A L; Stratford, I J

    2000-01-01

    Tirapazamine (TPZ, SR4233, WIN 59075) is a bioreductive drug that is activated in regions of low oxygen tension to a cytotoxic radical intermediate. This labile metabolite shows high selective toxicity towards hypoxic cells, such as those found in solid tumours. Under aerobic conditions, redox cycling occurs with subsequent generation of superoxide radicals, which are also cytotoxic. NADPH:cytochrome c (P450) reductase (P450R) is a one-electron reducing enzyme that efficiently activates TPZ. Recently a derivative of the A549 non-small cell lung cancer cell line (A549c50) was generated that showed substantially reduced P450R activity compared to its parental line (Elwell et al (1997) Biochem Pharmacol54: 249–257). Here, it is demonstrated that the A549c50 cells are markedly more resistant to TPZ under both aerobic and hypoxic conditions. In addition, these cells have a dramatically impaired ability to metabolize TPZ to its two-electron reduction product, SR4317, under hypoxic conditions when compared to wild-type cells. P450R activity in the A549c50 cells was reintroduced to similar levels as that seen in the parental A549 cells by transfection of the full-length cDNA for human P450R. These P450R over-expressing cells exhibit restored sensitivity to TPZ under both aerobic and hypoxic conditions, comparable to that found in the original parental A549 cells. Further, the ability of the transfected cells to metabolize TPZ to SR4317 under hypoxic conditions is also shown to be restored. This provides further evidence that P450R can play an important role in the activation, metabolism and toxicity of this lead bioreductive drug. © 2000 Cancer Research Campaign PMID:10682679

  7. Application of Osmotic Pumps for Sustained Release of 1-Aminobenzotriazole and Inhibition of Cytochrome P450 Enzymes in Mice: Model Comparison with the Hepatic P450 Reductase Null Mouse.

    PubMed

    Stringer, Rowan A; Ferreira, Suzie; Rose, Jonathan; Ronseaux, Sebastien

    2016-08-01

    The effectiveness of controlled release 1-aminobenzotriazole (ABT) administration to inhibit cytochrome P450 (P450) enzymes has been evaluated in mice. To maximize the duration of P450 inhibition in vivo, ABT was administered via an osmotic pump. The degree of P450 inhibition was compared with that achieved with a single bolus dose of ABT. Two-hour prior subcutaneous treatment of mice with ABT (50 mg/kg) inhibited antipyrine clearance by 88%. A less pronounced inhibitory effect (29% reduction in clearance) was observed when ABT was administered 24-hours before antipyrine administration, indicating partial restoration of P450 activity during this longer pretreatment time. The duration of ABT in mice was very short (mean residence time = 1.7 hours) after subcutaneous bolus administration. When the inhibitor was delivered by an osmotic pump, maximum blood concentrations of the inhibitor were observed 24 hours after device implantation and were maintained at steady state for 6 days. Inhibition of P450 activity, as measured by antipyrine clearance, was confirmed at 24 hours and 120 hours after pump implantation, highlighting the utility of this method as a longer-term model for P450 inhibition in mice. The magnitude of P450 inhibition in ABT-treated mice was compared with that in hepatic P450 reductase null mice and both models were comparable. In vivo ABT administration by an osmotic pump offers an effective approach for longer-term P450 inhibition in mice and avoids the necessity for multiple dosing of the inhibitor. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  8. Solubilization and Resolution of the Membrane-Bound Nitrite Reductase from Paracoccus Halodenitrificans into Nitrite and Nitric Oxide Reductases

    NASA Technical Reports Server (NTRS)

    Grant, Michael A.; Cronin, Sonja E.; Hochstein, Lawrence I.

    1984-01-01

    Membranes prepared from Paracoccus halodenitrificans reduced nitrite or nitric oxide to nitrous oxide. Extraction of these membranes with the detergent CHAPSO [3-(3-Chlolamidoporopyldimethylammonio)-1-(2- hydroxy-1-propanesulfonate)], followed by ammonium sulfate fractionation of the solubilized proteins, resulted in the separation of nitrite and nitric oxide reductase activities. The fraction containing nitrite reductase activity spectrally resembled a cd-type cytochrome. Several cytochromes were detected in the nitric oxide reductase fraction. Which, if any, of these cytochromes is associated with the reduction of nitric oxide is not clear at this time.

  9. Solubilization and Resolution of the Membrane-Bound Nitrite Reductase from Paracoccus Halodenitrificans into Nitrite and Nitric Oxide Reductases

    NASA Technical Reports Server (NTRS)

    Grant, Michael A.; Cronin, Sonja E.; Hochstein, Lawrence I.

    1984-01-01

    Membranes prepared from Paracoccus halodenitrificans reduced nitrite or nitric oxide to nitrous oxide. Extraction of these membranes with the detergent CHAPSO [3-(3-Chlolamidoporopyldimethylammonio)-1-(2- hydroxy-1-propanesulfonate)], followed by ammonium sulfate fractionation of the solubilized proteins, resulted in the separation of nitrite and nitric oxide reductase activities. The fraction containing nitrite reductase activity spectrally resembled a cd-type cytochrome. Several cytochromes were detected in the nitric oxide reductase fraction. Which, if any, of these cytochromes is associated with the reduction of nitric oxide is not clear at this time.

  10. Properties of electrophoretically homogeneous phenobarbital-inducible and beta-naphthoflavone-inducible forms of liver microsomal cytochrome P-450.

    PubMed

    Haugen, D A; Coon, M J

    1976-12-25

    Procedures are described for the isolation of two forms of rabbit liver microsomal liver microsomal cytochrome P-450 (P-450LM) in homogeneous state. They are designated by their relative electrophoretic mobilities on polyacrylamide gel in the presence of sodium dodecyl sulfate as P-450LM2 and P-450LM4. P-450LM2, which was isolated from phenobarbital-induced animals, has a subunit molecular weight of 48,700. The best preparations contain 20 nmol of the cytochrome per mg of protein and 1 molecule of heme per polypeptide chain. P-450LM4, which is induced by beta-naphthoflavone but is also present in phenobarbital-induced and untreated animals, was isolated from all three sources and found to have a subunit molecular weight of 55,300. The best preparations contain 17nmol of the cytochrome per mg of protein and 1 molecule of heme per polypeptide chain. Some of the purified preparations of the cytochromes, although electrophoretically homogeneous, contain apoenzyme due to heme loss during purification. The purified proteins contain no detectable NADPH-cytochrome P-450 reductase, cytochrome b5, or NADH-cytochrome b5 reductase, and only low levels of phospholipid (about 1 molecule per subunit). Amino acid analysis indicated that P-450LM2 and P-450LM4 are similar in composition, but the latter protein has about 60 additional residues. The COOH-terminal amino acid of P-450LM2 is arginine, as shown by carboxypeptidase treatment, whereas that of P-450LM4 is lysine. NH2-terminal amino acid residues could not be detected. Carbohydrate analysis indicated that both cytochromes contain 1 residue of glucosamine and 2 of mannose per polypeptide subunit. The optical spectra of the oxidized and reduced cytochromes and carbon monoxide complexes were determined. Oxidized P-450LM2 has maxima at 568, 535, and 418 nm characteristic of a low spin hemeprotein, and P450LM4 from beta-naphthoflavone-induced, phenobarbital-induced, or control microsomes has maxima at 645 and 394 nm

  11. A dissimilatory nitrite reductase in Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Grant, M. A.; Hochstein, L. I.

    1984-01-01

    Paracoccus halodenitrificans produced a membrane-associated nitrite reductase. Spectrophotometric analysis showed it to be associated with a cd-cytochrome and located on the inner side of the cytoplasmic membrane. When supplied with nitrite, membrane preparations produced nitrous oxide and nitric oxide in different ratios depending on the electron donor employed. The nitrite reductase was maximally active at relatively low concentrations of sodium chloride and remained attached to the membranes at 100 mM sodium chloride.

  12. A dissimilatory nitrite reductase in Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Grant, M. A.; Hochstein, L. I.

    1984-01-01

    Paracoccus halodenitrificans produced a membrane-associated nitrite reductase. Spectrophotometric analysis showed it to be associated with a cd-cytochrome and located on the inner side of the cytoplasmic membrane. When supplied with nitrite, membrane preparations produced nitrous oxide and nitric oxide in different ratios depending on the electron donor employed. The nitrite reductase was maximally active at relatively low concentrations of sodium chloride and remained attached to the membranes at 100 mM sodium chloride.

  13. Cytochrome P450 (CYP2C9*2,*3) & vitamin-K epoxide reductase complex (VKORC1 -1639G

    PubMed Central

    Kaur, Anupriya; Khan, Farah; Agrawal, Suraksha S.; Kapoor, Aditya; Agarwal, Surendra K.; Phadke, Shubha R.

    2013-01-01

    Background & objectives: Studies have demonstrated the effect of CYP2C9 (cytochrome P450) and VKORC1 (vitamin K epoxide reductase complex) gene polymorphisms on the dose of acenocoumarol. The data from India about these gene polymorphisms and their effects on acenocoumarol dose are scarce. The aim of this study was to determine the occurrence of CYP2C9*2,*3 and VKORC 1 -1639G>A gene polymorphisms and to study their effects on the dose of acenocoumarol required to maintain a target International Normalized Ratio (INR) in patients with mechanical heart valve replacement. Methods: Patients from the anticoagulation clinic of a tertiary care hospital in north India were studied. The anticoagulation profile, INR (International Normalized Ratio) values and administered acenocoumarol dose were obtained from the clinical records of patients. Determination of the CYP2C9*2,*3 and VKORC1 -1639G>A genotypes was done by PCR-RFLP (restriction fragment length polymorphism). Results: A total of 111 patients were studied. The genotype frequencies of CYP2C9 *1/*1,*1/*2,*1/*3 were as 0.883, 0.072, 0.036 and that of VKORC1 -1639G>A for GG, AG, and AA genotypes were 0.883, 0.090, and 0.027, respectively. The percentage of patients carrying any of the variant alleles of CYP2C9 and VKORC1 in heterozygous or homozygous form was 34% among those receiving a low dose of ≤20 mg/wk while it was 13.8 per cent in those receiving >20 mg/wk (P=0.014). A tendency of lower dose requirements was seen among carriers of the studied polymorphisms. There was considerable variability in the dose requirements of patients with and without variant alleles. Interpretation & conclusions: The study findings point towards the role of CYP2C9 and VKORC1 gene polymorphisms in determining the inter-individual dose variability of acenocoumarol in the Indian patients with mechanical heart valve replacement. PMID:23481074

  14. Performance of a novel atrazine-induced cerebellar toxicity in quail (Coturnix C. coturnix): Activating PXR/CAR pathway responses and disrupting cytochrome P450 homeostasis.

    PubMed

    Xia, Jun; Qin, Lei; Du, Zheng-Hai; Lin, Jia; Li, Xue-Nan; Li, Jin-Long

    2017-03-01

    Atrazine is well known to be a biologically hazardous substance with toxic effects, but atrazine-induced neurotoxicity remains unclear. The aim of this study was to investigate the mechanisms of atrazine-induced cerebellar toxicity. To determine atrazine-exerted potential neurotoxicity, quails were treated with 50, 250 and 500 mg/kg atrazine by gavage administration for 45 days. Notably, the changes of cytochrome P450 enzyme system (CYP450s) were observed in atrazine-exposed quails. The contents of cytochrome P450 (CYP450) and Cytochrome b5 (Cyt b5) and the activities of NADPH-cytochrome c reductase (NCR), aminopyrin N-demethylase (APND) and aniline-4-hydeoxylase (AH) were increased and erythromycin N-demethylase (ERND) was decreased in quail cerebellum. Nuclear xenobiotic receptors (NXRs) and the transcriptions of NXRs-related target molecules were influenced in cerebellum. Atrazine disrupted the CYP450s balance in quail cerebellum. These results suggested that atrazine-induced cerebellar toxicity in birds was associated with activating PXR/CAR pathway responses and disrupting cytochrome P450 homeostasis. This study provided novel evidences that atrazine exposure induced cerebellar toxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. 18 CFR 1b.5 - Formal investigations.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Formal investigations. 1b.5 Section 1b.5 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.5 Formal investigations. The...

  16. 18 CFR 1b.5 - Formal investigations.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Formal investigations. 1b.5 Section 1b.5 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES RULES RELATING TO INVESTIGATIONS § 1b.5 Formal investigations. The...

  17. 12 CFR 261b.5 - Exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Exemptions. 261b.5 Section 261b.5 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM RULES REGARDING PUBLIC OBSERVATION OF MEETINGS § 261b.5 Exemptions. (a) Except in a case where the agency finds...

  18. 32 CFR 806b.5 - Personal notes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Personal notes. 806b.5 Section 806b.5 National... Overview of the Privacy Act Program § 806b.5 Personal notes. The Privacy Act does not apply to personal notes on individuals used as memory aids. Personal notes may become Privacy Act records if they are...

  19. 32 CFR 806b.5 - Personal notes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Personal notes. 806b.5 Section 806b.5 National... Overview of the Privacy Act Program § 806b.5 Personal notes. The Privacy Act does not apply to personal notes on individuals used as memory aids. Personal notes may become Privacy Act records if they are...

  20. 32 CFR 806b.5 - Personal notes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Personal notes. 806b.5 Section 806b.5 National... Overview of the Privacy Act Program § 806b.5 Personal notes. The Privacy Act does not apply to personal notes on individuals used as memory aids. Personal notes may become Privacy Act records if they are...

  1. 32 CFR 806b.5 - Personal notes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Personal notes. 806b.5 Section 806b.5 National... Overview of the Privacy Act Program § 806b.5 Personal notes. The Privacy Act does not apply to personal notes on individuals used as memory aids. Personal notes may become Privacy Act records if they are...

  2. 32 CFR 242b.5 - Voting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Voting. 242b.5 Section 242b.5 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS GENERAL... SCIENCES § 242b.5 Voting. (a) The concurrence of a majority of the Regents present at a meeting shall be...

  3. 32 CFR 242b.5 - Voting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Voting. 242b.5 Section 242b.5 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS GENERAL... SCIENCES § 242b.5 Voting. (a) The concurrence of a majority of the Regents present at a meeting shall be...

  4. 32 CFR 242b.5 - Voting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Voting. 242b.5 Section 242b.5 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS GENERAL... SCIENCES § 242b.5 Voting. (a) The concurrence of a majority of the Regents present at a meeting shall be...

  5. 32 CFR 242b.5 - Voting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Voting. 242b.5 Section 242b.5 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS GENERAL... SCIENCES § 242b.5 Voting. (a) The concurrence of a majority of the Regents present at a meeting shall be...

  6. 45 CFR 73b.5 - Hearings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 1 2014-10-01 2014-10-01 false Hearings. 73b.5 Section 73b.5 Public Welfare... § 73b.5 Hearings. (a) Hearings shall be stenographically recorded and transcribed and the testimony of witnesses shall be taken under oath or affirmation. Hearings will be closed unless an open hearing is...

  7. Derived amino acid sequences of the nosZ gene (respiratory N2O reductase) from Alcaligenes eutrophus, Pseudomonas aeruginosa and Pseudomonas stutzeri reveal potential copper-binding residues. Implications for the CuA site of N2O reductase and cytochrome-c oxidase.

    PubMed

    Zumft, W G; Dreusch, A; Löchelt, S; Cuypers, H; Friedrich, B; Schneider, B

    1992-08-15

    The nosZ genes encoding the multicopper enzyme nitrous oxide reductase of Alcaligenes eutrophus H16 and the type strain of Pseudomonas aeruginosa were cloned and sequenced for structural comparison of their gene products with the homologous product of the nosZ gene from Pseudomonas stutzeri [Viebrock, A. & Zumft, W. G. (1988) J. Bacteriol. 170, 4658-4668] and the subunit II of cytochrome-c oxidase (COII). Both types of enzymes possess the CuA binding site. The nosZ genes were identified in cosmid libraries by hybridization with an internal 1.22-kb PstI fragment (NS220) of nosZ from P. stutzeri. The derived amino acid sequences indicate unprocessed gene products of 70084 Da (A. eutrophus) and 70695 Da (P. aeruginosa). The N-terminal sequences of the NosZ proteins have the characteristics of signal peptides for transport. A homologous domain, extending over at least 50 residues, is shared among the three derived NosZ sequences and the CuA binding region of 32 COII sequences. Only three out of nine cysteine residues of the NosZ protein (P. stutzeri) are invariant. Cys618 and Cys622 are assigned to a binuclear center, A, which is thought to represent the CuA site of NosZ and is located close to the C terminus. Two conserved histidines, one methionine, one aspartate, one valine and two aromatic residues are also part of the CuA consensus sequence, which is the domain homologous between the two enzymes. The CuA consensus sequence, however, lacks four strictly conserved residues present in all COII sequences. Cys165 is likely to be a ligand of a second binuclear center, Z, for which we assume mainly histidine coordination. Of 23 histidine residues in NosZ (P. stutzeri), 14 are invariant, 7 of which are in regions with a degree of conservation well above the 50% positional identity between the Alcaligenes and Pseudomonas sequences. Conserved tryptophan residues are located close to several potential copper ligands. Trp615 may contribute to the observed quenching of

  8. The catalytic function of cytochrome P450 is entwined with its membrane-bound nature.

    PubMed

    Barnaba, Carlo; Gentry, Katherine; Sumangala, Nirupama; Ramamoorthy, Ayyalusamy

    2017-01-01

    Cytochrome P450, a family of monooxygenase enzymes, is organized as a catalytic metabolon, which requires enzymatic partners as well as environmental factors that tune its complex dynamic. P450 and its reducing counterparts-cytochrome P450-reductase and cytochrome b 5 -are membrane-bound proteins located in the cytosolic side of the endoplasmic reticulum. They are believed to dynamically associate to form functional complexes. Increasing experimental evidence signifies the role(s) played by both protein-protein and protein-lipid interactions in P450 catalytic function and efficiency. However, the biophysical challenges posed by their membrane-bound nature have severely limited high-resolution understanding of the molecular interfaces of these interactions. In this article, we provide an overview of the current knowledge on cytochrome P450, highlighting the environmental factors that are entwined with its metabolic function. Recent advances in structural biophysics are also discussed, setting up the bases for a new paradigm in the study of this important class of membrane-bound enzymes.

  9. Polymorphic variants of cytochrome P450 2B6 (CYP2B6.4-CYP2B6.9) exhibit altered rates of metabolism for bupropion and efavirenz: a charge-reversal mutation in the K139E variant (CYP2B6.8) impairs formation of a functional cytochrome p450-reductase complex.

    PubMed

    Zhang, Haoming; Sridar, Chitra; Kenaan, Cesar; Amunugama, Hemali; Ballou, David P; Hollenberg, Paul F

    2011-09-01

    In this study, metabolism of bupropion, efavirenz, and 7-ethoxy-4-trifluoromethylcoumarin (7-EFC) by CYP2B6 wild type (CYP2B6.1) and six polymorphic variants (CYP2B6.4 to CYP2B6.9) was investigated in a reconstituted system to gain a better understanding of the effects of the mutations on the catalytic properties of these naturally occurring variants. All six variants were successfully overexpressed in Escherichia coli, including CYP2B6.8 (the K139E variant), which previously could not be overexpressed in mammalian COS-1 cells (J Pharmacol Exp Ther 311:34-43, 2004). The steady-state turnover rates for the hydroxylation of bupropion and efavirenz and the O-deethylation of 7-EFC showed that these mutations significantly alter the catalytic activities of CYP2B6. It was found that CYP2B6.6 exhibits 4- and 27-fold increases in the K(m) values for the hydroxylation of bupropion and efavirenz, respectively, and CYP2B6.8 completely loses its ability to metabolize any of the substrates under normal turnover conditions. However, compared with CYP2B6.1, CYP2B6.8 retains 77% of its 7-EFC O-deethylase activity in the presence of tert-butyl hydroperoxide as an alternative oxidant, indicating that the heme and the active site are catalytically competent. Presteady-state measurements of the rate of electron transfer from NADPH-dependent cytochrome P450 reductase (CPR) to CYP2B6.8 using stopped-flow spectrophotometry revealed that CYP2B6.8 is incapable of accepting electrons from CPR. These observations provide conclusive evidence suggesting that the charge-reversal mutation in the K139E variant prevents CYP2B6.8 from forming a functional complex with CPR. Results from this work provide further insights to better understand the genotype-phenotype correlation regarding CYP2B6 polymorphisms and drug metabolism.

  10. In vitro and in vivo study of the effects of enrofloxacin on hepatic cytochrome P-450. Potential for drug interactions.

    PubMed

    Vancutsem, P M; Babish, J G

    1996-08-01

    Enrofloxacin (EF; BAYTRIL, Miles) was the first fluoroquinolone antimicrobial to be used in veterinary medicine in the US. In humans, fluoroquinolones hinder the metabolism of other clinically important drugs through inhibition of hepatic cytochrome P-450's (P450). Similar interactions are suspected in animals. In this study, we characterized the ability of EF to modify the enzymatic activity of the P450 IA and IIB families. In an in vitro experiment, the inhibition of P450 reductase by EF was assessed by measuring the NADPH-cytochrome c reductase activity, and the inhibition of P450IA1, IA2 and IIB by 0.25, 0.5 and 1.0 mM EF was studied, respectively, by measuring the ethoxy (EROD), methoxy (MROD) and pentoxy (PROD) O-dealkylation activities in rat liver microsomes. NADPH-cytochrome c reductase was not affected. Enrofloxacin induced a strong, concentration-dependent inhibition of P450IA1 and IA2. In an in vivo experiment, the effects of 5 administrations of 5 (EF5), 25 (EF25) or 100 (EF100) mg/kg/d were assessed in rats. The liver cytochrome b5 and total P450 content was assayed by spectrophotometric measurements; P450IA and P450IIB isozyme contents were evaluated by immunoblotting with isozyme specific monoclonal antibodies, and by measuring MROD, EROD and PROD activities. A slight induction of P450IIB1 and IIB2 expression and activity (140% of controls) was only present after EF5 treatment. We concluded that EF directly inhibits P450IA1 and IA2 and advise caution when drugs metabolized extensively by these P450 isozymes are administered in association with EF. The slight stimulation of the P450IIB subfamily is not a concern at the recommended therapeutic dose of 5 mg EF/kg.

  11. Cytochrome c Maturation and the Physiological Role of c-Type Cytochromes in Vibrio cholerae

    PubMed Central

    Braun, Martin; Thöny-Meyer, Linda

    2005-01-01

    Vibrio cholerae lives in different habitats, varying from aquatic ecosystems to the human intestinal tract. The organism has acquired a set of electron transport pathways for aerobic and anaerobic respiration that enable adaptation to the various environmental conditions. We have inactivated the V. cholerae ccmE gene, which is required for cytochrome c biogenesis. The resulting strain is deficient of all c-type cytochromes and allows us to characterize the physiological role of these proteins. Under aerobic conditions in rich medium, V. cholerae produces at least six c-type cytochromes, none of which is required for growth. Wild-type V. cholerae produces active fumarate reductase, trimethylamine N-oxide reductase, cbb3 oxidase, and nitrate reductase, of which only the fumarate reductase does not require maturation of c-type cytochromes. The reduction of nitrate in the medium resulted in the accumulation of nitrite, which is toxic for the cells. This suggests that V. cholerae is able to scavenge nitrate from the environment only in the presence of other nitrite-reducing organisms. The phenotypes of cytochrome c-deficient V. cholerae were used in a transposon mutagenesis screening to search for additional genes required for cytochrome c maturation. Over 55,000 mutants were analyzed for nitrate reductase and cbb3 oxidase activity. No transposon insertions other than those within the ccm genes for cytochrome c maturation and the dsbD gene, which encodes a disulphide bond reductase, were found. In addition, the role of a novel CcdA-like protein in cbb3 oxidase assembly is discussed. PMID:16109941

  12. Comparative Studies on the Induction and Inactivation of Nitrate Reductase in Corn Roots and Leaves 1

    PubMed Central

    Aslam, Muhammad; Oaks, Ann

    1976-01-01

    A comparison of induction and inactivation of nitrate reductase and two of its component activities, namely FMNH2-nitrate reductase and NO3−-induced NADH-cytochrome c reductase, was made in roots and leaves of corn (Zea mays L. var. W64A × 182E). The three activities were induced in parallel in both tissues when NO3− was supplied. WO4= suppressed the induction of NADH- and FMNH2-nitrate reductase activities in root tips and leaves. The NO3−-induced NADH-cytochrome c reductase activity showed a normal increase in roots treated with WO4=. In leaves, on the other hand, there was a marked superinduction of the NO3−-induced NADH-cytochrome c reductase in the presence of WO4=. The half-life values of NADH-nitrate reductase and FMNH2-nitrate reductase measured by removing NO3− and adding WO4= to the medium, were 4 hours in root tips and 6 hours in excised leaves. Addition of NO3− in the induction medium together with WO4= gave partial protection of NADH-nitrate reductase and FMNH2-nitrate reductase activities in both root tips and leaves with a t0.5 of 6 and 8 hours, respectively. NO3− also reduced the loss of nitrate reductase activity from mature root sections. In the presence of cycloheximide, both NADH-nitrate reductase and NO3−-induced NADH-cytochrome c reductase activities were lost at similar rates in root tips. NO3− protected the loss of NO3−-induced NADH-cytochrome c reductase to the same extent as that of NADH-nitrate reductase. PMID:16659529

  13. Studies on the regulation of assimilatory nitrate reductase in Ankistrodesmus braunii.

    PubMed

    Diez, J; Chaparro, A; Vega, J M; Relimpio, A

    1977-01-01

    In the green alga Ankistrodesmus braunii, all the activities associated with the nitrate reductase complex (i.e., NAD(P)H-nitrate reductase, NAD(P)H-cytochrome c reductase and FMNH2-or MVH-nitrate reductase) are nutritionally repressed by ammonia or methylamine. Besides, ammonia or methylamine promote in vivo the reversible inactivation of nitrate reductase, but not of NAD(P)H-cytochrome c reductase. Subsequent removal of the inactivating agent from the medium causes reactivation of the inactive enzyme. Menadione has a striking stimulation on the in vivo reactivation of the inactive enzyme. The nitrate reductase activities, but not the diaphorase activity, can be inactivated in vitro by preincubating a partially purified enzyme preparation with NADH or NADPH. ADP, in the presence of Mg(2+), presents a cooperative effect with NADH in the in vitro inactivation of nitrate reductase. This effect appears to be maximum at a concentration of ADP equimolecular with that of NADH.

  14. 18 CFR 1b.5 - Formal investigations.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Formal investigations. 1b.5 Section 1b.5 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION.... Orders of Investigation will outline the basis for the investigation, the matters to be investigated, the...

  15. 18 CFR 1b.5 - Formal investigations.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 1 2014-04-01 2014-04-01 false Formal investigations. 1b.5 Section 1b.5 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION.... Orders of Investigation will outline the basis for the investigation, the matters to be investigated, the...

  16. 18 CFR 1b.5 - Formal investigations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Formal investigations. 1b.5 Section 1b.5 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION.... Orders of Investigation will outline the basis for the investigation, the matters to be investigated, the...

  17. 32 CFR 806b.5 - Personal notes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Personal notes. 806b.5 Section 806b.5 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE ADMINISTRATION PRIVACY ACT PROGRAM... notes on individuals used as memory aids. Personal notes may become Privacy Act records if they...

  18. Periplasmic c cytochromes and chlorate reduction in Ideonella dechloratans.

    PubMed

    Bäcklund, Anna Smedja; Bohlin, Jan; Gustavsson, Niklas; Nilsson, Thomas

    2009-04-01

    The aim of this study was to clarify the pathway of electron transfer between the inner membrane components and the periplasmic chlorate reductase. Several soluble c-type cytochromes were found in the periplasm. The optical difference spectrum of dithionite-reduced periplasmic extract shows that at least one of these components is capable of acting as an electron donor to the enzyme chlorate reductase. The cytochromes were partially separated, and the fractions were analyzed by UV/visible spectroscopy to determine the ability of donating electrons to chlorate reductase. Our results show that one of the c cytochromes (6 kDa) is able to donate electrons, both to chlorate reductase and to the membrane-bound cytochrome c oxidase, whereas the roles of the remaining c cytochromes still remain to be elucidated. Peptide extracts of the c cytochromes were obtained by tryptic in-gel digestion for matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis. Peptide sequences obtained indicate that the 6-kDa cytochrome c protein is similar to c cytochromes from the chlorate-reducing bacterium Dechloromonas aromatica.

  19. The cytochromes in microsomal fractions of germinating mung beans.

    PubMed Central

    Hendry, G A; Houghton, J D; Jones, O T

    1981-01-01

    Detailed studies of microsomal cytochromes from mung-bean radicles showed the presence of cytochrome P-420, particularly in dark-grown seedlings, accompanied by smaller quantities of cytochrome P-450. Similar proportions of cytochrome P-420 to cytochrome P-450 were found spectrophotometrically in vivo with whole radicles and hypocotyls. Assayed in vitro, maximum concentrations of both cytochromes were attained after 4 days of growth, before undergoing rapid degradation. Illumination of seedlings stabilized cytochrome P-450 and decreased the amount of cytochrome P-420. Three b cytochromes were present in the microsomal fraction, namely cytochromes b-562.5 (Em + 105 +/- 23 mV), b-560.5 (Em + 49 +/- 13 mV) and b5 (Em - 45 +/- 14 mV), all at pH 7.0. Of the b cytochromes, cytochrome b5 alone undergoes a rapid degradation after day 4, Changes in cytochrome b concentrations were confined to the microsomal fraction: mitochondrial b cytochrome concentrations were unaltered with age. Protohaem degradation (of exogenous methaemalbumin) was detected in microsomal fractions of mung beans. The rates of degradation were highest in extracts of young tissue and declined after day 4. The degradation mechanism and products did not resemble those of mammalian haem oxygenase. PMID:7306021

  20. Thioredoxin reductase.

    PubMed Central

    Mustacich, D; Powis, G

    2000-01-01

    The mammalian thioredoxin reductases (TrxRs) are a family of selenium-containing pyridine nucleotide-disulphide oxidoreductases with mechanistic and sequence identity, including a conserved -Cys-Val-Asn-Val-Gly-Cys- redox catalytic site, to glutathione reductases. TrxRs catalyse the NADPH-dependent reduction of the redox protein thioredoxin (Trx), as well as of other endogenous and exogenous compounds. The broad substrate specificity of mammalian TrxRs is due to a second redox-active site, a C-terminal -Cys-SeCys- (where SeCys is selenocysteine), that is not found in glutathione reductase or Escherichia coli TrxR. There are currently two confirmed forms of mammalian TrxRs, TrxR1 and TrxR2, and it is possible that other forms will be identified. The availability of Se is a key factor determining TrxR activity both in cell culture and in vivo, and the mechanism(s) for the incorporation of Se into TrxRs, as well as the regulation of TrxR activity, have only recently begun to be investigated. The importance of Trx to many aspects of cell function make it likely that TrxRs also play a role in protection against oxidant injury, cell growth and transformation, and the recycling of ascorbate from its oxidized form. Since TrxRs are able to reduce a number of substrates other than Trx, it is likely that additional biological effects will be discovered for TrxR. Furthermore, inhibiting TrxR with drugs may lead to new treatments for human diseases such as cancer, AIDS and autoimmune diseases. PMID:10657232

  1. Cytochrome f

    SciTech Connect

    Soriano, G.M.; Smith, J.L.; Cramer, W.A.

    2001-07-17

    Cytochrome f (f, folium, leaf), a c-type cytochrome with a characteristic CysXXCysHis amino acid sequence for heme ligation, is the largest of the four major protein subunits of the membrane-embedded cytochrome b{sub 6}{sup f} complex of oxygenic photosynthesis. It contains 285-86 amino acids, consisting of a soluble 250-residue domain on the p-side (positive-side) or lumen-side of the membrane, a single trans-membrane 20-residue {alpha}-helix, and an n- or stromal-side segment consisting of 15 residues. These domains contain, respectively, the heme prosthetic group and intraprotein electron transfer pathway, the membrane anchor and a short segment that is important in the assembly of the b{sub 6}{sup f} complex. The function of the cytochrome f in oxygenic photosynthesis is to act as the terminal electron acceptor in the membrane-embedded cytochrome b{sub 6}{sup f} complex that provides the electron transport connection between the photosystem II and photosystem I reaction centers. Electron transfer through the complex is coupled to proton translocation and generation of a proton electrochemical potential that is utilized to drive the synthesis of ATP through the proton-motive ATP synthase. These functions of the cytochrome b{sub 6}{sup f} complex are analogous to those of the multisubunit cytochrome bc{sub 1} complex (ubiquinol:cytochrome c oxidoreductase) of the mitochondrial respiratory chain and photosynthetic bacteria. Both complexes contain four redox centers with very similar redox and structural properties: a covalently bound c-type heme in cytochrome f or c{sub 1}, the 2Fe-2S cluster of the Rieske ISP, and the two noncovalently bound hemes of cytochrome b. The structure properties have been defined in 3.0-3.1 {angstrom} structures of the b{sub 6}{sup f} complex from a thermophilic cyanobacterium and a green alga. These structures also defined a fifth redox prosthetic group, a novel covalently bound heme, tentatively called heme x. With the exception of

  2. 32 CFR 242b.5 - Voting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SCIENCES § 242b.5 Voting. (a) The concurrence of a majority of the Regents present at a meeting shall be... notation voting, by voting on material circulated to Regents individually or serially, or by polling of...

  3. Reductive metabolism of carbon tetrachloride by human cytochromes P-450 reconstituted in phospholipid vesicles: mass spectral identification of trichloromethyl radical bound to dioleoyl phosphatidylcholine.

    PubMed Central

    Trudell, J R; Bösterling, B; Trevor, A J

    1982-01-01

    It has been proposed that covalent binding of reactive metabolites to liver membrane constituents may be responsible for the hepatoxicity of carbon tetrachloride. This study demonstrates that trichloromethyl free radical is the major reductive metabolite of carbon tetrachloride by cytochrome P-450 and that this free radical is capable of binding to double bonds of fatty acyl chains of the phospholipids in the membrane surrounding cytochrome P-450. The structural identification of the reactive free radical metabolite and the product of its addition to phospholipids was accomplished by use of a reconstituted system of human cytochromes P-450, NADPH-cytochrome P-450 reductase, and cytochrome b5 in phospholipid vesicles. The reconstituted vesicles contained a mixture of dioleoyl phosphatidylcholine and egg phosphatidylethanolamine that served as both structural components and targets for trichloromethyl free radical binding. After incubation of these vesicles under a N2 atmosphere in the presence of NADPH with 14CCl4, the phospholipids were extracted and then separated by high-pressure liquid chromatography. The dioleoyl phosphatidylcholine fraction was transesterified and the resulting single 14C-labeled fatty acid methyl ester was purified by reverse-phase chromatography. Desorption chemical ionization mass spectrometry with ammonia as reagent gas as well as desorption electron-impact mass spectrometry permitted identification of the molecular structure as a mixture of 9- and 10-(trichloromethyl)stearate methyl esters. PMID:6953422

  4. Faster Interprotein Electron Transfer in a [Myoglobin, b5] Complex with a Redesigned Interface

    PubMed Central

    Xiong, Peng; Nocek, Judith M.; Vura-Weis, Josh; Lockard, Jenny V.; Wasielewski, Michael R.; Hoffman, Brian M.

    2014-01-01

    Direct measurements of electron transfer (ET) within a protein-protein complex with a redesigned interface formed by physiological partner proteins myoglobin (Mb) and cytochrome b5 (b5) reveal interprotein ET rates comparable to those observed within the photosynthetic reaction center. Brownian dynamics simulations show that Mb in which three surface acid residues are mutated to lysine binds b5 in an ensemble of configurations distributed around a reactive most-probable structure. Correspondingly, charge-separation ET from a photoexcited singlet zinc porphyrin incorporated within Mb to the heme of b5 and the follow-up charge-recombination exhibit distributed kinetics, with median rate constants, kfs=2.1×109second−1 and kbs=4.3×1010second−1, respectively. The latter approaches that for the initial step in photosynthetic charge separation, k = 3.3 × 1011 second−1. PMID:21097931

  5. Technical description of Stack 296-B-5

    SciTech Connect

    Ridge, T.M.

    1994-11-15

    Of particular concern to facilities on the Hanford site is Title 40, Code of Federal Regulations, Chapter 40, Part 61, Subpart H, ``National emission Standards for Emissions of Radionuclides Other Than Radon From Department of Energy Facilities.`` Assessments of facility stacks and potential radionuclide emissions determined whether these stacks would be subject to the sampling and monitoring requirements of 40 CFR 61, Subpart H. Stack 296-B-5 exhausts 221-BB building which houses tanks containing B Plant steam condensate and B Plant process condensate from the operation of the low-level waste concentrator. The assessment of potential radionuclide emissions from the 296-B-5 stack resulted in an effective dose equivalent to the maximally exposed individual of less than 0.1 millirem per year. Therefore, the stack is not subject to the sampling and monitoring requirements of 40 CFR 61, Subpart H. However, the sampling and monitoring system must be in compliance with the Environmental Compliance Manual, WHC-CM-7-5. Currently, 296-B-5 is sampled continuously with a record sampler and continuous air monitor (CAM).

  6. Multi-heme cytochromes--new structures, new chemistry.

    PubMed

    Mowat, Christopher G; Chapman, Stephen K

    2005-11-07

    Heme is one of the most pervasive cofactors in nature and the c-type cytochromes represent one of the largest families of heme-containing proteins. Recent progress in bacterial genomic analysis has revealed a vast range of genes encoding novel c-type cytochromes that contain multiple numbers of heme cofactors. The genome sequence of Geobacter sulfurreducens, for example, includes some one hundred genes encoding c-type cytochromes, with around seventy of these containing two, or more, heme groups and with one protein containing an astonishing twenty seven heme groups. This wealth of cytochromes is of great significance in the respiratory flexibility shown by bacteria such as Geobacter. In addition, we are now discovering that many of these multi-heme cytochromes have associated enzymatic activities and in some cases this is revealing new chemistries. The purpose of this perspective is to describe recent progress in the structural and functional analyses of these new multi-heme cytochromes. To illustrate this we have chosen to focus on three of these cytochromes which exhibit catalytic activities; nitrite reductase, hydroxylamine oxidoreductase and tetrathionate reductase. In addition we consider the multi-heme cytochromes from Geobacter and Desulfovibrio species. Finally, we consider and contrast the repeating structural modules found in these multi-heme cytochromes.

  7. Towards engineering increased pantothenate (vitamin B(5)) levels in plants.

    PubMed

    Chakauya, Ereck; Coxon, Katy M; Wei, Ma; Macdonald, Mary V; Barsby, Tina; Abell, Chris; Smith, Alison G

    2008-11-01

    Pantothenate (vitamin B(5)) is the precursor of the 4'-phosphopantetheine moiety of coenzyme A and acyl-carrier protein. It is made by plants and microorganisms de novo, but is a dietary requirement for animals. The pantothenate biosynthetic pathway is well-established in bacteria, comprising four enzymic reactions catalysed by ketopantoate hydroxymethyltransferase (KPHMT), L: -aspartate-alpha-decarboxylase (ADC), pantothenate synthetase (PS) and ketopantoate reductase (KPR) encoded by panB, panD, panC and panE genes, respectively. In higher plants, the genes encoding the first (KPHMT) and last (PS) enzymes have been identified and characterised in several plant species. Commercially, pantothenate is chemically synthesised and used in vitamin supplements, feed additives and cosmetics. Biotransformation is an attractive alternative production system that would circumvent the expensive procedures of separating racemic intermediates. We explored the possibility of manipulating pantothenate biosynthesis in plants. Transgenic oilseed rape (Brassica napus) lines were generated in which the E. coli KPHMT and PS genes were expressed under a strong constitutive CaMV35SS promoter. No significant change of pantothenate levels in PS transgenic lines was observed. In contrast plants expressing KPHMT had elevated pantothenate levels in leaves, flowers siliques and seed in the range of 1.5-2.5 fold increase compared to the wild type plant. Seeds contained the highest vitamin content, indicating that they might be the ideal target for production purposes.

  8. Limited proteolysis of the nitrate reductase from spinach leaves.

    PubMed

    Kubo, Y; Ogura, N; Nakagawa, H

    1988-12-25

    The functional structure of assimilatory NADH-nitrate reductase from spinach leaves was studied by limited proteolysis experiments. After incubation of purified nitrate reductase with trypsin, two stable products of 59 and 45 kDa were observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The fragment of 45 kDa was purified by Blue Sepharose chromatography. NADH-ferricyanide reductase and NADH-cytochrome c reductase activities were associated with this 45-kDa fragment which contains FAD, heme, and NADH binding fragment. After incubation of purified nitrate reductase with Staphylococcus aureus V8 protease, two major peaks were observed by high performance liquid chromatography size exclusion gel filtration. FMNH2-nitrate reductase and reduced methyl viologen-nitrate reductase activities were associated with the first peak of 170 kDa which consists of two noncovalently associated (75-90-kDa) fragments. NADH-ferricyanide reductase activity, however, was associated with the second peak which consisted of FAD and NADH binding sites. Incubation of the 45-kDa fragment with S. aureus V8 protease produced two major fragments of 28 and 14 kDa which contained FAD and heme, respectively. These results indicate that the molybdenum, heme, and FAD components of spinach nitrate reductase are contained in distinct domains which are covalently linked by exposed hinge regions. The molybdenum domain appears to be important in the maintenance of subunit interactions in the enzyme complex.

  9. Purification and some properties of cytochrome c-552 from an extreme thermophile, Thermus thermophilus HB8.

    PubMed

    Hon-Nami, K; Oshima, T

    1977-09-01

    A c-type cytochrome, cytochrome c-552, from a soluble fraction of an extreme thermophile, Thermus thermophilus HB8, was highly purified and its properties investigated. The absorption peaks were at 552, 522, and 417 nm in the reduced form, and at 408 nm in the oxidized form. The isoelectric point was at PH 10.8, the midpoint redox potential was about +0.23 V, and the molecular weight was about 15,000. The cytochrome c-552 was highly thermoresistant. The cytochrome reacted rapidly with pseudomonas aeruginosa nitrite reductase [EC 1.9.3.2], but slowly with bovine cytochrome oxidase [EC 1.9.3.1], yeast cytochrome c peroxidase [EC 1.11.1.5], or Nitrosomonas europaea hydroxylamine-cytochrome c reductase [EC 1.7.3.4].

  10. CYP345E2, an antenna-specific cytochrome P450 from the mountain pine beetle, Dendroctonus ponderosae Hopkins, catalyses the oxidation of pine host monoterpene volatiles.

    PubMed

    Keeling, Christopher I; Henderson, Hannah; Li, Maria; Dullat, Harpreet K; Ohnishi, Toshiyuki; Bohlmann, Jörg

    2013-12-01

    The mountain pine beetle (MPB, Dendroctonus ponderosae Hopkins) is a significant pest of western North American pine forests. This beetle responds to pheromones and host volatiles in order to mass attack and thus overcome the terpenoid chemical defences of its host. The ability of MPB antennae to rapidly process odorants is necessary to avoid odorant receptor saturation and thus the enzymes responsible for odorant clearance are an important aspect of host colonization. An antenna-specific cytochrome P450, DponCYP345E2, is the most highly expressed transcript in adult MPB antenna. In in vitro assays with recombinant enzyme, DponCYP345E2 used several pine host monoterpenes as substrates, including (+)-(3)-carene, (+)-β-pinene, (-)-β-pinene, (+)-limonene, (-)-limonene, (-)-camphene, (+)-α-pinene, (-)-α-pinene, and terpinolene. The substrates were epoxidized or hydroxylated, depending upon the substrate. To complement DponCYP345E2, we also functionally characterized the NADPH-dependent cytochrome P450 reductase and the cytochrome b5 from MPB. DponCYP345E2 is the first cytochrome P450 to be functionally characterized in insect olfaction and in MPB.

  11. Autoxidation of soluble trypsin-cleaved microsomal ferrocytochrome b5 and formation of superoxide radicals.

    PubMed Central

    Berman, M C; Adnams, C M; Ivanetich, K M; Kench, J E

    1976-01-01

    The rate and mechanism of autoxidation of soluble ferrocytochrome b5, prepared from liver microsomal suspensions, appear to reflect an intrinsic property of membrane-bound cytochrome b5. The first-order rate constant for autoxidation of trypsin-cleaved ferrocytochrome b5, prepared by reduction with dithionite, was 2.00 X 10(-3) +/- 0.19 X 10(-3) S-1 (mean +/- S.E.M., n =8) when measured at 30 degrees C in 10 mM-phosphate buffer, pH 7.4. At 37 degrees C in aerated 10 mM-phosphate buffer (pH 7.4)/0.15 M-KCl, the rate constant was 5.6 X 10(-3) S-1. The autoxidation reaction was faster at lower pH values and at high ionic strengths. Unlike ferromyoglobin, the autoxidation reaction of which is maximal at low O2 concentrations, autoxidation of ferrocytochrome b5 showed a simple O2-dependence with an apparent Km for O2 of 2.28 X 10(-4) M (approx. 20kPa or 150mmHg)9 During autoxidation, 0.25 mol of O2 was consumed per mol of cytochrome oxidized. Cyanide, nucleophilic anions, EDTA and catalase each had little or no effect on autoxidation rates. Adrenaline significantly enhanced autoxidation rates, causing a tenfold increase at 0.6 mM. Ferrocytochrome b5 reduced an excess of cytochrome c in a biphasic manner. An initial rapid phase, independent of O2 concentration, was unaffected by superoxide dismutase. A subsequent slower phase, which continued for up to 60 min, was retarded at low O2 concentrations and inhibited by 65% by superoxide dismutase at a concentration of 3 mug/ml. It is concluded that autoxidation is responsible for a significant proportion of electron flow between cytochrome b5 and O2 in liver endoplasmic membranes, this reaction being capable of generating superoxide anions. A biological role for the reaction is discussed. PMID:183743

  12. Nitrite reduction in paracoccus halodenitrificans: Evidence for the role of a cd-type cytochrome in ammonia formation

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Cronin, S. E.

    1984-01-01

    Cell-free extracts prepared from Paracoccus halodenitrificans catalyzed the reduction of nitrate to ammonia in the presence of dithionite and methyl viologen. Enzyme activity was located in the soluble fraction and was associated with a cytochrome whose spectral properties resembled those of a cd-type cytochrome. Unlike the sissimilatory cd-cytochrome nitrate reductase associated with the membrane fraction of P. halodenitrificans, this soluble cd-cytochrome did not reduce nitrite to nitrous oxide.

  13. Mechanisms to Detoxify Selected Organic Contaminants in Higher Plants and Microbes, and Their Potential Use in Landscape Management

    DTIC Science & Technology

    2004-10-01

    NADPH - cytochrome P450 reductase (EC 1.6.2.4); the intermediate carrier...NAD(P)H- cytochrome P450 reductase - Cytochrome b5 - H2O Microsomal or mitochondrial redox-chain NADPH - cytochrome P450 reductase - Cytochrome b5...substrate, the so-called Ferrocytochrome P450 . This reaction is catalyzed by the NADPH - cytochrome P450 reductase . 3. The reduced cytochrome

  14. Observations on iron uptake, iron metabolism, cytochrome c content, cytochrome a content and cytochrome c-oxidase activity in regenerating rat liver.

    PubMed

    Gear, A R

    1965-11-01

    1. Differential and density-gradient centrifugation were used to fractionate mitochondria and fluffy layer from normal and regenerating rat liver. The iron, cytochrome a and cytochrome c contents and cytochrome c-oxidase activity were studied as well as the uptake of (59)Fe into protein and cytochrome c. 2. A certain degree of heterogeneity was evident between the heavy-mitochondrial and light-mitochondrial fractions, and in their behaviour during liver regeneration. 3. The specific content of light-mitochondrial iron and cytochrome a was 1.3-1.4 times that of heavy mitochondria. Changes in cytochrome c-oxidase activity closely followed those of cytochrome a content during liver regeneration, but not for light mitochondria after 10 days. 4. Radioactive iron ((59)Fe) was most actively taken up by well-washed light mitochondria during early liver regeneration. After 22 days fluffy layer became preferentially labelled. This substantiates the view that fluffy layer partially represents broken-down mitochondria. 5. During early regeneration, light-mitochondrial fractions separated along a density gradient were about 3 times as radioactive, and showed distinct heterogeneity of (59)Fe-labelling, in contrast with near homogeneity for heavy mitochondria. 6. Immediately after partial hepatectomy fractions corresponding to density 1.155 were 5-10 times as radioactive as particles of greater density. The radioactivity decreased sharply after 6 days. 7. These particles of low density possessed higher NADH-cytochrome c-reductase (1.5-5-fold) and succinate-dehydrogenase (1.1-2-fold) activities than typical mitochondrial fractions. Their succinate-cytochrome c-reductase and cytochrome c-oxidase activities were slightly lower. 8. The results are discussed in relation to mitochondrial morphogenesis, and a possible route from submitochondrial particles is suggested.

  15. Observations on iron uptake, iron metabolism, cytochrome c content, cytochrome a content and cytochrome c-oxidase activity in regenerating rat liver

    PubMed Central

    Gear, A. R. L.

    1965-01-01

    1. Differential and density-gradient centrifugation were used to fractionate mitochondria and fluffy layer from normal and regenerating rat liver. The iron, cytochrome a and cytochrome c contents and cytochrome c-oxidase activity were studied as well as the uptake of 59Fe into protein and cytochrome c. 2. A certain degree of heterogeneity was evident between the heavy-mitochondrial and light-mitochondrial fractions, and in their behaviour during liver regeneration. 3. The specific content of light-mitochondrial iron and cytochrome a was 1·3–1·4 times that of heavy mitochondria. Changes in cytochrome c-oxidase activity closely followed those of cytochrome a content during liver regeneration, but not for light mitochondria after 10 days. 4. Radioactive iron (59Fe) was most actively taken up by well-washed light mitochondria during early liver regeneration. After 22 days fluffy layer became preferentially labelled. This substantiates the view that fluffy layer partially represents broken-down mitochondria. 5. During early regeneration, light-mitochondrial fractions separated along a density gradient were about 3 times as radioactive, and showed distinct heterogeneity of 59Fe-labelling, in contrast with near homogeneity for heavy mitochondria. 6. Immediately after partial hepatectomy fractions corresponding to density 1·155 were 5–10 times as radioactive as particles of greater density. The radioactivity decreased sharply after 6 days. 7. These particles of low density possessed higher NADH–cytochrome c-reductase (1·5–5-fold) and succinate-dehydrogenase (1·1–2-fold) activities than typical mitochondrial fractions. Their succinate–cytochrome c-reductase and cytochrome c-oxidase activities were slightly lower. 8. The results are discussed in relation to mitochondrial morphogenesis, and a possible route from submitochondrial particles is suggested. PMID:16749160

  16. The adsorption of cytochromes on a modified surface of gold electrodes

    NASA Astrophysics Data System (ADS)

    Zhavnerko, G. K.; Paribok, I. V.; Agabekov, V. E.; Zmachinskaya, Yu. A.; Usanov, S. A.

    2010-06-01

    The adsorption of cytochromes b 5 and c on the surface of gold electrodes, including the surface modified with cysteine, was studied. The quartz crystal microbalance method with parallel dissipation energy measurements, microcontact printing, and atomic-force microscopy were used to show that the special features of the structure and morphology of two-component cytochrome b 5 and c films were determined by the nature of the proteins themselves and the influence of the modifying "sublayer." The largest changes in the weight of films and dissipation energy were observed in the adsorption of cytochrome b 5 on a cytochrome c film deposited on a cysteine sublayer. Atomic-force microscopy measurements showed that strong interaction between cytochrome c and b 5 molecules on the surface of gold modified with cysteine could be related to the formation of the corresponding protein complex.

  17. A cytochrome P450 terpenoid hydroxylase linked to the suppression of insect juvenile hormone synthesis.

    PubMed

    Sutherland, T D; Unnithan, G C; Andersen, J F; Evans, P H; Murataliev, M B; Szabo, L Z; Mash, E A; Bowers, W S; Feyereisen, R

    1998-10-27

    A cDNA encoding a cytochrome P450 enzyme was isolated from a cDNA library of the corpora allata (CA) from reproductively active Diploptera punctata cockroaches. This P450 from the endocrine glands that produce the insect juvenile hormone (JH) is most closely related to P450 proteins of family 4 and was named CYP4C7. The CYP4C7 gene is expressed selectively in the CA; its message could not be detected in the fat body, corpora cardiaca, or brain, but trace levels of expression were found in the midgut and caeca. The levels of CYP4C7 mRNA in the CA, measured by ribonuclease protection assays, were linked to the activity cycle of the glands. In adult females, CYP4C7 expression increased immediately after the peak of JH synthesis, reaching a maximum on day 7, just before oviposition. mRNA levels then declined after oviposition and during pregnancy. The CYP4C7 protein was produced in Escherichia coli as a C-terminal His-tagged recombinant protein. In a reconstituted system with insect NADPH cytochrome P450 reductase, cytochrome b5, and NADPH, the purified CYP4C7 metabolized (2E,6E)-farnesol to a more polar product that was identified by GC-MS and by NMR as (10E)-12-hydroxyfarnesol. CYP4C7 converted JH III to 12-trans-hydroxy JH III and metabolized other JH-like sesquiterpenoids as well. This omega-hydroxylation of sesquiterpenoids appears to be a metabolic pathway in the corpora allata that may play a role in the suppression of JH biosynthesis at the end of the gonotrophic cycle.

  18. Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris.

    PubMed Central

    Lovley, D R; Widman, P K; Woodward, J C; Phillips, E J

    1993-01-01

    The mechanism for U(VI) reduction by Desulfovibrio vulgaris (Hildenborough) was investigated. The H2-dependent U(VI) reductase activity in the soluble fraction of the cells was lost when the soluble fraction was passed over a cationic exchange column which extracted cytochrome c3. Addition of cytochrome c3 back to the soluble fraction that had been passed over the cationic exchange column restored the U(VI)-reducing capacity. Reduced cytochrome c3 was oxidized by U(VI), as was a c-type cytochrome(s) in whole-cell suspensions. When cytochrome c3 was combined with hydrogenase, its physiological electron donor, U(VI) was reduced in the presence of H2. Hydrogenase alone could not reduce U(VI). Rapid U(VI) reduction was followed by a subsequent slow precipitation of the U(IV) mineral uraninite. Cytochrome c3 reduced U(VI) in a uranium-contaminated surface water and groundwater. Cytochrome c3 provides the first enzyme model for the reduction and biomineralization of uranium in sedimentary environments. Furthermore, the finding that cytochrome c3 can catalyze the reductive precipitation of uranium may aid in the development of fixed-enzyme reactors and/or organisms with enhanced U(VI)-reducing capacity for the bioremediation of uranium-contaminated waters and waste streams. PMID:8285665

  19. Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris

    USGS Publications Warehouse

    Lovley, D.R.; Widman, P.K.; Woodward, J.C.; Phillips, E.J.P.

    1993-01-01

    The mechanism for U(VI) reduction by Desulfovibrio vulgaris (Hildenborough) was investigated. The H2-dependent U(VI) reductase activity in the soluble fraction of the cells was lost when the soluble fraction was passed over a cationic exchange column which extracted cytochrome c3. Addition of cytochrome c3 back to the soluble fraction that had been passed over the cationic exchange column restored the U(VI)-reducing capacity. Reduced cytochrome c3 was oxidized by U(VI), as was a c-type cytochrome(s) in whole-cell suspensions. When cytochrome c3 was combined with hydrogenase, its physiological electron donor, U(VI) was reduced in the presence of H2. Hydrogenase alone could not reduce U(VI). Rapid U(VI) reduction was followed by a subsequent slow precipitation of the U(IV) mineral uraninite. Cytochrome c3 reduced U(VI) in a uranium-contaminated surface water and groundwater. Cytochrome c3 provides the first enzyme model for the reduction and biomineralization of uranium in sedimentary environments. Furthermore, the finding that cytochrome c3 can catalyze the reductive precipitation of uranium may aid in the development of fixed-enzyme reactors and/or organisms with enhanced U(VI)-reducing capacity for the bioremediation of uranium- contaminated waters and waste streams.

  20. 17 CFR 260.10b-5 - Content.

    Code of Federal Regulations, 2010 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Content. 260.10b-5 Section 260.10b-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rule Under Section 310 § 260.10b-5 Content. (a)...

  1. 17 CFR 260.10b-5 - Content.

    Code of Federal Regulations, 2010 CFR

    2000-04-01

    ... 17 Commodity and Securities Exchanges 3 2000-04-01 2000-04-01 false Content. 260.10b-5 Section 260.10b-5 Commodity and Securities Exchanges GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rule Under Section 310 § 260.10b-5 Content. (a) Each application for a stay of a trustee's duty...

  2. 17 CFR 260.10b-5 - Content.

    Code of Federal Regulations, 2010 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Content. 260.10b-5 Section 260.10b-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rule Under Section 310 § 260.10b-5 Content. (a)...

  3. 17 CFR 260.10b-5 - Content.

    Code of Federal Regulations, 2010 CFR

    2005-04-01

    ... 17 Commodity and Securities Exchanges 3 2005-04-01 2005-04-01 false Content. 260.10b-5 Section 260.10b-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rule Under Section 310 § 260.10b-5 Content. (a)...

  4. 42 CFR 52b.5 - How will NIH evaluate applications?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false How will NIH evaluate applications? 52b.5 Section 52b.5 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL INSTITUTES OF HEALTH CONSTRUCTION GRANTS § 52b.5 How will NIH evaluate applications? (a) In evaluating and...

  5. 42 CFR 52b.5 - How will NIH evaluate applications?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false How will NIH evaluate applications? 52b.5 Section 52b.5 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL INSTITUTES OF HEALTH CONSTRUCTION GRANTS § 52b.5 How will NIH evaluate applications? (a) In evaluating and...

  6. 42 CFR 52b.5 - How will NIH evaluate applications?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false How will NIH evaluate applications? 52b.5 Section 52b.5 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL INSTITUTES OF HEALTH CONSTRUCTION GRANTS § 52b.5 How will NIH evaluate applications? (a) In evaluating and...

  7. 42 CFR 52b.5 - How will NIH evaluate applications?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false How will NIH evaluate applications? 52b.5 Section 52b.5 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL INSTITUTES OF HEALTH CONSTRUCTION GRANTS § 52b.5 How will NIH evaluate applications? (a) In evaluating and...

  8. 42 CFR 52b.5 - How will NIH evaluate applications?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false How will NIH evaluate applications? 52b.5 Section 52b.5 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL INSTITUTES OF HEALTH CONSTRUCTION GRANTS § 52b.5 How will NIH evaluate applications? (a) In evaluating and...

  9. 29 CFR 2530.200b-5 - Seasonal industries. [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 9 2010-07-01 2010-07-01 false Seasonal industries. 2530.200b-5 Section 2530.200b-5 Labor Regulations Relating to Labor (Continued) EMPLOYEE BENEFITS SECURITY ADMINISTRATION, DEPARTMENT OF LABOR... Provisions § 2530.200b-5 Seasonal industries. ...

  10. 49 CFR 178.33b-5 - Material.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Material. 178.33b-5 Section 178.33b-5 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers, and Linings § 178.33b-5 Material. (a) The receptacles must be constructed of polyethylene...

  11. 49 CFR 178.33b-5 - Material.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Material. 178.33b-5 Section 178.33b-5 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers, and Linings § 178.33b-5 Material. (a) The receptacles must be constructed of polyethylene...

  12. 49 CFR 178.33b-5 - Material.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Material. 178.33b-5 Section 178.33b-5 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers, and Linings § 178.33b-5 Material. (a) The receptacles must be constructed of polyethylene...

  13. 49 CFR 178.33b-5 - Material.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Material. 178.33b-5 Section 178.33b-5 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... Containers, and Linings § 178.33b-5 Material. (a) The receptacles must be constructed of polyethylene...

  14. Spectroscopic and kinetic properties of a recombinant form of the flavin domain of spinach NADH: nitrate reductase.

    PubMed

    Quinn, G B; Trimboli, A J; Prosser, I M; Barber, M J

    1996-03-01

    was also capable of reducing cytochrome b5 directly (V(max) = 1.2 micromol NADH consumed/min/nmol FAD, Km (cyt. b5) = 6 microM), supporting the FAD -> b557 -> Mo electron transfer sequence in spinach nitrate reductase.

  15. Identification of a Small Tetraheme Cytochrome c and a Flavocytochrome c as Two of the Principal Soluble Cytochromes c in Shewanella oneidensis Strain MR1

    PubMed Central

    Tsapin, A. I.; Vandenberghe, I.; Nealson, K. H.; Scott, J. H.; Meyer, T. E.; Cusanovich, M. A.; Harada, E.; Kaizu, T.; Akutsu, H.; Leys, D.; Van Beeumen, J. J.

    2001-01-01

    Two abundant, low-redox-potential cytochromes c were purified from the facultative anaerobe Shewanella oneidensis strain MR1 grown anaerobically with fumarate. The small cytochrome was completely sequenced, and the genes coding for both proteins were cloned and sequenced. The small cytochrome c contains 91 residues and four heme binding sites. It is most similar to the cytochromes c from Shewanella frigidimarina (formerly Shewanella putrefaciens) NCIMB400 and the unclassified bacterial strain H1R (64 and 55% identity, respectively). The amount of the small tetraheme cytochrome is regulated by anaerobiosis, but not by fumarate. The larger of the two low-potential cytochromes contains tetraheme and flavin domains and is regulated by anaerobiosis and by fumarate and thus most nearly corresponds to the flavocytochrome c-fumarate reductase previously characterized from S. frigidimarina to which it is 59% identical. However, the genetic context of the cytochrome genes is not the same for the two Shewanella species, and they are not located in multicistronic operons. The small cytochrome c and the cytochrome domain of the flavocytochrome c are also homologous, showing 34% identity. Structural comparison shows that the Shewanella tetraheme cytochromes are not related to the Desulfovibrio cytochromes c3 but define a new folding motif for small multiheme cytochromes c. PMID:11425747

  16. Identification of a small tetraheme cytochrome c and a flavocytochrome c as two of the principal soluble cytochromes c in Shewanella oneidensis strain MR1

    NASA Technical Reports Server (NTRS)

    Tsapin, A. I.; Vandenberghe, I.; Nealson, K. H.; Scott, J. H.; Meyer, T. E.; Cusanovich, M. A.; Harada, E.; Kaizu, T.; Akutsu, H.; Leys, D.; Van Beeumen, J. J.

    2001-01-01

    Two abundant, low-redox-potential cytochromes c were purified from the facultative anaerobe Shewanella oneidensis strain MR1 grown anaerobically with fumarate. The small cytochrome was completely sequenced, and the genes coding for both proteins were cloned and sequenced. The small cytochrome c contains 91 residues and four heme binding sites. It is most similar to the cytochromes c from Shewanella frigidimarina (formerly Shewanella putrefaciens) NCIMB400 and the unclassified bacterial strain H1R (64 and 55% identity, respectively). The amount of the small tetraheme cytochrome is regulated by anaerobiosis, but not by fumarate. The larger of the two low-potential cytochromes contains tetraheme and flavin domains and is regulated by anaerobiosis and by fumarate and thus most nearly corresponds to the flavocytochrome c-fumarate reductase previously characterized from S. frigidimarina to which it is 59% identical. However, the genetic context of the cytochrome genes is not the same for the two Shewanella species, and they are not located in multicistronic operons. The small cytochrome c and the cytochrome domain of the flavocytochrome c are also homologous, showing 34% identity. Structural comparison shows that the Shewanella tetraheme cytochromes are not related to the Desulfovibrio cytochromes c(3) but define a new folding motif for small multiheme cytochromes c.

  17. Identification of a small tetraheme cytochrome c and a flavocytochrome c as two of the principal soluble cytochromes c in Shewanella oneidensis strain MR1

    NASA Technical Reports Server (NTRS)

    Tsapin, A. I.; Vandenberghe, I.; Nealson, K. H.; Scott, J. H.; Meyer, T. E.; Cusanovich, M. A.; Harada, E.; Kaizu, T.; Akutsu, H.; Leys, D.; hide

    2001-01-01

    Two abundant, low-redox-potential cytochromes c were purified from the facultative anaerobe Shewanella oneidensis strain MR1 grown anaerobically with fumarate. The small cytochrome was completely sequenced, and the genes coding for both proteins were cloned and sequenced. The small cytochrome c contains 91 residues and four heme binding sites. It is most similar to the cytochromes c from Shewanella frigidimarina (formerly Shewanella putrefaciens) NCIMB400 and the unclassified bacterial strain H1R (64 and 55% identity, respectively). The amount of the small tetraheme cytochrome is regulated by anaerobiosis, but not by fumarate. The larger of the two low-potential cytochromes contains tetraheme and flavin domains and is regulated by anaerobiosis and by fumarate and thus most nearly corresponds to the flavocytochrome c-fumarate reductase previously characterized from S. frigidimarina to which it is 59% identical. However, the genetic context of the cytochrome genes is not the same for the two Shewanella species, and they are not located in multicistronic operons. The small cytochrome c and the cytochrome domain of the flavocytochrome c are also homologous, showing 34% identity. Structural comparison shows that the Shewanella tetraheme cytochromes are not related to the Desulfovibrio cytochromes c(3) but define a new folding motif for small multiheme cytochromes c.

  18. Reduction of U(VI) and Toxic Metals by Desulfovibrio Cytochrome c3

    SciTech Connect

    Wall, Judy D.

    2003-06-01

    The project, ''Reduction of U(VI) and toxic metals by Desulfovibrio cytochrome c3'', is designed to obtain spectroscopic information for or against a functional interaction of cytochrome c3 and uranium in the whole cells. That is, is the cytochrome c3 the uranium reductase? Our approach has been to start with purified cytochrome and determine any unique spectral disturbances during electron flow to U(VI). Then we will attempt to identify these signals emanating from cells actively reducing uranium. This project is being carried out in collaboration with Dr. William Woodruff at the Los Alamos National Laboratory where the spectral experiments are being carried out.

  19. [Properties of a nitrite reductase inhibitor protein from Pseudomonas aeruginosa].

    PubMed

    Karapetian, A V; Nalbandian, R M

    1993-08-01

    The amino acid composition and major physico-chemical properties of the "nonblue" copper protein isolated earlier from Pseudomonas aeruginosa have been determined. It has been found that the azurin oxidase, cytochrome c551 oxidase and superoxide dismutase activities of the enzyme are inhibited by this protein. The inhibition seems to be due to the protein interaction with the electron-accepting center of nitrite reductase.

  20. Quinone Reductase 2 Is a Catechol Quinone Reductase

    SciTech Connect

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao

    2008-09-05

    The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.

  1. Isatin-induced increase in the affinity of human ferrochelatase and adrenodoxin reductase interaction.

    PubMed

    Ershov, Pavel; Mezentsev, Yuri; Gilep, Andrey; Usanov, Sergey; Buneeva, Olga; Medvedev, Alexei; Ivanov, Alexis

    2017-09-14

    Isatin (indol-2,3-dione) is an endogenous non-peptide regulator exhibiting a wide range of biological and pharmacological activities, which are poorly characterized in terms of their molecular mechanisms. Identification of many isatin-binding proteins in the mammalian brain and liver suggests that isatin may influence their functions. We have hypothesized that besides direct action on particular protein targets, isatin can act as a regulator of protein-protein interactions (PPIs). In this surface plasmon resonance-based biosensor study we have found that physiologically relevant concentrations of isatin (25-100 μM) increase affinity of interactions between human recombinant ferrochelatase (FECH) and NADPH-dependent adrenodoxin reductase (ADR). In the presence of increasing concentrations of isatin the Kd values demonstrated a significant (up to 6-fold) decrease. It is especially important that the interaction of isatin with each individual protein (FECH, ADR) was basically negligible and therefore could not contribute to the observed effect. This effect was specific only for the FECH/ADR complex formation and was not observed for other protein complexes studied: FECH/cytochrome b5(CYB5A) and FECH/SMAD4. © 2017 The Protein Society.

  2. 17 CFR 260.10b-5 - Content.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Content. 260.10b-5 Section 260.10b-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rule Under Section 310 § 260.10b-5 Content. (a) Each application for a stay of a trustee's duty...

  3. 17 CFR 260.10b-5 - Content.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Content. 260.10b-5 Section 260.10b-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rule Under Section 310 § 260.10b-5 Content. (a) Each application for a stay of a trustee's duty...

  4. 17 CFR 260.10b-5 - Content.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Content. 260.10b-5 Section 260.10b-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rule Under Section 310 § 260.10b-5 Content. (a) Each application for a stay of a trustee's duty...

  5. Influence of polyhalogenated aromatic hydrocarbons on the induction, activity, and stabilization of cytochrome P450

    SciTech Connect

    Voorman, R.

    1987-01-01

    In the course of experiments evaluating the metabolism of polybrominated biphenyls by cytochrome P450 isozymes induced by 3,4,5,3',4',5'-hexabromobiphenyl (HBB), it was discovered that the inducer remained closely associated with cytochrome P450d. Subsequent purification of cytochromes from HBB treated rates revealed a 0.5:1 association of HBB to cytochrome P450d but virtually none with cytochrome P450c or cytochrome b5. Immunochemical quantitation of cytochrome P450d in the same microsomes yielded a ratio of P450d:HBB that approached unity. Measurement of cytochrome P450d estradiol 2-hydroxylase indicated non-competitive or mixed type inhibition caused by HBB at a concentration of 10-1000 nM. Inhibition was specific to cytochrome P450d since estradiol 2-hydroxylase catalyzed by cytochrome P450h was unaffected by HBB. The ability of HCB and isosafrole to stabilize cytochrome P450d, and thus indirectly influence regulation of the enzyme, was evaluated by treating rats with a dose of TCDD sufficient to produce maximum induction of cytochromes P450c and P450d via the Ah receptor, yet insufficient to bind to the enzyme. Subsequent treatment of these animals with HCB or isosafrole and a radiolabeled amino acid, revealed a significant increase in cytochrome P450d specific content relative to cytochrome P450c and significant retention of the radiolabel in P450d relative to rats treated only with TCDD.

  6. Production of recombinant multiheme cytochromes c in Wolinella succinogenes.

    PubMed

    Kern, Melanie; Simon, Jörg

    2011-01-01

    Respiratory nitrogen cycle processes like nitrification, nitrate reduction, denitrification, nitrite ammonification, or anammox involve a variety of dissimilatory enzymes and redox-active cofactors. In this context, an intriguing protein class are cytochromes c, that is, enzymes containing one or more covalently bound heme groups that are attached to heme c binding motifs (HBMs) of apo-cytochromes. The key enzyme of the corresponding maturation process is cytochrome c heme lyase (CCHL), an enzyme that catalyzes the formation of two thioether linkages between two vinyl side chains of a heme and two cysteine residues arranged in the HBM. In recent years, many multiheme cytochromes c involved in nitrogen cycle processes, such as hydroxylamine oxidoreductase and cytochrome c nitrite reductase, have attracted particular interest. Structurally, these enzymes exhibit conserved heme packing motifs despite displaying very different enzymic properties and largely unrelated primary structures. The functional and structural characterization of cytochromes c demands their purification in sufficient amounts as well as the feasibility to generate site-directed enzyme variants. For many interesting organisms, however, such systems are not available, mainly hampered by genetic inaccessibility, slow growth rates, insufficient cell yields, and/or a low capacity of cytochrome c formation. Efficient heterologous cytochrome c overproduction systems have been established using the unrelated proteobacterial species Escherichia coli and Wolinella succinogenes. In contrast to E. coli, W. succinogenes uses the cytochrome c biogenesis system II and contains a unique set of three specific CCHL isoenzymes that belong to the unusual CcsBA-type. Here, W. succinogenes is presented as host for cytochrome c overproduction focusing on a recently established gene expression system designed for large-scale production of multiheme cytochromes c. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Are there differences in the catalytic activity per unit enzyme of recombinantly expressed and human liver microsomal cytochrome P450 2C9? A systematic investigation into inter-system extrapolation factors.

    PubMed

    Crewe, H K; Barter, Z E; Yeo, K Rowland; Rostami-Hodjegan, A

    2011-09-01

    The 'relative activity factor' (RAF) compares the activity per unit of microsomal protein in recombinantly expressed cytochrome P450 enzymes (rhCYP) and human liver without separating the potential sources of variation (i.e. abundance of enzyme per mg of protein or variation of activity per unit enzyme). The dimensionless 'inter-system extrapolation factor' (ISEF) dissects differences in activity from those in CYP abundance. Detailed protocols for the determination of this scalar, which is used in population in vitro-in vivo extrapolation (IVIVE), are currently lacking. The present study determined an ISEF for CYP2C9 and, for the first time, systematically evaluated the effects of probe substrate, cytochrome b5 and methods for assessing the intrinsic clearance (CL(int) ). Values of ISEF for S-warfarin, tolbutamide and diclofenac were 0.75 ± 0.18, 0.57 ± 0.07 and 0.37 ± 0.07, respectively, using CL(int) values derived from the kinetic values V(max) and K(m) of metabolite formation in rhCYP2C9 + reductase + b5 BD Supersomes™. The ISEF values obtained using rhCYP2C9 + reductase BD Supersomes™ were more variable, with values of 7.16 ± 1.25, 0.89 ± 0.52 and 0.50 ± 0.05 for S-warfarin, tolbutamide and diclofenac, respectively. Although the ISEF values obtained from rhCYP2C9 + reductase + b5 for the three probe substrates were statistically different (p < 0.001), the use of the mean value of 0.54 resulted in predicted oral clearance values for all three substrates within 1.4 fold of the observed literature values. For consistency in the relative activity across substrates, use of a b5 expressing recombinant system, with the intrinsic clearance calculated from full kinetic data is recommended for generation of the CYP2C9 ISEF. Furthermore, as ISEFs have been found to be sensitive to differences in accessory proteins, rhCYP system specific ISEFs are recommended.

  8. Coal fly ash induces hepatic and pulmonary cytochrome P-450 and sigma-aminolevulinic acid synthetase in rats

    SciTech Connect

    Srivastava, P.K.; Misra, U.K.

    1987-01-01

    The effect of intratracheal administration of coal fly ash, its benzene-soluble and benzene-insoluble fractions has been studied on the levels of hepatic and pulmonary cytochrome P-450, cytochrome b5, and the activities of sigma-aminolevulinic acid synthetase and heme oxygenase. Fly ash and both its fractions significantly increased the levels of hepatic and pulmonary cytochrome P-450. Benzene-soluble and benzene-insoluble fractions of coal fly ash significantly increased the levels of cytochrome b5 also in both lung and liver. Fly ash and both its fractions increased the activity of sigma-aminolevulinic acid synthetase and reduced the activity of heme oxygenase in lung and liver. Glass bead particles of similar size did not show any effect on hepatic and pulmonary cytochrome P-450 and cytochrome b5.

  9. Cytochromes of Aquatic Fungi

    PubMed Central

    Gleason, Frank H.; Unestam, Torgny

    1968-01-01

    The cytochrome systems of two classes of aquatic fungi, the Oomycetes and Chytridiomycetes, were studied by means of reduced-minus-oxidized difference spectra at room and at low temperature. At room temperature, all of these fungi have a c-type cytochrome with an absorption maximum at 551 mμ and a b-type cytochrome at 564 mμ. The Oomycetes have a-type cytochromes at 605 mμ, and the Chytridiomycetes have a-type cytochromes at 606 mμ (Blastocladiales) or at 609 mμ (Monoblepharidales). Additional b-type cytochromes are found at 557 mμ in the Oomycetes and at approximately 560 mμ in the Chytridiomycetes. The data obtained from spectra at low temperature are consistent with these conclusions. Thus, the difference spectra reveal variation between the cytochrome systems of these two classes of aquatic fungi. PMID:5650068

  10. Protonmotive stoichiometry of rat liver cytochrome c oxidase: determination by a new rate/pulse method.

    PubMed

    Moody, A J; Mitchell, R; West, I C; Mitchell, P

    1987-11-19

    The stoichoimetry of vectorial H+ ejection coupled to electron flow through the cytochrome c oxidase (EC 1.9.3.1) of rat liver mitochondria was determined by a new rate/pulse method. This is a modification of the oxygen-pulse method. Electron flow through the oxidase is initiated by adding oxygen to suspensions of anaerobic mitochondria at a known and constant rate. Cytochrome c oxidase was examined directly or in combination with cytochrome c reductase (ubiquinol:ferricytochrome c oxidoreductase). In both cases the----H0+/2e- ratio was found to be constant during the time-course of oxygen reduction, and thus independent of delta pH. The stoichiometries observed were consistent with mechanistic stoichiometries of 2 and 6 for cytochrome c oxidase alone and cytochrome c oxidase together with cytochrome c reductase, respectively. The stoichiometry of cytochrome c reductase alone was also examined, by using ferricyanide in place of oxygen. The results obtained were consistent with the accepted mechanistic stoichiometry of 4 for this enzyme.

  11. The role of multihaem cytochromes in the respiration of nitrite in Escherichia coli and Fe(III) in Shewanella oneidensis

    SciTech Connect

    Clarke, Thomas A.; Holley, Tracey; Hartshorne, Robert S.; Fredrickson, Jim K.; Zachara, John M.; Shi, Liang; Richardson, David

    2008-10-01

    The periplasmic nitrite reductase system from Escherichia coli and the extracellular Fe(III) reductase system from Shewanella oneidensis contain multihaem c-type cytochromes as electron carriers and terminal reductases. The position and orientation of the haem cofactors in multihaem cytochromes from different bacteria often show significant conservation despite different arrangements of the polypeptide chain. We propose that the decahaem cytochromes of the iron reductase system MtrA, MtrC and OmcA comprise pentahaem ‘modules’ similar to the electron donor protein, NrfB, from E. coli. To demonstrate this, we have isolated and characterized the N-terminal pentahaem module of MtrA by preparing a truncated form containing five covalently attached haems. UV–visible spectroscopy indicated that all five haems were low-spin, consistent with the presence of bis-His ligand co-ordination as found in full-length MtrA.

  12. The role of multihaem cytochromes in the respiration of nitrite in Escherichia coli and Fe(III) in Shewanella oneidensis.

    PubMed

    Clarke, Thomas A; Holley, Tracey; Hartshorne, Robert S; Fredrickson, Jim K; Zachara, John M; Shi, Liang; Richardson, David J

    2008-10-01

    The periplasmic nitrite reductase system from Escherichia coli and the extracellular Fe(III) reductase system from Shewanella oneidensis contain multihaem c-type cytochromes as electron carriers and terminal reductases. The position and orientation of the haem cofactors in multihaem cytochromes from different bacteria often show significant conservation despite different arrangements of the polypeptide chain. We propose that the decahaem cytochromes of the iron reductase system MtrA, MtrC and OmcA comprise pentahaem 'modules' similar to the electron donor protein, NrfB, from E. coli. To demonstrate this, we have isolated and characterized the N-terminal pentahaem module of MtrA by preparing a truncated form containing five covalently attached haems. UV-visible spectroscopy indicated that all five haems were low-spin, consistent with the presence of bis-His ligand co-ordination as found in full-length MtrA.

  13. 49 CFR 178.33b-5 - Material.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Material. 178.33b-5 Section 178.33b-5 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION HAZARDOUS MATERIALS REGULATIONS SPECIFICATIONS FOR...

  14. Catalytic mechanism and substrate selectivity of aldo-keto reductases: insights from structure-function studies of Candida tenuis xylose reductase.

    PubMed

    Kratzer, Regina; Wilson, David K; Nidetzky, Bernd

    2006-09-01

    Aldo-keto reductases (AKRs) constitute a large protein superfamily of mainly NAD(P)-dependent oxidoreductases involved in carbonyl metabolism. Catalysis is promoted by a conserved tetrad of active site residues (Tyr, Lys, Asp and His). Recent results of structure-function relationship studies for xylose reductase (AKR2B5) require an update of the proposed catalytic mechanism. Electrostatic stabilization by the epsilon-NH3+ group of Lys is a key source of catalytic power of xylose reductase. A molecular-level analysis of the substrate binding pocket of xylose reductase provides a case of how a very broadly specific AKR achieves the requisite selectivity for its physiological substrate and could serve as the basis for the design of novel reductases with improved specificities for biocatalytic applications.

  15. Role of Bradyrhizobium japonicum cytochrome c550 in nitrite and nitrate respiration.

    PubMed

    Bueno, Emilio; Bedmar, Eulogio J; Richardson, David J; Delgado, María J

    2008-02-01

    Bradyrhizobium japonicum cytochrome c(550), encoded by cycA, has been previously suggested to play a role in denitrification, the respiratory reduction of nitrate to dinitrogen. However, the exact role of this cytochrome in the denitrification process is unknown. This study shows that cytochrome c(550) is involved in electron transfer to the copper-containing nitrite reductase of B. japonicum, as revealed by the inability of a cycA mutant strain to consume nitrite and, consequently, to grow under denitrifying conditions with nitrite as the electron acceptor. Mutation of cycA had no apparent effect on methylviologen-dependent nitrite reductase activity. However, succinate-dependent nitrite reduction was largely inhibited, suggesting that c(550) is the in vivo electron donor to copper-containing nitrite reductase. In addition, this study demonstrates that a cytochrome c(550) mutation has a negative effect on expression of the periplasmic nitrate reductase. This phenotype can be rescued by extending the growth period of the cells. A model is proposed whereby a mutation in cycA reduces expression of the cbb(3)-type oxidase, affecting oxygen consumption rate by the cells and consequently preventing maximal expression of the periplasmic nitrate reductase during the first days of the growth period.

  16. Cytochrome c4 is required for siderophore expression by Legionella pneumophila, whereas cytochromes c1 and c5 promote intracellular infection

    PubMed Central

    Yip, Emily S.; Burnside, Denise M.; Cianciotto, Nicholas P.

    2011-01-01

    A panel of cytochrome c maturation (ccm) mutants of Legionella pneumophila displayed a loss of siderophore (legiobactin) expression, as measured by both the chrome azurol S assay and a Legionella-specific bioassay. These data, coupled with the finding that ccm transcripts are expressed by wild-type bacteria grown in deferrated medium, indicate that the Ccm system promotes siderophore expression by L. pneumophila. To determine the basis of this newfound role for Ccm, we constructed and tested a set of mutants specifically lacking individual c-type cytochromes. Whereas ubiquinol-cytochrome c reductase (petC) mutants specifically lacking cytochrome c1 and cycB mutants lacking cytochrome c5 had normal siderophore expression, cyc4 mutants defective for cytochrome c4 completely lacked legiobactin. These data, along with the expression pattern of cyc4 mRNA, indicate that cytochrome c4 in particular promotes siderophore expression. In intracellular infection assays, petC mutants and cycB mutants, but not cyc4 mutants, had a reduced ability to infect both amoebae and macrophage hosts. Like ccm mutants, the cycB mutants were completely unable to grow in amoebae, highlighting a major role for cytochrome c5 in intracellular infection. To our knowledge, these data represent both the first direct documentation of the importance of a c-type cytochrome in expression of a biologically active siderophore and the first insight into the relative importance of c-type cytochromes in intracellular infection events. PMID:21178169

  17. Hepatic expression of cytochrome P450 in Zucker diabetic fatty rats.

    PubMed

    Park, So Young; Kim, Chung Hyeon; Lee, Ji Yoon; Jeon, Jang Su; Kim, Min Ju; Chae, Song Hee; Kim, Hyoung Chin; Oh, Soo Jin; Kim, Sang Kyum

    2016-10-01

    In this study, the hepatic expression of cytochrome P450 (CYP) enzymes, including CYP1A1/2, 2B1, 2C11, 2E1, 3A1/2, and 4A, was investigated in 5-week-old (insulinresistant state) and 11-week-old (diabetic) Zucker diabetic fatty (ZDF) rats. Serum glucose and glycated hemoglobin levels were increased in 11-week-old ZDF rats, but not in 5-weekold ZDF rats. Hyperinsulinemia was observed in both age groups. The microsomal protein, total CYP, CYP reductase, CYP1A1/2, and CYP3A1 levels did not differ between 5- and 11-week-old ZDF rats and their respective control rats, while CYP4A was up-regulated in both groups. Hepatic levels of cytochrome b5, CYP2B1, CYP2C11, CYP2E1, and CYP3A2 were decreased in 5-week-old ZDF rats, but not in 11-week-old ZDF rats. Similarly, pentoxyresorufin O-depentylase, testosterone 2α- and 16α-hydroxylase, chlorzoxazone 6- hydroxylase, and midazolam 1'- and 4-hydroxylase activities were decreased only in 5-weekold ZDF rats. Based on these results, the 5-week-old ZDF rats exhibited down-regulation of the major CYP enzymes. These results suggest that hepatic expression of CYP enzymes may be dysregulated during development in ZDF rats. With the exception of CYP2B1 and CYP4A, the hepatic levels and activities of CYP were comparable between 11-week-old ZDF and control rats, suggesting that xenobiotic metabolism is normally regulated in the early diabetic state.

  18. Expression and purification of orphan cytochrome P450 4X1 and oxidation of anandamide

    PubMed Central

    Stark, Katarina; Dostalek, Miroslav; Guengerich, F. Peter

    2016-01-01

    Summary Cytochrome P450 (P450) 4X1 is one of the so-called “orphan” P450s without assigned biological function. Codon-optimized P450 4X1 and a number of N-terminal modified sequences were expressed in Escherichia coli. Native P450 4X1 showed a characteristic P450 spectrum but low expression in E. coli DH5α cells (<100 nmol P450/L). The highest level of expression (300-450 nmol P450/L culture) was achieved with a bicistronic P450 4X1 construct (N-terminal MAKKTSSKGKL, change of E2A, amino acids 3-44 truncated). Anandamide (arachidonoyl ethanolamide) has emerged as an important signaling molecule in the neurovascular cascade. Recombinant P450 4X1 protein, co-expressed with human NADPH-P450 reductase in E. coli, was found to convert the natural endocannabinoid anandamide to a single monooxygenated product, 14,15-epoxyeicosatrienoic (EET) ethanolamide. A stable anandamide analog (CD-25) was also converted to a monooxygenated product. Arachidonic acid was oxidized more slowly to 14,15- and 8,9-EETs but only in the presence of cytochrome b5. Other fatty acids were investigated as putative substrates but showed only little or minor oxidation. Real-time PCR analysis demonstrated extrahepatic mRNA expression, including several human brain structures (cerebellum, amygdala, and basal ganglia), in addition to expression in human heart, liver, prostate, and breast. The highest mRNA expression levels were detected in amygdala and skin. The ability of P450 4X1 to generate anandamide derivatives and the mRNA distribution pattern suggest a potential role for P450 4X1 in anandamide signaling in the brain. PMID:18549450

  19. Identification and location of alpha-helices in mammalian cytochromes P450.

    PubMed

    Edwards, R J; Murray, B P; Boobis, A R; Davies, D S

    1989-05-02

    A model of the alpha-helical structure of mammalian cytochromes P450 is proposed. The location and sequence of alpha-helices in mammalian cytochromes P450 were predicted from their homology with those of cytochrome P450cam, and these sequences were generally confirmed as helical in nature by using a secondary structure prediction method. These analyses were applied to 26 sequences in 6 gene families of cytochrome P450. Mammalian cytochromes P450 consist of approximately 100 amino acid residues more than cytochrome P450cam. This difference was accounted for by three major areas of insertion: (1) at the N-terminus, (2) between helices C and D and between helices D and E, and (3) between helices J and K. Insertion 1 has been suggested by others as a membrane anchoring sequence, but the apparent insertions at 2 and 3 are novel observations; it is suggested that they may be involved in the binding of cytochrome P450 reductase. Only the mitochondrial cytochrome P450 family appeared to show a major variation from this pattern, as insertion 2 was absent, replaced by an insertion between helices G and H and between helices H and I. This may reflect the difference in electron donor proteins that bind to members of this cytochrome P450 family. Other than these differences the model of mammalian cytochromes P450 proposed maintains the general structure of cytochrome P450cam as determined by its alpha-helical composition.

  20. Quinol-cytochrome c Oxidoreductase and Cytochrome c4 Mediate Electron Transfer during Selenate Respiration in Thauera selenatis*

    PubMed Central

    Lowe, Elisabeth C.; Bydder, Sarah; Hartshorne, Robert S.; Tape, Hannah L. U.; Dridge, Elizabeth J.; Debieux, Charles M.; Paszkiewicz, Konrad; Singleton, Ian; Lewis, Richard J.; Santini, Joanne M.; Richardson, David J.; Butler, Clive S.

    2010-01-01

    Selenate reductase (SER) from Thauera selenatis is a periplasmic enzyme that has been classified as a type II molybdoenzyme. The enzyme comprises three subunits SerABC, where SerC is an unusual b-heme cytochrome. In the present work the spectropotentiometric characterization of the SerC component and the identification of redox partners to SER are reported. The mid-point redox potential of the b-heme was determined by optical titration (Em + 234 ± 10 mV). A profile of periplasmic c-type cytochromes expressed in T. selenatis under selenate respiring conditions was undertaken. Two c-type cytochromes were purified (∼24 and ∼6 kDa), and the 24-kDa protein (cytc-Ts4) was shown to donate electrons to SerABC in vitro. Protein sequence of cytc-Ts4 was obtained by N-terminal sequencing and liquid chromatography-tandem mass spectrometry analysis, and based upon sequence similarities, was assigned as a member of cytochrome c4 family. Redox potentiometry, combined with UV-visible spectroscopy, showed that cytc-Ts4 is a diheme cytochrome with a redox potential of +282 ± 10 mV, and both hemes are predicted to have His-Met ligation. To identify the membrane-bound electron donors to cytc-Ts4, growth of T. selenatis in the presence of respiratory inhibitors was monitored. The specific quinol-cytochrome c oxidoreductase (QCR) inhibitors myxothiazol and antimycin A partially inhibited selenate respiration, demonstrating that some electron flux is via the QCR. Electron transfer via a QCR and a diheme cytochrome c4 is a novel route for a member of the DMSO reductase family of molybdoenzymes. PMID:20388716

  1. Nitrate, nitrite and nitric oxide reductases: from the last universal common ancestor to modern bacterial pathogens.

    PubMed

    Vázquez-Torres, Andrés; Bäumler, Andreas J

    2016-02-01

    The electrochemical gradient that ensues from the enzymatic activity of cytochromes such as nitrate reductase, nitric oxide reductase, and quinol oxidase contributes to the bioenergetics of the bacterial cell. Reduction of nitrogen oxides by bacterial pathogens can, however, be uncoupled from proton translocation and biosynthesis of ATP or NH4(+), but still linked to quinol and NADH oxidation. Ancestral nitric oxide reductases, as well as cytochrome c oxidases and quinol bo oxidases evolved from the former, are capable of binding and detoxifying nitric oxide to nitrous oxide. The NO-metabolizing activity associated with these cytochromes can be a sizable source of antinitrosative defense in bacteria during their associations with host cells. Nitrosylation of terminal cytochromes arrests respiration, reprograms bacterial metabolism, stimulates antioxidant defenses and alters antibiotic cytotoxicity. Collectively, the bioenergetics and regulation of redox homeostasis that accompanies the utilization of nitrogen oxides and detoxification of nitric oxide by cytochromes of the electron transport chain increases fitness of many Gram-positive and -negative pathogens during their associations with invertebrate and vertebrate hosts.

  2. Nitrate, nitrite and nitric oxide reductases: from the last universal common ancestor to modern bacterial pathogens

    PubMed Central

    Vázquez-Torres, Andrés; Bäumler, Andreas

    2016-01-01

    The electrochemical gradient that ensues from the enzymatic activity of cytochromes such as nitrate reductase, nitric oxide reductase, and quinol oxidase contributes to the bioenergetics of the bacterial cell. Reduction of nitrogen oxides by bacterial pathogens can, however, be uncoupled from proton translocation and biosynthesis of ATP or NH4+, but still linked to quinol and NADH oxidation. Ancestral nitric oxide reductases, as well as cytochrome coxidases and quinol bo oxidases evolved from the former, are capable of binding and detoxifying nitric oxide to nitrous oxide. The NO-metabolizing activity associated with these cytochromes can be a sizable source of antinitrosative defense in bacteria during their associations with host cells. Nitrosylation of terminal cytochromes arrests respiration, reprograms bacterial metabolism, stimulates antioxidant defenses and alters antibiotic cytotoxicity. Collectively, the bioenergetics and regulation of redox homeostasis that accompanies the utilization of nitrogen oxides and detoxification of nitric oxide by cytochromes of the electron transport chain increases fitness of many Gram-positive and –negative pathogens during their associations with invertebrate and vertebrate hosts. PMID:26426528

  3. Solubilization and reconstitution of pisatin demethylase, a cytochrome P-450 from the pathogenic fungus Nectria haematococca

    SciTech Connect

    Desjardins, A.E.; Matthews, D.E.; VanEtten, H.D.

    1984-07-01

    Some isolates of the fungus Nectria haematococca Berk. and Br. can demethylate pisatin, a phytoalexin from pea (Pisum sativum L.). Pisatin demethylation appears to be necessary for tolerance to pisatin and virulence on pea, and is catalyzed by a microsomal cytochrome P-450. We now report solubilization of this enzyme from N. haematococca microsomes. Pisatin demethylase activity was obtained in the high speed supernatant of detergent treated microsomes, if detergent was removed before assay. The CO-binding spectrum of the soluble enzyme preparation indicated the presence of cytochrome P-450. Cholic acids were the most effective of the detergents tested for solubilizing enzyme activity. Loss of enzyme activity during solubilization was reduced by certain protease inhibitors, but not by substrate, reducing agents, antioxidants, or phospholipids. The most effective solubilization medium tests was 1% sodium cholate, 100 millimolar potassium phosphate, 500 millimolar sucrose, 1 millimolar phenylmethylsulfonyl fluoride, pH 7.5, which yielded approximately 30% of the pisatin demethylase and over 95% of the NADPH-cytochrome c reductase in the soluble fraction. Demethylase activity was lost when the reductase was removed by adsorption on 2',5'-ADP-agarose. The demethylase activity of reductase-free fractions could be restored by adding a reductase preparation purified approximately 100-fold from microsomes of N. haematococca isolate 74-8-1, which does not demethylate pisatin. We conclude that pisatin demethylase requires NADPH-cytochrome c reductase for activity. The inability of some isolates to demethylate pisatin appears to be due to the absence of a suitable cytochrome P-450, rather than to a lack of functional reductase. 24 references, 4 figures, 4 tables.

  4. 3-Methyleneoxindole Reductase of Peas 1

    PubMed Central

    Moyed, H. S.; Williamson, Valerie

    1967-01-01

    A 100-fold purification of a reduced triphosphopyridine nucleotide/3-methyleneoxindole reductase of peas has been achieved using conventional protein fractionation procedures. Reduced diphosphopyridine nucleotide is 25-fold less effective than reduced triphosphopyridine nucleotide as the reductant. The preparation is free of other reductase activities including those linking the oxidation of reduced pyridine nucleotide coenzymes to the reduction of cytochrome c; vitamins K1, K2, and K3; O2; nitrate; oxidized glutathione; and thiazolyl blue tetrazolium. The affinity of the enzyme for 3-methyleneoxindole (Ks = 0.5 mm 3-methyleneoxindole) is relatively high. It is, therefore, reasonable to assume that 3-methyleneoxindole is the normal substrate. The enzyme is inhibited by indole-3-acetic acid, indole-3-aldehyde, and by l-naph-thaleneacetic acid. While these are not especially powerful inhibitors (K1 = 1.9-4.0 mm) the competitive relationship with 3-methyleneoxindole indicates that significant inhibition might occur at low intracellular concentrations of the substrate. PMID:6042360

  5. Ascorbate free radical reductases and diaphorases in soluble fractions of the human lens.

    PubMed

    Bando, M; Obazawa, H

    1995-12-01

    Major and minor ascorbate free radical (AFR) reductases, with diaphorase activity, and three other diaphorases were separated from the human lens soluble fraction by DEAE-cellulose ion-exchange column chromatography. They were characterized for adsorptivity to ion-exchange and 5'AMP-Sepharose 4B affinity columns, kinetic properties, and substrate specificity. The latter diaphorases were closely correlated with NADH-cytochrome beta 5 reductase. The major and minor AFR reductases were regarded as a major diaphorase group different from two ubiquitous diaphorases, i.e., NADH-cytochrome beta 5 reductase and DT-diaphorase. A major AFR reductase was partially purified approximately 50 fold over the lens soluble fraction by ion-exchange, affinity, and gel filtration (Sephacryl S-200 HR) column chromatography. From the partially purified enzyme, 2 bands, one sharp and one diffuse, were obtained by native polyacrylamide gel electrophoresis. Two proteins, of 20 and 24 kDa, were identified in the active enzyme bands by SDS-polyacrylamide gel electrophoresis. This suggests that the 20 and/or 24 kDa proteins may be components of the major AFR reductase.

  6. The existence and significance of a mitochondrial nitrite reductase.

    PubMed

    Nohl, Hans; Staniek, Katrin; Kozlov, Andrey V

    2005-01-01

    The physiological functions of nitric oxide (NO) are well established. The finding that the endothelium-derived relaxing factor (EDRF) is NO was totally unexpected. It was shown that NO is a reaction product of an enzymatically catalyzed, overall, 5-electron oxidation of guanidinium nitrogen from L-arginine followed by the release of the free radical species NO. NO is synthesized by a single protein complex supported by cofactors, coenzymes (such as tetrahydrobiopterin) and cytochrome P450. The latter can uncouple from substrate oxidation producing O2*- radicals. The research groups of Richter [Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett 1997; 418: 291-296.] and Boveris [Giulivi C, Poderoso JJ, Boveris A. Production of nitric oxide by mitochondria. J Biol Chem 1998; 273: 11038-11043.] identified a mitochondrial NO synthase (NOS). There are, however, increasing reports demonstrating that mitochondrial NO is derived from cytosolic NOS belonging to the Ca2+-dependent enzymes. NO was thought to control cytochrome oxidase. This assumption is controversial due to the life-time of NO in biological systems (millisecond range). We found a nitrite reductase in mitochondria which is of major interest. Any increase of nitrite in the tissue which is the first oxidation product of NO, for instance following NO donors, will stimulate NO-recycling via mitochondrial nitrite reductase. In this paper, we describe the identity and the function of mitochondrial nitrite reductase and the consequences of NO-recycling in the metabolic compartment of mitochondria.

  7. The role of highly purified forms of rat liver cytochrome P-450 in the dimethylation of dimethylnitrosamine and its activation to mutagens.

    PubMed

    Masson, H A; Ioannides, C; Gibson, G G

    1983-06-01

    Highly purified NADPH-cytochrome P-450 reductase and the major phenobarbital (PB) and beta-naphthoflavone (beta NF) forms of cytochrome P-450 were used in reconstituted systems to study the demethylation and subsequent activation of dimethylnitrosamine (DMN) to mutagenic intermediates. Both forms of cytochrome P-450 were active in the demethylation of DMN, cytochrome P-450 from PB-treated animals being more efficient, generating nearly twice as much formaldehyde per nmol of haemoprotein. Neither form of the cytochrome could activate DMN to mutagens in the Ames test. These findings indicate that DMN demethylation does not lead to its activation to mutagenic products.

  8. Reduction of horse heart ferricytochrome c by bovine liver ferrocytochrome b5. Experimental and theoretical analysis.

    PubMed

    Eltis, L D; Herbert, R G; Barker, P D; Mauk, A G; Northrup, S H

    1991-04-16

    The reduction of horse heart ferricytochrome c by the tryptic fragment of bovine liver cytochrome b5 and its dimethyl ester heme (DME)-substituted derivative has been studied as a function of ionic strength, pH, and temperature under solution conditions where the reaction is bimolecular. The rate constant for ferricytochrome c reduction by native ferrocytochrome b5 is 1.8 (+/- 0.2) x 10(7) M-1 s-1 (25 degrees C) with delta H++ = 7.5 (+/- 0.2) kcal/mol and delta S++ = -0.3 (+/- 0.6) eu (pH 7.0, I = 0.348 M). Under the same solution conditions, the reduction of ferricytochrome c by DME-ferrocytochrome b5 proceeds with a rate constant of 1.7 (+/- 0.1) x 10(7) M-1 s-1 with delta H++ = 7.9 (+/- 0.4) kcal/mol and delta S++ = 1 (+/- 1) eu. The rate constants for both reactions are strongly dependent on ionic strength. A detailed electrostatic analysis of the proteins has been performed. Two relatively simple Brownian dynamics simulation models predict rate constants for the reaction between the two native proteins that demonstrate a dependence on ionic strength similar to that observed experimentally. In one of these models, the proteins are treated as spheres with reactive surface patches that are defined by a 5 degrees cone generated about the dipole vector calculated for each protein and aligned with the presumed electron-transfer site near the partially exposed heme edge. The second model replaces the reactive patch assumption with an exponential distance dependence for the probability of reaction that permits estimation of a value for the distance-dependence factor alpha. Calculations with this latter model in combination with the aligned dipole assumption provide a reasonable approximation to the observed ionic strength dependence for the reaction and are consistent with a value of alpha = 1.2 A-1.

  9. Selective Targeting of Heme Protein in Cytochrome P450 and Nitric Oxide Synthase by Diphenyleneiodonium.

    PubMed

    Szilagyi, John T; Mishin, Vladimir; Heck, Diane E; Jan, Yi-Hua; Aleksunes, Lauren M; Richardson, Jason R; Heindel, Ned D; Laskin, Debra L; Laskin, Jeffrey D

    2016-05-01

    Cytochrome P450 (CYP) enzymes mediate mixed-function oxidation reactions important in drug metabolism. The aromatic heterocyclic cation, diphenyleneiodonium (DPI), binds flavin in cytochrome P450 reductase and inhibits CYP-mediated activity. DPI also inhibits CYP by directly interacting with heme. Herein, we report that DPI effectively inhibits a number of CYP-related monooxygenase reactions including NADPH oxidase, a microsomal enzyme activity that generates hydrogen peroxide in the absence of metabolizing substrates. Inhibition of monooxygenase by DPI was time and concentration dependent with IC50's ranging from 0.06 to 1.9 μM. Higher (4.6-23.9 μM), but not lower (0.06-1.9 μM), concentrations of DPI inhibited electron flow via cytochrome P450 reductase, as measured by its ability to reduce cytochrome c and mediate quinone redox cycling. Similar results were observed with inducible nitric oxide synthase (iNOS), an enzyme containing a C-terminal reductase domain homologous to cytochrome P450 reductase that mediates reduction of cytochrome c, and an N-terminal heme-thiolate oxygenase domain mediating nitric oxide production. Significantly greater concentrations of DPI were required to inhibit cytochrome c reduction by iNOS (IC50 = 3.5 µM) than nitric oxide production (IC50 = 0.16 µM). Difference spectra of liver microsomes, recombinant CYPs, and iNOS demonstrated that DPI altered heme-carbon monoxide interactions. In the presence of NADPH, DPI treatment of microsomes and iNOS yielded a type II spectral shift. These data indicate that DPI interacts with both flavin and heme in CYPs and iNOS. Increased sensitivity for inhibition of CYP-mediated metabolism and nitric oxide production by iNOS indicates that DPI targets heme moieties within the enzymes.

  10. Bioflavonoid effects on the mitochondrial respiratory electron transport chain and cytochrome c redox state.

    PubMed

    Moini, H; Arroyo, A; Vaya, J; Packer, L

    1999-01-01

    The polyphenolic structure common to flavonoids enables them to donate electrons and exert antioxidant activity. Since the mitochondrial electron transport chain consists of a series of redox intermediates, the effect of flavonoids in a complex mixture of polyphenols, as well as related pure flavonoids, was evaluated on the rat liver mitochondrial electron transport chain. A French maritime pine bark extract (PBE), a complex mixture of polyphenols and related pure flavonoids, was able to reduce cytochrome c reversibly, possibly by donation of electrons to the iron of the heme group; the donated electrons can be utilized by cytochrome c oxidase. Among single flavonoids tested, (-)-epicatechin gallate had the greatest ability to reduce cytochrome c. In addition, PBE competitively inhibited electron chain activity in both whole mitochondria and submitochondrial particles. A 3.5-fold increase in the apparent Km value for succinate was calculated from reciprocal plots. Among the flavonoids tested, taxifolin and (-)-epicatechin gallate showed minor inhibitory effects, while (+/-)-catechin and (+)-epicatechin were ineffective. Activities of NADH-ubiquinone, succinate-ubiquinone, and ubiquinol-cytochrome c reductases were inhibited by low concentrations of PBE to a similar extent. However, inhibition of cytochrome c oxidase activity required 4-fold higher PBE concentrations. These results suggest that flavonoids reduce cytochrome c and that PBE inhibits electron transport chain activity mainly through NADH-ubiquinone, succinate-ubiquinone, and ubiquinol-cytochrome c reductases.

  11. Direct inhibitions of the activities of steroidogenic cytochrome P-450 mono-oxygenase systems by anticonvulsants.

    PubMed

    Ohnishi, T; Ichikawa, Y

    1997-01-01

    The effects of anticonvulsants on the activities of cytochromes P-450(17alpha,lyase) (CYP17), P-450arom (CYP19), P-450C21 (CYP21), P-450SCC (CYP11A1), and P-450(11beta) (CYP11B1) mono-oxygenase systems were studied using rat testicular microsomes, human placental microsomes, bovine adrenocortical microsomes, bovine adrenocortical mitochondria and purified cytochrome P-450(11beta). Phenytoin, clonazepam and carbamazepine inhibited the steroidogenesis catalysed by these cytochrome P-450 mono-oxygenase systems and the Ki values for each anticonvulsant were determined. Neither hydantoin nor sodium valproate inhibited the activities of steroidogenic cytochromes P-450. When the activities of cytochromes P-450arom and P-450C21 were measured in the presence of anticonvulsants, the Ki values (0.15 mM) for phenytoin were close to the plasma concentration of phenytoin under therapeutic conditions. Phenytoin, clonazepam and carbamazepine directly inhibited the monooxygenase activities of cytochromes P-450, because they did not affect the activities of NADPH-cytochrome P-450 reductase, NADPH-adrenoferredoxin reductase and adrenoferredoxin.

  12. Cytochromes c-552 from two strains of the hydrogenotrophic bacterium Alcaligenes eutrophus are sequence homologs of the cytochromes c8 from the denitrifying pseudomonads.

    PubMed

    Klarskov, K; Bartsch, R G; Meyer, T E; Cusanovich, M A; Van Beeumen, J J

    1997-12-05

    Soluble cytochromes c-552 were purified from two strains of the hydrogenothrophic species Alcaligenes eutrophus and their amino acid sequences determined. The two cytochromes were found to have 5 differences out of a total of 89 residues. The proteins are clearly related to the cytochromes c8 (formerly called Pseudomonas cytochromes c-551), but require a single residue insertion after the methionine sixth heme ligand relative to the Pseudomonas aeruginosa protein. The consensus residues Trp56 and Trp77, characteristic for the c8 family, are also present in the Alcaligenes proteins. Overall, the Alcaligenes cytochromes are only 43% identical to the Pseudomonas proteins which average 68% identity to one another. They are also only 45% identical to cytochrome c8 from Hydrogenobacter thermophilus, another hydrogenothrophic species, which indicates that the hydrogen utilizing bacteria are not more closely related to one another than they are to other species. The finding of cytochrome c8 in Alcaligenes eutrophus completes the recent characterization of a cytochrome cd1-nitrite reductase from this bacterial species and suggests the existence of the same denitrification pathway as in Pseudomonas where these two proteins are reaction partners.

  13. Purification and properties of a shortened form of cytochrome P-450 2E1: deletion of the NH2-terminal membrane-insertion signal peptide does not alter the catalytic activities.

    PubMed Central

    Larson, J R; Coon, M J; Porter, T D

    1991-01-01

    As reported previously, alcohol-inducible cytochrome P-450 2E1 lacking the hydrophobic NH2-terminal segment is located primarily in the inner cell membrane when expressed in Escherichia coli and is active with a typical substrate. To study the catalytic properties in detail, we have purified the truncated P-450 lacking residues 3-29 to electrophoretic homogeneity from the solubilized bacterial membrane fraction in the presence of 4-methylpyrazole as a stabilizing agent. The resulting heme protein with a specific content of 15.8 nmol of P-450 per mg of protein has a reduced CO difference spectrum identical to that of the full-length enzyme, with a Soret maximum at 452 nm. The rates of catalysis of four reactions in the reconstituted enzyme system, including the oxygenation of ethanol to give acetaldehyde, the oxidative dealkylation of N-nitrosodiethylamine to give ethylene and acetaldehyde, and the ring hydroxylation of aniline and p-nitrophenol, are the same with the shortened and full-length enzymes. The apparent Km of p-nitrophenol is also the same, as is that for NADPH-cytochrome P-450 reductase and for cytochrome b5, which stimulates p-nitrocatechol formation about 3-fold. Moreover, the requirement for phosphatidylcholine for full catalytic activity is unchanged despite the absence of the NH2-terminal segment. Although this highly hydrophobic segment is believed to play a role in the intact cell as a membrane-insertion signal sequence, we conclude that it has no function in the catalytic activity of the cytochrome as an oxygenase, including interactions with the other components of the enzyme system. Images PMID:1656462

  14. Cytochrome bd oxidase from Escherichia coli displays high catalase activity: an additional defense against oxidative stress.

    PubMed

    Borisov, Vitaliy B; Forte, Elena; Davletshin, Albert; Mastronicola, Daniela; Sarti, Paolo; Giuffrè, Alessandro

    2013-07-11

    Cytochrome bd oxygen reductase from Escherichia coli has three hemes, b558, b595 and d. We found that the enzyme, as-prepared or in turnover with O2, rapidly decomposes H2O2 with formation of approximately half a mole of O2 per mole of H2O2. Such catalase activity vanishes upon cytochrome bd reduction, does not compete with the oxygen-reductase activity, is insensitive to NO, CO, antimycin-A and N-ethylmaleimide (NEM), but is inhibited by cyanide (Ki ~2.5μM) and azide. The activity, possibly associated with heme-b595, was also observed in catalase-deficient E. coli cells following cytochrome bd over-expression suggesting a protective role against oxidative stress in vivo. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  15. The impact of individual cytochrome P450 enzymes on oxidative metabolism of benzo[a]pyrene in human livers.

    PubMed

    Šulc, Miroslav; Indra, Radek; Moserová, Michaela; Schmeiser, Heinz H; Frei, Eva; Arlt, Volker M; Stiborová, Marie

    2016-04-01

    Benzo[a]pyrene (BaP) is a human carcinogen that covalently binds to DNA after metabolic activation by cytochrome P450 (CYP) enzymes. In this study human recombinant CYPs (CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C8, 2C9, 2C19, 2E1, 3A4, and 3A5) were expressed in Supersomes™ together with their reductases, NADPH:CYP oxidoreductase, epoxide hydrolase and cytochrome b5 , to investigate BaP metabolism. Human CYPs produced up to eight BaP metabolites. Among these, BaP-7,8-dihydrodiol and BaP-9-ol, which are intermediates in BaP-derived DNA adduct formation, were mainly formed by CYP1A1 and 1B1, and to a lesser extent by CYP2C19 and 3A4. BaP-3-ol, a metabolite that is a 'detoxified' product of BaP, was formed by most human CYPs tested, although CYP1A1 and 1B1 produced it the most efficiently. Based on the amounts of the individual BaP metabolites formed by these CYPs and their expression levels in human liver, we determined their contributions to BaP metabolite formation in this organ. Our results indicate that hepatic CYP1A1 and CYP2C19 are most important in the activation of BaP to BaP-7,8-dihydrodiol, whereas CYP2C19, 3A4, and 1A1 are the major enzymes contributing to the formation of BaP-9-ol. BaP-3-ol is predominantly formed by hepatic CYP3A4, while CYP1A1 and 2C19 are less active.

  16. A substrate-specific cytochrome P450 monooxygenase, CYP6AB11, from the polyphagous navel orangeworm (Amyelois transitella).

    PubMed

    Niu, Guodong; Rupasinghe, Sanjeewa G; Zangerl, Arthur R; Siegel, Joel P; Schuler, Mary A; Berenbaum, May R

    2011-04-01

    The navel orangeworm Amyelois transitella (Walker) (Lepidoptera: Pyralidae) is a serious pest of many tree crops in California orchards, including almonds, pistachios, walnuts and figs. To understand the molecular mechanisms underlying detoxification of phytochemicals, insecticides and mycotoxins by this species, full-length CYP6AB11 cDNA was isolated from larval midguts using RACE PCR. Phylogenetic analysis of this insect cytochrome P450 monooxygenase established its evolutionary relationship to a P450 that selectively metabolizes imperatorin (a linear furanocoumarin) and myristicin (a natural methylenedioxyphenyl compound) in another lepidopteran species. Metabolic assays conducted with baculovirus-expressed P450 protein, P450 reductase and cytochrome b(5) on 16 compounds, including phytochemicals, mycotoxins, and synthetic pesticides, indicated that CYP6AB11 efficiently metabolizes imperatorin (0.88 pmol/min/pmol P450) and slowly metabolizes piperonyl butoxide (0.11 pmol/min/pmol P450). LC-MS analysis indicated that the imperatorin metabolite is an epoxide generated by oxidation of the double bond in its extended isoprenyl side chain. Predictive structures for CYP6AB11 suggested that its catalytic site contains a doughnut-like constriction over the heme that excludes aromatic rings on substrates and allows only their extended side chains to access the catalytic site. CYP6AB11 can also metabolize the principal insecticide synergist piperonyl butoxide (PBO), a synthetic methylenedioxyphenyl compound, albeit slowly, which raises the possibility that resistance may evolve in this species after exposure to synergists under field conditions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Construction of a 3D model of cytochrome P450 2B4.

    PubMed

    Chang, Y T; Stiffelman, O B; Vakser, I A; Loew, G H; Bridges, A; Waskell, L

    1997-02-01

    A three-dimensional structural model of rabbit phenobarbital-inducible cytochrome P450 2B4 (LM2) was constructed by homology modeling techniques previously developed for building and evaluating a 3D model of the cytochrome P450choP isozyme. Four templates with known crystal structures including cytochrome P450cam, terp, BM-3 and eryF were used in multiple sequence alignments and construction of the cytochrome P450 2B4 coordinates. The model was evaluated for its overall quality using available protein analysis programs and found to be satisfactory. The model structure was stable at room temperature during a 140 ps unconstrained full protein molecular dynamics simulation. A putative substrate access channel and binding site were identified. Two different substrates, benzphetamine and androstenedione, that are metabolized by cytochrome P450 2B4 with pronounced product specificity were docked into the putative binding site. Two orientations were found for each substrate that could lead to the observed preferred products. Using a geometric fit method three regions on the surface of the model cytochrome P450 structure were identified as possible sites for interaction with cytochrome b5, a redox partner of P450 2B4. Residues that may interact with the substrates and with cytochrome b5 have been identified and mutagenesis studies are currently in progress.

  18. Proton translocation in cytochrome-deficient mutants of Escherichia coli.

    PubMed Central

    Brookman, J J; Downie, J A; Gibson, F; Cox, G B; Rosenberg, H

    1979-01-01

    Cytochrome-deficient cells of a strain of Escherichia coli lacking 5-amino-levulinate synthetase have been used to study proton translocation associated with the reduced nicotinamide adenine dinucleotide (NADH) dehydrogenase region of the electron transport chain. Menadione was used as electron acceptor, and mannitol was used as the substrate for the generation of intracellular NADH. The effects of iron deficiency on NADH- and D-lactate-menadione reductase activities were studied in iron-deficient cells of a mutant strain unable to synthesize the iron chelator enterochelin; both activities were reduced. The NADH- menadione reductase activity in cytochrome-deficient cells was associated with proton translocation and could be coupled to the uptake of proline. However proton translocation associated with the NADH-menadione reductase activity was prevented by a mutation in an unc gene. It was concluded that there is no proton translocation associated with the NADH-dehydrogenase region of the electron transport chain in E. coli and that the proton translocation obtained with mannitol as substrate is due to the activity of membrane-bound adenosine triphosphatase. PMID:154508

  19. Synthesis and degradation of nitrate reductase during the cell cycle of Chlorella sorokiniana

    NASA Technical Reports Server (NTRS)

    Velasco, P. J.; Tischner, R.; Huffaker, R. C.; Whitaker, J. R.

    1989-01-01

    Studies on the diurnal variations of nitrate reductase (NR) activity during the life cycle of synchronized Chlorella sorokiniana cells grown with a 7:5 light-dark cycle showed that the NADH:NR activity, as well as the NR partial activities NADH:cytochrome c reductase and reduced methyl viologen:NR, closely paralleled the appearance and disappearance of NR protein as shown by sodium dodecyl sulfate gel electrophoresis and immunoblots. Results of pulse-labeling experiments with [35S]methionine further confirmed that diurnal variations of the enzyme activities can be entirely accounted for by the concomitant synthesis and degradation of the NR protein.

  20. Synthesis and degradation of nitrate reductase during the cell cycle of Chlorella sorokiniana

    NASA Technical Reports Server (NTRS)

    Velasco, P. J.; Tischner, R.; Huffaker, R. C.; Whitaker, J. R.

    1989-01-01

    Studies on the diurnal variations of nitrate reductase (NR) activity during the life cycle of synchronized Chlorella sorokiniana cells grown with a 7:5 light-dark cycle showed that the NADH:NR activity, as well as the NR partial activities NADH:cytochrome c reductase and reduced methyl viologen:NR, closely paralleled the appearance and disappearance of NR protein as shown by sodium dodecyl sulfate gel electrophoresis and immunoblots. Results of pulse-labeling experiments with [35S]methionine further confirmed that diurnal variations of the enzyme activities can be entirely accounted for by the concomitant synthesis and degradation of the NR protein.

  1. The Effect of Cholesterol on the Binding and Insertion of Cytochrome b5 into Liposomes of Phosphatidylcholines

    DTIC Science & Technology

    1993-09-30

    mole percent, cholesterol decreases and broadens the sharp endothermic phase transition in multi lamellar veicles of DPPC (Estep et al., 1978), DHPC ...may similarly converge (i.e . the Ld+Lo immiscibility region narrows) above Tc in the POPC/cholesterol system. In the DHPC /cholesterol phase diagram...composition and temperature dependent. Particularly, the DHPC /cholescerol phase diagram shows that at about 37·C a single liquid-disordered phase

  2. Assimilatory nitrate reductase from the green alga Ankistrodesmus braunii.

    PubMed

    De la Rosa, M A

    1983-01-01

    Assimilatory nitrate reductase (NAD(P)H-nitrate oxidoreductase, EC 1.6.6.2) from the green alga Ankistrodesmus braunii can be purified to homogeneity by dye-ligand chromatography on blue-Sepharose. The purified enzyme, whose turnover number is 623 s-1, presents an optimum pH of 7.5 and Km values of 13 microM, 23 microM and 0.15 mM for NADH, NADPH and nitrate, respectively. The NADH-nitrate reductase activity exhibits an iso ping pong bi bi kinetic mechanism. The molecular weight of the native nitrate reductase is 467 400, while that of its subunits is 58 750. These values suggest an octameric structure for the enzyme, which has been confirmed by electron microscopy. As deduced from spectrophotometric and fluorimetric studies, the enzyme contains FAD and cytochrome b-557 as prosthetic groups. FAD is not covalently bound to the protein and is easily dissociated in diluted solutions from the enzyme. Its apparent Km value is 4 nM, indicative of a high affinity of the enzyme for FAD. The results of the quantitative analyses of prosthetic groups indicate that nitrate reductase contains four molecules of flavin, four heme irons, and two atoms of molybdenum. The three components act sequentially transferring electrons from reduced pyridine nucleotides to nitrate, thus forming a short electron transport chain along the protein. A mechanism is proposed for the redox interconversion of the nitrate reductase activity. Inactivation seems to occur by formation of a stable complex of reduced enzyme with cyanide or superoxide, while reactivation is a consequence of reoxidation of the inactive enzyme. Both reactions imply the transfer of only one electron.

  3. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  4. An electron transport system in maize roots for reactions of glutamate synthase and nitrite reductase : physiological and immunochemical properties of the electron carrier and pyridine nucleotide reductase.

    PubMed

    Suzuki, A; Oaks, A; Jacquot, J P; Vidal, J; Gadal, P

    1985-06-01

    A non-heme iron containing protein which bears an antigenic similarity to ferredoxin from spinach leaves (Spinacia oleracea L.) has been identified in extracts prepared from young roots of maize (Zea mays L., hybrid W64A x W182E). The ferredoxin-like root electron carrier could substitute for ferredoxin in a cytochrome c reduction system in which pyridine nucleotide (NADPH) reduces the root electron carrier in a reaction catalyzed by ferredoxin-NADP(+) reductase (EC 1.6.7.1) from spinach leaves. However, the root electron carrier did not mediate the photoreduction of NADP(+) in an illuminated reconstituted chloroplast system.A pyridine nucleotide reductase which shares identical immunological determinants with the ferredoxin-NADP(+) reductase from spinach leaves has also been characterized from maize roots. Root pyridine nucleotide reductase mediated the transfer of electrons from either NADPH or NADH to cytochrome c via ferredoxin or the root electron carrier. Under chemical reducing conditions with sodium dithionite and bicarbonate, the ferredoxin-like root electron carrier served as an electron carrier for the ferredoxin-requiring glutamate synthase (EC 1.4.7.1) and nitrite reductase (EC 1.7.7.1) obtained from maize roots or leaves. In the presence of root pyridine nucleotide reductase and root electron carrier, either NADPH or NADH served as the primary electron donor for glutamate synthesis in extracts from maize roots or leaves. The electron transport system originating with NADH or NADPH, was, however, not able to mediate the reduction of NO(2) (-) to NH(3).

  5. 22 CFR 9b.5 - Temporary Department of State press building passes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... passes. 9b.5 Section 9b.5 Foreign Relations DEPARTMENT OF STATE GENERAL REGULATIONS GOVERNING DEPARTMENT OF STATE PRESS BUILDING PASSES § 9b.5 Temporary Department of State press building passes. A media... pass valid for one day....

  6. Properties of a thermostable nitrate reductase from the hyperthermophilic archaeon Pyrobaculum aerophilum.

    PubMed

    Afshar, S; Johnson, E; de Vries, S; Schröder, I

    2001-10-01

    The nitrate reductase of the hyperthermophilic archaeon Pyrobaculum aerophilum was purified 137-fold from the cytoplasmic membrane. Based on sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, the enzyme complex consists of three subunits with apparent molecular weights of 130,000, 52,000, and 32,000. The enzyme contained molybdenum (0.8-mol/mol complex), iron (15.4-mol/mol complex) and cytochrome b (0.49-mol/mol complex) as cofactors. The P. aerophilum nitrate reductase distinguishes itself from nitrate reductases of mesophilic bacteria and archaea by its very high specific activity using reduced benzyl viologen as the electron donor (V(max) with nitrate, 1,162 s(-1) (326 U/mg); V(max) with chlorate, 1,348 s(-1) (378 U/mg) [assayed at 75 degrees C]). The K(m) values for nitrate and chlorate were 58 and 140 microM, respectively. Azide was a competitive inhibitor and cyanide was a noncompetitive inhibitor of the nitrate reductase activity. The temperature optimum for activity was > 95 degrees C. When incubated at 100 degrees C, the purified nitrate reductase had a half-life of 1.5 h. This study constitutes the first description of a nitrate reductase from a hyperthermophilic archaeon.

  7. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm

    PubMed Central

    Li, Dao-Bo; Cheng, Yuan-Yuan; Wu, Chao; Li, Wen-Wei; Li, Na; Yang, Zong-Chuang; Tong, Zhong-Hua; Yu, Han-Qing

    2014-01-01

    In situ reduction of selenite to elemental selenium (Se(0)), by microorganisms in sediments and soils is an important process and greatly affects the environmental distribution and the biological effects of selenium. However, the mechanism behind such a biological process remains unrevealed yet. Here we use Shewanella oneidensis MR-1, a widely-distributed dissimilatory metal-reducing bacterium with a powerful and diverse respiration capability, to evaluate the involvement of anaerobic respiration system in the microbial selenite reduction. With mutants analysis, we identify fumarate reductase FccA as the terminal reductase of selenite in periplasm. Moreover, we find that such a reduction is dependent on central respiration c-type cytochrome CymA. In contrast, nitrate reductase, nitrite reductase, and the Mtr electron transfer pathway do not work as selenite reductases. These findings reveal a previously unrecognized role of anaerobic respiration reductases of S. oneidensis MR-1 in selenite reduction and geochemical cycles of selenium in sediments and soils. PMID:24435070

  8. Induction and inhibition of NAD(P)H: quinone reductase in murine and human skin.

    PubMed

    Merk, H; Jugert, F; Bonnekoh, B; Mahrle, G

    1991-01-01

    The purpose of this study was to characterize the human cutaneous NAD(P)H: quinone reductase (NQR) activity by known inhibitors of different reductases and to compare it with the murine skin and liver NQR activity. This enzyme plays a major role in the defence of cells against oxygen stress because it inhibits the 1-electron reduction of quinones to semiquinones and their subsequent oxidation to quinones termed as quinone redox cycle. It belongs to the aromatic hydrocarbon-responsive (Ah) battery. This gene battery includes Cyp1a1 (cytochrome P-450 IA1), Cyp1a2 (cytochrome P-450 IA2) and Nmo-1 [NAD(P)H: quinone reductase]. In the skin cytochrome P-450 IA1-dependent activity is about 1-5% compared to the corresponding activity in the liver, whereas NQR has the same activity in skin and liver. NQR was determined in the cytoplasm of murine skin, liver, and human keratinocytes using 2,6-dichlorophenolindophenol as the substrate. The Ah-receptor binding compounds, such as coal tar constituents, or 3-methylcholanthrene induce cytochrome P-450-dependent activities such as aryl hydrocarbon hydroxylase or 7-ethoxyresorufin-O-de-ethylase and NQR, whereas butyl hydroxytoluol, which does not bind to the Ah receptor, induces only NQR. For inhibition studies several known inhibitors of dihydrodiol dehydrogenase, aldo-keto and carbonyl reductase activities were used. There was a similar pattern of inhibition of the basal and induced activity in all tissues investigated. Pyrazole, progesterone and phenobarbital did not inhibit, whereas dicoumarol, rutin and indomethacin inhibited NQR activity in murine skin and liver as well as in human keratinocytes.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Cytochrome c: functions beyond respiration.

    PubMed

    Ow, Yong-Ling P; Green, Douglas R; Hao, Zhenyue; Mak, Tak W

    2008-07-01

    Cytochrome c is primarily known for its function in the mitochondria as a key participant in the life-supporting function of ATP synthesis. However, when a cell receives an apoptotic stimulus, cytochrome c is released into the cytosol and triggers programmed cell death through apoptosis. The release of cytochrome c and cytochrome-c-mediated apoptosis are controlled by multiple layers of regulation, the most prominent players being members of the B-cell lymphoma protein-2 (BCL2) family. As well as its role in canonical intrinsic apoptosis, cytochrome c amplifies signals that are generated by other apoptotic pathways and participates in certain non-apoptotic functions.

  10. NADH-coenzyme Q reductase (complex I) deficiency: heterogeneity in phenotype and biochemical findings.

    PubMed

    Pitkänen, S; Feigenbaum, A; Laframboise, R; Robinson, B H

    1996-01-01

    Twelve patient cell lines with biochemically proven complex I deficiency were compared for clinical presentation and outcome, together with their sensitivity to galactose and menadione toxicity. Each patient had elevated lactate to pyruvate ratios demonstrable in fibroblast cultures. Each patient also had decreased rotenone-sensitive NADH-cytochrome c reductase (complexes I and III) with normal succinate cytochrome c reductase (complexes II and III) and cytochrome oxidase (complex IV) activity in cultured skin fibroblasts, indicating a deficient NADH-coenzyme Q reductase (complex I) activity. The patients fell into five categories: severe neonatal lactic acidosis; Leigh disease; cardiomyopathy and cataracts; hepatopathy and tubulopathy; and mild symptoms with lactic acidaemia. Cell lines from 4 out of the 12 patients were susceptible to both galactose and menadione toxicity and 3 of these also displayed low levels of ATP synthesis in digitonin-permeabilized skin fibroblasts from a number of substrates. This study highlights the heterogeneity of complex I deficiency at the clinical and biochemical level.

  11. Synthesis of nitrate reductase components in chlorate-resistant mutants of Escherichia coli.

    PubMed Central

    MacGregor, C H

    1975-01-01

    Specific antibody to purified nitrate reductase from Escherichia coli was used to identify enzyme components present in mutants which lack functional nitrate reductase. chlA and B mutants contained all three subunits present in the wild-type enzyme. Different peptides with a broad range of molecular weights could be precipitated from chlCmutants, and chlE mutants contained either slightly degraded enzyme subunits or no precipitable protein. No mutants produced significant amounts of cytoplasmic enzyme. The chlA and B loci are suggested to function in the synthesis and attachment of a molybdenum-containing factor. The chlC locus is suggested to be the structural gene for nitrate reductase subunit A and chlE is suggested to be involved in the synthesis of the cytochrome b1 apoprotein. PMID:1090592

  12. Simulation of multihaem cytochromes.

    PubMed

    Soares, Cláudio M; Baptista, António M

    2012-03-09

    This article presents an overview of the simulation studies of the behaviour of multihaem cytochromes using theoretical/computational methodologies, with an emphasis on cytochrome c(3). It starts with the first studies using rigid molecules and continuum electrostatic models, where protonation and redox events were treated as independent. The gradual addition of physical details is then described, from the inclusion of proton isomerism, to the proper treatment of the thermodynamics of electron-proton coupling, to the explicit inclusion of the solvent and protein structural reorganization into the models, culminating with the method for molecular dynamics simulations at constant pH and reduction potential, where the solvation, conformational, protonation and redox features are all simulated in a fully integrated and coupled way. We end with a discussion of the strategies used to study the interaction between multihaem cytochromes, taking into account the further coupling effect introduced by the molecular association. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Human cytochrome-P450 enzymes metabolize N-(2-methoxyphenyl)hydroxylamine, a metabolite of the carcinogens o-anisidine and o-nitroanisole, thereby dictating its genotoxicity.

    PubMed

    Naiman, Karel; Martínková, Markéta; Schmeiser, Heinz H; Frei, Eva; Stiborová, Marie

    2011-12-24

    N-(2-Methoxyphenyl)hydroxylamine is a component in the human metabolism of two industrial and environmental pollutants and bladder carcinogens, viz. 2-methoxyaniline (o-anisidine) and 2-methoxynitrobenzene (o-nitroanisole), and it is responsible for their genotoxicity. Besides its capability to form three deoxyguanosine adducts in DNA, N-(2-methoxyphenyl)-hydroxylamine is also further metabolized by hepatic microsomal enzymes. To investigate its metabolism by human hepatic microsomes and to identify the major microsomal enzymes involved in this process are the aims of this study. N-(2-Methoxyphenyl)hydroxylamine is metabolized by human hepatic microsomes predominantly to o-anisidine, one of the parent carcinogens from which N-(2-methoxyphenyl)hydroxylamine is formed, while o-aminophenol and two N-(2-methoxyphenyl)hydroxylamine metabolites, whose exact structures have not been identified as yet, are minor products. Selective inhibitors of microsomal CYPs, NADPH:CYP reductase and NADH:cytochrome-b(5) reductase were used to characterize human liver microsomal enzymes reducing N-(2-methoxyphenyl)hydroxylamine to o-anisidine. Based on these studies, we attribute the main activity for this metabolic step in human liver to CYP3A4, 2E1 and 2C (more than 90%). The enzymes CYP2D6 and 2A6 also partake in this N-(2-methoxyphenyl)hydroxylamine metabolism in human liver, but only to ∼6%. Among the human recombinant CYP enzymes tested in this study, human CYP2E1, followed by CYP3A4, 1A2, 2B6 and 2D6, were the most efficient enzymes metabolizing N-(2-methoxyphenyl)hydroxylamine to o-anisidine. The results found in this study indicate that genotoxicity of N-(2-methoxyphenyl)hydroxylamine is dictated by its spontaneous decomposition to nitrenium/carbenium ions generating DNA adducts, and by its susceptibility to metabolism by CYP enzymes. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. A purification procedure for the soluble cytochrome oxidase and some other respiratory proteins from Pseudomonas aeruginosa.

    PubMed

    Parr, S R; Barber, D; Greenwood, C

    1976-08-01

    The production of the soluble cytochrome oxidase/nitrite reductase in the bacterium Pseudomonas aeruginosa is favoured by anaerobic conditions and the presence of KNO3(20g/l) in the culture medium. Of three methods commonly used for the disruption of bacterial suspensions (ultrasonication, liquid-shear homogenization and glass-bead grinding), sonication proved the most efficient in releasing the Pseudomonas cytochrome oxidase. A polarographic assay of Pseudomonas cytochrome oxidase activity with sodium ascorbate as substrate and NNN'N'-tetramethyl-p-phenylenediamine dihydrochloride as electron mediator is described. A purification procedure was developed which can be used on the small scale (40-litre cultures) or the large scale (400-litre cultures) and provides high yields of three respiratory-chain proteins, Pseudomonas cytochrome oxidase, cytochrome c551 and azurin, in a pure state. A typical preparation of 250g of Ps.aeruginosa cell paste yielded 180mg of Pseudomonas cytochrome oxidase, 81 mg of Pseudomonas cytochrome c551 and 275mg of Pseudomonas azurin.

  15. Characterization of a Putative Ancestor of Coxsackievirus B5

    PubMed Central

    Gullberg, Maria; Tolf, Conny; Jonsson, Nina; Mulders, Mick N.; Savolainen-Kopra, Carita; Hovi, Tapani; Van Ranst, Marc; Lemey, Philippe; Hafenstein, Susan; Lindberg, A. Michael

    2010-01-01

    Like other RNA viruses, coxsackievirus B5 (CVB5) exists as circulating heterogeneous populations of genetic variants. In this study, we present the reconstruction and characterization of a probable ancestral virion of CVB5. Phylogenetic analyses based on capsid protein-encoding regions (the VP1 gene of 41 clinical isolates and the entire P1 region of eight clinical isolates) of CVB5 revealed two major cocirculating lineages. Ancestral capsid sequences were inferred from sequences of these contemporary CVB5 isolates by using maximum likelihood methods. By using Bayesian phylodynamic analysis, the inferred VP1 ancestral sequence dated back to 1854 (1807 to 1898). In order to study the properties of the putative ancestral capsid, the entire ancestral P1 sequence was synthesized de novo and inserted into the replicative backbone of an infectious CVB5 cDNA clone. Characterization of the recombinant virus in cell culture showed that fully functional infectious virus particles were assembled and that these viruses displayed properties similar to those of modern isolates in terms of receptor preferences, plaque phenotypes, growth characteristics, and cell tropism. This is the first report describing the resurrection and characterization of a picornavirus with a putative ancestral capsid. Our approach, including a phylogenetics-based reconstruction of viral predecessors, could serve as a starting point for experimental studies of viral evolution and might also provide an alternative strategy for the development of vaccines. PMID:20631132

  16. NADPH–Cytochrome P450 Oxidoreductase: Roles in Physiology, Pharmacology, and Toxicology

    PubMed Central

    Ding, Xinxin; Wolf, C. Roland; Porter, Todd D.; Pandey, Amit V.; Zhang, Qing-Yu; Gu, Jun; Finn, Robert D.; Ronseaux, Sebastien; McLaughlin, Lesley A.; Henderson, Colin J.; Zou, Ling; Flück, Christa E.

    2013-01-01

    This is a report on a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics and held at the Experimental Biology 2012 meeting in San Diego, California, on April 25, 2012. The symposium speakers summarized and critically evaluated our current understanding of the physiologic, pharmacological, and toxicological roles of NADPH–cytochrome P450 oxidoreductase (POR), a flavoprotein involved in electron transfer to microsomal cytochromes P450 (P450), cytochrome b5, squalene mono-oxygenase, and heme oxygenase. Considerable insight has been derived from the development and characterization of mouse models with conditional Por deletion in particular tissues or partial suppression of POR expression in all tissues. Additional mouse models with global or conditional hepatic deletion of cytochrome b5 are helping to clarify the P450 isoform- and substrate-specific influences of cytochrome b5 on P450 electron transfer and catalytic function. This symposium also considered studies using siRNA to suppress POR expression in a hepatoma cell–culture model to explore the basis of the hepatic lipidosis phenotype observed in mice with conditional deletion of Por in liver. The symposium concluded with a strong translational perspective, relating the basic science of human POR structure and function to the impacts of POR genetic variation on human drug and steroid metabolism. PMID:23086197

  17. Zeatin reductase in Phaseolus embryos

    SciTech Connect

    Martin, R.C.; Mok, David, W.S.; Mok, M.C. )

    1989-04-01

    Zeatin was converted to O-xylosylzeatin in embryos of Phaseolus vulgaris . O-xylosyldihydrozeatin was also identified as a zeatin metabolite. Incubation of embryo extracts with {sup 14}C-zeatin and {sup 14}C-O-xylosylzeatin revealed that reduction preceeds the O-xylosylation of zeatin. An enzyme responsible for reducing the N{sup 6}-side chain was isolated and partially purified using ammonium sulfate fractionation and affinity, gel filtration and anion exchange chromatography. The NADPH dependent reductase was zeatin specific and did not recognize cis-zeatin, ribosylzeatin, i{sup 6}Ade or i{sup 6}Ado. Two forms of the reductase could be separated by either gel filtration or anion exchange HPLC. The HMW isozyme (Mr. 55,000) eluted from the anion exchange column later than the LMW isozyme (Mr. 25,000). Interspecific differences in zeatin reductase activity were also detected.

  18. Isolated menthone reductase and nucleic acid molecules encoding same

    DOEpatents

    Croteau, Rodney B; Davis, Edward M; Ringer, Kerry L

    2013-04-23

    The present invention provides isolated menthone reductase proteins, isolated nucleic acid molecules encoding menthone reductase proteins, methods for expressing and isolating menthone reductase proteins, and transgenic plants expressing elevated levels of menthone reductase protein.

  19. The mechanism by which oxygen and cytochrome c increase the rate of electron transfer from cytochrome a to cytochrome a3 of cytochrome c oxidase.

    PubMed

    Bickar, D; Turrens, J F; Lehninger, A L

    1986-11-05

    When cytochrome c oxidase is isolated from mitochondria, the purified enzyme requires both cytochrome c and O2 to achieve its maximum rate of internal electron transfer from cytochrome a to cytochrome a3. When reductants other than cytochrome c are used, the rate of internal electron transfer is very slow. In this paper we offer an explanation for the slow reduction of cytochrome a3 when reductants other than cytochrome c are used and for the apparent allosteric effects of cytochrome c and O2. Our model is based on the conventional understanding of cytochrome oxidase mechanism (i.e. electron transfer from cytochrome a/CuA to cytochrome a3/CuB), but assumes a relatively rapid two-electron transfer between cytochrome a/CuA and cytochrome a3/CuB and a thermodynamic equilibrium in the "resting" enzyme (the enzyme as isolated) which favors reduced cytochrome a and oxidized cytochrome a3. Using the kinetic constants that are known for this reaction, we find that the activating effects of O2 and cytochrome c on the rate of electron transfer from cytochrome a to cytochrome a3 conform to the predictions of the model and so provide no evidence of any allosteric effects or control of cytochrome c oxidase by O2 or cytochrome c.

  20. Cytochrome C — EDRN Public Portal

    Cancer.gov

    CYCS, or cytochrome C, is an electron carrier protein that is an important part of the electron transport chain in mitochondria. The cytochrome C protein is a small heme protein that associates with the inner membrane of the mitochondrion where it accepts electrons from cytochrome b and transfers them to the cytochrome oxidase complex. Cytochrome C also plays a role in apoptosis.

  1. Histochemical localization of nitrate reductase.

    PubMed

    Vaughn, K C; Duke, S O

    1981-01-01

    NADH-dependent nitrate reductase (E.C. 1.6.6.1) was ultrastructurally localized in norflurazon-treated and control soybean cotyledons [Glycine max (L.) Merr.] by a method based upon the increase in osmiophilia due to the formation of an azo dye. The reaction product was observed in small vesicles throughout the cytoplasm. An apparent transport of nitrite to the plastid, the site of nitrite reduction, may occur through fusion of the nitrite-containing vesicles with the chloroplast envelope. Plants grown in tungstate lacked nitrate reductase activity as measured by standard assay procedures, and showed no increase in osmiophilia, suggesting a degree of specificity of this cytochemical procedure.

  2. The cytochromes of Acanthamoeba castellanii.

    PubMed Central

    Edwards, S W; Chagla, A H; Griffiths, A J; Lloyd, D

    1977-01-01

    1. Low-temperature difference spectra of gradient-purified mitochondria of Acanthamoeba castellanii reveal the presence of cytochromes b-555, b-562 and c-549, with a-type cytochromes having a broad asymmetrical maximum at 602 nm; these components were also observed in specta of whole cells. 2. The a-type cytochromes are unusual in that they have split Soret absorption maxima (at 442 and 449 nm) and an uncharacteristic CO difference spectrum. 3. CO difference spectra of whole cells and 'microsomal' membranes show large amounts of cytochrome P-420 compared with cytochrome P-450. 4. Difference spectra in the presence of cyanide indicate the presence of an a-type cytochrome and two cyanide-reacting components, one of which may be cytochrome a3. 5. Whole-cell respiration in a N2/O2 (19:1) atmosphere was decreased by 50%, suggesting the presence of a low-affinity oxidase. This lowered respiration is inhibited by 50% by CO, and the inhibition is partially light-reversible; photochemical action spectra suggest that cytochrome a3 contributes to this release of inhibition. Other CO-reacting oxidases are also present. 6. The results are discussed with the view that cytochrome a3 is present in A. castellanii, but its identification in CO difference spectra is obscured by other component(s). PMID:597258

  3. Relevance of cytochrome P450s in plants: also one of Ron Estabrook's research interests.

    PubMed

    Shet, Manjunath S

    2007-01-01

    I worked with Dr. Ronald Estabrook for nearly 10 years at The University of Texas Southwestern Medical Center in Dallas, Texas. In Ron's lab, when I joined I was initially involved in the isolation, purification, and characterization of cytochrome P450s and NADPH-P450(c) reductase(s) from plants, which was his new exploratory project at the time. We developed methods for the isolation, solubilization, and purification of P450s and NADPH-P450(c) reductase from plant tissue microsomes. We carried out number of in vitro experiments to study the involvement P450s and NADPH-P450(c) reductase in the biosynthesis of number of phytoalexins. We successfully isolated, purified, and cloned NADPH-P450(c) reductase from etiolated mung bean (Vigna radiate) seedlings. In addition, a series of studies were undertaken to show that purified mung bean NADPH-P450(c) reductase was able to catalyze P450-supported reactions for mammalian and bacterial P450s. My stay in Ron's lab was very educational and productive. He provided the necessary support and led the way through the maze in different research projects in the lab, which allowed me to understand the roles of P450s in humans, animals, plants, and microorganisms. He liked to teach and discover new things everyday in the lab. He is a great scientist, as well as loving and caring mentor.

  4. Flower colour and cytochromes P450.

    PubMed

    Tanaka, Yoshikazu; Brugliera, Filippa

    2013-02-19

    Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) and thus they play a crucial role in the determination of flower colour. F3'H and F3'5'H mostly belong to CYP75B and CYP75A, respectively, except for the F3'5'Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3'5'H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3'5'H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3'5'H and F3'H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones.

  5. Cyclosporin A-induced free radical generation is not mediated by cytochrome P-450

    PubMed Central

    Krauskopf, Alexandra; Buetler, Timo M; Nguyen, Nathalie S D; Macé, Katherine; Ruegg, Urs T

    2002-01-01

    Reactive oxygen species (ROS) have been proposed to play a role in the side effects of the immunosuppressive drug cyclosporin A (CsA). The aim of this study was to investigate whether cytochrome P-450 (CYP) dependent metabolism of CsA could be responsible for ROS generation since it has been suggested that CsA may influence the CYP system to produce ROS. We show that CsA (1 – 10 μM) generated antioxidant-inhibitable ROS in rat aortic smooth muscle cells (RASMC) using the fluorescent probe 2,7-dichlorofluorescin diacetate. Using cytochrome c as substrate, we show that CsA (10 μM) did not inhibit NADPH cytochrome P-450 reductase in microsomes prepared from rat liver, kidney or RASMC. CsA (10 μM) did not uncouple the electron flow from NADPH via NADPH cytochrome P-450 reductase to the CYP enzymes because CsA did not inhibit the metabolism of substrates selective for several CYP enzymes that do not metabolize CsA in rat liver microsomes. CsA (10 μM) did not generate more radicals in CYP 3A4 expressing immortalized human liver epithelial cells (T5-3A4 cells) than in control cells that do not express CYP 3A4. Neither diphenylene iodonium nor the CYP 3A inhibitor ketoconazole were able to block ROS formation in rat aortic smooth muscle or T5-3A4 cells. These results demonstrate that CYP enzymes do not contribute to CsA-induced ROS formation and that CsA neither inhibits NADPH cytochrome P-450 reductase nor the electron transfer to the CYP enzymes. PMID:11861326

  6. 22 CFR 9b.5 - Temporary Department of State press building passes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 22 Foreign Relations 1 2011-04-01 2011-04-01 false Temporary Department of State press building passes. 9b.5 Section 9b.5 Foreign Relations DEPARTMENT OF STATE GENERAL REGULATIONS GOVERNING DEPARTMENT OF STATE PRESS BUILDING PASSES § 9b.5 Temporary Department of State press building passes. A...

  7. 17 CFR 240.10b-5 - Employment of manipulative and deceptive devices.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... deceptive devices. 240.10b-5 Section 240.10b-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... Under the Securities Exchange Act of 1934 Manipulative and Deceptive Devices and Contrivances § 240.10b-5 Employment of manipulative and deceptive devices. It shall be unlawful for any person, directly...

  8. 17 CFR 240.10b-5 - Employment of manipulative and deceptive devices.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... deceptive devices. 240.10b-5 Section 240.10b-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... Under the Securities Exchange Act of 1934 Manipulative and Deceptive Devices and Contrivances § 240.10b-5 Employment of manipulative and deceptive devices. It shall be unlawful for any person, directly...

  9. 17 CFR 240.10b-5 - Employment of manipulative and deceptive devices.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... deceptive devices. 240.10b-5 Section 240.10b-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... Under the Securities Exchange Act of 1934 Manipulative and Deceptive Devices and Contrivances § 240.10b-5 Employment of manipulative and deceptive devices. It shall be unlawful for any person, directly...

  10. 17 CFR 240.10b-5 - Employment of manipulative and deceptive devices.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... deceptive devices. 240.10b-5 Section 240.10b-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... Under the Securities Exchange Act of 1934 Manipulative and Deceptive Devices and Contrivances § 240.10b-5 Employment of manipulative and deceptive devices. It shall be unlawful for any person, directly...

  11. 17 CFR 240.10b-5 - Employment of manipulative and deceptive devices.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... deceptive devices. 240.10b-5 Section 240.10b-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... Under the Securities Exchange Act of 1934 Manipulative and Deceptive Devices and Contrivances § 240.10b-5 Employment of manipulative and deceptive devices. It shall be unlawful for any person, directly...

  12. 26 CFR 1.410(b)-5 - Average benefit percentage test.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Average benefit percentage test. 1.410(b)-5 Section 1.410(b)-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.410(b)-5 Average benefit percentage test. (a) General rule....

  13. 22 CFR 9b.5 - Temporary Department of State press building passes.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 22 Foreign Relations 1 2014-04-01 2014-04-01 false Temporary Department of State press building passes. 9b.5 Section 9b.5 Foreign Relations DEPARTMENT OF STATE GENERAL REGULATIONS GOVERNING DEPARTMENT OF STATE PRESS BUILDING PASSES § 9b.5 Temporary Department of State press building passes. A...

  14. 22 CFR 9b.5 - Temporary Department of State press building passes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 22 Foreign Relations 1 2013-04-01 2013-04-01 false Temporary Department of State press building passes. 9b.5 Section 9b.5 Foreign Relations DEPARTMENT OF STATE GENERAL REGULATIONS GOVERNING DEPARTMENT OF STATE PRESS BUILDING PASSES § 9b.5 Temporary Department of State press building passes. A...

  15. 22 CFR 9b.5 - Temporary Department of State press building passes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 22 Foreign Relations 1 2012-04-01 2012-04-01 false Temporary Department of State press building passes. 9b.5 Section 9b.5 Foreign Relations DEPARTMENT OF STATE GENERAL REGULATIONS GOVERNING DEPARTMENT OF STATE PRESS BUILDING PASSES § 9b.5 Temporary Department of State press building passes. A...

  16. 26 CFR 301.7701(b)-5 - Coordination with section 877.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 18 2010-04-01 2010-04-01 false Coordination with section 877. 301.7701(b)-5 Section 301.7701(b)-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) PROCEDURE AND ADMINISTRATION PROCEDURE AND ADMINISTRATION Definitions § 301.7701(b)-5 Coordination with...

  17. Engineering Cytochrome P450 Biocatalysts for Biotechnology, Medicine, and Bioremediation

    PubMed Central

    Kumar, Santosh

    2009-01-01

    Importance of the field: Cytochrome P450 enzymes comprise a superfamily of heme monooxygenases that are of considerable interest for the: 1) synthesis of novel drugs and drug metabolites, 2) targeted cancer gene therapy, 3) biosensor design, and 4) bioremediation. However, their applications are limited because cytochrome P450, especially mammalian P450 enzymes, show a low turnover rate and stability, and require a complex source of electrons through cytochrome P450 reductase and NADPH. Areas covered in this review: In this review, we discuss the recent progress towards the use of P450 enzymes in a variety of above-mentioned applications. We also present alternate and cost-effective ways to perform P450-mediated reaction, especially using peroxides. Furthermore, we expand upon the current progress in P450 engineering approaches describing several recent examples that are utilized to enhance heterologous expression, stability, catalytic efficiency, and utilization of alternate oxidants. What the reader will gain: The review will provide a comprehensive knowledge in the design of P450 biocatalysts for potentially practical purposes. Finally, we provide a prospective on the future aspects of P450 engineering and its applications in biotechnology, medicine, and bioremediation. Take home message: Because of its wide applications, academic and pharmaceutical researchers, environmental scientists, and health care providers are expected to gain current knowledge and future prospects of the practical use of P450 biocatalysts. PMID:20064075

  18. Expression and enzymatic activity of recombinant cytochrome P450 17 alpha-hydroxylase in Escherichia coli.

    PubMed Central

    Barnes, H J; Arlotto, M P; Waterman, M R

    1991-01-01

    When the cDNA encoding bovine microsomal 17 alpha-hydroxylase cytochrome P450 (P45017 alpha) containing modifications within the first seven codons which favor expression in Escherichia coli is placed in a highly regulated tac promoter expression plasmid, as much as 16 mg of spectrally detectable P45017 alpha per liter of culture can be synthesized and integrated into E. coli membranes. The known enzymatic activities of bovine P45017 alpha can be reconstituted by addition of purified rat liver NADPH-cytochrome P450 reductase to isolated E. coli membrane fractions containing the recombinant P45017 alpha enzyme. Surprisingly, it is found that E. coli contain an electron-transport system that can substitute for the mammalian microsomal NADPH-cytochrome P450 reductase in supporting both the 17 alpha-hydroxylase and 17,20-lyase activities of P45017 alpha. Thus, not only can E. coli express this eukaryotic membrane protein at relatively high levels, but as evidenced by metabolism of steroids added directly to the cells, the enzyme is catalytically active in vivo. These studies establish E. coli as an efficacious heterologous expression system for structure-function analysis of the cytochrome P450 system. Images PMID:1829523

  19. Three multihaem cytochromes c from the hyperthermophilic archaeon Ignicoccus hospitalis: purification, properties and localization.

    PubMed

    Naß, Bastian; Pöll, Uwe; Langer, Julian David; Kreuter, Lydia; Küper, Ulf; Flechsler, Jennifer; Heimerl, Thomas; Rachel, Reinhard; Huber, Harald; Kletzin, Arnulf

    2014-06-01

    Three different multihaem cytochromes c were purified from cell extracts of the hyperthermophilic archaeon Ignicoccus hospitalis. One tetrahaem cytochrome, locus tag designation Igni_0530, was purified from membrane fractions together with the iron-sulfur protein Igni_0529. Two octahaem cytochromes, Igni_0955 and Igni_1359, were purified from soluble fractions but were also present in the membrane fraction. N-terminal sequencing showed that three of the four proteins had their signal peptides cleaved off, while results were ambiguous for Igni_0955. In contrast, mass spectrometry of Igni_0955 and Igni_1359 resulted in single mass peaks including the signal sequences and eight haems per subunit and so both forms might be present in the cell. Igni_0955 and Igni_1359 belong to the hydroxylamine dehydrogenase (HAO) family (29 % mutual identity). HAO or reductase activities with inorganic sulfur compounds were not detected. Igni_0955 was reduced by enriched I. hospitalis hydrogenase at a specific activity of 243 nmol min(-1) (mg hydrogenase)(-1) while activity was non-existent for Igni_0530 and low for Igni_1359. Immuno-electron microscopy of ultra-thin sections showed that Igni_0955 and Igni_1359 are located in both I. hospitalis membranes and also in the intermembrane compartment. We concluded that these cytochromes might function as electron shuttles between the hydrogenase in the outer cellular membrane and cellular reductases, whereas Igni_0530 might be part of the sulfur-reducing mechanism. © 2014 The Authors.

  20. Cytochromes P450

    PubMed Central

    Werck-Reichhart, Danièle; Bak, Søren; Paquette, Suzanne

    2002-01-01

    There are 272 cytochrome P450 genes (including 26 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest families of proteins in higher plants. This explosion of the P450 family is thought to have occurred via gene duplication and conversion, and to result from the need of sessile plants to adapt to a harsh environment and to protect themselves from pathogens and predators. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions. Their biological functions range from the synthesis of structural macromolecules such as lignin, cutin or suberin, to the synthesis or catabolism of all types of hormone or signaling molecules, the synthesis of pigments and defense compounds, and to the metabolism of xenobiotics. In despite of a huge acceleration in our understanding of plant P450 functions in the recent years, the vast majority of these functions remain completely unknown. PMID:22303202

  1. Cytochromes P450

    PubMed Central

    Bak, Søren; Beisson, Fred; Bishop, Gerard; Hamberger, Björn; Höfer, René; Paquette, Suzanne; Werck-Reichhart, Danièle

    2011-01-01

    There are 244 cytochrome P450 genes (and 28 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest gene families in plants. Contrary to what was initially thought, this family diversification results in very limited functional redundancy and seems to mirror the complexity of plant metabolism. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions leading to the precursors of structural macromolecules such as lignin, cutin, suberin and sporopollenin, or are involved in biosynthesis or catabolism of all hormone and signaling molecules, of pigments, odorants, flavors, antioxidants, allelochemicals and defense compounds, and in the metabolism of xenobiotics. The mechanisms of gene duplication and diversification are getting better understood and together with co-expression data provide leads to functional characterization. PMID:22303269

  2. Human Neuroglobin Functions as a Redox-regulated Nitrite Reductase*

    PubMed Central

    Tiso, Mauro; Tejero, Jesús; Basu, Swati; Azarov, Ivan; Wang, Xunde; Simplaceanu, Virgil; Frizzell, Sheila; Jayaraman, Thottala; Geary, Lisa; Shapiro, Calli; Ho, Chien; Shiva, Sruti; Kim-Shapiro, Daniel B.; Gladwin, Mark T.

    2011-01-01

    Neuroglobin is a highly conserved hemoprotein of uncertain physiological function that evolved from a common ancestor to hemoglobin and myoglobin. It possesses a six-coordinate heme geometry with proximal and distal histidines directly bound to the heme iron, although coordination of the sixth ligand is reversible. We show that deoxygenated human neuroglobin reacts with nitrite to form nitric oxide (NO). This reaction is regulated by redox-sensitive surface thiols, cysteine 55 and 46, which regulate the fraction of the five-coordinated heme, nitrite binding, and NO formation. Replacement of the distal histidine by leucine or glutamine leads to a stable five-coordinated geometry; these neuroglobin mutants reduce nitrite to NO ∼2000 times faster than the wild type, whereas mutation of either Cys-55 or Cys-46 to alanine stabilizes the six-coordinate structure and slows the reaction. Using lentivirus expression systems, we show that the nitrite reductase activity of neuroglobin inhibits cellular respiration via NO binding to cytochrome c oxidase and confirm that the six-to-five-coordinate status of neuroglobin regulates intracellular hypoxic NO-signaling pathways. These studies suggest that neuroglobin may function as a physiological oxidative stress sensor and a post-translationally redox-regulated nitrite reductase that generates NO under six-to-five-coordinate heme pocket control. We hypothesize that the six-coordinate heme globin superfamily may subserve a function as primordial hypoxic and redox-regulated NO-signaling proteins. PMID:21296891

  3. Purification and properties of nitrate reductase from Mitsuokella multiacidus.

    PubMed

    Yamamoto, I; Shimizu, H; Tsuji, T; Ishimoto, M

    1986-03-01

    Nitrate reductase of Mitsuokella multiacidus (formerly Bacteroides multiacidus) was solublized from the membrane fraction with 1% sodium deoxycholate and purified 40-fold by immunoaffinity chromatography on the antibody-Affi-Gel 10 column. The preparation showed a major band (86% of total protein) with enzyme activity and a minor band on polyacrylamide gel after disc electrophoresis in the presence of 0.1% Triton X-100. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis gave a major band, the relative mobility of which corresponded to a molecular weight of 160,000, and two minor bands. The molecular weight of the enzyme was determined to be 160,000 by gel filtration on Bio-Gel A-1.5 m in the presence of 0.1% deoxycholate. Molybdenum cofactor was detected in the enzyme by fluorescence spectroscopy and by complementation of nitrate reductase from the nit-1 mutant of Neurospora crassa. The M. multiacidus enzyme catalyzed reduction of nitrate, chlorate, and bromate using methyl viologen as an electron donor. The maximal activity was found at pH 6.2-7.5 for nitrate reduction. Either methyl or benzyl viologen served well as the electron donor, but FAD, FMN, and horse heart cytochrome c were not effective. Ferredoxin from Clostridium pasteurianum supplied electron to the nitrate reductase. The purified enzyme had Km values of 0.13 mM, 0.12 mM, and 0.22 mM for nitrate, methyl viologen, and ferredoxin, respectively. The enzyme activity was inhibited by cyanide (85% at 1 mM), azide (88% at 0.1 mM), and thiocyanate (75% at 10 mM).