Science.gov

Sample records for cytochrome p450 monooxygenases

  1. Cytochrome P450 monooxygenase system in echinoderms.

    PubMed

    den Besten, P J

    1998-11-01

    The results of a limited number of studies on echinoderms provide evidence for the presence of a cytochrome P450 monooxygenase system in representatives of three classes of the phylum Echinodermata: the asteroids (sea stars), holothuroids (sea cucumbers) and echinoids (sea urchins). The monooxygenase system has been demonstrated to be involved in the metabolism of xenobiotic compounds, but is assumed to have its primary function in the metabolism of endogenous substrates, such as steroids. Available data on P450 cofactor requirement, P450-dependent metabolism of benzo[a]pyrene, studies with classical inhibitors of P450, specificity of P450 induction by planar compounds, and the changes in the benzo[a]pyrene metabolite profile in induced animals suggest similarities with the MO system present in vertebrates. However, the relatively high capacity of the monooxygenase system in sea stars to catalyse reactions with organic hydroperoxide as donor for activated oxygen, and the low induceability during exposure to xenobiotics indicate also important differences between the echinoderm cytochrome P450 monooxygenase system and that of vertebrates. Some evidence was found for the existence of different forms of cytochrome P450 in sea stars. Catalytic functions of the cytochrome P450 monooxygenase system of sea stars in the metabolism of steroids may be suppressed as a result of the induction of cytochrome P450 by xenobiotics. PMID:9972455

  2. Diversity and evolution of cytochrome P450 monooxygenases in Oomycetes

    PubMed Central

    Sello, Mopeli Marshal; Jafta, Norventia; Nelson, David R; Chen, Wanping; Yu, Jae-Hyuk; Parvez, Mohammad; Kgosiemang, Ipeleng Kopano Rosinah; Monyaki, Richie; Raselemane, Seiso Caiphus; Qhanya, Lehlohonolo Benedict; Mthakathi, Ntsane Trevor; Sitheni Mashele, Samson; Syed, Khajamohiddin

    2015-01-01

    Cytochrome P450 monooxygenases (P450s) are heme-thiolate proteins whose role as drug targets against pathogens, as well as in valuable chemical production and bioremediation, has been explored. In this study we performed comprehensive comparative analysis of P450s in 13 newly explored oomycete pathogens. Three hundred and fifty-six P450s were found in oomycetes. These P450s were grouped into 15 P450 families and 84 P450 subfamilies. Among these, nine P450 families and 31 P450 subfamilies were newly found in oomycetes. Research revealed that oomycetes belonging to different orders contain distinct P450 families and subfamilies in their genomes. Evolutionary analysis and sequence homology data revealed P450 family blooms in oomycetes. Tandem arrangement of a large number of P450s belonging to the same family indicated that P450 family blooming is possibly due to its members’ duplications. A unique combination of amino acid patterns was observed at EXXR and CXG motifs for the P450 families CYP5014, CYP5015 and CYP5017. A novel P450 fusion protein (CYP5619 family) with an N-terminal P450 domain fused to a heme peroxidase/dioxygenase domain was discovered in Saprolegnia declina. Oomycete P450 patterns suggested host influence in shaping their P450 content. This manuscript serves as reference for future P450 annotations in newly explored oomycetes. PMID:26129850

  3. Versatile biocatalysis of fungal cytochrome P450 monooxygenases.

    PubMed

    Durairaj, Pradeepraj; Hur, Jae-Seoun; Yun, Hyungdon

    2016-01-01

    Cytochrome P450 (CYP) monooxygenases, the nature's most versatile biological catalysts have unique ability to catalyse regio-, chemo-, and stereospecific oxidation of a wide range of substrates under mild reaction conditions, thereby addressing a significant challenge in chemocatalysis. Though CYP enzymes are ubiquitous in all biological kingdoms, the divergence of CYPs in fungal kingdom is manifold. The CYP enzymes play pivotal roles in various fungal metabolisms starting from housekeeping biochemical reactions, detoxification of chemicals, and adaptation to hostile surroundings. Considering the versatile catalytic potentials, fungal CYPs has gained wide range of attraction among researchers and various remarkable strategies have been accomplished to enhance their biocatalytic properties. Numerous fungal CYPs with multispecialty features have been identified and the number of characterized fungal CYPs is constantly increasing. Literature reveals ample reviews on mammalian, plant and bacterial CYPs, however, modest reports on fungal CYPs urges a comprehensive review highlighting their novel catalytic potentials and functional significances. In this review, we focus on the diversification and functional diversity of fungal CYPs and recapitulate their unique and versatile biocatalytic properties. As such, this review emphasizes the crucial issues of fungal CYP systems, and the factors influencing efficient biocatalysis. PMID:27431996

  4. Cytochrome P450 polymorphism--molecular, metabolic and pharmacogenetic aspects. I. Mechanisms of activity of cytochrome P450 monooxygenases.

    PubMed

    Pachecka, Jan; Tomaszewski, Piotr; Kubiak-Tomaszewska, Grazyna

    2008-01-01

    Cytochrome P450, initially perceived as a type of cell pigment, was soon identified as a hemoprotein with an enzymatic activity characteristic for monooxygenases with an affinity for differentiated endo- or exogenous substrates, including drugs. So far in the human organism 58 CYP isoenzymes belonging to 18 families have been described. Most from the CYP monooxygenases superfamily turned out to be integral elements of hepatocytic reticular monooxygenase complexes which also contain NADPH-dependent cytochrome P450 reductase (CPR). Later investigations indicated the possibility of the participation in electron transport for reticular CYP isoenzymes, alternative NADH-dependent reticular system composed of cytochrome b5 reductase (CBR) and cytochrome b5. The demonstration of the activity of some CYP superfamily isoenzymes not only in hepatocytes but also in many other cells of the human organism, numerous plant and animal tissues and even in cells of fungi, protists and prokaryotes has contributed to the significantly increased understanding of the role of CYP in biological systems. In addition, some CYP isoenzymes were found to be characteristic for the inner mitochondrial membrane monooxygenase complexes which contain NADPH-dependent adrenodoxin reductase (AR) and adrenodoxin (Ad), which is identical with ferredoxin-1 (Fd-1) and hepatoredoxin (Hd).

  5. Molecular evolutionary dynamics of cytochrome P450 monooxygenases across kingdoms: Special focus on mycobacterial P450s

    PubMed Central

    Parvez, Mohammad; Qhanya, Lehlohonolo Benedict; Mthakathi, Ntsane Trevor; Kgosiemang, Ipeleng Kopano Rosinah; Bamal, Hans Denis; Pagadala, Nataraj Sekhar; Xie, Ting; Yang, Haoran; Chen, Hengye; Theron, Chrispian William; Monyaki, Richie; Raselemane, Seiso Caiphus; Salewe, Vuyani; Mongale, Bogadi Lorato; Matowane, Retshedisitswe Godfrey; Abdalla, Sara Mohamed Hasaan; Booi, Wool Isaac; van Wyk, Mari; Olivier, Dedré; Boucher, Charlotte E.; Nelson, David R.; Tuszynski, Jack A.; Blackburn, Jonathan Michael; Yu, Jae-Hyuk; Mashele, Samson Sitheni; Chen, Wanping; Syed, Khajamohiddin

    2016-01-01

    Since the initial identification of cytochrome P450 monooxygenases (CYPs/P450s), great progress has been made in understanding their structure-function relationship, diversity and application in producing compounds beneficial to humans. However, the molecular evolution of P450s in terms of their dynamics both at protein and DNA levels and functional conservation across kingdoms still needs investigation. In this study, we analyzed 17 598 P450s belonging to 113 P450 families (bacteria −42; fungi −19; plant −28; animal −22; plant and animal −1 and common P450 family −1) and found highly conserved and rapidly evolving P450 families. Results suggested that bacterial P450s, particularly P450s belonging to mycobacteria, are highly conserved both at protein and DNA levels. Mycobacteria possess the highest P450 diversity percentage compared to other microbes and have a high coverage of P450s (≥1%) in their genomes, as found in fungi and plants. Phylogenetic and functional analyses revealed the functional conservation of P450s despite belonging to different biological kingdoms, suggesting the adherence of P450s to their innate function such as their involvement in either generation or oxidation of steroids and structurally related molecules, fatty acids and terpenoids. This study’s results offer new understanding of the dynamic structural nature of P450s. PMID:27616185

  6. Molecular evolutionary dynamics of cytochrome P450 monooxygenases across kingdoms: Special focus on mycobacterial P450s.

    PubMed

    Parvez, Mohammad; Qhanya, Lehlohonolo Benedict; Mthakathi, Ntsane Trevor; Kgosiemang, Ipeleng Kopano Rosinah; Bamal, Hans Denis; Pagadala, Nataraj Sekhar; Xie, Ting; Yang, Haoran; Chen, Hengye; Theron, Chrispian William; Monyaki, Richie; Raselemane, Seiso Caiphus; Salewe, Vuyani; Mongale, Bogadi Lorato; Matowane, Retshedisitswe Godfrey; Abdalla, Sara Mohamed Hasaan; Booi, Wool Isaac; van Wyk, Mari; Olivier, Dedré; Boucher, Charlotte E; Nelson, David R; Tuszynski, Jack A; Blackburn, Jonathan Michael; Yu, Jae-Hyuk; Mashele, Samson Sitheni; Chen, Wanping; Syed, Khajamohiddin

    2016-01-01

    Since the initial identification of cytochrome P450 monooxygenases (CYPs/P450s), great progress has been made in understanding their structure-function relationship, diversity and application in producing compounds beneficial to humans. However, the molecular evolution of P450s in terms of their dynamics both at protein and DNA levels and functional conservation across kingdoms still needs investigation. In this study, we analyzed 17 598 P450s belonging to 113 P450 families (bacteria -42; fungi -19; plant -28; animal -22; plant and animal -1 and common P450 family -1) and found highly conserved and rapidly evolving P450 families. Results suggested that bacterial P450s, particularly P450s belonging to mycobacteria, are highly conserved both at protein and DNA levels. Mycobacteria possess the highest P450 diversity percentage compared to other microbes and have a high coverage of P450s (≥1%) in their genomes, as found in fungi and plants. Phylogenetic and functional analyses revealed the functional conservation of P450s despite belonging to different biological kingdoms, suggesting the adherence of P450s to their innate function such as their involvement in either generation or oxidation of steroids and structurally related molecules, fatty acids and terpenoids. This study's results offer new understanding of the dynamic structural nature of P450s. PMID:27616185

  7. Cytochrome P450 monooxygenases: an update on perspectives for synthetic application.

    PubMed

    Urlacher, Vlada B; Girhard, Marco

    2012-01-01

    Cytochrome P450 monooxygenases (P450s) are versatile biocatalysts that catalyze the regio- and stereospecific oxidation of non-activated hydrocarbons under mild conditions, which is a challenging task for chemical catalysts. Over the past decade impressive advances have been achieved via protein engineering with regard to activity, stability and specificity of P450s. In addition, a large pool of newly annotated P450s has attracted much attention as a source for novel biocatalysts for oxidation. In this review we give a short up-to-date overview of recent results on P450 engineering for technical applications including aspects of whole-cell biocatalysis with engineered recombinant enzymes. Furthermore, we focus on recently identified P450s with novel biotechnologically relevant properties.

  8. Phenobarbital induction of a soluble cytochrome P-450-dependent fatty acid monooxygenase in Bacillus megaterium.

    PubMed

    Narhi, L O; Fulco, A J

    1982-03-10

    A soluble, cytochrome P-450-dependent fatty acid hydroxylase-epoxidase isolated from Bacillus megaterium ATCC 14581 can be induced about 28-fold by the addition of phenobarbital (8 mM) to the growth medium. Phenobarbital is not a substrate for the enzyme nor does it activate the monooxygenase in the cell-free system. The level of the P-450-dependent monooxygenase activity in cultures harvested during the early stationary phase of growth increased linearly with phenobarbital concentration up to its solubility limit (8 mM) at 35 degrees C. The time course of induction during culture growth in the presence of 4 mM phenobarbital showed an interesting dichotomy. The specific content of cytochrome P-450 increased until the early stationary phase of growth and then leveled off. P-450-dependent monooxygenase activity, however, continued to increase rapidly to midstationary phase and then decreased just as rapidly after this time. At maximum specific activity, a turnover number of about 2,450 was obtained for palmitoleate hydroxylation-epoxidation by the cytochrome P-450 system. PMID:6801029

  9. Process development for oxidations of hydrophobic compounds applying cytochrome P450 monooxygenases in-vitro.

    PubMed

    Brummund, Jan; Müller, Monika; Schmitges, Thomas; Kaluzna, Iwona; Mink, Daniel; Hilterhaus, Lutz; Liese, Andreas

    2016-09-10

    Cytochrome P450 monooxygenases are a unique family of enzymes that are able to catalyze regio- and stereospecific oxidations for a broad substrate range. However, due to limited enzyme activities and stabilities, hydrophobicity of substrates, as well as the necessity of a continuous electron and oxygen supply the implementation of P450s for industrial processes remains challenging. Aim of this study was to point out key aspects for the development of an efficient synthesis concept for cytochrome P450 catalyzed oxidations. In order to regenerate the natural cofactor NADPH, a glucose dehydrogenase was applied. The low water soluble terpene α-ionone was used as substrate for the model reaction system. The studies reveal that an addition of surfactants in combination with low volumetric amounts of co-solvent can significantly increase substrate availability and reaction rates. Furthermore, these additives facilitated a reliable sampling procedure during the process. Another key factor for the process design was the oxygen supply. Based on various investigations, a bubble-aerated stirred tank reactor in batch mode represents a promising reactor concept for P450 oxidations. Main restriction of the investigated reaction system was the low process stability of the P450 monooxygenase, characterized by maximum total turnover numbers of ∼4100molα-ionone/molP450. PMID:27396939

  10. Process development for oxidations of hydrophobic compounds applying cytochrome P450 monooxygenases in-vitro.

    PubMed

    Brummund, Jan; Müller, Monika; Schmitges, Thomas; Kaluzna, Iwona; Mink, Daniel; Hilterhaus, Lutz; Liese, Andreas

    2016-09-10

    Cytochrome P450 monooxygenases are a unique family of enzymes that are able to catalyze regio- and stereospecific oxidations for a broad substrate range. However, due to limited enzyme activities and stabilities, hydrophobicity of substrates, as well as the necessity of a continuous electron and oxygen supply the implementation of P450s for industrial processes remains challenging. Aim of this study was to point out key aspects for the development of an efficient synthesis concept for cytochrome P450 catalyzed oxidations. In order to regenerate the natural cofactor NADPH, a glucose dehydrogenase was applied. The low water soluble terpene α-ionone was used as substrate for the model reaction system. The studies reveal that an addition of surfactants in combination with low volumetric amounts of co-solvent can significantly increase substrate availability and reaction rates. Furthermore, these additives facilitated a reliable sampling procedure during the process. Another key factor for the process design was the oxygen supply. Based on various investigations, a bubble-aerated stirred tank reactor in batch mode represents a promising reactor concept for P450 oxidations. Main restriction of the investigated reaction system was the low process stability of the P450 monooxygenase, characterized by maximum total turnover numbers of ∼4100molα-ionone/molP450.

  11. Inducing effect of oxfendazole on cytochrome P450IA2 in rabbit liver. Consequences on cytochrome P450 dependent monooxygenases.

    PubMed

    Gleizes, C; Eeckhoutte, C; Pineau, T; Alvinerie, M; Galtier, P

    1991-06-15

    Male New Zealand rabbits were dosed with either 0.9, 4.5 or 22.5 mg/kg/day of oxfendazole by gastric intubation for 10 days. Oxfendazole administered at the therapeutic dose (4.5 mg/kg) and at the highest dose (22.5 mg/kg) increased 1.54- and 2.36-fold the total liver microsomal cytochrome P450 and more particularly the isoenzyme P450IA2 (95 and 184% increases) as demonstrated by western blotting. Increases in ethoxyresorufin O-deethylation and hydroxylations of benzopyrene and acetanilide occurred in livers of the same animals without any change in N-demethylation of aminopyrine, benzphetamine or erythromycin. Because of the unchanged level of mRNA specific to cytochrome P450IA2, as shown by northern blot analysis of poly mRNA, an enzyme stabilization rather than a transcriptional activation of IA2 genes should be involved in the P450IA2 regulation mechanisms. Oxfendazole bound strongly to cytochrome P450, giving rise to a type II spectrum, and inhibited noncompetitively the ethoxyresorufin O-deethylase and acetanilide hydroxylase activities, this confirmed that oxfendazole interacts only with the P450IA2 family. On the basis of a comparison of the enzymatic activities induced by various imidazole drugs, it was concluded that oxfendazole, like omeprazole and albendazole, behaved as a 3-methylcholanthrene-type inducer. These three benzimidazoles did not all belong to the same category of cytochrome P450 inducers as the antifungal drugs miconazole, clotrimazole and ketoconazole.

  12. Nonsubstrate induction of a soluble bacterial cytochrome P-450 monooxygenase by phenobarbital and its analogs.

    PubMed

    Fulco, A J; Kim, B H; Matson, R S; Narhi, L O; Ruettinger, R T

    1983-01-01

    A soluble, cytochrome P-450-dependent fatty acid hydroxylase--epoxidase complex from Bacillus megaterium ATCC 14581 can be induced more than 100-fold by the addition of phenobarbital or one of its analogs (hexobarbital) to the growth medium. These barbiturate inducers are apparently not substrates for the enzyme nor do they activate the monooxygenase in the cell-free system. The induction efficiency of both phenobarbital and hexobarbital can be significantly increased with respect to monooxygenase activity by autoclaving the inducer in the growth medium rather than by adding it to the medium after autoclaving. Turnover numbers of about 3 000 nmoles of substrate oxygenated per min per nmole of P-450 were obtained in crude cell-free preparations obtained from maximally induced cultures. Our data indicate that products formed by heating phenobarbital or hexobarbital in the growth medium are significantly better inducers of monooxygenase activity than are the unaltered drugs. PMID:6413835

  13. Identification of a microsomal retinoic acid synthase as a microsomal cytochrome P-450-linked monooxygenase system.

    PubMed

    Tomita, S; Tsujita, M; Matsuo, Y; Yubisui, T; Ichikawa, Y

    1993-12-01

    1. To characterize an enzyme which metabolizes retinal in liver microsomes, several properties of the enzymatic reaction from retinal to retinoic acid were investigated using rabbit liver microsomes. 2. The maximum pH of the reaction in the liver microsomes was 7.6. 3. The Km and Vmax values for all-trans, 9-cis and 13-cis-retinals were determined. 4. The reaction proceeded in the presence of NADPH and molecular oxygen. 5. The incorporation of one atom of molecular oxygen into retinal was confirmed by using oxygen-18, showing that the reaction comprised monooxygenation, not dehydrogenation. 6. The monooxygenase activity was inhibited by carbon monoxide, phenylisocyanide and anti-NADPH-cytochrome P-450 reductase IgG, but not by anti-cytochrome b5 IgG. 7. The enzymatic activity inhibited by carbon monoxide was photoreversibly restored by light of a wavelength of around 450 nm. 8. The retinal-induced spectra of liver microsomes with three isomeric retinals were type I spectra. 9. The microsomal monooxygenase activity induced by phenobarbital or ethanol were more effective than that by 3-methylcholanthrene, clotrimazole or beta-naphthoflavone. 10. These results showed that the monooxygenase reaction from retinal to retinoic acid in liver microsomes is catalyzed by a cytochrome P-450-linked monooxygenase system. PMID:8138015

  14. Induction of cytochrome P450 1A1 and monooxygenase activity in Tilapia by sediment extract

    SciTech Connect

    Ueng, Y.F.; Ueng, T.H.; Liu, T.Y.

    1995-01-01

    Cytochrome P450 (P450)-dependent monooxygenases of fishes are inducible by a variety of environmental pollutants including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Induction of fish monoxygenases may serve as a biological monitor for PAH- and PCB-types of environmental chemicals. Many studies have demonstrated environmental induction of fish monooxygenases using various experimental approaches. However, relatively few studies have been conducted using fish treated with contaminated river sediment extracts. Damsui River is the largest river in the north of Taiwan. The lower section of the river in the Taipei Metropolitan area is heavily polluted by industrial and municipal wastes. Tilapia (Oreochromis mossambicus) is one of the few species of fish that occur in the polluted river. Previous field studies showed that the levels of P450 1A1, benzo(a)pyrene hydroxylase and 7-ethoxyresorufin O-deethylase activities in tilapia collected at Fu-Ho Bridge, a polluted section of Damsui River, were higher than respective levels in fish collected from an unpolluted section. These results suggested that tilapia caught at the polluted site were exposed to substances similar in action to PAHs and PCBs, because these chemical pollutants are potent inducers of P450 1A1. PAHs and PCBs are persistent compounds that can accumulate in sediment. Tilapia are occasionally associated with the bottom and could ingest chemically contaminated sediment. In the present study, we determined the induction properties of monooxygenases using tilapia treated with extract of sediment collected from a polluted section of Damsui River. The present study demonstrates that Damsui River sediment extract has the ability to induce hepatic P450 1A1 and dependent monooxygenase activities in tilapia. 17 refs., 2 figs., 2 tabs.

  15. Cytochrome P450 Monooxygenases as Reporters for Circadian-Regulated Pathways1[C][W][OA

    PubMed Central

    Pan, Yinghong; Michael, Todd P.; Hudson, Matthew E.; Kay, Steve A.; Chory, Joanne; Schuler, Mary A.

    2009-01-01

    Cytochrome P450 monooxygenases (P450s) play important roles in the synthesis of diverse secondary compounds in Arabidopsis (Arabidopsis thaliana). Comparison of four data sets analyzing seedlings harvested over a 2-d period of constant conditions after growth with varying photoperiods and thermocycles recorded a total of 98 P450 loci as circadian regulated for at least one of the four conditions. Here, we further describe the circadian-regulated pathways using, as reporters, individual P450 loci that are likely to be rate limiting in secondary metabolic pathways. Reverse transcription-polymerase chain reaction gel blot analyses have confirmed circadian regulation of P450s in phenylpropanoid, carotenoid, oxylipin, glucosinolate, and brassinosteroid biosyntheses and have shown that both P450 and non-P450 genes in the many branches of the phenylpropanoid pathway have similar circadian patterns of expression. In silico analyses of the subsets of coregulated promoters have identified overrepresented promoter elements in various biosynthetic pathway genes, including MYB and MYB4 elements that are significantly more abundant in promoters for the core and lignin sections of phenylpropanoid metabolism. Interactions with these elements important for circadian regulation do not involve the MYB transcription factor PAP1, as previously proposed, since the expression patterns of circadian-regulated P450s are the same in pap1-D mutant seedlings as in wild-type seedlings. Further analysis of circadian-regulated promoters in other biochemical pathways provides us with the opportunity to identify novel promoter motifs that might be important in P450 circadian regulation. PMID:19386812

  16. Occurrence of a barbiturate-inducible catalytically self-sufficient 119,000 dalton cytochrome P-450 monooxygenase in bacilli.

    PubMed

    Fulco, A J; Ruettinger, R T

    1987-05-01

    In a recent publication (Narhi, L.O. and Fulco, A.J.[1986] J. Biol. Chem. 261, 7160-7169) we described the characterization of a catalytically self-sufficient 119,000 Dalton cytochrome P-450 fatty acid monooxygenase (P-450BM-3) induced by barbiturates in Bacillus megaterium ATCC 14581. We have now examined cell-free preparations from 12 distinct strains of B. megaterium and from one or two strains each of B. alvei, B. brevis, B. cereus, B. licheniformis, B. macerans, B. pumilis and B. subtilis for the presence of this inducible enzyme. Using Western blot analyses in combination with assays for fatty acid hydroxylase activity and cytochrome P-450, we were able to show that 11 of the 12 B. megaterium strains contained not only a strongly pentobarbital-inducible fatty acid monooxygenase identical to or polymorphic with P-450BM-3 but also significant levels of two smaller P-450 cytochromes that were the same as or similar to cytochromes P-450BM-1 and P-450BM-2 originally found in ATCC 14581. Unlike the 119,000 Dalton P-450, however, the two smaller P-450s were generally easily detectable in cultures grown to stationary phase in the absence of barbiturates and, with some exceptions, were not strongly induced by pentobarbital. None of the non-megaterium species of Bacillus tested exhibited significant levels of either fatty acid monooxygenase activity or cytochrome P-450. The one strain of B. megaterium that lacked inducible P-450BM-3 was also negative for BM-1 and BM-2. However, this strain (ATCC 13368) did contain a small but significant level of another P-450 cytochrome that others have identified as the oxygenase component of a steroid 15-beta-hydroxylase system. Our evidence suggests that the BM series of P-450 cytochromes is encoded by chromosomal (rather than by plasmid) DNA. PMID:3573977

  17. Molecular cloning and xenobiotic induction of seven novel cytochrome P450 monooxygenases in Aedes albopictus.

    PubMed

    Chan, Hiang Hao; Wajidi, Mustafa Fadzil Farid; Zairi, Jaal

    2014-01-01

    Cytochrome P450 monooxygenase (P450) is a superfamily of enzymes that is important in metabolism of endogenous and exogenous compounds. In insects, these enzymes confer resistance to insecticides through its metabolic activities. Members of P450 from family 6 in insects are known to play a role in such function. In this study, we have isolated seven novel family 6 P450 from Aedes albopictus (Skuse) (Diptera: Culicidae), a vector of dengue and chikungunya fever. Induction profile of these seven genes was studied using several insecticides and xenobiotics. It was found that deltamethrin and permethrin did not induce expression of any genes. Another insecticide, temephos, inhibited expression of CYP6P15 for fivefold and twofold for CYP6N29, CYP6Y7, and CYP6Z18. In addition, copper II sulfate induced expression of CYP6M17 and CYP6N28 for up to sixfold. Benzothiazole (BZT), a tire leachate induced the expression of CYP6M17 by fourfold, CYP6N28 by sevenfold, but inhibited the expression of CYP6P15 for threefold and CYP6Y7 for twofold. Meanwhile, piperonyl butoxide (PBO) induced the expression CYP6N28 (twofold), while it inhibited the expression of CYP6P15 (fivefold) and CYP6Y7 (twofold). Remarkably, all seven genes were induced two- to eightfold by acetone in larval stage, but not adult stage. Expression of CYP6N28 was twofold higher, while expression of CYP6P15 was 15-fold lower in adult than larva. The other five P450s were not differentially expressed between the larvae and adult. This finding showed that acetone can be a good inducer of P450 in Ae. albopictus. On the other hand, temephos can act as good suppressor of P450, which may affect its own bioefficacy because it needs to be bioactivated by P450. To the best of our knowledge, this is the first report on acetone-inducible P450 in insects. Further study is needed to characterize the mechanisms involved in acetone induction in P450.

  18. Involvement of cytochrome P450 monooxygenases in the response of mosquito larvae to dietary plant xenobiotics.

    PubMed

    David, J P; Boyer, S; Mesneau, A; Ball, A; Ranson, H; Dauphin-Villemant, C

    2006-05-01

    The response of mosquito larvae to plant toxins found in their breeding sites was investigated by using Aedes aegypti larvae and toxic arborescent leaf litter as experimental models. The relation between larval tolerance to toxic leaf litter and cytochrome P450 monooxygenases (P450s) was examined at the toxicological, biochemical and molecular levels. Larvae pre-exposed to toxic leaf litter show a higher tolerance to those xenobiotics together with a strong increase in P450 activity levels. This enzymatic response is both time- and dose-dependent. The use of degenerate primers from various P450 genes (CYPs) allowed us to isolate 16 new CYP genes belonging to CYP4, CYP6 and CYP9 families. Expression studies revealed a 2.3-fold over-expression of 1 CYP gene (CYP6AL1) after larval pre-exposure to toxic leaf litter, this gene being expressed at a high level in late larval and pupal stages and in fat bodies and midgut. The CYP6AL1 protein has a high level of identity with other insect's CYPs involved in xenobiotic detoxification. The role of CYP genes in tolerance to natural xenobiotics and the importance of such adaptive responses in the capacity of mosquitoes to colonize new habitats and to develop insecticide resistance mechanisms are discussed.

  19. Partial characterization of a barbiturate-induced cytochrome P-450-dependent fatty acid monooxygenase from Bacillus megaterium.

    PubMed

    Narhi, L O; Kim, B H; Stevenson, P M; Fulco, A J

    1983-11-15

    A soluble cytochrome P-450-dependent fatty acid monooxygenase activity obtained from Bacillus megaterium ATCC 14581 can be induced by at least 13 different barbiturates. In general, the potency of these compounds as inducers increases with their increasing lipophilicity. We have now shown that at least 4 of these barbiturates (phenobarbital, secobarbital, pentobarbital and methohexital) seem to induce the same active cytochrome P-450-containing enzyme by a non-substrate type mechanism. The partially purified enzymes obtained from cultures induced with each of the 4 barbiturates tested were all of similar molecular size (Mr = 130,000 +/- 10,000) and had similar turnover numbers (1400-1800 +/- 300) with either palmitoleate or myristate as substrates. None of the tested barbiturates served as substrates, activators or inhibitors of any of the monooxygenase preparations, nor did they appear to interact in any way with the monooxygenase enzyme or the P-450 component. PMID:6418173

  20. N-demethylation of cocaine to norcocaine. Evidence for participation by cytochrome P-450 and FAD-containing monooxygenase.

    PubMed

    Kloss, M W; Rosen, G M; Rauckman, E J

    1983-03-01

    Experiments were conducted to determine which microsomal enzymes are involved in the in vitro hepatic oxidative N-demethylation of cocaine to norcocaine, the first step in the biotransformation of cocaine to its ultimate hepatotoxic metabolite. Cocaine was found to undergo conversion to norcocaine by two alternate pathways, one involving only cytochrome P-450 and the other requiring both cytochrome P-450 and FAD-containing monooxygenase. In the first pathway, cocaine was directly N-demethylated to norcocaine by cytochrome P-450; this reaction was enhanced by phenobarbital induction and was inhibited by both n-octylamine and metyrapone. The second route was found to be a two-step reaction involving cocaine N-oxide as an intermediate. In this pathway, cocaine is first oxidized to cocaine N-oxide by FAD-containing monooxygenase, followed by a cytochrome P-450-catalyzed N-demethylation to norcocaine. This latter step was enhanced by phenobarbital treatment and inhibited by n-octylamine. Cocaine N-oxide also exhibited a Type I binding spectrum with mouse hepatic microsomes. In addition, a model system consisting of ferrous sulfate was found to catalyze the N-demethylation of cocaine N-oxide. On the basis of these experiments, it is concluded that cytochrome P-450 and FAD-containing monooxygenase participate in the initial oxidation of cocaine to norcocaine. We also propose a mechanism to account for the conversion of cocaine N-oxide to norcocaine.

  1. Genome-Wide Annotation and Comparative Analysis of Cytochrome P450 Monooxygenases in Basidiomycete Biotrophic Plant Pathogens

    PubMed Central

    Sun, Yuxin; Letsimo, Elizabeth Mpholoseng; Parvez, Mohammad; Yu, Jae-Hyuk; Mashele, Samson Sitheni; Syed, Khajamohiddin

    2015-01-01

    Fungi are an exceptional source of diverse and novel cytochrome P450 monooxygenases (P450s), heme-thiolate proteins, with catalytic versatility. Agaricomycotina saprophytes have yielded most of the available information on basidiomycete P450s. This resulted in observing similar P450 family types in basidiomycetes with few differences in P450 families among Agaricomycotina saprophytes. The present study demonstrated the presence of unique P450 family patterns in basidiomycete biotrophic plant pathogens that could possibly have originated from the adaptation of these species to different ecological niches (host influence). Systematic analysis of P450s in basidiomycete biotrophic plant pathogens belonging to three different orders, Agaricomycotina (Armillaria mellea), Pucciniomycotina (Melampsora laricis-populina, M. lini, Mixia osmundae and Puccinia graminis) and Ustilaginomycotina (Ustilago maydis, Sporisorium reilianum and Tilletiaria anomala), revealed the presence of numerous putative P450s ranging from 267 (A. mellea) to 14 (M. osmundae). Analysis of P450 families revealed the presence of 41 new P450 families and 27 new P450 subfamilies in these biotrophic plant pathogens. Order-level comparison of P450 families between biotrophic plant pathogens revealed the presence of unique P450 family patterns in these organisms, possibly reflecting the characteristics of their order. Further comparison of P450 families with basidiomycete non-pathogens confirmed that biotrophic plant pathogens harbour the unique P450 families in their genomes. The CYP63, CYP5037, CYP5136, CYP5137 and CYP5341 P450 families were expanded in A. mellea when compared to other Agaricomycotina saprophytes and the CYP5221 and CYP5233 P450 families in P. graminis and M. laricis-populina. The present study revealed that expansion of these P450 families is due to paralogous evolution of member P450s. The presence of unique P450 families in these organisms serves as evidence of how a host

  2. A novel class of self-sufficient cytochrome P450 monooxygenases in prokaryotes.

    PubMed

    De Mot, René; Parret, Annabel H A

    2002-11-01

    The Bacillus cytochrome P450 BM3 integrates an entire P450 system in one polypeptide and represents a convenient prokaryotic model for microsomal P450s. This self-sufficient class II P450 is also present in actinomycetes and fungi. By genome analysis we have identified additional homologues in the pathogenic species Bacillus anthracis and Bacillus cereus, and in Ralstonia metallidurans. This analysis also revealed a novel class of putative self-sufficient P450s, P450 PFOR, comprising a class I P450 that is related to Rhodococcus erythropolis CYP116, and a phthalate family oxygenase reductase (PFOR) module. P450 PFOR genes are found in a Rhodococcus strain, three pathogenic Burkholderia species and in the R. metallidurans strain that possesses a P450 BM3 homologue. Co-evolution of P450 and reductase domains is apparent in both types of self-sufficient enzymes. The new class of P450 enzymes is of potential interest for various biotechnological applications. PMID:12419614

  3. Influence of recipient gender on intrasplenic fetal liver tissue transplants in rats: cytochrome P450-mediated monooxygenase functions.

    PubMed

    Lupp, Amelie; Hugenschmidt, Sabine; Rost, Michael; Müller, Dieter

    2004-05-01

    Rat livers display a sex-specific cytochrome P450 (P450) isoforms expression pattern with consecutive differences in P450-mediated monooxygenase activities, which have been shown to be due to a differential profile of growth hormone (GH) secretion. Parallel to previous investigations on P450 isoforms expression, the aim of the present study was to elucidate the influence of recipient gender on P450-mediated monooxygenase activities in intrasplenic liver tissue transplants in comparison to orthotopic liver. Fetal liver tissue suspensions of mixed gender were transplanted into the spleen of adult male or female syngenic recipients. Four months after grafting transplant-recipients and age-matched controls were treated with beta-naphthoflavone (BNF), phenobarbital (PB), dexamethasone (DEX) or the vehicles and sacrificed 24 or 48 h thereafter. P450-dependent monooxygenase activities were assessed by a series of model reactions for different P450 subtypes in liver and spleen 9000 g supernatants. In spleens of male and female control rats only very low monooxygenase activities were detectable, whereas with most model reactions distinct activities were observed in transplant-containing organs. Livers and transplant-containing spleens from male rats displayed higher basal ethoxycoumarin O-deethylase and testosterone 2alpha-, 2beta-, 6beta-, 14alpha-, 15alpha-, 15beta-, 16alpha-, 16beta- and 17-hydroxylase activities than those from females. On the other hand, like the respective livers, spleens from female transplant-recipients demonstrated more pronounced p-nitrophenol- and testosterone 6alpha- and 7alpha-hydroxylase activities than those from male hosts. With nearly all model reactions gender-specific differences in inducibility by BNF, PB or DEX could be demonstrated in livers as well as in transplant-containing spleens. These results further confirm that the P450 system of intrasplenic liver tissue transplants and the respective orthotopic livers is similarly influenced

  4. Monooxygenase, peroxidase and peroxygenase properties and reaction mechanisms of cytochrome P450 enzymes.

    PubMed

    Hrycay, Eugene G; Bandiera, Stelvio M

    2015-01-01

    This review examines the monooxygenase, peroxidase and peroxygenase properties and reaction mechanisms of cytochrome P450 (CYP) enzymes in bacterial, archaeal and mammalian systems. CYP enzymes catalyze monooxygenation reactions by inserting one oxygen atom from O2 into an enormous number and variety of substrates. The catalytic versatility of CYP stems from its ability to functionalize unactivated carbon-hydrogen (C-H) bonds of substrates through monooxygenation. The oxidative prowess of CYP in catalyzing monooxygenation reactions is attributed primarily to a porphyrin π radical ferryl intermediate known as Compound I (CpdI) (Por•+FeIV=O), or its ferryl radical resonance form (FeIV-O•). CYP-mediated hydroxylations occur via a consensus H atom abstraction/oxygen rebound mechanism involving an initial abstraction by CpdI of a H atom from the substrate, generating a highly-reactive protonated Compound II (CpdII) intermediate (FeIV-OH) and a carbon-centered alkyl radical that rebounds onto the ferryl hydroxyl moiety to yield the hydroxylated substrate. CYP enzymes utilize hydroperoxides, peracids, perborate, percarbonate, periodate, chlorite, iodosobenzene and N-oxides as surrogate oxygen atom donors to oxygenate substrates via the shunt pathway in the absence of NAD(P)H/O2 and reduction-oxidation (redox) auxiliary proteins. It has been difficult to isolate the historically elusive CpdI intermediate in the native NAD(P)H/O2-supported monooxygenase pathway and to determine its precise electronic structure and kinetic and physicochemical properties because of its high reactivity, unstable nature (t½~2 ms) and short life cycle, prompting suggestions for participation in monooxygenation reactions of alternative CYP iron-oxygen intermediates such as the ferric-peroxo anion species (FeIII-OO-), ferric-hydroperoxo species (FeIII-OOH) and FeIII-(H2O2) complex.

  5. Two Cytochrome P450 Monooxygenases Catalyze Early Hydroxylation Steps in the Potato Steroid Glycoalkaloid Biosynthetic Pathway.

    PubMed

    Umemoto, Naoyuki; Nakayasu, Masaru; Ohyama, Kiyoshi; Yotsu-Yamashita, Mari; Mizutani, Masaharu; Seki, Hikaru; Saito, Kazuki; Muranaka, Toshiya

    2016-08-01

    α-Solanine and α-chaconine, steroidal glycoalkaloids (SGAs) found in potato (Solanum tuberosum), are among the best-known secondary metabolites in food crops. At low concentrations in potato tubers, SGAs are distasteful; however, at high concentrations, SGAs are harmful to humans and animals. Here, we show that POTATO GLYCOALKALOID BIOSYNTHESIS1 (PGA1) and PGA2, two genes that encode cytochrome P450 monooxygenases (CYP72A208 and CYP72A188), are involved in the SGA biosynthetic pathway, respectively. The knockdown plants of either PGA1 or PGA2 contained very little SGA, yet vegetative growth and tuber production were not affected. Analyzing metabolites that accumulated in the plants and produced by in vitro enzyme assays revealed that PGA1 and PGA2 catalyzed the 26- and 22-hydroxylation steps, respectively, in the SGA biosynthetic pathway. The PGA-knockdown plants had two unique phenotypic characteristics: The plants were sterile and tubers of these knockdown plants did not sprout during storage. Functional analyses of PGA1 and PGA2 have provided clues for controlling both potato glycoalkaloid biosynthesis and tuber sprouting, two traits that can significantly impact potato breeding and the industry. PMID:27307258

  6. Identification of cytochrome P450 monooxygenase genes from the white-rot fungus Phlebia brevispora

    PubMed Central

    2012-01-01

    Three cytochrome P450 monooxygenase (CYP) genes, designated pb-1, pb-2 and pb-3, were isolated from the white-rot fungus, Phlebia brevispora, using reverse transcription PCR with degenerate primers constructed based on the consensus amino acid sequence of eukaryotic CYPs in the O2-binding, meander and heme-binding regions. Individual full-length CYP cDNAs were cloned and sequenced, and the relative nucleotide sequence similarity of pb-1 (1788 bp), pb-2 (1881 bp) and pb-3 (1791 bp) was more than 58%. Alignment of the deduced amino acid (aa) sequences of pb-1-pb-3 showed that these three CYPs belong to the same family with > 40% aa sequence similarity, and pb-1 and pb-3 are in the same subfamily, with > 55% aa sequence similarity. Furthermore, pb-1-pb-3 appeared to be a subfamily of CYP63A (CYP63A1-CYP63A4), found in Phanerochaete chrysosporium. The phylogenetic tree constructed by 500 bootstrap replications using the neighbor-joining method showed that the evolutionary distance between pb-1 and pb-3 was shorter than that between pb-2 and pb-1 (or pb-3). Exon-intron analysis of pb-1 and pb-3 showed that both genes have nearly the same number, size and order of exons and the types of introns, also indicating both genes appear to be evolutionarily close. It is interesting that the transcription level of pb-3 was evidently increased above the pb-1 transcription level by exposure to 12 coplanar PCB congeners and 2,3,7,8-tetrachlorodibenzo-p-dioxin, though the two genes were evolutionarily close. PMID:22273259

  7. Fungal Cytochrome P450 Monooxygenases: Their Distribution, Structure, Functions, Family Expansion, and Evolutionary Origin

    PubMed Central

    Chen, Wanping; Lee, Mi-Kyung; Jefcoate, Colin; Kim, Sun-Chang; Chen, Fusheng; Yu, Jae-Hyuk

    2014-01-01

    Cytochrome P450 (CYP) monooxygenase superfamily contributes a broad array of biological functions in living organisms. In fungi, CYPs play diverse and pivotal roles in versatile metabolism and fungal adaptation to specific ecological niches. In this report, CYPomes in the 47 genomes of fungi belong to the phyla Ascomycota, Basidiomycota, Chytridiomycota, and Zygomycota have been studied. The comparison of fungal CYPomes suggests that generally fungi possess abundant CYPs belonging to a variety of families with the two global families CYP51 and CYP61, indicating individuation of CYPomes during the evolution of fungi. Fungal CYPs show highly conserved characteristic motifs, but very low overall sequence similarities. The characteristic motifs of fungal CYPs are distinguishable from those of CYPs in animals, plants, and especially archaea and bacteria. The four representative motifs contribute to the general function of CYPs. Fungal CYP51s and CYP61s can be used as the models for the substrate recognition sites analysis. The CYP proteins are clustered into 15 clades and the phylogenetic analyses suggest that the wide variety of fungal CYPs has mainly arisen from gene duplication. Two large duplication events might have been associated with the booming of Ascomycota and Basidiomycota. In addition, horizontal gene transfer also contributes to the diversification of fungal CYPs. Finally, a possible evolutionary scenario for fungal CYPs along with fungal divergences is proposed. Our results provide the fundamental information for a better understanding of CYP distribution, structure and function, and new insights into the evolutionary events of fungal CYPs along with the evolution of fungi. PMID:24966179

  8. A substrate-specific cytochrome P450 monooxygenase, CYP6AB11, from the polyphagous navel orangeworm (Amyelois transitella).

    PubMed

    Niu, Guodong; Rupasinghe, Sanjeewa G; Zangerl, Arthur R; Siegel, Joel P; Schuler, Mary A; Berenbaum, May R

    2011-04-01

    The navel orangeworm Amyelois transitella (Walker) (Lepidoptera: Pyralidae) is a serious pest of many tree crops in California orchards, including almonds, pistachios, walnuts and figs. To understand the molecular mechanisms underlying detoxification of phytochemicals, insecticides and mycotoxins by this species, full-length CYP6AB11 cDNA was isolated from larval midguts using RACE PCR. Phylogenetic analysis of this insect cytochrome P450 monooxygenase established its evolutionary relationship to a P450 that selectively metabolizes imperatorin (a linear furanocoumarin) and myristicin (a natural methylenedioxyphenyl compound) in another lepidopteran species. Metabolic assays conducted with baculovirus-expressed P450 protein, P450 reductase and cytochrome b(5) on 16 compounds, including phytochemicals, mycotoxins, and synthetic pesticides, indicated that CYP6AB11 efficiently metabolizes imperatorin (0.88 pmol/min/pmol P450) and slowly metabolizes piperonyl butoxide (0.11 pmol/min/pmol P450). LC-MS analysis indicated that the imperatorin metabolite is an epoxide generated by oxidation of the double bond in its extended isoprenyl side chain. Predictive structures for CYP6AB11 suggested that its catalytic site contains a doughnut-like constriction over the heme that excludes aromatic rings on substrates and allows only their extended side chains to access the catalytic site. CYP6AB11 can also metabolize the principal insecticide synergist piperonyl butoxide (PBO), a synthetic methylenedioxyphenyl compound, albeit slowly, which raises the possibility that resistance may evolve in this species after exposure to synergists under field conditions.

  9. Aryl Hydroxylation of the Herbicide Diclofop by a Wheat Cytochrome P-450 Monooxygenase 1

    PubMed Central

    Zimmerlin, Alfred; Durst, Francis

    1992-01-01

    Wheat (Triticum aestivum L. cv Etoile de Choisy) microsomes catalyzed the cytochrome P-450-dependent oxidation of the herbicide diclofop to three hydroxy-diclofop isomers. Hydroxylation was predominant at carbon 4, with migration of chlorine to carbon 5 (67%) and carbon 3 (25%). The 2,4-dichloro-5-hydroxy isomer was identified as a minor reaction product (8%). Substrate-specificity studies showed that the activity was not inhibited or was weakly inhibited by a range of xenobiotic or physiological cytochrome P-450 substrates, with the exception of lauric acid. Wheat microsomes also catalyze the metabolism of the herbicides chlorsulfuron, chlortoluron, and 2,4-dichlorophenoxyacetic acid and of the model substrate ethoxycoumarin, as well as the hydroxylation of the endogenous substrates cinnamic and lauric acids. Treatments of wheat seedlings with phenobarbital or the safener naphthalic acid anhydride enhanced the cytochrome P-450 content of the microsomes and all related activities except that of cinnamic acid 4-hydroxylase, which was reduced. The stimulation patterns of diclofop aryl hydroxylase and lauric acid hydroxylase were similar, in contrast with the other activities tested. Lauric acid inhibited competitively (Ki = 9 μm) the oxidation of diclofop and reciprocally. The similarity of diclofop aryl hydroxylase and lauric acid hydroxylase was further investigated by alternative substrate kinetics, autocatalytic inactivation, and computer-aided molecular modelisation studies, and the results suggest that both reactions are catalyzed by the same cytochrome P-450 isozyme. PMID:16653070

  10. Characterization of two cytochrome P450 monooxygenase genes of the pyripyropene biosynthetic gene cluster from Penicillium coprobium.

    PubMed

    Hu, Jie; Okawa, Hiroto; Yamamoto, Kentaro; Oyama, Kazuhiko; Mitomi, Masaaki; Anzai, Hiroyuki

    2011-03-01

    Pyripyropenes are potent inhibitors of acyl-CoA:cholesterol acyltransferase, which were initially discovered to be produced by Aspergillus fumigatus. Recently, Penicillium coprobium PF1169 has also found to produce pyripyropene A (PyA), which exhibits insecticidal properties. Pyripyropenes are natural hybrid products of both terpenoid and polyketide origin. In our research, based on data generated using the Genome Sequencer FLX for P. coprobium PF1169, we predicted the biosynthetic gene cluster of PyA by blast analysis comparing with polyketide synthase and prenyltransferase of other species. By screening the genomic fosmid library, nine open reading frames (ppb1 to ppb9) related to the biosynthesis of PyA were deduced. Among them, two cytochrome P450 monooxygenase genes (ppb3 and ppb4) were separately introduced into the model fungus A. oryzae. Bioconversion of certain predicted intermediates in the transformants has elucidated the manner of hydroxylation in the biosynthetic pathway by the expressed products of these two genes (P450-1 and P450-2). That is, P450-1 exhibits monooxygenase activity and plays the hydroxylation role at C-11 of pyripyropene E. While P450-2 plays an active role in the hydroxylation of C-7 and C-13 of pyripyropene O. PMID:21224862

  11. Oxidase uncoupling in heme monooxygenases: Human cytochrome P450 CYP3A4 in Nanodiscs

    SciTech Connect

    Grinkova, Yelena V.; Denisov, Ilia G.; McLean, Mark A.; Sligar, Stephen G.

    2013-01-25

    Highlights: ► Substantial reducing equivalents are lost in human P450 CYP3A4 via an oxidase channel. ► Substrate binding has a pronounced effect on uncoupling in cytochrome P450. ► Anionic phospholipids improve the overall coupling in CYP3A4 Nanodiscs. -- Abstract: The normal reaction mechanism of cytochrome P450 operates by utilizing two reducing equivalents to reduce atmospheric dioxygen, producing one molecule of water and an oxygenated product in an overall stoichiometry of 2 electrons:1 dioxygen:1 product. However, three alternate unproductive pathways exist where the intermediate iron–oxygen states in the catalytic cycle can yield reduced oxygen products without substrate metabolism. The first involves release of superoxide from the oxygenated intermediate while the second occurs after input of the second reducing equivalent. Superoxide rapidly dismutates and hence both processes produce hydrogen peroxide that can be cytotoxic to the organism. In both cases, the formation of hydrogen peroxide involves the same overall stoichiometry as oxygenases catalysis. The key step in the catalytic cycle of cytochrome P450 involves scission of the oxygen–oxygen bond of atmospheric dioxygen to produce a higher valent iron-oxo state termed “Compound I”. This intermediate initiates a radical reaction in the oxygenase pathway but also can uptake two additional reducing equivalents from reduced pyridine nucleotide (NADPH) and the flavoprotein reductase to produce a second molecule of water. This non-productive decay of Compound I thus yields an overall oxygen to NADPH ratio of 1:2 and does not produce hydrocarbon oxidation. This water uncoupling reaction provides one of a limited means to study the reactivity of the critical Compound I intermediate in P450 catalysis. We measured simultaneously the rates of NADPH and oxygen consumption as a function of substrate concentration during the steady-state hydroxylation of testosterone catalyzed by human P450 CYP3A4

  12. Structural basis for the 4'-hydroxylation of diclofenac by a microbial cytochrome P450 monooxygenase.

    PubMed

    Xu, Lian-Hua; Ikeda, Haruo; Liu, Ling; Arakawa, Takatoshi; Wakagi, Takayoshi; Shoun, Hirofumi; Fushinobu, Shinya

    2015-04-01

    Diclofenac is a nonsteroidal anti-inflammatory drug. It undergoes hydroxylation by mammalian cytochrome P450 enzymes at 4'- and/or 5'-positions. A bacterial P450 enzyme, CYP105D7 from Streptomyces avermitilis, has been shown to catalyze hydroxylation of 1-deoxypentalenic acid and an isoflavone daidzein. Here, we demonstrated that CYP105D7 also catalyzes hydroxylation of diclofenac at the C4'-position. A spectroscopic analysis showed that CYP105D7 binds diclofenac in a slightly cooperative manner with an affinity of 65 μM and a Hill coefficient of 1.16. The crystal structure of CYP105D7 in complex with diclofenac was determined at 2.2 Å resolution. The distal pocket of CYP105D7 contains two diclofenac molecules, illustrating drug recognition with a double-ligand-binding mode. The C3' and C4' atoms of the dichlorophenyl ring of one diclofenac molecule are positioned near the heme iron, suggesting that it is positioned appropriately for aromatic hydroxylation to yield the 4'-hydroxylated product. However, recognition of diclofenac by CYP105D7 was completely different from that of rabbit CYP2C5, which binds one diclofenac molecule with a cluster of water molecules. The distal pocket of CYP105D7 contains four arginine residues, forming a wall of the substrate-binding pocket, and the arginine residues are conserved in bacterial P450s in the CYP105 family.

  13. Identification of universal selectivity-determining positions in cytochrome P450 monooxygenases by systematic sequence-based literature mining.

    PubMed

    Gricman, Łukasz; Vogel, Constantin; Pleiss, Jürgen

    2015-09-01

    Cytochrome P450 monooxygenases (CYPs) are a large, highly diverse protein family with a common fold. The sequences, structures, and functions of CYPs have been extensively studied resulting in more than 53,000 scientific articles. A sequence-based literature mining algorithm was designed to systematically analyze this wealth of information on SNPs, designed mutations, structural interactions, or functional roles of individual residues. Structurally corresponding positions in different CYPs were compared and universal selectivity-determining positions were identified. Based on the Cytochrome P450 Engineering Database (www.CYPED.BioCatNet.de) and a standard numbering scheme for all CYPs, 4000 residues in 168 CYPs mentioned in 2400 articles could be assigned to 440 structurally corresponding standard positions of the CYP fold, covering 96% of all standard positions. Seventeen individual standard positions were mentioned in the context of more than 32 different CYPs. The majority of these most frequently mentioned positions are located on the six substrate recognition sites and are involved in control of selectivity, such as the well-studied position 87 in CYP102A1 (P450(BM-3)) which was mentioned in the articles on 63 different CYPs. The recurrent citation of the 17 frequently mentioned positions for different CYPs suggests their universal functional relevance. PMID:26033392

  14. Cytochromes P450

    PubMed Central

    Bak, Søren; Beisson, Fred; Bishop, Gerard; Hamberger, Björn; Höfer, René; Paquette, Suzanne; Werck-Reichhart, Danièle

    2011-01-01

    There are 244 cytochrome P450 genes (and 28 pseudogenes) in the Arabidopsis genome. P450s thus form one of the largest gene families in plants. Contrary to what was initially thought, this family diversification results in very limited functional redundancy and seems to mirror the complexity of plant metabolism. P450s sometimes share less than 20% identity and catalyze extremely diverse reactions leading to the precursors of structural macromolecules such as lignin, cutin, suberin and sporopollenin, or are involved in biosynthesis or catabolism of all hormone and signaling molecules, of pigments, odorants, flavors, antioxidants, allelochemicals and defense compounds, and in the metabolism of xenobiotics. The mechanisms of gene duplication and diversification are getting better understood and together with co-expression data provide leads to functional characterization. PMID:22303269

  15. High-yield expression and purification of isotopically labeled cytochrome P450 monooxygenases for solid-state NMR spectroscopy

    PubMed Central

    Rupasinghe, Sanjeewa G.; Duan, Hui; Frericks Schmidt, Heather L.; Berthold, Deborah A.; Rienstra, Chad M.; Schuler, Mary A.

    2008-01-01

    Cytochrome P450 monooxygenases (P450s), which represent the major group of drug metabolizing enzymes in humans, also catalyze important synthetic and detoxicative reactions in insects, plants and many microbes. Flexibilities in their catalytic sites and membrane associations are thought to play central roles in substrate binding and catalytic specificity. To date, E. coli expression strategies for structural analysis of eukaryotic membrane-bound P450s by X-ray crystallography have necessitated full or partial removal of their N-terminal signal anchor domain (SAD) and, often, replacement of residues more peripherally associated with the membrane (such as the F-G loop region). Even with these modifications, investigations of P450 structural flexibility remain challenging with multiple single crystal conditions needed to identify spatial variations between substrate-free and different substrate-bound forms. To overcome these limitations, we have developed methods for the efficient expression of 13C- and 15N-labeled P450s and analysis of their structures by magic-angle spinning solid-state NMR (SSNMR) spectroscopy. In the presence of co-expressed GroEL and GroES chaperones, full-length (53 kDa) Arabidopsis 13C,15N-labeled CYP98A3 is expressed at yields of 2–4 mg per liter of minimal media without the necessity of generating side chain modifications or N-terminal deletions. Precipitated CYP98A3 generates high quality SSNMR spectra consistent with a homogeneous, folded protein. These data highlight the potential of these methodologies to contribute to the structural analysis of membrane-bound proteins. PMID:18005930

  16. Elucidation of cladofulvin biosynthesis reveals a cytochrome P450 monooxygenase required for anthraquinone dimerization.

    PubMed

    Griffiths, Scott; Mesarich, Carl H; Saccomanno, Benedetta; Vaisberg, Abraham; De Wit, Pierre J G M; Cox, Russell; Collemare, Jérôme

    2016-06-21

    Anthraquinones are a large family of secondary metabolites (SMs) that are extensively studied for their diverse biological activities. These activities are determined by functional group decorations and the formation of dimers from anthraquinone monomers. Despite their numerous medicinal qualities, very few anthraquinone biosynthetic pathways have been elucidated so far, including the enzymatic dimerization steps. In this study, we report the elucidation of the biosynthesis of cladofulvin, an asymmetrical homodimer of nataloe-emodin produced by the fungus Cladosporium fulvum A gene cluster of 10 genes controls cladofulvin biosynthesis, which begins with the production of atrochrysone carboxylic acid by the polyketide synthase ClaG and the β-lactamase ClaF. This compound is decarboxylated by ClaH to yield emodin, which is then converted to chrysophanol hydroquinone by the reductase ClaC and the dehydratase ClaB. We show that the predicted cytochrome P450 ClaM catalyzes the dimerization of nataloe-emodin to cladofulvin. Remarkably, such dimerization dramatically increases nataloe-emodin cytotoxicity against mammalian cell lines. These findings shed light on the enzymatic mechanisms involved in anthraquinone dimerization. Future characterization of the ClaM enzyme should facilitate engineering the biosynthesis of novel, potent, dimeric anthraquinones and structurally related compound families.

  17. Role of Cytochrome P450 Monooxygenase in Carcinogen and Chemotherapeutic Drug Metabolism.

    PubMed

    Wahlang, B; Falkner, K Cameron; Cave, Matt C; Prough, Russell A

    2015-01-01

    The purpose of this chapter is to provide insight into which human cytochromes P450 (CYPs) may be involved in metabolism of chemical carcinogens and anticancer drugs. A historical overview of this field and the development of literature using relevant animal models and expressed human CYPs have provided information about which specific CYPs may be involved in carcinogen metabolism. Definition of the biochemical properties of CYP activity came from several groups who studied the reaction stoichiometry of butter yellow and benzo[α]pyrene, including their role in induction of these enzyme systems. This chapter will list as much as is known about the human CYPs involved in carcinogen and anticancer drug metabolism, as well as summarize studies with rodent CYPs. A review of three major classes of anticancer drugs and their metabolism in humans is covered for cyclophosphamide, procarbazine, and anthracycline antibiotics, cancer chemotherapeutic compounds extensively metabolized by CYPs. The emerging information about human CYP gene polymorphisms as well as other enzymes involved in foreign compound metabolism provides considerable information about how these genetic variants affect carcinogen and anticancer drug metabolism. With information available from individual's genomic sequences, consideration of populations who may be at risk due to environmental exposure to carcinogens or how to optimize their cancer therapy regimens to enhance efficacy of the anticancer drugs appears to be an important field of study to benefit individuals in the future. PMID:26233902

  18. Elucidation of cladofulvin biosynthesis reveals a cytochrome P450 monooxygenase required for anthraquinone dimerization.

    PubMed

    Griffiths, Scott; Mesarich, Carl H; Saccomanno, Benedetta; Vaisberg, Abraham; De Wit, Pierre J G M; Cox, Russell; Collemare, Jérôme

    2016-06-21

    Anthraquinones are a large family of secondary metabolites (SMs) that are extensively studied for their diverse biological activities. These activities are determined by functional group decorations and the formation of dimers from anthraquinone monomers. Despite their numerous medicinal qualities, very few anthraquinone biosynthetic pathways have been elucidated so far, including the enzymatic dimerization steps. In this study, we report the elucidation of the biosynthesis of cladofulvin, an asymmetrical homodimer of nataloe-emodin produced by the fungus Cladosporium fulvum A gene cluster of 10 genes controls cladofulvin biosynthesis, which begins with the production of atrochrysone carboxylic acid by the polyketide synthase ClaG and the β-lactamase ClaF. This compound is decarboxylated by ClaH to yield emodin, which is then converted to chrysophanol hydroquinone by the reductase ClaC and the dehydratase ClaB. We show that the predicted cytochrome P450 ClaM catalyzes the dimerization of nataloe-emodin to cladofulvin. Remarkably, such dimerization dramatically increases nataloe-emodin cytotoxicity against mammalian cell lines. These findings shed light on the enzymatic mechanisms involved in anthraquinone dimerization. Future characterization of the ClaM enzyme should facilitate engineering the biosynthesis of novel, potent, dimeric anthraquinones and structurally related compound families. PMID:27274078

  19. Regiochemical variations in reactions of methylcubane with tert-butoxyl radical, cytochrome P-450 enzymes, and a methane monooxygenase system

    SciTech Connect

    Choi, S.Y.; Hollenberg, P.F.; Newcomb, M.; Putt, D.A.; Eaton, P.E.; Upadhyaya, S.P.; Xiong, Y.; Liu, K.E.; Lippard, S.J.

    1996-07-17

    Reactions of methylcubane (1) with the tert-butoxyl radical (t-BuO{sup .}), with cytochrome P-450 enzymes, and with a methane monooxygenase (MMO) system have been studied. 2-Methylcubanecarboxylic acid (9b) is a new compound prepared from cubanecarboxylic acid. The key synthetic reactions were (1) metalation and subsequent iodination of the 2-position of (diisopropylcarbamoyl)cubane to effect the initial functionalization, (2) lithium-for-iodine exchange and methylation followed by reduction to give 2-methyl-l-[(diisopropylamino)methyl]-cubane, and (3) dimethyldioxirane oxidation of this amine to give 9b. Reaction of 1 with t-BuO{sup .} in the presence of 2,2,5,5-tetramethylisoindole-N-oxyl radical (TMIO{sup .}) at 40-55{degree}C gave mainly cube-substituted products in confirmation of the report that hydrogen atom abstraction by the electrophilic alkoxyl radical at low temperature occurs at the cubyl C-H positions. In a competition experiment at 42{degree}C, methylcubane was at least 3.5 times more reactive toward t-BuO{sup .} than cyclohexane, indicating that the cubyl positions in 1 are >= 40 times more reactive than the methyl positions in 1 (per hydrogen) toward the alkoxyl radical. Oxidation of 1 by enzymes gave alcohol products that were converted to their acetate derivatives for identification and quantitation. Microsomal cytochrome P-450 enzymes from rat and the rat purified P-450 isozyme CYP2B1 hydroxylated 1 at all positions, whereas the reconstituted MMO system from Methylococcus capsulatus (Bath) hydroxylated l only at the methyl position. 78 refs., 1 tab.

  20. Role of active oxygen species in the photodestruction of microsomal cytochrome P-450 and associated monooxygenases by hematoporphyrin derivative in rats

    SciTech Connect

    Das, M.; Dixit, R.; Mukhtar, H.; Bickers, D.R.

    1985-02-01

    The cytochrome P-450 in hepatic microsomes prepared from rats pretreated with hematoporphyrin derivative was shown to be rapidly destroyed in the presence of long-wave ultraviolet light. The photocatalytic destruction of the heme-protein was dependent on both the dose of ultraviolet light and of hematoporphyrin derivative administered to the animals. The destructive reaction was accompanied by increased formation of cytochrome P-420, loss of microsomal heme content, and diminished catalytic activity of cytochrome P-450-dependent monooxygenases such as aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase. The specificity of the effect on cytochrome P-450 was confirmed by the observation that other heme-containing moieties such as myoglobin and cytochrome c were not susceptible to photocatalytic destruction. The destruction of cytochrome P-450 was a photodynamic process requiring oxygen since quenchers of singlet oxygen, including 2,5-dimethylfuran, histidine, and beta-carotene, each substantially diminished the reaction. Scavengers of superoxide anion such as superoxide dismutase and of H/sub 2/O/sub 2/ such as catalase did not protect against photodestruction of cytochrome P-450, whereas inhibitors of the hydroxyl radical, including benzoate, mannitol, and ethyl alcohol, did afford protection. These results indicate that lipid-rich microsomal membranes and the heme-protein cytochrome P-450 embedded therein are potential targets of injury in cells exposed to hematoporphyrin derivative photosensitization.

  1. Evaluating cytochrome P450 in birds by monooxygenases and immunohistochemistry: possible nonlethal assessment by skin immunohistochemistry

    USGS Publications Warehouse

    Melancon, M.J.; Kutay, A.L.; Woodin, Bruce R.; Stegeman, John J.

    2000-01-01

    Six month old Lesser Scaup and nestling Tree Swallows were injected intraperitoneally with beta-naphthoflavone (BNF) or vehicle. Nestling Tree Swallows were also collected from five sites with differing levels of contaminants. Liver samples were taken and stored at -80C until microsome preparation and monooxygenase (MO) assay. Skin and heart samples were placed in buffered formalin until immunohistochemical (IMHC) analysis for cytochrome P4501A (CYP1A). Scaup treated with BNF at 20 or 100 mg/kg body weight showed approximately 20- to 65-fold increases in four MOs. Responses of two of the four MOs were as high at 20 mg/kg as at 100mg/kg. There was no IMHC response in the vehicle-injected ducks, while in skin the IMHC response was the same for both dose levels of BNF and in heart there was response in two of four samples at 20 mg/kg and in all five samples at 100mg/kg. Tree Swallows injected with BNF at 100, but not at 20 mg/kg showed significant increases (ca.5-fold) in two MO activities. There was no IMHC response in control swallows. In skin and heart there were IMHC responses in one of five swallows at 20 mg/kg and four of five swallows at 100mg/kg. There was poor correlation between individual skin IMHC responses and MO activities and PCB concentrations in 47 field-collected Tree Swallow samples, but 14 of the 16 skin samples with positive IMHC responses were from the location with the highest MO activities and PCB concentrations. Although present data do not allow construction of significant dose response curves, the responses in skin make it well worth continuing study on this potential nonlethal technique for biomonitoring contaminant exposure of birds.

  2. Bioactivation of aflatoxin B1 by lipoxygenases, prostaglandin H synthase and cytochrome P450 monooxygenase in guinea-pig tissues.

    PubMed

    Liu, L; Massey, T E

    1992-04-01

    In the present investigation, we have examined the role of lipoxygenases in the bioactivation of aflatoxin B1 (AFB1) in hepatic and extrahepatic tissues. The enzyme activities were evaluated by determining [3H]AFB1-DNA adduct formation. The results demonstrated that both purified soybean lipoxygenase and guinea-pig tissue cytosolic lipoxygenases were able to activate AFB1 to form [3H]AFB1-DNA adduct(s). The reaction was completely inhibited by nordihydroguaiaretic acid (NDGA, 0.1 mM), a lipoxygenase inhibitor and an antioxidant, but not by indomethacin (0.1 mM), an inhibitor of prostaglandin H synthase (PHS), indicating that this reaction is associated with lipoxygenase activity, and/or is involved in a peroxyl radical process. While purified lipoxygenase showed arachidonic acid (AA)-dependent properties, the omission of AA did not diminish guinea-pig tissue cytosolic [3H]AFB1-DNA adduct formation, possibly because AA was released from lipid particles by AFB1. Within the range of hemoglobin (Hb) concentrations found in lung, kidney and liver cytosols (1.4-11.1 microM) and microsomes (0-0.5 microM), neither pure Hb, nor Hb of cytosols or microsomes from whole blood caused detectable AA-dependent AFB1-DNA binding. This indicates that Hb, as a contaminant with quasi-lipoxygenase activity, did not contribute to AFB1 activation attributed to guinea-pig tissue lipoxygenases. [3H]AFB1 concentrations at half-maximal DNA binding rate of pulmonary cytochrome P450 monooxygenases (P450) and lipoxygenases were similar, though P450 had a much higher maximum DNA binding rate. Pulmonary microsomal PHS activity for AFB1 activation was too low for its half-maximal binding concentrations of [3H]AFB1 and maximum rate to be accurately determined. In kidney, maximum rates for lipoxygenase, PHS and P450 were similar, whereas half-maximal binding concentrations for reactions by lipoxygenase and P450 were lower compared to that of PHS. The half-maximal binding concentration of hepatic

  3. A collection of cytochrome P450 monooxygenase genes involved in modification and detoxification of herbicide atrazine in rice (Oryza sativa) plants.

    PubMed

    Rong Tan, Li; Chen Lu, Yi; Jing Zhang, Jing; Luo, Fang; Yang, Hong

    2015-09-01

    Plant cytochrome P450 monooxygenases constitute one of the largest families of protein genes involved in plant growth, development and acclimation to biotic and abiotic stresses. However, whether these genes respond to organic toxic compounds and their biological functions for detoxifying toxic compounds such as herbicides in rice are poorly understood. The present study identified 201 genes encoding cytochrome P450s from an atrazine-exposed rice transcriptome through high-throughput sequencing. Of these, 69 cytochrome P450 genes were validated by microarray and some of them were confirmed by real time PCR. Activities of NADPH-cytochrome P450 reductase (CPR) and p-nitroanisole O-demethylase (PNOD) related to toxicity were determined and significantly induced by atrazine exposure. To dissect the mechanism underlying atrazine modification and detoxification by P450, metabolites (or derivatives) of atrazine in plants were analyzed by ultra performance liquid chromatography mass spectrometry (UPLC/MS). Major metabolites comprised desmethylatrazine (DMA), desethylatrazine (DEA), desisopropylatrazine (DIA), hydroxyatrazine (HA), hydroxyethylatrazine (HEA) and hydroxyisopropylatrazine (HIA). All of them were chemically modified by P450s. Furthermore, two specific inhibitors of piperonyl butoxide (PBO) and malathion (MAL) were used to assess the correlation between the P450s activity and rice responses including accumulation of atrazine in tissues, shoot and root growth and detoxification.

  4. Induction of a cytochrome P-450-dependent fatty acid monooxygenase in Bacillus megaterium by a barbiturate analog, 1-[2-phenylbutyryl]-3-methylurea.

    PubMed

    Wen, L P; Fulco, A J

    1985-05-01

    In previous publications from our laboratory, we reported that a soluble, cytochrome P-450-dependent fatty acid monooxygenase from Bacillus megaterium ATCC 14581 can be induced by phenobarbital and a variety of other barbiturates. The tested barbiturates showed an excellent correlation between increasing lipophilicity and increasing inducer potency (Kim BH, Fulco AJ; Biochem Biophys Res Commun 116: 843-850, 1983). The only exception proved to be mephobarbital (N-methylphenobarbital) which, although more lipophilic than phenobarbital, is not an inducer of fatty acid monooxygenase activity. We have now found that 1-[2-phenylbutyryl]-3-methylurea (PBMU), an acylurea that can be derived from mephobarbital by hydrolytic cleavage of the barbiturate ring, is an excellent inducer of this activity. Paradoxically, the addition of mephobarbital to the bacterial growth medium containing PBMU significantly enhances the apparent potency of the acylurea to induce fatty acid monooxygenase activity as measured in cell-free extracts. When cell-free extracts of cells grown separately in PBMU or mephobarbital are mixed no enhancement of activity is seen. This finding suggests that the effect of mephobarbital is to somehow increase the efficiency of PBMU as an inducer of the P-450-dependent fatty acid monooxygenase rather than to induce an activator of this enzyme or a rate-limiting component of the monooxygenase system. Finally, both mephobarbital and PBMU induce the synthesis of total cytochrome P-450 in B. megaterium although PBMU is a much more potent P-450 inducer. For cytochrome P-450 induction, however, there is no synergistic or even additive effect when mephobarbital and PBMU are used together in the bacterial growth medium. PMID:3927150

  5. The cytochrome p450 homepage.

    PubMed

    Nelson, David R

    2009-10-01

    The Cytochrome P450 Homepage is a universal resource for nomenclature and sequence information on cytochrome P450 ( CYP ) genes. The site has been in continuous operation since February 1995. Currently, naming information for 11,512 CYPs are available on the web pages. The P450 sequences are manually curated by David Nelson, and the nomenclature system conforms to an evolutionary scheme such that members of CYP families and subfamilies share common ancestors. The organisation and content of the Homepage are described.

  6. Two Cytochrome P450 Monooxygenases Catalyze Early Hydroxylation Steps in the Potato Steroid Glycoalkaloid Biosynthetic Pathway1[OPEN

    PubMed Central

    Nakayasu, Masaru; Ohyama, Kiyoshi; Saito, Kazuki

    2016-01-01

    α-Solanine and α-chaconine, steroidal glycoalkaloids (SGAs) found in potato (Solanum tuberosum), are among the best-known secondary metabolites in food crops. At low concentrations in potato tubers, SGAs are distasteful; however, at high concentrations, SGAs are harmful to humans and animals. Here, we show that POTATO GLYCOALKALOID BIOSYNTHESIS1 (PGA1) and PGA2, two genes that encode cytochrome P450 monooxygenases (CYP72A208 and CYP72A188), are involved in the SGA biosynthetic pathway, respectively. The knockdown plants of either PGA1 or PGA2 contained very little SGA, yet vegetative growth and tuber production were not affected. Analyzing metabolites that accumulated in the plants and produced by in vitro enzyme assays revealed that PGA1 and PGA2 catalyzed the 26- and 22-hydroxylation steps, respectively, in the SGA biosynthetic pathway. The PGA-knockdown plants had two unique phenotypic characteristics: The plants were sterile and tubers of these knockdown plants did not sprout during storage. Functional analyses of PGA1 and PGA2 have provided clues for controlling both potato glycoalkaloid biosynthesis and tuber sprouting, two traits that can significantly impact potato breeding and the industry. PMID:27307258

  7. Mutation of the Glucosinolate Biosynthesis Enzyme Cytochrome P450 83A1 Monooxygenase Increases Camalexin Accumulation and Powdery Mildew Resistance.

    PubMed

    Liu, Simu; Bartnikas, Lisa M; Volko, Sigrid M; Ausubel, Frederick M; Tang, Dingzhong

    2016-01-01

    Small secondary metabolites, including glucosinolates and the major phytoalexin camalexin, play important roles in immunity in Arabidopsis thaliana. We isolated an Arabidopsis mutant with increased resistance to the powdery mildew fungus Golovinomyces cichoracearum and identified a mutation in the gene encoding cytochrome P450 83A1 monooxygenase (CYP83A1), which functions in glucosinolate biosynthesis. The cyp83a1-3 mutant exhibited enhanced defense responses to G. cichoracearum and double mutant analysis showed that this enhanced resistance requires NPR1, EDS1, and PAD4, but not SID2 or EDS5. In cyp83a1-3 mutants, the expression of genes related to camalexin synthesis increased upon G. cichoracearum infection. Significantly, the cyp83a1-3 mutant also accumulated higher levels of camalexin. Decreasing camalexin levels by mutation of the camalexin synthetase gene PAD3 or the camalexin synthesis regulator AtWRKY33 compromised the powdery mildew resistance in these mutants. Consistent with these observations, overexpression of PAD3 increased camalexin levels and enhanced resistance to G. cichoracearum. Taken together, our data indicate that accumulation of higher levels of camalexin contributes to increased resistance to powdery mildew.

  8. Mutation of the Glucosinolate Biosynthesis Enzyme Cytochrome P450 83A1 Monooxygenase Increases Camalexin Accumulation and Powdery Mildew Resistance

    PubMed Central

    Liu, Simu; Bartnikas, Lisa M.; Volko, Sigrid M.; Ausubel, Frederick M.; Tang, Dingzhong

    2016-01-01

    Small secondary metabolites, including glucosinolates and the major phytoalexin camalexin, play important roles in immunity in Arabidopsis thaliana. We isolated an Arabidopsis mutant with increased resistance to the powdery mildew fungus Golovinomyces cichoracearum and identified a mutation in the gene encoding cytochrome P450 83A1 monooxygenase (CYP83A1), which functions in glucosinolate biosynthesis. The cyp83a1-3 mutant exhibited enhanced defense responses to G. cichoracearum and double mutant analysis showed that this enhanced resistance requires NPR1, EDS1, and PAD4, but not SID2 or EDS5. In cyp83a1-3 mutants, the expression of genes related to camalexin synthesis increased upon G. cichoracearum infection. Significantly, the cyp83a1-3 mutant also accumulated higher levels of camalexin. Decreasing camalexin levels by mutation of the camalexin synthetase gene PAD3 or the camalexin synthesis regulator AtWRKY33 compromised the powdery mildew resistance in these mutants. Consistent with these observations, overexpression of PAD3 increased camalexin levels and enhanced resistance to G. cichoracearum. Taken together, our data indicate that accumulation of higher levels of camalexin contributes to increased resistance to powdery mildew. PMID:26973671

  9. Cytochrome P-450 monooxygenase systems in aquatic species: Carcinogen metabolism and biomarkers for carcinogen and pollutant exposure

    SciTech Connect

    Stegeman, J.J. ); Lech, J.J. )

    1991-01-01

    High levels of polynuclear aromatic hydrocarbon (PAH) carcinogens commonly occur in aquatic systems where neoplasms arise in fish and other animals. Enzymes that transform PAHs can act in initiating these diseases and can indicate the contamination of fish by carcinogens and other pollutants. Cytochrome P-450 has similar roles in activating PAH carcinogens in fish and mammalian species. PAHs and many chlorinated hydrocarbons, e.g., polychlorinated biphenyls (PCBs) induce a form of cytochrome P-450 in fish that is the primary catalyst of PAH metabolism. The induction of this P-450 in fish can accelerate the disposition of hydrocarbons but can also enhance the formation of carcinogenic derivatives of PAHs. Invertebrates have lower rates of PAH metabolism than fish. The induction of P-450 forms can indicate the exposure of fish to PAHs, PCBs, and other toxic compounds. This is not restricted to carcinogens. Environmental induction has been detected in fish from contaminated areas by use of catalytic assay, antibodies to fish P-450, and cDNA probes that hybridize with P-450 messenger RNA. Application of these methods can provide sensitive biological monitoring tools that can detect environmental contamination of fish by some carcinogens and tumor promoters. The potential for using P-450 induction to detect direct-acting carcinogens and tumor promoters that are noninducers is limited, although such compounds can be expected to co-occur with pollutants that are inducers.

  10. A chicory cytochrome P450 mono-oxygenase CYP71AV8 for the oxidation of (+)-valencene.

    PubMed

    Cankar, Katarina; van Houwelingen, Adèle; Bosch, Dirk; Sonke, Theo; Bouwmeester, Harro; Beekwilder, Jules

    2011-01-01

    Chicory (Cichorium intybus L.), which is known to have a variety of terpene-hydroxylating activities, was screened for a P450 mono-oxygenase to convert (+)-valencene to (+)-nootkatone. A novel P450 cDNA was identified in a chicory root EST library. Co-expression of the enzyme with a valencene synthase in yeast, led to formation of trans-nootkatol, cis-nootkatol and (+)-nootkatone. The novel enzyme was also found to catalyse a three step conversion of germacrene A to germacra-1(10),4,11(13)-trien-12-oic acid, indicating its involvement in chicory sesquiterpene lactone biosynthesis. Likewise, amorpha-4,11-diene was converted to artemisinic acid. Surprisingly, the chicory P450 has a different regio-specificity on (+)-valencene compared to germacrene A and amorpha-4,11-diene. PMID:21115006

  11. Biocatalyst Engineering by Assembly of Fatty Acid Transport and Oxidation Activities for In Vivo Application of Cytochrome P-450BM-3 Monooxygenase

    PubMed Central

    Schneider, Silke; Wubbolts, Marcel G.; Sanglard, Dominique; Witholt, Bernard

    1998-01-01

    The application of whole cells containing cytochrome P-450BM-3 monooxygenase [EC 1.14.14.1] for the bioconversion of long-chain saturated fatty acids to ω-1, ω-2, and ω-3 hydroxy fatty acids was investigated. We utilized pentadecanoic acid and studied its conversion to a mixture of 12-, 13-, and 14-hydroxypentadecanoic acids by this monooxygenase. For this purpose, Escherichia coli recombinants containing plasmid pCYP102 producing the fatty acid monooxygenase cytochrome P-450BM-3 were used. To overcome inefficient uptake of pentadecanoic acid by intact E. coli cells, we made use of a cloned fatty acid uptake system from Pseudomonas oleovorans which, in contrast to the common FadL fatty acid uptake system of E. coli, does not require coupling by FadD (acyl-coenzyme A synthetase) of the imported fatty acid to coenzyme A. This system from P. oleovorans is encoded by a gene carried by plasmid pGEc47, which has been shown to effect facilitated uptake of oleic acid in E. coli W3110 (M. Nieboer, Ph.D. thesis, University of Groningen, Groningen, The Netherlands, 1996). By using a double recombinant of E. coli K27, which is a fadD mutant and therefore unable to consume substrates or products via the β-oxidation cycle, a twofold increase in productivity was achieved. Applying cytochrome P-450BM-3 monooxygenase as a biocatalyst in whole cells does not require the exogenous addition of the costly cofactor NADPH. In combination with the coenzyme A-independent fatty acid uptake system from P. oleovorans, cytochrome P-450BM-3 recombinants appear to be useful alternatives to the enzymatic approach for the bioconversion of long-chain fatty acids to subterminal hydroxylated fatty acids. PMID:9758800

  12. Biocatalyst engineering by assembly of fatty acid transport and oxidation activities for In vivo application of cytochrome P-450BM-3 monooxygenase.

    PubMed

    Schneider, S; Wubbolts, M G; Sanglard, D; Witholt, B

    1998-10-01

    The application of whole cells containing cytochrome P-450BM-3 monooxygenase [EC 1.14.14.1] for the bioconversion of long-chain saturated fatty acids to omega-1, omega-2, and omega-3 hydroxy fatty acids was investigated. We utilized pentadecanoic acid and studied its conversion to a mixture of 12-, 13-, and 14-hydroxypentadecanoic acids by this monooxygenase. For this purpose, Escherichia coli recombinants containing plasmid pCYP102 producing the fatty acid monooxygenase cytochrome P-450BM-3 were used. To overcome inefficient uptake of pentadecanoic acid by intact E. coli cells, we made use of a cloned fatty acid uptake system from Pseudomonas oleovorans which, in contrast to the common FadL fatty acid uptake system of E. coli, does not require coupling by FadD (acyl-coenzyme A synthetase) of the imported fatty acid to coenzyme A. This system from P. oleovorans is encoded by a gene carried by plasmid pGEc47, which has been shown to effect facilitated uptake of oleic acid in E. coli W3110 (M. Nieboer, Ph.D. thesis, University of Groningen, Groningen, The Netherlands, 1996). By using a double recombinant of E. coli K27, which is a fadD mutant and therefore unable to consume substrates or products via the beta-oxidation cycle, a twofold increase in productivity was achieved. Applying cytochrome P-450BM-3 monooxygenase as a biocatalyst in whole cells does not require the exogenous addition of the costly cofactor NADPH. In combination with the coenzyme A-independent fatty acid uptake system from P. oleovorans, cytochrome P-450BM-3 recombinants appear to be useful alternatives to the enzymatic approach for the bioconversion of long-chain fatty acids to subterminal hydroxylated fatty acids.

  13. Developmental changes of cytochrome P450 dependent monooxygenase functions after transplantation of fetal liver tissue suspension into spleens of adult syngenic rats.

    PubMed

    Lupp, A; Trautmann, A K; Krausse, T; Klinger, W

    1998-06-01

    Fetal liver tissue suspensions were transplanted into the spleens of adult male syngenic Fisher 344 inbred rats. Animals were sacrificed at 3 days, 1, 2, 4 weeks, and 2, 4 and 6 months after transplantation and cytochrome P450 (P450) dependent monooxygenase functions in spleen and liver 9000 g supernatants were assessed by measuring three model reactions for different P450 subtypes: ethoxyresorufin O-deethylation (EROD; mainly 1A), ethoxycoumarin O-deethylation (ECOD; predominantly 1A, 2A, 2B) and ethylmorphine N-demethylation (END; mainly 3A). Values of transplant recipients were compared to those of sham operated and age matched control rats. Spleen weights were significantly higher in transplanted rats, compared to controls or sham operated animals, but there was no influence of the transplants within the spleens on liver weights. With fetal livers at the 21st day of gestation, the day of transplantation, a weak EROD and ECOD, but no END activity was seen. Spleens of controls or sham operated animals displayed nearly no P450 mediated monooxygenase functions. In the explant containing spleens a significant and increasing EROD activity was found from 4 weeks after surgery on and an ECOD activity already 2 weeks after transplantation. END was only slightly enhanced at 6 months after surgery. The livers of all three groups of rats displayed normal EROD, ECOD and END activities. Transplantation of fetal liver tissue suspensions into the spleens did not influence the P450 dependent monooxygenase functions within the livers of the animals. From these results it can be concluded that intrasplenically transplanted liver cells originating from syngenic fetal liver tissue suspensions proliferate and differentiate within the host organs. They display P450 dependent monooxygenase functions with some developmental changes during the observed time period of 6 months.

  14. Identification of cytochrome P450 monooxygenase genes and their expression profiles in cyhalothrin-treated Colorado potato beetle, Leptinotarsa decemlineata.

    PubMed

    Wan, Pin-Jun; Shi, Xiao-Qin; Kong, Ye; Zhou, Li-Tao; Guo, Wen-Chao; Ahmat, Tursun; Li, Guo-Qing

    2013-11-01

    Based on a Leptinotarsa decemlineata transcriptome dataset and the GenBank sequences, a total of 74 cytochrome P450 monooxygenase genes (Cyps) were identified. These genes fell into CYP2 clan, mitochondrial clan, CYP3 clan and CYP4 clan, and were classified into 19 families and 35 subfamilies according to standard nomenclature. Two new families were discovered in CYP4 clan, and were named CYP412 and CYP413 respectively. Four new families that were recently discovered in Tribolium castaneum, including mitochondrial family CYP353, CYP3 clan families CYP345 and CYP347, and CYP4 clan family CYP350, were also found in L. decemlineata. The phylogenetic trees of CYPs from L. decemlineata and other representative insect species were constructed, and these trees provided evolutionary insight for the genetic distance. Our results facilitate further researches to understand the functions and evolution of L. decemlineata Cyp genes. In order to find cyhalothrin-inducible Cyp genes, the expression levels of Cyps belonging to CYP12, CYP6, CYP9 and CYP4 families were determined by quantitative reverse transcriptase-PCR in cyhalothrin-treated and control fourth-instar larvae. Nine Cyp genes, i.e., Cyp12H2, Cyp6BH2, Cyp6BJ1, Cyp6BQ17, Cyp6EG1, Cyp6EH1, Cyp6EJ1 Cyp4BN13v1 and Cyp4BN15, were highly expressed in cyhalothrin-treated larvae. These CYPs are the candidates that are involved in cyhalothrin detoxification. PMID:24267698

  15. Fusarium Tri4 encodes a key multifunctional cytochrome P450 monooxygenase for four consecutive oxygenation steps in trichothecene biosynthesis

    SciTech Connect

    Tokai, Takeshi; Koshino, Hiroyuki; Takahashi-Ando, Naoko; Sato, Masayuki; Fujimura, Makoto; Kimura, Makoto . E-mail: mkimura@riken.jp

    2007-02-09

    Fusarium Tri4 encodes a cytochrome P450 monooxygenase (CYP) for hydroxylation at C-2 of First committed intermediate trichodiene (TDN) in the biosynthesis of trichothecenes. To examine whether this CYP further participates in subsequent oxygenation steps leading to isotrichotriol (4), we engineered Saccharomyces cerevisiae for de novo production of the early intermediates by introducing cDNAs of Fusarium graminearum Tri5 (FgTri5 encoding TDN synthase) and Tri4 (FgTri4). From a culture of the engineered yeast grown on induction medium (final pH 2.7), we identified two intermediates, 2{alpha}-hydroxytrichodiene (1) and 12,13-epoxy-9,10-trichoene-2{alpha}-ol (2), and a small amount of non-Fusarium trichothecene 12,13-epoxytrichothec-9-ene (EPT). Other intermediates isotrichodiol (3) and 4 were identified in the transgenic yeasts grown on phosphate-buffered induction medium (final pH 5.5-6.0). When Trichothecium roseum Tri4 (TrTri4) was used in place of FgTri4, 4 was not detected in the culture. The three intermediates, 1, 2, and 3, were converted to 4,15-diacetylnivalenol (4,15-diANIV) when fed to a toxin-deficient mutant of F. graminearum with the FgTri4 {sup +} genetic background (viz., by introducing a FgTri5 {sup -} mutation), but were not metabolized by an FgTri4 {sup -} mutant. These results provide unambiguous evidence that FgTri4 encodes a multifunctional CYP for epoxidation at C-12,13, hydroxylation at C-11, and hydroxylation at C-3 in addition to hydroxylation at C-2.

  16. Fusarium Tri4 encodes a key multifunctional cytochrome P450 monooxygenase for four consecutive oxygenation steps in trichothecene biosynthesis.

    PubMed

    Tokai, Takeshi; Koshino, Hiroyuki; Takahashi-Ando, Naoko; Sato, Masayuki; Fujimura, Makoto; Kimura, Makoto

    2007-02-01

    Fusarium Tri4 encodes a cytochrome P450 monooxygenase (CYP) for hydroxylation at C-2 of the first committed intermediate trichodiene (TDN) in the biosynthesis of trichothecenes. To examine whether this CYP further participates in subsequent oxygenation steps leading to isotrichotriol (4), we engineered Saccharomyces cerevisiae for de novo production of the early intermediates by introducing cDNAs of Fusarium graminearum Tri5 (FgTri5 encoding TDN synthase) and Tri4 (FgTri4). From a culture of the engineered yeast grown on induction medium (final pH 2.7), we identified two intermediates, 2alpha-hydroxytrichodiene (1) and 12,13-epoxy-9,10-trichoene-2alpha-ol (2), and a small amount of non-Fusarium trichothecene 12,13-epoxytrichothec-9-ene (EPT). Other intermediates isotrichodiol (3) and 4 were identified in the transgenic yeasts grown on phosphate-buffered induction medium (final pH 5.5-6.0). When Trichothecium roseum Tri4 (TrTri4) was used in place of FgTri4, 4 was not detected in the culture. The three intermediates, 1, 2, and 3, were converted to 4,15-diacetylnivalenol (4,15-diANIV) when fed to a toxin-deficient mutant of F. graminearum with the FgTri4+ genetic background (viz., by introducing a FgTri5- mutation), but were not metabolized by an FgTri4- mutant. These results provide unambiguous evidence that FgTri4 encodes a multifunctional CYP for epoxidation at C-12,13, hydroxylation at C-11, and hydroxylation at C-3 in addition to hydroxylation at C-2. PMID:17188234

  17. Identification of cytochrome P450 monooxygenase genes and their expression profiles in cyhalothrin-treated Colorado potato beetle, Leptinotarsa decemlineata.

    PubMed

    Wan, Pin-Jun; Shi, Xiao-Qin; Kong, Ye; Zhou, Li-Tao; Guo, Wen-Chao; Ahmat, Tursun; Li, Guo-Qing

    2013-11-01

    Based on a Leptinotarsa decemlineata transcriptome dataset and the GenBank sequences, a total of 74 cytochrome P450 monooxygenase genes (Cyps) were identified. These genes fell into CYP2 clan, mitochondrial clan, CYP3 clan and CYP4 clan, and were classified into 19 families and 35 subfamilies according to standard nomenclature. Two new families were discovered in CYP4 clan, and were named CYP412 and CYP413 respectively. Four new families that were recently discovered in Tribolium castaneum, including mitochondrial family CYP353, CYP3 clan families CYP345 and CYP347, and CYP4 clan family CYP350, were also found in L. decemlineata. The phylogenetic trees of CYPs from L. decemlineata and other representative insect species were constructed, and these trees provided evolutionary insight for the genetic distance. Our results facilitate further researches to understand the functions and evolution of L. decemlineata Cyp genes. In order to find cyhalothrin-inducible Cyp genes, the expression levels of Cyps belonging to CYP12, CYP6, CYP9 and CYP4 families were determined by quantitative reverse transcriptase-PCR in cyhalothrin-treated and control fourth-instar larvae. Nine Cyp genes, i.e., Cyp12H2, Cyp6BH2, Cyp6BJ1, Cyp6BQ17, Cyp6EG1, Cyp6EH1, Cyp6EJ1 Cyp4BN13v1 and Cyp4BN15, were highly expressed in cyhalothrin-treated larvae. These CYPs are the candidates that are involved in cyhalothrin detoxification.

  18. Cytochrome P450 Monooxygenase CYP53 Family in Fungi: Comparative Structural and Evolutionary Analysis and Its Role as a Common Alternative Anti-Fungal Drug Target

    PubMed Central

    Jawallapersand, Poojah; Mashele, Samson Sitheni; Kovačič, Lidija; Stojan, Jure; Komel, Radovan; Pakala, Suresh Babu; Kraševec, Nada; Syed, Khajamohiddin

    2014-01-01

    Cytochrome P450 monooxygenases (CYPs/P450s) are heme-thiolate proteins whose role as a drug target against pathogenic microbes has been explored because of their stereo- and regio-specific oxidation activity. We aimed to assess the CYP53 family's role as a common alternative drug target against animal (including human) and plant pathogenic fungi and its role in fungal-mediated wood degradation. Genome-wide analysis of fungal species revealed the presence of CYP53 members in ascomycetes and basidiomycetes. Basidiomycetes had a higher number of CYP53 members in their genomes than ascomycetes. Only two CYP53 subfamilies were found in ascomycetes and six subfamilies in basidiomycetes, suggesting that during the divergence of phyla ascomycetes lost CYP53 P450s. According to phylogenetic and gene-structure analysis, enrichment of CYP53 P450s in basidiomycetes occurred due to the extensive duplication of CYP53 P450s in their genomes. Numerous amino acids (103) were found to be conserved in the ascomycetes CYP53 P450s, against only seven in basidiomycetes CYP53 P450s. 3D-modelling and active-site cavity mapping data revealed that the ascomycetes CYP53 P450s have a highly conserved protein structure whereby 78% amino acids in the active-site cavity were found to be conserved. Because of this rigid nature of ascomycetes CYP53 P450s' active site cavity, any inhibitor directed against this P450 family can serve as a common anti-fungal drug target, particularly toward pathogenic ascomycetes. The dynamic nature of basidiomycetes CYP53 P450s at a gene and protein level indicates that these P450s are destined to acquire novel functions. Functional analysis of CYP53 P450s strongly supported our hypothesis that the ascomycetes CYP53 P450s ability is limited for detoxification of toxic molecules, whereas basidiomycetes CYP53 P450s play an additional role, i.e. involvement in degradation of wood and its derived components. This study is the first report on genome-wide comparative

  19. Cytochrome P450 monooxygenase CYP53 family in fungi: comparative structural and evolutionary analysis and its role as a common alternative anti-fungal drug target.

    PubMed

    Jawallapersand, Poojah; Mashele, Samson Sitheni; Kovačič, Lidija; Stojan, Jure; Komel, Radovan; Pakala, Suresh Babu; Kraševec, Nada; Syed, Khajamohiddin

    2014-01-01

    Cytochrome P450 monooxygenases (CYPs/P450s) are heme-thiolate proteins whose role as a drug target against pathogenic microbes has been explored because of their stereo- and regio-specific oxidation activity. We aimed to assess the CYP53 family's role as a common alternative drug target against animal (including human) and plant pathogenic fungi and its role in fungal-mediated wood degradation. Genome-wide analysis of fungal species revealed the presence of CYP53 members in ascomycetes and basidiomycetes. Basidiomycetes had a higher number of CYP53 members in their genomes than ascomycetes. Only two CYP53 subfamilies were found in ascomycetes and six subfamilies in basidiomycetes, suggesting that during the divergence of phyla ascomycetes lost CYP53 P450s. According to phylogenetic and gene-structure analysis, enrichment of CYP53 P450s in basidiomycetes occurred due to the extensive duplication of CYP53 P450s in their genomes. Numerous amino acids (103) were found to be conserved in the ascomycetes CYP53 P450s, against only seven in basidiomycetes CYP53 P450s. 3D-modelling and active-site cavity mapping data revealed that the ascomycetes CYP53 P450s have a highly conserved protein structure whereby 78% amino acids in the active-site cavity were found to be conserved. Because of this rigid nature of ascomycetes CYP53 P450s' active site cavity, any inhibitor directed against this P450 family can serve as a common anti-fungal drug target, particularly toward pathogenic ascomycetes. The dynamic nature of basidiomycetes CYP53 P450s at a gene and protein level indicates that these P450s are destined to acquire novel functions. Functional analysis of CYP53 P450s strongly supported our hypothesis that the ascomycetes CYP53 P450s ability is limited for detoxification of toxic molecules, whereas basidiomycetes CYP53 P450s play an additional role, i.e. involvement in degradation of wood and its derived components. This study is the first report on genome-wide comparative

  20. Neoplastic lesions of the human liver in relation to the activity of the cytochrome P-450 dependent monooxygenase system.

    PubMed

    Plewka, D; Plewka, A; Nowaczyk, G; Kamiński, M; Rutkowski, T; Ludyga, T; Ziaja, K

    2000-01-01

    We studied the activity of Mixed function oxidase (MFO) in human livers affected by cancer. We determined the content of cytochrome P-450 and b5, as well as the activity of their corresponding reductases, according to generally accepted methods. Liver fragments corresponding with a) healthy tissue, b) tissue at the cancer border and, c) cancerous tissue were collected during surgery from patients with liver cancer. We noted that the developing liver cancer decreased the level of cytochrome P-450, even by a magnitude order. The activity of its corresponding reductase was higher in cancerous than in healthy tissues. Cytochrome b5 behaved in an analogous manner, although the decrease in its content was less significant. NADH-cytochrome b5 reductase activity changes were insignificant.

  1. The Cytochrome P450 Homepage

    PubMed Central

    2009-01-01

    The Cytochrome P450 Homepage is a universal resource for nomenclature and sequence information on cytochrome P450 (CYP) genes. The site has been in continuous operation since February 1995. Currently, naming information for 11,512 CYPs are available on the web pages. The P450 sequences are manually curated by David Nelson, and the nomenclature system conforms to an evolutionary scheme such that members of CYP families and subfamilies share common ancestors. The organisation and content of the Homepage are described. PMID:19951895

  2. Characterization of a catalytically self-sufficient 119,000-dalton cytochrome P-450 monooxygenase induced by barbiturates in Bacillus megaterium.

    PubMed

    Narhi, L O; Fulco, A J

    1986-06-01

    A unique cytochrome P-450-dependent fatty acid monooxygenase from Bacillus megaterium ATCC 14581 is strongly induced by phenobarbital (Narhi, L. O., and Fulco, A. J. (1982) J. Biol. Chem. 257, 2147-2150) and many other barbiturates (Kim, B.-H., and Fulco, A. J. (1983) Biochem. Biophys. Res. Commun. 116, 843-850). This monooxygenase has now been purified to homogeneity from pentobarbital-induced bacteria as a single polypeptide with a molecular weight of 119,000 +/- 5,000 daltons. In the presence of NADPH and O2, it can catalyze the oxygenation of long chain fatty acids without the aid of any other protein. The enzyme has a catalytic center activity of 4,600 nmol of fatty acid oxygenated per nmol of P-450 (the highest activity yet reported for a P-450-dependent monooxygenase) and also functions as a highly active cytochrome c reductase in the presence of NADPH. The purified holoenzyme is a soluble protein containing 40 mol % hydrophobic amino acid residues and 1 mol each of FAD and FMN/mol of heme. It is isolated and purified in the low spin form but is converted to the high spin form in the presence of long chain fatty acids. The enzyme, which catalyzes the omega-2 hydroxylation of saturated fatty acids and the hydroxylation and epoxidation of unsaturated fatty acids has its highest affinity (Km = 2 +/- 1 microM) for the C15 and C16 chain lengths. PMID:3086309

  3. Cytochrome P-450 monooxygenase systems in aquatic species: carcinogen metabolism and biomarkers for carcinogen and pollutant exposure.

    PubMed Central

    Stegeman, J J; Lech, J J

    1991-01-01

    High levels of polynuclear aromatic hydrocarbon (PAH) carcinogens commonly occur in aquatic systems where neoplasms arise in fish and other animals. Enzymes that transform PAHs can act in initiating these diseases and can indicate the contamination of fish by carcinogens and other pollutants. Cytochrome P-450 has similar roles in activating PAH carcinogens in fish and mammalian species. PAHs and many chlorinated hydrocarbons, e.g., polychlorinated biphenyls (PCBs) induce a form of cytochrome P-450 in fish that is the primary catalyst of PAH metabolism. The induction of this P-450 in fish can accelerate the disposition of hydrocarbons, but can also enhance the formation of carcinogenic derivatives of PAHs. Invertebrates have lower rates of PAH metabolism than fish. These rates are not obviously inducible by exposure to PAHs or PCBs. The lower rates of foreign compound metabolism contribute to higher pollutant residue levels in bivalve mollusks (clams, mussels, etc.) than in fish and may limit the involvement of some procarcinogens (requiring activation) in disease processes in invertebrates. The induction of P-450 forms can indicate the exposure of fish to PAHs, PCBs, and other toxic compounds. This is not restricted to carcinogens. Environmental induction has been detected in fish from contaminated areas by use of catalytic assay, antibodies to fish P-450, and cDNA probes that hybridize with P-450 messenger RNA. Application of these methods can provide sensitive biological monitoring tools that can detect environmental contamination of fish by some carcinogens and tumor promoters.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2050047

  4. Peony-Glycyrrhiza Decoction, an Herbal Preparation, Inhibits Clozapine Metabolism via Cytochrome P450s, but Not Flavin-Containing Monooxygenase in In Vitro Models.

    PubMed

    Wang, Wei; Tian, Dan-Dan; Zheng, Bin; Wang, Di; Tan, Qing-Rong; Wang, Chuan-Yue; Zhang, Zhang-Jin

    2015-07-01

    Our previous studies have shown the therapeutic efficacy and underlying mechanisms of Peony-Glycyrrhiza Decoction (PGD), an herbal preparation, in treating antipsychotic-induced hyperprolactinemia in cultured cells, animal models, and human subjects. In the present study, we further evaluated pharmacokinetic interactions of PGD with clozapine (CLZ) in human liver microsomes (HLM), recombinantly expressed cytochrome P450s (P450s), and flavin-containing monooxygenases (FMOs). CLZ metabolites, N-demethyl-clozapine and clozapine-N-oxide, were measured. PGD, individual peony and glycyrrhiza preparations, and the two individual preparations in combination reduced production of CLZ metabolites to different extents in HLM. While the known bioactive constituents of PGD play a relatively minor role in the kinetic effects of PGD on P450 activity, PGD as a whole had a weak-to-moderate inhibitory potency toward P450s, in particular CYP1A2 and CYP3A4. FMOs are less actively involved in mediating CLZ metabolism and the PGD inhibition of CLZ. These results suggest that PGD has the capacity to suppress CLZ metabolism in the human liver microsomal system. This suppression is principally associated with the inhibition of related P450 activity but not FMOs. The present study provides in vitro evidence of herb-antipsychotic interactions.

  5. Molecular cloning, bacterial expression and functional characterisation of cytochrome P450 monooxygenase, CYP97C27, and NADPH-cytochrome P450 reductase, CPR I, from Croton stellatopilosus Ohba.

    PubMed

    Sintupachee, Siriluk; Ngamrojanavanich, Nattaya; Sitthithaworn, Worapan; De-Eknamkul, Wanchai

    2014-12-01

    The cDNAs for cytochrome P450 monooxygenase (designated as CYP97C27 by D. Nelson's group) and NADPH-cytochrome P450 reductase (designated as CPR I based on its classification) were isolated from Croton stellatopilosus leaves, which actively biosynthesise plaunotol (18-OH geranylgeraniol). CYP97C27 and CPR I contain open reading frames encoding proteins of 471 and 711 amino acids with predicted molecular masses of 53 and 79kDa, respectively. By aligning the deduced sequences of CYP97C27 and CPR I with other plant species, all functional domains of CYP97C27 (heme and oxygen binding) and CPR I (CYP- and FMN, FAD, and NADPH cofactor binding) were identified. Amino acid sequence comparison indicated that both CYP97C27 (85-93%) and CPR I (79-83%) share high sequence identities with homologous proteins in other plant species, suggesting that CYP97C27 belongs to the CYP97C subfamily and that CPR I belongs to class I of the dicotyledonous CPR. Functional characterisation of both enzymes, produced in Escherichia coli (pET32a/BL21(DE3)) as recombinant proteins, showed that simultaneous incubation of CYP97C27 and CPR I with the substrate geranylgeraniol (GGOH) and coenzyme NADPH led to formation of the product plaunotol. In C. stellatopilosus, the levels of the CYP97C27 and CPR I transcripts were highly correlated with those of several mRNAs involved in the plaunotol biosynthetic pathway, suggesting that CYP97C27 and CPR I are the enzymes that catalyse the last hydroxylation step of the pathway.

  6. Induction by barbiturates of a cytochrome P-450-dependent fatty acid monooxygenase in Bacillus megaterium: relationship between barbiturate structure and inducer activity.

    PubMed

    Kim, B H; Fulco, A J

    1983-11-15

    In a recent communication (Narhi, L. and Fulco, A.J. [1982] J. Biol. Chem. 257, 2147-2150) we found that a soluble cytochrome P-450-dependent fatty acid monooxygenase isolated from Bacillus megaterium ATCC 14581 could be induced about 28-fold by phenobarbital. We have now examined 19 barbiturates and found that 13 significantly induce the specific monooxygenase activity. Of these, 11 are more active than phenobarbital and three (secobarbital, thiamylal and methohexital) are more than 30 times as active on a molar basis. The dialkyl barbiturates without exception show an excellent correlation between increasing lipophilicity and increasing potency as inducers as do most of the barbiturates containing an aromatic substituent. Nevertheless, it is apparent that certain structural features involving factors other than lipophilicity are also necessary for induction. Our finding that barbiturates can cause the non-substrate induction of a cytochrome P-450-dependent monooxygenase in a prokaryote represents a unique discovery that may provide a relatively simple model for apparently similar induction systems in higher animals. PMID:6418172

  7. Development of a fed-batch process for the production of the cytochrome P450 monooxygenase CYP102A1 from Bacillus megaterium in E. coli.

    PubMed

    Pflug, Simon; Richter, Sven M; Urlacher, Vlada B

    2007-05-01

    A fed-batch process utilizing a pET-based expression system (pET28a+ derivative) and E. coli BL21(DE3) as production strain for the heterologous expression of recombinant cytochrome P450 monooxygenase CYP102A1 from Bacillus megaterium was developed. In a first step the expression was optimized during a series of flask experiments testing several parameters for their influence on the expression level, activity and solubility of the recombinant protein. The optimal process parameters found in the flask experiments were transferred to a cultivation process in a 5l (operating volume) bioreactor with a special focus on the feeding strategy and the aeration during expression. Glycerol feeding proved to be superior over glucose as carbon source since the formation of larger amounts of acetate was prevented. Expression levels exceeding 12,500nmoll(-1), corresponding to approximately 1.5gl(-1) of product in culture medium ( approximately 11% of CDW) could be demonstrated. The P450 enzyme showed high activity and high solubility. The findings now can be transferred to other enzyme variants and different P450 monooxygenases to increase production of recombinant proteins.

  8. Licodione Synthase, a Cytochrome P450 Monooxygenase Catalyzing 2-Hydroxylation of 5-Deoxyflavanone, in Cultured Glycyrrhiza echinata L. Cells.

    PubMed Central

    Otani, K.; Takahashi, T.; Furuya, T.; Ayabe, Si.

    1994-01-01

    Cultured Glycyrrhiza echinata L. (Leguminosae) cells produce a retrochalcone echinatin (4,4[prime]-dihydroxy-2-methoxychalcone) and its biosynthetic intermediate licodione [1-(2,4-dihydroxyphenyl)-3-(4-hydroxyphenyl)-1,3-propanedione, a dibenzoylmethane (keto form) or its enol tautomer ([beta]-hydroxychalcone)], when treated with elicitor-active substances, e.g. yeast extract. A microsomal fraction (160,000g pellet) prepared from yeast extract-induced suspension cultures of G. echinata catalyzed the formation of licodione from (2S)-liquiritigenin (7,4[prime]-dihydroxyflavanone) in the presence of NADPH and air. This licodione synthase activity was shown to be dependent on cytochrome P450 by its microsomal localization, requirement of NAD(P)H and O2 for activity, and inhibition by typical cytochrome P450 inhibitors. Licodione synthase activity transiently increased in the cells after treatment with yeast extract. When (2S)-naringenin (5,7,4[prime]-trihydroxyflavanone) and NADPH were incubated with the same microsomal preparation, a polar compound, which further converted into apigenin (5,7,4[prime]-trihydroxyflavone) when treated with acid, was produced. The reaction mechanism of licodione synthase is likely to be 2-hydroxylation of the flavanone molecule and subsequent hemiacetal opening and is possibly the same as the previously suggested mechanism of flavone synthase II from soybean and, furthermore, closely related to isoflavone synthase from Pueraria lobata. PMID:12232298

  9. Cytochromes P450 in Nanodiscs

    PubMed Central

    Denisov, Ilia G.; Sligar, Stephen G.

    2010-01-01

    Nanodiscs have proven to be a versatile tool for the study all types of membrane proteins, including receptors, transporters, enzymes and viral antigens. The self-assembled Nanodisc system provides a robust and common means for rendering these targets soluble in aqueous media while providing a native like bilayer environment that maintains functional activity. This system has thus provided a means for studying the extensive collection of membrane bound cytochromes P450 with the same biochemical and biophysical tools that have been previously limited to use with the soluble P450s. These include a plethora of spectroscopic, kinetic and surface based methods. Significant improvements in homogeneity and stability of these preparations open new possibilities for detailed analysis of equilibrium and steady-state kinetic characteristics of catalytic mechanisms of human cytochromes P450 involved in xenobiotic metabolism and in steroid biosynthesis. The experimental methods developed for physico-chemical and functional studies of membrane cytochromes P450 incorporated in Nanodiscs allow for more detailed understanding of the scientific questions along the lines pioneered by Professor Klaus Ruckpaul and his array of colleagues and collaborators. PMID:20685623

  10. Impacts of diversification of cytochrome P450 on plant metabolism.

    PubMed

    Mizutani, Masaharu

    2012-01-01

    Cytochrome P450 monooxygenases (P450s) catalyze a wide variety of monooxygenation reactions in primary and secondary metabolism in plants. The share of P450 genes in each plant genome is estimated to be up to 1%. This implies that the diversification of P450 has made a significant contribution to the ability to acquire the emergence of new metabolic pathways during land plant evolution. The P450 families conserved universally in land plants contribute to their chemical defense mechanisms. Several P450s are involved in the biosynthesis and catabolism of plant hormones. Species-specific P450 families are essential for the biosynthetic pathways of phytochemicals such as terpenoids and alkaloids. Genome wide analysis of the gene clusters including P450 genes will provide a clue to defining the metabolic roles of orphan P450s. Metabolic engineering with plant P450s is an important technology for large-scale production of valuable phytochemicals such as medicines.

  11. Transplantation of fetal liver tissue suspension into the spleens of adult syngenic rats: inducibility of cytochrome P450 dependent monooxygenase functions by beta-naphthoflavone, phenobarbital and dexamethasone.

    PubMed

    Lupp, A; Lau, K; Trautmann, A K; Krausse, T; Klinger, W

    1999-01-01

    In the present study the effects of beta-naphthoflavone (BNF), phenobarbital (PB) and dexamethasone (DEX) on cytochrome P450 (P450) dependent monooxygenase functions were investigated in intrasplenic liver cell explants in comparison to adult liver. Fetal liver tissue suspensions were transplanted into the spleens of 60-90 days old adult male syngenic Fisher 344 inbred rats. 2, 4 or 6 months after surgery, transplant recipients and age matched controls were orally treated with BNF (1x50 mg/kg body weight (b.wt.)), PB (1x50 mg/kg b.wt.), DEX (for 3 days 4 mg/kg b.wt. per day), or the respective solvents (dimethylsulfoxide or 0.9% NaCl). The animals were sacrificed 24 (BNF, DEX) or 48 (PB) hours after the last treatment. P450 mediated monooxygenase functions were measured in spleen and liver 9000 g supernatants by three model reactions for different P450 subtypes: ethoxyresorufin O-deethylation (EROD; 1A), ethoxycoumarin O-deethylation (ECOD; 1A, 2A, 2B), and ethylmorphine N-demethylation (END; 3A). Spleen weights were significantly higher in transplanted rats, compared to controls, at all three time points after surgery. Induction with PB or DEX, and in some cases also with BNF, lead to a significant increase in liver weights of transplant recipients and control rats independent of the time after transplantation. In contrast, there was no influence on spleen weights due to BNF or PB. At all time points after surgery, with DEX a marked decrease in body weights, weights of adrenal glands and of lymphatic organs like thymus glands and spleens was observed, with the weights of the transplant containing spleens being still higher in comparison to control organs. Spleens of control animals displayed nearly no P450 mediated monooxygenase functions neither without nor with induction. After transplantation, however, significant EROD and ECOD, but hardly any END activities were seen in the host organs at all three time points after surgery. In transplant containing spleens

  12. Effect of chronic exposure to ozone and nitric acid on cytochrome P450 monooxygenase system of rat lung and liver

    SciTech Connect

    Sindhu, R.K.; Mautz, W.J.; Ichiro Fujita, Nai-San Wang; Yutaka, Kikkawa

    1996-03-08

    Male F344/N rats were exposed to 0.15ppm ozone (O{sub 3}) and 50{mu}g/m{sup 3} nitric acid (HNO{sub 3}) vapor alone and in combination for 4h/day 3days/week for a total of 40 weeks. Exposure to HNO{sub 3} vapor alone caused a significant increase of 7-ethoxyresorufin O-deethylase (EROD) activity in the hepatic microsomes (p{le}0.05). Monoclonal cytochrome P450 aA1/1A2 antibody-precipitable EROD activity in the hepatic microsomes was increased by 59% (p{le}0.01) and 40T (p{le}0.05), respectively, in the HNO{sub 3} vapor and {sub 3}+HNO{sub 3} vapor groups. In the pulmonary microsomes, benzphetamine N-demethylase (BPND) activity was increased by 72% (p{le}0.01), 85% (p{le}0.01) and decreased by 15% (p{le}0.01), respectively, by exposure to O{sub 3}, O{sub 3}+HNO{sub 3} and HNO{sub 3} vapor, but was unaffected in the hepatic microsomes.

  13. Canine cytochrome P-450 pharmacogenetics.

    PubMed

    Court, Michael H

    2013-09-01

    The cytochrome P-450 (CYP) drug metabolizing enzymes are essential for the efficient elimination of many clinically used drugs. These enzymes typically display high interindividual variability in expression and function resulting from enzyme induction, inhibition, and genetic polymorphism thereby predisposing patients to adverse drug reactions or therapeutic failure. There are also substantial species differences in CYP substrate specificity and expression that complicate direct extrapolation of information from humans to veterinary species. This article reviews the available published data regarding the presence and impact of genetic polymorphisms on CYP-dependent drug metabolism in dogs in the context of known human-dog CYP differences.

  14. P450monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium

    PubMed Central

    Syed, Khajamohiddin; Yadav, Jagjit S

    2012-01-01

    Phanerochaete chrysosporium, the model white rot fungus, has been the focus of research for the past about four decades for understanding the mechanisms and processes of biodegradation of the natural aromatic polymer lignin and a broad range of environmental toxic chemicals. The ability to degrade this vast array of xenobiotic compounds was originally attributed to its lignin-degrading enzyme system (LDS), mainly the extracellular peroxidases. However, subsequent physiological, biochemical, and/or genetic studies by us and others identified the involvement of a peroxidase-independent oxidoreductase system, the cytochrome P450 monooxygenase system. The whole genome sequence revealed an extraordinarily large P450 contingent (P450ome) with an estimated 149 P450s in this organism. This review focuses on the current status of understanding on the P450 monooxygenase system of P. chrysosporium in terms of pre-genomic and post-genomic identification, structural and evolutionary analysis, transcriptional regulation, redox partners, and functional characterization for its biodegradative potential. Future research on this catalytically diverse oxidoreductase enzyme system and its major role as a newly emerged player in xenobiotic metabolism/degradation is discussed. PMID:22624627

  15. Mannitol Stress Directs Flavonoid Metabolism toward Synthesis of Flavones via Differential Regulation of Two Cytochrome P450 Monooxygenases in Coleus forskohlii

    PubMed Central

    Awasthi, Praveen; Gupta, Ajai Prakash; Bedi, Yashbir S.; Vishwakarma, Ram A.; Gandhi, Sumit G.

    2016-01-01

    Cytochrome P450 monooxygenases (CYP450s) are known to play important roles in biosynthesis of all secondary metabolites, including flavonoids. Despite this, few CYP450s have been functionally characterized in model plants and roles of fewer CYP450s are known in non-model, medicinal, and aromatic plants. Our study in Coleus forskohlii indicates that flavone synthase (CYP93B) and flavonoid 3′ monooxygenase (CYP706C) are key enzymes positioned at a metabolic junction, to execute the biosynthesis of different sub-classes of flavonoids (flavones, flavonol, anthocynanin, isoflavones etc.) from a common precursor. Such branch points are favored targets for artificially modulating the metabolic flux toward specific metabolites, through genetic manipulation or use of elicitors that differentially impact the expression of branch point genes. Genkwanin, the only flavone reported from C. forskohlii, is known to possess anti-inflammatory activity. It is biosynthesized from the general flavonoid precursor: naringenin. Two differentially expressed cytochrome P450 genes (CfCYP93B, CfCYP706C), exhibiting maximum expression in leaf tissues, were isolated from C. forskohlii. Mannitol treatment resulted in increased expression of CfCYP93B and decrease in expression of CfCYP706C. Metabolite quantification data showed that genkwanin content increased and anthocyanin levels decreased in response to mannitol treatment. Alignment, phylogenetic analysis, modeling, and molecular docking analysis of protein sequences suggested that CfCYP93B may be involved in conversion of naringenin to flavones (possibly genkwanin via apigenin), while CfCYP706C may act on common precursors of flavonoid metabolism and channel the substrate toward production of flavonols or anthocynanins. Decrease in expression of CfCYP706C and increase in accumulation of genkwanin suggested that mannitol treatment may possibly lead to accumulation of genkwanin via suppression of a competitive branch of flavonoids in C

  16. Mannitol Stress Directs Flavonoid Metabolism toward Synthesis of Flavones via Differential Regulation of Two Cytochrome P450 Monooxygenases in Coleus forskohlii.

    PubMed

    Awasthi, Praveen; Gupta, Ajai Prakash; Bedi, Yashbir S; Vishwakarma, Ram A; Gandhi, Sumit G

    2016-01-01

    Cytochrome P450 monooxygenases (CYP450s) are known to play important roles in biosynthesis of all secondary metabolites, including flavonoids. Despite this, few CYP450s have been functionally characterized in model plants and roles of fewer CYP450s are known in non-model, medicinal, and aromatic plants. Our study in Coleus forskohlii indicates that flavone synthase (CYP93B) and flavonoid 3' monooxygenase (CYP706C) are key enzymes positioned at a metabolic junction, to execute the biosynthesis of different sub-classes of flavonoids (flavones, flavonol, anthocynanin, isoflavones etc.) from a common precursor. Such branch points are favored targets for artificially modulating the metabolic flux toward specific metabolites, through genetic manipulation or use of elicitors that differentially impact the expression of branch point genes. Genkwanin, the only flavone reported from C. forskohlii, is known to possess anti-inflammatory activity. It is biosynthesized from the general flavonoid precursor: naringenin. Two differentially expressed cytochrome P450 genes (CfCYP93B, CfCYP706C), exhibiting maximum expression in leaf tissues, were isolated from C. forskohlii. Mannitol treatment resulted in increased expression of CfCYP93B and decrease in expression of CfCYP706C. Metabolite quantification data showed that genkwanin content increased and anthocyanin levels decreased in response to mannitol treatment. Alignment, phylogenetic analysis, modeling, and molecular docking analysis of protein sequences suggested that CfCYP93B may be involved in conversion of naringenin to flavones (possibly genkwanin via apigenin), while CfCYP706C may act on common precursors of flavonoid metabolism and channel the substrate toward production of flavonols or anthocynanins. Decrease in expression of CfCYP706C and increase in accumulation of genkwanin suggested that mannitol treatment may possibly lead to accumulation of genkwanin via suppression of a competitive branch of flavonoids in C

  17. An assessment of cadmium toxicity on cytochrome P-450 and flavin monooxygenase-mediated metabolic pathways of dimethylaniline in male rabbits

    SciTech Connect

    Anjum, F.; Raman, A.; Shakoori, A.R.; Gorrod, J.W. )

    1992-07-01

    Cadmium is an environmental pollutant and its effect on the in vitro metabolism of N,N-dimethylaniline (DMA) using male rabbits was investigated. Activities of cytochrome P-450 and FMO-dependent monooxygenases were studied using hepatic microsomes. Following CdCl2 (i.p.) administration (6 mg/kg/day for 6 days), both DMA-N-oxidation and DMA-N-demethylation decreased by 86%. The effects of CdCl2 on the phenobarbitone (PB)-induced form of P-450 were also studied. Intraperitoneal pretreatment of rabbits with PB (5 mg/kg/day for 5 days) increased N-demethylation by 82%, while N-oxidation decreased by 49%. Both reactions decreased significantly on additional treatment with CdCl2. Promethazine (5 mg/kg/day for 5 days) did not produce any change in the activities of either enzyme. The enzymes remained unaffected by CdCl2 treatment in promethazine-pretreated animals thus confirming its role as a hepatoprotective agent.

  18. Luminogenic cytochrome P450 assays.

    PubMed

    Cali, James J; Ma, Dongping; Sobol, Mary; Simpson, Daniel J; Frackman, Susan; Good, Troy D; Daily, William J; Liu, David

    2006-08-01

    Luminogenic cytochrome P450 (CYP) assays couple CYP enzyme activity to firefly luciferase luminescence in a technology called P450-Glo(TM) (Promega). Luminogenic substrates are used in assays of human CYP1A1, -1A2, -1B1, -2C8, -2C9, -2C19, -2D6, -2J2, -3A4, -3A7, -4A11, -4F3B, -4F12 and -19. The assays detect dose-dependent CYP inhibition by test compounds against recombinant CYP enzymes or liver microsomes. Induction or inhibition of CYP activities in cultured hepatocytes is measured in a nonlytic approach that leaves cells intact for additional analysis. Luminogenic CYP assays offer advantages of speed and safety over HPLC and radiochemical-based methods. Compared with fluorogenic methods the approach offers advantages of improved sensitivity and decreased interference between optical properties of test compound and CYP substrate. These homogenous assays are sensitive and robust tools for high-throughput CYP screening in early drug discovery. PMID:16859410

  19. Constitutive Expression of the Cytochrome P450 EthABCD Monooxygenase System Enables Degradation of Synthetic Dialkyl Ethers in Aquincola tertiaricarbonis L108

    PubMed Central

    Schuster, Judith; Purswani, Jessica; Breuer, Uta; Pozo, Clementina; Harms, Hauke; Müller, Roland H.

    2013-01-01

    In Rhodococcus ruber IFP 2001, Rhodococcus zopfii IFP 2005, and Gordonia sp. strain IFP 2009, the cytochrome P450 monooxygenase EthABCD catalyzes hydroxylation of methoxy and ethoxy residues in the fuel oxygenates methyl tert-butyl ether (MTBE), ethyl tert-butyl ether (ETBE), and tert-amyl methyl ether (TAME). The expression of the IS3-type transposase-flanked eth genes is ETBE dependent and controlled by the regulator EthR (C. Malandain et al., FEMS Microbiol. Ecol. 72:289–296, 2010). In contrast, we demonstrated by reverse transcription-quantitative PCR (RT-qPCR) that the betaproteobacterium Aquincola tertiaricarbonis L108, which possesses the ethABCD genes but lacks ethR, constitutively expresses the P450 system at high levels even when growing on nonether substrates, such as glucose. The mutant strain A. tertiaricarbonis L10, which is unable to degrade dialkyl ethers, resulted from a transposition event mediated by a rolling-circle IS91-type element flanking the eth gene cluster in the wild-type strain L108. The constitutive expression of Eth monooxygenase is likely initiated by the housekeeping sigma factor σ70, as indicated by the presence in strain L108 of characteristic −10 and −35 binding sites upstream of ethA which are lacking in strain IFP 2001. This enables efficient degradation of diethyl ether, diisopropyl ether, MTBE, ETBE, TAME, and tert-amyl ethyl ether (TAEE) without any lag phase in strain L108. However, ethers with larger residues, n-hexyl methyl ether, tetrahydrofuran, and alkyl aryl ethers, were not attacked by the Eth system at significant rates in resting-cell experiments, indicating that the residue in the ether molecule which is not hydroxylated also contributes to the determination of substrate specificity. PMID:23354715

  20. Biological diversity of cytochrome P450 redox partner systems.

    PubMed

    McLean, Kirsty J; Luciakova, Dominika; Belcher, James; Tee, Kang Lan; Munro, Andrew W

    2015-01-01

    Cytochrome P450 enzymes (P450s or CYPs) catalyze an enormous variety of oxidative reactions in organisms from all major domains of life. Their monooxygenase activity relies on the reductive scission of molecular oxygen (O2) bound to P450 heme iron, and thus on the delivery of two electrons to the heme iron at discrete points in the catalytic cycle. Early studies suggested that P450 redox partner machinery fell into only two major classes: either the eukaryotic diflavin enzyme NADPH-cytochrome P450 oxidoreductase, or bacterial/mitochondrial NAD(P)H-ferredoxin reductase and ferredoxin partners. However, more recent studies, aided by genome sequence data, reveal a much more complex scenario. Several new types of P450 redox partner systems have now been characterized, including P450s naturally linked to their redox partners, or to a component protein of their P450 electron delivery system. Other P450s have evolved to bypass requirements for redox partners, and instead react directly with hydrogen peroxide or NAD(P)H to facilitate oxidative or reductive catalysis. Further P450s are fused to non-redox partner enzymes and can catalyse consecutive reactions in a common pathway. This chapter describes the biochemistry and the enormous natural diversity of P450 redox systems, including descriptions of novel P450s fused to non-redox partner proteins.

  1. Engineering Cytochrome P450 Biocatalysts for Biotechnology, Medicine, and Bioremediation

    PubMed Central

    Kumar, Santosh

    2009-01-01

    Importance of the field: Cytochrome P450 enzymes comprise a superfamily of heme monooxygenases that are of considerable interest for the: 1) synthesis of novel drugs and drug metabolites, 2) targeted cancer gene therapy, 3) biosensor design, and 4) bioremediation. However, their applications are limited because cytochrome P450, especially mammalian P450 enzymes, show a low turnover rate and stability, and require a complex source of electrons through cytochrome P450 reductase and NADPH. Areas covered in this review: In this review, we discuss the recent progress towards the use of P450 enzymes in a variety of above-mentioned applications. We also present alternate and cost-effective ways to perform P450-mediated reaction, especially using peroxides. Furthermore, we expand upon the current progress in P450 engineering approaches describing several recent examples that are utilized to enhance heterologous expression, stability, catalytic efficiency, and utilization of alternate oxidants. What the reader will gain: The review will provide a comprehensive knowledge in the design of P450 biocatalysts for potentially practical purposes. Finally, we provide a prospective on the future aspects of P450 engineering and its applications in biotechnology, medicine, and bioremediation. Take home message: Because of its wide applications, academic and pharmaceutical researchers, environmental scientists, and health care providers are expected to gain current knowledge and future prospects of the practical use of P450 biocatalysts. PMID:20064075

  2. Reactive Intermediates in Cytochrome P450 Catalysis*

    PubMed Central

    Krest, Courtney M.; Onderko, Elizabeth L.; Yosca, Timothy H.; Calixto, Julio C.; Karp, Richard F.; Livada, Jovan; Rittle, Jonathan; Green, Michael T.

    2013-01-01

    Recently, we reported the spectroscopic and kinetic characterizations of cytochrome P450 compound I in CYP119A1, effectively closing the catalytic cycle of cytochrome P450-mediated hydroxylations. In this minireview, we focus on the developments that made this breakthrough possible. We examine the importance of enzyme purification in the quest for reactive intermediates and report the preparation of compound I in a second P450 (P450ST). In an effort to bring clarity to the field, we also examine the validity of controversial reports claiming the production of P450 compound I through the use of peroxynitrite and laser flash photolysis. PMID:23632017

  3. [Cytochrome P450 enzymes and microbial drug development - A review].

    PubMed

    Li, Zhong; Zhang, Wei; Li, Shengying

    2016-03-01

    Cytochrome P450 enzymes broadly exist in animals, plants and microorganisms. This superfamily of monooxygenases holds the greatest diversity of substrate structures and catalytic reaction types among all enzymes. P450 enzymes play important roles in natural product biosynthesis. In particular, P450 enzymes are capable of catalyzing the regio- and stereospecific oxidation of non-activated C-H bonds in complex organic compounds under mild conditions, which overrides many chemical catalysts. This advantage thus warrants their great potential in microbial drug development. In this review, we introduce a variety of P450 enzymes involved in natural product biosynthesis; provide a brief overview on protein engineering, biotransformation and practical application of P450 enzymes; and discuss the limits, challenges and prospects of industrial application of P450 enzymes.

  4. [Cytochrome P450 enzymes and microbial drug development - A review].

    PubMed

    Li, Zhong; Zhang, Wei; Li, Shengying

    2016-03-01

    Cytochrome P450 enzymes broadly exist in animals, plants and microorganisms. This superfamily of monooxygenases holds the greatest diversity of substrate structures and catalytic reaction types among all enzymes. P450 enzymes play important roles in natural product biosynthesis. In particular, P450 enzymes are capable of catalyzing the regio- and stereospecific oxidation of non-activated C-H bonds in complex organic compounds under mild conditions, which overrides many chemical catalysts. This advantage thus warrants their great potential in microbial drug development. In this review, we introduce a variety of P450 enzymes involved in natural product biosynthesis; provide a brief overview on protein engineering, biotransformation and practical application of P450 enzymes; and discuss the limits, challenges and prospects of industrial application of P450 enzymes. PMID:27382792

  5. Formaldehyde production promoted by rat nasal cytochrome P-450-dependent monooxygenases with nasal decongestants, essences, solvents, air pollutants, nicotine, and cocaine as substrates

    SciTech Connect

    Dahl, A.R.; Hadley, W.M.

    1983-02-01

    To identify compounds which might be metabolized to formaldehyde in the nasal cavity, 32 potential substrates for cytochrome P-450-dependent monooxygenases were screened with rat nasal and, for comparison, liver microsomes. Tested substrates included 6 nasal decongestants, cocaine, nicotine, 9 essences, 3 potential air pollutants, and 12 solvents. Each test substrate, with the possible exception of the air pollutants, contained one or more N-methyl, O-methyl, or S-methyl groups. Eighteen of the tested materials were metabolized to produce formaldehyde by nasal microsomes. Five substrates, namely, the solvents HMPA and dimethylaniline, cocaine, and the essences dimethyl anthranilate and p-methoxyacetophenone, were metabolized to produce formaldehyde at rates exceeding 1000 pmol/mg microsomal protein/min by nasal microsomes. Eight substrates, including four nasal decongestants, nicotine, and an extract of diesel exhaust particles, were metabolized to produce formaldehyde at rates of 200 to 1000 pmol/mg microsomal protein/min. Five other substrates were metabolized to formaldehyde at detectable rates. The results indicate that a variety of materials which often come in contact with the nasal mucosa can be metabolized to formaldehyde by nasal enzymes. The released formaldehyde may influence the irritancy of inhaled compounds and has been suggested to play a role in the tumorigenicity of some compounds.

  6. Induction of cytochrome P450-associated monooxygenases in northern leopard frogs, Rana pipiens, by 3,3',4,4',5-pentachlorobiphenyl

    USGS Publications Warehouse

    Huang, Y.-W.; Melancon, M.J.; Jung, R.E.; Karasov, W.H.

    1998-01-01

    Northern leopard frogs (Rana pipiens) were injected intraperitoneally either with a solution of polychlorinated biphenyl (PCB) 126 in corn oil at a concentration of 0.2, 0.7, 2.3 and 7.8 mg/kg body weight or with corn oil alone. Appropriate assay conditions with hepatic microsomes were determined for four cytochrome P450-associated monooxygenases: ethoxyresorufin-O-dealkylase (EROD), methoxy-ROD (MROD), benzyloxy-ROD (BROD) and pentoxy-ROD (PROD). One week after PCB administration, the specific activities of EROD, MROD, BROD and PROD were not elevated at doses ? 0.7 mg/kg (p > 0.05), but were significantly increased at doses ? 2.3 mg/kg compared to the control groups (p < 0.05). The increased activity of these four enzymes ranged from 3to 6.4fold relative to control levels. The increased activities were maintained for at least four weeks. Due to a lack of induction at low doses of PCB 126, which were still relatively high compared to currentlyknown environmental concentrations, we suspect that EROD, MROD, BROD, and PROD activities are not sensitive biomarkers for coplanar PCB exposure in leopard frogs.

  7. Induction of cytochrome P450-associated monooxygenases in northern leopard frogs, Rana pipiens, by 3,3{prime},4,4{prime},5-pentachlorobiphenyl

    SciTech Connect

    Huang, Y.; Jung, R.E.; Karasov, W.H.; Melancon, M.J.

    1998-08-01

    In the past decade, biochemical and physiological characteristics such as hepatic detoxifying system. DNA adducts, thyroid malfunction, and acetylcholinesterase inhibition have been used extensively as biomarkers for contaminant exposure. Northern leopard frogs (Rana pipiens) were injected intraperitoneally either with a solution of polychlorinated biphenyl (PCB) 126 m corn oil at a concentration of 0.2, 0.7, 2.3, or 7.8 mg/kg body weight or with corn oil alone. Appropriate assay conditions with hepatic microsomes were determined for four cytochrome P450-associated monooxygenases: ethoxyresorufin-O-dealkylase (EROD), methoxy-ROD (MROD), benzyloxy-ROD (BROD), and pentoxy-ROD (PROD). One week after PCB administration, the specific activities of EROD, MROD, BROD, and PROD were not elevated at doses {le}0.7 mg/kg (p > 0.05) but were significantly increased at doses {ge}2.3 mg/kg compared to the control groups (p < 0.05). The increased activities of these four enzymes were 3 to 6.4 times those in the control groups. The increased activities were maintained for at least 4 weeks. Because of a lack of induction at low doses of PCB 126, which were still relatively high compared to currently known environmental concentration, the authors suspect that EROD, MROD, BROD, and PROD activities are not sensitive biomarkers for coplanar PCB exposure in leopard frogs.

  8. Detection of toxic effects of Cd2+ on different fish species via liver cytochrome P450-dependent monooxygenase activities and FTIR spectroscopy.

    PubMed

    Henczová, Mária; Deér, Aranka Kiss; Komlósi, Viktória; Mink, János

    2006-06-01

    The in vivo and in vitro effects of Cd2+ and the CYP1A inductor beta-naphthoflavone(beta-NF) on the hepatic cytochrome P450 (Cyt 450) monooxygenases were studied in silver carp (Hypophthalmichtys molitrix V.), wels (Silurus glanis L.), and carp (Cyprinus carpio). In vivo treatment of carp with a high dose of Cd2+ (10 mg kg(-1), for 3 days) caused a strong inhibition of 7-ethoxyresorufin-O-deethylase (EROD) and a lower inhibition of 7-ethoxycoumarin-O-deethylase (ECOD) activity. The low-dose cadmium treatment (2 mg kg(-1) Cd2+, for 6+3 days) resulted in 4-fold increase in EROD and a 3-fold increase in ECOD activity. The combined treatment with Cd2+ and beta-NF in both cases led to a loss of EROD inducibility. The silver carp and wels were treated with 10 mg L(-1) Cd2+ for 72 h in water. The Cyt P450 content in the wels liver microsomes was increased significantly after treatment for 48 h, whereas there was only a slight, not significant increase in Cyt P450 content in the silver carp microsomes. While the Cd2+ treatment resulted in inhibition of the CYP1A isoenzymes (EROD and ECOD), the APND (aminopyrene-N-demethylase, CYP2B or CYP3A isoenzyme) activity was increased 3- to 4-fold in both fish species. In vitro experiments of the effect of Cd2+ led to a concentration-dependent inhibition in all three investigated fish species. The ECOD isoenzyme of silver carp was the most sensitive to Cd2+. The lowest concentration of Cd2+ resulted in 50% inhibition. The APND isoenzyme was similarly sensitive to Cd2+ in all three investigated fish species. The most sensitive species was the wels, and the least sensitive were the carp isoenzyme. FTIR spectroscopy confirmed that cadmium caused damage to the protein structure. These results support the enzyme activity measurements measured in vivo and in vitro.

  9. Conserved promoter elements in the CYP6B gene family suggest common ancestry for cytochrome P450 monooxygenases mediating furanocoumarin detoxification.

    PubMed

    Hung, C F; Holzmacher, R; Connolly, E; Berenbaum, M R; Schuler, M A

    1996-10-29

    Despite the fact that Papilio glaucus and Papilio polyxenes share no single hostplant species, both species feed to varying extents on hostplants that contain furanocoumarins. P. glaucus contains two nearly identical genes, CYP6B4v2 and CYP6B5v1, and P. polyxenes contains two related genes, CYP6B1v3 and CYP6B3v2. Except for CYP6B3v2, the substrate specificity of which has not yet been defined, each of the encoded cytochrome P450 monooxygenases (P450s) metabolizes an array of linear furanocoumarins. All four genes are transcriptionally induced in larvae by exposure to the furanocoumarin xanthotoxin; several are also induced by other furanocoumarins. Comparisons of the organizational structures of these genes indicate that all have the same intron/exon arrangement. Sequences in the promoter regions of the P. glaucus CYP6B4v2/CYP6B5v1 genes and the P. polyxenes CYP6B3v2 gene are similar but not identical to the -146 to -97 region of CYP6B1v3 gene, which contains a xanthotoxin-responsive element (XRE-xan) important for basal and xanthotoxin-inducible transcription of CYP6B1v3. Complements of the xenobiotic-responsive element (XRE-AhR) in the dioxin-inducible human and rat CYP1A1 genes also exist in all four promoters, suggesting that these genes may be regulated by dioxin. Antioxidant-responsive elements (AREs) in mouse and rat glutathione S-transferase genes and the Barbie box element (Bar) in the bacterial CYP102 gene exist in the CYP6B1v3, CYP6B4v2, and CYP6B5v1 promoters. Similarities in the protein sequences, intron positions, and xanthotoxin- and xenobiotic-responsive promoter elements indicate that these insect CYP6B genes are derived from a common ancestral gene. Evolutionary comparisons between these P450 genes are the first available for a group of insect genes transcriptionally regulated by hostplant allelochemicals and provide insights into the process by which insects evolve specialized feeding habits.

  10. Cytochrome P450: taming a wild type enzyme

    PubMed Central

    Jung, Sang Taek; Lauchli, Ryan; Arnold, Frances H

    2011-01-01

    Protein engineering of cytochrome P450 monooxygenases (P450s) has been very successful in generating valuable non-natural activities and properties, allowing these powerful catalysts to be used for the synthesis of drug metabolites and in biosynthetic pathways for the production of precursors of artemisinin and paclitaxel. Collected experience indicates that the P450s are highly 'evolvable'--they are particularly robust to mutation in their active sites and readily accept new substrates and exhibit new selectivities. Their ability to adapt to new challenges upon mutation may reflect the nonpolar nature of their active sites as well as their high degree of conformational variability. PMID:21411308

  11. Homotropic cooperativity of monomeric cytochrome P450 3A4

    SciTech Connect

    Baas, Bradley J.; Denisov, Ilia G.; Sligar, Stephen G.

    2010-11-16

    Mechanistic studies of mammalian cytochrome P450s are often obscured by the phase heterogeneity of solubilized preparations of membrane enzymes. The various protein-protein aggregation states of microsomes, detergent solubilized cytochrome or a family of aqueous multimeric complexes can effect measured substrate binding events as well as subsequent steps in the reaction cycle. In addition, these P450 monooxygenases are normally found in a membrane environment and the bilayer composition and dynamics can also effect these catalytic steps. Here, we describe the structural and functional characterization of a homogeneous monomeric population of cytochrome P450 3A4 (CYP 3A4) in a soluble nanoscale membrane bilayer, or Nanodisc [Nano Lett. 2 (2002) 853]. Cytochrome P450 3A4:Nanodisc assemblies were formed and purified to yield a 1:1 ratio of CYP 3A4 to Nanodisc. Solution small angle X-ray scattering was used to structurally characterize this monomeric CYP 3A4 in the membrane bilayer. The purified CYP 3A4:Nanodiscs showed a heretofore undescribed high level of homotropic cooperativity in the binding of testosterone. Soluble CYP 3A4:Nanodisc retains its known function and shows prototypic hydroxylation of testosterone when driven by hydrogen peroxide. This represents the first functional characterization of a true monomeric preparation of cytochrome P450 monooxygenase in a phospholipid bilayer and elucidates new properties of the monomeric form.

  12. A world of cytochrome P450s.

    PubMed

    Nelson, David R

    2013-02-19

    The world we live in is a biosphere influenced by all organisms who inhabit it. It is also an ecology of genes, with some having rather startling effects. The premise put forth in this issue is cytochrome P450 is a significant player in the world around us. Life and the Earth itself would be visibly different and diminished without cytochrome P450s. The contributions to this issue range from evolution on the billion year scale to the colour of roses, from Darwin to Rachel Carson; all as seen through the lens of cytochrome P450.

  13. A world of cytochrome P450s

    PubMed Central

    Nelson, David R.

    2013-01-01

    The world we live in is a biosphere influenced by all organisms who inhabit it. It is also an ecology of genes, with some having rather startling effects. The premise put forth in this issue is cytochrome P450 is a significant player in the world around us. Life and the Earth itself would be visibly different and diminished without cytochrome P450s. The contributions to this issue range from evolution on the billion year scale to the colour of roses, from Darwin to Rachel Carson; all as seen through the lens of cytochrome P450. PMID:23297353

  14. Unusual properties of the cytochrome P450 superfamily

    PubMed Central

    Lamb, David C.; Waterman, Michael R.

    2013-01-01

    During the early years of cytochrome P450 research, a picture of conserved properties arose from studies of mammalian forms of these monooxygenases. They included the protohaem prosthetic group, the cysteine residue that coordinates to the haem iron and the reduced CO difference spectrum. Alternatively, the most variable feature of P450s was the enzymatic activities, which led to the conclusion that there are a large number of these enzymes, most of which have yet to be discovered. More recently, studies of these enzymes in other eukaryotes and in prokaryotes have led to the discovery of unexpected P450 properties. Many are variations of the original properties, whereas others are difficult to explain because of their unique nature relative to the rest of the known members of the superfamily. These novel properties expand our appreciation of the broad view of P450 structure and function, and generate curiosity concerning the evolution of P450s. In some cases, structural properties, previously not found in P450s, can lead to enzymatic activities impacting the biological function of organisms containing these enzymes; whereas, in other cases, the biological reason for the variations are not easily understood. Herein, we present particularly interesting examples in detail rather than cataloguing them all. PMID:23297356

  15. Cloning and characterization of the biosynthetic gene cluster of 16-membered macrolide antibiotic FD-891: involvement of a dual functional cytochrome P450 monooxygenase catalyzing epoxidation and hydroxylation.

    PubMed

    Kudo, Fumitaka; Motegi, Atsushi; Mizoue, Kazutoshi; Eguchi, Tadashi

    2010-07-26

    FD-891 is a 16-membered cytotoxic antibiotic macrolide that is especially active against human leukemia such as HL-60 and Jurkat cells. We identified the FD-891 biosynthetic (gfs) gene cluster from the producer Streptomyces graminofaciens A-8890 by using typical modular type I polyketide synthase (PKS) genes as probes. The gfs gene cluster contained five typical modular type I PKS genes (gfsA, B, C, D, and E), a cytochrome P450 gene (gfsF), a methyltransferase gene (gfsG), and a regulator gene (gfsR). The gene organization of PKSs agreed well with the basic polyketide skeleton of FD-891 including the oxidation states and alpha-alkyl substituent determined by the substrate specificities of the acyltransferase (AT) domains. To clarify the involvement of the gfs genes in the FD-891 biosynthesis, the P450 gfsF gene was inactivated; this resulted in the loss of FD-891 production. Instead, the gfsF gene-disrupted mutant accumulated a novel FD-891 analogue 25-O-methyl-FD-892, which lacked the epoxide and the hydroxyl group of FD-891. Furthermore, the recombinant GfsF enzyme coexpressed with putidaredoxin and putidaredoxin reductase converted 25-O-methyl-FD-892 into FD-891. In the course of the GfsF reaction, 10-deoxy-FD-891 was isolated as an enzymatic reaction intermediate, which was also converted into FD-891 by GfsF. Therefore, it was clearly found that the cytochrome P450 GfsF catalyzes epoxidation and hydroxylation in a stepwise manner in the FD-891 biosynthesis. These results clearly confirmed that the identified gfs genes are responsible for the biosynthesis of FD-891 in S. graminofaciens.

  16. Novel phacB-Encoded Cytochrome P450 Monooxygenase from Aspergillus nidulans with 3-Hydroxyphenylacetate 6-Hydroxylase and 3,4-Dihydroxyphenylacetate 6-Hydroxylase Activities▿

    PubMed Central

    Ferrer-Sevillano, Francisco; Fernández-Cañón, José M.

    2007-01-01

    Aspergillus nidulans catabolizes phenylacetate (PhAc) and 3-hydroxy-, 4-hydroxy-, and 3,4-dihydroxyphenylacetate (3-OH-PhAc, 4-OH-PhAc, and 3,4-diOH-PhAc, respectively) through the 2,5-dihydroxyphenylacetate (homogentisic acid) catabolic pathway. Using cDNA subtraction techniques, we isolated a gene, denoted phacB, which is strongly induced by PhAc (and its hydroxyderivatives) and encodes a new cytochrome P450 (CYP450). A disrupted phacB strain (ΔphacB) does not grow on 3-hydroxy-, 4-hydroxy-, or 3,4-dihydroxy-PhAc. High-performance liquid chromatography and gas chromatography-mass spectrum analyses of in vitro reactions using microsomes from wild-type and several A. nidulans mutant strains confirmed that the phacB-encoded CYP450 catalyzes 3-hydroxyphenylacetate and 3,4-dihydroxyphenylacetate 6-hydroxylations to generate 2,5-dihydroxyphenylacetate and 2,4,5-trihydroxyphenylacetate, respectively. Both of these compounds are used as substrates by homogentisate dioxygenase. This cytochrome P450 protein also uses PhAc as a substrate to generate 2-OH-PhAc with a very low efficiency. The phacB gene is the first member of a new CYP450 subfamily (CYP504B). PMID:17189487

  17. CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes

    EPA Science Inventory

    Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was fo...

  18. Rational redesign of the biodegradative enzyme cytochrome P450 cam:

    SciTech Connect

    Ornstein, R.; Paulsen, M.; Bass, M.; Arnold, G.

    1991-03-01

    Cytochromes P450, a superfamily of monooxygenase enzymes present in all kingdoms of living organisms, are very versatile with respect to substrate range and catalytic functionality. Many recalcitrant halogenated hydrocarbons, on DOE sites and throughout the nation, result in serious environmental impact. Cytochromes P450 have been shown to be catalytically capable of, at least partial, dehalogenation of some such compounds. Clearly, however, their active site stereochemistry and related functional components are not well suited for this role because the rates of dehalogenation are generally rather modest. The evolution of modified active site and access channel structures may proceed very slowly if multiple genetic changes are simultaneously required for enzyme adaptation. Since each mutational event is by itself a rare event, a basic premise of our research is that designing multiple changes into an enzyme may be more timely than waiting for them to occur biologically either via natural selection or under laboratory-controlled conditions. Starting with available high-resolution x-ray crystal structures, molecular modeling and molecular dynamics simulations have been used to probe the basic structure/function principles and conformational fluctuations of the biodegradative enzyme, cytochrome P450cam (camphor hydroxylase from Pseudomonas putida) and active site mutants, to provide the fundamental understanding necessary for rational engineering of the enzyme for modified substrate specificity. In the present paper, we review our progress to data, in the area of molecular dynamics simulations and active site redesign of P450cam. 36 refs., 2 figs.

  19. Mapping of genes for cytochromes P-450b, P-450e, P-450g and P-450h in the rat

    SciTech Connect

    Rampersaud, A.; Walz, F.G. Jr.

    1987-05-01

    Inbred ACI, WF and RCS rats having characteristic markers for albino (c), hemoglobin ..beta..-chain (Hbb) and pink-eyed dilution (p) loci on chromosome l and expressing electrophoretic variants for hepatic cytochromes P-450b, P-450e and P-450h and a likely Cis-acting regulatory variant of P-450g were used in genetic mapping studies of these hemoproteins. Phenotypes for these microsomal cytochromes P-450 were analyzed using 2-D electrophoresis and the results of WF x (ACI x WF)fl and RCS x (WF x RCS)fl backcrosses revealed two gene clusters designated the P450-b,e and P450-g,h loci. The interval separating P450-b and P450-e was <1 centiMorgan (cM) and that separating P450-g from P450-h was, 3.7 cM at a 90% confidence level. P450-g,h is not linked with P450-b,e and the other markers tested on chromosome 1. The linkage map P450-b,e--p--c--Hbb on rat chromosome 1 was demonstrated and found to be congruent with Coh(P450-b,e)--p--c--Hbb on mouse chromosome 7. It appears that close genetic linkage, rather than common functional/regulatory properties, typify members of cytochrome P-450 subfamilies.

  20. Evolving P450pyr Monooxygenase for Regio- and Stereoselective Hydroxylations.

    PubMed

    Yang, Yi; Li, Zhi

    2015-01-01

    P450pyr monooxygenase from Sphingomonas sp. HXN-200 catalysed the regio- and stereoselective hydroxylation at a non-activated carbon atom, a useful but challenging reaction in classic chemistry, with unique substrate specificity for a number of alicyclic compounds. New P450pyr mutants were developed by directed evolution with improved catalytic performance, thus significantly extending the application of the P450pyr monooxygenase family in biohydroxylation to prepare useful and valuable chiral alcohols. Directed evolution of P450pyr created new enzymes with improved S-enantioselectivity or R-enantioselectivity for the hydroxylation of N-benzyl pyrrolidine, enhanced regioselectivity for the hydroxylation of N-benzyl pyrrolidinone, and increased enantioselectivity for the hydroxylation of N-benzyl piperidinone, respectively. Directed evolution of P450pyr generated also mutants with fully altered regioselectivity (from terminal to subterminal) and newly created excellent S-enantioselectivity for the biohydroxylation of n-octane and propylbenzene, respectively, providing new opportunities for the regio- and enantioselective alkane functionalization. New P450pyr mutants were engineered as the first catalyst for highly selective terminal hydroxylation of n-butanol to 1,4-butanediol. Several novel, accurate, sensitive, simple, and HTS assays based on colorimetric or MS detection for measuring the enantio- and/or regioselectivity of hydroxylation were developed and proven to be practical in directed evolution. The P450pyr X-ray structure was obtained and used to guide the evolution. In silico modelling and substrate docking provided some insight into the influence of several important amino acid mutations of the engineered P450pyr mutants on the altered or enhanced regio- and enantioselectivity as well as new substrate acceptance. The obtained information and knowledge is useful for further engineering of P450pyr for other hydroxylations and oxidations. PMID:26507217

  1. Evolving P450pyr Monooxygenase for Regio- and Stereoselective Hydroxylations.

    PubMed

    Yang, Yi; Li, Zhi

    2015-01-01

    P450pyr monooxygenase from Sphingomonas sp. HXN-200 catalysed the regio- and stereoselective hydroxylation at a non-activated carbon atom, a useful but challenging reaction in classic chemistry, with unique substrate specificity for a number of alicyclic compounds. New P450pyr mutants were developed by directed evolution with improved catalytic performance, thus significantly extending the application of the P450pyr monooxygenase family in biohydroxylation to prepare useful and valuable chiral alcohols. Directed evolution of P450pyr created new enzymes with improved S-enantioselectivity or R-enantioselectivity for the hydroxylation of N-benzyl pyrrolidine, enhanced regioselectivity for the hydroxylation of N-benzyl pyrrolidinone, and increased enantioselectivity for the hydroxylation of N-benzyl piperidinone, respectively. Directed evolution of P450pyr generated also mutants with fully altered regioselectivity (from terminal to subterminal) and newly created excellent S-enantioselectivity for the biohydroxylation of n-octane and propylbenzene, respectively, providing new opportunities for the regio- and enantioselective alkane functionalization. New P450pyr mutants were engineered as the first catalyst for highly selective terminal hydroxylation of n-butanol to 1,4-butanediol. Several novel, accurate, sensitive, simple, and HTS assays based on colorimetric or MS detection for measuring the enantio- and/or regioselectivity of hydroxylation were developed and proven to be practical in directed evolution. The P450pyr X-ray structure was obtained and used to guide the evolution. In silico modelling and substrate docking provided some insight into the influence of several important amino acid mutations of the engineered P450pyr mutants on the altered or enhanced regio- and enantioselectivity as well as new substrate acceptance. The obtained information and knowledge is useful for further engineering of P450pyr for other hydroxylations and oxidations.

  2. Mammalian cytochromes P-450: Volume I and Volume II

    SciTech Connect

    Guengerich, F.P.

    1987-01-01

    This two volume set summarizes the current knowledge of mammalian cytochromes. Ten chapters cover the current understanding of the enzymology of rat, rabbit, and human liver cytochromes P-450, extrahepatic cytochromes P-450, the diversity of substrates for the individual cytochromes P0-450 proteins, the metabolism of pro-toxicants and -carcinogens by cytochrome P-450, the degradation of cytochrome P-450 proteins, and the regulation of cytochrome P-450 activities in vitro and in vivo. The individual chapters outline the historical development of each area, the approaches which are applied, the current state of knowledge, and future directions towards unresolved questions; and index.

  3. Cytochromes P450: History, Classes, Catalytic Mechanism, and Industrial Application.

    PubMed

    Cook, D J; Finnigan, J D; Cook, K; Black, G W; Charnock, S J

    2016-01-01

    Cytochromes P450, a family of heme-containing monooxygenases that catalyze a diverse range of oxidative reactions, are so-called due to their maximum absorbance at 450nm, ie, "Pigment-450nm," when bound to carbon monoxide. They have appeal both academically and commercially due to their high degree of regio- and stereoselectivity, for example, in the area of active pharmaceutical ingredient synthesis. Despite this potential, they often exhibit poor stability, low turnover numbers and typically require electron transport protein(s) for catalysis. P450 systems exist in a variety of functional domain architectures, organized into 10 classes. P450s are also divided into families, each of which is based solely on amino acid sequence homology. Their catalytic mechanism employs a very complex, multistep catalytic cycle involving a range of transient intermediates. Mutagenesis is a powerful tool for the development of improved biocatalysts and has been used extensively with the archetypal Class VIII P450, BM3, from Bacillus megaterium, but with the increasing scale of genomic sequencing, a huge resource is now available for the discovery of novel P450s. PMID:27567486

  4. Novel extrahepatic cytochrome P450s

    SciTech Connect

    Karlgren, Maria . E-mail: Maria.Karlgren@imm.ki.se; Miura, Shin-ichi; Ingelman-Sundberg, Magnus

    2005-09-01

    The cytochrome P450 enzymes are highly expressed in the liver and are involved in the metabolism of xenobiotics. Because of the initiatives associated with the Human Genome Project, a great progress has recently been seen in the identification and characterization of novel extrahepatic P450s, including CYP2S1, CYP2R1, CYP2U1 and CYP2W1. Like the hepatic enzymes, these P450s may play a role in the tissue-specific metabolism of foreign compounds, but they may also have important endogenous functions. CYP2S1 has been shown to metabolize all-trans retinoic acid and CYP2R1 is a major vitamin D 25-hydroxylase. Regarding their metabolism of xenobiotics, much remains to be established, but CYP2S1 metabolizes naphthalene and it is likely that these P450s are responsible for metabolic activation of several different kinds of xenobiotic chemicals and contribute to extrahepatic toxicity and carcinogenesis.

  5. Spectroscopic features of cytochrome P450 reaction intermediates

    PubMed Central

    Luthra, Abhinav; Denisov, Ilia G.; Sligar, Stephen G.

    2010-01-01

    Preface Cytochromes P450 constitute a broad class of heme monooxygenase enzymes with more than 11,500 isozymes which have been identified in organisms from all biological kingdoms [1]. These enzymes are responsible for catalyzing dozens chemical oxidative transformations such as hydroxylation, epoxidation, N-demethylation, etc., with very broad range of substrates [2-3]. Historically these enzymes received their name from ‘pigment 450’ due to the unusual position of the Soret band in UV-Vis absorption spectra of the reduced CO-saturated state [4-5]. Despite detailed biochemical characterization of many isozymes, as well as later discoveries of other ‘P450-like heme enzymes’ such as nitric oxide synthase and chloroperoxidase, the phenomenological term ‘cytochrome P450’ is still commonly used as indicating an essential spectroscopic feature of the functionally active protein which is now known to be due to the presence of a thiolate ligand to the heme iron [6]. Heme proteins with an imidazole ligand such as myoglobin and hemoglobin as well as an inactive form of P450 are characterized by Soret maxima at 420 nm [7]. This historical perspective highlights the importance of spectroscopic methods for biochemical studies in general, and especially for heme enzymes, where the presence of the heme iron and porphyrin macrocycle provides rich variety of specific spectroscopic markers available for monitoring chemical transformations and transitions between active intermediates of catalytic cycle. PMID:21167809

  6. Evaluating cytochrome p450 in lesser scaup (Aythya affinis) and tree swallow (Tachycineta bicolor) by monooxygenase activity and immunohistochemistry: Possible nonlethal assessment by skin immunohistochemistry

    USGS Publications Warehouse

    Melancon, M.J.; Kutay, A.L.; Woodin, Bruce R.; Stegeman, John J.

    2006-01-01

    Six-month-old lesser scaup (Aythya affinis) and nestling tree swallows (Tachycineta bicolor) were injected intraperitoneally with beta-naphthoflavone (BNF) in corn oil or in vehicle alone. Liver samples were taken and stored at -80 degrees C until microsome preparation and monooxygenase assay. Skin samples were placed in buffered formalin for subsequent immunohistochemical (IHC) analysis for cytochrome P4501A (CYP1A). Lesser scaup treated with BNF at 20 or 100 mg/kg body weight showed approximately 6- to 18-fold increases in four monooxygenases (benzyloxyresorufin-O-dealkylase, ethoxyresorufin-O-dealkylase, methoxyresorufin-O-dealkylase, and pentoxyresorufin-O-dealkylase). No IHC response was observed for CYP1A in the skin of vehicle-injected ducks, whereas in the skin from BNF-treated ducks, the positive IHC response was of similar magnitude for both dose levels of BNF. Tree swallows injected with BNF at 100 mg/kg, but not at. 20 mg/kg, showed significant increases (approximately fivefold) in hepatic microsomal O-dealkylase activities. Cytochrome P4501A was undetectable by IHC response in skin from corn oil-treated swallows, but positive IHC responses were observed in the skin of one of five swallows at 20 mg/kg and four of five swallows at 100 mg/kg. Although these data do not allow construction of significant dose-response curves, the IHC responses for CYP1A in skin support the possible use of this nonlethal approach for biomonitoring contaminant exposure of birds. In addition, the CYP1A signal observed at the bases of emerging feathers suggest that these might provide less invasive sampling sites for IHC analysis of CYP1A.

  7. Aldehyde Reduction by Cytochrome P450

    PubMed Central

    Amunom, Immaculate; Srivastava, Sanjay; Prough, Russell A.

    2011-01-01

    This protocol describes the procedure for measuring the relative rates of metabolism of the α,β-unsaturated aldehydes, 9-anthracene aldehyde (9-AA) and 4-hydroxy-trans-2-nonenal (4-HNE); specifically the aldehyde reduction reactions of cytochrome P450s (CYPs). These assays can be performed using either liver microsomal or other tissue fractions, spherosome preparations of recombinant CYPs, or recombinant CYPs from other sources. The method used here to study the reduction of a model α,β-unsaturated aldehyde, 9-AA, by CYPs was adapted from the assay used to investigate 9-anthracene oxidation as reported by Marini et al. (Marini et al., 2003). For experiments measuring reduction of the endogenous aldehyde, 4-HNE, the substrate was incubated with CYP in the presence of oxygen and NADPH and the metabolites were separated by High Pressure Liquid Chromatograpy (HPLC), using an adaptation of the method of Srivastava et al. (Srivastava et al., 2010). For study of 9-AA and 4-HNE reduction, the first step involves incubation of the substrate with the CYP in appropriate media, followed by quantification of metabolites through either spectrofluorimetry or analysis by HPLC coupled with a radiometric assay, respectively. Metabolite identification can be achieved by HPLC GC-mass spectrometric analysis. Inhibitors of cytochrome P450 function can be utilized to show the role of the hemoprotein or other enzymes in these reduction reactions. The reduction reactions for CYP’s were not inhibited by either anaerobiosis or inclusion of CO in the gaseous phase of the reaction mixture. These character of these reactions are similar to those reported for some cytochrome P450-catalyzed azo reduction reactions. PMID:21553396

  8. Flower colour and cytochromes P450.

    PubMed

    Tanaka, Yoshikazu; Brugliera, Filippa

    2013-02-19

    Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3'-hydroxylase (F3'H) and flavonoid 3',5'-hydroxylase (F3'5'H) and thus they play a crucial role in the determination of flower colour. F3'H and F3'5'H mostly belong to CYP75B and CYP75A, respectively, except for the F3'5'Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3'5'H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3'5'H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3'5'H and F3'H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones.

  9. Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera larval development and pupation

    PubMed Central

    Jin, Shuangxia; Singh, Nameirakpam D.; Li, Lebin; Zhang, Xianlong; Daniell, Henry

    2015-01-01

    Summary In the past two decades, chloroplast genetic engineering has been advanced to achieve high-level protein accumulation but not for down-regulation of targeted genes. Therefore, in this report, lepidopteran chitin synthase (Chi), cytochrome P450 monooxygenase (P450) and V-ATPase dsRNAs were expressed via the chloroplast genome to study RNA interference (RNAi) of target genes in intended hosts. PCR and Southern blot analysis confirmed homoplasmy and site-specific integration of transgene cassettes into the chloroplast genomes. Northern blots and real-time qRT-PCR confirmed abundant processed and unprocessed dsRNA transcripts (up to 3.45 million copies of P450 dsRNAs/μg total RNA); the abundance of cleaved dsRNA was greater than the endogenous psbA transcript. Feeding of leaves expressing P450, Chi and V-ATPase dsRNA decreased transcription of the targeted gene to almost undetectable levels in the insect midgut, likely after further processing of dsRNA in their gut. Consequently, the net weight of larvae, growth and pupation rates were significantly reduced by chloroplast-derived dsRNAs. Taken together, successful expression of dsRNAs via the chloroplast genome for the first time opens the door to study RNA interference/processing within plastids. Most importantly, dsRNA expressed in chloroplasts can be utilized for gene inactivation to confer desired agronomic traits or for various biomedical applications, including down-regulation of dysfunctional genes in cancer or autoimmune disorders, after oral delivery of dsRNA bioencapsulated within plant cells. PMID:25782349

  10. Engineered chloroplast dsRNA silences cytochrome p450 monooxygenase, V-ATPase and chitin synthase genes in the insect gut and disrupts Helicoverpa armigera larval development and pupation.

    PubMed

    Jin, Shuangxia; Singh, Nameirakpam D; Li, Lebin; Zhang, Xianlong; Daniell, Henry

    2015-04-01

    In the past two decades, chloroplast genetic engineering has been advanced to achieve high-level protein accumulation but not for down-regulation of targeted genes. Therefore, in this report, lepidopteran chitin synthase (Chi), cytochrome P450 monooxygenase (P450) and V-ATPase dsRNAs were expressed via the chloroplast genome to study RNA interference (RNAi) of target genes in intended hosts. PCR and Southern blot analysis confirmed homoplasmy and site-specific integration of transgene cassettes into the chloroplast genomes. Northern blots and real-time qRT-PCR confirmed abundant processed and unprocessed dsRNA transcripts (up to 3.45 million copies of P450 dsRNAs/μg total RNA); the abundance of cleaved dsRNA was greater than the endogenous psbA transcript. Feeding of leaves expressing P450, Chi and V-ATPase dsRNA decreased transcription of the targeted gene to almost undetectable levels in the insect midgut, likely after further processing of dsRNA in their gut. Consequently, the net weight of larvae, growth and pupation rates were significantly reduced by chloroplast-derived dsRNAs. Taken together, successful expression of dsRNAs via the chloroplast genome for the first time opens the door to study RNA interference/processing within plastids. Most importantly, dsRNA expressed in chloroplasts can be utilized for gene inactivation to confer desired agronomic traits or for various biomedical applications, including down-regulation of dysfunctional genes in cancer or autoimmune disorders, after oral delivery of dsRNA bioencapsulated within plant cells. PMID:25782349

  11. Biomonitoring environmental contamination with pipping black-crowned night heron embryos: Induction of cytochrome P450

    SciTech Connect

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.; King, K.A.; LeCaptain, L.J.; Spann, J.W. . Patuxent Wildlife Research Center); Woodin, B.R.; Stegeman, J.J. )

    1993-09-01

    Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins were measured in pipping black-crowned night heron (Nycticorax nycticorax) embryos collected from a reference site (next to the Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). In a laboratory study, artificially incubated night heron embryos from the reference site were treated with 3-methylcholanthrene or phenobarbital. Compared to controls, 3-methylcholanthrene induced a greater than fivefold increase in activities of several monooxygenases and a greater than 100-fold increase in the concentration of immunodetected cytochrome P450 1A (CYP1A). Phenobarbital treatment resulted in only a slight increase in BROD activity but induced proteins recognized by antibodies to cytochrome P450 2B (CYP2B) by 2,000-fold. In a field study, activities of AHH, BROD, EROD, and ethoxycoumarin-O-dealkylase (ECOD) were up to 85-fold higher in pipping black-crowned night herons collected from Cat Island compared to other sites. Hepatic CYP1A and CYP2B cross-reactive proteins were detected in significantly more individuals from Cat Island than from the reference site. Greatest burdens of total PCBs and p,p[prime]-DDE were detected in embryos from Cat Island. Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins (AHH, BROD, EROD, ECOD, CYP1A, CYP1B) were significantly associated with total PCB burdens.

  12. Cytochrome P-450 revealed: the effect of the respiratory cytochromes on the spectrum of bacterial cytochrome P-450.

    PubMed

    Stevenson, P M; Ruettinger, R T; Fulco, A J

    1983-05-16

    Soluble extracts of Bacillus megaterium ATCC 14581 prepared by centrifuging a sonicated cell suspension at 40,000 xg for 30 min apparently contained no cytochrome P-450 unless the culture had been grown in the presence of an inducer: a reduced+CO minus reduced spectrum was used to measure cytochrome P-450 concentration. When the 40,000 xg supernatants from the uninduced cultures were recentrifuged at 105,000 xg the respiratory cytochromes, including one like cytochrome a1, were sedimented, and cytochrome P-450 was observed to be 100 nM or 30 +/- 9 p mol cytochrome P-450/mg protein (n=9). Measurements of cytochrome P-450 in cultures induced with phenobarbital were always higher after ultracentrifugation. There was soluble cytochrome o in all extracts. When cytochrome a1 was present a deep trough at 441 nm developed in the reduced +CO minus reduced difference spectrum of the 40,000 xg supernatant of both the uninduced and the induced cultures. The 40,000 xg supernatant obtained after lysing protoplasts of B. megaterium did not contain cytochrome a1 and always gave a good measure of cytochrome P-450. PMID:6405752

  13. Genetics Home Reference: cytochrome P450 oxidoreductase deficiency

    MedlinePlus

    ... P450 oxidoreductase deficiency is a disorder of hormone production. This condition specifically affects steroid hormones, which are ... activity of cytochrome P450 oxidoreductase, which disrupts the production of steroid hormones. Changes in sex hormones such ...

  14. Cytochrome P450 expression in oesophageal cancer.

    PubMed Central

    Murray, G I; Shaw, D; Weaver, R J; McKay, J A; Ewen, S W; Melvin, W T; Burke, M D

    1994-01-01

    The cytochrome P450 superfamily of enzymes play a central part in the metabolism of carcinogens and anti-cancer drugs. The expression, cellular localisation, and distribution of different forms of P450 and the functionally associated enzymes epoxide hydrolase and glutathione S-transferases have been investigated in oesophageal cancer and non-neoplastic oesophageal tissue using immunohistochemistry. Expression of the different enzymes was confined to epithelial cells in both non-neoplastic samples and tumour samples except the CYP3A was also identified in mast cells and glutathione S-transferase pi was present in chronic inflammatory cells. CYP1A was present in a small percentage of non-neoplastic samples but both CYP2C and CYP3A were absent. Epoxide hydrolase was present in half of the non-neoplastic samples and the different classes of glutathione S-transferase were present in a low number of samples. In carcinomas CYP1A, CYP3A, epoxide hydrolase, and glutathione S-transferase pi were expressed in at least 60% of samples. The expression of glutathione S-transferases alpha and mu were significantly less in adenocarcinoma compared with squamous carcinoma. Images Figure 1 Figure 2 Figure 3 PMID:8200549

  15. Structure, dynamics, and function of the monooxygenase P450 BM-3: insights from computer simulations studies

    NASA Astrophysics Data System (ADS)

    Roccatano, Danilo

    2015-07-01

    The monooxygenase P450 BM-3 is a NADPH-dependent fatty acid hydroxylase enzyme isolated from soil bacterium Bacillus megaterium. As a pivotal member of cytochrome P450 superfamily, it has been intensely studied for the comprehension of structure-dynamics-function relationships in this class of enzymes. In addition, due to its peculiar properties, it is also a promising enzyme for biochemical and biomedical applications. However, despite the efforts, the full understanding of the enzyme structure and dynamics is not yet achieved. Computational studies, particularly molecular dynamics (MD) simulations, have importantly contributed to this endeavor by providing new insights at an atomic level regarding the correlations between structure, dynamics, and function of the protein. This topical review summarizes computational studies based on MD simulations of the cytochrome P450 BM-3 and gives an outlook on future directions.

  16. Flower colour and cytochromes P450

    PubMed Central

    Tanaka, Yoshikazu; Brugliera, Filippa

    2013-01-01

    Cytochromes P450 play important roles in biosynthesis of flavonoids and their coloured class of compounds, anthocyanins, both of which are major floral pigments. The number of hydroxyl groups on the B-ring of anthocyanidins (the chromophores and precursors of anthocyanins) impact the anthocyanin colour, the more the bluer. The hydroxylation pattern is determined by two cytochromes P450, flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H) and thus they play a crucial role in the determination of flower colour. F3′H and F3′5′H mostly belong to CYP75B and CYP75A, respectively, except for the F3′5′Hs in Compositae that were derived from gene duplication of CYP75B and neofunctionalization. Roses and carnations lack blue/violet flower colours owing to the deficiency of F3′5′H and therefore lack the B-ring-trihydroxylated anthocyanins based upon delphinidin. Successful redirection of the anthocyanin biosynthesis pathway to delphinidin was achieved by expressing F3′5′H coding regions resulting in carnations and roses with novel blue hues that have been commercialized. Suppression of F3′5′H and F3′H in delphinidin-producing plants reduced the number of hydroxyl groups on the anthocyanidin B-ring resulting in the production of monohydroxylated anthocyanins based on pelargonidin with a shift in flower colour to orange/red. Pelargonidin biosynthesis is enhanced by additional expression of a dihydroflavonol 4-reductase that can use the monohydroxylated dihydrokaempferol (the pelargonidin precursor). Flavone synthase II (FNSII)-catalysing flavone biosynthesis from flavanones is also a P450 (CYP93B) and contributes to flower colour, because flavones act as co-pigments to anthocyanins and can cause blueing and darkening of colour. However, transgenic plants expression of a FNSII gene yielded paler flowers owing to a reduction of anthocyanins because flavanones are precursors of anthocyanins and flavones. PMID:23297355

  17. Purification and characterization of pentobarbital-induced cytochrome P-450BM-1 from Bacillus megaterium ATCC 14581.

    PubMed

    Schwalb, H; Narhi, L O; Fulco, A J

    1985-03-01

    When Bacillus megaterium ATCC 14581 is grown in the presence of barbiturates, a cytochrome P-450-dependent fatty acid monooxygenase (Mr 120000) is induced (Kim, B.-H. and Fulco, A.J. (1983) Biochem. Biophys. Res. Commun. 116, 843-850). Gel filtration chromatography of a crude monooxygenase preparation from pentobarbital-induced B. megaterium indicated that not all of the induced cytochrome P-450 present in the extract was accounted for by this high-molecular-weight component. Further purification revealed the presence of two additional but smaller cytochrome P-450 species. The minor component, designated cytochrome P-450BM-2, had a molecular mass of about 46 kDa, but has not yet been completely purified or further characterized. The major component, designated cytochrome P-450BM-1, was obtained in pure form, exhibited fatty acid monooxygenase activity in the presence of iodosylbenzenediacetate, and has been extensively characterized. Its Mr of 38000 makes it the smallest cytochrome P-450 yet purified to homogeneity. Although it is a soluble protein, a complete amino acid analysis indicated that it contains 42% hydrophobic residues. By the dansyl chloride procedure the NH2-terminal amino acid is proline; the penultimate NH2-terminal residue is alanine. The absolute absorption spectra of cytochrome P-450BM-1 show maxima in the same general regions as do P-450 cytochromes from mammalian or other bacterial sources, but they differ in detail. The oxidized form of P-450BM-1 has absorption maxima at 414, 533 and 567 nm, while the reduced form has peaks at 410 and 540 nm. The absorption maxima for the CO-reduced form of P-450BM-1 are found at 415, 448 and 550 nm. Antisera from rabbits immunized with pure P-450BM-1 strongly reacted with and precipitated this P-450, but showed no detectable affinity for either the 46 kDa P-450 or the 120 kDa fatty acid monooxygenase. PMID:3918581

  18. Comparison of intrinsic dynamics of cytochrome p450 proteins using normal mode analysis

    PubMed Central

    Dorner, Mariah E; McMunn, Ryan D; Bartholow, Thomas G; Calhoon, Brecken E; Conlon, Michelle R; Dulli, Jessica M; Fehling, Samuel C; Fisher, Cody R; Hodgson, Shane W; Keenan, Shawn W; Kruger, Alyssa N; Mabin, Justin W; Mazula, Daniel L; Monte, Christopher A; Olthafer, Augustus; Sexton, Ashley E; Soderholm, Beatrice R; Strom, Alexander M; Hati, Sanchita

    2015-01-01

    Cytochrome P450 enzymes are hemeproteins that catalyze the monooxygenation of a wide-range of structurally diverse substrates of endogenous and exogenous origin. These heme monooxygenases receive electrons from NADH/NADPH via electron transfer proteins. The cytochrome P450 enzymes, which constitute a diverse superfamily of more than 8,700 proteins, share a common tertiary fold but < 25% sequence identity. Based on their electron transfer protein partner, cytochrome P450 proteins are classified into six broad classes. Traditional methods of pro are based on the canonical paradigm that attributes proteins' function to their three-dimensional structure, which is determined by their primary structure that is the amino acid sequence. It is increasingly recognized that protein dynamics play an important role in molecular recognition and catalytic activity. As the mobility of a protein is an intrinsic property that is encrypted in its primary structure, we examined if different classes of cytochrome P450 enzymes display any unique patterns of intrinsic mobility. Normal mode analysis was performed to characterize the intrinsic dynamics of five classes of cytochrome P450 proteins. The present study revealed that cytochrome P450 enzymes share a strong dynamic similarity (root mean squared inner product > 55% and Bhattacharyya coefficient > 80%), despite the low sequence identity (< 25%) and sequence similarity (< 50%) across the cytochrome P450 superfamily. Noticeable differences in Cα atom fluctuations of structural elements responsible for substrate binding were noticed. These differences in residue fluctuations might be crucial for substrate selectivity in these enzymes. PMID:26130403

  19. Effect of swimming exercise and ethanol on rat liver P450-dependent monooxygenases.

    PubMed

    Ardies, C M; Zachman, E K; Koehn, B J

    1994-12-01

    The interactive effects of 6 wk of repeated swimming exercise and chronic ethanol consumption (36% of total calories) on the hepatic cytochrome P450-dependent monooxygenase system were studied utilizing four groups of male rats in a 2 x 2 factorial design. The sedentary-control (S/C), sedentary-ethanol (S/E), and swim-control (SW/C) groups received the same amount of food that the swim-ethanol (SW/E) group consumed. The swimming groups were trained to swim for 2 h.d-1, 5 d.wk-1. Significant main effects due to ethanol (P < 0.002) and exercise (P < 0.02) were observed for the enhanced cytochrome P450 content and cytochrome P450 reductase activity, respectively. In addition, significant main effects for ethanol (P < 0.001), exercise (P < 0.0001), and significant interaction effects (P < 0.005) on aniline p-hydroxylase activity and significant main effects for ethanol (P < 0.01), exercise (P < 0.01), and interaction effects (P < 0.04) on 7-ethoxycoumarin o-deethylase activity were observed. Because the SW/C treatment had no effect on any of the measured cytochrome P450 activities and the SW/E treatment enhanced P450 activities much more than the S/E treatment, the main effects observed for exercise are accounted for by the alterations produced by combining swimming with the ethanol treatment. Based on these results, repeated exercise combined with ethanol consumption produces a synergistic increase in ethanol-inducible cytochrome P450-dependent activities. PMID:7869878

  20. Genotyping for cytochrome P450 polymorphisms.

    PubMed

    Daly, Ann K; King, Barry P; Leathart, Julian B S

    2006-01-01

    Protocols for the extraction of DNA from human blood and for genotyping for a number of common cytochrome P450 polymorphisms using either polymerase chain reaction (PCR)-restriction fragment length polymorphism or PCR-single-strand conformational polymorphism (SSCP) analysis are described. Rapid high-throughput techniques are also available for analyses of this type, but they require access to specialized equipment and are not considered here. General guidelines for performing amplification using PCR are described together with electrophoresis protocols for analysis of restriction digests of PCR products with agarose and polyacrylamide gels including the use of polyacrylamide-based gels for SSCP analysis. Protocols for the following specific isoforms and alleles are also provided: CYP1A1 (*2B and *4 alleles), CYP2C8 (*3 and *4 alleles), CYP2C9 (*2, *3, and *11 alleles), CYP2C19 (*2 and *3 alleles), CYP2D6 (*3, *4, *5, and *6 alleles), CYP2E1 (*5A, *5B, and *6 alleles), and CYP3A5 (*3 allele).

  1. Genotyping for cytochrome P450 polymorphisms.

    PubMed

    Daly, Ann K; King, Barry P; Leathart, Julian B S

    2006-01-01

    Protocols for the extraction of DNA from human blood and for genotyping for a number of common cytochrome P450 polymorphisms using either polymerase chain reaction (PCR)-restriction fragment length polymorphism or PCR-single-strand conformational polymorphism (SSCP) analysis are described. Rapid high-throughput techniques are also available for analyses of this type, but they require access to specialized equipment and are not considered here. General guidelines for performing amplification using PCR are described together with electrophoresis protocols for analysis of restriction digests of PCR products with agarose and polyacrylamide gels including the use of polyacrylamide-based gels for SSCP analysis. Protocols for the following specific isoforms and alleles are also provided: CYP1A1 (*2B and *4 alleles), CYP2C8 (*3 and *4 alleles), CYP2C9 (*2, *3, and *11 alleles), CYP2C19 (*2 and *3 alleles), CYP2D6 (*3, *4, *5, and *6 alleles), CYP2E1 (*5A, *5B, and *6 alleles), and CYP3A5 (*3 allele). PMID:16719392

  2. Biomonitoring environmental contamination with pipping black-crowned night heron embryos: Induction of cytochrome P450

    USGS Publications Warehouse

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.; King, K.A.; LeCaptain, L.J.; Spann, J.W.; Woodin, Bruce R.; Stegeman, John J.

    1993-01-01

    Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins were measured in pipping black-crowned night heron (Nycticorax nycticorax) embryos collected from a reference site (next to the Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). In a laboratory study, artificially incubated night heron embryos from the reference site were treated with 3-methylcholanthrene (200 mu-g administered into the air cell 2 d before pipping) or phenobarbital (2 mg daily for 2 d before pipping). Compared to controls (untreated + vehicle-treated embryos), 3-methylcholanthrene induced a greater than five-fold increase in activities of several monooxygenases (arylhydrocarbon hydroxylase, AHH; benzyloxyresorufin-O-dealkylase, BROD; ethoxyresorufin-O-dealkylase, EROD; pentoxyresorufin-O-dealkylase, PROD) and a greater than 100-fold increase in the concentration of immunodetected cytochrome P450 1A (CYP1A). Phenobarbital treatment resulted in only a slight increase in BROD activity but induced proteins recognized by antibodies to cytochrome P450 2B (CYP2B) by 2,000-fold. In a field study, activities of AHH, BROD, EROD, and ethoxycoumarin-O-dealkylase (ECOD) were up to 85-fold higher in pipping black-crowned night herons collected from Cat Island compared to other sites. Hepatic CYP1A and CYP2B cross-reactive proteins were detected in significantly more individuals from Cat Island than from the reference site. Greatest burdens of total PCBs and p, p'-DDE were detected in embryos from Cat Island. Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins (AHH, BROD, EROD, ECOD, CYP1A, CYP2B) were significantly associated with total PCB burdens (r = 0.50-0.72). These data indicate that cytochrome P450 may be a useful biomarker of exposure to some PCB mixtures in black-crowned night heron embryos.

  3. Biomonitoring environmental contamination with pipping black-crowned night heron embryos: Induction of cytochrome P450

    USGS Publications Warehouse

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.; King, K.A.; LeCaptain, L.J.; Spann, J.W.; Woodin, Bruce R.; Stegeman, John J.

    1993-01-01

    Cytochrome P450-associated monooxygenase activities and cytochrome P450 proteins were measured in pipping black-crowned night heron (Nycticorax nycticorax) embryos collected from a reference site (next to the Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). In a laboratory study, artificially incubated night heron embryos from the reference site were treated with 3-methylcholanthrene (200 mu g administered into the air cell 2 d before pipping) or phenobarbital (2 mg daily for 2 d before pipping). Compared to controls (untreated + vehicle-treated embryos), 3-methylcholanthrene induced a greater than fivefold increase in activities of several monooxygenases (arylhydrocarbon hydroxylase, AHH; benzyloxyresorufin-O-dealkylase, BROD; ethoxyresorufin-O-dealkylase, EROD; pentoxyresorufin-O- dealkylase, PROD) and a greater than 100-fold increase in the concentration of immunodetected cytochrome P450 1A (CYP1A). Phenobarbital treatment resulted in only a slight increase in BROD activity but induced proteins recognized by antibodies to cytochrome P450 2B (CYP2B) by 2,000-fold. In a field study, activities of AHH, BROD, EROD, and ethoxycoumarin-O-dealkylase (ECOD) were up to 85-fold higher in pipping black- crowned night herons collected from Cat Island compared to other sites. Hepatic CYP1A and CYP2B cross- reactive proteins were detected in significantly more individuals from Cat Island than from the reference site. Greatest burdens of total PCBs and p,p'-DDE were detected in embryos from Cat Island. Cytochrome P450- associated monooxygenase activities and cytochrome P450 proteins (AHH, BROD, EROD, ECOD, CYP1A, CYP2B) were significantly associated with total PCB burdens (r = 0.50-0.72). These data indicate that cytochrome P450 may be a useful biomarker of exposure to some PCB mixtures in black-crowned night heron embryos.

  4. Recent Structural Insights into Cytochrome P450 Function.

    PubMed

    Guengerich, F Peter; Waterman, Michael R; Egli, Martin

    2016-08-01

    Cytochrome P450 (P450) enzymes are important in the metabolism of drugs, steroids, fat-soluble vitamins, carcinogens, pesticides, and many other types of chemicals. Their catalytic activities are important issues in areas such as drug-drug interactions and endocrine function. During the past 30 years, structures of P450s have been very helpful in understanding function, particularly the mammalian P450 structures available in the past 15 years. We review recent activity in this area, focusing on the past 2 years (2014-2015). Structural work with microbial P450s includes studies related to the biosynthesis of natural products and the use of parasitic and fungal P450 structures as targets for drug discovery. Studies on mammalian P450s include the utilization of information about 'drug-metabolizing' P450s to improve drug development and also to understand the molecular bases of endocrine dysfunction. PMID:27267697

  5. Cloning and expression of an atrazine inducible cytochrome P450 from Chironomus tentans (Diptera: Chironomidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies performed in our lab have measured the effect of atrazine exposure on cytochrome P450-dependent monooxygenase activity and have found increased activity in midge larvae (Chironomus tentans) as a result of atrazine exposure (1-10 ppm). Here we report the cloning and expression of a ...

  6. Key Elements of the Chemistry of Cytochrome P-450: The Oxygen Rebound Mechanism.

    ERIC Educational Resources Information Center

    Groves, John T.

    1985-01-01

    Discusses the structure and function of the liver protein cytochrome P-450, an important catalyst for a variety of detoxification reactions. Diagnostic substracts for this heme-containing monooxygenase, synthetic modes of the active site, and oxidations with synthetic metalloporphyrins are the major topic areas considered. (JN)

  7. Crystal structure of a phenol-coupling P450 monooxygenase involved in teicoplanin biosynthesis

    SciTech Connect

    Li, Zhi; Rupasinghe, Sanjeewa G.; Schuler, Mary A.; Nair, Satish K.

    2012-02-08

    The lipoglycopeptide antibiotic teicoplanin has proven efficacy against gram-positive pathogens. Teicoplanin is distinguished from the vancomycin-type glycopeptide antibiotics, by the presence of an additional cross-link between the aromatic amino acids 1 and 3 that is catalyzed by the cytochrome P450 monooxygenase Orf6* (CYP165D3). As a goal towards understanding the mechanism of this phenol-coupling reaction, we have characterized recombinant Orf6* and determined its crystal structure to 2.2-{angstrom} resolution. Although the structure of Orf6* reveals the core fold common to other P450 monooxygenases, there are subtle differences in the disposition of secondary structure elements near the active site cavity necessary to accommodate its complex heptapeptide substrate. Specifically, the orientation of the F and G helices in Orf6* results in a more closed active site than found in the vancomycin oxidative enzymes OxyB and OxyC. In addition, Met226 in the I helix replaces the more typical Gly/Ala residue that is positioned above the heme porphyrin ring, where it forms a hydrogen bond with a heme iron-bound water molecule. Sequence comparisons with other phenol-coupling P450 monooxygenases suggest that Met226 plays a role in determining the substrate regiospecificity of Orf6*. These features provide further insights into the mechanism of the cross-linking mechanisms that occur during glycopeptide antibiotics biosynthesis.

  8. Cytochrome P-450 epitope typing in animals and humans with monoclonal antibodies to ethanol induced rat liver microsomal cytochrome P-450 (P-450et)

    SciTech Connect

    Park, S.S.; Ko, I.Y.; Yang, C.; Guengerich, F.G.; Schenkman, J.B.; Coon, M.J.; Gelboin, H.V.

    1986-05-01

    Hybridomas were prepared from mouse myeloma cells and spleen cells derived from BALB/c female mice that had been immunized with P-450et. The monoclonal antibody (MAb)-producing hybridomas were screened by RIA. Thirty one independent hybrid clones were isolated with each producing an MAb of a single immunoglobulin subclass. All of these MAbs had high affinities for P-450et but only one MAb had a strong inhibitory effect on aniline rho-hydroxylase and N-nitrosodimethylamine demethylase. Western blots and RIAs based on ten MAbs (C1-C10) were used to determine the epitope homology of purified cytochromes P-450 from rats, rabbits, and humans. All ten MAbs had high affinity for both P-450et and a rat P-450 which is induced by acetone (P-450ac). Classes of these MAbs were identified which crossreacted toward different forms of rat P-450. In addition, several MAbs (C3, C6, C9) recognized a P-450 form of human liver, while other MAbs (C7, C9) recognized P-450/sub LM2/ of rabbits. Three MAbs (C4, C5, C8) were specific for only P-450et and P-450ac. These results demonstrate the different degrees of epitope relatedness among the multiple forms of cytochrome P-450.

  9. Structure of a bovine gene for P-450c21 (steroid 21-hydroxylase) defines a novel cytochrome P-450 gene family.

    PubMed Central

    Chung, B C; Matteson, K J; Miller, W L

    1986-01-01

    P-450c21, a cytochrome P-450 enzyme [steroid 21-monooxygenase (steroid 21-hydroxylase), EC 1.14.99.10], mediates the 21-hydroxylation of glucocorticoid and mineralocorticoid hormones in the adrenal gland. The complete sequence of a bovine P-450c21 gene shows it is 3447 base pairs long and contains 10 exons. The intron/exon organization and encoded amino acid sequence indicate that P-450c21 represents a unique family of genes in the P-450 gene superfamily. Primer extension and S1 nuclease protection experiments identified several cap sites for initiation of transcription; the principal cap site produces mRNA with a 5' untranslated region only 11 bases long. S1 nuclease protection experiments confirm that P-450c21 is actively expressed in the adrenal and the testis, an organ not known to secrete 21-hydroxylated steroids. Images PMID:3487086

  10. Steroid hydroxylations: A paradigm for cytochrome P450 catalyzed mammalian monooxygenation reactions

    SciTech Connect

    Estabrook, Ronald W. . E-mail: Ronald.estabrook@utsouthwestern.edu

    2005-12-09

    The present article reviews the history of research on the hydroxylation of steroid hormones as catalyzed by enzymes present in mammalian tissues. The report describes how studies of steroid hormone synthesis have played a central role in the discovery of the monooxygenase functions of the cytochrome P450s. Studies of steroid hydroxylation reactions can be credited with showing that: (a) the adrenal mitochondrial enzyme catalyzing the 11{beta}-hydroxylation of deoxycorticosterone was the first mammalian enzyme shown by O{sup 18} studies to be an oxygenase; (b) the adrenal microsomal enzyme catalyzing the 21-hydroxylation of steroids was the first mammalian enzyme to show experimentally the proposed 1:1:1 stoichiometry (substrate:oxygen:reduced pyridine nucleotide) of a monooxygenase reaction; (c) application of the photochemical action spectrum technique for reversal of carbon monoxide inhibition of the 21-hydroxylation of 17{alpha}-OH progesterone was the first demonstration that cytochrome P450 was an oxygenase; (d) spectrophotometric studies of the binding of 17{alpha}-OH progesterone to bovine adrenal microsomal P450 revealed the first step in the cyclic reaction scheme of P450, as it catalyzes the 'activation' of oxygen in a monooxygenase reaction; (e) purified adrenodoxin was shown to function as an electron transport component of the adrenal mitochondrial monooxygenase system required for the activity of the 11{beta}-hydroxylase reaction. Adrenodoxin was the first iron-sulfur protein isolated and purified from mammalian tissues and the first soluble protein identified as a reductase of a P450; (f) fractionation of adrenal mitochondrial P450 and incubation with adrenodoxin and a cytosolic (flavoprotein) fraction were the first demonstration of the reconstitution of a mammalian P450 monooxygenase reaction.

  11. Cytochromes P450--a family of proteins and scientists-understanding their relationships.

    PubMed

    Sue Masters, Bettie; Marohnic, Christopher C

    2006-01-01

    The unifying thread of this review involves NADPH-cytochrome P450 reductase (CYPOR), the microsomal enzyme responsible for transferring electrons to cytochromes P450, as well as several other monooxygenase systems, a lifelong interest of the corresponding author. The intersection of her research with that of Dr. David Kupfer, their resulting collaboration, and the beginning of a long-standing study of fatty acid- and eicosanoid-metabolizing cytochromes P450 (CYP4A gene subfamily), including the role of cytochrome b5, will be reported. The culmination of this interest now involves purification and characterization of the human mutants of CYPOR that have been implicated in pathologies, such as Antley-Bixler syndrome.

  12. Cytochrome P450 Initiates Degradation of cis-Dichloroethene by Polaromonas sp. Strain JS666

    PubMed Central

    Nishino, Shirley F.; Shin, Kwanghee A.; Gossett, James M.

    2013-01-01

    Polaromonas sp. strain JS666 grows on cis-1,2-dichoroethene (cDCE) as the sole carbon and energy source under aerobic conditions, but the degradation mechanism and the enzymes involved are unknown. In this study, we established the complete pathway for cDCE degradation through heterologous gene expression, inhibition studies, enzyme assays, and analysis of intermediates. Several lines of evidence indicate that a cytochrome P450 monooxygenase catalyzes the initial step of cDCE degradation. Both the transient accumulation of dichloroacetaldehyde in cDCE-degrading cultures and dichloroacetaldehyde dehydrogenase activities in cell extracts of JS666 support a pathway for degradation of cDCE through dichloroacetaldehyde. The mechanism minimizes the formation of cDCE epoxide. The molecular phylogeny of the cytochrome P450 gene and the organization of neighboring genes suggest that the cDCE degradation pathway recently evolved in a progenitor capable of degrading 1,2-dichloroethane either by the recruitment of the cytochrome P450 monooxygenase gene from an alkane catabolic pathway or by selection for variants of the P450 in a preexisting 1,2-dichloroethane catabolic pathway. The results presented here add yet another role to the broad array of productive reactions catalyzed by cytochrome P450 enzymes. PMID:23354711

  13. Cytochrome P450-Mediated Phytoremediation using Transgenic Plants: A Need for Engineered Cytochrome P450 Enzymes

    PubMed Central

    Kumar, Santosh; Jin, Mengyao; Weemhoff, James L

    2013-01-01

    There is an increasing demand for versatile and ubiquitous Cytochrome P450 (CYP) biocatalysts for biotechnology, medicine, and bioremediation. In the last decade there has been an increase in realization of the power of CYP biocatalysts for detoxification of soil and water contaminants using transgenic plants. However, the major limitations of mammalian CYP enzymes are that they require CYP reductase (CPR) for their activity, and they show relatively low activity, stability, and expression. On the other hand, bacterial CYP enzymes show limited substrate diversity and usually do not metabolize herbicides and industrial contaminants. Therefore, there has been a considerable interest for biotechnological industries and the scientific community to design CYP enzymes to improve their catalytic efficiency, stability, expression, substrate diversity, and the suitability of P450-CPR fusion enzymes. Engineered CYP enzymes have potential for transgenic plants-mediated phytoremediation of herbicides and environmental contaminants. In this review we discuss: 1) the role of CYP enzymes in phytoremediation using transgenic plants, 2) problems associated with wild-type CYP enzymes in phytoremediation, and 3) examples of engineered CYP enzymes and their potential role in transgenic plant-mediated phytoremediation. PMID:25298920

  14. Inhibitory effects of phthalimide derivatives on the activity of the hepatic cytochrome P450 monooxygenases CYP2C9 and CYP2C19.

    PubMed

    Kolukisaoglu, Üner; Wendler, Christian; Goerdes, Dirk; Diener, Annette; Thurow, Kerstin

    2010-12-01

    Affecting hepatic cytochrome (CYP) activity is one of the major concerns in drug-drug interaction. Thus the testing of drug candidates on their impact on these enzymes is an essential step in early drug discovery. We tested a collection of 480 in-house phthalimide derivatives against different CYP450s using a high throughput inhibition assay. In initial tests with the isoform CYP2C19 about 57.5% of the tested phthalimide derivatives showed significantly enhanced inhibitory effects against this enzyme. In addition similar patterns of phthalimide inhibition for CYP2C9 and CYP2C19 were found, whereas the unrelated isoforms CYP2D6 and CYP3A4 were not specifically affected. Also less than 10% of randomly chosen substances inhibited CYP2C9. Analyses of structure-function relationships revealed that the substituent at the nitrogen atom in the isoindole ring is of crucial impact for the activity of CYP2C9/19.

  15. The cytochrome P450 genesis locus: the origin and evolution of animal cytochrome P450s.

    PubMed

    Nelson, David R; Goldstone, Jared V; Stegeman, John J

    2013-02-19

    The neighbourhoods of cytochrome P450 (CYP) genes in deuterostome genomes, as well as those of the cnidarians Nematostella vectensis and Acropora digitifera and the placozoan Trichoplax adhaerens were examined to find clues concerning the evolution of CYP genes in animals. CYP genes created by the 2R whole genome duplications in chordates have been identified. Both microsynteny and macrosynteny were used to identify genes that coexisted near CYP genes in the animal ancestor. We show that all 11 CYP clans began in a common gene environment. The evidence implies the existence of a single locus, which we term the 'cytochrome P450 genesis locus', where one progenitor CYP gene duplicated to create a tandem set of genes that were precursors of the 11 animal CYP clans: CYP Clans 2, 3, 4, 7, 19, 20, 26, 46, 51, 74 and mitochondrial. These early CYP genes existed side by side before the origin of cnidarians, possibly with a few additional genes interspersed. The Hox gene cluster, WNT genes, an NK gene cluster and at least one ARF gene were close neighbours to this original CYP locus. According to this evolutionary scenario, the CYP74 clan originated from animals and not from land plants nor from a common ancestor of plants and animals. The CYP7 and CYP19 families that are chordate-specific belong to CYP clans that seem to have originated in the CYP genesis locus as well, even though this requires many gene losses to explain their current distribution. The approach to uncovering the CYP genesis locus overcomes confounding effects because of gene conversion, sequence divergence, gene birth and death, and opens the way to understanding the biodiversity of CYP genes, families and subfamilies, which in animals has been obscured by more than 600 Myr of evolution.

  16. Cytochrome P450-2D6 Screening Among Elderly Using Antidepressants (CYSCE)

    ClinicalTrials.gov

    2016-10-24

    Depression; Depressive Disorder; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Intermediate Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant

  17. Genomic and bioinformatic analysis of NADPH-cytochrome P450 reductase in Anopheles stephensi (Diptera: Culicidae).

    PubMed

    Suwanchaichinda, C; Brattsten, L B

    2014-01-01

    The cytochrome P450 monooxygenase (P450) enzyme system is a major mechanism of xenobiotic biotransformation. The nicotinamide adenine dinucleotide phosphate (NADPH)-cytochrome P450 reductase (CPR) is required for transfer of electrons from NADPH to P450. One CPR gene was identified in the genome of the malaria-transmitting mosquito Anopheles stephensi Liston (Diptera: Culicidae). The gene encodes a polypeptide containing highly conserved flavin mononucleotide-, flavin adenine dinucleotide-, and NADPH-binding domains, a unique characteristic of the reductase. Phylogenetic analysis revealed that the A. stephensi and other known mosquito CPRs belong to a monophyletic group distinctly separated from other insects in the same order, Diptera. Amino acid residues of CPRs involved in binding of P450 and cytochrome c are conserved between A. stephensi and the Norway rat Rattus norvegicus Berkenhout (Rodentia: Muridae). However, gene structure particularly within the coding region is evidently different between the two organisms. Such difference might arise during the evolution process as also seen in the difference of P450 families and isoforms found in these organisms. CPR in the mosquito A. stephensi is expected to be active and serve as an essential component of the P450 system.

  18. Characterization of Drosophila melanogaster cytochrome P450 genes

    PubMed Central

    Chung, Henry; Sztal, Tamar; Pasricha, Shivani; Sridhar, Mohan; Batterham, Philip; Daborn, Phillip J.

    2009-01-01

    Cytochrome P450s form a large and diverse family of heme-containing proteins capable of carrying out many different enzymatic reactions. In both mammals and plants, some P450s are known to carry out reactions essential for processes such as hormone synthesis, while other P450s are involved in the detoxification of environmental compounds. In general, functions of insect P450s are less well understood. We characterized Drosophila melanogaster P450 expression patterns in embryos and 2 stages of third instar larvae. We identified numerous P450s expressed in the fat body, Malpighian (renal) tubules, and in distinct regions of the midgut, consistent with hypothesized roles in detoxification processes, and other P450s expressed in organs such as the gonads, corpora allata, oenocytes, hindgut, and brain. Combining expression pattern data with an RNA interference lethality screen of individual P450s, we identify candidate P450s essential for developmental processes and distinguish them from P450s with potential functions in detoxification. PMID:19289821

  19. Classification and characterization of putative cytochrome P450 genes from Panax ginseng C. A. Meyer.

    PubMed

    Devi, Balusamy Sri Renuka; Kim, Yu-Jin; Sathiyamoorthy, Subramaniyum; Khorolragchaa, Altanzul; Gayathri, Sathiyaraj; Parvin, Shohana; Yang, Dong-Uk; Selvi, Senthil Kalai; Lee, Ok Ran; Lee, Sungyoung; Yang, Deok-Chun

    2011-12-01

    In plants heme containing cytochrome P450 (P450) is a superfamily of monooxygenases that catalyze the addition of one oxygen atom from O2 into a substrate, with a substantial reduction of the other atom to water. The function of P450 families is attributed to chemical defense mechanism under terrestrial environmental conditions; several are involved in secondary and hormone metabolism. However, the evolutionary relationships of P450 genes in Panax ginseng remain largely unknown. In the present study, data mining methods were implemented and 116 novel putative P450 genes were identified from Expressed Sequence Tags (ESTs) of a ginseng database. These genes were classified into four clans and 22 families by sequence similarity conducted at amino acid level. The representative putative P450 sequences of P. ginseng and known P450 family from other plants were used to construct a phylogenetic tree. By comparing with other genomes, we found that most of the P450 genes from P. ginseng can be found in other dicot species. Depending on P450 family functions, seven P450 genes were selected, and for that organ specific expression, abiotic, and biotic studies were performed by quantitative reverse transcriptase-polymerase chain reaction. Different genes were found to be expressed differently in different organs. Biotic stress and abiotic stress transcript level was regulated diversely, and upregulation of P450 genes indicated the involvement of certain genes under stress conditions. The upregulation of the P450 genes under methyl jasmonate and fungal stress justifies the involvement of specific genes in secondary metabolite biosynthesis. Our results provide a foundation for further elucidating the actual function and role of P450 involved in various biochemical pathways in P. ginseng.

  20. Identification of a CYP84 family of cytochrome P450-dependent mono-oxygenase genes in Brassica napus and perturbation of their expression for engineering sinapine reduction in the seeds.

    PubMed

    Nair, R B; Joy, R W; Kurylo, E; Shi, X; Schnaider, J; Datla, R S; Keller, W A; Selvaraj, G

    2000-08-01

    CYP84 is a recently identified family of cytochrome P450-dependent mono-oxygenases defined by a putative ferulate-5-hydroxylase (F5H) from Arabidopsis. Until recently F5H has been thought to catalyze the hydroxylation of ferulate to 5-OH ferulate en route to sinapic acid. Sinapine, a sinapate-derived ester in the seeds, is antinutritional and a target for elimination in canola meal. We have isolated three F5H-like genes (BNF5H1-3) from a cultivated Brassica napus, whose amphidiploid progenitor is considered to have arisen from a fusion of the diploids Brassica rapa and Brassica oleracea. Two cultivated varieties of the diploids were also found to contain BNF5H3 and additionally either BNF5H1 or BNF5H2, respectively. Whereas all three are >90% identical in their coding sequence, BNF5H1 and BNF5H2 are closer to each other than to BNF5H3. This and additional data suggest that the two groups of genes have diverged in an ancestor of the diploids. B. napus showed maximal F5H expression in the stems, least in the seeds, and subtle differences among the expression profiles of the three genes elsewhere. Transgenic B. napus with cauliflower mosaic virus 35S-antisense BNF5H contained up to 40% less sinapine, from 9.0 +/- 0.3 mg in the controls to 5.3 +/- 0.3 mg g(-1) seed. F5H from Arabidopsis and a similar enzyme from sweetgum (Liquidamber styraciflua) has recently been shown to have coniferaldehyde hydroxylase activity instead of F5H activity. Thus the supply of 5-OH coniferaldehyde or 5-OH ferulate has a bearing on sinapine accumulation in canola seeds.

  1. Linking Low-Level Stable Isotope Fractionation to Expression of the Cytochrome P450 Monooxygenase-Encoding ethB Gene for Elucidation of Methyl tert-Butyl Ether Biodegradation in Aerated Treatment Pond Systems▿ †

    PubMed Central

    Jechalke, Sven; Rosell, Mònica; Martínez-Lavanchy, Paula M.; Pérez-Leiva, Paola; Rohwerder, Thore; Vogt, Carsten; Richnow, Hans H.

    2011-01-01

    Multidimensional compound-specific stable isotope analysis (CSIA) was applied in combination with RNA-based molecular tools to characterize methyl tertiary (tert-) butyl ether (MTBE) degradation mechanisms occurring in biofilms in an aerated treatment pond used for remediation of MTBE-contaminated groundwater. The main pathway for MTBE oxidation was elucidated by linking the low-level stable isotope fractionation (mean carbon isotopic enrichment factor [ɛC] of −0.37‰ ± 0.05‰ and no significant hydrogen isotopic enrichment factor [ɛH]) observed in microcosm experiments to expression of the ethB gene encoding a cytochrome P450 monooxygenase able to catalyze the oxidation of MTBE in biofilm samples both from the microcosms and directly from the ponds. 16S rRNA-specific primers revealed the presence of a sequence 100% identical to that of Methylibium petroleiphilum PM1, a well-characterized MTBE degrader. However, neither expression of the mdpA genes encoding the alkane hydroxylase-like enzyme responsible for MTBE oxidation in this strain nor the related MTBE isotope fractionation pattern produced by PM1 could be detected, suggesting that this enzyme was not active in this system. Additionally, observed low inverse fractionation of carbon (ɛC of +0.11‰ ± 0.03‰) and low fractionation of hydrogen (ɛH of −5‰ ± 1‰) in laboratory experiments simulating MTBE stripping from an open surface water body suggest that the application of CSIA in field investigations to detect biodegradation may lead to false-negative results when volatilization effects coincide with the activity of low-fractionating enzymes. As shown in this study, complementary examination of expression of specific catabolic genes can be used as additional direct evidence for microbial degradation activity and may overcome this problem. PMID:21148686

  2. Ectopic expression of a cytochrome P450 monooxygenase gene PtCYP714A3 from Populus trichocarpa reduces shoot growth and improves tolerance to salt stress in transgenic rice.

    PubMed

    Wang, Cuiting; Yang, Yang; Wang, Haihai; Ran, Xiaojuan; Li, Bei; Zhang, Jiantao; Zhang, Hongxia

    2016-09-01

    In Arabidopsis thaliana and Oryza sativa, the cytochrome P450 (CYP) 714 protein family represents a unique group of CYP monooxygenase, which functions as a shoot-specific regulator in plant development through gibberellin deactivation. Here, we report the functional characterizations of PtCYP714A3, an OsCYP714D1/Eui homologue from Populus trichocarpa. PtCYP714A3 was ubiquitously expressed with the highest transcript level in cambium-phloem tissues, and was greatly induced by salt and osmotic stress in poplar. Subcellular localization analyses indicated that PtCYP714A3-YFP fusion protein was targeted to endoplasmic reticulum (ER). Expression of PtCYP714A3 in the rice eui mutant could rescue its excessive-shoot-growth phenotype. Ectopic expression of PtCYP714A3 in rice led to semi-dwarfed phenotype with promoted tillering and reduced seed size. Transgenic lines which showed significant expression of PtCYP714A3 also accumulated lower GA level than did the wild-type (WT) plants. The expression of some GA biosynthesis genes was significantly suppressed in these transgenic plants. Furthermore, transgenic rice plants exhibited enhanced tolerance to salt and maintained more Na(+) in both shoot and root tissues under salinity stress. All these results not only suggest a crucial role of PtCYP714A3 in shoot responses to salt toxicity in rice, but also provide a molecular basis for genetic engineering of salt-tolerant crops. PMID:26970512

  3. Linking low-level stable isotope fractionation to expression of the cytochrome P450 monooxygenase-encoding ethB gene for elucidation of methyl tert-butyl ether biodegradation in aerated treatment pond systems.

    PubMed

    Jechalke, Sven; Rosell, Mònica; Martínez-Lavanchy, Paula M; Pérez-Leiva, Paola; Rohwerder, Thore; Vogt, Carsten; Richnow, Hans H

    2011-02-01

    Multidimensional compound-specific stable isotope analysis (CSIA) was applied in combination with RNA-based molecular tools to characterize methyl tertiary (tert-) butyl ether (MTBE) degradation mechanisms occurring in biofilms in an aerated treatment pond used for remediation of MTBE-contaminated groundwater. The main pathway for MTBE oxidation was elucidated by linking the low-level stable isotope fractionation (mean carbon isotopic enrichment factor [ε(C)] of -0.37‰ ± 0.05‰ and no significant hydrogen isotopic enrichment factor [ε(H)]) observed in microcosm experiments to expression of the ethB gene encoding a cytochrome P450 monooxygenase able to catalyze the oxidation of MTBE in biofilm samples both from the microcosms and directly from the ponds. 16S rRNA-specific primers revealed the presence of a sequence 100% identical to that of Methylibium petroleiphilum PM1, a well-characterized MTBE degrader. However, neither expression of the mdpA genes encoding the alkane hydroxylase-like enzyme responsible for MTBE oxidation in this strain nor the related MTBE isotope fractionation pattern produced by PM1 could be detected, suggesting that this enzyme was not active in this system. Additionally, observed low inverse fractionation of carbon (ε(C) of +0.11‰ ± 0.03‰) and low fractionation of hydrogen (ε(H) of -5‰ ± 1‰) in laboratory experiments simulating MTBE stripping from an open surface water body suggest that the application of CSIA in field investigations to detect biodegradation may lead to false-negative results when volatilization effects coincide with the activity of low-fractionating enzymes. As shown in this study, complementary examination of expression of specific catabolic genes can be used as additional direct evidence for microbial degradation activity and may overcome this problem.

  4. A novel cytochrome P450 CYP6AB14 gene in Spodoptera litura (Lepidoptera: Noctuidae) and its potential role in plant allelochemical detoxification

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cytochrome P450 monooxygenases (P450) play a prominent role in the adaptation of insects to host plant chemical defenses. To investigate the potential role of P450s in adaptation of the lepidopteran pest Spodoptera litura to host plant allelochemicals, an expressed sequence data set derived from 6th...

  5. Structural biology of redox partner interactions in P450cam monooxygenase: a fresh look at an old system.

    PubMed

    Sevrioukova, Irina F; Poulos, Thomas L

    2011-03-01

    The P450cam monooxygenase system consists of three separate proteins: the FAD-containing, NADH-dependent oxidoreductase (putidaredoxin reductase or Pdr), cytochrome P450cam and the 2Fe2S ferredoxin (putidaredoxin or Pdx), which transfers electrons from Pdr to P450cam. Over the past few years our lab has focused on the interaction between these redox components. It has been known for some time that Pdx can serve as an effector in addition to its electron shuttle role. The binding of Pdx to P450cam is thought to induce structural changes in the P450cam active site that couple electron transfer to substrate hydroxylation. The nature of these structural changes has remained unclear until a particular mutant of P450cam (Leu358Pro) was found to exhibit spectral perturbations similar to those observed in wild type P450cam bound to Pdx. The crystal structure of the L358P variant has provided some important insights on what might be happening when Pdx docks. In addition to these studies, many Pdx mutants have been analyzed to identify regions important for electron transfer. Somewhat surprisingly, we found that Pdx residues predicted to be at the P450cam-Pdx interface play different roles in the reduction of ferric P450cam and the ferrous P450-O(2) complex. More recently we have succeeded in obtaining the structure of a chemically cross-linked Pdr-Pdx complex. This fusion protein represents a valid model for the noncovalent Pdr-Pdx complex as it retains the redox activities of native Pdr and Pdx and supports monooxygenase reactions catalyzed by P450cam. The insights gained from these studies will be summarized in this review.

  6. NADPH–Cytochrome P450 Oxidoreductase: Roles in Physiology, Pharmacology, and Toxicology

    PubMed Central

    Ding, Xinxin; Wolf, C. Roland; Porter, Todd D.; Pandey, Amit V.; Zhang, Qing-Yu; Gu, Jun; Finn, Robert D.; Ronseaux, Sebastien; McLaughlin, Lesley A.; Henderson, Colin J.; Zou, Ling; Flück, Christa E.

    2013-01-01

    This is a report on a symposium sponsored by the American Society for Pharmacology and Experimental Therapeutics and held at the Experimental Biology 2012 meeting in San Diego, California, on April 25, 2012. The symposium speakers summarized and critically evaluated our current understanding of the physiologic, pharmacological, and toxicological roles of NADPH–cytochrome P450 oxidoreductase (POR), a flavoprotein involved in electron transfer to microsomal cytochromes P450 (P450), cytochrome b5, squalene mono-oxygenase, and heme oxygenase. Considerable insight has been derived from the development and characterization of mouse models with conditional Por deletion in particular tissues or partial suppression of POR expression in all tissues. Additional mouse models with global or conditional hepatic deletion of cytochrome b5 are helping to clarify the P450 isoform- and substrate-specific influences of cytochrome b5 on P450 electron transfer and catalytic function. This symposium also considered studies using siRNA to suppress POR expression in a hepatoma cell–culture model to explore the basis of the hepatic lipidosis phenotype observed in mice with conditional deletion of Por in liver. The symposium concluded with a strong translational perspective, relating the basic science of human POR structure and function to the impacts of POR genetic variation on human drug and steroid metabolism. PMID:23086197

  7. Activation of Oxygen by Cytochrome P-450 and Other Haemoproteins

    NASA Astrophysics Data System (ADS)

    Metelitsa, D. I.

    1982-11-01

    Data on the activation of molecular oxygen by the full microsomal hydroxylating system containing cytochrome P-450 as the terminal oxygenase are examined. The nature of the hydroxylating agent, which is the oxenoid Fe3+O, is analysed. The autoxidation reactions of cytochrome P-450 from various sources, haemoglobin, myoglobin, and peroxidases are compared and the role of the axial ligands of the haem iron and the structure of the active centres of the haemoproteins in this process is demonstrated. The possible mechanisms of the oxidation of organic compounds by peroxides with participation of cytochrome P-450, cytochrome c, haemoglobin, and catalase are examined critically. Haemoproteins have been divided into three groups in terms of the type of peroxide oxidation reactions. The relative contributions of the radical and two-electron reactions in the oxidation of compounds by peroxides with participation of different haemoproteins are analysed. The bibliography includes 184 references.

  8. Expression of a Ripening-Related Avocado (Persea americana) Cytochrome P450 in Yeast.

    PubMed

    Bozak, K R; O'keefe, D P; Christoffersen, R E

    1992-12-01

    One of the mRNAs that accumulates during the ripening of avocado (Persea americana Mill. cv Hass) has been previously identified as a cytochrome P450 (P450) monooxygenase and the corresponding gene designated CYP71A1. In this report we demonstrate that during ripening the accumulation of antigenically detected CYP71A1 gene product (CYP71A1) correlates with increases in total P450 and two P450-dependent enzyme activities: para-chloro-N-methylaniline demethylase, and trans-cinnamic acid hydroxylase (tCAH). To determine whether both of these activities are derived from CYP71A1, we have expressed this protein in yeast (Saccharomyces cerevisiae) using a galactose-inducible yeast promoter. Following induction, the microsomal fraction of transformed yeast cells undergoes a large increase in P450 level, attributable almost exclusively to the plant CYP71A1 protein. These membranes exhibit NADPH-dependent para-chloro-N-methylaniline demethylase activity at a rate comparable to that in avocado microsomes but have no detectable tCAH. These results demonstrate both that the CYP71A1 protein is not a tCAH and that a plant P450 is fully functional upon heterologous expression in yeast. These findings also indicate that the heterologous P450 protein can interact with the yeast NADPH:P450 reductase to produce a functional complex.

  9. Electrochemical investigations on the oxygen activation by cytochrome P-450.

    PubMed

    Scheller, F; Renneberg, R; Schwarze, W; Strnad, G; Pommerening, K; Prümke, H J; Mohr, P

    1979-01-01

    The application of cytochrome P-450 in substrate conversion is complicated both due to the limited stability and the cofactor regeneration problems. To overcome the disadvantages of NADPH consumption the transfer of the reduction equivalents from an electrode into the cytochrome P-450-system was studied: 1. NADPH was cathodically reduced at a mercury pool electrode. By immobilization of NADP on dialdehyde Sephadex the reductive recycling was possible. 2. Different forms of reduced oxygen were produced by the cathode: a) The reaction of O2- with deoxycorticosterone yields a carboxylic acid derivative. In contrast the cytochrome P-450 catalyzed NADPH-dependent reaction with the same substrate gives corticosterone, O2- represents only an intermediate in the activation of oxygen and is not the "activated oxygen" species. b) Molecular oxygen was reduced to HO2- and H2O2, respectively. The interaction of adsorbed cytochrome P-450 on the electrode surface with the reduced oxygen species in the absence of NADPH was studied. The electrochemically generated peroxide seems to be more active than added H2O2. 3. In a model of electro-enzyme-reactor several substrates were hydroxylated by microsomal cytochrome P-450 with cathodically reduced oxygen which substitutes NADPH.

  10. Mechanistic aspects of CYP74 allene oxide synthases and related cytochrome P450 enzymes

    PubMed Central

    Brash, Alan R.

    2009-01-01

    The existence of CYP5, CYP8A, and the CYP74 enzymes specialized for reaction with fatty acid peroxide substrates presents opportunities for a “different look” at the catalytic cycle of the cytochrome P450s. This review considers how the properties of the peroxide-metabolizing enzymes are distinctive, and how they tie in with those of the conventional monooxygenase enzymes. Some unusual reactions of each class have parallels in the other. As new enzyme reactions and new P450 structures emerge there will be possibilities for finding their special properties and edging this knowledge into the big picture. PMID:19747698

  11. Enhanced expression of cytochrome P450 in stomach cancer.

    PubMed Central

    Murray, G. I.; Taylor, M. C.; Burke, M. D.; Melvin, W. T.

    1998-01-01

    The cytochromes P450 have a central role in the oxidative activation and detoxification of a wide range of xenobiotics, including many carcinogens and several anti-cancer drugs. Thus the cytochrome P450 enzyme system has important roles in both tumour development and influencing the response of tumours to chemotherapy. Stomach cancer is one of the commonest tumours of the alimentary tract and environmental factors, including dietary factors, have been implicated in the development of this tumour. This type of tumour has a poor prognosis and responds poorly to current therapies. In this study, the presence and cellular localization of several major forms of P450, CYP1A, CYP2E1 and CYP3A have been investigated in stomach cancer and compared with their expression in normal stomach. There was enhanced expression of CYP1A and CYP3A in stomach cancer with CYP1A present in 51% and CYP3A present in 28% of cases. In contrast, no P450 was identified in normal stomach. The presence of CYP1A and CYP3A in stomach cancer provides further evidence for the enhanced expression of specific forms of cytochrome P450 in tumours and may be important therapeutically for the development of anti-cancer drugs that are activated by these forms of P450. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9569036

  12. [Cytochrome P-450-dependent reactions during intensified biosynthesis of coenzyme A in hepatocytes].

    PubMed

    Sushko, L I; Sheĭbak, V M; Abakumov, G Z; Moĭseenok, A K

    1986-01-01

    After subcutaneous administration into male rats of 4-phosphopantothenic acid and pantethine during 10 days at a dose equivalent to 30 mg/kg of calcium pantothenate total content of CoA was increased in liver tissue. Both these preparations activated the liver endoplasmic reticulum monooxygenase system mainly at the step of substrate hydroxylation. The phenomenon observed appears to occur due to activation of cytochrome P-450 biosynthesis and/or to alterations in phospholipid composition of microsomal membranes. PMID:3765494

  13. Role of Cytochrome P450s in Inflammation.

    PubMed

    Christmas, Peter

    2015-01-01

    Cytochrome P450 epoxygenases and hydroxylases play a regulatory role in the activation and suppression of inflammation by generating or metabolizing bioactive mediators. CYP2C and CYP2J epoxygenases convert arachidonic acid to anti-inflammatory epoxyeicosatrienoic acids, which have protective effects in a variety of disorders including cardiovascular disease and metabolic syndrome. CYP4A and CYP4F hydroxylases have the ability to metabolize multiple substrates related to the regulation of inflammation and lipid homeostasis, and it is a challenge to determine which substrates are physiologically relevant for each enzyme; the best-characterized activities include generation of 20-hydroxyeicosatetraenoic acid and inactivation of leukotriene B4. The expression of hepatic drug-metabolizing cytochrome P450s is modulated by cytokines during inflammation, resulting in changes to the pharmacokinetics of prescribed medications. Cytochrome P450s are therefore the focus of intersecting challenges in the pharmacology of inflammation: not only do they represent targets for development of new anti-inflammatory drugs but they also contribute to variability in drug efficacy or toxicity in inflammatory disease. Animal models and primary hepatocytes have been used extensively to study the effects of cytokines on cytochrome P450 expression and activity. However, it is difficult to predict changes in drug exposure in patients because the response to inflammation varies depending on the disease state, its time course, and the cytochrome P450 involved. In these circumstances, the development of endogenous markers of cytochrome P450 metabolism might provide a useful tool to reevaluate drug dosage and choice of therapy.

  14. Comparison of basal and induced cytochromes P450 in 6 species of waterfowl

    USGS Publications Warehouse

    Melancon, M.J.; Rattner, B.A.; Hoffman, D.J.; Beeman, D.; Day, D.; Custer, T.

    1999-01-01

    Cytochrome P450-associated monooxygenase activities were measured in control and prototype inducer-treated mallard duck, black duck, wood duck, lesser scaup, Canada goose and mute swan. Ages of the birds ranged from pipping embryos (that were treated approximately 3 days before pipping) to adults. Three or more of the following hepatic microsomal monooxygenases were assayed in each species: Benzyloxyresorufin-O-dealkylase (BROD), Ethoxyresorufin-O-dealkylase (EROD), methoxyresorufin-O-dealkylase (MROD), and pentoxyresorufin-O-dealkylase (PROD). Baseline activities differed between species, but because of differences in ages, sources of the eggs or birds, and diets, these cannot be viewed as absolute differences. The cytochrome P450 inducers utilized were beta-naphthoflavone (BNF), 3-methylcholanthrene (3MC) and phenobarbital (PB). In general, there was little response to PB; only lesser scaup were induced to greater than three times control level and most species were well under this. Responses to BNF and 3MC occurred in each species studied, but differed in which of the monooxygenases was most induced (absolute values and ratios to control values) and in relative induction between species. BROD frequently had an induction ratio EROD. Overall, lesser scaup were the most responsive, canada geese the least responsive, and the other species intermediate in responsiveness to the cytochrome P450 inducers studied.

  15. Interactions among Cytochromes P450 in Microsomal Membranes

    PubMed Central

    Davydov, Dmitri R.; Davydova, Nadezhda Y.; Sineva, Elena V.; Halpert, James R.

    2015-01-01

    The body of evidence of physiologically relevant P450-P450 interactions in microsomal membranes continues to grow. Here we probe oligomerization of human CYP3A4, CYP3A5, and CYP2E1 in microsomal membranes. Using a technique based on luminescence resonance energy transfer, we demonstrate that all three proteins are subject to a concentration-dependent equilibrium between the monomeric and oligomeric states. We also observed the formation of mixed oligomers in CYP3A4/CYP3A5, CYP3A4/CYP2E1, and CYP3A5/CYP2E1 pairs and demonstrated that the association of either CYP3A4 or CYP3A5 with CYP2E1 causes activation of the latter enzyme. Earlier we hypothesized that the intersubunit interface in CYP3A4 oligomers is similar to that observed in the crystallographic dimers of some microsomal drug-metabolizing cytochromes P450 (Davydov, D. R., Davydova, N. Y., Sineva, E. V., Kufareva, I., and Halpert, J. R. (2013) Pivotal role of P450-P450 interactions in CYP3A4 allostery: the case of α-naphthoflavone. Biochem. J. 453, 219–230). Here we report the results of intermolecular cross-linking of CYP3A4 oligomers with thiol-reactive bifunctional reagents as well as the luminescence resonance energy transfer measurements of interprobe distances in the oligomers of labeled CYP3A4 single-cysteine mutants. The results provide compelling support for the physiological relevance of the dimer-specific peripheral ligand-binding site observed in certain CYP3A4 structures. According to our interpretation, these results reveal an important general mechanism that regulates the activity and substrate specificity of the cytochrome P450 ensemble through interactions between multiple P450 species. As a result of P450-P450 cross-talk, the catalytic properties of the cytochrome P450 ensemble cannot be predicted by simple summation of the properties of the individual P450 species. PMID:25533469

  16. CROSS-SPECIES COMPARISON OF CONAZOLE FUNGICIDE METABOLITES USING RAT AND RAINBOW TROUT (ONCHORHYNCHUS MYKISS) HEPATIC MICROSOMES AND PURIFIED HUMAN CYTOCHROME P450 3A4

    EPA Science Inventory

    Conazoles represent a unique class of azole-containing fungicides that are widely used in both pharmaceutical and agriculture applications. The antifungal property of conazoles occurs via complexation with cytochrome P450 monooxygenases (CYP) responsible for mediating fungal cell...

  17. Key Mutations Alter the Cytochrome P450 BM3 Conformational Landscape and Remove Inherent Substrate Bias*

    PubMed Central

    Butler, Christopher F.; Peet, Caroline; Mason, Amy E.; Voice, Michael W.; Leys, David; Munro, Andrew W.

    2013-01-01

    Cytochrome P450 monooxygenases (P450s) have enormous potential in the production of oxychemicals, due to their unparalleled regio- and stereoselectivity. The Bacillus megaterium P450 BM3 enzyme is a key model system, with several mutants (many distant from the active site) reported to alter substrate selectivity. It has the highest reported monooxygenase activity of the P450 enzymes, and this catalytic efficiency has inspired protein engineering to enable its exploitation for biotechnologically relevant oxidations with structurally diverse substrates. However, a structural rationale is lacking to explain how these mutations have such effects in the absence of direct change to the active site architecture. Here, we provide the first crystal structures of BM3 mutants in complex with a human drug substrate, the proton pump inhibitor omeprazole. Supported by solution data, these structures reveal how mutation alters the conformational landscape and decreases the free energy barrier for transition to the substrate-bound state. Our data point to the importance of such “gatekeeper” mutations in enabling major changes in substrate recognition. We further demonstrate that these mutants catalyze the same 5-hydroxylation reaction as performed by human CYP2C19, the major human omeprazole-metabolizing P450 enzyme. PMID:23828198

  18. Role of Protein–Protein Interactions in Cytochrome P450-Mediated Drug Metabolism and Toxicity

    PubMed Central

    2015-01-01

    Through their unique oxidative chemistry, cytochrome P450 monooxygenases (CYPs) catalyze the elimination of most drugs and toxins from the human body. Protein–protein interactions play a critical role in this process. Historically, the study of CYP–protein interactions has focused on their electron transfer partners and allosteric mediators, cytochrome P450 reductase and cytochrome b5. However, CYPs can bind other proteins that also affect CYP function. Some examples include the progesterone receptor membrane component 1, damage resistance protein 1, human and bovine serum albumin, and intestinal fatty acid binding protein, in addition to other CYP isoforms. Furthermore, disruption of these interactions can lead to altered paths of metabolism and the production of toxic metabolites. In this review, we summarize the available evidence for CYP protein–protein interactions from the literature and offer a discussion of the potential impact of future studies aimed at characterizing noncanonical protein–protein interactions with CYP enzymes. PMID:25133307

  19. Degradation of Morpholine by an Environmental Mycobacterium Strain Involves a Cytochrome P-450

    PubMed Central

    Poupin, P.; Truffaut, N.; Combourieu, B.; Besse, P.; Sancelme, M.; Veschambre, H.; Delort, A. M.

    1998-01-01

    A Mycobacterium strain (RP1) was isolated from a contaminated activated sludge collected in a wastewater treatment unit of a chemical plant. It was capable of utilizing morpholine and other heterocyclic compounds, such as pyrrolidine and piperidine, as the sole source of carbon, nitrogen, and energy. The use of in situ 1H nuclear magnetic resonance (1H NMR) spectroscopy allowed the determination of two intermediates in the biodegradative pathway, 2-(2-aminoethoxy)acetate and glycolate. The inhibitory effects of metyrapone on the degradative abilities of strain RP1 indicated the involvement of a cytochrome P-450 in the biodegradation of morpholine. This observation was confirmed by spectrophotometric analysis and 1H NMR. Reduced cell extracts from morpholine-grown cultures, but not succinate-grown cultures, gave rise to a carbon monoxide difference spectrum with a peak near 450 nm, which indicated the presence of a soluble cytochrome P-450. 1H NMR allowed the direct analysis of the incubation medium containing metyrapone, a specific inhibitor of cytochrome P-450. The inhibition of morpholine degradation was dependent on the morpholine/metyrapone ratio. The heme-containing monooxygenase was also detected in pyrrolidine- and piperidine-grown cultures. The abilities of different compounds to support strain growth or the induction of a soluble cytochrome P-450 were assayed. The results suggest that this enzyme catalyzes the cleavage of the C—N bond of the morpholine ring. PMID:9435074

  20. Effects of cadmium and environmental pollution on metallothionein and cytochrome P450 in Tilapia

    SciTech Connect

    Ueng, Y.F.; Meng, L.M.; Hung, Y.Y.; Ueng, T.H.; Liu, C.; Lai, C.F.

    1996-07-01

    Tilapia are widely distributed freshwater fish frequently used for environmental toxicology, comparative biochemistry and physiology studies. Tilapia can persist in a highly polluted habitat and have the potential for the development as a biological monitor of environmental pollution. Metallothioneins (MTs) are a group of small-molecular-weight cytoplasmic proteins induced in many animals including fish, following exposure to metals such as cadmium, copper, zinc, and mercury. An increasing number of reports have indicated that fish MT induction is a sensitive measure of metal contamination in the environment. Fish cytochrome (P450)-dependent monooxygenases are inducible by many environmental pollutants including polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Extensive studies have suggested that fish monooxygenase can serve as a biochemical marker for exposure to PAH- and PCB-types of pollutants. Tilapia P450 is highly responsive to the inductive effects of PAH and PCBs. Tilapia collected from a polluted section of a river showed higher levels of P450 and dependent monooxygenase activities than tilapia collected from an unpolluted section. Previous studies showed that pretreatment with Cd decreased microsomal monooxygenase activities in fish such as plaice, bass, and trout. However, direct information regarding the effects of heavy metals on tilapia P450 are not available. Reports concerning the effect of heavy metal on tilapia MT are scarce. The purpose of the present study was to determine the ability of cadmium to modulate P450 and MT in tilapia liver and gill. In addition, we have extended our study to feral tilapia collected from Er-Jen Stream, a polluted river in Taiwan. 16 refs., 1 fig., 2 tabs.

  1. HEPATIC CYTOCHROME P450 UBIQUITINATION: CONFORMATIONAL PHOSPHODEGRONS FOR E2/E3 RECOGNITION?

    PubMed Central

    Correia, Maria Almira; Wang, YongQiang; Kim, Sung-Mi; Guan, Shenheng

    2014-01-01

    Hepatic endoplasmic reticulum (ER) integral cytochromes P450 (P450s) are monooxygenases engaged in the biotransformation and elimination of endo- as well as xenobiotics. Of the human liver P450s, CYP3A4 is the major and most dominant catalyst, responsible for the biotransformation of over 50% of clinically prescribed drugs. CYP2E1 metabolizes smaller molecular weight compounds (EtOH), carcinogens, environmental toxins and endobiotics, and is justly implicated in various toxigenic/pathogenic mechanisms of human disease. Both P450s are notorious for their potential to generate pathogenic reactive oxygen species (ROS) during futile oxidative cycling and/or oxidative uncoupling. Such ROS not only oxidatively damage the P450 catalytic cage, but on their escape into the cytosol, also the P450 outer surface and any surrounding cell organelles. Given their ER-monotopic topology coupled with this high potential to acquire oxidative lesions in their cytosolic (C) domain, not surprisingly these P450 proteins exhibit shorter lifespans and are excellent prototype substrates of ER-associated degradation (“ERAD-C”) pathway. Indeed, we have shown that both CYP3A4 and CYP2E1 incur ERAD-C, during which they are first phosphorylated by protein kinases A and C, which greatly enhance/accelerate their ubiquitination by UBC7/gp78 and UbcH5a/CHIP/Hsp70/Hsp40 E2/E3 ubiquitin ligase complexes. Such P450 phosphorylation occurs on Ser/Thr residues within linear sequences as well as spatially clustered acidic (Asp/Glu) residues. We propose that such S/T phosphorylation within these clusters creates a negatively charged patch i.e. conformational phosphodegrons, for interaction with positively charged E2/E3 domains. Such P450 S/T phosphorylation we posit serves as a switch to turn on its ubiquitination and ERAD-C. PMID:24488826

  2. Research progress relating to the role of cytochrome P450 in the biosynthesis of terpenoids in medicinal plants.

    PubMed

    Zhao, Yu-Jun; Cheng, Qi-Qing; Su, Ping; Chen, Xin; Wang, Xiu-Juan; Gao, Wei; Huang, Lu-Qi

    2014-03-01

    Terpenoids are an extensive and diverse group of plant secondary metabolites. To date, they have been applied in many fields including industry, medicine and health. The wide variety of terpenoid compounds cannot arise solely from simple cyclisations of a precursor molecule or from a single-step reaction; their structural diversity depends on the modification of many specific chemical groups, rearrangements of their skeletal structures and on the post-modification reactions. Most of the post-modification enzymes that catalyse these reactions are cytochrome P450 monooxygenases. Therefore, the discovery and identification of plant P450 genes plays a vital role in the exploration of terpenoid biosynthesis pathways. This review summarises recent research progress relating to the function of plant cytochrome P450 enzymes, describes P450 genes that have been cloned from full-length cDNA and identifies the function of P450 enzymes in the terpenoid biosynthesis pathways of several medicinal plants.

  3. Inter-relation of cytochrome P450 and contaminants burdens in sibling heron embryos and nestlings

    SciTech Connect

    Rattner, B.; Melancon, M.; Custer, T.; Hothem, R. ||

    1995-12-31

    Hepatic cytochrome P450-associated monooxygenase activities were measured in 11-day-old nestling black-crowned night-herons (Nycticorax nycticorax) collected from a reference site (next to the Chincoteague National Wildlife Refuge, Virginia) and three polluted sites (Cat Island, Green Bay, Lake Michigan, Wisconsin; Bair Island, San Francisco Bay, California; West Marin Island, San Francisco Bay, California). Activities of aryl hydrocarbon hydroxylase (AHH) and benzyl-oxyresorufin-O-dealkylase (BROD) were modestly elevated ({<=} three-fold) in nestlings from polluted sites. Concentrations of p,p{prime}DDE, other organochlorine pesticides and total PCBs in nestlings were greatest at contaminated sites, although much lower than found in concurrently collected eggs and pipping embryos, At these low pollutant concentrations there was little correlation between monooxygenase activity and contaminant levels in nestlings. These observations markedly contrast the pronounced monooxygenase induction (up to 85-fold) and its significant correlation with total PCBS, aryl hydrocarbon receptor-active PCB congeners and toxic equivalents in concurrently collected night-heron embryos that were often siblings of the nestlings. The present findings suggest that cytochrome P450-associated monooxygenase activity of heron nestlings may have only limited value as a biomarker of exposure at this rapid-growth life stage.

  4. Inter-relation of cytochrome P450 and contaminants burdens in sibling heron embryos and nestlings

    USGS Publications Warehouse

    Rattner, B.; Melancon, M.; Custer, T.; Hothem, R.

    1995-01-01

    Hepatic cytochrome P450-associated monooxygenase activities were measured in 11-day-old nestling black-crowned night-herons (Nycticorax nycticorax) collected from a reference site (next to the Chincoteague National Wildlife Refuge, Virginia) and three polluted sites (Cat Island, Green Bay, Lake Michigan, Wisconsin; Bair Island, San Francisco Bay, California; West Marin Island, San Francisco Bay, California). Activities of arylhydrocarbon hydroxylase (AHH) and benzyl-oxyresorufin-O-dealkylase (BROD) weremodestly elevated (monooxygenase activity and contaminant levels in nestlings. These observations markedly contrast the pronounced monooxygenase induction (up to 85-fold) and its significant correlation with total PCBs, arylhydrocarbon receptor-active PCB congeners and toxic equivalents in concurrently collected night-heron embryos that were often siblings of the nestlings. The present findings suggest that cytochrome P450-associated monooxygenase activity of heron nestlings may have only limited value as a biomarker of exposure at this rapid-growth life stage.

  5. Fusion to Hydrophobin HFBI Improves the Catalytic Performance of a Cytochrome P450 System

    PubMed Central

    Schulz, Sebastian; Schumacher, Dominik; Raszkowski, Daniel; Girhard, Marco; Urlacher, Vlada B.

    2016-01-01

    Cytochrome P450 monooxygenases (P450) are heme-containing enzymes that oxidize a broad range of substrates in the presence of molecular oxygen and NAD(P)H. For their activity, most P450s rely on one or two redox proteins responsible for the transfer of electrons from the cofactor NAD(P)H to the heme. One of the challenges when using P450s in vitro, especially when non-physiological redox proteins are applied, is the inefficient transfer of electrons between the individual proteins resulting in non-productive consumption of NAD(P)H – referred to as uncoupling. Herein, we describe the improvement of the coupling efficiency between a P450 and its redox partner – diflavin reductase – by fusing both enzymes individually to the hydrophobin HFBI – a small self-assembling protein of the fungus Trichoderma reesei. The separated monooxygenase (BMO) and reductase (BMR) domains of P450 BM3 from Bacillus megaterium were chosen as a P450-reductase model system and individually fused to HFBI. The fusion proteins could be expressed in soluble form in Escherichia coli. When HFBI-fused BMO and BMR were mixed in vitro, substantially higher coupling efficiencies were measured as compared with the respective non-fused enzymes. Consequently, myristic acid conversion increased up to 20-fold (after 6 h) and 5-fold (after 24 h). Size exclusion chromatography demonstrated that in vitro the hydrophobin-fused enzymes build multimeric protein assemblies. Thus, the higher activity is hypothesized to be due to HFBI-mediated self-assembly arranging BMO and BMR in close spatial proximity in aqueous solution. PMID:27458582

  6. Fusion to Hydrophobin HFBI Improves the Catalytic Performance of a Cytochrome P450 System.

    PubMed

    Schulz, Sebastian; Schumacher, Dominik; Raszkowski, Daniel; Girhard, Marco; Urlacher, Vlada B

    2016-01-01

    Cytochrome P450 monooxygenases (P450) are heme-containing enzymes that oxidize a broad range of substrates in the presence of molecular oxygen and NAD(P)H. For their activity, most P450s rely on one or two redox proteins responsible for the transfer of electrons from the cofactor NAD(P)H to the heme. One of the challenges when using P450s in vitro, especially when non-physiological redox proteins are applied, is the inefficient transfer of electrons between the individual proteins resulting in non-productive consumption of NAD(P)H - referred to as uncoupling. Herein, we describe the improvement of the coupling efficiency between a P450 and its redox partner - diflavin reductase - by fusing both enzymes individually to the hydrophobin HFBI - a small self-assembling protein of the fungus Trichoderma reesei. The separated monooxygenase (BMO) and reductase (BMR) domains of P450 BM3 from Bacillus megaterium were chosen as a P450-reductase model system and individually fused to HFBI. The fusion proteins could be expressed in soluble form in Escherichia coli. When HFBI-fused BMO and BMR were mixed in vitro, substantially higher coupling efficiencies were measured as compared with the respective non-fused enzymes. Consequently, myristic acid conversion increased up to 20-fold (after 6 h) and 5-fold (after 24 h). Size exclusion chromatography demonstrated that in vitro the hydrophobin-fused enzymes build multimeric protein assemblies. Thus, the higher activity is hypothesized to be due to HFBI-mediated self-assembly arranging BMO and BMR in close spatial proximity in aqueous solution. PMID:27458582

  7. Cytochrome P450 Inhibitors Reduce Creeping Bentgrass (Agrostis stolonifera) Tolerance to Topramezone

    PubMed Central

    Elmore, Matthew T.; Brosnan, James T.; Armel, Gregory R.; Kopsell, Dean A.; Best, Michael D.; Mueller, Thomas C.; Sorochan, John C.

    2015-01-01

    Creeping bentgrass (Agrostis stolonifera L.) is moderately tolerant to the p-hydroxyphenylpyruvate dioxygenase-inhibiting herbicide topramezone. However, the contribution of plant metabolism of topramezone to this tolerance is unknown. Experiments were conducted to determine if known cytochrome P450 monooxygenase inhibitors 1-aminobenzotriazole (ABT) and malathion alone or in combination with the herbicide safener cloquintocet-mexyl influence creeping bentgrass tolerance to topramezone. Creeping bentgrass in hydroponic culture was treated with ABT (70 μM), malathion (70 μm and 1000 g ha-1), or cloquintocet-mexyl (70 μM and 1000 g ha-1) prior to topramezone (8 g ha-1) application. Topramezone-induced injury to creeping bentgrass increased from 22% when applied alone to 79 and 41% when applied with malathion or ABT, respectively. Cloquintocet-mexyl (70 μM and 1000 g ha-1) reduced topramezone injury to 1% and increased creeping bentgrass biomass and PSII quantum yield. Cloquintocet-mexyl mitigated the synergistic effects of ABT more than those of malathion. The effects of malathion on topramezone injury were supported by creeping bentgrass biomass responses. Responses to ABT and malathion suggest that creeping bentgrass tolerance to topramezone is influenced by cytochrome P450-catalyzed metabolism. Future research should elucidate primary topramezone metabolites and determine the contribution of cytochrome P450 monooxygenases and glutathione S-transferases to metabolite formation in safened and non-safened creeping bentgrass. PMID:26186714

  8. Deletion of 30 murine cytochrome p450 genes results in viable mice with compromised drug metabolism.

    PubMed

    Scheer, Nico; McLaughlin, Lesley A; Rode, Anja; Macleod, A Kenneth; Henderson, Colin J; Wolf, C Roland

    2014-06-01

    In humans, 75% of all drugs are metabolized by the cytochrome P450-dependent monooxygenase system. Enzymes encoded by the CYP2C, CYP2D, and CYP3A gene clusters account for ∼80% of this activity. There are profound species differences in the multiplicity of cytochrome P450 enzymes, and the use of mouse models to predict pathways of drug metabolism is further complicated by overlapping substrate specificity between enzymes from different gene families. To establish the role of the hepatic and extrahepatic P450 system in drug and foreign chemical disposition, drug efficacy, and toxicity, we created a unique mouse model in which 30 cytochrome P450 genes from the Cyp2c, Cyp2d, and Cyp3a gene clusters have been deleted. Remarkably, despite a wide range of putative important endogenous functions, Cyp2c/2d/3a KO mice were viable and fertile, demonstrating that these genes have evolved primarily as detoxification enzymes. Although there was no overt phenotype, detailed examination showed Cyp2c/2d/3a KO mice had a smaller body size (15%) and larger livers (20%). Changes in hepatic morphology and a decreased blood glucose (30%) were also noted. A five-drug cocktail of cytochrome P450 isozyme probe substrates were used to evaluate changes in drug pharmacokinetics; marked changes were observed in either the pharmacokinetics or metabolites formed from Cyp2c, Cyp2d, and Cyp3a substrates, whereas the metabolism of the Cyp1a substrate caffeine was unchanged. Thus, Cyp2c/2d/3a KO mice provide a powerful model to study the in vivo role of the P450 system in drug metabolism and efficacy, as well as in chemical toxicity. PMID:24671958

  9. Engineering Macaca fascicularis cytochrome P450 2C20 to reduce animal testing for new drugs.

    PubMed

    Rua, Francesco; Sadeghi, Sheila J; Castrignanò, Silvia; Di Nardo, Giovanna; Gilardi, Gianfranco

    2012-12-01

    In order to develop in vitro methods as an alternative to P450 animal testing in the drug discovery process, two main requisites are necessary: 1) gathering of data on animal homologues of the human P450 enzymes, currently very limited, and 2) bypassing the requirement for both the P450 reductase and the expensive cofactor NADPH. In this work, P450 2C20 from Macaca fascicularis, homologue of the human P450 2C8 has been taken as a model system to develop such an alternative in vitro method by two different approaches. In the first approach called "molecular Lego", a soluble self-sufficient chimera was generated by fusing the P450 2C20 domain with the reductase domain of cytochrome P450 BM3 from Bacillus megaterium (P450 2C20/BMR). In the second approach, the need for the redox partner and also NADPH were both obviated by the direct immobilization of the P450 2C20 on glassy carbon and gold electrodes. Both systems were then compared to those obtained from the reconstituted P450 2C20 monooxygenase in presence of the human P450 reductase and NADPH using paclitaxel and amodiaquine, two typical drug substrates of the human P450 2C8. The K(M) values calculated for the 2C20 and 2C20/BMR in solution and for 2C20 immobilized on electrodes modified with gold nanoparticles were 1.9 ± 0.2, 5.9 ± 2.3, 3.0 ± 0.5 μM for paclitaxel and 1.2 ± 0.2, 1.6±0.2 and 1.4 ± 0.2 μM for amodiaquine, respectively. The data obtained not only show that the engineering of M. fascicularis did not affect its catalytic properties but also are consistent with K(M) values measured for the microsomal human P450 2C8 and therefore show the feasibility of developing alternative in vitro animal tests.

  10. Inhibition of cytochrome p450 enzymes by quinones and anthraquinones.

    PubMed

    Sridhar, Jayalakshmi; Liu, Jiawang; Foroozesh, Maryam; Klein Stevens, Cheryl L

    2012-02-20

    In silico docking studies and quantitative structure-activity relationship analysis of a number of in-house cytochrome P450 inhibitors have revealed important structural characteristics that are required for a molecule to function as a good inhibitor of P450 enzymes 1A1, 1A2, 2B1, and/or 2A6. These insights were incorporated into the design of pharmacophores used for a 2D search of the Chinese medicine database. Emodin, a natural anthraquinone isolated from Rheum emodi and known to be metabolized by cytochrome P450 enzymes, was one of the hits and was used as the lead compound. Emodin was found to inhibit P450s 1A1, 1A2, and 2B1 with IC(50) values of 12.25, 3.73, and 14.89 μM, respectively. On the basis of the emodin molecular structure, further similarity searches of the PubChem and ZINC chemical databases were conducted resulting in the identification of 12 emodin analogues for testing against P450s 1A1-, 1A2-, 2B1-, and 2A6-dependent activities. 1-Amino-4-chloro-2-methylanthracene-9,10-dione (compound 1) showed the best inhibition potency for P450 1A1 with an IC(50) value of 0.40 μM. 1-Amino-4-chloro-2-methylanthracene-9,10-dione (compound 1) and 1-amino-4-hydroxyanthracene-9,10-dione (compound 2) both inhibited P450 1A2 with the same IC(50) value of 0.53 μM. In addition, compound 1 acted as a mechanism-based inhibitor of cytochrome P450s 1A1 and 1A2 with K(I) and K(inactivation) values of 5.38 μM and 1.57 min(-1) for P450 1A1 and 0.50 μM and 0.08 min(-1) for P450 1A2. 2,6-Di-tert-butyl-5-hydroxynaphthalene-1,4-dione (compound 8) directly inhibited P450 2B1 with good selectivity and inhibition potency (IC(50) = 5.66 μM). Docking studies using the 3D structures of the enzymes were carried out on all of the compounds. The binding modes of these compounds revealed the structural characteristics responsible for their potency and selectivity. Compound 1, which is structurally similar to compound 2 with the presence of an amino group at position 1, showed a

  11. A soluble Bacillus cereus cytochrome P-450cin system catalyzes 1,4-cineole hydroxylations.

    PubMed Central

    Liu, W; Rosazza, J P

    1993-01-01

    A cytochrome P-450-dependent monooxygenase system that catalyzes the stereospecific hydroxylation of the monoterpene substrate 1,4-cineole was demonstrated in cell-free preparations of Bacillus cereus UI-1477. 1,4-Cineole hydroxylations were catalyzed by a 100,000 x g (1-h)-centrifuging soluble, hexane-inducible enzyme that activated and incorporated molecular oxygen into hydroxylated products; required NADH; was inhibited by SKF-525A, imidazole, metyrapone, and octylamine; and displayed a 452-nm peak in the carbon monoxide difference absorption spectrum. The constant 7:1 ratio of endo/exo alcohol products formed when 1,4-cineole was hydroxylated by normal cells, hexane-induced cells, and cell extracts suggested that a single enzyme designated cytochrome P-450cin was responsible for both reactions. PMID:8285692

  12. Cytochrome P-450 dependent binding of methapyrilene to DNA in vitro.

    PubMed

    Lampe, M A; Kammerer, R C

    1987-10-01

    Methapyrilene ([14C]MPH) was found to bind to calf thymus DNA only after activation by both rat liver microsomes and NADPH. The cytochrome P-450 inhibitors 2,4-dichloro-6-phenylphenoxyethylamine, 2-diethylaminoethyl-2,2-diphenylvalerate and metyrapone inhibited binding, but methimazole, a flavin-dependent monooxygenase inhibitor, had no effect. However, 1,2-epoxy-3,3,3-trichloropropane, an epoxide hydrolase inhibitor, decreased binding by 30%. Pre-treatment of rats with isosafrole, pregnenolone-16 alpha-carbonitrile or phenobarbital had little or no effect on binding while 3-methylcholanthrene pretreatment decreased binding by 37%. Incubations in the presence of either N-acetylcysteine, glutathione, catalase or glutathione-peroxidase decreased binding to DNA while superoxide dismutase had no effect. These data suggest that MPH is metabolically activated to a species which binds to DNA and that this activation may be mediated by cytochrome P-450 isozymes. PMID:3115619

  13. Computer-aided design of aptamers for cytochrome p450.

    PubMed

    Shcherbinin, Dmitrii S; Gnedenko, Oksana V; Khmeleva, Svetlana A; Usanov, Sergey A; Gilep, Andrei A; Yantsevich, Aliaksei V; Shkel, Tatsiana V; Yushkevich, Ivan V; Radko, Sergey P; Ivanov, Alexis S; Veselovsky, Alexander V; Archakov, Alexander I

    2015-08-01

    Aptamers are short single-stranded DNA or RNA oligonucleotides that can bind to their targets with high affinity and specificity. Usually, they are experimentally selected using the SELEX method. Here, we describe an approach toward the in silico selection of aptamers for proteins. This approach involves three steps: finding a potential binding site, designing the recognition and structural parts of the aptamers and evaluating the experimental affinity. Using this approach, a set of 15-mer aptamers for cytochrome P450 51A1 was designed using docking and molecular dynamics simulation. An experimental evaluation of the synthesized aptamers using SPR biosensor showed that these aptamers interact with cytochrome P450 51A1 with Kd values in the range of 10(-6)-10(-7) M. PMID:26166326

  14. Correlation of Cytochrome P450 Oxidoreductase Expression with the Expression of 10 Isoforms of Cytochrome P450 in Human Liver

    PubMed Central

    Zhang, Hai-Feng; Li, Zhi-Hui; Liu, Jia-Yu; Liu, Ting-Ting; Wang, Ping; Fang, Yan; Zhou, Jun; Cui, Ming-Zhu; Gao, Na; Tian, Xin; Gao, Jie; Wen, Qiang; Jia, Lin-Jing

    2016-01-01

    Human cytochrome P450 oxidoreductase (POR) provides electrons for all microsomal cytochromes P450 (P450s) and plays an indispensable role in drug metabolism catalyzed by this family of enzymes. We evaluated 100 human liver samples and found that POR protein content varied 12.8-fold, from 12.59 to 160.97 pmol/mg, with a median value of 67.99 pmol/mg; POR mRNA expression varied by 26.4-fold. POR activity was less variable with a median value of 56.05 nmol/min per milligram. Cigarette smoking and alcohol consumption clearly influenced POR activity. Liver samples with a 2286822 TT genotype had significantly higher POR mRNA expression than samples with CT genotype. Homozygous carriers of POR2286822C>T, 2286823G>A, and 3823884A>C had significantly lower POR protein levels compared with the corresponding heterozygous carriers. Liver samples from individuals homozygous at 286823G>A, 1135612A>G, and 10954732G>A generally had lower POR activity levels than those from heterozygous or wild-type samples, whereas the common variant POR*28 significantly increased POR activity. There was a strong association between POR and the expression of P450 isoforms at the mRNA and protein level, whereas the relationship at the activity level, as well as the effect of POR protein content on P450 activity, was less pronounced. POR transcription was strongly correlated with both hepatocyte nuclear factor 4 alpha and pregnane X receptor mRNA levels. In conclusion, we have elucidated some potentially important correlations between POR single-nucleotide polymorphisms and POR expression in the Chinese population and have developed a database that correlates POR expression with the expression and activity of 10 P450s important in drug metabolism. PMID:27271371

  15. Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis

    EPA Science Inventory

    The gene for the alkane-inducible cytochrome P450, P450alk, has been isolated from the yeast Candida tropicalis by immunoscreening a λgt11 library. Isolation of the gene has been identified on the basis of its inducibility and partial DNA sequence. Transcripts of this gene were i...

  16. Structural and Kinetic Studies of Novel Cytochrome P450 Small-Alkane Hydroxylases

    SciTech Connect

    Arnold, Frances H.

    2012-02-27

    The goals of this project are to investigate (1) the kinetics and stabilities of engineered cytochrome P450 (P450) small alkane hydroxylases and their evolutionary intermediates, (2) the structural basis for catalytic proficiency on small alkanes of these engineered P450s, and (3) the changes in redox control resulting from protein engineering. To reach these goals, we have established new methods for determining the kinetics and stabilities of multicomponent P450s such as CYP153A6. Using these, we were able to determine that CYP153A6 is proficient for hydroxylation of alkanes as small as ethane, an activity that has never been observed previously in any natural P450. To elucidate the structures of the engineered P450s, we obtained x-ray diffraction data for two variants in the P450PMO (propane monooxygenase) lineage and a preliminary structure for the most evolved variant. This structure shows changes in the substrate binding regions of the enzyme and a reduction in active site volume that are consistent with the observed changes in substrate specificity from fatty acids in the native enzyme to small alkanes in P450PMO. We also constructed semi-rational designed libraries mutating only residues in the enzyme active site that in one round of mutagenesis and screening produced variants that achieved nearly half of the activity of the most evolved enzymes of the P450PMO lineage. Finally, we found that changes in redox properties of the laboratory-evolved P450 alkane hydroxylases did not reflect the improvement in their electron transfer efficiency. The heme redox potential remained constant throughout evolution, while activity increased and coupling efficiency improved from 10% to 90%. The lack of correlation between heme redox potential and enzyme activity and coupling efficiency led us to search for other enzyme properties that could be better predictors for activity towards small alkanes, specifically methane. We investigated the oxidation potential of the radical

  17. Epoxidation Activities of Human Cytochromes P450c17 and P450c21

    PubMed Central

    2015-01-01

    Some cytochrome P450 enzymes epoxidize unsaturated substrates, but this activity has not been described for the steroid hydroxylases. Physiologic steroid substrates, however, lack carbon–carbon double bonds in the parts of the pregnane molecules where steroidogenic hydroxylations occur. Limited data on the reactivity of steroidogenic P450s toward olefinic substrates exist, and the study of occult activities toward alternative substrates is a fundamental aspect of the growing field of combinatorial biosynthesis. We reasoned that human P450c17 (steroid 17-hydroxylase/17,20-lyase, CYP17A1), which 17- and 16α-hydroxylates progesterone, might catalyze the formation of the 16α,17-epoxide from 16,17-dehydroprogesterone (pregna-4,16-diene-3,20-dione). CYP17A1 catalyzed the novel 16α,17-epoxidation and the ordinarily minor 21-hydroxylation of 16,17-dehydroprogesterone in a 1:1 ratio. CYP17A1 mutation A105L, which has reduced progesterone 16α-hydroxylase activity, gave a 1:5 ratio of epoxide:21-hydroxylated products. In contrast, human P450c21 (steroid 21-hydroxylase, CYP21A2) converted 16,17-dehydroprogesterone to the 21-hydroxylated product and only a trace of epoxide. CYP21A2 mutation V359A, which has significant 16α-hydroxylase activity, likewise afforded the 21-hydroxylated product and slightly more epoxide. CYP17A1 wild-type and mutation A105L do not 21- or 16α-hydroxylate pregnenolone, but the enzymes 21-hydroxylated and 16α,17-epoxidized 16,17-dehydropregnenolone (pregna-5,16-diene-3β-ol-20-one) in 4:1 or 12:1 ratios, respectively. Catalase and superoxide dismutase did not prevent epoxide formation. The progesterone epoxide was not a time-dependent, irreversible CYP17A1 inhibitor. Our substrate modification studies have revealed occult epoxidase and 21-hydroxylase activities of CYP17A1, and the fraction of epoxide formed correlated with the 16α-hydroxylase activity of the enzymes. PMID:25386927

  18. Musk xylene is a novel specific inducer of cytochrome P-450IA2.

    PubMed

    Iwata, N; Minegishi, K; Suzuki, K; Ohno, Y; Kawanishi, T; Takahashi, A

    1992-04-15

    The effect of musk xylene on contents of both cytochrome P-450IA1 and cytochrome P-450IA2 in rat liver was investigated using Western blotting analysis. Rats were treated i.p. for five consecutive days with either 50, 100 or 200 mg musk xylene/kg body weight. Musk xylene increased both total cytochrome P-450 and cytochrome b5 contents in rat liver microsomes. Musk xylene induced cytochrome P-450IA2 (384 pmol/mg protein) strongly and preferentially and the ratio of cytochrome P450IA2/P-450IA1 was about 12 at the lowest dose tested. Musk xylene also induced the cytochrome P-450IA1 dose-dependently, but these extents were very small (32-174 pmol/mg protein). These results suggest that musk xylene may be a more specific inducer for cytochrome P-450IA2 than any other inducers reported.

  19. Silencing NADPH-cytochrome P450 reductase results in reduced acaricide resistance in Tetranychus cinnabarinus (Boisduval)

    PubMed Central

    Shi, Li; Zhang, Jiao; Shen, Guangmao; Xu, Zhifeng; Wei, Peng; Zhang, Yichao; Xu, Qiang; He, Lin

    2015-01-01

    Cytochrome P450 monooxygenases (P450s) are involved in metabolic resistance to insecticides and require NADPH cytochrome P450 reductase (CPR) to transfer electrons when they catalyze oxidation reactions. The carmine spider mite, Tetranychus cinnabarinus is an important pest mite of crop and vegetable plants worldwide, and its resistance to acaricides has quickly developed. However, the role of CPR on the formation of acaricide-resistance in T. cinnabarinus is still unclear. In this study, a full-length cDNA encoding CPR was cloned and characterized from T. cinnabarinus (designated TcCPR). TcCPR expression was detectable in all developmental stages of T. cinnabarinus, but it’s much lower in eggs. TcCPR was up-regulated and more inducible with fenpropathrin treatment in the fenpropathrin-resistant (FeR) strain compared with the susceptible SS strain. Feeding of double-strand RNA was effective in silencing the transcription of TcCPR in T. cinnabarinus, which resulted in decreasing the activity of P450s and increasing the susceptibility to fenpropathrin in the FeR strain but not in the susceptible strain. The current results provide first evidence that the down-regulation of TcCPR contributed to an increase of the susceptibility to fenpropathrin in resistant mites. TcCPR could be considered as a novel target for the development of new pesticides. PMID:26493678

  20. Cytochrome P450-derived eicosanoids: the neglected pathway in cancer

    PubMed Central

    Kaipainen, Arja; Greene, Emily R.; Huang, Sui

    2010-01-01

    Endogenously produced lipid autacoids are locally acting small molecule mediators that play a central role in the regulation of inflammation and tissue homeostasis. A well-studied group of autacoids are the products of arachidonic acid metabolism, among which the prostaglandins and leukotrienes are the best known. They are generated by two pathways controlled by the enzyme systems cyclooxygenase and lipoxygenase, respectively. However, arachidonic acid is also substrate for a third enzymatic pathway, the cytochrome P450 (CYP) system. This third eicosanoid pathway consists of two main branches: ω-hydroxylases convert arachidonic acid to hydroxyeicosatetraenoic acids (HETEs) and epoxygenases convert it to epoxyeicosatrienoic acids (EETs). This third CYP pathway was originally studied in conjunction with inflammatory and cardiovascular disease. Arachidonic acid and its metabolites have recently stimulated great interest in cancer biology; but, unlike prostaglandins and leukotrienes the link between cytochome P450 metabolites and cancer has received little attention. In this review, the emerging role in cancer of cytochrome P450 metabolites, notably 20-HETE and EETs, are discussed. PMID:20941528

  1. Tissue-specific expression of rat mRNAs homologous to cytochromes P-450b and P-450e.

    PubMed Central

    Omiecinski, C J

    1986-01-01

    The tissue-specific expression of cytochrome P-450b and P-450e mRNAs was examined with synthetic 18-mer oligomer probes in the liver, lung, kidney, and testis of control and inducer pretreated adult rats. RNAs homologous to the P-450e probe were detected in trace amounts in control and 3-methylcholanthrene (MC) induced livers and at high levels in livers from phenobarbital (PB) induced animals. P-450e mRNA levels were below detection limits in the other tissues examined, regardless of pretreatment. In contrast, mRNAs homologous to the P-450b oligomer were detected at low levels in control and inducer pretreated lung and testis, and at high levels in PB induced liver. No P-450b mRNAs were detected in these assays in RNA isolates from the kidney or from control or MC pretreated liver. Solution hybridization data indicated that the rat lung contained 9-12%, and the testis, 6-9%, respectively, of the levels of P-450b mRNA measured in the PB induced liver. Results from oligo(dT)-cellulose and poly(U)-affinity experiments indicated that the hepatic mRNAs for P-450b and P-450e were present predominantly in the bound, polyadenylated fraction, whereas the homologous lung and testes P-450b mRNAs predominated in the flow-thru fractions. Images PMID:3754047

  2. Role of cytochrome P450 in drug interactions

    PubMed Central

    Bibi, Zakia

    2008-01-01

    Drug-drug interactions have become an important issue in health care. It is now realized that many drug-drug interactions can be explained by alterations in the metabolic enzymes that are present in the liver and other extra-hepatic tissues. Many of the major pharmacokinetic interactions between drugs are due to hepatic cytochrome P450 (P450 or CYP) enzymes being affected by previous administration of other drugs. After coadministration, some drugs act as potent enzyme inducers, whereas others are inhibitors. However, reports of enzyme inhibition are very much more common. Understanding these mechanisms of enzyme inhibition or induction is extremely important in order to give appropriate multiple-drug therapies. In future, it may help to identify individuals at greatest risk of drug interactions and adverse events. PMID:18928560

  3. Expression and inducibility of cytochrome P450 isoforms in 1-year-old intrasplenic liver cell transplants in rats.

    PubMed

    Lupp, Amelie; Danz, Manfred; Müller, Dieter; Klinger, Wolfgang

    2002-03-01

    Syngenic fetal liver tissue suspensions were transplanted into the spleens of 60- to 90-day-old male Fischer 344 inbred rats. Transplant recipients were compared with age-matched control rats. One year after surgery, the animals were treated orally with beta-naphthoflavone (BNF), phenobarbital (PB), dexamethasone (DEX) or the respective solvents 24 or 48 h before being killed. Expression of cytochrome P450 (P450) isoforms in spleens and orthotopic livers was assessed by immunohistochemistry and P450-dependent monooxygenase functions by the model reactions ethoxyresorufin O-deethylation (EROD), ethoxycoumarin O-deethylation (ECOD), pentoxyresorufin O-depentylation (PROD) and ethylmorphine N-demethylation (EMND). Spleens of control animals displayed almost no expression of P450 isoforms and P450-mediated monooxygenase functions. Similar to liver, in the transplanted hepatocytes no P450 1A1 but distinct P450 2B1 and 3A2 expression was observed. Furthermore, the transplant-containing spleens displayed significant EROD, ECOD, PROD and EMND activities. Similar to normal liver, BNF treatment enhanced P450 1A1 and 2B1, PB induced P450 2B1 and 3A2, and DEX induced P450 3A2 expression in the transplanted hepatocytes. Correspondingly, in the transplant-containing spleens EROD, ECOD and PROD activities were significantly enhanced following BNF treatment, EROD, ECOD, PROD and EMND activities after PB administration, and EMND activity by DEX treatment. These results demonstrate that hepatocytes originating from fetal liver tissue suspensions can survive in the spleen at least for 1 year. They have differentiated into adult hepatocytes and even 1 year after transplantation express different P450 isoforms which are inducible by BNF, PB and DEX, corresponding to normal adult liver.

  4. FTIR studies of the redox partner interaction in cytochrome P450: the Pdx-P450cam couple.

    PubMed

    Karyakin, Andrey; Motiejunas, Domantas; Wade, Rebecca C; Jung, Christiane

    2007-03-01

    Recently we have developed a new approach to study protein-protein interactions using Fourier transform infrared spectroscopy in combination with titration experiments and principal component analysis (FTIR-TPCA). In the present paper we review the FTIR-TPCA results obtained for the interaction between cytochrome P450 and the redox partner protein in two P450 systems, the Pseudomonas putida P450cam (CYP101) with putidaredoxin (P450cam-Pdx), and the Bacillus megaterium P450BM-3 (CYP102) heme domain with the FMN domain (P450BMP-FMND). Both P450 systems reveal similarities in the structural changes that occur upon redox partner complex formation. These involve an increase in beta-sheets and alpha-helix content, a decrease in the population of random coil/3(10)-helix structure, a redistribution of turn structures within the interacting proteins and changes in the protonation states or hydrogen-bonding of amino acid carboxylic side chains. We discuss in detail the P450cam-Pdx interaction in comparison with literature data and conclusions drawn from experiments obtained by other spectroscopic techniques. The results are also interpreted in the context of a 3D structural model of the Pdx-P450cam complex.

  5. Regulation of cytochrome P-450Ia1 gene expression

    SciTech Connect

    Kamps, C.A.

    1989-01-01

    The mechanism by which cytochrome P-450IA1 gene expression is induced by polycyclic aromatic hydrocarbons and various polychlorinated dibenzo-p-dioxins involves an intracellular protein known as the Ah receptor. Within the past few years, a second protein has been identified which binds to certain polycyclic aromatic hydrocarbons (PAHs) but not to the receptor ligand, 2,3,7,8-tetrachlorodibenzo-para-dioxin (TCDD). The protein, named the 4S PAH binding protein, has been reported to bind to a site on the DNA in the 5{prime} regulatory region for the cytochrome P-450IA1 gene. This finding led to the hypothesis that the 4S PAH binding protein may be involved in the trans-regulation of this gene. The work presented in this manuscript addressed this hypothesis by (1) screening animals and cell lines for the presence or absence of the Ah receptor and 4S PAH binding protein, (2) screening polycyclic aromatic hydrocarbons (PAHs) to identify ligands which specifically bind only the 4S protein, (3) determining dose-response curves for TCDD and 4S protein specific ligands in mammalian cell lines, (4) co-administering a 4S binding protein ligand and TCDD in mammalian cell lines to determine the effects of the 4S protein-ligand complex on TCDD-induced cytochrome P-450IA1 expression, and (5) co-administering TCDD and 6-methyl 1,3,8-trichlorodibenzofuran (MCDF), a compound reported to be an antagonist of TCDD-induced benzo(a)pyrene-3-hydroxylase (AHH) activity, to determine whether antagonism occurs at the transcriptional level. The results of gradient assays show that the Ah receptor and the 4S binding protein were expressed in the rat strains which were studied. In the cell lines, H4IIE cells (rat hepatoma expressed only the receptor whereas Hepa1c1c7 cells mouse hepatoma) expressed both proteins.

  6. Cytochrome P450 responses and PCB congeners in pipping heron embryos from Virginia, the Great Lakes and San Francisco Bay

    USGS Publications Warehouse

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Tillett, D.E.; Woodin, Bruce R.; Stegeman, John J.

    1992-01-01

    Pipping black-crowned night-heron (Nvcticorax nvcticorax) embryos were collected from undisturbed (Chincoteague National Wildlife Refuge VA; CNWR) and industrialized (Cat Island, Green Bay WI and San Francisco Bay, CA; SFB) locations. Hepatic monooxygenases (AHH, EROD, BROD, ECOD) were induced up to 100-fold, and were correlated (r=0.50 to 0.72) with total PCB burdens (N =61 embryos). A subset of 30 embryos have now been analyzed by GC/MS for 12 AHH-active PCB congeners and by Western blot for cytochromes P450lA and P450llB. At Cat Island, concentrations of 8 congeners were greater (P <0.05) than at CNWR. P450lA and P450llB were detected in 44% and 100% of the Cat Island embryos compared to 8% and 33% of the CNWR + SFB embryos. Cytochrome P450 parameters were correlated with the total PCBs (r =0.44 to 0.67) and with at least 9 PCB congeners (r =0.39 to 0.77). Since P450 responses might be affected by other contaminants, sample extract potency in the H411E rat hepatoma bioassay is being determined to study relationships among dioxin equivalents and cytochrome P450 parameters.

  7. Regulation of cytochrome P450 expression in Drosophila: Genomic insights

    PubMed Central

    Giraudo, Maeva; Unnithan, G. Chandran; Le Goff, Gaëlle; Feyereisen, René

    2009-01-01

    Genomic tools such as the availability of the Drosophila genome sequence, the relative ease of stable transformation, and DNA microarrays have made the fruit fly a powerful model in insecticide toxicology research. We have used transgenic promoter-GFP constructs to document the detailed pattern of induced Cyp6a2 gene expression in larval and adult Drosophila tissues. We also compared various insecticides and xenobiotics for their ability to induce this cytochrome P450 gene, and show that the pattern of Cyp6a2 inducibility is comparable to that of vertebrate CYP2B genes, and different from that of vertebrate CYP1A genes, suggesting a degree of evolutionary conservation for the “phenobarbital-type” induction mechanism. Our results are compared to the increasingly diverse reports on P450 induction that can be gleaned from whole genome or from “detox” microarray experiments in Drosophila. These suggest that only a third of the genomic repertoire of CYP genes is inducible by xenobiotics, and that there are distinct subsets of inducers / induced genes, suggesting multiple xenobiotic transduction mechanisms. A relationship between induction and resistance is not supported by expression data from the literature. The relative abundance of expression data now available is in contrast to the paucity of studies on functional expression of P450 enzymes, and this remains a challenge for our understanding of the toxicokinetic aspects of insecticide action. PMID:20582327

  8. Phylogenetic analysis of Bacillus P450 monooxygenases and evaluation of their activity towards steroids.

    PubMed

    Furuya, Toshiki; Shibata, Daisuke; Kino, Kuniki

    2009-11-01

    Cytochrome P450 (P450) open reading frames (ORFs) identified in genome sequences of Bacillus species are potential resources for new oxidation biocatalysts. Phylogenetic analysis of 29 Bacillus P450 ORFs revealed that the P450s consist of a limited number of P450 families, CYP102, CYP106, CYP107, CYP109, CYP134, CYP152, and CYP197. Previously, we identified the catalytic activities of three P450s of Bacillus subtilis towards steroids by rapid substrate screening using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS). Here, we further applied this method to evaluate the activity of Bacillus cereus P450s towards steroids. Five P450 genes were cloned from B. cereus ATCC 10987 based on its genomic sequence and were expressed in Escherichia coli. These P450s were reacted with a mixture of 30 compounds that mainly included steroids, and the reaction mixtures were analyzed using FT-ICR/MS. We found that BCE_2659 (CYP106) catalyzed the monooxygenation of methyltestosterone, progesterone, 11-ketoprogesterone, medroxyprogesterone acetate, and chlormadinone acetate. BCE_2654 (CYP107) monooxygenated testosterone enanthate, and BCE_3250 (CYP109) monooxygenated testosterone and compactin. Based on the phylogenetic relationship and the known substrate specificities including ones identified in this study, we discuss the catalytic potential of Bacillus P450s towards steroids.

  9. Induction by phenobarbital in McA-RH7777 rat hepatoma cells of a polycyclic hydrocarbon inducible cytochrome P450

    SciTech Connect

    McManus, M.E.; Minchin, R.F.; Schwartz, D.M.; Wirth, P.J.; Huber, B.E.

    1986-05-29

    The metabolism of 2-acetylaminofluorene (AAF) to its six oxidative metabolites has been used to study cytochrome P-450 monooxygenase activity in two rat hepatoma cell lines, McA-RH7777 and Reuber H4-II-E. McA-RH7777 cells exhibited considerably higher basal activities than H4-II-E cells for all metabolic pathways studied. Phenobarbital induced AAF metabolite formation in McA-RH7777 cells to a similar extent as 2,3,7,8-tetrachloro-dibenzo-p-dioxin (TCDD), but was only a weak inducer of these activities in H4-II-E cells. Northern blot analysis utilizing specific phenobarbital or 3-methylcholanthrene inducible cytochrome P-450 cDNA probes indicated that there was at least a 10-fold increase in a 3-methylcholanthrene inducible cytochrome P-450 transcript in phenobarbital treated McA-RH7777 cells.

  10. Expression, function and regulation of mouse cytochrome P450 enzymes: comparison with human P450 enzymes.

    PubMed

    Hrycay, E G; Bandiera, S M

    2009-12-01

    The present review focuses on the expression, function and regulation of mouse cytochrome P450 (Cyp) enzymes. Information compiled for mouse Cyp enzymes is compared with data collected for human CYP enzymes. To date, approximately 40 pairs of orthologous mouse-human CYP genes have been identified that encode enzymes performing similar metabolic functions. Recent knowledge concerning the tissue expression of mouse Cyp enzymes from families 1 to 51 is summarized. The catalytic activities of microsomal, mitochondrial and recombinant mouse Cyp enzymes are discussed and their involvement in the metabolism of exogenous and endogenous compounds is highlighted. The role of nuclear receptors, such as the aryl hydrocarbon receptor, constitutive androstane receptor and pregnane X receptor, in regulating the expression of mouse Cyp enzymes is examined. Targeted disruption of selected Cyp genes has generated numerous Cyp null mouse lines used to decipher the role of Cyp enzymes in metabolic, toxicological and biological processes. In conclusion, the laboratory mouse is an indispensable model for exploring human CYP-mediated activities.

  11. Water Oxidation by a Cytochrome P450: Mechanism and Function of the Reaction

    PubMed Central

    Prasad, Brinda; Mah, Derrick J.; Lewis, Andrew R.; Plettner, Erika

    2013-01-01

    P450cam (CYP101A1) is a bacterial monooxygenase that is known to catalyze the oxidation of camphor, the first committed step in camphor degradation, with simultaneous reduction of oxygen (O2). We report that P450cam catalysis is controlled by oxygen levels: at high O2 concentration, P450cam catalyzes the known oxidation reaction, whereas at low O2 concentration the enzyme catalyzes the reduction of camphor to borneol. We confirmed, using 17O and 2H NMR, that the hydrogen atom added to camphor comes from water, which is oxidized to hydrogen peroxide (H2O2). This is the first time a cytochrome P450 has been observed to catalyze oxidation of water to H2O2, a difficult reaction to catalyze due to its high barrier. The reduction of camphor and simultaneous oxidation of water are likely catalyzed by the iron-oxo intermediate of P450cam, and we present a plausible mechanism that accounts for the 1∶1 borneol:H2O2 stoichiometry we observed. This reaction has an adaptive value to bacteria that express this camphor catabolism pathway, which requires O2, for two reasons: 1) the borneol and H2O2 mixture generated is toxic to other bacteria and 2) borneol down-regulates the expression of P450cam and its electron transfer partners. Since the reaction described here only occurs under low O2 conditions, the down-regulation only occurs when O2 is scarce. PMID:23634216

  12. Molecular genetic analysis of the cytochrome P450-debrisoquine hydroxylase locus and association with cancer susceptibility.

    PubMed Central

    Smith, C A; Moss, J E; Gough, A C; Spurr, N K; Wolf, C R

    1992-01-01

    The cytochrome P450-dependent monooxygenases play a central role in the metabolism of chemical carcinogens. The action of these enzymes can lead to either carcinogen detoxication or activation. Differences in P450 expression in animal models give rise to large differences in susceptibility to chemical carcinogens, so genetic polymorphisms in P450 expression may be expected to be an important factor in individual human susceptibility to cancer. Of particular interest is the genetic polymorphism at the cytochrome P450-debrisoquine/sparteine hydroxylase locus (CYP2D6). Although this is a minor liver P450, its polymorphic expression is associated with the abnormal metabolism of at least 30 therapeutic drugs, including beta-blockers and tricyclic antidepressants. Conflicting reports have been made on the association of this polymorphism with cancer susceptibility. This disagreement may be attributable to limitations of the phenotyping assay used to identify affected individuals (poor metabolizers, PMs). In order to clarify these anomalies, we have developed a simple DNA-based assay with which we can identify the majority of PMs. The assay is centered around the primary gene defect responsible for the polymorphism, a G to A transition at the junction of intron 3/exon 4 which results in a frame-shift in the resultant mRNA. The frequency of this mutation is 70-80% in PMs. We have studied the frequency of mutated alleles in a control population and in a wide range of cancer patients. No association between this polymorphism and lung cancer susceptibility was observed; however, in other populations of cancer patients some very interesting shifts were found in the proportion of PMs and heterozygotes from that in the normal population. PMID:1486838

  13. A microsomal ecdysone-binding cytochrome P450 from the insect Locusta migratoria purified by sequential use of type-II and type-I ligands.

    PubMed

    Winter, J; Eckerskorn, C; Waditschatka, R; Kayser, H

    2001-11-01

    A dual-affinity method was established to purify, for the first time, a microsomal ecdysone-binding cytochrome P450 protein from locust Malpighian tubules. This method involved, after prepurification on omega-octylamino-agarose and hydroxylapatite, binding of cytochrome P450 to an immobilized triazole-based general P450 inhibitor (type-II ligand) followed by elution with the substrate ecdysone (type-I ligand) of the bound cytochrome. The isolated material showed a typical cytochrome P450 spectrum, a specific heme content of 13 nmol/mg protein, and a prominent protein of about 60 kDa on SDS-PAGE. Based on a tryptic undecapeptide sequence the isolated protein may be identical to CYP6H1, a putative ecdysone 20-monooxygenase recently cloned from the same tissue. Ecdysone 20-monooxygenase activity could be partially reconstituted from microsomal detergent extracts, when supplemented with purified bovine cytochrome P450 reductase and detergent-extracted microsomes; reconstitution was not successful with any chromatographic fraction, however. Therefore, purification of the locust cytochrome P450 was monitored by ecdysone-induced type-I difference spectra, whenever applicable, in addition to carbon monoxide spectra. Affinity columns with matrix-bound diethylstilbestrol and testosterone 3-thiosemicarbazone, but not with the 17beta-hemisuccinate, yielded elution profiles with ecdysone that were comparable to those of the triazole matrix. The concept of dual-affinity chromatography described here may be generally applicable to the isolation of cytochromes P450.

  14. A microsomal ecdysone-binding cytochrome P450 from the insect Locusta migratoria purified by sequential use of type-II and type-I ligands.

    PubMed

    Winter, J; Eckerskorn, C; Waditschatka, R; Kayser, H

    2001-11-01

    A dual-affinity method was established to purify, for the first time, a microsomal ecdysone-binding cytochrome P450 protein from locust Malpighian tubules. This method involved, after prepurification on omega-octylamino-agarose and hydroxylapatite, binding of cytochrome P450 to an immobilized triazole-based general P450 inhibitor (type-II ligand) followed by elution with the substrate ecdysone (type-I ligand) of the bound cytochrome. The isolated material showed a typical cytochrome P450 spectrum, a specific heme content of 13 nmol/mg protein, and a prominent protein of about 60 kDa on SDS-PAGE. Based on a tryptic undecapeptide sequence the isolated protein may be identical to CYP6H1, a putative ecdysone 20-monooxygenase recently cloned from the same tissue. Ecdysone 20-monooxygenase activity could be partially reconstituted from microsomal detergent extracts, when supplemented with purified bovine cytochrome P450 reductase and detergent-extracted microsomes; reconstitution was not successful with any chromatographic fraction, however. Therefore, purification of the locust cytochrome P450 was monitored by ecdysone-induced type-I difference spectra, whenever applicable, in addition to carbon monoxide spectra. Affinity columns with matrix-bound diethylstilbestrol and testosterone 3-thiosemicarbazone, but not with the 17beta-hemisuccinate, yielded elution profiles with ecdysone that were comparable to those of the triazole matrix. The concept of dual-affinity chromatography described here may be generally applicable to the isolation of cytochromes P450. PMID:11767943

  15. Biotransformation of the sesquiterpene (+)-valencene by cytochrome P450cam and P450BM-3.

    PubMed

    Sowden, Rebecca J; Yasmin, Samina; Rees, Nicholas H; Bell, Stephen G; Wong, Luet-Lok

    2005-01-01

    The sesquiterpenoids are a large class of naturally occurring compounds with biological functions and desirable properties. Oxidation of the sesquiterpene (+)-valencene by wild type and mutants of P450cam from Pseudomonas putida, and of P450BM-3 from Bacillus megaterium, have been investigated as a potential route to (+)-nootkatone, a fine fragrance. Wild type P450cam did not oxidise (+)-valencene but the mutants showed activities up to 9.8 nmol (nmol P450)(-1) min(-1), with (+)-trans-nootkatol and (+)-nootkatone constituting >85% of the products. Wild type P450BM-3 and mutants had higher activities (up to 43 min(-1)) than P450cam but were much less selective. Of the many products, cis- and trans-(+)-nootkatol, (+)-nootkatone, cis-(+)-valencene-1,10-epoxide, trans-(+)-nootkaton-9-ol, and (+)-nootkatone-13S,14-epoxide were isolated from whole-cell reactions and characterised. The selectivity patterns suggest that (+)-valencene has one binding orientation in P450cam but multiple orientations in P450BM-3. PMID:15602599

  16. Optimization of a cytochrome P450 oxidation system for enhancing protopanaxadiol production in Saccharomyces cerevisiae.

    PubMed

    Zhao, Fanglong; Bai, Peng; Liu, Ting; Li, Dashuai; Zhang, Xiangmei; Lu, Wenyu; Yuan, Yingjin

    2016-08-01

    Ginsenosides, the major bioactive components of Panax ginseng, are regarded as promising high-value pharmaceutical compounds. In ginseng, ginsenosides are produced from their precursor protopanaxadiol. Recently, an artificial biosynthetic pathway of protopanaxadiol was built in Saccharomyces cerevisiae by introducing a P. ginseng dammarenediol-II synthase, a P. ginseng cytochrome P450-type protopanaxadiol synthase (PPDS), and a Arabidopsis thaliana NADPH-cytochrome P450 reductase (ATR1). In this engineered yeast strain, however, the low metabolic flux through PPDS resulted in a low productivity of protopanaxadiol. Moreover, health of the yeast cells was significantly affected by reactive oxygen species released by the pool coupling between PPDS and ATR1. To overcome the obstacles in protopanaxadiol production, PPDS was modified through transmembrane domain truncation and self-sufficient PPDS-ATR1 fusion construction in this study. The fusion enzymes conferred approximately 4.5-fold increase in catalytic activity, and 71.1% increase in protopanaxadiol production compared with PPDS and ATR1 co-expression. Our in vivo experiment indicated that the engineered yeast carrying fusion protein effectively converted 96.8% of dammarenediol-II into protopanaxadiol. Protopanaxadiol production in a 5 L bioreactor in fed-batch fermentation reached 1436.6 mg/L. Our study not only improved protopanaxadiol production in yeast, but also provided a generic method to improve activities of plant cytochrome P450 monooxygenases. This method is promising to be applied to other P450 systems in yeast. Biotechnol. Bioeng. 2016;113: 1787-1795. © 2016 Wiley Periodicals, Inc. PMID:26757342

  17. Induction of cytochrome P-450 BM-3 (CYP 102) by non-steroidal anti-inflammatory drugs in Bacillus megaterium.

    PubMed Central

    English, N; Hughes, V; Wolf, C R

    1996-01-01

    Bacillus megaterium contains a cytochrome P-450 fatty acid mono-oxygenase which is inducible with barbiturate drugs. We have demonstrated that this enzyme system is inducible with peroxisome proliferators. In mammals, peroxisome proliferators also induce mono-oxygenases in the CYP4A gene family. In this paper we demonstrate that the non-steroidal anti-inflammatory drugs ibuprofen, ketoprofen and indomethacin are potent inducers of fatty acid mono-oxygenase activity as well as of P-450BM-3 protein in B. megaterium. The levels of induction of P-450 protein were 11.8-, 3.9- and 3.0-fold respectively. In addition, we demonstrate that these inducing agents interact with a transcriptional repressor, Bm3R1, which leads to its dissociation from its operator sequence. This provides a rational mechanism for the induction process. This is the first report which demonstrates that non-steroidal anti-inflammatory drugs can interact directly with a transcription factor to initiate gene expression, and further substantiates the structure-activity relationships that identify inducers of cytochrome P-450BM-3 and compounds that have the potential to act as peroxisome proliferators and induce CYP4A expression in mammals. PMID:8645218

  18. Electrochemistry of cytochromes p450: analysis of current-voltage characteristics of electrodes with immobilized cytochromes p450 for the screening of substrates and inhibitors.

    PubMed

    Shumyantseva, V V; Bulko, T V; Kuznetsova, G P; Samenkova, N F; Archakov, A I

    2009-04-01

    In the current study, an approach to elucidating the substrate specificity of cytochromes P450 based on the analysis of current-voltage characteristics of voltammograms and amperograms is proposed. Data on the electrochemical behavior of bioelectrodes with immobilized cytochromes P450 2B4, 1A2, 3A4, 11A1 (P450scc), and 51b1 (Mycobacterium tuberculosis sterol 14alpha-demethylase or CYP51 MT) in the presence of typical substrates and inhibitors for these hemoprotein forms are reported. Immobilization of the enzymes was accomplished by using graphite screen-printed electrodes modified with gold nanoparticles and with the synthetic membrane-like compound didodecyldimethylammonium bromide. The method of electro-analysis can be applied to the search of potential substrates and inhibitors of cytochromes P450 and to creation of multichannel electrochemical plates (chips, panels) with immobilized cytochromes P450.

  19. Nanoscale Electron Transport Measurements of Immobilized Cytochrome P450 Proteins

    PubMed Central

    Bostick, Christopher D.; Flora, Darcy R.; Gannett, Peter M.; Tracy, Timothy S.; Lederman, David

    2015-01-01

    Gold nanopillars, functionalized with an organic self-assembled monolayer, can be used to measure the electrical conductance properties of immobilized proteins without aggregation. Measurements of the conductance of nanopillars with cytochrome P450 2C9 (CYP2C9) proteins using conducting probe atomic force microscopy demonstrate that a correlation exists between the energy barrier height between hopping sites and CYP2C9 metabolic activity. Measurements performed as a function of tip force indicate that, when subjected to a large force, the protein is more stable in the presence of a substrate. This agrees with the hypothesis that substrate entry into the active site helps to stabilize the enzyme. The relative distance between hopping sites also increases with increasing force, possibly because protein functional groups responsible for electron transport depend on the structure of the protein. The inhibitor sulfaphenazole, in addition to the previously studied aniline, increased the barrier height for electron transfer and thereby makes CYP2C9 reduction more difficult and inhibits metabolism. This suggests that P450 Type II binders may decrease the ease of electron transport processes in the enzyme, in addition to occupying the active site. PMID:25804257

  20. Interactions of phospholipase D and cytochrome P450 protein stability

    SciTech Connect

    Zangar, Richard C.; Fan, Yang-Yi; Chapkin, Robert S.

    2004-08-01

    Previous studies have suggested a relationship between cytochrome P450 (P450) 3A (CYP3A) conformation and the phospholipid composition of the associated membrane. In this study, we utilized a novel microsomal incubation system that mimics many of the characteristics of CYP3A degradation pathway that have been observed in vivo and in cultured cells to study the effects of phospholipid composition on protein stability. We found that addition of phosphatidylcholine-specific phospholipase D (PLD) stabilized CYP3A in this system, but that phosphatidylinositol-specific phospholipase C (PLC) was without effect. Addition of phosphatidic acid also stabilized CYP3A protein in the microsomes. The use of 1,10-phenanthroline (phenanthroline), an inhibitor of PLD activity, decreased CYP3A stability in incubated microsomes. Similarly, 6-h treatment of primary cultures of rat hepatocytes with phenanthroline resulted in nearly complete loss of CYP3A protein. Treatment of rats with nicardipine or dimethylsulfoxide (DMSO), which have been shown to affect CYP3A stability, altered the phospholipid composition of hepatic microsomes. It did not appear, though, that the changes in phospholipid composition that resulted from these in vivo treatments accounted for the change in CYP3A stability observed in hepatic microsomes from these animals.

  1. Ab initio dynamics of the cytochrome P450 hydroxylation reaction

    SciTech Connect

    Elenewski, Justin E.; Hackett, John C

    2015-02-14

    The iron(IV)-oxo porphyrin π-cation radical known as Compound I is the primary oxidant within the cytochromes P450, allowing these enzymes to affect the substrate hydroxylation. In the course of this reaction, a hydrogen atom is abstracted from the substrate to generate hydroxyiron(IV) porphyrin and a substrate-centered radical. The hydroxy radical then rebounds from the iron to the substrate, yielding the hydroxylated product. While Compound I has succumbed to theoretical and spectroscopic characterization, the associated hydroxyiron species is elusive as a consequence of its very short lifetime, for which there are no quantitative estimates. To ascertain the physical mechanism underlying substrate hydroxylation and probe this timescale, ab initio molecular dynamics simulations and free energy calculations are performed for a model of Compound I catalysis. Semiclassical estimates based on these calculations reveal the hydrogen atom abstraction step to be extremely fast, kinetically comparable to enzymes such as carbonic anhydrase. Using an ensemble of ab initio simulations, the resultant hydroxyiron species is found to have a similarly short lifetime, ranging between 300 fs and 3600 fs, putatively depending on the enzyme active site architecture. The addition of tunneling corrections to these rates suggests a strong contribution from nuclear quantum effects, which should accelerate every step of substrate hydroxylation by an order of magnitude. These observations have strong implications for the detection of individual hydroxylation intermediates during P450 catalysis.

  2. Development of cytochromes P450 in avian species as a biomarker for environmental contaminant exposure and effect: Procedures and baseline values

    USGS Publications Warehouse

    Melancon, M.J.

    1996-01-01

    As in mammals and fish, birds respond to many environmental contaminants with induction of hepatic cytochromes P450. In order to monitor cytchromes P450 in specific avian species, for assessing the status of that species or the habitat it utilizes, it is necessary to have background information on the appropriate assay conditions and the responsiveness of cytochrome P450 induction in that species. Assay of four monooxygenases which give resorufin as product using a fluorescence microwell plate scanner has proven to be an effective approach. Information is provided on the incubation conditions and baseline activity for twenty avian species at ages ranging from pipping embryo to adult. Induction responsiveness is presented for sixteen of them. This information can serve as a guide for those who wish to utilize cytochrome P450 as a biomarker for contaminant exposure and effect to aid in selection of appropriate species, age, and monooxygenase assay(s).

  3. Novel Bioactivation Pathway of Benzbromarone Mediated by Cytochrome P450.

    PubMed

    Kitagawara, Yumina; Ohe, Tomoyuki; Tachibana, Kumiko; Takahashi, Kyoko; Nakamura, Shigeo; Mashino, Tadahiko

    2015-09-01

    Benzbromarone (BBR) is a hepatotoxic drug, but the detailed mechanism of its toxicity remains unknown. We identified 2,6-dibromohydroquinone (DBH) and mono-debrominated catechol (2-ethyl-3-(3-bromo-4,5-dihydroxybenzoyl)benzofuran; CAT) as novel metabolites of BBR in rat and human liver microsomal systems by comparison with chemically synthesized authentic compounds, and we also elucidated that DBH is formed by cytochrome P450 2C9 and that CAT is formed mainly by CYP1A1, 2D6, 2E1, and 3A4. Furthermore, CAT, DBH, and the oxidized form of DBH are highly cytotoxic in HepG2 compared with BBR. Taken together, our data demonstrate that DBH, a novel reactive metabolite, may be relevant to BBR-induced hepatotoxicity. PMID:26106235

  4. Cytochrome P450 epoxygenase pathway of polyunsaturated fatty acid metabolism

    PubMed Central

    Spector, Arthur A.; Kim, Hee-Yong

    2014-01-01

    Polyunsaturated fatty acids (PUFA) are oxidized by cytochrome P450 epoxygenases to PUFA epoxides which function as potent lipid mediators. The major metabolic pathways of PUFA epoxides are incorporation into phospholipids and hydrolysis to the corresponding PUFA diols by soluble epoxide hydrolase. Inhibitors of soluble epoxide hydrolase stabilize PUFA epoxides and potentiate their functional effects. The epoxyeicosatrienoic acids (EETs) synthesized from arachidonic acid produce vasodilation, stimulate angiogenesis, have anti-inflammatory actions, and protect the heart against ischemia-reperfusion injury. EETs produce these functional effects by activating receptor-mediated signaling pathways and ion channels. The epoxyeicosatetraenoic acids synthesized from eicosapentaenoic acid and epoxydocosapentaenoic acids synthesized from docosahexaenoic acid are potent inhibitors of cardiac arrhythmias. Epoxydocosapentaenoic acids also inhibit angiogenesis, decrease inflammatory and neuropathic pain, and reduce tumor metastasis. These findings indicate that a number of the beneficial functions of PUFA may be due to their conversion to PUFA epoxides. PMID:25093613

  5. Cytochrome P450 as dimerization catalyst in diketopiperazine alkaloid biosynthesis.

    PubMed

    Saruwatari, Takayoshi; Yagishita, Fumitoshi; Mino, Takashi; Noguchi, Hiroshi; Hotta, Kinya; Watanabe, Kenji

    2014-03-21

    As dimeric natural products frequently exhibit useful biological activities, identifying and understanding their mechanisms of dimerization is of great interest. One such compound is (−)-ditryptophenaline, isolated from Aspergillus flavus, which inhibits substance P receptor for potential analgesic and anti-inflammatory activity. Through targeted gene knockout in A. flavus and heterologous yeast gene expression, we determined for the first time the gene cluster and pathway for the biosynthesis of a dimeric diketopiperazine alkaloid. We also determined that a single cytochrome P450, DtpC, is responsible not only for pyrroloindole ring formation but also for concurrent dimerization of N-methylphenylalanyltryptophanyl diketopiperazine monomers into a homodimeric product. Furthermore, DtpC exhibits relaxed substrate specificity, allowing the formation of two new dimeric compounds from a non-native monomeric precursor, brevianamide F. A radical-mediated mechanism of dimerization is proposed.

  6. Therapeutic doses of SkQ1 do not induce cytochromes P450 in rat liver.

    PubMed

    Myasoedova, K N; Silachev, D N

    2014-10-01

    The effect of SkQ1 (a mitochondria-targeted antioxidant) on the level of cytochromes P450 in rat liver was studied. It was found that administration of therapeutic dose of SkQ1 with drinking water for 5 days (250 nmol/kg of body weight per day) did not alter the level of cytochromes P450. Under the same conditions, the standard dose of phenobarbital used for the induction of cytochromes P450 caused the 2.7-fold increase in the content of these cytochromes. We conclude that therapeutic doses of SkQ1 do not induce cytochromes P450 in rats.

  7. Regulation of gap junction function and Connexin 43 expression by cytochrome P450 oxidoreductase (CYPOR)

    SciTech Connect

    Polusani, Srikanth R.; Kar, Rekha; Riquelme, Manuel A.; Masters, Bettie Sue; Panda, Satya P.

    2011-08-05

    Highlights: {yields} Humans with severe forms of cytochrome P450 oxidoreductase (CYPOR) mutations show bone defects as observed in Antley-Bixler Syndrome. {yields} First report showing knockdown of CYPOR in osteoblasts decreased Connexin 43 (Cx43) protein levels. Cx43 is known to play an important role in bone modeling. {yields} Knockdown of CYPOR decreased Gap Junctional Intercellular Communication and hemichannel activity. {yields} Knockdown of CYPOR decreased Cx43 in mouse primary calvarial osteoblasts. {yields} Decreased Cx43 expression was observed at the transcriptional level. -- Abstract: Cytochrome P450 oxidoreductase (CYPOR) is a microsomal electron-transferring enzyme containing both FAD and FMN as co-factors, which provides the reducing equivalents to various redox partners, such as cytochromes P450 (CYPs), heme oxygenase (HO), cytochrome b{sub 5} and squalene monooxygenase. Human patients with severe forms of CYPOR mutation show bone defects such as cranio- and humeroradial synostoses and long bone fractures, known as Antley-Bixler-like Syndrome (ABS). To elucidate the role of CYPOR in bone, we knocked-down CYPOR in multiple osteoblast cell lines using RNAi technology. In this study, knock-down of CYPOR decreased the expression of Connexin 43 (Cx43), known to play a critical role in bone formation, modeling, and remodeling. Knock-down of CYPOR also decreased Gap Junction Intercellular Communication (GJIC) and hemichannel activity. Promoter luciferase assays revealed that the decrease in expression of Cx43 in CYPOR knock-down cells was due to transcriptional repression. Primary osteoblasts isolated from bone specific Por knock-down mice calvariae confirmed the findings in the cell lines. Taken together, our study provides novel insights into the regulation of gap junction function by CYPOR and suggests that Cx43 may play an important role(s) in CYPOR-mediated bone defects seen in patients.

  8. A web-based resource for the Arabidopsis P450, cytochromes b5, NADPH-cytochrome P450 reductases, and family 1 glycosyltransferases (http://www.P450.kvl.dk).

    PubMed

    Paquette, Suzanne M; Jensen, Kenneth; Bak, Søren

    2009-12-01

    Gene and genome duplication is a key driving force in evolution of plant diversity. This has resulted in a number of large multi-gene families. Two of the largest multi-gene families in plants are the cytochromes P450 (P450s) and family 1 glycosyltransferases (UGTs). These two families are key players in evolution, especially of plant secondary metabolism, and in adaption to abiotic and biotic stress. In the model plant Arabidopsis thaliana there are 246 and 112 cytochromes P450 and UGTs, respectively. The Arabidopsis P450, cytochromes b(5), NADPH-cytochrome P450 reductases, and family 1 glycosyltransferases website (http://www.P450.kvl.dk) is a sequence repository of manually curated sequences, multiple sequence alignments, phylogenetic trees, sequence motif logos, 3D structures, intron-exon maps, and customized BLAST datasets.

  9. Mechanistic Scrutiny Identifies a Kinetic Role for Cytochrome b5 Regulation of Human Cytochrome P450c17 (CYP17A1, P450 17A1)

    PubMed Central

    Simonov, Alexandr N.; Holien, Jessica K.; Yeung, Joyee Chun In; Nguyen, Ann D.; Corbin, C. Jo; Zheng, Jie; Kuznetsov, Vladimir L.; Auchus, Richard J.; Conley, Alan J.; Bond, Alan M.; Parker, Michael W.; Rodgers, Raymond J.; Martin, Lisandra L.

    2015-01-01

    Cytochrome P450c17 (P450 17A1, CYP17A1) is a critical enzyme in the synthesis of androgens and is now a target enzyme for the treatment of prostate cancer. Cytochrome P450c17 can exhibit either one or two physiological enzymatic activities differentially regulated by cytochrome b5. How this is achieved remains unknown. Here, comprehensive in silico, in vivo and in vitro analyses were undertaken. Fluorescence Resonance Energy Transfer analysis showed close interactions within living cells between cytochrome P450c17 and cytochrome b5. In silico modeling identified the sites of interaction and confirmed that E48 and E49 residues in cytochrome b5 are essential for activity. Quartz crystal microbalance studies identified specific protein-protein interactions in a lipid membrane. Voltammetric analysis revealed that the wild type cytochrome b5, but not a mutated, E48G/E49G cyt b5, altered the kinetics of electron transfer between the electrode and the P450c17. We conclude that cytochrome b5 can influence the electronic conductivity of cytochrome P450c17 via allosteric, protein-protein interactions. PMID:26587646

  10. Cytochrome p450nor, a novel class of mitochondrial cytochrome P450 involved in nitrate respiration in the fungus Fusarium oxysporum.

    PubMed

    Takaya, N; Suzuki, S; Kuwazaki, S; Shoun, H; Maruo, F; Yamaguchi, M; Takeo, K

    1999-12-15

    Fusarium oxysporum, an imperfect filamentous fungus performs nitrate respiration under limited oxygen. In the respiratory system, Cytochrome P450nor (P450nor) is thought to catalyze the last step; reduction of nitric oxide to nitrous oxide. We examined its intracellular localization using enzymatic, spectroscopic, and immunological analyses to show that P450nor is found in both the mitochondria and the cytosol. Translational fusions between the putative mitochondrial targeting signal on the amino terminus of P450nor and Escherichia coli beta-galactosidase resulted in significant beta-galactosidase activity in the mitochondrial fraction of nitrate-respiring cells, suggesting that one of the isoforms of P450nor (P450norA) is in anaerobic mitochondrion of F. oxysporum and acts as nitric oxide reductase. Furthermore, these findings suggest the involvement of P450nor in nitrate respiration in mitochondria.

  11. Fungal unspecific peroxygenases: heme-thiolate proteins that combine peroxidase and cytochrome p450 properties.

    PubMed

    Hofrichter, Martin; Kellner, Harald; Pecyna, Marek J; Ullrich, René

    2015-01-01

    Eleven years ago, a secreted heme-thiolate peroxidase with promiscuity for oxygen transfer reactions was discovered in the basidiomycetous fungus, Agrocybe aegerita. The enzyme turned out to be a functional mono-peroxygenase that transferred an oxygen atom from hydrogen peroxide to diverse organic substrates (aromatics, heterocycles, linear and cyclic alkanes/alkenes, fatty acids, etc.). Later similar enzymes were found in other mushroom genera such as Coprinellus and Marasmius. Approximately one thousand putative peroxygenase sequences that form two large clusters can be found in genetic databases and fungal genomes, indicating the widespread occurrence of such enzymes in the whole fungal kingdom including all phyla of true fungi (Eumycota) and certain fungus-like heterokonts (Oomycota). This new enzyme type was classified as unspecific peroxygenase (UPO, EC 1.11.2.1) and placed in a separate peroxidase subclass. Furthermore, UPOs and related heme-thiolate peroxidases such as well-studied chloroperoxidase (CPO) represent a separate superfamily of heme proteins on the phylogenetic level. The reactions catalyzed by UPOs include hydroxylation, epoxidation, O- and N-dealkylation, aromatization, sulfoxidation, N-oxygenation, dechlorination and halide oxidation. In many cases, the product patterns of UPOs resemble those of human cytochrome P450 (P450) monooxygenases and, in fact, combine the catalytic cycle of heme peroxidases with the "peroxide shunt" of P450s. Here, an overview on UPOs is provided with focus on their molecular and catalytic properties.

  12. Production of hydroxy-fatty acid derivatives from waste oil by Escherichia coli cells producing fungal cytochrome P450foxy.

    PubMed

    Kitazume, Tatsuya; Yamazaki, Yuya; Matsuyama, Shigeru; Shoun, Hirofumi; Takaya, Naoki

    2008-07-01

    Cytochrome P450foxy (P450foxy) is a fatty acid (FA) monooxygenase that is characterized by self-sufficient catalysis and high turnover numbers due to the fused structure of cytochrome P450 and its reductase. Here we found that resting recombinant Escherichia coli cells producing P450foxy converted saturated FA with a chain length of 7-16 carbon atoms to their omega-1 to omega-3 hydroxy derivatives. Most products were recovered from the culture supernatant. Decanoic acid was most efficiently converted to omega-1 to omega-3 hydroxy decanoic acids in the order of omega-1>omega-2>omega-3, with a total product yield of 47%. We also found that P450foxy was more active against physiological fatty acyl esters such as monopalmitoyl glycerol, monopalmitoyl phospholipid, and palmitoyl CoA than free palmitic acid. The bacteria producing P450foxy were applicable as biocatalysts in the production of omega-1 hydroxy palmitic acid from lard, vegetable, and soy sauce oil wastes from the food industry.

  13. Structural characterization of a monoclonal antibody immunopurified pulmonary cytochrome P-450 from 3-methylcholanthrenetreated rats

    SciTech Connect

    Robinson, R.C.; Cheng, K.C.; Park, S.S.; Gelboin, H.V.; Friedman, F.K.

    1986-05-01

    Extrahepatic cytochromes P-450 have not been as extensively studied as the hepatic forms, owing to the low concentrations of these enzymes in extrahepatic tissues. A cytochrome P-450 was purified from lung microsomes of 3-methylcholanthrene (MC)-treated rats by immunoaffinity chromatography using a monoclonal antibody to the major MC-inducible form of rat liver cytochrome P-450. The lung cytochrome P-450 is related to this liver form by at least two common epitopes, recognized by monoclonal antibodies 1-7-1 and 1-31-2. The isolated pulmonary cytochrome P-450 is MC-inducible and has an apparent molecular weight of 57 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight as well as the NH/sub 2/-terminal sequence of the pulmonary cytochrome P-450 is identical to that of the major MC-inducible form of rat liver cytochrome P-450. In addition, limited proteolytic digestion of both cytochromes P-450 generates the same peptide patterns on SDS-PAGE. By several criteria, treatment of rats with MC thus induces a pulmonary cytochrome P-450 which is structurally identical to the MC-induced hepatic enzyme.

  14. Induction and Characterization of a Cytochrome P-450-Dependent Camphor Hydroxylase in Tissue Cultures of Common Sage (Salvia officinalis).

    PubMed Central

    Funk, C.; Croteau, R.

    1993-01-01

    (+)-Camphor, a major monoterpene of the essential oil of common sage (Salvia officinalis), is catabolized in senescent tissue, and the pathway for the breakdown of this bicyclic ketone has been previously elucidated in sage cell-suspension cultures. In the initial step of catabolism, camphor is oxidized to 6-exo-hydroxycamphor, and the corresponding NADPH- and O2-dependent hydroxylase activity was demonstrated in microsomal preparations of sage cells. Several well-established inhibitors of cytochrome P-450-dependent reactions, including cytochrome c, clotrimazole, and CO, inhibited the hydroxylation of camphor, and CO-dependent inhibition was partially reversed by blue light. Upon treatment of sage suspension cultures with 30 mM MnCl2, camphor-6-hydroxylase activity was induced up to 7-fold. A polypeptide with estimated molecular mass of 58 kD from sage microsomal membranes exhibited antigenic cross-reactivity in western blot experiments with two heterologous polyclonal antibodies raised against cytochrome P-450 camphor-5-exo-hydroxylase from Pseudomonas putida and cytochrome P-450 limonene-6S-hydroxylase from spearmint (Mentha spicata). Dot blotting indicated that the concentration of this polypeptide increased with camphor hydroxylase activity in microsomes of Mn2+-induced sage cells. These results suggest that camphor-6-exo-hydroxylase from sage is a microsomal cytochrome P-450 monooxygenase that may share common properties and epitopes with bacterial and other plant monoterpene hydroxylases. PMID:12231778

  15. Induction and characterization of a cytochrome P-450-dependent camphor hydroxylase in tissue cultures of common sage (Salvia officinalis)

    SciTech Connect

    Funk, C.; Croteau, R. )

    1993-04-01

    (+)-Camphor, a major monoterpene of the essential oil of common sage (Salvia officinalis), is catabolized in senescent tissue, and the pathway for the breakdown of this bicyclic ketone has been previously elucidated in sage cell-suspension cultures. In the initial step of catabolism, camphor is oxidized to 6-exo-hydroxycamphor, and the corresponding NADPH- and O[sub 2]-dependent hydroxylase activity was demonstrated in microsomal preparations of sage cells. Several well-established inhibitors of cytochrome P-450-dependent reactions, including cytochrome c, clotrimazole, and CO, inhibited the hydroxylation of camphor, and CO-dependent inhibition was partially reversed by blue light. Upon treatment of sage suspension cultures with 30 mM MnCl[sub 2], camphor-6-hydroxylase activity was induced up to 7-fold. A polypeptide with estimated molecular mass of 58 kD from sage microsomal membranes exhibited antigenic cross-reactivity in western blot experiments with two heterologous polyclonal antibodies raised against cytochrome P-450 camphor-5-exo-hydroxylase from Pseudomonas putida and cytochrome P-450 limonene-6S-hydroxylase from spearmint (Mentha spicata). Dot blotting indicated that the concentration of this polypeptide increased with camphor hydroxylase activity in microsomes of Mn[sup 2+]-induced sage cells. These results suggest that camphor-6-exo-hydroxylase from sage is a microsomal cytochrome P-450 monooxygenase that may share common properties and epitopes with bacterial and other plant monoterpene hydroxylases. 44 refs., 6 figs., 2 tabs.

  16. Relation among cytochrome P450, AH-active PCB congeners and dioxin equivalents in pipping black-crowned night-heron embryos

    USGS Publications Warehouse

    Rattner, B.A.; Hatfield, J.S.; Melancon, M.J.; Custer, T.W.; Tillitt, D.E.

    1994-01-01

    Pipping black-crowned night-heron (Nycticorax nycticorax) embryos were collected from a relatively uncontaminated site (next to Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). Hepatic cytochrome P-450-associated monooxygenases and cytochrome P-450 proteins, induced up to 85-fold relative to the reference site, were associated with concentrations of total polychlorinated biphenyls (PCBs) and 11 PCB congeners that are presumed to express toxicity through the arylhydrocarbon (Ah) receptor. Multiple regression revealed that up to 86% of the variation of cytochrome P450 measurements was accounted for by variation in the concentration of these PCB congeners. Toxic equivalents (TEQs) of sample extracts, predicted mathematically (summed product of PCB congener concentrations and toxic equivalency factors), and dioxin equivalents (TCDD-EQs), derived by bioassay (ethoxyresorufin-O-dealkylase activity of treated H4IIE rat hepatoma cells), were greatest in Cat Island samples. Cytochrome P450-associated monooxygenases and cytochrome P450 proteins were related to TEQs and TCDD-EQs; adjusted r-2 often exceeded 0.5 for the relation among mathematically predicted TEQs and cytochrome P450 measurements. These data extend previous observations in heron embryos of an association between P450 and total PCB burdens to include Ah-active PCB congeners, and presumably other compounds, which interact similarly with the Ah receptor. Benzyloxyresorufin O-dealkylase, ethoxyresorufin O-dealkylase, and cytochrome P450 1A appear to be the most reliable measures of exposure to Ah-active PCB congeners in black-crowned night-heron embryos. These findings provide further evidence that cytochrome P450-associated parameters have considerable value as a biomarker for assessing environmental contamination of wetlands.

  17. Relation among cytochrome P450, Ah-active PCB congeners and dioxin equivalents in pipping black- crowned night-heron embryos

    USGS Publications Warehouse

    Rattner, B.A.; Hatfield, J.S.; Melancon, M.J.; Custer, T.W.; Tillitt, D.E.

    1994-01-01

    Pipping black-crowned night-heron (Nycticorax nycticorax) embryos were collected from a relatively uncontaminated site (next to Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). Hepatic cytochrome P450-associated monooxygenases and cytochrome P450 proteins, induced up to 85- fold relative to the reference site, were associated with concentrations of total polychlorinated biphenyls (PCBs) and 11 PCB congeners that are presumed to express toxicity through the arylhydrocarbon (Ah) receptor. Multiple regression revealed that up to 86% of the variation of cytochrome P450 measurements was accounted for by variation in the concentration of these PCB congeners. Toxic equivalents (TEQs) of sample extracts, predicted mathematically (summed product of PCB congener concentrations and toxic equivalency factors), and dioxin equivalents (TCDD-EQs), derived by bioassay (ethoxyresorufin-O-dealkylase activity of treated H4IIE rat hepatoma cells), were greatest in Cat Island samples. Cytochrome P450-associated monooxygenases and cytochrome P450 proteins were related to TEQs and TCDD-EQs; adjusted r super(2) often exceeded 0.5 for the relation among mathematically predicted TEQs and cytochrome P450 measurements. These data extend previous observations in heron embryos of an association between P450 and total PCB burdens to include Ah- active PCB congeners, and presumably other compounds, which interact similarly with the Ah receptor. Benzyloxyresorufin O-dealkylase, ethoxyresorufin O-dealkylase, and cytochrome P450 1A appear to be the most reliable measures of exposure to Ah-active PCB congeners in black-crowned night-heron embryos. These findings provide further evidence that cytochrome P450-associated parameters have considerable value as a biomarker for assessing environmental contamination of wetlands.

  18. Bacterial Cytochrome P450 System Catabolizing the Fusarium Toxin Deoxynivalenol

    PubMed Central

    Ito, Michihiro; Sato, Ikuo; Ishizaka, Masumi; Yoshida, Shin-ichiro; Koitabashi, Motoo; Yoshida, Shigenobu

    2013-01-01

    Deoxynivalenol (DON) is a natural toxin of fungi that cause Fusarium head blight disease of wheat and other small-grain cereals. DON accumulates in infected grains and promotes the spread of the infection on wheat, posing serious problems to grain production. The elucidation of DON-catabolic genes and enzymes in DON-degrading microbes will provide new approaches to decrease DON contamination. Here, we report a cytochrome P450 system capable of catabolizing DON in Sphingomonas sp. strain KSM1, a DON-utilizing bacterium newly isolated from lake water. The P450 gene ddnA was cloned through an activity-based screening of a KSM1 genomic library. The genes of its redox partner candidates (flavin adenine dinucleotide [FAD]-dependent ferredoxin reductase and mitochondrial-type [2Fe-2S] ferredoxin) were not found adjacent to ddnA; the redox partner candidates were further cloned separately based on conserved motifs. The DON-catabolic activity was reconstituted in vitro in an electron transfer chain comprising the three enzymes and NADH, with a catalytic efficiency (kcat/Km) of 6.4 mM−1 s−1. The reaction product was identified as 16-hydroxy-deoxynivalenol. A bioassay using wheat seedlings revealed that the hydroxylation dramatically reduced the toxicity of DON to wheat. The enzyme system showed similar catalytic efficiencies toward nivalenol and 3-acetyl deoxynivalenol, toxins that frequently cooccur with DON. These findings identify an enzyme system that catabolizes DON, leading to reduced phytotoxicity to wheat. PMID:23275503

  19. Ethynyl and Propynylpyrene Inhibitors of Cytochrome P450

    PubMed Central

    Zhu, Naijue; Lightsey, Danielle; Liu, Jiawang; Foroozesh, Maryam; Morgan, Kathleen M.; Stevens, Edwin D.

    2010-01-01

    The single-crystal X-ray structures and in vivo activities of three aryl acetylenic inhibitors of cytochromes P450 1A1, 1A2, 2A6, and 2B1 have been determined and are reported herein. These are 1-ethynylpyrene, 1-propy-nylpyrene, and 4-propynylpyrene. To investigate electronic influences on the mechanism of enzyme inhibition, the experimental electron density distribution of 1-ethynylpy-rene has been determined using low-temperature X-ray diffraction measurements, and the resulting net atomic charges compared with various theoretical calculations. A total of 82,390 reflections were measured with Mo Kα radiation to a (sinθ/λ)max = 0.985 Å−1. Averaging symmetry equivalent reflections yielded 8,889 unique reflections. A least squares refinement procedure was used in which multipole parameters were added to describe the distortions of the atomic electron distributions from spherical symmetry. A map of the model electron density distribution of 1-ethynylpyrene was obtained. Net atomic charges calculated from refined monopole population parameters yielded charges that showed that the terminal acetylenic carbon atom (C18) is more negative than the internal carbon (C17). Net atomic charges calculated by ab initio, density functional theory, and semi-empirical methods are consistent with this trend suggesting that the terminal acetylenic carbon atom is more likely to be the site of oxidation. This is consistent with the inhibition mechanism pathway that results in the formation of a reactive ketene intermediate. This is also consistent with assay results that determined that 1-ethynylpyrene acts as a mechanism-based inhibitor of P450s 1A1 and 1A2 and as a reversible inhibitor of P450 2B1. Crystallographic data: 1-ethynylpyrene, C18H10, P21/c, a = 14.571(2) Å, b = 3.9094(5) Å, c = 20.242(3) Å, β = 105.042(2)°, V = 1,113.5(2) Å3; 1-propynylpyrene, C19H12, P21/n, a = 8.970(2) Å, b = 10.136(1) Å, c = 14.080(3) Å, β = 99.77(2)°, V = 1,261.5(4) Å3; 4

  20. Stable expression of rat cytochrome P-450IIB1 cDNA in Chinese hamster cells (V79) and metabolic activation of aflatoxin B sub 1

    SciTech Connect

    Doehmer, J.; Dogra, S.; Friedberg, T.; Monier, S.; Adesnik, M.; Glatt, H.; Oesch, F. )

    1988-08-01

    V79 Chinese hamster fibroblasts are widely used for mutagenicity testing but have the serious limitation that they do not express cytochromes P-450, which are needed for the activation of many promutagens to mutagenic metabolites. A full-length cDNA clone encoding the monooxygenase cytochrome P-450IIB1 under control of the simian virus 40 early promoter was constructed and cointroduced with the selection marker neomycin phosphotransferase (conferring resistance to G418) into V79 Chinese hamster cells. G418-resistant cells were selected, established as cell lines, and tested for cytochrome P-450IIB1 expression and enzymatic activity. Two cell lines (SD1 and SD3) were found that stably produce cytochrome P-450IIB1. Although purified cytochromes P-450 possess monooxygenase activity only after reconstitution with cytochrome P-450 reductase and phospholipid, the gene product of the construct exhibited this activity. This implies that the gene product is intracellularly localized in a way that allows access to the required components. If compared with V79 cells, the mutation rate for the hypoxanthine phosphoribosyltranferase (HPRT) locus in SD1 cells is markedly increased when exposed to aflatoxin B{sub 1}, which is activated by this enzyme.

  1. A novel role of Drosophila cytochrome P450-4e3 in permethrin insecticide tolerance

    PubMed Central

    Terhzaz, Selim; Cabrero, Pablo; Brinzer, Robert A.; Halberg, Kenneth A.; Dow, Julian A.T.; Davies, Shireen-A.

    2015-01-01

    The exposure of insects to xenobiotics, such as insecticides, triggers a complex defence response necessary for survival. This response includes the induction of genes that encode key Cytochrome P450 monooxygenase detoxification enzymes. Drosophila melanogaster Malpighian (renal) tubules are critical organs in the detoxification and elimination of these foreign compounds, so the tubule response induced by dietary exposure to the insecticide permethrin was examined. We found that expression of the gene encoding Cytochrome P450-4e3 (Cyp4e3) is significantly up-regulated by Drosophila fed on permethrin and that manipulation of Cyp4e3 levels, specifically in the principal cells of the Malpighian tubules, impacts significantly on the survival of permethrin-fed flies. Both dietary exposure to permethrin and Cyp4e3 knockdown cause a significant elevation of oxidative stress-associated markers in the tubules, including H2O2 and lipid peroxidation byproduct, HNE (4-hydroxynonenal). Thus, Cyp4e3 may play an important role in regulating H2O2 levels in the endoplasmic reticulum (ER) where it resides, and its absence triggers a JAK/STAT and NF-κB-mediated stress response, similar to that observed in cells under ER stress. This work increases our understanding of the molecular mechanisms of insecticide detoxification and provides further evidence of the oxidative stress responses induced by permethrin metabolism. PMID:26073628

  2. Application of nanodisc technology for direct electrochemical investigation of plant cytochrome P450s and their NADPH P450 oxidoreductase.

    PubMed

    Bavishi, Krutika; Laursen, Tomas; Martinez, Karen L; Møller, Birger Lindberg; Della Pia, Eduardo Antonio

    2016-01-01

    Direct electrochemistry of cytochrome P450 containing systems has primarily focused on investigating enzymes from microbes and animals for bio-sensing applications. Plant P450s receive electrons from NADPH P450 oxidoreductase (POR) to orchestrate the bio-synthesis of a plethora of commercially valuable compounds. In this report, full length CYP79A1, CYP71E1 and POR of the dhurrin pathway in Sorghum bicolor were reconstituted individually in nanoscale lipid patches, "nanodiscs", and directly immobilized on unmodified gold electrodes. Cyclic voltammograms of CYP79A1 and CYP71E1 revealed reversible redox peaks with average midpoint potentials of 80 ± 5 mV and 72 ± 5 mV vs. Ag/AgCl, respectively. POR yielded two pairs of redox peaks with midpoint potentials of 90 ± 5 mV and -300 ± 10 mV, respectively. The average heterogeneous electron transfer rate constant was calculated to be ~1.5 s(-1). POR was electro-catalytically active while the P450s generated hydrogen peroxide (H2O2). These nanodisc-based investigations lay the prospects and guidelines for construction of a simplified platform to perform mediator-free, direct electrochemistry of non-engineered cytochromes P450 under native-like conditions. It is also a prelude for driving plant P450 systems electronically for simplified and cost-effective screening of potential substrates/inhibitors and fabrication of nano-bioreactors for synthesis of high value natural products. PMID:27386958

  3. Application of nanodisc technology for direct electrochemical investigation of plant cytochrome P450s and their NADPH P450 oxidoreductase

    PubMed Central

    Bavishi, Krutika; Laursen, Tomas; Martinez, Karen L.; Møller, Birger Lindberg; Della Pia, Eduardo Antonio

    2016-01-01

    Direct electrochemistry of cytochrome P450 containing systems has primarily focused on investigating enzymes from microbes and animals for bio-sensing applications. Plant P450s receive electrons from NADPH P450 oxidoreductase (POR) to orchestrate the bio-synthesis of a plethora of commercially valuable compounds. In this report, full length CYP79A1, CYP71E1 and POR of the dhurrin pathway in Sorghum bicolor were reconstituted individually in nanoscale lipid patches, “nanodiscs”, and directly immobilized on unmodified gold electrodes. Cyclic voltammograms of CYP79A1 and CYP71E1 revealed reversible redox peaks with average midpoint potentials of 80 ± 5 mV and 72 ± 5 mV vs. Ag/AgCl, respectively. POR yielded two pairs of redox peaks with midpoint potentials of 90 ± 5 mV and −300 ± 10 mV, respectively. The average heterogeneous electron transfer rate constant was calculated to be ~1.5 s−1. POR was electro-catalytically active while the P450s generated hydrogen peroxide (H2O2). These nanodisc-based investigations lay the prospects and guidelines for construction of a simplified platform to perform mediator-free, direct electrochemistry of non-engineered cytochromes P450 under native-like conditions. It is also a prelude for driving plant P450 systems electronically for simplified and cost-effective screening of potential substrates/inhibitors and fabrication of nano-bioreactors for synthesis of high value natural products. PMID:27386958

  4. Synergy between rhinacanthins from Rhinacanthus nasutus in inhibition against mosquito cytochrome P450 enzymes.

    PubMed

    Kotewong, Rattanawadee; Pouyfung, Phisit; Duangkaew, Panida; Prasopthum, Aruna; Rongnoparut, Pornpimol

    2015-07-01

    The cytochrome P450 monooxygenases play a major role in insecticide detoxification and become a target for development of insecticide synergists. In this study, a collection of rhinacanthins (rhinacanthin-D, -E, -G, -N, -Q, and -H/I) purified from Rhinacanthus nasutus, in addition to previously purified rhinacanthin-B and -C, were isolated. These compounds displayed various degrees of inhibition against benzyloxyresorufin-O-debenzylation mediated by CYP6AA3 and CYP6P7 which were implicated in pyrethroid resistance in Anopheles minimus malaria vector. Inhibition modes and kinetics were determined for each of rhinacanthins. Cell-based inhibition assays by rhinacanthins employing 3-(4, 5-dimethylthiazol-2-y-l)-2, 5-diphenyltetrazolium bromide (MTT) cytotoxicity test were explored their synergistic effects with cypermethrin toxicity on CYP6AA3- and CYP6P7-expressing Spodoptera frugiperda (Sf9) cells. Rhinacanthin-B, -D, -E, -G, and -N exhibited mechanism-based inhibition against CYP6AA3, an indication of irreversible inhibition, while rhinacanthin-B, -D, -G, and -N were mechanism-based inhibitors of CYP6P7. There was structure-function relationship of these rhinacanthins in inhibition effects against both enzymes. In vitro enzymatic inhibition assays revealed that there were synergistic interactions among rhinacanthins, except rhinacanthin-B and -Q, in inhibition against both enzymes. These rhinacanthins exerted synergism with cypermethrin toxicity on Sf9 cells expressing each of the two P450 enzymes via P450 inhibition and in addition could interact in synergy to further increase cypermethrin toxicity. The inhibition potentials, synergy among rhinacanthins in inhibition against the P450 detoxification enzymes, and synergism with cypermethrin toxicity of the R. nasutus constituents of reported herein could be beneficial to implement effective resistance management of mosquito vector control.

  5. Metabolism of sulphonated anthraquinones in rhubarb, maize and celery: the role of cytochromes P450 and peroxidases.

    PubMed

    Page, Valérie; Schwitzguébel, Jean-Paul

    2009-11-01

    Sulphonated anthraquinones are precursors of many synthetic dyes and pigments, recalcitrant to biodegradation, and thus contaminating many industrial effluents and rivers. In the development of a phytotreatment to remove sulphonated aromatic compounds, rhubarb (Rheum rhaponticum), a plant producing natural anthraquinones, as well as maize (Zea mays) and celery (Apium graveolens), plants not producing anthraquinones, were tested for their ability to metabolise these xenobiotics. Plants were cultivated under hydroponic conditions, with or without sulphonated anthraquinones, and were harvested at different times. Either microsomal or cytosolic fractions were prepared. The monooxygenase activity of cytochromes P450 towards several sulphonated anthraquinones was tested using a new method based on the fluorimetric detection of oxygen consumed during cytochromes P450-catalysed reactions. The activity of cytosolic peroxidases was measured by spectrophotometry, using guaiacol as a substrate. Results indicated that the activity of cytochromes P450 and peroxidases significantly increased in rhubarb plants cultivated in the presence of sulphonated anthraquinones. A higher activity of cytochromes P450 was also detected in maize and celery exposed to the pollutants. In these two plants, a peroxidase activity was also detected, but without a clear difference between the control plants and the plants exposed to the organic contaminants. This research demonstrated the existence in rhubarb, maize and celery of biochemical mechanisms involved in the metabolism and detoxification of sulphonated anthraquinones. Taken together, results confirmed that rhubarb might be the most appropriate plant for the phytotreatment of these organic pollutants.

  6. Effect of natamycin on cytochrome P450 enzymes in rats.

    PubMed

    Martínez, María Aránzazu; Martínez-Larrañaga, María Rosa; Castellano, Victor; Martínez, Marta; Ares, Irma; Romero, Alejandro; Anadón, Arturo

    2013-12-01

    Natamycin is a polyene macrolide antibiotic widely used in the food industry as a feed additive to prevent mold contamination of foods. There are many contradictory results on the genotoxic effects of macrolides which could suggest a potential risk for humans. In the present study, the effects of natamycin on the activities of some drug metabolizing enzymes in rat liver microsomes were determined in vivo. Rats were treated orally with natamycin at doses of 0.3, 1, 3 and 10 mg/kg body weight (bw)/day for 6 days. Determinations of cytochrome P450 (CYP) enzyme activities were carried out in hepatic microsomes isolated from rats treated. The activities of CYP2E1, CYP1A1/2 CYP2B1/2 and CYP4A1/2 enzymes significantly decreased after treatment with 1, 3 and 10 mg/kg bw/day, in a dose-dependent manner as compared to control. This effect was not observed after natamycin treatment at dose of 0.3 mg/kg bw/day. Our results suggest that natamycin may not potentiate the toxicity of many xenobiotics via metabolic activation and/or accumulation of reactive metabolites but also might affect the clearance of other xenobiotics detoxified by the studied CYP enzymes.

  7. Effects of icaritin on cytochrome P450 enzymes in rats.

    PubMed

    Liang, Dong-Lou; Zheng, Shuang-Li

    2014-04-01

    The purpose of this study was to find out whether icaritin influences the effect on rat cytochrome P450 (CYP) enzymes (CYP1A2, CYP2C9, CYP2E1 and CYP3A4) using cocktail probe drugs in vivo. A cocktail solution at a dose of 5 mL/kg, which contained phenacetin (20 mg/kg), tolbutamide (5 mg/kg), chlorzoxazone (20 mg/kg) and midazolam (10 mg/kg), was orally administered to rats treated with multiple doses of icaritin. Blood samples were collected at a series of time-points and the concentrations of probe drugs in plasma were determined by HPLC-MS/MS. The corresponding pharmacokinetic parameters were calculated by the software of DAS 2.0. Treatment with multiple doses of icaritin had inhibitive effects on rat CYP1A2, CYP2C9 and CYP3A4 enzyme activities. However, icaritin has no inductive or inhibitory effect on the activity of CYP2E1. Therefore, caution is needed when icaritin is co-administered with some CYP1A2, CYP2C9 or CYP3A4 substrates, which may result in treatment failure and herb-drug interactions.

  8. Interaction of rocuronium with human liver cytochromes P450.

    PubMed

    Anzenbacherova, Eva; Spicakova, Alena; Jourova, Lenka; Ulrichova, Jitka; Adamus, Milan; Bachleda, Petr; Anzenbacher, Pavel

    2015-02-01

    Rocuronium is a neuromuscular blocking agent acting as a competitive antagonist of acetylcholine. Results of an inhibition of eight individual liver microsomal cytochromes P450 (CYP) are presented. As the patients are routinely premedicated with diazepam, possible interaction of diazepam with rocuronium has been also studied. Results indicated that rocuronium interacts with human liver microsomal CYPs by binding to the substrate site. Next, concentration dependent inhibition of liver microsomal CYP3A4 down to 42% (at rocuronium concentration 189 μM) was found. This effect has been confirmed with two CYP3A4 substrates, testosterone (formation of 6β-hydroxytestosterone) and diazepam (temazepam formation). CYP2C9 and CYP2C19 activities were inhibited down to 75-80% (at the same rocuronium concentration). Activities of other microsomal CYPs have not been inhibited by rocuronium. To prove the possibility of rocuronium interaction with other drugs (diazepam), the effect of rocuronium on formation of main diazepam metabolites, temazepam (by CYP3A4) and desmethyldiazepam, (also known as nordiazepam; formed by CYP2C19) in primary culture of human hepatocytes has been examined. Rocuronium has caused inhibition of both reactions by 20 and 15%, respectively. The results open a possibility that interactions of rocuronium with drugs metabolized by CYP3A4 (and possibly also CYP2C19) may be observed.

  9. Three-dimensional model of cytochrome P450 human aromatase.

    PubMed

    Loge, Cedric; Le Borgne, Marc; Marchand, Pascal; Robert, Jean-Michel; Le Baut, Guillaume; Palzer, Martina; Hartmann, Rolf W

    2005-12-01

    A three-dimensional (3-D) structure of human aromatase (CYP 19) was modeled on the basis of the crystal structure of rabbit CYP2C5, the first solved X-ray structure of an eukaryotic cytochrome P450 and was evaluated by docking S-fadrozole and the steroidal competitive inhibitor (19R)-10-thiiranylestr-4-ene-3,17-dione, into the enzyme active site. According to a previous pharmacophoric hypothesis described in the literature, the cyano group of S-fadrozole partially mimics the steroid backbone C(17) carbonyl group of (19R)-10-thiiranylestr-4-ene-3,17-dione, and was oriented in a favorable position for H-bonding with the newly identified positively charged residues Lys 119 and Arg435. In addition, this model is consistent with the recent combined mutagenesis/modeling studies already published concerning the roles ofAsp309 and His480 in the aromatization of the steroid A ring. PMID:16408794

  10. Cytochrome P450 ω-Hydroxylases in Inflammation and Cancer

    PubMed Central

    Johnson, Amanda L.; Edson, Katheryne Z.; Totah, Rheem A.; Rettie, Allan E.

    2015-01-01

    Cytochrome P450-dependent ω-hydroxylation is a prototypic metabolic reaction of CYP4 family members that is important for the elimination and bioactivation of not only therapeutic drugs, but also endogenous compounds, principally fatty acids. Eicosanoids, derived from arachidonic acid, are key substrates in the latter category. Human CYP4 enzymes, mainly CYP4A11, CYP4F2, and CYP4F3B, hydroxylate arachidonic acid at the omega position to form 20-HETE, which has important effects in tumor progression and on angiogenesis and blood pressure regulation in the vasculature and kidney. CYP4F3A in myeloid tissue catalyzes the ω-hydroxylation of leukotriene B4 to 20-hydroxy leukotriene B4, an inactivation process that is critical for the regulation of the inflammatory response. Here, we review the enzymology, tissue distribution, and substrate selectivity of human CYP4 ω-hydroxylases and their roles as catalysts for the formation and termination of the biological effects of key eicosanoid metabolites in inflammation and cancer progression. PMID:26233909

  11. Pharmacogenetic biomarkers: cytochrome P450 3A5.

    PubMed

    MacPhee, Iain A M

    2012-09-01

    The immunosuppressive drugs used for solid organ transplantation all have a narrow therapeutic index with wide variation between individuals in the blood concentration achieved by a given dose. Therapeutic drug monitoring is employed routinely but may not allow optimisation of drug exposure during the critical period two to three days following transplantation. A key factor in the inter-individual variability for tacrolimus, and probably sirolimus, is whether an individual is genetically predicted to express the drug metabolising enzyme cytochrome P450 3A5 (CYP3A5). Individuals predicted to express CYP3A5 by possession of at least one wild-type CYP3A5*1 allele require 1.5-2 times higher doses of tacrolimus to achieve target blood concentrations than individuals homozygous for the CYP3A5*3 allele who are functional non-expressers of CYP3A5. Planning the initial tacrolimus dose based on the CYP3A5 genotype has been shown to allow more rapid achievement of target blood concentrations after transplantation than a standard dose given to all patients. However, it remains to be demonstrated that use of this approach as an adjunct to therapeutic drug monitoring can reduce either efficacy failure (transplant rejection) or toxicity. Use of a pharmacogenetic approach to dosing sirolimus awaits testing and it is unlikely to be useful for ciclosporin or everolimus.

  12. Polycyclic aromatic hydrocarbons and cytochrome P450 in HIV pathogenesis

    PubMed Central

    Rao, P. S. S.; Kumar, Santosh

    2015-01-01

    High prevalence of cigarette smoking in HIV patients is associated with increased HIV pathogenesis and disease progression. While the effect of smoking on the occurrence of lung cancer has been studied extensively, the association between smoking and HIV pathogenesis is poorly studied. We have recently shown the possible role of cytochrome P450 (CYP) in smoking/nicotine-mediated viral replication. In this review, we focus on the potential role of CYP pathway in polycyclic aromatic hydrocarbons (PAH), important constituents of cigarette smoke, mediated HIV pathogenesis. More specifically, we will discuss the role of CYP1A1 and CYP1B1, which are the major PAH-activating CYP enzymes. Our results have shown that treatment with cigarette smoke condensate (CSC) increases viral replication in HIV-infected macrophages. CSC contains PAH, which are known to be activated by CYP1A1 and CYP1B1 into procarcinogens/toxic metabolites. The expression of these CYPs is regulated by aryl hydrocarbon receptors (AHR), the cellular target of PAH, and an important player in various diseases including cancer. We propose that PAH/AHR-mediated CYP pathway is a novel target to develop new interventions for HIV positive smokers. PMID:26082767

  13. The anticarcinogen 3,3'-diindolylmethane is an inhibitor of cytochrome P-450.

    PubMed

    Stresser, D M; Bjeldanes, L F; Bailey, G S; Williams, D E

    1995-08-01

    Dietary indole-3-carbinol inhibits carcinogenesis in rodents and trout. Several mechanisms of inhibition may exist. We reported previously that 3,3'-diindolylmethane, an in vivo derivative of indole-3-carbinol, is a potent noncompetitive inhibitor of trout cytochrome P450 (CYP) 1A-dependent ethoxyresorufin O-deethylase with Ki values in the low micromolar range. We now report a similar potent inhibition by 3,3'-diindolylmethane of rat and human CYP1A1, human CYP1A2, and rat CYP2B1 using various CYP-specific or preferential activity assays. 3,3'-Diindolylmethane also inhibited in vitro CYP-mediated metabolism of the ubiquitous food contaminant and potent hepatocarcinogen, aflatoxin B1. There was no inhibition of cytochrome c reductase. In addition, we found 3,3'-diindolylmethane to be a substrate for rat hepatic microsomal monooxygenase(s) and tentatively identified a monohydroxylated metabolite. These observations indicate that 3,3'-diindolylmethane can inhibit the catalytic activities of a range of CYP isoforms from lower and higher vertebrates in vitro. This broadly based inhibition of CYP-mediated activation of procarcinogens may be an indole-3-carbinol anticarcinogenic mechanism applicable to all species, including humans.

  14. KINETICS OF BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P450 ISOENZYMES IN HUMAN LIVER MICROSOMES

    EPA Science Inventory

    Kinetics of Bromodichloromethane Metabolism by
    Cytochrome P450 Isoenzymes in Human Liver Microsomes

    Guangyu Zhao and John W. Allis

    ABSTRACT
    The kinetic constants for the metabolism of bromodichloromethane (BDCM) by three cytochrome P450 (CYP) isoenzymes have ...

  15. Measurement of Cytochrome P450 Enzyme Induction and Inhibition in Human Hepatoma Cells.

    PubMed

    Rodrigues, Robim M; De Kock, Joery; Doktorova, Tatyana Y; Rogiers, Vera; Vanhaecke, Tamara

    2015-01-01

    Cytochrome P450 enzymes are a diverse group of catalytic enzymes in the liver that are mainly responsible for the biotransformation of organic substances. Cytochrome P450 activity as well as both its induction and inhibition are key factors in drug biotransformation and can be involved in deactivation, activation, detoxification and toxification processes. Thus, the modulation of cytochrome P450 activity is an important parameter when evaluating the potential toxicity of chemical compounds using an in vitro system. The cytochrome P450 3A subfamily proteins are among the most important drug-metabolizing enzymes in human liver and are responsible for about half of all cytochrome P450-dependent drug oxidations. In vitro, these enzymes are active not only in primary human hepatocyte cultures, but also in differentiated human hepatoma HepaRG cells. The present protocol describes the culture of cryopreserved differentiated HepaRG cells and the evaluation of its cytochrome P450 activity upon exposure to a chemical compound using a commercially available luminogenic cytochrome P450 assay. This in vitro model can be used to monitor the induction and inhibition of cytochrome P450 3A following exposure to a particular test compound.

  16. Functional coupling of ATP-binding cassette transporter Abcb6 to cytochrome P450 expression and activity in liver.

    PubMed

    Chavan, Hemantkumar; Li, Feng; Tessman, Robert; Mickey, Kristen; Dorko, Kenneth; Schmitt, Timothy; Kumer, Sean; Gunewardena, Sumedha; Gaikwad, Nilesh; Krishnamurthy, Partha

    2015-03-20

    Although endogenous mechanisms that negatively regulate cytochrome P450 (P450) monooxygenases in response to physiological and pathophysiological signals are not well understood, they are thought to result from alterations in the level of endogenous metabolites, involved in maintaining homeostasis. Here we show that homeostatic changes in hepatic metabolite profile in Abcb6 (mitochondrial ATP-binding cassette transporter B6) deficiency results in suppression of a specific subset of hepatic P450 activity. Abcb6 null mice are more susceptible to pentobarbital-induced sleep and zoxazolamine-induced paralysis, secondary to decreased expression and activity of Cyp3a11 and Cyp2b10. The knock-out mice also show decrease in both basal and xeno-inducible expression and activity of a subset of hepatic P450s that appear to be related to changes in hepatic metabolite profile. These data, together with the observation that liver extracts from Abcb6-deficient mice suppress P450 expression in human primary hepatocytes, suggest that this mouse model may provide an opportunity to understand the physiological signals and the mechanisms involved in negative regulation of P450s. PMID:25623066

  17. Cloning and Expression in Pichia pastoris of a New Cytochrome P450 Gene from a Dandruff-causing Malassezia globosa.

    PubMed

    Lee, Eun Chang; Ohk, Seul Ong; Suh, Bo Young; Park, Nahee; Kim, Beom Joon; Kim, Donghak; Chun, Young-Jin

    2010-03-01

    The Malassezia fungi are responsible for various human skin disorders including dandruff and seborrheic dermatitis. Of the Malassezia fungi, Malassezia globosa (M. globosa) is one of the most common in human scalp. The completed genome sequence of M. globosa contains four putative cytochrome P450 genes. To determine the roles of Malassezia P450 enzymes in the biosynthesis of ergosterol, we isolated MGL3996 gene from M. globosa chromosomal DNA by PCR. The MGL3996 gene encodes an enzyme of 616 amino acids, which shows strong similarity with known CYP52s of other species. MGL3996 gene was cloned and expressed in Pichia pastoris (P. pastoris) heterologous yeast expression system. Using the yeast microsomes expressing MGL3996 protein, a typical P450 CO-difference spectrum was shown with absorption maximum at 448 nm. SDS-PAGE analysis revealed a protein band of apparent molecular weight 69 kDa and Western blot with anti-histidine tag antibody showed that MGL3996 was successfully expressed in P. pastoris. Cloning and expression of a new P450 gene is an important step to study the P450 monooxygenase system of M. globosa and to understand the role of P450 enzymes in pathophysiology of dandruff. PMID:24278505

  18. Over-Expression of a Cytochrome P450 Is Associated with Resistance to Pyriproxyfen in the Greenhouse Whitefly Trialeurodes vaporariorum

    PubMed Central

    Karatolos, Nikos; Williamson, Martin S.; Denholm, Ian; Gorman, Kevin; ffrench-Constant, Richard H.; Bass, Chris

    2012-01-01

    Background The juvenile hormone mimic, pyriproxyfen is a suppressor of insect embryogenesis and development, and is effective at controlling pests such as the greenhouse whitefly Trialeurodes vaporariorum (Westwood) which are resistant to other chemical classes of insecticides. Although there are reports of insects evolving resistance to pyriproxyfen, the underlying resistance mechanism(s) are poorly understood. Results Bioassays against eggs of a German (TV8) population of T. vaporariorum revealed a moderate level (21-fold) of resistance to pyriproxyfen. This is the first time that pyriproxyfen resistance has been confirmed in this species. Sequential selection of TV8 rapidly generated a strain (TV8pyrsel) displaying a much higher resistance ratio (>4000-fold). The enzyme inhibitor piperonyl butoxide (PBO) suppressed this increased resistance, indicating that it was primarily mediated via metabolic detoxification. Microarray analysis identified a number of significantly over-expressed genes in TV8pyrsel as candidates for a role in resistance including cytochrome-P450 dependent monooxygenases (P450s). Quantitative PCR highlighted a single P450 gene (CYP4G61) that was highly over-expressed (81.7-fold) in TV8pyrsel. Conclusion Over-expression of a single cytochrome P450 gene (CYP4G61) has emerged as a strong candidate for causing the enhanced resistance phenotype. Further work is needed to confirm the role of the encoded P450 enzyme CYP4G61 in detoxifying pyriproxyfen. PMID:22347432

  19. Hepatic metabolism of cyclodiene insecticides by constitutive forms of cytochrome P-450 from lower vertebrates.

    PubMed

    Ronis, M J; Walker, C H; Peakall, D

    1987-01-01

    1. Multiple forms of cytochrome P-450 were separated from the hepatic microsomes of untreated male rats, pigeons (Columbia livia), razorbills (Alca torda), puffins (Fratercula arctica), and rainbow trout (Salmo gairdnerii), using anion exchange chromatography and DEAE-cellulose. 2. In some cases cytochrome P-450 forms were further purified on hydroxylapatite and carboxymethyl-sephadex columns. 3. Considerable differences in the distribution of forms between these five species were evident from elution profiles on DEAE cellulose, and on analysis of the cytochrome P-450 containing pools by SDS-PAGE. 4. The metabolism of two organochlorine compounds, aldrin and the dieldrin analogue HCE, were studied in (a) intact microsomes and (b) reconstituted systems containing cytochrome P-450, from each of the five species. 5. In spite of their close structural similarity, significant differences were found between the two substrates in the distribution of catalytic activity between the cytochrome P-450 isozymes of each species. PMID:2888582

  20. Affinity isolation and characterization of cytochrome P450 102 (BM-3) from barbiturate-induced Bacillus megaterium.

    PubMed

    Black, S D; Linger, M H; Freck, L C; Kazemi, S; Galbraith, J A

    1994-04-01

    Cytochrome P450 102 (BM-3) is a catalytically self-sufficient enzyme from Bacillus megaterium that is presently accepted as an important model of the mammalian microsomal P450 monooxygenase system. We have developed a novel affinity approach to purify P450 102 in a single chromatographic step and have studied the spectroscopic, catalytic, nucleotide binding, and crystallization properties of the highly purified enzyme. B. megaterium ATCC 14581 was grown to high cell density, and P450 102 was purified rapidly and in high yield by chromatography on adenosine-2',5'-diphosphate agarose from crude cell-free extract. The cytochrome bound to the column with remarkable avidity, in contrast to the significantly weaker binding observed for NADPH-cytochrome P450 reductase. Chromatographic behavior also showed that the cytochrome bound NADP(+)-type nucleotides more tightly than any other cellular polypeptide. The purified protein was electrophoretically homogeneous and had essentially theoretical contents of FAD, FMN, and heme. Optical spectra showed the expected heme and flavin absorption bands, and three previously undescribed charge-transfer-type absorptions were characterized. Molar extinction coefficients in the oxidized, fully reduced, and ferrous carbonyl states have been determined; notable is the large soret extinction in the ferrous carbonyl state (epsilon 449 nm = 143,500 M-1 cm-1). Final preparations were active in the oxidation of a wide variety of substrates. Of the C14 alkyl compounds studied, tetradecyltrimethylammonium bromide showed the highest substrate-dependent oxidation of NADPH, followed by myristate and myristyl alcohol; however, myristate exhibited the lowest Km value. Activities were tightly coupled to NADPH oxidation (> 97%). Phenobarbital, benzphetamine, cocaine, cyclohexane, methanol, ethanol, retinoic acid, benzoate, heptaflourobutyrate, and 7-ethoxycoumarin were not substrates. NADP+ titrations showed, as expected, that the coenzyme was bound

  1. Furafylline is a potent and selective inhibitor of cytochrome P450IA2 in man.

    PubMed Central

    Sesardic, D; Boobis, A R; Murray, B P; Murray, S; Segura, J; de la Torre, R; Davies, D S

    1990-01-01

    1. Furafylline (1,8-dimethyl-3-(2'-furfuryl)methylxanthine) is a methylxanthine derivative that was introduced as a long-acting replacement for theophylline in the treatment of asthma. Administration of furafylline was associated with an elevation in plasma levels of caffeine, due to inhibition of caffeine oxidation, a reaction catalysed by one or more hydrocarbon-inducible isoenzymes of P450. We have now investigated the selectivity of inhibition of human monooxygenase activities by furafylline. 2. Furafylline was a potent, non-competitive inhibitor of high affinity phenacetin O-deethylase activity of microsomal fractions of human liver, a reaction catalysed by P450IA2, with an IC50 value of 0.07 microM. 3. Furafylline had either very little or no effect on human monooxygenase activities catalysed by other isoenzymes of P450, including P450IID1, P450IIC, P450IIA. Of particular interest, furafylline did not inhibit P450IA1, assessed from aryl hydrocarbon hydroxylase activity of placental samples from women who smoked cigarettes. 4. It is concluded that furafylline is a highly selective inhibitor of P450IA2 in man. 5. Furafylline was a potent inhibitor of the N3-demethylation of caffeine and of a component of the N1- and N7-demethylation. This confirms earlier suggestions that caffeine is a selective substrate of a hydrocarbon-inducible isoenzyme of P450 in man, and identifies this as P450IA2. Thus, caffeine N3-demethylation should provide a good measure of the activity of P450IA in vivo in man. 6. Although furafylline selectively inhibited P450IA2, relative to P450IA1, in the rat, this was at 1000-times the concentration required to inhibit the human isoenzyme, suggesting a major difference in the active site geometry between the human and the rat orthologues of P50IA2. PMID:2378786

  2. Cytochrome P450-Dependent Metabolism of Caffeine in Drosophila melanogaster

    PubMed Central

    Coelho, Alexandra; Fraichard, Stephane; Le Goff, Gaëlle; Faure, Philippe; Artur, Yves; Ferveur, Jean-François; Heydel, Jean-Marie

    2015-01-01

    Caffeine (1, 3, 7-trimethylxanthine), an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents). A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs) that were highly overexpressed. Flies treated with metyrapone—an inhibitor of CYP enzymes—showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects. PMID:25671424

  3. Cytochrome P450-dependent metabolism of caffeine in Drosophila melanogaster.

    PubMed

    Coelho, Alexandra; Fraichard, Stephane; Le Goff, Gaëlle; Faure, Philippe; Artur, Yves; Ferveur, Jean-François; Heydel, Jean-Marie

    2015-01-01

    Caffeine (1, 3, 7-trimethylxanthine), an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents). A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs) that were highly overexpressed. Flies treated with metyrapone--an inhibitor of CYP enzymes--showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects. PMID:25671424

  4. Cytochrome P450-dependent metabolism of caffeine in Drosophila melanogaster.

    PubMed

    Coelho, Alexandra; Fraichard, Stephane; Le Goff, Gaëlle; Faure, Philippe; Artur, Yves; Ferveur, Jean-François; Heydel, Jean-Marie

    2015-01-01

    Caffeine (1, 3, 7-trimethylxanthine), an alkaloid produced by plants, has antioxidant and insecticide properties that can affect metabolism and cognition. In vertebrates, the metabolites derived from caffeine have been identified, and their functions have been characterized. However, the metabolites of caffeine in insects remain unknown. Thus, using radiolabelled caffeine, we have identified some of the primary caffeine metabolites produced in the body of Drosophila melanogaster males, including theobromine, paraxanthine and theophylline. In contrast to mammals, theobromine was the predominant metabolite (paraxanthine in humans; theophylline in monkeys; 1, 3, 7-trimethyluric acid in rodents). A transcriptomic screen of Drosophila flies exposed to caffeine revealed the coordinated variation of a large set of genes that encode xenobiotic-metabolizing proteins, including several cytochromes P450s (CYPs) that were highly overexpressed. Flies treated with metyrapone--an inhibitor of CYP enzymes--showed dramatically decreased caffeine metabolism, indicating that CYPs are involved in this process. Using interference RNA genetic silencing, we measured the metabolic and transcriptomic effect of three candidate CYPs. Silencing of CYP6d5 completely abolished theobromine synthesis, whereas CYP6a8 and CYP12d1 silencing induced different consequences on metabolism and gene expression. Therefore, we characterized several metabolic products and some enzymes potentially involved in the degradation of caffeine. In conclusion, this pioneer approach to caffeine metabolism in insects opens novel perspectives for the investigation of the physiological effects of caffeine metabolites. It also indicates that caffeine could be used as a biomarker to evaluate CYP phenotypes in Drosophila and other insects.

  5. Atomic force microscopy revelation of molecular complexes in the multiprotein cytochrome P450 2B4-containing system.

    PubMed

    Kuznetsov, Vadim Yu; Ivanov, Yuri D; Archakov, Alexander I

    2004-08-01

    The application of atomic force microscopy (AFM) to the identification and visualization of individual molecules and their complexes in a reconstituted monooxygenase P450 2B4 system without the phospholipid was demonstrated. The method employed in this study distinguishes the monomeric proteins from their binary complexes and, also, the binary from the ternary complexes. The AFM images of the full-length P450 2B4 system's constituent components - cytochrome P450 2B4 (2B4), NADPH-cytochrome P450 reductase and cytochrome b5 (b5), were obtained on highly-oriented pyrolitic graphite. The typical heights of the d-2B4, d-flavoprotein (Fp) and d-b5 molecules were measured and found to be 2.2 +/- 0.2, 2.3 +/- 0.2 and 1.8 +/- 0.1 nm, respectively. The measured heights of the binary d-Fp/d-2B4 and d-2B4/d-b5 complexes were estimated to be 3.4 +/- 0.2 and 2.8 +/- 0.2 nm, respectively. No formation of d-Fp/d-b5 complexes was registered. The ternary d-Fp/d-2B4/d-b5 complexes were visualized and their heights were found to be roughly equal to 4.3 +/- 0.3 nm and 6.2 +/- 0.3 nm. PMID:15274134

  6. Gene engineering in yeast for biodegradation: Immunological cross-reactivity among cytochrome p-450 system proteins of saccharomyces cerevisiae and candida tropicalis

    SciTech Connect

    Loper, J.C.; Chen, C.; Dey, C.R.

    1993-01-01

    Yeasts are eukaryotic microorganisms whose cytochrome P-450 monooxygenase systems may be amenable to genetic engineering for the hydroxylation and detoxication of polychlorinated aromatic hydrocarbons. The molecular genetic properties of strains of bakers yeast, Saccharomyces cerevisiae, and an n-alkane utilizing yeast, Candida tropicalis ATCC750 are examined. Standard methods were used to purify cytochrome P-450 and NADPH-cytochrome c (P-450) reductase proteins from cells cultured by semi-anaerobic glucose fermentation (S. cerevisiae, C. tropicalis) and by growth on tetradecane (C. tropicalis). Polyvalent antisera prepared in rabbits to some of these proteins were used in tests of immunological relatedness among the purified proteins using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and nitrocellulose filter immunoblots. The results provide evidence for gene relationships which should prove useful in gene isolation and subsequent engineering of P-450 enzyme systems in yeast.

  7. Domains of the catalytically self-sufficient cytochrome P-450 BM-3. Genetic construction, overexpression, purification and spectroscopic characterization.

    PubMed Central

    Miles, J S; Munro, A W; Rospendowski, B N; Smith, W E; McKnight, J; Thomson, A J

    1992-01-01

    1. The gene CYP102 encoding cytochrome P-450 BM-3 and subgenes encoding the cytochrome P-450 and cytochrome P-450 reductase domains have been cloned in Escherichia coli. 2. The protein products of these genes have been overexpressed and purified to homogeneity. 3. The cytochrome P-450 domain is purified in the ferric low-spin state, but is readily converted into the high-spin state by addition of the substrate palmitate (Ks = 1 microM). The cytochrome P-450 reductase domain readily reduces cytochrome c. Mixing the two domains reconstitutes only about one-thousandth of the fatty acid hydroxylase activity associated with the intact cytochrome P-450 BM-3. 4. The X-band e.p.r. spectra of both the cytochrome P-450 domain and intact cytochrome P-450 BM-3 give g-values indicating low-spin ferric haem. The spectra are virtually identical with those of the equivalent form of cytochrome P-450 cam indicating that the haem ligation in cytochrome P-450 BM-3 is identical with that of cytochrome P-450 cam. 5. Resonance Raman spectra of the substrate-free and substrate-bound forms of the cytochrome P-450 domain are given. Spectral differences in comparison with cytochrome P-450 cam may reflect subtle electronic differences between the respective haem environments. Images Fig. 1. PMID:1334408

  8. The role of cytochrome b5 structural domains in interaction with cytochromes P450.

    PubMed

    Sergeev, G V; Gilep, A A; Usanov, S A

    2014-05-01

    To understand the role of the structural elements of cytochrome b5 in its interaction with cytochrome P450 and the catalysis performed by this heme protein, we carried out comparative structural and functional analysis of the two major mammalian forms of membrane-bound cytochrome b5 - microsomal and mitochondrial, designed chimeric forms of the heme proteins in which the hydrophilic domain of one heme protein is replaced by the hydrophilic domain of another one, and investigated the effect of the highly purified native and chimeric heme proteins on the enzymatic activity of recombinant cytochromes P4503A4 and P45017A1 (CYP3A4 and CYP17A1). We show that the presence of a hydrophobic domain in the structure of cytochrome b5 is necessary for its effective interaction with its redox partners, while the nature of the hydrophobic domain has no significant effect on the ability of cytochrome b5 to stimulate the activity of cytochrome P450-catalyzed reactions. Thus, the functional properties of cytochrome b5 are mainly determined by the structure of the heme-binding domain.

  9. Relation among cytochrome P450, Ah-active PCB congeners and dioxin equivalents in pipping black-crowned night-heron embryos

    SciTech Connect

    Rattner, B.A.; Hatfield, J.S.; Melancon, M.J.; Custer, T.W. . Patuxent Environmental Science Center); Tillitt, D.E. . Midwest Science Center)

    1994-11-01

    Pipping black-crowned night-heron (Nycticorax nycticorax) embryos were collected from a relatively uncontaminated site (next to Chincoteague National Wildlife Refuge, VA) and three polluted sites (Cat Island, Green Bay, Lake Michigan, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). Hepatic cytochrome P450-associated mono-oxygenates and cytochrome P450 proteins, induced up to 85-fold relative to the reference site, were associated with concentrations of total polychlorinated biphenyls (PCBs) and 11 PCB congeners that are presumed to express toxicity through the arylhydrocarbon (Ah) receptor. Multiple regression revealed that up to 86% of the variation of cytochrome P450 measurements was accounted for by variation in the concentration of these PCB congeners. Toxic equivalents (TEQs) of sample extracts, predicted mathematically (summed product of PCB congener concentrations and toxic equivalency factors), and dioxin equivalents (TCDD-EQs), derived by bioassay (ethoxyresorufin-O-dealkylase activity of treated H4IIE rat hepatoma cells), were greatest in Cat Island samples. Cytochrome P450-associated monooxygenases and cytochrome P450 proteins were related to TEQs and TCDD-EQs; adjusted r[sup 2] often exceeded 0.5 for the relation among mathematically predicted TEQs and cytochrome P450 measurements. These data extend previous observations in heron embryos of an association between P450 and total PCB burdens to include Ah-active PCB congeners, and presumably other compounds, which interact similarly with the AH receptor. Benzyloxyresorufin O-dealkylase, ethoxyresorufin O-dealkylase, and cytochrome P450 1A appear to be the most reliable measures of exposure to Ah-active PCB congeners in black-crowned night-heron embryos. These findings provide further evidence that cytochrome P450-associated parameters have considerable value as a biomarker for assessing environmental contamination of wetlands.

  10. Structure and Function of an NADPH-Cytochrome P450 Oxidoreductase in an Open Conformation Capable of Reducing Cytochrome P450

    SciTech Connect

    Hamdane, Djemel; Xia, Chuanwu; Im, Sang-Choul; Zhang, Haoming; Kim, Jung-Ja P.; Waskell, Lucy

    2010-01-20

    NADPH-cytochrome P450 oxidoreductase (CYPOR) catalyzes the transfer of electrons to all known microsomal cytochromes P450. A CYPOR variant, with a 4-amino acid deletion in the hinge connecting the FMN domain to the rest of the protein, has been crystallized in three remarkably extended conformations. The variant donates an electron to cytochrome P450 at the same rate as the wild-type, when provided with sufficient electrons. Nevertheless, it is defective in its ability to transfer electrons intramolecularly from FAD to FMN. The three extended CYPOR structures demonstrate that, by pivoting on the C terminus of the hinge, the FMN domain of the enzyme undergoes a structural rearrangement that separates it from FAD and exposes the FMN, allowing it to interact with its redox partners. A similar movement most likely occurs in the wild-type enzyme in the course of transferring electrons from FAD to its physiological partner, cytochrome P450. A model of the complex between an open conformation of CYPOR and cytochrome P450 is presented that satisfies mutagenesis constraints. Neither lengthening the linker nor mutating its sequence influenced the activity of CYPOR. It is likely that the analogous linker in other members of the diflavin family functions in a similar manner.

  11. Effect of Mutation and Substrate Binding on the Stability of Cytochrome P450BM3 Variants.

    PubMed

    Geronimo, Inacrist; Denning, Catherine A; Rogers, W Eric; Othman, Thaer; Huxford, Tom; Heidary, David K; Glazer, Edith C; Payne, Christina M

    2016-06-28

    Cytochrome P450BM3 is a heme-containing enzyme from Bacillus megaterium that exhibits high monooxygenase activity and has a self-sufficient electron transfer system in the full-length enzyme. Its potential synthetic applications drive protein engineering efforts to produce variants capable of oxidizing nonnative substrates such as pharmaceuticals and aromatic pollutants. However, promiscuous P450BM3 mutants often exhibit lower stability, thereby hindering their industrial application. This study demonstrated that the heme domain R47L/F87V/L188Q/E267V/F81I pentuple mutant (PM) is destabilized because of the disruption of hydrophobic contacts and salt bridge interactions. This was directly observed from crystal structures of PM in the presence and absence of ligands (palmitic acid and metyrapone). The instability of the tertiary structure and heme environment of substrate-free PM was confirmed by pulse proteolysis and circular dichroism, respectively. Binding of the inhibitor, metyrapone, significantly stabilized PM, but the presence of the native substrate, palmitic acid, had no effect. On the basis of high-temperature molecular dynamics simulations, the lid domain, β-sheet 1, and Cys ligand loop (a β-bulge segment connected to the heme) are the most labile regions and, thus, potential sites for stabilizing mutations. Possible approaches to stabilization include improvement of hydrophobic packing interactions in the lid domain and introduction of new salt bridges into β-sheet 1 and the heme region. An understanding of the molecular factors behind the loss of stability of P450BM3 variants therefore expedites site-directed mutagenesis studies aimed at developing thermostability. PMID:27267136

  12. Identification of a novel cytochrome P450 CYP321B1 gene from tobacco cutworm moth (Spodoptera litura) and RNA interference to evaluate its role in commonly used insecticides.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND: Insect cytochrome P450 monooxygenases (CYPs or P450s) play an important role in detoxifying insecticides leading to resistance in insect populations. A polyphagous pest, Spodoptera litura (Lepidoptera, Noctuidae) has been shown to be resistant to a wide range of insecticides. In this stu...

  13. Hepatic Cytochrome P450 Activity, Abundance, and Expression Throughout Human Development

    PubMed Central

    Sadler, Natalie C.; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo; Ansong, Charles; Anderson, Lindsey N.; Smith, Jordan N.; Corley, Richard A.

    2016-01-01

    Cytochrome P450s are oxidative metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes varies considerably throughout human development; the deficit in our understanding of these dynamics limits our ability to predict environmental and pharmaceutical exposure effects. In an effort to develop a more comprehensive understanding of the ontogeny of P450 enzymes, we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. Modified mechanism-based inhibitors of P450s were used as chemical probes for isolating active P450 proteoforms in human hepatic microsomes with developmental stages ranging from early gestation to late adult. High-resolution liquid chromatography–mass spectrometry was used to identify and quantify probe-labeled P450s, allowing for a functional profile of P450 ontogeny. Total protein abundance profiles and P450 rRNA was also measured, and our results reveal life-stage–dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that these results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics. PMID:27084891

  14. Hepatic Cytochrome P450 Activity, Abundance, and Expression Throughout Human Development.

    PubMed

    Sadler, Natalie C; Nandhikonda, Premchendar; Webb-Robertson, Bobbie-Jo; Ansong, Charles; Anderson, Lindsey N; Smith, Jordan N; Corley, Richard A; Wright, Aaron T

    2016-07-01

    Cytochrome P450s are oxidative metabolic enzymes that play critical roles in the biotransformation of endogenous compounds and xenobiotics. The expression and activity of P450 enzymes varies considerably throughout human development; the deficit in our understanding of these dynamics limits our ability to predict environmental and pharmaceutical exposure effects. In an effort to develop a more comprehensive understanding of the ontogeny of P450 enzymes, we employed a multi-omic characterization of P450 transcript expression, protein abundance, and functional activity. Modified mechanism-based inhibitors of P450s were used as chemical probes for isolating active P450 proteoforms in human hepatic microsomes with developmental stages ranging from early gestation to late adult. High-resolution liquid chromatography-mass spectrometry was used to identify and quantify probe-labeled P450s, allowing for a functional profile of P450 ontogeny. Total protein abundance profiles and P450 rRNA was also measured, and our results reveal life-stage-dependent variability in P450 expression, abundance, and activity throughout human development and frequent discordant relationships between expression and activity. We have significantly expanded the knowledge of P450 ontogeny, particularly at the level of individual P450 activity. We anticipate that these results will be useful for enabling predictive therapeutic dosing, and for avoiding potentially adverse and harmful reactions during maturation from both therapeutic drugs and environmental xenobiotics. PMID:27084891

  15. Expression and Characterization of Truncated Recombinant Human Cytochrome P450 2J2

    PubMed Central

    Park, Hyoung-Goo; Lim, Young-Ran; Han, Songhee

    2014-01-01

    The human cytochrome P450 2J2 catalyzes an epoxygenase reaction to oxidize various fatty acids including arachidonic acid. In this study, three recombinant enzyme constructs of P450 2J2 were heterologously expressed in Escherichia coli and their P450 proteins were successfully purified using a Ni2+-NTA affinity column. Deletion of 34 amino acid residues in N-terminus of P450 2J2 enzyme (2J2-D) produced the soluble enzyme located in the cytosolic fraction. The enzymatic analysis of this truncated protein indicated the typical spectral characteristics and functional properties of P450 2J2 enzyme. P450 2J2-D enzymes from soluble fraction catalyzed the oxidation reaction of terfenadine to the hydroxylated product. However, P450 2J2-D enzymes from membrane fraction did not support the P450 oxidation reaction although it displayed the characteristic CO-binding spectrum of P450. Our finding of these features in the N-terminal modified P450 2J2 enzyme could help understand the biological functions and the metabolic roles of P450 2J2 enzyme and make the crystallographic analysis of the P450 2J2 structure feasible for future studies. PMID:24795797

  16. Cytochrome P450 enzyme mediated herbal drug interactions (Part 2)

    PubMed Central

    Wanwimolruk, Sompon; Phopin, Kamonrat; Prachayasittikul, Virapong

    2014-01-01

    To date, a number of significant herbal drug interactions have their origins in the alteration of cytochrome P450 (CYP) activity by various phytochemicals. Among the most noteworthy are those involving St. John's wort and drugs metabolized by human CYP3A4 enzyme. This review article is the continued work from our previous article (Part 1) published in this journal (Wanwimolruk and Prachayasittikul, 2014[ref:133]). This article extends the scope of the review to six more herbs and updates information on herbal drug interactions. These include black cohosh, ginseng, grape seed extract, green tea, kava, saw palmetto and some important Chinese medicines are also presented. Even though there have been many studies to determine the effects of herbs and herbal medicines on the activity of CYP, most of them were in vitro and in animal studies. Therefore, the studies are limited in predicting the clinical relevance of herbal drug interactions. It appeared that the majority of the herbal medicines have no clear effects on most of the CYPs examined. For example, the existing clinical trial data imply that black cohosh, ginseng and saw palmetto are unlikely to affect the pharmacokinetics of conventional drugs metabolized by human CYPs. For grape seed extract and green tea, adverse herbal drug interactions are unlikely when they are concomitantly taken with prescription drugs that are CYP substrates. Although there were few clinical studies on potential CYP-mediated interactions produced by kava, present data suggest that kava supplements have the ability to inhibit CYP1A2 and CYP2E1 significantly. Therefore, caution should be taken when patients take kava with CYP1A2 or CYP2E1 substrate drugs as it may enhance their therapeutic and adverse effects. Despite the long use of traditional Chinese herbal medicines, little is known about the potential drug interactions with these herbs. Many popularly used Chinese medicines have been shown in vitro to significantly change the

  17. Cytochrome P450 enzyme mediated herbal drug interactions (Part 1)

    PubMed Central

    Wanwimolruk, Sompon; Prachayasittikul, Virapong

    2014-01-01

    It is well recognized that herbal supplements or herbal medicines are now commonly used. As many patients taking prescription medications are concomitantly using herbal supplements, there is considerable risk for adverse herbal drug interactions. Such interactions can enhance the risk for an individual patient, especially with regard to drugs with a narrow therapeutic index such as warfarin, cyclosporine A and digoxin. Herbal drug interactions can alter pharmacokinetic or/and pharmacodynamic properties of administered drugs. The most common pharmacokinetic interactions usually involve either the inhibition or induction of the metabolism of drugs catalyzed by the important enzymes, cytochrome P450 (CYP). The aim of the present article is to provide an updated review of clinically relevant metabolic CYP-mediated drug interactions between selected herbal supplements and prescription drugs. The commonly used herbal supplements selected include Echinacea, Ginkgo biloba, garlic, St. John's wort, goldenseal, and milk thistle. To date, several significant herbal drug interactions have their origins in the alteration of CYP enzyme activity by various phytochemicals. Numerous herbal drug interactions have been reported. Although the significance of many interactions is uncertain but several interactions, especially those with St. John’s wort, may have critical clinical consequences. St. John’s wort is a source of hyperforin, an active ingredient that has a strong affinity for the pregnane xenobiotic receptor (PXR). As a PXR ligand, hyperforin promotes expression of CYP3A4 enzymes in the small intestine and liver. This in turn causes induction of CYP3A4 and can reduce the oral bioavailability of many drugs making them less effective. The available evidence indicates that, at commonly recommended doses, other selected herbs including Echinacea, Ginkgo biloba, garlic, goldenseal and milk thistle do not act as potent or moderate inhibitors or inducers of CYP enzymes. A good

  18. Aflatoxin B1 metabolism by 3-methylcholanthrene-induced hamster hepatic cytochrome P-450s.

    PubMed

    Lai, T S; Chiang, J Y

    1990-01-01

    We have studied the activation of aflatoxin B1 by hamster liver microsomes and purified hamster cytochrome P-450 isozymes using a umu mutagen test. The hamster liver microsomes or S-9 fractions were much more active than rat liver microsomes or S-9 fractions in the activation of umu gene expression by aflatoxin B1 metabolites. 3-Methyl-cholanthrene treatment increased aflatoxin B1 activation by hamster liver microsomes. Two major 3-methylcholanthrene-inducible cytochrome P-450 isozymes, P-450 MC1 (IIA) and P-450 MC4 (IA2), were purified from 3-methylcholanthrene-treated hamster liver microsomes, and the metabolism of aflatoxin B1 by these two cytochromes was studied. In the reconstituted enzyme system, both P-450 MC1 and P-450 MC4 were highly active in the activation of aflatoxin B1, and antibodies against these P-450s specifically inhibited these activities. Antibody against P-450 MC1 inhibited the activation of aflatoxin B1 by 20% in the presence of 3-methyl-cholanthrene-treated hamster liver microsomes. In contrast, antibody against P-450 MC4 stimulated the activity by 175%. These results indicated that hamster P-450 MC1 might convert aflatoxin B1 to more toxic metabolite(s), whereas P-450 MC4 might convert aflatoxin B1 to less toxic metabolite(s), than aflatoxin B1 in liver microsomes. The metabolite(s) produced by both hamster cytochrome P-450 MC1 and MC4 were genotoxic in the umu mutagen test. PMID:2126562

  19. A specialist herbivore pest adaptation to xenobiotics through up-regulation of multiple Cytochrome P450s.

    PubMed

    Zhu, Fang; Moural, Timothy W; Nelson, David R; Palli, Subba R

    2016-01-01

    The adaptation of herbivorous insects to their host plants is hypothesized to be intimately associated with their ubiquitous development of resistance to synthetic pesticides. However, not much is known about the mechanisms underlying the relationship between detoxification of plant toxins and synthetic pesticides. To address this knowledge gap, we used specialist pest Colorado potato beetle (CPB) and its host plant, potato, as a model system. Next-generation sequencing (454 pyrosequencing) was performed to reveal the CPB transcriptome. Differential expression patterns of cytochrome P450 complement (CYPome) were analyzed between the susceptible (S) and imidacloprid resistant (R) beetles. We also evaluated the global transcriptome repertoire of CPB CYPome in response to the challenge by potato leaf allelochemicals and imidacloprid. The results showed that more than half (51.2%) of the CBP cytochrome P450 monooxygenases (P450s) that are up-regulated in the R strain are also induced by both host plant toxins and pesticide in a tissue-specific manner. These data suggest that xenobiotic adaptation in this specialist herbivore is through up-regulation of multiple P450s that are potentially involved in detoxifying both pesticide and plant allelochemicals. PMID:26861263

  20. A specialist herbivore pest adaptation to xenobiotics through up-regulation of multiple Cytochrome P450s

    PubMed Central

    Zhu, Fang; Moural, Timothy W.; Nelson, David R.; Palli, Subba R.

    2016-01-01

    The adaptation of herbivorous insects to their host plants is hypothesized to be intimately associated with their ubiquitous development of resistance to synthetic pesticides. However, not much is known about the mechanisms underlying the relationship between detoxification of plant toxins and synthetic pesticides. To address this knowledge gap, we used specialist pest Colorado potato beetle (CPB) and its host plant, potato, as a model system. Next-generation sequencing (454 pyrosequencing) was performed to reveal the CPB transcriptome. Differential expression patterns of cytochrome P450 complement (CYPome) were analyzed between the susceptible (S) and imidacloprid resistant (R) beetles. We also evaluated the global transcriptome repertoire of CPB CYPome in response to the challenge by potato leaf allelochemicals and imidacloprid. The results showed that more than half (51.2%) of the CBP cytochrome P450 monooxygenases (P450s) that are up-regulated in the R strain are also induced by both host plant toxins and pesticide in a tissue-specific manner. These data suggest that xenobiotic adaptation in this specialist herbivore is through up-regulation of multiple P450s that are potentially involved in detoxifying both pesticide and plant allelochemicals. PMID:26861263

  1. Conformational changes of the NADPH-dependent cytochrome P450 reductase in the course of electron transfer to cytochromes P450.

    PubMed

    Laursen, Tomas; Jensen, Kenneth; Møller, Birger Lindberg

    2011-01-01

    The NADPH-dependent cytochrome P450 reductase (CPR) is a key electron donor to eucaryotic cytochromes P450 (CYPs). CPR shuttles electrons from NADPH through the FAD and FMN-coenzymes into the iron of the prosthetic heme-group of the CYP. In the course of these electron transfer reactions, CPR undergoes large conformational changes. This mini-review discusses the new evidence provided for such conformational changes involving a combination of a "swinging" and "rotating" model and highlights the molecular mechanisms by which formation of these conformations are controlled and thereby enables CPR to serve as an effective electron transferring "nano-machine".

  2. Cytochrome P450IA mRNA expression in feral Hudson River tomcod

    SciTech Connect

    Kreamer, G.L.; Squibb, K.; Gioeli, D.; Garte, S.J.; Wirgin, I. )

    1991-06-01

    The authors sought to determine if levels of cytochrome P450IA gene expression are environmentally induced in feral populations of Hudson River tomcod, a cancer prone fish, and whether laboratory exposure of tomcod to artificially spiked and naturally contaminated Hudson sediments can elicit a significant response. Using Northern blot analysis, they found levels of P450IA mRNA in tomcod collected from two Hudson River sites higher than those in tomcod from a river in Maine. Depuration of environmentally induced Hudson tomcod P450IA mRNA was rapid, with an initial detectable decline in P450 gene expression by 8 hr and basal levels reached by 5 days. Intraperitoneal injection of {beta}-napthoflavone in depurated Hudson tomcod resulted in a 15-fold induction of P450 gene expression within 26 hr. Exposure of depurated Hudson tomcod to natural sediment spiked with two PAHs resulted in a 7-fold induction of P450 gene expression. Exposure of depurated tomcod to sediment from a contaminated Hudson site also resulted in a 7- to 15-fold induction of P450IA mRNA expression. Northern blot analysis revealed a second polymorphic cytochrome P450IA mRNA band in some tomcod which was also detected by Southern blot analysis. Induction of cytochrome P450IA mRNA in Atlantic tomcod may provide a sensitive biomarker of environmentally relevant concentrations of some pollutants in the Hudson and other northeastern tidal rivers.

  3. Cytochrome P450IA mRNA expression in feral Hudson River tomcod.

    PubMed

    Kreamer, G L; Squibb, K; Gioeli, D; Garte, S J; Wirgin, I

    1991-06-01

    We sought to determine if levels of cytochrome P450IA gene expression are environmentally induced in feral populations of Hudson River tomcod, a cancer prone fish, and whether laboratory exposure of tomcod to artificially spiked and naturally contaminated Hudson sediments can elicit a significant response. Using Northern blot analysis, we found levels of P450IA mRNA in tomcod collected from two Hudson River sites higher than those in tomcod from a river in Maine. Depuration of environmentally induced Hudson tomcod P450IA mRNA was rapid, with an initial detectable decline in P450 gene expression by 8 hr and basal levels reached by 5 days. Intraperitoneal injection of beta-napthoflavone in depurated Hudson tomcod resulted in a 15-fold induction of P450 gene expression within 26 hr. Exposure of depurated Hudson tomcod to natural sediment spiked with two PAHs resulted in a 7-fold induction of P450 gene expression. Exposure of depurated tomcod to sediment from a contaminated Hudson site also resulted in a 7- to 15-fold induction of P450IA mRNA expression. Northern blot analysis revealed a second polymorphic cytochrome P450IA mRNA band in some tomcod which was also detected by Southern blot analysis. Induction of cytochrome P450IA mRNA in Atlantic tomcod may provide a sensitive biomarker of environmentally relevant concentrations of some pollutants in the Hudson and other northeastern tidal rivers. PMID:1855491

  4. Biosynthesis of Sandalwood Oil: Santalum album CYP76F Cytochromes P450 Produce Santalols and Bergamotol

    PubMed Central

    Diaz-Chavez, Maria L.; Moniodis, Jessie; Madilao, Lufiani L.; Jancsik, Sharon; Keeling, Christopher I.; Barbour, Elizabeth L.; Ghisalberti, Emilio L.; Plummer, Julie A.; Jones, Christopher G.; Bohlmann, Jörg

    2013-01-01

    Abstract Sandalwood oil is one of the world’s most highly prized essential oils, appearing in many high-end perfumes and fragrances. Extracted from the mature heartwood of several Santalum species, sandalwood oil is comprised mainly of sesquiterpene olefins and alcohols. Four sesquiterpenols, α-, β-, and epi-β-santalol and α-exo-bergamotol, make up approximately 90% of the oil of Santalum album. These compounds are the hydroxylated analogues of α-, β-, and epi-β-santalene and α-exo-bergamotene. By mining a transcriptome database of S. album for candidate cytochrome P450 genes, we cloned and characterized cDNAs encoding a small family of ten cytochrome P450-dependent monooxygenases annotated as SaCYP76F37v1, SaCYP76F37v2, SaCYP76F38v1, SaCYP76F38v2, SaCYP76F39v1, SaCYP76F39v2, SaCYP76F40, SaCYP76F41, SaCYP76F42, and SaCYP76F43. Nine of these genes were functionally characterized using in vitro assays and yeast in vivo assays to encode santalene/bergamotene oxidases and bergamotene oxidases. These results provide a foundation for production of sandalwood oil for the fragrance industry by means of metabolic engineering, as demonstrated with proof-of-concept formation of santalols and bergamotol in engineered yeast cells, simultaneously addressing conservation challenges by reducing pressure on supply of sandalwood from native forests. PMID:24324844

  5. Marmoset cytochrome P450 2J2 mainly expressed in small intestines and livers effectively metabolizes human P450 2J2 probe substrates, astemizole and terfenadine.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Inoue, Takashi; Okamoto, Eriko; Sasaki, Erika; Yamazaki, Hiroshi

    2016-11-01

    1. Common marmoset (Callithrix jacchus), a New World Monkey, has potential to be a useful animal model in preclinical studies. However, drug metabolizing properties have not been fully understood due to insufficient information on cytochrome P450 (P450), major drug metabolizing enzymes. 2. Marmoset P450 2J2 cDNA was isolated from marmoset livers. The deduced amino acid sequence showed a high-sequence identity (91%) with cynomolgus monkey and human P450 2J2 enzymes. A phylogenetic tree revealed that marmoset P450 2J2 was evolutionarily closer to cynomolgus monkey and human P450 2J2 enzymes, than P450 2J forms in pigs, rabbits, rats or mice. 3. Marmoset P450 2J2 mRNA was abundantly expressed in the small intestine and liver, and to a lesser extent in the brain, lung and kidney. Immunoblot analysis also showed expression of marmoset P450 2J2 protein in the small intestine and liver. 4. Enzyme assays using marmoset P450 2J2 protein heterologously expressed in Escherichia coli indicated that marmoset P450 2J2 effectively catalyzed astemizole O-demethylation and terfenadine t-butyl hydroxylation, similar to human and cynomolgus monkey P450 2J2 enzymes. 5. These results suggest the functional characteristics of P450 2J2 enzymes are similar among marmosets, cynomolgus monkeys and humans.

  6. Marmoset cytochrome P450 2J2 mainly expressed in small intestines and livers effectively metabolizes human P450 2J2 probe substrates, astemizole and terfenadine.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Inoue, Takashi; Okamoto, Eriko; Sasaki, Erika; Yamazaki, Hiroshi

    2016-11-01

    1. Common marmoset (Callithrix jacchus), a New World Monkey, has potential to be a useful animal model in preclinical studies. However, drug metabolizing properties have not been fully understood due to insufficient information on cytochrome P450 (P450), major drug metabolizing enzymes. 2. Marmoset P450 2J2 cDNA was isolated from marmoset livers. The deduced amino acid sequence showed a high-sequence identity (91%) with cynomolgus monkey and human P450 2J2 enzymes. A phylogenetic tree revealed that marmoset P450 2J2 was evolutionarily closer to cynomolgus monkey and human P450 2J2 enzymes, than P450 2J forms in pigs, rabbits, rats or mice. 3. Marmoset P450 2J2 mRNA was abundantly expressed in the small intestine and liver, and to a lesser extent in the brain, lung and kidney. Immunoblot analysis also showed expression of marmoset P450 2J2 protein in the small intestine and liver. 4. Enzyme assays using marmoset P450 2J2 protein heterologously expressed in Escherichia coli indicated that marmoset P450 2J2 effectively catalyzed astemizole O-demethylation and terfenadine t-butyl hydroxylation, similar to human and cynomolgus monkey P450 2J2 enzymes. 5. These results suggest the functional characteristics of P450 2J2 enzymes are similar among marmosets, cynomolgus monkeys and humans. PMID:26899760

  7. Engineering cytochrome c peroxidase into cytochrome P450: a proximal effect on heme-thiolate ligation.

    PubMed

    Sigman, J A; Pond, A E; Dawson, J H; Lu, Y

    1999-08-24

    In an effort to investigate factors required to stabilize heme-thiolate ligation, key structural components necessary to convert cytochrome c peroxidase (CcP) into a thiolate-ligated cytochrome P450-like enzyme have been evaluated and the H175C/D235L CcP double mutant has been engineered. The UV-visible absorption, magnetic circular dichroism (MCD) and electron paramagnetic resonance (EPR) spectra for the double mutant at pH 8.0 are reported herein. The close similarity between the spectra of ferric substrate-bound cytochrome P450cam and those of the exogenous ligand-free ferric state of the double mutant with all three techniques support the conclusion that the latter has a pentacoordinate, high-spin heme with thiolate ligation. Previous efforts to prepare a thiolate-ligated mutant of CcP with the H175C single mutant led to Cys oxidation to cysteic acid [Choudhury et al. (1994) J. Biol. Chem. 267, 25656-25659]. Therefore it is concluded that changing the proximal Asp235 residue to Leu is critical in forming a stable heme-thiolate ligation in the resting state of the enzyme. To further probe the versatility of the CcP double mutant as a ferric P450 model, hexacoordinate low-spin complexes have also been prepared. Addition of the neutral ligand imidazole or of the anionic ligand cyanide results in formation of hexacoordinate adducts that retain thiolate ligation as determined by spectral comparison to the analogous derivatives of ferric P450cam. The stability of these complexes and their similarity to the analogous forms of P450cam illustrates the potential of the H175C/D235L CcP double mutant as a model for ferric P450 enzymes. This study marks the first time a stable cyanoferric complex of a model P450 has been made and demonstrates the importance of the environment around the primary coordination ligands in stabilizing metal-ligand ligation. PMID:10460168

  8. ISOLATION OF A CYTOCHROME P-450 STRUCTURAL GENE FROM SACCHAROMYCES CEREVISIAE

    EPA Science Inventory

    We have transformed a Saccharomyces cerevisiae host with an S. cerevisiae genomic library contained in the shuttle vector YEp24 and screened the resultant transformants for resistance to ketoconazole (Kc), an inhibitor of the cytochrome P-450 (P-450) enzyme lanosterol 14-demethyl...

  9. Selective steroid oxyfunctionalisation by CYP154C5, a bacterial cytochrome P450

    PubMed Central

    2013-01-01

    Background Cytochrome P450 monooxygenases – able to regio- and stereoselectively hydroxylate non-activated carbon atoms – are important enzymes for the synthesis of valuable intermediates in the production of steroid hormones in the pharmaceutical industry. However, up to now only a few bacterial enzymes able to hydroxylate steroids have been reported. CYP154C5 from Nocardia farcinica IFM 10152, a bacterial P450 monooxygenase, was previously shown to convert testosterone to 16α-hydroxytestosterone. Since the hydroxylation at 16α-position is of special interest for the pharmaceutical industry, we have studied this enzyme in more detail to investigate its activity and selectivity in bioconversions of further steroids. Results CYP154C5 was coexpressed in Escherichia coli together with putidaredoxin and putidaredoxin reductase from Pseudomonas putida as redox partners for electron transfer and applied in bioconversions of various pregnanes and androstanes [pregnenolone (1), dehydroepiandrosterone (2), progesterone (3), androstenedione (4), testosterone (5) and nandrolone (6)]. Structure elucidation of the formed products revealed an exclusive regio- and stereoselectivity of CYP154C5, always yielding the corresponding 16α-hydroxylated steroids. Application of whole cells expressing the three components, P450, Pdx and PdR, in steroid biotransformations resulted in significantly higher conversions and total turnover numbers (TTN) compared to reactions using cell-free extracts. Additionally, considerably higher substrate loads (up to 15 mM) were tolerated by the whole-cell system. Furthermore, turnover numbers (TON) were determined for the six different steroids using whole cells. Thus, testosterone was found to be the worst substrate with a TON of only 0.8 μmol substrate consumed min-1 μmol-1 CYP154C5, while progesterone and pregnenolone were converted the fastest resulting in TON of 3.3 μmol substrate consumed min-1 μmol-1 CYP154C5. Conclusion CYP154C5

  10. Monooxygenation of small hydrocarbons catalyzed by bacterial cytochrome p450s.

    PubMed

    Shoji, Osami; Watanabe, Yoshihito

    2015-01-01

    Cytochrome P450s (P450s) catalyze the NAD(P)H/O2-dependent monooxygenation of less reactive organic molecules under mild conditions. The catalytic activity of bacterial P450s is very high compared with P450s isolated from animals and plants, and the substrate specificity of bacterial P450s is also very high. Accordingly, their catalytic activities toward nonnative substrates are generally low especially toward small hydrocarbons. However, mutagenesis approaches have been very successful for engineering bacterial P450s for the hydroxylation of small hydrocarbons. On the other hand, "decoy" molecules, whose structures are very similar to natural substrates, can be used to trick the substrate recognition of bacterial P450s, allowing the P450s to catalyze oxidation reactions of nonnative substrates without any substitution of amino acid residues in the presence of decoy molecules. Thus, the hydroxylation of small hydrocarbons such as ethane, propane, butane and benzene can be catalyzed by P450BM3, a long-alkyl-chain hydroxylase, using substrate misrecognition of P450s induced by decoy molecules. Furthermore, a number of H2O2-dependent bacterial P450s can catalyze the peroxygenation of a variety of nonnative substrates through a simple substrate-misrecognition trick, in which catalytic activities and enantioselectivity are dependent on the structure of decoy molecules.

  11. Downregulation of Mouse Hepatic CYP3A Protein by 3-Methylcholanthrene Does Not Require Cytochrome P450-Dependent Metabolism

    PubMed Central

    Lee, Chunja; Ding, Xinxin

    2013-01-01

    The aryl hydrocarbon receptor (AHR)–dependent induction of cytochromes P450 (P450) such as CYP1A1 by 3-methylcholanthrene (MC) and related polycyclic aromatic hydrocarbons is well characterized. We reported previously that MC treatment triggers a pronounced downregulation, particularly at the protein level, of mouse hepatic Cyp3a11, a counterpart of the key human drug-metabolizing enzyme CYP3A4. To determine whether this effect of MC requires hepatic microsomal P450 activity, we studied liver Cpr-null (LCN) mice with hepatocyte-specific conditional deletion of the NADPH-cytochrome P450 oxidoreductase gene. In vehicle-treated animals, basal levels of CYP3A11 mRNA and CYP3A protein immunoreactivity were elevated by approximately 9-fold in LCN mice compared with wild-type (WT) mice, whereas CYP3A catalytic activity was profoundly compromised in LCN mice. MC treatment caused suppression of CYP3A11 mRNA, CYP3A protein immunoreactivity, and CYP3A catalytic activity in WT mice, and the MC effects at the mRNA and protein levels were maintained in LCN mice. Flavin-containing monooxygenase-3 (Fmo3) induction by MC was suggested previously to occur via an AHR-dependent mechanism requiring conversion of the parent compound to DNA-damaging reactive metabolites; however, hepatic FMO3 mRNA levels were dramatically increased by MC in both WT and LCN mice. MC did not function as a mechanism-based inactivator of CYP3A enzymes in hepatic microsomes prepared from untreated WT mice, under conditions in which 1-aminobenzotriazole caused marked NADPH-dependent loss of total P450 content and CYP3A catalytic activity. These results indicate that MC downregulates mouse hepatic CYP3A protein via a pretranslational mechanism that does not require hepatic microsomal P450-dependent activity. PMID:23846873

  12. Defective Cytochrome P450-Catalysed Drug Metabolism in Niemann-Pick Type C Disease.

    PubMed

    Nicoli, Elena-Raluca; Al Eisa, Nada; Cluzeau, Celine V M; Wassif, Christopher A; Gray, James; Burkert, Kathryn R; Smith, David A; Morris, Lauren; Cologna, Stephanie M; Peer, Cody J; Sissung, Tristan M; Uscatu, Constantin-Daniel; Figg, William D; Pavan, William J; Vite, Charles H; Porter, Forbes D; Platt, Frances M

    2016-01-01

    Niemann-Pick type C (NPC) disease is a neurodegenerative lysosomal storage disease caused by mutations in either the NPC1 or NPC2 gene. NPC is characterised by storage of multiple lipids in the late endosomal/lysosomal compartment, resulting in cellular and organ system dysfunction. The underlying molecular mechanisms that lead to the range of clinical presentations in NPC are not fully understood. While evaluating potential small molecule therapies in Npc1-/- mice, we observed a consistent pattern of toxicity associated with drugs metabolised by the cytochrome P450 system, suggesting a potential drug metabolism defect in NPC1 disease. Investigation of the P450 system in the context of NPC1 dysfunction revealed significant changes in the gene expression of many P450 associated genes across the full lifespan of Npc1-/- mice, decreased activity of cytochrome P450 reductase, and a global decrease of multiple cytochrome P450 catalysed dealkylation reactions. In vivo drug metabolism studies using a prototypic P450 metabolised drug, midazolam, confirmed dysfunction in drug clearance in the Npc1-/- mouse. Expression of the Phase II enzyme uridinediphosphate-glucuronosyltransferase (UGT) was also significantly reduced in Npc1-/- mice. Interestingly, reduced activity within the P450 system was also observed in heterozygous Npc1+/- mice. The reduced activity of P450 enzymes may be the result of bile acid deficiency/imbalance in Npc1-/- mice, as bile acid treatment significantly rescued P450 enzyme activity in Npc1-/- mice and has the potential to be an adjunctive therapy for NPC disease patients. The dysfunction in the cytochrome P450 system were recapitulated in the NPC1 feline model. Additionally, we present the first evidence that there are alterations in the P450 system in NPC1 patients. PMID:27019000

  13. Defective Cytochrome P450-Catalysed Drug Metabolism in Niemann-Pick Type C Disease

    PubMed Central

    Wassif, Christopher A.; Gray, James; Burkert, Kathryn R.; Smith, David A.; Morris, Lauren; Cologna, Stephanie M.; Peer, Cody J.; Sissung, Tristan M.; Uscatu, Constantin-Daniel; Figg, William D.; Pavan, William J.; Vite, Charles H.; Porter, Forbes D.; Platt, Frances M.

    2016-01-01

    Niemann-Pick type C (NPC) disease is a neurodegenerative lysosomal storage disease caused by mutations in either the NPC1 or NPC2 gene. NPC is characterised by storage of multiple lipids in the late endosomal/lysosomal compartment, resulting in cellular and organ system dysfunction. The underlying molecular mechanisms that lead to the range of clinical presentations in NPC are not fully understood. While evaluating potential small molecule therapies in Npc1-/- mice, we observed a consistent pattern of toxicity associated with drugs metabolised by the cytochrome P450 system, suggesting a potential drug metabolism defect in NPC1 disease. Investigation of the P450 system in the context of NPC1 dysfunction revealed significant changes in the gene expression of many P450 associated genes across the full lifespan of Npc1-/- mice, decreased activity of cytochrome P450 reductase, and a global decrease of multiple cytochrome P450 catalysed dealkylation reactions. In vivo drug metabolism studies using a prototypic P450 metabolised drug, midazolam, confirmed dysfunction in drug clearance in the Npc1-/- mouse. Expression of the Phase II enzyme uridinediphosphate-glucuronosyltransferase (UGT) was also significantly reduced in Npc1-/- mice. Interestingly, reduced activity within the P450 system was also observed in heterozygous Npc1+/- mice. The reduced activity of P450 enzymes may be the result of bile acid deficiency/imbalance in Npc1-/- mice, as bile acid treatment significantly rescued P450 enzyme activity in Npc1-/- mice and has the potential to be an adjunctive therapy for NPC disease patients. The dysfunction in the cytochrome P450 system were recapitulated in the NPC1 feline model. Additionally, we present the first evidence that there are alterations in the P450 system in NPC1 patients. PMID:27019000

  14. Crystallization and preliminary x-ray diffraction analysis of P450terp and the hemoprotein domain of P450BM-3, enzymes belonging to two distinct classes of the cytochrome P450 superfamily.

    PubMed Central

    Boddupalli, S S; Hasemann, C A; Ravichandran, K G; Lu, J Y; Goldsmith, E J; Deisenhofer, J; Peterson, J A

    1992-01-01

    Cytochromes P450 are members of a superfamily of hemoproteins that are involved in the metabolism of various physiologic and xenobiotic organic compounds. This superfamily of proteins can be divided into two classes based on the electron donor proximal to the P450: an iron-sulfur protein for class I P450s or a flavoprotein for class II. The only known tertiary structure of any of the cytochromes P450 is that of P450cam, a class I soluble enzyme isolated from Pseudomonas putida (product of the CYP101 gene). To understand the details of the structure-function relationships within and between the two classes, structural studies on additional cytochromes P450 are crucial. We report here characterization of the crystal forms of two soluble, bacterial enzymes: cytochrome P450terp [class I enzyme from a Pseudomonas species (product of CYP108 gene)] and the hemoprotein domain of cytochrome P450BM-3 [class II enzyme from Bacillus megaterium (product of the CYP102 gene)]. The crystals of cytochrome P450terp are hexagonal and belong to the space group P6(1)22 (or its enantiomorph, P6(5)22) with unit cell dimensions a = b = 68.9 A and c = 458.7 A. The crystals of the hemoprotein domain of cytochrome P450BM-3 are monoclinic and belong to the space group P2(1) with unit cell dimensions a = 59.4 A, b = 154.0 A, c = 62.2 A, and beta = 94.7 degrees. Diffraction data for the crystals of these two proteins were obtained to a resolution better than 2.2 A. Assuming the presence of two molecules in the asymmetric unit for the hemoprotein domain of P450BM-3 and one molecule for P450terp, the calculated values of Vm are 2.6 and 3.3 A3/Da, respectively. Images PMID:1608967

  15. Citrulline-malate effect on microsome phospholipids and cytochrome P450 in Euglena grown with ethanol.

    PubMed

    Thuillier-Bruston, F; Julistiono, H; Briand, J

    1991-04-01

    This study indicates for the first time the presence of cytochrome P450 in the microsomes of Euglena grown in lactate medium and substantiates the use of Euglena as a hepatic cell model. Similar effects of ethanol on Euglena and on rat hepatic microsomes were demonstrated: (i) decrements in the quantities of FA per milligram of proteins; (ii) increases in the proportions of PE; (iii) decreases in the proportions of PC; and (iv) production of cytochrome P450, degraded in P420. The citrulline-malate reestablishes in the microsomes the phospholipid environment and the cytochrome P450 concentration. These findings illustrate that the complex acts on the lipid peroxidation via the changes in cytochrome P450 activity. PMID:1909150

  16. Progesterone receptor membrane component 1 inhibits the activity of drug-metabolizing cytochromes P450 and binds to cytochrome P450 reductase.

    PubMed

    Szczesna-Skorupa, Elzbieta; Kemper, Byron

    2011-03-01

    Progesterone receptor membrane component 1 (PGRMC1) has been shown to interact with several cytochromes P450 (P450s) and to activate enzymatic activity of P450s involved in sterol biosynthesis. We analyzed the interactions of PGRMC1 with the drug-metabolizing P450s, CYP2C2, CYP2C8, and CYP3A4, in transfected cells. Based on coimmunoprecipitation assays, PGRMC1 bound efficiently to all three P450s, and binding to the catalytic cytoplasmic domain of CYP2C2 was much more efficient than to a chimera containing only the N-terminal transmembrane domain. Down-regulation of PGRMC1 expression levels in human embryonic kidney 293 and HepG2 cell lines stably expressing PGRMC1-specific small interfering RNA had no effect on the endoplasmic reticulum localization and expression levels of P450s, whereas enzymatic activities of CYP2C2, CYP2C8, and CYP3A4 were slightly higher in PGRMC1-deficient cells. Cotransfection of cells with P450s and PGRMC1 resulted in PGRMC1 concentration-dependent inhibition of the P450 activities, and this inhibition was partially reversed by increased expression of the P450 reductase (CPR). In contrast, CYP51 activity was decreased by down-regulation of PGRMC1 and expression of PGRMC1 in the PGRMC1-deficient cells increased CYP51 activity. In cells cotransfected with CPR and PGRMC1, strong binding of CPR to PGRMC1 was observed; however, in the presence of CYP2C2, interaction of PGRMC1 with CPR was significantly reduced, suggesting that CYP2C2 competes with CPR for binding to PGRMC1. These data show that in contrast to sterol synthesizing P450, PGRMC1 is not required for the activities of several drug-metabolizing P450s, and its overexpression inhibits those P450 activities. Furthermore, PGRMC1 binds to CPR, which may influence P450 activity.

  17. Involvement of Cytochrome P450 in Pentachlorophenol Transformation in a White Rot Fungus Phanerochaete chrysosporium

    PubMed Central

    Ning, Daliang; Wang, Hui

    2012-01-01

    The occurrence of cytochrome P450 and P450-mediated pentachlorophenol oxidation in a white rot fungus Phanerochaete chrysosporium was demonstrated in this study. The carbon monoxide difference spectra indicated induction of P450 (103±13 pmol P450 per mg protein in the microsomal fraction) by pentachlorophenol. The pentachlorophenol oxidation by the microsomal P450 was NADPH-dependent at a rate of 19.0±1.2 pmol min−1 (mg protein)−1, which led to formation of tetrachlorohydroquinone and was significantly inhibited by piperonyl butoxide (a P450 inhibitor). Tetrachlorohydroquinone was also found in the cultures, while the extracellular ligninases which were reported to be involved in tetrachlorohydroquinone formation were undetectable. The formation of tetrachlorohydroquinone was not detectable in the cultures added with either piperonyl butoxide or cycloheximide (an inhibitor of de novo protein synthesis). These results revealed the pentachlorophenol oxidation by induced P450 in the fungus, and it should be the first time that P450-mediated pentachlorophenol oxidation was demonstrated in a microorganism. Furthermore, the addition of the P450 inhibitor to the cultures led to obvious increase of pentachlorophenol, suggesting that the relationship between P450 and pentachlorophenol methylation is worthy of further research. PMID:23029295

  18. SMARTCyp: A 2D Method for Prediction of Cytochrome P450-Mediated Drug Metabolism.

    PubMed

    Rydberg, Patrik; Gloriam, David E; Zaretzki, Jed; Breneman, Curt; Olsen, Lars

    2010-06-10

    SMARTCyp is an in silico method that predicts the sites of cytochrome P450-mediated metabolism of druglike molecules. The method is foremost a reactivity model, and as such, it shows a preference for predicting sites that are metabolized by the cytochrome P450 3A4 isoform. SMARTCyp predicts the site of metabolism directly from the 2D structure of a molecule, without requiring calculation of electronic properties or generation of 3D structures. This is a major advantage, because it makes SMARTCyp very fast. Other advantages are that experimental data are not a prerequisite to create the model, and it can easily be integrated with other methods to create models for other cytochrome P450 isoforms. Benchmarking tests on a database of 394 3A4 substrates show that SMARTCyp successfully identifies at least one metabolic site in the top two ranked positions 76% of the time. SMARTCyp is available for download at http://www.farma.ku.dk/p450.

  19. Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver

    PubMed Central

    Yang, Xia; Zhang, Bin; Molony, Cliona; Chudin, Eugene; Hao, Ke; Zhu, Jun; Gaedigk, Andrea; Suver, Christine; Zhong, Hua; Leeder, J. Steven; Guengerich, F. Peter; Strom, Stephen C.; Schuetz, Erin; Rushmore, Thomas H.; Ulrich, Roger G.; Slatter, J. Greg; Schadt, Eric E.; Kasarskis, Andrew; Lum, Pek Yee

    2010-01-01

    Liver cytochrome P450s (P450s) play critical roles in drug metabolism, toxicology, and metabolic processes. Despite rapid progress in the understanding of these enzymes, a systematic investigation of the full spectrum of functionality of individual P450s, the interrelationship or networks connecting them, and the genetic control of each gene/enzyme is lacking. To this end, we genotyped, expression-profiled, and measured P450 activities of 466 human liver samples and applied a systems biology approach via the integration of genetics, gene expression, and enzyme activity measurements. We found that most P450s were positively correlated among themselves and were highly correlated with known regulators as well as thousands of other genes enriched for pathways relevant to the metabolism of drugs, fatty acids, amino acids, and steroids. Genome-wide association analyses between genetic polymorphisms and P450 expression or enzyme activities revealed sets of SNPs associated with P450 traits, and suggested the existence of both cis-regulation of P450 expression (especially for CYP2D6) and more complex trans-regulation of P450 activity. Several novel SNPs associated with CYP2D6 expression and enzyme activity were validated in an independent human cohort. By constructing a weighted coexpression network and a Bayesian regulatory network, we defined the human liver transcriptional network structure, uncovered subnetworks representative of the P450 regulatory system, and identified novel candidate regulatory genes, namely, EHHADH, SLC10A1, and AKR1D1. The P450 subnetworks were then validated using gene signatures responsive to ligands of known P450 regulators in mouse and rat. This systematic survey provides a comprehensive view of the functionality, genetic control, and interactions of P450s. PMID:20538623

  20. Human cytochrome p450 enzyme specificity for the bioactivation of estragole and related alkenylbenzenes.

    PubMed

    Jeurissen, Suzanne M F; Punt, Ans; Boersma, Marelle G; Bogaards, Jan J P; Fiamegos, Yiannis C; Schilter, Benoit; van Bladeren, Peter J; Cnubben, Nicole H P; Rietjens, Ivonne M C M

    2007-05-01

    Human cytochrome P450 enzymes involved in the bioactivation of estragole to its proximate carcinogen 1'-hydroxyestragole were identified and compared to the enzymes of importance for 1'-hydroxylation of the related alkenylbenzenes methyleugenol and safrole. Incubations with Supersomes revealed that all enzymes tested, except P450 2C8, are intrinsically able to 1'-hydroxylate estragole. Experiments with Gentest microsomes, expressing P450 enzymes to roughly average liver levels, indicated that P450 1A2, 2A6, 2C19, 2D6, and 2E1 might contribute to estragole 1'-hydroxylation in the human liver. Especially P450 1A2 is an important enzyme based on the correlation between P450 1A2 activity and estragole 1'-hydroxylation in human liver microsomal samples and inhibition of estragole 1'-hydroxylation by the P450 1A2 inhibitor alpha-naphthoflavone. Kinetic studies revealed that, at physiologically relevant concentrations of estragole, P450 1A2 and 2A6 are the most important enzymes for bioactivation in the human liver showing enzyme efficiencies (kcat/Km) of, respectively, 59 and 341 min-1 mM-1. Only at relatively high estragole concentrations, P450 2C19, 2D6, and 2E1 might contribute to some extent. Comparison to results from similar studies for safrole and methyleugenol revealed that competitive interactions between estragole and methyleugenol 1'-hydroxylation and between estragole and safrole 1'-hydroxylation are to be expected because of the involvement of, respectively, P450 1A2 and P450 2A6 in the bioactivation of these compounds. Furthermore, poor metabolizer phenotypes in P450 2A6 might diminish the chances on bioactivation of estragole and safrole, whereas lifestyle factors increasing P450 1A2 activities such as cigarette smoking and consumption of charbroiled food might increase those chances for estragole and methyleugenol.

  1. Cytochrome P450 and contaminant concentrations in nestling black-crowned night-herons and their interrelation with sibling embryos

    SciTech Connect

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.

    1996-05-01

    Hepatic cytochrome P450-associated monooxygenase activities were measured in 11-d-old nestling black-crowned night-herons (Nycticorax nycticorax) collected from a reference site (next to Chincoteague National Wildlife Reguge, VA, USA) and three contaminated sites (Cat Island, Green Bay, WI, USA; Bair Island, San Francisco Bay, CA, USA; and West Marin Island, San Francisco Bay, CA, USA). Arylhydrocarbon hydroxylase and benzyloxyresorufin-O-dealkylase activities of nestlings from contaminated sites were only slightly elevated (less than threefold) compared with the reference site. Organochlorine pesticide and total polychlorinated biphenyl (PCB) concentrations in nestlings were greatest at contaminated sites, although much lower than found in concurrently collected eggs and pipping embryos. Pollutant concentrations of nestlings were rarely associated with monooxygenase activity. In contrast, concurrently collected pipping heron embryos (often siblings of the nestlings) exhibited pronounced monooxygenase induction (means at contaminated sites were elevated up to sevenfold and values of some embryos exceeded 25-fold induction). Furthermore, monooxygenase activity of pipping embryos was significantly correlated with total PCBs, arylhydrocarbon receptor-active PCB congeners, and toxic equivalents. The modest monooxygenase responses of heron nestlings suggest that this biomarker may have only limited value during this rapid-growth life stage.

  2. Cytochrome P450 and contaminant concentrations in nestling black-crowned night-herons and their interrelation with sibling embryos

    USGS Publications Warehouse

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.

    1996-01-01

    Hepatic cytochrome P450-associated monooxygenase activities were measured in 11-d-old nestling black-crowned night-herons (Nycticorax nycticorax) collected from a reference site (next to Chincoteague National Wildlife Refuge, VA, USA) and three contaminated sites (Cat Island, Green Bay, WI, USA; Bah Island, San Francisco Bay, CA, USA; and West Marin Island, San Francisco Bay, CA, USA). Arylhydrocarbon hydroxylase and benzyloxyresorufin-O-dealkylase activities of nestlings from contaminated sites were only slightly elevated (less than threefold) compared with the reference site. Organochlorine pesticide and total polychlorinated biphenyl (PCB) concentrations in nestlings were greatest at contaminated sites, although much lower than found in concurrently collected eggs and pipping embryos. Pollutant concentrations of nestlings were rarely associated with monooxygenase activity. In contrast, concurrently collected pipping heron embryos (often siblings of the nestlings) exhibited pronounced monooxygenase induction (means at contaminated sites were elevated up to sevenfold and values of some embryos exceeded 25-fold induction). Furthermore, monooxygenase activity of pipping embryos was significantly correlated with total PCBs, arylhydrocarbon receptor-active PCB congeners, and toxic equivalents. The modest monooxygenase responses of heron nestlings suggest that this biomarker may have only limited value during this rapid-growth life stage.

  3. Cytochrome P450 and contaminant concentrations in nestling black-crowned night-herons and their interrelation with sibling embryos

    USGS Publications Warehouse

    Rattner, B.A.; Melancon, M.J.; Custer, T.W.; Hothem, R.L.

    1996-01-01

    Hepatic cytochrome P450-associated monooxygenase activities were measured in 11-day-old nestling black-crowned night-herons (Nycticorax nycticorax) collected from a reference site (next to Chincoteague National Wildlife Refuge, VA) and three contaminated sites (Cat Island, Green Bay, WI; Bair Island, San Francisco Bay, CA; West Marin Island, San Francisco Bay, CA). Arylhydrocarbon hydroxylase (AHH) and benzyloxyresorufin-O-dealkylase (BROD) activities of nestlings from contaminated sites were only slightly elevated (less than threefold) compared to the reference site. Organochlorine pesticide and total PCB concentrations in nestlings were greatest at contaminated sites, although much lower than found in concurrently collected eggs and pipping embryos. Pollutant concentrations of nestlings were rarely associated with monooxygenase activity. In contrast, concurrently collected pipping heron embryos (often siblings of the nestlings) exhibited pronounced monooxygenase induction (means at contaminated sites elevated up to sevenfold and values of some embryos exceeded 25-fold induction). Furthermore, monooxygenase activity of pipping embryos was significantly correlated with total PCBs, arylhydrocarbon receptor-active PCB congeners and toxic equivalents. The modest monooxygenase responses of heron nestlings suggest that this biomarker may have only limited value during this rapid-growth life stage.

  4. Identification of three cytochrome P450 genes in the Chagas' disease vector Triatoma infestans: Expression analysis in deltamethrin susceptible and resistant populations.

    PubMed

    Grosso, Carla G; Blariza, María J; Mougabure-Cueto, Gastón; Picollo, María I; García, Beatriz A

    2016-10-01

    Cytochrome P450 monooxygenases play a predominant role in the metabolism of insecticides. Many insect P450 genes have frequently been associated with detoxification processes allowing the insect to become tolerant or resistant to insecticides. The increases of expression of P450 genes at transcriptional level are often consider responsible for increasing the metabolism of insecticides and seems to be a common phenomenon in the evolution of resistance development in insects. As pyrethroid resistance has been detected in Triatoma infestans, it was of interest to analyze genes associated with resistance to insecticides such as those encoding for cytochromes P450. With this purpose, the cDNA sequences of three cytochrome P450 genes (CYP4EM7, CYP3085B1, and CYP3092A6) were identified in this species. Primers and specific Taqman probes were designed from these sequences to determine their expression by quantitative PCR. The mRNA levels of the cytochrome P450 genes identified were determined from total RNA extracted from pools of fat body collected from individuals of different resistant and susceptible strains of T. infestans, and at different interval times after the topical application of the lethal doses 50% (LD50) of deltamethrin on the ventral abdomen of insects belonging to the different populations analyzed. It was detected overexpression of the CYP4EM7 gene in the most resistant strain of T. infestans and the expression of the three cytochrome P450 genes isolated was induced by deltamethrin in the susceptible and resistant populations included in this study. These results suggest that these genes would be involved in the detoxification of deltamethrin and support the hypothesis that considers to the cytochrome P450 genes of importance in the development of pyrethroid resistance. PMID:27461853

  5. Interaction of fluoroethane chlorofluorocarbon (CFC) substitutes with microsomal cytochrome P450. Stimulation of P450 activity and chlorodifluoroethene metabolism.

    PubMed

    Wang, Y; Olson, M J; Baker, M T

    1993-07-01

    The abilities of halothane and the fluoroethane chlorofluorocarbon (CFC) substitutes, FC-123, FC-133a, FC-124, FC-134a and FC-125, to stimulate cytochrome P450 activities and 2-chloro-1,1-difluoroethene (CDE) defluorination in hepatic microsomes from phenobarbital-treated rabbits were compared. At 1% (v/v) each, halothane and FC-123 similarly increased the consumption of NADPH and O2 by 300 and 100%, respectively, over that in microsomes without substrate. FC-133a and FC-124 were less effective, increasing NADPH and O2 consumption by 150-200 and 70%. FC-134a and FC-125 were the least effective, increasing NADPH and O2 consumption by only 70 and 50%, respectively. No metabolism of any fluoroethane could be detected under the incubation conditions used. Halothane and FC-123 were most effective in stimulating CDE metabolism with increases of CDE defluorination ranging from 1.5- to 2-fold. FC-133a and FC-124 enhanced CDE oxidation 89 and 74%, respectively, and FC-134a and FC-125 had no effect. While CDE metabolism was enhanced in the presence of the fluoroethanes, no additional NADPH or O2 was consumed when halothane or FC-124 was incubated with CDE compared with incubations containing only halothane or FC-124. Log-log plots of NADPH consumption and CDE metabolism with the olive oil/gas partition coefficients of each fluoroethane showed linear relationships. These data demonstrate that the activity of the fluoroethanes in stimulating P450 activity and CDE metabolism is a function of their lipid solubility, and fluoroethane-enhanced CDE metabolism is related to the ability of these compounds to increase uncoupled P450 activity.

  6. An artificial electron donor supported catalytic cycle of Pseudomonas putida cytochrome P450{sub cam}

    SciTech Connect

    Prasad, Swati . E-mail: swati@scripps.edu; Murugan, Rajamanickam; Mitra, Samaresh

    2005-09-23

    Putidaredoxin (PdX), the physiological effector of cytochrome P450{sub cam} (P450{sub cam}), serves to gate electron transfer into oxy-P450{sub cam} during the catalytic cycle of the enzyme. Redox-linked structural changes in PdX are necessary for the effective P450{sub cam} turnover reaction. PdX is believed to be difficult to be replaced by an artificial electron donor in the reaction pathway of P450{sub cam}. We demonstrate that the catalytic cycle of wild-type P450{sub cam} can be supported in the presence of an artificial reductant, potassium ferrocyanide. Upon rapid mixing of ferrocyanide ion with P450{sub cam}, we observed an intermediate with spectral features characteristic of compound I. The rate constant for the formation of compound I in the presence of ferrocyanide supported reaction cycle was found to be comparable to the ones observed for H{sub 2}O{sub 2} supported compound I formation in wild-type P450{sub cam}, but was much lower than those observed for classical peroxidases. The results presented in this paper form the first kinetic analysis of this intermediate for an artificial electron-driven P450{sub cam} catalytic pathway in solution.

  7. Lack of electron transfer from cytochrome b5 in stimulation of catalytic activities of cytochrome P450 3A4. Characterization of a reconstituted cytochrome P450 3A4/NADPH-cytochrome P450 reductase system and studies with apo-cytochrome b5.

    PubMed

    Yamazaki, H; Johnson, W W; Ueng, Y F; Shimada, T; Guengerich, F P

    1996-11-01

    Many catalytic activities of cytochrome P450 (P450) 3A4, the major human liver P450 enzyme, require cytochrome b5 (b5) for optimal rates. The stimulatory effect of b5 on P450 reactions has generally been thought to be due to transfer of electrons from ferrous b5 to the ferrous P450-O2-substrate complex. We found that apo-b5, devoid of heme, could substitute for b5 in stimulating two prototypic activities, testosterone 6beta hydroxylation and nifedipine oxidation. The stimulatory effect was not seen with albumin, hemoglobin, catalase, or cytochrome c. Apo-b5 could not substitute for b5 in a testosterone 6beta hydroxylation system composed of NADH-b5 reductase and P450 3A4. Rates of electron transfer from NADPH-P450 reductase to ferric P450 3A4 were too slow (<2 min-1) to support testosterone 6beta hydroxylation ( approximately 14 min-1) unless b5 or apo-b5 was present, when rates of approximately 700 min-1 were measured. The oxidation-reduction potential (Em,7) of the ferric/ferrous couple of P450 3A4 was unchanged ( approximately -310 mV) under different conditions in which the kinetics of reduction were altered by the addition of substrate and/or apo-b5. Rapid reduction of P450 3A4 required substrate and a preformed complex of P450 3A4, NADPH-P450 reductase, and b5; the rates of binding of the proteins to each other were 2-3 orders of magnitude less than reduction rates. We conclude that b5 can facilitate some P450 3A4-catalyzed oxidations by complexing with P450 3A4 and enhancing its reduction by NADPH-P450 reductase, without directly transferring electrons to P450. PMID:8910324

  8. Fatty acid signals in Bacillus megaterium are attenuated by cytochrome P-450-mediated hydroxylation.

    PubMed Central

    English, N; Palmer, C N; Alworth, W L; Kang, L; Hughes, V; Wolf, C R

    1997-01-01

    In previous publications [English, Hughes and Wolf (1994) J. Biol. Chem. 269, 26836-26841; English, Hughes and Wolf (1996) Biochem. J. 316, 279-283], we have demonstrated that peroxisome proliferators and non-steroidal anti-inflammatory drugs are inducers of the cytochrome P-450BM-3 gene in Bacillus megaterium ATCC14581. Their mechanism of action involves binding to and subsequent displacement of the transcriptional repressor, Bm3R1, from its operator site, which results in the activation of cytochrome P-450BM-3 gene transcription. We now present evidence that the branched-chain fatty acid, phytanic acid, is a potent inducer of cytochrome P-450BM-3. We have also observed that phytanic acid and peroxisome proliferators are inducers of Bm3R1 protein accumulation and associated DNA-binding activity. In contrast, several barbiturates, although capable of inducing cytochrome P-450BM-3 and Bm3R1 gene transcription, were unable to induce the Bm3R1 protein. We also demonstrate that cytochrome P-450BM-3 readily oxidizes phytanic acid, and provide evidence that, although the omega-1 hydroxy acid derivatives of phytanic acid can associate with Bm3R1, they do so with an affinity two orders of magnitude lower than the unmodified fatty acid. As a consequence, the ability of the hydroxylated product to induce cytochrome P-450BM-3 gene expression in vivo is markedly reduced. These data collectively suggest that metabolism of fatty acids by cytochrome P-450BM-3 leads to an attenuation of their ability to activate the transcription of the BM-3 operon. This work places the action of bacterial fatty acid hydroxylases in an autoregulatory loop where they may be responsible for the inactivation or clearance of the inducing fatty acid signal. PMID:9359402

  9. Acylureas: a new class of barbiturate-like bacterial cytochrome P-450 inducers.

    PubMed

    Ruettinger, R T; Kim, B H; Fulco, A J

    1984-10-16

    The soluble, cytochrome P-450-dependent fatty acid monooxygenase of Bacillus megaterium ATCC 14581 is induced by phenobarbital and at least twelve other barbiturates (Kim, B.-H. and Fulco, A.J. (1983) Biochem. Biophys. Res. Commun. 116, 843-850). We have since found that the inducer potency of phenobarbital and of six other of these barbiturates was enhanced by adding them to the growth medium prior to sterilization by autoclaving. A similar 'activation' was effected simply by autoclaving these barbiturates in distilled water at pH 8.0. When the hydrolytic products resulting from such treatment of phenobarbital were identified and screened for inducer activity, the major product, 2-phenylbutyrylurea, was found to be 3-5-times more potent than phenobarbital itself. The racemic mixture, (+/-)-2-phenylbutyrylurea was somewhat more active as an inducer than was either of the enantiomers [+/-) or (-] tested singly. Of the other hydrolytic products of phenobarbital, only 2-phenylbutyramide had significant inducer activity (about the same as phenobarbital). Among other ureides tested, two monosubstituted acetylureas (phenylacetylurea and dodecanoylurea) were inactive as inducers, but six of seven disubstituted acetylureas were better inducers than 2-phenylbutyrylurea. PMID:6435683

  10. Multiple, Ligand-Dependent Routes from the Active Site of Cytochrome P450 2C9

    SciTech Connect

    Cojocaru, Vlad; Winn, Peter J.; Wade, Rebecca C.

    2012-02-13

    The active site of liver-specific, drug-metabolizing cytochrome P450 (CYP) monooxygenases is deeply buried in the protein and is connected to the protein surface through multiple tunnels, many of which were found open in different CYP crystal structures. It has been shown that different tunnels could serve as ligand passage routes in different CYPs. However, it is not understood whether one CYP uses multiple routes for substrate access and product release and whether these routes depend on ligand properties. From 300 ns of molecular dynamics simulations of CYP2C9, the second most abundant CYP in the human liver we found four main ligand exit routes, the occurrence of each depending on the ligand type and the conformation of the F-G loop, which is likely to be affected by the CYP-membrane interaction. A non-helical F-G loop favored exit towards the putative membrane-embedded region. Important protein features that direct ligand exit include aromatic residues that divide the active site and whose motions control access to two pathways. The ligands interacted with positively charged residues on the protein surface through hydrogen bonds that appear to select for acidic substrates. The observation of multiple, ligand-dependent routes in a CYP aids understanding of how CYP mutations affect drug metabolism and provides new possibilities for CYP inhibition.

  11. Structure and Dynamics of the Membrane-Bound Cytochrome P450 2C9

    PubMed Central

    Cojocaru, Vlad; Balali-Mood, Kia; Sansom, Mark S. P.; Wade, Rebecca C.

    2011-01-01

    The microsomal, membrane-bound, human cytochrome P450 (CYP) 2C9 is a liver-specific monooxygenase essential for drug metabolism. CYPs require electron transfer from the membrane-bound CYP reductase (CPR) for catalysis. The structural details and functional relevance of the CYP-membrane interaction are not understood. From multiple coarse grained molecular simulations started with arbitrary configurations of protein-membrane complexes, we found two predominant orientations of CYP2C9 in the membrane, both consistent with experiments and conserved in atomic-resolution simulations. The dynamics of membrane-bound and soluble CYP2C9 revealed correlations between opening and closing of different tunnels from the enzyme's buried active site. The membrane facilitated the opening of a tunnel leading into it by stabilizing the open state of an internal aromatic gate. Other tunnels opened selectively in the simulations of product-bound CYP2C9. We propose that the membrane promotes binding of liposoluble substrates by stabilizing protein conformations with an open access tunnel and provide evidence for selective substrate access and product release routes in mammalian CYPs. The models derived here are suitable for extension to incorporate other CYPs for oligomerization studies or the CYP reductase for studies of the electron transfer mechanism, whereas the modeling procedure is generally applicable to study proteins anchored in the bilayer by a single transmembrane helix. PMID:21852944

  12. Optimization of recombinant expression enables discovery of novel cytochrome P450 activity in rice diterpenoid biosynthesis

    PubMed Central

    Kitaoka, Naoki; Wu, Yisheng; Xu, Meimei; Peters, Reuben J.

    2015-01-01

    The oxygenation reactions catalyzed by cytochromes P450 (CYPs) play critical roles in plant natural products biosynthesis. At the same time, CYPs are one of most challenging enzymes to functionally characterize due to the difficulty of recombinantly expressing these membrane-associated monooxygenases. In the course of investigating rice diterpenoid biosynthesis we have developed a synthetic biology approach for functional expression of relevant CYPs in Escherichia coli. In certain cases activity was observed for only one of two closely related paralogs although it seems clear that related reactions are required for production of the known diterpenoids. Here we report that optimization of the recombinant expression system enabled characterization of not only these previously recalcitrant CYPs, but also discovery of additional activity relevant to rice diterpenoid biosynthesis. Of particular interest, CYP701A8 was found to catalyze 3β-hydroxylation of syn-pimaradiene, which is presumably relevant to momilactone biosynthesis, while CYP71Z6 & 7 were found to catalyze multiple reactions, with CYP71Z6 catalyzing the production of 2α,3α-dihydroxy-ent-isokaurene via 2α-hydroxy- ent-isokaurene, and CYP71Z7 catalyzing the production of 3α-hydroxy-ent-cassadien-2- one via 2α-hydroxy-ent-cassadiene and ent-cassadien-2-one, which may be relevant to oryzadione and phytocassane biosynthesis, respectively. PMID:25758958

  13. Structure and Dynamics of the Membrane-Bound Cytochrome P450 2C9

    SciTech Connect

    Cojocaru, Vlad; Balali-Mood, Kia; Sansom, Mark S.; Wade, Rebecca C.

    2011-08-11

    The microsomal, membrane-bound, human cytochrome P450 (CYP) 2C9 is a liver-specific monooxygenase essential for drug metabolism. CYPs require electron transfer from the membrane-bound CYP reductase (CPR) for catalysis. The structural details and functional relevance of the CYP-membrane interaction are not understood. From multiple coarse grained molecular simulations started with arbitrary configurations of protein-membrane complexes, we found two predominant orientations of CYP2C9 in the membrane, both consistent with experiments and conserved in atomic-resolution simulations. The dynamics of membrane-bound and soluble CYP2C9 revealed correlations between opening and closing of different tunnels from the enzyme’s buried active site. The membrane facilitated the opening of a tunnel leading into it by stabilizing the open state of an internal aromatic gate. Other tunnels opened selectively in the simulations of product-bound CYP2C9. We propose that the membrane promotes binding of liposoluble substrates by stabilizing protein conformations with an open access tunnel and provide evidence for selective substrate access and product release routes in mammalian CYPs. The models derived here are suitable for extension to incorporate other CYPs for oligomerization studies or the CYP reductase for studies of the electron transfer mechanism, whereas the modeling procedure is generally applicable to study proteins anchored in the bilayer by a single transmembrane helix.

  14. HPLC Determination of Caffeine and Paraxanthine in Urine: An Assay for Cytochrome P450 1A2 Activity

    ERIC Educational Resources Information Center

    Furge, Laura Lowe; Fletke, Kyle J.

    2007-01-01

    Cytochrome P450 enzymes are a family of heme-containing proteins located throughout the body with roles in metabolism of endogenous and exogenous compounds. Among exogenous compounds, clinically relevant pharmaceutical agents are nearly all metabolized by P450 enzymes. However, the activity of the different cytochrome P450 enzymes varies among…

  15. Cytochrome P450 Is Present in Both Ferrous and Ferric Forms in the Resting State within Intact Escherichia coli and Hepatocytes*

    PubMed Central

    Johnston, Wayne A.; Hunter, Dominic J. B.; Noble, Christopher J.; Hanson, Graeme R.; Stok, Jeanette E.; Hayes, Martin A.; De Voss, James J.; Gillam, Elizabeth M. J.

    2011-01-01

    Cytochrome P450 enzymes (P450s) are exceptionally versatile monooxygenases, mediating hydroxylations of unactivated C–H bonds, epoxidations, dealkylations, and N- and S-oxidations as well as other less common reactions. In the conventional view of the catalytic cycle, based upon studies of P450s in vitro, substrate binding to the Fe(III) resting state facilitates the first 1-electron reduction of the heme. However, the resting state of P450s in vivo has not been examined. In the present study, whole cell difference spectroscopy of bacterial (CYP101A1 and CYP176A1, i.e. P450cam and P450cin) and mammalian (CYP1A2, CYP2C9, CYP2A6, CYP2C19, and CYP3A4) P450s expressed within intact Escherichia coli revealed that both Fe(III) and Fe(II) forms of the enzyme are present in the absence of substrates. The relevance of this finding was supported by similar observations of Fe(II) P450 heme in intact rat hepatocytes. Electron paramagnetic resonance (EPR) spectroscopy of the bacterial forms in intact cells showed that a proportion of the P450 in cells was in an EPR-silent form in the native state consistent with the presence of Fe(II) P450. Coexpression of suitable cognate electron donors increased the degree of endogenous reduction to over 80%. A significant proportion of intracellular P450 remained in the Fe(II) form after vigorous aeration of cells. The addition of substrates increased the proportion of Fe(II) heme, suggesting a kinetic gate to heme reduction in the absence of substrate. In summary, these observations suggest that the resting state of P450s should be regarded as a mixture of Fe(III) and Fe(II) forms in both aerobic and oxygen-limited conditions. PMID:21976668

  16. Polymer phase partition in the purification of cytochrome P-450 and cytochrome b5 from the yeast Brettanomyces anomalus.

    PubMed

    Kärenlampi, S O; Nikkilä, H; Hynninen, P H

    1986-02-01

    About 0.5% of the total cellular protein in the yeast Brettanomyces anomalus is membrane-bound cytochrome P-450, when this yeast is grown in the presence of 5% glucose as the main carbon and energy source. A partial purification of cytochrome P-450 by phase partition is described. Breakdown of yeast cell walls with microbial enzyme preparations led to extensive losses of this hemoprotein. Instead, by a carefully controlled mechanical breakage as much as 50% of the total cellular cytochrome P-450 could be recovered. During the solubilization of cytochrome P-450 from the cell homogenate with Triton X-100, the protective agents dithiothreitol, EDTA, and butylated hydroxytoluene prevented major losses of the hemoprotein. Applying a three-phase partition system (polyethylene glycol-Ficoll-dextran) to the solubilized whole cell homogenate in the presence of 1 M sodium chloride, followed by a precipitation of the top "oily layer" with 25% polyethylene glycol, a 25- to 60-fold enrichment of cytochrome P-450 was obtained. This corresponds to a specific content of 0.8-2.2 nmol of cytochrome P-450 per milligram of protein. Cytochrome b5 enriched (41%) to the PEG-Ficoll interphase, and NADPH-cytochrome c reductase and "cytochromes P-420" to the Ficoll and dextran phases. The polymer phase partition system thus serves as an excellent initial purification step of cytochrome P-450 without a need for the preparation of the microsomal fraction. Another advantage of the method is that it allows the simultaneous partial purification of cytochrome b5. PMID:3828082

  17. Georges Brohee Prize 1996. Major cytochrome P-450 families: implications in health and liver diseases.

    PubMed

    Horsmans, Y

    1997-01-01

    Cytochromes P-450 are a superfamily of hemoproteins which represent the main pathway for drug and chemical oxidation. This superfamily is divided into families, subfamilies and/or single enzymes. The majority of P-450s involved in drug metabolism appear to belong to three distinct families termed CYP1, CYP2 and CYP3. Numerous invasive and non-invasive methodologies have been developed to study these enzymes. Their activities are modulated by genetic and nongenetic factors as well as pathological conditions. In this work, the significance of genetic and nongenetic control of P-450s activities in normal subjects is described. Thereafter, the impact of P-450s on the apparition of liver diseases and the effects of liver disease on P-450s activities is emphasized. In conclusion, future perspectives on this field are presented.

  18. Evaluation of cytochrome P450{sub BS{beta}} reactivity against polycyclic aromatic hydrocarbons and drugs

    SciTech Connect

    Torres, Eduardo; Hayen, Heiko; Niemeyer, Christof M.; E-mail: christof.niemeyer@uni-dortmund.de

    2007-03-30

    The oxidation of 10 polycyclic aromatic hydrocarbons (PAH) by cytochrome P450{sub BS{beta}} using three different electron acceptors is reported. Three PAH were found to be substrates for the oxidation by P450{sub BS{beta}}, namely anthracene, 9-methyl-anthracene and azulene. The respective oxidation products were identified by reversed-phase high-performance liquid chromatography coupled to electrospray ionization-mass spectrometry. In addition, 10 drug-like compounds were investigated for their effects on the catalytic activity of P450{sub BS{beta}} by carrying out inhibition studies. The stability of P450{sub BS{beta}} against hydrogen peroxide, cumene, and ter-butyl hydroperoxide was determined. Overall, the results of this study suggested that the P450{sub BS{beta}} enzyme represents a powerful catalyst in terms of the catalytic activity and operational stability.

  19. Cytochrome P450BM-3 reduces aldehydes to alcohols through a direct hydride transfer

    SciTech Connect

    Kaspera, Ruediger; Sahele, Tariku; Lakatos, Kyle; Totah, Rheem A.

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Cytochrome P450BM-3 reduced aldehydes to alcohols efficiently (k{sub cat} {approx} 25 min{sup -1}). Black-Right-Pointing-Pointer Reduction is a direct hydride transfer from R-NADP{sup 2}H to the carbonyl moiety. Black-Right-Pointing-Pointer P450 domain variants enhance reduction through potential allosteric/redox interactions. Black-Right-Pointing-Pointer Novel reaction will have implications for metabolism of xenobiotics. -- Abstract: Cytochrome P450BM-3 catalyzed the reduction of lipophilic aldehydes to alcohols efficiently. A k{sub cat} of {approx}25 min{sup -1} was obtained for the reduction of methoxy benzaldehyde with wild type P450BM-3 protein which was higher than in the isolated reductase domain (BMR) alone and increased in specific P450-domain variants. The reduction was caused by a direct hydride transfer from preferentially R-NADP{sup 2}H to the carbonyl moiety of the substrate. Weak substrate-P450-binding of the aldehyde, turnover with the reductase domain alone, a deuterium incorporation in the product from NADP{sup 2}H but not D{sub 2}O, and no inhibition by imidazole suggests the reductase domain of P450BM-3 as the potential catalytic site. However, increased aldehyde reduction by P450 domain variants (P450BM-3 F87A T268A) may involve allosteric or redox mechanistic interactions between heme and reductase domains. This is a novel reduction of aldehydes by P450BM-3 involving a direct hydride transfer and could have implications for the metabolism of endogenous substrates or xenobiotics.

  20. Incorporation of haemoglobin haem into the rat hepatic haemoproteins tryptophan pyrrolase and cytochrome P-450

    SciTech Connect

    Wyman, J.F.; Gollan, J.L.; Settle, W.; Farrell, G.C.; Correia, M.A.

    1986-01-01

    After its administration to intact rats, haemoglobin haem was incorporated into hepatic tryptophan pyrrolase as shown by the marked increase in functional constitution of this enzyme. Incorporation of haemoglobin haem into cytochrome P-450 was demonstrated in intact rats and in the isolated rat liver perfused with haemoglogin-free medium. In both systems, haemoglobin haem restored cytochrome P-450 content and its dependent mixed-function-oxidase activity after substrate-induced destruction of the cytochrome P-450 haem moiety. Further confirmation that heamoglobin haem could be incorporated prosthetically into cytochrome P-450 was achieved by administration of (tritium) haemoglobin to rats and subsequent isolation and characterization of radiolabelled substrate-alkylated products of cytochrome P-450 haem. Findings indicate that, although hepatic uptake of parenteral haemoglobin is slower than that of haem, it appears to serve as an effective haem donor to the intrahepatic free haem pool. Thus parenteral haemoglobin may warrant consideration as a therapeutic alternative to haem in the acute hepatic porphyrias.

  1. Inhalation of butanols: changes in the cytochrome P-450 enzyme system.

    PubMed

    Aarstad, K; Zahlsen, K; Nilsen, O G

    1985-01-01

    After inhalation of different butanol isomers for 3 days (2000 ppm) and 5 days (500 ppm), liver and kidney parameters of the microsomal cytochrome P-450 enzyme system were increased. sec-Butanol caused the highest increase in cytochrome P-450 concentration with a 47% rise in the kidneys (500 ppm for 5 days) and 33% in the liver (2000 ppm for 3 days). A concomitant increase of the in vitro n-hexane metabolism in liver microsomes was observed with a 77% increased formation of the preneurotoxic metabolite 2-hexanol compared with control. iso-Butanol did not alter total cytochrome P-450 concentration but caused a significant 30% decrease in the formation of 2-hexanol. Inhalation of all butanols slightly decreased the enzyme levels in the lung. Changes in microsomal enzymes did not correlate with measured serum concentrations of the different butanols showing different inducing capacities among the butanol isomers themselves or the participation of metabolites in the inducing process. As a conclusion sec-butanol, probably through its metabolite methyl-ethyl-ketone, is the most potent inducer of microsomal cytochrome P-450 in liver and kidney while iso-butanol does not alter total cytochrome P-450.

  2. Natural variation in the expression of cytochrome P-450 and dimethylnitrosamine demethylase in Drosophila

    SciTech Connect

    Waters, L.C.; Simms, S.I.; Nix, C.E.

    1984-09-28

    Electrophoresis of Drosophila microsomes resolves two major heme-containing protein bands with apparent molecular weights of 59,290 (band a) and 55,750 (band b). The hemoproteins in these two bands can account for most of the cytochrome P-450 in the organism. Band a is present in all strains examined: band b is not. Dimethylnitrosamine demethylase, a P-450 enzyme, is a component of band b. 22 references, 2 figures, 1 table.

  3. Purification and characterization of an NADPH-cytochrome P450 (cytochrome c) reductase from spearmint (Mentha spicata) glandular trichomes.

    PubMed

    Ponnamperuma, K; Croteau, R

    1996-05-01

    Solubilized NADPH-cytochrome c (P450) reductase was purified to homogeneity from an extract of spearmint (Mentha spicata) glandular trichomes by dye-ligand interaction chromatography on Matrex-Gel Red A and affinity chromatography on 2', 5'-adenosine diphosphate agarose. SDS-PAGE of the purified enzyme preparation revealed the presence of two similar proteins with masses of 82 kDa (major) and 77 kDa (minor) that crossreacted on immunoblot analysis with polyclonal antibodies directed against NADPH-cytochrome P450 reductase from Jerusalem artichoke and from mung bean. Complete immunoinhibition of reductase activity was observed with both types of polyclonal antibodies, while only partial inhibition of activity resulted using a family of monoclonal antibodies directed against the Jerusalem artichoke cytochrome P450 reductase. Inhibition of the spearmint oil gland cytochrome c reductase was also observed with the diphenyliodonium ion. The K(m) values for the cosubstrates NADPH and cytochrome c were 6.2 and 3.7 microM, respectively, and the pH optimum for activity was at 8.5. The NADPH-cytochrome c reductase reconstituted NADPH-dependent (-)-4S-limonene-6-hydroxylase activity in the presence of cytochrome P450, purified from the microsomal fraction of spearmint oil gland cells and dilauroyl phosphatidyl choline. These characteristics establish the identity of the purified enzyme as a NADPH-cytochrome P450 reductase.

  4. Fusion of Ferredoxin and Cytochrome P450 Enables Direct Light-Driven Biosynthesis

    PubMed Central

    2016-01-01

    Cytochrome P450s (P450s) are key enzymes in the synthesis of bioactive natural products in plants. Efforts to harness these enzymes for in vitro and whole-cell production of natural products have been hampered by difficulties in expressing them heterologously in their active form, and their requirement for NADPH as a source of reducing power. We recently demonstrated targeting and insertion of plant P450s into the photosynthetic membrane and photosynthesis-driven, NADPH-independent P450 catalytic activity mediated by the electron carrier protein ferredoxin. Here, we report the fusion of ferredoxin with P450 CYP79A1 from the model plant Sorghum bicolor, which catalyzes the initial step in the pathway leading to biosynthesis of the cyanogenic glucoside dhurrin. Fusion with ferredoxin allows CYP79A1 to obtain electrons for catalysis by interacting directly with photosystem I. Furthermore, electrons captured by the fused ferredoxin moiety are directed more effectively toward P450 catalytic activity, making the fusion better able to compete with endogenous electron sinks coupled to metabolic pathways. The P450-ferredoxin fusion enzyme obtains reducing power solely from its fused ferredoxin and outperforms unfused CYP79A1 in vivo. This demonstrates greatly enhanced electron transfer from photosystem I to CYP79A1 as a consequence of the fusion. The fusion strategy reported here therefore forms the basis for enhanced partitioning of photosynthetic reducing power toward P450-dependent biosynthesis of important natural products. PMID:27119279

  5. Human cytochrome P450 oxidation of 5-hydroxythalidomide and pomalidomide, an amino analogue of thalidomide.

    PubMed

    Chowdhury, Goutam; Shibata, Norio; Yamazaki, Hiroshi; Guengerich, F Peter

    2014-01-21

    The sedative and antiemetic drug thalidomide [α-(N-phthalimido)glutarimide] was withdrawn in the early 1960s because of its potent teratogenic effects but was approved for the treatment of lesions associated with leprosy in 1998 and multiple myeloma in 2006. The mechanism of teratogenicity of thalidomide still remains unclear, but it is well-established that metabolism of thalidomide is important for both teratogenicity and cancer treatment outcome. Thalidomide is oxidized by various cytochrome P450 (P450) enzymes, the major one being P450 2C19, to 5-hydroxy-, 5'-hydroxy-, and dihydroxythalidomide. We previously reported that P450 3A4 oxidizes thalidomide to the 5-hydroxy and dihydroxy metabolites, with the second oxidation step involving a reactive intermediate, possibly an arene oxide, that can be trapped by glutathione (GSH) to GSH adducts. We now show that the dihydroxythalidomide metabolite can be further oxidized to a quinone intermediate. Human P450s 2J2, 2C18, and 4A11 were also found to oxidize 5-hydroxythalidomide to dihydroxy products. Unlike P450s 2C19 and 3A4, neither P450 2J2, 2C18, nor 4A11 oxidized thalidomide itself. A recently approved amino analogue of thalidomide, pomalidomide (CC-4047, Actimid), was also oxidized by human liver microsomes and P450s 2C19, 3A4, and 2J2 to the corresponding phthalimide ring-hydroxylated product.

  6. Cancer Activation and Polymorphisms of Human Cytochrome P450 1B1

    PubMed Central

    Chun, Young-Jin; Kim, Donghak

    2016-01-01

    Human cytochrome P450 enzymes (P450s, CYPs) are major oxidative catalysts that metabolize various xenobiotic and endogenous compounds. Many carcinogens induce cancer only after metabolic activation and P450 enzymes play an important role in this phenomenon. P450 1B1 mediates bioactivation of many procarcinogenic chemicals and carcinogenic estrogen. It catalyzes the oxidation reaction of polycyclic aromatic carbons, heterocyclic and aromatic amines, and the 4-hydroxylation reaction of 17β-estradiol. Enhanced expression of P450 1B1 promotes cancer cell proliferation and metastasis. There are at least 25 polymorphic variants of P450 1B1 and some of these have been reported to be associated with eye diseases. In addition, P450 1B1 polymorphisms can greatly affect the metabolic activation of many procarcinogenic compounds. It is necessary to understand the relationship between metabolic activation of such substances and P450 1B1 polymorphisms in order to develop rational strategies for the prevention of its toxic effect on human health. PMID:27123158

  7. Cancer Activation and Polymorphisms of Human Cytochrome P450 1B1.

    PubMed

    Chun, Young-Jin; Kim, Donghak

    2016-04-01

    Human cytochrome P450 enzymes (P450s, CYPs) are major oxidative catalysts that metabolize various xenobiotic and endogenous compounds. Many carcinogens induce cancer only after metabolic activation and P450 enzymes play an important role in this phenomenon. P450 1B1 mediates bioactivation of many procarcinogenic chemicals and carcinogenic estrogen. It catalyzes the oxidation reaction of polycyclic aromatic carbons, heterocyclic and aromatic amines, and the 4-hydroxylation reaction of 17β-estradiol. Enhanced expression of P450 1B1 promotes cancer cell proliferation and metastasis. There are at least 25 polymorphic variants of P450 1B1 and some of these have been reported to be associated with eye diseases. In addition, P450 1B1 polymorphisms can greatly affect the metabolic activation of many procarcinogenic compounds. It is necessary to understand the relationship between metabolic activation of such substances and P450 1B1 polymorphisms in order to develop rational strategies for the prevention of its toxic effect on human health. PMID:27123158

  8. Evolution of the cytochrome P450 superfamily: sequence alignments and pharmacogenetics.

    PubMed

    Lewis, D F; Watson, E; Lake, B G

    1998-06-01

    The evolution of the cytochrome P450 (CYP) superfamily is described, with particular reference to major events in the development of biological forms during geological time. It is noted that the currently accepted timescale for the elaboration of the P450 phylogenetic tree exhibits close parallels with the evolution of terrestrial biota. Indeed, the present human P450 complement of xenobiotic-metabolizing enzymes may have originated from coevolutionary 'warfare' between plants and animals during the Devonian period about 400 million years ago. A number of key correspondences between the evolution of P450 system and the course of biological development over time, point to a mechanistic molecular biology of evolution which is consistent with a steady increase in atmospheric oxygenation beginning over 2000 million years ago, whereas dietary changes during more recent geological time may provide one possible explanation for certain species differences in metabolism. Alignment between P450 protein sequences within the same family or subfamily, together with across-family comparisons, aid the rationalization of drug metabolism specificities for different P450 isoforms, and can assist in an understanding of genetic polymorphisms in P450-mediated oxidations at the molecular level. Moreover, the variation in P450 regulatory mechanisms and inducibilities between different mammalian species are likely to have important implications for current procedures of chemical safety evaluation, which rely on pure genetic strains of laboratory bred rodents for the testing of compounds destined for human exposure.

  9. Blarina brevicauda as a biological monitor of polychlorinated biphenyls: Evaluation of hepatic cytochrome p450 induction

    USGS Publications Warehouse

    Russell, J.S.; Halbrook, R.S.; Woolf, A.; French, J.B.; Melancon, M.J.

    2004-01-01

    We assessed the value of short-tailed shrews (Blarina brevicauda) as a possible biomonitor for polychlorinated biphenyl pollution through measurement of the induction of hepatic cytochrome P450 and associated enzyme activities. First, we checked the inducibility of four monooxygenases (benzyloxyresorufin-O-dealkylase [BROD], ethoxyresorufin-O-dealkylase [EROD], methoxyresorufin-O-dealkylase [MROD], and pentoxyresorufin-O-dealkylase [PROD]) by measuring the activity of these enzymes in hepatic microsomes prepared from shrews injected with $-naphthoflavone ($NF) or phenobarbital (PB), typical inducers of cytochrome P4501A (CYP1A) and CYP2B enzyme families, respectively. Enzyme activity was induced in shrews that received $NF but not in shrews that received PB; PROD was not induced by either exposure. Later, shrews were exposed to a mixture of polychlorinated biphenyls (PCBs) (Aroclor 1242:1254, in 1:2 ratio) at 0.6, 9.6, and 150 ppm in food, for 31 d. Induction in these shrews was measured by specific enzyme activity (BROD, EROD, and MROD) in hepatic microsomes, by western blotting of solubilized microsomes against antibodies to CYP1A or CYP2B, and by duration of sodium pentobarbital-induced sleep. These three CYP enzymes were induced in shrews by PCBs at similar levels of exposure as in cotton rat (Sigmodon hispidus). Neither sleep time nor the amount of CYP2B family protein were affected by PCB exposure. Blarina brevicauda can be a useful biomonitor of PCBs that induce CYP1A, especially in habitats where they are the abundant small mammal.

  10. Blarina brevicauda as a biological monitor of polychlorinated biphenyls: evaluation of hepatic cytochrome P450 induction.

    PubMed

    Russell, Julie S; Halbrook, Richard S; Woolf, Alan; French, John B; Melancon, Mark J

    2004-08-01

    We assessed the value of short-tailed shrews (Blarina brevicauda) as a possible biomonitor for polychlorinated biphenyl pollution through measurement of the induction of hepatic cytochrome P450 and associated enzyme activities. First, we checked the inducibility of four monooxygenases (benzyloxyresorufin-O-dealkylase [BROD], ethoxyresorufin-O-dealkylase [EROD], methoxyresorufin-O-dealkylase [MROD], and pentoxyresorufin-O-dealkylase [PROD]) by measuring the activity of these enzymes in hepatic microsomes prepared from shrews injected with beta-naphthoflavone (betaNF) or phenobarbital (PB), typical inducers of cytochrome P4501A (CYP1A) and CYP2B enzyme families, respectively. Enzyme activity was induced in shrews that received betaNF but not in shrews that received PB; PROD was not induced by either exposure. Later, shrews were exposed to a mixture of polychlorinated biphenyls (PCBs) (Aroclor 1242:1254, in 1:2 ratio) at 0.6, 9.6, and 150 ppm in food, for 31 d. Induction in these shrews was measured by specific enzyme activity (BROD, EROD, and MROD) in hepatic microsomes, by western blotting of solubilized microsomes against antibodies to CYP1A or CYP2B, and by duration of sodium pentobarbital-induced sleep. These three CYP enzymes were induced in shrews by PCBs at similar levels of exposure as in cotton rat (Sigmodon hispidus). Neither sleep time nor the amount of CYP2B family protein were affected by PCB exposure. Blarina brevicauda can be a useful biomonitor of PCBs that induce CYP1A, especially in habitats where they are the abundant small mammal. PMID:15352474

  11. Metabolic engineering of light-driven cytochrome P450 dependent pathways into Synechocystis sp. PCC 6803.

    PubMed

    Wlodarczyk, Artur; Gnanasekaran, Thiyagarajan; Nielsen, Agnieszka Zygadlo; Zulu, Nodumo Nokolunga; Mellor, Silas Busck; Luckner, Manja; Thøfner, Jens Frederik Bang; Olsen, Carl Erik; Mottawie, Mohammed Saddik; Burow, Meike; Pribil, Mathias; Feussner, Ivo; Møller, Birger Lindberg; Jensen, Poul Erik

    2016-01-01

    Solar energy provides the energy input for the biosynthesis of primary and secondary metabolites in plants and other photosynthetic organisms. Some secondary metabolites are high value compounds, and typically their biosynthesis requires the involvement of cytochromes P450s. In this proof of concept work, we demonstrate that the cyanobacterium Synechocystis sp. PCC 6803 is an eminent heterologous host for expression of metabolically engineered cytochrome P450-dependent pathways exemplified by the dhurrin pathway from Sorghum bicolor comprising two membrane bound cytochromes P450s (CYP79A1 and CYP71E1) and a soluble glycosyltransferase (UGT85B1). We show that it is possible to express multiple genes incorporated into a bacterial-like operon by using a self-replicating expression vector in cyanobacteria. We demonstrate that eukaryotic P450s that typically reside in the endoplasmic reticulum membranes can be inserted in the prokaryotic membranes without affecting thylakoid membrane integrity. Photosystem I and ferredoxin replaces the native P450 oxidoreductase enzyme as an efficient electron donor for the P450s both in vitro and in vivo. The engineered strains produced up to 66mg/L of p-hydroxyphenylacetaldoxime and 5mg/L of dhurrin in lab-scale cultures after 3 days of cultivation and 3mg/L of dhurrin in V-shaped photobioreactors under greenhouse conditions after 9 days cultivation. All the metabolites were found to be excreted to the growth media facilitating product isolation.

  12. Enantioselective metabolism of the endocrine disruptor pesticide methoxychlor by human cytochromes P450 (P450s): major differences in selective enantiomer formation by various P450 isoforms.

    PubMed

    Hu, Yiding; Kupfer, David

    2002-12-01

    Methoxychlor, a currently used pesticide that in mammals elicits proestrogenic/estrogenic activity and reproductive toxicity, has been classified as a prototype endocrine disruptor. Methoxychlor is prochiral, and its metabolites 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)ethane (mono-OH-M); 1,1,1-trichloro- 2-(4-methoxyphenyl)-2-(3, 4-dihydroxyphenyl)ethane (catechol-M); and 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(3, 4-dihydroxyphenyl)ethane (tris-OH-M) are chiral; whereas 1,1,1-trichloro-2, 2-bis(4-hydroxyphenyl)ethane (bis-OH-M) is achiral. These metabolites are formed during methoxychlor incubation with liver microsomes or recombinant cytochrome p450s (rp450s). Since methoxychlor-metabolite enantiomers may have different estrogenic/antiestrogenic/antiandrogenic activities than corresponding racemates, the possibility that p450s preferentially generate or use R or S enantiomers, was examined. Indeed, rCYP1A2 and r2A6 mono-demethylated methoxychlor primarily into (R)-mono-OH-M at 91 and 75%, respectively, whereas rCYP1A1, 2B6, 2C8, 2C9, 2C19, and 2D6 formed the (S)-enantiomer at 69, 66, 75, 95, 96, and 80%, respectively. However, rCYP3A4, 3A5, and 2B1(rat) weakly demethylated methoxychlor without enantioselectivity. Human liver microsomes generated (S)-mono-OH-M (77-87%), suggesting that CYP1A2 and 2A6 display only minor catalytic contribution. P450 inhibitors demonstrated that CYP2C9 and possibly 2C19 are major hepatic catalysts forming (S)-mono-OH-M, and CYP1A2 is primarily involved in forming the (R)-mono-OH-M. Demethylation rate of (S)-mono-OH-M versus (R)-mono-OH-M forming achiral bis-OH-M by rCYP1A2 was 97/3, compared with 15/85 and 17/83 for rCYP2C9 and 2C19, respectively, indicating opposite substrate enantioselectivity of rCYP1A2 versus 2C9 and 2C19. Also, rCYP1A2 preferentially O-demethylated (R)-catechol-M into (R)-tris-OH-M (at 80%), contrasting r2C9 and r2C19 that yielded (S)-tris-OH-M at 80 and 77%, respectively. Ortho-hydroxylation of

  13. [Protein-protein interactions of cytochromes P450 3A4 and 3A5 with their intermediate redox partners cytochromes b5].

    PubMed

    Gnedenko, O V; Ivanov, A S; Iablokov, E O; Usanov, S A; Mukha, D V; Sergeev, G V; Kuzikov, A V; Moskaleva, N E; Bulko, T V; Shumiantseva, V V; Archakov, A I

    2014-01-01

    Molecular interactions between proteins redox partners (cytochromes P450 3A4, 3A5 and cytochrome b5) within the monooxygenase system, which is known to be involved in drug biotransformation, were investigated. Human cytochromes P450 3A4 and 3A5 (CYP3A4 and CYP3A5) form complexes with various cytochromes b5: the microsomal (b5mc) and mitochondrial (b5om) forms of this protein, as well as with 2 "chimeric" proteins, b5(om-mc), b5(mc-om). Kinetic constants and equilibrium dissociation constants were determined by the SPR biosensor. Essential distinction between CYP3A4 and CYP3A5 was only observed upon their interactions with cytochrome b5om. Electroanalytical characteristics of electrodes with immobilized hemoproteins were obtained. The electrochemical analysis of CYP3A4, CYP3A5, b5mc, b5om, b5(om-mc), and b5(mc-om) immobilized on screen printed graphite electrodes modified with membranous matrix revealed that these proteins have very close reduction potentials -0.435 - -0.350 V (vs. Ag/AgCl). Cytochrome b5mc was shown to be capable of stimulating the electrocatalytic activity of CYP3A4 to testosterone.

  14. Cytochrome P-450 complex formation in rat liver by the antibiotic tiamulin.

    PubMed Central

    Witkamp, R F; Nijmeijer, S M; van Miert, A S

    1996-01-01

    Tiamulin is a semisynthetic diterpene antibiotic frequently used in farm animals. The drug has been shown to produce clinically important--often lethal--interactions with other compounds. It has been suggested that this is caused by a selective inhibition of oxidative drug metabolism via the formation of a cytochrome P-450 metabolic intermediate complex. In the present study, rats were treated orally for 6 days with tiamulin at two different doses: 40 and 226 mg/kg of body weight. For comparison, another group received 300 mg of triacetyloleandomycin (TAO) per kg, which is equivalent to the 226-mg/kg tiamulin group. Subsequently, microsomal P-450 contents, P-450 enzyme activities, metabolic intermediate complex spectra, and P-450 apoprotein concentrations were assessed. In addition, effects on individual microsomal P-450 activities were studied in control microsomes at different tiamulin and substrate concentrations. In the rats treated with tiamulin, a dose-dependent complex formation as evidenced by its absorption spectrum and an increase in cytochrome P-4503A1/2 contents as assessed by Western blotting (immunoblotting) were found. The effects were comparable to those of TAO. Tiamulin induced microsomal P-450 content, testosterone 6 beta-hydroxylation rate, erythromycin N-demethylation rate, and the ethoxyresorufin O-deethylation activity. Other activities were not affected or decreased. When tiamulin was added to microsomes of control rats, the testosterone 6 beta-hydroxylation rate and the erythromycin N-demethylation were strongly inhibited. It is concluded that tiamulin is a potent and selective inducer-inhibitor of cytochrome P-450. Though not belonging to the macrolides, the compound produces an effect on P-450 similar to those of TAO and related compounds. PMID:8787878

  15. Enhancement of DMNQ-induced hepatocyte toxicity by cytochrome P450 inhibition

    SciTech Connect

    Ishihara, Yasuhiro; Shiba, Dai; Shimamoto, Norio . E-mail: n-shimamoto@kph.bunri-u.ac.jp

    2006-07-15

    Two mechanisms have been proposed to explain quinone cytotoxicity: oxidative stress via the redox cycle and the arylation of intracellular nucleophiles. As the redox cycle is catalyzed by NADPH cytochrome P450 reductase, cytochrome P450 systems are expected to be related to the cytotoxicity induced by redox-cycling quinones. Thus, we investigated the relationship between cytochrome P450 systems and quinone toxicity for rat primary hepatocytes using an arylator, 1,4-benzoquinone (BQ), and a redox cycler, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ). The hepatocyte toxicity of both BQ and DMNQ increased in a time- and dose-dependent manner. Pretreatment with cytochrome P450 inhibitors, such as SKF-525A (SKF), ketoconazole and 2-methy-1,2-di-3-pyridyl-1-propanone, enhanced the hepatocyte toxicity induced by DMNQ but did not affect BQ-induced hepatocyte toxicity. The production of superoxide anion and the levels of glutathione disulfide and thiobarbituric-acid-reactive substances were increased by treatment with DMNQ, and SKF pretreatment further enhanced their increases. In addition, NADPH oxidation in microsomes was increased by treatment with DMNQ and further augmented by pretreatment with SKF, and a NADPH cytochrome P450 reductase inhibitor, diphenyleneiodonium chloride completely suppressed NADPH oxidations increased by treatment with either DMNQ- or DMNQ + SKF. Pretreatment with antioxidants, such as {alpha}-tocopherol, reduced glutathione, N-acetyl cysteine or an iron ion chelator deferoxamine, totally suppressed DMNQ- and DMNQ + SKF-induced hepatocyte toxicity. These results indicate that the hepatocyte toxicity of redox-cycling quinones is enhanced under cytochrome P450 inhibition, and that this enhancement is caused by the potentiation of oxidative stress.

  16. Effect of cytochrome P450 inducers on cocaine-mediated hepatotoxicity.

    PubMed

    Bornheim, L M

    1998-05-01

    The effect of several cytochrome P450 (P450) inducers on cocaine metabolism were examined in order to characterize the metabolic events contributing to cocaine-induced hepatotoxicity. Phenobarbital (PB)-pretreatment of mice induced P450s 3A and 2B and markedly increased serum alanine aminotransferase (ALT) activity after cocaine or norcocaine administration. Although dexamethasone (Dex) induced P450s 3A and 2B at least to the same extent as PB, no increase in serum ALT activity was observed after cocaine or norcocaine administration. Phencyclidine (PCP) pretreatment did not increase either P450s 3A or 2B, yet it markedly enhanced cocaine- or norcocaine-induced serum ALT activity. In contrast to the marked induction of P450s 3A and 2B, P450 2C was increased only 2.5-fold by PB and to an even lesser extent by Dex or PCP. Cannabidiol (CBD), which inactivates P450s 3A and 2C in mice, completely protected mice against cocaine- or norcocaine-induced hepatotoxicity irrespective of whether they were induced or not with PB or PCP. Both PB and Dex pretreatment increased the in vitro hepatic microsomal formation of the first two sequential oxidative metabolites of cocaine (norcocaine and N-hydroxynorcocaine), whereas PCP pretreatment did not. Hepatic esterase activity was also determined after pretreatment with P450 inducers, since this is the major detoxification pathway in cocaine metabolism. Dex pretreatment markedly increased (> 11-fold) total hepatic esterase activity, whereas PB pretreatment increased it more modestly (less than fourfold) and PCP pretreatment had little effect. This marked effect of Dex pretreatment may decrease liver cocaine concentrations and thus protect mice against cocaine-induced hepatotoxicity, despite their increased P450 2B and 3A contents.

  17. Effector Roles of Putidaredoxin on Cytochrome P450cam Conformational States.

    PubMed

    Liou, Shu-Hao; Mahomed, Mavish; Lee, Young-Tae; Goodin, David B

    2016-08-17

    In this study, the effector role of Pdx (putidaredoxin) on cytochrome P450cam conformation is refined by attaching two different spin labels, MTSL or BSL (bifunctional spin-label) onto the F or G helices and using DEER (double electron-electron resonance) to measure the distance between labels. Recent EPR and crystallographic studies have observed that oxidized Pdx induces substrate-bound P450cam to change from the closed to the open state. However, this change was not observed by DEER in the reduced Pdx complex with carbon-monoxide-bound P450cam (Fe(2+)CO). In addition, recent NMR studies have failed to observe a change in P450cam conformation upon binding Pdx. Hence, resolving these issues is important for a full understanding the effector role of Pdx. Here we show that oxidized Pdx induces camphor-bound P450cam to shift from the closed to the open conformation when labeled on either the F or G helices with MTSL. BSL at these sites can either narrow the distance distribution widths dramatically or alter the extent of the conformational change. In addition, we report DEER spectra on a mixed oxidation state containing oxidized Pdx and ferrous CO-bound P450cam, showing that P450cam remains closed. This indicates that CO binding to the heme prevents P450cam from opening, overriding the influence exerted by Pdx binding. Finally, we report the open form P450cam crystal structure with substrate bound, which suggests that crystal packing effects may prevent conformational conversion. Using multiple labeling approaches, DEER provides a unique perspective to resolve how the conformation of P450cam depends on Pdx and ligand states. PMID:27452076

  18. Effector Roles of Putidaredoxin on Cytochrome P450cam Conformational States.

    PubMed

    Liou, Shu-Hao; Mahomed, Mavish; Lee, Young-Tae; Goodin, David B

    2016-08-17

    In this study, the effector role of Pdx (putidaredoxin) on cytochrome P450cam conformation is refined by attaching two different spin labels, MTSL or BSL (bifunctional spin-label) onto the F or G helices and using DEER (double electron-electron resonance) to measure the distance between labels. Recent EPR and crystallographic studies have observed that oxidized Pdx induces substrate-bound P450cam to change from the closed to the open state. However, this change was not observed by DEER in the reduced Pdx complex with carbon-monoxide-bound P450cam (Fe(2+)CO). In addition, recent NMR studies have failed to observe a change in P450cam conformation upon binding Pdx. Hence, resolving these issues is important for a full understanding the effector role of Pdx. Here we show that oxidized Pdx induces camphor-bound P450cam to shift from the closed to the open conformation when labeled on either the F or G helices with MTSL. BSL at these sites can either narrow the distance distribution widths dramatically or alter the extent of the conformational change. In addition, we report DEER spectra on a mixed oxidation state containing oxidized Pdx and ferrous CO-bound P450cam, showing that P450cam remains closed. This indicates that CO binding to the heme prevents P450cam from opening, overriding the influence exerted by Pdx binding. Finally, we report the open form P450cam crystal structure with substrate bound, which suggests that crystal packing effects may prevent conformational conversion. Using multiple labeling approaches, DEER provides a unique perspective to resolve how the conformation of P450cam depends on Pdx and ligand states.

  19. Computer modeling of 3D structures of cytochrome P450s.

    PubMed

    Chang, Y T; Stiffelman, O B; Loew, G H

    1996-01-01

    The understanding of structure-function relationship of enzymes requires detailed information of their three-dimensional structure. Protein structure determination by X-ray and NMR methods, the two most frequently used experimental procedures, are often difficult and time-consuming. Thus computer modeling of protein structures has become an increasingly active and attractive option for obtaining predictive models of three-dimensional protein structures. Specifically, for the ubiquitous metabolizing heme proteins, the cytochrome P450s, the X-ray structures of four isozymes of bacterial origin, P450cam, P450terp, P450BM-3 and P450eryF have now been determined. However, attempts to obtain the structure of mammalian forms by experimental means have thus far not been successful. Thus, there have been numerous attempts to construct models of mammalian P450s using homology modeling methods in which the known structures have been used to various extents and in various strategies to build models of P450 isozymes. In this paper, we review these efforts and then describe a strategy for structure building and assessment of 3D models of P450s recently developed in our laboratory that corrects many of the weaknesses in the previous procedures. The results are 3D models that for the first time are stable to unconstrained molecular dynamics simulations. The use of this method is demonstrated by the construction and validation of a 3D model for rabbit liver microsomal P450 isozyme 2B4, responsible for the oxidative metabolism of diverse xenobiotics including widely used inhalation anesthetics. Using this 2B4 model, the substrate access channel, substrate binding site and plausible surface regions for binding with P450 redox partners were identified. PMID:9010606

  20. Metabolism and binding of cyclophosphamide and its metabolite acrolein to rat hepatic microsomal cytochrome P-450

    SciTech Connect

    Marinello, A.J.; Bansal, S.K.; Paul, B.; Koser, P.L.; Love, J.; Struck, R.F.; Gurtoo, H.L.

    1984-10-01

    The hepatic cytochrome P-450-mediated metabolism and metabolic activation of (chloroethyl-3H)cyclophosphamide (( chloroethyl-3H)CP) and (4-14C)cyclophosphamide (( 4-14C)CP) were investigated in vitro in the reconstituted system containing cytochrome P-450 isolated from phenobarbital-treated rats. In addition, hepatic microsomal binding and the hepatic microsome-mediated metabolism of (14C)acrolein, a metabolite of (4-14C)CP, were also investigated. The metabolism of (chloroethyl-3H)CP and (4-14C)CP to polar metabolites was found to depend on the presence of NADPH and showed concentration dependence with respect to cytochrome P-450 and NADPH:cytochrome P-450 reductase. Km and Vmax values were essentially similar. The patterns of inhibition by microsomal mixed-function oxidase inhibitors, anti-cytochrome P-450 antibody, and heat denaturation of the cytochrome P-450 were essentially similar, with subtle differences between (4-14C)CP and (chloroethyl-3H)CP metabolism. The in vitro metabolic activation of CP in the reconstituted system demonstrated predominant binding of (chloroethyl-3H)CP to nucleic acids and almost exclusive binding of (4-14C)CP to proteins. Gel electrophoresis-fluorography of the proteins in the reconstituted system treated with (4-14C)CP demonstrated localization of the 14C label in the cytochrome P-450 region. To examine this association further, hepatic microsomes were modified with (14C)acrolein in the presence and the absence of NADPH. The results confirmed covalent association between (14C)acrolein and cytochrome P-450 in the microsomes and also demonstrated further metabolism of (14C)acrolein, apparently to an epoxide, which is capable of binding covalently to proteins. The results of these investigations not only confirm the significance of primary metabolism but also emphasize the potential role of the secondary metabolism of cyclophosphamide in some of its toxic manifestations.

  1. Cytochrome P450 enzymes from the metabolically diverse bacterium Rhodopseudomonas palustris

    SciTech Connect

    Bell, Stephen G. . E-mail: stephen.bell@chem.ox.ac.uk; Hoskins, Nicola; Xu Feng; Caprotti, Domenico; Rao Zihe; Wong, L.-L. . E-mail: luet.wong@chem.ox.ac.uk

    2006-03-31

    Four (CYP195A2, CYP199A2, CYP203A1, and CYP153A5) of the seven P450 enzymes, and palustrisredoxin A, a ferredoxin associated with CYP199A2, from the metabolically diverse bacterium Rhodopseudomonas palustris have been expressed and purified. A range of substituted benzenes, phenols, benzaldehydes, and benzoic acids was shown to bind to the four P450 enzymes. Monooxygenase activity of CYP199A2 was reconstituted with palustrisredoxin A and putidaredoxin reductase of the P450cam system from Pseudomonas putida. We found that 4-ethylbenzoate and 4-methoxybenzoate were oxidized to single products, and 4-methoxybenzoate was demethylated to form 4-hydroxybenzoate. Crystals of substrate-free CYP199A2 which diffracted to {approx}2.0 A have been obtained.

  2. Third international symposium: Cytochrome P450 biodiversity. Final report, January 1, 1995--December 31, 1995

    SciTech Connect

    Loper, J.C.

    1997-03-01

    The Symposium was held on October 8-12, 1995 at the Marine Biological Laboratory in Woods Hole Massachusetts. Other international symposia promote cytochrome P450 research but have a primary focus on mammalian systems. This symposium is exclusively devoted to research in other organisms, and major topics reflect the distribution and dominance of non-mammalian species in the biosphere. The five sessions focused on basic mechanism, regulation, biodiversity, host-parasite interactions, and practical applications. 170 Scientists contributed 38 oral presentations and 91 posters, with a truly international composition of the symposium. Practical applications were a recurring feature, linking reports on mechanism and regulation to studies on the engineering of substrate specificity, microorganisms to degrade halogenated hydrocarbons and herbicides, and the production of in vitro P450 electrochemical bioreactors. At the time of the symposium there were 477 cytochrome P450 sequences in the database. Expansion of the known plant P450 genes was reported, with 20 new plant P450 families added in the last 3 years. Of these only 5 families have a physiological function associated with them. A growing number of identified invertebrate P450s was documented, where in insects, the forms identified are primarily involved in inducible xenobiotic metabolism and detoxification of toxic plant substances.

  3. The binding sites on human heme oxygenase-1 for cytochrome p450 reductase and biliverdin reductase.

    PubMed

    Wang, Jinling; de Montellano, Paul R Ortiz

    2003-05-30

    Human heme oxygenase-1 (hHO-1) catalyzes the NADPH-cytochrome P450 reductase-dependent oxidation of heme to biliverdin, CO, and free iron. The biliverdin is subsequently reduced to bilirubin by biliverdin reductase. Earlier kinetic studies suggested that biliverdin reductase facilitates the release of biliverdin from hHO-1 (Liu, Y., and Ortiz de Montellano, P. R. (2000) J. Biol. Chem. 275, 5297-5307). We have investigated the binding of P450 reductase and biliverdin reductase to truncated, soluble hHO-1 by fluorescence resonance energy transfer and site-specific mutagenesis. P450 reductase and biliverdin reductase bind to truncated hHO-1 with Kd = 0.4 +/- 0.1 and 0.2 +/- 0.1 microm, respectively. FRET experiments indicate that biliverdin reductase and P450 reductase compete for binding to truncated hHO-1. Mutation of surface ionic residues shows that hHO-1 residues Lys18, Lys22, Lys179, Arg183, Arg198, Glu19, Glu127, and Glu190 contribute to the binding of cytochrome P450 reductase. The mutagenesis results and a computational analysis of the protein surfaces partially define the binding site for P450 reductase. An overlapping binding site including Lys18, Lys22, Lys179, Arg183, and Arg185 is similarly defined for biliverdin reductase. These results confirm the binding of biliverdin reductase to hHO-1 and define binding sites of the two reductases.

  4. CHARACTERIZATION OF THE ALKANE-INDUCIBLE CYTOCHROME P450 (P450ALK) GENE FROM THE YEAST CANDIDA TROPICALIS: IDENTIFICATION OF A NEW P450 FAMILY

    EPA Science Inventory

    The P450alk gene, which is inducible by the assimilation of alkane in Candida tropicalis, was sequenced and characterized. Structural features described in promoter and terminator regions of Saccharomyces yeast genes are present in the P450alk gene and some particular structures ...

  5. Cytochrome P450 107U1 is required for sporulation and antibiotic production in Streptomyces coelicolor

    PubMed Central

    Tian, Zhenghua; Cheng, Qian; Yoshimoto, Francis K.; Lei, Li; Lamb, David C.; Guengerich, F. Peter

    2013-01-01

    The filamentous bacterium Streptomyces coelicolor has a complex life cycle involving the formation of hair-like aerial mycelia on the colony surface, which differentiate into chains of spores. Genes required for the initiation of aerial mycelium formation have been termed ‘bld’ (bald), describing the smooth, undifferentiated colonies of mutant strains. We report the identification of a new bld gene designated as sco3099 and biochemical analysis of its encoded enzyme, cytochrome P450 (P450, or CYP) 107U1. Deletion of sco3099 resulted in a mutant defective in aerial hyphae sporulation and sensitive to heat shock, indicating that P450 107U1 plays a key role in growth and development of S. coelicolor. This is the first P450 reported to participate in a sporulation process in Streptomycetes. The substrate and catalytic properties of P450 107U1 were further investigated in mass spectrometry-based metabolomic studies. Glycocholic acid (from the medium) was identified as a substrate of P450 107U1 and was oxidized to glyco-7-oxo-deoxycholic acid. Although this reaction is apparently not relevant to the observed sporulation deficiency, it suggests that P450 107U1 might exert its physiological function by oxidizing other steroid-like molecules. PMID:23357279

  6. Cytochrome P450 107U1 is required for sporulation and antibiotic production in Streptomyces coelicolor.

    PubMed

    Tian, Zhenhua; Cheng, Qian; Yoshimoto, Francis K; Lei, Li; Lamb, David C; Guengerich, F Peter

    2013-02-15

    The filamentous bacterium Streptomyces coelicolor has a complex life cycle involving the formation of hair-like aerial mycelia on the colony surface, which differentiate into chains of spores. Genes required for the initiation of aerial mycelium formation have been termed 'bld' (bald), describing the smooth, undifferentiated colonies of mutant strains. We report the identification of a new bld gene designated as sco3099 and biochemical analysis of its encoded enzyme, cytochrome P450 (P450, or CYP) 107U1. Deletion of sco3099 resulted in a mutant defective in aerial hyphae sporulation and sensitive to heat shock, indicating that P450 107U1 plays a key role in growth and development of S. coelicolor. This is the first P450 reported to participate in a sporulation process in Streptomycetes. The substrate and catalytic properties of P450 107U1 were further investigated in mass spectrometry-based metabolomic studies. Glycocholic acid (from the medium) was identified as a substrate of P450 107U1 and was oxidized to glyco-7-oxo-deoxycholic acid. Although this reaction is apparently not relevant to the observed sporulation deficiency, it suggests that P450 107U1 might exert its physiological function by oxidizing other steroid-like molecules.

  7. Effects of 2-acetylaminofluorene, dietary fats and antioxidants on nuclear envelope cytochrome P-450

    SciTech Connect

    Carubelli, R.; Graham, S.A.; Griffin, M.J.; McCay, P.B.

    1986-05-01

    The authors reported a marked loss of cytochrome P-450 in hepatic nuclear envelope (NE) but not in microsomes of male Sprague-Dawley rats fed a semipurified diet containing 0.05% w/w 2-acetylaminofluorene (AAF) for 3 weeks. This may reflect loss of NE capacity to detoxify AAF metabolites generated by microsomal P-450. They are now investigating if dietary effects such as progressive decrease in the incidence of AAF-induced tumors in rats fed high polyunsaturated fat diet (HPUF) vs. high saturated fat diet (HSF) vs. low fat diet (LF), and the anticarcinogenic activity of butylated hydroxytoluene (BHT; 0.3% w/w) correlate with preservation of NE P-450. Rats fed AAF HSF (25.6% w/w corn oil) showed marked loss of NE P-450 after 3 weeks; BHT protected against this loss. Rats fed AAF in HSF (25.6% w/w; 18 parts beef tallow + 2 parts corn oil), on the other hand, experienced a marked drop in NE P-450 after 9 weeks; BHT protected against this loss. Comparison of NE P-450 levels in control rats fed HPUF or HSF for 3 weeks with those of rats fed a semipurified diet with 10% fat or Purina chow (ca. 5% fat), support the prediction of an inverse correlation between the levels of dietary fat and the NE P-450 content. Studies on AAF and BHT effects using LF (2% w/w corn oil) are in progress.

  8. Hamster cytochrome P-450 IA gene family, P-450IA1 and P-450IA2 in lung and liver: cDNA cloning and sequence analysis.

    PubMed

    Sagami, I; Ohmachi, T; Fujii, H; Kikuchi, H; Watanabe, M

    1991-10-01

    Two cDNA clones, 2C19 and 4C1, were isolated from a lung cDNA library of 3-methylcholanthrene (MC)-treated hamster by using rat P-450c cDNA as a probe. The cDNA determined from 2C19 and 4C1 was 2,916 bp long and contained an entire coding region for 524 amino acids with a molecular weight of 59,408. The deduced amino acid sequence showed a 85% identity with that of rat P-450c indicating 2C19 and 4C1 encode the hamster P-450IA1 protein. Another cDNA clone, designated H28, was isolated from a MC-induced hamster liver cDNA library by using the hamster lung 2C19 or 4C1 cDNA clone as a probe. H28 was 1,876 bp long and encoded a polypeptide of 513 amino acids with a molecular weight of 58,079. The N-terminal 20 residues deduced from nucleotide sequence of H28 were identical to those determined by sequence analysis of purified hamster hepatic P-450MCI. The high similarity of the nucleotide and deduced amino acid sequences between H28 and P-450IA2 of other species indicated that H28 encoded a P-450 protein which belongs to the P-450IA2 family. Northern blot analysis revealed that the mRNAs for hamster P-450IA1 and IA2 were about 2.9 and 1.9 kb long, respectively. Hamster P-450IA1 mRNA was induced to the same level in lungs as in livers by MC treatment, whereas hamster P-450IA2 mRNA was induced and expressed only in hamster liver.

  9. Functional evolution and structural conservation in chimeric cytochromes p450: calibrating a structure-guided approach.

    PubMed

    Otey, Christopher R; Silberg, Jonathan J; Voigt, Christopher A; Endelman, Jeffrey B; Bandara, Geethani; Arnold, Frances H

    2004-03-01

    Recombination generates chimeric proteins whose ability to fold depends on minimizing structural perturbations that result when portions of the sequence are inherited from different parents. These chimeric sequences can display functional properties characteristic of the parents or acquire entirely new functions. Seventeen chimeras were generated from two CYP102 members of the functionally diverse cytochrome p450 family. Chimeras predicted to have limited structural disruption, as defined by the SCHEMA algorithm, displayed CO binding spectra characteristic of folded p450s. Even this small population exhibited significant functional diversity: chimeras displayed altered substrate specificities, a wide range in thermostabilities, up to a 40-fold increase in peroxidase activity, and ability to hydroxylate a substrate toward which neither parent heme domain shows detectable activity. These results suggest that SCHEMA-guided recombination can be used to generate diverse p450s for exploring function evolution within the p450 structural framework. PMID:15123260

  10. Approaches to Deorphanization of Human and Microbial Cytochrome P450 Enzymes

    PubMed Central

    Guengerich, F. Peter; Tang, Zhongmei; Cheng, Qian; Salamanca-Pinzón, S. Giovanna

    2010-01-01

    One of the general problems in biology today is that we are characterizing genomic sequences much faster than identifying the functions of the gene products, and the same problem exists with cytochromes P450 (P450). One-fourth of the human P450s are not well-characterized and therefore considered “orphans.” A number of approaches to deorphanization are discussed generally. Several liquid chromatography-mass spectrometry approaches have been applied to some of the human and Streptomyces coelicolor P450s. One current limitation is that too many fatty acid oxidations have been identified and we are probably missing more relevant substrates, possibly due to limits of sensitivity. PMID:20493973

  11. Cytochromes P450 and species differences in xenobiotic metabolism and activation of carcinogen.

    PubMed Central

    Lewis, D F; Ioannides, C; Parke, D V

    1998-01-01

    The importance of cytochrome P450 isoforms to species differences in the metabolism of foreign compounds and activation of procarcinogens has been identified. The possible range of P450 isozymes in significant variations in toxicity exhibited by experimental rodent species may have a relevance to chemical risk assessment, especially as human P450s are likely to show changes in the way they metabolize xenobiotics. Consequently, in the safety evaluation of chemicals, we should be cautious in extrapolating results from experimental animal models to humans. This paper focuses on examples in which species differences in P450s lead to significant alterations in carcinogenic response, and includes a discussion of the current procedures for toxicity screening, with an emphasis on short-term tests. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9755138

  12. NO/PGI2-independent vasorelaxation and the cytochrome P450 pathway in rabbit carotid artery

    PubMed Central

    Dong, Hui; Waldron, Gareth J; Galipeau, Denise; Cole, William C; Triggle, Christopher R

    1997-01-01

    The nature and cellular mechanisms that are responsible for endothelium-dependent relaxations resistant to indomethacin and NG-nitro-L-arginine methyl ester (L-NAME) were investigated in phenylephrine (PE) precontracted isolated carotid arteries from the rabbit.In the presence of the cyclo-oxygenase inhibitor, indomethacin (10 μM), acetylcholine (ACh) induced a concentration- and endothelium-dependent relaxation of PE-induced tone which was more potent than the calcium ionophore A23187 with pD2 values of 7.03±0.12 (n=8) and 6.37±0.12 (n=6), respectively. The ACh-induced response was abolished by removal of the endothelium, but was not altered when indomethacin was omitted (pD2 value 7.00±0.10 and maximal relaxation 99±3%, n=6). Bradykinin and histamine (0.01–100 μM) had no effect either upon resting or PE-induced tone (n=5).In the presence of indomethacin plus the NO synthase inhibitor, L-NAME (30 μM), the response to A23187 was abolished. However, the response to ACh was not abolished, although it was significantly inhibited with the pD2 value and the maximal relaxation decreasing to 6.48±0.10 and 67±3%, respectively (for both P<0.01, n=8). The L-NAME/indomethacin insensitive vasorelaxation to ACh was completely abolished by preconstriction of the tissues with potassium chloride (40 mM, n=8).The Ca2+-activated K+ (KCa) channel blockers, tetrabutylammonium (TBA, 1 mM, n=5) and charybdotoxin (CTX, 0.1 μM, n=5), completely inhibited the nitric oxide (NO) and prostacyclin (PGI2)-independent relaxation response to ACh. However, iberiotoxin (ITX, 0.1 M, n=8) or apamin (1–3 μM, n=6) only partially inhibited the relaxation.Inhibitors of the cytochrome P450 mono-oxygenase, SKF-525A (1–10 μM, n=6), clotrimazole (1 μM, n=5) and 17-octadecynoic acid (17-ODYA, 3 μM, n=7) also reduced the NO/PGI2-independent relaxation response to ACh.In endothelium-denuded rings of rabbit carotid arteries, the relaxation response to exogenous NO was

  13. Kinetic Analysis of Lauric Acid Hydroxylation by Human Cytochrome P450 4A11

    PubMed Central

    2015-01-01

    Cytochrome P450 (P450) 4A11 is the only functionally active subfamily 4A P450 in humans. P450 4A11 catalyzes mainly ω-hydroxylation of fatty acids in liver and kidney; this process is not a major degradative pathway, but at least one product, 20-hydroxyeicosatetraenoic acid, has important signaling properties. We studied catalysis by P450 4A11 and the issue of rate-limiting steps using lauric acid ω-hydroxylation, a prototypic substrate for this enzyme. Some individual reaction steps were studied using pre-steady-state kinetic approaches. Substrate and product binding and release were much faster than overall rates of catalysis. Reduction of ferric P450 4A11 (to ferrous) was rapid and not rate-limiting. Deuterium kinetic isotope effect (KIE) experiments yielded low but reproducible values (1.2–2) for 12-hydroxylation with 12-2H-substituted lauric acid. However, considerable “metabolic switching” to 11-hydroxylation was observed with [12-2H3]lauric acid. Analysis of switching results [Jones, J. P., et al. (1986) J. Am. Chem. Soc.108, 7074–7078] and the use of tritium KIE analysis with [12-3H]lauric acid [Northrop, D. B. (1987) Methods Enzymol.87, 607–625] both indicated a high intrinsic KIE (>10). Cytochrome b5 (b5) stimulated steady-state lauric acid ω-hydroxylation ∼2-fold; the apoprotein was ineffective, indicating that electron transfer is involved in the b5 enhancement. The rate of b5 reoxidation was increased in the presence of ferrous P450 mixed with O2. Collectively, the results indicate that both the transfer of an electron to the ferrous·O2 complex and C–H bond-breaking limit the rate of P450 4A11 ω-oxidation. PMID:25203493

  14. Aromatic hydroxylation of salicylic acid and aspirin by human cytochromes P450.

    PubMed

    Bojić, Mirza; Sedgeman, Carl A; Nagy, Leslie D; Guengerich, F Peter

    2015-06-20

    Aspirin (acetylsalicylic acid) is a well-known and widely-used analgesic. It is rapidly deacetylated to salicylic acid, which forms two hippuric acids-salicyluric acid and gentisuric acid-and two glucuronides. The oxidation of aspirin and salicylic acid has been reported with human liver microsomes, but data on individual cytochromes P450 involved in oxidation is lacking. In this study we monitored oxidation of these compounds by human liver microsomes and cytochrome P450 (P450) using UPLC with fluorescence detection. Microsomal oxidation of salicylic acid was much faster than aspirin. The two oxidation products were 2,5-dihydroxybenzoic acid (gentisic acid, documented by its UV and mass spectrum) and 2,3-dihydroxybenzoic acid. Formation of neither product was inhibited by desferrioxamine, suggesting a lack of contribution of oxygen radicals under these conditions. Although more liphophilic, aspirin was oxidized less efficiently, primarily to the 2,5-dihydroxy product. Recombinant human P450s 2C8, 2C9, 2C19, 2D6, 2E1, and 3A4 all catalyzed the 5-hydroxylation of salicylic acid. Inhibitor studies with human liver microsomes indicated that all six of the previously mentioned P450s could contribute to both the 5- and 3-hydroxylation of salicylic acid and that P450s 2A6 and 2B6 have contributions to 5-hydroxylation. Inhibitor studies indicated that the major human P450 involved in both 3- and 5-hydroxylation of salicylic acid is P450 2E1.

  15. Recombinant production of human microsomal cytochrome P450 2D6 in the methylotrophic yeast Pichia pastoris.

    PubMed

    Dietrich, Matthias; Grundmann, Lisa; Kurr, Katja; Valinotto, Laura; Saussele, Tanja; Schmid, Rolf D; Lange, Stefan

    2005-11-01

    Microsomal cytochrome P450 monooxygenases of groups 1-3 are mainly expressed in the liver and play a crucial role in phase 1 reactions of xenobiotic metabolism. The cDNAs encoding human CYP2D6 and human NADPH-P450 oxidoreductase (CPR) were transformed into the methylotrophic yeast Pichia pastoris and expressed with control of the methanol-inducible AOX1 promoter. The determined molecular weights of the recombinant CYP2D6 and CPR closely matched the calculated values of 55.8 and 76.6 kDa. CPR activity was detected by conversion of cytochrome c by using isolated microsomes. Nearly all of the recombinant CYP was composed of the active holoenzyme, as confirmed by reduced CO difference spectra, which showed a single peak at 450 nm. Only by coexpression of human CPR and CYP was CYP2D6 activity obtained. Microsomes containing human CPR and CYP2D6 converted different substrates, such as 3-cyano-7-ethoxycoumarin, parathion and dextrometorphan. The kinetic parameters of dextrometorphan conversion closely matched those of CYP2D6 from other recombinant expression systems and human microsomes. The endogenous NADPH-P450 oxidoreductase of Pichia pastoris seems to be incompatible with human CYP2D6, as expression of CYP2D6 without human CPR did not result in any CYP activity. These recombinant strains provide a novel, easy-to-handle and cheap source for the biochemical characterisation of single microsomal cytochromes, as well as their allelic variants.

  16. Cytochrome P450 system proteins reside in different regions of the endoplasmic reticulum.

    PubMed

    Park, Ji Won; Reed, James R; Brignac-Huber, Lauren M; Backes, Wayne L

    2014-12-01

    Cytochrome P450 (P450) function is dependent on the ability of these enzymes to successfully interact with their redox partners, NADPH-cytochrome P450 reductase (CPR) and cytochrome b5, in the endoplasmic reticulum (ER). Because the ER is heterogeneous in lipid composition, membrane microdomains with different characteristics are formed. Ordered microdomains are more tightly packed, and enriched in saturated fatty acids, sphingomyelin and cholesterol, whereas disordered regions contain higher levels of unsaturated fatty acids. The goal of the present study was to determine whether the P450 system proteins localize to different regions of the ER. The localization of CYP1A2, CYP2B4 and CYP2E1 within the ER was determined by partial membrane solubilization with Brij 98, centrifugation on a discontinuous sucrose gradient and immune blotting of the gradient fractions to identify ordered and disordered microdomains. CYP1A2 resided almost entirely in the ordered regions of the ER with CPR also localized predominantly to this region. CYP2B4 was equally distributed between the ordered and disordered domains. In contrast, CYP2E1 localized to the disordered membrane regions. Removal of cholesterol (an important constituent of ordered domains) led to the relocation of CYP1A2, CYP2B4 and CPR to the disordered regions. Interestingly, CYP1A1 and CYP1A2 localized to different membrane microdomains, despite their high degree of sequence similarity. These data demonstrate that P450 system enzymes are organized in specific membrane regions, and their localization can be affected by depletion of membrane cholesterol. The differential localization of different P450 in specific membrane regions may provide a novel mechanism for modulating P450 function. PMID:25236845

  17. Protein-protein interactions between rat hepatic cytochromes P450 (P450s) and UDP-glucuronosyltransferases (UGTs): evidence for the functionally active UGT in P450-UGT complex.

    PubMed

    Ishii, Yuji; Iwanaga, Megumi; Nishimura, Yoshio; Takeda, Shuso; Ikushiro, Shin-Ichi; Nagata, Kiyoshi; Yamazoe, Yasushi; Mackenzie, Peter I; Yamada, Hideyuki

    2007-10-01

    The interaction between cytochrome P450s (CYP, P450) and UDP-glucuronosyltransferases (UGTs) was studied by co-immunoprecipitation. P450 isoform-selective antibody was used as a probe to co-precipitate UGTs with the P450s from solubilized rat liver microsomes. Antibodies toward CYP3A2, CYP2B2, CYP2C11/13 and CYP1A2 co-precipitated UGTs with corresponding P450s. However, calnexin, a type-I membrane protein, in the endoplasmic reticulum was not co-precipitated by anti-P450 antibodies. UGT activity toward 4-methylumbelliferone was detected in all co-precipitates, suggesting that UGT in the complex with P450s is functionally active. Repeated washing of co-immunoprecipitates revealed differences among P450 isoforms with regard to the affinity for UGT. Larger amounts of UGT1A1 and UGT1A6, compared with UGT2B1, were washed out from UGTs-CYP2C11/13 co-precipitates, whereas UGT-CYP3A2 and UGT-CYP2Bs complexes were resistant to thorough washing. Thus, CYP2C11/13 could associate with UGTs, but the affinity is assumed to be weaker than that of CYP2B/3As. These results suggest that there is isoform specificity in the interaction between P450s and UGTs.

  18. A Multiscale Approach to Modelling Drug Metabolism by Membrane-Bound Cytochrome P450 Enzymes

    PubMed Central

    Sansom, Mark S. P.; Mulholland, Adrian J.

    2014-01-01

    Cytochrome P450 enzymes are found in all life forms. P450s play an important role in drug metabolism, and have potential uses as biocatalysts. Human P450s are membrane-bound proteins. However, the interactions between P450s and their membrane environment are not well-understood. To date, all P450 crystal structures have been obtained from engineered proteins, from which the transmembrane helix was absent. A significant number of computational studies have been performed on P450s, but the majority of these have been performed on the solubilised forms of P450s. Here we present a multiscale approach for modelling P450s, spanning from coarse-grained and atomistic molecular dynamics simulations to reaction modelling using hybrid quantum mechanics/molecular mechanics (QM/MM) methods. To our knowledge, this is the first application of such an integrated multiscale approach to modelling of a membrane-bound enzyme. We have applied this protocol to a key human P450 involved in drug metabolism: CYP3A4. A biologically realistic model of CYP3A4, complete with its transmembrane helix and a membrane, has been constructed and characterised. The dynamics of this complex have been studied, and the oxidation of the anticoagulant R-warfarin has been modelled in the active site. Calculations have also been performed on the soluble form of the enzyme in aqueous solution. Important differences are observed between the membrane and solution systems, most notably for the gating residues and channels that control access to the active site. The protocol that we describe here is applicable to other membrane-bound enzymes. PMID:25033460

  19. An extensive (co-)expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thaliana

    PubMed Central

    Ehlting, Jürgen; Sauveplane, Vincent; Olry, Alexandre; Ginglinger, Jean-François; Provart, Nicholas J; Werck-Reichhart, Danièle

    2008-01-01

    Background Sequencing of the first plant genomes has revealed that cytochromes P450 have evolved to become the largest family of enzymes in secondary metabolism. The proportion of P450 enzymes with characterized biochemical function(s) is however very small. If P450 diversification mirrors evolution of chemical diversity, this points to an unexpectedly poor understanding of plant metabolism. We assumed that extensive analysis of gene expression might guide towards the function of P450 enzymes, and highlight overlooked aspects of plant metabolism. Results We have created a comprehensive database, 'CYPedia', describing P450 gene expression in four data sets: organs and tissues, stress response, hormone response, and mutants of Arabidopsis thaliana, based on public Affymetrix ATH1 microarray expression data. P450 expression was then combined with the expression of 4,130 re-annotated genes, predicted to act in plant metabolism, for co-expression analyses. Based on the annotation of co-expressed genes from diverse pathway annotation databases, co-expressed pathways were identified. Predictions were validated for most P450s with known functions. As examples, co-expression results for P450s related to plastidial functions/photosynthesis, and to phenylpropanoid, triterpenoid and jasmonate metabolism are highlighted here. Conclusion The large scale hypothesis generation tools presented here provide leads to new pathways, unexpected functions, and regulatory networks for many P450s in plant metabolism. These can now be exploited by the community to validate the proposed functions experimentally using reverse genetics, biochemistry, and metabolic profiling. PMID:18433503

  20. Placental expression and molecular characterization of aromatase cytochrome P450 in the spotted hyena (Crocuta crocuta).

    PubMed

    Conley, A J; Corbin, C J; Browne, P; Mapes, S M; Place, N J; Hughes, A L; Glickman, S E

    2007-07-01

    At birth, the external genitalia of female spotted hyenas (Crocuta crocuta) are the most masculinized of any known mammal, but are still sexually differentiated. Placental aromatase cytochrome P450 (P450arom) is an important route of androgen metabolism protecting human female fetuses from virilization in utero. Therefore, placental P450arom expression was examined in spotted hyenas to determine levels during genital differentiation, and to compare molecular characteristics between the hyena and human placental enzymes. Hyena placental P450arom activity was determined at gestational days (GD) 31, 35, 45, 65 and 95 (term, 110), and the relative sensitivity of hyena and human placental enzyme to inhibition by the specific inhibitor, Letrozole, was also examined. Expression of hyena P450arom in placenta was localized by immuno-histochemistry, and a full-length cDNA was cloned for phylogenetic analysis. Aromatase activity increased from GD31 to a peak at 45 and 65, apparently decreasing later in gestation. This activity was more sensitive to inhibition by Letrozole than was human placental aromatase activity. Expression of P450arom was localized to syncytiotrophoblast and giant cells of mid-gestation placentas. The coding sequence of hyena P450arom was 94% and 86% identical to the canine and human enzymes respectively, as reflected by phylogenetic analyses. These data demonstrate for the first time that hyena placental aromatase activity is comparable to that of human placentas when genital differentiation is in progress. This suggests that even in female spotted hyenas clitoral differentiation is likely protected from virilization by placental androgen metabolism. Decreased placental aromatase activity in late gestation may be equally important in allowing androgen to program behaviors at birth. Although hyena P450arom is closely related to the canine enzyme, both placental anatomy and P450arom expression differ. Other hyaenids and carnivores must be investigated to

  1. The cytochrome P450scc system opens an alternate pathway of vitamin D3 metabolism

    PubMed Central

    Slominski, Andrzej; Semak, Igor; Zjawiony, Jordan; Wortsman, Jacobo; Li, Wei; Szczesniewski, Andre; Tuckey, Robert C.

    2008-01-01

    We show that cytochrome P450scc (CYP11A1) in either a reconstituted system or in isolated adrenal mitochondria can metabolize vitamin D3. The major products of the reaction with reconstituted enzyme were 20-hydroxycholecalciferol and 20,22-dihydroxycholecalciferol, with yields of 16 and 4%, respectively, of the original vitamin D3 substrate. Trihydroxycholecalciferol was a minor product, likely arising from further metabolism of dihydroxycholecalciferol. Based on NMR analysis and known properties of P450scc we propose that hydroxylation of vitamin D3 by P450scc occurs sequentially and stereospecifically with initial formation of 20(S)-hydroxyvitamin D3. P450scc did not metabolize 25-hydroxyvitamin D3, indicating that modification of C25 protected it against P450scc action. Adrenal mitochondria also metabolized vitamin D3 yielding 10 hydroxyderivatives, with UV spectra typical of vitamin D triene chromophores. Aminogluthimide inhibition showed that the three major metabolites, but not the others, resulted from P450scc action. It therefore appears that non-P450scc enzymes present in the adrenal cortex to some extent contribute to metabolism of vitamin D3. We conclude that purified P450scc in a reconstituted system or P450scc in adrenal mitochondria can add one hydroxyl group to vitamin D3 with subsequent hydroxylation being observed for reconstituted enzyme but not for adrenal mitochondria. Additional vitamin D3 metabolites arise from the action of other enzymes in adrenal mitochondria. These findings appear to define novel metabolic pathways involving vitamin D3 that remain to be characterized. PMID:16098191

  2. Orphans in the Human Cytochrome P450 Superfamily: Approaches to Discovering Functions and Relevance in Pharmacology

    PubMed Central

    Cheng, Qian

    2011-01-01

    As a result of technical advances in recombinant DNA technology and nucleotide sequencing, entire genome sequences have become available in the past decade and offer potential in understanding diseases. However, a central problem in the biochemical sciences is that the functions of only a fraction of the genes/proteins are known, and this is also an issue in pharmacology. This review is focused on issues related to the functions of cytochrome P450 (P450) enzymes. P450 functions can be categorized in several groups: 1) Some P450s have critical roles in the metabolism of endogenous substrates (e.g., sterols and fat-soluble vitamins). 2) Some P450s are not generally critical to normal physiology but function in relatively nonselective protection from the many xenobiotic chemicals to which mammals (including humans) are exposed in their diets [as well as more anthropomorphic chemicals (e.g., drugs, pesticides)]. 3) Some P450s have not been extensively studied and are termed “orphans” here. With regard to elucidation of any physiological functions of the orphan P450s, the major subject of this review, it is clear that simple trial-and-error approaches with individual substrate candidates will not be very productive in addressing questions about function. A series of liquid chromatography/mass spectrometry/informatics approaches are discussed, along with some successes with both human and bacterial P450s. Current information on what are still considered “orphan” P450s is presented. The potential for application of some of these approaches to other enzyme systems is also discussed. PMID:21737533

  3. Adrenodoxin supports reactions catalyzed by microsomal steroidogenic cytochrome P450s

    SciTech Connect

    Pechurskaya, Tatiana A. . E-mail: usanov@iboch.bas-net.by

    2007-02-16

    The interaction of adrenodoxin (Adx) and NADPH cytochrome P450 reductase (CPR) with human microsomal steroidogenic cytochrome P450s was studied. It is found that Adx, mitochondrial electron transfer protein, is able to support reactions catalyzed by human microsomal P450s: full length CYP17, truncated CYP17, and truncated CYP21. CPR, but not Adx, supports activity of truncated CYP19. Truncated and the full length CYP17s show distinct preference for electron donor proteins. Truncated CYP17 has higher activity with Adx compared to CPR. The alteration in preference to electron donor does not change product profile for truncated enzymes. The electrostatic contacts play a major role in the interaction of truncated CYP17 with either CPR or Adx. Similarly electrostatic contacts are predominant in the interaction of full length CYP17 with Adx. We speculate that Adx might serve as an alternative electron donor for CYP17 at the conditions of CPR deficiency in human.

  4. Functional Analysis of the Unique Cytochrome P450 of the Liver Fluke Opisthorchis felineus.

    PubMed

    Pakharukova, Mariya Y; Vavilin, Valentin A; Sripa, Banchob; Laha, Thewarach; Brindley, Paul J; Mordvinov, Viatcheslav A

    2015-12-01

    The basic metabolic cytochrome P450 (CYP) system is essential for biotransformation of sterols and xenobiotics including drugs, for synthesis and degradation of signaling molecules in all living organisms. Most eukaryotes including free-living flatworms have numerous paralogues of the CYP gene encoding heme monooxygenases with specific substrate range. Notably, by contrast, the parasitic flatworms have only one CYP gene. The role of this enzyme in the physiology and biochemistry of helminths is not known. The flukes and tapeworms are the etiologic agents of major neglected tropical diseases of humanity. Three helminth infections (Opisthorchis viverrini, Clonorchis sinensis and Schistosoma haematobium) are considered by the International Agency for Research on Cancer (IARC) as definite causes of cancer. We focused our research on the human liver fluke Opisthorchis felineus, an emerging source of biliary tract disease including bile duct cancer in Russia and central Europe. The aims of this study were (i) to determine the significance of the CYP activity for the morphology and survival of the liver fluke, (ii) to assess CYP ability to metabolize xenobiotics, and (iii) to localize the CYP activity in O. felineus tissues. We observed high constitutive expression of CYP mRNA (Real-time PCR) in O. felineus. This enzyme metabolized xenobiotics selective for mammalian CYP2E1, CYP2B, CYP3A, but not CYP1A, as determined by liquid chromatography and imaging analyses. Tissue localization studies revealed the CYP activity in excretory channels, while suppression of CYP mRNA by RNA interference was accompanied by morphological changes of the excretory system and increased mortality rates of the worms. These results suggest that the CYP function is linked to worm metabolism and detoxification. The findings also suggest that the CYP enzyme is involved in vitally important processes in the organism of parasites and is a potential drug target. PMID:26625139

  5. Functional Analysis of the Unique Cytochrome P450 of the Liver Fluke Opisthorchis felineus

    PubMed Central

    Pakharukova, Mariya Y.; Vavilin, Valentin A.; Sripa, Banchob; Laha, Thewarach; Brindley, Paul J.; Mordvinov, Viatcheslav A.

    2015-01-01

    The basic metabolic cytochrome P450 (CYP) system is essential for biotransformation of sterols and xenobiotics including drugs, for synthesis and degradation of signaling molecules in all living organisms. Most eukaryotes including free-living flatworms have numerous paralogues of the CYP gene encoding heme monooxygenases with specific substrate range. Notably, by contrast, the parasitic flatworms have only one CYP gene. The role of this enzyme in the physiology and biochemistry of helminths is not known. The flukes and tapeworms are the etiologic agents of major neglected tropical diseases of humanity. Three helminth infections (Opisthorchis viverrini, Clonorchis sinensis and Schistosoma haematobium) are considered by the International Agency for Research on Cancer (IARC) as definite causes of cancer. We focused our research on the human liver fluke Opisthorchis felineus, an emerging source of biliary tract disease including bile duct cancer in Russia and central Europe. The aims of this study were (i) to determine the significance of the CYP activity for the morphology and survival of the liver fluke, (ii) to assess CYP ability to metabolize xenobiotics, and (iii) to localize the CYP activity in O. felineus tissues. We observed high constitutive expression of CYP mRNA (Real-time PCR) in O. felineus. This enzyme metabolized xenobiotics selective for mammalian CYP2E1, CYP2B, CYP3A, but not CYP1A, as determined by liquid chromatography and imaging analyses. Tissue localization studies revealed the CYP activity in excretory channels, while suppression of CYP mRNA by RNA interference was accompanied by morphological changes of the excretory system and increased mortality rates of the worms. These results suggest that the CYP function is linked to worm metabolism and detoxification. The findings also suggest that the CYP enzyme is involved in vitally important processes in the organism of parasites and is a potential drug target. PMID:26625139

  6. Cytochrome P450 2C epoxygenases mediate photochemical stress-induced death of photoreceptors.

    PubMed

    Chang, Qing; Berdyshev, Evgeny; Cao, Dingcai; Bogaard, Joseph D; White, Jerry J; Chen, Siquan; Shah, Ravi; Mu, Wenbo; Grantner, Rita; Bettis, Sam; Grassi, Michael A

    2014-03-21

    Degenerative loss of photoreceptors occurs in inherited and age-related retinal degenerative diseases. A chemical screen facilitates development of new testing routes for neuroprotection and mechanistic investigation. Herein, we conducted a mouse-derived photoreceptor (661W cell)-based high throughput screen of the Food and Drug Administration-approved Prestwick drug library to identify putative cytoprotective compounds against light-induced, synthetic visual chromophore-precipitated cell death. Different classes of hit compounds were identified, some of which target known genes or pathways pathologically associated with retinitis pigmentosa. Sulfaphenazole (SFZ), a selective inhibitor of human cytochrome P450 (CYP) 2C9 isozyme, was identified as a novel and leading cytoprotective compound. Expression of CYP2C proteins was induced by light. Gene-targeted knockdown of CYP2C55, the homologous gene of CYP2C9, demonstrated viability rescue to light-induced cell death, whereas stable expression of functional CYP2C9-GFP fusion protein further exacerbated light-induced cell death. Mechanistically, SFZ inhibited light-induced necrosis and mitochondrial stress-initiated apoptosis. Light elicited calcium influx, which was mitigated by SFZ. Light provoked the release of arachidonic acid from membrane phospholipids and production of non-epoxyeicosatrienoic acid metabolites. Administration of SFZ further stimulated the production of non-epoxyeicosatrienoic acid metabolites, suggesting a metabolic shift of arachidonic acid under inhibition of the CYP2C pathway. Together, our findings indicate that CYP2C genes play a direct causative role in photochemical stress-induced death of photoreceptors and suggest that the CYP monooxygenase system is a risk factor for retinal photodamage, especially in individuals with Stargardt disease and age-related macular degeneration that deposit condensation products of retinoids. PMID:24519941

  7. Alternative Sampling Strategies for Cytochrome P450 Phenotyping.

    PubMed

    De Kesel, Pieter M M; Lambert, Willy E; Stove, Christophe P

    2016-02-01

    Interindividual variability in the expression and function of drug metabolizing cytochrome P (CYP) 450 enzymes, determined by a combination of genetic, non-genetic and environmental parameters, is a major source of variable drug response. Phenotyping by administration of a selective enzyme substrate, followed by the determination of a specific phenotyping metric, is an appropriate approach to assess the in vivo activity of CYP450 enzymes as it takes into account all influencing factors. A phenotyping protocol should be as simple and convenient as possible. Typically, phenotyping metrics are determined in traditional matrices, such as blood, plasma or urine. Several sampling strategies have been proposed as an alternative for these traditional sampling techniques. In this review, we provide a comprehensive overview of available methods using dried blood spots (DBS), hair, oral fluid, exhaled breath and sweat for in vivo CYP450 phenotyping. We discuss the relation between phenotyping metrics measured in these samples and those in conventional matrices, along with the advantages and limitations of the alternative sampling techniques. Reliable phenotyping procedures for several clinically relevant CYP450 enzymes, including CYP1A2, CYP2C19 and CYP2D6, are currently available for oral fluid, breath or DBS, while additional studies are needed for other CYP450 isoforms, such as CYP3A4. The role of hair analysis for this purpose remains to be established. Being non- or minimally invasive, these sampling strategies provide convenient and patient-friendly alternatives for classical phenotyping procedures, which may contribute to the implementation of CYP450 phenotyping in clinical practice.

  8. QUANTITATIVE EVALUATION OF BROMODICHLOROMETHANE METABOLISM BY RECOMBINANT RAT AND HUMAN CYTOCHROME P450S

    EPA Science Inventory

    ABSTRACT
    We report quantitative estimates of the parameters for metabolism of bromodichloromethane (BDCM) by recombinant preparations of hepatic cytochrome P450s (CYPs) from rat and human. BDCM is a drinking water disinfectant byproduct that has been implicated in liver, kidn...

  9. METABOLISM OF MYCLOBUTANIL AND TRIADIMEFON BY HUMAN AND RAT CYTOCHROME P450 ENZYMES AND LIVER MICROSOMES.

    EPA Science Inventory

    Metabolism of two triazole-containing antifungal azoles was studied using expressed human and rat cytochrome P450s (CYP) and liver microsomes. Substrate depletion methods were used due to the complex array of metabolites produced from myclobutanil and triadimefon. Myclobutanil wa...

  10. FLUCONAZOLE-INDUCED HEPATIC CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RATS AND MICE

    EPA Science Inventory

    This study was undertaken to examine the effects of the triazole antifungal agent fluconazole on the expression of hepatic cytochrome P450 (Cyp) genes and the activities of Cyp enzymes in male Sprague-Dawley rats and male CD-1 mice. Alkoxyresorufin O-dealkylation (AROD) methods w...

  11. INDUCTION OF CYTOCHROME P450 ISOFORMS IN RAT LIVER BY TWO CONAZOLES, TRIADIMEFON AND MYCLOBUTANIL

    EPA Science Inventory

    1. This study was undertaken to examine the inductive effects of two triazole antifungal agents, myclobutanil and triadimefon on the expression of hepatic cytochrome P450 (CYP) genes and on the activities of CYP enzymes in male Sprague-Dawley rats. Rats were dosed by gavage for 1...

  12. Cytochrome P450, CYP93A1, as a defense marker in soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CYP93A1 is a cytochrome P450 that is involved in the synthesis of the phytoalexin glyceollin in soybean (Glycine max L. Merr). The gene encoding CYP93A1 has been used as a defense marker in soybean cell cultures, however, little is known regarding how this gene is expressed in the intact plant. To f...

  13. Phyllanthus urinaria extract attenuates acetaminophen induced hepatotoxicity: involvement of cytochrome P450 CYP2E1.

    PubMed

    Hau, Desmond Kwok Po; Gambari, Roberto; Wong, Raymond Siu Ming; Yuen, Marcus Chun Wah; Cheng, Gregory Yin Ming; Tong, Cindy Sze Wai; Zhu, Guo Yuan; Leung, Alexander Kai Man; Lai, Paul Bo San; Lau, Fung Yi; Chan, Andrew Kit Wah; Wong, Wai Yeung; Kok, Stanton Hon Lung; Cheng, Chor Hing; Kan, Chi Wai; Chan, Albert Sun Chi; Chui, Chung Hin; Tang, Johnny Cheuk On; Fong, David Wang Fun

    2009-08-01

    Acetaminophen is a commonly used drug for the treatment of patients with common cold and influenza. However, an overdose of acetaminophen may be fatal. In this study we investigated whether mice, administered intraperitoneally with a lethal dose of acetaminophen, when followed by oral administration of Phyllanthus urinaria extract, may be prevented from death. Histopathological analysis of mouse liver sections showed that Phyllanthus urinaria extract may protect the hepatocytes from acetaminophen-induced necrosis. Therapeutic dose of Phyllanthus urinaria extract did not show any toxicological phenomenon on mice. Immunohistochemical staining with the cytochrome P450 CYP2E1 antibody revealed that Phyllanthus urinaria extract reduced the cytochrome P450 CYP2E1 protein level in mice pre-treated with a lethal dose of acetaminophen. Phyllanthus urinaria extract also inhibited the cytochrome P450 CYP2E1 enzymatic activity in vitro. Heavy metals, including arsenic, cadmium, mercury and lead, as well as herbicide residues were not found above their detection limits. High performance liquid chromatography identified corilagin and gallic acid as the major components of the Phyllanthus urinaria extract. We conclude that Phyllanthus urinaria extract is effective in attenuating the acetaminophen induced hepatotoxicity, and inhibition of cytochrome P450 CYP2E1 enzyme may be an important factor for its therapeutic mechanism.

  14. PRIMARY STRUCTURE OF THE CYTOCHROME P450 LANOSTEROL 14A-DEMETHYLASE GENE FROM CANDIDA TROPICALIS

    EPA Science Inventory

    We report the nucleotide sequence of the gene and flanking DNA for the cytochrome P450 lanosterol 14 alpha-demethylase (14DM) from the yeast Candida tropicalis ATCC750. An open reading frame (ORF) of 528 codons encoding a 60.9-kD protein is identified. This ORF includes a charact...

  15. EVIDENCE FOR BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P-450 1A2

    EPA Science Inventory

    EVIDENCE FOR BROMODICHLOROMETHANE METABOLISM BY CYTOCHROME P-450 1A2. T M Ross1, B P Anderson1, G Zhao2, R A Pegram1 and J W Allis1. 1U.S. EPA, ORD, NHEERL, Research Triangle Park, NC; 2University of North Carolina, Chapel Hill, NC.
    Sponsor: H Barton

    Bromodichlorometh...

  16. PROPICONAZOLE-INDUCED CYTOCHROME P450 GENE EXPRESSION AND ENZYMATIC ACTIVITIES IN RAT AND MOUSE LIVER

    EPA Science Inventory

    Conazoles are N-substituted azole antifungal agents used as both pesticides and drugs. Some of these compounds are hepatocarcinogenic in mice and some can induce thyroid tumors in rats. Many of these compounds are able to induce and/or inhibit mammalian hepatic cytochrome P450s t...

  17. Screening and identification of novel cytochrome P450s in ticks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cytochrome P450s are the major phase I drug metabolizing enzymes found in most species, including those belonging to the phylum Arthropoda. Much of the work within the area of xenobiotic metabolism in this phylum has centered on mosquito species such as Anopheles gambiae due to their role as vectors...

  18. Identification of in vitro cytochrome P450 modulators to detect induction by prototype inducers in the mallard duckling (Anas platyrhynchos)

    USGS Publications Warehouse

    Renauld, A.E.; Melancon, M.J.; Sordillo, L.M.

    1999-01-01

    Seven modulators of mammalian monooxygenase activity were evaluated for their ability to selectively stimulate or inhibit in vitro monooxygenase activities of hepatic microsomes from mallard ducklings treated with phenobarbital, ?-naphthoflavone, 3,3',4,4',5-pentachlorobiphenyl or vehicle. Microsomes were assayed fluorometrically for four monooxygenases: benzyloxy, ethoxy, methoxy, and pentoxyresorufin-O-dealkylase, in combination with each of the seven modulators. Four combinations: ?-naphthoflavone and 2-methylbenzimidazole with benzyloxyresorufin, and Proadifen with methoxy- and ethoxyresorufin, respectively, were evaluated further. ?-naphthoflavone-treated groups were clearly distinguished from the corn oil vehicle control group by all of the assays and by the effects of the modulators in three of the four assay/modulator combinations. Enzyme activities of the phenobarbital and saline groups were statistically similar (P ?.05) when assayed without modulator added, but each assay/modulator combination distinguished between these groups. The PCB-treated group was distinguished from the corn oil vehicle control group only for BROD activity, with or without the presence of modulator. Graphing of per cent modulation of BROD activity versus initial BROD activity provided the clearest distinction between all of the study groups. Identification of these selective in vitro modulators may improve detection and measurement of low level cytochrome P450 induction in avian species.

  19. Cytochrome P-450 dependent ethanol oxidation. Kinetic isotope effects and absence of stereoselectivity

    SciTech Connect

    Ekstroem, G.; Norsten, C.; Cronholm, T.; Ingelman-Sundberg, M.

    1987-11-17

    Deuterium isotope effects (/sup D/(V/K)) and stereoselectivity of ethanol oxidation in cytochrome P-450 containing systems and in the xanthine-xanthine oxidase system were compared with those of yeast alcohol dehydrogenase. The isotope effects were determined by using both a noncompetitive method, including incubation of unlabeled of (1,1-/sup 2/H/sub 2/) ethanol at various concentrations, and a competitive method, where 1:1 mixtures of (1-/sup 13/C)- and (/sup 2/H/sub 6/) ethanol or (2,2,2-/sup 2/H/sub 3/)- and (1,1-/sup 2/H/sub 2/) ethanol were incubated and the acetaldehyde formed was analyzed by gas chromatography/mass spectrometry. The /sup D/(V/K) isotope effects of the cytochrome P-450 dependent ethanol oxidation were about 4 with liver microsomes from imidazole-, phenobarbital- or acetone-treated rabbits or with microsomes from acetone- or ethanol-treated rats. Similar isotope effects were reached with reconstituted membranes containing the rabbit ethanol-inducible cytochrome P-450 (LMeb), whereas control rat microsomes and membranes containing rabbit phenobarbital-inducible P-450 LM/sub 2/ oxidized the alcohol with /sup D/(V/K) of about 2.8 and 1.8, respectively. Addition of Fe/sup III/EDTA either to microsomes from phenobarbital-treated rabbits or to membranes containing P-450 LMeb significantly lowered the isotope effect. Incubations of all cytochrome P-450 containing systems of the xanthine-xanthine oxidase systems with (1R)- and (1S)-(1-/sup 2/H) ethanol, revealed, taking the isotope effects into account, that 44-66% of the ethanol oxidized had lost the 1-pro-R hydrogen. The data indicate that cytochrome P-450 dependent ethanol oxidation is not stereospecific and that cleavage of the C/sub 1/-H bond appears to be a rate-determining step in the catalysis by the ethanol-inducible form of P-450. The contribution of hydroxyl radicals in ethanol oxidation by the various enzymic systems is discussed.

  20. Role of hepatic cytochromes P450 in bioactivation of the anticancer drug ellipticine: Studies with the hepatic NADPH:Cytochrome P450 reductase null mouse

    SciTech Connect

    Stiborova, Marie Arlt, Volker M.; Henderson, Colin J.; Wolf, C. Roland; Kotrbova, Vera; Moserova, Michaela; Hudecek, Jiri; Phillips, David H.; Frei, Eva

    2008-02-01

    Ellipticine is an antineoplastic agent, which forms covalent DNA adducts mediated by cytochromes P450 (CYP) and peroxidases. We evaluated the role of hepatic versus extra-hepatic metabolism of ellipticine, using the HRN (Hepatic Cytochrome P450 Reductase Null) mouse model, in which cytochrome P450 oxidoreductase (POR) is deleted in hepatocytes, resulting in the loss of essentially all hepatic CYP function. HRN and wild-type (WT) mice were treated i.p. with 1 and 10 mg/kg body weight of ellipticine. Multiple ellipticine-DNA adducts detected by {sup 32}P-postlabelling were observed in organs from both mouse strains. Highest total DNA binding levels were found in liver, followed by lung, kidney, urinary bladder, colon and spleen. Ellipticine-DNA adduct levels in the liver of HRN mice were up to 65% lower relative to WT mice, confirming the importance of CYP enzymes for the activation of ellipticine in livers, recently shown in vitro with human and rat hepatic microsomes. When hepatic microsomes of both mouse strains were incubated with ellipticine, ellipticine-DNA adduct levels with WT microsomes were up to 2.9-fold higher than with those from HRN mice. The ratios of ellipticine-DNA adducts in extra-hepatic organs between HRN and WT mice of up to 4.7 suggest that these organs can activate ellipticine and that more ellipticine is available in the circulation. These results and the DNA adduct patterns found in vitro and in vivo demonstrate that both CYP1A or 3A and peroxidases participate in activation of ellipticine to reactive species forming DNA adducts in the mouse model used in this study.

  1. Update on allele nomenclature for human cytochromes P450 and the Human Cytochrome P450 Allele (CYP-allele) Nomenclature Database.

    PubMed

    Sim, Sarah C; Ingelman-Sundberg, Magnus

    2013-01-01

    Interindividual variability in xenobiotic metabolism and drug response is extensive and genetic factors play an important role in this variation. A majority of clinically used drugs are substrates for the cytochrome P450 (CYP) enzyme system and interindividual variability in expression and function of these enzymes is a major factor for explaining individual susceptibility for adverse drug reactions and drug response. Because of the existence of many polymorphic CYP genes, for many of which the number of allelic variants is continually increasing, a universal and official nomenclature system is important. Since 1999, all functionally relevant polymorphic CYP alleles are named and published on the Human Cytochrome P450 Allele (CYP-allele) Nomenclature Web site (http://www.cypalleles.ki.se). Currently, the database covers nomenclature of more than 660 alleles in a total of 30 genes that includes 29 CYPs as well as the cytochrome P450 oxidoreductase (POR) gene. On the CYP-allele Web site, each gene has its own Webpage, which lists the alleles with their nucleotide changes, their functional consequences, and links to publications identifying or characterizing the alleles. CYP2D6, CYP2C9, CYP2C19, and CYP3A4 are the most important CYPs in terms of drug metabolism, which is also reflected in their corresponding highest number of Webpage hits at the CYP-allele Web site.The main advantage of the CYP-allele database is that it offers a rapid online publication of CYP-alleles and their effects and provides an overview of peer-reviewed data to the scientific community. Here, we provide an update of the CYP-allele database and the associated nomenclature.

  2. In Vitro Metabolism of Montelukast by Cytochrome P450s and UDP-Glucuronosyltransferases.

    PubMed

    Cardoso, Josiane de Oliveira; Oliveira, Regina Vincenzi; Lu, Jessica Bo Li; Desta, Zeruesenay

    2015-12-01

    Montelukast has been recommended as a selective in vitro and in vivo probe of cytochrome P450 (P450) CYP2C8 activity, but its selectivity toward this enzyme remains unclear. We performed detailed characterization of montelukast metabolism in vitro using human liver microsomes (HLMs), expressed P450s, and uridine 5'-diphospho-glucuronosyltransferases (UGTs). Kinetic and inhibition experiments performed at therapeutically relevant concentrations reveal that CYP2C8 and CYP2C9 are the principal enzymes responsible for montelukast 36-hydroxylation to 1,2-diol. CYP3A4 was the main catalyst of montelukast sulfoxidation and stereoselective 21-hydroxylation, and multiple P450s participated in montelukast 25-hydroxylation. We confirmed direct glucuronidation of montelukast to an acyl-glucuronide. We also identified a novel peak that appears consistent with an ether-glucuronide. Kinetic analysis in HLMs and experiments in expressed UGTs indicate that both metabolites were exclusively formed by UGT1A3. Comparison of in vitro intrinsic clearance in HLMs suggest that direct glucuronidation may play a greater role in the overall metabolism of montelukast than does P450-mediated oxidation, but the in vivo contribution of UGT1A3 needs further testing. In conclusion, our in vitro findings provide new insight toward montelukast metabolism. The utility of montelukast as a probe of CYP2C8 activity may be compromised owing to involvement of multiple P450s and UGT1A3 in its metabolism. PMID:26374173

  3. Bell pepper fruit fatty acid hydroperoxide lyase is a cytochrome P450 (CYP74B).

    PubMed

    Matsui, K; Shibutani, M; Hase, T; Kajiwara, T

    1996-09-23

    Fatty acid hydroperoxide lyases cleave a C-C bond adjacent to a hydroperoxide group in lipoxygenase derived lipid hydroperoxides to form short-chain aldehydes and oxo-acids. Previously, we showed that fatty acid hydroperoxide lyase from bell pepper fruits is a heme protein whose spectrophotometric properties greatly resemble a cytochrome P450. In order to ascertain the relationship of it to the P450 gene family, we have cloned cDNA encoding fatty acid hydroperoxide lyase from immature bell pepper fruits. The cDNA encodes 480 amino acids, and shares homology with P450s mostly at the C terminus. The heme binding cysteine is recognizable at position 441. The most closely related P450 is allene oxide synthase (CYP74A), with which it has 40% identity. It qualifies the lyase as a member of a new P450 subfamily, CYP74B. From this finding, the enzyme is thought to be a novel member of P450 specialized for the metabolism of lipid peroxides.

  4. Characterization of a novel ACTH inducible cytochrome P-450 from rat adrenal microsomes

    SciTech Connect

    Otto, S.A.; Marcus, C.M.; Jefcoate, C.R. )

    1990-02-26

    In rat adrenal cortex 7,12 dimethylbenz(a)anthracene (DMBA) causes massive necrosis that is dependent of ACTH. This is related to an ACTH inducible adrenal microsomal cytochrome P-450 that catalyzes hydrocarbon metabolism. Rat adrenal microsomes, catalyze the formation of DMBA 3,4 diol a precursor of the bay region reactive electrophile DMBA 3,4 diol 1,2 oxide. Both DMBA metabolism and a 57Kd protein have disappeared from microsomes 30 days after hypophysectomy, but are restored by 14 days treatment with ACTH. Dexamethasone which fully suppresses ACTH only partially suppresses this activity. The 57 Kd protein was partially purified to a single major band in one step from solubilized microsomes by h.p.l.c. chromatography using detergent elution from a novel column that mimics phospholipid membranes. This preparation exhibits a specific content of 2 nm P-450/mg protein and a turnover number of 1,500pm DMBA/nm P-450/minutes. A polyclonal antisera raised against this preparation provides a single western blot corresponding to the 57Kd ACTH sensitive protein. This antibody did not blot microsomal P-450 c21, nor did selected antibodies from known families react with this adrenal P-450 protein, suggesting substantial sequence differences from known P-450's.

  5. Non-natural olefin cyclopropanation catalyzed by diverse cytochrome P450s and other hemoproteins.

    PubMed

    Heel, Thomas; McIntosh, John A; Dodani, Sheel C; Meyerowitz, Joseph T; Arnold, Frances H

    2014-11-24

    Recent work has shown that engineered variants of cytochrome P450BM3 (CYP102A1) efficiently catalyze non-natural reactions, including carbene and nitrene transfer reactions. Given the broad substrate range of natural P450 enzymes, we set out to explore if this diversity could be leveraged to generate a broad panel of new catalysts for olefin cyclopropanation (i.e., carbene transfer). Here, we took a step towards this goal by characterizing the carbene transfer activities of four new wild-type P450s that have different native substrates. All four were active and exhibited a range of product selectivities in the model reaction: cyclopropanation of styrene by using ethyl diazoacetate (EDA). Previous work on P450BM3 demonstrated that mutation of the axial coordinating cysteine, universally conserved among P450 enzymes, to a serine residue, increased activity for this non-natural reaction. The equivalent mutation in the selected P450s was found to activate carbene transfer chemistry both in vitro and in vivo. Furthermore, serum albumins complexed with hemin were also found to be efficient in vitro cyclopropanation catalysts.

  6. Improving the cytochrome P450 enzyme system for electrode-driven biocatalysis of styrene epoxidation.

    PubMed

    Mayhew, M P; Reipa, V; Holden, M J; Vilker, V L

    2000-01-01

    Cytochrome P450 enzymes catalyze a vast array of oxidative and reductive biotransformations that are potentially useful for industrial and pharmaceutical syntheses. Factors such as cofactor utilization and slow reaction rates for nonnatural substrates limit their large-scale usefulness. This paper reports several improvements that make the cytochrome P450cam enzyme system more practical for the epoxidation of styrene. NADH coupling was increased from 14 to 54 mol %, and product turnover rate was increased from 8 to 70 min(-1) by introducing the Y96F mutation to P450cam. Styrene and styrene oxide mass balance determinations showed different product profiles at low and high styrene conversion levels. For styrene conversion less than about 25 mol %, the stoichiometry between styrene consumption and styrene oxide formation was 1:1. At high styrene conversion, a second doubly oxidized product, alpha-hydroxyacetophenone, was formed. This was also the exclusive product when Y96F P450cam acted on racemic, commercially available styrene oxide. The alpha-hydroxyacetophenone product was suppressed in reactions where styrene was present at saturating concentrations. Finally, styrene epoxidation was carried out in an electroenzymatic reactor. In this scheme, the costly NADH cofactor and one of the three proteins (putidaredoxin reductase) are eliminated from the Y96F P450cam enzyme system. PMID:10933836

  7. Polar bear hepatic cytochrome P450: Immunochemical quantitation, EROD/PROD activity and organochlorines

    SciTech Connect

    Letcher, R.J.; Norstrom, R.J. |

    1994-12-31

    Polar bears (Ursus maritimus) are an ubiquitous mammal atop the arctic marine food chain and bioaccumulate lipophilic environmental contaminants. Antibodies prepared against purified rat liver cytochrome P450-1 Al, -1 A2, -2Bl and -3Al enzymes have been found to cross-react with structurally-related orthologues present in the hepatic microsomes of wild polar bears, immunochemically determined levels of P450-1 A and -2B proteins in polar bear liver relative to liver of untreated rats suggested enzyme induction, probably as a result of exposure to xenobiotic contaminants. Optical density quantitation of the most immunochemically responsive isozymes P450-I Al, -IA2 and -2Bi to polygonal rabbit anti-rat P450-IA/IA2 sera and -2BI antibodies in hepatic microsomes of 13 adult male polar bars from the Resolute Bay area of the Canadian Arctic is presented. Correlations with EROD and PROD catalytic activities and levels of organochlorines, such as polychlorinated biphenyls (PCBs), 1,1-dichloro-2,2-bis(4-chlorophenyl)ethene (p,p-DDE) and their methyl sulfone (MeSO2-) metabolites are made to determine if compound-specific enzyme induction linkages exist. Inter-species immunochemical quantitation of isozymic P450 cytochromes can serve as an indicator of exposure to biologically active contaminant.

  8. Role of inducer binding in cytochrome P-450 IA2-mediated uroporphyrinogen oxidation.

    PubMed

    Jacobs, J M; Sinclair, P R; Lambrecht, R W; Sinclair, J F; Jacobs, N J

    1990-01-01

    The oxidation of uroporphyrinogen, an intermediate of the heme biosynthetic pathway, by methylcholanthrene-inducible isozymes(s) of cytochrome P-450 has been proposed to play a role in the development of chemically induced uroporphyria. Prior work from this laboratory indicated that although addition of 3,4,3',4'-tetrachlorobiphenyl is required for uroporphyrinogen oxidation by methylcholanthrene-induced chick embryo liver microsomes, this biphenyl is not required for the oxidation catalyzed by hepatic microsomes from methylcholanthrene-induced rodents. Here we investigated whether rodent microsomes catalyze uroporphyrinogen oxidation without addition of 3,4,3',4'-tetrachlorobiphenyl because the chemical used as an inducer remains bound to cytochrome P-450. Hepatic microsomes containing almost no residual inducer were isolated from rats treated with a low dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). These microsomes oxidized uroporphyrinogen at high rates without addition of 3,4,3',4'-tetrachlorobiphenyl. Inducer-free microsomal cytochrome P-450 was also obtained by inducing cytochrome P-450 in rats and mice with isosafrole, which was then removed from the isolated microsomes by butanol treatment. This procedure resulted in microsomes with high activity for uroporphyrinogen oxidation. Furthermore, addition of chlorobiphenyl to these inducer-free microsomes was inhibitory. Hepatic microsomes from isosafrole-induced C57BL/6 and DBA mice, rendered inducer-free by butanol treatment, oxidized uroporphyrinogen at the same rate even though these two strains differ markedly in their susceptibility to chemically induced uroporphyria. We conclude that uroporphyrinogen oxidation is catalyzed by cytochrome P-450 that is free of inducer.

  9. Mass spectrometry-based proteomic analysis of human liver cytochrome(s) P450

    SciTech Connect

    Shrivas, Kamlesh; Mindaye, Samuel T.; Getie-Kebtie, Melkamu; Alterman, Michail A.

    2013-02-15

    The major objective of personalized medicine is to select optimized drug therapies and to a large degree such mission is determined by the expression profiles of cytochrome(s) P450 (CYP). Accordingly, a proteomic case study in personalized medicine is provided by the superfamily of cytochromes P450. Our knowledge about CYP isozyme expression on a protein level is very limited and based exclusively on DNA/mRNA derived data. Such information is not sufficient because transcription and translation events do not lead to correlated levels of expressed proteins. Here we report expression profiles of CYPs in human liver obtained by mass spectrometry (MS)-based proteomic approach. We analyzed 32 samples of human liver microsomes (HLM) of different sexes, ages and ethnicity along with samples of recombinant human CYPs. We have experimentally confirmed that each CYP isozyme can be effectively differentiated by their unique isozyme-specific tryptic peptide(s). Trypsin digestion patterns for almost 30 human CYP isozymes were established. Those findings should assist in selecting tryptic peptides suitable for MS-based quantitation. The data obtained demonstrate remarkable differences in CYP expression profiles. CYP2E1, CYP2C8 and CYP4A11 were the only isozymes found in all HLM samples. Female and pediatric HLM samples revealed much more diverse spectrum of expressed CYPs isozymes compared to male HLM. We have confirmed expression of a number of “rare” CYP (CYP2J2, CYP4B1, CYP4V2, CYP4F3, CYP4F11, CYP8B1, CYP19A1, CYP24A1 and CYP27A1) and obtained first direct experimental data showing expression of such CYPs as CYP2F1, CYP2S1, CYP2W1, CYP4A22, CYP4X1, and CYP26A1 on a protein level. - Highlights: ► First detailed proteomic analysis of CYP isozymes expression in human liver ► Trypsin digestion patterns for almost 30 human CYP isozymes established ► The data obtained demonstrate remarkable differences in CYP expression profiles. ► Female HLM samples revealed more

  10. Evaluation of the assumptions of an ontogeny model of rat hepatic cytochrome P450 activity.

    PubMed

    Alcorn, Jane; Elbarbry, Fawzy A; Allouh, Mohammed Z; McNamara, Patrick J

    2007-12-01

    We previously reported an ontogeny model of hepatic cytochrome P450 (P450) activity that predicts in vivo P450 elimination from in vitro intrinsic clearance. The purpose of this study was to conduct investigations into key assumptions of the P450 ontogeny model using the developing rat model system. We used two developmentally dissimilar enzymes, CYP2E1 and CYP1A2, and male rats (n = 4) at age groups representing critical developmental stages. Total body and liver weights and hepatic microsomal protein contents were measured. Following high-performance liquid chromatography analysis, apparent K(M) and V(max) estimates were calculated using nonlinear regression analysis for CYP2E1- and CYP1A2-mediated chlorzoxazone 6-hydroxylation and methoxyresorufin O-dealkylation, and V(max) estimates for p-nitrophenol and phenacetin hydroxylations, respectively. Hepatic scaling factors and V(max) values provided estimates for infant scaling factors (ISF). The data show microsomal protein contents increased with postnatal age and reached adult values after postnatal day (PD) 7. Apparent K(M) values were similar at all developmental stages except at < or =PD7. Developmental increases in probe substrate V(max) values did not correlate with the biphasic increase in immunoquantifiable P450. The activity of two different probe substrates for each P450 covaried as a function of age. A plot of observed ISF values as a function of age reflected the developmental pattern of rat hepatic P450. In summation, these observations diverge from several of the model's assumptions. Further investigations are required to explain these inconsistencies and to investigate whether the developing rat may provide a predictive paradigm for pediatric risk assessment for P450-mediated elimination processes.

  11. Use of Human Plasma Samples to Identify Circulating Drug Metabolites that Inhibit Cytochrome P450 Enzymes.

    PubMed

    Eng, Heather; Obach, R Scott

    2016-08-01

    Drug interactions elicited through inhibition of cytochrome P450 (P450) enzymes are important in pharmacotherapy. Recently, greater attention has been focused on not only parent drugs inhibiting P450 enzymes but also on possible inhibition of these enzymes by circulating metabolites. In this report, an ex vivo method whereby the potential for circulating metabolites to be inhibitors of P450 enzymes is described. To test this method, seven drugs and their known plasma metabolites were added to control human plasma at concentrations previously reported to occur in humans after administration of the parent drug. A volume of plasma for each drug based on the known inhibitory potency and time-averaged concentration of the parent drug was extracted and fractionated by high-pressure liquid chromatography-mass spectrometry, and the fractions were tested for inhibition of six human P450 enzyme activities (CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4). Observation of inhibition in fractions that correspond to the retention times of metabolites indicates that the metabolite has the potential to contribute to P450 inhibition in vivo. Using this approach, norfluoxetine, hydroxyitraconazole, desmethyldiltiazem, desacetyldiltiazem, desethylamiodarone, hydroxybupropion, erythro-dihydrobupropion, and threo-dihydrobupropion were identified as circulating metabolites that inhibit P450 activities at a similar or greater extent as the parent drug. A decision tree is presented outlining how this method can be used to determine when a deeper investigation of the P450 inhibition properties of a drug metabolite is warranted. PMID:27271369

  12. Cytochrome P450 and organochlorine contaminants in black-crowned night-herons from the Chesapeake Bay region, USA

    USGS Publications Warehouse

    Rattner, B.A.; Melancon, M.J.; Rice, C.P.; Riley, W.; Eisemann, J.; Hines, R.K.

    1997-01-01

    Black-crowned night-heron (Nycticorax nycticorax) offspring were collected from a relatively uncontaminated coastal reference site (next to Chincoteague National Wildlife Refuge, VA, USA) and two sites in the Chesapeake Bay watershed (Baltimore Harbor, MD and Rock Creek Park, Washington, D.C., USA). Hepatic microsomal activities of benzyloxyresorufin-O-dealkylase and ethoxyresorufin-O-dealkylase were significantly elevated (up to sixfold and ninefold induction, respectively) in pipping embryos from the Baltimore Harbor colony compared to the reference site, whereas values in embryos from the Rock Creek Park colony were intermediate. Concentrations of organochlorine pesticides and metabolites in pipping embryos from both sites in the Chesapeake watershed were greater than at the reference site, but below known threshold for reproductive impairment. However, concentrations of 10 arylhydrocarbon-receptor active PCB congeners and estimated toxic equivalents were up to 37-fold greater in embryos collected from these two sites in the Chesapeake Bay region, with values for toxic congeners 77 and 126 exceeding those observed in pipping heron embryos from the Great Lakes. Monooxygenase activity of pipping embryos was frequently associated with concentrations of organochlorine contaminants and toxic equivalents (r = 0.30 to 0.59), providing further evidence of the value of cytochrome P450 as a biomarker of organic contaminant exposure. Organochlorine contaminant levels were greater in 10-d-old nestlings from Baltimore Harbor than the reference site, but had no apparent effect on monooxygenase activity or growth. These findings demonstrate induction of cytochrome P450 in pipping black-crowned night-heron embryos in the Chesapeake Bay region, probably by exposure to PCB congeners of local origin, and the accumulation of organochlorine pesticides and metabolites in nestling herons from Baltimore Harbor.

  13. Cytochrome P450 and organochlorine contaminants in black-crowned night-herons from the Chesapeake Bay region, USA

    SciTech Connect

    Rattner, B.A.; Melancon, M.J.; Rice, C.P.; Riley, W. Jr.; Eisemann, J.; Hines, R.K.

    1997-11-01

    Black-crowned night-heron offspring were collected from a relatively uncontaminated coastal reference site and two sites in the Chesapeake Bay watershed. Hepatic microsomal activities of benzyloxyresorufin-O-dealkylase and ethoxyresorufin-O-dealkylase were elevated in pipping embryos from the Baltimore Harbor colony compared to the reference site, whereas values in embryos from the Rock Creek Park colony were intermediate. Concentrations of organochlorine pesticides and metabolites in pipping embryos from both sites in the Chesapeake watershed were greater than at the reference site but below the known threshold for reproductive impairment. However, concentrations of 10 arylhydrocarbon receptor-active polychlorinated biphenyl (PCB) congeners and estimated toxic equivalents were up to 37-fold greater in embryos collected from these two sites in the Chesapeake Bay region, with values for toxic congeners 77 and 126 exceeding those observed in pipping heron embryos from the Great Lakes. Monooxygenase activity of pipping embryos was associated with concentrations of several organochlorine pesticides, total PCBs, arylhydrocarbon receptor-active PCB congeners, and toxic equivalents, providing further evidence of the value of cytochrome P450 as a biomarker of organic contaminant exposure. Organochlorine contaminant levels were greater in 10-d-old nestlings from Baltimore Harbor than the reference site but had no apparent effect on monooxygenase activity or growth. These findings demonstrate induction of cytochrome P450 in pipping black-crowned night-heron embryos in the Chesapeake Bay region, probably by exposure to PCB congeners of local origin, and the accumulation of organochlorine pesticides and metabolites in nestling herons from Baltimore Harbor. Biomonitoring and additional waterbird species that appear to be more sensitive to PCBs than black-crowned night-herons is recommended to document health of waterbirds and remediation of the Chesapeake Bay.

  14. Induction of cytochrome P-450 1A1 in human hepatoma HepG2 and lung carcinoma NCI-H322 cells by motorcycle exhaust particulate.

    PubMed

    Ueng, T H; Hu, S H; Chen, R M; Wang, H W; Kuo, M L

    2000-05-26

    The effects of motorcycle exhaust particulate (MEP) on human cytochrome P-450 (P-450)-dependent monooxygenases were determined using human hepatoma cell line HepG2 and lung carcinoma cell line NCI-H322 treated with organic extracts of MEP from a two-stroke engine. Gas chromatography and mass spectrometry analysis of MEP extract revealed the presence of carcinogens benzo[a]pyrene, benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[g,h,i]perylene, chrysene, and indeno[1,2,3-c,d]pyrene in the chemical mixture. Treatment with MEP extract produced concentration- and time-dependent increases of monooxygenase activity in HepG2 cells. Treatment of the cells with 100 microg/ ml MEP extract for 24 h markedly increased benzo[a]pyrene hydroxylation, 7-ethoxycoumarin, and 7-ethoxyresorufin O-deethylation activities in microsomes. Immunoblot analysis of microsomal proteins using mouse monoclonal antibody 1-12-3 against P-450 1A1 revealed that MEP extract induced a P-450-immunorelated protein in the hepatoma cells. RNA blot analysis of cellular total RNA using a human P-450 1A1 3'-end cDNA probe showed that MEP extract increased the level of a hybridizable P-450 mRNA. These P-450 1A1 inductive effects of MEP extract were similar to those from treatment with 10 microM benzo[a]pyrene or 3-methylcholanthrene (3-MC) in HepG2 cells. Treatment of lung carcinoma NCI-H322 cells with 100 microg/ml MEP extract, 10 microM benzo[a]pyrene, or 3-MC resulted in induction of monooxygenase activity, protein, and mRNA of P-450 1A1, similar to the induction observed with the hepatoma cells. The present study demonstrates that MEP extract has the ability to induce human hepatic and pulmonary P-450 1A1 in the liver- and lung-derived cell lines, and the induction involves a pretranslational mechanism. Induction of the human hepatic and pulmonary P-450 1A1 in vitro may provide important information in the assessment of MEP metabolism and toxicity in humans.

  15. Ab Initio Electronic Structure Calculations of Cytochrome P450 -- Ligand Interactions

    NASA Astrophysics Data System (ADS)

    Segall, M. D.; Payne, M. C.; Ellis, S. W.; Tucker, G. T.

    1997-03-01

    The Cytochrome P450 superfamily of enzymes are of great interest in pharmacology as they participate in an enormous range of physiological processes including drug deactivation and xenobiotic detoxification. We apply ab initio electronic structure calculations to model the interactions of the haem molecule at the P450 active site with substrate and inhibitor ligands. These calculations, based on density function theory, were performed with the CETEP code which uses a plane wave basis set and pseudopotentials to perform efficient LDA, GGA and spin dependent calculations. A change in the spin state of the haem iron atom is observed on binding of a substrate molecule, consistent with the accepted reaction mechanism.

  16. Purification of a sheep liver cytochrome P-450 from the P450IIIA gene subfamily. Its contribution to the N-dealkylation of veterinary drugs.

    PubMed

    Pineau, T; Galtier, P; Bonfils, C; Derancourt, J; Maurel, P

    1990-03-01

    Oral administration of troleandomycin at a dose of 100 mg/kg/day for 6 days to three adult male Lacaune sheep produced a 1.6-fold increase in specific content of liver microsomal cytochrome P-450. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis, microsomal preparations from treated animals exhibited a strong band in the zone of electrophoretic mobility of cytochromes P-450. This band corresponded to a cytochrome P-450 which cross-reacted with rabbit P450IIIA6 antibodies, as demonstrated by immunoblotting. The ovine isozyme was purified to electrophoretic homogeneity by means of successive DEAE cellulose, CM cellulose and hydroxylapatite chromatographic separations. This hemoprotein had an apparent molecular weight of 52 kD as determined by calibrated sodium dodecyl sulfate-polyacrylamide gel electrophoresis and was characterized in terms of spectral data, NH2-terminal amino acid sequence, immunologic and catalytic properties. This study revealed some interspecies differences with the orthologous rabbit isozyme. The contribution of this form to the N-demethylation of erythromycin and of three veterinary drugs: chlorpromazine, chlorpheniramine and bromhexine was demonstrated from inhibition by TAO, from immunoinhibition studies, using polyclonal antibodies raised in rabbit and from the existence of significant correlations between its microsomal level and these N-demethylase activities. In contrast, the results suggest that ovine P450IIIA could not be predominantly involved in the N-dealkylation of benzphetamine, ephedrine, ivermectine or spiramycin. PMID:2310415

  17. Purification and characterization of a benzene hydroxylase: A cytochrome P-450 from rat liver mitochondria

    SciTech Connect

    Karaszkiewicz, J.W.

    1989-01-01

    This laboratory previously demonstrated that incubation of ({sup 14}C)benzene with isolated mitochondria resulted in the formation of mtDNA adducts. Since benzene is incapable of spontaneously covalently binding to nuclei acids, it was hypothesized that enzyme(s) present in the organelle metabolized benzene to reactive derivatives. We have purified, to electrophoretic homogeneity, a 52 kDa cytochrome P-450 from liver mitoplasts which metabolizes benzene to phenol. The enzyme has a K{sub M} for benzene of 0.012 mM, and a V{sub MAX} of 22.6 nmol phenol/nmol P-450/10 min, and requires NADPH, adrenodoxin, and adrenodoxin reductase for activity. Activity also can be reconstituted with microsomal cytochrome P-450 reductase. Benzene hydroxylase activity could be inhibited by carbon monoxide and SKF-525A, and by specific inhibitors of microsomal benzene metabolism. The purified enzyme oxidized phenol, forming catechol; aminopyrine N-demethylase activity was also demonstrated. These data confirm that a cytochrome P-450 of mitochondrial origin is involved in benzene metabolism, and indicate a role for the mitochondrion in xenobiotic activation.

  18. Structure and function of NADPH-cytochrome P450 reductase and nitric oxide synthase reductase domain

    SciTech Connect

    Iyanagi, Takashi . E-mail: iyanagi@spring8.or.jp

    2005-12-09

    NADPH-cytochrome P450 reductase (CPR) and the nitric oxide synthase (NOS) reductase domains are members of the FAD-FMN family of proteins. The FAD accepts two reducing equivalents from NADPH (dehydrogenase flavin) and FMN acts as a one-electron carrier (flavodoxin-type flavin) for the transfer from NADPH to the heme protein, in which the FMNH {sup {center_dot}}/FMNH{sub 2} couple donates electrons to cytochrome P450 at constant oxidation-reduction potential. Although the interflavin electron transfer between FAD and FMN is not strictly regulated in CPR, electron transfer is activated in neuronal NOS reductase domain upon binding calmodulin (CaM), in which the CaM-bound activated form can function by a similar mechanism to that of CPR. The oxygenated form and spin state of substrate-bound cytochrome P450 in perfused rat liver are also discussed in terms of stepwise one-electron transfer from CPR. This review provides a historical perspective of the microsomal mixed-function oxidases including CPR and P450. In addition, a new model for the redox-linked conformational changes during the catalytic cycle for both CPR and NOS reductase domain is also discussed.

  19. Substrate Recognition by the Multifunctional Cytochrome P450 MycG in Mycinamicin Hydroxylation and Epoxidation Reactions*

    PubMed Central

    Li, Shengying; Tietz, Drew R.; Rutaganira, Florentine U.; Kells, Petrea M.; Anzai, Yojiro; Kato, Fumio; Pochapsky, Thomas C.; Sherman, David H.; Podust, Larissa M.

    2012-01-01

    The majority of characterized cytochrome P450 enzymes in actinomycete secondary metabolic pathways are strictly substrate-, regio-, and stereo-specific. Examples of multifunctional biosynthetic cytochromes P450 with broader substrate and regio-specificity are growing in number and are of particular interest for biosynthetic and chemoenzymatic applications. MycG is among the first P450 monooxygenases characterized that catalyzes both hydroxylation and epoxidation reactions in the final biosynthetic steps, leading to oxidative tailoring of the 16-membered ring macrolide antibiotic mycinamicin II in the actinomycete Micromonospora griseorubida. The ordering of steps to complete the biosynthetic process involves a complex substrate recognition pattern by the enzyme and interplay between three tailoring modifications as follows: glycosylation, methylation, and oxidation. To understand the catalytic properties of MycG, we structurally characterized the ligand-free enzyme and its complexes with three native metabolites. These include substrates mycinamicin IV and V and their biosynthetic precursor mycinamicin III, which carries the monomethoxy sugar javose instead of the dimethoxylated sugar mycinose. The two methoxy groups of mycinose serve as sensors that mediate initial recognition to discriminate between closely related substrates in the post-polyketide oxidative tailoring of mycinamicin metabolites. Because x-ray structures alone did not explain the mechanisms of macrolide hydroxylation and epoxidation, paramagnetic NMR relaxation measurements were conducted. Molecular modeling based on these data indicates that in solution substrate may penetrate the active site sufficiently to place the abstracted hydrogen atom of mycinamicin IV within 6 Å of the heme iron and ∼4 Å of the oxygen of iron-ligated water. PMID:22952225

  20. DISRUPTION OF THE SACCHAROMYCES CEREVISIAE GENE FOR NADPH-CYTOCHROME P450-REDUCTASE CAUSES INCREASED SENSITIVITY TO KETOCONAZOLE

    EPA Science Inventory

    Strains of Saccharomyces cerevisiae deleted in the NADPH-cytochrome P450 reductase gene by transplacement are 200-fold more sensitive to ketoconazole, an inhibitor of the cytochrome P450 lanosterol 14-demethylase. Resistance is restored through complementation by the plasmid-born...

  1. [Overexpression, homology modeling and coenzyme docking studies of the cytochrome P450nor2 from Cylindrocarpon tonkinense].

    PubMed

    Li, N; Zhang, Y Z; Li, D D; Niu, Y H; Liu, J; Li, S X; Yuan, Y Z; Chen, S L; Geng, H; Liu, D L

    2016-01-01

    Cytochrome P450nor catalyzes an unusual reaction that transfers electrons from NADP/NADPH to bound heme directly. To improve the expression level of P450nor2 from Cylindrocarpon tonkinense (C.P450nor2), Escherichia coli system was utilized to substitute the yeast system we constructed for expression of the P450nor2 gene, and the protein was purified in soluble form using Ni(+)-NTA affinity chromatography. In contrast to P450nor from Fusarium oxysporum (F.P450nor) and P450nor1 from Cylindrocarpon tonkinense (C.P450nor1), C.P450nor2 shows a dual specificity for using NADH or NADPH as electron donors. The present study developed a computational approach in order to illustrate the coenzyme specificity of C.P450nor2 for NADH and NADPH. This study involved homology modeling of C.P450nor2 and docking analyses of NADH and NADPH into the crystal structure of F.P450nor and the predictive model of C.P450nor2, respectively. The results suggested that C.P450nor2 and F.P450nor have different coenzyme specificity for NADH and NADPH; whilst the space around the B'-helix of the C.P450nor2, especially the Ser79 and Gly81, play a crucial role for the specificity of C.P450nor2. In the absence of the experimental structure of C.P450nor2, we hope that our model will be useful to provide rational explanation on coenzyme specificity of C.P450nor2.

  2. In Silico Docking of Ligands to Drug Oxidation Enzymes Cytochrome P450 3A4 and Cytochrome P450 1A2.

    NASA Astrophysics Data System (ADS)

    Smith, David; Guglielmon, Jonathan; Glenn, Marsch; Peter, Guengerich F.

    2009-03-01

    Cytochrome P450 3A4 (CYP3A4) and Cytochrome P450 1A2 (CYP1A2) oxidize most drugs in humans. Protein modeling toolkits from OpenEye Scientific Software were used to examine the interaction of drug substrates with CYP3A4 and CYP1A2. Conformers and partial atomic charges were generated for each drug molecule. User-defined volumes were defined around CYP3A4 and CYP1A2 active sites. Ligands were docked assuming protein and substrates as rigid bodies. To assess rigid docking accuracy, x-ray diffraction coordinates of CYP3A4-erythromycin and CYP3A4-metyrapone complexes were obtained. Rigid re-docking of erythromycin and metyrapone into CYP3A4 yielded poses similar to the crystal structures. Rigid docking revealed two other energetically-favorable CYP3A4-metyrapone poses. The best poses were obtained by using all the Open Eye scoring functions. Optimization of protein-ligand interactions within 5-10 Angstroms of the docked ligand was then performed using the Merck Molecular Force Field in which the protein was assumed to be flexible and the ligand to be rigid. Nearby protein residues pulled slightly closer to the substrate, reducing the volume of the active site.

  3. Hepatic microsomal cytochromes P450 in mink fed Saginaw Bay carp (SBC)

    USGS Publications Warehouse

    Melancon, M.J.; LeCaptain, L.; Rattner, B.A.; Heaton, S.; Aulerich, R.; Tillitt, D.; Stegeman, John J.; Woodin, B.

    1992-01-01

    Livers from mink fed diets containing 0% (n = 12), 10% (n = 11), 20% (n = 12) and 40% (n = 10) SBC for 6 months contained 0.1, 2.2, 3.6, and 6.3 ug/g total PCBs, respectively. Hepatic microsomes were prepared and assayed for protein, arylhydrocarbon hydroxylase (AHH), benzyloxyresorufin-O-dealkylase (BROD), ethoxy-ROD (ER0D), pentoxy-ROD (PROD), and ethoxycoumarin-OD (ECOD). Mink fed SBC had increased AHH, EROD, and ECOD (group means 2.2-3.4 X control means), decreased BROD and unchanged PROD (the latter 2 assays indicators for phenobarbital-type induction in mammals). Three samples from each group were examined by western blot using a polyclonal anti-P450llB antibody and a monoclonal anti-P450lA antibody (MAb 1-12-3). Mink fed SBC showed induction of a protein recognized by anti-P450lA (8 X control), but had little protein recognized by anti-P450IlB. The monooxygenase activities and western blot data give a consistent picture of MC-type but not PB-type induction in mink fed SBC.

  4. UNDERSTANDING THE MECHANISM OF CYTOCHROME P450 3A4: RECENT ADVANCES AND REMAINING PROBLEMS

    PubMed Central

    Sevrioukova, Irina F.; Poulos, Thomas L.

    2013-01-01

    Cytochromes P450 (CYPs) represent a diverse group of heme-thiolate proteins found in almost all organisms. CYPs share a common protein fold but differ in substrate selectivity and catalyze a wide variety of monooxygenation reactions via activation of molecular oxygen. Among 57 human P450s, the 3A4 isoform (CYP3A4) is the most abundant and the most important because it metabolizes the majority of the administered drugs. A remarkable feature of CYP3A4 is its extreme promiscuity in substrate specificity and cooperative substrate binding, which often leads to undesirable drug-drug interactions and toxic side effects. Owing to its importance in drug development and therapy, CYP3A4 has been the most extensively studied mammalian P450. In this review we provide an overview on recent progress and remaining problems in the CYP3A4 research. PMID:23018626

  5. Export of cytochrome P450 105D1 to the periplasmic space of Escherichia coli.

    PubMed

    Kaderbhai, M A; Ugochukwu, C C; Kelly, S L; Lamb, D C

    2001-05-01

    CYP105D1, a cytochrome P450 from Streptomyces griseus, was appended at its amino terminus to the secretory signal of Escherichia coli alkaline phosphatase and placed under the transcriptional control of the native phoA promoter. Heterologous expression in E. coli phosphate-limited medium resulted in abundant synthesis of recombinant CYP105D1 that was translocated across the bacterial inner membrane and processed to yield authentic, heme-incorporated P450 within the periplasmic space. Cell extract and whole-cell activity studies showed that the periplasmically located CYP105D1 competently catalyzed NADH-dependent oxidation of the xenobiotic compounds benzo[a]pyrene and erythromycin, further revealing the presence in the E. coli periplasm of endogenous functional redox partners. This system offers substantial advantages for the application of P450 enzymes to whole-cell biotransformation strategies, where the ability of cells to take up substrates or discard products may be limited.

  6. Purification and immunochemical detections of ?-naphthoflavone- and phenobarbital-induced avian cytochrome P450 enzymes

    USGS Publications Warehouse

    Brown, R.L.; Levi, P.E.; Hodgson, E.; Melancon, M.J.

    1996-01-01

    Livers from mallards (Anas platyrhynchos) were treated with either -naphthoflavone (50 mg/kg) or phenobarbital (70 mg/kg). Purification of induced hepatic cytochrome P450 was accomplished using both DEAE and hydroxyapatite columns, as well as sodium dodecyl sulfate polyacrylamide gel electrophoresis separation. Polyclonal antibodies to these proteins were then produced in young male New Zealand White rabbits. ?-naphthoflavone (?NF)- and phenobarbital(PB)-treated red-winged blackbird, screech owl, European starling and lesser scaup liver microsomes were analyzed in western blots for species cross-reactivity. Although all four of these avian species exhibited cross-reactivity with antibodies to ?NF-induced mallard P450, all but the lesser scaup revealed a protein of higher molecular weight than that of the ?NF-induced mallard. In addition, only the lesser scaup exhibited cross-reactivity with the anti-PB-induced mallard P450 antibodies.

  7. Identification and treatment of heme depletion attributed to overexpression of a lineage of evolved P450 monooxygenases.

    PubMed

    Michener, Joshua K; Nielsen, Jens; Smolke, Christina D

    2012-11-20

    Recent advances in metabolic engineering have demonstrated that microbial biosynthesis can provide a viable alternative to chemical synthesis for the production of bulk and fine chemicals. Introduction of a new biosynthetic pathway typically requires the expression of multiple heterologous enzymes in the production host, which can impose stress on the host cell and, thereby, limit performance of the pathway. Unfortunately, analysis and treatment of the host stress response can be difficult, because there are many sources of stress that may interact in complex ways. We use a systems biological approach to analyze the stress imposed by expressing different enzyme variants from a lineage of soluble P450 monooxygenases, previously evolved for heterologous activity in Saccharomyces cerevisiae. Our analysis identifies patterns of stress imposed on the host by heterologous enzyme overexpression that are consistent across the evolutionary lineage, ultimately implicating heme depletion as the major stress. We show that the monooxygenase evolution, starting from conditions of either high or low stress, caused the cellular stress to converge to a common level. Overexpression of rate-limiting enzymes in the endogenous heme biosynthetic pathway alleviates the stress imposed by expression of the P450 monooxygenases and increases the enzymatic activity of the final evolved P450 by an additional 2.3-fold. Heme overexpression also increases the total activity of an endogenous cytosolic heme-containing catalase but not a heterologous P450 that is membrane-associated. This work demonstrates the utility of combining systems and synthetic biology to analyze and optimize heterologous enzyme expression. PMID:23129650

  8. Short-term fasting alters cytochrome P450-mediated drug metabolism in humans.

    PubMed

    Lammers, Laureen A; Achterbergh, Roos; de Vries, Emmely M; van Nierop, F Samuel; Klümpen, Heinz-Josef; Soeters, Maarten R; Boelen, Anita; Romijn, Johannes A; Mathôt, Ron A A

    2015-06-01

    Experimental studies indicate that short-term fasting alters drug metabolism. However, the effects of short-term fasting on drug metabolism in humans need further investigation. Therefore, the aim of this study was to evaluate the effects of short-term fasting (36 h) on P450-mediated drug metabolism. In a randomized crossover study design, nine healthy subjects ingested a cocktail consisting of five P450-specific probe drugs [caffeine (CYP1A2), S-warfarin (CYP2C9), omeprazole (CYP2C19), metoprolol (CYP2D6), and midazolam (CYP3A4)] on two occasions (control study after an overnight fast and after 36 h of fasting). Blood samples were drawn for pharmacokinetic analysis using nonlinear mixed effects modeling. In addition, we studied in Wistar rats the effects of short-term fasting on hepatic mRNA expression of P450 isoforms corresponding with the five studied P450 enzymes in humans. In the healthy subjects, short-term fasting increased oral caffeine clearance by 20% (P = 0.03) and decreased oral S-warfarin clearance by 25% (P < 0.001). In rats, short-term fasting increased mRNA expression of the orthologs of human CYP1A2, CYP2C19, CYP2D6, and CYP3A4 (P < 0.05), and decreased the mRNA expression of the ortholog of CYP2C9 (P < 0.001) compared with the postabsorptive state. These results demonstrate that short-term fasting alters cytochrome P450-mediated drug metabolism in a nonuniform pattern. Therefore, short-term fasting is another factor affecting cytochrome P450-mediated drug metabolism in humans.

  9. Human Cytochrome P450 21A2, the Major Steroid 21-Hydroxylase

    PubMed Central

    Pallan, Pradeep S.; Wang, Chunxue; Lei, Li; Yoshimoto, Francis K.; Auchus, Richard J.; Waterman, Michael R.; Guengerich, F. Peter; Egli, Martin

    2015-01-01

    Cytochrome P450 (P450) 21A2 is the major steroid 21-hydroxylase, and deficiency of this enzyme is involved in ∼95% of cases of human congenital adrenal hyperplasia, a disorder of adrenal steroidogenesis. A structure of the bovine enzyme that we published previously (Zhao, B., Lei, L., Kagawa, N., Sundaramoorthy, M., Banerjee, S., Nagy, L. D., Guengerich, F. P., and Waterman, M. R. (2012) Three-dimensional structure of steroid 21-hydroxylase (cytochrome P450 21A2) with two substrates reveals locations of disease-associated variants. J. Biol. Chem. 287, 10613–10622), containing two molecules of the substrate 17α-hydroxyprogesterone, has been used as a template for understanding genetic deficiencies. We have now obtained a crystal structure of human P450 21A2 in complex with progesterone, a substrate in adrenal 21-hydroxylation. Substrate binding and release were fast for human P450 21A2 with both substrates, and pre-steady-state kinetics showed a partial burst but only with progesterone as substrate and not 17α-hydroxyprogesterone. High intermolecular non-competitive kinetic deuterium isotope effects on both kcat and kcat/Km, from 5 to 11, were observed with both substrates, indicative of rate-limiting C–H bond cleavage and suggesting that the juxtaposition of the C21 carbon in the active site is critical for efficient oxidation. The estimated rate of binding of the substrate progesterone (kon 2.4 × 107 m−1 s−1) is only ∼2-fold greater than the catalytic efficiency (kcat/Km = 1.3 × 107 m−1 s−1) with this substrate, suggesting that the rate of substrate binding may also be partially rate-limiting. The structure of the human P450 21A2-substrate complex provides direct insight into mechanistic effects of genetic variants. PMID:25855791

  10. Identification of the main human cytochrome P450 enzymes involved in safrole 1'-hydroxylation.

    PubMed

    Ueng, Yune-Fang; Hsieh, Chih-Hang; Don, Ming-Jaw; Chi, Chin-Wen; Ho, Li-Kang

    2004-08-01

    Safrole is a natural plant constituent, found in sassafras oil and certain other essential oils. The carcinogenicity of safrole is mediated through 1'-hydroxysafrole formation, followed by sulfonation to an unstable sulfate that reacts to form DNA adducts. To identify the main cytochrome P450 (P450) involved in human hepatic safrole 1'-hydroxylation (SOH), we determined the SOH activities of human liver microsomes and Escherichia coli membranes expressing bicistronic human P450s. Human liver (n = 18) microsomal SOH activities were in the range of 3.5-16.9 nmol/min/mg protein with a mean value of 8.7 +/- 0.7 nmol/min/mg protein. In human liver (n = 3) microsomes, the mean K(m) and V(max) values of SOH were 5.7 +/- 1.2 mM and 0.14 +/- 0.03 micromol/min/nmol P450, respectively. The mean intrinsic clearance (V(max)/K(m)) was 25.3 +/- 2.3 microL/min/nmol P450. SOH was sensitive to the inhibition by a CYP2C9 inhibitor, sulfaphenazole, and CYP2E1 inhibitors, 4-methylpyrazole and diethyldithiocarbamate. The liver microsomal SOH activity showed significant correlations with tolbutamide hydroxylation (r = 0.569) and chlorzoxazone hydroxylation (r = 0.770) activities, which were the model reactions catalyzed by CYP2C9 and CYP2E1, respectively. Human CYP2C9 and CYP2E1 showed SOH activities at least 2-fold higher than the other P450s. CYP2E1 showed an intrinsic clearance 3-fold greater than CYP2C9. These results demonstrated that CYP2C9 and CYP2E1 were the main P450s involved in human hepatic SOH.

  11. Significance of neuronal cytochrome P450 activity in opioid-mediated stress-induced analgesia.

    PubMed

    Hough, Lindsay B; Nalwalk, Julia W; Yang, Weizhu; Ding, Xinxin

    2014-08-26

    Stressful environmental changes can suppress nociceptive transmission, a phenomenon known as "stress-induced analgesia". Depending on the stressor and the subject, opioid or non-opioid mechanisms are activated. Brain μ opioid receptors mediate analgesia evoked either by exogenous agents (e.g. morphine), or by the release of endogenous opioids following stressful procedures. Recent work with morphine and neuronal cytochrome P450 (P450)-deficient mice proposed a signal transduction role for P450 enzymes in µ analgesia. Since µ opioid receptors also mediate some forms of stress-induced analgesia, the present studies assessed the significance of brain P450 activity in opioid-mediated stress-induced analgesia. Two widely-used models of opioid stress-induced analgesia (restraint and warm water swim) were studied in both sexes of wild-type control and P450-deficient (Null) mice. In control mice, both stressors evoked moderate analgesic responses which were blocked by pretreatment with the opioid antagonist naltrexone, confirming the opioid nature of these responses. Consistent with literature, sex differences (control female>control male) were seen in swim-induced, but not restraint-induced, analgesia. Null mice showed differential responses to the two stress paradigms. As compared with control subjects, Null mice showed highly attenuated restraint-induced analgesia, showing a critical role for neuronal P450s in this response. However, warm water swim-induced analgesia was unchanged in Null vs. control mice. Additional control experiments confirmed the absence of morphine analgesia in Null mice. These results are the first to show that some forms of opioid-mediated stress-induced analgesia require brain neuronal P450 activity.

  12. Directed-evolution analysis of human cytochrome P450 2A6 for enhanced enzymatic catalysis.

    PubMed

    Lee, Hwayoun; Kim, Joo-Hwan; Han, Songhee; Lim, Young-Ran; Park, Hyoung-Goo; Chun, Young-Jin; Park, Sung-Woo; Kim, Donghak

    2014-01-01

    Cytochrome P450 2A6 (P450 2A6) is the major enzyme responsible for the oxidation of coumarin, nicotine, and tobacco-specific nitrosamines in human liver. In this study, the catalytic turnover of coumarin oxidation was improved by directed-evolution analysis of P450 2A6 enzyme. A random mutant library was constructed using error-prone polymerase chain reaction (PCR) of the open reading frame of the P450 2A6 gene and individual mutant clones were screened for improved catalytic activity in analysis of fluorescent coumarin 7-hydroxylation. Four consecutive rounds of random mutagenesis and screening were performed and catalytically enhanced mutants were selected in each round of screening. The selected mutants showed the sequentially accumulated mutations of amino acid residues of P450 2A6: B1 (F209S), C1 (F209S, S369G), D1 (F209S, S369G, E277K), and E1 (F209S, S369G, E277K, A10V). E1 mutants displayed approximately 13-fold increased activity based on fluorescent coumarin hydroxylation assays at bacterial whole cell level. Steady-state kinetic parameters for coumarin 7-hydroxylation and nicotine oxidation were measured in purified mutant enzymes and indicated catalytic turnover numbers (kcat) of selected mutants were enhanced up to sevenfold greater than wild-type P450 2A6. However, all mutants displayed elevated Km values and therefore catalytic efficiencies (kcat/Km) were not improved. The increase in Km values was partially attributed to reduction in substrate binding affinities measured in the analysis of substrate binding titration. The structural analysis of P450 2A6 indicates that F209S mutation is sufficient to affect direct interaction of substrate at the active site. PMID:25343290

  13. Evolution of the scientific literature of cytochrome P450 from 1977 to 2008.

    PubMed

    Robert, Claude; Wilson, Concepción S; Guengerich, F Peter; Arreto, Charles-Daniel

    2010-02-01

    This study traces the evolution of the scientific literature on cytochrome P450 (P450) published during the last 30+ years (1977-2008). Using the Web of Science, P450 articles from the Science Citation Index Expanded published from 1977 to 2008 were retrieved and analyzed. The number of P450 papers has increased from 342 articles in 1977-1978 to 2,357 in 2007-2008, and the number of contributing countries has grown from 23 countries for 1977-1978 to 76 for 2007-2008. While the USA and Japan were the most productive countries, along with several industrialized countries (e.g. UK, Germany and Canada), two Asian countries have recently joined the group of leading countries (in 2007-2008 China ranked 4th and South Korea, 7th). During 1977-2008, the number of journals publishing papers in P450 research increased more than seven-fold (7.7): 94 journals in 1977-1978 and 724 in 2007-2008; however, citation by readers (as measured by the journal impact factor) of the top-ten leading journals increased only slightly from 3.25 for 1977-1978 to 3.81 for 2007-2008. While Biochemistry & Molecular Biology and Pharmacology and Pharmacy are the two main targeted subject areas for P450 research during the period considered, there has been a gradual shift from the biophysical and biochemical fields of interest to aspects of genomics and clinical approaches. The rapid evolution of P450 research in the last 30+ years was accompanied by important changes in the landscape of the contributing countries, in the subject domains, and consequently in the scientific journals targeted by researchers.

  14. Novel approaches to the use of cytochrome P450 activities in wildlife toxicity studies

    SciTech Connect

    VandenBerg, M.; Bosveld, A.T.C.

    1995-12-31

    Many wildlife toxicity studies, e.g. with avian species, use cytochrome P450 activities as markers for biological activities of environmental contaminants. It has been established that induction of CYP1A1 correlates with Ah-receptor mediated toxicity of dioxin-like compounds in many species. In addition, CYP1A1 plays a significant role in bioactivation of polycyclic aromatics. So far very few studies focused on the natural function of P450 isoenzymes in wildlife species. Besides classical hepatic CYP1A(1) associated activities, like EROD and AHH, several new techniques are available to study the activities of various CYP isoenzymes. Caffeine N-demethylation, testosterone and 17ss-estradiol hydroxylation patterns can provide new insights in the physiological function of P450 isoenzymes and the induction of the basal activities by chemicals. So far little interest was given to processes which occur after the DNA-receptor binding, e.g. changes in steroid hormone metabolism and pathways in environmental toxicology. This in spite of the fact that very subtle changes in steroid hormone levels may have significant physiological implications. This presentation will focus on some P450 activities, besides CYP1A(1), which might be important for development and reproduction. Some experimental approaches, limitations and techniques will be discussed which could lead to elucidation of the possible endocrine function of P450s.

  15. Inhibitory effects of H2-receptor antagonists on cytochrome P450 in male ICR mice.

    PubMed

    Kim, D H; Kim, E J; Han, S S; Roh, J K; Jeong, T C; Park, J H

    1995-08-01

    1. The present study was undertaken to examine the effects of H2-receptor antagonists including newly developed mifentidine derivatives, IY-80843 and IY-80845, on cytochrome P450(P450) in vitro and in vivo. 2. Initially, 3-methylcholanthrene-, phenobarbital-, ethanol- and dexamethasone-induced liver microsomes were prepared from male ICR mice to study in vitro effects of above chemicals on ethoxyresorufin O-deethylase(EROD), pentoxyresorufin O-dealkylase(PROD), p-nitrophenol hydroxylase and erythromycin N-demethylase(ERDM) activities, respectively. It was found that histamine, cimetidine and famotidine were not inhibitory to four enzyme activities. Meanwhile, mifentidine slightly inhibited EROD and PROD activities and its derivatives IY-80843 and IY-80845 strongly inhibited PROD, EROD and ERDM activities. 3. Prolongation of hexobarbital-induced sleeping time was determined in male ICR mice to confirm in vitro inhibitory effects of mifentidine and its derivatives in vivo. It was observed that cimetidine, mifentidine, IY-80843 and IY-80845 caused dose-dependent increases in the sleeping time, indicating the inhibition of P450 responsible for hexobarbital metabolism. 4. It was concluded that mifentidine and its derivatives are P450 inhibitors and that our newly synthesized IY-80843 is most inhibitory. 5. The present results indicate that mifentidine and its derivatives not only antagonise the H2-receptor but also inhibit P450 enzymes. PMID:7576828

  16. Preparation and characterization of monoclonal antibodies recognizing unique epitopes on sexually differentiated rat liver cytochrome P-450 isozymes.

    PubMed

    Morgan, E T; Rönnholm, M; Gustafsson, J A

    1987-07-14

    Cytochrome P-450 isozymes P-450(16 alpha), P-450(15 beta), and P-450DEa are immunochemically related, as indicated by mutual cross-reactivity with polyclonal antibody preparations. We have isolated five monoclonal antibodies to P-450(15 beta) and one antibody to P-450(16 alpha) that show selectivity for the respective antigens. High frequencies of cross-reactivity were observed, indicating a high degree of homology among P-450(16 alpha), P-450(15 beta), and P-450DEa. All of the P-450(15 beta-specific antibodies bound to the same epitope, or closely grouped epitopes, supporting this conclusion. The specificity of each monoclonal antibody was characterized by enzyme-linked immunosorbent assay. Western immunoblotting, and antibody-Sepharose immunoadsorption of solubilized rat liver microsomes. Antibodies F22 and F23, which were apparently identical, were specific for P-450(15 beta) by these criteria. However, the apparent specificities of antibodies F3 and F20 for P-450(15 beta), and of M16 for P-450(16 alpha), were highly dependent on the analytical technique used. The five anti-P-450(15 beta) antibodies all inhibited the catalytic activity of microsomal P-450(15 beta), by a maximum of 70%. However, they also produced a similar inhibition of microsomal P-450(16 alpha-specific antibody M16 and F23 have a low-affinity interaction with an epitope on P-450(16 alpha). The P-450(16 alpha)-specific antibody M16 was not inhibitory. The results indicate that the apparent specificity of a monoclonal antibody for an antigen determined by, e.g., Western blotting does not allow the conclusive identification of a protein in another system, e.g., immunoprecipitation of in vitro translation reaction products.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Pungent ginger components modulates human cytochrome P450 enzymes in vitro

    PubMed Central

    Li, Mian; Chen, Pei-zhan; Yue, Qing-xi; Li, Jing-quan; Chu, Rui-ai; Zhang, Wei; Wang, Hui

    2013-01-01

    Aim: Ginger rhizome is used worldwide as a spicy flavor agent. This study was designed to explore the potential effects of pungent ginger components, 6-, 8-, and 10-gingerol, on human cytochrome P450 (CYP450) enzymes that are responsible for the metabolism of many prescription drugs. Methods: The activities of human CYP2C9, CYP2C19, CYP2D6, and CYP3A4 were analyzed using Vivid P450 assay kits. The mRNA expression of CYP3A4 in human hepatocellular carcinoma cell line HepG2 was measured using quantitative real-time PCR assay. Results: All three gingerols potently inhibited CYP2C9 activity, exerted moderate inhibition on CYP2C19 and CYP3A4, and weak inhibion on CYP2D6. 8-Gingerol was the most potent in inhibition of P450 enzymes with IC50 values of 6.8, 12.5, 8.7, and 42.7 μmol/L for CYP2C9, CYP2C19, CYP3A4, and CYP2D6, respectively. By comparing the effects of gingerols on CYP3A4 with three different fluorescent substrate probes, it was demonstrated that the inhibition of gingerols on CYP3A4 had no substrate-dependence. In HepG2 cells, 8-gingerol and 10-gingerol inhibited, but 6-gingerol induced mRNA expression of CYP3A4. Conclusion: 6-, 8-, and 10-gingerol suppress human cytochrome P450 activity, while 8- and 10-gingerol inhibit CYP3A4 expression. The results may have an implication for the use of ginger or ginger products when combined with therapeutic drugs that are metabolized by cytochrome P450 enzymes. PMID:23770984

  18. The central role of mosquito cytochrome P450 CYP6Zs in insecticide detoxification revealed by functional expression and structural modelling

    PubMed Central

    Chandor-Proust, Alexia; Bibby, Jaclyn; Régent-Kloeckner, Myriam; Roux, Jessica; Guittard-Crilat, Emilie; Poupardin, Rodolphe; Riaz, Muhammad Asam; Paine, Mark; Dauphin-Villemant, Chantal; Reynaud, Stéphane; David, Jean-Philippe

    2013-01-01

    The resistance of mosquitoes to chemical insecticides is threatening vector control programmes worldwide. Cytochrome P450 monooxygenases (CYPs) are known to play a major role in insecticide resistance, allowing resistant insects to metabolize insecticides at a higher rate. Among them, members of the mosquito CYP6Z subfamily, like Aedes aegypti CYP6Z8 and its Anopheles gambiae orthologue CYP6Z2, have been frequently associated with pyrethroid resistance. However, their role in the pyrethroid degradation pathway remains unclear. In the present study, we created a genetically modified yeast strain overexpressing Ae. aegypti cytochrome P450 reductase and CYP6Z8, thereby producing the first mosquito P450–CPR (NADPH-cytochrome P450-reductase) complex in a yeast recombinant system. The results of the present study show that: (i) CYP6Z8 metabolizes PBAlc (3-phenoxybenzoic alcohol) and PBAld (3-phenoxybenzaldehyde), common pyrethroid metabolites produced by carboxylesterases, producing PBA (3-phenoxybenzoic acid); (ii) CYP6Z8 transcription is induced by PBAlc, PBAld and PBA; (iii) An. gambiae CYP6Z2 metabolizes PBAlc and PBAld in the same way; (iv) PBA is the major metabolite produced in vivo and is excreted without further modification; and (v) in silico modelling of substrate–enzyme interactions supports a similar role of other mosquito CYP6Zs in pyrethroid degradation. By playing a pivotal role in the degradation of pyrethroid insecticides, mosquito CYP6Zs thus represent good targets for mosquito-resistance management strategies. PMID:23844938

  19. Structural and Kinetic Basis of Steroid 17α,20-Lyase Activity in Teleost Fish Cytochrome P450 17A1 and Its Absence in Cytochrome P450 17A2*

    PubMed Central

    Pallan, Pradeep S.; Nagy, Leslie D.; Lei, Li; Gonzalez, Eric; Kramlinger, Valerie M.; Azumaya, Caleigh M.; Wawrzak, Zdzislaw; Waterman, Michael R.; Guengerich, F. Peter; Egli, Martin

    2015-01-01

    Cytochrome P450 (P450) 17A enzymes play a critical role in the oxidation of the steroids progesterone (Prog) and pregnenolone (Preg) to glucocorticoids and androgens. In mammals, a single enzyme, P450 17A1, catalyzes both 17α-hydroxylation and a subsequent 17α,20-lyase reaction with both Prog and Preg. Teleost fish contain two 17A P450s; zebrafish P450 17A1 catalyzes both 17α-hydroxylation and lyase reactions with Prog and Preg, and P450 17A2 is more efficient in pregnenolone 17α-hydroxylation but does not catalyze the lyase reaction, even in the presence of cytochrome b5. P450 17A2 binds all substrates and products, although more loosely than P450 17A1. Pulse-chase and kinetic spectral experiments and modeling established that the two-step P450 17A1 Prog oxidation is more distributive than the Preg reaction, i.e. 17α-OH product dissociates more prior to the lyase step. The drug orteronel selectively blocked the lyase reaction of P450 17A1 but only in the case of Prog. X-ray crystal structures of zebrafish P450 17A1 and 17A2 were obtained with the ligand abiraterone and with Prog for P450 17A2. Comparison of the two fish P450 17A-abiraterone structures with human P450 17A1 (DeVore, N. M., and Scott, E. E. (2013) Nature 482, 116–119) showed only a few differences near the active site, despite only ∼50% identity among the three proteins. The P450 17A2 structure differed in four residues near the heme periphery. These residues may allow the proposed alternative ferric peroxide mechanism for the lyase reaction, or residues removed from the active site may allow conformations that lead to the lyase activity. PMID:25533464

  20. Genetic and mass spectrometric tools for elucidating the physiological function(s) of cytochrome P450 enzymes from Mycobacterium tuberculosis.

    PubMed

    Ouellet, Hugues; Chow, Eric D; Guan, Shenheng; Cox, Jeffery S; Burlingame, Alma L; de Montellano, Paul R Ortiz

    2013-01-01

    Tuberculosis remains a leading cause of human mortality. The emergence of strains of Mycobacterium tuberculosis (Mtb), the causative agent, that are resistant to first- and second-line antitubercular drugs urges the development of new therapeutics. The genome of Mtb encodes 20 cytochrome P450 enzymes, at least some of which are potential candidates (CYP121, CYP125, and CYP128) for drug targeting. In this regard, we examined the specific role of CYP125 in the cholesterol degradation pathway, using genetic and mass spectrometric approaches. The analysis of lipid profiles from Mtb cells grown on cholesterol revealed that CYP125, by virtue of its C26-monooxygenase activity, is essential for cholesterol degradation, and, consequently, for the incorporation of side-chain carbon atoms into cellular lipids, as evidenced by an increase in the mass of the methyl-branched phthiocerol dimycocerosates (PDIM). Moreover, this work also led to the identification of cholest-4-en-3-one as a source of cellular toxicity. Herein, we describe the experimental procedures that led to elucidation of the physiological function of CYP125. A similar approach can be used to study other important Mtb P450 enzymes.

  1. The role of cytochrome P450s in polycyclic aromatic hydrocarbon carcinogenesis

    SciTech Connect

    Polzer, R.J.

    1993-01-01

    Metabolic activation of polycyclic aromatic hydrocarbons (PAH) to carcinogenic diol epoxides has been determined to be a critical step in tumor initiation by PAH. The key enzyme(s) involved in the metabolic activation are members of the cytochrome P450 superfamily. Two distinct isoforms of cytochrome P450 have been determined to be induced upon treatment of cells in culture with benzo(a)pyrene (B(a)P) by use of Immobilized Artificial Membrane Column High Performance Liquid Chromatography, Western blotting, Northern blotting, and in vitro metabolism studies. Cytochrome P4501A is involved in the metabolism of PAH in the human hepatoma cell line, HepG2; the human mammary carcinoma cell line, MCF-7; and the mouse hepatoma cell line; Hepa-1; whereas cytochrome P450EF is involved in this metabolism in both secondary hamster and mouse embryo cell cultures. Induction of cytochrome P450s by B(a)P generally leads to an increased metabolism of tritiated B(a)P, DMBA, and DB(a,1)P to water-soluble metabolities and to the formation of PAH-DNA adducts, suggesting that induction by B(a)P alters the metabolism of PAH to metabolic activation. DMBA induction of cytochrome P450s leads to various changes in metabolism and PAH-DNA binding and these changes were both cell and PAH specific. These results suggest that DMBA can shift metabolism of certain PAH towards metabolic activation in some cells, while in other cells DMBA or one of its metabolities can compete with other PAH for metabolic activation. UDP-glucuronosyl-transferase and epoxide hydrase do not have significant roles in detoxifying proximate or ultimate carcinogenic PAH metabolites, however, sulfotransferase and glutathione-S-transferase do detoxify proximate and ultimate carcinogenic metabolities in the HepG2 cell line. Finally, attempts to inhibit B(a)P metabolism and DNA-binding in intact cells in culture through conjugation of inhibitory cytochrome P4501A1 antibodies to insulin or folic acid were examined.

  2. Genotoxicity of tamoxifen, tamoxifen epoxide and toremifene in human lymphoblastoid cells containing human cytochrome P450s.

    PubMed

    Styles, J A; Davies, A; Lim, C K; De Matteis, F; Stanley, L A; White, I N; Yuan, Z X; Smith, L L

    1994-01-01

    The clastogenicity of tamoxifen and toremifene was tested in six human lymphoblastoid cell lines each expressing increased monooxygenase activity associated with a specific transfected human cytochrome P450 cDNA (CYP1A1, CYP1A2, CYP2D6, CYP2E1 or CYP3A4). The chemicals were also tested in a cell line (MCL-5) expressing elevated native CYP1A1 and containing transfected CYP1A2, CYP2A6, CYP2E1 and CYP3A4 and epoxide hydrolase, and in a cell line containing only the viral vector (Ho1). Dose-related increases in micronuclei were observed when cells expressing 2E1, 3A4, 2D6 or MCL-5 cells were exposed to tamoxifen. The positive responses in the cell lines were in the order MCL-5 > 2E1 > 3A4 > 2D6. Toremifene also gave positive results with 2E1, 3A4 and MCL-5 cells, although the responses were less marked and the positive effects required higher doses than with tamoxifen. A synthesized epoxide of tamoxifen was also tested in these cell lines and produced similar increases in the incidences of micronucleated cells. The increases in the responses observed with the epoxide were greater than with tamoxifen or toremifene. The P450 isoenzyme activities in these cells were in a range similar to those of human tumour-derived cell lines. Microsomes (1A1, 2A2, 2A6, 2B6, 2E1, 3A4 and 2D6) from these cells all metabolized tamoxifen. The major metabolite detected by HPLC was N-desmethyltamoxifen, and 4-hydroxytamoxifen was also detected in cells with cytochrome P450 2E1 and 2D6. These results are consistent with the following conclusions. (1) Tamoxifen requires metabolic activation to DNA-reactive species by specific CYP monooxygenases in order to exert its genotoxic effects. (2) The positive clastogenic effects elicited in lymphoblastoid cells by tamoxifen epoxide suggest that the genotoxic (and possibly the carcinogenic) effects of tamoxifen may be due to one or more epoxide metabolites that are generated intracellularly, probably in close proximity to the nucleus. (3) Tamoxifen is

  3. Two cytochromes P450 catalyze S-heterocyclizations in cabbage phytoalexin biosynthesis.

    PubMed

    Klein, Andrew P; Sattely, Elizabeth S

    2015-11-01

    Phytoalexins are abundant in edible crucifers and have important biological activities, yet no dedicated gene for their biosynthesis is known. Here, we report two new cytochromes P450 from Brassica rapa (Chinese cabbage) that catalyze unprecedented S-heterocyclizations in cyclobrassinin and spirobrassinin biosynthesis. Our results provide genetic and biochemical insights into the biosynthesis of a prominent pair of dietary metabolites and have implications for pathway discovery across >20 recently sequenced crucifers.

  4. Effect of protein-calorie malnutrition on cytochromes P450 and glutathione S-transferase.

    PubMed

    Zhang, W; Parentau, H; Greenly, R L; Metz, C A; Aggarwal, S; Wainer, I W; Tracy, T S

    1999-01-01

    Protein-calorie malnutrition (PCM) can develop both from inadequate food intake and as a consequence of diseases such as cancer and AIDS. Several studies have shown that PCM can alter drug clearance but little information is available on the effect of PCM on individual cytochrome P450 isoforms and phase II conjugation enzymes. The aim of the present study was to begin a systematic evaluation of the effect of PCM on the activity of individual drug metabolizing enzymes in a rat model of PCM. Control and PCM rats received isocaloric diets which contained either 21% or 5% (deficient) protein. After 3 weeks, the animals were sacrificed and microsomal and cytosolic fractions prepared. Ethoxyresorufin O-deethylation (EROD), chlorzoxazone 6-hydroxylation, dextromethorphan N- and O-demethylation and 1-chloro-2,4-dinitrobenzene (CDNB) conjugation were used as measures of CYP1A, CYP2E1, CYP3A2, CYP2D1 and glutathione S-transferase (GST) activity, respectively. Additionally, NADPH-cytochrome P450 reductase activity was measured in the liver microsomes. PCM significantly reduced the maximum velocity (Vmax) of all model reactions studied. However, differential effects were observed with respect to K(m) values of the reactions. The K(m) values for EROD and dextromethorphan N-demethylation were significantly increased in PCM animals, whereas the K(m) values for chlorzoxazone 6-hydroxylation and dextromethorphan O-demethylation were decreased. In contrast, the K(m) value for CDNB conjugation was unchanged. When NADPH-cytochrome P450 reductase activity was compared, a 29% reduction in reductase activity was noted in PCM animals as compared to controls. Thus, it appears that PCM decreases the overall activity of certain phase I and phase II metabolism enzymes in rat liver while exhibiting differential effects on K(m). Furthermore, this reduction in activity may be due in part to diminished activity of cytochrome P450 reductase.

  5. Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase

    NASA Astrophysics Data System (ADS)

    Bredt, David S.; Hwang, Paul M.; Glatt, Charles E.; Lowenstein, Charles; Reed, Randall R.; Snyder, Solomon H.

    1991-06-01

    Nitric oxide is a messenger molecule, mediating the effect of endothelium-derived relaxing factor in blood vessels and the cytotoxic actions of macrophages, and playing a part in neuronal communication in the brain. Cloning of a complementary DNA for brain nitric oxide synthase reveals recognition sites for NADPH, FAD, flavin mononucleotide and calmodulin as well as phosphorylation sites, indicating that the synthase is regulated by many different factors. The only known mammalian enzyme with close homology is cytochrome P-450 reductase.

  6. Two cytochromes P450 catalyze S-heterocyclizations in cabbage phytoalexin biosynthesis

    PubMed Central

    Klein, Andrew P; Sattely, Elizabeth S

    2015-01-01

    Phytoalexins are abundant in edible crucifers and have important biological activities, yet no dedicated gene for their biosynthesis is known. Here, we report two new cytochromes P450 from Brassica rapa (Chinese cabbage) that catalyze unprecedented S-heterocyclizations in cyclobrassinin and spirobrassinin biosynthesis. Our results reveal the first genetic and biochemical insights into the biosynthesis of a prominent pair of dietary metabolites, and have implications for pathway discovery across >20 recently sequenced crucifers. PMID:26389737

  7. Immunochemical detection of cytochrome P450 enzymes in liver microsomes of 27 cynomolgus monkeys.

    PubMed

    Uehara, Shotaro; Murayama, Norie; Nakanishi, Yasuharu; Zeldin, Darryl C; Yamazaki, Hiroshi; Uno, Yasuhiro

    2011-11-01

    The cynomolgus monkey is widely used as a primate model in preclinical studies because of its evolutionary closeness to humans. Despite their importance in drug metabolism, the content of each cytochrome P450 (P450) enzyme has not been systematically determined in cynomolgus monkey livers. In this study, liver microsomes of 27 cynomolgus monkeys were analyzed by immunoblotting using selective P450 antibodies. The specificity of each antibody was confirmed by analyzing the cross-reactivity against 19 CYP1-3 subfamily enzymes using recombinant proteins. CYP2A, CYP2B6, CYP2C9/19, CYP2C76, CYP2D, CYP2E, CYP3A4, and CYP3A5 were detected in all 27 animals. In contrast, CYP1A, CYP1D, and CYP2J were below detectable levels in all liver samples. The average content of each P450 showed that among the P450s analyzed CYP3A (3A4 and 3A5) was the most abundant (40% of total immunoquantified P450), followed by CYP2A (25%), CYP2C (14%), CYP2B6 (13%), CYP2E1 (11%), and CYP2D (3%). No apparent sex differences were found for any P450. Interanimal variations ranged from 2.6-fold (CYP3A) to 11-fold (CYP2C9/19), and most P450s (CYP2A, CYP2D, CYP2E, CYP3A4, and CYP3A5) varied 3- to 4-fold. To examine the correlations of P450 content with enzyme activities, metabolic assays were performed in 27 cynomolgus monkey livers using 7-ethoxyresorufin, coumarin, pentoxyresorufin, flurbiprofen, bufuralol, dextromethorphan, and midazolam. CYP2D and CYP3A4 contents were significantly correlated with typical reactions of human CYP2D (bufuralol 1'-hydroxylation and dextromethorphan O-deethylation) and CYP3A (midazolam 1'-hydroxylation and 4-hydroxylation). The results presented in this study provide useful information for drug metabolism studies using cynomolgus monkeys.

  8. Decreased bile-acid synthesis in livers of hepatocyte-conditional NADPH-cytochrome P450 reductase-null mice results in increased bile acids in serum.

    PubMed

    Cheng, Xingguo; Zhang, Youcai; Klaassen, Curtis D

    2014-10-01

    NADPH-cytochrome P450 reductase (Cpr) is essential for the function of microsomal cytochrome P450 monooxygenases (P450), including those P450s involved in bile acid (BA) synthesis. Mice with hepatocyte-specific deletion of NADPH-cytochrome P450 reductase (H-Cpr-null) have been engineered to understand the in vivo function of hepatic P450s in the metabolism of xenobiotics and endogenous compounds. However, the impact of hepatic Cpr on BA homeostasis is not clear. The present study revealed that H-Cpr-null mice had a 60% decrease in total BA concentration in liver, whereas the total BA concentration in serum was almost doubled. The decreased level of cholic acid (CA) in both serum and livers of H-Cpr-null mice is likely due to diminished enzyme activity of Cyp8b1 that is essential for CA biosynthesis. Feedback mechanisms responsible for the reduced liver BA concentrations and/or increased serum BA concentrations in H-Cpr-null mice included the following: 1) enhanced alternative BA synthesis pathway, as evidenced by the fact that classic BA synthesis is diminished but chenodeoxycholic acid still increases in both serum and livers of H-Cpr-null mice; 2) inhibition of farnesoid X receptor activation, which increased the mRNA of Cyp7a1 and 8b1; 3) induction of intestinal BA transporters to facilitate BA absorption from the intestine to the circulation; 4) induction of hepatic multidrug resistance-associated protein transporters to increase BA efflux from the liver to blood; and 5) increased generation of secondary BAs. In summary, the present study reveals an important contribution of the alternative BA synthesis pathway and BA transporters in regulating BA concentrations in H-Cpr-null mice.

  9. Construction and engineering of a thermostable self-sufficient cytochrome P450

    SciTech Connect

    Mandai, Takao; Fujiwara, Shinsuke; Imaoka, Susumu

    2009-06-19

    CYP175A1 is a thermophilic cytochrome P450 and hydroxylates {beta}-carotene. We previously identified a native electron transport system for CYP175A1. In this report, we constructed two fusion proteins consisting of CYP175A1, ferredoxin (Fdx), and ferredoxin-NADP{sup +} reductase (FNR): H{sub 2}N-CYP175A1-Fdx-FNR-COOH (175FR) and H{sub 2}N-CYP175A1-FNR-Fdx-COOH (175RF). Both 175FR and 175RF were expressed in Escherichia coli and purified. The V{sub max} value for {beta}-carotene hydroxylation was 25 times higher with 175RF than 175FR and 9 times higher with 175RF than CYP175A1 (non-fused protein), although the k{sub m} values of these enzymes were similar. 175RF retained 50% residual activity even at 80 {sup o}C. Furthermore, several mutants of the CYP175A1 domain of 175RF were prepared and one mutant (Q67G/Y68I) catalyzed the hydroxylation of an unnatural substrate, testosterone. Thus, this is the first report of a thermostable self-sufficient cytochrome P450 and the engineering of a thermophilic cytochrome P450 for the oxidation of an unnatural substrate.

  10. Cytochrome P450 CYP1B1 over-expression in primary and metastatic ovarian cancer

    PubMed Central

    McFadyen, M C E; Cruickshank, M E; Miller, I D; McLeod, H L; Melvin, W T; Haites, N E; Parkin, D; Murray, G I

    2001-01-01

    Ovarian cancer is the most frequent cause of death from gynaecological malignancies world wide. Little improvement has been made in the long-term outcome of this disease, with the 5-year survival of patients only 30%. This poor prognosis is due to the late presentation of the disease and to the unpredictable response of ovarian cancer to chemotherapy. The cytochrome P450 enzymes are a superfamily of haemoproteins, known to be involved in the metabolic activation and/or detoxification of a number of anti-cancer drugs. CYP1B1 is a tumour-related form of cytochrome P450 which is over expressed in a wide variety of primary tumours of different histological type. The presence of CYP1B1 may be of importance in the modulation of these tumours to anti-cancer drugs. We have conducted a comprehensive immunohistochemical investigation, into the presence of cytochrome P450 CYP1B1 in primary and metastatic ovarian cancer. The key findings of this study are the increased expression of CYP1B1 in the majority of ovarian cancers investigated (92%), with a strong correlation demonstrated between CYP1B1 expression in both primary and metastatic ovarian cancer (P= 0.005 Spearman's rank correlation test). In contrast no detectable CYP1B1 was found in normal ovary. © 2001 Cancer Research Campaign http://www.bjcancer.com PMID:11461084

  11. Chemical modification and inactivation of rat liver microsomal cytochrome P-450c by 2-bromo-4'-nitroacetophenone

    SciTech Connect

    Parkinson, A.; Ryan, D.E.; Thomas, P.E.; Jerina, D.M.; Sayer, J.M.; van Bladeren, P.J.; Haniu, M.; Shively, J.E.; Levin, W.

    1986-09-05

    The alkylating agent 2-bromo-4'-nitroacetophenone (BrNAP) binds covalently to each of 10 isozymes of purified rat liver microsomal cytochrome P-450 (P-450a-P-450j) but substantially inhibits the catalytic activity of only cytochrome P-450c. Regardless of pH, incubation time, presence of detergents, or concentration of BrNAP, treatment of cytochrome P-450c with BrNAP resulted in no more than 90% inhibition of catalytic activity. Alkylation with BrNAP did not cause the release of heme from the holoenzyme or alter the spectral properties of cytochrome P-450c, data that exclude the putative heme-binding cysteine, Cys-460, as the major site of alkylation. Two residues in cytochrome P-450c reacted rapidly with BrNAP, for which reason maximal loss of catalytic activity was invariably associated with the incorporation of approximately 1.5 mol of BrNAP/mol of cytochrome P-450c. Two major radio-labeled peptides were isolated from a tryptic digest of (/sup 14/CC)BrNAP-treated cytochrome P-450c by reverse-phase high performance liquid chromatography. The amino acid sequence of each peptide was determined by microsequence analysis, but the identification of the residues alkylated by BrNAP was complicated by the tendency of the adducts to decompose when subjected to automated Edman degradation. However, results of competitive binding experiments with the sulfhydryl reagent 4,4'-dithiodipyridine identified Cys-292 as the major site of alkylation and Cys-160 as the minor site of alkylation by BrNAP in cytochrome P-450c.

  12. CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes.

    PubMed

    Syed, Khajamohiddin; Porollo, Aleksey; Lam, Ying Wai; Grimmett, Paul E; Yadav, Jagjit S

    2013-04-01

    Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons, albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was found to possess a broad oxidizing capability toward structurally diverse hydrocarbons belonging to mutagenic/carcinogenic fused-ring higher-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs), endocrine-disrupting long-chain alkylphenols (APs), and crude oil aliphatic hydrocarbon n-alkanes. A homology-based three-dimensional (3D) model revealed the presence of an extraordinarily large active-site cavity in CYP63A2 compared to the mammalian PAH-oxidizing (CYP3A4, CYP1A2, and CYP1B1) and bacterial aliphatic-hydrocarbon-oxidizing (CYP101D and CYP102A1) P450s. This structural feature in conjunction with ligand docking simulations suggested potential versatility of the enzyme. Experimental characterization using recombinantly expressed CYP63A2 revealed its ability to oxidize HMW-PAHs of various ring sizes, including 4 rings (pyrene and fluoranthene), 5 rings [benzo(a)pyrene], and 6 rings [benzo(ghi)perylene], with the highest enzymatic activity being toward the 5-ring PAH followed by the 4-ring and 6-ring PAHs, in that order. Recombinant CYP63A2 activity yielded monohydroxylated PAH metabolites. The enzyme was found to also act as an alkane ω-hydroxylase that oxidized n-alkanes with various chain lengths (C9 to C12 and C15 to C19), as well as alkyl side chains (C3 to C9) in alkylphenols (APs). CYP63A2 showed preferential oxidation of long-chain APs and alkanes. To our knowledge, this is the first P450 identified from any of the biological kingdoms that possesses such broad substrate specificity toward structurally diverse xenobiotics (PAHs, APs, and alkanes), making it a potent enzyme biocatalyst candidate to handle mixed pollution (e.g., crude oil spills).

  13. Induction of renal cytochrome P450 arachidonic acid epoxygenase activity by dietary gamma-linolenic acid.

    PubMed

    Yu, Zhigang; Ng, Valerie Y; Su, Ping; Engler, Marguerite M; Engler, Mary B; Huang, Yong; Lin, Emil; Kroetz, Deanna L

    2006-05-01

    Dietary gamma-linolenic acid (GLA), a omega-6 polyunsaturated fatty acid found in borage oil (BOR), lowers systolic blood pressure in spontaneously hypertensive rats (SHRs). GLA is converted into arachidonic acid (AA) by elongation and desaturation steps. Epoxyeicosatrienoic acids (EETs) and 20-hydroxyeicosatetraenoic acid (20-HETE) are cytochrome P450 (P450)-derived AA eicosanoids with important roles in regulating blood pressure. This study tested the hypothesis that the blood pressure-lowering effect of a GLA-enriched diet involves alteration of P450-catalyzed AA metabolism. Microsomes and RNA were isolated from the renal cortex of male SHRs fed a basal fat-free diet for 5 weeks to which 11% by weight of sesame oil (SES) or BOR was added. There was a 2.6- to 3.5-fold increase in P450 epoxygenase activity in renal microsomes isolated from the BOR-fed SHRs compared with the SES-fed rats. Epoxygenase activity accounted for 58% of the total AA metabolism in the BOR-treated kidney microsomes compared with 33% in the SES-treated rats. More importantly, renal 14,15- and 8,9-EET levels increased 1.6- to 2.5-fold after dietary BOR treatment. The increase in EET formation is consistent with increases in CYP2C23, CYP2C11, and CYP2J protein levels. There were no differences in the level of renal P450 epoxygenase mRNA between the SES- and BOR-treated rats. Enhanced synthesis of the vasodilatory EETs and decreased formation of the vasoconstrictive 20-HETE suggests that changes in P450-mediated AA metabolism may contribute, at least in part, to the blood pressure-lowering effect of a BOR-enriched diet. PMID:16421287

  14. Gadolinium chloride reduces cytochrome P450: relevance to chemical-induced hepatotoxicity.

    PubMed

    Badger, D A; Kuester, R K; Sauer, J M; Sipes, I G

    1997-08-15

    The Kupffer cell inhibitor, gadolinium chloride (GdCl3), protects the liver from a number of toxicants that require biotransformation to elicit toxicity (i.e. 1,2-dichlorobenzene and CCl4), as well as compounds that do not (i.e. cadmium chloride and beryllium sulfate). The mechanism of this protection is thought to result from reduced secretion of inflammatory and cytotoxic products from Kupffer cells (KC). However, since other lanthanides have been shown to decrease cytochrome P450 (P450) activity, the following studies were designed to determine if GdCl3 pretreatment alters hepatic P450 levels or activity. The toxicological relevance of GdCl3-mediated alterations in P450 activity was also estimated by determining the effect of GdCl3 pretreatment on the susceptibility of primary cultured hepatocytes to CCl4 and cadmium chloride (CdCl2). Male and female Sprague-Dawley rats were given GdCl3 (i.v., 10 mg/kg). Twenty-four hours later, livers were either processed for preparation of microsomes or for primary cultures of hepatocytes. Gadolinium chloride treatment reduced total hepatic microsomal P450 as well as aniline hydroxylase activity by approximately 30% in males and 20% in females. In hepatocytes isolated from rats pretreated with GdCl3, the toxicity caused by CCl4, but not CdCl2 was reduced. Interestingly, when GdCl3 was administered in vitro to microsomes, there was no effect on either the microsomal P450 difference spectra or p-hydroxylation of aniline. However, when GdCl3 was incubated with isolated hepatocytes, the cytotoxicity of CCl4 (but not CdCl2) was partially attenuated. These results suggest that, in addition to its inhibitory effects on KC, GdCl3 produces other effects which may alter the susceptibility of hepatocytes to toxicity caused by certain chemicals.

  15. A targeted proteomics approach for profiling murine cytochrome P450 expression.

    PubMed

    Hersman, Elisabeth M; Bumpus, Namandjé N

    2014-05-01

    The cytochrome P450 (P450) superfamily of enzymes plays a prominent role in drug metabolism. Although mice are a widely used preclinical model in pharmacology, the expression of murine P450 enzymes at the protein level has yet to be fully defined. Twenty-seven proteins belonging to P450 subfamilies 1A, 2A, 2B, 2C, 2D, 2E, 2F, 2J, 2U, 3A, 4A, 4B, 4F, and 4V were readily detectable in Balb/c mouse tissue using a global mass spectrometry-based proteomics approach. Subsequently, a targeted mass spectrometry-based assay was developed to simultaneously quantify these enzymes in ranges of femtomoles of P450 per microgram of total protein concentration range. This screen was applied to mouse liver microsomes and tissue lysates of kidney, lung, intestine, heart, and brain isolated from mixed-sex fetuses; male and female mice that were 3-4 weeks, 9-10 weeks, and 8-10 months of age; and pregnant mice. CYP1A2 was consistently more abundant in male mouse liver microsomes compared with age-matched females. Hepatic expression of CYP2B9 was more abundant in 3- to 4-week-old male and female mice than in mice of other ages; in addition, CYP2B9 was the only enzyme that was detectable at higher levels in pregnant mouse liver microsomes compared with age-matched females. Interestingly, sexually dimorphic expression of CYP2B9, 2D26, 2E1, and 4B1 was observed in kidney only. The targeted proteomics assay described here can be broadly used as a tool for investigating the expression patterns of P450 enzymes in mice.

  16. Phosphorylation of cytochromes P450: First discovery of a posttranslational modification of a drug-metabolizing enzyme

    SciTech Connect

    Oesch-Bartlomowicz, B. . E-mail: oeschb@uni-mainz.de; Oesch, F.

    2005-12-09

    Cytochromes P450 (CYP) are important components of xenobiotic-metabolizing monooxygenases (CYP-dependent monooxygenases). Their regulation by induction, most commonly by transcriptional activation, mediated by xenobiotics, normally substrates of the corresponding CYP, is well known and has been widely studied. Our team has discovered an additional important regulation of xenobiotic-metabolizing CYPs pertaining to posttranslational modification by phosphorylation. Individual CYPs are phosphorylated by different protein kinases, leading to CYP isoenzyme-selective changes in the metabolism of individual substrates and consequent drastic changes in the control of genotoxic metabolites. Best studied are the CYP phosphorylations by the cAMP-dependent protein kinase A. Most recently, we discovered that cAMP not only leads to drastic changes in the activity of individual CYPs, but also to drastic changes in the nuclear localization of the CYP-related transcription factor Ah receptor (AHR). The consequences are very different from those of AHR nuclear translocation mediated by the classical ligands (enzyme inducers such as dioxin) and are likely to represent the long-sought physiological function of the AHR, its persistent disturbance by long-lived ligands such as dioxin may well be the reason for its high toxicity.

  17. Double triton X-114 phase partitioning for the purification of plant cytochromes P450 and removal of green pigments.

    PubMed

    Dahl Andersen, M; Møller, B L

    1998-08-01

    A double Triton X-114 phase partitioning procedure that separates plant cytochromes P450 from green pigments and provides an extract highly enriched in total cytochromes P450 has been developed. Upon phase partitioning in Triton X-114, plant cytochromes P450 have previously been found to partition to the pigmented detergent rich phase. These partitionings were carried out using phosphate buffer. We found that the partitioning of the cytochromes P450 could be shifted to a pigment-free Triton X-114 poor phase by changing the buffer component to borate. The protein extract containing the cytochromes P450 but devoid of green pigment was subjected to a second phase partitioning step before which the buffer was changed from borate to phosphate. This second phase partitioning step produced a Triton X-114-rich phase highly enriched in cytochromes P450 proteins compared to the microsomal starting material as monitored by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, cytochrome P450 reconstitution assays, and Western blotting. The yield of the double phase partitioning purification procedure is about 26% which is high compared to the yields obtained at similar stages of purification using column chromatography. The double phase partitioning procedure takes 3-4 h to complete. This is very fast compared to traditional purification schemes for cytochromes P450 which involve multiple of column chromatographic steps. Plant cytochromes P450 are labile, low abundant proteins that are difficult to isolate. The double Triton X-114 phase partitioning here reported thus constitutes a versatile, efficient purification procedure circumventing many of the problems previously encountered.

  18. Monoclonal antibody-directed phenotyping of cytochrome P-450-dependent aryl hydrocarbon hydroxylase and 7-ethoxycoumarin deethylase in mammalian tissues

    SciTech Connect

    Fujino, T.; West, D.; Park, S.S.; Gelboin, H.V.

    1984-07-25

    The distribution of cytochromes P-450 that catalyze aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase were studied with monoclonal antibody (MAb) 1-7-1 which completely inhibits these activities of a purified 3-methylcholanthrene-induced rat liver cytochrome P-450. The degree of inhibition by MAb 1-7-1 quantitatively assesses the contribution of different cytochromes P-450 in the liver, lung, and kidney microsomes from untreated, 3-methylcholanthrene- and phenobarbital (PB)-treated rats, mice, guinea pigs, and hamsters. Enzyme sensitivity to MAb 1-7-1 inhibition defines two types of cytochrome P-450 contributing to aryl hydrocarbon hydroxylase and 7-ethoxycoumarin O-deethylase. The MAb 1-7-1 sensitive cytochrome P-450 is a major contributor to aryl hydrocarbonhydroxylase in rat liver, lung, and kidney of 3-methylcholanthrene-treated rats, C57BL/6 mice, guinea pigs, and hamsters. 7-Ethoxycoumarin 0-deethylase is also a function of both the MAb 1-7-1-sensitive and insensitive classes of cytochromeP-450</