Physiology of spermatozoa at high dilution rates: the influence of seminal plasma.
Maxwell, W M; Johnson, L A
1999-12-01
Extensive dilution of spermatozoa, as occurs during flow-cytometric sperm sorting, can reduce their motility and viability. These effects may be minimized by the use of appropriate dilution and collection media, containing balanced salts, energy sources, egg yolk and some protein. Dilution and flow-cytometric sorting of spermatozoa, which involves the removal of seminal plasma, also destabilizes sperm membranes leading to functional capacitation. This membrane destabilization renders the spermatozoa immediately capable of fertilization in vitro, or in vivo after deposition close to the site of fertilization, but shortens their lifespan, resulting in premature death if the cells are deposited in the female tract distant from the site of fertilization or are held in vitro at standard storage temperatures. This functional capacitation can be reversed in boar spermatozoa by inclusion of seminal plasma in the medium used to collect the cells from the cell sorter and, consequently, reduces their in vitro fertility. It has yet to be determined whether seminal plasma would have similar effects on flow cytometrically sorted spermatozoa of other species, and what its effects might be on the in vivo fertility of flow sorted boar.
Drabbels, Jos J M; van de Keur, Carin; Kemps, Berit M; Mulder, Arend; Scherjon, Sicco A; Claas, Frans H J; Eikmans, Michael
2011-11-10
Microchimerism is defined by the presence of low levels of nonhost cells in a person. We developed a reliable method for separating viable microchimeric cells from the host environment. For flow cytometric cell sorting, HLA antigens were targeted with human monoclonal HLA antibodies (mAbs). Optimal separation of microchimeric cells (present at a proportion as low as 0.01% in artificial mixtures) was obtained with 2 different HLA mAbs, one targeting the chimeric cells and the other the background cells. To verify purity of separated cell populations, flow-sorted fractions of 1000 cells were processed for DNA analysis by HLA-allele-specific and Y-chromosome-directed real-time quantitative PCR assays. After sorting, PCR signals of chimeric DNA markers in the positive fractions were significantly enhanced compared with those in the presort samples, and they were similar to those in 100% chimeric control samples. Next, we demonstrate applicability of HLA-targeted FACS sorting after pregnancy by separating chimeric maternal cells from child umbilical cord mononuclear cells. Targeting allelic differences with anti-HLA mAbs with FACS sorting allows maximal enrichment of viable microchimeric cells from a background cell population. The current methodology enables reliable microchimeric cell detection and separation in clinical specimens.
Maxwell, W M; Welch, G R; Johnson, L A
1996-01-01
Boar, bull and ram spermatozoa were examined after staining with the DNA-permeant Hoechst 33342 fluorochrome and flow cytometric sorting in the presence or absence of seminal plasma. Spermatozoa were assessed for viability with flow cytometry using the live cell nucleic acid stain SYBR-14 and propidium iodide (PI), and for membrane integrity using fluorescein isothiocyanate-conjugated Pisum sativum (FITC-PSA) and PI; motility and acrosome integrity were estimated by microscopy. Flow cytometric sorting was compared with pipette dilution of boar and bull spermatozoa into: (1) medium [boar: Test buffer containing 2% yolk (TY) or Beltsville thawing solution (BTS); bull: TY or HEPES buffer containing 0.1% bovine serum albumin (HEPES-BSA)] with or without 10% (v/v) seminal plasma; or (2) an empty tube containing no medium. Sorted spermatozoa were either not centrifuged or centrifuged before assessment during a 4-h holding period. The viability, motility and membrane integrity of boar, bull and ram spermatozoa centrifuged after sorting were also examined when seminal plasma was present or absent from the staining extender and/or the TY collection medium. The results indicate that the viability and membrane integrity of spermatozoa in vitro would be improved if: (1) seminal plasma (10%) was routinely included in the BTS and HEPES-BSA staining extenders for boar spermatozoa and ram spermatozoa, respectively, when used in preparation for flow cytometric sorting; and (2) 10% and 50% seminal plasma were included in the TY collection medium for boar or bull spermatozoa and ram spermatozoa respectively.
Flow karyotyping and sorting of human chromosomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gray, J.W.; Lucas, J.; Peters, D.
1986-07-16
Flow cytometry and sorting are becoming increasingly useful as tools for chromosome classfication and for the detection of numerical and structural chromosome aberrations. Chromosomes of a single type can be purified with these tools to facilitate gene mapping or production of chromosome specific recombinant DNA libraries. For analysis of chromosomes with flow cytometry, the chromosomes are extracted from mitotic cells, stained with one or more fluorescent dyes and classified one-by-one according to their dye content(s). Thus, the flow approach is fundamentally different than conventional karyotyping where chromosomes are classified within the context of a metaphase spread. Flow sorting allows purificationmore » of chromosomes that can be distinguished flow cytometrically. The authors describe the basic principles of flow cytometric chromosome classification i.e. flow karyotyping, and chromosome sorting and describe several applications. 30 refs., 8 figs.« less
Juzwa, W; Duber, A; Myszka, K; Białas, W; Czaczyk, K
2016-09-01
In this study the design of a flow cytometry-based procedure to facilitate the detection of adherent bacteria from food-processing surfaces was evaluated. The measurement of the cellular redox potential (CRP) of microbial cells was combined with cell sorting for the identification of microorganisms. The procedure enhanced live/dead cell discrimination owing to the measurement of the cell physiology. The microbial contamination of the surface of a stainless steel conveyor used to process button mushrooms was evaluated in three independent experiments. The flow cytometry procedure provided a step towards monitoring of contamination and enabled the assessment of microbial food safety hazards by the discrimination of active, mid-active and non-active bacterial sub-populations based on determination of their cellular vitality and subsequently single cell sorting to isolate microbial strains from discriminated sub-populations. There was a significant correlation (r = 0.97; p < 0.05) between the bacterial cell count estimated by the pour plate method and flow cytometry, despite there being differences in the absolute number of cells detected. The combined approach of flow cytometric CRP measurement and cell sorting allowed an in situ analysis of microbial cell vitality and the identification of species from defined sub-populations, although the identified microbes were limited to culturable cells.
Hayama, Tomonari; Yamaguchi, Tomoyuki; Kato-Itoh, Megumi; Ishii, Yumiko; Mizuno, Naoaki; Umino, Ayumi; Sato, Hideyuki; Sanbo, Makoto; Hamanaka, Sanae; Masaki, Hideki; Hirabayashi, Masumi; Nakauchi, Hiromitsu
2016-06-01
Round spermatid injection (ROSI) into unfertilized oocytes enables a male with a severe spermatogenesis disorder to have children. One limitation of the application of this technique in the clinic is the identification and isolation of round spermatids from testis tissue. Here we developed an efficient and simple method to isolate rodent haploid round spermatids using flow cytometric cell sorting, based on DNA content (stained with Hoechst 33342 or Dye Cycle Violet) or by cell diameter and granularity (forward and side scatter). ROSI was performed with round spermatids selected by flow cytometry, and we obtained healthy offspring from unstained cells. This non-invasive method could therefore be an effective option for breeding domestic animals and human male infertility treatment. Mol. Reprod. Dev. 83: 488-496, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
High speed flow cytometric separation of viable cells
Sasaki, D.T.; Van den Engh, G.J.; Buckie, A.M.
1995-11-14
Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.
High speed flow cytometric separation of viable cells
Sasaki, Dennis T.; Van den Engh, Gerrit J.; Buckie, Anne-Marie
1995-01-01
Hematopoietic cell populations are separated to provide cell sets and subsets as viable cells with high purity and high yields, based on the number of original cells present in the mixture. High-speed flow cytometry is employed using light characteristics of the cells to separate the cells, where high flow speeds are used to reduce the sorting time.
Stoler, Daniel L; Stewart, Carleton C; Stomper, Paul C
2002-02-01
Molecular studies of breast lesions have been constrained by difficulties in procuring adequate tissues for analyses. Standard procedures are restricted to larger, palpable masses or the use of paraffin-embedded materials, precluding facile procurement of fresh specimens of early lesions. We describe a study to determine the yield and characteristics of sorted cell populations retrieved in core needle biopsy specimen rinses from a spectrum of breast lesions. Cells from 114 consecutive stereotactic core biopsies of mammographic lesions released into saline washes were submitted for flow cytometric analysis. For each specimen, epithelial cells were separated from stromal and blood tissue based on the presence of cytokeratin 8 and 18 markers. Epithelial cell yields based on pathological diagnoses of the biopsy specimen, patient age, and mammographic appearance of the lesion were determined. Biopsies containing malignant lesions yielded significantly higher numbers of cells than were obtained from benign lesion biopsies. Significantly greater cell counts were observed from lesions from women age 50 or above compared with those of younger women. Mammographic density surrounding the biopsy site, the mammographic appearance of the lesion, and the number of cores taken at the time of biopsy appeared to have little effect on the yield of epithelial cells. We demonstrate the use of flow cytometric sorting of stereotactic core needle biopsy washes from lesions spanning the spectrum of breast pathology to obtain epithelial cells in sufficient numbers to meet the requirements of a variety of molecular and genetic analyses.
Collection, Storage, and Preparation of Human Blood Cells
Dagur, Pradeep K.; McCoy, J. Philip
2015-01-01
Human peripheral blood is often studied by flow cytometry in both the research and clinical laboratories. The methods for collection, storage, and preparation of peripheral blood will vary depending on the cell lineage to be examined as well as the type of assay to be performed. This unit presents protocols for collection of blood, separation of leukocytes from whole blood by lysis of erythrocytes, isolating mononuclear cells by density gradient separation, and assorted non-flow sorting methods, such as magnetic bead separations, for enriching specific cell populations, including monocytes, T lymphocytes, B lymphocytes, neutrophils,, , and platelets prior to flow cytometric analysis. A protocol is also offered for cryopreservation of cells since clinical research often involves retrospective flow cytometric analysis of samples stored over a period of months or years. PMID:26132177
Vremec, David
2016-01-01
Dendritic cells (DCs) form a complex network of cells that initiate and orchestrate immune responses against a vast array of pathogenic challenges. Developmentally and functionally distinct DC subtypes differentially regulate T-cell function. Importantly it is the ability of DC to capture and process antigen, whether from pathogens, vaccines, or self-components, and present it to naive T cells that is the key to their ability to initiate an immune response. Our typical isolation procedure for DC from murine spleen was designed to efficiently extract all DC subtypes, without bias and without alteration to their in vivo phenotype, and involves a short collagenase digestion of the tissue, followed by selection for cells of light density and finally negative selection for DC. The isolation procedure can accommodate DC numbers that have been artificially increased via administration of fms-like tyrosine kinase 3 ligand (Flt3L), either directly through a series of subcutaneous injections or by seeding with an Flt3L secreting murine melanoma. Flt3L may also be added to bone marrow cultures to produce large numbers of in vitro equivalents of the spleen DC subsets. Total DC, or their subsets, may be further purified using immunofluorescent labeling and flow cytometric cell sorting. Cell sorting may be completely bypassed by separating DC subsets using a combination of fluorescent antibody labeling and anti-fluorochrome magnetic beads. Our procedure enables efficient separation of the distinct DC subsets, even in cases where mouse numbers or flow cytometric cell sorting time is limiting.
Kovács, Tamás; Békési, Gyöngyi; Fábián, Akos; Rákosy, Zsuzsa; Horváth, Gábor; Mátyus, László; Balázs, Margit; Jenei, Attila
2008-10-01
Rapid flow cytometric measurement of the frequency of aneuploid human sperms is in increasing demand but development of an exploitable method is hindered by difficulties of stoichiometric staining of sperm DNA. An aggressive decondensation protocol is needed after which cell integrity still remains intact. We used flow cytometry to examine the effect of lithium diiodosalicylate (LIS, chaotropic agent) on fluorescence intensity of propidium iodide-treated human spermatozoa from 10 normozoospermic men. When flow cytometric identification of diploid spermatozoa was achieved, validation was performed after sorting by three-color FISH. In contrast with the extremely variable histograms of nondecondensed sperms, consistent identification of haploid and diploid spermatozoa was possible if samples were decondensed with LIS prior to flow cytometry. A 76-fold enrichment of diploid sperms was observed in the sorted fractions by FISH. A significant correlation was found between the proportion of sorted cells and of diploid sperms by FISH. Application of LIS during the preparation of sperm for flow cytometry appears to ensure the stoichiometric staining of sperm DNA, making quantification of aneuploid sperm percentage possible. To our knowledge this is the first report in terms of separating spermatozoa with confirmedly abnormal chromosomal content. High correlation between the proportion of cells identified as having double DNA content by flow cytometry and diploid sperm by FISH allows rapid calculation of diploidy rate. Copyright 2008 International Society for Advancement of Cytometry.
Cellular and Molecular Effect of MEHP Involving LXRα in Human Fetal Testis and Ovary
Muczynski, Vincent; Lecureuil, Charlotte; Messiaen, Sébastien; Guerquin, Marie-Justine; N’Tumba-Byn, Thierry; Moison, Delphine; Hodroj, Wassim; Benjelloun, Hinde; Baijer, Jan; Livera, Gabriel; Frydman, René; Benachi, Alexandra; Habert, René; Rouiller-Fabre, Virginie
2012-01-01
Background Phthalates have been shown to have reprotoxic effects in rodents and human during fetal life. Previous studies indicate that some members of the nuclear receptor (NR) superfamilly potentially mediate phthalate effects. This study aimed to assess if expression of these nuclear receptors are modulated in the response to MEHP exposure on the human fetal gonads in vitro. Methodology/Principal Findings Testes and ovaries from 7 to 12 gestational weeks human fetuses were exposed to 10−4M MEHP for 72 h in vitro. Transcriptional level of NRs and of downstream genes was then investigated using TLDA (TaqMan Low Density Array) and qPCR approaches. To determine whether somatic or germ cells of the testis are involved in the response to MEHP exposure, we developed a highly efficient cytometric germ cell sorting approach. In vitro exposure of fetal testes and ovaries to MEHP up-regulated the expression of LXRα, SREBP members and of downstream genes involved in the lipid and cholesterol synthesis in the whole gonad. In sorted testicular cells, this effect is only observable in somatic cells but not in the gonocytes. Moreover, the germ cell loss induced by MEHP exposure, that we previously described, is restricted to the male gonad as oogonia density is not affected in vitro. Conclusions/Significance We evidenced for the first time that phthalate increases the levels of mRNA for LXRα, and SREBP members potentially deregulating lipids/cholesterol synthesis in human fetal gonads. Interestingly, this novel effect is observable in both male and female whereas the germ cell apoptosis is restricted to the male gonad. Furthermore, we presented here a novel and potentially very useful flow cytometric cell sorting method to analyse molecular changes in germ cells versus somatic cells. PMID:23118965
Cellular and molecular effect of MEHP Involving LXRα in human fetal testis and ovary.
Muczynski, Vincent; Lecureuil, Charlotte; Messiaen, Sébastien; Guerquin, Marie-Justine; N'tumba-Byn, Thierry; Moison, Delphine; Hodroj, Wassim; Benjelloun, Hinde; Baijer, Jan; Livera, Gabriel; Frydman, René; Benachi, Alexandra; Habert, René; Rouiller-Fabre, Virginie
2012-01-01
Phthalates have been shown to have reprotoxic effects in rodents and human during fetal life. Previous studies indicate that some members of the nuclear receptor (NR) superfamilly potentially mediate phthalate effects. This study aimed to assess if expression of these nuclear receptors are modulated in the response to MEHP exposure on the human fetal gonads in vitro. Testes and ovaries from 7 to 12 gestational weeks human fetuses were exposed to 10(-4)M MEHP for 72 h in vitro. Transcriptional level of NRs and of downstream genes was then investigated using TLDA (TaqMan Low Density Array) and qPCR approaches. To determine whether somatic or germ cells of the testis are involved in the response to MEHP exposure, we developed a highly efficient cytometric germ cell sorting approach. In vitro exposure of fetal testes and ovaries to MEHP up-regulated the expression of LXRα, SREBP members and of downstream genes involved in the lipid and cholesterol synthesis in the whole gonad. In sorted testicular cells, this effect is only observable in somatic cells but not in the gonocytes. Moreover, the germ cell loss induced by MEHP exposure, that we previously described, is restricted to the male gonad as oogonia density is not affected in vitro. We evidenced for the first time that phthalate increases the levels of mRNA for LXRα, and SREBP members potentially deregulating lipids/cholesterol synthesis in human fetal gonads. Interestingly, this novel effect is observable in both male and female whereas the germ cell apoptosis is restricted to the male gonad. Furthermore, we presented here a novel and potentially very useful flow cytometric cell sorting method to analyse molecular changes in germ cells versus somatic cells.
NASA Technical Reports Server (NTRS)
Li, Z. K.
1985-01-01
A specialized program was developed for flow cytometric list-mode data using an heirarchical tree method for identifying and enumerating individual subpopulations, the method of principal components for a two-dimensional display of 6-parameter data array, and a standard sorting algorithm for characterizing subpopulations. The program was tested against a published data set subjected to cluster analysis and experimental data sets from controlled flow cytometry experiments using a Coulter Electronics EPICS V Cell Sorter. A version of the program in compiled BASIC is usable on a 16-bit microcomputer with the MS-DOS operating system. It is specialized for 6 parameters and up to 20,000 cells. Its two-dimensional display of Euclidean distances reveals clusters clearly, as does its 1-dimensional display. The identified subpopulations can, in suitable experiments, be related to functional subpopulations of cells.
International Society for the Advancement of Cytometry Cell Sorter Biosafety Standards
Holmes, Kevin L.; Fontes, Benjamin; Hogarth, Philip; Konz, Richard; Monard, Simon; Pletcher, Charles H.; Wadley, Robert B.; Schmid, Ingrid; Perfetto, Stephen P.
2014-01-01
Flow cytometric cell sorting of biological specimens has become prevalent in basic and clinical research laboratories. These specimens may contain known or unknown infectious agents, necessitating precautions to protect instrument operators and the environment from biohazards arising from the use of sorters. To this end the International Society of Analytical Cytology (ISAC) was proactive in establishing biosafety guidelines in 1997 (Schmid et al., Cytometry 1997;28:99–117) and subsequently published revised biosafety standards for cell sorting of unfixed samples in 2007 (Schmid et al., Cytometry Part A J Int Soc Anal Cytol 2007;71A:414–437). Since their publication, these documents have become recognized worldwide as the standard of practice and safety precautions for laboratories performing cell sorting experiments. However, the field of cytometry has progressed since 2007, and the document requires an update. The new Standards provides guidance: (1) for laboratory design for cell sorter laboratories; (2) for the creation of laboratory or instrument specific Standard Operating Procedures (SOP); and (3) on procedures for the safe operation of cell sorters, including personal protective equipment (PPE) and validation of aerosol containment. PMID:24634405
Domingues, William Borges; da Silveira, Tony Leandro Rezende; Komninou, Eliza Rossi; Monte, Leonardo Garcia; Remião, Mariana Härter; Dellagostin, Odir Antônio; Corcini, Carine Dahl; Varela Junior, Antônio Sergio; Seixas, Fabiana Kömmling; Collares, Tiago; Campos, Vinicius Farias
2017-08-01
Bovine sex-sorted sperm have been commercialized and successfully used for the production of transgenic embryos of the desired sex through the sperm-mediated gene transfer (SMGT) technique. However, sex-sorted sperm show a reduced ability to internalize exogenous DNA. The interaction between sperm cells and the exogenous DNA has been reported in other species to be a CD4-like molecule-dependent process. The flow cytometry-based sex-sorting process subjects the spermatozoa to different stresses causing changes in the cell membrane. The aim of this study was to elucidate the relationship between the redistribution of CD4-like molecules and binding of exogenous DNA to sex-sorted bovine sperm. In the first set of experiments, the membrane phospholipid disorder and the redistribution of the CD4 were evaluated. The second set of experiments was conducted to investigate the effect of CD4 redistribution on the mechanism of binding of exogenous DNA to sperm cells and the efficiency of lipofection in sex-sorted bovine sperm. Sex-sorting procedure increased the membrane phospholipid disorder and induced the redistribution of CD4-like molecules. Both X-sorted and Y-sorted sperm had decreased DNA bound to membrane in comparison with the unsorted sperm; however, the binding of the exogenous DNA was significantly increased with the addition of liposomes. Moreover, we demonstrated that the number of sperm-bound exogenous DNA was decreased when these cells were preincubated with anti-bovine CD4 monoclonal antibody, supporting our hypothesis that CD4-like molecules indeed play a crucial role in the process of exogenous DNA/bovine sperm cells interaction.
Taniguchi, H; Kondo, R; Suzuki, A; Zheng, Y W; Takada, Y; Fukunaga, K; Seino, K; Yuzawa, K; Otsuka, M; Fukao, K; Nakauchi, H
2000-01-01
Stem cells are defined as cells having multilineage differentiation potential and self-renewal capability. Hepatic stem cells have aroused considerable interest not only because of their developmental importance but also for their therapeutic potential. However, their presence in the liver has not yet been demonstrated. With the use of a fluorescence-activated cell sorter (FACS) and monoclonal antibodies, we attempted to ascertain whether hepatic stem cells are present in the murine fetal liver. For this purpose, we optimized a cell isolation technique for FACS sorting of fetal liver cells. When isolated CD45 TER119 cells (the non-blood cell fraction in the fetal liver) were tested for their clonogenic colony-forming ability, mechanical dissociation (pipetting) was the most suitable cell isolation technique for FACS sorting. We confirmed that these colonies contained not only cells expressing hepatocyte markers but also cells expressing cholangiocyte markers. To identify hepatic stem cells, studies must focus on CD45TER119- cells in the murine fetal liver.
Young, Susan M; Curry, Mark S; Ransom, John T; Ballesteros, Juan A; Prossnitz, Eric R; Sklar, Larry A; Edwards, Bruce S
2004-03-01
HyperCyt, an automated sample handling system for flow cytometry that uses air bubbles to separate samples sequentially introduced from multiwell plates by an autosampler. In a previously documented HyperCyt configuration, air bubble separated compounds in one sample line and a continuous stream of cells in another are mixed in-line for serial flow cytometric cell response analysis. To expand capabilities for high-throughput bioactive compound screening, the authors investigated using this system configuration in combination with automated cell sorting. Peptide ligands were sampled from a 96-well plate, mixed in-line with fluo-4-loaded, formyl peptide receptor-transfected U937 cells, and screened at a rate of 3 peptide reactions per minute with approximately 10,000 cells analyzed per reaction. Cell Ca(2+) responses were detected to as little as 10(-11) M peptide with no detectable carryover between samples at up to 10(-7) M peptide. After expansion in culture, cells sort-purified from the 10% highest responders exhibited enhanced sensitivity and more sustained responses to peptide. Thus, a highly responsive cell subset was isolated under high-throughput mixing and sorting conditions in which response detection capability spanned a 1000-fold range of peptide concentration. With single-cell readout systems for protein expression libraries, this technology offers the promise of screening millions of discrete compound interactions per day.
Kennedy, Deirdre; Cronin, Ultan P.; Wilkinson, Martin G.
2011-01-01
Three common food pathogenic microorganisms were exposed to treatments simulating those used in food processing. Treated cell suspensions were then analyzed for reduction in growth by plate counting. Flow cytometry (FCM) and fluorescence-activated cell sorting (FACS) were carried out on treated cells stained for membrane integrity (Syto 9/propidium iodide) or the presence of membrane potential [DiOC2(3)]. For each microbial species, representative cells from various subpopulations detected by FCM were sorted onto selective and nonselective agar and evaluated for growth and recovery rates. In general, treatments giving rise to the highest reductions in counts also had the greatest effects on cell membrane integrity and membrane potential. Overall, treatments that impacted cell membrane permeability did not necessarily have a comparable effect on membrane potential. In addition, some bacterial species with extensively damaged membranes, as detected by FCM, appeared to be able to replicate and grow after sorting. Growth of sorted cells from various subpopulations was not always reflected in plate counts, and in some cases the staining protocol may have rendered cells unculturable. Optimized FCM protocols generated a greater insight into the extent of the heterogeneous bacterial population responses to food control measures than did plate counts. This study underlined the requirement to use FACS to relate various cytometric profiles generated by various staining protocols with the ability of cells to grow on microbial agar plates. Such information is a prerequisite for more-widespread adoption of FCM as a routine microbiological analytical technique. PMID:21602370
International Society for the Advancement of Cytometry cell sorter biosafety standards.
Holmes, Kevin L; Fontes, Benjamin; Hogarth, Philip; Konz, Richard; Monard, Simon; Pletcher, Charles H; Wadley, Robert B; Schmid, Ingrid; Perfetto, Stephen P
2014-05-01
Flow cytometric cell sorting of biological specimens has become prevalent in basic and clinical research laboratories. These specimens may contain known or unknown infectious agents, necessitating precautions to protect instrument operators and the environment from biohazards arising from the use of sorters. To this end the International Society of Analytical Cytology (ISAC) was proactive in establishing biosafety guidelines in 1997 (Schmid et al., Cytometry 1997;28:99-117) and subsequently published revised biosafety standards for cell sorting of unfixed samples in 2007 (Schmid et al., Cytometry Part A J Int Soc Anal Cytol 2007;71A:414-437). Since their publication, these documents have become recognized worldwide as the standard of practice and safety precautions for laboratories performing cell sorting experiments. However, the field of cytometry has progressed since 2007, and the document requires an update. The new Standards provides guidance: (1) for laboratory design for cell sorter laboratories; (2) for the creation of laboratory or instrument specific Standard Operating Procedures (SOP); and (3) on procedures for the safe operation of cell sorters, including personal protective equipment (PPE) and validation of aerosol containment. Published © 2014 Wiley Periodicals Inc.
Taylor, Sean; Landman, Michael J; Ling, Nicholas
2009-09-01
Enumeration of invertebrate hemocytes is a potentially powerful tool for the determination of physiological effects of extrinsic stressors, such as hypoxia, disease, and toxicant exposure. A detailed flow cytometric method of broad application was developed for the objective characterization and enumeration of the hemocytes of New Zealand freshwater crayfish Paranephrops planifrons for the purpose of physiological health assessment. Hemocyte populations were isolated by flow cytometric sorting based on differential light scatter properties followed by morphological characterization via light microscopy and software image analysis. Cells were identified as hyaline, semigranular, and granular hemocytes based on established invertebrate hemocyte classification. A characteristic decrease in nuclear size, an increase in granularity between the hyaline and granular cells, and the eccentric location of nuclei in granular cells were also observed. The granulocyte subpopulations were observed to possess varying degrees of granularity. The developed methodology was used to perform total and differential hemocyte counts from three lake populations and between wild and captive crayfish specimens. Differences in total and differential hemocyte counts were not observed among the wild populations. However, specimens held in captivity for 14 d exhibited a significant 63% reduction in total hemocyte count, whereas the relative hemocyte proportions remained the same. These results demonstrate the utility of this method for the investigation of subacute stressor effects in selected decapod crustaceans.
Digital Analysis and Sorting of Fluorescence Lifetime by Flow Cytometry
Houston, Jessica P.; Naivar, Mark A.; Freyer, James P.
2010-01-01
Frequency-domain flow cytometry techniques are combined with modifications to the digital signal processing capabilities of the Open Reconfigurable Cytometric Acquisition System (ORCAS) to analyze fluorescence decay lifetimes and control sorting. Real-time fluorescence lifetime analysis is accomplished by rapidly digitizing correlated, radiofrequency modulated detector signals, implementing Fourier analysis programming with ORCAS’ digital signal processor (DSP) and converting the processed data into standard cytometric list mode data. To systematically test the capabilities of the ORCAS 50 MS/sec analog-to-digital converter (ADC) and our DSP programming, an error analysis was performed using simulated light scatter and fluorescence waveforms (0.5–25 ns simulated lifetime), pulse widths ranging from 2 to 15 µs, and modulation frequencies from 2.5 to 16.667 MHz. The standard deviations of digitally acquired lifetime values ranged from 0.112 to >2 ns, corresponding to errors in actual phase shifts from 0.0142° to 1.6°. The lowest coefficients of variation (<1%) were found for 10-MHz modulated waveforms having pulse widths of 6 µs and simulated lifetimes of 4 ns. Direct comparison of the digital analysis system to a previous analog phase-sensitive flow cytometer demonstrated similar precision and accuracy on measurements of a range of fluorescent microspheres, unstained cells and cells stained with three common fluorophores. Sorting based on fluorescence lifetime was accomplished by adding analog outputs to ORCAS and interfacing with a commercial cell sorter with a radiofrequency modulated solid-state laser. Two populations of fluorescent microspheres with overlapping fluorescence intensities but different lifetimes (2 and 7 ns) were separated to ~98% purity. Overall, the digital signal acquisition and processing methods we introduce present a simple yet robust approach to phase-sensitive measurements in flow cytometry. The ability to simply and inexpensively implement this system on a commercial flow sorter will both allow better dissemination of this technology and better exploit the traditionally underutilized parameter of fluorescence lifetime. PMID:20662090
2012-01-01
Background Malaria remains a major cause of morbidity and mortality worldwide. Flow cytometry-based assays that take advantage of fluorescent protein (FP)-expressing malaria parasites have proven to be valuable tools for quantification and sorting of specific subpopulations of parasite-infected red blood cells. However, identification of rare subpopulations of parasites using green fluorescent protein (GFP) labelling is complicated by autofluorescence (AF) of red blood cells and low signal from transgenic parasites. It has been suggested that cell sorting yield could be improved by using filters that precisely match the emission spectrum of GFP. Methods Detection of transgenic Plasmodium falciparum parasites expressing either tdTomato or GFP was performed using a flow cytometer with interchangeable optical filters. Parasitaemia was evaluated using different optical filters and, after optimization of optics, the GFP-expressing parasites were sorted and analysed by microscopy after cytospin preparation and by imaging cytometry. Results A new approach to evaluate filter performance in flow cytometry using two-dimensional dot blot was developed. By selecting optical filters with narrow bandpass (BP) and maximum position of filter emission close to GFP maximum emission in the FL1 channel (510/20, 512/20 and 517/20; dichroics 502LP and 466LP), AF was markedly decreased and signal-background improve dramatically. Sorting of GFP-expressing parasite populations in infected red blood cells at 90 or 95% purity with these filters resulted in 50-150% increased yield when compared to the standard filter set-up. The purity of the sorted population was confirmed using imaging cytometry and microscopy of cytospin preparations of sorted red blood cells infected with transgenic malaria parasites. Discussion Filter optimization is particularly important for applications where the FP signal and percentage of positive events are relatively low, such as analysis of parasite-infected samples with in the intention of gene-expression profiling and analysis. The approach outlined here results in substantially improved yield of GFP-expressing parasites, and requires decreased sorting time in comparison to standard methods. It is anticipated that this protocol will be useful for a wide range of applications involving rare events. PMID:22950515
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ford, A.L.; Goodsall, A.L.; Sedgwick, J.D.
1995-05-01
Ramified microglia in the adult central nervous system (CNS) are the principal glial element up-regulating MHC class I and II expression in response to inflammatory events or neuronal damage. A proportion of these cells also express MHC class II constitutively in the normal CNS. The role of microglia as APCs for CD4{sup +} cells extravasating into the CNS remains undefined. In this study, using irradiation bone marrow chimeras in CD45-congenic rats, the phenotype CD45{sup low}CD11b/c{sup +} is shown to identify microglial cells specifically within the CNS. Highly purified populations of microglia and nonmicroglial but CNS-associated macrophages (CD45{sup high}CD11b/c{sup +}) havemore » been obtained directly from the adult CNS, by using flow cytometric sorting. Morphologically, freshly isolated microglia vs other CNS macrophages are quite distinct. Of the two populations recovered from the normal CNS, it is the minority CD45{sup high}CD11 b/c{sup +} transitional macrophage population, and not microglia, that is the effective APC for experimental autoimmune encephalomyelitis-inducing CD4{sup +} myelin basic protein (MBP)-reactive T cells. CD45{sup high}CD11b/c{sup +} CNS macrophages also stimulate MBP-reactive T cells without addition of MBP to culture suggesting presentation of endogenous Ag. This is the first study in which microglia vs other CNS macrophages have been analyzed for APC ability directly from the CNS, with substantial cross-contamination between the two populations eliminated. The heterogeneity of these populations in terms of APC function is clearly demonstrated. Evidence is still lacking that adult CNS microglia have the capacity to interact with and stimulate CD4{sup +} T cells to proliferate or secrete IL-2. 60 refs., 6 figs., 1 tab.« less
Flow Cytometric Detection of PrPSc in Neurons and Glial Cells from Prion-Infected Mouse Brains.
Yamasaki, Takeshi; Suzuki, Akio; Hasebe, Rie; Horiuchi, Motohiro
2018-01-01
In prion diseases, an abnormal isoform of prion protein (PrP Sc ) accumulates in neurons, astrocytes, and microglia in the brains of animals affected by prions. Detailed analyses of PrP Sc -positive neurons and glial cells are required to clarify their pathophysiological roles in the disease. Here, we report a novel method for the detection of PrP Sc in neurons and glial cells from the brains of prion-infected mice by flow cytometry using PrP Sc -specific staining with monoclonal antibody (MAb) 132. The combination of PrP Sc staining and immunolabeling of neural cell markers clearly distinguished neurons, astrocytes, and microglia that were positive for PrP Sc from those that were PrP Sc negative. The flow cytometric analysis of PrP Sc revealed the appearance of PrP Sc -positive neurons, astrocytes, and microglia at 60 days after intracerebral prion inoculation, suggesting the presence of PrP Sc in the glial cells, as well as in neurons, from an early stage of infection. Moreover, the kinetic analysis of PrP Sc revealed a continuous increase in the proportion of PrP Sc -positive cells for all cell types with disease progression. Finally, we applied this method to isolate neurons, astrocytes, and microglia positive for PrP Sc from a prion-infected mouse brain by florescence-activated cell sorting. The method described here enables comprehensive analyses specific to PrP Sc -positive neurons, astrocytes, and microglia that will contribute to the understanding of the pathophysiological roles of neurons and glial cells in PrP Sc -associated pathogenesis. IMPORTANCE Although formation of PrP Sc in neurons is associated closely with neurodegeneration in prion diseases, the mechanism of neurodegeneration is not understood completely. On the other hand, recent studies proposed the important roles of glial cells in PrP Sc -associated pathogenesis, such as the intracerebral spread of PrP Sc and clearance of PrP Sc from the brain. Despite the great need for detailed analyses of PrP Sc -positive neurons and glial cells, methods available for cell type-specific analysis of PrP Sc have been limited thus far to microscopic observations. Here, we have established a novel high-throughput method for flow cytometric detection of PrP Sc in cells with more accurate quantitative performance. By applying this method, we succeeded in isolating PrP Sc -positive cells from the prion-infected mouse brains via fluorescence-activated cell sorting. This allows us to perform further detailed analysis specific to PrP Sc -positive neurons and glial cells for the clarification of pathological changes in neurons and pathophysiological roles of glial cells. Copyright © 2017 American Society for Microbiology.
Flow cytometric sorting of fecal bacteria after in situ hybridization with polynucleotide probes.
Bruder, Lena M; Dörkes, Marcel; Fuchs, Bernhard M; Ludwig, Wolfgang; Liebl, Wolfgang
2016-10-01
The gut microbiome represents a key contributor to human physiology, metabolism, immune function, and nutrition. Elucidating the composition and genetics of the gut microbiota under various conditions is essential to understand how microbes function individually and as a community. Metagenomic analyses are increasingly used to study intestinal microbiota. However, for certain scientific questions it is sufficient to examine taxon-specific submetagenomes, covering selected bacterial genera in a targeted manner. Here we established a new variant of fluorescence in situ hybridization (FISH) combined with fluorescence-activated cell sorting (FACS), providing access to the genomes of specific taxa belonging to the complex community of the intestinal microbiota. In contrast to standard oligonucleotide probes, the RNA polynucleotide probe used here, which targets domain III of the 23S rRNA gene, extends the resolution power in environmental samples by increasing signal intensity. Furthermore, cells hybridized with the polynucleotide probe are not subjected to harsh pretreatments, and their genetic information remains intact. The protocol described here was tested on genus-specifically labeled cells in various samples, including complex fecal samples from different laboratory mouse types that harbor diverse intestinal microbiota. Specifically, as an example for the protocol described here, RNA polynucleotide probes could be used to label Enterococcus cells for subsequent sorting by flow cytometry. To detect and quantify enterococci in fecal samples prior to enrichment, taxon-specific PCR and qPCR detection systems have been developed. The accessibility of the genomes from taxon-specifically sorted cells for subsequent molecular analyses was demonstrated by amplification of functional genes. Copyright © 2016 Elsevier GmbH. All rights reserved.
2014-01-01
Background Clinically useful biomarkers for patient stratification and monitoring of disease progression and drug response are in big demand in drug development and for addressing potential safety concerns. Many diseases influence the frequency and phenotype of cells found in the peripheral blood and the transcriptome of blood cells. Changes in cell type composition influence whole blood gene expression analysis results and thus the discovery of true transcript level changes remains a challenge. We propose a robust and reproducible procedure, which includes whole transcriptome gene expression profiling of major subsets of immune cell cells directly sorted from whole blood. Methods Target cells were enriched using magnetic microbeads and an autoMACS® Pro Separator (Miltenyi Biotec). Flow cytometric analysis for purity was performed before and after magnetic cell sorting. Total RNA was hybridized on HGU133 Plus 2.0 expression microarrays (Affymetrix, USA). CEL files signal intensity values were condensed using RMA and a custom CDF file (EntrezGene-based). Results Positive selection by use of MACS® Technology coupled to transcriptomics was assessed for eight different peripheral blood cell types, CD14+ monocytes, CD3+, CD4+, or CD8+ T cells, CD15+ granulocytes, CD19+ B cells, CD56+ NK cells, and CD45+ pan leukocytes. RNA quality from enriched cells was above a RIN of eight. GeneChip analysis confirmed cell type specific transcriptome profiles. Storing whole blood collected in an EDTA Vacutainer® tube at 4°C followed by MACS does not activate sorted cells. Gene expression analysis supports cell enrichment measurements by MACS. Conclusions The proposed workflow generates reproducible cell-type specific transcriptome data which can be translated to clinical settings and used to identify clinically relevant gene expression biomarkers from whole blood samples. This procedure enables the integration of transcriptomics of relevant immune cell subsets sorted directly from whole blood in clinical trial protocols. PMID:25984272
O'Brien, J K; Stojanov, T; Crichton, E G; Evans, K M; Leigh, D; Maxwell, W M C; Evans, G; Loskutoff, N M
2005-08-01
We adapted flow cytometry technology for high-purity sorting of X chromosome-bearing spermatozoa in the western lowland gorilla (Gorilla gorilla gorilla). Our objectives were to develop methodologies for liquid storage of semen prior to sorting, sorting of liquid-stored and frozen-thawed spermatozoa, and assessment of sorting accuracy. In study 1, the in vitro sperm characteristics of gorilla ejaculates from one male were unchanged (P > 0.05) after 8 hr of liquid storage at 15 degrees C in a non-egg yolk diluent (HEPES-buffered modified Tyrode's medium). In study 2, we examined the efficacy of sorting fresh and frozen-thawed spermatozoa using human spermatozoa as a model for gorilla spermatozoa. Ejaculates from one male were split into fresh and frozen aliquots. X-enriched samples derived from both fresh and frozen-thawed human semen were of high purity, as determined by fluorescence in situ hybridization (FISH; 90.7%+/-2.3%, overall), and contained a high proportion of morphologically normal spermatozoa (86.0%+/-1.0%, overall). In study 3, we processed liquid-stored semen from two gorillas for sorting using a modification of methods for human spermatozoa. The sort rate for enrichment of X-bearing spermatozoa was 7.3+/-2.5 spermatozoa per second. The X-enriched samples were of high purity (single-sperm PCR: 83.7%) and normal morphology (79.0%+/-3.9%). In study 4 we examined frozen-thawed gorilla semen, and the sort rate (8.3+/-2.9 X-bearing sperm/sec), purity (89.7%), and normal morphology (81.4%+/-3.4%) were comparable to those of liquid-stored semen. Depending on the male and the type of sample used (fresh or frozen-thawed), 0.8-2.2% of gorilla spermatozoa in the processed ejaculate were present in the X-enriched sample. These results demonstrate that fresh or frozen-thawed gorilla spermatozoa can be flow cytometrically sorted into samples enriched for X-bearing spermatozoa. Copyright 2005 Wiley-Liss, Inc.
Application of advanced cytometric and molecular technologies to minimal residual disease monitoring
NASA Astrophysics Data System (ADS)
Leary, James F.; He, Feng; Reece, Lisa M.
2000-04-01
Minimal residual disease monitoring presents a number of theoretical and practical challenges. Recently it has been possible to meet some of these challenges by combining a number of new advanced biotechnologies. To monitor the number of residual tumor cells requires complex cocktails of molecular probes that collectively provide sensitivities of detection on the order of one residual tumor cell per million total cells. Ultra-high-speed, multi parameter flow cytometry is capable of analyzing cells at rates in excess of 100,000 cells/sec. Residual tumor selection marker cocktails can be optimized by use of receiver operating characteristic analysis. New data minimizing techniques when combined with multi variate statistical or neural network classifications of tumor cells can more accurately predict residual tumor cell frequencies. The combination of these techniques can, under at least some circumstances, detect frequencies of tumor cells as low as one cell in a million with an accuracy of over 98 percent correct classification. Detection of mutations in tumor suppressor genes requires insolation of these rare tumor cells and single-cell DNA sequencing. Rare residual tumor cells can be isolated at single cell level by high-resolution single-cell cell sorting. Molecular characterization of tumor suppressor gene mutations can be accomplished using a combination of single- cell polymerase chain reaction amplification of specific gene sequences followed by TA cloning techniques and DNA sequencing. Mutations as small as a single base pair in a tumor suppressor gene of a single sorted tumor cell have been detected using these methods. Using new amplification procedures and DNA micro arrays it should be possible to extend the capabilities shown in this paper to screening of multiple DNA mutations in tumor suppressor and other genes on small numbers of sorted metastatic tumor cells.
Ferré, Luis B; Bogliotti, Yanina; Chitwood, James L; Fresno, Cristóbal; Ortega, Hugo H; Kjelland, Michael E; Ross, Pablo J
2015-05-13
High demand exists among commercial cattle producers for in vitro-derived bovine embryos fertilised with female sex-sorted spermatozoa from high-value breeding stock. The aim of this study was to evaluate three fertilisation media, namely M199, synthetic oviductal fluid (SOF) and Tyrode's albumin-lactate-pyruvate (TALP), on IVF performance using female sex-sorted spermatozoa. In all, 1143, 1220 and 1041 cumulus-oocyte complexes were fertilised in M199, SOF and TALP, respectively. There were significant differences among fertilisation media (P < 0.05) in cleavage rate (M199 = 57%, SOF = 71% and TALP = 72%), blastocyst formation (M199 = 9%, SOF = 20% and TALP = 19%), proportion of Grade 1 blastocysts (M199 = 15%, SOF = 52% and TALP = 51%), proportion of Grade 3 blastocysts (M199 = 58%, SOF = 21% and TALP = 20%) and hatching rates (M199 = 29%, SOF = 60% and TALP = 65%). The inner cell mass (ICM) and trophectoderm (TE) cells of Day 7 blastocysts were also affected by the fertilisation medium. Embryos derived from SOF and TALP fertilisation media had higher numbers of ICM, TE and total cells than those fertilised in M199. In conclusion, fertilisation media affected cleavage rate, as well as subsequent embryo development, quality and hatching ability. SOF and TALP fertilisation media produced significantly more embryos of higher quality than M199.
Zhang, Boyang; Huang, Kunlun; Zhu, Liye; Luo, Yunbo; Xu, Wentao
2017-07-01
In this review, we introduce a new concept, precision toxicology: the mode of action of chemical- or drug-induced toxicity can be sensitively and specifically investigated by isolating a small group of cells or even a single cell with typical phenotype of interest followed by a single cell sequencing-based analysis. Precision toxicology can contribute to the better detection of subtle intracellular changes in response to exogenous substrates, and thus help researchers find solutions to control or relieve the toxicological effects that are serious threats to human health. We give examples for single cell isolation and recommend laser capture microdissection for in vivo studies and flow cytometric sorting for in vitro studies. In addition, we introduce the procedures for single cell sequencing and describe the expected application of these techniques to toxicological evaluations and mechanism exploration, which we believe will become a trend in toxicology.
Weiss, René; Gröger, Marion; Rauscher, Sabine; Fendl, Birgit; Eichhorn, Tanja; Fischer, Michael B; Spittler, Andreas; Weber, Viktoria
2018-04-26
Secretion and exchange of biomolecules via extracellular vesicles (EVs) are crucial mechanisms in intercellular communication, and the roles of EVs in infection, inflammation, or thrombosis have been increasingly recognized. EVs have emerged as central players in immune regulation and can enhance or suppress the immune response, depending on the state of donor and recipient cells. We investigated the interaction of blood cell-derived EVs with leukocyte subpopulations (monocytes and their subsets, granulocytes, B cells, T cells, and NK cells) directly in whole blood using a combination of flow cytometry, imaging flow cytometry, cell sorting, and high resolution confocal microscopy. Platelet-derived EVs constituted the majority of circulating EVs and were preferentially associated with granulocytes and monocytes, while they scarcely interacted with lymphocytes. Further flow cytometric differentiation of monocyte subsets provided clear indications for a preferential association of platelet-derived EVs with intermediate (CD14 ++ CD16 + ) monocytes in whole blood.
Allen, Joselyn N; Dey, Adwitia; Nissly, Ruth; Fraser, James; Yu, Shan; Balandaram, Gayathri; Peters, Jeffrey M; Hankey-Giblin, Pamela A
2017-04-03
Obesity promotes a chronic inflammatory state that is largely mediated by tissue-resident macrophages as well as monocyte-derived macrophages. Diet-induced obesity (DIO) is a valuable model in studying the role of macrophage heterogeneity; however, adequate macrophage isolations are difficult to acquire from inflamed tissues. In this protocol, we outline the isolation steps and necessary troubleshooting guidelines derived from our studies for obtaining a suitable population of tissue-resident macrophages from mice following 18 weeks of high-fat (HFD) or high-fat/high-cholesterol (HFHCD) diet intervention. This protocol focuses on three hallmark tissues studied in obesity and atherosclerosis including the liver, white adipose tissues (WAT), and the aorta. We highlight how dualistic usage of flow cytometry can achieve a new dimension of isolation and characterization of tissue-resident macrophages. A fundamental section of this protocol addresses the intricacies underlying tissue-specific enzymatic digestions and macrophage isolation, and subsequent cell-surface antibody staining for flow cytometric analysis. This protocol addresses existing complexities underlying fluorescent-activated cell sorting (FACS) and presents clarifications to these complexities so as to obtain broad range characterization from adequately sorted cell populations. Alternate enrichment methods are included for sorting cells, such as the dense liver, allowing for flexibility and time management when working with FACS. In brief, this protocol aids the researcher to evaluate macrophage heterogeneity from a multitude of inflamed tissues in a given study and provides insightful troubleshooting tips that have been successful for favorable cellular isolation and characterization of immune cells in DIO-mediated inflammation.
Flow-cytometric separation and enrichment of hepatic progenitor cells in the developing mouse liver.
Suzuki, A; Zheng, Y; Kondo, R; Kusakabe, M; Takada, Y; Fukao, K; Nakauchi, H; Taniguchi, H
2000-12-01
Stem cells responsible for tissue maintenance and repair are found in a number of organs. However, hepatic stem cells assumed to play a key role in liver development and regeneration remain to be well characterized. To address this issue, we set up a culture system in which primitive hepatic progenitor cells formed colonies. By combining this culture system with fluorescence-activated cell sorting (FACS), cells forming colonies containing distinct hepatocytes and cholangiocytes were identified in the fetal mouse liver. These cells express both CD49f and CD29 (alpha6 and beta1 integrin subunits), but do not mark for hematopoietic antigens such as CD45, TER119, and c-Kit. When transplanted into the spleen, these cells migrated to the recipient liver and differentiated into liver parenchymal cells. Our data demonstrate that hepatic progenitor cells are enriched by FACS and suggest approaches to supplanting organ allografting and improving artificial-organ hepatic support.
Sperm sexing in sheep and cattle: the exception and the rule.
de Graaf, S P; Beilby, K H; Underwood, S L; Evans, G; Maxwell, W M C
2009-01-01
Flow cytometric sorting for the preselection of sex has progressed considerably in the 20 years since its inception. This technique has allowed the production of pre-sexed offspring in a multitude of species and become a commercial success in cattle around the world. However, due to the stress inherent to the sex-sorting process, sex-sorted spermatozoa are widely recognized as functionally compromised in terms of their fertilizing lifespan within the female reproductive tract as a result of reduced motility and viability and changed functional state. These characteristics, when compared to non-sorted controls, are manifest in vivo as lower fertility. However, improvements to the technology and a greater understanding of its biological impact have facilitated recent developments in sheep, showing sex-sorting is capable of selecting a functionally superior population in terms of both in vitro and in vivo function. These results are reviewed in the context of recent developments in other species and the reasons for success after artificial insemination with sex-sorted ram spermatozoa are discussed.
Flow cytometric characterization of the response of Fanconi's anemia cells to mitomycin C treatment.
Kaiser, T N; Lojewski, A; Dougherty, C; Juergens, L; Sahar, E; Latt, S A
1982-03-01
DNA flow histogram analysis, using 33342 Hoechst as a stain, has been used to detect the effect of the potentially bifunctional alkylating agent, mitomycin C (MMC) on dermal fibroblasts from patients with Fanconi's anemia (FA), a hereditary human disease characterized by pancytopenia, hypersensitivity to DNA-crosslinking agents, congenital abnormalities and a predisposition for neoplasia. At 24 or 48 hr after a 2-hr exposure to 0.05 or 0.10 micrograms/ml MMC, (3)HdT incorporation was reduced to a greater extent in FA cells than in normal cells. Cells sorted from the last half of S phase showed a slightly greater inhibition of (3)HdT incorporation than did those sorted from the first half of S. Fanconi's anemia cells exhibited a marked accumulation in the G(2) + M peak of flow histograms following exposure to MMC. Twenty-four hr after treatment with .0.5 micrograms/ml MMC, the G(2) + M fraction of FA cells (eight lines) increased to more than 0.5 from a control value of approximately 0.02. Both normals (six lines) and heterozygotes (eight lines) showed, on the average, much less of a G(2) + M increment than did FA cells, even after exposure to 0.1 micrograms/ml MMC. Examination of cells sorted from the G(2) + M peak revealed that MMC-treated FA cells were blocked prior to mitosis. To determine whether the response of FA cells was specific for bifunctional alkylating agent, cells were also treated with ethylmethanesulfonate, a monofunctional agent. Twenty-four hours after exposure to 0.25 or 0.5 mg/ml ethylmethanesulfonate, FA and normal cells showed similar, small increases in the G(2) + M peak. The results suggest the utility of flow cytometry in the diagnostic evaluation of fibroblasts from patients suspected of having Fanconi's anemia.
A novel fluorescent sensor for measurement of CFTR function by flow cytometry.
Vijftigschild, Lodewijk A W; van der Ent, Cornelis K; Beekman, Jeffrey M
2013-06-01
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis. CFTR-dependent iodide transport measured by fluorescent quenching of ectopically expressed halide-sensitive yellow fluorescent protein (YFP) is widely being used to study CFTR function by microscopy or plate readers. Since YFP fluorescence in these systems is dependent on YFP expression levels and iodide concentration, differences in sensor expression level between experimental units are normalized at the start of each experiment. To allow accurate measurement of CFTR function by flow cytometry, we reasoned that co-expression of an iodide insensitive fluorescent protein would allow for normalization of sensor expression levels and more accurate quantification of CFTR function. Our data indicated that dsRed and mKate fluorescence are iodide insensitive, and we determined an optimal format for co-expression of these fluorescent proteins with halide-sensitive YFP. We showed using microscopy that ratiometric measurement (YFP/mKate) corrects for differences in sensor expression levels. Ratiometric measurements were essential to accurately measure CFTR function by flow cytometry that we here describe for the first time. Mixing of wild type or mutant CFTR expressing cells indicated that addition of approximately 10% of wild type CFTR expressing cells could be distinguished by ratiometric YFP quenching. Flow cytometric ratiometric YFP quenching also allowed us to study CFTR mutants associated with differential residual function upon ectopic expression. Compared with conventional plate-bound CFTR function assays, the flow cytometric approach described here can be used to study CFTR function in suspension cells. It may be further adapted to study CFTR function in heterologous cell populations using cell surface markers and selection of cells that display high CFTR function by cell sorting. Copyright © 2013 International Society for Advancement of Cytometry.
Louagie, H; Philippé, J; Vral, A; Cornelissen, M; Thierens, H; De Ridder, L
1998-02-01
To investigate the chromosomal damage caused by gamma-irradiation in T lymphocytes and natural killer (NK) cells and compare this with apoptosis induction in both lymphocyte subsets. Apoptosis induction by gamma-irradiation in T lymphocytes and NK cells was quantified using the annexin V flow cytometric assay. The cytokinesis-block micronucleus (MN) assay was used to evaluate the induced cytogenetic damage. For the MN assays on NK cells, gamma-irradiated peripheral blood mononuclear cells were cultured and stimulated with interleukin 15 (IL-15). Afterwards the NK cells (characterized by the CD3-/CD56+ phenotype) were separated with the FACSort flow cytometer and the number of MN in the sorted binuclear cells was scored. Doses of 1 and 2 Gy gamma-irradiation were applied. Higher numbers of MN in NK cells were found compared with the MN yield in T lymphocytes. In contrast, NK cells were less than T lymphocytes prone to apoptosis after gamma-irradiation. The results support the view that cytogenetic damage and apoptosis after gamma-irradiation are not necessarily correlated.
Longnecker, K.; Sherr, B. F.; Sherr, E. B.
2005-01-01
We evaluated whether bacteria with higher cell-specific nucleic acid content (HNA) or an active electron transport system, i.e., positive for reduction of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), were responsible for the bulk of bacterioplankton metabolic activity. We also examined whether the phylogenetic diversity of HNA and CTC-positive cells differed from the diversity of Bacteria with low nucleic acid content (LNA). Bacterial assemblages were sampled both in eutrophic shelf waters and in mesotrophic offshore waters in the Oregon coastal upwelling region. Cytometrically sorted HNA, LNA, and CTC-positive cells were assayed for their cell-specific [3H]leucine incorporation rates. Phylogenetic diversity in sorted non-radioactively labeled samples was assayed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes. Cell-specific rates of leucine incorporation of HNA and CTC-positive cells were on average only slightly greater than the cell-specific rates of LNA cells. HNA cells accounted for most bacterioplankton substrate incorporation due to high abundances, while the low abundances of CTC-positive cells resulted in only a small contribution by these cells to total bacterial activity. The proportion of the total bacterial leucine incorporation attributable to LNA cells was higher in offshore regions than in shelf waters. Sequence data obtained from DGGE bands showed broadly similar phylogenetic diversity across HNA, LNA, and CTC-positive cells, with between-sample and between-region variability in the distribution of phylotypes. Our results suggest that LNA bacteria are not substantially different from HNA bacteria in either cell-specific rates of substrate incorporation or phylogenetic composition and that they can be significant contributors to bacterial metabolism in the sea. PMID:16332746
Longnecker, K; Sherr, B F; Sherr, E B
2005-12-01
We evaluated whether bacteria with higher cell-specific nucleic acid content (HNA) or an active electron transport system, i.e., positive for reduction of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC), were responsible for the bulk of bacterioplankton metabolic activity. We also examined whether the phylogenetic diversity of HNA and CTC-positive cells differed from the diversity of Bacteria with low nucleic acid content (LNA). Bacterial assemblages were sampled both in eutrophic shelf waters and in mesotrophic offshore waters in the Oregon coastal upwelling region. Cytometrically sorted HNA, LNA, and CTC-positive cells were assayed for their cell-specific [3H]leucine incorporation rates. Phylogenetic diversity in sorted non-radioactively labeled samples was assayed using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA genes. Cell-specific rates of leucine incorporation of HNA and CTC-positive cells were on average only slightly greater than the cell-specific rates of LNA cells. HNA cells accounted for most bacterioplankton substrate incorporation due to high abundances, while the low abundances of CTC-positive cells resulted in only a small contribution by these cells to total bacterial activity. The proportion of the total bacterial leucine incorporation attributable to LNA cells was higher in offshore regions than in shelf waters. Sequence data obtained from DGGE bands showed broadly similar phylogenetic diversity across HNA, LNA, and CTC-positive cells, with between-sample and between-region variability in the distribution of phylotypes. Our results suggest that LNA bacteria are not substantially different from HNA bacteria in either cell-specific rates of substrate incorporation or phylogenetic composition and that they can be significant contributors to bacterial metabolism in the sea.
Lentendu, Guillaume; Hübschmann, Thomas; Müller, Susann; Dunker, Susanne; Buscot, François; Wilhelm, Christian
2013-12-01
Eukaryotic unicellular organisms are an important part of the soil microbial community, but they are often neglected in soil functional microbial diversity analysis, principally due to the absence of specific investigation methods in the special soil environment. In this study we used a method based on high-density centrifugation to specifically isolate intact algal and yeast cells, with the aim to analyze them with flow cytometry and sort them for further molecular analysis such as deep sequencing. Recovery efficiency was tested at low abundance levels that fit those in natural environments (10(4) to 10(6) cells per g soil). Five algae and five yeast morphospecies isolated from soil were used for the testing. Recovery efficiency was between 1.5 to 43.16% and 2 to 30.2%, respectively, and was dependent on soil type for three of the algae. Control treatments without soil showed that the majority of cells were lost due to the method itself (58% and 55.8% respectively). However, the cell extraction technique did not much compromise cell vitality because a fluorescein di-acetate assay indicated high viability percentages (73.3% and 97.2% of cells, respectively). The low abundant algae and yeast morphospecies recovered from soil were cytometrically analyzed and sorted. Following, their DNA was isolated and amplified using specific primers. The developed workflow enables isolation and enrichment of intact autotrophic and heterotrophic soil unicellular eukaryotes from natural environments for subsequent application of deep sequencing technologies. Copyright © 2013 Elsevier B.V. All rights reserved.
Lee, Hongje; Lee, Ho Won; La Lee, You; Jeon, Yong Hyun; Jeong, Shin Young; Lee, Sang-Woo; Lee, Jaetae; Ahn, Byeong-Cheol
2018-06-01
The aim of this study is to optimize the dendritic cell (DC)-mediated T-cell activation using reporter gene imaging and flow cytometric analysis in living mice. A murine dendritic cell line (DC2.4) co-expressing effluc and Thy1.1 genes were established by transfection with retroviral vectors. Thy1.1 positive cells were sorted by magnetic bead separation system (DC2.4/effluc). Cell proliferation assay and phenotype analysis to determine the effects of gene transduction on the function of dendritic cells between parental DC2.4 and DC2.4/effluc were performed. To optimize the DC-mediated immune response by cell number or frequency, different cell numbers (5 × 10 5 , 1 × 10 6 , and 2 × 10 6 DC2.4/effluc) or different frequencies of DC2.4/effluc (first, second, and third injections) were injected in the right footpad of mice. The migration of the DC2.4/effluc into the draining popliteal lymph node of mice was monitored by bioluminescence imaging (BLI). Flow cytometric analysis was performed with splenocytes to determine the cytotoxic T-cell population after injection of DC2.4/effluc. Parental DC2.4 and DC2.4/effluc exhibit no significant differences in their proliferation and phenotype. BLI signals were observed in the draining popliteal lymph node at day 1 after injection of DC2.4/effluc in 1 × 10 6 and 2 × 10 6 cells-injected groups. The highest BLI signal intensity was detected in 2 × 10 6 cells-injected mice. On day 11, the BLI signal was detected in only 2 × 10 6 cell-injected group but not in other groups. Optimized cell numbers (2 × 10 6 ) were injected in three animal groups with a different frequency (first, second, and third injection groups). The BLI signal was detected at day 1 and maintained until day 7 in the first injection group, but there is low signal intensity in the second and the third injection groups. Although the expression levels of Thy1.1 gene in the first injection group were very high, there reveals no expression of Thy1.1 gene in the second and the third injection groups. The number of tumor-specific CD8 + T-cells in the spleen significantly increased, as the number of DC injections increases. Successful optimization of DC-mediated cytotoxic T-cell activation in living mice using reporter gene imaging and flow cytometric analysis was achieved. The optimization of DC-mediated cytotoxic T-cell activation could be applied for the future DC-based immunotherapy.
Gao, Q H; Wei, H J; Han, C M; Du, H Z; Zhang, Z G; Zhao, W G; Zhang, Y; Li, S
2010-03-01
The purpose of this study was to determine a practical method in Wapiti (Cervus elaphus) of using predetermined sexed Sika (Cervus nippon) semen. Semen was collected by electro-ejaculation from one stag of proven fertility and transported to the laboratory where it was retained as unsorted (control) or was separated into X- and Y-chromosome-bearing sperm using a modified high-speed cell sorter. Wapiti hinds (n=81) were inseminated into the uterus by rectum manipulation with 1 x 10(6) (X1 and Y1 group, respectively) or 2 x 10(6) (X2 and Y2 group, respectively) of sorted frozen-thawed and 1 x 10(7) non-sorted frozen-thawed (a commercial dose control) Sika motile sperm 60-66h after removal of intra-vaginal progesterone-impregnated CIDR devices and administration of 700IU of PMSG at the time of CIDR removal. The percentage of hinds calving after insemination was similar for X1 (38.5%), X2 (41.7%), Y1 (44.4%), Y2 (38.9%) groups (P>0.05), but higher for control (75%) treatment (P<0.05). Ultimately 15 out of the 16 Sika and Wapiti-hybrid calves produced by Wapiti hinds inseminated with Y-sorted sperm were male (93.7%) and 10/10 (100%) Sika and Wapiti-hybrid calves from hinds inseminated with X-sorted sperm were female. The sex ratio of the Sika and Wapiti-hybrid calves born to hinds inseminated with sex-sorted sperm deviated significantly (P<0.05) from 50% and 50.0% in the control group. All Sika and Wapiti-hybrid calves were born between 237 and 250d of gestation. Male and female calves in the control group had similar birth weights and weaning weights as calves from hinds inseminated with X- or Y-sorted sperm. In conclusion it can be said that normal Sika and Wapiti-hybrid calves of predicted sex can be produced after artificial insemination of Wapiti does with low numbers of sex-sorted cryopreserved Sika sperm.
Yang, Chih-Chiu; Lu, Chung-Lun; Chen, Sherwin; Liao, Wen-Liang; Chen, Shiu-Nan
2015-05-01
In this study, diverse haemocytes from Pacific white shrimp Litopenaeus vannamei were spread by flow cytometer sorting system. Using the two commonly flow cytometric parameters FSC and SSC, the haemocytes could be divided into three populations. Microscopy observation of L. vannamei haemocytes in anticoagulant buffer revealed three morphologically distinct cell types designated as granular cell, hyaline cell and semigranular cell. Immune genes, which includes prophenoloxidase (proPO), lipopolysaccharide-β-glucan binding protein (LGBP), peroxinectin, crustin, lysozyme, penaeid-3a and transglutaminase (TGase), expressed from different haemocyte were analysed by quantitative real time PCR (qPCR). Results from the mRNA expression was estimated by relative level of each gene to β-actin gene. Finally, the seven genes could be grouped by their dominant expression sites. ProPO, LGBP and peroxinectin were highly expressed in granular cells, while LGBP, crustin, lysozyme and P-3a were highly expressed in semigranular cells and TGase was highly expressed in hyaline cells. In this study, L. vannamei haemocytes were firstly grouped into three different types and the immune related genes expression in grouped haemocytes were estimated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Flow cytometric immunofluorescence of rat anterior pituitary cells
NASA Technical Reports Server (NTRS)
Hatfield, J. Michael; Hymer, W. C.
1985-01-01
A flow cytometric immunofluorescence technique was developed for the quantification of growth hormone, prolactin, and luteinizing hormone producing cells. The procedure is based on indirect-immunofluorescence of intracellular hormone using an EPICS V cell sorter and can objectively count 50,000 cells in about 3 minutes. It can be used to study the dynamics of pituitary cell populations under various physiological and pharmacological conditions.
Construction of BAC Libraries from Flow-Sorted Chromosomes.
Šafář, Jan; Šimková, Hana; Doležel, Jaroslav
2016-01-01
Cloned DNA libraries in bacterial artificial chromosome (BAC) are the most widely used form of large-insert DNA libraries. BAC libraries are typically represented by ordered clones derived from genomic DNA of a particular organism. In the case of large eukaryotic genomes, whole-genome libraries consist of a hundred thousand to a million clones, which make their handling and screening a daunting task. The labor and cost of working with whole-genome libraries can be greatly reduced by constructing a library derived from a smaller part of the genome. Here we describe construction of BAC libraries from mitotic chromosomes purified by flow cytometric sorting. Chromosome-specific BAC libraries facilitate positional gene cloning, physical mapping, and sequencing in complex plant genomes.
Isolating and Analyzing Cells of the Pancreas Mesenchyme by Flow Cytometry.
Epshtein, Alona; Sakhneny, Lina; Landsman, Limor
2017-01-28
The pancreas is comprised of epithelial cells that are required for food digestion and blood glucose regulation. Cells of the pancreas microenvironment, including endothelial, neuronal, and mesenchymal cells were shown to regulate cell differentiation and proliferation in the embryonic pancreas. In the adult, the function and mass of insulin-producing cells were shown to depend on cells in their microenvironment, including pericyte, immune, endothelial, and neuronal cells. Lastly, changes in the pancreas microenvironment were shown to regulate pancreas tumorigenesis. However, the cues underlying these processes are not fully defined. Therefore, characterizing the different cell types that comprise the pancreas microenvironment and profiling their gene expression are crucial to delineate the tissue development and function under normal and diseased states. Here, we describe a method that allows for the isolation of mesenchymal cells from the pancreas of embryonic, neonatal, and adult mice. This method utilizes the enzymatic digestion of mouse pancreatic tissue and the subsequent fluorescence-activated cell sorting (FACS) or flow-cytometric analysis of labeled cells. Cells can be labeled by either immunostaining for surface markers or by the expression of fluorescent proteins. Cell isolation can facilitate the characterization of genes and proteins expressed in cells of the pancreas mesenchyme. This protocol was successful in isolating and culturing highly enriched mesenchymal cell populations from the embryonic, neonatal, and adult mouse pancreas.
Prospective isolation of multipotent pancreatic progenitors using flow-cytometric cell sorting.
Suzuki, Atsushi; Nakauchi, Hiromitsu; Taniguchi, Hideki
2004-08-01
During pancreatic development, neogenesis, and regeneration, stem cells might act as a central player to generate endocrine, acinar, and duct cells. Although these cells are well known as pancreatic stem cells (PSCs), indisputable proof of their existence has not been reported. Identification of phenotypic markers for PSCs leads to their prospective isolation and precise characterization to clear whether stem cells exist in the pancreas. By combining flow cytometry and clonal analysis, we show here that a possible pancreatic stem or progenitor cell candidate that resides in the developing and adult mouse pancreas expresses the receptor for the hepatocyte growth factor (HGF) c-Met, but does not express hematopoietic and vascular endothelial antigens such as CD45, TER119, c-Kit, and Flk-1. These cells formed clonal colonies in vitro and differentiated into multiple pancreatic lineage cells from single cells. Some of them could largely expand with self-renewing cell divisions in culture, and, following cell transplantation, they differentiated into pancreatic endocrine and acinar cells in vivo. Furthermore, they produced cells expressing multiple markers of nonpancreatic organs including liver, stomach, and intestine in vitro. Our data strongly suggest that c-Met/HGF signaling plays an important role in stem/progenitor cell function in both developing and adult pancreas. By using this antigen, PSCs could be isolated prospectively, enabling a detailed investigation of stem cell markers and application toward regenerative therapies for diabetes.
Hartmann, Manuela; Grob, Carolina; Scanlan, David J; Martin, Adrian P; Burkill, Peter H; Zubkov, Mikhail V
2011-11-01
The smallest phototrophic protists (<3 μm) are important primary producers in oligotrophic subtropical gyres - the Earth's largest ecosystems. In order to elucidate how these protists meet their inorganic nutrient requirements, we compared the phosphate uptake rates of plastidic and aplastidic protists in the phosphate-depleted subtropical and tropical North Atlantic (4-29°N) using a combination of radiotracers and flow cytometric sorting on two Atlantic Meridional Transect cruises. Plastidic protists were divided into two groups according to their size (<2 and 2-3 μm). Both groups of plastidic protists showed higher phosphate uptake rates per cell than the aplastidic protists. Although the phosphate uptake rates of protist cells were on average seven times (P<0.001) higher than those of bacterioplankton, the biomass-specific phosphate uptake rates of protists were one fourth to one twentieth of an average bacterioplankton cell. The unsustainably low biomass-specific phosphate uptake by both plastidic and aplastidic protists suggests the existence of a common alternative means of phosphorus acquisition - predation on phosphorus-rich bacterioplankton cells. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Means and methods for cytometric therapies
Gillies, George T.; Fillmore, Helen; Broaddus, William C.; Evans, III, Boyd M.; Allison, Stephen W.
2013-03-26
A functionalized tip is incorporated into catheters for the cytometric delivery of cells into the brain and other body parts. For use in the brain, the tip forms part of a neurosurgical probe having a proximal end and a distal end. In addition to the functionalized tip, the probe has at least one cell slurry delivery lumen and a plurality of optical fibers configured along the probe, terminating in the tip to provide the photo-optical capability needed to monitor the viability and physiological behavior of the grafted cells as well as certain characteristics of the cellular environment. Details are also presented of the use of a neurocatheter having a cytometric tip of the type disclosed in the invention, as employed within the context of a feedback and control system for regulating the number of cells delivered to the brain of a patient.
del Olmo, D; Parrilla, I; Gil, M A; Maside, C; Tarantini, T; Angel, M A; Roca, J; Martinez, E A; Vazquez, J M
2013-09-01
The objective of this study was to develop an adequate sperm handling protocol in order to obtain a sex-sorted sperm population with an optimal fertilizing ability. For this purpose, different aspects of the sorting procedure were examined. The effects of the high dilution rates (experiment 1), type of collection medium used (experiment 2), and sheath fluid composition (experiment 3) on sorted boar sperm quality and function were evaluated. Sperm quality was assessed by motility and viability tests, whereas sperm function was evaluated by an in vitro fertilization assay which determined the penetration and polyspermy rates as well as the mean number of sperm penetrating each oocyte. In experiment 1, the results obtained indicated that the high dilution rates did not cause a decrease either in the sperm quality parameters evaluated or the in vitro fertilization ability of spermatozoa. In experiment 2, although sperm quality was not affected, fertilizing ability was compromised after sorting, regardless of the collection medium that was used. In the experiment 3, all groups displayed adequate sperm quality values, but higher in vitro fertility parameters were obtained for spermatozoa sorted in presence of EDTA in the sheath fluid and egg yolk (EY) in the collection media when compared with those sorted in absence of these protective agents. No differences in penetration rates between unsorted highly diluted (control) and sorted sperm in the presence of EDTA and EY were observed. In conclusion, fertilizing ability was compromised in sex-sorted sperm. The addition of EDTA to sheath fluid and EY to collection medium improved boar sperm fertilizing ability, and both agents should be included as essential media components in future studies. Copyright © 2013 Elsevier Inc. All rights reserved.
Blacking, T M; Waterfall, M; Samuel, K; Argyle, D J
2012-12-01
The cancer stem cell (CSC) hypothesis proposes that tumour growth is maintained by a distinct subpopulation of 'CSC'. This study applied flow cytometric methods, reported to detect CSC in both primary and cultured cancer cells of other species, to identify candidate canine subpopulations. Cell lines representing diverse canine malignancies, and cells derived from spontaneous canine tumours, were evaluated for expression of stem cell-associated surface markers (CD34, CD44, CD117 and CD133) and functional properties [Hoecsht 33342 efflux, aldehyde dehydrogenase (ALDH) activity]. No discrete marker-defined subsets were identified within established cell lines; cells derived directly from spontaneous tumours demonstrated more heterogeneity, although this diminished upon in vitro culture. Functional assays produced variable results, suggesting context-dependency. Flow cytometric methods may be adopted to identify putative canine CSC. Whilst cell lines are valuable in assay development, primary cells may provide a more rewarding model for studying tumour heterogeneity in the context of CSC. However, it will be essential to fully characterize any candidate subpopulations to ensure that they meet CSC criteria. © 2011 Blackwell Publishing Ltd.
Takahara, Hiroyuki; Dolf, Andreas; Endl, Elmar; O'Connell, Richard
2009-08-01
Generation of stage-specific cDNA libraries is a powerful approach to identify pathogen genes that are differentially expressed during plant infection. Biotrophic pathogens develop specialized infection structures inside living plant cells, but sampling the transcriptome of these structures is problematic due to the low ratio of fungal to plant RNA, and the lack of efficient methods to isolate them from infected plants. Here we established a method, based on fluorescence-activated cell sorting (FACS), to purify the intracellular biotrophic hyphae of Colletotrichum higginsianum from homogenates of infected Arabidopsis leaves. Specific selection of viable hyphae using a fluorescent vital marker provided intact RNA for cDNA library construction. Pilot-scale sequencing showed that the library was enriched with plant-induced and pathogenicity-related fungal genes, including some encoding small, soluble secreted proteins that represent candidate fungal effectors. The high purity of the hyphae (94%) prevented contamination of the library by sequences derived from host cells or other fungal cell types. RT-PCR confirmed that genes identified in the FACS-purified hyphae were also expressed in planta. The method has wide applicability for isolating the infection structures of other plant pathogens, and will facilitate cell-specific transcriptome analysis via deep sequencing and microarray hybridization, as well as proteomic analyses.
Low-dose cisplatin protects human neuroblastoma SH-SY5Y cells from paclitaxel-induced apoptosis.
Villa, Daniela; Miloso, Mariarosaria; Nicolini, Gabriella; Rigolio, Roberta; Villa, Antonello; Cavaletti, Guido; Tredici, Giovanni
2005-09-01
Combined anticancer therapy using platinum compounds and antitubulins has increased the risk of neurotoxicity. However, the combination of low-dose cisplatin (CDDP) with toxic doses of paclitaxel significantly reduces cellular death in a human neuroblastoma SH-SY5Y cell line. To analyze the mechanisms of this protection, we evaluated various signaling molecules possibly involved in apoptosis and some relevant cell cycle regulatory proteins. CDDP does not interfere with the tubulin-stabilizing action of paclitaxel. The evaluation of molecular pathways involved in apoptosis indicates that the Bcl-2 but not the caspases may be involved in the CDDP protection of paclitaxel-induced apoptosis. The increase in p53 protein and its nuclear accumulation suggests a possible involvement of p53 in CDDP protection. The use of the chemical inhibitor of p53, pifithrin alpha, excluded this possibility. The study of cyclins and the flow cytometric analysis (fluorescence-activated cell sorting) suggest that CDDP exerts a protective action by blocking cells early in the cell cycle. The determination of the mitotic index indicates that CDDP prevents cells from reaching the mitosis. We concluded that low doses of CDDP are protective against toxic doses of paclitaxel and that the possible mechanism of this protection is that the CDDP prevents human neuroblastoma SH-SY5Y cells from achieving mitosis.
MicroRNA Expression in Alpha and Beta Cells of Human Pancreatic Islets
Vargas, Nancy; Rosero, Samuel; Piroso, Julieta; Ichii, Hirohito; Umland, Oliver; Zhijie, Jiang; Tsinoremas, Nicholas; Ricordi, Camillo; Inverardi, Luca; Domínguez-Bendala, Juan; Pastori, Ricardo L.
2013-01-01
microRNAs (miRNAs) play an important role in pancreatic development and adult β-cell physiology. Our hypothesis is based on the assumption that each islet cell type has a specific pattern of miRNA expression. We sought to determine the profile of miRNA expression in α-and β-cells, the main components of pancreatic islets, because this analysis may lead to a better understanding of islet gene regulatory pathways. Highly enriched (>98%) subsets of human α-and β-cells were obtained by flow cytometric sorting after intracellular staining with c-peptide and glucagon antibody. The method of sorting based on intracellular staining is possible because miRNAs are stable after fixation. MiRNA expression levels were determined by quantitative high throughput PCR-based miRNA array platform screening. Most of the miRNAs were preferentially expressed in β-cells. From the total of 667 miRNAs screened, the Significant Analysis of Microarray identified 141 miRNAs, of which only 7 were expressed more in α-cells (α-miRNAs) and 134 were expressed more in β-cells (β-miRNAs). Bioinformatic analysis identified potential targets of β-miRNAs analyzing the Beta Cell Gene Atlas, described in the T1Dbase, the web platform, supporting the type 1 diabetes (T1D) community. cMaf, a transcription factor regulating glucagon expression expressed selectively in α-cells (TFα) is targeted by β-miRNAs; miR-200c, miR-125b and miR-182. Min6 cells treated with inhibitors of these miRNAs show an increased expression of cMaf RNA. Conversely, over expression of miR-200c, miR-125b or miR-182 in the mouse alpha cell line αTC6 decreases the level of cMAF mRNA and protein. MiR-200c also inhibits the expression of Zfpm2, a TFα that inhibits the PI3K signaling pathway, at both RNA and protein levels. In conclusion, we identified miRNAs differentially expressed in pancreatic α- and β-cells and their potential transcription factor targets that could add new insights into different aspects of islet biology and pathophysiology. PMID:23383059
MicroRNA expression in alpha and beta cells of human pancreatic islets.
Klein, Dagmar; Misawa, Ryosuke; Bravo-Egana, Valia; Vargas, Nancy; Rosero, Samuel; Piroso, Julieta; Ichii, Hirohito; Umland, Oliver; Zhijie, Jiang; Tsinoremas, Nicholas; Ricordi, Camillo; Inverardi, Luca; Domínguez-Bendala, Juan; Pastori, Ricardo L
2013-01-01
microRNAs (miRNAs) play an important role in pancreatic development and adult β-cell physiology. Our hypothesis is based on the assumption that each islet cell type has a specific pattern of miRNA expression. We sought to determine the profile of miRNA expression in α-and β-cells, the main components of pancreatic islets, because this analysis may lead to a better understanding of islet gene regulatory pathways. Highly enriched (>98%) subsets of human α-and β-cells were obtained by flow cytometric sorting after intracellular staining with c-peptide and glucagon antibody. The method of sorting based on intracellular staining is possible because miRNAs are stable after fixation. MiRNA expression levels were determined by quantitative high throughput PCR-based miRNA array platform screening. Most of the miRNAs were preferentially expressed in β-cells. From the total of 667 miRNAs screened, the Significant Analysis of Microarray identified 141 miRNAs, of which only 7 were expressed more in α-cells (α-miRNAs) and 134 were expressed more in β-cells (β-miRNAs). Bioinformatic analysis identified potential targets of β-miRNAs analyzing the Beta Cell Gene Atlas, described in the T1Dbase, the web platform, supporting the type 1 diabetes (T1D) community. cMaf, a transcription factor regulating glucagon expression expressed selectively in α-cells (TFα) is targeted by β-miRNAs; miR-200c, miR-125b and miR-182. Min6 cells treated with inhibitors of these miRNAs show an increased expression of cMaf RNA. Conversely, over expression of miR-200c, miR-125b or miR-182 in the mouse alpha cell line αTC6 decreases the level of cMAF mRNA and protein. MiR-200c also inhibits the expression of Zfpm2, a TFα that inhibits the PI3K signaling pathway, at both RNA and protein levels.In conclusion, we identified miRNAs differentially expressed in pancreatic α- and β-cells and their potential transcription factor targets that could add new insights into different aspects of islet biology and pathophysiology.
CD24 can be used to isolate Lgr5+ putative colonic epithelial stem cells in mice
King, Jeffrey B.; von Furstenberg, Richard J.; Smith, Brian J.; McNaughton, Kirk K.; Galanko, Joseph A.
2012-01-01
A growing body of evidence has implicated CD24, a cell-surface protein, as a marker of colorectal cancer stem cells and target for antitumor therapy, although its presence in normal colonic epithelium has not been fully characterized. Previously, our group showed that CD24-based cell sorting can be used to isolate a fraction of murine small intestinal epithelial cells enriched in actively cycling stem cells. Similarly, we hypothesized that CD24-based isolation of colonic epithelial cells would generate a fraction enriched in actively cycling colonic epithelial stem cells (CESCs). Immunohistochemistry performed on mouse colonic tissue showed CD24 expression in the bottom half of proximal colon crypts and the crypt base in the distal colon. This pattern of distribution was similar to enhanced green fluorescent protein (EGFP) expression in Lgr5-EGFP mice. Areas expressing CD24 contained actively proliferating cells as determined by ethynyl deoxyuridine (EdU) incorporation, with a distinct difference between the proximal colon, where EdU-labeled cells were most frequent in the midcrypt, and the distal colon, where they were primarily at the crypt base. Flow cytometric analyses of single epithelial cells, identified by epithelial cell adhesion molecule (EpCAM) positivity, from mouse colon revealed an actively cycling CD24+ fraction that contained the majority of Lgr5-EGFP+ putative CESCs. Transcript analysis by quantitative RT-PCR confirmed enrichment of active CESC markers [leucine-rich-repeat-containing G protein-coupled receptor 5 (Lgr5), ephrin type B receptor 2 (EphB2), and CD166] in the CD24+EpCAM+ fraction but also showed enrichment of quiescent CESC markers [leucine-rich repeats and immunoglobin domains (Lrig), doublecortin and calmodulin kinase-like 1 (DCAMKL-1), and murine telomerase reverse transcriptase (mTert)]. We conclude that CD24-based sorting in wild-type mice isolates a colonic epithelial fraction highly enriched in actively cycling and quiescent putative CESCs. Furthermore, the presence of CD24 expression in normal colonic epithelium may have important implications for the use of anti-CD24-based colorectal cancer therapies. PMID:22723265
Probing Metabolic Activity of Deep Subseafloor Life with NanoSIMS
NASA Astrophysics Data System (ADS)
Morono, Y.; Terada, T.; Itoh, M.; Inagaki, F.
2014-12-01
There are very few natural environments where life is absent in the Earth's surface biosphere. However, uninhabitable region is expected to be exist in the deep subsurface biosphere, of which extent and constraining factor(s) have still remained largly unknown. Scientific ocean drilling have revealed that microbial communities in sediments are generally phylogenetically distinct from known spieces isolated from the Earth's surface biosphere, and hence metabolic functions of the deep subseafloor life remain unknown. In addition, activity of subseafloor microbial cells are thought to be extraordinally slow, as indicated by limited supply of neutrient and energy substrates. To understand the limits of the Earth's subseafloor biosphere and metabolic functions of microbial populations, detection and quantification of the deeply buried microbial cells in geological habitats are fundamentary important. Using newly developed cell separation techniques as well as an discriminative cell detection system, the current quantification limit of sedimentary microbial cells approaches to 102 cells/cm3. These techniques allow not only to assess very small microbial population close to the subsurface biotic fringe, but also to separate and sort the target cells using flow cytometric cell sorter. Once the deep subseafloor microbial cells are detached from mineral grains and sorted, it opens new windows to subsequent molecular ecological and element/isotopic analyses. With a combined use of nano-scale secondary ion masspectrometry (NanoSIMS) and stable isotope-probing techniques, it is possible to detect and measure activity of substrate incorporation into biomass, even for extremely slow metabolic processes such as uncharacteriszed deep subseafloor life. For example, it was evidenced by NanoSIMS that at least over 80% of microbial cells at ~200 meters-deep, 460,000-year-old sedimentary habitat are indeed live, which substrate incooporation was found to be low (10-15 gC/cell/day) even under the lab incubation condition. Also microbial activity in ultraoligotrophic biosphere samples such as the South Pacific Gyre (i.e., IODP Expeditions 329) will be shown. Our results demonstrates metabolic potential of microbes that have been survived for geological timescale in extremely starved condition.
A high-yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba L.
Doležel, J; Cíhalíková, J; Lucretti, S
1992-08-01
A new method is described for the isolation of large quantities of Vicia faba metaphase chromosomes. Roots were treated with 2.5 mM hydroxyurea for 18 h to accumulate meristem tip cells at the G1/S interface. After release from the block, the cells re-entered the cell cycle with a high degree of synchrony. A treatment with 2.5 μM amiprophos-methyl (APM) was used to accumulate mitotic cells in metaphase. The highest metaphase index (53.9%) was achieved when, 6 h after the release from the hydroxyurea block, the roots were exposed to APM for 4 h. The chromosomes were released from formaldehyde-fixed root tips by chopping with a scalpel in LB01 lysis buffer. Both the quality and the quantity of isolated chromosomes, examined microscopically and by flow cytometry, depended on the extent of the fixation. The best results were achieved after fixation with 6% formaldehyde for 30 min. Under these conditions, 1 · 10(6) chromosomes were routinely obtained from 30 root tips. The chromosomes were morphologically intact and suitable both for high-resolution chromosome studies and for flow-cytometric analysis and sorting. After the addition of hexylene glycol, the chromosome suspensions could be stored at 4° C for six months without any signs of deterioration.
Muratore, Massimo; Mitchell, Steve; Waterfall, Martin
2013-09-06
Multipotent progenitor cells have shown promise for use in biomedical applications and regenerative medicine. The implementation of such cells for clinical application requires a synchronized, phenotypically and/or genotypically, homogenous cell population. Here we have demonstrated the implementation of a biological tag-free dielectrophoretic device used for discrimination of multipotent myoblastic C2C12 model. The multipotent capabilities in differentiation, for these cells, diminishes with higher passage number, so for cultures above 70 passages only a small percentage of cells is able to differentiate into terminal myotubes. In this work we demonstrated that we could recover, above 96% purity, specific cell types from a mixed population of cells at high passage number without any biological tag using dielectrophoresis. The purity of the samples was confirmed by cytometric analysis using the cell specific marker embryonic myosin. To further investigate the dielectric properties of the cell plasma membrane we co-culture C2C12 with similar size, when in suspension, GFP-positive fibroblast as feeder layer. The level of separation between the cell types was above 98% purity which was confirmed by flow cytometry. These levels of separation are assumed to account for cell size and for the plasma membrane morphological differences between C2C12 and fibroblast unrelated to the stages of the cell cycle which was assessed by immunofluorescence staining. Plasma membrane conformational differences were further confirmed by scanning electron microscopy. Copyright © 2013 Elsevier Inc. All rights reserved.
Suessmuth, Yvonne; Mukherjee, Rithun; Watkins, Benjamin; Koura, Divya T.; Finstermeier, Knut; Desmarais, Cindy; Stempora, Linda; Horan, John T.; Langston, Amelia; Qayed, Muna; Khoury, Hanna J.; Grizzle, Audrey; Cheeseman, Jennifer A.; Conger, Jason A.; Robertson, Jennifer; Garrett, Aneesah; Kirk, Allan D.; Waller, Edmund K.; Blazar, Bruce R.; Mehta, Aneesh K.; Robins, Harlan S.
2015-01-01
Although cytomegalovirus (CMV) reactivation has long been implicated in posttransplant immune dysfunction, the molecular mechanisms that drive this phenomenon remain undetermined. To address this, we combined multiparameter flow cytometric analysis and T-cell subpopulation sorting with high-throughput sequencing of the T-cell repertoire, to produce a thorough evaluation of the impact of CMV reactivation on T-cell reconstitution after unrelated-donor hematopoietic stem cell transplant. We observed that CMV reactivation drove a >50-fold specific expansion of Granzyme Bhigh/CD28low/CD57high/CD8+ effector memory T cells (Tem) and resulted in a linked contraction of all naive T cells, including CD31+/CD4+ putative thymic emigrants. T-cell receptor β (TCRβ) deep sequencing revealed a striking contraction of CD8+ Tem diversity due to CMV-specific clonal expansions in reactivating patients. In addition to querying the topography of the expanding CMV-specific T-cell clones, deep sequencing allowed us, for the first time, to exhaustively evaluate the underlying TCR repertoire. Our results reveal new evidence for significant defects in the underlying CD8 Tem TCR repertoire in patients who reactivate CMV, providing the first molecular evidence that, in addition to driving expansion of virus-specific cells, CMV reactivation has a detrimental impact on the integrity and heterogeneity of the rest of the T-cell repertoire. This trial was registered at www.clinicaltrials.gov as #NCT01012492. PMID:25852054
Ichida, Kensuke; Kise, Kazuyoshi; Morita, Tetsuro; Yazawa, Ryosuke; Takeuchi, Yutaka; Yoshizaki, Goro
2017-10-01
We previously established surrogate broodstock in which the donor germ cells transplanted into the peritoneal cavities of xenogeneic recipients were capable of developing into functional eggs and sperm in teleost fish. In this transplantation system, only the undifferentiated germ cells such as type A spermatogonia (ASG) or a portion of the ASG population were capable of being incorporated into the genital ridges of the recipients and undergo gametogenesis. Therefore, the use of enriched ASGs can be expected to achieve efficient donor-cell incorporation. Here, we established a method of isolation and enrichment of the ASG of Pacific bluefin tuna using flow cytometry. Whole testicular cell suspensions were fractionated by forward and side scatter properties, following which ASGs were enriched in a fraction in which the forward scatter signal was relatively high and side scatter signal was relatively low. The diameter of sorted cells using the fraction was identical to the size of ASGs observed in histological analysis, and these cells also expressed the vasa gene. In addition, we succeeded in applying this method to several maturation stages of Pacific bluefin tuna. Since this method was based on light-scattering characteristics of ASGs, it can potentially be applied to various teleosts. We expect that this method can contribute to the production of seeds of Pacific bluefin tuna using surrogate broodstock. Copyright © 2017 Elsevier Inc. All rights reserved.
Mitsutake, Norisato; Iwao, Atsuhiko; Nagai, Kazuhiro; Namba, Hiroyuki; Ohtsuru, Akira; Saenko, Vladimir; Yamashita, Shunichi
2007-04-01
There is increasing evidence that cancers contain their own stem-like cells called cancer stem cells (CSCs). A small subset of cells, termed side population (SP), has been identified using flow cytometric analysis. The SP cells have the ability to exclude the DNA binding dye, Hoechst33342, and are highly enriched for stem cells in many kinds of normal tissues. Because CSCs are thought to be drug resistant, SP cells in cancers might contain CSCs. We initially examined the presence of SP cells in several human thyroid cancer cell lines. A small percentage of SP cells were found in ARO (0.25%), FRO (0.1%), NPA (0.06%), and WRO (0.02%) cells but not TPC1 cells. After sorting, the SP cells generated both SP and non-SP cells in culture. The clonogenic ability of SP cells was significantly higher than that of non-SP cells. Moreover, the SP prevalence was dependent on cell density in culture, suggesting that SP cells preferentially survived at lower cell density. Microarray experiment revealed differential gene expression profile between SP and non-SP cells, and several genes related to stemness were up-regulated. However, non-SP population also contained cells that were tumorigenic in nude mice, and non-SP cells generated a small number of SP cells. These results suggest that cancer stem-like cells are partly, but not exclusively, enriched in SP population. Clarifying the key tumorigenic population might contribute to the establishment of a novel therapy for thyroid cancer.
Flow cytometric measurement of total DNA and incorporated halodeoxyuridine
Dolbeare, Frank A.; Gray, Joe W.
1986-01-01
A method for the simultaneous flow cytometric measurement of the total DNA content and the level of DNA synthesis in normal and malignant cells is disclosed. The sensitivity of the method allows a study of cell cycle traverse rates for large scale cell populations as well as single cell measurements. A DNA stain such as propidium iodide is used as the probe for the measurement of total DNA content and a monoclonal antibody reactive with a DNA precursor such as bromodeoxyuridine (BrdU) is used as a probe for the measurement of BrdU uptake by the cells as a measure of DNA synthesis.
Hepatic progenitor populations in embryonic, neonatal, and adult liver.
Brill, S; Holst, P; Sigal, S; Zvibel, I; Fiorino, A; Ochs, A; Somasundaran, U; Reid, L M
1993-12-01
Oval cells, small cells with oval-shaped nuclei, are induced to proliferate in the livers of animals treated with carcinogens and are thought to be related to liver stem cells and/or committed liver progenitor cell populations. We have developed protocols for identifying and isolating antigenically related cell populations present in normal tissues using monoclonal antibodies to oval cell antigens and fluorescence-activated cell sorting. We have isolated oval cell-antigen-positive (OCAP) cells from embryonic, neonatal, and adult rat livers and have identified culture conditions permitting their growth in culture. The requirements for growth of the OCAP cells included substrata of type IV collagen mixed with laminin, basal medium with complex lipids and low calcium, specific growth factors (most potently, insulin-like growth factor II and granulocyte-macrophage colony-stimulating factor), and co-cultures of embryonic, liver-specific stroma, strongly suggesting paracrine signaling between hepatic and hemopoietic precursor cells. The growing OCAP cultures proved to be uniformly expressing oval cell markers but were nevertheless a mixture of hepatic and hemopoietic precursor cells. To separate the hepatic and hemopoietic subpopulations of OCAP cells, we surveyed known antibodies and found ones that uniquely identify either hepatic or hemopoietic cells. Several of these antibodies were used in panning procedures and fluorescence-activated cell sorting to eliminate contaminant cell populations, particularly hemopoietic and endothelial cells. Using specific flow cytometric parameters, three cellular subpopulations could be isolated separately that were identified by immunochemistry and molecular hybridization assays as probable: (i) committed progenitors to hepatocytes; (ii) committed progenitors to bile ducts; or (iii) a mixed population of hemopoietic cells that contained a small percentage of hepatic blasts that are possibly pluripotent. The hepatic precursor cells have been characterized using immunochemistry, flow cytometry, and molecular hybridization assays. The hepatic blasts are small (7-10 microns) cells with high nuclear to cytoplasmic ratios and with minimal complexity of the cytoplasm. Cultures of the committed progenitors were found to differentiate into cells with recognizable parenchymal cell fates. We discuss our studies in the context of our model of the liver as stem cell and lineage system and suggest that a slow, unidirectional, terminal differentiation process, paralleling more rapid ones in the skin or gut, occurs at all times in the liver and is thought to vary primarily in kinetics during quiescent versus regenerative states.(ABSTRACT TRUNCATED AT 400 WORDS)
Bommannan, K; Sachdeva, M U S; Gupta, M; Bose, P; Kumar, N; Sharma, P; Naseem, S; Ahluwalia, J; Das, R; Varma, N
2016-10-01
A good bone marrow (BM) sample is essential in evaluating many hematologic disorders. An unsuccessful BM aspiration (BMA) procedure precludes a successful flow cytometric immunophenotyping (FCI) in most hematologic malignancies. Apart from FCI, most ancillary diagnostic techniques in hematology are less informative. We describe the feasibility of FCI in vortex-dislodged cell preparation obtained from unfixed trephine biopsy (TB) specimens. In pancytopenic patients and dry tap cases, routine diagnostic BMA and TB samples were complemented by additional trephine biopsies. These supplementary cores were immediately transferred into sterile tubes filled with phosphate-buffered saline, vortexed, and centrifuged. The cell pellet obtained was used for flow cytometric immunophenotyping. Of 7955 BMAs performed in 42 months, 34 dry tap cases were eligible for the study. Vortexing rendered a cell pellet in 94% of the cases (32 of 34), and FCI rendered a rapid diagnosis in 100% of the cases (32 of 32) where cell pellets were available. We describe an efficient procedure which could be effectively utilized in resource-limited centers and reduce the frequency of repeat BMA procedures. © 2016 John Wiley & Sons Ltd.
Flow cytometric analyses of CD34+ cells with inclusion of internal positive controls.
Gutensohn, Kai; Jessen, Maria; Ketels, Andrea; Gramatzki, Martin; Humpe, Andreas
2012-02-01
Flow cytometric measurement of CD34+ events is used to ensure the quality of human progenitor cell grafts. This study was conducted to evaluate whether the spiking of routine samples from peripheral blood and apheresis products with CD34+ positive controls is feasible. A total of 42 samples from 32 patients and one healthy donor were stained in duplicate for CD34+ cells. Before flow cytometric analysis, one tube was spiked with stabilized CD34+ cells at a defined concentration. Median numbers of viable CD34+ cells/µL did not differ between unspiked and spiked tubes (median 37, range 0-714; and median 34, range 0-719, respectively). The 95% confidence interval (CI) of the mean showed a broad overlap between these samples (41.9-119.1 and 41.4-119.3, respectively). In addition, the 95% CI of the mean for CD45+ cells/µL overlapped broadly and median numbers did not differ. Median viability of all CD45+ cells was significantly lower in the spiked tubes (96.75, range 64-98.8 vs. 99.25, range 97.5-99.8) with no overlap of the 95% CI of the mean viability. The results of this study show that spiking of routine samples with internal positive controls does not affect CD34+ cell analyses, but does support the reliability of important clinical data. The inclusion of positive controls is expedient for laboratories that perform analyses with low CD34+ numbers and laboratories that use different flow cytometric analyzers and may also become a requirement to meet statutory regulations. © 2012 American Association of Blood Banks.
Hepatic oval cells express the hematopoietic stem cell marker Thy-1 in the rat.
Petersen, B E; Goff, J P; Greenberger, J S; Michalopoulos, G K
1998-02-01
Hepatic oval cells (HOC) are a small subpopulation of cells found in the liver when hepatocyte proliferation is inhibited and followed by some type of hepatic injury. HOC can be induced to proliferate using a 2-acetylaminofluorene (2-AAF)/hepatic injury (i.e., CCl4, partial hepatectomy [PHx]) protocol. These cells are believed to be bipotential, i.e., able to differentiate into hepatocytes or bile ductular cells. In the past, isolation of highly enriched populations of these cells has been difficult. Thy-1 is a cell surface marker used in conjunction with CD34 and lineage-specific markers to identify hematopoietic stem cells. Thy-1 antigen is not normally expressed in adult liver, but is expressed in fetal liver, presumably on the hematopoietic cells. We report herein that HOC express high levels of Thy-1. Immunohistochemistry revealed that the cells expressing Thy-1 were indeed oval cells, because they also expressed alpha-fetoprotein (AFP), gamma-glutamyl transpeptidase (GGT), cytokeratin 19 (CK-19), OC.2, and OV-6, all known markers for oval cell identification. In addition, the Thy-1+ cells were negative for desmin, a marker specific for Ito cells. Using Thy-1 antibody as a new marker for the identification of oval cells, a highly enriched population was obtained. Using flow cytometric methods, we isolated a 95% to 97% pure Thy-1+ oval cell population. Our results indicate that cell sorting using Thy-1 could be an attractive tool for future studies, which would facilitate both in vivo and in vitro studies of HOC.
Téllez-Bañuelos, Martha Cecilia; Ortiz-Lazareno, Pablo Cesar; Jave-Suárez, Luis Felipe; Siordia-Sánchez, Victor Hugo; Bravo-Cuellar, Alejandro; Santerre, Anne; Zaitseva, Galina P
2014-05-01
The effect of the organochlorinated insecticide endosulfan, on the cytotoxic activity of Nile tilapia nonspecific cytotoxic cells (NCC) was assessed. Juvenile Nile tilapia were exposed to endosulfan (7 ppb) for 96 h and splenic NCC were isolated. Flow cytometric phenotyping of NCC was based on the detection of the NCC specific membrane signaling protein NCCRP-1 by using the monoclonal antibody Mab 5C6; granzyme expression was evaluated by quantitative RT-PCR. The cytotoxic activity of sorted NCC on HL-60 tumoral cells was assessed using propidium iodide (PI) staining of DNA in HL-60 nuclei, indicating dead cells. Nile tilapia splenic NCC had the ability to kill HL-60 tumoral cells, however, the exposure to endosulfan significantly reduced, by a 65%, their cytotoxic activity when using the effector:target ratio of 40:1. Additionally, the exposure to endosulfan tended to increase the expression of NCCRP-1, which is involved in NCC antigen recognition and signaling. Moreover, it decreased the expression of the granzyme gene in exposed group as compared with non-exposed group; however significant differences between groups were not detected. In summary, the acute exposure of Nile tilapia to sublethal concentration of endosulfan induces alteration in function of NCC: significant decrease of cytotoxic activity and a tendency to lower granzyme expression, severe enough to compromise the immunity of this species. Copyright © 2014 Elsevier Ltd. All rights reserved.
Development of a novel cell sorting method that samples population diversity in flow cytometry.
Osborne, Geoffrey W; Andersen, Stacey B; Battye, Francis L
2015-11-01
Flow cytometry based electrostatic cell sorting is an important tool in the separation of cell populations. Existing instruments can sort single cells into multi-well collection plates, and keep track of cell of origin and sorted well location. However currently single sorted cell results reflect the population distribution and fail to capture the population diversity. Software was designed that implements a novel sorting approach, "Slice and Dice Sorting," that links a graphical representation of a multi-well plate to logic that ensures that single cells are sampled and sorted from all areas defined by the sort region/s. Therefore the diversity of the total population is captured, and the more frequently occurring or rarer cell types are all sampled. The sorting approach was tested computationally, and using functional cell based assays. Computationally we demonstrate that conventional single cell sorting can sample as little as 50% of the population diversity dependant on the population distribution, and that Slice and Dice sorting samples much more of the variety present within a cell population. We then show by sorting single cells into wells using the Slice and Dice sorting method that there are cells sorted using this method that would be either rarely sorted, or not sorted at all using conventional single cell sorting approaches. The present study demonstrates a novel single cell sorting method that samples much more of the population diversity than current methods. It has implications in clonal selection, stem cell sorting, single cell sequencing and any areas where population heterogeneity is of importance. © 2015 International Society for Advancement of Cytometry.
Mariucci, S; Rovati, B; Chatzileontiadou, S; Bencardino, K; Manzoni, M; Delfanti, S; Danova, M
2009-01-01
Blood circulating endothelial cells (CECs), with their resting and activated subsets, (rCECs and aCECs) and circulating progenitors cells (CEPs) are two extremely rare cell populations that are important in tissue vascularization. Their number and function are modulated in diseases involving vascular injury, such as human tumours. Although a consensus on the phenotypic definition of endothelial cells, as well as on the optimal enumeration technique, is still lacking, the number of clinical studies based on assessment of these cells is rapidly expanding, as well as the analytical methods employed. The present study aimed to develop a rapid and sensitive flow cytometric method of quantifying and characterizing CECs (with both their subsets and the apoptotic fraction) and CEPs. We analysed peripheral blood samples from 21 subjects with a six-colour flow cytometric approach allowing detection of the cell phenotype of CECs and CEPs using a monoclonal antibodies panel and a dedicated gating strategy. Apoptotic CECs were detected with Annexin V and dead cells with 7-amino-actinomycin D staining. The described technique proved to be a new, reliable, tool increasing our knowledge of the biology of CECs and CEPs and can readily be applied in the study of many pathological conditions characterized by endothelial damage.
Flow cytometric measurement of total DNA and incorporated halodeoxyuridine
Dolbeare, Frank A.; Gray, Joe W.
1988-01-01
A method for the simultaneous flow cytometric measurement of the total DNA content and the level of DNA synthesis in normal and malignant cells is disclosed. The sensitivity of the method allows a study of cell cycle traverse rates for large scale cell populations as well as single cell measurements. A DNA stain such as propidium iodide or Hoechst 33258 is used as the probe for the measurement of total DNA content and a monoclonal antibody reactive with a DNA precursor such as halodeoxy-uridine (HdU), more specifically bromodeoxyuridine (BrdU) is used as a probe for the measurement of HdU or BrdU uptake by the cells as a measure of DNA synthesis.
Rose, Jonathan A; Wanner, Nicholas; Cheong, Hoi I; Queisser, Kimberly; Barrett, Patrick; Park, Margaret; Hite, Corrine; Naga Prasad, Sathyamangla V; Erzurum, Serpil; Asosingh, Kewal
2016-01-01
Pulmonary arterial hypertension (PAH) is a heterogeneous disease characterized by severe angiogenic remodeling of the pulmonary artery wall and right ventricular hypertrophy. Thus, there is an increasing need for novel biomarkers to dissect disease heterogeneity, and predict treatment response. Although β-adrenergic receptor (βAR) dysfunction is well documented in left heart disease while endothelial cell-derived microparticles (Ec-MPs) are established biomarkers of angiogenic remodeling, methods for easy large clinical cohort analysis of these biomarkers are currently absent. Here we describe flow cytometric methods for quantification of βAR density on circulating white blood cells (WBC) and Ec-MPs in urine samples that can be used as potential biomarkers of right heart failure in PAH. Biotinylated β-blocker alprenolol was synthesized and validated as a βAR specific probe that was combined with immunophenotyping to quantify βAR density in circulating WBC subsets. Ec-MPs obtained from urine samples were stained for annexin-V and CD144, and analyzed by a micro flow cytometer. Flow cytometric detection of alprenolol showed that βAR density was decreased in most WBC subsets in PAH samples compared to healthy controls. Ec-MPs in urine was increased in PAH compared to controls. Furthermore, there was a direct correlation between Ec-MPs and Tricuspid annular plane systolic excursion (TAPSE) in PAH patients. Therefore, flow cytometric quantification of peripheral blood cell βAR density and urinary Ec-MPs may be useful as potential biomarkers of right ventricular function in PAH.
Rose, Jonathan A.; Wanner, Nicholas; Cheong, Hoi I.; Queisser, Kimberly; Barrett, Patrick; Park, Margaret; Hite, Corrine; Naga Prasad, Sathyamangla V.; Erzurum, Serpil; Asosingh, Kewal
2016-01-01
Pulmonary arterial hypertension (PAH) is a heterogeneous disease characterized by severe angiogenic remodeling of the pulmonary artery wall and right ventricular hypertrophy. Thus, there is an increasing need for novel biomarkers to dissect disease heterogeneity, and predict treatment response. Although β-adrenergic receptor (βAR) dysfunction is well documented in left heart disease while endothelial cell-derived microparticles (Ec-MPs) are established biomarkers of angiogenic remodeling, methods for easy large clinical cohort analysis of these biomarkers are currently absent. Here we describe flow cytometric methods for quantification of βAR density on circulating white blood cells (WBC) and Ec-MPs in urine samples that can be used as potential biomarkers of right heart failure in PAH. Biotinylated β-blocker alprenolol was synthesized and validated as a βAR specific probe that was combined with immunophenotyping to quantify βAR density in circulating WBC subsets. Ec-MPs obtained from urine samples were stained for annexin-V and CD144, and analyzed by a micro flow cytometer. Flow cytometric detection of alprenolol showed that βAR density was decreased in most WBC subsets in PAH samples compared to healthy controls. Ec-MPs in urine was increased in PAH compared to controls. Furthermore, there was a direct correlation between Ec-MPs and Tricuspid annular plane systolic excursion (TAPSE) in PAH patients. Therefore, flow cytometric quantification of peripheral blood cell βAR density and urinary Ec-MPs may be useful as potential biomarkers of right ventricular function in PAH. PMID:27270458
Field fertility of liquid stored and cryopreserved flow cytometrically sex-sorted stallion sperm.
Gibb, Z; Grupen, C G; Maxwell, W M C; Morris, L H A
2017-03-01
The fertility of sex-sorted, cryopreserved stallion sperm must be improved for the sex-sorting technology to be applied commercially. To optimise the conditions used to liquid store stallion sperm prior to sex-sorting and assess the fertility of sperm following sex-sorting and cryopreservation. Both in vitro experiment and randomised controlled trial in healthy, client-owned mares. Stallion ejaculates (n = 9) were diluted in either a skimmed milk (KMT) or BSA (I-BSA) based media to 25 × 10 6 sperm/ml directly (+SP25) or washed to remove seminal plasma and diluted to 25 or 111 × 10 6 sperm/ml (-SP25 and -SP111). Sperm were stored for 18 h at 10 to 15°C and -SP25 and +SP25 treatments were centrifuged and resuspended to 111 × 10 6 sperm/ml. Sperm were incubated under H33342 staining conditions and motility, viability and acrosome integrity assessed. Semen was collected from stallions (n = 4), liquid stored at 10-15°C for up to 5 h and sperm either cryopreserved directly, sex-sorted and cryopreserved, or sex-sorted and returned to liquid storage until insemination. Low-dose hysteroscopic insemination was performed in 23 mares randomly allocated to the semen preparation group and pregnancy determined following embryo flushing on Day 9 after ovulation, or via transrectal ultrasonography on Day 14 after ovulation. Skimmed milk was superior to I-BSA in maintaining motility, viability and acrosome integrity. Seminal plasma removal did not affect the parameters measured at the concentrations examined. Conception rates did not differ significantly between the groups, although a high incidence of pregnancy loss was observed in both the cryopreserved groups. While the conception rates achieved are among the highest yet reported for sex-sorted, cryopreserved stallion sperm, the high incidence of pregnancy loss suggests that the development of the resulting embryos was significantly impaired by the sperm processing treatments. © 2016 EVJ Ltd.
Ford, C H; Tsaltas, G C; Osborne, P A; Addetia, K
1996-03-01
A flow cytometric method of studying the internalization of a monoclonal antibody (Mab) directed against carcinoembryonic antigen (CEA) has been compared with Western blotting, using three human colonic cancer cell lines which express varying amounts of the target antigen. Cell samples incubated for increasing time intervals with fluoresceinated or unlabelled Mab were analyzed using flow cytometry or polyacrylamide gel electrophoresis and Western blotting. SDS/PAGE analysis of cytosolic and membrane components of solubilized cells from the cell lines provided evidence of non-degraded internalized anti-CEA Mab throughout seven half hour intervals, starting at 5 min. Internalized anti-CEA was detected in the case of high CEA expressing cell lines (LS174T, SKCO1). Very similar results were obtained with an anti-fluorescein flow cytometric assay. Given that these two methods consistently provided comparable results, use of flow cytometry for the detection of internalized antibody is suggested as a rapid alternative to most currently used methods for assessing antibody internalization. The question of the endocytic route followed by CEA-anti-CEA complexes was addressed by using hypertonic medium to block clathrin mediated endocytosis.
Isolation and analysis of group 2 innate lymphoid cells in mice.
Moro, Kazuyo; Ealey, Kafi N; Kabata, Hiroki; Koyasu, Shigeo
2015-05-01
Recent studies have identified distinct subsets of innate lymphocytes, collectively called innate lymphoid cells (ILCs), which lack antigen receptor expression but produce various effector cytokines. Group 2 ILCs (ILC2s) respond to epithelial cell-derived cytokines such as interleukin (IL)-25, IL-33 and thymic stromal lymphopoietin (TSLP), produce large amounts of type 2 cytokines, and have a key role in anti-helminth innate immunity and in the pathophysiology of allergic inflammation. The reported phenotypic characteristics of mouse ILC2s vary, depending on the tissue source and preparation method. This protocol describes improved methods for tissue-specific isolation and analysis of mouse ILC2s of high purity and yield from fat tissue, lung, bronchoalveolar lavage fluid (BALF) and small intestine. These improved methods are the result of our thorough investigation of enzymes used for tissue digestion, methods for the elimination of undesired cells, and a combination of antibodies for the detection and isolation of ILC2s. In addition, this new protocol now enables the isolation of ILC2s of high yield, even from inflamed tissues. Depending on the tissue being analyzed, it takes ∼2-4 h for isolation and flow cytometric analysis of ILC2s from the various tissues of a single mouse and ∼4-8 h to sort purified ILC2s from pooled tissues of multiple mice.
Systematic misestimation of cell subpopulations by flow cytometry: a mathematical analysis.
Petrunkina, A M; Harrison, R A P
2010-04-15
Various sources of variability in flow cytometric determination of cell concentration have previously been investigated with respect to andrologic applications. Although common aspects related to the variation between samples, variation between operators, and accuracy have been extensively studied, specific sources of false-count estimation have found less attention. In particular, a major and well-recognized source of misestimation of cell counts (i.e., contamination of the sample by non-sperm particles) has not to date been characterized in detail. We show here by means of original mathematical research that not only the cell counts but also the percentages of cells expressing different fluorescence patterns are affected by the presence of alien particles often neglected in studies involving flow cytometric characterization. We demonstrate that there is a systematic overestimation in the proportion of unstained (viable) cells detected by flow cytometry in cases where the non-sperm particles are not excluded from analysis by additional identification other than light-scatter characteristics. Moreover, we provide an exact mathematical estimate for the magnitude of this overestimation, and we discuss the consequences for diagnostic applications and studies on sperm physiology, specifically for studies on sperm capacitation and evaluation of cryopreserved semen. Finally, equations are derived for the correction of the flow cytometric values for use in practical applications. Copyright 2010 Elsevier Inc. All rights reserved.
Safe sorting of GFP-transduced live cells for subsequent culture using a modified FACS vantage.
Sørensen, T U; Gram, G J; Nielsen, S D; Hansen, J E
1999-12-01
A stream-in-air cell sorter enables rapid sorting to a high purity, but it is not well suited for sorting of infectious material due to the risk of airborne spread to the surroundings. A FACS Vantage cell sorter was modified for safe use with potentially HIV infected cells. Safety tests with bacteriophages were performed to evaluate the potential spread of biologically active material during cell sorting. Cells transduced with a retroviral vector carrying the gene for GFP were sorted on the basis of their GFP fluorescence, and GFP expression was followed during subsequent culture. The bacteriophage sorting showed that the biologically active material was confined to the sorting chamber. A failure mode simulating a nozzle blockage resulted in detectable droplets inside the sorting chamber, but no droplets could be detected when an additional air suction from the sorting chamber had been put on. The GFP transduced cells were sorted to 99% purity. Cells not expressing GFP at the time of sorting did not turn on the gene during subsequent culture. Un-sorted cells and cells sorted to be positive for GFP showed a decrease in the fraction of GFP positive cells during culture. Sorting of live infected cells can be performed safely and with no deleterious effects on vector expression using the modified FACS Vantage instrument. Copyright 1999 Wiley-Liss, Inc.
Identification and genetic analysis of cancer cells with PCR-activated cell sorting
Eastburn, Dennis J.; Sciambi, Adam; Abate, Adam R.
2014-01-01
Cell sorting is a central tool in life science research for analyzing cellular heterogeneity or enriching rare cells out of large populations. Although methods like FACS and FISH-FC can characterize and isolate cells from heterogeneous populations, they are limited by their reliance on antibodies, or the requirement to chemically fix cells. We introduce a new cell sorting technology that robustly sorts based on sequence-specific analysis of cellular nucleic acids. Our approach, PCR-activated cell sorting (PACS), uses TaqMan PCR to detect nucleic acids within single cells and trigger their sorting. With this method, we identified and sorted prostate cancer cells from a heterogeneous population by performing >132 000 simultaneous single-cell TaqMan RT-PCR reactions targeting vimentin mRNA. Following vimentin-positive droplet sorting and downstream analysis of recovered nucleic acids, we found that cancer-specific genomes and transcripts were significantly enriched. Additionally, we demonstrate that PACS can be used to sort and enrich cells via TaqMan PCR reactions targeting single-copy genomic DNA. PACS provides a general new technical capability that expands the application space of cell sorting by enabling sorting based on cellular information not amenable to existing approaches. PMID:25030902
Anti-DNA Ig peptides promote Treg cell activity in systemic lupus erythematosus patients.
Hahn, Bevra H; Anderson, Marissa; Le, Elizabeth; La Cava, Antonio
2008-08-01
Treg cells oppose autoreactive responses in several autoimmune diseases, and their frequency is reduced in systemic lupus erythematosus (SLE). In murine lupus models, treatment with anti-DNA Ig-based peptides can expand the number of Treg cells in vivo. This study was undertaken to test the possibility that functional human Treg cells can be induced by exposure to anti-DNA Ig-based peptides. Peripheral blood mononuclear cells were isolated from 36 lupus patients and 32 healthy individuals matched for ethnicity, sex, and age. Short-term culture experiments in the presence of several independent stimuli including anti-DNA Ig peptides were followed by flow cytometric analysis for identification of CD4+,CD25(high) T cells, cell sorting for in vitro suppression assays, and analysis of correlations between the expression of forkhead box P3 (FoxP3) and serologic and clinical characteristics of the SLE patients. The number of in vitro CD4+,CD25(high) T cells increased after culture with anti-DNA Ig peptides in the SLE patients, but not in the controls. The expanded CD4+,CD25(high) T cells required FoxP3 for cell contact-mediated suppression of proliferation and interferon-gamma production in target CD4+,CD25- T cells. The induction of FoxP3 in SLE Treg cells occurred only in seropositive patients, and was correlated with anti-DNA and IgG serum titers. These results suggest a new modality to reverse the functional deficit of Treg cells in SLE patients with positive autoimmune serology, and identify a new strategy to enhance immunoregulatory T cell activity in human SLE.
Quantitative screening of yeast surface-displayed polypeptide libraries by magnetic bead capture.
Yeung, Yik A; Wittrup, K Dane
2002-01-01
Magnetic bead capture is demonstrated here to be a feasible alternative for quantitative screening of favorable mutants from a cell-displayed polypeptide library. Flow cytometric sorting with fluorescent probes has been employed previously for high throughput screening for either novel binders or improved mutants. However, many laboratories do not have ready access to this technology as a result of the limited availability and high cost of cytometers, restricting the use of cell-displayed libraries. Using streptavidin-coated magnetic beads and biotinylated ligands, an alternative approach to cell-based library screening for improved mutants was developed. Magnetic bead capture probability of labeled cells is shown to be closely correlated with the surface ligand density. A single-pass enrichment ratio of 9400 +/- 1800-fold, at the expense of 85 +/- 6% binder losses, is achieved from screening a library that contains one antibody-displaying cell (binder) in 1.1 x 10(5) nondisplaying cells. Additionally, kinetic screening for an initial high affinity to low affinity (7.7-fold lower) mutant ratio of 1:95,000, the magnetic bead capture method attains a single-pass enrichment ratio of 600 +/- 200-fold with a 75 +/- 24% probability of loss for the higher affinity mutant. The observed high loss probabilities can be straightforwardly compensated for by library oversampling, given the inherently parallel nature of the screen. Overall, these results demonstrate that magnetic beads are capable of quantitatively screening for novel binders and improved mutants. The described methods are directly analogous to procedures in common use for phage display and should lower the barriers to entry for use of cell surface display libraries.
Watanabe, Toshiki
2017-03-02
Adult T-cell leukemia (ATL) is an aggressive T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1) that develops through a multistep carcinogenesis process involving 5 or more genetic events. We provide a comprehensive overview of recently uncovered information on the molecular basis of leukemogenesis in ATL. Broadly, the landscape of genetic abnormalities in ATL that include alterations highly enriched in genes for T-cell receptor-NF-κB signaling such as PLCG1 , PRKCB , and CARD11 and gain-of function mutations in CCR4 and CCR7 Conversely, the epigenetic landscape of ATL can be summarized as polycomb repressive complex 2 hyperactivation with genome-wide H3K27 me3 accumulation as the basis of the unique transcriptome of ATL cells. Expression of H3K27 methyltransferase enhancer of zeste 2 was shown to be induced by HTLV-1 Tax and NF-κB. Furthermore, provirus integration site analysis with high-throughput sequencing enabled the analysis of clonal composition and cell number of each clone in vivo, whereas multicolor flow cytometric analysis with CD7 and cell adhesion molecule 1 enabled the identification of HTLV-1-infected CD4 + T cells in vivo. Sorted immortalized but untransformed cells displayed epigenetic changes closely overlapping those observed in terminally transformed ATL cells, suggesting that epigenetic abnormalities are likely earlier events in leukemogenesis. These new findings broaden the scope of conceptualization of the molecular mechanisms of leukemogenesis, dissecting them into immortalization and clonal progression. These recent findings also open a new direction of drug development for ATL prevention and treatment because epigenetic marks can be reprogrammed. Mechanisms underlying initial immortalization and progressive accumulation of these abnormalities remain to be elucidated. © 2017 by The American Society of Hematology.
Suzuki, Miho; Sakata, Ichiro; Sakai, Takafumi; Tomioka, Hiroaki; Nishigaki, Koichi; Tramier, Marc; Coppey-Moisan, Maïté
2015-12-15
Cytometry is a versatile and powerful method applicable to different fields, particularly pharmacology and biomedical studies. Based on the data obtained, cytometric studies are classified into high-throughput (HTP) or high-content screening (HCS) groups. However, assays combining the advantages of both are required to facilitate research. In this study, we developed a high-throughput system to profile cellular populations in terms of time- or dose-dependent responses to apoptotic stimulations because apoptotic inducers are potent anticancer drugs. We previously established assay systems involving protease to monitor live cells for apoptosis using tunable fluorescence resonance energy transfer (FRET)-based bioprobes. These assays can be used for microscopic analyses or fluorescence-activated cell sorting. In this study, we developed FRET-based bioprobes to detect the activity of the apoptotic markers caspase-3 and caspase-9 via changes in bioprobe fluorescence lifetimes using a flow cytometer for direct estimation of FRET efficiencies. Different patterns of changes in the fluorescence lifetimes of these markers during apoptosis were observed, indicating a relationship between discrete steps in the apoptosis process. The findings demonstrate the feasibility of evaluating collective cellular dynamics during apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.
Grady, Andrew W.; McLaughlin, Ronald M.; Caldwell, Charles W.; Schmitt, Christopher J.; Stalling, David L.
1992-01-01
Brown bullheads were given a single intraperitoneal dose of 0, 5, 25 or 125 mg kg−1 benzo[a]pyrene (BaP), a carcinogenic polycyclic aromatic hydrocarbon, and evaluated over 18 months. Flow cytometric analyses of hepatocyte DNA content indicated an increase in DNA synthesis in BaP-exposed fish prior to day 14 post-exposure. Thereafter, all flow cytometric variables returned to initial levels. Histopathological evaluation of livers from fish sampled at 18 months revealed significant differences among treatments in the amount of hepatic macrophage ceroid pigmentation and basophilic staining intensity. No neoplasms or changes in blood cell DNA content were detected. Significant morphometric variations existed among fish, but differences between sexes overshadowed differences attributable to dose. Flow cytometry yielded no evidence of long-term DNA alterations from a single exposure to BaP; however, the differences detected by DNA analysis shortly after the toxic event suggest that flow cytometric cell cycle analysis may be useful for documenting continuing exposures.
Surface acoustic wave actuated cell sorting (SAWACS).
Franke, T; Braunmüller, S; Schmid, L; Wixforth, A; Weitz, D A
2010-03-21
We describe a novel microfluidic cell sorter which operates in continuous flow at high sorting rates. The device is based on a surface acoustic wave cell-sorting scheme and combines many advantages of fluorescence activated cell sorting (FACS) and fluorescence activated droplet sorting (FADS) in microfluidic channels. It is fully integrated on a PDMS device, and allows fast electronic control of cell diversion. We direct cells by acoustic streaming excited by a surface acoustic wave which deflects the fluid independently of the contrast in material properties of deflected objects and the continuous phase; thus the device underlying principle works without additional enhancement of the sorting by prior labelling of the cells with responsive markers such as magnetic or polarizable beads. Single cells are sorted directly from bulk media at rates as fast as several kHz without prior encapsulation into liquid droplet compartments as in traditional FACS. We have successfully directed HaCaT cells (human keratinocytes), fibroblasts from mice and MV3 melanoma cells. The low shear forces of this sorting method ensure that cells survive after sorting.
Portable real-time fluorescence cytometry of microscale cell culture analog devices
NASA Astrophysics Data System (ADS)
Kim, Donghyun; Tatosian, Daniel A.; Shuler, Michael L.
2006-02-01
A portable fluorescence cytometric system that provides a modular platform for quantitative real-time image measurements has been used to explore the applicability to investigating cellular events on multiple time scales. For a short time scale, we investigated the real-time dynamics of uptake of daunorubicin, a chemotherapeutic agent, in cultured mouse L-cells in a micro cell culture analog compartment using the fluorescent cytometric system. The green fluorescent protein (GFP) expression to monitor induction of pre-specified genes, which occurs on a much longer time scale, has also been measured. Here GFP fluorescence from a doxycycline inducible promoter in a mouse L-cell line was determined. Additionally, a system based on inexpensive LEDs showed performance comparable to a broadband light source based system and reduced photobleaching compared to microscopic examination.
Shields, C Wyatt; Reyes, Catherine D; López, Gabriel P
2015-03-07
Accurate and high throughput cell sorting is a critical enabling technology in molecular and cellular biology, biotechnology, and medicine. While conventional methods can provide high efficiency sorting in short timescales, advances in microfluidics have enabled the realization of miniaturized devices offering similar capabilities that exploit a variety of physical principles. We classify these technologies as either active or passive. Active systems generally use external fields (e.g., acoustic, electric, magnetic, and optical) to impose forces to displace cells for sorting, whereas passive systems use inertial forces, filters, and adhesion mechanisms to purify cell populations. Cell sorting on microchips provides numerous advantages over conventional methods by reducing the size of necessary equipment, eliminating potentially biohazardous aerosols, and simplifying the complex protocols commonly associated with cell sorting. Additionally, microchip devices are well suited for parallelization, enabling complete lab-on-a-chip devices for cellular isolation, analysis, and experimental processing. In this review, we examine the breadth of microfluidic cell sorting technologies, while focusing on those that offer the greatest potential for translation into clinical and industrial practice and that offer multiple, useful functions. We organize these sorting technologies by the type of cell preparation required (i.e., fluorescent label-based sorting, bead-based sorting, and label-free sorting) as well as by the physical principles underlying each sorting mechanism.
Shields, C. Wyatt; Reyes, Catherine D.; López, Gabriel P.
2015-01-01
Accurate and high throughput cell sorting is a critical enabling technology in molecular and cellular biology, biotechnology, and medicine. While conventional methods can provide high efficiency sorting in short timescales, advances in microfluidics have enabled the realization of miniaturized devices offering similar capabilities that exploit a variety of physical principles. We classify these technologies as either active or passive. Active systems generally use external fields (e.g., acoustic, electric, magnetic, and optical) to impose forces to displace cells for sorting, whereas passive systems use inertial forces, filters, and adhesion mechanisms to purify cell populations. Cell sorting on microchips provides numerous advantages over conventional methods by reducing the size of necessary equipment, eliminating potentially biohazardous aerosols, and simplifying the complex protocols commonly associated with cell sorting. Additionally, microchip devices are well suited for parallelization, enabling complete lab-on-a-chip devices for cellular isolation, analysis, and experimental processing. In this review, we examine the breadth of microfluidic cell sorting technologies, while focusing on those that offer the greatest potential for translation into clinical and industrial practice and that offer multiple, useful functions. We organize these sorting technologies by the type of cell preparation required (i.e., fluorescent label-based sorting, bead-based sorting, and label-free sorting) as well as by the physical principles underlying each sorting mechanism. PMID:25598308
Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter.
Schmid, Lothar; Weitz, David A; Franke, Thomas
2014-10-07
We describe a versatile microfluidic fluorescence-activated cell sorter that uses acoustic actuation to sort cells or drops at ultra-high rates. Our acoustic sorter combines the advantages of traditional fluorescence-activated cell (FACS) and droplet sorting (FADS) and is applicable for a multitude of objects. We sort aqueous droplets, at rates as high as several kHz, into two or even more outlet channels. We can also sort cells directly from the medium without prior encapsulation into drops; we demonstrate this by sorting fluorescently labeled mouse melanoma cells in a single phase fluid. Our acoustic microfluidic FACS is compatible with standard cell sorting cytometers, yet, at the same time, enables a rich variety of more sophisticated applications.
Scott, A A; Head, D R; Kopecky, K J; Appelbaum, F R; Theil, K S; Grever, M R; Chen, I M; Whittaker, M H; Griffith, B B; Licht, J D
1994-07-01
We have identified and characterized a previously unrecognized form of acute leukemia that shares features of both myeloid and natural killer (NK) cells. From a consecutive series of 350 cases of adult de novo acute myeloid leukemia (AML), we identified 20 cases (6%) with a unique immunophenotype: CD33+, CD56+, CD11a+, CD13lo, CD15lo, CD34+/-, HLA-DR-, CD16-. Multicolor flow cytometric assays confirmed the coexpression of myeloid (CD33, CD13, CD15) and NK cell-associated (CD56) antigens in each case, whereas reverse transcription polymerase chain reaction (RT-PCR) assays confirmed the identity of CD56 (neural cell adhesion molecule) in leukemic blasts. Although two cases expressed CD4, no case expressed CD2, CD3, or CD8 and no case showed clonal rearrangement of genes encoding the T-cell receptor (TCR beta, gamma, delta). Leukemic blasts in the majority of cases shared unique morphologic features (deeply invaginated nuclear membranes, scant cytoplasm with fine azurophilic granularity, and finely granular Sudan black B and myeloperoxidase cytochemical reactivity) that were remarkably similar to those of acute promyelocytic leukemia (APL); particularly the microgranular variant (FAB AML-M3v). However, all 20 cases lacked the t(15;17) and 17 cases tested lacked the promyelocytic/retinoic acid receptor alpha (RAR alpha) fusion transcript in RT-PCR assays; 12 cases had 46,XX or 46,XY karyotypes, whereas 2 cases had abnormalities of chromosome 17q: 1 with del(17)(q25) and the other with t(11;17)(q23;q21) and the promyelocytic leukemia zinc finger/RAR alpha fusion transcript. All cases tested (6/20), including the case with t(11;17), failed to differentiate in vitro in response to all-trans retinoic acid (ATRA), suggesting that these cases may account for some APLs that have not shown a clinical response to ATRA. Four of 6 cases tested showed functional NK cell-mediated cytotoxicity, suggesting a relationship between these unique CD33+, CD56+, CD16- acute leukemias and normal CD56+, CD16- NK precursor cells. Using a combination of panning and multiparameter flow cytometric sorting, we identified a normal CD56+, CD33+, CD16- counterpart cell at a frequency of 1% to 2% in the peripheral blood of healthy individuals. Our studies suggest that this form of acute leukemia may arise from transformation of a precursor cell common to both the myeloid and NK cell lineages; thus we propose the designation myeloid/NK acute leukemia. Recognition of this new leukemic entity will be important in distinguishing these ATRA-nonresponsive cases from ATRA-responsive true APL.
Davey, H M; Kell, D B
1996-01-01
The most fundamental questions such as whether a cell is alive, in the sense of being able to divide or to form a colony, may sometimes be very hard to answer, since even axenic microbial cultures are extremely heterogeneous. Analyses that seek to correlate such things as viability, which is a property of an individual cell, with macroscopic measurements of culture variables such as ATP content, respiratory activity, and so on, must inevitably fail. It is therefore necessary to make physiological measurements on individual cells. Flow cytometry is such a technique, which allows one to analyze cells rapidly and individually and permits the quantitative analysis of microbial heterogeneity. It therefore offers many advantages over conventional measurements for both routine and more exploratory analyses of microbial properties. While the technique has been widely applied to the study of mammalian cells, is use in microbiology has until recently been much more limited, largely because of the smaller size of microbes and the consequently smaller optical signals obtainable from them. Since these technical barriers no longer hold, flow cytometry with appropriate stains has been used for the rapid discrimination and identification of microbial cells, for the rapid assessment of viability and of the heterogeneous distributions of a wealth of other more detailed physiological properties, for the analysis of antimicrobial drug-cell interactions, and for the isolation of high-yielding strains of biotechnological interest. Flow cytometric analyses provide an abundance of multivariate data, and special methods have been devised to exploit these. Ongoing advances mean that modern flow cytometers may now be used by nonspecialists to effect a renaissance in our understanding of microbial heterogeneity. PMID:8987359
High-resolution FISH on super-stretched flow-sorted plant chromosomes.
Valárik, M; Bartos, J; Kovárová, P; Kubaláková, M; de Jong, J H; Dolezel, J
2004-03-01
A novel high-resolution fluorescence in situ hybridisation (FISH) strategy, using super-stretched flow-sorted plant chromosomes as targets, is described. The technique that allows longitudinal extension of chromosomes of more than 100 times their original metaphase size is especially attractive for plant species with large chromosomes, whose pachytene chromosomes are generally too long and heterochromatin patterns too complex for FISH analysis. The protocol involves flow cytometric sorting of metaphase chromosomes, mild proteinase-K digestion of air-dried chromosomes on microscopic slides, followed by stretching with ethanol:acetic acid (3 : 1). Stretching ratios were assessed in a number of FISH experiments with super-stretched chromosomes from barley, wheat, rye and chickpea, hybridised with 45S and 5S ribosomal DNAs and the [GAA]n microsatellite, the [TTTAGGG]n telomeric repeat and a bacterial artificial chromosome (BAC) clone as probes. FISH signals on stretched chromosomes were brighter than those on the untreated control, resulting from better accessibility of the stretched chromatin and maximum observed sensitivity of 1 kbp. Spatial resolution of neighbouring loci was improved down to 70 kbp as compared to 5-10 Mbp after FISH on mitotic chromosomes, revealing details of adjacent DNA sequences hitherto not obtained with any other method. Stretched chromosomes are advantageous over extended DNA fibres from interphase nuclei as targets for FISH studies because they still retain chromosomal integrity. Although the method is confined to species for which chromosome flow sorting has been developed, it provides a unique system for controlling stretching degree of mitotic chromosomes and high-resolution bar-code FISH.
Lee, Yangsoon; Kim, Sinyoung; Lee, Seung-Tae; Kim, Han-Soo; Baek, Eun-Jung; Kim, Hyung Jin; Lee, MeeKyung; Kim, Hyun Ok
2009-08-01
We investigated the characteristics of the mononuclear cells remaining in the leukoreduction system (LRS) chambers of Trima Accel in comparison with those of standard buffy coat cells, and evaluated their potential for differentiation into dendritic cells. Twenty-six LRS chambers of Trima Accel were collected after platelet pheresis from healthy adults. Flow cytometric analysis for T, B, NK, and CD14+ cells was performed and the number of CD34+ cells was counted. Differentiation and maturation into dendritic cells were induced using CD14+ cells seperated via Magnetic cell sorting (MACS) Seperation (Miltenyi Biotec Inc., USA). Total white blood cell (WBC) count in LRS chambers was 10.8 x 10(8) (range 7.7-18.0 x 10(8)). The median values (range) of proportions of each cells were CD4+ T cell 29.6% (18.7-37.6), CD8+ T cell 27.7% (19.2-40.0), B cell 5.5% (2.2-12.1), NK cell 15.7% (13.7-19.9), and CD14+ cells 12.4% (8.6-32.3) respectively. Although total WBC count was significantly higher in the buffy coat (whole blood of 400 mL) than the LRS chambers, the numbers of lymphocytes and monocytes were not statistically different. The numbers of B cells and CD4+ cells were significantly higher in the buffy coat than the LRS chambers (P<0.05). The median value (range) of CD34+ cells obtained from the LRS chambers was 0.9 x 10(6) (0.2-2.6 x 10(6)). After 7 days of cytokine-supplemented culture, the CD14+ cells were successfully differentiated into dendritic cells. The mononuclear cells in LRS chambers of Trima Accel are an excellent alternative source of viable and functional human blood cells, which can be used for research purposes.
Rapid Assessment of Genotoxicity by Flow Cytometric Detection of Cell Cycle Alterations.
Bihari, Nevenka
2017-01-01
Flow cytometry is a convenient method for the determination of genotoxic effects of environmental pollution and can reveal genotoxic compounds in unknown environmental mixtures. It is especially suitable for the analyses of large numbers of samples during monitoring programs. The speed of detection is one of the advantages of this technique which permits the acquisition of 10 4 -10 5 cells per sample in 5 min. This method can rapidly detect cell cycle alterations resulting from DNA damage. The outcome of such an analysis is a diagram of DNA content across the cell cycle which indicates cell proliferation, G 2 arrests, G 1 delays, apoptosis, and ploidy.Here, we present the flow cytometric procedure for rapid assessment of genotoxicity via detection of cell cycle alterations. The described protocol simplifies the analysis of genotoxic effects in marine environments and is suitable for monitoring purposes. It uses marine mussel cells in the analysis and can be adapted to investigations on a broad range of marine invertebrates.
Akin, C; Kirshenbaum, A S; Semere, T; Worobec, A S; Scott, L M; Metcalfe, D D
2000-02-01
The Asp816Val c-kit activating mutation is detectable in the peripheral blood cells of some patients with mastocytosis and in lesional skin biopsies obtained from adult patients with urticaria pigmentosa. These observations led to the conclusion that this mutation is present in mast cells and mast cell precursors that express c-kit. However, the distribution of the Asp816Val mutation among hematopoietic lineages is unknown. To determine the distribution of the Asp816Val mutation among hematopoietic lineages and to explore its relationship to clinical disease, we examined cells bearing differentiation markers for myelomonocytic cells as well as T and B lymphocytes, in both peripheral blood and bone marrow obtained from patients with mastocytosis. The presence of Asp816Val c-kit mutation in cells magnetically sorted from peripheral blood or bone marrow according to surface differentiation markers was studied by reverse transcriptase polymerase chain reaction (RT-PCR) restriction fragment length polymorphism (RFLP) analysis. The surface expression of c-kit was determined by flow cytometry. The mutation was detectable by RT-PCR in at least one cell lineage in the bone marrow in 7 of 7 patients examined and in the peripheral blood of 11 of 11 adult patients with urticaria pigmentosa and indolent disease. The mutation was identified most frequently in B cells and myeloid cells. Flow cytometric analysis demonstrated that the differentiated cells expressing mutated c-kit were negative for surface KIT. These results are consistent with the conclusion that the c-kit Asp816Val mutation occurs in an early progenitor cell and is carried by myelomonocytic cells, T cells, and B cells in addition to mast cells. However, unlike mast cells, these myelomonocytic cells, T cells, and B cells do not concomitantly express surface c-kit and thus may be less susceptible to the effects of this mutation.
Song, Yongxin; Li, Mengqi; Pan, Xinxiang; Wang, Qi; Li, Dongqing
2015-02-01
An electrokinetic microfluidic chip is developed to detect and sort target cells by size from human blood samples. Target-cell detection is achieved by a differential resistive pulse sensor (RPS) based on the size difference between the target cell and other cells. Once a target cell is detected, the detected RPS signal will automatically actuate an electromagnetic pump built in a microchannel to push the target cell into a collecting channel. This method was applied to automatically detect and sort A549 cells and T-lymphocytes from a peripheral fingertip blood sample. The viability of A549 cells sorted in the collecting well was verified by Hoechst33342 and propidium iodide staining. The results show that as many as 100 target cells per minute can be sorted out from the sample solution and thus is particularly suitable for sorting very rare target cells, such as circulating tumor cells. The actuation of the electromagnetic valve has no influence on RPS cell detection and the consequent cell-sorting process. The viability of the collected A549 cell is not impacted by the applied electric field when the cell passes the RPS detection area. The device described in this article is simple, automatic, and label-free and has wide applications in size-based rare target cell sorting for medical diagnostics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[CD34(+)/CD123(+) cell sorting from the patients with leukemia by Midi MACS method].
Wang, Guang-Ping; Cao, Xin-Yu; Xin, Hong-Ya; Li, Qun; Qi, Zhen-Hua; Chen, Fang-Ping
2006-10-01
The aim of this study was to sort the CD34(+)/CD123(+) cells from the bone marrow cells of patients with acute myeloid leukemia (AML) by Midi MACS method. Firstly, the bone marrow mononuclear cells (BMMNC) were isolated from the patients with AML with Ficoll Paque, CD34(+) cells were then isolated by Midi MACS method followed by the isolation of CD34(+)/CD123(+) cells from the fraction of CD34(+) cells. The enrichment and recovery of CD34(+) and CD34(+)/CD123(+) cells were assayed by FACS technique. The results showed that the enrichment of CD34(+) cells was up to 98.73%, its average enrichment was 95.6%, and the recovery of CD34(+) was 84.6%, its average recovery was 51% after the first round sorting, by the second round sorting, the enrichment of CD34(+)/CD123(+) cells was up to 99.23%, its average enrichment was 83%. With regard to BMMNCs before sorting, the recovery of CD34(+)/CD123(+) was 34%. But, on the CD34(+) cells obtained by the first round sorting, its recovery was 56%. In conclusion, these results confirmed that the method of Midi MACS sorting can be applied to sort CD34(+)/CD123(+) cells from the bone marrow cells of AML patients, which give rise to the similar enrichment and recovery of the sorted cells with that of literature reported by the method of FACS.
Lepère, Cécile; Ostrowski, Martin; Hartmann, Manuela; Zubkov, Mikhail V; Scanlan, David J
2016-08-01
Photosynthetic picoeukaryotes (PPEs) are important components of the marine picophytoplankton community playing a critical role in CO2 fixation but also as bacterivores, particularly in the oligotrophic gyres. Despite an increased interest in these organisms and an improved understanding of the genetic diversity of this group, we still know little of the environmental factors controlling the abundance of these organisms. Here, we investigated the quantitative importance of eukaryotic parasites in the free-living fraction as well as in associations with PPEs along a transect in the South Atlantic. Using tyramide signal amplification-fluorescence in situ hybridization (TSA-FISH), we provide quantitative evidence of the occurrence of free-living fungi in open ocean marine systems, while the Perkinsozoa and Syndiniales parasites were not abundant in these waters. Using flow cytometric cell sorting of different PPE populations followed by a dual-labelled TSA-FISH approach, we also demonstrate fungal associations, potentially parasitic, occurring with both pico-Prymnesiophyceae and pico-Chrysophyceae. These data highlight the necessity for further work investigating the specific role of marine fungi as parasites of phytoplankton to improve understanding of carbon flow in marine ecosystems. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Wang, Lei; Huang, Xing; Zheng, Xinmin; Wang, Xinghuan; Li, Shiwen; Zhang, Lin; Yang, Zhonghua; Xia, Zhiping
2013-01-01
The discovery of rare subpopulations of cancer stem cells (CSCs) has created a new focus in cancer research. As CSCs demonstrate resistance to chemoradiation therapy relative to other cancer cells, this allows the enrichment of CSC populations by killing apoptosis-susceptible cancer cells. In this study, three commonly used human prostate cancer (PCa) cell lines (DU145, PC-3 and LNCaP) were examined for their expression of the putative stem cell markers CD133 and CD44 via flow cytometric analysis. Under normal culture conditions, CD133(+)/CD44(+) cells were only present in the DU145 cell line, and comprised only a minor percentage (0.1% ± 0.01%) of the total population. However, the proportion of these CD133(+)/CD44(+) prostate CSCs could be increased in these cell lines via culture in serum-free medium (SFM), or through chemotherapy or radiotherapy. Indeed, after culture in SFM, the proportion of CD133(+)/CD44(+) cells in DU145 and PC-3 had increased to 10.3% and 3.0%, respectively. Moreover, the proportion had increased to 9.8% enriched by chemotherapy and 3.5% by radiotherapy in DU145. Colony-formation tests, cell invasion assays, and tumor xenografts in BALB/c nude mice were used to evaluate the stem cell properties of CD133(+)/CD44(+) PCa cells that were isolated via fluorescence-activated cell sorting (FACS). CD133(+)/CD44(+) cells had an enhanced colony-formation capability and invasive ability in vitro, and displayed greater tumorigenic properties in vivo. These results demonstrate the presence of CD133(+)/CD44(+) prostate CSCs in established PCa cell lines and that populations of these cells can be enriched by culture in SFM or chemoradiotherapy. Finding novel therapies to override chemoradiation resistance in the prostate CSCs is the key to improve long-term results in PCa management.
Giudice, Valentina; Feng, Xingmin; Lin, Zenghua; Hu, Wei; Zhang, Fanmao; Qiao, Wangmin; Ibanez, Maria Del Pilar Fernandez; Rios, Olga; Young, Neal S
2018-05-01
Oligoclonal expansion of CD8 + CD28 - lymphocytes has been considered indirect evidence for a pathogenic immune response in acquired aplastic anemia. A subset of CD8 + CD28 - cells with CD57 expression, termed effector memory cells, is expanded in several immune-mediated diseases and may have a role in immune surveillance. We hypothesized that effector memory CD8 + CD28 - CD57 + cells may drive aberrant oligoclonal expansion in aplastic anemia. We found CD8 + CD57 + cells frequently expanded in the blood of aplastic anemia patients, with oligoclonal characteristics by flow cytometric Vβ usage analysis: skewing in 1-5 Vβ families and frequencies of immunodominant clones ranging from 1.98% to 66.5%. Oligoclonal characteristics were also observed in total CD8 + cells from aplastic anemia patients with CD8 + CD57 + cell expansion by T-cell receptor deep sequencing, as well as the presence of 1-3 immunodominant clones. Oligoclonality was confirmed by T-cell receptor repertoire deep sequencing of enriched CD8 + CD57 + cells, which also showed decreased diversity compared to total CD4 + and CD8 + cell pools. From analysis of complementarity-determining region 3 sequences in the CD8 + cell pool, a total of 29 sequences were shared between patients and controls, but these sequences were highly expressed in aplastic anemia subjects and also present in their immunodominant clones. In summary, expansion of effector memory CD8 + T cells is frequent in aplastic anemia and mirrors Vβ oligoclonal expansion. Flow cytometric Vβ usage analysis combined with deep sequencing technologies allows high resolution characterization of the T-cell receptor repertoire, and might represent a useful tool in the diagnosis and periodic evaluation of aplastic anemia patients. (Registered at clinicaltrials.gov identifiers: 00001620, 01623167, 00001397, 00071045, 00081523, 00961064 ). Copyright © 2018 Ferrata Storti Foundation.
NASA Astrophysics Data System (ADS)
Girault, Mathias; Kim, Hyonchol; Arakawa, Hisayuki; Matsuura, Kenji; Odaka, Masao; Hattori, Akihiro; Terazono, Hideyuki; Yasuda, Kenji
2017-01-01
A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting system based on image recognition of cells in droplets. To test the applicability of this method, a mixture of two plankton species with different morphologies (Dunaliella tertiolecta and Phaeodactylum tricornutum) were successfully identified and discriminated at a rate of 10 Hz. We also examined the ability to detect the number of objects encapsulated in a droplet. Single cell droplets sorted into collection channels showed 91 ± 4.5% and 90 ± 3.8% accuracy for D. tertiolecta and P. tricornutum, respectively. Because we used image recognition to confirm single cell droplets, we achieved highly accurate single cell sorting. The results indicate that the integrated method of droplet imaging cell sorting can provide a complementary sorting approach capable of isolating single target cells from a mixture of cells with high accuracy without any staining.
Girault, Mathias; Kim, Hyonchol; Arakawa, Hisayuki; Matsuura, Kenji; Odaka, Masao; Hattori, Akihiro; Terazono, Hideyuki; Yasuda, Kenji
2017-01-06
A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting system based on image recognition of cells in droplets. To test the applicability of this method, a mixture of two plankton species with different morphologies (Dunaliella tertiolecta and Phaeodactylum tricornutum) were successfully identified and discriminated at a rate of 10 Hz. We also examined the ability to detect the number of objects encapsulated in a droplet. Single cell droplets sorted into collection channels showed 91 ± 4.5% and 90 ± 3.8% accuracy for D. tertiolecta and P. tricornutum, respectively. Because we used image recognition to confirm single cell droplets, we achieved highly accurate single cell sorting. The results indicate that the integrated method of droplet imaging cell sorting can provide a complementary sorting approach capable of isolating single target cells from a mixture of cells with high accuracy without any staining.
Girault, Mathias; Kim, Hyonchol; Arakawa, Hisayuki; Matsuura, Kenji; Odaka, Masao; Hattori, Akihiro; Terazono, Hideyuki; Yasuda, Kenji
2017-01-01
A microfluidic on-chip imaging cell sorter has several advantages over conventional cell sorting methods, especially to identify cells with complex morphologies such as clusters. One of the remaining problems is how to efficiently discriminate targets at the species level without labelling. Hence, we developed a label-free microfluidic droplet-sorting system based on image recognition of cells in droplets. To test the applicability of this method, a mixture of two plankton species with different morphologies (Dunaliella tertiolecta and Phaeodactylum tricornutum) were successfully identified and discriminated at a rate of 10 Hz. We also examined the ability to detect the number of objects encapsulated in a droplet. Single cell droplets sorted into collection channels showed 91 ± 4.5% and 90 ± 3.8% accuracy for D. tertiolecta and P. tricornutum, respectively. Because we used image recognition to confirm single cell droplets, we achieved highly accurate single cell sorting. The results indicate that the integrated method of droplet imaging cell sorting can provide a complementary sorting approach capable of isolating single target cells from a mixture of cells with high accuracy without any staining. PMID:28059147
Morinaga, Takao; Nguyễn, Thảo Thi Thanh; Zhong, Boya; Hanazono, Michiko; Shingyoji, Masato; Sekine, Ikuo; Tada, Yuji; Tatsumi, Koichiro; Shimada, Hideaki; Hiroshima, Kenzo; Tagawa, Masatoshi
2017-11-10
Genetically modified adenoviruses (Ad) with preferential replications in tumor cells have been examined for a possible clinical applicability as an anti-cancer agent. A simple method to detect viral and cellular proteins is valuable to monitor the viral infections and to predict the Ad-mediated cytotoxicity. We used type 5 Ad in which the expression of E1A gene was activated by 5'-regulatory sequences of genes that were augmented in the expression in human tumors. The Ad were further modified to have the fiber-knob region replaced with that derived from type 35 Ad. We infected human mesothelioma cells with the fiber-replaced Ad, and sequentially examined cytotoxic processes together with an expression level of the viral E1A, hexon, and cellular cleaved caspase-3 with image cytometric and Western blot analyses. The replication-competent Ad produced cytotoxicity on mesothelioma cells. The infected cells expressed E1A and hexon 24 h after the infection and then showed cleavage of caspase-3, all of which were detected with image cytometry and Western blot analysis. Image cytometry furthermore demonstrated that increased Ad doses did not enhance an expression level of E1A and hexon in an individual cell and that caspase-3-cleaved cells were found more frequently in hexon-positive cells than in E1A-positive cells. Image cytometry thus detected these molecular changes in a sensitive manner and at a single cell level. We also showed that an image cytometric technique detected expression changes of other host cell proteins, cyclin-E and phosphorylated histone H3 at a single cell level. Image cytometry is a concise procedure to detect expression changes of Ad and host cell proteins at a single cell level, and is useful to analyze molecular events after the infection.
Bio optofluidics cell sorter: cell-BOCS concept and applications
NASA Astrophysics Data System (ADS)
Roth, Tue; Glückstad, Jesper
2012-03-01
The cell-BOCS is a novel microfluidics based cell-sorting instrument utilizing next generation optical trapping technology developed at the Technical University of Denmark. It is targeted emerging bio-medical research and diagnostics markets where it for certain applications offers a number of advantages over conventional fluorescence activated cell-sorting (FACSTM) technology. Advantages include gentle handling of cells, sterile sorting, easy operation, small footprint and lower cost allowing out-of-core-facility use. Application examples are found within sorting of fragile transfected cells, high value samples and primary cell lines, where traditional FACS technology has limited application due to it's droplet-based approach to cell-sorting. In the diagnostics field, in particular applying the cell-BOCS for isolating pure populations of circulating tumor cells is an area that has generated a lot of interest.
Jab1 regulates Schwann cell proliferation and axonal sorting through p27
Porrello, Emanuela; Rivellini, Cristina; Dina, Giorgia; Triolo, Daniela; Del Carro, Ubaldo; Ungaro, Daniela; Panattoni, Martina; Feltri, Maria Laura; Wrabetz, Lawrence; Pardi, Ruggero; Quattrini, Angelo
2014-01-01
Axonal sorting is a crucial event in nerve formation and requires proper Schwann cell proliferation, differentiation, and contact with axons. Any defect in axonal sorting results in dysmyelinating peripheral neuropathies. Evidence from mouse models shows that axonal sorting is regulated by laminin211– and, possibly, neuregulin 1 (Nrg1)–derived signals. However, how these signals are integrated in Schwann cells is largely unknown. We now report that the nuclear Jun activation domain–binding protein 1 (Jab1) may transduce laminin211 signals to regulate Schwann cell number and differentiation during axonal sorting. Mice with inactivation of Jab1 in Schwann cells develop a dysmyelinating neuropathy with axonal sorting defects. Loss of Jab1 increases p27 levels in Schwann cells, which causes defective cell cycle progression and aberrant differentiation. Genetic down-regulation of p27 levels in Jab1-null mice restores Schwann cell number, differentiation, and axonal sorting and rescues the dysmyelinating neuropathy. Thus, Jab1 constitutes a regulatory molecule that integrates laminin211 signals in Schwann cells to govern cell cycle, cell number, and differentiation. Finally, Jab1 may constitute a key molecule in the pathogenesis of dysmyelinating neuropathies. PMID:24344238
Label-free density difference amplification-based cell sorting.
Song, Jihwan; Song, Minsun; Kang, Taewook; Kim, Dongchoul; Lee, Luke P
2014-11-01
The selective cell separation is a critical step in fundamental life sciences, translational medicine, biotechnology, and energy harvesting. Conventional cell separation methods are fluorescent activated cell sorting and magnetic-activated cell sorting based on fluorescent probes and magnetic particles on cell surfaces. Label-free cell separation methods such as Raman-activated cell sorting, electro-physiologically activated cell sorting, dielectric-activated cell sorting, or inertial microfluidic cell sorting are, however, limited when separating cells of the same kind or cells with similar sizes and dielectric properties, as well as similar electrophysiological phenotypes. Here we report a label-free density difference amplification-based cell sorting (dDACS) without using any external optical, magnetic, electrical forces, or fluidic activations. The conceptual microfluidic design consists of an inlet, hydraulic jump cavity, and multiple outlets. Incoming particles experience gravity, buoyancy, and drag forces in the separation chamber. The height and distance that each particle can reach in the chamber are different and depend on its density, thus allowing for the separation of particles into multiple outlets. The separation behavior of the particles, based on the ratio of the channel heights of the inlet and chamber and Reynolds number has been systematically studied. Numerical simulation reveals that the difference between the heights of only lighter particles with densities close to that of water increases with increasing the ratio of the channel heights, while decreasing Reynolds number can amplify the difference in the heights between the particles considered irrespective of their densities.
Oldaker, Teri; Whitby, Liam; Saber, Maryam; Holden, Jeannine; Wallace, Paul K; Litwin, Virginia
2018-01-01
Over the past six years, a diverse group of stakeholders have put forth recommendations regarding the analytical validation of flow cytometric methods and described in detail the differences between cell-based and traditional soluble analyte assay validations. This manuscript is based on these general recommendations as well as the published experience of experts in the area of PNH testing. The goal is to provide practical assay-specific guidelines for the validation of high-sensitivity flow cytometric PNH assays. Examples of the reports and validation data described herein are provided in Supporting Information. © 2017 International Clinical Cytometry Society. © 2017 International Clinical Cytometry Society.
Physical Mechanisms Driving Cell Sorting in Hydra.
Cochet-Escartin, Olivier; Locke, Tiffany T; Shi, Winnie H; Steele, Robert E; Collins, Eva-Maria S
2017-12-19
Cell sorting, whereby a heterogeneous cell mixture organizes into distinct tissues, is a fundamental patterning process in development. Hydra is a powerful model system for carrying out studies of cell sorting in three dimensions, because of its unique ability to regenerate after complete dissociation into individual cells. The physicists Alfred Gierer and Hans Meinhardt recognized Hydra's self-organizing properties more than 40 years ago. However, what drives cell sorting during regeneration of Hydra from cell aggregates is still debated. Differential motility and differential adhesion have been proposed as driving mechanisms, but the available experimental data are insufficient to distinguish between these two. Here, we answer this longstanding question by using transgenic Hydra expressing fluorescent proteins and a multiscale experimental and numerical approach. By quantifying the kinematics of single cell and whole aggregate behaviors, we show that no differences in cell motility exist among cell types and that sorting dynamics follow a power law with an exponent of ∼0.5. Additionally, we measure the physical properties of separated tissues and quantify their viscosities and surface tensions. Based on our experimental results and numerical simulations, we conclude that tissue interfacial tensions are sufficient to explain cell sorting in aggregates of Hydra cells. Furthermore, we demonstrate that the aggregate's geometry during sorting is key to understanding the sorting dynamics and explains the exponent of the power law behavior. Our results answer the long standing question of the physical mechanisms driving cell sorting in Hydra cell aggregates. In addition, they demonstrate how powerful this organism is for biophysical studies of self-organization and pattern formation. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Acuña, Ulyana Muñoz; Mo, Shunyan; Zi, Jiachen; Orjala, Jimmy; DE Blanco, Esperanza J Carcache
2018-06-01
Prostate cancer presents the highest incidence rates among all cancers in men. Hapalindole H (Hap H), isolated from Fischerella muscicola (UTEX strain number LB1829) as part of our natural product anticancer drug discovery program, was found to be significantly active against prostate cancer cells. In this study, Hap H was tested for nuclear factor-kappa B (NF-ĸB) inhibition and selective cytotoxic activity against different cancer cell lines. The apoptotic effect was assessed on PC-3 prostate cancer cells by fluorescence-activated cell sorting analysis. The underlying mechanism that induced apoptosis was studied and the effect of Hap H on mitochondria was evaluated and characterized using western blot and flow cytometric analysis. Hap H was identified as a potent NF-ĸB inhibitor (0.76 μM) with selective cytotoxicity against the PC-3 prostate cancer cell line (0.02 μM). The apoptotic effect was studied on PC-3 cells. The results showed that treatment of PC-3 cells with Hap H reduced the formation of NAD(P)H, suggesting that the function of the outer mitochondrial membrane was negatively affected. Thus, the mitochondrial transmembrane potential was assessed in Hap H treated cells. The results showed that the outer mitochondrial membrane was disrupted as an increased amount of JC-1 monomers were detected in treated cells (78.3%) when compared to untreated cells (10.1%), also suggesting that a large number of treated cells went into an apoptotic state. Hap H was found to have potent NF-ĸB p65-inhibitory activity and induced apoptosis through the intrinsic mitochondrial pathway in hormone-independent PC-3 prostate cancer cells. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Standard practice for cell sorting in a BSL-3 facility.
Perfetto, Stephen P; Ambrozak, David R; Nguyen, Richard; Roederer, Mario; Koup, Richard A; Holmes, Kevin L
2011-01-01
Over the past decade, there has been a rapid growth in the number of BSL-3 and BSL-4 laboratories in the USA and an increase in demand for infectious cell sorting in BSL-3 laboratories. In 2007, the International Society for Advancement of Cytometry (ISAC) Biosafety Committee published standards for the sorting of unfixed cells and is an important resource for biosafety procedures when performing infectious cell sorting. Following a careful risk assessment, if it is determined that a cell sorter must be located within a BSL-3 laboratory, there are a variety of factors to be considered prior to the establishment of the laboratory. This chapter outlines procedures for infectious cell sorting in a BSL-3 environment to facilitate the establishment and safe operation of a BSL-3 cell sorting laboratory. Subjects covered include containment verification, remote operation, disinfection, personal protective equipment (PPE), and instrument-specific modifications for enhanced aerosol evacuation.
Standard Practice for Cell Sorting in a BSL-3 Facility
Perfetto, Stephen P.; Ambrozak, David R.; Nguyen, Richard; Roederer, Mario; Koup, Richard A.; Holmes, Kevin L.
2016-01-01
Over the past decade, there has been a rapid growth in the number of BSL-3 and BSL-4 laboratories in the USA and an increase in demand for infectious cell sorting in BSL-3 laboratories. In 2007, the International Society for Advancement of Cytometry (ISAC) Biosafety Committee published standards for the sorting of unfixed cells and is an important resource for biosafety procedures when performing infectious cell sorting. Following a careful risk assessment, if it is determined that a cell sorter must be located within a BSL-3 laboratory, there are a variety of factors to be considered prior to the establishment of the laboratory. This chapter outlines procedures for infectious cell sorting in a BSL-3 environment to facilitate the establishment and safe operation of a BSL-3 cell sorting laboratory. Subjects covered include containment verification, remote operation, disinfection, personal protective equipment (PPE), and instrument-specific modifications for enhanced aerosol evacuation. PMID:21116997
Grier, David D; Al-Quran, Samer Z; Cardona, Diana M; Li, Ying; Braylan, Raul C
2012-01-01
The diagnosis of B-cell lymphoma (BCL) is often dependent on the detection of clonal immunoglobulin (Ig) light chain expression. In some BCLs, the determination of clonality based on Ig light chain restriction may be difficult. The aim of our study was to assess the utility of flow cytometric analysis of surface Ig heavy chain (HC) expression in lymphoid tissues in distinguishing lymphoid hyperplasias from BCLs, and also differentiating various BCL subtypes. HC expression on B-cells varied among different types of hyperplasias. In follicular hyperplasia, IgM and IgD expression was high in mantle cells while germinal center cells showed poor HC expression. In other hyperplasias, B cell compartments were blurred but generally showed high IgD and IgM expression. Compared to hyperplasias, BCLs varied in IgM expression. Small lymphocytic lymphomas had lower IgM expression than mantle cell lymphomas. Of importance, IgD expression was significantly lower in BCLs than in hyperplasias, a finding that can be useful in differentiating lymphoma from reactive processes. PMID:22400070
Mitomycin C-induced apoptosis in cultured human Tenon's capsule fibroblasts.
Kim, J W; Kim, S K; Song, I H; Kim, I T
1999-06-01
To investigate the mitomycin C-induced apoptotic cell death of fibroblasts, the primarily cultured human Tenon's capsule fibroblasts were exposed to a clinically used dosage of 0.4 mg/ml of mitomycin C for 5 minutes. TUNEL (TdT-mediated dUTP-biotin nick end labeling) assay and electron microscopic studies were performed to determine the extent of mitomycin C-induced apoptosis. A flow cytometric study was performed to quantify the apoptotic cell population over time. The TUNEL stains were positive and electron microscopy showed features of apoptotic cell death in some fibroblasts 3 and 5 days after treatment. Flow cytometric analysis using Annexin V-propidium iodide double staining detected apoptotic cells 3 days after treatment. These apoptotic cell populations increased at 4 days and were sustained for one week. This study revealed that the clinical effects of mitomycin C on fibroblasts may be mediated not only by antiproliferative but also apoptotic cell death to some degree. Therefore, the apoptotic cell death of fibroblasts induced by mitomycin C should be considered to properly understand the mechanism of wound healing after trabeculectomy with adjunctive mitomycin C.
NASA Astrophysics Data System (ADS)
Lazar, Daniel C.; Cho, Edward H.; Luttgen, Madelyn S.; Metzner, Thomas J.; Loressa Uson, Maria; Torrey, Melissa; Gross, Mitchell E.; Kuhn, Peter
2012-02-01
Many important experiments in cancer research are initiated with cell line data analysis due to the ease of accessibility and utilization. Recently, the ability to capture and characterize circulating tumor cells (CTCs) has become more prevalent in the research setting. This ability to detect, isolate and analyze CTCs allows us to directly compare specific protein expression levels found in patient CTCs to cell lines. In this study, we use immunocytochemistry to compare the protein expression levels of total cytokeratin (CK) and androgen receptor (AR) in CTCs and cell lines from patients with prostate cancer to determine what translational insights might be gained through the use of cell line data. A non-enrichment CTC detection assay enables us to compare cytometric features and relative expression levels of CK and AR by indirect immunofluorescence from prostate cancer patients against the prostate cancer cell line LNCaP. We measured physical characteristics of these two groups and observed significant differences in cell size, fluorescence intensity and nuclear to cytoplasmic ratio. We hope that these experiments will initiate a foundation to allow cell line data to be compared against characteristics of primary cells from patients.
Wang, Xixian; Ren, Lihui; Su, Yetian; Ji, Yuetong; Liu, Yaoping; Li, Chunyu; Li, Xunrong; Zhang, Yi; Wang, Wei; Hu, Qiang; Han, Danxiang; Xu, Jian; Ma, Bo
2017-11-21
Raman-activated cell sorting (RACS) has attracted increasing interest, yet throughput remains one major factor limiting its broader application. Here we present an integrated Raman-activated droplet sorting (RADS) microfluidic system for functional screening of live cells in a label-free and high-throughput manner, by employing AXT-synthetic industrial microalga Haematococcus pluvialis (H. pluvialis) as a model. Raman microspectroscopy analysis of individual cells is carried out prior to their microdroplet encapsulation, which is then directly coupled to DEP-based droplet sorting. To validate the system, H. pluvialis cells containing different levels of AXT were mixed and underwent RADS. Those AXT-hyperproducing cells were sorted with an accuracy of 98.3%, an enrichment ratio of eight folds, and a throughput of ∼260 cells/min. Of the RADS-sorted cells, 92.7% remained alive and able to proliferate, which is equivalent to the unsorted cells. Thus, the RADS achieves a much higher throughput than existing RACS systems, preserves the vitality of cells, and facilitates seamless coupling with downstream manipulations such as single-cell sequencing and cultivation.
Lehnen, Daniela; Barral, Serena; Cardoso, Tiago; Grealish, Shane; Heuer, Andreas; Smiyakin, Andrej; Kirkeby, Agnete; Kollet, Jutta; Cremer, Harold; Parmar, Malin; Bosio, Andreas; Knöbel, Sebastian
2017-10-10
Human pluripotent stem cell (hPSC)-derived mesencephalic dopaminergic (mesDA) neurons can relieve motor deficits in animal models of Parkinson's disease (PD). Clinical translation of differentiation protocols requires standardization of production procedures, and surface-marker-based cell sorting is considered instrumental for reproducible generation of defined cell products. Here, we demonstrate that integrin-associated protein (IAP) is a cell surface marker suitable for enrichment of hPSC-derived mesDA progenitor cells. Immunomagnetically sorted IAP + mesDA progenitors showed increased expression of ventral midbrain floor plate markers, lacked expression of pluripotency markers, and differentiated into mature dopaminergic (DA) neurons in vitro. Intrastriatal transplantation of IAP + cells sorted at day 16 of differentiation in a rat model of PD resulted in functional recovery. Grafts from sorted IAP + mesDA progenitors were more homogeneous in size and DA neuron density. Thus, we suggest IAP-based sorting for reproducible prospective enrichment of mesDA progenitor cells in clinical cell replacement strategies. Copyright © 2017 Miltenyi Biotec GmbH. Published by Elsevier Inc. All rights reserved.
Viable cell sorting of dinoflagellates by multi-parametric flow cytometry.
USDA-ARS?s Scientific Manuscript database
Electronic cell sorting for isolation and culture of dinoflagellates and other marine eukaryotic phytoplankton was compared to the traditional method of manually picking of cells using a micropipette. Trauma to electronically sorted cells was not a limiting factor as fragile dinoflagellates, such a...
Wang, C K; Nelson, C F; Brinkman, A M; Miller, A C; Hoeffler, W K
2000-04-01
We show that an inherent ability of two distinct cell types, keratinocytes and fibroblasts, can be relied upon to accurately reconstitute full-thickness human skin including the dermal-epidermal junction by a cell-sorting mechanism. A cell slurry containing both cell types added to silicone chambers implanted on the backs of severe combined immunodeficient mice sorts out to reconstitute a clearly defined dermis and stratified epidermis within 2 wk, forming a cell-sorted skin equivalent. Immunostaining of the cell-sorted skin equivalent with human cell markers showed patterns similar to those of normal full-thickness skin. We compared the cell-sorted skin equivalent model with a composite skin model also made on severe combined immunodeficient mice. The composite grafts were constructed from partially differentiated keratinocyte sheets placed on top of a dermal equivalent constructed of devitalized dermis. Electron microscopy revealed that both models formed ample numbers of normal appearing hemidesmosomes. The cell-sorted skin equivalent model, however, had greater numbers of keratin intermediate filaments within the basal keratinocytes that connected to hemidesmosomes, and on the dermal side both collagen filaments and anchoring fibril connections to the lamina densa were more numerous compared with the composite model. Our results may provide some insight into why, in clinical applications for treating burns and other wounds, composite grafts may exhibit surface instability and blistering for up to a year following grafting, and suggest the possible usefulness of the cell-sorted skin equivalent in future grafting applications.
Method for screening inhibitors of the toxicity of Bacillus anthracis
Cirino, Nick M.; Jackson, Paul J.; Lehnert, Bruce E.
2001-01-01
The protective antigen (PA) of Bacillus anthracis is integral to the mechanism of anthrax poisoning. The cloning, expression and purification of a 32 kDa B. anthracis PA fragment (PA32) is described. This fragment has also been expressed as a fusion construct to stabilized green fluorescent protein (EGFP-PA32). Both proteins were capable of binding to specific cell surface receptors as determined by fluorescent microscopy and a flow cytometric assay. To confirm binding specificity in the flow cytometric assay, non-fluorescent PA83 or PA32 was used to competitively inhibit fluorescent EGFP-PA32 binding to cell receptors. This assay can be employed as a rapid screen for compounds which disrupts binding of PA to cells. Additionally, the high intracellular expression levels and ease of purification make this recombinant protein an attractive vaccine candidate or therapeutic treatment for anthrax poisoning.
Cloning of Plasmodium falciparum by single-cell sorting
Miao, Jun; Li, Xiaolian; Cui, Liwang
2010-01-01
Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. PMID:20435038
A cell sorting and trapping microfluidic device with an interdigital channel
NASA Astrophysics Data System (ADS)
Tu, Jing; Qiao, Yi; Xu, Minghua; Li, Junji; Liang, Fupeng; Duan, Mengqin; Ju, An; Lu, Zuhong
2016-12-01
The growing interest in cell sorting and trapping is driving the demand for high performance technologies. Using labeling techniques or external forces, cells can be identified by a series of methods. However, all of these methods require complicated systems with expensive devices. Based on inherent differences in cellular morphology, cells can be sorted by specific structures in microfluidic devices. The weir filter is a basic and efficient cell sorting and trapping structure. However, in some existing weir devices, because of cell deformability and high flow velocity in gaps, trapped cells may become stuck or even pass through the gaps. Here, we designed and fabricated a microfluidic device with interdigital channels for cell sorting and trapping. The chip consisted of a sheet of silicone elastomer polydimethylsiloxane and a sheet of glass. A square-wave-like weir was designed in the middle of the channel, comprising the interdigital channels. The square-wave pattern extended the weir length by three times with the channel width remaining constant. Compared with a straight weir, this structure exhibited a notably higher trapping capacity. Interdigital channels provided more space to slow down the rate of the pressure decrease, which prevented the cells from becoming stuck in the gaps. Sorting a mixture K562 and blood cells to trap cells demonstrated the efficiency of the chip with the interdigital channel to sort and trap large and less deformable cells. With stable and efficient cell sorting and trapping abilities, the chip with an interdigital channel may be widely applied in scientific research fields.
Mohsenzadegan, Monireh; Tajik, Nader; Madjd, Zahra; Shekarabi, Mehdi; Farajollahi, Mohammad M
2015-01-01
Background: Prostate cancer is one of the leading causes of cancer deaths among men. New gene expressed in prostate (NGEP), is a prostate-specific gene expressed only in normal prostate and prostate cancer tissue. Because of its selective expression in prostate cancer cell surface, NGEP is a potential immunotherapeutic target. To target the NGEP in prostate cancer, it is essential to investigate its expression in prostate cancer cells. Methods: In the present study, we investigated NGEP expression in LNCaP and DU145 cells by real time and RT-PCR, flow cytometric and immunocytochemical analyses. Results: Real time and RT-PCR analyses of NGEP expression showed that NGEP was expressed in the LNCaP cells but not in DU145 cells. The detection of NGEP protein by flow cytometric and immunocytochemistry analyses indicated that NGEP protein was weakly expressed only in LNCaP cell membrane. Conclusion: Our results demonstrate that LNCaP cell line is more suitable than DU145 for NGEP expression studies; however, its low-level expression is a limiting issue. NGEP expression may be increased by androgen supplementation of LNCaP cell culture medium. PMID:26000254
A novel method for isolating podocytes using magnetic activated cell sorting.
Murakami, Ayumi; Oshiro, Hisashi; Kanzaki, Seiichi; Yamaguchi, Akira; Yamanaka, Shoji; Furuya, Mitsuko; Miura, Satoshi; Kanno, Hiroshi; Nagashima, Yoji; Aoki, Ichiro; Nagahama, Kiyotaka
2010-12-01
A large body of accumulated data has now revealed that podocytes play a major role in the development of proteinuria. However, the mechanisms of podocyte injury, leading to foot process effacement and proteinuria, are still unclear partly due to the current lack of an appropriate strategy for preparing podocytes. In this study, we have developed a novel method of rapid isolation of podocytes from mice using magnetic activated cell sorting with an anti-nephrin antibody. After endothelial cell depletion using anti-CD31 antibody, nephrin-positive cells were prepared from mouse kidneys using magnetic activated cell sorting with polyclonal rabbit anti-nephrin antibody. Purity of the positively sorted cells was determined by confocal microscopy and fluorescence-activated cell sorting (FACS) analysis. Expression profiles of podocyte-specific molecules in the sorted fractions were characterized by qualitative PCR and immunoblot analysis. Nephrin-positive cells, isolated from mouse kidneys within 6 h, showed dual positivity for synaptopodin and rabbit IgG on confocal microscopy. FACS analysis revealed that the purity of the positively sorted fractions was ∼75%. The nephrin-positive cells sorted by this approach showed a significantly higher expression of podocyte-specific molecules compared with nephrin-negative fractions. These data strongly suggest that our novel method for isolating podocytes has great utility for various downstream applications such as genomic analysis, proteomics and transcriptomics to elucidate molecular profiling of podocyte biology in vivo compared with conventional methods as our approach requires only several hours to complete and no tissue culture.
Yu, Jessica S; Pertusi, Dante A; Adeniran, Adebola V; Tyo, Keith E J
2017-03-15
High throughput screening by fluorescence activated cell sorting (FACS) is a common task in protein engineering and directed evolution. It can also be a rate-limiting step if high false positive or negative rates necessitate multiple rounds of enrichment. Current FACS software requires the user to define sorting gates by intuition and is practically limited to two dimensions. In cases when multiple rounds of enrichment are required, the software cannot forecast the enrichment effort required. We have developed CellSort, a support vector machine (SVM) algorithm that identifies optimal sorting gates based on machine learning using positive and negative control populations. CellSort can take advantage of more than two dimensions to enhance the ability to distinguish between populations. We also present a Bayesian approach to predict the number of sorting rounds required to enrich a population from a given library size. This Bayesian approach allowed us to determine strategies for biasing the sorting gates in order to reduce the required number of enrichment rounds. This algorithm should be generally useful for improve sorting outcomes and reducing effort when using FACS. Source code available at http://tyolab.northwestern.edu/tools/ . k-tyo@northwestern.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Yaffe, Paul B; Doucette, Carolyn D; Walsh, Mark; Hoskin, David W
2013-02-01
Piperine, an alkaloid phytochemical found in the fruit of black and long pepper plants, is reported to inhibit the growth of cancer cells; however, the mechanism of action in human cancer cells is not clear. In this study we investigated the effect of piperine on the growth of HRT-18 human rectal adenocarcinoma cells. MTT assays showed that piperine inhibited the metabolic activity of HRT-18 cells in a dose- and time-dependent fashion, suggesting a cytostatic and/or cytotoxic effect. Flow cytometric analysis of Oregon Green 488-stained and propidium iodide-stained HRT-18 cells showed that piperine inhibited cell cycle progression. Piperine also caused HRT-18 cells to die by apoptosis, as determined by Annexin-V-FLUOS staining and characteristic changes in cell morphology. Flow cytometric analysis of dihydroethidium- and 2',7'-dichlorofluorescein diacetate-stained HRT-18 cells showed increased production of reactive oxygen species in piperine-treated cells. Furthermore, the antioxidant N-acetylcysteine reduced apoptosis in cultures of piperine-treated HRT-18 cells, indicating that piperine-induced cytotoxicity was mediated at least in part by reactive oxygen species. The cytostatic and cytotoxic effects of piperine on rectal cancer cells suggest that this dietary phytochemical may be useful in cancer treatment. Copyright © 2012 Elsevier Inc. All rights reserved.
Clonal Ordering of 17p and 5q Allelic Losses in Barrett Dysplasia and Adenocarcinoma
NASA Astrophysics Data System (ADS)
Blount, Patricia L.; Meltzer, Stephen J.; Yin, Jing; Huang, Ying; Krasna, Mark J.; Reid, Brian J.
1993-04-01
Both 17p and 5q allelic losses appear to be involved in the pathogenesis or progression of many human solid tumors. In colon carcinogenesis, there is strong evidence that the targets of the 17p and 5q allelic losses are TP53, the gene encoding p53, and APC, respectively. It is widely accepted that 5q allelic losses precede 17p allelic losses in the progression to colonic carcinoma. The data, however, supporting this proposed order are largely based on the prevalence of 17p and 5q allelic losses in adenomas and unrelated adenocarcinomas from different patients. We investigated the order in which 17p and 5q allelic losses developed during neoplastic progression in Barrett esophagus by evaluating multiple aneuploid cell populations from the same patient. Using DNA content flow cytometric cell sorting and polymerase chain reaction, 38 aneuploid cell populations from 14 patients with Barrett esophagus who had high grade dysplasia, cancer or both were evaluated for 17p and 5q allelic losses. 17p allelic losses preceded 5q allelic losses in 7 patients, both 17p and 5q allelic losses were present in all aneuploid populations of 4 patients, and only 17p (without 5q) allelic losses were present in the aneuploid populations of 3 patients. In no patient did we find that a 5q allelic loss preceded a 17p allelic loss. Our data suggest that 17p allelic losses typically occur before 5q allelic losses during neoplastic progression in Barrett esophagus.
Identification of early B cell precursors (stage 1 and 2 hematogones) in the peripheral blood.
Kurzer, Jason H; Weinberg, Olga K
2018-05-25
Differentiating malignant B-lymphoblasts from early benign B cell precursors (hematogones) is a vital component of the diagnosis of B-lymphoblastic leukaemia. It has been previously reported that only late-stage B cell precursors circulate in the peripheral blood. Consequently, flow cytometric detection of cells with immunophenotypic findings similar to earlier stage precursors in the peripheral blood justifiably raises concern for involvement by B-lymphoblastic leukaemia. We report here, however, that benign early B cell precursors can indeed be detected in the peripheral blood, thus complicating the interpretation of flow cytometric findings derived from these sample types. A retrospective search of our collective databases identified 13 cases containing circulating early stage B cell precursors. The patients ranged in age from 15 days to 85 years old. All positive cases demonstrated that the earlier B cell precursors were associated with later stage precursors, a finding that could help differentiate these cells from B-lymphoblastic leukaemia. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
NASA Technical Reports Server (NTRS)
Mozdziak, P. E.; Pulvermacher, P. M.; Schultz, E.; Schell, K.
2000-01-01
BACKGROUND: 5-Bromo-2'-deoxyuridine (BrdU) is a powerful compound to study the mitotic activity of a cell. Most techniques that identify BrdU-labeled cells require conditions that kill the cells. However, the fluorescence intensity of the membrane-permeable Hoechst dyes is reduced by the incorporation of BrdU into DNA, allowing the separation of viable BrdU positive (BrdU+) cells from viable BrdU negative (BrdU-) cells. METHODS: Cultures of proliferating cells were supplemented with BrdU for 48 h and other cultures of proliferating cells were maintained without BrdU. Mixtures of viable BrdU+ and viable BrdU- cells from the two proliferating cultures were stained with Hoechst 33342. The viable BrdU+ and BrdU- cells were sorted into different fractions from a mixture of BrdU+ and BrdU- cells based on Hoechst fluorescence intensity and the ability to exclude the vital dye, propidium iodide. Subsequently, samples from the original mixture, the sorted BrdU+ cell population, and the sorted BrdU- cell population were immunostained using an anti-BrdU monoclonal antibody and evaluated using flow cytometry. RESULTS: Two mixtures consisting of approximately 55% and 69% BrdU+ cells were sorted into fractions consisting of greater than 93% BrdU+ cells and 92% BrdU- cells. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. CONCLUSIONS: Hoechst fluorescence intensity in combination with cell sorting is an effective tool to separate viable BrdU+ from viable BrdU- cells for further study. The separated cell populations were maintained in vitro after sorting to demonstrate their viability. Copyright 2000 Wiley-Liss, Inc.
Cloning of Plasmodium falciparum by single-cell sorting.
Miao, Jun; Li, Xiaolian; Cui, Liwang
2010-10-01
Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two-dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples. Copyright 2010 Elsevier Inc. All rights reserved.
A flow cytometric approach to the study of crustacean cellular immunity
Cardenas, W.; Jenkins, J.A.; Dankert, J.R.
2000-01-01
Responses of hemocytes from the crayfish Procambarus zonangulus to stimulation by fungal cell walls (Zymosan A) were measured by flow cytometry. Changes in hemocyte physical characteristics were assessed flow cytometrically using forward- and sidescatter light parameters, and viability was measured by two-color fluorescent staining with calcein-AM and ethidium homodimer 1. The main effects of zymosan A on crayfish hemocytes were reduction in cell size and viability compared to control mixtures (hemocytes in buffer only). Adding diethyldithiocarbamic acid, an inhibitor of phenoloxidase, to hemocyte to zymosan mixtures delayed the time course of cell size reduction and cell death compared to zymosan-positive controls. The inclusion of trypsin inhibitor in reaction mixtures further delayed the reduction in hemocyte size and cell death, thereby indicating that a proteolytic cascade, along with prophenoloxidase activation, played a key role in generating signal molecules which mediate these cellular responses. In addition to traditional methods such as microscopy and protein chemistry, flow cytometry can provide a simple, reproducible, and sensitve method for evaluating invertebrate hemocyte responses to immunological stimuli.
A Method for Identification and Analysis of Non-Overlapping Myeloid Immunophenotypes in Humans
Gustafson, Michael P.; Lin, Yi; Maas, Mary L.; Van Keulen, Virginia P.; Johnston, Patrick B.; Peikert, Tobias; Gastineau, Dennis A.; Dietz, Allan B.
2015-01-01
The development of flow cytometric biomarkers in human studies and clinical trials has been slowed by inconsistent sample processing, use of cell surface markers, and reporting of immunophenotypes. Additionally, the function(s) of distinct cell types as biomarkers cannot be accurately defined without the proper identification of homogeneous populations. As such, we developed a method for the identification and analysis of human leukocyte populations by the use of eight 10-color flow cytometric protocols in combination with novel software analyses. This method utilizes un-manipulated biological sample preparation that allows for the direct quantitation of leukocytes and non-overlapping immunophenotypes. We specifically designed myeloid protocols that enable us to define distinct phenotypes that include mature monocytes, granulocytes, circulating dendritic cells, immature myeloid cells, and myeloid derived suppressor cells (MDSCs). We also identified CD123 as an additional distinguishing marker for the phenotypic characterization of immature LIN-CD33+HLA-DR- MDSCs. Our approach permits the comprehensive analysis of all peripheral blood leukocytes and yields data that is highly amenable for standardization across inter-laboratory comparisons for human studies. PMID:25799053
Prospective identification of erythroid elements in cultured peripheral blood.
Miller, J L; Njoroge, J M; Gubin, A N; Rodgers, G P
1999-04-01
We have developed a prospective approach to identify the generation of erythroid cells derived from cultured peripheral blood mononuclear cells (PBMC) by monitoring the expression of the cell surface protein CD48. Unpurified populations of PBMC obtained from the buffy coats of normal volunteers were grown in suspension culture in the absence or presence of erythropoietin. A profile of surface CD48 expression permitted a flow cytometric identification of erythropoietin responsive populations at various stages of their maturation. In the absence of erythropoietin (EPO) supplemented media, the CD48- cells represented <5% of the total population of PBMC remaining in culture. In cultures supplemented with 1 U/mL EPO, the mean percentage of CD48- cells increased to 34.7 + 14.9% (p < 0.01) after 14 days in culture. Coordinated CD34 and CD71 (transferrin receptor) expression, morphology, gamma-globin transcription, and colony formation in methylcellulose were observed during the 14-day culture period. Flow cytometric monitoring of bulk cultured PBMC provides a simple and reliable means for the prospective or real-time study of human erythropoiesis.
Jayme, Cristiano Ceron; de Paula, Leonardo Barcelos; Rezende, Nayara; Calori, Italo Rodrigo; Franchi, Leonardo Pereira; Tedesco, Antonio Claudio
2017-11-15
DNA polymeric films (DNA-PFs) are a promising drug delivery system (DDS) in modern medicine. In this study, we evaluated the growth behavior of oral squamous cell carcinoma (OSCC) cells on DNA-PFs. The morphological, biochemical, and cytometric features of OSCC cell adhesion on DNA-PFs were also assessed. An initial, temporary alteration in cell morphology was observed at early time points owing to the inhibition of cell attachment to the film, which then returned to a normal morphological state at later time points. MTT and resazurin assays showed a moderate reduction in cell viability related to increased DNA concentration in the DNA-PFs. Flow cytometry studies showed low cytotoxicity of DNA-PFs, with cell viabilities higher than 90% in all the DNA-PFs tested. Flow cytometric cell cycle analysis also showed average cell cycle phase distributions at later time points, indicating that OSCC cell growth is maintained in the presence of DNA-PFs. These results show high biocompatibility of DNA-PFs and suggest their use in designing "dressing material," where the DNA film acts as a support for cell growth, or with incorporation of active or photoactive compounds, which can induce tissue regeneration and are useful to treat many diseases, especially oral cancer. Copyright © 2017 Elsevier Inc. All rights reserved.
The new numerology of immunity mediated by virus-specific CD8(+) T cells.
Doherty, P C
1998-08-01
Our understanding of virus-specific CD8(+) T cell responses is currently being revolutionized by peptide-based assay systems that allow flow cytometric analysis of effector and memory cytotoxic T lymphocyte populations. These techniques are, for the first time, putting the analysis of T-cell-mediated immunity on a quantitative basis.
de Tar, M W; Dittman, W; Gilbert, J
2000-03-01
Transient myeloproliferative disease (TMD) of the newborn is a rare hematologic abnormality associated with trisomy 21. It is frequently difficult to distinguish the disorder from true congenital leukemia (TCL). Unlike leukemia, which has a clinically aggressive course, TMD generally resolves within weeks to months. We present a case of TMD of the newborn diagnosed on the basis of peripheral blood studies and describe the pertinent pathological findings within the placenta. Flow cytometric analysis of the blasts in the peripheral blood showed phenotypic heterogeneity with features consistent with megakaryocytic differentiation. Cytogenetic studies showed trisomy 21 within the blastic cells. The placenta showed villous dysmaturity with associated chorangiosis and prominent intravascular aggregates of primitive-appearing cells with focal, early vascular wall invasion. The neonate recovered fully and shows no evidence of disease at 2 years of age.
Penter, Livius; Dietze, Kerstin; Bullinger, Lars; Westermann, Jörg; Rahn, Hans-Peter; Hansmann, Leo
2018-03-14
FACS index sorting allows the isolation of single cells with retrospective identification of each single cell's high-dimensional immune phenotype. We experimentally determine the error rate of index sorting and combine the technology with T cell receptor sequencing to identify clonal T cell expansion in aplastic anemia bone marrow as an example. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cytotoxicity of four denture adhesives on human gingival fibroblast cells.
Lee, Yoon; Ahn, Jin-Soo; Yi, Young-Ah; Chung, Shin-Hye; Yoo, Yeon-Jee; Ju, Sung-Won; Hwang, Ji-Yun; Seo, Deog-Gyu
2015-02-01
The purpose of this study was to compare the cytotoxicity of four denture adhesives on human gingival fibroblast cells. Immortalized human gingival fibroblasts were cultured with one of four different denture adhesives, Polident, Protefix, Staydent or Denfix-A, which was placed in insert dishes (10% w/v concentration) for 48 h. The MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay and flow cytometric apoptosis assay were used to evaluate cell viability and apoptosis rates. The fibroblasts were also examined under a scanning electron microscope. The MTT assay showed that all denture adhesives resulted in a significantly lower cell viability compared to the control cells propagated in normal culture medium (p < 0.05), with Staydent demonstrating the lowest cell viability. According to the flow cytometric apoptosis assay, Staydent and Protefix showed significantly higher apoptosis rates than the control group (p < 0.05), whereas Polident and Denfix-A did not demonstrate any significant differences (p > 0.05). Staydent showed the highest apoptosis rate. Scanning electron microscopy showed that the cells of the Staydent group underwent cytoplasmic membrane shrinkage, with cell free areas containing residual fragments of the membrane of dead cells. The four denture adhesives evaluated in this study imparted cytotoxic effects on human gingival fibroblast cells. Staydent showed the highest toxicity.
Raman-activated cell sorting based on dielectrophoretic single-cell trap and release.
Zhang, Peiran; Ren, Lihui; Zhang, Xu; Shan, Yufei; Wang, Yun; Ji, Yuetong; Yin, Huabing; Huang, Wei E; Xu, Jian; Ma, Bo
2015-02-17
Raman-activated cell sorting (RACS) is a promising single-cell technology that holds several significant advantages, as RACS is label-free, information-rich, and potentially in situ. To date, the ability of the technique to identify single cells in a high-speed flow has been limited by inherent weakness of the spontaneous Raman signal. Here we present an alternative pause-and-sort RACS microfluidic system that combines positive dielectrophoresis (pDEP) for single-cell trap and release with a solenoid-valve-suction-based switch for cell separation. This has allowed the integration of trapping, Raman identification, and automatic separation of individual cells in a high-speed flow. By exerting a periodical pDEP field, single cells were trapped, ordered, and positioned individually to the detection point for Raman measurement. As a proof-of-concept demonstration, a mixture of two cell strains containing carotenoid-producing yeast (9%) and non-carotenoid-producing Saccharomyces cerevisiae (91%) was sorted, which enriched the former to 73% on average and showed a fast Raman-activated cell sorting at the subsecond level.
Sensitivity of Breast Cancer Stem Cells to TRA-8 Anti-DR5 Monoclonal Antibody
2012-02-01
cytotoxicity and reduction in BrCSC marker expression. A. 2LMP cells were sorted using flow cytometry for CD44+/CD24-/ALDHhigh. Cells were pre...cells were sorted using flow cytometry for ALDH? cells and allowed to form primary tumorspheres for 3 days. After tumorspheres were mechanically...n =5 ) Day Fig. 5 Effect of ex vivo treatment of BrCSC enriched cells on tumorgenicity in NOD/SCID mice. 2LMP cells were sorted using flow cytometry
Analyses of cell surface molecules on hepatic stem/progenitor cells in mouse fetal liver.
Kakinuma, Sei; Ohta, Haruhiko; Kamiya, Akihide; Yamazaki, Yuji; Oikawa, Tsunekazu; Okada, Ken; Nakauchi, Hiromitsu
2009-07-01
Hepatic stem/progenitor cells possess active proliferative ability and the capacity for differentiation into hepatic and cholangiocytic lineages. Our group and others have shown that a prospectively defined population in mid-gestational fetal liver contains hepatic stem/progenitor cells. However, the phenotypes of such cells are incompletely elucidated. We analyzed the profile of cell-surface molecules on primary hepatic stem/progenitor cells. Expression of cell surface molecules on primary hepatic stem/progenitor cells in mouse mid-gestational fetal liver was analyzed using flow cytometric multicolor analyses and colony-formation assays. The potential of the cells for liver repopulation was examined by transplantation assay. We found that CD13 (aminopeptidase N) was detected on the cells of the previously reported (Dlk/Pref-1(+)) hepatic stem/progenitor fraction. Colony-formation assays revealed that the CD13(+) fraction, compared with the Dlk(+) fraction, of non-hematopoietic cells in fetal liver was enriched in hepatic stem/progenitor cells. Transplantation assay showed the former fraction exhibited repopulating potential in regenerating liver. Moreover, flow cytometric analysis for over 90 antigens demonstrated enrichment of hepatic stem/progenitor cells using several positive selection markers, including (hitherto unknown) CD13, CD73, CD106, and CD133. Our data indicated that CD13 is a positive selection marker for hepatic stem/progenitor cells in mid-gestational fetal liver.
Flow cytometric characterization of cerebrospinal fluid cells.
de Graaf, Marieke T; de Jongste, Arjen H C; Kraan, Jaco; Boonstra, Joke G; Sillevis Smitt, Peter A E; Gratama, Jan W
2011-09-01
Flow cytometry facilitates the detection of a large spectrum of cellular characteristics on a per cell basis, determination of absolute cell numbers and detection of rare events with high sensitivity and specificity. White blood cell (WBC) counts in cerebrospinal fluid (CSF) are important for the diagnosis of many neurological disorders. WBC counting and differential can be performed by microscopy, hematology analyzers, or flow cytometry. Flow cytometry of CSF is increasingly being considered as the method of choice in patients suspected of leptomeningeal localization of hematological malignancies. Additionally, in several neuroinflammatory diseases such as multiple sclerosis and paraneoplastic neurological syndromes, flow cytometry is commonly performed to obtain insight into the immunopathogenesis of these diseases. Technically, the low cellularity of CSF samples, combined with the rapidly declining WBC viability, makes CSF flow cytometry challenging. Comparison of flow cytometry with microscopic and molecular techniques shows that each technique has its own advantages and is ideally combined. We expect that increasing the number of flow cytometric parameters that can be simultaneously studied within one sample, will further refine the information on CSF cell subsets in low-cellular CSF samples and enable to define cell populations more accurately. Copyright © 2011 International Clinical Cytometry Society.
Flow cytometric determination of quantitative immunophenotypes
NASA Astrophysics Data System (ADS)
Redelman, Douglas; Ensign, Wayne; Roberts, Don
2001-05-01
Immunofluorescent flow cytometric analysis of peripheral blood leucocytes is most commonly used to identify and enumerate cells defined by one or more clusters of differentiation (CD) antigens. Although less widely employed, quantitative tests that measure the amounts of CD antigens expressed per cell are used in some situations such as the characterization of lymphomas and leukocytes or the measurement of CD38 on CD3plu8pluT cells in HIV infected individuals. The CD antigens used to identify leukocyte populations are functionally important molecules and it is known that under- or over-expression of some CD antigens can affect cellular responses. For example, high or low expression of CD19 on B cells is associated with autoimmune conditions or depressed antibody responses, respectively. In the current studies, the quantitative expression of CD antigens on T cells, B cells and monocytes was determined in a group of age and sex-matched Marines at several times before and after training exercises. There was substantial variation among these individuals in the quantitative expression of CD antigens and in the number of cells in various populations. However, there was relatively little variation within individuals during the two months they were examined. Thus, the number of cells in leukocyte sub-populations and the amount of CD antigens expressed per cell appear to comprise a characteristic quantitative immunophenotype.
NASA Astrophysics Data System (ADS)
Hui, Yuen Yung; Su, Long-Jyun; Chen, Oliver Yenjyh; Chen, Yit-Tsong; Liu, Tzu-Ming; Chang, Huan-Cheng
2014-07-01
Nanodiamonds containing high density ensembles of negatively charged nitrogen-vacancy (NV-) centers are promising fluorescent biomarkers due to their excellent photostability and biocompatibility. The NV- centers in the particles have a fluorescence lifetime of up to 20 ns, which distinctly differs from those (<10 ns) of cell and tissue autofluorescence, making it possible to achieve background-free detection in vivo by time gating. Here, we demonstrate the feasibility of using fluorescent nanodiamonds (FNDs) as optical labels for wide-field time-gated fluorescence imaging and flow cytometric analysis of cancer cells with a nanosecond intensified charge-coupled device (ICCD) as the detector. The combined technique has allowed us to acquire fluorescence images of FND-labeled HeLa cells in whole blood covered with a chicken breast of ~0.1-mm thickness at the single cell level, and to detect individual FND-labeled HeLa cells in blood flowing through a microfluidic device at a frame rate of 23 Hz, as well as to locate and trace FND-labeled lung cancer cells in the blood vessels of a mouse ear. It opens a new window for real-time imaging and tracking of transplanted cells (such as stem cells) in vivo.
Droplet electric separator microfluidic device for cell sorting
NASA Astrophysics Data System (ADS)
Guo, Feng; Ji, Xing-Hu; Liu, Kan; He, Rong-Xiang; Zhao, Li-Bo; Guo, Zhi-Xiao; Liu, Wei; Guo, Shi-Shang; Zhao, Xing-Zhong
2010-05-01
A simple and effective droplet electric separator microfluidic device was developed for cell sorting. The aqueous droplet without precharging operation was influenced to move a distance in the channel along the electric field direction by applying dc voltage on the electrodes beside the channel, which made the target droplet flowing to the collector. Single droplet can be isolated in a sorting rate of ˜100 Hz with microelectrodes under a required pulse. Single or multiple mammalian cell (HePG2) encapsulated in the surfactant free alginate droplet could be sorted out respectively. This method may be used for single cell operation or analysis.
Coupling Bacterial Activity Measurements with Cell Sorting by Flow Cytometry.
Servais; Courties; Lebaron; Troussellier
1999-08-01
> Abstract A new procedure to investigate the relationship between bacterial cell size and activity at the cellular level has been developed; it is based on the coupling of radioactive labeling of bacterial cells and cell sorting by flow cytometry after SYTO 13 staining. Before sorting, bacterial cells were incubated in the presence of tritiated leucine using a procedure similar to that used for measuring bacterial production by leucine incorporation and then stained with SYTO 13. Subpopulations of bacterial cells were sorted according to their average right-angle light scatter (RALS) and fluorescence. Average RALS was shown to be significantly related to the average biovolume. Experiments were performed on samples collected at different times in a Mediterranean seawater mesocosm enriched with nitrogen and phosphorus. At four sampling times, bacteria were sorted in two subpopulations (cells smaller and larger than 0.25 µm(3)). The results indicate that, at each sampling time, the growth rate of larger cells was higher than that of smaller cells. In order to confirm this tendency, cell sorting was performed on six subpopulations differing in average biovolume during the mesocosm follow-up. A clear increase of the bacterial growth rates was observed with increasing cell size for the conditions met in this enriched mesocosm.http://link.springer-ny.com/link/service/journals/00248/bibs/38n2p180.html
RNA flow cytometric FISH for investigations into HIV immunology, vaccination and cure strategies.
Baxter, Amy E; Niessl, Julia; Morou, Antigoni; Kaufmann, Daniel E
2017-09-12
Despite the tremendous success of anti-retroviral therapy (ART) no current treatment can eradicate latent HIV reservoirs from HIV-infected individuals or generate, effective HIV-specific immunity. Technological limitations have hampered the identification and characterization of both HIV-infected cells and HIV-specific responses in clinical samples directly ex vivo. RNA-flow cytometric fluorescence in situ hybridisation (RNA Flow-FISH) is a powerful technique, which enables detection of mRNAs in conjunction with proteins at a single-cell level. Here, we describe how we are using this technology to address some of the major questions remaining in the HIV field in the era of ART. We discuss how CD4 T cell responses to HIV antigens, both following vaccination and HIV infection, can be characterized by measurement of cytokine mRNAs. We describe how our development of a dual HIV mRNA/protein assay (HIV RNA/Gag assay) enables high sensitivity detection of very rare HIV-infected cells and aids investigations into the translation-competent latent reservoir in the context of HIV cure.
Li, Liming; An, Liwen; Zhou, Xiaohang; Pan, Shuang; Meng, Xin; Ren, Yibin; Yang, Ke; Guan, Yifu
2016-01-01
To evaluate the clinical potential of high nitrogen nickel-free austenitic stainless steel (HNNF SS), we have compared the cellular and molecular responses of human umbilical artery smooth muscle cells (HUASMCs) to HNNF SS and 316L SS (nickel-containing austenitic 316L stainless steel). CCK-8 analysis and flow cytometric analysis were used to assess the cellular responses (proliferation, apoptosis, and cell cycle), and quantitative real-time PCR (qRT-PCR) was used to analyze the gene expression profiles of HUASMCs exposed to HNNF SS and 316L SS, respectively. CCK-8 analysis demonstrated that HUASMCs cultured on HNNF SS proliferated more slowly than those on 316L SS. Flow cytometric analysis revealed that HNNF SS could activate more cellular apoptosis. The qRT-PCR results showed that the genes regulating cell apoptosis and autophagy were up-regulated on HNNF SS. Thus, HNNF SS could reduce the HUASMC proliferation in comparison to 316L SS. The findings furnish valuable information for developing new biomedical materials for stent implantation. PMID:26727026
NASA Astrophysics Data System (ADS)
Li, Liming; An, Liwen; Zhou, Xiaohang; Pan, Shuang; Meng, Xin; Ren, Yibin; Yang, Ke; Guan, Yifu
2016-01-01
To evaluate the clinical potential of high nitrogen nickel-free austenitic stainless steel (HNNF SS), we have compared the cellular and molecular responses of human umbilical artery smooth muscle cells (HUASMCs) to HNNF SS and 316L SS (nickel-containing austenitic 316L stainless steel). CCK-8 analysis and flow cytometric analysis were used to assess the cellular responses (proliferation, apoptosis, and cell cycle), and quantitative real-time PCR (qRT-PCR) was used to analyze the gene expression profiles of HUASMCs exposed to HNNF SS and 316L SS, respectively. CCK-8 analysis demonstrated that HUASMCs cultured on HNNF SS proliferated more slowly than those on 316L SS. Flow cytometric analysis revealed that HNNF SS could activate more cellular apoptosis. The qRT-PCR results showed that the genes regulating cell apoptosis and autophagy were up-regulated on HNNF SS. Thus, HNNF SS could reduce the HUASMC proliferation in comparison to 316L SS. The findings furnish valuable information for developing new biomedical materials for stent implantation.
Arora, R D; Dass, J; Maydeo, S; Arya, V; Radhakrishnan, N; Sachdeva, A; Kotwal, J; Bhargava, M
2018-06-01
Hereditary spherocytosis (HS) is the most common inherited hemolytic anemia with heterogeneous clinico-laboratory manifestations. We evaluated the flow-cytometric tests: eosin-5'-maleimide (EMA) and flow-cytometric osmotic fragility test (FOFT) and the conventional osmotic fragility tests (OFT) for the diagnosis of hereditary spherocytosis (HS). One hundred two suspected HS patients underwent EMA, FOFT, incubated OFT (IOFT), and room temperature OFT (RT-OFT). In addition, 10 cases of immune hemolytic anemia (IHA) were included, and performance of the above 4 tests was evaluated. For EMA and FOFT, 5 normal controls were assessed together with the patients and cutoffs were calculated using receiver-operator-characteristics curve (ROC) analysis. The best cutoff for %EMA decrease was 12.5%, and for FOFT, %residual red cells (%RRC) was 25.6%. The sensitivity and specificity of RT-OFT was 62.06% and 86.3%, respectively, while that of IOFT was 79.31% and 87.67%, respectively. Both flow cytometric tests performed better. Sensitivity and specificity of EMA was 86.2% and 93.9% respectively, and that of FOFT was 96.6% and 98.63%, respectively. The combination of the FOFT with IOFT or EMA dye-binding test yields a sensitivity of 100%, but with EMA, it had a higher specificity. Hb/MCHC was a predictor of the severity of the disease while %EMA decrease and %RRC did not correlate with severity of the disease. Flow-cytometric osmotic fragility test is the best possible single test followed by EMA for diagnosis of HS. A combination of FOFT and EMA can correctly diagnose 100% patients. These tests are likely to replace conventional OFTs in future. © 2018 John Wiley & Sons Ltd.
Lancaster, C; Kokoris, M; Nabavi, M; Clemmens, J; Maloney, P; Capadanno, J; Gerdes, J; Battrell, C F
2005-09-01
We demonstrate sorting of rare cancer cells from blood using a thin ribbon monolayer of cells within a credit-card sized, microfluidic laboratory-on-a-card ("lab card") structure. This enables higher cell throughput per minute thereby speeding up cell interrogation. In this approach, multiple cells are viewed and sorted, not individually, but as a whole cell row or section of the ribbon at a time. Gated selection of only the cell rows containing a tagged rare cell provides enrichment of the rare cell relative to background blood cells. We also designed the cell injector for laminar flow antibody labeling within 20s. The approach combines rapid laminar flow cell labeling with monolayer cell sorting thereby enabling rare cell target detection at sensitivity levels 1000 to 10,000 times that of existing flow cytometers. Using this method, total cell labeling and data acquisition time on card may be reduced to a few minutes compared to 30-60 min for standard flow methods.
Developments in label-free microfluidic methods for single-cell analysis and sorting.
Carey, Thomas R; Cotner, Kristen L; Li, Brian; Sohn, Lydia L
2018-04-24
Advancements in microfluidic technologies have led to the development of many new tools for both the characterization and sorting of single cells without the need for exogenous labels. Label-free microfluidics reduce the preparation time, reagents needed, and cost of conventional methods based on fluorescent or magnetic labels. Furthermore, these devices enable analysis of cell properties such as mechanical phenotype and dielectric parameters that cannot be characterized with traditional labels. Some of the most promising technologies for current and future development toward label-free, single-cell analysis and sorting include electronic sensors such as Coulter counters and electrical impedance cytometry; deformation analysis using optical traps and deformation cytometry; hydrodynamic sorting such as deterministic lateral displacement, inertial focusing, and microvortex trapping; and acoustic sorting using traveling or standing surface acoustic waves. These label-free microfluidic methods have been used to screen, sort, and analyze cells for a wide range of biomedical and clinical applications, including cell cycle monitoring, rapid complete blood counts, cancer diagnosis, metastatic progression monitoring, HIV and parasite detection, circulating tumor cell isolation, and point-of-care diagnostics. Because of the versatility of label-free methods for characterization and sorting, the low-cost nature of microfluidics, and the rapid prototyping capabilities of modern microfabrication, we expect this class of technology to continue to be an area of high research interest going forward. New developments in this field will contribute to the ongoing paradigm shift in cell analysis and sorting technologies toward label-free microfluidic devices, enabling new capabilities in biomedical research tools as well as clinical diagnostics. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices. © 2018 Wiley Periodicals, Inc.
Molnár, István; Vrána, Jan; Farkas, András; Kubaláková, Marie; Cseh, András; Molnár-Láng, Márta; Doležel, Jaroslav
2015-08-01
Aegilops markgrafii (CC) and its natural hybrids Ae. triuncialis (U(t)U(t)C(t)C(t)) and Ae. cylindrica (D(c)D(c)C(c)C(c)) represent a rich reservoir of useful genes for improvement of bread wheat (Triticum aestivum), but the limited information available on their genome structure and the shortage of molecular (cyto-) genetic tools hamper the utilization of the extant genetic diversity. This study provides the complete karyotypes in the three species obtained after fluorescent in situ hybridization (FISH) with repetitive DNA probes, and evaluates the potential of flow cytometric chromosome sorting. The flow karyotypes obtained after the analysis of 4',6-diamidino-2-phenylindole (DAPI)-stained chromosomes were characterized and the chromosome content of the peaks on the flow karyotypes was determined by FISH. Twenty-nine conserved orthologous set (COS) markers covering all seven wheat homoeologous chromosome groups were used for PCR with DNA amplified from flow-sorted chromosomes and genomic DNA. FISH with repetitive DNA probes revealed that chromosomes 4C, 5C, 7C(t), T6U(t)S.6U(t)L-5C(t)L, 1C(c) and 5D(c) could be sorted with purities ranging from 66 to 91 %, while the remaining chromosomes could be sorted in groups of 2-5. This identified a partial wheat-C-genome homology for group 4 and 5 chromosomes. In addition, 1C chromosomes were homologous with group 1 of wheat; a small segment from group 2 indicated 1C-2C rearrangement. An extensively rearranged structure of chromosome 7C relative to wheat was also detected. The possibility of purifying Aegilops chromosomes provides an attractive opportunity to investigate the structure and evolution of the Aegilops C genome and to develop molecular tools to facilitate the identification of alien chromatin and support alien introgression breeding in bread wheat. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Asare, A. L.; Huda, H.; Klimczak, J. C.; Caldwell, C. W.
1998-01-01
Studies have shown that monitoring HIV-infected patients undergoing antiretroviral therapy is best represented by combined measurement of plasma HIV-1 RNA and CD4+ T-lymphocytes [1]. This pilot study at the University of Missouri-Columbia integrates molecular diagnostic and flow cytometric data reporting to provide current and historical HIV-1 RNA levels and CD4+ T-cell counts. The development of a single database for storage and retrieval of these values facilitates composite report generation that includes longitudinal HIV-1 RNA levels and CD4+ T-cell counts for all patients. Results are displayed in tables and plotted graphically within a web browser. This method of data presentation converts individual data points to more useful medical information and could provide clinicians with decision support for improved monitoring of HIV patients undergoing antiretroviral therapy. Images Figure 2 Figure 3 Figure 4 PMID:9929359
Lan, Xi; Wang, Yong; Cao, Shu; Zou, Dongling; Li, Fang; Li, Shaolin
2012-12-01
To study the effects of CD133 suppression by lentivirus-mediated RNA interference (RNAi) on the proliferation and chemosensitivity of CD133(+) cancer stem cells (CSCs) sorted from HepG2 cell line. CD133(+) and CD133- cells were sorted from HepG2 cell line by flow cytometry, and the expression of CD133 before and after cell sorting were detected. The stem cell property of sorted CD133(+) cells were validated by sphere-forming assay in vitro and xenograft experiments in vivo. Lentivirus-mediated short hairpin RNA (shRNA) targeting CD133 were transfected into CD133(+) cells, and CD133 mRNA and protein expressions of the transfected cells were detected by RT-PCR and Western blotting, respectively. Before and after the transfection, the proliferative ability of CD133(+) cells was evaluated by colony formation assay, and the cell growth inhibition rate and apoptosis following cisplatin exposure were detected using CCK-8 assay and flow cytometry. The sorted CD133(+) cells showed a high purity of (88.74∓3.19)%, as compared with the purity of (3.36∓1.80)% before cell sorting. CD133(+) cells showed a high tumor sphere formation ability and tumorigenesis capacity compared with CD133- cells. CD133 shRNA transfection significantly inhibited CD133 mRNA and protein expressions in CD133(+) cells (P<0.01), resulting also in a significantly lowered cell proliferative ability (P<0.01) and an increased growth inhibition rate (P<0.01) and obviously increased cell apoptosis (P<0.05) after cisplatin exposure. Lentivirus-mediated RNAi for CD133 suppression inhibits the proliferation of CD133(+) liver cancer stem cells and increases their chemosensitivity to cisplatin.
Arctigenin induces apoptosis in colon cancer cells through ROS/p38MAPK pathway.
Li, Qing-chun; Liang, Yun; Tian, Yuan; Hu, Guang-rui
2016-01-01
In the current study the antiproliferative effect of arctigenin, plant lignin, was evaluated on human colon cancer cell line HT-29. Furthermore, attempts were made to explore the signaling mechanism which may be responsible for its effect. Cell growth inhibition was assessed by MTT and LDH assays. Flow cytometric analysis was performed to determine cell arrest in the cell cycle phase and apoptosis. Furthermore, to confirm the apoptotic activity of arctigenin, caspase-9 and -3 activities analysis was performed. The levels of reactive oxygen species (ROS) and p38 mitogen activated protein kinase (MAPK) were investigated to determine their role in inducing apoptosis in arctigenin-treated HT-29 colon cancer cell line. MTT and LDH results demonstrated significant cell growth inhibitory effect of arctigenin on HT-29 cells in a dose-dependent manner. Furthermore, increase in cell number arrested at G2/M phase was observed in flow cytometric analysis upon arctigenin treatment. In addition, arctigenin increased the apoptotic ratio in a dose-dependent manner. The involvement of intrinsic apoptotic pathway was indicated by the activation of caspase-9 and -3. Moreover, increased ROS production, activation of p38 MAPK and changes in mitochondrial membrane potential (ΔΨm) also revealed the role of intrinsic apoptotic signaling pathway in cell growth inhibition after arctigenin exposure. Arctigenin induces apoptosis in HT-29 colon cancer cells by regulating ROS and p38 MAPK pathways.
Min, Kyoung Ah; Rosania, Gus R; Kim, Chong-Kook; Shin, Meong Cheol
2016-03-01
To develop inhaled medications, various cell culture models have been used to examine the transcellular transport or cellular uptake properties of small molecules. For the reproducible high throughput screening of the inhaled drug candidates, a further verification of cell architectures as drug transport barriers can contribute to establishing appropriate in vitro cell models. In the present study, side-by-side experiments were performed to compare the structure and transport function of three lung epithelial cells (Calu-3, normal human bronchial primary cells (NHBE), and NL-20). The cells were cultured on the nucleopore membranes in the air-liquid interface (ALI) culture conditions, with cell culture medium in the basolateral side only, starting from day 1. In transport assays, paracellular transport across all three types of cells appeared to be markedly different with the NHBE or Calu-3 cells, showing low paracellular permeability and high TEER values, while the NL-20 cells showed high paracellular permeability and low TEER. Quantitative image analysis of the confocal microscope sections further confirmed that the Calu-3 cells formed intact cell monolayers in contrast to the NHBE and NL-20 cells with multilayers. Among three lung epithelial cell types, the Calu-3 cell cultures under the ALI condition showed optimal cytometric features for mimicking the biophysical characteristics of in vivo airway epithelium. Therefore, the Calu-3 cell monolayers could be used as functional cell barriers for the lung-targeted drug transport studies.
Min, Kyoung Ah; Rosania, Gus R.; Kim, Chong-Kook; Shin, Meong Cheol
2016-01-01
To develop inhaled medications, various cell culture models have been used to examine the transcellular transport or cellular uptake properties of small molecules. For the reproducible high throughput screening of the inhaled drug candidates, a further verification of cell architectures as drug transport barriers can contribute to establishing appropriate in vitro cell models. In the present study, side-by-side experiments were performed to compare the structure and transport function of three lung epithelial cells (Calu-3, normal human bronchial primary cells (NHBE), and NL-20). The cells were cultured on the nucleopore membranes in the air-liquid interface (ALI) culture conditions, with cell culture medium in the basolateral side only, starting from day 1. In transport assays, paracellular transport across all three types of cells appeared to be markedly different with the NHBE or Calu-3 cells, showing low paracellular permeability and high TEER values, while the NL-20 cells showed high paracellular permeability and low TEER. Quantitative image analysis of the confocal microscope sections further confirmed that the Calu-3 cells formed intact cell monolayers in contrast to the NHBE and NL-20 cells with multilayers. Among three lung epithelial cell types, the Calu-3 cell cultures under the ALI condition showed optimal cytometric features for mimicking the biophysical characteristics of in vivo airway epithelium. Therefore, the Calu-3 cell monolayers could be used as functional cell barriers for the lung-targeted drug transport studies. PMID:26746641
NASA Astrophysics Data System (ADS)
Rao, Lang; Cai, Bo; Yu, Xiao-Lei; Guo, Shi-Shang; Liu, Wei; Zhao, Xing-Zhong
2015-05-01
3D microelectrodes are one-step fabricated into a microfluidic droplet separator by filling conductive silver paste into PDMS microchambers. The advantages of 3D silver paste electrodes in promoting droplet sorting accuracy are systematically demonstrated by theoretical calculation, numerical simulation and experimental validation. The employment of 3D electrodes also helps to decrease the droplet sorting voltage, guaranteeing that cells encapsulated in droplets undergo chip-based sorting processes are at better metabolic status for further potential cellular assays. At last, target droplet containing single cell are selectively sorted out from others by an appropriate electric pulse. This method provides a simple and inexpensive alternative to fabricate 3D electrodes, and it is expected our 3D electrode-integrated microfluidic droplet separator platform can be widely used in single cell operation and analysis.
Sorting cells by their density
Norouzi, Nazila; Bhakta, Heran C.
2017-01-01
Sorting cells by their type is an important capability in biological research and medical diagnostics. However, most cell sorting techniques rely on labels or tags, which may have limited availability and specificity. Sorting different cell types by their different physical properties is an attractive alternative to labels because all cells intrinsically have these physical properties. But some physical properties, like cell size, vary significantly from cell to cell within a cell type; this makes it difficult to identify and sort cells based on their sizes alone. In this work we continuously sort different cells types by their density, a physical property with much lower cell-to-cell variation within a cell type (and therefore greater potential to discriminate different cell types) than other physical properties. We accomplish this using a 3D-printed microfluidic chip containing a horizontal flowing micron-scale density gradient. As cells flow through the chip, Earth’s gravity makes each cell move vertically to the point where the cell’s density matches the surrounding fluid’s density. When the horizontal channel then splits, cells with different densities are routed to different outlets. As a proof of concept, we use our density sorter chip to sort polymer microbeads by their material (polyethylene and polystyrene) and blood cells by their type (white blood cells and red blood cells). The chip enriches the fraction of white blood cells in a blood sample from 0.1% (in whole blood) to nearly 98% (in the output of the chip), a 1000x enrichment. Any researcher with access to a 3D printer can easily replicate our density sorter chip and use it in their own research using the design files provided as online Supporting Information. Additionally, researchers can simulate the performance of a density sorter chip in their own applications using the Python-based simulation software that accompanies this work. The simplicity, resolution, and throughput of this technique make it suitable for isolating even rare cell types in complex biological samples, in a wide variety of different research and clinical applications. PMID:28723908
Malm, Magdalena; Kronqvist, Nina; Lindberg, Hanna; Gudmundsdotter, Lindvi; Bass, Tarek; Frejd, Fredrik Y; Höidén-Guthenberg, Ingmarie; Varasteh, Zohreh; Orlova, Anna; Tolmachev, Vladimir; Ståhl, Stefan; Löfblom, John
2013-01-01
The HER3 receptor is implicated in the progression of various cancers as well as in resistance to several currently used drugs, and is hence a potential target for development of new therapies. We have previously generated Affibody molecules that inhibit heregulin-induced signaling of the HER3 pathways. The aim of this study was to improve the affinity of the binders to hopefully increase receptor inhibition efficacy and enable a high receptor-mediated uptake in tumors. We explored a novel strategy for affinity maturation of Affibody molecules that is based on alanine scanning followed by design of library diversification to mimic the result from an error-prone PCR reaction, but with full control over mutated positions and thus less biases. Using bacterial surface display and flow-cytometric sorting of the maturation library, the affinity for HER3 was improved more than 30-fold down to 21 pM. The affinity is among the higher that has been reported for Affibody molecules and we believe that the maturation strategy should be generally applicable for improvement of affinity proteins. The new binders also demonstrated an improved thermal stability as well as complete refolding after denaturation. Moreover, inhibition of ligand-induced proliferation of HER3-positive breast cancer cells was improved more than two orders of magnitude compared to the previously best-performing clone. Radiolabeled Affibody molecules showed specific targeting of a number of HER3-positive cell lines in vitro as well as targeting of HER3 in in vivo mouse models and represent promising candidates for future development of targeted therapies and diagnostics.
On-chip cell sorting via patterned magnetic traps
NASA Astrophysics Data System (ADS)
Byvank, Tom; Prikockis, Michael; Chen, Aaron; Miller, Brandon; Chalmers, Jeffrey; Sooryakumar, Ratnasingham
2015-03-01
Due to their importance in research for the diagnosis and treatment of cancer, numerous schemes have been developed to sort rare cell populations, e.g., circulating tumor cells (CTCs), from a larger ensemble of cells. Here, we improve upon a previously developed microfluidic device (Lab Chip 13, 1172, (2013)) to increase throughput and sorting purity of magnetically labeled cells. The separation mechanism involves controlling magnetic forces by manipulating the magnetic domain structures of embedded permalloy microdisks with weak external fields. These forces move labeled cells from the input flow stream into an adjacent buffer flow stream. Such magnetically activated transfer separates the magnetic entities from their non-magnetic counterparts as the two flow streams split apart and move toward their respective outputs. Purity of the magnetic output is modulated by the withdrawal rate of the non-magnetic output relative to the inputs. A proof of concept shows that CTCs from metastatic breast cancer patients can be sorted, recovered from the device, and confirmed as CTCs using separate immunofluorescence staining and analysis. With further optimizations, the channel could become a useful device for high purity final sorting of enriched patient cell samples.
Biological cell controllable patch-clamp microchip
NASA Astrophysics Data System (ADS)
Penmetsa, Siva; Nagrajan, Krithika; Gong, Zhongcheng; Mills, David; Que, Long
2010-12-01
A patch-clamp (PC) microchip with cell sorting and positioning functions is reported, which can avoid drawbacks of random cell selection or positioning for a PC microchip. The cell sorting and positioning are enabled by air bubble (AB) actuators. AB actuators are pneumatic actuators, in which air pressure is generated by microheaters within sealed microchambers. The sorting, positioning, and capturing of 3T3 cells by this type of microchip have been demonstrated. Using human breast cancer cells MDA-MB-231 as the model, experiments have been demonstrated by this microchip as a label-free technical platform for real-time monitoring of the cell viability.
Flow cytometric discrimination of seven lineage markers by using two fluorochromes
Boin, Francesco; Giardino Torchia, Maria Letizia; Borrello, Ivan; Noonan, Kimberly A.; Neil, Matthew; Soloski, Mark J.
2017-01-01
Flow cytometry is the primary immunological technique used to analyze multiple parameters on complex cell populations. We present a staining method that identifies major human mononuclear lymphoid and myeloid populations (CD4+ and CD8+ T cells, γδ T cells, B cells, NK cells and monocytes), using only two fluorochromes and a minimal number of cells. Our approach increases the number of markers recordable on most flow cytometers allowing for a deeper and more comprehensive immunophenotyping. PMID:29190813
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobs, R.M.; Boyce, J.T.; Kociba, G.J.
This study demonstrates the potential usefulness of a flow cytometric technique to measure platelet survival time in cats utilizing autologous platelets labeled in vitro with fluorescein isothiocyanate (FITC). When compared with a 51Cr method, no significant differences in estimated survival times were found. Both the 51Cr and FITC-labeling procedures induced similar changes in platelet shape and collagen-induced aggregation. Platelets labeled with FITC had significantly greater volumes compared with those of glutaraldehyde-fixed platelets. These changes were primarily related to the platelet centrifugation and washing procedures rather than the labels themselves. This novel technique potentially has wide applicability to cell circulation timemore » studies as flow cytometry equipment becomes more readily available. Problems with the technique are discussed. In a preliminary study of the platelet survival time in feline leukemia virus (FeLV)-infected cats, two of three cats had significantly reduced survival times using both flow cytometric and radioisotopic methods. These data suggest increased platelet turnover in FeLV-infected cats.« less
Fujikawa, Takahisa; Hirose, Tetsuro; Fujii, Hideaki; Oe, Shoshiro; Yasuchika, Kentaro; Azuma, Hisaya; Yamaoka, Yoshio
2003-08-01
Recent advances in stem cell research have revealed that hepatic stem/progenitor cells may play an important role in liver development and regeneration. However, a lack of detectable definitive markers in viable cells has hindered their primary culture from adult livers. Enzymatically dissociated liver cells from green fluorescent protein (GFP)-transgenic mice, which express GFP highly in liver endodermal cells, were sorted by GFP expression using a fluorescence-activated cell sorter. Sorted cells were characterized, and also low-density cultured for extended periods to determine their proliferation and clonal differentiation capacities. When CD45(-)TER119(-) side-scatter(low) GFP(high) cells were sorted, alpha-fetoprotein-positive immature endoderm-characterized cells, having high growth potential, were present in this population. Clonal analysis and electron microscopic evaluation revealed that each single cell of this population could differentiate not only into hepatocytes, but also into biliary epithelial cells, showing their bilineage differentiation activity. When surface markers were analyzed, they were positive for Integrin-alpha6 and -beta1, but negative for c-Kit and Thy1.1. Combination of GFP-transgenic mice and fluorescence-activated cell sorting enabled purification of hepatic progenitor cells from adult mouse liver. Further analysis of this population may lead to purification of their human correspondence that would be an ideal cell-source candidate for regenerative medicine.
Sexing mammalian sperm for production of offspring: the state-of-the-art.
Johnson, L A
2000-07-02
Predetermination of sex in livestock offspring is in great demand and is of critical importance to providing for the most efficient production of the world's food supply. With the changes that have taken place in animal agriculture over the past generation the application of sex preselection to production systems becomes increasingly necessary. The current technology is based on the well-known difference in X- and Y-sperm in the amount of DNA present. The method has been validated on the basis of live births, laboratory reanalysis of sorted sperm for DNA content and embryo biopsy for sex determination. The technology incorporates modified flow cytometric sorting instrumentation to sort X- and Y-bearing sperm. Resulting populations of X or Y sperm can be used in conjunction with IVF in swine and in cattle for the production of sexed embryos to be transferred to eligible recipients for the duration of gestation. It can also be used for intratubal insemination and for deep-uterine and conventional insemination in cattle. This semipractical sexing method, though currently impractical for some production systems (where large numbers of sperm are required for fertilization) could be used to provide a more flexible progeny-producing option in many livestock operations. Improvements in the production rate of sexed sperm continue as new technology is developed. High-speed sorting is one of the newer technological advances and is being used in our laboratory to increase sorted sperm throughput. With our original technology we sorted 350,000 sperm/h. We now sort 6 million of each sex, under routine conditions. Sorting only the X population results in about 18 million sperm/h. Improvements in the technology will no doubt lead to much greater usage of sexed sperm, depending on the species involved. Insemination of lower sperm numbers in cattle has proven to be an effective means of utilizing the sexing technology. Solving the problems associated with inseminating low sperm numbers in the pig would be advantageous to the utilization of sexed sperm for some type of deep artificial insemination. Such a development would also enhance the economy of using lower sperm numbers with conventional artificial insemination (AI) and aid the swine industry worldwide. The use of sexed sperm for non-ordinary applications such as endangered species, laboratory animals, hobby or pet species is also of interest and will become a part of the move to be more reproductively efficient in the next millennium. Sexed sperm on demand over the next several years will provide livestock producers with many options in seeking to improve efficiency of production and improve quality of products to enhance consumer acceptability.
Modelling cell population growth with applications to cancer therapy in human tumour cell lines.
Basse, Britta; Baguley, Bruce C; Marshall, Elaine S; Wake, Graeme C; Wall, David J N
2004-01-01
In this paper we present an overview of the work undertaken to model a population of cells and the effects of cancer therapy. We began with a theoretical one compartment size structured cell population model and investigated its asymptotic steady size distributions (SSDs) (On a cell growth model for plankton, MMB JIMA 21 (2004) 49). However these size distributions are not similar to the DNA (size) distributions obtained experimentally via the flow cytometric analysis of human tumour cell lines (data obtained from the Auckland Cancer Society Research Centre, New Zealand). In our one compartment model, size was a generic term, but in order to obtain realistic steady size distributions we chose size to be DNA content and devised a multi-compartment mathematical model for the cell division cycle where each compartment corresponds to a distinct phase of the cell cycle (J. Math. Biol. 47 (2003) 295). We then incorporated another compartment describing the possible induction of apoptosis (cell death) from mitosis phase (Modelling cell death in human tumour cell lines exposed to anticancer drug paclitaxel, J. Math. Biol. 2004, in press). This enabled us to compare our model to flow cytometric data of a melanoma cell line where the anticancer drug, paclitaxel, had been added. The model gives a dynamic picture of the effects of paclitaxel on the cell cycle. We hope to use the model to describe the effects of other cancer therapies on a number of different cell lines. Copyright 2004 Elsevier Ltd.
A monolithic glass chip for active single-cell sorting based on mechanical phenotyping.
Faigle, Christoph; Lautenschläger, Franziska; Whyte, Graeme; Homewood, Philip; Martín-Badosa, Estela; Guck, Jochen
2015-03-07
The mechanical properties of biological cells have long been considered as inherent markers of biological function and disease. However, the screening and active sorting of heterogeneous populations based on serial single-cell mechanical measurements has not been demonstrated. Here we present a novel monolithic glass chip for combined fluorescence detection and mechanical phenotyping using an optical stretcher. A new design and manufacturing process, involving the bonding of two asymmetrically etched glass plates, combines exact optical fiber alignment, low laser damage threshold and high imaging quality with the possibility of several microfluidic inlet and outlet channels. We show the utility of such a custom-built optical stretcher glass chip by measuring and sorting single cells in a heterogeneous population based on their different mechanical properties and verify sorting accuracy by simultaneous fluorescence detection. This offers new possibilities of exact characterization and sorting of small populations based on rheological properties for biological and biomedical applications.
Elliott, Thomas S.; Townsley, Fiona M.; Bianco, Ambra; Ernst, Russell J.; Sachdeva, Amit; Elsässer, Simon J.; Davis, Lloyd; Lang, Kathrin; Pisa, Rudolf; Greiss, Sebastian.; Lilley, Kathryn S.; Chin, Jason W.
2014-01-01
Identifying the proteins synthesized in defined cells at specific times in an animal will facilitate the study of cellular functions and dynamic processes. Here we introduce stochastic orthogonal recoding of translation with chemoselective modification (SORT-M) to address this challenge. SORT-M involves modifying cells to express an orthogonal aminoacyl-tRNA synthetase/tRNA pair to enable the incorporation of chemically modifiable analogs of amino acids at diverse sense codons in cells in rich media. We apply SORT-M to Drosophila melanogaster fed standard food to label and image proteins in specific tissues at precise developmental stages with diverse chemistries, including cyclopropene-tetrazine inverse electron demand Diels-Alder cycloaddition reactions. We also use SORT-M to identify proteins synthesized in germ cells of the fly ovary without dissection. SORT-M will facilitate the definition of proteins synthesized in specific sets of cells to study development, and learning and memory in flies, and may be extended to other animals. PMID:24727715
Raman tweezers in microfluidic systems for analysis and sorting of living cells
NASA Astrophysics Data System (ADS)
Pilát, Zdeněk.; Ježek, Jan; Kaňka, Jan; Zemánek, Pavel
2014-12-01
We have devised an analytical and sorting system combining optical trapping with Raman spectroscopy in microfluidic environment, dedicated to identification and sorting of biological objects, such as living cells of various unicellular organisms. Our main goal was to create a robust and universal platform for non-destructive and non-contact sorting of micro-objects based on their Raman spectral properties. This approach allowed us to collect spectra containing information about the chemical composition of the objects, such as the presence and composition of pigments, lipids, proteins, or nucleic acids, avoiding artificial chemical probes such as fluorescent markers. The non-destructive nature of this optical analysis and manipulation allowed us to separate individual living cells of our interest in a sterile environment and provided the possibility to cultivate the selected cells for further experiments. We used a mixture of polystyrene micro-particles and algal cells to test and demonstrate the function of our analytical and sorting system. The devised system could find its use in many medical, biotechnological, and biological applications.
Raman tweezers in microfluidic systems for analysis and sorting of living cells
NASA Astrophysics Data System (ADS)
Pilát, Zdenëk; Ježek, Jan; Kaňka, Jan; Zemánek, Pavel
2014-03-01
We have devised an analytical and sorting system combining optical trapping with Raman spectroscopy in microfluidic environment in order to identify and sort biological objects, such as living cells of various prokaryotic and eukaryotic organisms. Our main objective was to create a robust and universal platform for non-contact sorting of microobjects based on their Raman spectral properties. This approach allowed us to collect information about the chemical composition of the objects, such as the presence and composition of lipids, proteins, or nucleic acids without using artificial chemical probes such as fluorescent markers. The non-destructive and non-contact nature of this optical analysis and manipulation allowed us to separate individual living cells of our interest in a sterile environment and provided the possibility to cultivate the selected cells for further experiments. We used differently treated cells of algae to test and demonstrate the function of our analytical and sorting system. The devised system could find its use in many medical, biotechnological, and biological applications.
Flow cytometric evaluation of physico-chemical impact on Gram-positive and Gram-negative bacteria
Fröhling, Antje; Schlüter, Oliver
2015-01-01
Since heat sensitivity of fruits and vegetables limits the application of thermal inactivation processes, new emerging inactivation technologies have to be established to fulfill the requirements of food safety without affecting the produce quality. The efficiency of inactivation treatments has to be ensured and monitored. Monitoring of inactivation effects is commonly performed using traditional cultivation methods which have the disadvantage of the time span needed to obtain results. The aim of this study was to compare the inactivation effects of peracetic acid (PAA), ozonated water (O3), and cold atmospheric pressure plasma (CAPP) on Gram-positive and Gram-negative bacteria using flow cytometric methods. E. coli cells were completely depolarized after treatment (15 s) with 0.25% PAA at 10°C, and after treatment (10 s) with 3.8 mg l−1 O3 at 12°C. The membrane potential of CAPP treated cells remained almost constant at an operating power of 20 W over a time period of 3 min, and subsequently decreased within 30 s of further treatment. Complete membrane permeabilization was observed after 10 s O3 treatment, but treatment with PAA and CAPP did not completely permeabilize the cells within 2 and 4 min, respectively. Similar results were obtained for esterase activity. O3 inactivates cellular esterase but esterase activity was detected after 4 min CAPP treatment and 2 min PAA treatment. L. innocua cells and P. carotovorum cells were also permeabilized instantaneously by O3 treatment at concentrations of 3.8 ± 1 mg l−1. However, higher membrane permeabilization of L. innocua and P. carotovorum than of E. coli was observed at CAPP treatment of 20 W. The degree of bacterial damage due to the inactivation processes is highly dependent on treatment parameters as well as on treated bacteria. Important information regarding the inactivation mechanisms can be obtained by flow cytometric measurements and this enables the definition of critical process parameters. PMID:26441874
Fluorescence-Activated Cell Sorting of Live Versus Dead Bacterial Cells and Spores
NASA Technical Reports Server (NTRS)
Bernardini, James N.; LaDuc, Myron T.; Diamond, Rochelle; Verceles, Josh
2012-01-01
This innovation is a coupled fluorescence-activated cell sorting (FACS) and fluorescent staining technology for purifying (removing cells from sampling matrices), separating (based on size, density, morphology, and live versus dead), and concentrating cells (spores, prokaryotic, eukaryotic) from an environmental sample.
Chemo Resistance of Breast Cancer Stem Cells
2006-05-01
for stem cell markers , including CD44+ CD24- lin- by flow cytometry following chemotherapy residual tumor is assayed. As shown in Figure 3 below...the tumor and thus may contribute to relapse following therapy. This was to be accomplished by utilizing mouse xenograft models as well as markers ...limitation of utilizing these markers is that they are not suitable for immunochemical detection of tumor stem cells since they require flow cytometric
Anti-Idiotype Probes for Toxin Detection.
1994-11-08
Immunol. 133:187-195. 2. Fleming, S.D., L.S. Edelman and S.K. Chapes. 1991. Effects of corticosterone and microgravity on inflammatory cell ...Leuk. Biol. 44:551-558. Stevenson, J., J. Kreiling, and R. Taylor. 1989. Effects of corticosterone on responses of murine splenic B and T cells to...cytometric analysis of bone marrow cell ysis indicates that corticosterone is not responsible for subpopulations the differential effects of antiorthostatic
The cytometric future: it ain't necessarily flow!
Shapiro, Howard M
2011-01-01
Initial approaches to cytometry for classifying and characterizing cells were based on microscopy; it was necessary to collect relatively high-resolution images of cells because only a few specific reagents usable for cell identification were available. Although flow cytometry, now the dominant cytometric technology, typically utilizes lenses similar to microscope lenses for light collection, improved, more quantitative reagents allow the necessary information to be acquired in the form of whole-cell measurements of the intensities of light transmission, scattering, and/or fluorescence.Much of the cost and complexity of both automated microscopes and flow cytometers arises from the necessity for them to measure one cell at a time. Recent developments in digital camera technology now offer an alternative in which one or more low-magnification, low-resolution images are made of a wide field containing many cells, using inexpensive light-emitting diodes (LEDs) for illumination. Minimalist widefield imaging cytometers can provide a smaller, less complex, and substantially less expensive alternative to flow cytometry, critical in systems intended for in resource-poor areas. Minimalism is, likewise, a good philosophy in developing instrumentation and methodology for both clinical and large-scale research use; it simplifies quality assurance and compliance with regulatory requirements, as well as reduces capital outlays, material costs, and personnel training requirements. Also, importantly, it yields "greener" technology.
Analysis of synthetic and biological microparticles on several flow cytometric platforms***
Biological microparticles (MPs) are potentially important biomarkers for thrombosis, cancer, glomerulonephritis and other disease states. These MPs are generally accepted to be membrane vesicles extruded following cellular activation. While human blood cells range from 10-15 micr...
Lipardi, Concetta; Mora, Rosalia; Colomer, Veronica; Paladino, Simona; Nitsch, Lucio; Rodriguez-Boulan, Enrique; Zurzolo, Chiara
1998-01-01
Most epithelial cells sort glycosylphosphatidylinositol (GPI)-anchored proteins to the apical surface. The “raft” hypothesis, based on data mainly obtained in the prototype cell line MDCK, postulates that apical sorting depends on the incorporation of apical proteins into cholesterol/glycosphingolipid (GSL) rafts, rich in the cholesterol binding protein caveolin/VIP21, in the Golgi apparatus. Fischer rat thyroid (FRT) cells constitute an ideal model to test this hypothesis, since they missort both endogenous and transfected GPI- anchored proteins to the basolateral plasma membrane and fail to incorporate them into cholesterol/glycosphingolipid clusters. Because FRT cells lack caveolin, a major component of the caveolar coat that has been proposed to have a role in apical sorting of GPI- anchored proteins (Zurzolo, C., W. Van't Hoff, G. van Meer, and E. Rodriguez-Boulan. 1994. EMBO [Eur. Mol. Biol. Organ.] J. 13:42–53.), we carried out experiments to determine whether the lack of caveolin accounted for the sorting/clustering defect of GPI- anchored proteins. We report here that FRT cells lack morphological caveolae, but, upon stable transfection of the caveolin1 gene (cav1), form typical flask-shaped caveolae. However, cav1 expression did not redistribute GPI-anchored proteins to the apical surface, nor promote their inclusion into cholesterol/GSL rafts. Our results demonstrate that the absence of caveolin1 and morphologically identifiable caveolae cannot explain the inability of FRT cells to sort GPI-anchored proteins to the apical domain. Thus, FRT cells may lack additional factors required for apical sorting or for the clustering with GSLs of GPI-anchored proteins, or express factors that inhibit these events. Alternatively, cav1 and caveolae may not be directly involved in these processes. PMID:9456321
Shulman, Nick; Bellew, Matthew; Snelling, George; Carter, Donald; Huang, Yunda; Li, Hongli; Self, Steven G.; McElrath, M. Juliana; De Rosa, Stephen C.
2008-01-01
Background Intracellular cytokine staining (ICS) by multiparameter flow cytometry is one of the primary methods for determining T cell immunogenicity in HIV-1 clinical vaccine trials. Data analysis requires considerable expertise and time. The amount of data is quickly increasing as more and larger trials are performed, and thus there is a critical need for high throughput methods of data analysis. Methods A web based flow cytometric analysis system, LabKey Flow, was developed for analyses of data from standardized ICS assays. A gating template was created manually in commercially-available flow cytometric analysis software. Using this template, the system automatically compensated and analyzed all data sets. Quality control queries were designed to identify potentially incorrect sample collections. Results Comparison of the semi-automated analysis performed by LabKey Flow and the manual analysis performed using FlowJo software demonstrated excellent concordance (concordance correlation coefficient >0.990). Manual inspection of the analyses performed by LabKey Flow for 8-color ICS data files from several clinical vaccine trials indicates that template gates can appropriately be used for most data sets. Conclusions The semi-automated LabKey Flow analysis system can analyze accurately large ICS data files. Routine use of the system does not require specialized expertise. This high-throughput analysis will provide great utility for rapid evaluation of complex multiparameter flow cytometric measurements collected from large clinical trials. PMID:18615598
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolbeare, F.A.; Phares, W.
1979-01-01
Conditions for the biochemical and flow cytometric assay of 7-bromo-3-hydroxy-2-naphtho-o-anisidine phosphatase and ..beta..-D-glucuronidase activities in Chinese hamster ovary cells were studied. In the biochemical assays, the pH optimum for the phosphatase activity was pH 4.6 with a Km of 10/sup -5/ M; the pH optimum for ..beta..-D-glucuronidase activity was pH 5.0 with a Km of 2 x 10/sup -5/ M. For intact cells the derived constants were 3 to 10 times higher. The rate of hydrolysis of both substrates was also examined by flow cytometry. Cellular fluorescence increased linearly for only about 15 min. Diffusion of the fluorescent product probablymore » caused nonlinearity of the fluorescence increase and was demonstrated by mixing cells incubated with substrate with those that had not been incubated. After 15 min, cells that had not been exposed previously to product or substrate contained the fluorescent product. Cells fractionated into size classes by centrifugal elutriation also were analyzed by flow cytometry for ..beta..-D-glucuronidase activity. The activity increased linearly with the increase in cell size corresponding to the progression from G/sub 1/ through S and into G/sub 2/-M phases of the cell cycle.« less
NASA Astrophysics Data System (ADS)
Bose, S.; Singh, R.; Hollatz, M. H.; Lee, C.-H.; Karp, J.; Karnik, R.
2012-02-01
Cell sorting serves an important role in clinical diagnosis and biological research. Most of the existing microscale sorting techniques are either non-specific to antigen type or rely on capturing cells making sample recovery difficult. We demonstrate a simple; yet effective technique for isolating cells in an antigen specific manner by using transient interactions of the cell surface antigens with asymmetric receptor patterned surface. Using microfluidic devices incorporating P-selectin patterns we demonstrate separation of HL60 cells from K562 cells. We achieved a sorting purity above 90% and efficiency greater than 85% with this system. We also present a mathematical model incorporating flow mediated and adhesion mediated transport of cells in the microchannel that can be used to predict the performance of these devices. Lastly, we demonstrate the clinical significance of the method by demonstrating single step separation of neutrophils from whole blood. When whole blood is introduced in the device, the granulocyte population gets separated exclusively yielding neutrophils of high purity (<10% RBC contamination). To our knowledge, this is the first ever demonstration of continuous label free sorting of neutrophils from whole blood. We believe this technology will be useful in developing point-of-care diagnostic devices and also for a host of cell sorting applications.
IB-LBM simulation on blood cell sorting with a micro-fence structure.
Wei, Qiang; Xu, Yuan-Qing; Tian, Fang-bao; Gao, Tian-xin; Tang, Xiao-ying; Zu, Wen-Hong
2014-01-01
A size-based blood cell sorting model with a micro-fence structure is proposed in the frame of immersed boundary and lattice Boltzmann method (IB-LBM). The fluid dynamics is obtained by solving the discrete lattice Boltzmann equation, and the cells motion and deformation are handled by the immersed boundary method. A micro-fence consists of two parallel slope post rows which are adopted to separate red blood cells (RBCs) from white blood cells (WBCs), in which the cells to be separated are transported one after another by the flow into the passageway between the two post rows. Effected by the cross flow, RBCs are schemed to get through the pores of the nether post row since they are smaller and more deformable compared with WBCs. WBCs are required to move along the nether post row till they get out the micro-fence. Simulation results indicate that for a fix width of pores, the slope angle of the post row plays an important role in cell sorting. The cells mixture can not be separated properly in a small slope angle, while obvious blockages by WBCs will take place to disturb the continuous cell sorting in a big slope angle. As an optimal result, an adaptive slope angle is found to sort RBCs form WBCs correctly and continuously.
Dielectrophoretic focusing integrated pulsed laser activated cell sorting
NASA Astrophysics Data System (ADS)
Zhu, Xiongfeng; Kung, Yu-Chun; Wu, Ting-Hsiang; Teitell, Michael A.; Chiou, Pei-Yu
2017-08-01
We present a pulsed laser activated cell sorter (PLACS) integrated with novel sheathless size-independent dielectrophoretic (DEP) focusing. Microfluidic fluorescence activated cell sorting (μFACS) systems aim to provide a fully enclosed environment for sterile cell sorting and integration with upstream and downstream microfluidic modules. Among them, PLACS has shown a great potential in achieving comparable performance to commercial aerosol-based FACS (>90% purity at 25,000 cells sec-1). However conventional sheath flow focusing method suffers a severe sample dilution issue. Here we demonstrate a novel dielectrophoresis-integrated pulsed laser activated cell sorter (DEP-PLACS). It consists of a microfluidic channel with 3D electrodes laid out to provide a tunnel-shaped electric field profile along a 4cmlong channel for sheathlessly focusing microparticles/cells into a single stream in high-speed microfluidic flows. All focused particles pass through the fluorescence detection zone along the same streamline regardless of their sizes and types. Upon detection of target fluorescent particles, a nanosecond laser pulse is triggered and focused in a neighboring channel to generate a rapidly expanding cavitation bubble for precise sorting. DEP-PLACS has achieved a sorting purity of 91% for polystyrene beads at a throughput of 1,500 particle/sec.
NASA Astrophysics Data System (ADS)
Zordan, M. D.; Leary, James F.
2011-02-01
The clonal isolation of rare cells, especially cancer and stem cells, in a population is important to the development of improved medical treatment. We have demonstrated that the Laser-Enabled Analysis and Processing (LEAP, Cyntellect Inc., San Diego, CA) instrument can be used to efficiently produce single cell clones by photoablative dilution. Additionally, we have also shown that cells present at low frequencies can be cloned by photoablative dilution after they are pre-enriched by flow cytometry based cell sorting. Circulating tumor cells were modeled by spiking isolated peripheral blood cells with cells from the lung carcinoma cell line A549. Flow cytometry based cell sorting was used to perform an enrichment sort of A549 cells directly into a 384 well plate. Photoablative dilution was performed with the LEAPTM instrument to remove any contaminating cells, and clonally isolate 1 side population cell per well. We were able to isolate and grow single clones of side population cells using this method at greater than 90% efficiency. We have developed a 2 step method that is able to perform the clonal isolation of rare cells based on a medically relevant functional phenotype.
Flow Cytometric Analysis of Presynaptic Nerve Terminals Isolated from Rats Subjected to Hypergravity
NASA Astrophysics Data System (ADS)
Borisova, Tatiana
2008-06-01
Flow cytometric studies revealed an insignificant decrease in cell size heterogeneity and cytoplasmic granularity of rat brain nerve terminals (synaptosomes) isolated from animals subjected to centrifuge-induced hypergravity as compared to control ones. The analysis of plasma membrane potential using the potentiometric optical dye rhodamine 6G showed a decrease in fluorescence intensity by 10 % at steady state level in hypergravity synaptosomes. To monitor synaptic vesicle acidification we used pH-sensitive fluorescent dye acridine orange and demonstrated a lower fluorescence intensity level at steady state (10%) after hypergravity as compared to controls. Thus, exposure to hypergravity resulted in depolarization of the synaptosomal plasma membrane and diminution in synaptic vesicle acidification that may be a cause leading to altered synaptic neurotransmission.
Jenkins, J A; Draugelis-Dale, R O; Pinkney, A E; Iwanowicz, L R; Blazer, V S
2015-03-15
Declining harvests of yellow perch, Perca flavescens, in urbanized watersheds of Chesapeake Bay have prompted investigations of their reproductive fitness. The purpose of this study was to establish a flow cytometric technique for DNA analysis of fixed samples sent from the field to provide reliable gamete quality measurements. Similar to the sperm chromatin structure assay, measures were made on the susceptibility of nuclear DNA to acid-induced denaturation, but used fixed rather than live or thawed cells. Nuclei were best exposed to the acid treatment for 1 minute at 37 °C followed by the addition of cold (4 °C) propidium iodide staining solution before flow cytometry. The rationale for protocol development is presented graphically through cytograms. Field results collected in 2008 and 2009 revealed DNA fragmentation up to 14.5%. In 2008, DNA fragmentation from the more urbanized watersheds was significantly greater than from reference sites (P = 0.026) and in 2009, higher percentages of haploid testicular cells were noted from the less urbanized watersheds (P = 0.032) indicating better reproductive condition at sites with less urbanization. For both years, total and progressive live sperm motilities by computer-assisted sperm motion analysis ranged from 19.1% to 76.5%, being significantly higher at the less urbanized sites (P < 0.05). This flow cytometric method takes advantage of the propensity of fragmented DNA to be denatured under standard conditions, or 1 minute at 37 °C with 10% buffered formalin-fixed cells. The study of fixed sperm makes possible the restrospective investigation of germplasm fragmentation, spermatogenic ploidy patterns, and chromatin compaction levels from samples translocated over distance and time. The protocol provides an approach that can be modified for other species across taxa. Published by Elsevier Inc.
Jenkins, Jill A.; Draugelis-Dale, Rassa O.; Pinkney, Alfred E.; Iwanowicz, Luke R.; Blazer, Vicki
2015-01-01
Declining harvests of yellow perch, Perca flavescens, in urbanized watersheds of Chesapeake Bay have prompted investigations of their reproductive fitness. The purpose of this study was to establish a flow cytometric technique for DNA analysis of fixed samples sent from the field to provide reliable gamete quality measurements. Similar to the sperm chromatin structure assay, measures were made on the susceptibility of nuclear DNA to acid-induced denaturation, but used fixed rather than live or thawed cells. Nuclei were best exposed to the acid treatment for 1 minute at 37 °C followed by the addition of cold (4 °C) propidium iodide staining solution before flow cytometry. The rationale for protocol development is presented graphically through cytograms. Field results collected in 2008 and 2009 revealed DNA fragmentation up to 14.5%. In 2008, DNA fragmentation from the more urbanized watersheds was significantly greater than from reference sites (P = 0.026) and in 2009, higher percentages of haploid testicular cells were noted from the less urbanized watersheds (P = 0.032) indicating better reproductive condition at sites with less urbanization. For both years, total and progressive live sperm motilities by computer-assisted sperm motion analysis ranged from 19.1% to 76.5%, being significantly higher at the less urbanized sites (P < 0.05). This flow cytometric method takes advantage of the propensity of fragmented DNA to be denatured under standard conditions, or 1 minute at 37 °C with 10% buffered formalin–fixed cells. The study of fixed sperm makes possible the restrospective investigation of germplasm fragmentation, spermatogenic ploidy patterns, and chromatin compaction levels from samples translocated over distance and time. The protocol provides an approach that can be modified for other species across taxa.
Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter†‡
Wu, Ting-Hsiang; Chen, Yue; Park, Sung-Yong; Hong, Jason; Teslaa, Tara; Zhong, Jiang F.; Di Carlo, Dino; Teitell, Michael A.
2014-01-01
We report a high speed and high purity pulsed laser triggered fluorescence activated cell sorter (PLACS) with a sorting throughput up to 20 000 mammalian cells s−1 with 37% sorting purity, 90% cell viability in enrichment mode, and >90% purity in high purity mode at 1500 cells s−1 or 3000 beads s−1. Fast switching (30 μs) and a small perturbation volume (~90 pL) is achieved by a unique sorting mechanism in which explosive vapor bubbles are generated using focused laser pulses in a single layer microfluidic PDMS channel. PMID:22361780
Domínguez-Catzín, Victoria; Reveles-Espinoza, Alicia-María; Sánchez-Ramos, Janet; Cruz-Cadena, Raúl; Lemus-Hernández, Diana; Garrido, Efraín
2017-04-03
Cervical cancer is the fourth cause of death worldwide by cancer in women and is a disease associated to persistent infection with human papillomavirus (HPV), particularly from two high-risk types HPV16 and 18. The virus initiates its replicative cycle infecting cells located in the basal layer of the epithelium, where a small population of epithelial stem cells is located performing important functions of renewal and maintenance of the tissue. Viral E2 gene is one of the first expressed after infection and plays relevant roles in the replicative cycle of the virus, modifying fundamental processes in the infected cells. Thus, the aim of the present study was to demonstrate the presence of hierarchic subpopulations in HaCaT cell line and evaluate the effect of HPV16-E2 expression, on their biological processes. HaCaT-HPV16-E2 cells were generated by transduction of HaCaT cell line with a lentiviral vector. The α6-integrin-CD71 expression profile was established by immunostaining and flow cytometric analysis. After sorting, cell subpopulations were analyzed in biological assays for self-renewal, clonogenicity and expression of stemness factors (RT-qPCR). We identified in HaCaT cell line three different subpopulations that correspond to early differentiated cells (α6-integrin dim ), transitory amplifying cells (α6-integrin bri /CD71 bri ) and progenitor cells (α6-integrin bri /CD71 dim ). The last subpopulation showed stem cell characteristics, such as self-renewal ability, clonogenicity and expression of the well-known stem cell factors SOX2, OCT4 and NANOG, suggesting they are stem-like cells. Interestingly, the expression of HPV16-E2 in HaCaT cells changed its α6-integrin-CD71 immunophenotype modifying the relative abundance of the cell subpopulations, reducing significantly the percentage of α6-integrin bri /CD71 dim cells. Moreover, the expression of the stem cell markers was also modified, increasing the expression of SOX2 and NANOG, but decreasing notably the expression of OCT4. Our data demonstrated the presence of a small subpopulation with epithelial "progenitor cells" characteristics in the HaCaT cell line, and that HPV16-E2 expression on these cells induces early differentiation.
Józwa, Wojciech; Czaczyk, Katarzyna
2012-04-02
Flow cytometry constitutes an alternative for traditional methods of microorganisms identification and analysis, including methods requiring cultivation step. It enables the detection of pathogens and other microorganisms contaminants without the need to culture microbial cells meaning that the sample (water, waste or food e.g. milk, wine, beer) may be analysed directly. This leads to a significant reduction of time required for analysis allowing monitoring of production processes and immediate reaction in case of contamination or any disruption occurs. Apart from the analysis of raw materials or products on different stages of manufacturing process, the flow cytometry seems to constitute an ideal tool for the assessment of microbial contamination on the surface of technological lines. In the present work samples comprising smears from 3 different surfaces of technological lines from fruit and vegetable processing company from Greater Poland were analysed directly with flow cytometer. The measured parameters were forward and side scatter of laser light signals allowing the estimation of microbial cell contents in each sample. Flow cytometric analysis of the surface of food industry production lines enable the preliminary evaluation of microbial contamination within few minutes from the moment of sample arrival without the need of sample pretreatment. The presented method of fl ow cytometric initial evaluation of microbial state of food industry technological lines demonstrated its potential for developing a robust, routine method for the rapid and labor-saving detection of microbial contamination in food industry.
Pulsed laser activated cell sorter (PLACS) for high-throughput fluorescent mammalian cell sorting
NASA Astrophysics Data System (ADS)
Chen, Yue; Wu, Ting-Hsiang; Chung, Aram; Kung, Yu-Chung; Teitell, Michael A.; Di Carlo, Dino; Chiou, Pei-Yu
2014-09-01
We present a Pulsed Laser Activated Cell Sorter (PLACS) realized by exciting laser induced cavitation bubbles in a PDMS microfluidic channel to create high speed liquid jets to deflect detected fluorescent samples for high speed sorting. Pulse laser triggered cavitation bubbles can expand in few microseconds and provide a pressure higher than tens of MPa for fluid perturbation near the focused spot. This ultrafast switching mechanism has a complete on-off cycle less than 20 μsec. Two approaches have been utilized to achieve 3D sample focusing in PLACS. One is relying on multilayer PDMS channels to provide 3D hydrodynamic sheath flows. It offers accurate timing control of fast (2 m sec-1) passing particles so that synchronization with laser bubble excitation is possible, an critically important factor for high purity and high throughput sorting. PLACS with 3D hydrodynamic focusing is capable of sorting at 11,000 cells/sec with >95% purity, and 45,000 cells/sec with 45% purity using a single channel in a single step. We have also demonstrated 3D focusing using inertial flows in PLACS. This sheathless focusing approach requires 10 times lower initial cell concentration than that in sheath-based focusing and avoids severe sample dilution from high volume sheath flows. Inertia PLACS is capable of sorting at 10,000 particles sec-1 with >90% sort purity.
Separation of neural stem cells by whole cell membrane capacitance using dielectrophoresis.
Adams, Tayloria N G; Jiang, Alan Y L; Vyas, Prema D; Flanagan, Lisa A
2018-01-15
Whole cell membrane capacitance is an electrophysiological property of the plasma membrane that serves as a biomarker for stem cell fate potential. Neural stem and progenitor cells (NSPCs) that differ in ability to form neurons or astrocytes are distinguished by membrane capacitance measured by dielectrophoresis (DEP). Differences in membrane capacitance are sufficient to enable the enrichment of neuron- or astrocyte-forming cells by DEP, showing the separation of stem cells on the basis of fate potential by membrane capacitance. NSPCs sorted by DEP need not be labeled and do not experience toxic effects from the sorting procedure. Other stem cell populations also display shifts in membrane capacitance as cells differentiate to a particular fate, clarifying the value of sorting a variety of stem cell types by capacitance. Here, we describe methods developed by our lab for separating NSPCs on the basis of capacitance using several types of DEP microfluidic devices, providing basic information on the sorting procedure as well as specific advantages and disadvantages of each device. Copyright © 2017 Elsevier Inc. All rights reserved.
Yim, Sung Sun; Bang, Hyun Bae; Kim, Young Hwan; Lee, Yong Jae; Jeong, Gu Min; Jeong, Ki Jun
2014-01-01
Antibodies and their derivatives are the most important agents in therapeutics and diagnostics. Even after the significant progress in the technology for antibody screening from huge libraries, it takes a long time to isolate an antibody, which prevents a prompt action against the spread of a disease. Here, we report a new strategy for isolating desired antibodies from a combinatorial library in one day by repeated fluorescence-activated cell sorting (FACS). First, we constructed a library of synthetic human antibody in which single-chain variable fragment (scFv) was expressed in the periplasm of Escherichia coli. After labeling the cells with fluorescent antigen probes, the highly fluorescent cells were sorted by using a high-speed cell sorter, and these cells were reused without regeneration in the next round of sorting. After repeating this sorting, the positive clones were completely enriched in several hours. Thus, we screened the library against three viral antigens, including the H1N1 influenza virus, Hepatitis B virus, and Foot-and-mouth disease virus. Finally, the potential antibody candidates, which show KD values between 10 and 100 nM against the target antigens, could be successfully isolated even though the library was relatively small (∼106). These results show that repeated FACS screening without regeneration of the sorted cells can be a powerful method when a rapid response to a spreading disease is required. PMID:25303314
Multivariate data analysis methods for the interpretation of microbial flow cytometric data.
Davey, Hazel M; Davey, Christopher L
2011-01-01
Flow cytometry is an important technique in cell biology and immunology and has been applied by many groups to the analysis of microorganisms. This has been made possible by developments in hardware that is now sensitive enough to be used routinely for analysis of microbes. However, in contrast to advances in the technology that underpin flow cytometry, there has not been concomitant progress in the software tools required to analyse, display and disseminate the data and manual analysis, of individual samples remains a limiting aspect of the technology. We present two new data sets that illustrate common applications of flow cytometry in microbiology and demonstrate the application of manual data analysis, automated visualisation (including the first description of a new piece of software we are developing to facilitate this), genetic programming, principal components analysis and artificial neural nets to these data. The data analysis methods described here are equally applicable to flow cytometric applications with other cell types.
Zhou, Xiao-liang; Shi, Pei-ji; Wang, Hao
2011-01-01
To prepare RGD4CβL fusion protein using prokaryotic expression system and evaluate the biological activity of the RGD4CβL. RGD4CβL gene was cloned into pColdII to contruct β-Lactamase prokaryotic expression vector. After transformation, the recombinant vector was induced to express recombinant protein RGD4CβL by IPTG in E.coli BL(DE3). The recombinant protein was purified by Ni-NTA resin under denaturing condition and then dialyzed to renature. The tumor cell targeting ability of the recombinant protein was analyzed by flow cytometric analysis. After cleavage and purification, β-Lactamase moiety showed the expected size of 42 000 on Tricine-SDS-PAGE, and was further confirmed by Western blotting. Based on flow cytometric analysis, the purified protein specially targeted breast cancer cell line MCF-7. This research successfully estiblished a method for prokaryotic expression and purification of β-lactamase. These results suggest the potential use of the protein as an agent for ADEPT.
Liu, Kuo-Ching; Shih, Ting-Ying; Kuo, Chao-Lin; Ma, Yi-Shih; Yang, Jiun-Long; Wu, Ping-Ping; Huang, Yi-Ping; Lai, Kuang-Chi; Chung, Jing-Gung
2016-01-01
Sulforaphane (SFN), an isothiocyanate, exists exclusively in cruciferous vegetables, and has been shown to possess potent antitumor and chemopreventive activity. However, there is no available information that shows SFN affecting human colon cancer HCT 116 cells. In the present study, we found that SFN induced cell morphological changes, which were photographed by contrast-phase microscopy, and decreased viability. SFN also induced G2/M phase arrest and cell apoptosis in HCT 116 cells, which were measured with flow cytometric assays. Western blotting indicated that SFN increased Cyclin A, cdk 2, Cyclin B and WEE1, but decreased Cdc 25C, cdk1 protein expressions that led to G2/M phase arrest. Apoptotic cell death was also confirmed by Annexin V/PI and DAPI staining and DNA gel electrophoresis in HCT 116 cells after exposure to SFN. The flow cytometric assay also showed that SFN induced the generation of reactive oxygen species (ROS) and Ca[Formula: see text] and decreased mitochondria membrane potential and increased caspase-8, -9 and -3 activities in HCT 116 cell. Western blotting also showed that SFN induced the release of cytochrome c, and AIF, which was confirmed by confocal microscopy examination. SFN induced ER stress-associated protein expression. Based on those observations, we suggest that SFN may be used as a novel anticancer agent for the treatment of human colon cancer in the future.
Jacques, Nathalie; Vimond, Nadege; Conforti, Rosa; Griscelli, Franck; Lecluse, Yann; Laplanche, Agnes; Malka, David; Vielh, Philippe; Farace, Françoise
2008-09-15
Circulating endothelial cells (CEC) are currently proposed as a potential biomarker for measuring the impact of anti-angiogenic treatments in cancer. However, the lack of consensus on the appropriate method of CEC measurement has led to conflicting data in cancer patients. A validated assay adapted for evaluating the clinical utility of CEC in large cohorts of patients undergoing anti-angiogenic treatments is needed. We developed a four-color flow cytometric assay to measure CEC as CD31(+), CD146(+), CD45(-), 7-amino-actinomycin-D (7AAD)(-) events in whole blood. The distinctive features of the assay are: (1) staining of 1 ml whole blood, (2) use of a whole blood IgPE control to measure accurately background noise, (3) accumulation of a large number of events (almost 5 10(6)) to ensure statistical analysis, and (4) use of 10 microm fluorescent microbeads to evaluate the event size. Assay reproducibility was determined in duplicate aliquots of samples drawn from 20 metastatic cancer patients. Assay linearity was tested by spiking whole blood with low numbers of HUVEC. Five-color flow cytometric experiments with CD144 were performed to confirm the endothelial origin of the cells. CEC were measured in 20 healthy individuals and 125 patients with metastatic cancer. Reproducibility was good between duplicate aliquots (r(2)=0.948, mean difference between duplicates of 0.86 CEC/ml). Detected HUVEC correlated with spiked HUVEC (r(2)=0.916, mean recovery of 100.3%). Co-staining of CD31, CD146 and CD144 confirmed the endothelial nature of cells identified as CEC. Median CEC levels were 6.5/ml (range, 0-15) in healthy individuals and 15.0/ml (range, 0-179) in patients with metastatic carcinoma (p<0.001). The assay proposed here allows reproducible and sensitive measurement of CEC by flow cytometry and could help evaluate CEC as biomarkers of anti-angiogenic therapies in large cohorts of patients.
Thompson, Anthony; Nessler, Randy; Wisco, Dolora; Anderson, Eric; Winckler, Bettina
2007-01-01
The plasma membranes of epithelial cells plasma membranes contain distinct apical and basolateral domains that are critical for their polarized functions. However, both domains are continuously internalized, with proteins and lipids from each intermixing in supranuclear recycling endosomes (REs). To maintain polarity, REs must faithfully recycle membrane proteins back to the correct plasma membrane domains. We examined sorting within REs and found that apical and basolateral proteins were laterally segregated into subdomains of individual REs. Subdomains were absent in unpolarized cells and developed along with polarization. Subdomains were formed by an active sorting process within REs, which precedes the formation of AP-1B–dependent basolateral transport vesicles. Both the formation of subdomains and the fidelity of basolateral trafficking were dependent on PI3 kinase activity. This suggests that subdomain and transport vesicle formation occur as separate sorting steps and that both processes may contribute to sorting fidelity. PMID:17494872
Intra-Prostate Cancer Vaccine Inducer
2006-07-01
4 that RNAi technology is possibly a more effective and reliable method to silence expression of a given gene. Therefore, we constructed an Ii...experiments, bone marrow cells were extracted from the femurs of BALB/c mice. Cells were plated at 4x106 cells in 100 mm dishes, in RPMI 1640-medium...permeabilized with saponin in preparation for staining with Ii monoclonal antibodies (data not shown). C1 E1 C2 E2 Figure 3 (C1) represents flow cytometric
1993-01-27
Considerable effect was expended in investigating shifts in intercellular calcium of one particular cell line, Jurket, using flow cytometry methods. No...culture. The following analysis were used to characterize the immortalized cell lines: flow cytometry , electron microscopy, two-dimensional protein gel...further characterized by flow cytometry , electron microscopy, two dimensional protein electrophoresis and nuclear run-off assay. Flow cytometric analysis of
Flow cytometric analysis of cell-surface and intracellular antigens in leukemia diagnosis.
Knapp, W; Strobl, H; Majdic, O
1994-12-15
New technology allows highly sensitive flow cytometric detection and quantitative analysis of intracellular antigens in normal and malignant hemopoietic cells. With this technology, the earliest stages of myeloid and lymphoid differentiation can easily and reliably be identified using antibodies directed against (pro-)myeloperoxidase/MPO, CD22 and CD3 antigens, respectively. Particularly for the analysis of undifferentiated acute myeloblastic leukemia (AML) cells, the immunological demonstration of intracellular MPO or its enzymatically inactive proforms is highly relevant, since other myeloid marker molecules such as CD33, CD13, or CDw65 are either not restricted to the granulomonocytic lineage or appear later in differentiation. By combining MPO staining with staining for lactoferrin (LF), undifferentiated cells can be distinguished from the granulomonocytic maturation compartment in bone marrow, since LF is selectively expressed from the myelocyte stage of differentiation onward. The list of informative intracellular antigens to be used in leukemia cell analysis will certainly expand in the near future. One candidate, intracellular CD68, has already been tested by us, and results are presented. Also dealt within this article are surface marker molecules not (as yet) widely used in leukemia cell analysis but with the potential to provide important additional information. Among them are the surface structures CD15, CD15s, CDw65, CD79a (MB-1), CD79b (B29), CD87 (uPA-R), and CD117 (c-kit).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, Yi-Chao; Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan; Kao, Chien-Yu
Fibroblast growth factor 1 (FGF1) binds and activates FGF receptors, thereby regulating cell proliferation and neurogenesis. Human FGF1 gene 1B promoter (−540 to +31)-driven SV40 T antigen has been shown to result in tumorigenesis in the brains of transgenic mice. FGF1B promoter (−540 to +31)-driven green fluorescent protein (F1BGFP) has also been used in isolating neural stem cells (NSCs) with self-renewal and multipotency from developing and adult mouse brains. In this study, we provide six lines of evidence to demonstrate that FGF1/FGFR signaling is implicated in the expression of Aurora A (AurA) and the activation of its kinase domain (Thr288more » phosphorylation) in the maintenance of glioblastoma (GBM) cells and NSCs. First, treatment of FGF1 increases AurA expression in human GBM cell lines. Second, using fluorescence-activated cell sorting, we observed that F1BGFP reporter facilitates the isolation of F1BGFP(+) GBM cells with higher expression levels of FGFR and AurA. Third, both FGFR inhibitor (SU5402) and AurA inhibitor (VX680) could down-regulate F1BGFP-dependent AurA activity. Fourth, inhibition of AurA activity by two different AurA inhibitors (VX680 and valproic acid) not only reduced neurosphere formation but also induced neuronal differentiation of F1BGFP(+) GBM cells. Fifth, flow cytometric analyses demonstrated that F1BGFP(+) GBM cells possessed different NSC cell surface markers. Finally, inhibition of AurA by VX680 reduced the neurosphere formation of different types of NSCs. Our results show that activation of AurA kinase through FGF1/FGFR signaling axis sustains the stem cell characteristics of GBM cells. Implications: This study identified a novel mechanism for the malignancy of GBM, which could be a potential therapeutic target for GBM. - Highlights: • We report that FGF1 treatment can stimulate AurA kinase expression in human GBM cells. • FGF1/FGFR signaling is involved in the activation of AurA kinase. • FGF1 sustains the self-renewal of human GBM cells and embryonic stem cells via AurA activation.« less
Howard University Flow Cytometric Sorter For Research and Education
2015-08-04
Howard University s newly acquired Fluorescence Activated Cytometric Sorter (FACS) has been integrated into the new flow cytometric core facility...training (i.e. antibody panel setup and sample preparations). In the three months it has been active, six Howard University researchers have used the
Migita, M; Medin, J A; Pawliuk, R; Jacobson, S; Nagle, J W; Anderson, S; Amiri, M; Humphries, R K; Karlsson, S
1995-01-01
The gene transfer efficiency of human hematopoietic stem cells is still inadequate for efficient gene therapy of most disorders. To overcome this problem, a selectable retroviral vector system for gene therapy has been developed for gene therapy of Gaucher disease. We constructed a bicistronic retroviral vector containing the human glucocerebrosidase (GC) cDNA and the human small cell surface antigen CD24 (243 bp). Expression of both cDNAs was controlled by the long terminal repeat enhancer/promoter of the Molony murine leukemia virus. The CD24 selectable marker was placed downstream of the GC cDNA and its translation was enhanced by inclusion of the long 5' untranslated region of encephalomyocarditis virus internal ribosomal entry site. Virus-producing GP+envAM12 cells were created by multiple supernatant transductions to create vector producer cells. The vector LGEC has a high titer and can drive expression of GC and the cell surface antigen CD24 simultaneously in transduced NIH 3T3 cells and Gaucher skin fibroblasts. These transduced cells have been successfully separated from untransduced cells by fluorescence-activated cell sorting, based on cell surface expression of CD24. Transduced and sorted NIH 3T3 cells showed higher GC enzyme activity than the unsorted population, demonstrating coordinated expression of both genes. Fibroblasts from Gaucher patients were transduced and sorted for CD24 expression, and GC enzyme activity was measured. The transduced sorted Gaucher fibroblasts had a marked increase in enzyme activity (149%) compared with virgin Gaucher fibroblasts (17% of normal GC enzyme activity). Efficient transduction of CD34+ hematopoietic progenitors (20-40%) was accomplished and fluorescence-activated cell sorted CD24(+)-expressing progenitors generated colonies, all of which (100%) were vector positive. The sorted, CD24-expressing progenitors generated erythroid burst-forming units, colony-forming units (CFU)-granulocyte, CFU-macrophage, CFU-granulocyte/macrophage, and CFU-mix hematopoietic colonies, demonstrating their ability to differentiate into these myeloid lineages in vitro. The transduced, sorted progenitors raised the GC enzyme levels in their progeny cells manyfold compared with untransduced CD34+ progenitors. Collectively, this demonstrates the development of high titer, selectable bicistronic vectors that allow isolation of transduced hematopoietic progenitors and cells that have been metabolically corrected. Images Fig. 2 Fig. 3 PMID:8618847
Single-cell analysis and sorting using droplet-based microfluidics.
Mazutis, Linas; Gilbert, John; Ung, W Lloyd; Weitz, David A; Griffiths, Andrew D; Heyman, John A
2013-05-01
We present a droplet-based microfluidics protocol for high-throughput analysis and sorting of single cells. Compartmentalization of single cells in droplets enables the analysis of proteins released from or secreted by cells, thereby overcoming one of the major limitations of traditional flow cytometry and fluorescence-activated cell sorting. As an example of this approach, we detail a binding assay for detecting antibodies secreted from single mouse hybridoma cells. Secreted antibodies are detected after only 15 min by co-compartmentalizing single mouse hybridoma cells, a fluorescent probe and single beads coated with anti-mouse IgG antibodies in 50-pl droplets. The beads capture the secreted antibodies and, when the captured antibodies bind to the probe, the fluorescence becomes localized on the beads, generating a clearly distinguishable fluorescence signal that enables droplet sorting at ∼200 Hz as well as cell enrichment. The microfluidic system described is easily adapted for screening other intracellular, cell-surface or secreted proteins and for quantifying catalytic or regulatory activities. In order to screen ∼1 million cells, the microfluidic operations require 2-6 h; the entire process, including preparation of microfluidic devices and mammalian cells, requires 5-7 d.
Single-cell analysis and sorting using droplet-based microfluidics
Mazutis, Linas; Gilbert, John; Ung, W Lloyd; Weitz, David A; Griffiths, Andrew D; Heyman, John A
2014-01-01
We present a droplet-based microfluidics protocol for high-throughput analysis and sorting of single cells. compartmentalization of single cells in droplets enables the analysis of proteins released from or secreted by cells, thereby overcoming one of the major limitations of traditional flow cytometry and fluorescence-activated cell sorting. as an example of this approach, we detail a binding assay for detecting antibodies secreted from single mouse hybridoma cells. secreted antibodies are detected after only 15 min by co-compartmentalizing single mouse hybridoma cells, a fluorescent probe and single beads coated with anti-mouse IgG antibodies in 50-pl droplets. the beads capture the secreted antibodies and, when the captured antibodies bind to the probe, the fluorescence becomes localized on the beads, generating a clearly distinguishable fluorescence signal that enables droplet sorting at ~200 Hz as well as cell enrichment. the microfluidic system described is easily adapted for screening other intracellular, cell-surface or secreted proteins and for quantifying catalytic or regulatory activities. In order to screen ~1 million cells, the microfluidic operations require 2–6 h; the entire process, including preparation of microfluidic devices and mammalian cells, requires 5–7 d. PMID:23558786
Microfluidic Blood Cell Preparation: Now and Beyond
Yu, Zeta Tak For; Yong, Koh Meng Aw; Fu, Jianping
2014-01-01
Blood plays an important role in homeostatic regulation with each of its cellular components having important therapeutic and diagnostic uses. Therefore, separation and sorting of blood cells has been of a great interest to clinicians and researchers. However, while conventional methods of processing blood have been successful in generating relatively pure fractions, they are time consuming, labor intensive, and are not optimal for processing small volume blood samples. In recent years, microfluidics has garnered great interest from clinicians and researchers as a powerful technology for separating blood into different cell fractions. As microfluidics involves fluid manipulation at the microscale level, it has the potential for achieving high-resolution separation and sorting of blood cells down to a single-cell level, with an added benefit of integrating physical and biological methods for blood cell separation and analysis on the same single chip platform. This paper will first review the conventional methods of processing and sorting blood cells, followed by a discussion on how microfluidics is emerging as an efficient tool to rapidly change the field of blood cell sorting for blood-based therapeutic and diagnostic applications. PMID:24515899
Kunnath-Velayudhan, Shajo; Porcelli, Steven A
2018-05-01
Intracellular cytokine staining (ICS) is a powerful method for identifying functionally distinct lymphocyte subsets, and for isolating these by fluorescence activated cell sorting (FACS). Although transcriptomic analysis of cells sorted on the basis of ICS has many potential applications, this is rarely performed because of the difficulty in isolating intact RNA from cells processed using standard fixation and permeabilization buffers for ICS. To address this issue, we compared three buffers shown previously to preserve RNA in nonhematopoietic cells subjected to intracellular staining for their effects on RNA isolated from T lymphocytes processed for ICS. Our results showed that buffers containing the recombinant ribonuclease inhibitor RNasin or high molar concentrations of salt yielded intact RNA from fixed and permeabilized T cells. As proof of principle, we successfully used the buffer containing RNasin to isolate intact RNA from CD4 + T cells that were sorted by FACS on the basis of specific cytokine production, thus demonstrating the potential of this approach for coupling ICS with transcriptomic analysis. Copyright © 2018 Elsevier B.V. All rights reserved.
Perruche, Sylvain; Kleinclauss, François; Lienard, Agnès; Robinet, Eric; Tiberghien, Pierre; Saas, Philippe
2004-11-01
The monitoring of immune reconstitution in murine models of HC transplantation, using accurate and automated methods, is necessary in view of the recent developments of hematopoietic cell (HC) transplantation (including reduced intensity conditioning regimens) as well as emerging immunological concepts (such as the involvement of dendritic cells or regulatory T cells). Here, we describe the use of a single-platform approach based on flow cytometry and tubes that contain a defined number of microbeads to evaluate absolute blood cell counts in mice. This method, previously used in humans to quantify CD34+ stem cells or CD4+ T cells in HIV infected patients, was adapted for mouse blood samples. A CD45 gating strategy in this "lyse no wash" protocol makes it possible to discriminate erythroblasts or red blood cell debris from CD45+ leukocytes, thus avoiding cell loss. Tubes contain a lyophilized brightly fluorescent microbead pellet permitting the acquisition of absolute counts of leukocytes after flow cytometric analysis. We compared this method to determine absolute counts of circulating cells with another method combining Unopette reservoir diluted blood samples, hemocytometer, microscopic examination and flow cytometry. The sensitivity of this single-platform approach was evaluated in different situations encountered in allogeneic HC transplantation, including immune cell depletion after different conditioning regimens, activation status of circulating cells after transplantation, evaluation of in vivo cell depletion and hematopoietic progenitor mobilization in the periphery. This single-platform flow cytometric assay can also be proposed to standardize murine (or other mammalian species) leukocyte count determination for physiological, pharmacological/toxicological and diagnostic applications in veterinary practice.
Naik, Sangeeta Mahableshwar; Anil, Arga Chandrashekar
2017-08-01
Immediate enumeration of phytoplankton is seldom possible. Therefore, fixation and subsequent storage are required for delayed analysis. This study investigated the influence of glutaraldehyde (GA) concentrations (0.25%, 0.5%, and 1%) and storage temperatures (-80°C LN2 , -80°C, -20°C, and 5°C) on Tetraselmis indica for flow cytometric analysis. Cell recovery, granularity, and membrane permeability were independent of GA concentration whereas cell size and chlorophyll autofluorescence were concentration dependent. After an initial cell loss (16-19%), no cell loss was observed when samples were stored at 5°C. Cell recovery was not influenced by storage temperature until 4months but later samples preserved at -80°C LN2 , -80°C, and -20°C resulted in ~41% cell loss. Although maximum cell recovery with minimal effect on cell integrity was obtained at 5°C, autofluorescence was retained better at -80°C LN2 and -80°C. This suggests that in addition to fixative, the choice of storage temperature is equally important. Thus for long-term preservation, especially to retain autofluorescence, the use of lower concentration (0.25%) of GA when stored at a lower temperature (-80°C LN2 and -80°C) while a higher concentration (1%) of GA when stored at a higher temperature (5°C) is recommended. Copyright © 2017 Elsevier B.V. All rights reserved.
Bowman, G R; Turkewitz, A P
2001-12-01
The formation of dense core granules (DCGs) requires both the sorting of granule contents from other secretory proteins and a postsorting maturation process. The Tetrahymena thermophila strain SB281 fails to synthesize DCGs, and previous analysis suggested that the defect lay at or near the sorting step. Because this strain represents one of the very few mutants in this pathway, we have undertaken a more complete study of the phenotype. Genetic epistasis analysis places the defect upstream of those in two other characterized Tetrahymena mutants. Using immunofluorescent detection of granule content proteins, as well as GFP tagging, we describe a novel cytoplasmic compartment to which granule contents can be sorted in growing SB281 cells. Cell fusion experiments indicate that this compartment is not a biosynthetic intermediate in DCG synthesis. Sorting in SB281 is strongly conditional with respect to growth. When cells are starved, the storage compartment is degraded and de novo synthesized granule proteins are rapidly secreted. The mutation in SB281 therefore appears to affect DCG synthesis at the level of both sorting and maturation.
Bowman, G R; Turkewitz, A P
2001-01-01
The formation of dense core granules (DCGs) requires both the sorting of granule contents from other secretory proteins and a postsorting maturation process. The Tetrahymena thermophila strain SB281 fails to synthesize DCGs, and previous analysis suggested that the defect lay at or near the sorting step. Because this strain represents one of the very few mutants in this pathway, we have undertaken a more complete study of the phenotype. Genetic epistasis analysis places the defect upstream of those in two other characterized Tetrahymena mutants. Using immunofluorescent detection of granule content proteins, as well as GFP tagging, we describe a novel cytoplasmic compartment to which granule contents can be sorted in growing SB281 cells. Cell fusion experiments indicate that this compartment is not a biosynthetic intermediate in DCG synthesis. Sorting in SB281 is strongly conditional with respect to growth. When cells are starved, the storage compartment is degraded and de novo synthesized granule proteins are rapidly secreted. The mutation in SB281 therefore appears to affect DCG synthesis at the level of both sorting and maturation. PMID:11779800
Theunissen, Prisca M J; Sedek, Lukasz; De Haas, Valerie; Szczepanski, Tomasz; Van Der Sluijs, Alita; Mejstrikova, Ester; Nováková, Michaela; Kalina, Tomas; Lecrevisse, Quentin; Orfao, Alberto; Lankester, Arjan C; van Dongen, Jacques J M; Van Der Velden, Vincent H J
2017-07-01
Flow cytometric detection of minimal residual disease (MRD) in children with B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) requires immunophenotypic discrimination between residual leukaemic cells and B-cell precursors (BCPs) which regenerate during therapy intervals. In this study, EuroFlow-based 8-colour flow cytometry and innovative analysis tools were used to first characterize the immunophenotypic maturation of normal BCPs in bone marrow (BM) from healthy children, resulting in a continuous multiparametric pathway including transition stages. This pathway was subsequently used as a reference to characterize the immunophenotypic maturation of regenerating BCPs in BM from children treated for BCP-ALL. We identified pre-B-I cells that expressed low or dim CD34 levels, in contrast to the classical CD34 high pre-B-I cell immunophenotype. These CD34 -dim pre-B-I cells were relatively abundant in regenerating BM (11-85% within pre-B-I subset), while hardly present in healthy control BM (9-13% within pre-B-I subset; P = 0·0037). Furthermore, we showed that some of the BCP-ALL diagnosis immunophenotypes (23%) overlapped with CD34 -dim pre-B-I cells. Our results indicate that newly identified CD34 -dim pre-B-I cells can be mistaken for residual BCP-ALL cells, potentially resulting in false-positive MRD outcomes. Therefore, regenerating BM, in which CD34 -dim pre-B-I cells are relatively abundant, should be used as reference frame in flow cytometric MRD measurements. © 2017 John Wiley & Sons Ltd.
Yazdekhasti, Hossein; Hosseini, Marzieh Agha; Rajabi, Zahra; Parvari, Soraya; Salehnia, Mojdeh; Koruji, Morteza; Izadyar, Fariborz; Aliakbari, Fereshte; Abbasi, Mehdi
2017-04-01
The recent discovery of ovarian stem cells in postnatal mammalian ovaries, also referred to as putative stem cells (PSCs), and their roles in mammalian fertility has challenged the long-existing theory that women are endowed with a certain number of germ cells. The rare amount of PSCs is the major limitation for utilizing them through different applications. Therefore, this study was conducted in six phases to find a way to increase the number of Fragilis- and mouse vasa homolog (MVH)-positive sorted cells from 14-day-old NMRI strain mice. Results showed that there is a population of Fragilis- and MVH-positive cells with pluripotent stem cell characteristics, which can be isolated and expanded for months in vitro. PSCs increase their proliferation capacity under the influence of some mitogenic agents, and our results showed that different doses of stem cell factor (SCF) induce PSC proliferation with the maximum increase observed at 50 ng/mL. SCF was also able to increase the number of Fragilis- and MVH-positive cells after sorting by magnetic-activated cell sorting and enhance colony formation efficiency in sorted cells. Differentiation capacity assay indicated that there is a basic level of spontaneous differentiation toward oocyte-like cells during 3 days of culture. However, relative gene expression was significantly higher in the follicle-stimulating hormone-treated groups, especially in the Fragilis- sorted PSCs. We suggest that higher number of PSCs provides us either a greater source of energy that can be injected into energy-impaired oocytes in women with a history of repeat IVF failure or a good source for research.
International Society for Analytical Cytology biosafety standard for sorting of unfixed cells.
Schmid, Ingrid; Lambert, Claude; Ambrozak, David; Marti, Gerald E; Moss, Delynn M; Perfetto, Stephen P
2007-06-01
Cell sorting of viable biological specimens has become very prevalent in laboratories involved in basic and clinical research. As these samples can contain infectious agents, precautions to protect instrument operators and the environment from hazards arising from the use of sorters are paramount. To this end the International Society of Analytical Cytology (ISAC) took a lead in establishing biosafety guidelines for sorting of unfixed cells (Schmid et al., Cytometry 1997;28:99-117). During the time period these recommendations have been available, they have become recognized worldwide as the standard practices and safety precautions for laboratories performing viable cell sorting experiments. However, the field of cytometry has progressed since 1997, and the document requires an update. Initially, suggestions about the document format and content were discussed among members of the ISAC Biosafety Committee and were incorporated into a draft version that was sent to all committee members for review. Comments were collected, carefully considered, and incorporated as appropriate into a draft document that was posted on the ISAC web site to invite comments from the flow cytometry community at large. The revised document was then submitted to ISAC Council for review. Simultaneously, further comments were sought from newly-appointed ISAC Biosafety committee members. This safety standard for performing viable cell sorting experiments was recently generated. The document contains background information on the biohazard potential of sorting and the hazard classification of infectious agents as well as recommendations on (1) sample handling, (2) operator training and personal protection, (3) laboratory design, (4) cell sorter set-up, maintenance, and decontamination, and (5) testing the instrument for the efficiency of aerosol containment. This standard constitutes an updated and expanded revision of the 1997 biosafety guideline document. It is intended to provide laboratories involved in cell sorting with safety practices that take into account the enhanced hazard potential of high-speed sorting. Most importantly, it states that droplet-based sorting of infectious or hazardous biological material requires a higher level of containment than the one recommended for the risk group classification of the pathogen. The document also provides information on safety features of novel instrumentation, new options for personal protective equipment, and recently developed methods for testing the efficiency of aerosol containment.
Analysis of synthetic and biological microparticles on several flow cytometric platforms
Microparticles (MPs) are membrane vesicles (0.1 to 1 urn) released from cells upon activation. The limit of detection ofmost standard flow cytometers is just below 1 urn. Recent advances enable detection of particles lower than 0.5 urn, Synthetic. beads are used to define size ra...
Tan, Tzu-Wei; Tsai, Huei-Yann; Chen, Yuh-Fung; Chung, Jing-Gung
2004-01-01
The crude extract of Ampelopsis cantoniensis induced apoptosis in human promyelocytic leukemia HL-60 cells and this induction was investigated by flow cytometric analysis, DNA gel electrophoresis and poly (ADP-ribose) fluorescence staining. The results demonstrated that this extract induced dose-dependent cytotoxicity and apoptosis. The level of active caspase-3 was increased after treatment with the crude extract for 24 hours.
Mikula, Premysl; Kalhotka, Libor; Jancula, Daniel; Zezulka, Stepan; Korinkova, Radka; Cerny, Jiri; Marsalek, Blahoslav; Toman, Petr
2014-09-05
We analyzed antibacterial effects of several novel phthalocyanines against Escherichia coli and evaluated the suitability of flow cytometry for the detection of antibacterial effects of phthalocyanines in comparison with routinely used cultivation. After 3h of exposure under cool white light eight cationic phthalocyanines showed very high antibacterial activity in the concentration of 2.00 mg L(-1) and four of them were even efficient in the concentration of 0.20 mg L(-1). Antibacterial activity of neutral and anionic compounds was considerably lower or even negligible. No antibacterial effect was detected when bacteria were exposed without illumination. Binding affinity to bacterial cells was found to represent an important parameter influencing phthalocyanine antibacterial activity that can be modified by total charge of peripheral substituents and by the presence of suitable functional groups inside them. Agglomeration of cells observed in suspensions treated with a higher concentration of certain cationic phthalocyanines (the strongest binders to bacterial membrane) affected cytometric measurements of total cell counts, thus without appropriate pretreatment of the sample before analysis this parameter seems not to be fully valid in the evaluation of phthalocyanine antibacterial activity. Cytometric measurement of cell membrane integrity appears to be a suitable and even more sensitive parameter than cultivation. Copyright © 2014 Elsevier B.V. All rights reserved.
Sandstedt, Mikael; Jonsson, Marianne; Asp, Julia; Dellgren, Göran; Lindahl, Anders; Jeppsson, Anders; Sandstedt, Joakim
2015-12-01
Flow cytometry (FCM) has become a well-established method for analysis of both intracellular and cell-surface proteins, while quantitative RT-PCR (RT-qPCR) is used to determine gene expression with high sensitivity and specificity. Combining these two methods would be of great value. The effects of intracellular staining on RNA integrity and RT-qPCR sensitivity and quality have not, however, been fully examined. We, therefore, intended to assess these effects further. Cells from the human lung cancer cell line A549 were fixed, permeabilized and sorted by FCM. Sorted cells were analyzed using RT-qPCR. RNA integrity was determined by RNA quality indicator analysis. A549 cells were then mixed with cells of the mouse cardiomyocyte cell line HL-1. A549 cells were identified by the cell surface marker ABCG2, while HL-1 cells were identified by intracellular cTnT. Cells were sorted and analyzed by RT-qPCR. Finally, cell cultures from human atrial biopsies were used to evaluate the effects of fixation and permeabilization on RT-qPCR analysis of nonimmortalized cells stored prior to analysis by FCM. A large amount of RNA could be extracted even when cells had been fixed and permeabilized. Permeabilization resulted in increased RNA degradation and a moderate decrease in RT-qPCR sensitivity. Gene expression levels were also affected to a moderate extent. Sorted populations from the mixed A549 and HL-1 cell samples showed gene expression patterns that corresponded to FCM data. When samples were stored before FCM sorting, the RT-qPCR analysis could still be performed with high sensitivity and quality. In summary, our results show that intracellular FCM may be performed with only minor impairment of the RT-qPCR sensitivity and quality when analyzing sorted cells; however, these effects should be considered when comparing RT-qPCR data of not fixed samples with those of fixed and permeabilized samples. © 2015 International Society for Advancement of Cytometry.
Liu, Xiufeng; Liu, Xintong; Sunchen, Suwen; Liu, Meixia; Shen, Chen; Wu, Juanjuan; Zhao, Wanli; Yu, Boyang; Liu, Jihua
2017-11-01
The aim of this research was to develop a novel ALA fusion protein for target to the malignant cells surface with high uPAR expression and locally release of the scorpion toxin AGAP in an uPA-cleavable manner. It will provide an effective approach for controlled release of the peptide toxins to treat cancerous cells. The ALA fusion proteins were expressed in pichia pastoris, and the recombinant proteins were purified by Ni-NTA affinity chromatography. The proteins were added to human breast cancer cells (MDA-MB-231) and human embryonic kidney cells (HEK-293) in order to investigate the characteristic of selective targeting and releasing of scorpion toxin AGAP in cancer cells with high uPAR expression. The inhibitory effect of ALA on MDA-MB-231, MCF7, LO2 and HEK-293 was evaluated by MTT assay. Moreover, the antiproliferation mechanism of ALA was determined by flow cytometric and western blot analysis. The results showed that ALA could target MDA-MB-231 cells and the scorpion toxin AGAP could be released with high efficiency and selectivity. ALA inhibited the growth and invasion of breast cancer cells MDA-MB231. Also, cell apoptosis pathway was found to be associated with the inhibition mechanism of ALA according to the data of flow cytometric and western blot analysis. Therefore, ALA could be a novel antitumor candidate for targeting treatment of malignant cell. This study successfully demonstrated that fusion of biotoxins with tumor target domain could provide a simple yet effective way to delivery of peptide or protein drugs.
Arnhold, S.; Glüer, S.; Hartmann, K.; Raabe, O.; Addicks, K.; Wenisch, S.; Hoopmann, M.
2011-01-01
Amniotic fluid (AF) has become an interesting source of fetal stem cells. However, AF contains heterogeneous and multiple, partially differentiated cell types. After isolation from the amniotic fluid, cells were characterized regarding their morphology and growth dynamics. They were sorted by magnetic associated cell sorting using the surface marker CD 117. In order to show stem cell characteristics such as pluripotency and to evaluate a possible therapeutic application of these cells, AF fluid-derived stem cells were differentiated along the adipogenic, osteogenic, and chondrogenic as well as the neuronal lineage under hypoxic conditions. Our findings reveal that magnetic associated cell sorting (MACS) does not markedly influence growth characteristics as demonstrated by the generation doubling time. There was, however, an effect regarding an altered adipogenic, osteogenic, and chondrogenic differentiation capacity in the selected cell fraction. In contrast, in the unselected cell population neuronal differentiation is enhanced. PMID:21437196
Takahashi, Yoichiro; Kubo, Rieko; Sano, Rie; Nakajima, Tamiko; Takahashi, Keiko; Kobayashi, Momoko; Handa, Hiroshi; Tsukada, Junichi; Kominato, Yoshihiko
2017-03-01
The ABO system is of fundamental importance in the fields of transfusion and transplantation and has apparent associations with certain diseases, including cardiovascular disorders. ABO expression is reduced in the late phase of erythroid differentiation in vitro, whereas histone deacetylase inhibitors (HDACIs) are known to promote cell differentiation. Therefore, whether or not HDACIs could reduce the amount of ABO transcripts and A or B antigens is an intriguing issue. Quantitative polymerase chain reactions were carried out for the ABO transcripts in erythroid-lineage K562 and epithelial-lineage KATOIII cells after incubation with HDACIs, such as sodium butyrate, panobinostat, vorinostat, and sodium valproate. Flow cytometric analysis was conducted to evaluate the amounts of antigen in KATOIII cells treated with panobinostat. Quantitative chromatin immunoprecipitation (ChIP) assays and luciferase assays were performed on both cell types to examine the mechanisms of ABO suppression. HDACIs reduced the ABO transcripts in both K562 and KATOIII cells, with panobinostat exerting the most significant effect. Flow cytometric analysis demonstrated a decrease in B-antigen expression on panobinostat-treated KATOIII cells. ChIP assays indicated that panobinostat altered the modification of histones in the transcriptional regulatory regions of ABO, and luciferase assays demonstrated reduced activity of these elements. ABO transcription seems to be regulated by an epigenetic mechanism. Panobinostat appears to suppress ABO transcription, reducing the amount of antigens on the surface of cultured cells. © 2016 AABB.
The Role of the Clathrin Adaptor AP-1: Polarized Sorting and Beyond
Nakatsu, Fubito; Hase, Koji; Ohno, Hiroshi
2014-01-01
The selective transport of proteins or lipids by vesicular transport is a fundamental process supporting cellular physiology. The budding process involves cargo sorting and vesicle formation at the donor membrane and constitutes an important process in vesicular transport. This process is particularly important for the polarized sorting in epithelial cells, in which the cargo molecules need to be selectively sorted and transported to two distinct destinations, the apical or basolateral plasma membrane. Adaptor protein (AP)-1, a member of the AP complex family, which includes the ubiquitously expressed AP-1A and the epithelium-specific AP-1B, regulates polarized sorting at the trans-Golgi network and/or at the recycling endosomes. A growing body of evidence, especially from studies using model organisms and animals, demonstrates that the AP-1-mediated polarized sorting supports the development and physiology of multi-cellular units as functional organs and tissues (e.g., cell fate determination, inflammation and gut immune homeostasis). Furthermore, a possible involvement of AP-1B in the pathogenesis of human diseases, such as Crohn’s disease and cancer, is now becoming evident. These data highlight the significant contribution of AP-1 complexes to the physiology of multicellular organisms, as master regulators of polarized sorting in epithelial cells. PMID:25387275
Nilvebrant, Johan; Åstrand, Mikael; Georgieva-Kotseva, Maria; Björnmalm, Mattias; Löfblom, John; Hober, Sophia
2014-01-01
The epidermal growth factor receptor 2, ERBB2, is a well-validated target for cancer diagnostics and therapy. Recent studies suggest that the over-expression of this receptor in various cancers might also be exploited for antibody-based payload delivery, e.g. antibody drug conjugates. In such strategies, the full-length antibody format is probably not required for therapeutic effect and smaller tumor-specific affinity proteins might be an alternative. However, small proteins and peptides generally suffer from fast excretion through the kidneys, and thereby require frequent administration in order to maintain a therapeutic concentration. In an attempt aimed at combining ERBB2-targeting with antibody-like pharmacokinetic properties in a small protein format, we have engineered bispecific ERBB2-binding proteins that are based on a small albumin-binding domain. Phage display selection against ERBB2 was used for identification of a lead candidate, followed by affinity maturation using second-generation libraries. Cell surface display and flow-cytometric sorting allowed stringent selection of top candidates from pools pre-enriched by phage display. Several affinity-matured molecules were shown to bind human ERBB2 with sub-nanomolar affinity while retaining the interaction with human serum albumin. Moreover, parallel selections against ERBB2 in the presence of human serum albumin identified several amino acid substitutions that dramatically modulate the albumin affinity, which could provide a convenient means to control the pharmacokinetics. The new affinity proteins competed for ERBB2-binding with the monoclonal antibody trastuzumab and recognized the native receptor on a human cancer cell line. Hence, high affinity tumor targeting and tunable albumin binding were combined in one small adaptable protein. PMID:25089830
Wong, Linda; Hill, Beth L; Hunsberger, Benjamin C; Bagwell, C Bruce; Curtis, Adam D; Davis, Bruce H
2015-01-01
Leuko64™ (Trillium Diagnostics) is a flow cytometric assay that measures neutrophil CD64 expression and serves as an in vitro indicator of infection/sepsis or the presence of a systemic acute inflammatory response. Leuko64 assay currently utilizes QuantiCALC, a semiautomated software that employs cluster algorithms to define cell populations. The software reduces subjective gating decisions, resulting in interanalyst variability of <5%. We evaluated a completely automated approach to measuring neutrophil CD64 expression using GemStone™ (Verity Software House) and probability state modeling (PSM). Four hundred and fifty-seven human blood samples were processed using the Leuko64 assay. Samples were analyzed on four different flow cytometer models: BD FACSCanto II, BD FACScan, BC Gallios/Navios, and BC FC500. A probability state model was designed to identify calibration beads and three leukocyte subpopulations based on differences in intensity levels of several parameters. PSM automatically calculates CD64 index values for each cell population using equations programmed into the model. GemStone software uses PSM that requires no operator intervention, thus totally automating data analysis and internal quality control flagging. Expert analysis with the predicate method (QuantiCALC) was performed. Interanalyst precision was evaluated for both methods of data analysis. PSM with GemStone correlates well with the expert manual analysis, r(2) = 0.99675 for the neutrophil CD64 index values with no intermethod bias detected. The average interanalyst imprecision for the QuantiCALC method was 1.06% (range 0.00-7.94%), which was reduced to 0.00% with the GemStone PSM. The operator-to-operator agreement in GemStone was a perfect correlation, r(2) = 1.000. Automated quantification of CD64 index values produced results that strongly correlate with expert analysis using a standard gate-based data analysis method. PSM successfully evaluated flow cytometric data generated by multiple instruments across multiple lots of the Leuko64 kit in all 457 cases. The probability-based method provides greater objectivity, higher data analysis speed, and allows for greater precision for in vitro diagnostic flow cytometric assays. © 2015 International Clinical Cytometry Society.
Wu, Liang; Chen, Pu; Dong, Yingsong; Feng, Xiaojun; Liu, Bi-Feng
2013-06-01
Encapsulation of single cells is a challenging task in droplet microfluidics due to the random compartmentalization of cells dictated by Poisson statistics. In this paper, a microfluidic device was developed to improve the single-cell encapsulation rate by integrating droplet generation with fluorescence-activated droplet sorting. After cells were loaded into aqueous droplets by hydrodynamic focusing, an on-flight fluorescence-activated sorting process was conducted to isolate droplets containing one cell. Encapsulation of fluorescent polystyrene beads was investigated to evaluate the developed method. A single-bead encapsulation rate of more than 98 % was achieved under the optimized conditions. Application to encapsulate single HeLa cells was further demonstrated with a single-cell encapsulation rate of 94.1 %, which is about 200 % higher than those obtained by random compartmentalization. We expect this new method to provide a useful platform for encapsulating single cells, facilitating the development of high-throughput cell-based assays.
How to develop a Standard Operating Procedure for sorting unfixed cells
Schmid, Ingrid
2012-01-01
Written Standard Operating Procedures (SOPs) are an important tool to assure that recurring tasks in a laboratory are performed in a consistent manner. When the procedure covered in the SOP involves a high-risk activity such as sorting unfixed cells using a jet-in-air sorter, safety elements are critical components of the document. The details on sort sample handling, sorter set-up, validation, operation, troubleshooting, and maintenance, personal protective equipment (PPE), and operator training, outlined in the SOP are to be based on careful risk assessment of the procedure. This review provides background information on the hazards associated with sorting of unfixed cells and the process used to arrive at the appropriate combination of facility design, instrument placement, safety equipment, and practices to be followed. PMID:22381383
Flow Sorting of Marine Bacterioplankton after Fluorescence In Situ Hybridization
Sekar, Raju; Fuchs, Bernhard M.; Amann, Rudolf; Pernthaler, Jakob
2004-01-01
We describe an approach to sort cells from coastal North Sea bacterioplankton by flow cytometry after in situ hybridization with rRNA-targeted horseradish peroxidase-labeled oligonucleotide probes and catalyzed fluorescent reporter deposition (CARD-FISH). In a sample from spring 2003 >90% of the cells were detected by CARD-FISH with a bacterial probe (EUB338). Approximately 30% of the microbial assemblage was affiliated with the Cytophaga-Flavobacterium lineage of the Bacteroidetes (CFB group) (probe CF319a), and almost 10% was targeted by a probe for the β-proteobacteria (probe BET42a). A protocol was optimized to detach cells hybridized with EUB338, BET42a, and CF319a from membrane filters (recovery rate, 70%) and to sort the cells by flow cytometry. The purity of sorted cells was >95%. 16S rRNA gene clone libraries were constructed from hybridized and sorted cells (S-EUB, S-BET, and S-CF libraries) and from unhybridized and unsorted cells (UNHYB library). Sequences related to the CFB group were significantly more frequent in the S-CF library (66%) than in the UNHYB library (13%). No enrichment of β-proteobacterial sequence types was found in the S-BET library, but novel sequences related to Nitrosospira were found exclusively in this library. These bacteria, together with members of marine clade OM43, represented >90% of the β-proteobacteria in the water sample, as determined by CARD-FISH with specific probes. This illustrates that a combination of CARD-FISH and flow sorting might be a powerful approach to study the diversity and potentially the activity and the genomes of different bacterial populations in aquatic habitats. PMID:15466568
Navarre, William Wiley; Schneewind, Olaf
1999-01-01
The cell wall envelope of gram-positive bacteria is a macromolecular, exoskeletal organelle that is assembled and turned over at designated sites. The cell wall also functions as a surface organelle that allows gram-positive pathogens to interact with their environment, in particular the tissues of the infected host. All of these functions require that surface proteins and enzymes be properly targeted to the cell wall envelope. Two basic mechanisms, cell wall sorting and targeting, have been identified. Cell well sorting is the covalent attachment of surface proteins to the peptidoglycan via a C-terminal sorting signal that contains a consensus LPXTG sequence. More than 100 proteins that possess cell wall-sorting signals, including the M proteins of Streptococcus pyogenes, protein A of Staphylococcus aureus, and several internalins of Listeria monocytogenes, have been identified. Cell wall targeting involves the noncovalent attachment of proteins to the cell surface via specialized binding domains. Several of these wall-binding domains appear to interact with secondary wall polymers that are associated with the peptidoglycan, for example teichoic acids and polysaccharides. Proteins that are targeted to the cell surface include muralytic enzymes such as autolysins, lysostaphin, and phage lytic enzymes. Other examples for targeted proteins are the surface S-layer proteins of bacilli and clostridia, as well as virulence factors required for the pathogenesis of L. monocytogenes (internalin B) and Streptococcus pneumoniae (PspA) infections. In this review we describe the mechanisms for both sorting and targeting of proteins to the envelope of gram-positive bacteria and review the functions of known surface proteins. PMID:10066836
Courel, Maïté; Vasquez, Michael S.; Hook, Vivian Y.; Mahata, Sushil K.; Taupenot, Laurent
2008-01-01
Secretogranin II (SgII) belongs to the granin family of prohormones widely distributed in dense-core secretory granules (DCGs) of endocrine, neuroendocrine, and neuronal cells, including sympathoadrenal chromaffin cells. The mechanisms by which secretory proteins, and granins in particular, are sorted into the regulated secretory pathway are unsettled. We designed a strategy based on novel chimeric forms of human SgII fused to fluorescent (green fluorescent protein) or chemiluminescent (embryonic alkaline phosphatase) reporters to identify trafficking determinants mediating DCG targeting of SgII in sympathoadrenal cells. Three-dimensional deconvolution fluorescence microscopy and secretagogue-stimulated release studies demonstrate that SgII chimeras are correctly targeted to DCGs and released by exocytosis in PC12 and primary chromaffin cells. Results from a Golgi-retained mutant form of SgII suggest that sorting of SgII into DCGs depends on a saturable sorting machinery at the trans-Golgi/trans-Golgi network. Truncation analyses reveal the presence of DCG-targeting signals within both the N- and C-terminal regions of SgII, with the putative α-helix-containing SgII-(25-41) and SgII-(334-348) acting as sufficient, independent sorting domains. This study defines sequence features of SgII mediating vesicular targeting in sympathoadrenal cells and suggests a mechanism by which discrete domains of the molecule function in sorting, perhaps by virtue of a particular arrangement in tertiary structure and/or interaction with a specific component of the DCG membrane. PMID:18299326
Courel, Maïté; Vasquez, Michael S; Hook, Vivian Y; Mahata, Sushil K; Taupenot, Laurent
2008-04-25
Secretogranin II (SgII) belongs to the granin family of prohormones widely distributed in dense-core secretory granules (DCGs) of endocrine, neuroendocrine, and neuronal cells, including sympathoadrenal chromaffin cells. The mechanisms by which secretory proteins, and granins in particular, are sorted into the regulated secretory pathway are unsettled. We designed a strategy based on novel chimeric forms of human SgII fused to fluorescent (green fluorescent protein) or chemiluminescent (embryonic alkaline phosphatase) reporters to identify trafficking determinants mediating DCG targeting of SgII in sympathoadrenal cells. Three-dimensional deconvolution fluorescence microscopy and secretagogue-stimulated release studies demonstrate that SgII chimeras are correctly targeted to DCGs and released by exocytosis in PC12 and primary chromaffin cells. Results from a Golgi-retained mutant form of SgII suggest that sorting of SgII into DCGs depends on a saturable sorting machinery at the trans-Golgi/trans-Golgi network. Truncation analyses reveal the presence of DCG-targeting signals within both the N- and C-terminal regions of SgII, with the putative alpha-helix-containing SgII-(25-41) and SgII-(334-348) acting as sufficient, independent sorting domains. This study defines sequence features of SgII mediating vesicular targeting in sympathoadrenal cells and suggests a mechanism by which discrete domains of the molecule function in sorting, perhaps by virtue of a particular arrangement in tertiary structure and/or interaction with a specific component of the DCG membrane.
Sheikh, Bassem Y; Sarker, Md Moklesur Rahman; Kamarudin, Muhamad Noor Alfarizal; Mohan, Gokula
2017-12-01
Despite various anticancer reports, antiproliferative and apoptosis inducing activity of citral in HCT116 and HT29 cells have never been reported. This study aimed to evaluate the cytotoxic and apoptosis inducing effects of citral in colorectal cancer cell lines. The citral-treated cells were subjected to MTT assay followed by flow cytometric Annexin V-FITC/PI, mitochondrial membrane potential and intracellular reactive oxygen species (ROS) determination. The apoptotic proteins expression was investigated by Western blot analysis. Citral inhibited the growth of HCT116 and HT29 cells by dose- and time-dependent manner without inducing cytotoxicity in CCD841-CoN normal colon cells. Flow cytometric analysis showed that citral (50-200μM; 24-48h) induced the externalization of phoshpotidylserine and reduced the mitochondrial membrane potential in HCT116 and HT29 cells. Citral elevated intracellular ROS level while attenuating GSH levels in HCT116 and HT29 cells which were reversed with N-acetycysteine (2mM) pre-treatment indicating that citral induced mitochondrial-mediated apoptosis via augmentation of intracellular ROS. Citral induced the phosphorylation of p53 protein and the expression of Bax while decreasing Bc-2 and Bcl-xL expression which promoted the cleavage of caspase-3. Collectively, our data suggest that citral induced p53 and ROS-mediated mitochondrial-mediated apoptosis in human colorectal cancer HCT116 and HT29 cells. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Singh, Bhuminder; Bogatcheva, Galina; Starchenko, Alina; Sinnaeve, Justine; Lapierre, Lynne A.; Williams, Janice A.; Goldenring, James R.; Coffey, Robert J.
2015-01-01
ABSTRACT Directed delivery of EGF receptor (EGFR) ligands to the apical or basolateral surface is a crucial regulatory step in the initiation of EGFR signaling in polarized epithelial cells. Herein, we show that the EGFR ligand betacellulin (BTC) is preferentially sorted to the basolateral surface of polarized MDCK cells. By using sequential truncations and site-directed mutagenesis within the BTC cytoplasmic domain, combined with selective cell-surface biotinylation and immunofluorescence, we have uncovered a monoleucine-based basolateral-sorting motif (EExxxL, specifically 156EEMETL161). Disruption of this sorting motif led to equivalent apical and basolateral localization of BTC. Unlike other EGFR ligands, BTC mistrafficking induced formation of lateral lumens in polarized MDCK cells, and this process was significantly attenuated by inhibition of EGFR. Additionally, expression of a cancer-associated somatic BTC mutation (E156K) led to BTC mistrafficking and induced lateral lumens in MDCK cells. Overexpression of BTC, especially mistrafficking forms, increased the growth of MDCK cells. These results uncover a unique role for BTC mistrafficking in promoting epithelial reorganization. PMID:26272915
2011-04-01
Differentiation of mouse embryonic stem cells Immunology: - Flow cytometry - Proliferation Assays - Chromium Release Assays - B...of metastatic cells in close proximation to hepatocytes in the liver. Additionally, re-expression of E-cadherin was observed in the membrane of the...profile CD44+/CD24low/ESA+ using fluorescence- activated cell sorting (FACS) [4]. Subcutaneous injection of low numbers of the sorted cell
Method and apparatus for electrostatically sorting biological cells
Merrill, John T.
1982-01-01
An improved method of sorting biological cells in a conventional cell sorter apparatus includes generating a fluid jet containing cells to be sorted, measuring the distance between the centers of adjacent droplets in a zone thereof defined at the point where the fluid jet separates into descrete droplets, setting the distance between the center of a droplet in said separation zone and the position along said fluid jet at which the cell is optically sensed for specific characteristics to be an integral multiple of said center-to-center distance, and disabling a charger from electrically charging a specific droplet if a cell is detected by the optical sensor in a position wherein it will be in the neck area between droplets during droplet formation rather than within a predetermined distance from the droplet center.
NASA Astrophysics Data System (ADS)
François, Paul; Altan-Bonnet, Grégoire
2016-03-01
Some cells have to take decision based on the quality of surroundings ligands, almost irrespective of their quantity, a problem we name "absolute discrimination". An example of absolute discrimination is recognition of not-self by immune T Cells. We show how the problem of absolute discrimination can be solved by a process called "adaptive sorting". We review several implementations of adaptive sorting, as well as its generic properties such as antagonism. We show how kinetic proofreading with negative feedback implement an approximate version of adaptive sorting in the immune context. Finally, we revisit the decision problem at the cell population level, showing how phenotypic variability and feedbacks between population and single cells are crucial for proper decision.
Evaluation of Premarin in a Rat Model of Mild and Severe Hemorrhage
2013-10-04
extracellular-only ligand ) on peripheral blood lymphocytes, as revealed in flow cytometric analysis. In Figure 20 (previous page) it is clear that in...magenta) which dropped to 27% with STSi pretreatment in vivo. This precluded accurate evaluation of EE-3-SO4 as ligand for ER in the context of...unable to enter the cell and engage the intracellular estrogen receptor GPER , where synthetic cell permeable (i.e., hydrophobic constructs) freely
Fujita, Kazutoshi; Ohta, Hiroshi; Tsujimura, Akira; Takao, Tetsuya; Miyagawa, Yasushi; Takada, Shingo; Matsumiya, Kiyomi; Wakayama, Teruhiko; Okuyama, Akihiko
2005-01-01
More than 70% of patients survive childhood leukemia, but chemotherapy and radiation therapy cause irreversible impairment of spermatogenesis. Although autotransplantation of germ cells holds promise for restoring fertility, contamination by leukemic cells may induce relapse. In this study, we isolated germ cells from leukemic mice by FACS sorting. The cell population in the high forward-scatter and low side-scatter regions of dissociated testicular cells from leukemic mice were analyzed by staining for MHC class I heavy chain (H-2Kb/H-2Db) and for CD45. Cells that did not stain positively for H-2Kb/H-2Db and CD45 were sorted as the germ cell–enriched fraction. The sorted germ cell–enriched fractions were transplanted into the testes of recipient mice exposed to alkylating agents. Transplanted germ cells colonized, and recipient mice survived. Normal progeny were produced by intracytoplasmic injection of sperm obtained from recipient testes. When unsorted germ cells from leukemic mice were transplanted into recipient testes, all recipient mice developed leukemia. The successful birth of offspring from recipient mice without transmission of leukemia to the recipients indicates the potential of autotransplantation of germ cells sorted by FACS to treat infertility secondary to anticancer treatment for childhood leukemia. PMID:15965502
Uncovering stem-cell heterogeneity in the microniche with label-free microfluidics
NASA Astrophysics Data System (ADS)
Sohn, Lydia L.
2013-03-01
Better suited for large number of cells from bulk tissue, traditional cell-screening techniques, such as fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS), cannot easily screen stem or progenitor cells from minute populations found in their physiological niches. Furthermore, they rely upon irreversible antibody binding, potentially altering cell properties, including gene expression and regenerative capacity. We have developed a label-free, single-cell analysis microfluidic platform capable of quantifying cell-surface marker expression of functional organ stem cells directly isolated from their micro-anatomical niche. With this platform, we have screened single quiescent muscle stem (satellite) cells derived from single myofibers, and we have uncovered an important heterogeneity in the surface-marker expression of these cells. By sorting the screened cells with our microfluidic device, we have determined what this heterogeneity means in terms of muscle stem-cell functionality. For instance, we show that the levels of beta1-integrin can predict the differentiation capacity of quiescent satellite cells, and in contrast to recent literature, that some CXCR4 + cells are not myogenic. Our results provide the first direct demonstration of a microniche-specific variation in gene expression in stem cells of the same lineage. Overall, our label-free, single-cell analysis and cell-sorting platform could be extended to other systems involving rare-cell subsets. This work was funded by the W. M. Keck Foundation, NIH, and California Institute of Regenerative Medicine
Photoactive platinum diimine complexes showing induced cancer cell death by apoptosis.
Zhang, Zhigang; Dai, Ruihui
2017-02-01
Photoinduced cytotoxicity mediated by a triphenylenamine-modified platinum diimine complex in human breast adenocarcinoma cells has been studied by cell viability assay. The triphenylenamine-modified platinum diimine complex showed more potent cytotoxicity in light than its carboxylate-modified analogue. To gain insights into the mechanism of photodynamic activity of this class of platinum diimine complexes, flow cytometric analyses were performed. The results suggest that upon irradiation the two platinum diimine complexes studied could induce cell cycle arrest in G 2 /M or S phase, and both of them could induce cancer cell death by apoptosis.
Myasthenia gravis sera have no effect on cardiomyocytes in vitro.
Helgeland, Geir; Luckman, Steven P; Romi, Fredrik R; Jonassen, Anne K; Gilhus, Nils Erik
2008-09-15
Myasthenia gravis (MG) is an autoimmune disorder primarily caused by circulating autoantibodies targeting the nicotinic acetylcholine receptor. Several studies have suggested a link between MG and heart disease. Girardi heart cells were treated with MG sera, measuring cytotoxic effects using flow cytometry, adenylate kinase (AK) release and evaluating morphology. MG sera did not induce morphological changes in the cells. AK release from cells treated with MG sera did not exceed controls and flow cytometric examination did not reveal any increase in dead or apoptotic cells. We conclude that MG sera have no cytotoxic effect in our heart cell culture system.
Disease-Causing Mutations in BEST1 Gene Are Associated with Altered Sorting of Bestrophin-1 Protein
Doumanov, Jordan A.; Zeitz, Christina; Gimenez, Paloma Dominguez; Audo, Isabelle; Krishna, Abhay; Alfano, Giovanna; Diaz, Maria Luz Bellido; Moskova-Doumanova, Veselina; Lancelot, Marie-Elise; Sahel, José-Alain; Nandrot, Emeline F.; Bhattacharya, Shomi S.
2013-01-01
Mutations in BEST1 gene, encoding the bestrophin-1 (Best1) protein are associated with macular dystrophies. Best1 is predominantly expressed in the retinal pigment epithelium (RPE), and is inserted in its basolateral membrane. We investigated the cellular localization in polarized MDCKII cells of disease-associated Best1 mutant proteins to study specific sorting motifs of Best1. Real-time PCR and western blots for endogenous expression of BEST1 in MDCK cells were performed. Best1 mutant constructs were generated using site-directed mutagenesis and transfected in MDCK cells. For protein sorting, confocal microscopy studies, biotinylation assays and statistical methods for quantification of mislocalization were used. Analysis of endogenous expression of BEST1 in MDCK cells revealed the presence of BEST1 transcript but no protein. Confocal microscopy and quantitative analyses indicate that transfected normal human Best1 displays a basolateral localization in MDCK cells, while cell sorting of several Best1 mutants (Y85H, Q96R, L100R, Y227N, Y227E) was altered. In contrast to constitutively active Y227E, constitutively inactive Y227F Best1 mutant localized basolaterally similar to the normal Best1 protein. Our data suggest that at least three basolateral sorting motifs might be implicated in proper Best1 basolateral localization. In addition, non-phosphorylated tyrosine 227 could play a role for basolateral delivery. PMID:23880862
Tascilar, Oge; Cakmak, Güldeniz Karadeniz; Tekin, Ishak Ozel; Emre, Ali Ugur; Ucan, Bulent Hamdi; Irkorucu, Oktay; Karakaya, Kemal; Gül, Mesut; Engin, Hüseyin Bülent; Comert, Mustafa
2007-01-01
AIM: To evaluate the frequency of neural cell adhesion molecule (NCAM)-180 expression in fresh tumor tissue samples and to discuss the prognostic value of NCAM-180 in routine clinical practice. METHODS: Twenty-six patients (16 men, 10 women) with colorectal cancer were included in the study. Fresh tumor tissue samples and macroscopically healthy proximal margins of each specimen were subjected to flow-cytometric analysis for NCAM-180 expression. RESULTS: Flow-cytometric analysis determined NCAM-180 expression in whole tissue samples of macroscopically healthy colorectal tissues. However, NCAM-180 expression was positive in only one case (3.84%) with well-differentiated Stage II disease who experienced no active disease at 30 mon follow-up. CONCLUSION: As a consequence of the limited number of cases in our series, it might not be possible to make a generalisation, nevertheless the routine use of NCAM-180 expression as a prognostic marker for colorectal carcinoma seems to be unfeasible and not cost-effective in clinical practice due to its very low incidence. PMID:17907291
Standardizing flow cytometric assays in long-term population-based studies
NASA Astrophysics Data System (ADS)
Melzer, Susanne; Bocsi, Jozsef; Tárnok, Attila
2015-03-01
Quantification of leukocyte subpopulations and characterization of antigen-expression pattern on the cellular surface can play an important role in diagnostics. The state of cellular immunology on the single-cell level was analyzed by polychromatic flow cytometry in a recent comparative study within the average Leipzig population (LIFE - Leipzig Research Centre for Civilization Diseases). Data of 1699 subjects were recorded over a long-time period of three years (in a total of 1126 days). To ensure compatibility of such huge data sets, quality-controls on many levels (stability of instrumentation, low intra-laboratory variance and reader independent data analysis) are essential. The LIFE study aims to analyze various cytometric pattern to reveal the relationship between the life-style, the environmental effects and the individual health. We therefore present here a multi-step quality control procedure for long-term comparative studies.
Cell-Free Reconstitution of Multivesicular Body Formation and Receptor Sorting
Sun, Wei; Vida, Thomas A.; Sirisaengtaksin, Natalie; Merrill, Samuel A.; Hanson, Phyllis I.; Bean, Andrew J.
2010-01-01
The number of surface membrane proteins and their residence time on the plasma membrane are critical determinants of cellular responses to cues that can control plasticity, growth and differentiation. After internalization, the ultimate fate of many plasma membrane proteins is dependent on whether they are sorted for internalization into the lumenal vesicles of multivesicular bodies (MVBs), an obligate step prior to lysosomal degradation. To help to elucidate the mechanisms underlying MVB sorting, we have developed a novel cell-free assay that reconstitutes the sorting of a prototypical membrane protein, the epidermal growth factor receptor, with which we have probed some of its molecular requirements. The sorting event measured is dependent on cytosol, ATP, time, temperature and an intact proton gradient. Depletion of Hrs inhibited biochemical and morphological measures of sorting that were rescued by inclusion of recombinant Hrs in the assay. Moreover, depletion of signal-transducing adaptor molecule (STAM), or addition of mutated ATPase-deficient Vps4, also inhibited sorting. This assay reconstitutes the maturation of late endosomes, including the formation of internal vesicles and the sorting of a membrane protein, and allows biochemical investigation of this process. PMID:20214752
Escribano, Luis; Garcia Montero, Andres C; Núñez, Rosa; Orfao, Alberto
2006-08-01
Human mast cells (MCs) are directly derived from human pluripotent CD34+ stem and progenitor hematopoietic cells with stem cell factor being a critical growth factor supporting human MC proliferation, differentiation, and survival. Because of the advantages that flow cytometry offers (it allows rapid, objective, and sensitive multiparameter analysis of high numbers of cells from a sample, with information being provided on the basis of a single cell), it has become the method of choice in the past decade for immunophenotypic identification, enumeration, and characterization of human MCs in bone marrow and other tissue specimens.
Narula, Shifa; Tandon, Simran; Singh, Shrawan Kumar; Tandon, Chanderdeep
2016-11-01
Kidney stone formation is a highly prevalent disease, affecting 8-10% of the human population worldwide. Proteins are the major constituents of human kidney stone's organic matrix and considered to play critical role in the pathogenesis of disease but their mechanism of modulation still needs to be explicated. Therefore, in this study we investigated the effect of human kidney stone matrix proteins on the calcium oxalate monohydrate (COM) mediated cellular injury. The renal epithelial cells (MDCK) were exposed to 200μg/ml COM crystals to induce injury. The effect of proteins isolated from human kidney stone was studied on COM injured cells. The alterations in cell-crystal interactions were examined by phase contrast, polarizing, fluorescence and scanning electron microscopy. Moreover, its effect on the extent of COM induced cell injury, was quantified by flow cytometric analysis. Our study indicated the antilithiatic potential of human kidney stone proteins on COM injured MDCK cells. Flow cytometric analysis and fluorescence imaging ascertained that matrix proteins decreased the extent of apoptotic injury caused by COM crystals on MDCK cells. Moreover, the electron microscopic studies of MDCK cells revealed that matrix proteins caused significant dissolution of COM crystals, indicating cytoprotection against the impact of calcium oxalate injury. The present study gives insights into the mechanism implied by urinary proteins to restrain the pathogenesis of kidney stone disease. This will provide a better understanding of the formation of kidney stones which can be useful for the proper management of the disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Flow cytometric analysis of crayfish haemocytes activated by lipopolysaccharides
Cardenas, W.; Dankert, J.R.; Jenkins, J.A.
2004-01-01
Lipopolysaccharides (LPS) from Gram-negative bacteria are strong stimulators of white river crayfish, Procambarus zonangulus, haemocytes in vitro. Following haemocyte treatment with LPS and with LPS from rough mutant R5 (LPS Rc) from Salmonella minnesota, flow cytometric analysis revealed a conspicuous and reproducible decrease in cell size as compared to control haemocytes. These LPS molecules also caused a reduction in haemocyte viability as assessed by flow cytometry with the fluorescent dyes calcein-AM and ethidium homodimer. The onset of cell size reduction was gradual and occurred prior to cell death. Haemocytes treated with LPS from S. minnesota without the Lipid A moiety (detoxified LPS) decreased in size without a reduction of viability. The action of LPS on crayfish haemocytes appeared to be related to the activation of the prophenoloxidase system because phenoloxidase (PO)-specific activity in the supernatants from control and detoxified LPS-treated cells was significantly lower than that from LPS and LPS-Rc treated cells (P < 0.05). Furthermore, addition of trypsin inhibitor to the LPS treatments caused noticeable delays in cell size and viability changes. These patterns of cellular activation by LPS formulations indicated that crayfish haemocytes react differently to the polysaccharide and lipid A moieties of LPS, where lipid A is cytotoxic and the polysaccharide portion is stimulatory. These effects concur with the general pattern of mammalian cell activation by LPS, thereby indicting commone innate immune recognition mechanisms to bacterial antigens between cells from mammals and invertebrates. These definitive molecular approaches used to verify and identify mechanisms of invertbrate haemocyte responses to LPS could be applied with other glycoconjugates, soluble mediators, or xenobiotic compounds.
Raman sorting and identification of single living micro-organisms with optical tweezers
NASA Astrophysics Data System (ADS)
Xie, Changan; Chen, De; Li, Yong-Qing
2005-07-01
We report on a novel technique for sorting and identification of single biological cells and food-borne bacteria based on laser tweezers and Raman spectroscopy (LTRS). With this technique, biological cells of different physiological states in a sample chamber were identified by their Raman spectral signatures and then they were selectively manipulated into a clean collection chamber with optical tweezers through a microchannel. As an example, we sorted the live and dead yeast cells into the collection chamber and validated this with a standard staining technique. We also demonstrated that bacteria existing in spoiled foods could be discriminated from a variety of food particles based on their characteristic Raman spectra and then isolated with laser manipulation. This label-free LTRS sorting technique may find broad applications in microbiology and rapid examination of food-borne diseases.
How to develop a standard operating procedure for sorting unfixed cells.
Schmid, Ingrid
2012-07-01
Written standard operating procedures (SOPs) are an important tool to assure that recurring tasks in a laboratory are performed in a consistent manner. When the procedure covered in the SOP involves a high-risk activity such as sorting unfixed cells using a jet-in-air sorter, safety elements are critical components of the document. The details on sort sample handling, sorter set-up, validation, operation, troubleshooting, and maintenance, personal protective equipment (PPE), and operator training, outlined in the SOP are to be based on careful risk assessment of the procedure. This review provides background information on the hazards associated with sorting of unfixed cells and the process used to arrive at the appropriate combination of facility design, instrument placement, safety equipment, and practices to be followed. Copyright © 2012 Elsevier Inc. All rights reserved.
Doi, Daisuke; Samata, Bumpei; Katsukawa, Mitsuko; Kikuchi, Tetsuhiro; Morizane, Asuka; Ono, Yuichi; Sekiguchi, Kiyotoshi; Nakagawa, Masato; Parmar, Malin; Takahashi, Jun
2014-01-01
Summary Human induced pluripotent stem cells (iPSCs) can provide a promising source of midbrain dopaminergic (DA) neurons for cell replacement therapy for Parkinson’s disease. However, iPSC-derived donor cells inevitably contain tumorigenic or inappropriate cells. Here, we show that human iPSC-derived DA progenitor cells can be efficiently isolated by cell sorting using a floor plate marker, CORIN. We induced DA neurons using scalable culture conditions on human laminin fragment, and the sorted CORIN+ cells expressed the midbrain DA progenitor markers, FOXA2 and LMX1A. When transplanted into 6-OHDA-lesioned rats, the CORIN+ cells survived and differentiated into midbrain DA neurons in vivo, resulting in significant improvement of the motor behavior, without tumor formation. In particular, the CORIN+ cells in a NURR1+ cell-dominant stage exhibited the best survival and function as DA neurons. Our method is a favorable strategy in terms of scalability, safety, and efficiency and may be advantageous for clinical application. PMID:24672756
Isse, Kumiko; Lesniak, Andrew; Grama, Kedar; Maier, John; Specht, Susan; Castillo-Rama, Marcela; Lunz, John; Roysam, Badrinath; Michalopoulos, George; Demetris, Anthony J.
2012-01-01
Routine light microscopy identifies two distinct epithelial cell populations in normal human livers: hepatocytes and biliary epithelial cells (BEC). Considerable epithelial diversity, however, arises during disease states when a variety of hepatocyte-BEC hybrid cells appear. This has been attributed to activation and differentiation of putative hepatic progenitor cells (HPC) residing in the Canals of Hering and/or metaplasia of pre-existing mature epithelial cells. A novel analytic approach consisting of multiplex labeling, high resolution whole slide imaging (WSI), and automated image analysis was used to determine if more complex epithelial cell phenotypes pre-existed in normal adult human livers, which might provide an alternative explanation for disease-induced epithelial diversity. “Virtually digested” WSI enabled quantitative cytometric analyses of individual cells displayed in a variety of formats (e.g. scatter plots) while still tethered to the WSI and tissue structure. We employed biomarkers specifically-associated with mature epithelial forms (HNF4α for hepatocytes, CK19 and HNF1β for BEC) and explored for the presence of cells with hybrid biomarker phenotypes. Results showed abundant hybrid cells in portal bile duct BEC, canals of Hering, and immediate periportal hepatocytes. These bi-potential cells likely serve as a reservoir for the epithelial diversity of ductular reactions, appearance of hepatocytes in bile ducts, and the rapid and fluid transition of BEC to hepatocytes, and vice versa. Conclusion Novel imaging and computational tools enable increased information extraction from tissue samples and quantify the considerable pre-existent hybrid epithelial diversity in normal human liver. This computationally-enabled tissue analysis approach offers much broader potential beyond the results presented here. PMID:23150208
Berg, R J; de Bueger, S C; Guikers, K; van Weelden, H; van Vloten, W A; van der Leun, J C; de Gruijl, F R
1995-12-01
We have earlier reported on determining UV-induced DNA damage in murine epidermal cell suspensions by flow cytometric analysis of the fluorescence from a fluorescein isothiocyanate-labeled antibody (H3) directed against thymine dimers (T < > T). Here we present an optimization of the technique for analysis of epidermal cell suspensions from 4 mm biopsies from human skin. Cells with different DNA contents can easily be distinguished in flow cytometry by the intensity of DNA-specific 7-amino-actinomycin D fluorescence. Genuine G2-M-phase cells can further be distinguished from cell doublets by pulse-shape discrimination. Thus, T < > T levels in individual cells with different DNA contents (i.e. G0-G1, S or G2-M phases) can be determined after in vivo exposure of human skin to environmentally relevant UVB (280-315 nm) doses. The method was applied to measure the decrease of T < > T in nonreplicating cells (G0-G1 phase) and replicating cells (S phase or G2-M phase) from seven volunteers exposed to twice their minimal erythema dose. The reduction in the average T < > T-specific fluorescence at 24 h after exposure was 46% (ranging between 16% and 66%) for the G0-G1 cells and 70% (ranging between 37% and 100%) for the S + G2-M cells. The difference was statistically highly significant. Determination of individual DNA repair capacities with this method can become a convenient diagnostic tool for patients with DNA repair disorders, or it may even be used to identify individuals with low repair proficiencies and increased risk of developing skin cancers.
NASA Technical Reports Server (NTRS)
Tai, Yu-Chong (Inventor); Kasdan, Harvey L. (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor)
2016-01-01
Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.
NASA Technical Reports Server (NTRS)
Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey (Inventor); Tai, Yu-Chong (Inventor)
2015-01-01
Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.
NASA Technical Reports Server (NTRS)
Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)
2017-01-01
Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.
Sorting cells of the microalga Chlorococcum littorale with increased triacylglycerol productivity.
Cabanelas, Iago Teles Dominguez; van der Zwart, Mathijs; Kleinegris, Dorinde M M; Wijffels, René H; Barbosa, Maria J
2016-01-01
Despite extensive research in the last decades, microalgae are still only economically feasible for high valued markets. Strain improvement is a strategy to increase productivities, hence reducing costs. In this work, we focus on microalgae selection: taking advantage of the natural biological variability of species to select variations based on desired characteristics. We focused on triacylglycerol (TAG), which have applications ranging from biodiesel to high-value omega-3 fatty-acids. Hence, we demonstrated a strategy to sort microalgae cells with increased TAG productivity. 1. We successfully identified sub-populations of cells with increased TAG productivity using Fluorescence assisted cell sorting (FACS). 2. We sequentially sorted cells after repeated cycles of N-starvation, resulting in five sorted populations (S1-S5). 3. The comparison between sorted and original populations showed that S5 had the highest TAG productivity [0.34 against 0.18 g l(-1) day(-1) (original), continuous light]. 4. Original and S5 were compared in lab-scale reactors under simulated summer conditions confirming the increased TAG productivity of S5 (0.4 against 0.2 g l(-1) day(-1)). Biomass composition analyses showed that S5 produced more biomass under N-starvation because of an increase only in TAG content and, flow cytometry showed that our selection removed cells with lower efficiency in producing TAGs. All combined, our results present a successful strategy to improve the TAG productivity of Chlorococcum littorale, without resourcing to genetic manipulation or random mutagenesis. Additionally, the improved TAG productivity of S5 was confirmed under simulated summer conditions, highlighting the industrial potential of S5 for microalgal TAG production.
Armour, Kathryn L; Smith, Cheryl S; Clark, Michael R
2010-03-31
The efficacy of a therapeutic IgG molecule may be as dependent on the optimisation of the constant region to suit its intended indication as on the selection of its variable regions. A crucial effector function to be maximised or minimised is antibody-dependent cell-mediated cytotoxicity by natural killer cells. Traditional assays of ADCC activity suffer from considerable inter-donor and intra-donor variability, which makes the measurement of antibody binding to human FcgammaRIIIa, the key receptor for ADCC, an attractive alternative method of assessment. Here, we describe the development of cell lines and assays for this purpose. The transmembrane receptor, FcgammaRIIIa, requires co-expression with signal transducing subunits to prevent its degradation, unlike the homologous receptor FcgammaRIIIb that is expressed as a GPI-anchored molecule. Therefore, to simplify the production of cell lines as reliable assay components, we expressed FcgammaRIIIa as a GPI-anchored molecule. Separate, stable CHO cell lines that express either the 158F or the higher-affinity 158V allotype of FcgammaRIIIa were isolated using fluorescence-activated cell sorting. The identities of the expressed receptors were confirmed using a panel of monoclonal antibodies that distinguish between subclasses and allotypes of FcgammaRIII and the cell lines were shown to have slightly higher levels of receptor than FcgammaRIII-positive peripheral blood mononuclear cells. Because the affinity of FcgammaRIIIa for IgG is intermediate amongst the receptors that bind IgG, we were able to use these cell lines to develop flow cytometric assays to measure the binding of both complexed and monomeric immunoglobulin. Thus, by choosing the appropriate method, weakly- or strongly-binding IgG can be efficiently compared. We have quantified the difference in the binding of wildtype IgG1 and IgG3 molecules to the two functional allotypes of the receptor and report that the FcgammaRIIIa-158V-antibody interaction is 3- to 4-fold stronger that the interaction with FcgammaRIIIa-158F. Overall, these robust assays should be valuable for batch-testing clinical material as well as providing tools for improving the design of therapeutic IgG. 2010 Elsevier B.V. All rights reserved.
Identification of a distinct population of CD133+CXCR4+ cancer stem cells in ovarian cancer
Cioffi, Michele; D’Alterio, Crescenzo; Camerlingo, Rosalba; Tirino, Virginia; Consales, Claudia; Riccio, Anna; Ieranò, Caterina; Cecere, Sabrina Chiara; Losito, Nunzia Simona; Greggi, Stefano; Pignata, Sandro; Pirozzi, Giuseppe; Scala, Stefania
2015-01-01
CD133 and CXCR4 were evaluated in the NCI-60 cell lines to identify cancer stem cell rich populations. Screening revealed that, ovarian OVCAR-3, -4 and -5 and colon cancer HT-29, HCT-116 and SW620 over expressed both proteins. We aimed to isolate cells with stem cell features sorting the cells expressing CXCR4+CD133+ within ovarian cancer cell lines. The sorted population CD133+CXCR4+ demonstrated the highest efficiency in sphere formation in OVCAR-3, OVCAR-4 and OVCAR-5 cells. Moreover OCT4, SOX2, KLF4 and NANOG were highly expressed in CD133+CXCR4+ sorted OVCAR-5 cells. Most strikingly CXCR4+CD133+ sorted OVCAR-5 and -4 cells formed the highest number of tumors when inoculated in nude mice compared to CD133−CXCR4−, CD133+CXCR4−, CD133−CXCR4+ cells. CXCR4+CD133+ OVCAR-5 cells were resistant to cisplatin, overexpressed the ABCG2 surface drug transporter and migrated toward the CXCR4 ligand, CXCL12. Moreover, when human ovarian cancer cells were isolated from 37 primary ovarian cancer, an extremely variable level of CXCR4 and CD133 expression was detected. Thus, in human ovarian cancer cells CXCR4 and CD133 expression identified a discrete population with stem cell properties that regulated tumor development and chemo resistance. This cell population represents a potential therapeutic target. PMID:26020117
von Charpuis, Charlotte; Meckel, Tobias; Moroni, Anna; Thiel, Gerhard
2015-07-01
The two small and similar viral K(+) channels Kcv and Kesv are sorted in mammalian cells and yeast to different destinations. Analysis of the sorting pathways shows that Kcv is trafficking via the secretory pathway to the plasma membrane, while Kesv is inserted via the TIM/TOM complex to the inner membrane of mitochondria. Studies with Kesv mutants show that an N-terminal mitochondrial targeting sequence in this channel is neither necessary nor sufficient for sorting of Kesv the mitochondria. Instead the sorting of Kesv can be redirected from the mitochondria to the plasma membrane by an insertion of ≥2 amino acids in a position sensitive manner into the C-terminal transmembrane domain (TMD2) of this channel. The available data advocate the presence of a C-terminal sorting signal in TMD2 of Kesv channel, which is presumably not determined by the length of this domain. Copyright © 2014. Published by Elsevier Ltd.
Merrill, J.T.
An improved method of sorting biological cells in a conventional cell sorter apparatus includes generating a fluid jet containing cells to be sorted, measuring the distance between the centers of adjacent droplets in a zone thereof defined at the point where the fluid jet separates into descrete droplets, setting the distance between the center of a droplet in said separation zone and the position along said fluid jet at which the cell is optically sensed for specific characteristics to be an integral multiple of said center-to-center distance, and disabling a charger from electrically charging a specific droplet if a cell is detected by the optical sensor in a position wherein it will be in the neck area between droplets during droplet formation rather than within a predetermined distance from the droplet center.
Guzman, Raphael; De Los Angeles, Alejandro; Cheshier, Samuel; Choi, Raymond; Hoang, Stanley; Liauw, Jason; Schaar, Bruce; Steinberg, Gary
2008-04-01
Intravascular delivery of neural stem cells (NSCs) after stroke has been limited by the low efficiency of transendothelial migration. Vascular cell adhesion molecule-1 is an endothelial adhesion molecule known to be upregulated early after stroke and is responsible for the firm adhesion of inflammatory cells expressing the surface integrin, CD49d. We hypothesize that enriching for NSCs that express CD49d and injecting them into the carotid artery would improve targeted cell delivery to the injured brain. Mouse NSCs were analyzed for the expression of CD49d by fluorescence activated cell sorting. A CD49d-enriched (CD49d(+)) (>95%) and -depleted (CD49d(-); <5%) NSC population was obtained by cell sorting. C57/Bl6 mice underwent left-sided hypoxia-ischemia surgery and were assigned to receive 3 x 10(5) CD49d(+), CD49d(-) NSCs, or vehicle injection into the left common carotid artery 48 hours after stroke. Behavioral recovery was measured using a rotarod for 2 weeks after cell injection. Fluorescence activated cell sorting analysis revealed 25% CD49d(+) NSCs. In a static adhesion assay, NSCs adhered to vascular cell adhesion molecule-1 in a dose-dependent manner. Significantly more NSCs were found in the cortex, the hippocampus, and the subventricular zone in the ischemic hemisphere in animals receiving CD49d(+) NSCs as compared with CD49d(-) NSCs (P<0.05). Animals treated with CD49d(+) cells showed a significantly better behavioral recovery as compared with CD49d(-) and vehicle-treated animals. We show that enrichment of NSCs by fluorescence activated cell sorting for the surface integrin, CD49d, and intracarotid delivery promotes cell homing to the area of stroke in mice and improves behavioral recovery.
Sorting Out the Ocean Crust Deep Biosphere with Single Cell Omics Approaches
NASA Astrophysics Data System (ADS)
Orcutt, B.; D'Angelo, T.; Goordial, J.; Jones, R. M.; Carr, S. A.
2017-12-01
Although oceanic crust comprises a large habitat for subsurface life, the structure, function, and dynamics of microbial communities living on rocks in the subsurface are poorly understood. Single cell level approaches can overcome limitations of low biomass in subsurface systems. Coupled with incubation experiments with amino acid orthologs, single cell level sorting can reveal high resolution information about identity, functional potential, and growth. Leveraging collaboration with the Single Cell Genomics Center and the Facility for Aquatic Cytometry at Bigelow Laboratory, we present recent results from single cell level sorting and -omics sequencing from several crustal environments, including the Atlantis Massif and the Juan de Fuca Ridge flank. We will also highlight new experiments conducted with samples recovered from the flank of the Mid-Atlantic Ridge.
Fractionation of Exosomes and DNA using Size-Based Separation at the Nanoscale
NASA Astrophysics Data System (ADS)
Wunsch, Benjamin; Smith, Joshua; Wang, Chao; Gifford, Stacey; Brink, Markus; Bruce, Robert; Solovitzky, Gustavo; Austin, Robert; Astier, Yann
Exosomes, a key target of ``liquid biopsies'', are nano-vesicles found in nearly all biological fluids. Exosomes are secreted by eukaryotic and prokaryotic cells alike, and contain information about their originating cells, including surface proteins, cytoplasmic proteins, and nucleic acids. One challenge in studying exosome morphology is the difficulty of sorting exosomes by size and surface markers. Common separation techniques for exosomes include ultracentrifugation and ultrafiltration, for preparation of large volume samples, but these techniques often show contamination and significant heterogeneity between preparations. To date, deterministic lateral displacement (DLD) pillar arrays in silicon have proven an efficient technology to sort, separate, and enrich micron-scale particles including human parasites, eukaryotic cells, blood cells, and circulating tumor cells in blood; however, the DLD technology has never been translated to the true nanoscale, where it could function on bio-colloids such as exosomes. We have fabricated nanoscale DLD (nanoDLD) arrays capable of rapidly sorting colloids down to 20 nm in continuous flow, and demonstrated size sorting of individual exosome vesicles and dsDNA polymers, opening the potential for on-chip biomolecule separation and diagnosti
Characterization of aerosols produced by cell sorters and evaluation of containment
Holmes, Kevin L.
2011-01-01
In spite of the recognition by the flow cytometry community of potential aerosol hazards associated with cell sorting, there has been no previous study that has thoroughly characterized the aerosols that can be produced by cell sorters. In this study an Aerodynamic Particle Sizer was used to determine the concentration and aerodynamic diameter of aerosols produced by a FACS Aria II cell sorter under various conditions. Aerosol containment and evacuation was also evaluated using this novel methodology. The results showed that high concentrations of aerosols in the range of 1–3 μm can be produced in fail mode and that with decreased sheath pressure, aerosol concentration decreased and aerodynamic diameter increased. Although the engineering controls of the FACS Aria II for containment were effective, sort chamber evacuation of aerosols following a simulated nozzle obstruction was ineffective. However, simple modifications to the FACS Aria II are described that greatly improved sort chamber aerosol evacuation. The results of this study will facilitate the risk assessment of cell sorting potentially biohazardous samples by providing much needed data regarding aerosol production and containment. PMID:22052694
Seoane, Marta; Esperanza, Marta; Rioboo, Carmen; Herrero, Concepción; Cid, Ángeles
2017-03-01
Large quantities of personal care products (PCPs) are used daily and many of their chemical ingredients are subsequently released into marine environments. Cultures of the marine microalga Tetraselmis suecica were exposed for 24 h to three emerging compounds included in the main classes of PCPs: the UV filter benzophenone-3 (BP-3), the disinfectant triclosan (TCS) and the fragrance tonalide (AHTN). Concentrations tested, expressed as cellular quota (pg cell -1 ), ranged from 5 to 40 for BP-3, from 2 to 16 for TCS and from 1.2 to 2.4 for AHTN. A small cytometric panel was carried out to evaluate key cytotoxicity biomarkers including inherent cell properties, growth and metabolic activity and cytoplasmic membrane properties. BP-3 caused a significant increase in growth rate, metabolic activity and chlorophyll a fluorescence from 10 pg cell -1 . However, growth and esterase activity decreased in cells exposed to all TCS and AHTN concentrations, except the lowest ones. Also these two compounds provoked a significant swelling of cells, more pronounced in the case of TCS-exposed cells. Although all treated cells remained viable, changes in membrane potential were observed. BP-3 and AHTN caused a significant depolarization of cells from 10 to 1.6 pg cell -1 , respectively; however all TCS concentrations assayed caused a noticeable hyperpolarization of cells. Metabolic activity and cytoplasmic membrane potential were the most sensitive parameters. It can be concluded that the toxicological model used and the toxicological parameters evaluated are suitable to assess the toxicity of these emerging contaminants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Santiago-Tirado, Felipe H.; Bretscher, Anthony
2011-01-01
Cell polarity in eukaryotes requires constant sorting, packaging, and transport of membrane-bound cargo within the cell. These processes occur in two sorting hubs: the recycling endosome for incoming material, and the trans-Golgi Network for outgoing. Phosphatidylinositol 3-phosphate and 4–5 phosphate are enriched at the endocytic and exocytic sorting hubs, respectively, where they act together with small GTPases to recruit factors to segregate cargo and regulate carrier formation and transport. In this review, we summarize the current understanding of how these lipids and GTPases directly regulate membrane trafficking, emphasizing the recent discoveries of phosphatidylinositol 4-phosphate functions at the trans-Golgi Network. PMID:21764313
2014-09-01
hybrid mice show a large population of cells that fluoresce with Tomato Red and few cells that fluoresce with GFP only or GFP/ Tomato Red double positive...percent of total cells Double Negative GFP Tomato Red Double Positive 15 Figure 3. Fluorescent activated cell sorting (FACS) shows slight...Negative Tomato Red Double Positive 17 Figure 5. Fluorescent activated cell sorting (FACS) shows no K14-GFP expressing cells and slight expression of
Ravelo, Kristine M; Andersen, Natalia D; Monje, Paula V
2018-01-01
To date, magnetic-activated cell sorting (MACS) remains a powerful method to isolate distinct cell populations based on differential cell surface labeling. Optimized direct and indirect MACS protocols for cell immunolabeling are presented here as methods to divest Schwann cell (SC) cultures of contaminating cells (specifically, fibroblast cells) and isolate SC populations at different stages of differentiation. This chapter describes (1) the preparation of single-cell suspensions from established human and rat SC cultures, (2) the design and application of cell selection strategies using SC-specific (p75 NGFR , O4, and O1) and fibroblast-specific (Thy-1) markers, and (3) the characterization of both the pre- and post-sorting cell populations. A simple protocol for the growth of hybridoma cell cultures as a source of monoclonal antibodies for cell surface immunolabeling of SCs and fibroblasts is provided as a cost-effective alternative for commercially available products. These steps allow for the timely and efficient recovery of purified SC populations without compromising the viability and biological activity of the cells.
Engelmann, Péter; Hayashi, Yuya; Bodó, Kornélia; Ernszt, Dávid; Somogyi, Ildikó; Steib, Anita; Orbán, József; Pollák, Edit; Nyitrai, Miklós; Németh, Péter; Molnár, László
2016-12-01
Flow cytometry is a common approach to study invertebrate immune cells including earthworm coelomocytes. However, the link between light-scatter- and microscopy-based phenotyping remains obscured. Here we show, by means of light scatter-based cell sorting, both subpopulations (amoebocytes and eleocytes) can be physically isolated with good sort efficiency and purity confirmed by downstream morphological and cytochemical applications. Immunocytochemical analysis using anti-EFCC monoclonal antibodies combined with phalloidin staining has revealed antigenically distinct, sorted subsets. Screening of lectin binding capacity indicated wheat germ agglutinin (WGA) as the strongest reactor to amoebocytes. This is further evidenced by WGA inhibition assays that suggest high abundance of N-acetyl-d-glucosamine in amoebocytes. Post-sort phagocytosis assays confirmed the functional differences between amoebocytes and eleocytes, with the former being in favor of bacterial engulfment. This study has proved successful in linking flow cytometry and microscopy analysis and provides further experimental evidence of phenotypic and functional heterogeneity in earthworm coelomocyte subsets. Copyright © 2016 Elsevier Ltd. All rights reserved.
Application of a novel sorting system for equine mesenchymal stem cells (MSCs)
Radtke, Catherine L.; Nino-Fong, Rodolfo; Esparza Gonzalez, Blanca P.; McDuffee, Laurie A.
2014-01-01
The objective of this study was to validate non-equilibrium gravitational field-flow fractionation (GrFFF), an immunotag-less method of sorting mesenchymal stem cells (MSCs) into subpopulations, for use with MSCs derived from equine muscle tissue, periosteal tissue, bone marrow, and adipose tissue. Cells were collected from 6 young, adult horses, postmortem. Cells were isolated from left semitendinosus muscle tissue, periosteal tissue from the distomedial aspect of the right tibia, bone marrow aspirates from the fourth and fifth sternebrae, and left supragluteal subcutaneous adipose tissue. Aliquots of 800 × 103 MSCs from each tissue source were separated and injected into a ribbon-like capillary device by continuous flow (GrFFF proprietary system). Cells were sorted into 6 fractions and absorbencies [optical density (OD)] were read. Six fractions from each of the 6 aliquots were then combined to provide pooled fractions that had adequate cell numbers to seed at equal concentrations into assays. Equine muscle tissue-derived, periosteal tissue-derived, bone marrow-derived, and adipose tissue-derived mesenchymal stem cells were consistently sorted into 6 fractions that remained viable for use in further assays. Fraction 1 had more cuboidal morphology in culture when compared to the other fractions. Statistical analysis of the fraction absorbencies (OD) revealed a P-value of < 0.05 when fractions 2 and 3 were compared to fractions 1, 4, 5, and 6. It was concluded that non-equilibrium GrFFF is a valid method for sorting equine muscle tissue-derived, periosteal tissue-derived, bone marrow-derived, and adipose tissue-derived mesenchymal stem cells into subpopulations that remain viable, thus securing its potential for use in equine stem cell applications and veterinary medicine. PMID:25355998
Wang, Li; Carnegie, Graeme K.
2013-01-01
Among methods to study protein-protein interaction inside cells, Bimolecular Fluorescence Complementation (BiFC) is relatively simple and sensitive. BiFC is based on the production of fluorescence using two non-fluorescent fragments of a fluorescent protein (Venus, a Yellow Fluorescent Protein variant, is used here). Non-fluorescent Venus fragments (VN and VC) are fused to two interacting proteins (in this case, AKAP-Lbc and PDE4D3), yielding fluorescence due to VN-AKAP-Lbc-VC-PDE4D3 interaction and the formation of a functional fluorescent protein inside cells. BiFC provides information on the subcellular localization of protein complexes and the strength of protein interactions based on fluorescence intensity. However, BiFC analysis using microscopy to quantify the strength of protein-protein interaction is time-consuming and somewhat subjective due to heterogeneity in protein expression and interaction. By coupling flow cytometric analysis with BiFC methodology, the fluorescent BiFC protein-protein interaction signal can be accurately measured for a large quantity of cells in a short time. Here, we demonstrate an application of this methodology to map regions in PDE4D3 that are required for the interaction with AKAP-Lbc. This high throughput methodology can be applied to screening factors that regulate protein-protein interaction. PMID:23979513
Wang, Li; Carnegie, Graeme K
2013-08-15
Among methods to study protein-protein interaction inside cells, Bimolecular Fluorescence Complementation (BiFC) is relatively simple and sensitive. BiFC is based on the production of fluorescence using two non-fluorescent fragments of a fluorescent protein (Venus, a Yellow Fluorescent Protein variant, is used here). Non-fluorescent Venus fragments (VN and VC) are fused to two interacting proteins (in this case, AKAP-Lbc and PDE4D3), yielding fluorescence due to VN-AKAP-Lbc-VC-PDE4D3 interaction and the formation of a functional fluorescent protein inside cells. BiFC provides information on the subcellular localization of protein complexes and the strength of protein interactions based on fluorescence intensity. However, BiFC analysis using microscopy to quantify the strength of protein-protein interaction is time-consuming and somewhat subjective due to heterogeneity in protein expression and interaction. By coupling flow cytometric analysis with BiFC methodology, the fluorescent BiFC protein-protein interaction signal can be accurately measured for a large quantity of cells in a short time. Here, we demonstrate an application of this methodology to map regions in PDE4D3 that are required for the interaction with AKAP-Lbc. This high throughput methodology can be applied to screening factors that regulate protein-protein interaction.
Corrente, Francesco; Bellesi, Silvia; Metafuni, Elisabetta; Puggioni, Pier Luigi; Marietti, Sara; Ciminello, Angela Maria; Za, Tommaso; Sorà, Federica; Fianchi, Luana; Sica, Simona; De Stefano, Valerio; Chiusolo, Patrizia
2018-05-01
We performed a retrospective analysis of 88 adult patients with B-ALL diagnosed in our center by a flow-cytometric assessment. Immunophenotypic expression of leukemic cells was explored by simultaneous evaluation of positivity, percentage of expressing cells and median fluorescence intensity (MFI). BCR/ABL1 fusion transcripts were assessed by RT-PCR analysis and were identified in 36 patients (40.9%). CD10 and CD34 were positive in the totality of BCR/ABL1-positive cases. Patients with gene rearrangement had a greater frequency of CD66c, CD13 and CD33 positivity compared with BCR/ABL1-negative cases. Moreover, BCR/ABL1-positive cases exhibited a greater median percentage and MFI values of CD13, CD33, CD66c, CD10, CD34 and CD25 expressions, but a lower median percentage and MFI values of CD38 and CD22 expressions than patients without gene rearrangement. Multivariate logistic regression analysis showed that CD10, CD38 and CD13 expressions were independent predictors for the presence of BCR/ABL1 rearrangement. Predictive probabilities of molecular occurrence based on these markers are proposed. © 2017 International Clinical Cytometry Society. © 2017 International Clinical Cytometry Society.
Fluorescence lifetime measurements in flow cytometry
NASA Astrophysics Data System (ADS)
Beisker, Wolfgang; Klocke, Axel
1997-05-01
Fluorescence lifetime measurements provide insights int eh dynamic and structural properties of dyes and their micro- environment. The implementation of fluorescence lifetime measurements in flow cytometric systems allows to monitor large cell and particle populations with high statistical significance. In our system, a modulated laser beam is used for excitation and the phase shift of the fluorescence signal recorded with a fast computer controlled digital oscilloscope is processed digitally to determine the phase shift with respect to a reference beam by fast fourier transform. Total fluorescence intensity as well as other parameters can be determined simultaneously from the same fluorescence signal. We use the epi-illumination design to allow the use of high numerical apertures to collect as much light as possible to ensure detection of even weak fluorescence. Data storage and processing is done comparable to slit-scan flow cytometric data using data analysis system. The results are stored, displayed, combined with other parameters and analyzed as normal listmode data. In our report we discuss carefully the signal to noise ratio for analog and digital processed lifetime signals to evaluate the theoretical minimum fluorescence intensity for lifetime measurements. Applications to be presented include DNA staining, parameters of cell functions as well as different applications in non-mammalian cells such as algae.
Sweat, J M; Johnson, C M; Marikar, Y; Gibbs, E P
2005-12-15
An in vitro system to determine surface interleukin-2 receptor (IL-2R) expression on mitogen-stimulated peripheral blood mononuclear cells (PBMC) from free-ranging manatees, Trichechus manatus latirostris was developed. Human recombinant IL-2, conjugated with a fluorescein dye was used in conjunction with flow cytometric analysis to determine changes in surface expression of IL-2R at sequential times over a 48-h period of in vitro stimulation. Surface expression of IL-2R was detected on manatee PBMC, which also cross-reacted with an anti-feline pan T-cell marker. An expression index (EI) was calculated by comparing mitogen-activated and non-activated PBMC. Based on side- and forward-scatter properties, flow cytometric analysis showed an increase in the number of larger, more granular "lymphoblasts" following concanavalin A (Con A) stimulation. The appearance of lymphoblasts was correlated with an increase in their surface expression of IL-2 receptors. Surface IL-2R expression, in Con A-stimulated PBMC, was detected at 16 h, peaked at 24-36 h, and began to decrease by 48 h. Characterization of the IL-2R expression should provide additional information on the health status of manatees, and the effect of their sub lethal exposure to brevetoxin.
Farfán, Pamela; Lee, Jiyeon; Larios, Jorge; Sotelo, Pablo; Bu, Guojun; Marzolo, María-Paz
2013-01-01
Sorting nexin 17 (SNX17) is an adaptor protein present in EEA1-positive sorting endosomes that promotes the efficient recycling of low-density lipoprotein receptor-related protein 1 (LRP1) to the plasma membrane through recognition of the first NPxY motif in the cytoplasmic tail of this receptor. The interaction of LRP1 with SNX17 also regulates the basolateral recycling of the receptor from the basolateral sorting endosome (BSE). In contrast, megalin, which is apically distributed in polarized epithelial cells and localizes poorly to EEA1-positive sorting endosomes, does not interact with SNX17, despite containing three NPxY motifs, indicating that this motif is not sufficient for receptor recognition by SNX17. Here, we identified a cluster of 32 amino acids within the cytoplasmic domain of LRP1 that is both necessary and sufficient for SNX17 binding. To delineate the function of this SNX17-binding domain, we generated chimeric proteins in which the SNX17-binding domain was inserted into the cytoplasmic tail of megalin. This insertion mediated the binding of megalin to SNX17 and modified the cell surface expression and recycling of megalin in non-polarized cells. However, the polarized localization of chimeric megalin was not modified in polarized MDCK cells. These results provide evidence regarding the molecular and cellular mechanisms underlying the specificity of SNX17-binding receptors and the restricted function of SNX17 in the BSE. PMID:23593972
Accurately tracking single-cell movement trajectories in microfluidic cell sorting devices.
Jeong, Jenny; Frohberg, Nicholas J; Zhou, Enlu; Sulchek, Todd; Qiu, Peng
2018-01-01
Microfluidics are routinely used to study cellular properties, including the efficient quantification of single-cell biomechanics and label-free cell sorting based on the biomechanical properties, such as elasticity, viscosity, stiffness, and adhesion. Both quantification and sorting applications require optimal design of the microfluidic devices and mathematical modeling of the interactions between cells, fluid, and the channel of the device. As a first step toward building such a mathematical model, we collected video recordings of cells moving through a ridged microfluidic channel designed to compress and redirect cells according to cell biomechanics. We developed an efficient algorithm that automatically and accurately tracked the cell trajectories in the recordings. We tested the algorithm on recordings of cells with different stiffness, and showed the correlation between cell stiffness and the tracked trajectories. Moreover, the tracking algorithm successfully picked up subtle differences of cell motion when passing through consecutive ridges. The algorithm for accurately tracking cell trajectories paves the way for future efforts of modeling the flow, forces, and dynamics of cell properties in microfluidics applications.
Regeer, Ralf R; Nicke, Annette; Markovich, Daniel
2007-01-01
NaSi-1 encodes a Na(+)-sulfate cotransporter expressed on the apical membrane of renal proximal tubular cells, which is responsible for body sulfate homeostasis. Limited information is available on NaSi-1 protein structure and the mechanisms controlling its apical membrane sorting. The aims of this study were to biochemically determine the quaternary structure of the rat NaSi-1 protein and to characterize its expression in renal epithelial cell lines. Hexahistidyl-tagged NaSi-1 (NaSi-1-His) proteins expressed in Xenopus oocytes, appeared as two bands of about 60 and 75 kDa. PNGase F treatment shifted both bands to 57 kDa while endoglycosidase H treatment led to a downward shift of the lower molecular mass band only. Mutagenesis of a putative N-glycosylation site (N591S) produced a single band that was not shifted by endoglycosidase H or PNGase F, confirming a single glycosylation site at residue 591. Blue native-PAGE and cross-linking experiments revealed dimeric complexes, suggesting the native form of NaSi-1 to be a dimer. Transient transfection of EGFP/NaSi-1 in renal epithelial cells (OK, LLC-PK1 and MDCK) demonstrated apical membrane sorting, which was insensitive to tunicamycin. Transfection of the EGFP/NaSi-1 N591S glycosylation mutant also showed apical expression, suggesting N591 is not essential for apical sorting. Treatment with cholesterol depleting compounds did not disrupt apical sorting, but brefeldin A led to misrouting to the basolateral membrane, suggesting that NaSi-1 sorting is through the ER to Golgi pathway. Our data demonstrates that NaSi-1 forms a dimeric protein which is glycosylated at N591, whose sorting to the apical membrane in renal epithelial cells is brefeldin A-sensitive and independent of lipid rafts or glycosylation.
Dorfman, David M; LaPlante, Charlotte D; Li, Betty
2016-09-01
We analyzed plasma cell populations in bone marrow samples from 353 patients with possible bone marrow involvement by a plasma cell neoplasm, using FLOCK (FLOw Clustering without K), an unbiased, automated, computational approach to identify cell subsets in multidimensional flow cytometry data. FLOCK identified discrete plasma cell populations in the majority of bone marrow specimens found by standard histologic and immunophenotypic criteria to be involved by a plasma cell neoplasm (202/208 cases; 97%), including 34 cases that were negative by standard flow cytometric analysis that included clonality assessment. FLOCK identified discrete plasma cell populations in only a minority of cases negative for involvement by a plasma cell neoplasm by standard histologic and immunophenotypic criteria (38/145 cases; 26%). Interestingly, 55% of the cases negative by standard analysis, but containing a FLOCK-identified discrete plasma cell population, were positive for monoclonal gammopathy by serum protein electrophoresis and immunofixation. FLOCK-identified and quantitated plasma cell populations accounted for 3.05% of total cells on average in cases positive for involvement by a plasma cell neoplasm by standard histologic and immunophenotypic criteria, and 0.27% of total cells on average in cases negative for involvement by a plasma cell neoplasm by standard histologic and immunophenotypic criteria (p<0.0001; area under the curve by ROC analysis=0.96). The presence of a FLOCK-identified discrete plasma cell population was predictive of the presence of plasma cell neoplasia with a sensitivity of 97%, compared with only 81% for standard flow cytometric analysis, and had specificity of 74%, PPV of 84% and NPV of 95%. FLOCK analysis, which has been shown to provide useful diagnostic information for evaluating patients with suspected systemic mastocytosis, is able to identify neoplastic plasma cell populations analyzed by flow cytometry, and may be helpful in the diagnostic evaluation of bone marrow samples for involvement by plasma cell neoplasia. Copyright © 2016 Elsevier Ltd. All rights reserved.
High-throughput cell analysis and sorting technologies for clinical diagnostics and therapeutics
NASA Astrophysics Data System (ADS)
Leary, James F.; Reece, Lisa M.; Szaniszlo, Peter; Prow, Tarl W.; Wang, Nan
2001-05-01
A number of theoretical and practical limits of high-speed flow cytometry/cell sorting are important for clinical diagnostics and therapeutics. Three applications include: (1) stem cell isolation with tumor purging for minimal residual disease monitoring and treatment, (2) identification and isolation of human fetal cells from maternal blood for prenatal diagnostics and in-vitro therapeutics, and (3) high-speed library screening for recombinant vaccine production against unknown pathogens.
NASA Astrophysics Data System (ADS)
Shah, Amy T.; Cannon, Taylor M.; Higginbotham, Jim N.; Skala, Melissa C.
2016-02-01
Tumor heterogeneity poses challenges for devising optimal treatment regimens for cancer patients. In particular, subpopulations of cells can escape treatment and cause relapse. There is a need for methods to characterize tumor heterogeneity of treatment response. Cell metabolism is altered in cancer (Warburg effect), and cells use the autofluorescent cofactor NADH in numerous metabolic reactions. Previous studies have shown that microscopy measurements of NADH autofluorescence are sensitive to treatment response in breast cancer, and these techniques typically assess hundreds of cells per group. An alternative approach is flow cytometry, which measures fluorescence on a single-cell level and is attractive for characterizing tumor heterogeneity because it achieves high-throughput analysis and cell sorting in millions of cells per group. Current applications for flow cytometry rely on staining with fluorophores. This study characterizes flow cytometry measurements of NADH autofluorescence in breast cancer cells. Preliminary results indicate flow cytometry of NADH is sensitive to cyanide perturbation, which inhibits oxidative phosphorylation, in nonmalignant MCF10A cells. Additionally, flow cytometry is sensitive to higher NADH intensity for HER2-positive SKBr3 cells compared with triple-negative MDA-MB-231 cells. These results agree with previous microscopy studies. Finally, a mixture of SKBr3 and MDA-MB-231 cells were sorted into each cell type using NADH intensity. Sorted cells were cultured, and microscopy validation showed the expected morphology for each cell type. Ultimately, flow cytometry could be applied to characterize tumor heterogeneity based on treatment response and sort cell subpopulations based on metabolic profile. These achievements could enable individualized treatment strategies and improved patient outcomes.
Isolation and characterization of mouse innate lymphoid cells.
Halim, Timotheus Y F; Takei, Fumio
2014-08-01
Innate lymphoid cells (ILCs) are rare populations of cytokine-producing lymphocytes and are divided into three groups, namely ILC1, ILC2, and ILC3, based on the cytokines that they produce. They comprise less than 1% of lymphocytes in mucosal tissues and express no unique cell surface markers. Therefore, they can only be identified by combinations of multiple cell surface markers and further characterized by cytokine production in vitro. Thus, multicolor flow cytometry is the only reliable method to purify and characterize ILCs. Here we describe the methods for cell preparation, flow cytometric analysis, and purification of murine ILC2 and ILC3. Copyright © 2014 John Wiley & Sons, Inc.
Brom-de-Luna, Joao Gatto; Canesin, Heloísa Siqueira; Wright, Gus; Hinrichs, Katrin
2018-03-01
Nuclear transfer using somatic cells from frozen semen (FzSC) would allow cloning of animals for which no other genetic material is available. Horses are one of the few species for which cloning is commercially feasible; despite this, there is no information available on the culture of equine FzSC. After preliminary trials on equine FzSC, recovered by density-gradient centrifugation, resulted in no growth, we hypothesized that sperm in the culture system negatively affected cell proliferation. Therefore, we evaluated culture of FzSC isolated using fluorescence-assisted cell sorting. In Exp. 1, sperm were labeled using antibodies to a sperm-specific antigen, SP17, and unlabeled cells were collected. This resulted in high sperm contamination. In Exp. 2, FzSC were labeled using an anti-MHC class I antibody. This resulted in an essentially pure population of FzSC, 13-25% of which were nucleated. Culture yielded no proliferation in any of nine replicates. In Exp. 3, 5 × 10 3 viable fresh, cultured horse fibroblasts were added to the frozen-thawed, washed semen, then this suspension was labeled and sorted as for Exp. 2. The enriched population had a mean of five sperm per recovered somatic cell; culture yielded formation of monolayers. In conclusion, an essentially pure population of equine FzSC could be obtained using sorting for presence of MHC class I antigens. No equine FzSC grew in culture; however, the proliferation of fibroblasts subjected to the same processing demonstrated that the labeling and sorting methods, and the presence of few sperm in culture, were compatible with cell viability. Copyright © 2017 Elsevier B.V. All rights reserved.
Canonical Wnt Signaling as a Specific Marker of Normal and Tumorigenic Mammary Stem Cells
2013-02-01
get enough sorted mammary cells for the transplantation experiments. We are currently working with our Flow Cytometry Core to sort Lin-/CD24+/CD49...activity our flow cytometry data suggests t here is a 2-fold increase in the number of FOG+ MEC’s in BATgal animals compared to contro ls which...this populat ion of cells is enriched for stem cell activity. Flow cytometry will determine the percentage of FOG+ cells within pre-neoplastic BATgai
Macrophage Sortilin Promotes LDL Uptake, Foam Cell Formation, and Atherosclerosis
Patel, Kevin M.; Strong, Alanna; Tohyama, Junichiro; Jin, Xueting; Morales, Carlos R.; Billheimer, Jeffery; Millar, John; Kruth, Howard; Rader, Daniel J.
2015-01-01
Rationale Non-coding gene variants at the SORT1 locus are strongly associated with LDL-C levels as well as with coronary artery disease (CAD). SORT1 encodes a protein called sortilin, and hepatic sortilin modulates LDL metabolism by targeting apoB-containing lipoproteins to the lysosome. Sortilin is also expressed in macrophages, but its role in macrophage uptake of LDL and in atherosclerosis independent of plasma LDL-C levels is unknown. Objective To determine the effect of macrophage sortilin expression on LDL uptake, foam cell formation, and atherosclerosis. Methods and Results We crossed Sort1−/− mice onto a ‘humanized’ Apobec1−/−; hAPOB Tg background and determined that Sort1 deficiency on this background had no effect on plasma LDL-C levels but dramatically reduced atherosclerosis in the aorta and aortic root. In order to test whether this effect was a result of macrophage sortilin deficiency, we transplanted Sort1−/−;LDLR−/− or Sort1+/+;LDLR−/− bone marrow into Ldlr−/− mice and observed a similar reduction in atherosclerosis in mice lacking hematopoetic sortilin without an effect on plasma LDL-C levels. In an effort to determine the mechanism by which hematopoetic sortilin deficiency reduced atherosclerosis, we found no effect of sortilin deficiency on macrophage recruitment or LPS-induced cytokine release in vivo. In contrast, sortilin deficient macrophages had significantly reduced uptake of native LDL ex vivo and reduced foam cell formation in vivo, whereas sortilin overexpression in macrophages resulted in increased LDL uptake and foam cell formation. Conclusions Macrophage sortilin deficiency protects against atherosclerosis by reducing macrophage uptake of LDL. Sortilin-mediated uptake of native LDL into macrophages may be an important mechanism of foam cell formation and contributor to atherosclerosis development. PMID:25593281
Birchler, Axel; Berger, Mischa; Jäggin, Verena; Lopes, Telma; Etzrodt, Martin; Misun, Patrick Mark; Pena-Francesch, Maria; Schroeder, Timm; Hierlemann, Andreas; Frey, Olivier
2016-01-19
Open microfluidic cell culturing devices offer new possibilities to simplify loading, culturing, and harvesting of individual cells or microtissues due to the fact that liquids and cells/microtissues are directly accessible. We present a complete workflow for microfluidic handling and culturing of individual cells and microtissue spheroids, which is based on the hanging-drop network concept: The open microfluidic devices are seamlessly combined with fluorescence-activated cell sorting (FACS), so that individual cells, including stem cells, can be directly sorted into specified culturing compartments in a fully automated way and at high accuracy. Moreover, already assembled microtissue spheroids can be loaded into the microfluidic structures by using a conventional pipet. Cell and microtissue culturing is then performed in hanging drops under controlled perfusion. On-chip drop size control measures were applied to stabilize the system. Cells and microtissue spheroids can be retrieved from the chip by using a parallelized transfer method. The presented methodology holds great promise for combinatorial screening of stem-cell and multicellular-spheroid cultures.
Use of LysoTracker dyes: a flow cytometric study of autophagy.
Chikte, Shaheen; Panchal, Neelam; Warnes, Gary
2014-02-01
The flow cytometric use of LysoTracker dyes was employed to investigate the autophagic process and to compare this with the upregulation of autophagy marker, the microtubule-associated protein LC3B. Although the mechanism of action of LysoTracker dyes is not fully understood, they have been used in microscopy to image acidic spherical organelles, and their use in flow cytometry has not been thoroughly investigated in the study of autophagy. This investigation uses numerous autophagy-inducing agents including chloroquine (CQ), rapamycin, low serum (<1%) RPMI, and nutrient starvation to induce autophagy in Jurkat T-cell leukemia and K562 erythromyeloid cell lines. LC3B showed an increase with CQ treatment although this was different to LysoTracker signals in terms of dose and time. Rapamycin, low serum (<1%) RPMI, and nutrient starvation induction of autophagy also induced an increase in LysoTracker and LC3B signals. CQ also induced apoptosis in cell lines, which was blocked by pan-caspase inhibitor z-VAD resulting in a reduction in cells undergoing apoptosis and a subsequent upregulation of autophagic markers LC3B and lysosomal dye signals. Given that LC3B and LysoTracker are measuring different biological events in the autophagic process, they surprisingly both upregulated during autophagic process. This study, however, shows that although LysoTracker dyes do not specifically label lysosomes or autophagosomes within the cell, they allow the simultaneous measurement of an autophagy-related process and other live-cell functions, which are not possible with the standard LC3B antibody-labeling technique. This method has the advantage of other live-cell LCB-GFP-tagged experiments in that be used to analyze patient cells as well as easier to use and significantly less costly. Copyright © 2013 International Society for Advancement of Cytometry.
Interleukin-15 receptor blockade in non-human primate kidney transplantation.
Haustein, Silke; Kwun, Jean; Fechner, John; Kayaoglu, Ayhan; Faure, Jean-Pierre; Roenneburg, Drew; Torrealba, Jose; Knechtle, Stuart J
2010-04-27
Interleukin (IL)-15 is a chemotactic factor to T cells. It induces proliferation and promotes survival of activated T cells. IL-15 receptor blockade in mouse cardiac and islet allotransplant models has led to long-term engraftment and a regulatory T-cell environment. This study investigated the efficacy of IL-15 receptor blockade using Mut-IL-15/Fc in an outbred non-human primate model of renal allotransplantation. Male cynomolgus macaque donor-recipient pairs were selected based on ABO typing, major histocompatibility complex class I typing, and carboxy-fluorescein diacetate succinimidyl ester-based mixed lymphocyte responses. Once animals were assigned to one of six treatment groups, they underwent renal transplantation and bilateral native nephrectomy. Serum creatinine level was monitored twice weekly and as indicated, and protocol biopsies were performed. Rejection was defined as a increase in serum creatinine to 1.5 mg/dL or higher and was confirmed histologically. Complete blood counts and flow cytometric analyses were performed periodically posttransplant; pharmacokinetic parameters of Mut-IL-15/Fc were assessed. Compared with control animals, Mut-IL-15/Fc-treated animals did not demonstrate increased graft survival despite adequate serum levels of Mut-IL-15/Fc. Flow cytometric analysis of white blood cell subgroups demonstrated a decrease in CD8 T-cell and natural killer cell numbers, although this did not reach statistical significance. Interestingly, two animals receiving Mut-IL-15/Fc developed infectious complications, but no infection was seen in control animals. Renal pathology varied widely. Peritransplant IL-15 receptor blockade does not prolong allograft survival in non-human primate renal transplantation; however, it reduces the number of CD8 T cells and natural killer cells in the peripheral blood.
NASA Astrophysics Data System (ADS)
Retnakumari, Archana; Jayasimhan, Jasusri; Chandran, Parwathy; Menon, Deepthy; Nair, Shantikumar; Mony, Ullas; Koyakutty, Manzoor
2011-07-01
Protein stabilized gold nanoclusters (Au-NCs) are biocompatible, near-infrared (NIR) emitting nanosystems having a wide range of biomedical applications. Here, we report the development of a Au-NC based targeted fluorescent nano-bioprobe for the flow-cytometric detection of acute myeloid leukaemia (AML) cells. Au-NCs with ~ 25-28 atoms showing bright red-NIR fluorescence (600-750 nm) and average size of ~ 0.8 nm were prepared by bovine serum albumin assisted reduction-cum-stabilization in aqueous phase. The protein protected clusters were conjugated with monoclonal antibody against CD33 myeloid antigen, which is overexpressed in ~ 99.2% of the primitive population of AML cells, as confirmed by immunophenotyping using flow cytometry. Au-NC-CD33 conjugates having average size of ~ 12 nm retained bright fluorescence over an extended duration of ~ a year, as the albumin protein protects Au-NCs against degradation. Nanotoxicity studies revealed excellent biocompatibility of Au-NC conjugates, as they showed no adverse effect on the cell viability and inflammatory response. Target specificity of the conjugates for detecting CD33 expressing AML cells (KG1a) in flow cytometry showed specific staining of ~ 95.4% of leukaemia cells within 1-2 h compared to a non-specific uptake of ~ 8.2% in human peripheral blood cells (PBMCs) which are CD33low. The confocal imaging also demonstrated the targeted uptake of CD33 conjugated Au-NCs by leukaemia cells, thus confirming the flow cytometry results. This study demonstrates that novel nano-bioprobes can be developed using protein protected fluorescent nanoclusters of Au for the molecular receptor targeted flow cytometry based detection and imaging of cancer cells.
[Establishment of the retrovirus-mediated murine model with MLL-AF9 leukemia].
Xu, Si-Miao; Yang, Yang; Zhou, Mi; Zhao, Xue-Jiao; Qin, Yu; Zhang, Pei-Ling; Yuan, Rui-Feng; Zhou, Jian-Feng; Fang, Yong
2013-10-01
This study was purposed to establish a retrovirus-mediated murine model with MLL-AF9 leukemia, so as to provide a basis for further investigation of the pathogenesis and therapeutic strategy of MLL associated leukemia. Murine (CD45.2) primary hematopoietic precursor positively selected for expression of the progenitor marker c-Kit by means of MACS were transduced with a retrovirus carrying MLL-AF9 fusion gene. After cultured in vitro, the transduced cells were injected intravenously through the tail vein into the lethally irradiated mice (CD45.1). PCR, flow cytometry and morphological observation were employed to evaluate the murine leukemia model system. The results showed that MLL-AF9 fusion gene was expressed in the infected cells, and the cells had a dramatically enhanced potential to generate myeloid colonies with primitive and immature morphology. Flow cytometric analysis revealed that the immortalized cells highly expressed myeloid lineage surface markers Gr-1 and Mac-1. Moreover, the expression levels of Hoxa9 and Meis1 mRNA were significantly higher in the MLL-AF9 cells than that in control. The mice transplanted with MLL-AF9 cells displayed typical signs of leukemia within 6-12 weeks. Extensive infiltration leukemic cells was observed in the Wright-Giemsa stained peripheral blood smear and bone marrow, and also in the histology of liver and spleen. Flow cytometric analysis of the bone marrow and spleen cells demonstrated that the CD45.2 populations expressed highly myeloid markers Gr-1 and Mac-1. The leukemic mice died within 12 weeks. It is concluded that the retrovirus-mediated murine model with MLL-AF9 leukemia is successfully established, which can be applied in the subsequent researches.
Liver repopulation by c-Met-positive stem/progenitor cells isolated from the developing rat liver.
Suzuki, Atsushi; Zheng, Yun-wen; Fukao, Katashi; Nakauchi, Hiromitsu; Taniguchi, Hideki
2004-01-01
Self-renewing stem cells responsible for tissue or organ development and regeneration have been recently described. To isolate such cells using flow cytometry, it should be required to find molecules expressing on their cell surfaces. We have previously reported that, on cells fulfilling the criteria for hepatic stem cells, the hepatocyte growth factor receptor c-Met is expressed specifically in the developing mouse liver. In this study, to determine whether c-Met is an essential marker for hepatic stem cells in other animal strains, we examined the potential for in vivo liver-repopulation in sorted fetal rat-derived c-Met+ cells using the retrorsine model. Using flow cytometry and monoclonal antibodies for c-Met and leukocyte common antigen CD45, fetal rat liver cells were fractionated according to the expression of these molecules. Then, cells in each cell subpopulation were sorted and transplanted into the retrorsine-treated adult rats with two-third hepatectomy. At 9 months post transplant, frequency of liver-repopulation was examined by qualitative and quantitative analyses. When we transplanted c-Met+ CD45- sorted cells, many donor-derived cells formed colonies that included mature hepatocytes expressing albumin and containing abundant glycogen in their cytoplasm. In contrast, c-Met- cells and CD45+ cells could not repopulate damaged recipient livers. High enrichment of liver-repopulating cells was conducted by sorting of c-Met+ cells from the developing rat liver. This result suggests that c-Met/HGF interaction plays a crucial role for stem cell growth, differentiation, and self-renewal in rat liver organogenesis. Since the c-Met is also expressed in the fetal mouse-derived hepatic stem cells, this molecule could be expected to be an essential marker for such cell population in the various animal strains, including human.
The emerging role of retromer in neuroprotection.
McMillan, Kirsty J; Korswagen, Hendrick C; Cullen, Peter J
2017-08-01
Efficient sorting and transportation of integral membrane proteins, such as ion channels, nutrient transporters, signalling receptors, cell-cell and cell-matrix adhesion molecules is essential for the function of cellular organelles and hence organism development and physiology. Retromer is a master controller of integral membrane protein sorting and transport through one of the major sorting station within eukaryotic cells, the endosomal network. Subtle de-regulation of retromer is an emerging theme in the pathoetiology of Parkinson's disease. Here we summarise recent advances in defining the neuroprotective role of retromer and how its de-regulation may contribute to Parkinson's disease by interfering with: lysosomal health and protein degradation, association with accessory proteins including the WASH complex and mitochondrial health. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Gallic acid induced apoptotic events in HCT-15 colon cancer cells.
Subramanian, Aruna Priyadharshni; Jaganathan, Saravana Kumar; Mandal, Mahitosh; Supriyanto, Eko; Muhamad, Ida Idayu
2016-04-21
To investigate the inhibitory action of diet-derived phenolic compound gallic acid (GA) against HCT-15 colon cancer cells. The antiproliferative effect of GA against colon cancer cells was determined by performing thiazolyl blue tetrazolium bromide (MTT) assay. The colony forming ability of GA treated colon cancer cells was evaluated using the colony forming assay. The cell cycle changes induced by GA in HCT-15 cells were analyzed by propidium iodide staining. Levels of reactive oxygen species (ROS) and mitochondrial membrane potential of HCT-15 exposed to GA was assessed using 2',7'-dichlorfluorescein-diacetate and rhodamine-123 respectively, with the help of flow cytometry. Morphological changes caused by GA treatment in the colon cancer cells were identified by scanning electron microscope and photomicrograph examination. Apoptosis was confirmed using flow cytometric analysis of GA treated HCT-15 cells after staining with Yo-Pro-1. MTT assay results illustrated that GA has an inhibitory effect on HCT-15 cells with IC50 value of 740 μmol/L. A time-dependent inhibition of colony formation was evident with GA treatment. Cell cycle arrest was evident from the accumulation of GA treated HCT-15 cells at sub-G1 phase (0.98 ± 1.03 vs 58.01 ± 2.05) with increasing exposure time. Flow cytometric analysis of GA treated HCT-15 cells depicted early events associated with apoptosis like lipid layer breakage and fall in mitochondrial membrane potential apart from an increase in the generation of ROS which were in a time dependent manner. SEM and photomicrograph images of the GA-treated cells displayed membrane blebbing and cell shrinking characteristics of apoptosis. Further apoptosis confirmation by Yo-Pro-1 staining also showed the time-dependent increase of apoptotic cells after treatment. These results show that GA induced ROS dependent apoptosis and inhibited the growth of colon cancer cells.
Gallic acid induced apoptotic events in HCT-15 colon cancer cells
Subramanian, Aruna Priyadharshni; Jaganathan, Saravana Kumar; Mandal, Mahitosh; Supriyanto, Eko; Muhamad, Ida Idayu
2016-01-01
AIM: To investigate the inhibitory action of diet-derived phenolic compound gallic acid (GA) against HCT-15 colon cancer cells. METHODS: The antiproliferative effect of GA against colon cancer cells was determined by performing thiazolyl blue tetrazolium bromide (MTT) assay. The colony forming ability of GA treated colon cancer cells was evaluated using the colony forming assay. The cell cycle changes induced by GA in HCT-15 cells were analyzed by propidium iodide staining. Levels of reactive oxygen species (ROS) and mitochondrial membrane potential of HCT-15 exposed to GA was assessed using 2’,7’-dichlorfluorescein-diacetate and rhodamine-123 respectively, with the help of flow cytometry. Morphological changes caused by GA treatment in the colon cancer cells were identified by scanning electron microscope and photomicrograph examination. Apoptosis was confirmed using flow cytometric analysis of GA treated HCT-15 cells after staining with Yo-Pro-1. RESULTS: MTT assay results illustrated that GA has an inhibitory effect on HCT-15 cells with IC50 value of 740 μmol/L. A time-dependent inhibition of colony formation was evident with GA treatment. Cell cycle arrest was evident from the accumulation of GA treated HCT-15 cells at sub-G1 phase (0.98 ± 1.03 vs 58.01 ± 2.05) with increasing exposure time. Flow cytometric analysis of GA treated HCT-15 cells depicted early events associated with apoptosis like lipid layer breakage and fall in mitochondrial membrane potential apart from an increase in the generation of ROS which were in a time dependent manner. SEM and photomicrograph images of the GA-treated cells displayed membrane blebbing and cell shrinking characteristics of apoptosis. Further apoptosis confirmation by Yo-Pro-1 staining also showed the time-dependent increase of apoptotic cells after treatment. CONCLUSION: These results show that GA induced ROS dependent apoptosis and inhibited the growth of colon cancer cells. PMID:27099438
NASA Astrophysics Data System (ADS)
Leary, James F.; McLaughlin, Scott R.
1995-04-01
A high-speed, 11-parameter, 6-color fluorescence, laser flow cytometer/cell sorter with a number of special and unique features has been built for ultrasensitive detection and isolation of rare cells for clinical diagnostics and therapeutics. The software for real-time data acquisition and sort control, written as C++ programming language modules with a WindowsTM graphical user interface, runs on a 66-MHz 80486 computer joined by an extended bus to 23 sophisticated multi-layered boards of special data acquisition and sorting electronics. Special features include: high-speed (> 100,000 cells/sec) real-time data classification module (U.S. Patent 5,204,884 (1993)); real-time principal component cell sorting; multi-queue signal-processing system with multiple hardware and software event buffers to reduce instrument dead time, LUT charge-pulse definition, high-resolution `flexible' sorting for optimal yield/purity sort strategies (U.S. Patent 5,199,576); pre-focusing optical wavelength correction for a second laser beam; and two trains of three fluorescence detectors-- each adjustable for spatial separation to interrogate only one of two laser beams, syringe- driven or pressure-driven fluidics, and time-windowed parameters. The system has been built to be both expandable and versatile through the use of LUT's and a modular hardware and software design. The instrument is especially useful at detection and isolation of rare cell subpopulations for which our laboratory is well-known. Cell subpopulations at frequencies as small as 10-7 have been successfully studied with this system. Current applications in clinical diagnostics and therapeutics include detection and isolation of (1) fetal cells from material blood for prenatal diagnosis of birth defects, (2) hematopoietic stem and precursor cells for autologous bone marrow transplantation, (3) metastatic breast cancer cells for molecular characterization, and (4) HIV-infected maternal cells in newborn blood to study mother-to-infant vertical transmission of AIDS.
Bancone, Germana; Kalnoky, Michael; Chu, Cindy S; Chowwiwat, Nongnud; Kahn, Maria; Malleret, Benoit; Wilaisrisak, Pornpimon; Rénia, Laurent; Domingo, Gonzalo J; Nosten, Francois
2017-08-29
Glucose-6-phosphate dehydrogenase (G6PD) activity is essential for redox equilibrium of red blood cells (RBCs) and, when compromised, the RBCs are more susceptible to haemolysis. 8-aminoquinolines (primaquine and tafenoquine) are used for the radical curative treatment of Plasmodium vivax malaria and can cause haemolysis in G6PD deficient subjects. Haemolytic risk is dependent on treatment dose and patient G6PD status but ultimately it correlates with the number of G6PD deficient RBCs. The G6PD spectrophotometric assay reliably identifies deficient subjects but is less reliable in heterozygous females, especially when other blood conditions are present. In this work we analysed samples with a range of G6PD phenotypes and haematologic conditions from 243 healthy volunteers of Asian or African-American heritage using both the spectrophotomeric assay and the G6PD flow-cytometric assay. Overall 18.5% of subjects (29.3% of Asian females) presented with anaemia, associated with decreased RBCs volume (MCV) and reticulocytosis; the flow-cytometric assay showed good correlation with the spectrophotometric assay (Pearson's r 0.918-0.957) and was less influenced by haemoglobin concentration, number of RBCs and number of reticulocytes. This resulted in more precise quantification of the number of G6PD deficient RBCs and presumably higher predictive power of drug induced haemolytic risk.
Park, Borae G; Park, Chan-Jeoung; Yoon, Chan-Hee; Jang, Seongsoo; Chi, Hyun-Sook; Ryu, Min-Hee; Kim, Sang-We
2013-05-01
The recently developed Cytodiff flow cytometric system (Beckman Coulter, Miami, FL) enables leukocyte analysis using a single immunophenotyping panel tube composed of six markers and five colors and that can detect 16 leukocyte subpopulations. We performed a preliminary investigation of whether changes in any of 16 leukocyte differentials were associated with survival and treatment outcomes in patients with metastatic carcinoma or not. We measured 16 leukocyte differential counts using the Cytodiff flow cytometric system in peripheral blood samples from 40 patients with metastatic malignancy (27 stomach cancer and 13 lung cancer) before chemotherapy and at 15 day intervals after chemotherapy for 2 months. A higher percentage of CD16+ cytotoxic NK+T lymphocytes was found to be the only significant prognostic factor among by Cox regression analysis and a higher percentage of CD16+ cytotoxic NK+T lymphocytes (>5.0%) showed significantly longer survival outcomes by Kaplan-Meier analysis (P = 0.003). The Cytodiff system enables 16 leukocyte subpopulations in a one tube assay and also can operate with only small amounts of sample, although it cannot differentiate NK cells from T lymphocytes. Hence, the monitoring of all leukocyte subpopulations using Cytodiff flow cytometry may be a helpful prognostic tool for patients with metastatic carcinoma. Copyright © 2012 International Clinical Cytometry Society.
Stone, Jacquelyn A; Vemulapati, Bhadra M; Bradel-Tretheway, Birgit; Aguilar, Hector C
2016-12-01
The paramyxoviral family contains many medically important viruses, including measles virus, mumps virus, parainfluenza viruses, respiratory syncytial virus, human metapneumovirus, and the deadly zoonotic henipaviruses Hendra and Nipah virus (NiV). To both enter host cells and spread from cell to cell within infected hosts, the vast majority of paramyxoviruses utilize two viral envelope glycoproteins: the attachment glycoprotein (G, H, or hemagglutinin-neuraminidase [HN]) and the fusion glycoprotein (F). Binding of G/H/HN to a host cell receptor triggers structural changes in G/H/HN that in turn trigger F to undergo a series of conformational changes that result in virus-cell (viral entry) or cell-cell (syncytium formation) membrane fusion. The actual regions of G/H/HN and F that interact during the membrane fusion process remain relatively unknown though it is generally thought that the paramyxoviral G/H/HN stalk region interacts with the F head region. Studies to determine such interactive regions have relied heavily on coimmunoprecipitation approaches, whose limitations include the use of detergents and the micelle-mediated association of proteins. Here, we developed a flow-cytometric strategy capable of detecting membrane protein-protein interactions by interchangeably using the full-length form of G and a soluble form of F, or vice versa. Using both coimmunoprecipitation and flow-cytometric strategies, we found a bidentate interaction between NiV G and F, where both the stalk and head regions of NiV G interact with F. This is a new structural-biological finding for the paramyxoviruses. Additionally, our studies disclosed regions of the NiV G and F glycoproteins dispensable for the G and F interactions. Nipah virus (NiV) is a zoonotic paramyxovirus that causes high mortality rates in humans, with no approved treatment or vaccine available for human use. Viral entry into host cells relies on two viral envelope glycoproteins: the attachment (G) and fusion (F) glycoproteins. Binding of G to the ephrinB2 or ephrinB3 cell receptors triggers conformational changes in G that in turn cause F to undergo conformational changes that result in virus-host cell membrane fusion and viral entry. It is currently unknown, however, which specific regions of G and F interact during membrane fusion. Past efforts to determine the interacting regions have relied mainly on coimmunoprecipitation, a technique with some pitfalls. We developed a flow-cytometric assay to study membrane protein-protein interactions, and using this assay we report a bidentate interaction whereby both the head and stalk regions of NiV G interact with NiV F, a new finding for the paramyxovirus family. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Yan, Mingmin; Mao, Shanping; Dong, Huimin; Liu, Baohui; Zhang, Qian; Pan, Gaofeng; Fu, Zhiping
2012-01-01
PC12 cell injury was induced using 20 μM amyloid β-protein 25–35 to establish a model of Alzheimer's disease. The cells were then treated with 5, 10, and 25 μM Schisandrin B. Methylthiazolyldiphenyl-tetrazolium bromide assays and Hoechst 33342 staining results showed that with increasing Schisandrin B concentration, the survival rate of PC12 cells injured by amyloid β-protein 25–35 gradually increased and the rate of apoptosis gradually decreased. Reverse transcription-PCR, immunocytochemical staining and western blot results showed that with increasing Schisandrin B concentration, the mRNA and protein expression of vacuolar protein sorting 35 and amyloid precursor protein were gradually decreased. Vacuolar protein sorting 35 and amyloid precursor protein showed a consistent trend for change. These findings suggest that 5, 10, and 25 μM Schisandrin B antagonizes the cellular injury induced by amyloid β-protein 25–35 in a dose-dependent manner. This may be caused by decreasing the expression of vacuolar protein sorting 35 and amyloid precursor protein. PMID:25745458
Wildenberg, Manon E; Duijvestein, Marjolijn; Westera, Liset; van Viegen, Tanja; Buskens, Christianne J; van der Bilt, Jarmila D W; Stitt, Larry; Jairath, Vipul; Feagan, Brian G; Vande Casteele, Niels
2018-06-01
Flow cytometric (FC) analysis of intestinal tissue biopsies requires prompt cell isolation and processing to prevent cell death and generate valid data. We examined the effect of storage conditions prior to cell isolation and FC on viable cell yield and the proportions of immune cell phenotypes from intestinal biopsies. Biopsies (N = 224) from inflamed or non-inflamed ileal and/or colonic tissue from three patients with Crohn's disease were processed and analyzed immediately in duplicate, or stored under different conditions. Cells were isolated and stained for specific markers, followed by FC. Decreased mean live CD45+ cell counts were observed after storage of biopsies at -80 °C dimethyl sulfoxide (DMSO)/citrate buffer compared with immediate processing (1794.3 vs. 19,672.7; p = 0.006]). A non-significant decrease in CD45+ live cell count occurred after storage at -20 °C in DMSO/citrate buffer and cell yield was adequate for subsequent analysis. CD3+ cell proportions were significantly lower after storage at 4 °C in complete medium for 48 h compared with immediate analysis. Mean CD14+ cell proportions were significantly higher after storage of biopsies at -80 °C in DMSO/citrate buffer compared with immediate analysis (2.61% vs. 1.31%, p = 0.007). CD4+, CD8+ and CD4+/CD8+ cell proportions were unaffected by storage condition. Storage of intestinal tissue biopsies at -20 °C in DMSO/citrate buffer for up to 48 h resulted in sufficient viable cell yield for FC analysis without affecting subsequent marker-positive cell proportions. These findings support the potential shipping and storage of intestinal biopsies for centralized FC analysis in multicenter clinical trials. Copyright © 2018 Elsevier B.V. All rights reserved.
Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays.
Saliba, Antoine-Emmanuel; Saias, Laure; Psychari, Eleni; Minc, Nicolas; Simon, Damien; Bidard, François-Clément; Mathiot, Claire; Pierga, Jean-Yves; Fraisier, Vincent; Salamero, Jean; Saada, Véronique; Farace, Françoise; Vielh, Philippe; Malaquin, Laurent; Viovy, Jean-Louis
2010-08-17
We propose a unique method for cell sorting, "Ephesia," using columns of biofunctionalized superparamagnetic beads self-assembled in a microfluidic channel onto an array of magnetic traps prepared by microcontact printing. It combines the advantages of microfluidic cell sorting, notably the application of a well controlled, flow-activated interaction between cells and beads, and those of immunomagnetic sorting, notably the use of batch-prepared, well characterized antibody-bearing beads. On cell lines mixtures, we demonstrated a capture yield better than 94%, and the possibility to cultivate in situ the captured cells. A second series of experiments involved clinical samples--blood, pleural effusion, and fine needle aspirates--issued from healthy donors and patients with B-cell hematological malignant tumors (leukemia and lymphoma). The immunophenotype and morphology of B-lymphocytes were analyzed directly in the microfluidic chamber, and compared with conventional flow cytometry and visual cytology data, in a blind test. Immunophenotyping results using Ephesia were fully consistent with those obtained by flow cytometry. We obtained in situ high resolution confocal three-dimensional images of the cell nuclei, showing intranuclear details consistent with conventional cytological staining. Ephesia thus provides a powerful approach to cell capture and typing allowing fully automated high resolution and quantitative immunophenotyping and morphological analysis. It requires at least 10 times smaller sample volume and cell numbers than cytometry, potentially increasing the range of indications and the success rate of microbiopsy-based diagnosis, and reducing analysis time and cost.
Tracking heavy water (D2O) incorporation for identifying and sorting active microbial cells
Berry, David; Mader, Esther; Lee, Tae Kwon; Woebken, Dagmar; Wang, Yun; Zhu, Di; Palatinszky, Marton; Schintlmeister, Arno; Schmid, Markus C.; Hanson, Buck T.; Shterzer, Naama; Mizrahi, Itzhak; Rauch, Isabella; Decker, Thomas; Bocklitz, Thomas; Popp, Jürgen; Gibson, Christopher M.; Fowler, Patrick W.; Huang, Wei E.; Wagner, Michael
2015-01-01
Microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. In this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D2O) combined with Raman microspectroscopy. Incorporation of D2O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labeling pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D2O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D2O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics. PMID:25550518
Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays
Saliba, Antoine-Emmanuel; Saias, Laure; Psychari, Eleni; Minc, Nicolas; Simon, Damien; Bidard, François-Clément; Mathiot, Claire; Pierga, Jean-Yves; Fraisier, Vincent; Salamero, Jean; Saada, Véronique; Farace, Françoise; Vielh, Philippe; Malaquin, Laurent; Viovy, Jean-Louis
2010-01-01
We propose a unique method for cell sorting, “Ephesia,” using columns of biofunctionalized superparamagnetic beads self-assembled in a microfluidic channel onto an array of magnetic traps prepared by microcontact printing. It combines the advantages of microfluidic cell sorting, notably the application of a well controlled, flow-activated interaction between cells and beads, and those of immunomagnetic sorting, notably the use of batch-prepared, well characterized antibody-bearing beads. On cell lines mixtures, we demonstrated a capture yield better than 94%, and the possibility to cultivate in situ the captured cells. A second series of experiments involved clinical samples—blood, pleural effusion, and fine needle aspirates— issued from healthy donors and patients with B-cell hematological malignant tumors (leukemia and lymphoma). The immunophenotype and morphology of B-lymphocytes were analyzed directly in the microfluidic chamber, and compared with conventional flow cytometry and visual cytology data, in a blind test. Immunophenotyping results using Ephesia were fully consistent with those obtained by flow cytometry. We obtained in situ high resolution confocal three-dimensional images of the cell nuclei, showing intranuclear details consistent with conventional cytological staining. Ephesia thus provides a powerful approach to cell capture and typing allowing fully automated high resolution and quantitative immunophenotyping and morphological analysis. It requires at least 10 times smaller sample volume and cell numbers than cytometry, potentially increasing the range of indications and the success rate of microbiopsy-based diagnosis, and reducing analysis time and cost. PMID:20679245
Assessment of cell death mechanisms triggered by 177Lu-anti-CD20 in lymphoma cells.
Azorín-Vega, E; Rojas-Calderón, E; Martínez-Ventura, B; Ramos-Bernal, J; Serrano-Espinoza, L; Jiménez-Mancilla, N; Ordaz-Rosado, D; Ferro-Flores, G
2018-08-01
The aim of this research was to evaluate the cell cycle redistribution and activation of early and late apoptotic pathways in lymphoma cells after treatment with 177 Lu-anti-CD20. Experimental and computer models were used to calculate the radiation absorbed dose to cancer cell nuclei. The computer model (Monte Carlo, PENELOPE) consisted of twenty spheres representing cells with an inner sphere (cell nucleus) embedded in culture media. Radiation emissions of the radiopharmaceutical located in cell membranes and in culture media were considered for nuclei dose calculations. Flow cytometric analyses demonstrated that doses as low as 4.8Gy are enough to induce cell cycle arrest and activate late apoptotic pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.
Farfán, Pamela; Lee, Jiyeon; Larios, Jorge; Sotelo, Pablo; Bu, Guojun; Marzolo, María-Paz
2013-07-01
Sorting nexin 17 (SNX17) is an adaptor protein present in early endosomal antigen 1 (EEA1)-positive sorting endosomes that promotes the efficient recycling of low-density lipoprotein receptor-related protein 1 (LRP1) to the plasma membrane through recognition of the first NPxY motif in the cytoplasmic tail of this receptor. The interaction of LRP1 with SNX17 also regulates the basolateral recycling of the receptor from the basolateral sorting endosome (BSE). In contrast, megalin, which is apically distributed in polarized epithelial cells and localizes poorly to EEA1-positive sorting endosomes, does not interact with SNX17, despite containing three NPxY motifs, indicating that this motif is not sufficient for receptor recognition by SNX17. Here, we identified a cluster of 32 amino acids within the cytoplasmic domain of LRP1 that is both necessary and sufficient for SNX17 binding. To delineate the function of this SNX17-binding domain, we generated chimeric proteins in which the SNX17-binding domain was inserted into the cytoplasmic tail of megalin. This insertion mediated the binding of megalin to SNX17 and modified the cell surface expression and recycling of megalin in non-polarized cells. However, the polarized localization of chimeric megalin was not modified in polarized Madin-Darby canine kidney cells. These results provide evidence regarding the molecular and cellular mechanisms underlying the specificity of SNX17-binding receptors and the restricted function of SNX17 in the BSE. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Label-free cell separation and sorting in microfluidic systems
Gossett, Daniel R.; Weaver, Westbrook M.; Mach, Albert J.; Hur, Soojung Claire; Tse, Henry Tat Kwong; Lee, Wonhee; Amini, Hamed
2010-01-01
Cell separation and sorting are essential steps in cell biology research and in many diagnostic and therapeutic methods. Recently, there has been interest in methods which avoid the use of biochemical labels; numerous intrinsic biomarkers have been explored to identify cells including size, electrical polarizability, and hydrodynamic properties. This review highlights microfluidic techniques used for label-free discrimination and fractionation of cell populations. Microfluidic systems have been adopted to precisely handle single cells and interface with other tools for biochemical analysis. We analyzed many of these techniques, detailing their mode of separation, while concentrating on recent developments and evaluating their prospects for application. Furthermore, this was done from a perspective where inertial effects are considered important and general performance metrics were proposed which would ease comparison of reported technologies. Lastly, we assess the current state of these technologies and suggest directions which may make them more accessible. Figure A wide range of microfluidic technologies have been developed to separate and sort cells by taking advantage of differences in their intrinsic biophysical properties PMID:20419490
An extensible infrastructure for fully automated spike sorting during online experiments.
Santhanam, Gopal; Sahani, Maneesh; Ryu, Stephen; Shenoy, Krishna
2004-01-01
When recording extracellular neural activity, it is often necessary to distinguish action potentials arising from distinct cells near the electrode tip, a process commonly referred to as "spike sorting." In a number of experiments, notably those that involve direct neuroprosthetic control of an effector, this cell-by-cell classification of the incoming signal must be achieved in real time. Several commercial offerings are available for this task, but all of these require some manual supervision per electrode, making each scheme cumbersome with large electrode counts. We present a new infrastructure that leverages existing unsupervised algorithms to sort and subsequently implement the resulting signal classification rules for each electrode using a commercially available Cerebus neural signal processor. We demonstrate an implementation of this infrastructure to classify signals from a cortical electrode array, using a probabilistic clustering algorithm (described elsewhere). The data were collected from a rhesus monkey performing a delayed center-out reach task. We used both sorted and unsorted (thresholded) action potentials from an array implanted in pre-motor cortex to "predict" the reach target, a common decoding operation in neuroprosthetic research. The use of sorted spikes led to an improvement in decoding accuracy of between 3.6 and 6.4%.
Mesenchymal Stem Cells for Vascular Target Discovery in Breast Cancer-Associated Angiogenesis
2004-09-01
Matrigel plug and sorted by flow cytometry . Sorting of these retrieved cells based on co-expression of the GFP marker and cell- surface endothelial...express the green fluorescent protein (GFP) and clonal MSC populations can be isolated and phenotypically and genotypically analyzed by flow cytometry ...monoclonal populations of these GFP+ murine MSCs and conducted flow cytometry analysis to determine their phenotype. Specifically, we determined if
Early Detection of NSCLC Using Stromal Markers in Peripheral Blood
2016-09-01
circulating myeloid cells, flow cytometry, RNA -sequencing, expression profiling. 3. ACCOMPLISHMENTS: What were the major goals of the project...Subtask 2: Flow cytometry sorting of circulating myeloid cells. Subtask 3: RNA -Sequencing Subtask 4: RNA -seq data analysis Subtask 5: Feasible RT-PCR...accomplished the patient recruitment, flow cytometry sorting of circulating myeloid cells, RNA -sequencing of the samples. During the RNA - seq data analysis, we
Rab1a regulates sorting of early endocytic vesicles
Mukhopadhyay, Aparna; Quiroz, Jose A.
2014-01-01
We previously reported that Rab1a is associated with asialoorosomucoid (ASOR)-containing early endocytic vesicles, where it is required for their microtubule-based motility. In Rab1a knockdown (KD) cell lines, ASOR failed to segregate from its receptor and, consequently, did not reach lysosomes for degradation, indicating a defect in early endosome sorting. Although Rab1 is required for Golgi/endoplasmic reticulum trafficking, this process was unaffected, likely due to retained expression of Rab1b in these cells. The present study shows that Rab1a has a more general role in endocytic vesicle processing that extends to EGF and transferrin (Tfn) trafficking. Compared with results in control Huh7 cells, EGF accumulated in aggregates within Rab1a KD cells, failing to reach lysosomal compartments. Tfn, a prototypical example of recycling cargo, accumulated in a Rab11-mediated slow-recycling compartment in Rab1a KD cells, in contrast to control cells, which sort Tfn into a fast-recycling Rab4 compartment. These data indicate that Rab1a is an important regulator of early endosome sorting for multiple cargo species. The effectors and accessory proteins recruited by Rab1a to early endocytic vesicles include the minus-end-directed kinesin motor KifC1, while others remain to be discovered. PMID:24407591
Flow cytometric and morphological analyses of Pinus pinaster somatic embryogenesis.
Marum, Liliana; Loureiro, João; Rodriguez, Eleazar; Santos, Conceição; Oliveira, M Margarida; Miguel, Célia
2009-09-25
An approach combining morphological profiling and flow cytometric analysis was used to assess genetic stability during the several steps of somatic embryogenesis in Pinus pinaster. Embryogenic cell lines of P. pinaster were established from immature zygotic embryos excised from seeds obtained from open-pollinated trees. During the maturation stage, phenotype of somatic embryos was characterized as being either normal or abnormal. Based upon the prevalent morphological traits, different types of abnormal embryos underwent further classification and quantification. Nuclear DNA content of maritime pine using the zygotic embryos was estimated to be 57.04 pg/2C, using propidium iodide flow cytometry. According to the same methodology, no significant differences (P< or =0.01) in DNA ploidy were detected among the most frequently observed abnormal phenotypes, embryogenic cell lines, zygotic and normal somatic embryos, and somatic embryogenesis-derived plantlets. Although the differences in DNA ploidy level do not exclude the occurrence of a low level of aneuploidy, the results obtained point to the absence of major changes in ploidy level during the somatic embryogenesis process of this economically important species. Therefore, our primary goal of true-to-typeness was assured at this level.
Macroecological patterns of phytoplankton in the northwestern North Atlantic Ocean.
Li, W K W
2002-09-12
Many issues in biological oceanography are regional or global in scope; however, there are not many data sets of extensive areal coverage for marine plankton. In microbial ecology, a fruitful approach to large-scale questions is comparative analysis wherein statistical data patterns are sought from different ecosystems, frequently assembled from unrelated studies. A more recent approach termed macroecology characterizes phenomena emerging from large numbers of biological units by emphasizing the shapes and boundaries of statistical distributions, because these reflect the constraints on variation. Here, I use a set of flow cytometric measurements to provide macroecological perspectives on North Atlantic phytoplankton communities. Distinct trends of abundance in picophytoplankton and both small and large nanophytoplankton underlaid two patterns. First, total abundance of the three groups was related to assemblage mean-cell size according to the 3/4 power law of allometric scaling in biology. Second, cytometric diversity (an ataxonomic measure of assemblage entropy) was maximal at intermediate levels of water column stratification. Here, intermediate disturbance shapes diversity through an equitable distribution of cells in size classes, from which arises a high overall biomass. By subsuming local fluctuations, macroecology reveals meaningful patterns of phytoplankton at large scales.
Trafficking to the Apical and Basolateral Membranes in Polarized Epithelial Cells
Stoops, Emily H.
2014-01-01
Renal epithelial cells must maintain distinct protein compositions in their apical and basolateral membranes in order to perform their transport functions. The creation of these polarized protein distributions depends on sorting signals that designate the trafficking route and site of ultimate functional residence for each protein. Segregation of newly synthesized apical and basolateral proteins into distinct carrier vesicles can occur at the trans-Golgi network, recycling endosomes, or a growing assortment of stations along the cellular trafficking pathway. The nature of the specific sorting signal and the mechanism through which it is interpreted can influence the route a protein takes through the cell. Cell type–specific variations in the targeting motifs of a protein, as are evident for Na,K-ATPase, demonstrate a remarkable capacity to adapt sorting pathways to different developmental states or physiologic requirements. This review summarizes our current understanding of apical and basolateral trafficking routes in polarized epithelial cells. PMID:24652803
Labarrière, Nathalie; Gervois, Nadine; Bonnin, Annabelle; Bouquié, Régis; Jotereau, Francine; Lang, François
2008-02-01
Choosing a reliable source of tumor-specific T lymphocytes and an efficient method to isolate these cells still remains a critical issue in adoptive cellular therapy (ACT). In this study, we assessed the capacity of MHC/peptide based immunomagnetic sorting followed by polyclonal T cell expansion to derive pure polyclonal and tumor-reactive Melan-A specific T cell populations from melanoma patient's PBMC and TIL. We first demonstrated that this approach was extremely efficient and reproducible. We then used this procedure to compare PBMC and TIL-derived cells from three melanoma patients in terms of avidity for Melan-A A27L analog, Melan-A(26-35)and Melan-A(27-35), tumor reactivity (lysis and cytokine production) and repertoire. Regardless of their origin, i.e., fresh PBMC, peptide stimulated PBMC or TIL, all sorted populations (from the three patients) were cytotoxic against HLA-A2+ melanoma cell lines expressing Melan-A. Although some variability in peptide avidity, lytic activity and cytokine production was observed between populations of different origins in a given patient, it differed from one patient to another and thus no correlation could be drawn between T cell source and reactivity. Analysis of Vbeta usage within the sorted populations showed the recurrence of Vbeta3 and Vbeta14 subfamilies in the three patients but differences in the rest of the Melan-A repertoire. In addition, in two patients, we observed major repertoire differences between populations sorted from the three sources. We especially documented that in vitro peptide stimulation of PBMC, used to facilitate the sort by enriching in specific T lymphocytes, could significantly alter their repertoire and reactivity towards tumor cells. We conclude that PBMC which are easily obtained from all melanoma patients, can be as good a source as TIL to derive high amounts of tumor-reactive Melan-A specific T cells, with this selection/amplification procedure. However, the conditions of peptide stimulation should be improved to prevent a possible loss of reactive clonotypes.
Assi, Mohamad; Dauguet, Nicolas; Jacquemin, Patrick
2018-01-01
The isolation of ribonucleic acid (RNA) suitable for gene expression studies is challenging in the pancreas, due to its high ribonuclease activity. This is even more complicated during pancreatitis, a condition associated with inflammation and fibrosis. Our aim was to implement a time-effective and reproducible protocol to isolate high quality RNA from specific pancreatic cell subtypes, in normal and inflammatory conditions. We used two genetically engineered mouse models (GEMM), Ela-CreER/YFP and Sox9-CreER/YFP, to isolate acinar and ductal cells, respectively. To induce pancreatitis, mice received a caerulein treatment (125 μg/kg) for 8 and 72 h. We alternatively used EGTA and calcium buffers that contain collagenase P (0.6 mg/mL) to rapidly digest the pancreas into individual cells. Most of the cells from normal and injured pancreas were single-dissociated, exhibited a round morphology and did not incorporate trypan blue dye. Cell suspensions from Ela- and Sox9-CreER/YFP pancreas were then sorted by flow cytometry to isolate the YFP-positive acinar and ductal cells, respectively. Sorted cells kept a round shape and emitted fluorescence detected by the 38 HE green fluorescence filter. RNA was isolated by column-based purification approach. The RNA integrity number (RIN) was high in sorted acinar cell fractions treated with or without caerulein (8.6 ± 0.17 and 8.4 ± 0.09, respectively), compared to the whole pancreas fraction (4.8 ± 1.1). Given the low number of sorted ductal cells, the RIN value was slightly lower compared to acini (7.4 ± 0.4). Quantitative-PCR experiments indicated that sorted acinar and ductal cells express the specific acinar and ductal markers, respectively. Additionally, RNA preparations from caerulein-treated acinar cells were free from significant contamination with immune cell RNA. We thus validated the DIE (Digestion, Isolation, and Extraction)-RNA tool as a reproducible and efficient protocol to isolate pure acinar and ductal cells in vivo and to extract high quality RNA from these cells. PMID:29535635
Assi, Mohamad; Dauguet, Nicolas; Jacquemin, Patrick
2018-01-01
The isolation of ribonucleic acid (RNA) suitable for gene expression studies is challenging in the pancreas, due to its high ribonuclease activity. This is even more complicated during pancreatitis, a condition associated with inflammation and fibrosis. Our aim was to implement a time-effective and reproducible protocol to isolate high quality RNA from specific pancreatic cell subtypes, in normal and inflammatory conditions. We used two genetically engineered mouse models (GEMM), Ela-CreER/YFP and Sox9-CreER/YFP, to isolate acinar and ductal cells, respectively. To induce pancreatitis, mice received a caerulein treatment (125 μg/kg) for 8 and 72 h. We alternatively used EGTA and calcium buffers that contain collagenase P (0.6 mg/mL) to rapidly digest the pancreas into individual cells. Most of the cells from normal and injured pancreas were single-dissociated, exhibited a round morphology and did not incorporate trypan blue dye. Cell suspensions from Ela- and Sox9-CreER/YFP pancreas were then sorted by flow cytometry to isolate the YFP-positive acinar and ductal cells, respectively. Sorted cells kept a round shape and emitted fluorescence detected by the 38 HE green fluorescence filter. RNA was isolated by column-based purification approach. The RNA integrity number (RIN) was high in sorted acinar cell fractions treated with or without caerulein (8.6 ± 0.17 and 8.4 ± 0.09, respectively), compared to the whole pancreas fraction (4.8 ± 1.1). Given the low number of sorted ductal cells, the RIN value was slightly lower compared to acini (7.4 ± 0.4). Quantitative-PCR experiments indicated that sorted acinar and ductal cells express the specific acinar and ductal markers, respectively. Additionally, RNA preparations from caerulein-treated acinar cells were free from significant contamination with immune cell RNA. We thus validated the DIE (Digestion, Isolation, and Extraction)-RNA tool as a reproducible and efficient protocol to isolate pure acinar and ductal cells in vivo and to extract high quality RNA from these cells.
Detection of early changes in lung cell cytology by flow-systems analysis techniques. [Rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinkamp, J.A.; Wilson, J.S.; Svitra, Z.V.
1980-03-01
Ongoing experiments designed to develop automated flow-analysis methods for assaying damage to pulmonary lavage cells in experimental animals exposed by inhalation to environmental pollutants are summarized. Pulmonary macrophages were characterized on their ability to phagocytize polystyrene latex fluorescent spheres. Lung cells consisting primarily of macrophages and leukocytes were analyzed for fluorescence (phagocytosis of spheres) and size using flow cytometric methods. Studies also concentrated on combining phagocytosis with other cellular parameters (DNA content, cell viability, and B-glucuronidase activity). As baseline studies are completed in normal animals, experimental animals will be exposed to gaseous and particulate environmental pollutants. (ERB
Yamada, Mitsuhiro; Kubo, Hiroshi; Ota, Chiharu; Takahashi, Toru; Tando, Yukiko; Suzuki, Takaya; Fujino, Naoya; Makiguchi, Tomonori; Takagi, Kiyoshi; Suzuki, Takashi; Ichinose, Masakazu
2013-09-24
The excess and persistent accumulation of fibroblasts due to aberrant tissue repair results in fibrotic diseases such as idiopathic pulmonary fibrosis. Recent reports have revealed significant changes in microRNAs during idiopathic pulmonary fibrosis and evidence in support of a role for microRNAs in myofibroblast differentiation and the epithelial-mesenchymal transition in the context of fibrosis. It has been reported that microRNA-21 is up-regulated in myofibroblasts during fibrosis and promotes transforming growth factor-beta signaling by inhibiting Smad7. However, expression changes in microRNA-21 and the role of microRNA-21 in epithelial-mesenchymal transition during lung fibrosis have not yet been defined. Lungs from saline- or bleomycin-treated C57BL/6 J mice and lung specimens from patients with idiopathic pulmonary fibrosis were analyzed. Enzymatic digestions were performed to isolate single lung cells. Lung epithelial cells were isolated by flow cytometric cell sorting. The expression of microRNA-21 was analyzed using both quantitative PCR and in situ hybridization. To induce epithelial-mesenchymal transition in culture, isolated mouse lung alveolar type II cells were cultured on fibronectin-coated chamber slides in the presence of transforming growth factor-β, thus generating conditions that enhance epithelial-mesenchymal transition. To investigate the role of microRNA-21 in epithelial-mesenchymal transition, we transfected cells with a microRNA-21 inhibitor. Total RNA was isolated from the freshly isolated and cultured cells. MicroRNA-21, as well as mRNAs of genes that are markers of alveolar epithelial or mesenchymal cell differentiation, were quantified using quantitative PCR. The lung epithelial cells isolated from the bleomycin-induced lung fibrosis model system had decreased expression of epithelial marker genes, whereas the expression of mesenchymal marker genes was increased. MicroRNA-21 was significantly upregulated in isolated lung epithelial cells during bleomycin-induced lung fibrosis and human idiopathic pulmonary fibrosis. MicroRNA-21 was also upregulated in the cultured alveolar epithelial cells under the conditions that enhance epithelial-mesenchymal transition. Exogenous administration of a microRNA-21 inhibitor prevented the increased expression of vimentin and alpha-smooth muscle actin in cultured primary mouse alveolar type II cells under culture conditions that induce epithelial-mesenchymal transition. Our experiments demonstrate that microRNA-21 is increased in lung epithelial cells during lung fibrosis and that it promotes epithelial-mesenchymal transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Assar, Osama; Muschel, Ruth J.; Mantoni, Tine S.
2009-11-15
Purpose: A subpopulation of cancer stem-like cells (CSLC) is hypothesized to exist in different cancer cell lines and to mediate radioresistance in solid tumors. Methods and Materials: Cells were stained for CSLC markers and sorted (fluorescence-activated cell sorter/magnetic beads) to compare foci and radiosensitivity of phosphorylated histone H2AX at Ser 139 (gamma-H2AX) in sorted vs. unsorted populations in eight cell lines from different organs. CSLC properties were examined using anchorage-independent growth and levels of activated Notch1. Validation consisted of testing tumorigenicity and postirradiation enrichment of CSLC in xenograft tumors. Results: The quantity of CSLC was generally in good agreement withmore » primary tumors. CSLC from MDA-MB-231 (breast) and Panc-1 and PSN-1 (both pancreatic) cells had fewer residual gamma-H2AX foci than unsorted cells, pointing to radioresistance of CSLC. However, only MDA-MB-231 CSLC were more radioresistant than unsorted cells. Furthermore, MDA-MB-231 CSLC showed enhanced anchorage-independent growth and overexpression of activated Notch1 protein. The expression of cancer stem cell surface markers in the MDA-MB-231 xenograft model was increased after exposure to fractionated radiation. In contrast to PSN-1 cells, a growth advantage for MDA-MB-231 CSLC xenograft tumors was found compared to tumors arising from unsorted cells. Conclusions: CSLC subpopulations showed no general radioresistant phenotype, despite the quantities of CSLC subpopulations shown to correspond relatively well in other reports. Likewise, CSLC characteristics were found in some but not all of the tested cell lines. The reported problems in testing for CSLC in cell lines may be overcome by additional techniques, beyond sorting for markers.« less
2008-06-01
Geoffrey M. Wahl, Ph.D. CONTRACTING ORGANIZATION: The Salk Institute for Biological Studies La Jolla, CA 92037-1099...PERFORMING ORGANIZATION REPORT NUMBER The Salk Institute for Biological Studies La Jolla, CA 92037-1099 9. SPONSORING...validated the use of a micro- volume cell sorter ( Celula , Inc.). This instrument is capable of sorting as few as 150 GFP positive cells from a sample
Shlamkovich, Tomer; Aharon, Lidan; Barton, William A; Papo, Niv
2017-05-16
In many human cancers, the receptor tyrosine kinase (RTK) Tie2 plays important roles in mediating proliferation, survival, migration and angiogenesis. Thus, molecules that could potently inhibit activation of the Tie2 receptor would have a significant impact on cancer therapy. Nevertheless, attempts to develop Tie2-targeted inhibitors have met with little success, and there is currently no FDA-approved therapeutic selectively targeting Tie2. We used a combinatorial protein engineering approach to develop a new generation of angiopoietin (Ang)2-derived Tie2 antagonists as potential cancer therapeutics and as tools to study angiogenesis. The construct for designing a yeast surface display (YSD) library of potential antagonists was an Ang2 binding domain (Ang2-BD) that retains Tie2 binding ability but prevents ligand multimerization and receptor dimerization and activation. This mutant library was then screened by quantitative high-throughput flow cytometric sorting to identify Ang2-BD variants with increased expression, stability and affinity to Tie2. The selected variants were recombinantly expressed and showed high affinity to soluble and cellular Tie2 and strongly inhibited both Tie2 phosphorylation and endothelial capillary tube formation and cell invasion compared to the parental Ang2-BD. The significance of the study lies in the insight it provides into the sequence-structure-function relationships and mechanism of action of the antagonistic Ang mutants. The approach of using a natural protein ligand as a molecular scaffold for engineering high-affinity agents can be applied to other ligands to create functional protein antagonists against additional biomedical targets.
Automated single cell sorting and deposition in submicroliter drops
NASA Astrophysics Data System (ADS)
Salánki, Rita; Gerecsei, Tamás; Orgovan, Norbert; Sándor, Noémi; Péter, Beatrix; Bajtay, Zsuzsa; Erdei, Anna; Horvath, Robert; Szabó, Bálint
2014-08-01
Automated manipulation and sorting of single cells are challenging, when intact cells are needed for further investigations, e.g., RNA or DNA sequencing. We applied a computer controlled micropipette on a microscope admitting 80 PCR (Polymerase Chain Reaction) tubes to be filled with single cells in a cycle. Due to the Laplace pressure, fluid starts to flow out from the micropipette only above a critical pressure preventing the precise control of drop volume in the submicroliter range. We found an anomalous pressure additive to the Laplace pressure that we attribute to the evaporation of the drop. We have overcome the problem of the critical dropping pressure with sequentially operated fast fluidic valves timed with a millisecond precision. Minimum drop volume was 0.4-0.7 μl with a sorting speed of 15-20 s per cell. After picking NE-4C neuroectodermal mouse stem cells and human primary monocytes from a standard plastic Petri dish we could gently deposit single cells inside tiny drops. 94 ± 3% and 54 ± 7% of the deposited drops contained single cells for NE-4C and monocytes, respectively. 7.5 ± 4% of the drops contained multiple cells in case of monocytes. Remaining drops were empty. Number of cells deposited in a drop could be documented by imaging the Petri dish before and after sorting. We tuned the adhesion force of cells to make the manipulation successful without the application of microstructures for trapping cells on the surface. We propose that our straightforward and flexible setup opens an avenue for single cell isolation, critically needed for the rapidly growing field of single cell biology.
Duarte, José M; Barbier, Içvara; Schaerli, Yolanda
2017-11-17
Synthetic biologists increasingly rely on directed evolution to optimize engineered biological systems. Applying an appropriate screening or selection method for identifying the potentially rare library members with the desired properties is a crucial step for success in these experiments. Special challenges include substantial cell-to-cell variability and the requirement to check multiple states (e.g., being ON or OFF depending on the input). Here, we present a high-throughput screening method that addresses these challenges. First, we encapsulate single bacteria into microfluidic agarose gel beads. After incubation, they harbor monoclonal bacterial microcolonies (e.g., expressing a synthetic construct) and can be sorted according their fluorescence by fluorescence activated cell sorting (FACS). We determine enrichment rates and demonstrate that we can measure the average fluorescent signals of microcolonies containing phenotypically heterogeneous cells, obviating the problem of cell-to-cell variability. Finally, we apply this method to sort a pBAD promoter library at ON and OFF states.
Mollet, Mike; Godoy-Silva, Ruben; Berdugo, Claudia; Chalmers, Jeffrey J
2008-06-01
Fluorescence activated cell sorting, FACS, is a widely used method to sort subpopulations of cells to high purities. To achieve relatively high sorting speeds, FACS instruments operate by forcing suspended cells to flow in a single file line through a laser(s) beam(s). Subsequently, this flow stream breaks up into individual drops which can be charged and deflected into multiple collection streams. Previous work by Ma et al. (2002) and Mollet et al. (2007; Biotechnol Bioeng 98:772-788) indicates that subjecting cells to hydrodynamic forces consisting of both high extensional and shear components in micro-channels results in significant cell damage. Using the fluid dynamics software FLUENT, computer simulations of typical fluid flow through the nozzle of a BD FACSVantage indicate that hydrodynamic forces, quantified using the scalar parameter energy dissipation rate, are similar in the FACS nozzle to levels reported to create significant cell damage in micro-channels. Experimental studies in the FACSVantage, operated under the same conditions as the simulations confirmed significant cell damage in two cell lines, Chinese Hamster Ovary cells (CHO) and THP1, a human acute monocytic leukemia cell line.
Flow cytometric detection of micronuclei by combined staining of DNA and membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wessels, J.M.; Nuesse, M.
1995-03-01
A new staining method is presented for flow cytometric measurement of micronuclei (MN) in cell cultures and human lymphocytes using membrane-specific fluorescent dyes in addition to DNA staining. Several combinations of fluorescent membrane and DNA dyes were studied for a better discrimination of MN from debris in a suspension of nuclei and micronuclei. For staining of membranes, the lipophilic dyes 2-hydroxyethyl-7,12,17-tris(methoxyethyl)porphycene (HEPn) and 1,6-diphenyl-1,3,5-hexatriene (DPH) were used in combination with ethidium bromide (EB), proflavine (PF), and Hoechst 33258 (HO). Due to their spectral properties, HO or EB combined with HEPn were not as suitable for the discrimination of MN frommore » debris as was HEPn in combination with PF. With HEPn in combination with PF, however, additional noise was found at low fluorescence intensities, probably due to free fluorescent dye molecules in the solution. The optimal simultaneous staining of membranes and DNA was obtained using a combination of DPH and EB. The induction of MN in Chinese hamster and mouse NIH-3T3 cells by UV-B illumination was studied with this new staining technique. UV-B illumination (280-360 nm) induced MN in both cell lines. Chinese hamster cells were found to be more sensitive to these wavelengths. Illumination with wavelengths above 360 nm did not induce MN in either cell line. The results obtained from human lymphocytes using the combination of EB or DPH were comparable to the results obtained with the combination of EB and HO. 23 refs., 7 figs.« less
Determination of chitin content in fungal cell wall: an alternative flow cytometric method.
Costa-de-Oliveira, Sofia; Silva, Ana P; Miranda, Isabel M; Salvador, Alexandre; Azevedo, Maria M; Munro, Carol A; Rodrigues, Acácio G; Pina-Vaz, Cidália
2013-03-01
The conventional methods used to evaluate chitin content in fungi, such as biochemical assessment of glucosamine release after acid hydrolysis or epifluorescence microscopy, are low throughput, laborious, time-consuming, and cannot evaluate a large number of cells. We developed a flow cytometric assay, efficient, and fast, based on Calcofluor White staining to measure chitin content in yeast cells. A staining index was defined, its value was directly related to chitin amount and taking into consideration the different levels of autofluorecence. Twenty-two Candida spp. and four Cryptococcus neoformans clinical isolates with distinct susceptibility profiles to caspofungin were evaluated. Candida albicans clinical isolate SC5314, and isogenic strains with deletions in chitin synthase 3 (chs3Δ/chs3Δ) and genes encoding predicted GlycosylPhosphatidylInositol (GPI)-anchored proteins (pga31Δ/Δ and pga62Δ/Δ), were used as controls. As expected, the wild-type strain displayed a significant higher chitin content (P < 0.001) than chs3Δ/chs3Δ and pga31Δ/Δ especially in the presence of caspofungin. Ca. parapsilosis, Ca. tropicalis, and Ca. albicans showed higher cell wall chitin content. Although no relationship between chitin content and antifungal drug susceptibility phenotype was found, an association was established between the paradoxical growth effect in the presence of high caspofungin concentrations and the chitin content. This novel flow cytometry protocol revealed to be a simple and reliable assay to estimate cell wall chitin content of fungi. Copyright © 2013 International Society for Advancement of Cytometry.
The use of flow cytometry to examine calcium signalling by TRPV1 in mixed cell populations.
Assas, Bakri M; Abdulaal, Wesam H; Wakid, Majed H; Zakai, Haytham A; Miyan, J; Pennock, J L
2017-06-15
Flow cytometric analysis of calcium mobilisation has been in use for many years in the study of specific receptor engagement or isolated cell:cell communication. However, calcium mobilisation/signaling is key to many cell functions including apoptosis, mobility and immune responses. Here we combine multiplex surface staining of whole spleen with Indo-1 AM to visualise calcium mobilisation and examine calcium signaling in a mixed immune cell culture over time. We demonstrate responses to a TRPV1 agonist in distinct cell subtypes without the need for cell separation. Multi parameter staining alongside Indo-1 AM to demonstrate calcium mobilization allows the study of real time calcium signaling in a complex environment. Copyright © 2017. Published by Elsevier Inc.
Homann, Stefanie; Hofmann, Christian; Gorin, Aleksandr M.; Nguyen, Huy Cong Xuan; Huynh, Diana; Hamid, Phillip; Maithel, Neil; Yacoubian, Vahe; Mu, Wenli; Kossyvakis, Athanasios; Sen Roy, Shubhendu; Yang, Otto Orlean
2017-01-01
Transfection is one of the most frequently used techniques in molecular biology that is also applicable for gene therapy studies in humans. One of the biggest challenges to investigate the protein function and interaction in gene therapy studies is to have reliable monospecific detection reagents, particularly antibodies, for all human gene products. Thus, a reliable method that can optimize transfection efficiency based on not only expression of the target protein of interest but also the uptake of the nucleic acid plasmid, can be an important tool in molecular biology. Here, we present a simple, rapid and robust flow cytometric method that can be used as a tool to optimize transfection efficiency at the single cell level while overcoming limitations of prior established methods that quantify transfection efficiency. By using optimized ratios of transfection reagent and a nucleic acid (DNA or RNA) vector directly labeled with a fluorochrome, this method can be used as a tool to simultaneously quantify cellular toxicity of different transfection reagents, the amount of nucleic acid plasmid that cells have taken up during transfection as well as the amount of the encoded expressed protein. Finally, we demonstrate that this method is reproducible, can be standardized and can reliably and rapidly quantify transfection efficiency, reducing assay costs and increasing throughput while increasing data robustness. PMID:28863132
A Quartz Crystal Microbalance Immunosensor for Stem Cell Selection and Extraction
Costanzo, Salvatore; Zambrano, Gerardo; Mauro, Marco; Battaglia, Raffaele; Ferrini, Gianluca; Nastri, Flavia; Pavone, Vincenzo
2017-01-01
A cost-effective immunosensor for the detection and isolation of dental pulp stem cells (DPSCs) based on a quartz crystal microbalance (QCM) has been developed. The recognition mechanism relies on anti-CD34 antibodies, DPSC-specific monoclonal antibodies that are anchored on the surface of the quartz crystals. Due to its high specificity, real time detection, and low cost, the proposed technology has a promising potential in the field of cell biology, for the simultaneous detection and sorting of stem cells from heterogeneous cell samples. The QCM surface was properly tailored through a biotinylated self-assembled monolayer (SAM). The biotin–avidin interaction was used to immobilize the biotinylated anti-CD34 antibody on the gold-coated quartz crystal. After antibody immobilization, a cellular pellet, with a mixed cell population, was analyzed; the results indicated that the developed QCM immunosensor is highly specific, being able to detect and sort only CD34+ cells. Our study suggests that the proposed technology can detect and efficiently sort any kind of cell from samples with high complexity, being simple, selective, and providing for more convenient and time-saving operations. PMID:29182568
Øbro, Nina F; Ryder, Lars P; Madsen, Hans O; Andersen, Mette K; Lausen, Birgitte; Hasle, Henrik; Schmiegelow, Kjeld; Marquart, Hanne V
2012-01-01
Reduction in minimal residual disease, measured by real-time quantitative PCR or flow cytometry, predicts prognosis in childhood B-cell precursor acute lymphoblastic leukemia. We explored whether cells reported as minimal residual disease by flow cytometry represent the malignant clone harboring clone-specific genomic markers (53 follow-up bone marrow samples from 28 children with B-cell precursor acute lymphoblastic leukemia). Cell populations (presumed leukemic and non-leukemic) were flow-sorted during standard flow cytometry-based minimal residual disease monitoring and explored by PCR and/or fluorescence in situ hybridization. We found good concordance between flow cytometry and genomic analyses in the individual flow-sorted leukemic (93% true positive) and normal (93% true negative) cell populations. Four cases with discrepant results had plausible explanations (e.g. partly informative immunophenotype and antigen modulation) that highlight important methodological pitfalls. These findings demonstrate that with sufficient experience, flow cytometry is reliable for minimal residual disease monitoring in B-cell precursor acute lymphoblastic leukemia, although rare cases require supplementary PCR-based monitoring.
Iterative sorting reveals CD133+ and CD133- melanoma cells as phenotypically distinct populations.
Grasso, Carole; Anaka, Matthew; Hofmann, Oliver; Sompallae, Ramakrishna; Broadley, Kate; Hide, Winston; Berridge, Michael V; Cebon, Jonathan; Behren, Andreas; McConnell, Melanie J
2016-09-09
The heterogeneity and tumourigenicity of metastatic melanoma is attributed to a cancer stem cell model, with CD133 considered to be a cancer stem cell marker in melanoma as well as other tumours, but its role has remained controversial. We iteratively sorted CD133+ and CD133- cells from 3 metastatic melanoma cell lines, and observed tumourigenicity and phenotypic characteristics over 7 generations of serial xeno-transplantation in NOD/SCID mice. We demonstrate that iterative sorting is required to make highly pure populations of CD133+ and CD133- cells from metastatic melanoma, and that these two populations have distinct characteristics not related to the cancer stem cell phenotype. In vitro, gene set enrichment analysis indicated CD133+ cells were related to a proliferative phenotype, whereas CD133- cells were of an invasive phenotype. However, in vivo, serial transplantation of CD133+ and CD133- tumours over 7 generations showed that both populations were equally able to initiate and propagate tumours. Despite this, both populations remained phenotypically distinct, with CD133- cells only able to express CD133 in vivo and not in vitro. Loss of CD133 from the surface of a CD133+ cell was observed in vitro and in vivo, however CD133- cells derived from CD133+ retained the CD133+ phenotype, even in the presence of signals from the tumour microenvironment. We show for the first time the necessity of iterative sorting to isolate pure marker-positive and marker-negative populations for comparative studies, and present evidence that despite CD133+ and CD133- cells being equally tumourigenic, they display distinct phenotypic differences, suggesting CD133 may define a distinct lineage in melanoma.
NASA Astrophysics Data System (ADS)
Green, J. C.; Course, P. A.; Tarran, G. A.
1996-10-01
Emiliania huxleyi exists in several principal forms including the familiar coccolith-bearing C-cell, non-motile naked N-cells, and scale-bearing swarmers (S-cells), but the relationships between these cells are unclear. Flow cytometric analyses have been undertaken on whole cells using fluorochrome staining of the DNA in order to determine the relative DNA content and the relative GC content of the S- and C-cells of selected clones. Results showed that the DNA complement of the S-cells was half that of the C-cells and the two cell types are, therefore, haploid and diploid relative to each other. The S-cells may, therefore, represent a gametic stage, though processes such as sexual fusion and meiosis have not been observed.
Tracking heavy water (D 2O) incorporation for identifying and sorting active microbial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, David; Mader, Esther; Lee, Tae Kwon
Here, microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. Here in this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D 2O) combined with Raman microspectroscopy. Incorporation of D 2O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labelingmore » pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D 2O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D 2O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics.« less
Tracking heavy water (D 2O) incorporation for identifying and sorting active microbial cells
Berry, David; Mader, Esther; Lee, Tae Kwon; ...
2014-12-30
Here, microbial communities are essential to the function of virtually all ecosystems and eukaryotes, including humans. However, it is still a major challenge to identify microbial cells active under natural conditions in complex systems. Here in this study, we developed a new method to identify and sort active microbes on the single-cell level in complex samples using stable isotope probing with heavy water (D 2O) combined with Raman microspectroscopy. Incorporation of D 2O-derived D into the biomass of autotrophic and heterotrophic bacteria and archaea could be unambiguously detected via C-D signature peaks in single-cell Raman spectra, and the obtained labelingmore » pattern was confirmed by nanoscale-resolution secondary ion MS. In fast-growing Escherichia coli cells, label detection was already possible after 20 min. For functional analyses of microbial communities, the detection of D incorporation from D 2O in individual microbial cells via Raman microspectroscopy can be directly combined with FISH for the identification of active microbes. Applying this approach to mouse cecal microbiota revealed that the host-compound foragers Akkermansia muciniphila and Bacteroides acidifaciens exhibited distinctive response patterns to amendments of mucin and sugars. By Raman-based cell sorting of active (deuterated) cells with optical tweezers and subsequent multiple displacement amplification and DNA sequencing, novel cecal microbes stimulated by mucin and/or glucosamine were identified, demonstrating the potential of the nondestructive D 2O-Raman approach for targeted sorting of microbial cells with defined functional properties for single-cell genomics.« less
Continuous high throughput molecular adhesion based cell sorting using ridged microchannels
NASA Astrophysics Data System (ADS)
Tasadduq, Bushra; Wang, Gonghao; Alexeev, Alexander; Sarioglu, Ali Fatih; Sulchek, Todd
2016-11-01
Cell molecular interactions govern important physiological processes such as stem cell homing, inflammation and cancer metastasis. But due to a lack of effective separation technologies selective to these interactions it is challenging to specifically sort cells. Other label free separation techniques based on size, stiffness and shape do not provide enough specificity to cell type, and correlation to clinical condition. We propose a novel microfluidic device capable of high throughput molecule dependent separation of cells by flowing them through a microchannel decorated with molecule specific coated ridges. The unique aspect of this sorting design is the use of optimized gap size which is small enough to lightly squeeze the cells while flowing under the ridged part of the channel to increase the surface area for interaction between the ligand on cell surface and coated receptor molecule but large enough so that biomechanical markers, stiffness and viscoelasticity, do not dominate the cell separation mechanism. We are able to separate Jurkat cells based on its expression of PSGL-1ligand using ridged channel coated with P selectin at a flow rate of 0.045ml/min and achieve 2-fold and 5-fold enrichment of PSGL-1 positive and negative Jurkat cells respectively.
Juszczak, K; Kaszuba-Zwoinska, J; Thor, P J
2012-08-01
The evidence of electromagnetic therapy (EMT) efficacy in stress and/or urge urinary incontinence, as well as in detrusor overactivity is generally lacking in the literature. The potential EMT action of neuromuscular tissue depolarization has been described. Because there is no data on the influence of pulsating electromagnetic fields (PEMF) on the urothelium, we evaluated the effect of PEMF stimulation on rat urothelial cultured cells (RUCC). In our study 15 Wistar rats were used for RUCC preparation. RUCC were exposed to PEMF (50 Hz, 45±5 mT) three times for 4 hours each with 24-hour intervals. The unexposed RUCC was in the same incubator, but in a distance of 35 cm from the PEMF generator. Annexin V-APC (AnV+) labelled was used to determine the percentage of apoptotic cells and propidium iodide (PI+), as standard flow cytometric viability probe to distinguish necrotic cells from viable ones. The results are presented in percentage values. The flow cytometric analysis was carried out on a FACS calibur flow cytometer using Cell-Quest software. In PEMF-unstimulated RUCC, the percentage of AnV+, PI+, and AnV+PI+ positive cells were 1.24±0.34%, 11.03±1.55%, and 12.43±1.96%, respectively. The percentages of AnV+, PI+, and AnV+PI+ positive cells obtained after PEMF stimulation were 1.45±0.16% (p=0.027), 7.03±1.76% (p<0.001), and 9.48±3.40% (p=0.003), respectively. The PEMF stimulation of RUCC induces apoptosis (increase of AnV+ cells) and inhibits necrosis (decrease of PI+ cells) of urothelial cells. This leads us to the conclusion that a low-frequency pulsating electromagnetic field stimulation induces apoptosis and diminishes necrosis of rat urothelial cells in culture.
... people who don't have FA. Cytometric Flow Analysis Cytometric flow analysis, or CFA, is done in a lab. This ... lungs, is connected to the esophagus, which carries food to the stomach. This can cause serious breathing, ...
New Advances in Molecular Therapy for Muscle Repair after Diseases and Injuries
2011-01-01
members of the broader scientific community . Statement of Work...negative for CD34 (1A). Nuclei were stained blue with Dapi. Scale bars, 100 µm. Flow cytometric analysis indicated percentage of cryopreserveded...muscle cells were also cytocentrifuged on glass slides and stained with antibodies to CD56, CD146, UEA-1(2Q, scale bars, 100 µm), and CD56/UEA-1
Optically enhanced acoustophoresis
NASA Astrophysics Data System (ADS)
McDougall, Craig; O'Mahoney, Paul; McGuinn, Alan; Willoughby, Nicholas A.; Qiu, Yongqiang; Demore, Christine E. M.; MacDonald, Michael P.
2017-08-01
Regenerative medicine has the capability to revolutionise many aspects of medical care, but for it to make the step from small scale autologous treatments to larger scale allogeneic approaches, robust and scalable label free cell sorting technologies are needed as part of a cell therapy bioprocessing pipeline. In this proceedings we describe several strategies for addressing the requirements for high throughput without labeling via: dimensional scaling, rare species targeting and sorting from a stable state. These three approaches are demonstrated through a combination of optical and ultrasonic forces. By combining mostly conservative and non-conservative forces from two different modalities it is possible to reduce the influence of flow velocity on sorting efficiency, hence increasing robustness and scalability. One such approach can be termed "optically enhanced acoustophoresis" which combines the ability of acoustics to handle large volumes of analyte with the high specificity of optical sorting.
Procino, G; Barbieri, C; Carmosino, M; Rizzo, F; Valenti, G; Svelto, M
2010-02-01
Vasopressin causes the redistribution of the water channel aquaporin-2 (AQP2) from cytoplasmic storage vesicles to the apical plasma membrane of collecting duct principal cells, leading to urine concentration. The molecular mechanisms regulating the selective apical sorting of AQP2 are only partially uncovered. In this work, we investigate whether AQP2 sorting/trafficking is regulated by its association with membrane rafts. In both MCD4 cells and rat kidney, AQP2 preferentially associated with Lubrol WX-insoluble membranes regardless of its presence in the storage compartment or at the apical membrane. Block-and-release experiments indicate that 1) AQP2 associates with detergent-resistant membranes early in the biosynthetic pathway; 2) strong cholesterol depletion delays the exit of AQP2 from the trans-Golgi network. Interestingly, mild cholesterol depletion promoted a dramatic accumulation of AQP2 at the apical plasma membrane in MCD4 cells in the absence of forskolin stimulation. An internalization assay showed that AQP2 endocytosis was clearly reduced under this experimental condition. Taken together, these data suggest that association with membrane rafts may regulate both AQP2 apical sorting and endocytosis.
Ion pump sorting in polarized renal epithelial cells.
Caplan, M J
2001-08-01
The plasma membranes of renal epithelial cells are divided into distinct apical and basolateral domains, which contain different inventories of ion transport proteins. Without this polarity vectorial ion and fluid transport would not be possible. Little is known of the signals and mechanisms that renal epithelial cells use to establish and maintain polarized distributions of their ion transport proteins. Analysis of ion pump sorting reveals that multiple complex signals participate in determining and regulating these proteins' subcellular localizations.
Novacco, Marilisa; Martini, Valeria; Grande, Carmen; Comazzi, Stefano
2015-09-01
A blood sample from a 14-year-old dog was submitted to the veterinary diagnostic laboratory of the University of Milan for marked leukocytosis with atypical cells. A diagnosis of chronic T-cell lymphocytic leukemia (CLL) was made based on blood smear evaluation and flow cytometric phenotyping. A CBC by Sysmex XT-2000iV revealed a moderate normocytic normochromic anemia. Red blood cells counted by optic flow cytometry (RBC-O) resulted in a higher value than using electrical impedance (RBC-I). The relative reticulocyte count based on RNA content and size was 35.3%, while the manual reticulocyte count was < 1%. The WBC count of 1,562,680 cells/μL was accompanied by a flag. Manual counts for RBC and WBC using the Bürker chamber confirmed the Sysmex impedance results. Finally the manual PCV was lower than HCT by Sysmex. While Sysmex XT can differentiate between RBC and WBC by impedance, even in the face of extreme lymphocytosis due to CLL, RBC-O can be affected by bias, resulting in falsely increased RBC and reticulocyte numbers. Overestimation of RBC-O may be due to incorrect Sysmex classification of leukemic cells or their fragments as reticulocytes. This phenomenon is known as pseudoreticulocytosis and can lead to misinterpretation of regenerative anemia. On the other side PCV can be affected by bias in CLL due to the trapping of RBC in the buffy coat, resulting in a pink hue in the separation area. As HGB concentration is not affected by flow cytometric or other cell-related artifacts it may represent the most reliable variable to assess the degree of anemia in cases of CLL. © 2015 American Society for Veterinary Clinical Pathology.
Flow cytometric kinetic assay of the activity of Na+/H+ antiporter in mammalian cells.
Dolz, María; O'Connor, José-Enrique; Lequerica, Juan L
2004-10-01
The Na(+)/H(+) exchanger (NHE) of mammalian cells is an integral membrane protein that extrudes H(+) ion in exchange for extracellular Na(+) and plays a crucial role in the regulation of intracellular pH (pHi). Thus, when pHi is lowered, NHE extrudes protons at a rate depending of pHi that can be expressed as pH units/s. To abolish the activity of other cellular pH-restoring systems, cells were incubated in bicarbonate-free Dulbecco's modified Eagle's medium buffered with HEPES. Flow cytometry was used to determine pHi with 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester or 5-(and-6)-carboxy SNARF-1 acetoxymethyl ester acetate, and the appropriate fluorescence ratios were measured. The calibration of fluorescence ratios versus pHi was established by using ionophore nigericin. The activity of NHE was calculated by a kinetic flow cytometric assay as the slope at time 0 of the best-fit curve of pHi recovery versus time after intracellular acidification with a pulse of exogenous sodium propionate. The kinetic method allowed determination of the pHi-dependent activity of NHE in cell lines and primary cell cultures. NHE activity values were demonstrated to be up to 0.016 pH units/s within the pHi range of 7.3 to 6.3. The inhibition of NHE activity by the specific inhibitor ethyl isopropyl amiloride was easily detected by this method. The assay conditions can be used to relate variations in pHi with the activity of NHE and provide a standardized method to compare between different cells, inhibitors, models of ischemia by acidification, and other relevant experimental or clinical situations.
Zhang, Jun; Kurpad, Deepa S.; Fridman, Gregory; Fridman, Alexander; Freeman, Theresa A.
2013-01-01
Enhancing chondrogenic and osteogenic differentiation is of paramount importance in providing effective regenerative therapies and improving the rate of fracture healing. This study investigated the potential of non-thermal atmospheric dielectric barrier discharge plasma (NT-plasma) to enhance chondrocyte and osteoblast proliferation and differentiation. Although the exact mechanism by which NT-plasma interacts with cells is undefined, it is known that during treatment the atmosphere is ionized generating extracellular reactive oxygen and nitrogen species (ROS and RNS) and an electric field. Appropriate NT-plasma conditions were determined using lactate-dehydrogenase release, flow cytometric live/dead assay, flow cytometric cell cycle analysis, and Western blots to evaluate DNA damage and mitochondrial integrity. We observed that specific NT-plasma conditions were required to prevent cell death, and that loss of pre-osteoblastic cell viability was dependent on intracellular ROS and RNS production. To further investigate the involvement of intracellular ROS, fluorescent intracellular dyes Mitosox (superoxide) and dihydrorhodamine (peroxide) were used to assess onset and duration after NT-plasma treatment. Both intracellular superoxide and peroxide were found to increase immediately post NT-plasma treatment. These increases were sustained for one hour but returned to control levels by 24 hr. Using the same treatment conditions, osteogenic differentiation by NT-plasma was assessed and compared to peroxide or osteogenic media containing β-glycerolphosphate. Although both NT-plasma and peroxide induced differentiation-specific gene expression, neither was as effective as the osteogenic media. However, treatment of cells with NT-plasma after 24 hr in osteogenic or chondrogenic media significantly enhanced differentiation as compared to differentiation media alone. The results of this study show that NT-plasma can selectively initiate and amplify ROS signaling to enhance differentiation, and suggest this technology could be used to enhance bone fusion and improve healing after skeletal injury. PMID:24349203
Rho, Chang Rae; Park, Mi-young; Kang, Seungbum
2015-01-01
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that activates granulocyte and macrophage cell lineages. It is also known to have an important function in wound healing. This study investigated the effect of GM-CSF in wound healing of human corneal epithelial cells (HCECs). We used human GM-CSF derived from rice cells (rice cell-derived recombinant human GM-CSF; rhGM-CSF). An in vitro migration assay was performed to investigate the migration rate of HCECs treated with various concentrations of rhGM-CSF (0.1, 1.0, and 10.0 μg/ml). MTT assay and flow cytometric analysis were used to evaluate the proliferative effect of rhGM-CSF. The protein level of p38MAPK was analyzed by western blotting. For in vivo analysis, 100 golden Syrian hamsters were divided into four groups, and their corneas were de-epithelialized with alcohol and a blade. The experimental groups were treated with 10, 20, or 50 μg/ml rhGM-CSF four times daily, and the control group was treated with phosphate-buffered saline. The corneal wound-healing rate was evaluated by fluorescein staining at the initial wounding and 12, 24, 36, and 48 hours after epithelial debridement. rhGM-CSF accelerated corneal epithelial wound healing both in vitro and in vivo. MTT assay and flow cytometric analysis revealed that rhGM-CSF treatment had no effects on HCEC proliferation. Western blot analysis demonstrated that the expression level of phosphorylated p38MAPK increased with rhGM-CSF treatment. These findings indicate that rhGM-CSF enhances corneal wound healing by accelerating cell migration. PMID:26376304
Steinbeck, Marla J; Chernets, Natalie; Zhang, Jun; Kurpad, Deepa S; Fridman, Gregory; Fridman, Alexander; Freeman, Theresa A
2013-01-01
Enhancing chondrogenic and osteogenic differentiation is of paramount importance in providing effective regenerative therapies and improving the rate of fracture healing. This study investigated the potential of non-thermal atmospheric dielectric barrier discharge plasma (NT-plasma) to enhance chondrocyte and osteoblast proliferation and differentiation. Although the exact mechanism by which NT-plasma interacts with cells is undefined, it is known that during treatment the atmosphere is ionized generating extracellular reactive oxygen and nitrogen species (ROS and RNS) and an electric field. Appropriate NT-plasma conditions were determined using lactate-dehydrogenase release, flow cytometric live/dead assay, flow cytometric cell cycle analysis, and Western blots to evaluate DNA damage and mitochondrial integrity. We observed that specific NT-plasma conditions were required to prevent cell death, and that loss of pre-osteoblastic cell viability was dependent on intracellular ROS and RNS production. To further investigate the involvement of intracellular ROS, fluorescent intracellular dyes Mitosox (superoxide) and dihydrorhodamine (peroxide) were used to assess onset and duration after NT-plasma treatment. Both intracellular superoxide and peroxide were found to increase immediately post NT-plasma treatment. These increases were sustained for one hour but returned to control levels by 24 hr. Using the same treatment conditions, osteogenic differentiation by NT-plasma was assessed and compared to peroxide or osteogenic media containing β-glycerolphosphate. Although both NT-plasma and peroxide induced differentiation-specific gene expression, neither was as effective as the osteogenic media. However, treatment of cells with NT-plasma after 24 hr in osteogenic or chondrogenic media significantly enhanced differentiation as compared to differentiation media alone. The results of this study show that NT-plasma can selectively initiate and amplify ROS signaling to enhance differentiation, and suggest this technology could be used to enhance bone fusion and improve healing after skeletal injury.
Rho, Chang Rae; Park, Mi-young; Kang, Seungbum
2015-01-01
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a pleiotropic cytokine that activates granulocyte and macrophage cell lineages. It is also known to have an important function in wound healing. This study investigated the effect of GM-CSF in wound healing of human corneal epithelial cells (HCECs). We used human GM-CSF derived from rice cells (rice cell-derived recombinant human GM-CSF; rhGM-CSF). An in vitro migration assay was performed to investigate the migration rate of HCECs treated with various concentrations of rhGM-CSF (0.1, 1.0, and 10.0 μg/ml). MTT assay and flow cytometric analysis were used to evaluate the proliferative effect of rhGM-CSF. The protein level of p38MAPK was analyzed by western blotting. For in vivo analysis, 100 golden Syrian hamsters were divided into four groups, and their corneas were de-epithelialized with alcohol and a blade. The experimental groups were treated with 10, 20, or 50 μg/ml rhGM-CSF four times daily, and the control group was treated with phosphate-buffered saline. The corneal wound-healing rate was evaluated by fluorescein staining at the initial wounding and 12, 24, 36, and 48 hours after epithelial debridement. rhGM-CSF accelerated corneal epithelial wound healing both in vitro and in vivo. MTT assay and flow cytometric analysis revealed that rhGM-CSF treatment had no effects on HCEC proliferation. Western blot analysis demonstrated that the expression level of phosphorylated p38MAPK increased with rhGM-CSF treatment. These findings indicate that rhGM-CSF enhances corneal wound healing by accelerating cell migration.
Non-invasive sex assessment in bovine semen by Raman spectroscopy
NASA Astrophysics Data System (ADS)
De Luca, A. C.; Managó, S.; Ferrara, M. A.; Rendina, I.; Sirleto, L.; Puglisi, R.; Balduzzi, D.; Galli, A.; Ferraro, P.; Coppola, G.
2014-05-01
X- and Y-chromosome-bearing sperm cell sorting is of great interest, especially for animal production management systems and genetic improvement programs. Here, we demonstrate an optical method based on Raman spectroscopy to separate X- and Y-chromosome-bearing sperm cells, overcoming many of the limitations associated with current sex-sorting protocols. A priori Raman imaging of bull spermatozoa was utilized to select the sampling points (head-neck region), which were then used to discriminate cells based on a spectral classification model. Main variations of Raman peaks associated with the DNA content were observed together with a variation due to the sex membrane proteins. Next, we used principal component analysis to determine the efficiency of our device as a cell sorting method. The results (>90% accuracy) demonstrated that Raman spectroscopy is a powerful candidate for the development of a highly efficient, non-invasive, and non-destructive tool for sperm sexing.
Jia, Zhaofeng; Liang, Yujie; Xu, Xiao; Li, Xingfu; Liu, Qisong; Ou, Yangkan; Duan, Li; Zhu, Weimin; Lu, Wei; Xiong, Jianyi; Wang, Daping
2018-03-01
Mesenchymal stem cells (MSCs) are the primary source of cells used for cell-based therapy in tissue engineering. MSCs are found in synovial fluid, a source that could be conveniently used for cartilage tissue engineering. However, the purification and characterization of SF-MSCs has been poorly documented in the literature. Here, we outline an easy-to-perform approach for the isolation and culture of MSCs derived from human synovial fluid (hSF-MSCs). We have successfully purified hSF-MSCs using magnetic-activated cell sorting (MACS) using the MSC surface marker, CD90. Purified SF-MSCs demonstrate significant renewal capacity following several passages in culture. Furthermore, we demonstrated that MACS-sorted CD90 + cells could differentiated into osteoblasts, adipocytes, and chondrocytes in vitro. In addition, we show that these cells can generate cartilage tissue in micromass culture as well. This study demonstrates that MACS is a useful tool that can be used for the purification of hSF-MSCs from synovial fluid. The proliferation properties and ability to differentiate into chondrocytes make these hSF-MSCs a promising source of stem cells for applications in cartilage repair. © 2017 International Federation for Cell Biology.
Monoclonal antibodies for the separate detection of halodeoxyuridines and method for their use
Vanderlaan, M.; Watkins, B.E.; Stanker, L.H.
1991-10-01
Monoclonal antibodies are described which have specific affinities for halogenated nucleoside analogs and are preferentially selective for one particular halogen. Such antibodies, when incorporated into immunochemical reagents, may be used to identify and independently quantify the cell division character of more than one population or subpopulation in flow cytometric measurements. Independent assessment of division activity in cell sub-populations facilitates selection of appropriate time and dose for administration of anti-proliferative agents. The hybridomas which secrete halogen selective antibodies and the method of making them are described. 14 figures.
Monoclonal antibodies for the separate detection of halodeoxyuridines and method for their use
Vanderlaan, Martin; Watkins, Bruce E.; Stanker, Larry H.
1991-01-01
Monoclonal antibodies are described which have specific affinities for halogenated nucleoside analogs and are preferentially selective for one particular halogen. Such antibodies, when incorporated into immunochemical reagents, may be used to identify and independently quantify the cell division character of more than one population or subpopulation in flow cytometric measurements. Independent assessment of division activity in cell sub-populations facilitates selection of appropriate time and dose for administration of anti-proliferative agents. The hybridomas which secrete halogen selective antibodies and the method of making them are described.
Adipose Tissue-Derived Pericytes for Cartilage Tissue Engineering.
Zhang, Jinxin; Du, Chunyan; Guo, Weimin; Li, Pan; Liu, Shuyun; Yuan, Zhiguo; Yang, Jianhua; Sun, Xun; Yin, Heyong; Guo, Quanyi; Zhou, Chenfu
2017-01-01
Mesenchymal stem cells (MSCs) represent a promising alternative source for cartilage tissue engineering. However, MSC culture is labor-intensive, so these cells cannot be applied immediately to regenerate cartilage for clinical purposes. Risks during the ex vivo expansion of MSCs, such as infection and immunogenicity, can be a bottleneck in their use in clinical tissue engineering. As a novel stem cell source, pericytes are generally considered to be the origin of MSCs. Pericytes do not have to undergo time-consuming ex vivo expansion because they are uncultured cells. Adipose tissue is another optimal stem cell reservoir. Because adipose tissue is well vascularized, a considerable number of pericytes are located around blood vessels in this accessible and dispensable tissue, and autologous pericytes can be applied immediately for cartilage regeneration. Thus, we suggest that adipose tissue-derived pericytes are promising seed cells for cartilage regeneration. Many studies have been performed to develop isolation methods for the adipose tissuederived stromal vascular fraction (AT-SVF) using lipoaspiration and sorting pericytes from AT-SVF. These methods are useful for sorting a large number of viable pericytes for clinical therapy after being combined with automatic isolation using an SVF device and automatic magnetic-activated cell sorting. These tools should help to develop one-step surgery for repairing cartilage damage. However, the use of adipose tissue-derived pericytes as a cell source for cartilage tissue engineering has not drawn sufficient attention and preclinical studies are needed to improve cell purity, to increase sorting efficiency, and to assess safety issues of clinical applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
A degradation-based sorting method for lithium-ion battery reuse.
Chen, Hao; Shen, Julia
2017-01-01
In a world where millions of people are dependent on batteries to provide them with convenient and portable energy, battery recycling is of the utmost importance. In this paper, we developed a new method to sort 18650 Lithium-ion batteries in large quantities and in real time for harvesting used cells with enough capacity for battery reuse. Internal resistance and capacity tests were conducted as a basis for comparison with a novel degradation-based method based on X-ray radiographic scanning and digital image contrast computation. The test results indicate that the sorting accuracy of the test cells is about 79% and the execution time of our algorithm is at a level of 200 milliseconds, making our method a potential real-time solution for reusing the remaining capacity in good used cells.
Flaibani, Marina; Luni, Camilla; Sbalchiero, Elisa; Elvassore, Nicola
2009-01-01
It has been widely demonstrated that perfusion bioreactors improve in vitro three-dimensional (3D) cultures in terms of high cell density and uniformity of cell distribution; however, the studies reported in literature were primarily based on qualitative analysis (histology, immunofluorescent staining) or on quantitative data averaged on the whole population (DNA assay, PCR). Studies on the behavior, in terms of cell cycle, of a cell population growing in 3D scaffolds in static or dynamic conditions are still absent. In this work, a perfusion bioreactor suitable to culture C(2)C(12) muscle precursor cells within 3D porous collagen scaffolds was designed and developed and a method based on flowcytometric analyses for analyzing the cell cycle in the cell population was established. Cells were extracted by enzymatic digestion of the collagen scaffolds after 4, 7, and 10 days of culture, and flow cytometric live/dead and cell cycle analyses were performed with Propidium Iodide. A live/dead assay was used for validating the method for cell extraction and staining. Moreover, to investigate spatial heterogeneity of the cell population under perfusion conditions, two stacked scaffolds in the 3D domain, of which only the upstream layer was seeded, were analyzed separately. All results were compared with those obtained from static 3D cultures. The live/dead assay revealed the presence of less than 20% of dead cells, which did not affect the cell cycle analysis. Cell cycle analyses highlighted the increment of cell fractions in proliferating phases (S/G(2)/M) owing to medium perfusion in long-term cultures. After 7-10 days, the percentage of proliferating cells was 8-12% for dynamic cultures and 3-5% for the static controls. A higher fraction of proliferating cells was detected in the downstream scaffold. From a general perspective, this method provided data with a small standard deviation and detected the differences between static and dynamic cultures and between upper and lower scaffolds. Our methodology can be extended to other cell types to investigate the influence of 3D culture conditions on the expression of other relevant cell markers.
Droplet based microfluidics for highthroughput screening of antibody secreting cells
NASA Astrophysics Data System (ADS)
Cai, Liheng; Heyman, John; Mazutis, Linas; Ung, Lloyd; Guerra, Rodrigo; Aubrecht, Donald; Weitz, David
2014-03-01
We present a droplet based microfluidic platform that allows highthroughput screening of antibody secreting cells. We coencapsulate single cells, fluorescent probes, and detection beads into emulsion droplets with diameter of 40 micron. The beads capture antibodies secreted by cells, resulting in a pronounced fluorescent signal that activates dielectrophoresis sorting at rate about 500 droplets per second. Moreover, we demonstrate that Reverse Transcription Polymerase Chain Reaction (RT-PCR) can be successfully applied to the cell encapsulated in a single sorted droplet. Our work highlights the potential of droplet based microfluidics as a platform to generate recombinant antibodies.
Zucchetto, Antonella; Bomben, Riccardo; Bo, Michele Dal; Nanni, Paola; Bulian, Pietro; Rossi, Francesca Maria; Del Principe, Maria Ilaria; Santini, Simone; Del Poeta, Giovanni; Degan, Massimo; Gattei, Valter
2006-07-15
Expression of T cell specific zeta-associated protein 70 (ZAP-70) by B-cell chronic lymphocytic leukemia (B-CLL) cells, as investigated by flow cytometry, has both prognostic relevance and predictive power as surrogate for immunoglobulin heavy chain variable region (IgV(H)) mutations, although a standardization of the cytometric protocol is still lacking. Flow cytometric analyses for ZAP-70 were performed in peripheral blood samples from 145 B-CLL (124 with IgV(H) mutations) by a standard three-color protocol. Identification of ZAP-70(+) cell population was based on an external negative control, i.e., the isotypic control (ISO method) or an internal positive control, i.e., the population of residual normal T/NK cells (TNK method). A comparison between these two approaches was performed. While 86/145 cases were concordant as for ZAP-70 expression according to the two methods (ISO(+)TNK(+) or ISO(-)TNK(-)), 59/145 cases had discordant ZAP-70 expression, mainly (56/59) showing a ISO(+)TNK(-) profile. These latter cases express higher levels of ZAP-70 in their normal T cell component. Moreover, discordant ISO(+)TNK(-) cases had a IgV(H) gene mutation profile similar to that of concordantly positive cases and different from ZAP-70 concordantly negative B-CLL. Analysis of ZAP-70 expression by B-CLL cells by using the ISO method allows to overcome the variability in the expression of ZAP-70 by residual T cells and yields a better correlation with IgV(H) gene mutations. A receiver operating characteristic analysis suggests to employ a higher cut-off than the commonly used 20%. A parallel evaluation of the prognostic value of ZAP-70 expression, as determined according to the ISO and TNK methods, is still needed. (c) 2006 International Society for Analytical Cytology.
Valencia, Julio C.; Watabe, Hidenori; Chi, An; Rouzaud, Francois; Chen, Kevin G.; Vieira, Wilfred D.; Takahashi, Kaoruko; Yamaguchi, Yuji; Berens, Werner; Nagashima, Kunio; Shabanowitz, Jeffrey; Hunt, Donald F.; Appella, Ettore; Hearing, Vincent J.
2015-01-01
Summary Adaptor proteins (AP) play important roles in the sorting of proteins from the trans-Golgi network, but how they function in the sorting of various melanosome-specific proteins such as Pmel17, an essential structural component of melanosomes, in melanocytes is unknown. We characterized the processing and trafficking of Pmel17 via adaptor protein complexes within melanocytic cells. Proteomics analysis detected Pmel17, AP1 and AP2, but not AP3 or AP4 in early melanosomes. Real-time PCR, immunolabeling and tissue in-situ hybridization confirmed the coexpression of AP1 isoforms μ1A and μ1B (expressed only in polarized cells) in melanocytes and keratinocytes, but expression of μ1B is missing in some melanoma cell lines. Transfection with AP1 isoforms (μ1A or μ1B) showed two distinct distribution patterns that involved Pmel17, and only μ1B was able to restore the sorting of Pmel17 to the plasma membrane in cells lacking μ1B expression. Finally, we established that expression of μ1B is regulated physiologically in melanocytes by UV radiation or DKK1. These results show that Pmel17 is sorted to melanosomes by various intracellular routes, directly or indirectly through the plasma membrane, and the presence of basolateral elements in melanocytes suggests their polarized nature. PMID:16492709
Pina-Vaz, Cidália; Silva, Ana P.; Faria-Ramos, Isabel; Teixeira-Santos, Rita; Moura, Daniel; Vieira, Tatiana F.; Sousa, Sérgio F.; Costa-de-Oliveira, Sofia; Cantón, Rafael; Rodrigues, Acácio G.
2016-01-01
The synergy of carbapenem combinations regarding Enterobacteriaceae producing different types of carbapenemases was study through different approaches: flow cytometry and computational analysis. Ten well characterized Enterobacteriaceae (KPC, verona integron-encoded metallo-β-lactamases –VIM and OXA-48-like enzymes) were selected for the study. The cells were incubated with a combination of ertapenem with imipenem, meropenem, or doripenem and killing kinetic curves performed with and without reinforcements of the drugs. A cephalosporin was also used in combination with ertapenem. A flow cytometric assay with DiBAC4-(3), a membrane potential dye, was developed in order to evaluate the cellular lesion after 2 h incubation. A chemical computational study was performed to understand the affinity of the different drugs to the different types of enzymes. Flow cytometric analysis and time-kill assays showed a synergic effect against KPC and OXA-48 producing-bacteria with all combinations; only ertapenem with imipenem was synergic against VIM producing-bacteria. A bactericidal effect was observed in OXA-48-like enzymes. Ceftazidime plus ertapenem was synergic against ESBL-negative KPC producing-bacteria. Ertapenem had the highest affinity for those enzymes according to chemical computational study. The synergic effect between ertapenem and others carbapenems against different carbapenemase-producing bacteria, representing a therapeutic choice, was described for the first time. Easier and faster laboratorial methods for carbapenemase characterization are urgently needed. The design of an ertapenem derivative with similar affinity to carbapenemases but exhibiting more stable bonds was demonstrated as highly desirable. PMID:27555844
Nelson, Nadine; Szekeres, Karoly; Cooper, Denise; Ghansah, Tomar
2012-06-18
MDSC are a heterogeneous population of immature macrophages, dendritic cells and granulocytes that accumulate in lymphoid organs in pathological conditions including parasitic infection, inflammation, traumatic stress, graft-versus-host disease, diabetes and cancer. In mice, MDSC express Mac-1 (CD11b) and Gr-1 (Ly6G and Ly6C) surface antigens. It is important to note that MDSC are well studied in various tumor-bearing hosts where they are significantly expanded and suppress anti-tumor immune responses compared to naïve counterparts. However, depending on the pathological condition, there are different subpopulations of MDSC with distinct mechanisms and targets of suppression. Therefore, effective methods to isolate viable MDSC populations are important in elucidating their different molecular mechanisms of suppression in vitro and in vivo. Recently, the Ghansah group has reported the expansion of MDSC in a murine pancreatic cancer model. Our tumor-bearing MDSC display a loss of homeostasis and increased suppressive function compared to naïve MDSC. MDSC percentages are significantly less in lymphoid compartments of naïve vs. tumor-bearing mice. This is a major caveat, which often hinders accurate comparative analyses of these MDSC. Therefore, enriching Gr-1(+) leukocytes from naïve mice prior to Fluorescence Activated Cell Sorting (FACS) enhances purity, viability and significantly reduces sort time. However, enrichment of Gr-1(+) leukocytes from tumor-bearing mice is optional as these are in abundance for quick FACS sorting. Therefore, in this protocol, we describe a highly efficient method of immunophenotyping MDSC and enriching Gr-1(+) leukocytes from spleens of naïve mice for sorting MDSC in a timely manner. Immunocompetent C57BL/6 mice are inoculated with murine Panc02 cells subcutaneously whereas naïve mice receive 1XPBS. Approximately 30 days post inoculation; spleens are harvested and processed into single-cell suspensions using a cell dissociation sieve. Splenocytes are then Red Blood Cell (RBC) lysed and an aliquot of these leukocytes are stained using fluorochrome-conjugated antibodies against Mac-1 and Gr-1 to immunophenotype MDSC percentages using Flow Cytometry. In a parallel experiment, whole leukocytes from naïve mice are stained with fluorescent-conjugated Gr-1 antibodies, incubated with PE-MicroBeads and positively selected using an automated Magnetic Activated Cell Sorting (autoMACS) Pro Separator. Next, an aliquot of Gr-1(+) leukocytes are stained with Mac-1 antibodies to identify the increase in MDSC percentages using Flow Cytometry. Now, these Gr1(+) enriched leukocytes are ready for FACS sorting of MDSC to be used in comparative analyses (naïve vs. tumor- bearing) in in vivo and in vitro assays.
Trafficking to the apical and basolateral membranes in polarized epithelial cells.
Stoops, Emily H; Caplan, Michael J
2014-07-01
Renal epithelial cells must maintain distinct protein compositions in their apical and basolateral membranes in order to perform their transport functions. The creation of these polarized protein distributions depends on sorting signals that designate the trafficking route and site of ultimate functional residence for each protein. Segregation of newly synthesized apical and basolateral proteins into distinct carrier vesicles can occur at the trans-Golgi network, recycling endosomes, or a growing assortment of stations along the cellular trafficking pathway. The nature of the specific sorting signal and the mechanism through which it is interpreted can influence the route a protein takes through the cell. Cell type-specific variations in the targeting motifs of a protein, as are evident for Na,K-ATPase, demonstrate a remarkable capacity to adapt sorting pathways to different developmental states or physiologic requirements. This review summarizes our current understanding of apical and basolateral trafficking routes in polarized epithelial cells. Copyright © 2014 by the American Society of Nephrology.
MetaSort untangles metagenome assembly by reducing microbial community complexity
Ji, Peifeng; Zhang, Yanming; Wang, Jinfeng; Zhao, Fangqing
2017-01-01
Most current approaches to analyse metagenomic data rely on reference genomes. Novel microbial communities extend far beyond the coverage of reference databases and de novo metagenome assembly from complex microbial communities remains a great challenge. Here we present a novel experimental and bioinformatic framework, metaSort, for effective construction of bacterial genomes from metagenomic samples. MetaSort provides a sorted mini-metagenome approach based on flow cytometry and single-cell sequencing methodologies, and employs new computational algorithms to efficiently recover high-quality genomes from the sorted mini-metagenome by the complementary of the original metagenome. Through extensive evaluations, we demonstrated that metaSort has an excellent and unbiased performance on genome recovery and assembly. Furthermore, we applied metaSort to an unexplored microflora colonized on the surface of marine kelp and successfully recovered 75 high-quality genomes at one time. This approach will greatly improve access to microbial genomes from complex or novel communities. PMID:28112173
Flow cytometry of mammalian sperm: progress in DNA and morphology measurement.
Pinkel, D; Dean, P; Lake, S; Peters, D; Mendelsohn, M; Gray, J; Van Dilla, M; Gledhill, B
1979-01-01
Variability in DNA content and head shape of mammalian sperm are potentially useful markers for flow cytometric monitoring of genetic damage in spermatogenic cells. The high refractive index and extreme flatness of the sperm heads produce an optical effect which interferes with DNA measurements in flow cytometers which have dye excitation and fluorescence light collection normal to the axis of flow. Orientation of sperm in flow controls this effect and results in coefficients of variation of 2.5% and 4.2%, respectively, for DNA measurements of mouse and human sperm. Alternatively, the optical effect can be used to generate shape-related information. Measurements on randomly oriented sperm from three mammalian species using a pair of fluorescence detectors indicate that large shape differences are detectable. Acriflavine-Feulgen stained sperm nuclei are significantly bleached during flow cytometric measurements at power levels routinely used in many flow cytometers. Dual beam studies of this phenomenon indicate it may be useful in detecting abnormally shaped sperm.
Theos, Alexander C.; Watt, Brenda; Harper, Dawn C.; Janczura, Karolina J.; Theos, Sarah C.; Herman, Kathryn E.; Marks, Michael S.
2013-01-01
SUMMARY Proteolytic fragments of the pigment cell-specific glycoprotein, PMEL, form the amyloid fibrillar matrix underlying melanins in melanosomes. The fibrils form within multivesicular endosomes to which PMEL is selectively sorted and that serve as melanosome precursors. GPNMB is a tissue-restricted glycoprotein with substantial sequence homology to PMEL but no known function, and was proposed to localize to non-fibrillar domains of distinct melanosome subcompartments in melanocytes. Here we confirm that GPNMB localizes to compartments distinct from the PMEL-containing multivesicular premelanosomes or late endosomes in melanocytes and HeLa cells, respectively, and is largely absent from fibrils. Using domain swapping, the unique PMEL localization is ascribed to its PKD domain, whereas the homologous PKD domain of GPNMB lacks apparent sorting function. The difference likely reflects extensive modification of the GPNMB PKD domain by N-glycosylation, nullifying its sorting function. These results reveal the molecular basis for the distinct trafficking and morphogenetic properties of PMEL and GPNMB, and support a deterministic function of the PMEL PKD domain in both protein sorting and amyloidogenesis. PMID:23452376
Amyloid-like aggregation of provasopressin in diabetes insipidus and secretory granule sorting.
Beuret, Nicole; Hasler, Franziska; Prescianotto-Baschong, Cristina; Birk, Julia; Rutishauser, Jonas; Spiess, Martin
2017-01-26
Aggregation of peptide hormone precursors in the trans-Golgi network is an essential process in the biogenesis of secretory granules in endocrine cells. It has recently been proposed that this aggregation corresponds to the formation of functional amyloids. Our previous finding that dominant mutations in provasopressin, which cause cell degeneration and diabetes insipidus, prevent native folding and produce fibrillar aggregates in the endoplasmic reticulum (ER) might thus reflect mislocalized amyloid formation by sequences that evolved to mediate granule sorting. Here we identified two sequences responsible for fibrillar aggregation of mutant precursors in the ER: the N-terminal vasopressin nonapeptide and the C-terminal glycopeptide. To test their role in granule sorting, the glycopeptide was deleted and/or vasopressin mutated to inactivate ER aggregation while still permitting precursor folding and ER exit. These mutations strongly reduced sorting into granules and regulated secretion in endocrine AtT20 cells. The same sequences - vasopressin and the glycopeptide - mediate physiological aggregation of the wild-type hormone precursor into secretory granules and the pathological fibrillar aggregation of disease mutants in the ER. These findings support the amyloid hypothesis for secretory granule biogenesis.
New sesquiterpene lactones from Ambrosia cumanensis Kunth.
Jimenez-Usuga, Nora Del Socorro; Malafronte, Nicola; Cotugno, Roberta; De Leo, Marinella; Osorio, Edison; De Tommasi, Nunziatina
2016-09-01
Eleven sesquiterpene lactones, including three new natural products (1-3), were isolated from the n-butanolic extract of Ambrosia cumanensis Kunth. aerial parts. The structure of all isolated compounds was elucidated by 1D- and 2D-NMR, and MS analyses. All compounds were tested for their antiproliferative activity on HeLa, Jurkat, and U937 cell lines. Compound 3, 2,3-dehydropsilostachyn C, showed cytotoxic activity with different potency in all cell lines. By means of flow cytometric studies, compound 3 was demonstrated to induce in Jurkat cells a G2/M cell cycle block, while in U937 elicited both cytostatic and cytotoxic responses. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jiang, Z.; Llandro, J.; Mitrelias, T.; Bland, J. A. C.
2006-04-01
A lab-on-a-chip integrated microfluidic cell has been developed for magnetic biosensing, which is comprised of anisotropic magnetoresistance (AMR) sensors optimized for the detection of single magnetic beads and electrodes to manipulate and sort the beads, integrated into a microfluidic channel. The device is designed to read out the real-time signal from 9 μm diameter magnetic beads moving over AMR sensors patterned into 18×4.5 μm rectangles and 10 μm diameter rings and arranged in Wheatstone bridges. The beads are moved over the sensors along a 75×75 μm wide channel patterned in SU8. Beads of different magnetic moments can be sorted through a magnetostatic sorting gate into different branches of the microfluidic channel using a magnetic field gradient applied by lithographically defined 120 nm thick Cu striplines carrying 0.2 A current.
Expansion of blood IgG4+ B, TH2, and regulatory T cells in patients with IgG4-related disease.
Heeringa, Jorn J; Karim, A Faiz; van Laar, Jan A M; Verdijk, Robert M; Paridaens, Dion; van Hagen, P Martin; van Zelm, Menno C
2018-05-01
IgG 4 -related disease (IgG 4 -RD) is a systemic fibroinflammatory condition affecting various organs and has a diverse clinical presentation. Fibrosis and accumulation of IgG 4 + plasma cells in tissue are hallmarks of the disease, and IgG 4 -RD is associated with increased IgG 4 serum levels. However, disease pathogenesis is still unclear, and these cellular and molecular parameters are neither sensitive nor specific for the diagnosis of IgG 4 -RD. Here we sought to develop a flow cytometric gating strategy to reliably identify blood IgG 4 + B cells to study their cellular and molecular characteristics and investigate their contribution in disease pathogenesis. Sixteen patients with histologically confirmed IgG 4 -RD, 11 patients with sarcoidosis, and 30 healthy subjects were included for 11-color flow cytometric analysis of peripheral blood for IgG 4 -expressing B cells and T H subsets. In addition, detailed analysis of activation markers and chemokine receptors was performed on IgG 4 -expressing B cells, and IgG 4 transcripts were analyzed for somatic hypermutations. Cellular and molecular analyses revealed increased numbers of blood IgG 4 + memory B cells in patients with IgG 4 -RD. These cells showed reduced expression of CD27 and CXCR5 and increased signs of antibody maturation. Furthermore, patients with IgG 4 -RD, but not patients with sarcoidosis, had increased numbers of circulating plasmablasts and CD21 low B cells, as well as T H 2 and regulatory T cells, indicating a common disease pathogenesis in patients with IgG 4 -RD. These results provide new insights into the dysregulated IgG 4 response in patients with IgG 4 -RD. A specific "peripheral lymphocyte signature" observed in patients with IgG 4 -RD, could support diagnosis and treatment monitoring. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Halicka, H Dorota; Garcia, Jorge; Li, Jiangwei; Zhao, Hong; Darzynkiewicz, Zbigniew
2017-02-01
Utilizing a variety of flow cytometric methods evidence was obtained indicating that a combination of the glucose analog 2-deoxy-D-glucose (2-dG) and the plant alkaloid berberine (BRB) produces synergistic effect in the induction of apoptosis in human lymphoblastoid TK6 cells. The synergistic effect is seen at concentrations of the drugs at which each of them alone shows no cytotoxicity at all. The data suggest that the combination of these drugs, which are known in terms of their overall toxicity, side effects and pharmacokinetics may be considered for further studies as chemopreventive and cancer treatment modalities. Of interest are results indicating that rapamycin, which similarly to BRB, suppresses mTOR signaling, when combined with 2-dG shows no synergistic properties. Metformin, on other hand, requires much higher concentration to show the synergy with 2-dG. Also of interest are the findings pertaining to the methodology of the present study. Specifically, dynamic assessment of cellular viability was performed by using the DRAQ7 cell exclusion fluorochrome present in cultures from 0 to 72 h. Concurrent measurement of lysosomal proton pump using acridine orange as the probe shows activation of lysosomes in the cells treated with 2-dG or BRB alone as well as with the drugs combined. Apoptosis was assessed by measuring DNA fragmentation, cell cycle, activation of caspase-3 and tissue transglutaminase (Tgase). A novel cytometric method was developed based on analysis of lysosomal (acidic vesicles) proton pump in live cells followed by cell lysis with detergent and fluorochrome labeling of proteins and DNA to analyze Tgase activation concurrently with cell cycle, in same population of cells. The data show that the cell subpopulation undergoing apoptosis has increased side (right-angle) light scatter likely due to the presence of the crosslinked (solid state) proteins, the consequence Tgase activation.
Tributyltin induces cell cycle arrest at G1 phase in the yeast Saccharomyces cerevisiae.
Sekito, Takayuki; Sugimoto, Naoko; Ishimoto, Masaya; Kawano-Kawada, Miyuki; Akiyama, Koichi; Nishimoto, Sogo; Sugahara, Takuya; Kakinuma, Yoshimi
2014-04-01
Tributyltin (TBT) has long been recognized as a major environmental pollutant that can cause significant damage to the cellular functions as well as disruption of endocrine homeostasis. TBT induces apoptosis accompanied by production of reactive oxygen species (ROS) in mammalian and yeast cells. We observed that the budding yeast cells exposed to this compound at low concentrations exhibited cell growth arrest, but not cell death. Flow cytometric analysis of yeast cells without synchronization and morphological assessment of cells synchronized at M phase by nocodazole treatment indicated that TBT-exposed Saccharomyces cerevisiae cells were arrested at G1 phase of the cell cycle. This arrest was recovered by the addition of N-acetylcysteine, suggesting the involvement of ROS production by TBT. This is the first study to evaluate the action of TBT on cell cycle events.
Wood, Brent L; Arroz, Maria; Barnett, David; DiGiuseppe, Joseph; Greig, Bruce; Kussick, Steven J; Oldaker, Teri; Shenkin, Mark; Stone, Elizabeth; Wallace, Paul
2007-01-01
Immunophenotyping by flow cytometry has become standard practice in the evaluation and monitoring of patients with hematopoietic neoplasia. However, despite its widespread use, considerable variability continues to exist in the reagents used for evaluation and the format in which results are reported. As part of the 2006 Bethesda Consensus conference, a committee was formed to attempt to define a consensus set of reagents suitable for general use in the diagnosis and monitoring of hematopoietic neoplasms. The committee included laboratory professionals from private, public, and university hospitals as well as large reference laboratories that routinely operate clinical flow cytometry laboratories with an emphasis on lymphoma and leukemia immunophenotyping. A survey of participants successfully identified the cell lineage(s) to be evaluated for each of a variety of specific medical indications and defined a set of consensus reagents suitable for the initial evaluation of each cell lineage. Elements to be included in the reporting of clinical flow cytometric results for leukemia and lymphoma evaluation were also refined and are comprehensively listed. The 2006 Bethesda Consensus conference represents the first successful attempt to define a set of consensus reagents suitable for the initial evaluation of hematopoietic neoplasia. Copyright 2007 Clinical Cytometry Society.
NOTCH1 Is Aberrantly Activated in Chronic Lymphocytic Leukemia Hematopoietic Stem Cells.
Di Ianni, Mauro; Baldoni, Stefano; Del Papa, Beatrice; Aureli, Patrizia; Dorillo, Erica; De Falco, Filomena; Albi, Elisa; Varasano, Emanuela; Di Tommaso, Ambra; Giancola, Raffaella; Accorsi, Patrizia; Rotta, Gianluca; Rompietti, Chiara; Silva Barcelos, Estevão Carlos; Campese, Antonio Francesco; Di Bartolomeo, Paolo; Screpanti, Isabella; Rosati, Emanuela; Falzetti, Franca; Sportoletti, Paolo
2018-01-01
To investigate chronic lymphocytic leukemia (CLL)-initiating cells, we assessed NOTCH1 mutation/expression in hematopoietic stem cells (HSCs). In NOTCH1- mutated CLL, we detected subclonal mutations in 57% CD34+/CD38- HSCs. NOTCH1 mutation was present in 66% CD34+/CD38+ progenitor cells displaying an increased mutational burden compared to HSCs. Flow cytometric analysis revealed significantly higher NOTCH1 activation in CD34+/CD38- and CD34+/CD38+ cells from CLL patients, regardless NOTCH1 mutation compared to healthy donors. Activated NOTCH1 resulted in overexpression of the NOTCH1 target c-MYC. We conclude that activated NOTCH1 is an early event in CLL that may contribute to aberrant HSCs in this disease.
Droplet sorting based on the number of encapsulated particles using a solenoid valve.
Cao, Zhenning; Chen, Fangyuan; Bao, Ning; He, Huacheng; Xu, Peisheng; Jana, Saikat; Jung, Sunghwan; Lian, Hongzhen; Lu, Chang
2013-01-07
Droplet microfluidics provides a high-throughput platform for screening subjects and conditions involved in biology. Droplets with encapsulated beads and cells have been increasingly used for studying molecular and cellular biology. Droplet sorting is needed to isolate and analyze the subject of interest during such screening. The vast majority of current sorting techniques use fluorescence intensity emitted by each droplet as the only criterion. However, due to the randomness and imperfections in the encapsulation process, typically a mixed population of droplets with an uneven number of encapsulated particles results and is used for screening. Thus droplet sorting based on the number of encapsulated particles becomes necessary for isolating or enriching droplets with a specific occupancy. In this work, we developed a fluorescence-activated microfluidic droplet sorter that integrated a simple deflection mechanism based on the use of a solenoid valve and a sophisticated signal processing system with a microcontroller as the core. By passing droplets through a narrow interrogation channel, the encapsulated particles were detected individually. The microcontroller conducted the computation to determine the number of encapsulated particles in each droplet and made the sorting decision accordingly that led to actuation of the solenoid valve. We tested both fluorescent beads and stained cells and our results showed high efficiency and accuracy for sorting and enrichment.
Tamaki, Tetsuro; Akatsuka, Akira; Ando, Kiyoshi; Nakamura, Yoshihiko; Matsuzawa, Hideyuki; Hotta, Tomomitsu; Roy, Roland R; Edgerton, V Reggie
2002-05-13
Putative myogenic and endothelial (myo-endothelial) cell progenitors were identified in the interstitial spaces of murine skeletal muscle by immunohistochemistry and immunoelectron microscopy using CD34 antigen. Enzymatically isolated cells were characterized by fluorescence-activated cell sorting on the basis of cell surface antigen expression, and were sorted as a CD34+ and CD45- fraction. Cells in this fraction were approximately 94% positive for Sca-1, and mostly negative (<3% positive) for CD14, 31, 49, 144, c-kit, and FLK-1. The CD34+/45- cells formed colonies in clonal cell cultures and colony-forming units displayed the potential to differentiate into adipocytes, endothelial, and myogenic cells. The CD34+/45- cells fully differentiated into vascular endothelial cells and skeletal muscle fibers in vivo after transplantation. Immediately after sorting, CD34+/45- cells expressed only c-met mRNA, and did not express any other myogenic cell-related markers such as MyoD, myf-5, myf-6, myogenin, M-cadherin, Pax-3, and Pax-7. However, after 3 d of culture, these cells expressed mRNA for all myogenic markers. CD34+/45- cells were distinct from satellite cells, as they expressed Bcrp1/ABCG2 gene mRNA (Zhou et al., 2001). These findings suggest that myo-endothelial progenitors reside in the interstitial spaces of mammalian skeletal muscles, and that they can potentially contribute to postnatal skeletal muscle growth.
A degradation-based sorting method for lithium-ion battery reuse
Chen, Hao
2017-01-01
In a world where millions of people are dependent on batteries to provide them with convenient and portable energy, battery recycling is of the utmost importance. In this paper, we developed a new method to sort 18650 Lithium-ion batteries in large quantities and in real time for harvesting used cells with enough capacity for battery reuse. Internal resistance and capacity tests were conducted as a basis for comparison with a novel degradation-based method based on X-ray radiographic scanning and digital image contrast computation. The test results indicate that the sorting accuracy of the test cells is about 79% and the execution time of our algorithm is at a level of 200 milliseconds, making our method a potential real-time solution for reusing the remaining capacity in good used cells. PMID:29023485
Zhou, Fangbin; Zhou, Yaying; Yang, Ming; Wen, Jinli; Dong, Jun; Tan, Wenyong
2018-01-01
Circulating endothelial cells (CECs) and their subpopulations could be potential novel biomarkers for various malignancies. However, reliable enumerable methods are warranted to further improve their clinical utility. This study aimed to optimize a flow cytometric method (FCM) assay for CECs and subpopulations in peripheral blood for patients with solid cancers. An FCM assay was used to detect and identify CECs. A panel of 60 blood samples, including 44 metastatic cancer patients and 16 healthy controls, were used in this study. Some key issues of CEC enumeration, including sample material and anticoagulant selection, optimal titration of antibodies, lysis/wash procedures of blood sample preparation, conditions of sample storage, sufficient cell events to enhance the signal, fluorescence-minus-one controls instead of isotype controls to reduce background noise, optimal selection of cell surface markers, and evaluating the reproducibility of our method, were integrated and investigated. Wilcoxon and Mann-Whitney U tests were used to determine statistically significant differences. In this validation study, we refined a five-color FCM method to detect CECs and their subpopulations in peripheral blood of patients with solid tumors. Several key technical issues regarding preanalytical elements, FCM data acquisition, and analysis were addressed. Furthermore, we clinically validated the utility of our method. The baseline levels of mature CECs, endothelial progenitor cells, and activated CECs were higher in cancer patients than healthy subjects ( P <0.01). However, there was no significant difference in resting CEC levels between healthy subjects and cancer patients ( P =0.193). We integrated and comprehensively addressed significant technical issues found in previously published assays and validated the reproducibility and sensitivity of our proposed method. Future work is required to explore the potential of our optimized method in clinical oncologic applications.
Deformability and size-based cancer cell separation using an integrated microfluidic device.
Pang, Long; Shen, Shaofei; Ma, Chao; Ma, Tongtong; Zhang, Rui; Tian, Chang; Zhao, Lei; Liu, Wenming; Wang, Jinyi
2015-11-07
Cell sorting by filtration techniques offers a label-free approach for cell separation on the basis of size and deformability. However, filtration is always limited by the unpredictable variation of the filter hydrodynamic resistance due to cell accumulation and clogging in the microstructures. In this study, we present a new integrated microfluidic device for cell separation based on the cell size and deformability by combining the microstructure-constricted filtration and pneumatic microvalves. Using this device, the cell populations sorted by the microstructures can be easily released in real time for subsequent analysis. Moreover, the periodical sort and release of cells greatly avoided cell accumulation and clogging and improved the selectivity. Separation of cancer cells (MCF-7, MDA-MB-231 and MDA231-LM2) with different deformability showed that the mixture of the less flexible cells (MCF-7) and the flexible cells (MDA-MB-231 and MDA231-LM2) can be well separated with more than 75% purity. Moreover, the device can be used to separate cancer cells from the blood samples with more than 90% cell recovery and more than 80% purity. Compared with the current filtration methods, the device provides a new approach for cancer cell separation with high collection recovery and purity, and also, possesses practical potential to be applied as a sample preparation platform for fundamental studies and clinical applications.
Numerical and experimental evaluation of microfluidic sorting devices.
Taylor, Jay K; Ren, Carolyn L; Stubley, G D
2008-01-01
The development of lab-on-a-chip devices calls for the isolation or separation of specific bioparticles or cells. The design of a miniaturized cell-sorting device for handheld operation must follow the strict parameters associated with lab-on-a-chip technology. The limitations include applied voltage, high efficiency of cell-separation, reliability, size, flow control, and cost, among others. Currently used designs have achieved successful levels of cell isolation; however, further improvements in the microfluidic chip design are important to incorporate into larger systems. This study evaluates specific design modifications that contribute to the reduction of required applied potential aiming for developing portable devices, improved operation reliability by minimizing induced pressure disturbance when electrokinetic pumping is employed, and improved flow control by incorporating directing streams achieving dynamic sorting and counting. The chip designs fabricated in glass and polymeric materials include asymmetric channel widths for sample focusing, nonuniform channel depth for minimizing induced pressure disturbance, directing streams to assist particle flow control, and online filters for reducing channel blockage. Fluorescence-based visualization experimental results of electrokinetic focusing, flow field phenomena, and dynamic sorting demonstrate the advantages of the chip design. Numerical simulations in COMSOL are validated by the experimental data and used to investigate the effects of channel geometry and fluid properties on the flow field.
Son, Yeon Sung; Park, Jae Hyun; Kang, Young Kook; Park, Jin-Sung; Choi, Hong Seo; Lim, Ji Young; Lee, Jeoung Eun; Lee, Jung Bok; Ko, Myoung Seok; Kim, Yong-Sam; Ko, Jeong-Heon; Yoon, Hyun Soo; Lee, Kwang-Woong; Seong, Rho Hyun; Moon, Shin Yong; Ryu, Chun Jeih; Hong, Hyo Jeong
2005-01-01
The cell-surface markers used routinely to define the undifferentiated state and pluripotency of human embryonic stem cells (hESCs) are those used in mouse embryonic stem cells (mESCs) because of a lack of markers directly originated from hESC itself. To identify more hESC-specific cell-surface markers, we generated a panel of monoclonal antibodies (MAbs) by immunizing the irradiated cell clumps of hESC line Miz-hES1, and selected 26 MAbs that were able to bind to Miz-hES1 cells but not to mESCs, mouse embryonic fibroblast cells, and STO cells. Most antibodies did not bind to human neural progenitor cells derived from the Miz-hES1 cells, either. Of these, MAb 20-202S (IgG1, kappa) immunoprecipitated a cell-surface protein of 72-kDa from the lysate of biotin-labeled Miz-hES1 cells, which was identified to be heat shock 70-kDa protein 8 isoform 1 (HSPA8) by quadrupole time-of-flight tandem mass spectrometry. Immunocytochemical analyses proved that the HSPA8 protein was also present on the surface of hESC lines Miz-hES4, Miz-hES6, and HSF6. Two-color flow cytometric analysis of Miz-hES1 and HSF6 showed the coexpression of the HSPA8 protein with other hESC markers such as stage-specific embryonic antigen 3 (SSEA3), SSEA4, TRA-1-60, and TRA-1-81. Flow cytometric and Western blot analyses using various cells showed that MAb 20-202S specifically bound to the HSPA8 protein on the surface of Miz-hES1, contrary to other anti-HSP70 antibodies examined. Furthermore, the surface expression of the HSPA8 protein on Miz-hES1 was markedly downregulated upon differentiation. These data indicate that a novel MAb 20-202S recognizes the HSPA8 protein on the surface of hESCs and suggest that the HSPA8 protein is a putative cell-surface marker for undifferentiated hESCs.
Xavier, Miguel; de Andrés, María C; Spencer, Daniel; Oreffo, Richard O C; Morgan, Hywel
2017-08-01
The capacity of bone and cartilage to regenerate can be attributed to skeletal stem cells (SSCs) that reside within the bone marrow (BM). Given SSCs are rare and lack specific surface markers, antibody-based sorting has failed to deliver the cell purity required for clinical translation. Microfluidics offers new methods of isolating cells based on biophysical features including, but not limited to, size, electrical properties and stiffness. Here we report the characterization of the dielectric properties of unexpanded SSCs using single-cell microfluidic impedance cytometry (MIC). Unexpanded SSCs had a mean size of 9.0 µm; larger than the majority of BM cells. During expansion, often used to purify and increase the number of SSCs, cell size and membrane capacitance increased significantly, highlighting the importance of characterizing unaltered SSCs. In addition, MIC was used to track the osteogenic differentiation of SSCs and showed an increased membrane capacitance with differentiation. The electrical properties of primary SSCs were indistinct from other BM cells precluding its use as an isolation method. However, the current studies indicate that cell size in combination with another biophysical parameter, such as stiffness, could be used to design label-free devices for sorting SSCs with significant clinical impact. © 2017 The Authors.
2017-01-01
The capacity of bone and cartilage to regenerate can be attributed to skeletal stem cells (SSCs) that reside within the bone marrow (BM). Given SSCs are rare and lack specific surface markers, antibody-based sorting has failed to deliver the cell purity required for clinical translation. Microfluidics offers new methods of isolating cells based on biophysical features including, but not limited to, size, electrical properties and stiffness. Here we report the characterization of the dielectric properties of unexpanded SSCs using single-cell microfluidic impedance cytometry (MIC). Unexpanded SSCs had a mean size of 9.0 µm; larger than the majority of BM cells. During expansion, often used to purify and increase the number of SSCs, cell size and membrane capacitance increased significantly, highlighting the importance of characterizing unaltered SSCs. In addition, MIC was used to track the osteogenic differentiation of SSCs and showed an increased membrane capacitance with differentiation. The electrical properties of primary SSCs were indistinct from other BM cells precluding its use as an isolation method. However, the current studies indicate that cell size in combination with another biophysical parameter, such as stiffness, could be used to design label-free devices for sorting SSCs with significant clinical impact. PMID:28835540
Cobra venom cytotoxins; apoptotic or necrotic agents?
Ebrahim, Karim; Shirazi, Farshad H; Mirakabadi, Abbas Zare; Vatanpour, Hossein
2015-12-15
Organs homeostasis is controlled by a dynamic balance between cell proliferation and apoptosis. Failure to induction of apoptosis has been implicated in tumor development. Cytotoxin-I (CTX-I) and cytotoxin-II (CTX-II) are two physiologically active polypeptides found in Caspian cobra venom. Anticancer activity and mechanism of cell death induced by these toxins have been studied. The toxins were purified by different chromatographic steps and their cytotoxicity and pattern of cell death were determined by MTT, LDH release, acridine orange/ethidium bromide (AO/EtBr) double staining, flow cytometric analysis, caspase-3 activity and neutral red assays. The IC50 of CTX-II in MCF-7, HepG2, DU-145 and HL-60 was 4.1 ± 1.3, 21.2 ± 4.4, 9.4 ± 1.8 μg/mL and 16.3 ± 1.9 respectively while the IC50 of this toxin in normal MDCK cell line was 54.5 ± 3.9 μg/mL. LDH release suddenly increase after a specific toxins concentrations in all cell lines. AO/EtBr double staining, flow cytometric analysis and caspase-3 activity assay confirm dose and time-dependent induction of apoptosis by both toxins. CTX-I and CTX-II treated cells lost their lysosomal membrane integrity and couldn't uptake neutral red day. CTX-I and CTX-II showed significant anticancer activity with minimum effects on normal cells and better IC50 compared to current anticancer drug; cisplatin. They induce their apoptotic effect via lysosomal pathways and release of cathepsins to cytosol. These effects were seen in limited rage of toxins concentrations and pattern of cell death rapidly changes to necrosis by increase in toxin's concentration. In conclusion, significant apoptogenic effects of these toxins candidate them as a possible anticancer agent. Copyright © 2015 Elsevier Ltd. All rights reserved.
A Flow-Cytometric Gram-Staining Technique for Milk-Associated Bacteria
Holm, Claus; Jespersen, Lene
2003-01-01
A Gram-staining technique combining staining with two fluorescent stains, Oregon Green-conjugated wheat germ agglutinin (WGA) and hexidium iodide (HI) followed by flow-cytometric detection is described. WGA stains gram-positive bacteria while HI binds to the DNA of all bacteria after permeabilization by EDTA and incubation at 50°C for 15 min. For WGA to bind to gram-positive bacteria, a 3 M potassium chloride solution was found to give the highest fluorescence intensity. A total of 12 strains representing some of the predominant bacterial species in bulk tank milk and mixtures of these were stained and analyzed by flow cytometry. Overall, the staining method showed a clear differentiation between gram-positive and gram-negative bacterial populations. For stationary-stage cultures of seven gram-positive bacteria and five gram-negative bacteria, an average of 99% of the cells were correctly interpreted. The method was only slightly influenced by the growth phase of the bacteria or conditions such as freezing at −18°C for 24 h. For any of these conditions, an average of at least 95% of the cells were correctly interpreted. When stationary-stage cultures were stored at 5°C for 14 days, an average of 86% of the cells were correctly interpreted. The Gram-staining technique was applied to the flow cytometry analysis of bulk tank milk inoculated with Staphylococcus aureus and Escherichia coli. These results demonstrate that the technique is suitable for analyzing milk samples without precultivation. PMID:12732558
Van Bockstaele, Femke; Janssens, Ann; Piette, Anne; Callewaert, Filip; Pede, Valerie; Offner, Fritz; Verhasselt, Bruno; Philippé, Jan
2006-07-15
ZAP-70 has been proposed as a surrogate marker for immunoglobulin heavy-chain variable region (IgV(H)) mutation status, which is known as a prognostic marker in B-cell chronic lymphocytic leukemia (CLL). The flow cytometric analysis of ZAP-70 suffers from difficulties in standardization and interpretation. We applied the Kolmogorov-Smirnov (KS) statistical test to make analysis more straightforward. We examined ZAP-70 expression by flow cytometry in 53 patients with CLL. Analysis was performed as initially described by Crespo et al. (New England J Med 2003; 348:1764-1775) and alternatively by application of the KS statistical test comparing T cells with B cells. Receiver-operating-characteristics (ROC)-curve analyses were performed to determine the optimal cut-off values for ZAP-70 measured by the two approaches. ZAP-70 protein expression was compared with ZAP-70 mRNA expression measured by a quantitative PCR (qPCR) and with the IgV(H) mutation status. Both flow cytometric analyses correlated well with the molecular technique and proved to be of equal value in predicting the IgV(H) mutation status. Applying the KS test is reproducible, simple, straightforward, and overcomes a number of difficulties encountered in the Crespo-method. The KS statistical test is an essential part of the software delivered with modern routine analytical flow cytometers and is well suited for analysis of ZAP-70 expression in CLL. (c) 2006 International Society for Analytical Cytology.
A flow-cytometric gram-staining technique for milk-associated bacteria.
Holm, Claus; Jespersen, Lene
2003-05-01
A Gram-staining technique combining staining with two fluorescent stains, Oregon Green-conjugated wheat germ agglutinin (WGA) and hexidium iodide (HI) followed by flow-cytometric detection is described. WGA stains gram-positive bacteria while HI binds to the DNA of all bacteria after permeabilization by EDTA and incubation at 50 degrees C for 15 min. For WGA to bind to gram-positive bacteria, a 3 M potassium chloride solution was found to give the highest fluorescence intensity. A total of 12 strains representing some of the predominant bacterial species in bulk tank milk and mixtures of these were stained and analyzed by flow cytometry. Overall, the staining method showed a clear differentiation between gram-positive and gram-negative bacterial populations. For stationary-stage cultures of seven gram-positive bacteria and five gram-negative bacteria, an average of 99% of the cells were correctly interpreted. The method was only slightly influenced by the growth phase of the bacteria or conditions such as freezing at -18 degrees C for 24 h. For any of these conditions, an average of at least 95% of the cells were correctly interpreted. When stationary-stage cultures were stored at 5 degrees C for 14 days, an average of 86% of the cells were correctly interpreted. The Gram-staining technique was applied to the flow cytometry analysis of bulk tank milk inoculated with Staphylococcus aureus and Escherichia coli. These results demonstrate that the technique is suitable for analyzing milk samples without precultivation.
Rmax: A systematic approach to evaluate instrument sort performance using center stream catch☆
Riddell, Andrew; Gardner, Rui; Perez-Gonzalez, Alexis; Lopes, Telma; Martinez, Lola
2015-01-01
Sorting performance can be evaluated with regard to Purity, Yield and/or Recovery of the sorted fraction. Purity is a check on the quality of the sample and the sort decisions made by the instrument. Recovery and Yield definitions vary with some authors regarding both as how efficient the instrument is at sorting the target particles from the original sample, others distinguishing Recovery from Yield, where the former is used to describe the accuracy of the instrument’s sort count. Yield and Recovery are often neglected, mostly due to difficulties in their measurement. Purity of the sort product is often cited alone but is not sufficient to evaluate sorting performance. All of these three performance metrics require re-sampling of the sorted fraction. But, unlike Purity, calculating Yield and/or Recovery calls for the absolute counting of particles in the sorted fraction, which may not be feasible, particularly when dealing with rare populations and precious samples. In addition, the counting process itself involves large errors. Here we describe a new metric for evaluating instrument sort Recovery, defined as the number of particles sorted relative to the number of original particles to be sorted. This calculation requires only measuring the ratios of target and non-target populations in the original pre-sort sample and in the waste stream or center stream catch (CSC), avoiding re-sampling the sorted fraction and absolute counting. We called this new metric Rmax, since it corresponds to the maximum expected Recovery for a particular set of instrument parameters. Rmax is ideal to evaluate and troubleshoot the optimum drop-charge delay of the sorter, or any instrument related failures that will affect sort performance. It can be used as a daily quality control check but can be particularly useful to assess instrument performance before single-cell sorting experiments. Because we do not perturb the sort fraction we can calculate Rmax during the sort process, being especially valuable to check instrument performance during rare population sorts. PMID:25747337
Todeschi, Maria R; El Backly, Rania M; Varghese, Oommen P; Hilborn, Jöns; Cancedda, Ranieri; Mastrogiacomo, Maddalena
2017-07-01
This study aimed to identify host cell recruitment patterns in a mouse model in response to rhBMP-2 releasing hyaluronic acid hydrogels and influence of added nano-hydroxyapatite particles on rhBMP-2 release and pattern of bone formation. Implanted gels were retrieved after implantation and cells were enzymatically dissociated for flow cytometric analysis. Percentages of macrophages, progenitor endothelial cells and putative mesenchymal stem cells were measured. Implants were evaluated for BMP-2 release by ELISA and by histology to monitor tissue formation. Hyaluronic acid+BMP-2 gels influenced the inflammatory response in the bone healing microenvironment. Host-derived putative mesenchymal stem cells were major contributors. Addition of hydroxyapatite nanoparticles modified the release pattern of rhBMP-2, resulting in enhanced bone formation.
Geislinger, Thomas M; Franke, Thomas
2014-06-01
Hydrodynamic lift forces acting on cells and particles in fluid flow receive ongoing attention from medicine, mathematics, physics and engineering. The early findings of Fåhræus & Lindqvist on the viscosity change of blood with the diameter of capillaries motivated extensive studies both experimentally and theoretically to illuminate the underlying physics. We review this historical development that led to the discovery of the inertial and non-inertial lift forces and elucidate the origins of these forces that are still not entirely clear. Exploiting microfluidic techniques induced a tremendous amount of new insights especially into the more complex interactions between the flow field and deformable objects like vesicles or red blood cells. We trace the way from the investigation of single cell dynamics to the recent developments of microfluidic techniques for particle and cell sorting using hydrodynamic forces. Such continuous and label-free on-chip cell sorting devices promise to revolutionize medical analyses for personalized point-of-care diagnosis. We present the state-of-the-art of different hydrodynamic lift-based techniques and discuss their advantages and limitations. Copyright © 2014 Elsevier B.V. All rights reserved.
Static optical sorting in a laser interference field
NASA Astrophysics Data System (ADS)
Jákl, Petr; Čižmár, Tomáš; Šerý, Mojmír; Zemánek, Pavel
2008-04-01
We present a unique technique for optical sorting of heterogeneous suspensions of microparticles, which does not require the flow of the immersion medium. The method employs the size-dependent response of suspended dielectric particles to the optical field of three intersecting beams that form a fringelike interference pattern. We experimentally demonstrate sorting of a polydisperse suspension of polystyrene beads of diameters 1, 2, and 5.2μm and living yeast cells.
Genetic profiling of putative breast cancer stem cells from malignant pleural effusions.
Tiran, Verena; Stanzer, Stefanie; Heitzer, Ellen; Meilinger, Michael; Rossmann, Christopher; Lax, Sigurd; Tsybrovskyy, Oleksiy; Dandachi, Nadia; Balic, Marija
2017-01-01
A common symptom during late stage breast cancer disease is pleural effusion, which is related to poor prognosis. Malignant cells can be detected in pleural effusions indicating metastatic spread from the primary tumor site. Pleural effusions have been shown to be a useful source for studying metastasis and for isolating cells with putative cancer stem cell (CSC) properties. For the present study, pleural effusion aspirates from 17 metastatic breast cancer patients were processed to propagate CSCs in vitro. Patient-derived aspirates were cultured under sphere forming conditions and isolated primary cultures were further sorted for cancer stem cell subpopulations ALDH1+ and CD44+CD24-/low. Additionally, sphere forming efficiency of CSC and non-CSC subpopulations was determined. In order to genetically characterize the different tumor subpopulations, DNA was isolated from pleural effusions before and after cell sorting, and compared with corresponding DNA copy number profiles from primary tumors or bone metastasis using low-coverage whole genome sequencing (SCNA-seq). In general, unsorted cells had a higher potential to form spheres when compared to CSC subpopulations. In most cases, cell sorting did not yield sufficient cells for copy number analysis. A total of five from nine analyzed unsorted pleura samples (55%) showed aberrant copy number profiles similar to the respective primary tumor. However, most sorted subpopulations showed a balanced profile indicating an insufficient amount of tumor cells and low sensitivity of the sequencing method. Finally, we were able to establish a long term cell culture from one pleural effusion sample, which was characterized in detail. In conclusion, we confirm that pleural effusions are a suitable source for enrichment of putative CSC. However, sequencing based molecular characterization is impeded due to insufficient sensitivity along with a high number of normal contaminating cells, which are masking genetic alterations of rare cancer (stem) cells.
Björkman, Karin M.; Church, Matthew J.; Doggett, Joseph K.; Karl, David M.
2015-01-01
The light effect on photoheterotrophic processes in Prochlorococcus, and primary and bacterial productivity in the oligotrophic North Pacific Subtropical Gyre was investigated using 14C-bicarbonate and 3H-leucine. Light and dark incubation experiments were conducted in situ throughout the euphotic zone (0–175 m) on nine expeditions to Station ALOHA over a 3-year period. Photosynthetrons were also used to elucidate rate responses in leucine and inorganic carbon assimilation as a function of light intensity. Taxonomic group and cell-specific rates were assessed using flow cytometric sorting. The light:dark assimilation rate ratios of leucine in the top 150 m were ∼7:1 for Prochlorococcus, whereas the light:dark ratios for the non-pigmented bacteria (NPB) were not significant different from 1:1. Prochlorococcus assimilated leucine in the dark at per cell rates similar to the NPB, with a contribution to the total community bacterial production, integrated over the euphotic zone, of approximately 20% in the dark and 60% in the light. Depth-resolved primary productivity and leucine incorporation showed that the ratio of Prochlorococcus leucine:primary production peaked at 100 m then declined steeply below the deep chlorophyll maximum (DCM). The photosynthetron experiments revealed that, for Prochlorococcus at the DCM, the saturating irradiance (Ek) for leucine incorporation was reached at approximately half the light intensity required for light saturation of 14C-bicarbonate assimilation. Additionally, high and low red fluorescing Prochlorococcus populations (HRF and LRF), co-occurring at the DCM, had similar Ek values for their respective substrates, however, maximum assimilation rates, for both leucine and inorganic carbon, were two times greater for HRF cells. Our results show that Prochlorococcus contributes significantly to bacterial production estimates using 3H-leucine, whether or not the incubations are conducted in the dark or light, and this should be considered when making assessments of bacterial production in marine environments where Prochlorococcus is present. Furthermore, Prochlorococcus primary productivity showed rate to light-flux patterns that were different from its light enhanced leucine incorporation. This decoupling from autotrophic growth may indicate a separate light stimulated mechanism for leucine acquisition. PMID:26733953
Golgi sorting regulates organization and activity of GPI-proteins at apical membranes
Tivodar, Simona; Formiggini, Fabio; Ossato, Giulia; Gratton, Enrico; Tramier, Marc; Coppey-Moisan, Maïté; Zurzolo, Chiara
2014-01-01
Here, we combined classical biochemistry with novel biophysical approaches to study with high spatial and temporal resolution the organization of GPI-anchored proteins (GPI-APs) at the plasma membrane of polarized epithelial cells. We show that in polarized MDCK cells, following sorting in the Golgi, each GPI-AP reaches the apical surface in homo-clusters. Golgi-derived homo-clusters are required for their subsequent plasma membrane organization into cholesterol-dependent hetero-clusters. By contrast, in non-polarized MDCK cells GPI-APs are delivered to the surface as monomers in an unpolarized manner and are not able to form hetero-clusters. We further demonstrate that this GPI-AP organization is regulated by the content of cholesterol in the Golgi apparatus and is required to maintain the functional state of the protein at the apical membrane. Thus, different from fibroblasts, in polarized epithelial cells a selective cholesterol-dependent sorting mechanism in the Golgi regulates both the organization and the function of GPI-APs at the apical surface. PMID:24681536
Gifford, Carrie E; Weingartner, Elizabeth; Villanueva, Joyce; Johnson, Judith; Zhang, Kejian; Filipovich, Alexandra H; Bleesing, Jack J; Marsh, Rebecca A
2014-07-01
X-linked lymphoproliferative disease is caused by mutations in two genes, SH2D1A and XIAP/BIRC4. Flow cytometric methods have been developed to detect the gene products, SAP and XIAP. However, there is no literature describing the accuracy of flow cytometric screening performed in a clinical lab setting. We reviewed the clinical flow cytometric testing results for 656 SAP and 586 XIAP samples tested during a 3-year period. Genetic testing was clinically performed as directed by the managing physician in 137 SAP (21%) and 115 XIAP (20%) samples. We included these samples for analyses of flow cytometric test accuracy. SH2D1A mutations were detected in 15/137 samples. SAP expression was low in 13/15 (sensitivity 87%, CI 61-97%). Of the 122 samples with normal sequencing, SAP was normal in 109 (specificity 89%, CI 82-94%). The positive predictive values (PPVs) and the negative predictive values (NPVs) were 50% and 98%, respectively. XIAP/BIRC4 mutations were detected in 19/115 samples. XIAP expression was low in 18/19 (sensitivity 95%, CI 73-100%). Of the 96 samples with normal sequencing, 59 had normal XIAP expression (specificity 61%, CI 51-71%). The PPVs and NPVs were 33% and 98%, respectively. Receiver-operating characteristic analysis was able to improve the specificity to 75%. Clinical flow cytometric screening tests for SAP and XIAP deficiencies offer good sensitivity and specificity for detecting genetic mutations, and are characterized by high NPVs. We recommend these tests for patients suspected of having X-linked lymphoproliferative disease type 1 (XLP1) or XLP2. © 2014 Clinical Cytometry Society.
A role for the ESCRT system in cell division in archaea.
Samson, Rachel Y; Obita, Takayuki; Freund, Stefan M; Williams, Roger L; Bell, Stephen D
2008-12-12
Archaea are prokaryotic organisms that lack endomembrane structures. However, a number of hyperthermophilic members of the Kingdom Crenarchaea, including members of the Sulfolobus genus, encode homologs of the eukaryotic endosomal sorting system components Vps4 and ESCRT-III (endosomal sorting complex required for transport-III). We found that Sulfolobus ESCRT-III and Vps4 homologs underwent regulation of their expression during the cell cycle. The proteins interacted and we established the structural basis of this interaction. Furthermore, these proteins specifically localized to the mid-cell during cell division. Overexpression of a catalytically inactive mutant Vps4 in Sulfolobus resulted in the accumulation of enlarged cells, indicative of failed cell division. Thus, the archaeal ESCRT system plays a key role in cell division.
Rodrigues, Gonçalo M C; Fernandes, Tiago G; Rodrigues, Carlos A V; Cabral, Joaquim M S; Diogo, Maria Margarida
2015-01-01
Neural precursor (NP) cells derived from human induced pluripotent stem cells (hiPSCs), and their neuronal progeny, will play an important role in disease modeling, drug screening tests, central nervous system development studies, and may even become valuable for regenerative medicine treatments. Nonetheless, it is challenging to obtain homogeneous and synchronously differentiated NP populations from hiPSCs, and after neural commitment many pluripotent stem cells remain in the differentiated cultures. Here, we describe an efficient and simple protocol to differentiate hiPSC-derived NPs in 12 days, and we include a final purification stage where Tra-1-60+ pluripotent stem cells (PSCs) are removed using magnetic activated cell sorting (MACS), leaving the NP population nearly free of PSCs.
Prions amplify through degradation of the VPS10P sorting receptor sortilin.
Uchiyama, Keiji; Tomita, Mitsuru; Yano, Masashi; Chida, Junji; Hara, Hideyuki; Das, Nandita Rani; Nykjaer, Anders; Sakaguchi, Suehiro
2017-06-01
Prion diseases are a group of fatal neurodegenerative disorders caused by prions, which consist mainly of the abnormally folded isoform of prion protein, PrPSc. A pivotal pathogenic event in prion disease is progressive accumulation of prions, or PrPSc, in brains through constitutive conformational conversion of the cellular prion protein, PrPC, into PrPSc. However, the cellular mechanism by which PrPSc is progressively accumulated in prion-infected neurons remains unknown. Here, we show that PrPSc is progressively accumulated in prion-infected cells through degradation of the VPS10P sorting receptor sortilin. We first show that sortilin interacts with PrPC and PrPSc and sorts them to lysosomes for degradation. Consistently, sortilin-knockdown increased PrPSc accumulation in prion-infected cells. In contrast, overexpression of sortilin reduced PrPSc accumulation in prion-infected cells. These results indicate that sortilin negatively regulates PrPSc accumulation in prion-infected cells. The negative role of sortilin in PrPSc accumulation was further confirmed in sortilin-knockout mice infected with prions. The infected mice had accelerated prion disease with early accumulation of PrPSc in their brains. Interestingly, sortilin was reduced in prion-infected cells and mouse brains. Treatment of prion-infected cells with lysosomal inhibitors, but not proteasomal inhibitors, increased the levels of sortilin. Moreover, sortilin was reduced following PrPSc becoming detectable in cells after infection with prions. These results indicate that PrPSc accumulation stimulates sortilin degradation in lysosomes. Taken together, these results show that PrPSc accumulation of itself could impair the sortilin-mediated sorting of PrPC and PrPSc to lysosomes for degradation by stimulating lysosomal degradation of sortilin, eventually leading to progressive accumulation of PrPSc in prion-infected cells.
Rinaldi, Gabriel; Yan, Hongbin; Nacif-Pimenta, Rafael; Matchimakul, Pitchaya; Bridger, Joanna; Mann, Victoria H; Smout, Michael J; Brindley, Paul J; Knight, Matty
2015-07-01
The invertebrate cell line, Bge, from embryos of the snail Biomphalaria glabrata, remains to date the only established cell line from any species of the Phylum Mollusca. Since its establishment in 1976 by Eder Hansen, few studies have focused on profiling its cytometrics, growth characteristics or sensitivity to xenobiotics. Bge cells are reputed to be challenging to propagate and maintain. Therefore, even though this cell line is a noteworthy resource, it has not been studied widely. With growing interest in functional genomics, including genetic transformation, to elucidate molecular aspects of the snail intermediate hosts responsible for transmission of schistosomiasis, and aiming to enhance the convenience of maintenance of this molluscan cell line, we deployed the xCELLigene real time approach to study Bge cells. Doubling times for three isolates of Bge, termed CB, SL and UK, were longer than for mammalian cell lines - longer than 40 h in complete Bge medium supplemented with 7% fetal bovine serum at 25°C, ranging from ∼42 h to ∼157 h when 40,000 cells were seeded. To assess the potential of the cells for genetic transformation, antibiotic selection was explored. Bge cells were sensitive to the aminonucleoside antibiotic puromycin (from Streptomyces alboniger) from 5 μg/ml to 200 ng/ml, displaying a half maximal inhibitory concentration (IC50) of ∼1.91 μg/ml. Sensitivity to puromycin, and a relatively quick kill time (<48 h in 5 μg/ml) facilitated use of this antibiotic, together with the cognate resistance gene (puromycin N-acetyl-transferase) for selection of Bge cells transformed with the PAC gene (puroR). Bge cells transfected with a plasmid encoding puroR were partially rescued when cultured in the presence of 5 μg/ml of puromycin. These findings pave the way for the development of functional genomic tools applied to the host-parasite interaction during schistosomiasis and neglected tropical trematodiases at large. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sarkes, Deborah A.; Hurley, Margaret M.; Coppock, Matthew B.; Farrell, Mikella E.; Pellegrino, Paul M.; Stratis-Cullum, Dimitra N.
2016-05-01
Peptides have emerged as viable alternatives to antibodies for molecular-based sensing due to their similarity in recognition ability despite their relative structural simplicity. Various methods for peptide capture reagent discovery exist, including phage display, yeast display, and bacterial display. One of the primary advantages of peptide discovery by bacterial display technology is the speed to candidate peptide capture agent, due to both rapid growth of bacteria and direct utilization of the sorted cells displaying each individual peptide for the subsequent round of biopanning. We have previously isolated peptide affinity reagents towards protective antigen of Bacillus anthracis using a commercially available automated magnetic sorting platform with improved enrichment as compared to manual magnetic sorting. In this work, we focus on adapting our automated biopanning method to a more challenging sort, to demonstrate the specificity possible with peptide capture agents. This was achieved using non-toxic, recombinant variants of ricin and abrin, RiVax and abrax, respectively, which are structurally similar Type II ribosomal inactivating proteins with significant sequence homology. After only two rounds of biopanning, enrichment of peptide capture candidates binding abrax but not RiVax was achieved as demonstrated by Fluorescence Activated Cell Sorting (FACS) studies. Further sorting optimization included negative sorting against RiVax, proper selection of autoMACS programs for specific sorting rounds, and using freshly made buffer and freshly thawed protein target for each round of biopanning for continued enrichment over all four rounds. Most of the resulting candidates from biopanning for abrax binding peptides were able to bind abrax but not RiVax, demonstrating that short peptide sequences can be highly specific even at this early discovery stage.
Sun, Yu; Yao, Zhina; Lin, Peng; Hou, Xinguo; Chen, Li
2014-05-01
Using a microfluidic chip, we have investigated whether bone marrow mesenchymal stem cells (BM-MSCs) could ameliorate IL-1β/IFN-γ-induced dysfunction of INS-1 cells. BM-MSCs were obtained from diabetes mellitus patients and their cell surface antigen expression profiles were analyzed by flow cytometric. INS-1 cells were cocultured with BM-MSCs on a microfluidic chip with persistent perfusion of medium containing 1 ng/mL IL-1β and 2.5 U/mL IFN-γ for 72 h. BM-MSCs could partially rescue INS-1 cells from cytokine-induced dysfunction and ameliorate the expression of insulin and PDX-1 gene in INS-1 cells. Thus BM-MSCs can be viewed as a promising stem cell source to depress inflammatory factor-induced dysfunction of pancreatic β cells in diabetic patients. © 2014 International Federation for Cell Biology.
Mesenchymal Stem Cells for Vascular Target Discovery in Breast Cancer-Associated Angiogenesis
2005-09-01
demonstrating this marker as demonstrated by flow cytometry . These GFP+ MSCs were subsequently analyzed for expression of commonly reported markers of...phenotypically and genotypically analyzed by flow cytometry and gene chip analysis, respectively. We have also shown that MSCs can then be stimulated to...positive MSCs retrieved by collagenase digestion of the Matrigel plug and sorted by flow cytometry . Sorting of these retrieved cells based on co-expression
Lim, Shaun W.; Lance, Shea T.; Stedman, Kenneth M.; Abate, Adam R.
2017-01-01
Characterizing virus-host relationships is critical for understanding the impact of a virus on an ecosystem, but is challenging with existing techniques, particularly for uncultivable species. We present a general, cultivation-free approach for identifying phage-associated bacterial cells. Using PCR-activated cell sorting, we interrogate millions of individual bacteria for the presence of specific phage nucleic acids. If the nucleic acids are present, the bacteria are recovered via sorting and their genomes analyzed. This allows targeted recovery of all possible host species in a diverse population associated with a specific phage, and can be easily targeted to identify the hosts of different phages by modifying the PCR primers used for detection. Moreover, this technique allows quantification of free phage particles, as benchmarked against the “gold standard” of virus enumeration, the plaque assay. PMID:28042018
Lim, Shaun W; Lance, Shea T; Stedman, Kenneth M; Abate, Adam R
2017-04-01
Characterizing virus-host relationships is critical for understanding the impact of a virus on an ecosystem, but is challenging with existing techniques, particularly for uncultivable species. We present a general, cultivation-free approach for identifying phage-associated bacterial cells. Using PCR-activated cell sorting, we interrogate millions of individual bacteria for the presence of specific phage nucleic acids. If the nucleic acids are present, the bacteria are recovered via sorting and their genomes analyzed. This allows targeted recovery of all possible host species in a diverse population associated with a specific phage, and can be easily targeted to identify the hosts of different phages by modifying the PCR primers used for detection. Moreover, this technique allows quantification of free phage particles, as benchmarked against the "gold standard" of virus enumeration, the plaque assay. Copyright © 2017 Elsevier B.V. All rights reserved.
Multivariate analysis of flow cytometric data using decision trees.
Simon, Svenja; Guthke, Reinhard; Kamradt, Thomas; Frey, Oliver
2012-01-01
Characterization of the response of the host immune system is important in understanding the bidirectional interactions between the host and microbial pathogens. For research on the host site, flow cytometry has become one of the major tools in immunology. Advances in technology and reagents allow now the simultaneous assessment of multiple markers on a single cell level generating multidimensional data sets that require multivariate statistical analysis. We explored the explanatory power of the supervised machine learning method called "induction of decision trees" in flow cytometric data. In order to examine whether the production of a certain cytokine is depended on other cytokines, datasets from intracellular staining for six cytokines with complex patterns of co-expression were analyzed by induction of decision trees. After weighting the data according to their class probabilities, we created a total of 13,392 different decision trees for each given cytokine with different parameter settings. For a more realistic estimation of the decision trees' quality, we used stratified fivefold cross validation and chose the "best" tree according to a combination of different quality criteria. While some of the decision trees reflected previously known co-expression patterns, we found that the expression of some cytokines was not only dependent on the co-expression of others per se, but was also dependent on the intensity of expression. Thus, for the first time we successfully used induction of decision trees for the analysis of high dimensional flow cytometric data and demonstrated the feasibility of this method to reveal structural patterns in such data sets.
Habara, P; Marečková, H; Malíčková, K; Potyšová, Z; Hrušková, Z; Zima, T; Tesař, V
2012-01-01
Glomerulonephritides together create a heterogenic group of supposedly immunologically mediated diseases of glomeruli. They still belong among the most frequent causes of chronic renal failure. Detection of podocytes in urine might serve as an important marker of glomerulonephritides activity. The aim of this study was to develop a novel flow cytometric method for the detection of podocyte fragments and podocytes in urine and assess its possible use in clinical practice. We placed emphasis on the improvement of pre-analytic phase. To suppress the autofluorescence of the background, blocking solutions and magnetic separation were used. An additional surface marker CD10 (nephrilysin) was used together with routinely used podocalyxin (PCX) in order to achieve better identification of podocytes. Based on the surface marker expression, three different element types were identified in the urine samples: PCX+/CD10+ elements (EL) (supposedly podocytes), PCX-/CD10+ EL (supposedly parietal epithelial cells) and PCX+ EL. We examined a total of 36 patients who underwent renal biopsy (non-glomerular nephropathy, MGN, FSGS, IgAN, AAV and MPGN) and 27 healthy controls. Negative results were found in non-glomerular nephropathy and in MGN. In patients with FSGS and IgAN, the levels of urine elements were slightly increased. The highest levels of all elements were found in AAV and MPGN. Our first results suggest that flow cytometric detection may distinguish between glomerular and nonglomerular diseases and that the levels of urine elements might correlate with the degree of glomerular destruction.
Lindberg, Hanna; Härd, Torleif; Löfblom, John; Ståhl, Stefan
2015-09-01
The amyloid hypothesis suggests that accumulation of amyloid β (Aβ) peptides in the brain is involved in development of Alzheimer's disease. We previously generated a small dimeric affinity protein that inhibited Aβ aggregation by sequestering the aggregation prone parts of the peptide. The affinity protein is originally based on the Affibody scaffold, but is evolved to a distinct interaction mechanism involving complex structural rearrangement in both the Aβ peptide and the affinity proteins upon binding. The aim of this study was to decrease the size of the dimeric affinity protein and significantly improve its affinity for the Aβ peptide to increase its potential as a future therapeutic agent. We combined a rational design approach with combinatorial protein engineering to generate two different affinity maturation libraries. The libraries were displayed on staphylococcal cells and high-affinity Aβ-binding molecules were isolated using flow-cytometric sorting. The best performing candidate binds Aβ with a KD value of around 300 pM, corresponding to a 50-fold improvement in affinity relative to the first-generation binder. The new dimeric Affibody molecule was shown to capture Aβ1-42 peptides from spiked E. coli lysate. Altogether, our results demonstrate successful engineering of this complex binder for increased affinity to the Aβ peptide. © 2015 The Authors. Biotechnology Journal published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution-Non-Commercial-NoDerivs Licence, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
Mustapha, Pascale; Epalle, Thibaut; Allegra, Séverine; Girardot, Françoise; Garraud, Olivier; Riffard, Serge
2015-04-01
The viability of three Legionella pneumophila strains was monitored after chlorine dioxide (ClO2) treatment using a flow cytometric assay. Suspensions of L. pneumophila cells were submitted to increasing concentrations of ClO2. Culturable cells were still detected when using 4 mg/L, but could no longer be detected after exposure to 6 mg/L of ClO2, although viable but not culturable (VBNC) cells were found after exposure to 4-5 mg/L of ClO2. When testing whether these VBNC were infective, two of the strains were resuscitated after co-culture with Acanthamoeba polyphaga, but neither of them could infect macrophage-like cells. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
2010-01-01
Background The crude extract of the fruit bearing plant, Physalis peruviana (golden berry), demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown. Methods Herein, we isolated the main pure compound, 4β-Hydroxywithanolide (4βHWE) derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299) using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE) assay was used to evaluate the DNA damage due to the drug. Results It was shown that DNA damage was significantly induced by 1, 5, and 10 μg/mL 4βHWE for 2 h in a dose-dependent manner (p < 0.005). A trypan blue exclusion assay showed that the proliferation of cells was inhibited by 4βHWE in both dose- and time-dependent manners (p < 0.05 and 0.001 for 24 and 48 h, respectively). The half maximal inhibitory concentrations (IC50) of 4βHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 μg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4βHWE produced cell cycle perturbation in the form of sub-G1 accumulation and slight arrest at the G2/M phase with 1 μg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G2/M arrest for H1299 cells treated with 5 μg/mL for 24 h. Conclusions In this study, we demonstrated that golden berry-derived 4βHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer. PMID:20167063
Yen, Ching-Yu; Chiu, Chien-Chih; Chang, Fang-Rong; Chen, Jeff Yi-Fu; Hwang, Chi-Ching; Hseu, You-Cheng; Yang, Hsin-Ling; Lee, Alan Yueh-Luen; Tsai, Ming-Tz; Guo, Zong-Lun; Cheng, Yu-Shan; Liu, Yin-Chang; Lan, Yu-Hsuan; Chang, Yu-Ching; Ko, Ying-Chin; Chang, Hsueh-Wei; Wu, Yang-Chang
2010-02-18
The crude extract of the fruit bearing plant, Physalis peruviana (golden berry), demonstrated anti-hepatoma and anti-inflammatory activities. However, the cellular mechanism involved in this process is still unknown. Herein, we isolated the main pure compound, 4beta-Hydroxywithanolide (4betaHWE) derived from golden berries, and investigated its antiproliferative effect on a human lung cancer cell line (H1299) using survival, cell cycle, and apoptosis analyses. An alkaline comet-nuclear extract (NE) assay was used to evaluate the DNA damage due to the drug. It was shown that DNA damage was significantly induced by 1, 5, and 10 microg/mL 4betaHWE for 2 h in a dose-dependent manner (p < 0.005). A trypan blue exclusion assay showed that the proliferation of cells was inhibited by 4betaHWE in both dose- and time-dependent manners (p < 0.05 and 0.001 for 24 and 48 h, respectively). The half maximal inhibitory concentrations (IC50) of 4betaHWE in H1299 cells for 24 and 48 h were 0.6 and 0.71 microg/mL, respectively, suggesting it could be a potential therapeutic agent against lung cancer. In a flow cytometric analysis, 4betaHWE produced cell cycle perturbation in the form of sub-G1 accumulation and slight arrest at the G2/M phase with 1 microg/mL for 12 and 24 h, respectively. Using flow cytometric and annexin V/propidium iodide immunofluorescence double-staining techniques, these phenomena were proven to be apoptosis and complete G2/M arrest for H1299 cells treated with 5 microg/mL for 24 h. In this study, we demonstrated that golden berry-derived 4betaHWE is a potential DNA-damaging and chemotherapeutic agent against lung cancer.
Rissetto, K C; Rindt, H; Selting, K A; Villamil, J A; Henry, C J; Reinero, C R
2010-05-15
T regulatory cells (Tregs) are a unique subset of T helper cells that serve to modify/inhibit effector cells of the immune system and thus are essential to prevent autoimmunity. Overzealous Treg activity may contribute to impaired immune responses to cancer. Tregs can be phenotypically identified by proteins expressed on the cell surface (CD4 and CD25) and inside the cell (forkhead box3 (FoxP3)), although in dogs, no anti-canine CD25 antibody exists. We hypothesized that a mouse anti-human CD25 antibody definitively recognizes the canine protein and can be used to identify Tregs in dogs. We describe cloning and transfection of the canine CD25 gene into human HeLa cells with subsequent expression of the canine protein on the cell surface detected using an anti-human CD25 antibody in a flow cytometric assay. Validation of this antibody was used to identify CD4+CD25+FoxP3+ Tregs in 39 healthy dogs and 16 dogs with osteosarcoma (OSA). Results were expressed in five different ways and showed significantly fewer %CD4+CD25+ T lymphocytes expressing FoxP3 in blood of older dogs (>/=7 years) compared with the other two age groups (<2 and 2-6 years) (p<0.001) and fewer %CD4+CD25+FoxP3+ Tregs in the tumor draining lymph nodes of OSA patients compared to the unrelated lymph node (p=0.049). However, there was no significant difference in % Tregs in the peripheral blood or lymph nodes between the control dogs and those with OSA. While the CD25 antibody can be successfully used in a flow cytometric assay to identify Tregs, this study does not support clinical utility of phenotypic recognition of Tregs in dogs with OSA. Copyright 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, K.-T.; Zhang, J.; Duan, Q.-Q.; Bi, Y.; Bai, D.-Q.; Ou, Y.-S.
2014-06-01
A giant cell tumor in bone is the common primary bone tumor with aggressive features, occurring mainly in young adults. Photodynamic therapy is a new therapeutic technique for tumors. In this study, we investigated the effects of Pyropheophorbide-α methyl ester (MPPa)-mediated photodynamic therapy on the proliferation of giant cell tumor cells and its mechanism of action. Cell proliferation was evaluated using an MTT assay. Cellular apoptosis was detected by Hoechst nuclear staining, and flow cytometric assay. Mitochondrial membrane potential changes and cytochrome c, caspase-9, caspase-3, and Bcl-2 expression was assessed. Finally, we found that MPPa-mediated photodynamic therapy could effectively suppress the proliferation of human giant cell tumor cells and induce apoptosis. The mitochondrial pathway was involved in the MPPa-photodynamic therapy-induced apoptosis.
Low-Coherence Reflectometry for Refractive Index Measurements of Cells in Micro-Capillaries.
Carpignano, Francesca; Rigamonti, Giulia; Mazzini, Giuliano; Merlo, Sabina
2016-10-11
The refractive index of cells provides insights into their composition, organization and function. Moreover, a good knowledge of the cell refractive index would allow an improvement of optical cytometric and diagnostic systems. Although interferometric techniques undoubtedly represent a good solution for quantifying optical path variation, obtaining the refractive index of a population of cells non-invasively remains challenging because of the variability in the geometrical thickness of the sample. In this paper, we demonstrate the use of infrared low-coherence reflectometry for non-invasively quantifying the average refractive index of cell populations gently confined in rectangular glass micro-capillaries. A suspension of human red blood cells in plasma is tested as a reference. As a use example, we apply this technique to estimate the average refractive index of cell populations belonging to epithelial and hematological families.
Massucci-Bissoli, Milene; Lezirovitz, Karina; Oiticica, Jeanne; Bento, Ricardo Ferreira
2017-11-01
The aim of this study was to search for evidence of stem or progenitor cells in the adult human cochlea by testing for sphere formation capacity and the presence of the stem cell marker ABCG2. Cochleas removed from patients undergoing vestibular schwannoma resection (n=2) and from brain-dead organ donors (n=4) were dissociated for either flow cytometry analysis for the stem cell marker ABCG2 or a sphere formation assay that is widely used to test the sphere-forming capacity of cells from mouse inner ear tissue. Spheres were identified after 2-5 days in vitro, and the stem cell marker ABCG2 was detected using flow cytometric analysis after cochlear dissociation. Evidence suggests that there may be progenitor cells in the adult human cochlea, although further studies are required.
Low-Coherence Reflectometry for Refractive Index Measurements of Cells in Micro-Capillaries
Carpignano, Francesca; Rigamonti, Giulia; Mazzini, Giuliano; Merlo, Sabina
2016-01-01
The refractive index of cells provides insights into their composition, organization and function. Moreover, a good knowledge of the cell refractive index would allow an improvement of optical cytometric and diagnostic systems. Although interferometric techniques undoubtedly represent a good solution for quantifying optical path variation, obtaining the refractive index of a population of cells non-invasively remains challenging because of the variability in the geometrical thickness of the sample. In this paper, we demonstrate the use of infrared low-coherence reflectometry for non-invasively quantifying the average refractive index of cell populations gently confined in rectangular glass micro-capillaries. A suspension of human red blood cells in plasma is tested as a reference. As a use example, we apply this technique to estimate the average refractive index of cell populations belonging to epithelial and hematological families. PMID:27727172
Looking at the Cell Once Again.
ERIC Educational Resources Information Center
Flannery, Maura C.
1993-01-01
Summarizes current information on the cell for the following topics: mitochondria from the male, moving cells, the cell cycle, the kinetics of kinetechore, nuclear structure, and sorting and secretion. (PR)
Digital sorting of complex tissues for cell type-specific gene expression profiles.
Zhong, Yi; Wan, Ying-Wooi; Pang, Kaifang; Chow, Lionel M L; Liu, Zhandong
2013-03-07
Cellular heterogeneity is present in almost all gene expression profiles. However, transcriptome analysis of tissue specimens often ignores the cellular heterogeneity present in these samples. Standard deconvolution algorithms require prior knowledge of the cell type frequencies within a tissue or their in vitro expression profiles. Furthermore, these algorithms tend to report biased estimations. Here, we describe a Digital Sorting Algorithm (DSA) for extracting cell-type specific gene expression profiles from mixed tissue samples that is unbiased and does not require prior knowledge of cell type frequencies. The results suggest that DSA is a specific and sensitivity algorithm in gene expression profile deconvolution and will be useful in studying individual cell types of complex tissues.
Montero-Hadjadje, Maité; Elias, Salah; Chevalier, Laurence; Benard, Magalie; Tanguy, Yannick; Turquier, Valérie; Galas, Ludovic; Yon, Laurent; Malagon, Maria M; Driouich, Azeddine; Gasman, Stéphane; Anouar, Youssef
2009-05-01
Chromogranin A (CgA) has been proposed to play a major role in the formation of dense-core secretory granules (DCGs) in neuroendocrine cells. Here, we took advantage of unique features of the frog CgA (fCgA) to assess the role of this granin and its potential functional determinants in hormone sorting during DCG biogenesis. Expression of fCgA in the constitutively secreting COS-7 cells induced the formation of mobile vesicular structures, which contained cotransfected peptide hormones. The fCgA and the hormones coexpressed in the newly formed vesicles could be released in a regulated manner. The N- and C-terminal regions of fCgA, which exhibit remarkable sequence conservation with their mammalian counterparts were found to be essential for the formation of the mobile DCG-like structures in COS-7 cells. Expression of fCgA in the corticotrope AtT20 cells increased pro-opiomelanocortin levels in DCGs, whereas the expression of N- and C-terminal deletion mutants provoked retention of the hormone in the Golgi area. Furthermore, fCgA, but not its truncated forms, promoted pro-opiomelanocortin sorting to the regulated secretory pathway. These data demonstrate that CgA has the intrinsic capacity to induce the formation of mobile secretory granules and to promote the sorting and release of peptide hormones. The conserved terminal peptides are instrumental for these activities of CgA.
Multivesicular bodies: co-ordinated progression to maturity
Woodman, Philip G; Futter, Clare E
2008-01-01
Multivesicular endosomes/bodies (MVBs) sort endocytosed proteins to different destinations. Many lysosomally directed membrane proteins are sorted onto intralumenal vesicles, whilst recycling proteins remain on the perimeter membrane from where they are removed via tubular extensions. MVBs move to the cell centre during this maturation process and, when all recycling proteins have been removed, fuse with lysosomes. Recent advances have identified endosomal-sorting complex required for transport (ESCRT)-dependent and ESCRT-independent pathways in intralumenal vesicle formation and mechanisms for sorting recycling cargo into tubules. Cytoskeletal motors, through interactions with these machineries and by regulating MVB movement, help to co-ordinate events leading to a mature, fusion-competent MVB. PMID:18502633
Mahringer, Anne; Ardjomand-Woelkart, Karin; Bauer, Rudolf; Fricker, Gert; Efferth, Thomas
2013-03-01
The blood-brain barrier prevents the passage of toxic compounds from blood circulation into brain tissue. Unfortunately, drugs for the treatment of neurodegenerative diseases, brain tumors, and other diseases also do not cross the blood-brain barrier. In the present investigation, we used isolated porcine brain capillary endothelial cells and a flow cytometric calcein-AM assay to analyze inhibition of P-glycoprotein, a major constituent of the blood-brain barrier. We tested 8 alkamides isolated from Echinacea angustifolia and found that four of them inhibited P-glycoprotein-mediated calcein transport in porcine brain capillary endothelial cells. Georg Thieme Verlag KG Stuttgart · New York.
Flow cytometric measurement of total DNA and incorporated halodeoxyuridine
Dolbeare, F.A.; Gray, J.W.
1983-10-18
A method for the simultaneous flow cylometric measurement of total cellular DNA content and of the uptake of DNA precursors as a measure of DNA synthesis during various phases of the cell cycle in normal and malignant cells in vitro and in vivo is described. The method comprises reacting cells with labelled halodeoxyuridine (HdU), partially denaturing cellular DNA, adding to the reaction medium monoclonal antibodies (mabs) reactive with HdU, reacting the bound mabs with a second labelled antibody, incubating the mixture with a DNA stain, and measuring simultaneously the intensity of the DNA stain as a measure of the total cellular DNA and the HdU incorporated as a measure of DNA synthesis. (ACR)
Kubota, S; Takezawa, T; Mori, Y; Takakuwa, T
1992-09-01
We applied the multicellular spheroids which consist of cholangiocarcinoma cell line (MEC) and human dermal fibroblasts (HDF) to in vitro chemosensitivity test. Five-day multicellular spheroids were incubated with 1.5 micrograms/ml of mitomycin C (MMC) for 24 hrs. Then, cell kinetics of MEC and HDF in a spheroid was determined by flow cytometric analysis. Twenty four hrs after treatment with MMC, both MEC and HDF were accumulated on S phase. Seven-day after treatment, DNA histogram in MEC returned to normal, but that of HDF was disappeared. These results showed that the multicellular assay could be more like on in vivo like chemosensitivity test.
Tanev, Stoyan; Sun, Wenbo; Pond, James; Tuchin, Valery V.; Zharov, Vladimir P.
2010-01-01
The formulation of the Finite-Difference Time-Domain (FDTD) approach is presented in the framework of its potential applications to in vivo flow cytometry based on light scattering. The consideration is focused on comparison of light scattering by a single biological cell alone in controlled refractive index matching conditions and by cells labeled by gold nanoparticles. The optical schematics including phase contrast (OPCM) microscopy as a prospective modality for in vivo flow cytometry is also analyzed. The validation of the FDTD approach for the simulation of flow cytometry may open a new avenue in the development of advanced cytometric techniques based on scattering effects from nanoscale targets. PMID:19670359
Lou, Chenghua; Yang, Guangming; Cai, Hao; Zou, Mingchang; Xu, Zisheng; Li, Yu; Zhao, Fengming; Li, Weidong; Tong, Li; Wang, Mingyan; Cai, Baochang
2010-08-01
2',4'-Dihydroxychalcone (TFC), a main component in Herba Oxytropis, is grouped under flavonoids, which are well known to have antitumor activities in vitro. In this study, the possible antitumor mechanism of TFC in human gastric cancer MGC-803 cells is examined. Hoechst 33258 staining analysis indicates that TFC causes MGC-803 cell shrinkage and apoptotic body formation, typical characteristics of apoptosis. Flow cytometric analysis demonstrates that TFC causes cell cycle arrest in the G2/M phase. Furthermore, TFC significantly increases caspase-3 activity but decreases survivin mRNA expression. Therefore, TFC can induce the apoptosis of MGC-803 cells via down-regulation of survivin mRNA expression. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
High-throughput microfluidic device for rare cell isolation
NASA Astrophysics Data System (ADS)
Yang, Daniel; Leong, Serena; Lei, Andy; Sohn, Lydia L.
2015-06-01
Enumerating and analyzing circulating tumor cells (CTCs)—cells that have been shed from primary solid tumors—can potentially be used to determine patient prognosis and track the progression of disease. There is a great challenge to create an effective platform that can isolate these cells, as they are extremely rare: only 1-10 CTCs are present in a 7.5mL of a cancer patient's peripheral blood. We have developed a novel microfluidic system that can isolate CTC populations label free. Our system consists of a multistage separator that employs inertial migration to sort cells based on size. We demonstrate the feasibility of our device by sorting colloids that are comparable in size to red blood cells (RBCs) and CTCs.
High-Throughput Microfluidic Device for Rare Cell Isolation.
Yang, Daniel; Leong, Serena; Lei, Andy; Sohn, Lydia L
2015-05-04
Enumerating and analyzing circulating tumor cells (CTCs)-cells that have been shed from primary solid tumors-can potentially be used to determine patient prognosis and track the progression of disease. There is a great challenge to create an effective platform that can isolate these cells, as they are extremely rare: only 1-10 CTCs are present in a 7.5mL of a cancer patient's peripheral blood. We have developed a novel microfluidic system that can isolate CTC populations label free. Our system consists of a multistage separator that employs inertial migration to sort cells based on size. We demonstrate the feasibility of our device by sorting colloids that are comparable in size to red blood cells (RBCs) and CTCs.
Raz, Assaf; Tanasescu, Ana-Maria; Zhao, Anna M.; Serrano, Anna; Alston, Tricia; Sol, Asaf; Bachrach, Gilad; Fischetti, Vincent A.
2015-01-01
Cell wall anchored virulence factors are critical for infection and colonization of the host by Gram-positive bacteria. Such proteins have an N-terminal leader sequence and a C-terminal sorting signal, composed of an LPXTG motif, a hydrophobic stretch, and a few positively charged amino acids. The sorting signal halts translocation across the membrane, allowing sortase to cleave the LPXTG motif, leading to surface anchoring. Deletion of sortase prevents the anchoring of virulence factors to the wall; the effects on bacterial physiology however, have not been thoroughly characterized. Here we show that deletion of Streptococcus pyogenes sortase A leads to accumulation of sorting intermediates, particularly at the septum, altering cellular morphology and physiology, and compromising membrane integrity. Such cells are highly sensitive to cathelicidin, and are rapidly killed in blood and plasma. These phenomena are not a loss-of-function effect caused by the absence of anchored surface proteins, but specifically result from the accumulation of sorting intermediates. Reduction in the level of sorting intermediates leads to a return of the sortase mutant to normal morphology, while expression of M protein with an altered LPXTG motif in wild type cells leads to toxicity in the host environment, similar to that observed in the sortase mutant. These unanticipated effects suggest that inhibition of sortase by small-molecule inhibitors could similarly lead to the rapid elimination of pathogens from an infected host, making such inhibitors much better anti-bacterial agents than previously believed. PMID:26484774
Junking, Mutita; Sawasdee, Nunghathai; Duangtum, Natapol; Cheunsuchon, Boonyarit; Limjindaporn, Thawornchai; Yenchitsomanus, Pa-thai
2014-07-01
Kidney anion exchanger 1 (kAE1) plays an important role in acid-base homeostasis by mediating chloride/bicarbornate (Cl-/HCO3-) exchange at the basolateral membrane of α-intercalated cells in the distal nephron. Impaired intracellular trafficking of kAE1 caused by mutations of SLC4A1 encoding kAE1 results in kidney disease - distal renal tubular acidosis (dRTA). However, it is not known how the intracellular sorting and trafficking of kAE1 from trans-Golgi network (TGN) to the basolateral membrane occurs. Here, we studied the role of basolateral-related sorting proteins, including the mu1 subunit of adaptor protein (AP) complexes, clathrin and protein kinase D, on kAE1 trafficking in polarized and non-polarized kidney cells. By using RNA interference, co-immunoprecipitation, yellow fluorescent protein-based protein fragment complementation assays and immunofluorescence staining, we demonstrated that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin (but not AP-1 mu1B, PKD1 or PKD2) play crucial roles in intracellular sorting and trafficking of kAE1. We also demonstrated colocalization of kAE1 and basolateral-related sorting proteins in human kidney tissues by double immunofluorescence staining. These findings indicate that AP-1 mu1A, AP-3 mu1, AP-4 mu1 and clathrin are required for kAE1 sorting and trafficking from TGN to the basolateral membrane of acid-secreting α-intercalated cells. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Kefiran protects Caco-2 cells from cytopathic effects induced by Bacillus cereus infection.
Medrano, Micaela; Hamet, Maria F; Abraham, Analía G; Pérez, Pablo F
2009-11-01
The aim of this work was to evaluate the ability of kefiran to antagonize cytopathic effects triggered by Bacillus cereus strain B10502 on cultured human enterocytes (Caco-2 cells). Cell damage was evaluated by F-actin labelling, scanning electron microscopy and determination of ratios of necrotic and detached cells. To assess the interaction between kefiran and bacteria or eukaryotic cells, flow cytometric analysis was conducted with FITC-labelled kefiran. Kefiran significantly protected infected cells from cytopathic effects induced by B. cereus such as cell necrosis, F-actin disorganisation and microvilli effacement, although presence of kefiran did not modify the adhesion of microorganisms to cultured human enterocytes. Results could be ascribed to the ability of kefiran to interact with both bacteria and eukaryotic cells thus antagonizing interactions necessary for maximal biological effects. Our findings encourage further research on the use of bacterial exopolysaccharides to antagonize virulence factors associated to direct bacteria-cell interactions.
Cell identification using Raman spectroscopy in combination with optical trapping and microfluidics
NASA Astrophysics Data System (ADS)
Krafft, Christoph; Dochow, Sebastian; Beleites, Claudia; Popp, Jürgen
2014-03-01
Cell identification by Raman spectroscopy has evolved to be an attractive complement to established optical techniques. Raman activated cell sorting (RACS) offers prospects to complement the widely applied fluorescence activated cell sorting. RACS can be realized by combination with optical traps and microfluidic devices. The progress of RACS is reported for a cellular model system that can be found in peripheral blood of tumor patients. Lymphocytes and erythrocytes were extracted from blood samples. Breast carcinoma derived tumor cells (MCF-7, BT-20) and acute myeloid leukemia cells (OCI-AML3) were grown in cell cultures. First, Raman images were collected from dried cells on calcium fluoride slides. Support vector machines (SVM) classified 99.7% of the spectra to the correct cell type. Second, a 785 nm laser was used for optical trapping of single cells in aqueous buffer and for excitation of the Raman spectrum. SVM distinguished 1210 spectra of tumor and normal cells with a sensitivity of >99.7% and a specificity of >99.5%. Third, a microfluidic glass chip was designed to inject single cells, modify the flow speed, accommodate fibers of an optical trap and sort single cells after Raman based identification with 514 nm for excitation. Forth, the microfluidic chip was fabricated by quartz which improved cell identification results with 785 nm excitation. Here, partial least squares discriminant analysis gave classification rates of 98%. Finally, a Raman-on-chip approach was developed that integrates fibers for trapping, Raman excitation and signal detection in a single compact unit.
Biophotonics sensor acclimatization to stem cells environment
NASA Astrophysics Data System (ADS)
Mohamad Shahimin, Mukhzeer
2017-11-01
The ability to discriminate, characterise and purify biological cells from heterogeneous population of cells is fundamental to numerous prognosis and diagnosis applications; often forming the basis for current and emerging clinical protocols in stem cell therapy. Current sorting approaches exploit differences in cell density, specific immunologic targets, or receptor-ligand interactions to isolate particular cells. Identification of novel properties by which different cell types may be discerned and of new ways for their selective manipulation are clearly fundamental components for improving sorting methodologies. Biophotonics sensor developed by our team are potentially capable of discriminating cells according to their refractive index (which is highly dependable on the organelles inside the cell), size (indicator to cell stage) and shape (in certain cases as an indicator to cell type). The sensor, which already discriminate particles efficiently, is modified to acclimatize into biological environment, especially for stem cell applications.
Renault, Andrew D.; Kunwar, Prabhat S.; Lehmann, Ruth
2010-01-01
In Drosophila, germ cell survival and directionality of migration are controlled by two lipid phosphate phosphatases (LPP), wunen (wun) and wunen-2 (wun2). wun wun2 double mutant analysis reveals that the two genes, hereafter collectively called wunens, act redundantly in primordial germ cells. We find that wunens mediate germ cell-germ cell repulsion and that this repulsion is necessary for germ cell dispersal and proper transepithelial migration at the onset of migration and for the equal sorting of the germ cells between the two embryonic gonads during their migration. We propose that this dispersal function optimizes adult fecundity by assuring maximal germ cell occupancy of both gonads. Furthermore, we find that the requirement for wunens in germ cell survival can be eliminated by blocking germ cell migration. We suggest that this essential function of Wunen is needed to maintain cell integrity in actively migrating germ cells. PMID:20431117
Katherine Philpott, M; Stanciu, Cristina E; Kwon, Ye Jin; Bustamante, Eduardo E; Greenspoon, Susan A; Ehrhardt, Christopher J
2017-07-01
The goal of this study was to survey optical and biochemical variation in cell populations deposited onto a surface through touch or contact and identify specific features that may be used to distinguish and then sort cell populations from separate contributors in a trace biological mixture. Although we were not able to detect meaningful biochemical variation in touch samples deposited by different contributors through preliminary antibody surveys, we did observe distinct differences in red autofluorescence emissions (650-670 nm), with as much as a tenfold difference in mean fluorescence intensities observed between certain pairs of donors. Results indicate that the level of red autofluorescence in touch samples can be influenced by a donor's contact with specific material prior to handling the substrate from which cells were collected. In particular, we observed increased red autofluorescence in cells deposited subsequent to handling laboratory gloves, plant material, and certain types of marker ink, which could be easily visualized microscopically or using flow cytometry, and persisted after hand washing. To test whether these observed optical differences could potentially be used as the basis for a cell separation workflow, a controlled two-person touch mixture was separated into two fractions via fluorescence-activated cell sorting (FACS) using gating criteria based on intensity of 650-670 nm emissions and then subjected to DNA analysis. Genetic analysis of the sorted fractions provided partial DNA profiles that were consistent with separation of individual contributors from the mixture suggesting that variation in autofluorescence signatures, even if driven by extrinsic factors, may nonetheless be a useful means of isolating contributors to some touch mixtures. Graphical Abstract Conceptual workflow diagram. Trace biological mixtures containing cells from multiple individuals are analyzed by flow cytometry. Cells are then physically separated into two populations based on intensity of red autofluorescence using Fluorescence Activated Cell Sorting. Each isolated cell fraction is subjected to DNA analysis resulting in a DNA profile for each contributor.
Rodriguez, Eleazar; Azevedo, Raquel; Fernandes, Pedro; Santos, Conceição
2011-07-18
Chromium(VI) is recognized as the most toxic valency of Cr, but its genotoxicity and cytostaticity in plants is still poorly studied. In order to analyze Cr(VI) cyto- and gentotoxicity, Pisum sativum L. plants were grown in soil and watered with solutions with different concentrations of Cr up to 2000 mg/L. After 28 days of exposure, leaves showed no significant variations in either cell cycle dynamics or ploidy level. As for DNA damage, flow cytometric (FCM) histograms showed significant differences in full peak coefficient of variation (FPCV) values, suggesting clastogenicity. This is paralleled by the Comet assay results, showing an increase in DNA damage for 1000 and 2000 mg/L. In roots, exposure to 2000 mg/L resulted in cell cycle arrest at the G(2)/M checkpoint. It was also verified that under the same conditions 40% of the individuals analyzed suffered polyploidization having both 2C and 4C levels. DNA damage analysis by the Comet assay and FCM revealed dose-dependent increases in DNA damage and FPCV. Through this, we have unequivocally demonstrated for the first time in plants that Cr exposure can result in DNA damage, cell cycle arrest, and polyploidization. Moreover, we critically compare the validity of the Comet assay and FCM in evaluating cytogenetic toxicity tests in plants and demonstrate that the data provided by both techniques complement each other and present high correlation levels. In conclusion, the data presented provides new insight on Cr effects in plants in general and supports the use of the parameters tested in this study as reliable endpoints for this metal toxicity in plants. © 2011 American Chemical Society
Modeling the winter-to-summer transition of prokaryotic and viral abundance in the Arctic Ocean.
Winter, Christian; Payet, Jérôme P; Suttle, Curtis A
2012-01-01
One of the challenges in oceanography is to understand the influence of environmental factors on the abundances of prokaryotes and viruses. Generally, conventional statistical methods resolve trends well, but more complex relationships are difficult to explore. In such cases, Artificial Neural Networks (ANNs) offer an alternative way for data analysis. Here, we developed ANN-based models of prokaryotic and viral abundances in the Arctic Ocean. The models were used to identify the best predictors for prokaryotic and viral abundances including cytometrically-distinguishable populations of prokaryotes (high and low nucleic acid cells) and viruses (high- and low-fluorescent viruses) among salinity, temperature, depth, day length, and the concentration of Chlorophyll-a. The best performing ANNs to model the abundances of high and low nucleic acid cells used temperature and Chl-a as input parameters, while the abundances of high- and low-fluorescent viruses used depth, Chl-a, and day length as input parameters. Decreasing viral abundance with increasing depth and decreasing system productivity was captured well by the ANNs. Despite identifying the same predictors for the two populations of prokaryotes and viruses, respectively, the structure of the best performing ANNs differed between high and low nucleic acid cells and between high- and low-fluorescent viruses. Also, the two prokaryotic and viral groups responded differently to changes in the predictor parameters; hence, the cytometric distinction between these populations is ecologically relevant. The models imply that temperature is the main factor explaining most of the variation in the abundances of high nucleic acid cells and total prokaryotes and that the mechanisms governing the reaction to changes in the environment are distinctly different among the prokaryotic and viral populations.
Modeling the Winter–to–Summer Transition of Prokaryotic and Viral Abundance in the Arctic Ocean
Winter, Christian; Payet, Jérôme P.; Suttle, Curtis A.
2012-01-01
One of the challenges in oceanography is to understand the influence of environmental factors on the abundances of prokaryotes and viruses. Generally, conventional statistical methods resolve trends well, but more complex relationships are difficult to explore. In such cases, Artificial Neural Networks (ANNs) offer an alternative way for data analysis. Here, we developed ANN-based models of prokaryotic and viral abundances in the Arctic Ocean. The models were used to identify the best predictors for prokaryotic and viral abundances including cytometrically-distinguishable populations of prokaryotes (high and low nucleic acid cells) and viruses (high- and low-fluorescent viruses) among salinity, temperature, depth, day length, and the concentration of Chlorophyll-a. The best performing ANNs to model the abundances of high and low nucleic acid cells used temperature and Chl-a as input parameters, while the abundances of high- and low-fluorescent viruses used depth, Chl-a, and day length as input parameters. Decreasing viral abundance with increasing depth and decreasing system productivity was captured well by the ANNs. Despite identifying the same predictors for the two populations of prokaryotes and viruses, respectively, the structure of the best performing ANNs differed between high and low nucleic acid cells and between high- and low-fluorescent viruses. Also, the two prokaryotic and viral groups responded differently to changes in the predictor parameters; hence, the cytometric distinction between these populations is ecologically relevant. The models imply that temperature is the main factor explaining most of the variation in the abundances of high nucleic acid cells and total prokaryotes and that the mechanisms governing the reaction to changes in the environment are distinctly different among the prokaryotic and viral populations. PMID:23285186
Van den Poel, Bea; Kochuyt, Anne-Marie; Del Biondo, Elke; Dewaele, Barbara; Lierman, Els; Tousseyn, Thomas; de Hertogh, Gert; Vandenberghe, Peter; Boeckx, Nancy
2017-04-01
Mastocytosis is a heterogeneous disease caused by excessive mast cell (MC) proliferation. Diagnosis of systemic mastocytosis (SM) is based on the presence of major and minor criteria defined by the World Health Organization. Symptoms of MC activation can also occur in patients without SM or without allergic or inflammatory disease. These MC activation syndromes (MCAS) can be divided into primary (monoclonal) MCAS (MMAS) vs. secondary and idiopathic MCAS. In this single center study, the diagnostic work-up of 38 patients with a clinical suspicion of SM and/or with elevated basic tryptase levels is presented. Clinical symptoms, biochemical parameters, results of bone marrow investigation, flow cytometric immunophenotyping, and molecular analysis were retrospectively reviewed. Twenty-three patients were found to have a monoclonal MC disorder of which 19 were diagnosed with SM and 4 with MMAS. In 13/19 SM patients, multifocal MC infiltrates in the bone marrow were found (major criterion), while in 6 the diagnosis was based on the presence of ≥3 minor criteria. Flow cytometric analysis of bone marrow showed CD25 expression of MCs in all patients with SM and MMAS (range: 0.002-0.3% of cells). In bone marrow, the KIT D816V mutation was detected in all SM patients but in only 2 patients with MMAS (range: 0.007-9% mutated cells). Basic tryptase elevation was demonstrated in 16/19 patients with SM but also in 9/19 patients without SM. Our study reveals the heterogeneity of primary MC disorders and the importance of sensitive assays in patients suspected of having SM.
Does fluorescence diagnosis have a role in follow up of response to therapy in mycosis fungoides?
Bosseila, Manal; Mahgoub, Doaa; El-Sayed, Abeer; Salama, Dina; Abd El-Moneim, Marwa; Al-Helf, Fatma
2014-12-01
Monitoring of tumor burden during mycosis fungoides (MF) treatment, is crucial to adjust therapy accordingly. This is usually achieved through combined by clinical assessment with histopathological and immunohistochemical evaluation. To assess the validity of fluorescence diagnosis (FD) in the measurement of response to therapy in early MF, using in comparison flow cytometric technique of skin biopsies for CD4+/CD7- malignant T-cell count before and after therapy. Twenty-two patients of histologically proven early MF (stages Ia, Ib, IIa) were subjected to fluorescence diagnosis of their most affected skin lesion before and after 12 weeks of phototherapy with or without combination therapy. In comparison flow cytometric assessment of skin biopsies for CD4+/CD7- malignant T-cell count was evaluated before and after therapy from skin biopsy of the same lesion. All tested MF lesions showed varying degrees of fluorescence by FD at week zero, with a mean accumulation factor (AF), which is the fluorescence ratio between the tumor tissue and normal skin, of 2.2. After 12 weeks of therapy, the mean AF showed significant reduction to 1.94 (p=0.009). The percent of CD4+/CD7- cells dropped significantly after treatment (p=0.029). No correlation between CD4+/CD7- cell counts and the mean AF could be deduced. In cases of mycosis fungoides, fluorescence diagnosis can represent an effective tool for evaluating the response to therapy. Changes in accumulation factor values can be used for follow-up of therapy in the same patient, but it should not be used as an absolute value. Copyright © 2014 Elsevier B.V. All rights reserved.
Youker, Robert T.; Bruns, Jennifer R.; Costa, Simone A.; Rbaibi, Youssef; Lanni, Frederick; Kashlan, Ossama B.; Teng, Haibing; Weisz, Ora A.
2013-01-01
The sorting signals that direct proteins to the apical surface of polarized epithelial cells are complex and can include posttranslational modifications, such as N- and O-linked glycosylation. Efficient apical sorting of the neurotrophin receptor p75 is dependent on its O-glycosylated membrane proximal stalk, but how this domain mediates targeting is unknown. Protein oligomerization or clustering has been suggested as a common step in the segregation of all apical proteins. Like many apical proteins, p75 forms dimers, and we hypothesized that formation of higher-order clusters mediated by p75 dimerization and interactions of the stalk facilitate its apical sorting. Using fluorescence fluctuation techniques (photon-counting histogram and number and brightness analyses) to study p75 oligomerization status in vivo, we found that wild-type p75–green fluorescent protein forms clusters in the trans-Golgi network (TGN) but not at the plasma membrane. Disruption of either the dimerization motif or the stalk domain impaired both clustering and polarized delivery. Manipulation of O-glycan processing or depletion of multiple galectins expressed in Madin-Darby canine kidney cells had no effect on p75 sorting, suggesting that the stalk domain functions as a structural prop to position other determinants in the lumenal domain of p75 for oligomerization. Additionally, a p75 mutant with intact dimerization and stalk motifs but with a dominant basolateral sorting determinant (Δ250 mutant) did not form oligomers, consistent with a requirement for clustering in apical sorting. Artificially enhancing dimerization restored clustering to the Δ250 mutant but was insufficient to reroute this mutant to the apical surface. Together these studies demonstrate that clustering in the TGN is required for normal biosynthetic apical sorting of p75 but is not by itself sufficient to reroute a protein to the apical surface in the presence of a strong basolateral sorting determinant. Our studies shed new light on the hierarchy of polarized sorting signals and on the mechanisms by which newly synthesized proteins are segregated in the TGN for eventual apical delivery. PMID:23637462
Establishment of optimized MDCK cell lines for reliable efflux transport studies.
Gartzke, Dominik; Fricker, Gert
2014-04-01
Madin-Darby canine kidney (MDCK) cells transfected with human MDR1 gene (MDCK-MDR1) encoding for P-glycoprotein (hPgp, ABCB1) are widely used for transport studies to identify drug candidates as substrates of this efflux protein. Therefore, it is necessary to rely on constant and comparable expression levels of Pgp to avoid false negative or positive results. We generated a cell line with homogenously high and stable expression of hPgp through sorting single clones from a MDCK-MDR1 cell pool using fluorescence-activated cell sorting (FACS). To obtain control cell lines for evaluation of cross-interactions with endogenous canine Pgp (cPgp) wild-type cells were sorted with a low expression pattern of cPgp in comparison with the MDCK-MDR1. Expression of other transporters was also characterized in both cell lines by quantitative real-time PCR and Western blot. Pgp function was investigated applying the Calcein-AM assay as well as bidirectional transport assays using (3) H-Digoxin, (3) H-Vinblastine, and (3) H-Quinidine as substrates. Generated MDCK-MDR1 cell lines showed high expression of hPgp. Control MDCK-WT cells were optimized in showing a comparable expression level of cPgp in comparison with MDCK-MDR1 cell lines. Generated cell lines showed higher and more selective Pgp transport compared with parental cells. Therefore, they provide a significant improvement in the performance of efflux studies yielding more reliable results. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Di Nunno, N R; Costantinides, F; Bernasconi, P; Bottin, C; Melato, M
1998-03-01
The time of death can be established by determining the length of the postmortem interval. Many methods have been proposed to achieve this goal. Flow cytometric evaluation of DNA degradation seems to be reliable for the first 72 hours after death. Our study evaluated the correspondence of the corruption process between in vitro and corpse tissues. We chose spleen tissue to perform our investigation because it is rich in nucleated cells. Results showed a precise correspondence between the two kinds of samples in the time period between 24 and 36 hours. The period from 36 to 72 hours is characterized by a much looser correspondence than that found in the first period. After the first 72 hours, DNA denaturation is massive and does not allow useful cytofluorimetric readings. The spleen does not seem to be the most suitable organ for this type of investigation because it tends to colliquate very rapidly. We therefore are evaluating other organs to identify a more suitable tissue source for the investigation of longer postmortem period using flow cytometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, Neil Reginald; Colston, Jr, Billy W.
An apparatus for chip-based sorting, amplification, detection, and identification of a sample having a planar substrate. The planar substrate is divided into cells. The cells are arranged on the planar substrate in rows and columns. Electrodes are located in the cells. A micro-reactor maker produces micro-reactors containing the sample. The micro-reactor maker is positioned to deliver the micro-reactors to the planar substrate. A microprocessor is connected to the electrodes for manipulating the micro-reactors on the planar substrate. A detector is positioned to interrogate the sample contained in the micro-reactors.
Exploring viral reservoir: The combining approach of cell sorting and droplet digital PCR.
Gibellini, Lara; Pecorini, Simone; De Biasi, Sara; Pinti, Marcello; Bianchini, Elena; De Gaetano, Anna; Digaetano, Margherita; Pullano, Rosalberta; Lo Tartaro, Domenico; Iannone, Anna; Mussini, Cristina; Cossarizza, Andrea; Nasi, Milena
2018-02-01
Combined antiretroviral therapy (cART) blocks different steps of HIV replication and maintains plasma viral RNA at undetectable levels. The virus can remain in long-living cells and create a reservoir where HIV can restart replicating after cART discontinuation. A persistent viral production triggers and maintains a persistent immune activation, which is a well-known feature of chronic HIV infection, and contributes either to precocious aging, or to the increased incidence of morbidity and mortality of HIV positive patients. The new frontier of the treatment of HIV infection is nowadays eradication of the virus from all host cells and tissues. For this reason, it is crucial to have a clear and precise idea of where the virus hides, and which are the cells that keep it silent. Important efforts have been made to improve the detection of viral reservoirs, and new techniques are now giving the opportunity to characterize viral reservoirs. Among these techniques, a strategic approach based upon cell sorting and droplet digital PCR (ddPCR) is opening new horizons and opportunities of research. This review provides an overview of the methods that combine cell sorting and ddPCR for the quantification of HIV DNA in different cell types, and for the detection of its maintenance. Copyright © 2017 Elsevier Inc. All rights reserved.
Revollo, Javier; Wang, Yiying; McKinzie, Page; Dad, Azra; Pearce, Mason; Heflich, Robert H; Dobrovolsky, Vasily N
2017-12-01
We used Sanger sequencing and next generation sequencing (NGS) for analysis of mutations in the endogenous X-linked Pig-a gene of clonally expanded L5178YTk +/- cells. The clones developed from single cells that were sorted on a flow cytometer based upon the expression pattern of the GPI-anchored marker, CD90, on their surface. CD90-deficient and CD90-proficient cells were sorted from untreated cultures and CD90-deficient cells were sorted from cultures treated with benzo[a]pyrene (B[a]P). Pig-a mutations were identified in all clones developed from CD90-deficient cells; no Pig-a mutations were found in clones of CD90-proficient cells. The spectrum of B[a]P-induced Pig-a mutations was dominated by basepair substitutions, small insertions and deletions at G:C, or at sequences rich in G:C content. We observed high concordance between Pig-a mutations determined by Sanger sequencing and by NGS, but NGS was able to identify mutations in samples that were difficult to analyze by Sanger sequencing (e.g., mixtures of two mutant clones). Overall, the NGS method is a cost and labor efficient high throughput approach for analysis of a large number of mutant clones. Published by Elsevier B.V.
A single-cell resolution map of mouse hematopoietic stem and progenitor cell differentiation.
Nestorowa, Sonia; Hamey, Fiona K; Pijuan Sala, Blanca; Diamanti, Evangelia; Shepherd, Mairi; Laurenti, Elisa; Wilson, Nicola K; Kent, David G; Göttgens, Berthold
2016-08-25
Maintenance of the blood system requires balanced cell fate decisions by hematopoietic stem and progenitor cells (HSPCs). Because cell fate choices are executed at the individual cell level, new single-cell profiling technologies offer exciting possibilities for mapping the dynamic molecular changes underlying HSPC differentiation. Here, we have used single-cell RNA sequencing to profile more than 1600 single HSPCs, and deep sequencing has enabled detection of an average of 6558 protein-coding genes per cell. Index sorting, in combination with broad sorting gates, allowed us to retrospectively assign cells to 12 commonly sorted HSPC phenotypes while also capturing intermediate cells typically excluded by conventional gating. We further show that independently generated single-cell data sets can be projected onto the single-cell resolution expression map to directly compare data from multiple groups and to build and refine new hypotheses. Reconstruction of differentiation trajectories reveals dynamic expression changes associated with early lymphoid, erythroid, and granulocyte-macrophage differentiation. The latter two trajectories were characterized by common upregulation of cell cycle and oxidative phosphorylation transcriptional programs. By using external spike-in controls, we estimate absolute messenger RNA (mRNA) levels per cell, showing for the first time that despite a general reduction in total mRNA, a subset of genes shows higher expression levels in immature stem cells consistent with active maintenance of the stem-cell state. Finally, we report the development of an intuitive Web interface as a new community resource to permit visualization of gene expression in HSPCs at single-cell resolution for any gene of choice. © 2016 by The American Society of Hematology.
Annual Progress Report FY-92. Volume 1
1993-01-21
Billups, L Flow Cytom Resh Psychologist 12 0180 CS Hamm, C DCI 7 DESCRIPTION GRADE MOS BRANCH NAME ACTIVITY Kyle Metabolic Unit Nursing Service Supv...3349 Salata, Kalman PhD. Mitogen-Inducible T Suppressor Cell 13 Assay by Flow Cytometry (12/89) 3350 Salata, Kalman PhD. Flow Cytometric Analysis of...17 Immunotherapy (3/90) 3354 Salata, Kalman PhD. Two Way Mixed Lymphocyte Culture: 18 Analysis by Two Color Flow Cytometry (4/90) 3355 Salata, Kalman
Purifying, Separating, and Concentrating Cells From a Sample Low in Biomass
NASA Technical Reports Server (NTRS)
Benardini, James N.; LaDuc, Myron T.; Diamond, Rochelle
2012-01-01
Frequently there is an inability to process and analyze samples of low biomass due to limiting amounts of relevant biomaterial in the sample. Furthermore, molecular biological protocols geared towards increasing the density of recovered cells and biomolecules of interest, by their very nature, also concentrate unwanted inhibitory humic acids and other particulates that have an adversarial effect on downstream analysis. A novel and robust fluorescence-activated cell-sorting (FACS)-based technology has been developed for purifying (removing cells from sampling matrices), separating (based on size, density, morphology), and concentrating cells (spores, prokaryotic, eukaryotic) from a sample low in biomass. The technology capitalizes on fluorescent cell-sorting technologies to purify and concentrate bacterial cells from a low-biomass, high-volume sample. Over the past decade, cell-sorting detection systems have undergone enhancements and increased sensitivity, making bacterial cell sorting a feasible concept. Although there are many unknown limitations with regard to the applicability of this technology to environmental samples (smaller cells, few cells, mixed populations), dogmatic principles support the theoretical effectiveness of this technique upon thorough testing and proper optimization. Furthermore, the pilot study from which this report is based proved effective and demonstrated this technology capable of sorting and concentrating bacterial endospore and bacterial cells of varying size and morphology. Two commercial off-the-shelf bacterial counting kits were used to optimize a bacterial stain/dye FACS protocol. A LIVE/DEAD BacLight Viability and Counting Kit was used to distinguish between the live and dead cells. A Bacterial Counting Kit comprising SYTO BC (mixture of SYTO dyes) was employed as a broad-spectrum bacterial counting agent. Optimization using epifluorescence microscopy was performed with these two dye/stains. This refined protocol was further validated using varying ratios and mixtures of cells to ensure homogenous staining compared to that of individual cells, and were utilized for flow analyzer and FACS labeling. This technology focuses on the purification and concentration of cells from low-biomass spacecraft assembly facility samples. Currently, purification and concentration of low-biomass samples plague planetary protection downstream analyses. Having a capability to use flow cytometry to concentrate cells out of low-biomass, high-volume spacecraft/ facility sample extracts will be of extreme benefit to the fields of planetary protection and astrobiology. Successful research and development of this novel methodology will significantly increase the knowledge base for designing more effective cleaning protocols, and ultimately lead to a more empirical and true account of the microbial diversity present on spacecraft surfaces. Refined cleaning and an enhanced ability to resolve microbial diversity may decrease the overall cost of spacecraft assembly and/or provide a means to begin to assess challenging planetary protection missions.
Performance evaluation of the new hematology analyzer Sysmex XN-series.
Seo, J Y; Lee, S-T; Kim, S-H
2015-04-01
The Sysmex XN-series is a new automated hematology analyzer designed to improve the accuracy of cell counts and the specificity of the flagging events. The basic characteristics and the performance of new measurement channels of the XN were evaluated and compared with the Sysmex XE-2100 and the manual method. Fluorescent platelet count (PLT-F) was compared with the flow cytometric method. The low WBC mode and body fluid mode were also evaluated. For workflow analysis, 1005 samples were analyzed on both the XN and the XE-2100, and manual review rates were compared. All parameters measured by the XN correlated well with the XE-2100. PLT-F showed better correlation with the flow cytometric method (r(2) = 0.80) compared with optical platelet count (r(2) = 0.73) for platelet counts <70 × 10(9) /L. The low WBC mode reported accurate leukocyte differentials for samples with a WBC count <0.5 × 10(9) /L. Relatively good correlation was found for WBC counts between the manual method and the body fluid mode (r = 0.88). The XN made less flags than the XE-2100, while the sensitivities of both instruments were comparable. The XN provided reliable results on low cell counts, as well as reduced manual blood film reviews, while maintaining a proper level of diagnostic sensitivity. © 2014 John Wiley & Sons Ltd.
Automation in high-content flow cytometry screening.
Naumann, U; Wand, M P
2009-09-01
High-content flow cytometric screening (FC-HCS) is a 21st Century technology that combines robotic fluid handling, flow cytometric instrumentation, and bioinformatics software, so that relatively large numbers of flow cytometric samples can be processed and analysed in a short period of time. We revisit a recent application of FC-HCS to the problem of cellular signature definition for acute graft-versus-host-disease. Our focus is on automation of the data processing steps using recent advances in statistical methodology. We demonstrate that effective results, on par with those obtained via manual processing, can be achieved using our automatic techniques. Such automation of FC-HCS has the potential to drastically improve diagnosis and biomarker identification.
2017-12-27
The Food and Drug Administration (FDA or we) is classifying the flow cytometric test system for hematopoietic neoplasms into class II (special controls). The special controls that apply to the device type are identified in this order and will be part of the codified language for the flow cytometric test system for hematopoietic neoplasms' classification. We are taking this action because we have determined that classifying the device into class II (special controls) will provide a reasonable assurance of safety and effectiveness of the device. We believe this action will also enhance patients' access to beneficial innovative devices, in part by reducing regulatory burdens.
DLK1 as a potential target against cancer stem/progenitor cells of hepatocellular carcinoma.
Xu, Xiao; Liu, Rui-Fang; Zhang, Xin; Huang, Li-Yu; Chen, Fei; Fei, Qian-Lan; Han, Ze-Guang
2012-03-01
Delta-like 1 homolog (DLK1; Drosophila) is a hepatic stem/progenitor cell marker in fetal livers that plays a vital role in oncogenesis of hepatocellular carcinoma (HCC). The aim of this study is to investigate whether DLK1 could serve as a potential therapeutic target against cancer stem/progenitor cells of HCC. DLK1(+) and DLK1(-) cells were sorted by fluorescence-activated cell sorting and magnetic-activated cell sorting, respectively, and then were evaluated by flow cytometry. The biological behaviors of these isolated cells and those with DLK1 knockdown were assessed by growth curve, colony formation assay, spheroid colony formation, chemoresistance, and in vivo tumorigenicity. Adenovirus-mediated RNA interference was used to knockdown the endogenous DLK1. We found that DLK1(+) population was less than 10% in almost all 17 HCC cell lines examined. DLK1(+) HCC cells showed stronger ability of chemoresistance, colony formation, spheroid colony formation, and in vivo tumorigenicity compared with DLK1(-) cells. The DLK1(+) HCC cells could generate the progeny without DLK1 expression. Furthermore, DLK1 knockdown could suppress the ability of proliferation, colony formation, spheroid colony formation, and in vivo tumorigenicity of Hep3B and Huh-7 HCC cells. Our data suggested that DLK1(+) HCC cells have characteristics similar to those of cancer stem/progenitor cells. RNA interference against DLK1 can suppress the malignant behaviors of HCC cells, possibly through directly disrupting cancer stem/progenitor cells, which suggested that DLK1 could be a potential therapeutic target against the HCC stem/progenitor cells.
Microsystems for the Capture of Low-Abundance Cells
NASA Astrophysics Data System (ADS)
Dharmasiri, Udara; Witek, Małgorzata A.; Adams, Andre A.; Soper, Steven A.
2010-07-01
Efficient selection and enumeration of low-abundance biological cells are highly important in a variety of applications. For example, the clinical utility of circulating tumor cells (CTCs) in peripheral blood is recognized as a viable biomarker for the management of various cancers, in which the clinically relevant number of CTCs per 7.5 ml of blood is two to five. Although there are several methods for isolating rare cells from a variety of heterogeneous samples, such as immunomagnetic-assisted cell sorting and fluorescence-activated cell sorting, they are fraught with challenges. Microsystem-based technologies are providing new opportunities for selecting and isolating rare cells from complex, heterogeneous samples. Such approaches involve reductions in target-cell loss, process automation, and minimization of contamination issues. In this review, we introduce different application areas requiring rare cell analysis, conventional techniques for their selection, and finally microsystem approaches for low-abundance-cell isolation and enumeration.
Nayak, Binaya Bhusan; Kamiya, Eriko; Nishino, Tomohiko; Wada, Minoru; Nishimura, Masahiko; Kogure, Kazuhiro
2005-01-01
The co-existence of physiologically different cells in bacterial cultures is a general phenomenon. We have examined the applicability of the density dependent cell sorting (DDCS) method to separate subpopulations from a long-term starvation culture of Vibrio parahaemolyticus. The cells were subjected to Percoll density gradient and separated into 12 fractions of different buoyant densities, followed by measuring the cell numbers, culturability, respiratory activity and leucine incorporation activity. While more than 78% of cells were in lighter fractions, about 95% of culturable cells were present in heavier fractions. The high-density subpopulations also had high proportion of cells capable of forming formazan granules. Although this was accompanied by the cell specific INT-reduction rate, both leucine incorporation rates and INT-reduction rates per cell had a peak at mid-density fraction. The present results indicated that DDCS could be used to separate subpopulations of different physiological conditions.
Trans-Golgi network/early endosome: a central sorting station for cargo proteins in plant immunity.
LaMontagne, Erica D; Heese, Antje
2017-12-01
In plants, the trans-Golgi network (TGN) functionally overlaps with the early endosome (EE), serving as a central sorting hub to direct newly synthesized and endocytosed cargo to the cell surface or vacuole. Here, we focus on the emerging role of the TGN/EE in sorting of immune cargo proteins for effective plant immunity against pathogenic bacteria and fungi. Specific vesicle coat and regulatory components at the TGN/EE ensure that immune cargoes are correctly sorted and transported to the location of their cellular functions. Our understanding of the identity of immune cargoes and the underlying cellular mechanisms regulating their sorting are still rudimentary, but this knowledge is essential to understanding the physiological contribution of the TGN/EE to effective immune responses. Copyright © 2017. Published by Elsevier Ltd.
Chronology of Islet Differentiation Revealed By Temporal Cell Labeling
Miyatsuka, Takeshi; Li, Zhongmei; German, Michael S.
2009-01-01
OBJECTIVE Neurogenin 3 plays a pivotal role in pancreatic endocrine differentiation. Whereas mouse models expressing reporters such as eGFP or LacZ under the control of the Neurog3 gene enable us to label cells in the pancreatic endocrine lineage, the long half-life of most reporter proteins makes it difficult to distinguish cells actively expressing neurogenin 3 from differentiated cells that have stopped transcribing the gene. RESEARCH DESIGN AND METHODS In order to separate the transient neurogenin 3 –expressing endocrine progenitor cells from the differentiating endocrine cells, we developed a mouse model (Ngn3-Timer) in which DsRed-E5, a fluorescent protein that shifts its emission spectrum from green to red over time, was expressed transgenically from the NEUROG3 locus. RESULTS In the Ngn3-Timer embryos, green-dominant cells could be readily detected by microscopy or flow cytometry and distinguished from green/red double-positive cells. When fluorescent cells were sorted into three different populations by a fluorescence-activated cell sorter, placed in culture, and then reanalyzed by flow cytometry, green-dominant cells converted to green/red double-positive cells within 6 h. The sorted cell populations were then used to determine the temporal patterns of expression for 145 transcriptional regulators in the developing pancreas. CONCLUSIONS The precise temporal resolution of this model defines the narrow window of neurogenin 3 expression in islet progenitor cells and permits sequential analyses of sorted cells as well as the testing of gene regulatory models for the differentiation of pancreatic islet cells. PMID:19478145
Cao, Ruofan; Naivar, Mark A; Wilder, Mark; Houston, Jessica P
2014-01-01
Fluorescence lifetime measurements provide information about the fluorescence relaxation, or intensity decay, of organic fluorophores, fluorescent proteins, and other inorganic molecules that fluoresce. The fluorescence lifetime is emerging in flow cytometry and is helpful in a variety of multiparametric, single cell measurements because it is not impacted by nonlinearity that can occur with fluorescence intensity measurements. Yet time-resolved cytometry systems rely on major hardware modifications making the methodology difficult to reproduce. The motivation of this work is, by taking advantage of the dynamic nature of flow cytometry sample detection and applying digital signal processing methods, to measure fluorescence lifetimes using an unmodified flow cytometer. We collect a new lifetime-dependent parameter, referred to herein as the fluorescence-pulse-delay (FPD), and prove it is a valid representation of the average fluorescence lifetime. To verify we generated cytometric pulses in simulation, with light emitting diode (LED) pulsation, and with true fluorescence measurements of cells and microspheres. Each pulse is digitized and used in algorithms to extract an average fluorescence lifetime inherent in the signal. A range of fluorescence lifetimes is measurable with this approach including standard organic fluorophore lifetimes (∼1 to 22 ns) as well as small, simulated shifts (0.1 ns) under standard conditions (reported herein). This contribution demonstrates how digital data acquisition and signal processing can reveal time-dependent information foreshadowing the exploitation of full waveform analysis for quantification of similar photo-physical events within single cells. © 2014 The Authors. Published by Wiley Periodicals, Inc. PMID:25274073
CFTR RECRUITMENT TO PHAGOSOMES IN NEUTROPHILS
Zhou, Yun; Song, Kejing; Painter, Richard G.; Aiken, Martha; Reiser, Jakob; Stanton, Bruce A.; Nauseef, William M.; Wang, Guoshun
2013-01-01
Optimal microbicidal activity of human polymorphonuclear leukocytes (PMN) relies on generation of toxic agents such as hypochlorous acid (HOCl) in phagosomes. HOCl formation requires H2O2 produced by the NADPH oxidase, myeloperoxidase derived from azurophilic granules, and chloride ion. Chloride transport from cytoplasm into phagosomes requires chloride channels which include cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel. However, the phagosomal targeting of CFTR in PMN has not been defined. Using human peripheral blood PMN, we determined that ~95–99% of LAMP-1 positive mature phagosomes were CFTR-positive, as judged by immunostaining and flow cytometric analysis. To establish a model cell system to evaluate CFTR phagosomal recruitment, we stably expressed EGFP alone, EGFP-wt-CFTR and EGFP-ΔF508-CFTR fusion proteins in promyelocytic PLB-985 cells, respectively. After differentiation into neutrophil-like cells, CFTR presentation to phagosomes was examined. EGFP-wt-CFTR was observed to associate with phagosomes and co-localize with LAMP-1. Flow cytometric analysis of the isolated phagosomes indicated that such a phagosomal targeting was determined by the CFTR portion of the fusion protein. In contrast, significantly less EGFP-ΔF508-CFTR was found in phagosomes, indicating a defective targeting of the molecule to the organelle. Importantly, CFTR corrector compound VRT-325 facilitated the recruitment of ΔF508-CFTR to phagosomes. These data demonstrate the possibility of pharmacologic correction of impaired recruitment of mutant CFTR, thereby providing a potential means to augment chloride supply to the phagosomes of PMN in patients with cystic fibrosis to enhance their microbicidal function. PMID:23486169
Targeted sorting of single virus-infected cells of the coccolithophore Emiliania huxleyi.
Martínez Martínez, Joaquín; Poulton, Nicole J; Stepanauskas, Ramunas; Sieracki, Michael E; Wilson, William H
2011-01-01
Discriminating infected from healthy cells is the first step to understanding the mechanisms and ecological implications of viral infection. We have developed a method for detecting, sorting, and performing molecular analysis of individual, infected cells of the important microalga Emiliania huxleyi, based on known physiological responses to viral infection. Of three fluorescent dyes tested, FM 1-43 (for detecting membrane blebbing) gave the most unequivocal and earliest separation of cells. Furthermore, we were able to amplify the genomes of single infected cells using Multiple Displacement Amplification. This novel method to reliably discriminate infected from healthy cells in cultures will allow researchers to answer numerous questions regarding the mechanisms and implications of viral infection of E. huxleyi. The method may be transferable to other virus-host systems.
Castillon, Guillaume A; Burriat-Couleru, Patricia; Abegg, Daniel; Criado Santos, Nina; Watanabe, Reika
2018-03-01
Recently, studies in animal models demonstrate potential roles for clathrin and AP1 in apical protein sorting in epithelial tissue. However, the precise functions of these proteins in apical protein transport remain unclear. Here, we reveal mistargeting of endogenous glycosyl phosphatidyl inositol-anchored proteins (GPI-APs) and soluble secretory proteins in Madin-Darby canine kidney (MDCK) cells upon clathrin heavy chain or AP1 subunit knockdown (KD). Using a novel directional endocytosis and recycling assay, we found that these KD cells are not only affected for apical sorting of GPI-APs in biosynthetic pathway but also for their apical recycling and basal-to-apical transcytosis routes. The apical distribution of the t-SNARE syntaxin 3, which is known to be responsible for selective targeting of various apical-destined cargo proteins in both biosynthetic and endocytic routes, is compromised suggesting a molecular explanation for the phenotype in KD cells. Our results demonstrate the importance of biosynthetic and endocytic routes for establishment and maintenance of apical localization of GPI-APs in polarized MDCK cells. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
van Niel, Guillaume; Charrin, Stéphanie; Simoes, Sabrina; Romao, Maryse; Rochin, Leila; Saftig, Paul; Marks, Michael S.; Rubinstein, Eric; Raposo, Graça
2011-01-01
Summary Cargo sorting to intraluminal vesicles (ILVs) of multivesicular endosomes is required for numerous physiological processes including lysosome-related organelle (LRO) biogenesis. PMEL – a component of melanocyte LROs (melanosomes) – is sorted to ILVs in an ESCRT-independent manner, where it is proteolytically processed and assembled into functional amyloid fibrils during melanosome maturation. Here we show that the tetraspanin CD63 directly participates in ESCRT-independent sorting of the PMEL luminal domain, but not of traditional ESCRT-dependent cargoes, to ILVs. Inactivating CD63 in cell culture or in mice impairs amyloidogenesis and downstream melanosome morphogenesis. Whereas CD63 is required for normal PMEL luminal domain sorting, the disposal of the remaining PMEL transmembrane fragment requires functional ESCRTs but not CD63. In the absence of CD63, the PMEL luminal domain follows this fragment and is targeted for ESCRT-dependent degradation. Our data thus reveal a tight interplay regulated by CD63 between two distinct endosomal ILV sorting processes for a single cargo during LRO biogenesis. PMID:21962903
The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles
Topalidou, Irini; Cattin-Ortolá, Jérôme; MacCoss, Michael J.
2016-01-01
The dense-core vesicle is a secretory organelle that mediates the regulated release of peptide hormones, growth factors, and biogenic amines. Dense-core vesicles originate from the trans-Golgi of neurons and neuroendocrine cells, but it is unclear how this specialized organelle is formed and acquires its specific cargos. To identify proteins that act in dense-core vesicle biogenesis, we performed a forward genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We previously reported the identification of two conserved proteins that interact with the small GTPase RAB-2 to control normal dense-core vesicle cargo-sorting. Here we identify several additional conserved factors important for dense-core vesicle cargo sorting: the WD40 domain protein EIPR-1 and the endosome-associated recycling protein (EARP) complex. By assaying behavior and the trafficking of dense-core vesicle cargos, we show that mutants that lack EIPR-1 or EARP have defects in dense-core vesicle cargo-sorting similar to those of mutants in the RAB-2 pathway. Genetic epistasis data indicate that RAB-2, EIPR-1 and EARP function in a common pathway. In addition, using a proteomic approach in rat insulinoma cells, we show that EIPR-1 physically interacts with the EARP complex. Our data suggest that EIPR-1 is a new interactor of the EARP complex and that dense-core vesicle cargo sorting depends on the EARP-dependent trafficking of cargo through an endosomal sorting compartment. PMID:27191843
Purification of Bone Marrow Clonal Cells from Patients with Myelodysplastic Syndrome via IGF-IR
He, Qi; Chang, Chun-Kang; Xu, Feng; Zhang, Qing-Xia; Shi, Wen-Hui; Li, Xiao
2015-01-01
Malignant clonal cells purification can greatly benefit basic and clinical studies in myelodysplastic syndrome (MDS). In this study, we investigated the potential of using type 1 insulin-like growth factor receptor (IGF-IR) as a marker for purification of malignant bone marrow clonal cells from patients with MDS. The average percentage of IGF-IR expression in CD34+ bone marrow cells among 15 normal controls was 4.5%, 70% of which also express the erythroid lineage marker CD235a. This indicates that IGF-IR mainly express in erythropoiesis. The expression of IGF-IR in CD34+ cells of 55 MDS patients was significantly higher than that of cells from the normal controls (54.0 vs. 4.5%). Based on the pattern of IGF-IR expression in MDS patients and normal controls, sorting of IGF-IR-positive and removal of CD235a-positive erythroid lineage cells with combination of FISH detection were performed on MDS samples with chromosomal abnormalities. The percentage of malignant clonal cells significantly increased after sorting. The enrichment effect was more significant in clonal cells with a previous percentage lower than 50%. This enrichment effect was present in samples from patients with +8, 5q-/-5, 20q-/-20 or 7q-/-7 chromosomal abnormalities. These data suggest that IGF-IR can be used as a marker for MDS bone marrow clonal cells and using flow cytometry for positive IGF-IR sorting may effectively purify MDS clonal cells. PMID:26469401
Genomic Insights into Geothermal Spring Community Members using a 16S Agnostic Single-Cell Approach
NASA Astrophysics Data System (ADS)
Bowers, R. M.
2016-12-01
INSTUTIONS (ALL): DOE Joint Genome Institute, Walnut Creek, CA USA. Bigelow Laboratory for Ocean Sciences, East Boothbay, ME USA. Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada. ABSTRACT BODY: With recent advances in DNA sequencing, rapid and affordable screening of single-cell genomes has become a reality. Single-cell sequencing is a multi-step process that takes advantage of any number of single-cell sorting techniques, whole genome amplification (WGA), and 16S rRNA gene based PCR screening to identify the microbes of interest prior to shotgun sequencing. However, the 16S PCR based screening step is costly and may lead to unanticipated losses of microbial diversity, as cells that do not produce a clean 16S amplicon are typically omitted from downstream shotgun sequencing. While many of the sorted cells that fail the 16S PCR step likely originate from poor quality amplified DNA, some of the cells with good WGA kinetics may instead represent bacteria or archaea with 16S genes that fail to amplify due to primer mis-matches or the presence of intervening sequences. Using cell material from Dewar Creek, a hot spring in British Columbia, we sequenced all sorted cells with good WGA kinetics irrespective of their 16S amplification success. We show that this high-throughput approach to single-cell sequencing (i) can reduce the overall cost of single-cell genome production, and (ii). may lead to the discovery of previously unknown branches on the microbial tree of life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagata, Takayuki; Department of Microbiology and Immunology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575; Murata, Kazuko, E-mail: murata-k@iwakimu.ac.jp
Highlights: •ESCRT-0 protein regulates the development of peripheral B-cells. •BCR expression on cell surface should be controlled by the endosomal-sorting system. •Hrs plays important roles in responsiveness to Ag stimulation in B lymphocytes. -- Abstract: Hepatocyte growth factor (HGF)-regulated tyrosine kinase substrate (Hrs) is a vesicular sorting protein that functions as one of the endosomal-sorting proteins required for transport (ESCRT). Hrs, which binds to ubiquitinated proteins through its ubiquitin-interacting motif (UIM), contributes to the lysosomal transport and degradation of ubiquitinated membrane proteins. However, little is known about the relationship between B-cell functions and ESCRT proteins in vivo. Here we examinedmore » the immunological roles of Hrs in B-cell development and functions using B-cell-specific Hrs-deficient (Hrs{sup flox/flox};mb1{sup cre/+}:Hrs-cKO) mice, which were generated using a cre-LoxP recombination system. Hrs deficiency in B-cells significantly reduced T-cell-dependent antibody production in vivo and impaired the proliferation of B-cells treated in vitro with an anti-IgM monoclonal antibody but not with LPS. Although early development of B-cells in the bone marrow was normal in Hrs-cKO mice, there was a significant decrease in the number of the peripheral transitional B-cells and marginal zone B-cells in the spleen of Hrs-cKO mice. These results indicate that Hrs plays important roles during peripheral development and physiological functions of B lymphocytes.« less
Kwong, Gabriel A; Radu, Caius G; Hwang, Kiwook; Shu, Chengyi J; Ma, Chao; Koya, Richard C; Comin-Anduix, Begonya; Hadrup, Sine Reker; Bailey, Ryan C; Witte, Owen N; Schumacher, Ton N; Ribas, Antoni; Heath, James R
2009-07-22
The human immune system consists of a large number of T cells capable of recognizing and responding to antigens derived from various sources. The development of peptide-major histocompatibility (p/MHC) tetrameric complexes has enabled the direct detection of these antigen-specific T cells. With the goal of increasing throughput and multiplexing of T cell detection, protein microarrays spotted with defined p/MHC complexes have been reported, but studies have been limited due to the inherent instability and reproducibility of arrays produced via conventional spotted methods. Herein, we report on a platform for the detection of antigen-specific T cells on glass substrates that offers significant advantages over existing surface-bound schemes. In this approach, called "Nucleic Acid Cell Sorting (NACS)", single-stranded DNA oligomers conjugated site-specifically to p/MHC tetramers are employed to immobilize p/MHC tetramers via hybridization to a complementary-printed substrate. Fully assembled p/MHC arrays are used to detect and enumerate T cells captured from cellular suspensions, including primary human T cells collected from cancer patients. NACS arrays outperform conventional spotted arrays assessed in key criteria such as repeatability and homogeneity. The versatility of employing DNA sequences for cell sorting is exploited to enable the programmed, selective release of target populations of immobilized T cells with restriction endonucleases for downstream analysis. Because of the performance, facile and modular assembly of p/MHC tetramer arrays, NACS holds promise as a versatile platform for multiplexed T cell detection.
Stem/progenitor cells in pituitary organ homeostasis and tumourigenesis
Manshaei, Saba
2018-01-01
Evidence for the presence of pituitary gland stem cells has been provided over the last decade using a combination of approaches including in vitro clonogenicity assays, flow cytometric side population analysis, immunohistochemical analysis and genetic approaches. These cells have been demonstrated to be able to self-renew and undergo multipotent differentiation to give rise to all hormonal lineages of the anterior pituitary. Furthermore, evidence exists for their contribution to regeneration of the organ and plastic responses to changing physiological demand. Recently, stem-like cells have been isolated from pituitary neoplasms raising the possibility that a cytological hierarchy exists, in keeping with the cancer stem cell paradigm. In this manuscript, we review the evidence for the existence of pituitary stem cells, their role in maintaining organ homeostasis and the regulation of their differentiation. Furthermore, we explore the emerging concept of stem cells in pituitary tumours and their potential roles in these diseases. PMID:28855316
INHIBITORY EFFECT OF CHITOSAN OLIGOSACCHARIDE ON HUMAN HEPATOMA CELLS IN VITRO.
Liu, Likun; Xin, Yi; Liu, Jia; Zhang, Ershao; Li, Weiling
2017-01-01
Chitosan oligosaccharide, the degradation products of chitin, was reported to have a wide range of physiological functions and biological activities. In this study, we explored the inhibitory effect of Chitosan oligosaccharide on human hepatoma cells. MTT assay was applied to detect cell viability of the human hepatoma cells treated with Chitosan oligosaccharide. Flow cytometric analysis was used to investigate the apoptosis of the human hepatoma cells treated with Chitosan oligosaccharide. We employed western blot to investigate the underlying mechanisms involved in the apoptosis. Our data indicated that chitosan oligosaccharide dose-dependently inhibited the growth of hepatoma cells and induced apoptosis. On the molecular level, chitosan oligosaccharide decreased Bcl-2 and increased Caspase-3 expression which may be related to the apoptosis of hepatoma cells. Our results provide an experimental basis for the clinical development of Chitosan oligosaccharide as a novel anti-hepatoma drug.
Opium induces apoptosis in jurkat cells.
Igder, Somayeh; Asadikaram, Gholam Reza; Sheykholeslam, Farzaneh; Sayadi, Ahmad Reza; Mahmoodi, Mehdi; Kazemi Arababadi, Mohammad; Rasaee, Mohammad Javad
2013-01-01
The direct effect of some opioids on immune cells has been demonstrated. The aim of this study was to assess the apoptotic effect of opium on Jurkat T lymphocyte cells. Different concentrations of opium (2.86 × 10-3 to 2.86 × 10-11 g/ml) were added to 24-well plates containing 5 × 105 Jurkat cells. Apoptotic events were assessed after 6, 24, and 72 hours by flow-cytometric detection of surface phosphatidylserine. Significant differences in apoptosis of Jurkat cells were seen at 24 and 72 hours in different concentrations of opium (P < 0.05). After 72 hours, significant increase in necrosis of Jurkat cells was seen in opium concentration of 2.85 × 10-3 g/ml compared to cells without opium (control) (P < 0.05). These results showed that opium directly increases apoptosis and necrosis of T lymphocytes. This effect may play a role in immune dysfunction in opium addicts.
Opium Induces Apoptosis in Jurkat Cells
Igder, Somayeh; Asadikaram, Gholam Reza; Sheykholeslam, Farzaneh; Sayadi, Ahmad Reza; Mahmoodi, Mehdi; Kazemi Arababadi, Mohammad; Rasaee, Mohammad Javad
2013-01-01
Background The direct effect of some opioids on immune cells has been demonstrated. The aim of this study was to assess the apoptotic effect of opium on Jurkat T lymphocyte cells. Methods Different concentrations of opium (2.86 × 10-3 to 2.86 × 10-11 g/ml) were added to 24-well plates containing 5 × 105 Jurkat cells. Apoptotic events were assessed after 6, 24, and 72 hours by flow-cytometric detection of surface phosphatidylserine. Findings Significant differences in apoptosis of Jurkat cells were seen at 24 and 72 hours in different concentrations of opium (P < 0.05). After 72 hours, significant increase in necrosis of Jurkat cells was seen in opium concentration of 2.85 × 10-3 g/ml compared to cells without opium (control) (P < 0.05). Conclusion These results showed that opium directly increases apoptosis and necrosis of T lymphocytes. This effect may play a role in immune dysfunction in opium addicts. PMID:24494155
Enzymatic signal amplification for sensitive detection of intracellular antigens by flow cytometry.
Karkmann, U; Radbruch, A; Hölzel, V; Scheffold, A
1999-11-19
Flow cytometry is the method of choice for the analysis of single cells with respect to the expression of specific antigens. Antigens can be detected with specific antibodies either on the cell surface or within the cells, after fixation and permeabilization of the cell membrane. Using conventional fluorochrome-labeled antibodies several thousand antigens are required for clear-cut separation of positive and negative cells. More sensitive reagents, e.g., magnetofluorescent liposomes conjugated to specific antibodies permit the detection of less than 200 molecules per cell but cannot be used for the detection of intracellular antigens. Here, we describe an enzymatic amplification technique (intracellular tyramine-based signal amplification, ITSA) for the sensitive cytometric analysis of intracellular cytokines by immunofluorescence. This approach results in a 10 to 15-fold improvement of the signal-to-noise ratio compared to conventional fluorochrome labeled antibodies and permits the detection of as few as 300-400 intracellular antigens per cell.
INHIBITORY EFFECT OF CHITOSAN OLIGOSACCHARIDE ON HUMAN HEPATOMA CELLS IN VITRO
Liu, Likun; Xin, Yi; Liu, Jia; Zhang, Ershao; Li, Weiling
2017-01-01
Background: Chitosan oligosaccharide, the degradation products of chitin, was reported to have a wide range of physiological functions and biological activities. In this study, we explored the inhibitory effect of Chitosan oligosaccharide on human hepatoma cells Materials and Methods: MTT assay was applied to detect cell viability of the human hepatoma cells treated with Chitosan oligosaccharide. Flow cytometric analysis was used to investigate the apoptosis of the human hepatoma cells treated with Chitosan oligosaccharide. We employed western blot to investigate the underlying mechanisms involved in the apoptosis. Results: Our data indicated that chitosan oligosaccharide dose-dependently inhibited the growth of hepatoma cells and induced apoptosis. On the molecular level, chitosan oligosaccharide decreased Bcl-2 and increased Caspase-3 expression which may be related to the apoptosis of hepatoma cells. Conclusion: Our results provide an experimental basis for the clinical development of Chitosan oligosaccharide as a novel anti-hepatoma drug. PMID:28638890
Lactoferricin treatment decreases the rate of cell proliferation of a human colon cancer cell line.
Freiburghaus, C; Janicke, B; Lindmark-Månsson, H; Oredsson, S M; Paulsson, M A
2009-06-01
Food components modify the risk of cancer at a large number of sites but the mechanism of action is unknown. In the present investigation, we studied the effect of the peptide lactoferricin derived from bovine milk lactoferrin on human colon cancer CaCo-2 cells. The cells were either untreated or treated with 2.0, 0.2, or 0.02 microM lactoferricin. Cell cycle kinetics were investigated with a bromodeoxyuridine DNA flow cytometric method. The results show that lactoferricin treatment slightly but significantly prolonged the S phase of the cell cycle. Lactoferricin treatment lowered the level of cyclin E1, a protein involved in the regulation of genes required for G(1)/S transition and consequently for efficient S phase progression. The slight prolongation of the S phase resulted in a reduction of cell proliferation, which became more apparent after a long treatment time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xin-xing; Wang, Jian, E-mail: dr_wangjian@yahoo.com.cn; Wang, Hao-lu
2012-03-23
Highlights: Black-Right-Pointing-Pointer We sorted SP cells from a human gallbladder carcinoma cell lines, SGC-996. Black-Right-Pointing-Pointer SP cells displayed higher proliferation and stronger clonal-generating capability. Black-Right-Pointing-Pointer SP cells showed more migratory and invasive abilities. Black-Right-Pointing-Pointer SP cells were more resistant and tumorigenic than non-SP counterparts. Black-Right-Pointing-Pointer ABCG2 might be a candidate as a marker for SP cells. -- Abstract: The cancer stem cell (CSC) hypothesis proposes that CSCs, which can renew themselves proliferate infinitely, and escape chemotherapy, become the root of recurrence and metastasis. Previous studies have verified that side population (SP) cells, characterized by their ability to efflux lipophilic substratemore » Hoechst 33342, to share many characteristics of CSCs in multiplying solid tumors. The purpose of this study was to sort SP cells from a human gallbladder carcinoma cell line, SGC-996 and to preliminarily identify the biological characteristics of SP cells from the cell line. Using flow cytometry we effectively sorted SP cells from the cell line SGC-996. SP cells not only displayed higher proliferative, stronger clonal-generating, more migratory and more invasive capacities, but showed stronger resistance. Furthermore, our experiments demonstrated that SP cells were more tumorigenic than non-SP counterparts in vivo. Real-time PCR analysis and immunocytochemistry showed that the expression of ATP-binding cassette subfamily G member 2 (ABCG2) was significantly higher in SP cells. Hence, these results collectively suggest that SP cells are progenitor/stem-like cells and ABCG2 might be a candidate marker for SP cells in human gallbladder cancer.« less
Wacker, Irene; Chockley, Peter; Bartels, Carolin; Spomer, Waldemar; Hofmann, Andreas; Gengenbach, Ulrich; Singh, Sachin; Thaler, Marlene; Grabher, Clemens; Schröder, Rasmus R
2015-08-01
For 3D reconstructions of whole immune cells from zebrafish, isolated from adult animals by FAC-sorting we employed array tomography on hundreds of serial sections deposited on silicon wafers. Image stacks were either recorded manually or automatically with the newly released ZEISS Atlas 5 Array Tomography platform on a Zeiss FEGSEM. To characterize different populations of immune cells, organelle inventories were created by segmenting individual cells. In addition, arrays were used for quantification of cell populations with respect to the various cell types they contained. The detection of immunological synapses in cocultures of cell populations from thymus or WKM with cancer cells helped to identify the cytotoxic nature of these cells. Our results demonstrate the practicality and benefit of AT for high-throughput ultrastructural imaging of substantial volumes. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Xavier, Miguel; Oreffo, Richard O C; Morgan, Hywel
2016-01-01
Skeletal stem cells (SSC) are a sub-population of bone marrow stromal cells that reside in postnatal bone marrow with osteogenic, chondrogenic and adipogenic differentiation potential. SSCs reside only in the bone marrow and have organisational and regulatory functions in the bone marrow microenvironment and give rise to the haematopoiesis-supportive stroma. Their differentiation capacity is restricted to skeletal lineages and therefore the term SSC should be clearly distinguished from mesenchymal stem cells which are reported to exist in extra-skeletal tissues and, critically, do not contribute to skeletal development. SSCs are responsible for the unique regeneration capacity of bone and offer unlimited potential for application in bone regenerative therapies. A current unmet challenge is the isolation of homogeneous populations of SSCs, in vitro, with homogeneous regeneration and differentiation capacities. Challenges that limit SSC isolation include a) the scarcity of SSCs in bone marrow aspirates, estimated at between 1 in 10-100,000 mononuclear cells; b) the absence of specific markers and thus the phenotypic ambiguity of the SSC and c) the complexity of bone marrow tissue. Microfluidics provides innovative approaches for cell separation based on bio-physical features of single cells. Here we review the physical principles underlying label-free microfluidic sorting techniques and review their capacity for stem cell selection/sorting from complex (heterogeneous) samples. Copyright © 2016 Elsevier Inc. All rights reserved.
Campo, Joseph J.; Cicéron, Micheline; Raccurt, Christian P.; Beau De Rochars, Valery E. M.
2017-01-01
Asymptomatic Plasmodium falciparum infection is responsible for maintaining malarial disease within human populations in low transmission countries such as Haiti. Investigating differential host immune responses to the parasite as a potential underlying mechanism could help provide insight into this highly complex phenomenon and possibly identify asymptomatic individuals. We performed a cross-sectional analysis of individuals who were diagnosed with malaria in Sud-Est, Haiti by comparing the cellular and humoral responses of both symptomatic and asymptomatic subjects. Plasma samples were analyzed with a P. falciparum protein microarray, which demonstrated serologic reactivity to 3,877 P. falciparum proteins of known serologic reactivity; however, no antigen-antibody reactions delineating asymptomatics from symptomatics were identified. In contrast, differences in cellular responses were observed. Flow cytometric analysis of patient peripheral blood mononuclear cells co-cultured with P. falciparum infected erythrocytes demonstrated a statistically significant increase in the proportion of T regulatory cells (CD4+ CD25+ CD127-), and increases in unique populations of both NKT-like cells (CD3+ CD8+ CD56+) and CD8mid T cells in asymptomatics compared to symptomatics. Also, CD38+/HLA-DR+ expression on γδ T cells, CD8mid (CD56-) T cells, and CD8mid CD56+ NKT-like cells decreased upon exposure to infected erythrocytes in both groups. Cytometric bead analysis of the co-culture supernatants demonstrated an upregulation of monocyte-activating chemokines/cytokines in asymptomatics, while immunomodulatory soluble factors were elevated in symptomatics. Principal component analysis of these expression values revealed a distinct clustering of individual responses within their respective phenotypic groups. This is the first comprehensive investigation of immune responses to P. falciparum in Haiti, and describes unique cell-mediated immune repertoires that delineate individuals into asymptomatic and symptomatic phenotypes. Future investigations using large scale biological data sets analyzing multiple components of adaptive immunity, could collectively define which cellular responses and molecular correlates of disease outcome are malaria region specific, and which are truly generalizable features of asymptomatic Plasmodium immunity, a research goal of critical priority. PMID:28369062
Lehmann, Jason S; Campo, Joseph J; Cicéron, Micheline; Raccurt, Christian P; Boncy, Jacques; Beau De Rochars, Valery E M; Cannella, Anthony P
2017-01-01
Asymptomatic Plasmodium falciparum infection is responsible for maintaining malarial disease within human populations in low transmission countries such as Haiti. Investigating differential host immune responses to the parasite as a potential underlying mechanism could help provide insight into this highly complex phenomenon and possibly identify asymptomatic individuals. We performed a cross-sectional analysis of individuals who were diagnosed with malaria in Sud-Est, Haiti by comparing the cellular and humoral responses of both symptomatic and asymptomatic subjects. Plasma samples were analyzed with a P. falciparum protein microarray, which demonstrated serologic reactivity to 3,877 P. falciparum proteins of known serologic reactivity; however, no antigen-antibody reactions delineating asymptomatics from symptomatics were identified. In contrast, differences in cellular responses were observed. Flow cytometric analysis of patient peripheral blood mononuclear cells co-cultured with P. falciparum infected erythrocytes demonstrated a statistically significant increase in the proportion of T regulatory cells (CD4+ CD25+ CD127-), and increases in unique populations of both NKT-like cells (CD3+ CD8+ CD56+) and CD8mid T cells in asymptomatics compared to symptomatics. Also, CD38+/HLA-DR+ expression on γδ T cells, CD8mid (CD56-) T cells, and CD8mid CD56+ NKT-like cells decreased upon exposure to infected erythrocytes in both groups. Cytometric bead analysis of the co-culture supernatants demonstrated an upregulation of monocyte-activating chemokines/cytokines in asymptomatics, while immunomodulatory soluble factors were elevated in symptomatics. Principal component analysis of these expression values revealed a distinct clustering of individual responses within their respective phenotypic groups. This is the first comprehensive investigation of immune responses to P. falciparum in Haiti, and describes unique cell-mediated immune repertoires that delineate individuals into asymptomatic and symptomatic phenotypes. Future investigations using large scale biological data sets analyzing multiple components of adaptive immunity, could collectively define which cellular responses and molecular correlates of disease outcome are malaria region specific, and which are truly generalizable features of asymptomatic Plasmodium immunity, a research goal of critical priority.
Opto electronic tweezers based smart sweeper for cells/micro-particles sorting
NASA Astrophysics Data System (ADS)
Verma, R. S.; Kumar, N.
2018-04-01
We report on use of opto-electronic tweezers based sorting approach, termed as smart sweepers, for sorting the microscopic particles by using the Dielectrophoretic (DEP) force response of cells on applied a.c. bias frequency. The applied a.c. bias was kept in negative DEP region, close to the crossover frequency of one of the particles. A line shaped intensity pattern, generated by a cylindrical lens, was scanned across the mixture sample. The particles whose cross over frequency was close to the applied bias frequency, experienced negligible negative DEP(n-DEP) force. On the other hand, the other type of particle experienced large repelling force and were forced to move along the scanning direction of the line shaped intensity profile. We, as a proof of concept, demonstrated the working principle of opto electronic smart sweepers by sweeping out the polystyrene particles from a mixture consisting of polystyrene microspheres (PSM) and red blood cells (RBCs) and leaving RBCs in the region of interest.
GGA3 mediates TrkA endocytic recycling to promote sustained Akt phosphorylation and cell survival
Li, Xuezhi; Lavigne, Pierre; Lavoie, Christine
2015-01-01
Although TrkA postendocytic sorting significantly influences neuronal cell survival and differentiation, the molecular mechanism underlying TrkA receptor sorting in the recycling or degradation pathways remains poorly understood. Here we demonstrate that Golgi-localized, γ adaptin-ear–containing ADP ribosylation factor-binding protein 3 (GGA3) interacts directly with the TrkA cytoplasmic tail through an internal DXXLL motif and mediates the functional recycling of TrkA to the plasma membrane. We find that GGA3 depletion by siRNA delays TrkA recycling, accelerates TrkA degradation, attenuates sustained NGF-induced Akt activation, and reduces cell survival. We also show that GGA3’s effect on TrkA recycling is dependent on the activation of Arf6. This work identifies GGA3 as a key player in a novel DXXLL-mediated endosomal sorting machinery that targets TrkA to the plasma membrane, where it prolongs the activation of Akt signaling and survival responses. PMID:26446845
Vollmer, T; Engemann, J; Kleesiek, K; Dreier, J
2011-06-01
Bacterial contamination is currently the major infectious hazard of platelet transfusion in developed countries. It has been demonstrated that a significant transfusion risk remains, in particular with older platelet concentrates (PCs). In 2009, the shelf life of PCs was therefore reduced in Germany to 4 days after the day of production according to Vote 38. The aim of the present study was the application and implementation of a recently developed flow cytometry-based rapid screening method (BactiFlow) for bacterial contamination at the end of PC shelf life as a routine in-process control. A total of 472 apheresis-derived PCs were tested using the BactiFlow flow cytometric assay to detect and count bacteria based on esterase activity in viable bacterial cells, while the BacT/Alert automated culture system served as the reference method. The automation potential of the flow cytometric assay was analysed by applying the semi-automated BactiFlow ALS system. An algorithm was developed for use in routine blood bank operations to extend the storage period of PCs. Two of the 472 apheresis PCs tested were positive in culture and identified as Propionibacterium species. One PC was positive for Staphylococcus aureus by both methods. All remaining specimens were tested negative by both methods. Our study demonstrates that routine bacterial testing of PCs was successfully implemented and the established algorithm proved efficient. The BactiFlow flow cytometric assay is the first rapid screening method which is suitable for a routine application combined with a high sensitivity. © 2011 The Authors. Transfusion Medicine © 2011 British Blood Transfusion Society.
Galectin-3 modulates the polarized surface delivery of β1-integrin in epithelial cells.
Hönig, Ellena; Ringer, Karina; Dewes, Jenny; von Mach, Tobias; Kamm, Natalia; Kreitzer, Geri; Jacob, Ralf
2018-05-10
Epithelial cells require a precise intracellular transport and sorting machinery in order to establish and maintain their polarized architecture. This machinery includes beta-galactoside binding galectins for glycoprotein targeting to the apical membrane. Galectin-3 sorts cargo destined for the apical plasma membrane into vesicular carriers. After delivery of cargo to the apical milieu, galectin-3 recycles back into sorting organelles. We analyzed the role of galectin-3 in the polarized distribution of β1-integrin in MDCK cells. Integrins are located primarily at the basolateral domain of epithelial cells. We demonstrate that a minor pool of β1-integrin interacts with galectin-3 at the apical plasma membrane. Knockdown of galectin-3 decreases apical delivery of β1-integrin. This loss is restored by supplementation with recombinant galectin-3 and galectin-3 overexpression. Our data suggest that galectin-3 targets newly synthesized β1-integrin to the apical membrane and promotes apical delivery of β1-integrin internalized from the basolateral membrane. In parallel, galectin-3 knockout results in a reduction in cell proliferation and an impairment in proper cyst development. Our results suggest that galectin-3 modulates the surface distribution of β1-integrin and affects the morphogenesis of polarized cells. © 2018. Published by The Company of Biologists Ltd.
Concurrent Isolation of 3 Distinct Cardiac Stem Cell Populations From a Single Human Heart Biopsy.
Monsanto, Megan M; White, Kevin S; Kim, Taeyong; Wang, Bingyan J; Fisher, Kristina; Ilves, Kelli; Khalafalla, Farid G; Casillas, Alexandria; Broughton, Kathleen; Mohsin, Sadia; Dembitsky, Walter P; Sussman, Mark A
2017-07-07
The relative actions and synergism between distinct myocardial-derived stem cell populations remain obscure. Ongoing debates on optimal cell population(s) for treatment of heart failure prompted implementation of a protocol for isolation of multiple stem cell populations from a single myocardial tissue sample to develop new insights for achieving myocardial regeneration. Establish a robust cardiac stem cell isolation and culture protocol to consistently generate 3 distinct stem cell populations from a single human heart biopsy. Isolation of 3 endogenous cardiac stem cell populations was performed from human heart samples routinely discarded during implantation of a left ventricular assist device. Tissue explants were mechanically minced into 1 mm 3 pieces to minimize time exposure to collagenase digestion and preserve cell viability. Centrifugation removes large cardiomyocytes and tissue debris producing a single cell suspension that is sorted using magnetic-activated cell sorting technology. Initial sorting is based on tyrosine-protein kinase Kit (c-Kit) expression that enriches for 2 c-Kit + cell populations yielding a mixture of cardiac progenitor cells and endothelial progenitor cells. Flowthrough c-Kit - mesenchymal stem cells are positively selected by surface expression of markers CD90 and CD105. After 1 week of culture, the c-Kit + population is further enriched by selection for a CD133 + endothelial progenitor cell population. Persistence of respective cell surface markers in vitro is confirmed both by flow cytometry and immunocytochemistry. Three distinct cardiac cell populations with individualized phenotypic properties consistent with cardiac progenitor cells, endothelial progenitor cells, and mesenchymal stem cells can be successfully concurrently isolated and expanded from a single tissue sample derived from human heart failure patients. © 2017 American Heart Association, Inc.
Bózsity, Noémi; Minorics, Renáta; Szabó, Johanna; Mernyák, Erzsébet; Schneider, Gyula; Wölfling, János; Wang, Hui-Chun; Wu, Chin-Chung; Ocsovszki, Imre; Zupkó, István
2017-01-01
Cervical cancer is the fourth most frequently diagnosed tumor and the fourth leading cause of cancer death in females worldwide. Cervical cancer is predominantly related with human papilloma virus (HPV) infection, with the most oncogenic types being HPV-18 and -16. Our previous studies demonstrated that some d-secoestrone derivatives exert pronounced antiproliferative activity. The aim of the current investigation was to characterize the mechanism of action of d-secoestrone-triazole (D-SET) on three cervical cancer cell lines with different pathological backgrounds. The growth-inhibitory effects of D-SET were determined by a standard MTT assay. We have found that D-SET exerts a pronounced growth-inhibitory effect on HPV 18-positive HeLa and HPV-negative C-33 A cells, but it has no substantial inhibitory activity on HPV 16-positive SiHa or on intact fibroblast MRC-5 cell lines. After 24h incubation, cells showed the morphological and biochemical signs of apoptosis determined by fluorescent double staining, flow cytometry and caspase-3 activity assay. Besides the elevation of the ratio of cells in the subG1 phase, flow cytometric analysis revealed a cell cycle arrest at G2/M in both HeLa and C-33 A cell lines. To distinguish the G2/M cell population immunocytochemical flow cytometric analysis was performed on HeLa cells. The results show that D-SET significantly increases the ratio of phosphorylated histone H3, indicating cell accumulation in the M phase. Additionally, D-SET significantly increased the maximum rate of microtube formation measured by an in vitro tubulin polymerization assay. Besides its direct antiproliferative activity, the antimigratory property of D-SET has been investigated. Our results demonstrate that D-SET significantly inhibits the migration and invasion of HeLa cells after 24h incubation. These results suggests that D-SET is a potent antiproliferative agent against HPV 16+ and HPV-negative cervical cancer cell lines, with an efficacious motility-inhibiting activity against HPV 16+ cells. Accordingly D-SET can be regarded as a potential drug candidate with a promising new mechanism of action among the antiproliferative steroids, potentially allowing for the design of novel anticancer agents. Copyright © 2016 Elsevier Ltd. All rights reserved.
Non-linear optical measurements using a scanned, Bessel beam
NASA Astrophysics Data System (ADS)
Collier, Bradley B.; Awasthi, Samir; Lieu, Deborah K.; Chan, James W.
2015-03-01
Oftentimes cells are removed from the body for disease diagnosis or cellular research. This typically requires fluorescent labeling followed by sorting with a flow cytometer; however, possible disruption of cellular function or even cell death due to the presence of the label can occur. This may be acceptable for ex vivo applications, but as cells are more frequently moving from the lab to the body, label-free methods of cell sorting are needed to eliminate these issues. This is especially true of the growing field of stem cell research where specialized cells are needed for treatments. Because differentiation processes are not completely efficient, cells must be sorted to eliminate any unwanted cells (i.e. un-differentiated or differentiated into an unwanted cell type). In order to perform label-free measurements, non-linear optics (NLO) have been increasingly utilized for single cell analysis because of their ability to not disrupt cellular function. An optical system was developed for the measurement of NLO in a microfluidic channel similar to a flow cytometer. In order to improve the excitation efficiency of NLO, a scanned Bessel beam was utilized to create a light-sheet across the channel. The system was tested by monitoring twophoton fluorescence from polystyrene microbeads of different sizes. Fluorescence intensity obtained from light-sheet measurements were significantly greater than measurements made using a static Gaussian beam. In addition, the increase in intensity from larger sized beads was more evident for the light-sheet system.
Ichikawa, N; Kitano, K; Ito, T; Nakazawa, T; Shimodaira, S; Ishida, F; Kiyosawa, K
1999-04-01
We report a case of granular lymphocyte proliferative disorder accompanied with hemolytic anemia and neutropenia. Phenotypes of the cells were T cell receptor gammadelta+ CD3+ CD4- CD8+ CD16+ CD56- CD57-. Southern blot analysis of T cell receptor beta and gamma chains demonstrated rearranged bands in both. Chromosomal analysis after IL-2 stimulation showed deletion of chromosome 6. Sorted gammadelta+ T cells showed an increase in Fas ligand expression compared with the levels in sorted alphabeta+ T cells. The expression of Fas ligand on these gammadelta+ T cells increased after IL-2 stimulation. The patient's anemia improved along with a decrease in granular lymphocyte count and disappearance of the abnormal karyotype without treatment. The expression of Fas ligand may be involved in spontaneous regression of granular lymphocyte proliferation with hemolytic anemia.
Magbanua, Mark Jesus M; Park, John W
2013-12-01
Circulating tumor cells (CTCs) are cells shed by the primary tumor into the blood stream capable of initiating distant metastasis. In the past decade, numerous assays have been developed to reliably detect these extremely rare cells. However, methods for purification of CTCs with little or no contamination of normal blood cells for molecular profiling are limited. We have developed a novel protocol to isolate CTCs by combining immunomagnetic enrichment and fluorescence-activated cell sorting (IE/FACS). The two-part assay includes (1) immunomagnetic capture using magnetic beads conjugated to monoclonal antibody against an epithelial cell adhesion marker (EpCAM) to enrich for tumor cells; and (2) FACS analysis using EpCAM to purify tumor cells away from mononuclear cells of hematopoietic lineage. Downstream molecular analyses of single and pooled cells confirmed the isolation of highly pure CTCs with characteristics typical that of malignant cells. Copyright © 2013 Elsevier Inc. All rights reserved.
Gibson, Nicholas J; Tolbert, Leslie P
2006-04-10
During development of the adult olfactory system of the moth Manduca sexta, olfactory receptor neurons extend axons from the olfactory epithelium in the antenna into the brain. As they arrive at the brain, interactions with centrally derived glial cells cause axons to sort and fasciculate with other axons destined to innervate the same glomeruli. Here we report studies indicating that activation of the epidermal growth factor receptor (EGFR) is involved in axon ingrowth and targeting. Blocking the EGFR kinase domain pharmacologically leads to stalling of many axons in the sorting zone and nerve layer as well as abnormal axonal fasciculation in the sorting zone. We also find that neuroglian, an IgCAM known to activate the EGFR through homophilic interactions in other systems, is transiently present on olfactory receptor neuron axons and on glia during the critical stages of the sorting process. The neuroglian is resistant to extraction with Triton X-100 in the sorting zone and nerve layer, possibly indicating its stabilization by homophilic binding in these regions. Our results suggest a mechanism whereby neuroglian molecules on axons and possibly sorting zone glia bind homophilically, leading to activation of EGFRs, with subsequent effects on axon sorting, pathfinding, and extension, and glomerulus development. Copyright 2006 Wiley-Liss, Inc.
Gibson, Nicholas J.; Tolbert, Leslie P.
2008-01-01
During development of the adult olfactory system of the moth Manduca sexta, olfactory receptor neurons extend axons from the olfactory epithelium in the antenna into the brain. As they arrive at the brain, interactions with centrally-derived glial cells cause axons to sort and fasciculate with other axons destined to innervate the same glomeruli. Here we report studies that indicate that activation of the epidermal growth factor receptor (EGFR) is involved in axon ingrowth and targeting. Blocking the EGFR kinase domain pharmacologically leads to stalling of many axons in the sorting zone and nerve layer, as well as abnormal axonal fasciculation in the sorting zone. We also find that neuroglian, an IgCAM known to activate the EGFR through homophilic interactions in other systems, is transiently present on olfactory receptor neuron axons and on glia during the critical stages of the sorting process. The neuroglian is resistant to extraction with Triton X-100 in the sorting zone and nerve layer, possibly indicating its stabilization by homophilic binding in these regions. Our results suggest a mechanism whereby neuroglian molecules on axons and possibly sorting zone glia bind homophilically, leading to activation of EGFRs with subsequent effects on axon sorting, pathfinding, and extension, and glomerulus development. PMID:16498681
Nyland, Jennifer F.; Bai, Jennifer J. K.; Katz, Howard E.; Silbergeld, Ellen K.
2009-01-01
Engineered nanoparticles (NPs) possess a range of biological activity. In vitro methods for assessing toxicity and efficacy would be enhanced by simultaneous quantitative information on the behavior of NPs in culture systems and signals of cell response. We have developed a method for visualizing NPs within cells using standard flow cytometric techniques and uniquely designed spherical siloxane NPs with an embedded (covalently bound) dansylamide dye. This method allowed NP visualization without obscuring detection of relevant biomarkers of cell subtype, activation state, and other events relevant to assessing bioactivity. We determined that NPs penetrated cells and induced a range of biological signals consistent with activation and costimulation. These results indicate that NPs may affect cell function at concentrations below those inducing cytotoxicity or apoptosis and demonstrate a novel method to image both localization of NPs and cell-level effects. PMID:19523425
Sorting of Streptomyces Cell Pellets Using a Complex Object Parametric Analyzer and Sorter
Petrus, Marloes L. C.; van Veluw, G. Jerre; Wösten, Han A. B.; Claessen, Dennis
2014-01-01
Streptomycetes are filamentous soil bacteria that are used in industry for the production of enzymes and antibiotics. When grown in bioreactors, these organisms form networks of interconnected hyphae, known as pellets, which are heterogeneous in size. Here we describe a method to analyze and sort mycelial pellets using a Complex Object Parametric Analyzer and Sorter (COPAS). Detailed instructions are given for the use of the instrument and the basic statistical analysis of the data. We furthermore describe how pellets can be sorted according to user-defined settings, which enables downstream processing such as the analysis of the RNA or protein content. Using this methodology the mechanism underlying heterogeneous growth can be tackled. This will be instrumental for improving streptomycetes as a cell factory, considering the fact that productivity correlates with pellet size. PMID:24561666
Kattke, Michele D.; Chan, Albert H.; Duong, Andrew; ...
2016-12-09
Here, many species of Gram-positive bacteria use sortase transpeptidases to covalently affix proteins to their cell wall or to assemble pili. Sortase-displayed proteins perform critical and diverse functions for cell survival, including cell adhesion, nutrient acquisition, and morphological development, among others. Based on their amino acid sequences, there are at least six types of sortases (class A to F enzymes); however, class E enzymes have not been extensively studied. Class E sortases are used by soil and freshwater-dwelling Actinobacteria to display proteins that contain a non-canonical LAXTG sorting signal, which differs from 90% of known sorting signals by substitution ofmore » alanine for proline. Here we report the first crystal structure of a class E sortase, the 1.93 Å resolution structure of the SrtE1 enzyme from Streptomyces coelicolor. The active site is bound to a tripeptide, providing insight into the mechanism of substrate binding. SrtE1 possesses β3/β4 and β6/β7 active site loops that contact the LAXTG substrate and are structurally distinct from other classes. We propose that SrtE1 and other class E sortases employ a conserved tyrosine residue within their β3/β4 loop to recognize the amide nitrogen of alanine at position P3 of the sorting signal through a hydrogen bond, as seen here. Incapability of hydrogen-bonding with canonical proline-containing sorting signals likely contributes to class E substrate specificity. Furthermore, we demonstrate that surface anchoring of proteins involved in aerial hyphae formation requires an N-terminal segment in SrtE1 that is presumably positioned within the cytoplasm. Combined, our results reveal unique features within class E enzymes that enable them to recognize distinct sorting signals, and could facilitate the development of substrate-based inhibitors of this important enzyme family.« less
Identifying genes that extend life span using a high-throughput screening system.
Chen, Cuiying; Contreras, Roland
2007-01-01
We developed a high-throughput functional genomic screening system that allows identification of genes prolonging lifespan in the baker's yeast Saccharomyces cerevisiae. The method is based on isolating yeast mother cells with a higher than average number of cell divisions as indicated by the number of bud scars on their surface. Fluorescently labeled wheat germ agglutinin (WGA) was used for specific staining of chitin, a major component of bud scars. The critical new steps in our bud-scar-sorting system are the use of small microbeads, which allows successive rounds of purification and regrowth of the mother cells (M-cell), and utilization of flow cytometry to sort and isolate cells with a longer lifespan based on the number of bud scars specifically labeled with WGA.
Culture of Cells from Amphibian Embryos.
ERIC Educational Resources Information Center
Stanisstreet, Martin
1983-01-01
Describes a method for in vitro culturing of cells from amphibian early embryos. Such cells can be used to demonstrate such properties of eukaryote cells as cell motility, adhesion, differentiation, and cell sorting into tissues. The technique may be extended to investigate other factors. (Author/JN)
Zhu, Pei; Zhou, Yalu; Wu, Furen; Hong, Yuanfan; Wang, Xin; Shekhawat, Gajendra; Mosenson, Jeffrey
2017-01-01
Abstract Muscle stem cells (MuSCs) exhibit robust myogenic potential in vivo, thus providing a promising curative treatment for muscle disorders. Ex vivo expansion of adult MuSCs is highly desired to achieve a therapeutic cell dose because of their scarcity in limited muscle biopsies. Sorting of pure MuSCs is generally required for all the current culture systems. Here we developed a soft three‐dimensional (3D) salmon fibrin gel culture system that can selectively expand mouse MuSCs from bulk skeletal muscle preparations without cell sorting and faithfully maintain their regenerative capacity in culture. Our study established a novel platform for convenient ex vivo expansion of MuSCs, thus greatly advancing stem cell‐based therapies for various muscle disorders. Stem Cells Translational Medicine 2017;6:1412–1423 PMID:28244269
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watanabe, H.; Grubb, J.H.; Sly, W.S.
1990-10-01
The authors studied the function of the human small (46-kDa) mannose 6-phosphate receptor (SMPR) in transfected mouse L cells that do not express the larger insulin-like growth factor II/mannose 6-phosphate receptor. Cells overexpressing human SMPR were studied for enzyme binding to cell surface receptors, for binding to intracellular receptors in permeabilized cells, and for receptor-mediated endocytosis of recombinant human {beta}-glucuronidase. Specific binding to human SMPR in permeabilized cells showed a pH optimum between pH 6.0 and pH 6.5. Binding was significant in the present of EDTA but was enhanced by added divalent cations. Up to 2.3{percent} of the total functionalmore » receptor could be detected on the cell surface by enzyme binding. They present experiments showing that at very high levels of overexpression, and at pH 6.5, human SMPR mediated the endocytosis of {beta}-glucuronidase. At pH 7.5, the rate of endocytosis was only 14{percent} the rate seen at pH 6.5. Cells overexpressing human SMPR also showed reduced secretion of newly synthesized {beta}-glucuronidase when compared to cells transfected with vector only, suggesting that overexpressed human SMPR can participate in sorting of newly synthesized {beta}-glucuronidase and partially correct the sorting defect in mouse L cells that do not express the insulin-like growth factor II/mannose 6-phosphate receptor.« less
Nafe, Laura A.; Dodam, John R.; Reinero, Carol R.
2014-01-01
A high rate of mortality, expense, and complications of immunosuppressive therapy in dogs underscores the need for optimization of drug dosing. The purpose of this study was to determine, using a flow-cytometric assay, the 50% T-cell inhibitory concentration (IC50) of dexamethasone, cyclosporine, and the active metabolites of azathioprine (6-mercaptopurine) and leflunomide (A77 1726) in canine lymphocytes stimulated with concanavalin A (Con A). Whole blood was collected from 5 privately owned, healthy dogs of various ages, genders, and breeds. Peripheral blood mononuclear cells, obtained by density-gradient separation, were cultured for 72 h with Con A, a fluorochrome-tagged cell proliferation dye, and various concentrations of dexamethasone (0.1, 1, 10, 100, 1000, and 10 000 μM), cyclosporine (0.2, 2, 10, 20, 30, 40, 80, and 200 ng/mL), 6-mercaptopurine (0.5, 2.5, 50, 100, 250, and 500 μM), and A77 1726 (1, 5, 10, 25, 50, and 200 μM). After incubation, the lymphocytes were labeled with propidium iodide and an antibody against canine CD5, a pan T-cell surface marker. Flow cytometry determined the percentage of live, proliferating T-lymphocytes incubated with or without immunosuppressants. The mean (± standard error) IC50 was 3460 ± 1900 μM for dexamethasone, 15.8 ± 2.3 ng/mL for cyclosporine, 1.3 ± 0.4 μM for 6-mercaptopurine, and 55.6 ± 22.0 μM for A77 1722. Inhibition of T-cell proliferation by the 4 immunosuppressants was demonstrated in a concentration-dependent manner, with variability between the dogs. These results represent the initial steps to tailor this assay for individual immunosuppressant protocols for dogs with immune-mediated disease. PMID:24982547
Song, Yuqing; Li, Lili
2018-01-01
The poor survival rate of transplanted mesenchymal stem cells (MSCs) within the ischemic heart limits their therapeutic potential for cardiac repair. Adrenomedullin (ADM) has been identified as a potent apoptotic inhibitor. The present study aimed to investigate the protective effects of ADM on MSCs against hypoxia and serum deprivation (H/SD)-induced apoptosis, and to determine the potential underlying mechanisms. In the present study, a recombinant adenovirus expressing the ADM gene was established and was infected into MSCs. The infection rate was determined via microscopic detection of green fluorescence and flow cytometric analysis. The mRNA expression levels of ADM were detected by reverse transcription-polymerase chain reaction. In addition, a model of H/SD was generated. The MSCs were randomly separated into six groups: Control, enhanced green fluorescent protein (EGFP)-Adv, EGFP-ADM, H/SD, EGFP-Adv + H/SD and EGFP-ADM + H/SD. Cell viability and proliferation were determined using the Cell Counting kit-8 assay. Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated-dUTP nick-end labeling assay and flow cytometric analysis using Annexin V-phycoerythrin/7-aminoactinomycin D staining. The protein expression levels of total protein kinase B (Akt), phosphorylated (p)-Akt, total glycogen synthase kinase (GSK)3β, p-GSK3β, B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-3 and cleaved caspase-3 were detected by western blot analysis. The results indicated that ADM overexpression could improve MSC proliferation and viability, and protect MSCs against H/SD-induced apoptosis. In addition, ADM overexpression increased Akt and GSK3β phosphorylation, and Bcl-2/Bax ratio, and decreased the activation of caspase-3. These results suggested that ADM protects MSCs against H/SD-induced apoptosis, which may be mediated via the Akt/GSK3β and Bcl-2 signaling pathways. PMID:29512737
Gawronska-Kozak, Barbara; Grabowska, Anna; Kur-Piotrowska, Anna; Kopcewicz, Marta
2016-01-01
Transcription factors are key molecules that finely tune gene expression in response to injury. We focused on the role of a transcription factor, Foxn1, whose expression is limited to the skin and thymus epithelium. Our previous studies showed that Foxn1 inactivity in nude mice creates a pro-regenerative environment during skin wound healing. To explore the mechanistic role of Foxn1 in the skin wound healing process, we analyzed post-injured skin tissues from Foxn1::Egfp transgenic and C57BL/6 mice with Western Blotting, qRT-PCR, immunofluorescence and flow cytometric assays. Foxn1 expression in non-injured skin localized to the epidermis and hair follicles. Post-injured skin tissues showed an intense Foxn1-eGFP signal at the wound margin and in leading epithelial tongue, where it co-localized with keratin 16, a marker of activated keratinocytes. This data support the concept that suprabasal keratinocytes, expressing Foxn1, are key cells in the process of re-epithelialization. The occurrence of an epithelial-mesenchymal transition (EMT) was confirmed by high levels of Snail1 and Mmp-9 expression as well as through co-localization of vimentin/E-cadherin-positive cells in dermis tissue at four days post-wounding. Involvement of Foxn1 in the EMT process was verified by co-localization of Foxn1-eGFP cells with Snail1 in histological sections. Flow cytometric analysis showed the increase of double positive E-cadherin/N-cadherin cells within Foxn1-eGFP population of post-wounded skin cells isolates, which corroborated histological and gene expression analyses. Together, our findings indicate that Foxn1 acts as regulator of the skin wound healing process through engagement in re-epithelization and possible involvement in scar formation due to Foxn1 activity during the EMT process. PMID:26938103
Stochastic Model of Clogging in a Microfluidic Cell Sorter
NASA Astrophysics Data System (ADS)
Fai, Thomas; Rycroft, Chris
2016-11-01
Microfluidic devices for sorting cells by deformability show promise for various medical purposes, e.g. detecting sickle cell anemia and circulating tumor cells. One class of such devices consists of a two-dimensional array of narrow channels, each column containing several identical channels in parallel. Cells are driven through the device by an applied pressure or flow rate. Such devices allows for many cells to be sorted simultaneously, but cells eventually clog individual channels and change the device properties in an unpredictable manner. In this talk, we propose a stochastic model for the failure of such microfluidic devices by clogging and present preliminary theoretical and computational results. The model can be recast as an ODE that exhibits finite time blow-up under certain conditions. The failure time distribution is investigated analytically in certain limiting cases, and more realistic versions of the model are solved by computer simulation.