Science.gov

Sample records for cytoskeletal proteins critical

  1. Cytoskeletal Linker Protein Dystonin Is Not Critical to Terminal Oligodendrocyte Differentiation or CNS Myelination

    PubMed Central

    Bonin, Sawyer R.; Gibeault, Sabrina; De Repentigny, Yves; Kothary, Rashmi

    2016-01-01

    Oligodendrocyte differentiation and central nervous system myelination require massive reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-organizing factors can lead to impaired morphological and/or molecular differentiation of oligodendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker protein with both actin- and tubulin-binding domains. Loss of function of this protein results in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic muscle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primarily leads to sensory neuron degeneration, it has also been shown that peripheral myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and central myelination. To address this, primary oligodendrocytes were isolated from a severe model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oligodendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant difference. Using a recently developed migration assay, we further analysed the ability of primary oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as was myelin basic

  2. Cytoskeletal Proteins of Actinobacteria

    PubMed Central

    Letek, Michal; Fiuza, María; Villadangos, Almudena F.; Mateos, Luís M.; Gil, José A.

    2012-01-01

    Although bacteria are considered the simplest life forms, we are now slowly unraveling their cellular complexity. Surprisingly, not only do bacterial cells have a cytoskeleton but also the building blocks are not very different from the cytoskeleton that our own cells use to grow and divide. Nonetheless, despite important advances in our understanding of the basic physiology of certain bacterial models, little is known about Actinobacteria, an ancient group of Eubacteria. Here we review current knowledge on the cytoskeletal elements required for bacterial cell growth and cell division, focusing on actinobacterial genera such as Mycobacterium, Corynebacterium, and Streptomyces. These include some of the deadliest pathogens on earth but also some of the most prolific producers of antibiotics and antitumorals. PMID:22481946

  3. Purification of Tetrahymena cytoskeletal proteins.

    PubMed

    Honts, Jerry E

    2012-01-01

    Like all eukaryotic cells, Tetrahymena thermophila contains a rich array of cytoskeletal proteins, some familiar and some novel. A detailed analysis of the structure, function, and interactions of these proteins requires procedures for purifying the individual protein components. Procedures for the purification of actin and tubulin from Tetrahymena are reviewed, followed by a description of a procedure that yields proteins from the epiplasmic layer and associated structures, including the tetrins. Finally, the challenges and opportunities for future advances are assessed.

  4. Sex Hormones Regulate Cytoskeletal Proteins Involved in Brain Plasticity

    PubMed Central

    Hansberg-Pastor, Valeria; González-Arenas, Aliesha; Piña-Medina, Ana Gabriela; Camacho-Arroyo, Ignacio

    2015-01-01

    In the brain of female mammals, including humans, a number of physiological and behavioral changes occur as a result of sex hormone exposure. Estradiol and progesterone regulate several brain functions, including learning and memory. Sex hormones contribute to shape the central nervous system by modulating the formation and turnover of the interconnections between neurons as well as controlling the function of glial cells. The dynamics of neuron and glial cells morphology depends on the cytoskeleton and its associated proteins. Cytoskeletal proteins are necessary to form neuronal dendrites and dendritic spines, as well as to regulate the diverse functions in astrocytes. The expression pattern of proteins, such as actin, microtubule-associated protein 2, Tau, and glial fibrillary acidic protein, changes in a tissue-specific manner in the brain, particularly when variations in sex hormone levels occur during the estrous or menstrual cycles or pregnancy. Here, we review the changes in structure and organization of neurons and glial cells that require the participation of cytoskeletal proteins whose expression and activity are regulated by estradiol and progesterone. PMID:26635640

  5. Cholera toxin can catalyze ADP-ribosylation of cytoskeletal proteins

    SciTech Connect

    Kaslow, H.R.; Groppi, V.E.; Abood, M.E.; Bourne, H.R.

    1981-11-01

    Cholera toxin catalyzes transfer of radiolabel from (/sup 32/P)NAD/sup +/ to several peptides in particulate preparations of human foreskin fibroblasts. Resolution of these peptides by two-dimensional gel electrophoresis allowed identification of two peptides of M/sub r/ = 42,000 and 52,000 as peptide subunits of a regulatory component of adenylate cyclase. The radiolabeling of another group of peptides (M/sub r/ = 50,000 to 65,000) suggested that cholera toxin could catalyze ADP-ribosylation of cytoskeletal proteins. This suggestion was confirmed by showing that incubation with cholera toxin and (/sup 32/P)NAD/sup +/ caused radiolabeling of purified microtubule and intermediate filament proteins.

  6. Run-and-pause dynamics of cytoskeletal motor proteins

    PubMed Central

    Hafner, Anne E.; Santen, Ludger; Rieger, Heiko; Shaebani, M. Reza

    2016-01-01

    Cytoskeletal motor proteins are involved in major intracellular transport processes which are vital for maintaining appropriate cellular function. When attached to cytoskeletal filaments, the motor exhibits distinct states of motility: active motion along the filaments, and pause phase in which it remains stationary for a finite time interval. The transition probabilities between motion and pause phases are asymmetric in general, and considerably affected by changes in environmental conditions which influences the efficiency of cargo delivery to specific targets. By considering the motion of individual non-interacting molecular motors on a single filament as well as a dynamic filamentous network, we present an analytical model for the dynamics of self-propelled particles which undergo frequent pause phases. The interplay between motor processivity, structural properties of filamentous network, and transition probabilities between the two states of motility drastically changes the dynamics: multiple transitions between different types of anomalous diffusive dynamics occur and the crossover time to the asymptotic diffusive or ballistic motion varies by several orders of magnitude. We map out the phase diagrams in the space of transition probabilities, and address the role of initial conditions of motion on the resulting dynamics. PMID:27849013

  7. Run-and-pause dynamics of cytoskeletal motor proteins

    NASA Astrophysics Data System (ADS)

    Hafner, Anne E.; Santen, Ludger; Rieger, Heiko; Shaebani, M. Reza

    2016-11-01

    Cytoskeletal motor proteins are involved in major intracellular transport processes which are vital for maintaining appropriate cellular function. When attached to cytoskeletal filaments, the motor exhibits distinct states of motility: active motion along the filaments, and pause phase in which it remains stationary for a finite time interval. The transition probabilities between motion and pause phases are asymmetric in general, and considerably affected by changes in environmental conditions which influences the efficiency of cargo delivery to specific targets. By considering the motion of individual non-interacting molecular motors on a single filament as well as a dynamic filamentous network, we present an analytical model for the dynamics of self-propelled particles which undergo frequent pause phases. The interplay between motor processivity, structural properties of filamentous network, and transition probabilities between the two states of motility drastically changes the dynamics: multiple transitions between different types of anomalous diffusive dynamics occur and the crossover time to the asymptotic diffusive or ballistic motion varies by several orders of magnitude. We map out the phase diagrams in the space of transition probabilities, and address the role of initial conditions of motion on the resulting dynamics.

  8. Mapping cytoskeletal protein function in cells by means of nanobodies.

    PubMed

    Van Audenhove, Isabel; Van Impe, Katrien; Ruano-Gallego, David; De Clercq, Sarah; De Muynck, Kevin; Vanloo, Berlinda; Verstraete, Hanne; Fernández, Luis Á; Gettemans, Jan

    2013-10-01

    Nanobodies or VHHs are single domain antigen binding fragments derived from heavy-chain antibodies naturally occurring in species of the Camelidae. Due to their ease of cloning, high solubility and intrinsic stability, they can be produced at low cost. Their small size, combined with high affinity and antigen specificity, enables recognition of a broad range of structural (undruggable) proteins and enzymes alike. Focusing on two actin binding proteins, gelsolin and CapG, we summarize a general protocol for the generation, cloning and production of nanobodies. Furthermore, we describe multiple ways to characterize antigen-nanobody binding in more detail and we shed light on some applications with recombinant nanobodies. The use of nanobodies as intrabodies is clarified through several case studies revealing new cytoskeletal protein properties and testifying to the utility of nanobodies as intracellular bona fide protein inhibitors. Moreover, as nanobodies can traverse the plasma membrane of eukaryotic cells by means of the enteropathogenic E. coli type III protein secretion system, we show that in this promising way of nanobody delivery, actin pedestal formation can be affected following nanobody injection.

  9. Cytoskeletal protein binding kinetics at planar phospholipid membranes.

    PubMed Central

    Mc Kiernan, A E; MacDonald, R I; MacDonald, R C; Axelrod, D

    1997-01-01

    It has been hypothesized that nonspecific reversible binding of cytoskeletal proteins to lipids in cells may guide their binding to integral membrane anchor proteins. In a model system, we measured desorption rates k(off) (off-rates) of the erythrocyte cytoskeletal proteins spectrin and protein 4.1 labeled with carboxyfluorescein (CF), at two different compositions of planar phospholipid membranes (supported on glass), using the total internal reflection/fluorescence recovery after photobleaching (TIR/FRAP) technique. The lipid membranes consisted of either pure phosphatidylcholine (PC) or a 3:1 mixture of PC with phosphatidylserine (PS). In general, the off-rates were not single exponentials and were fit to a combination of fast, slow, and irreversible fractions, reported both separately and as a weighted average. By a variation of TIR/FRAP, we also measured equilibrium affinities (the ratio of surface-bound to bulk protein concentration) and thereby calculated on-rates, k(on). The average off-rate of CF-4.1 from PC/PS (approximately 0.008/s) is much slower than that from pure PC (approximately 1.7/s). Despite the consequent increase in equilibrium affinity at PC/PS, the on-rate at PC/PS is also substantially decreased (by a factor of 40) relative to that at pure PC. The simultaneous presence of (unlabeled) spectrin tends to substantially decrease the on-rate (and the affinity) of CF-4.1 at both membrane types. Similar experiments for CF-spectrin alone showed much less sensitivity to membrane type and generally faster off-rates than those exhibited by CF-4.1. However, when mixed with (unlabeled) 4.1, both the on-rate and off-rate of CF-spectrin decreased drastically at PC/PS (but not PC), leading to a somewhat increased affinity. Clearly, changes in affinity often involve countervailing changes in both on-rates and off-rates. In many of these studies, the effect of varying ionic strength and bulk concentrations was examined; it appears that the binding is an

  10. Regulation of protein kinase C by the cytoskeletal protein calponin.

    PubMed

    Leinweber, B; Parissenti, A M; Gallant, C; Gangopadhyay, S S; Kirwan-Rhude, A; Leavis, P C; Morgan, K G

    2000-12-22

    Previous studies from this laboratory have shown that, upon agonist activation, calponin co-immunoprecipitates and co-localizes with protein kinase Cepsilon (PKCepsilon) in vascular smooth muscle cells. In the present study we demonstrate that calponin binds directly to the regulatory domain of PKC both in overlay assays and, under native conditions, by sedimentation with lipid vesicles. Calponin was found to bind to the C2 region of both PKCepsilon and PKCalpha with possible involvement of C1B. The C2 region of PKCepsilon binds to the calponin repeats with a requirement for the region between amino acids 160 and 182. We have also found that calponin can directly activate PKC autophosphorylation. By using anti-phosphoantibodies to residue Ser-660 of PKCbetaII, we found that calponin, in a lipid-independent manner, increased auto-phosphorylation of PKCalpha, -epsilon, and -betaII severalfold compared with control conditions. Similarly, calponin was found to increase the amount of (32)P-labeled phosphate incorporated into PKC from [gamma-(32)P]ATP. We also observed that calponin addition strongly increased the incorporation of radiolabeled phosphate into an exogenous PKC peptide substrate, suggesting an activation of enzyme activity. Thus, these results raise the possibility that calponin may function in smooth muscle to regulate PKC activity by facilitating the phosphorylation of PKC.

  11. Force profiles of protein pulling with or without cytoskeletal links studied by AFM

    SciTech Connect

    Afrin, Rehana; Ikai, Atsushi . E-mail: aikai@bio.titech.ac.jp

    2006-09-15

    To test the capability of the atomic force microscope for distinguishing membrane proteins with/without cytoskeletal associations, we studied the pull-out mechanics of lipid tethers from the red blood cell (RBC). When wheat germ agglutinin, a glycophorin A (GLA) specific lectin, was used to pull out tethers from RBC, characteristic force curves for tether elongation having a long plateau force were observed but without force peaks which are usually attributed to the forced unbinding of membrane components from the cytoskeleton. The result was in agreement with the reports that GLA is substantially free of cytoskeletal interactions. On the contrary, when the Band 3 specific lectin, concanavalin A, was used, the force peaks were indeed observed together with a plateau supporting its reported cytoskeletal association. Based on these observations, we postulate that the state of cytoskeletal association of particular membrane proteins can be identified from the force profiles of their pull-out mechanics.

  12. Connecting G protein signaling to chemoattractant-mediated cell polarity and cytoskeletal reorganization.

    PubMed

    Liu, Youtao; Lacal, Jesus; Firtel, Richard A; Kortholt, Arjan

    2016-10-07

    The directional movement towards extracellular chemical gradients, a process called chemotaxis, is an important property of cells. Central to eukaryotic chemotaxis is the molecular mechanism by which chemoattractant-mediated activation of G-protein coupled receptors (GPCRs) induces symmetry breaking in the activated downstream signaling pathways. Studies with mainly Dictyostelium and mammalian neutrophils as experimental systems have shown that chemotaxis is mediated by a complex network of signaling pathways. Recently, several labs have used extensive and efficient proteomic approaches to further unravel this dynamic signaling network. Together these studies showed the critical role of the interplay between heterotrimeric G-protein subunits and monomeric G proteins in regulating cytoskeletal rearrangements during chemotaxis. Here we highlight how these proteomic studies have provided greater insight into the mechanisms by which the heterotrimeric G protein cycle is regulated, how heterotrimeric G proteins-induced symmetry breaking is mediated through small G protein signaling, and how symmetry breaking in G protein signaling subsequently induces cytoskeleton rearrangements and cell migration.

  13. Inhibition of cytoskeletal protein carbonylation may protect against oxidative damage in traumatic brain injury

    PubMed Central

    Zhang, Qiusheng; Zhang, Meng; Huang, Xianjian; Liu, Xiaojia; Li, Weiping

    2016-01-01

    Oxidative stress is the principal factor in traumatic brain injury (TBI) that initiates protracted neuronal dysfunction and remodeling. Cytoskeletal proteins are known to be carbonylated under oxidative stress; however, the complex molecular and cellular mechanisms of cytoskeletal protein carbonylation remain poorly understood. In the present study, the expression levels of glutathione (GSH) and thiobarbituric acid reactive substances (TBARS) were investigated in PC12 cells treated with H2O2. Western blot analysis was used to monitor the carbonylation levels of β-actin and β-tubulin. The results indicated that oxidative stress was increased in PC12 cells that were treated with H2O2 for 24 or 48 h. In addition, increased carbonylation levels of β-actin and β-tubulin were detected in H2O2-treated cells. However, these carbonylation levels were reduced by pretreatment with aminoguanidine, a type of reactive carbonyl species chelating agent, and a similar trend was observed following overexpression of proteasome β5 via transgenic technology. In conclusion, the present study results suggested that the development of TBI may cause carbonylation of cytoskeletal proteins, which would then undermine the stability of cytoskeletal proteins. Thus, the development of TBI may be improved via the inhibition of cytoskeletal protein carbonylation. PMID:28101189

  14. Cocaine affects the dynamics of cytoskeletal proteins via sigma(1) receptors.

    PubMed

    Su, T P; Hayashi, T

    2001-09-01

    Cytoskeletal proteins are important in protein trafficking, membrane protein clustering, dendrite growth and the morphological maintenance of neurons. Sigma(1) receptors are unique endoplasmic reticular (ER) proteins that bind (+)benzomorphans, neurosteroids and psychotropic drugs such as cocaine. Cocaine, via sigma(1) receptors, can cause the dissociation of a cytoskeletal adaptor protein ankyrin from inositol (1,4,5)-trisphosphate [Ins(1,4,5)P(3)] receptors on the ER as a sigma(1)-receptor-ankyrin complex, which then translocates to the plasma membrane and nucleus. The dissociation of sigma(1)-receptor-ankyrin from Ins(1,4,5)P(3) receptors also increases the intracellular Ca(2+) concentration [[Ca(2+)](i)], which affects the activity of cytoskeletal proteins. Furthermore, cocaine might increase [Ca(2+)](i) via phospholipase C (PLC)-linked dopamine D1 receptors. We hypothesize that cocaine might cause life-long changes in neurons via cytoskeletal proteins by interacting with both D1 receptors and sigma(1) receptors.

  15. p-Chloromercuribenzoate-induced dissociation of cytoskeletal proteins in red blood cells of rats.

    PubMed

    Kunimoto, M; Shibata, K; Miura, T

    1987-12-11

    Effects of p-chloromercuribenzoate (PCMB) on the cytoskeletal organization of rat red blood cells were studied. Upon incubation with 50 microM PCMB in 10 mM Tris-HCl (pH 7.4) at 37 degrees C for 30 min, 80% of actin and 45% of spectrin were released from the ghosts, resulting in the fragmentation of ghost membranes. Addition of 2 mM Mg2+ or 0.1 M KCl, or lowering incubation temperature to 0 degree C substantially inhibited the solubilization of the cytoskeletal proteins and the fragmentation of ghost membranes, which enable to examine the effects of PCMB on the interaction between transmembrane proteins and the peripheral cytoskeletal network. Decreased recoveries of transmembrane proteins, such as band 3 and glycophorin, in Triton shell fraction were observed in the ghosts incubated with PCMB either in the presence of Mg2+ or at 0 degree C. PCMB also inhibited the in vitro association of purified spectrin with spectrin-depleted inside-out vesicles through interaction with proteins in the vesicle, such as bands 2.1 and 3. In the PCMB-treated ghosts, intramembrane particles were highly aggregated, which further supports the PCMB-induced dissociation of the transmembrane proteins from the cytoskeletal network. The decreased recovery of glycophorin in the Triton shell fraction also observed in intact red blood cells upon incubation with PCMB. These results suggest that the main action of PCMB on red cell membranes under physiological condition, at higher ionic strength and in the presence of Mg2+, is to dissociate transmembrane proteins from the peripheral cytoskeletal network, which may modify functions of these proteins.

  16. Cytochalasin releases mRNA from the cytoskeletal framework and inhibits protein synthesis.

    PubMed Central

    Ornelles, D A; Fey, E G; Penman, S

    1986-01-01

    Cytochalasin D was shown to be a reversible inhibitor of protein synthesis in HeLa cells. The inhibition was detectable at drug levels typically used to perturb cell structure and increased in a dose-dependent manner. The drug also released mRNA from the cytoskeletal framework in direct proportion to the inhibition of protein synthesis. The released mRNA was unaltered in its translatability as measured in vitro but was no longer translated in the cytochalasin-treated HeLa cells. The residual protein synthesis occurred on polyribosomes that were reduced in amount but displayed a normal sedimentation distribution. The results support the hypothesis that mRNA binding to the cytoskeletal framework is necessary although not sufficient for translation. Analysis of the cytoskeletal framework, which binds the polyribosomes, revealed no alterations in composition or amount of protein as a result of treatment with cytochalasin D. Electron microscopy with embedment-free sections shows the framework in great detail. The micrographs revealed the profound reorganization effected by the drug but did not indicate substantial disaggregation of the cytoskeletal elements. Images PMID:3785175

  17. Identification of paralogous life-cycle stage specific cytoskeletal proteins in the parasite Trypanosoma brucei.

    PubMed

    Portman, Neil; Gull, Keith

    2014-01-01

    The life cycle of the African trypanosome Trypanosoma brucei, is characterised by a transition between insect and mammalian hosts representing very different environments that present the parasite with very different challenges. These challenges are met by the expression of life-cycle stage-specific cohorts of proteins, which function in systems such as metabolism and immune evasion. These life-cycle transitions are also accompanied by morphological rearrangements orchestrated by microtubule dynamics and associated proteins of the subpellicular microtubule array. Here we employed a gel-based comparative proteomic technique, Difference Gel Electrophoresis, to identify cytoskeletal proteins that are expressed differentially in mammalian infective and insect form trypanosomes. From this analysis we identified a pair of novel, paralogous proteins, one of which is expressed in the procyclic form and the other in the bloodstream form. We show that these proteins, CAP51 and CAP51V, localise to the subpellicular corset of microtubules and are essential for correct organisation of the cytoskeleton and successful cytokinesis in their respective life cycle stages. We demonstrate for the first time redundancy of function between life-cycle stage specific paralogous sets in the cytoskeleton and reveal modification of cytoskeletal components in situ prior to their removal during differentiation from the bloodstream form to the insect form. These specific results emphasise a more generic concept that the trypanosome genome encodes a cohort of cytoskeletal components that are present in at least two forms with life-cycle stage-specific expression.

  18. Membrane protein carboxyl methylation does not appear to be involved in the response of erythrocytes to cytoskeletal stress.

    PubMed

    Barber, J R; Clarke, S

    1984-08-30

    We have investigated the effect of changes of human erythrocyte cell shape on the degree of covalent modification by carboxyl methylation of membrane cytoskeletal proteins. The results indicate that the cell probably does not utilize carboxyl methylation to respond to cytoskeletal perturbations caused by such agents as A23187, 2,4-dinitrophenol, and chlorpromazine, all of which are known to cause large changes in cell shape. Protein carboxyl methylation also remained unchanged in the presence of cytochalasin B, which prevents such changes in cell shape. These results are not consistent with a cytoskeletal regulatory role for protein methylation reactions in the intact erythrocyte.

  19. {alpha}-Actinin-2, a cytoskeletal protein, binds to angiogenin

    SciTech Connect

    Hu Huajun; Gao Xiangwei; Sun Yishan; Zhou Jiliang; Yang Min; Xu Zhengping . E-mail: zpxu@zju.edu.cn

    2005-04-08

    Angiogenin is an angiogenic factor which is involved in tumorigenesis. However, no particular intracellular protein is known to interact directly with angiogenin. In the present study, we reported the identification of {alpha}-actinin-2, an actin-crosslinking protein, as a potential angiogenin-interacting partner by yeast two-hybrid screening. This interaction was confirmed by different approaches. First, angiogenin was pulled down together with His-tagged {alpha}-actinin-2 by Ni{sup 2+}-agarose resins. Second, {alpha}-actinin-2 was coimmunoprecipitated with angiogenin by anti-angiogenin monoclonal antibody. Third, the in vivo interaction of these two proteins was revealed by fluorescence resonance energy transfer analysis. Since members of {alpha}-actinin family play pivotal roles in cell proliferation, migration, and invasion, the interaction between {alpha}-actinin-2 and angiogenin may underline one possible mechanism of angiogenin in angiogenesis. Our finding presents the first evidence of an interaction of a cytosolic protein with angiogenin, which might be a novel interference target for anti-angiogenesis and anti-tumor therapy.

  20. Distinct contractile and cytoskeletal protein patterns in the Antarctic midge are elicited by desiccation and rehydration.

    PubMed

    Li, Aiqing; Benoit, Joshua B; Lopez-Martinez, Giancarlo; Elnitsky, Michael A; Lee, Richard E; Denlinger, David L

    2009-05-01

    Desiccation presents a major challenge for the Antarctic midge, Belgica antarctica. In this study, we use proteomic profiling to evaluate protein changes in the larvae elicited by dehydration and rehydration. Larvae were desiccated at 75% relative humidity (RH) for 12 h to achieve a body water loss of 35%, approximately half of the water that can be lost before the larvae succumb to dehydration. To evaluate the rehydration response, larvae were first desiccated, then rehydrated for 6 h at 100% RH and then in water for 6 h. Controls were held continuously at 100% RH. Protein analysis was performed using 2-DE and nanoscale capillary LC/MS/MS. Twenty-four identified proteins changed in abundance in response to desiccation: 16 were more abundant and 8 were less abundant; 84% of these proteins were contractile or cytoskeletal proteins. Thirteen rehydration-regulated proteins were identified: 8 were more abundant and 5 were less abundant, and 69% of these proteins were also contractile or cytoskeletal proteins. Additional proteins responsive to desiccation and rehydration were involved in functions including stress responses, energy metabolism, protein synthesis, glucogenesis and membrane transport. We conclude that the major protein responses elicited by both desiccation and rehydration are linked to body contraction and cytoskeleton rearrangements.

  1. Analysis of the expression of cytoskeletal proteins of Taenia crassiceps ORF strain cysticerci (Cestoda).

    PubMed

    Reynoso-Ducoing, Olivia; Valverde-Islas, Laura; Paredes-Salomon, Cristina; Pérez-Reyes, América; Landa, Abraham; Robert, Lilia; Mendoza, Guillermo; Ambrosio, Javier R

    2014-05-01

    The Taenia crassiceps ORF strain is used to generate a murine model of cysticercosis, which is used for diagnosis, evaluation of drugs, and vaccination. This particular strain only exists as cysticerci, is easily maintained under in vivo and in vitro conditions, and offers an excellent model for studying the cytoskeletons of cestodes. In this study, several experimental approaches were used to determine the tissue expression of its cytoskeletal proteins. The techniques used were microscopy (video, confocal, and transmission electron), one-dimensional (1D) and two-dimensional (2D) electrophoresis, immunochemistry, and mass spectrometry. The tissue expression of actin, tubulin, and paramyosin was assessed using microscopy, and their protein isoforms were determined with 1D and 2D electrophoresis and immunochemistry. Nineteen spots were excised from a proteomic gel and identified by liquid chromatography-tandem mass spectrometry and immunochemistry. The proteins identified were classic cytoskeletal proteins, metabolic enzymes, and proteins with diverse biological functions, but mainly involved in detoxification activities. Research suggests that most noncytoskeletal proteins interact with actin or tubulin, and the results of the present study suggest that the proteins identified may be involved in supporting the dynamics and plasticity of the cytoskeleton of T. crassiceps cysticerci. These results contribute to our knowledge of the cellular biology and physiology of cestodes.

  2. Differential impact of REM sleep deprivation on cytoskeletal proteins of brain regions involved in sleep regulation.

    PubMed

    Rodríguez-Vázquez, Jennifer; Camacho-Arroyo, Ignacio; Velázquez-Moctezuma, Javier

    2012-01-01

    Rapid eye movement (REM) sleep is involved in memory consolidation, which implies synaptic plasticity. This process requires protein synthesis and the reorganization of the neural cytoskeleton. REM sleep deprivation (REMSD) has an impact on some neuronal proteins involved in synaptic plasticity, such as glutamate receptors and postsynaptic density protein 95, but its effects on cytoskeletal proteins is unknown. In this study, the effects of REMSD on the content of the cytoskeletal proteins MAP2 and TAU were analyzed. Adult female rats were submitted to selective REMSD by using the multiple platform technique. After 24, 48 or 72 h of REMSD, rats were decapitated and the following brain areas were dissected: pons, preoptic area, hippocampus and frontal cortex. Protein extraction and Western blot were performed. Results showed an increase in TAU content in the pons, preoptic area and hippocampus after 24 h of REMSD, while in the frontal cortex a significant increase in TAU content was observed after 72 h of REMSD. A TAU content decrease was observed in the hippocampus after 48 h of REMSD. Interestingly, a marked increase in TAU content was observed after 72 h of REMSD. MAP2 content only increased in the preoptic area at 24 h, and in the frontal cortex after 24 and 72 h of REMSD, without significant changes in the pons and hippocampus. These results support the idea that REM sleep plays an important role in the organization of neural cytoskeleton, and that this effect is tissue-specific.

  3. Intermediate filament-like proteins in bacteria and a cytoskeletal function in Streptomyces

    PubMed Central

    Bagchi, Sonchita; Tomenius, Henrik; Belova, Lyubov M; Ausmees, Nora

    2008-01-01

    Actin and tubulin cytoskeletons are conserved and widespread in bacteria. A strikingly intermediate filament (IF)-like cytoskeleton, composed of crescentin, is also present in Caulobacter crescentus and determines its specific cell shape. However, the broader significance of this finding remained obscure, because crescentin appeared to be unique to Caulobacter. Here we demonstrate that IF-like function is probably a more widespread phenomenon in bacteria. First, we show that 21 genomes of 26 phylogenetically diverse species encoded uncharacterized proteins with a central segmented coiled coil rod domain, which we regarded as a key structural feature of IF proteins and crescentin. Experimental studies of three in silico predicted candidates from Mycobacterium and other actinomycetes revealed a common IF-like property to spontaneously assemble into filaments in vitro. Furthermore, the IF-like protein FilP formed cytoskeletal structures in the model actinomycete Streptomyces coelicolor and was needed for normal growth and morphogenesis. Atomic force microscopy of living cells revealed that the FilP cytoskeleton contributed to mechanical fitness of the hyphae, thus closely resembling the function of metazoan IF. Together, the bioinformatic and experimental data suggest that an IF-like protein architecture is a versatile design that is generally present in bacteria and utilized to perform diverse cytoskeletal tasks. PMID:18976278

  4. Modulation of cytoskeletal dynamics by mammalian nucleoside diphosphate kinase (NDPK) proteins.

    PubMed

    Snider, Natasha T; Altshuler, Peter J; Omary, M Bishr

    2015-02-01

    Nucleoside diphosphate kinase (NDPK) proteins comprise a family of ten human isoforms that participate in the regulation of multiple cellular processes via enzymatic and nonenzymatic functions. The major enzymatic function of NDPKs is the generation of nucleoside triphosphates, such as guanosine triphosphate (GTP). Mechanisms behind the nonenzymatic NDPK functions are not clear but likely involve context-dependent signaling roles of NDPK within multi-protein complexes. This is most evident for NDPK-A, which is encoded by the human NME1 gene, the first tumor metastasis suppressor gene to be identified. Understanding which protein interactions are most relevant for the biological and metastasis-related functions of NDPK will be important in the potential utilization of NDPK as a disease target. Accumulating evidence suggests that NDPK interacts with and affects various components and regulators of the cytoskeleton, including actin-binding proteins, intermediate filaments, and cytoskeletal attachment structures (adherens junctions, desmosomes, and focal adhesions). We review the existing literature on this topic and highlight outstanding questions and potential future directions that should clarify the impact of NDPK on the different cytoskeletal systems.

  5. The degree of resistance of erythrocyte membrane cytoskeletal proteins to supra-physiologic concentrations of calcium: an in vitro study.

    PubMed

    Mostafavi, Ebrahim; Nargesi, Arash Aghajani; Ghazizadeh, Zaniar; Larry, Mehrdad; Farahani, Roya Horabad; Morteza, Afsaneh; Esteghamati, Alireza; Vigneron, Claude; Nakhjavani, Manouchehr

    2014-08-01

    Calcium is a key regulator of cell dynamics. Dysregulation of its cytosolic concentration is implicated in the pathophysiology of several diseases. This study aimed to assess the effects of calcium on the network of membrane cytoskeletal proteins. Erythrocyte membranes were obtained from eight healthy donors and incubated with 250 µM and 1.25 mM calcium solutions. Membrane cytoskeletal proteins were quantified using SDS-PAGE at baseline and after 3 and 5 days of incubation. Supra-physiologic concentrations of calcium (1.25 mM) induced a significant proteolysis in membrane cytoskeletal proteins, compared with magnesium (p < 0.001). Actin exhibited the highest sensitivity to calcium-induced proteolysis (6.8 ± 0.3 vs. 5.3 ± 0.6, p < 0.001), while spectrin (39.9 ± 1.0 vs. 40.3 ± 2.0, p = 0.393) and band-6 (6.3 ± 0.3 vs. 6.8 ± 0.8, p = 0.191) were more resistant to proteolysis after incubation with calcium in the range of endoplasmic reticulum concentrations (250 µM). Aggregation of membrane cytoskeletal proteins was determined after centrifugation and was significantly higher after incubation with calcium ions compared with control, EDTA and magnesium solutions (p < 0.001). In a supra-physiologic range of 1.25-10 mM of calcium ions, there was a nearly perfect linear relationship between calcium concentration and aggregation of erythrocyte membrane cytoskeletal proteins (R(2) = 0.971, p < 0.001). Our observation suggests a strong interaction between calcium ions and membrane cytoskeletal network. Cumulative effects of disrupted calcium homeostasis on cytoskeletal proteins need to be further investigated at extended periods of time in disease states.

  6. Mechanical diagnosis of human erythrocytes by ultra-high speed manipulation unraveled critical time window for global cytoskeletal remodeling.

    PubMed

    Ito, Hiroaki; Murakami, Ryo; Sakuma, Shinya; Tsai, Chia-Hung Dylan; Gutsmann, Thomas; Brandenburg, Klaus; Pöschl, Johannes M B; Arai, Fumihito; Kaneko, Makoto; Tanaka, Motomu

    2017-02-24

    Large deformability of erythrocytes in microvasculature is a prerequisite to realize smooth circulation. We develop a novel tool for the three-step "Catch-Load-Launch" manipulation of a human erythrocyte based on an ultra-high speed position control by a microfluidic "robotic pump". Quantification of the erythrocyte shape recovery as a function of loading time uncovered the critical time window for the transition between fast and slow recoveries. The comparison with erythrocytes under depletion of adenosine triphosphate revealed that the cytoskeletal remodeling over a whole cell occurs in 3 orders of magnitude longer timescale than the local dissociation-reassociation of a single spectrin node. Finally, we modeled septic conditions by incubating erythrocytes with endotoxin, and found that the exposure to endotoxin results in a significant delay in the characteristic transition time for cytoskeletal remodeling. The high speed manipulation of erythrocytes with a robotic pump technique allows for high throughput mechanical diagnosis of blood-related diseases.

  7. Mechanical diagnosis of human erythrocytes by ultra-high speed manipulation unraveled critical time window for global cytoskeletal remodeling

    NASA Astrophysics Data System (ADS)

    Ito, Hiroaki; Murakami, Ryo; Sakuma, Shinya; Tsai, Chia-Hung Dylan; Gutsmann, Thomas; Brandenburg, Klaus; Pöschl, Johannes M. B.; Arai, Fumihito; Kaneko, Makoto; Tanaka, Motomu

    2017-02-01

    Large deformability of erythrocytes in microvasculature is a prerequisite to realize smooth circulation. We develop a novel tool for the three-step “Catch-Load-Launch” manipulation of a human erythrocyte based on an ultra-high speed position control by a microfluidic “robotic pump”. Quantification of the erythrocyte shape recovery as a function of loading time uncovered the critical time window for the transition between fast and slow recoveries. The comparison with erythrocytes under depletion of adenosine triphosphate revealed that the cytoskeletal remodeling over a whole cell occurs in 3 orders of magnitude longer timescale than the local dissociation-reassociation of a single spectrin node. Finally, we modeled septic conditions by incubating erythrocytes with endotoxin, and found that the exposure to endotoxin results in a significant delay in the characteristic transition time for cytoskeletal remodeling. The high speed manipulation of erythrocytes with a robotic pump technique allows for high throughput mechanical diagnosis of blood-related diseases.

  8. A photoactivable phospholipid analogue that specifically labels membrane cytoskeletal proteins of intact erythrocytes

    SciTech Connect

    Pradhan, D.; Williamson, P.; Schlegel, R.A. )

    1989-08-22

    A radioactive photoactivable analogue of phosphatidylethanolamine, 2-(2-azido-4-nitrobenzoyl)-1-acyl-sn-glycero-3-phospho({sup 14}C)ethanolamine(({sup 14}C)AzPE), was synthesized. Upon incubation with erythrocytes in the dark, about 90% of ({sup 14}C)AzPE spontaneously incorporated into the cells; of this fraction, about 90% associated with the membrane, all of it noncovalently. Upon photoactivation, 3-4% of the membrane-associated probe was incorporated into protein. Analysis of this fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, as well as extraction of labeled membranes with alkali or detergent, showed that the probe preferentially labeled cytoskeletal proteins. ({sup 14}C)AzPE appears to be a useful tool for the study of lipid-protein interactions at the cytoplasmic face of the plasma membrane of intact cells.

  9. Oestradiol and progesterone differentially alter cytoskeletal protein expression and flame cell morphology in Taenia crassiceps.

    PubMed

    Ambrosio, Javier R; Ostoa-Saloma, Pedro; Palacios-Arreola, M Isabel; Ruíz-Rosado, Azucena; Sánchez-Orellana, Pedro L; Reynoso-Ducoing, Olivia; Nava-Castro, Karen E; Martínez-Velázquez, Nancy; Escobedo, Galileo; Ibarra-Coronado, Elizabeth G; Valverde-Islas, Laura; Morales-Montor, Jorge

    2014-09-01

    We examined the effects of oestradiol (E2) and progesterone (P4) on cytoskeletal protein expression in the helminth Taenia crassiceps - specifically actin, tubulin and myosin. These proteins assemble into flame cells, which constitute the parasite excretory system. Total protein extracts were obtained from E2- and P4-treated T. crassiceps cysticerci and untreated controls, and analysed by one- and two-dimensional protein electrophoresis, flow cytometry, immunofluorescence and videomicroscopy. Exposure of T. crassiceps cysticerci to E2 and P4 induced differential protein expression patterns compared with untreated controls. Changes in actin, tubulin and myosin expression were confirmed by flow cytometry of parasite cells and immunofluorescence. In addition, parasite morphology was altered in response to E2 and P4 versus controls. Flame cells were primarily affected at the level of the ciliary tuft, in association with the changes in actin, tubulin and myosin. We conclude that oestradiol and progesterone act directly on T. crassiceps cysticerci, altering actin, tubulin and myosin expression and thus affecting the assembly and function of flame cells. Our results increase our understanding of several aspects of the molecular crosstalk between host and parasite, which might be useful in designing anthelmintic drugs that exclusively impair parasitic proteins which mediate cell signaling and pathogenic reproduction and establishment.

  10. Sex hormones and expression pattern of cytoskeletal proteins in the rat brain throughout pregnancy.

    PubMed

    González-Arenas, Aliesha; Piña-Medina, Ana Gabriela; González-Flores, Oscar; Galván-Rosas, Agustín; Porfirio Gómora-Arrati; Camacho-Arroyo, Ignacio

    2014-01-01

    Pregnancy involves diverse changes in brain function that implicate a re-organization in neuronal cytoskeleton. In this physiological state, the brain is in contact with several hormones that it has never been exposed, as well as with very high levels of hormones that the brain has been in touch throughout life. Among the latter hormones are progesterone and estradiol which regulate several brain functions, including learning, memory, neuroprotection, and the display of sexual and maternal behavior. These functions involve changes in the structure and organization of neurons and glial cells that require the participation of cytoskeletal proteins whose expression and activity is regulated by estradiol and progesterone. We have found that the expression pattern of Microtubule Associated Protein 2, Tau, and Glial Fibrillary Acidic Protein changes in a tissue-specific manner in the brain of the rat throughout gestation and the start of lactation, suggesting that these proteins participate in the plastic changes observed in the brain during pregnancy. This article is part of a Special Issue entitled 'Pregnancy and Steroids'.

  11. Oxytocin Increases Neurite Length and Expression of Cytoskeletal Proteins Associated with Neuronal Growth.

    PubMed

    Lestanova, Z; Bacova, Z; Kiss, A; Havranek, T; Strbak, V; Bakos, J

    2016-06-01

    Neuropeptide oxytocin acts as a growth and differentiation factor; however, its effects on neurite growth are poorly understood. The aims of the present study were (1) to evaluate time effects of oxytocin on expression of nestin and MAP2; (2) to measure the effect of oxytocin on gene expression of β-actin, vimentin, cofilin, and drebrin; and (3) to measure changes in neurite length and number in response to oxytocin/oxytocin receptor antagonist L-371,257. Exposure of SH-SY5Y cells to 1 μM oxytocin resulted in a significant increase in gene expression and protein levels of nestin after 12, 24, and 48 h. Oxytocin treatment induced no changes in gene expression of MAP2; however, a decrease of protein levels was observed in all time intervals. Gene expression of β-actin, vimentin, and drebrin increased in response to oxytocin. Oxytocin induced significant elongation of neurites after 12, 24, and 48 h. No change in neurite length was observed in the presence of the combination of retinoic acid and oxytocin receptor antagonist L-371,257. Oxytocin treatment for 12 h increased the number of neurites. Overall, the present data suggest that oxytocin contributes to the regulation of expression of cytoskeletal proteins associated with growth of neuronal cones and induces neurite elongation mediated by oxytocin receptors at least in certain types of neuronal cells.

  12. Coronin1 Proteins Dictate Rac1 Intracellular Dynamics and Cytoskeletal Output

    PubMed Central

    Ojeda, Virginia; Castro-Castro, Antonio

    2014-01-01

    Rac1 regulates lamellipodium formation, myosin II-dependent contractility, and focal adhesions during cell migration. While the spatiotemporal assembly of those processes is well characterized, the signaling mechanisms involved remain obscure. We report here that the cytoskeleton-related Coronin1A and -1B proteins control a myosin II inactivation-dependent step that dictates the intracellular dynamics and cytoskeletal output of active Rac1. This step is signaling-branch specific, since it affects the functional competence of active Rac1 only when forming complexes with downstream ArhGEF7 and Pak proteins in actomyosin-rich structures. The pathway is used by default unless Rac1 is actively rerouted away from the structures by upstream activators and signals from other Rho GTPases. These results indicate that Coronin1 proteins are at the center of a regulatory hub that coordinates Rac1 activation, effector exchange, and the F-actin organization state during cell signaling. Targeting this route could be useful to hamper migration of cancer cells harboring oncogenic RAC1 mutations. PMID:24980436

  13. Mechanical diagnosis of human erythrocytes by ultra-high speed manipulation unraveled critical time window for global cytoskeletal remodeling

    PubMed Central

    Ito, Hiroaki; Murakami, Ryo; Sakuma, Shinya; Tsai, Chia-Hung Dylan; Gutsmann, Thomas; Brandenburg, Klaus; Pöschl, Johannes M. B.; Arai, Fumihito; Kaneko, Makoto; Tanaka, Motomu

    2017-01-01

    Large deformability of erythrocytes in microvasculature is a prerequisite to realize smooth circulation. We develop a novel tool for the three-step “Catch-Load-Launch” manipulation of a human erythrocyte based on an ultra-high speed position control by a microfluidic “robotic pump”. Quantification of the erythrocyte shape recovery as a function of loading time uncovered the critical time window for the transition between fast and slow recoveries. The comparison with erythrocytes under depletion of adenosine triphosphate revealed that the cytoskeletal remodeling over a whole cell occurs in 3 orders of magnitude longer timescale than the local dissociation-reassociation of a single spectrin node. Finally, we modeled septic conditions by incubating erythrocytes with endotoxin, and found that the exposure to endotoxin results in a significant delay in the characteristic transition time for cytoskeletal remodeling. The high speed manipulation of erythrocytes with a robotic pump technique allows for high throughput mechanical diagnosis of blood-related diseases. PMID:28233788

  14. Flat cells come full sphere: Are mutant cytoskeletal-related proteins oncoprotein-monsters or useful immunogens?

    PubMed

    Parry, Michele L; Blanck, George

    2016-01-01

    Osteogenesis imperfecta is inherited as a dominant disease because if one allele is mutated, it contributes a mutant, destructive subunit polypeptide to collagen, which requires many subunits to form normal, polymeric, collagenous structures. Recent cancer genome atlas (TCGA) data indicate that cytoskeletal-related proteins are among the most commonly mutated proteins in human cancers, in distinct mutation frequency groups, i.e., including low mutation frequency groups. Part of the explanation for this observation is likely to be the fact that many of the coding regions for these proteins are very large, and indeed, it is likely these coding regions are mutated in many cells that never become cancerous. However, it would not be surprising if mutations in cytoskeletal proteins, when combined with oncoprotein or tumor suppressor protein mutations, had significant impacts on cancer development, for a number of reasons, including results obtained almost 5 decades ago indicating that well-spread cells in tissue culture, with well-formed cytoskeletons, were less tumorigenic than spherical cells with disrupted cytoskeletons. This raises the question, are mutant cytoskeletal proteins, which would likely interfere with polymer formation, a new class of oncoproteins, in particular, dominant negative oncoproteins? If these proteins are so commonly mutant, could they be the bases for common cancer vaccines?

  15. Depolymerization dynamics of individual filaments of bacterial cytoskeletal protein FtsZ.

    PubMed

    Mateos-Gil, Pablo; Paez, Alfonso; Hörger, Ines; Rivas, Germán; Vicente, Miguel; Tarazona, Pedro; Vélez, Marisela

    2012-05-22

    We report observation and analysis of the depolymerization filaments of the bacterial cytoskeletal protein FtsZ (filament temperature-sensitive Z) formed on a mica surface. At low concentration, proteins adsorbed on the surface polymerize forming curved filaments that close into rings that remain stable for some time before opening irreversibly and fully depolymerizing. The distribution of ring lifetimes (T) as a function of length (N), shows that the rate of ring aperture correlates with filament length. If this ring lifetime is expressed as a bond survival time, (T(b) ≡ NT), this correlation is abolished, indicating that these rupture events occur randomly and independently at each monomer interface. After rings open irreversibly, depolymerization of the remaining filaments is fast, but can be slowed down and followed using a nonhydrolyzing GTP analogue. The histogram of depolymerization velocities of individual filaments has an asymmetric distribution that can be fit with a computer model that assumes two rupture rates, a slow one similar to the one observed for ring aperture, affecting monomers in the central part of the filaments, and a faster one affecting monomers closer to the open ends. From the quantitative analysis, we conclude that the depolymerization rate is affected both by nucleotide hydrolysis rate and by its exchange along the filament, that all monomer interfaces are equally competent for hydrolysis, although depolymerization is faster at the open ends than in central filament regions, and that all monomer-monomer interactions, regardless of the nucleotide present, can adopt a curved configuration.

  16. Depolymerization dynamics of individual filaments of bacterial cytoskeletal protein FtsZ

    PubMed Central

    Mateos-Gil, Pablo; Paez, Alfonso; Hörger, Ines; Rivas, Germán; Vicente, Miguel; Tarazona, Pedro; Vélez, Marisela

    2012-01-01

    We report observation and analysis of the depolymerization filaments of the bacterial cytoskeletal protein FtsZ (filament temperature-sensitive Z) formed on a mica surface. At low concentration, proteins adsorbed on the surface polymerize forming curved filaments that close into rings that remain stable for some time before opening irreversibly and fully depolymerizing. The distribution of ring lifetimes (T) as a function of length (N), shows that the rate of ring aperture correlates with filament length. If this ring lifetime is expressed as a bond survival time, (Tb ≡ NT), this correlation is abolished, indicating that these rupture events occur randomly and independently at each monomer interface. After rings open irreversibly, depolymerization of the remaining filaments is fast, but can be slowed down and followed using a nonhydrolyzing GTP analogue. The histogram of depolymerization velocities of individual filaments has an asymmetric distribution that can be fit with a computer model that assumes two rupture rates, a slow one similar to the one observed for ring aperture, affecting monomers in the central part of the filaments, and a faster one affecting monomers closer to the open ends. From the quantitative analysis, we conclude that the depolymerization rate is affected both by nucleotide hydrolysis rate and by its exchange along the filament, that all monomer interfaces are equally competent for hydrolysis, although depolymerization is faster at the open ends than in central filament regions, and that all monomer–monomer interactions, regardless of the nucleotide present, can adopt a curved configuration. PMID:22566654

  17. [Contractile properties of fibers and cytoskeletal proteins of gerbil's hindlimb muscles after space flight].

    PubMed

    Lipets, E N; Ponomareva, E V; Ogneva, I V; Vikhliantsev, I M; Karaduleva, E V; Kratashkina, N L; Kuznetsov, S L; Podlubnaia, Z A; Shenkman, B S

    2009-01-01

    The work had the goal to compare the microgravity effects on gerbil's muscles-antagonists, m. soleus and m. tibialis anterior. The animals were exposed in 12-d space microgravity aboard Earth's artificial satellite "Foton-M3". Findings of the analysis of single skinned fibers contractility are 19.7% diminution of the diameter and 21.8% loss of the total contractive force of m. soleus fibers post flight. However, there was no significant difference in calcium sensitivity which agrees with the absence of changes in the relative content of several major cytoskeletal proteins (titin and nebulin ratios to heavy chains of myosin were identical in the flight and control groups) and a slight shifting of the myosin phenotype toward the "fast type" (9%, p < 0.05). These parameters were mostly unaffected by the space flight in m. tibialis anterior. To sum up, the decline of contractility and diminution of gerbil's myofibers after the space flight were less significant as compared with rats and did not impact the sytoskeletal protein ratios.

  18. Espin cytoskeletal proteins in the sensory cells of rodent taste buds.

    PubMed

    Sekerková, Gabriella; Freeman, David; Mugnaini, Enrico; Bartles, James R

    2005-09-01

    Espins are multifunctional actin-bundling proteins that are highly enriched in the microvilli of certain chemosensory and mechanosensory cells, where they are believed to regulate the integrity and/or dimensions of the parallel-actin-bundle cytoskeletal scaffold. We have determined that, in rats and mice, affinity purified espin antibody intensely labels the lingual and palatal taste buds of the oral cavity and taste buds in the pharyngo-laryngeal region. Intense immunolabeling was observed in the apical, microvillar region of taste buds, while the level of cytoplasmic labeling in taste bud cells was considerably lower. Taste buds contain tightly packed collections of sensory cells (light, or type II plus type III) and supporting cells (dark, or type I), which can be distinguished by microscopic features and cell type-specific markers. On the basis of results obtained using an antigen-retrieval method in conjunction with double immunofluorescence for espin and sensory taste cell-specific markers, we propose that espins are expressed predominantly in the sensory cells of taste buds. In confocal images of rat circumvallate taste buds, we counted 21.5 +/- 0.3 espin-positive cells/taste bud, in agreement with a previous report showing 20.7 +/- 1.3 light cells/taste bud when counted at the ultrastructural level. The espin antibody labeled spindle-shaped cells with round nuclei and showed 100% colocalization with cell-specific markers recognizing all type II [inositol 1,4,5-trisphosphate receptor type III (IP(3)R(3))(,) alpha-gustducin, protein-specific gene product 9.5 (PGP9.5)] and a subpopulation of type III (IP(3)R(3), PGP9.5) taste cells. On average, 72%, 50%, and 32% of the espin-positive taste cells were labeled with antibodies to IP(3)R(3), alpha-gustducin, and PGP9.5, respectively. Upon sectional analysis, the taste buds of rat circumvallate papillae commonly revealed a multi-tiered, espin-positive apical cytoskeletal apparatus. One espin-positive zone, a

  19. PDZD8 is a novel moesin-interacting cytoskeletal regulatory protein that suppresses infection by herpes simplex virus type 1.

    PubMed

    Henning, Matthew S; Stiedl, Patricia; Barry, Denis S; McMahon, Robert; Morham, Scott G; Walsh, Derek; Naghavi, Mojgan H

    2011-07-05

    The host cytoskeleton plays a central role in the life cycle of many viruses yet our knowledge of cytoskeletal regulators and their role in viral infection remains limited. Recently, moesin and ezrin, two members of the ERM (Ezrin/Radixin/Moesin) family of proteins that regulate actin and plasma membrane cross-linking and microtubule (MT) stability, have been shown to inhibit retroviral infection. To further understand how ERM proteins function and whether they also influence infection by other viruses, we identified PDZD8 as a novel moesin-interacting protein. PDZD8 is a poorly understood protein whose function is unknown. Exogenous expression of either moesin or PDZD8 reduced the levels of stable MTs, suggesting that these proteins functioned as part of a cytoskeletal regulatory complex. Additionally, exogenous expression or siRNA-mediated knockdown of either factor affected Herpes Simplex Virus type 1 (HSV-1) infection, identifying a cellular function for PDZD8 and novel antiviral properties for these two cytoskeletal regulatory proteins.

  20. Electrophoretic pattern and distribution of cytoskeletal proteins in flat-epitheloid and stellate process-bearing astrocytes in primary culture.

    PubMed

    Ciesielski-Treska, J; Ulrich, G; Mensch, C; Aunis, D

    1984-01-01

    One- and two-dimensional electrophoresis patterns and distribution of major cytoskeletal proteins were studied in primary astrocytes with either flat-epitheloid or stellate appearance. No major differences in the electrophoretic patterns of actin, tubulin, glial fibrillary acidic protein (GFAP) and vimentin were detected between flat-epitheloid and stellate process-bearing astrocytes produced by the exposure of cultures to dibutyryl cyclic AMP (dBcAMP). However the morphological changes of astrocytes were accompanied by marked changes in the quantitative distribution of cytoskeletal proteins. The most prominent change was a large and specific decrease in the amount of actin, detected by [(35)S]methionine incorporation, densitometric scanning of one-dimensional gels and DNase inhibition assay. In stellate astrocytes produced by a 4 day treatment with dibutyryl cyclic AMP, the amount of actin decreased by 50%. This decrease was not apparently related to the depolymerization of actin.

  1. A Role for Cytoskeletal Elements in the Light-Driven Translocation of Proteins in Rod Photoreceptors

    PubMed Central

    Peterson, James J.; Orisme, Wilda; Fellows, Jonathan; McDowell, J. Hugh; Shelamer, Charles L.; Dugger, Donald R.; Clay Smith, W.

    2006-01-01

    PURPOSE. Light-driven protein translocation is responsible for the dramatic redistribution of some proteins in vertebrate rod photoreceptors. In this study, the involvement of microtubules and microfilaments in the light-driven translocation of arrestin and transducin was investigated. METHODS. Pharmacologic reagents were applied to native and transgenic Xenopus tadpoles, to disrupt the microtubules (thiabendazole) and microfilaments (cytochalasin D and latrunculin B) of the rod photoreceptors. Quantitative confocal imaging was used to assess the impact of these treatments on arrestin and transducin translocation. A series of transgenic tadpoles expressing arrestin truncations were also created to identify portions of arrestin that enable arrestin to translocate. RESULTS. Application of cytochalasin D or latrunculin B to disrupt the microfilament organization selectively slowed only transducin movement from the inner to the outer segments. Perturbation of the microtubule cytoskeleton with thiabendazole slowed the translocation of both arrestin and transducin, but only in moving from the outer to the inner segments. Transgenic Xenopus expressing fusions of green fluorescent protein (GFP) with portions of arrestin implicates the C terminus of arrestin as an important portion of the molecule for promoting translocation. This C-terminal region can be used independently to promote translocation of GFP in response to light. CONCLUSIONS. The results show that disruption of the cytoskeletal network in rod photoreceptors has specific effects on the translocation of arrestin and transducin. These effects suggest that the light-driven translocation of visual proteins at least partially relies on an active motor-driven mechanism for complete movement of arrestin and transducin. PMID:16249472

  2. Keratin-associated protein 5-5 controls cytoskeletal function and cancer cell vascular invasion

    PubMed Central

    Berens, Eric B.; Sharif, Ghada M.; Schmidt, Marcel O.; Yan, Gai; Shuptrine, Casey W.; Weiner, Louis M.; Glasgow, Eric; Riegel, Anna T.; Wellstein, Anton

    2016-01-01

    Cancer cell vascular invasion is a crucial step in the malignant progression towards metastasis. Here we used a genome-wide RNAi screen with E0771 mammary cancer cells to uncover drivers of endothelial monolayer invasion. We identified keratin-associated protein 5-5 (Krtap5-5) as a candidate. Krtap5-5 belongs to a large protein family that is implicated in crosslinking keratin intermediate filaments during hair formation, yet these keratin-associated proteins have no reported role in cancer. Depletion of Krtap5-5 from cancer cells led to cell blebbing and a loss of keratins 14 and 18, in addition to the upregulation of vimentin intermediate filaments. This intermediate filament subtype switching induced dysregulation of the actin cytoskeleton and reduced the expression of hemidesmosomal α6/β4-integrins. We further demonstrate that knockdown of keratin 18 phenocopies the loss of Krtap5-5, suggesting that Krtap5-5 crosstalks with keratin 18 in E0771 cells. Disruption of the keratin cytoskeleton by perturbing Krtap5-5 function broadly altered the expression of cytoskeleton regulators and the localization of cell surface markers. Krtap5-5 depletion did not impact cell viability but reduced cell motility and extracellular matrix invasion, as well as extravasation of cancer cells into tissues in zebrafish and mice. We conclude that Krtap5-5 is a previously unknown regulator of cytoskeletal function in cancer cells that modulates motility and vascular invasion. Thus, in addition to its physiologic function, a keratin-associated protein can serve as a switch towards malignant progression. PMID:27375028

  3. Protein Kinase CK2 Regulates Cytoskeletal Reorganization during Ionizing Radiation-Induced Senescence of Human Mesenchymal Stem Cells

    SciTech Connect

    Wang, Daojing; Jang, Deok-Jin

    2009-08-21

    Human mesenchymal stem cells (hMSC) are critical for tissue regeneration. How hMSC respond to genotoxic stresses and potentially contribute to aging and cancer remain underexplored. We demonstrated that ionizing radiation induced cellular senescence of hMSC over a period of 10 days, showing a critical transition between day 3 and day 6. This was confirmed by senescence-associated beta-galactosidase (SA-{beta}-gal) staining, protein expression profiles of key cell cycle regulators (retinoblastoma (Rb) protein, p53, p21{sup waf1/Cip1}, and p16{sup INK4A}), and senescence-associated secretory phenotypes (SASPs) (IL-8, IL-12, GRO, and MDC). We observed dramatic cytoskeletal reorganization of hMSC through reduction of myosin-10, redistribution of myosin-9, and secretion of profilin-1. Using a SILAC-based phosphoproteomics method, we detected significant reduction of myosin-9 phosphorylation at Ser1943, coinciding with its redistribution. Importantly, through treatment with cell permeable inhibitors (4,5,6,7-tetrabromo-1H-benzotriazole (TBB) and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT)), and gene knockdown using RNA interference, we identified CK2, a kinase responsible for myosin-9 phosphorylation at Ser1943, as a key factor contributing to the radiation-induced senescence of hMSC. We showed that individual knockdown of CK2 catalytic subunits CK2{alpha} and CK2{alpha}{prime} induced hMSC senescence. However, only knockdown of CK2{alpha} resulted in morphological phenotypes resembling those of radiation-induced senescence. These results suggest that CK2{alpha} and CK2{alpha}{prime} play differential roles in hMSC senescence progression, and their relative expression might represent a novel regulatory mechanism for CK2 activity.

  4. Cytoskeletal proteins in gastric H/sup +/ secretion: cAMP dependent phosphorylation, immunolocalization, and protein blotting

    SciTech Connect

    Cuppoletti, J.; Sachs, G.; Malinowska, D.H.

    1986-05-01

    The rabbit gastric parietal cell is an excellent model for the study of regulation of secretion and the role of cytoskeleton in secretion. Changes in morphology (appearance of expanded secretory canaliculi lined with microvilli) accompany H/sup +/ secretion stimulated by histamine (cAMP mediated). Parietal cells contain immunoreactive tubulin and are highly enriched in F-actin at secretory canaliculi, detected with fluorescently labelled phallacidin. They have previously shown increased protein phosphorylation in histamine-stimulated purified parietal cells concommitant with increases in H/sup +/ secretion. They report here possible functions of the phosphoproteins. Four of these proteins of apparent size on SDS PAGE of 24, 30, 48 and 130 Kd were membrane associated. /sup 125/I-actin binding to three proteins (24, 30 and 48 Kd) was shown using overlays. A 130 Kd protein reacted with anti-vinculin monoclonal antibody on immunoblots, and was immunolocalized at secretory canaliculi. As a working hypothesis, parietal cells possess membrane-associated proteins which change their state of phosphorylation upon stimulation of H/sup +/. These proteins may be cytoskeletal elements involved in regulation of H/sup +/ secretion. The 130 Kd vinculin-like protein may serve a microfilament-membrane linking role.

  5. Loss of cytoskeletal transport during egress critically attenuates ectromelia virus infection in vivo.

    PubMed

    Lynn, Helena; Horsington, Jacquelyn; Ter, Lee Kuan; Han, Shuyi; Chew, Yee Lian; Diefenbach, Russell J; Way, Michael; Chaudhri, Geeta; Karupiah, Gunasegaran; Newsome, Timothy P

    2012-07-01

    Egress of wrapped virus (WV) to the cell periphery following vaccinia virus (VACV) replication is dependent on interactions with the microtubule motor complex kinesin-1 and is mediated by the viral envelope protein A36. Here we report that ectromelia virus (ECTV), a related orthopoxvirus and the causative agent of mousepox, encodes an A36 homologue (ECTV-Mos-142) that is highly conserved despite a large truncation at the C terminus. Deleting the ECTV A36R gene leads to a reduction in the number of extracellular viruses formed and to a reduced plaque size, consistent with a role in microtubule transport. We also observed a complete loss of virus-associated actin comets, another phenotype dependent on A36 expression during VACV infection. ECTV ΔA36R was severely attenuated when used to infect the normally susceptible BALB/c mouse strain. ECTV ΔA36R replication and spread from the draining lymph nodes to the liver and spleen were significantly reduced in BALB/c mice and in Rag-1-deficient mice, which lack T and B lymphocytes. The dramatic reduction in ECTV ΔA36R titers early during the course of infection was not associated with an augmented immune response. Taken together, these findings demonstrate the critical role that subcellular transport pathways play not only in orthopoxvirus infection in an in vitro context but also during orthopoxvirus pathogenesis in a natural host. Furthermore, despite the attenuation of the mutant virus, we found that infection nonetheless induced protective immunity in mice, suggesting that orthopoxvirus vectors with A36 deletions may be considered another safe vaccine alternative.

  6. Biotechnological aspects of cytoskeletal regulation in plants.

    PubMed

    Komis, George; Luptovciak, Ivan; Doskocilova, Anna; Samaj, Jozef

    2015-11-01

    The cytoskeleton is a protein-based intracellular superstructure that evolved early after the appearance of bacterial prokaryotes. Eventually cytoskeletal proteins and their macromolecular assemblies were established in eukaryotes and assumed critical roles in cell movements, intracellular organization, cell division and cell differentiation. In biomedicine the small-molecules targeting cytoskeletal elements are in the frontline of anticancer research with plant-derived cytoskeletal drugs such as Vinca alkaloids and toxoids, being routinely used in the clinical practice. Moreover, plants are also major material, food and energy resources for human activities ranging from agriculture, textile industry, carpentry, energy production and new material development to name some few. Most of these inheritable traits are associated with cell wall synthesis and chemical modification during primary and secondary plant growth and inevitably are associated with the dynamics, organization and interactions of the plant cytoskeleton. Taking into account the vast intracellular spread of microtubules and actin microfilaments the cytoskeleton collectively assumed central roles in plant growth and development, in determining the physical stance of plants against the forces of nature and becoming a battleground between pathogenic invaders and the defense mechanisms of plant cells. This review aims to address the role of the plant cytoskeleton in manageable features of plants including cellulose biosynthesis with implications in wood and fiber properties, in biofuel production and the contribution of plant cytoskeletal elements in plant defense responses against pathogens or detrimental environmental conditions. Ultimately the present work surveys the potential of cytoskeletal proteins as platforms of plant genetic engineering, nominating certain cytoskeletal proteins as vectors of favorable traits in crops and other economically important plants.

  7. Cytoskeletal actin networks in motile cells are critically self-organized systems synchronized by mechanical interactions.

    PubMed

    Cardamone, Luca; Laio, Alessandro; Torre, Vincent; Shahapure, Rajesh; DeSimone, Antonio

    2011-08-23

    Growing networks of actin fibers are able to organize into compact, stiff two-dimensional structures inside lamellipodia of crawling cells. We put forward the hypothesis that the growing actin network is a critically self-organized system, in which long-range mechanical stresses arising from the interaction with the plasma membrane provide the selective pressure leading to organization. We show that a simple model based only on this principle reproduces the stochastic nature of lamellipodia protrusion (growth periods alternating with fast retractions) and several of the features observed in experiments: a growth velocity initially insensitive to the external force; the capability of the network to organize its orientation; a load-history-dependent growth velocity. Our model predicts that the spectrum of the time series of the height of a growing lamellipodium decays with the inverse of the frequency. This behavior is a well-known signature of self-organized criticality and is confirmed by unique optical tweezer measurements performed in vivo on neuronal growth cones.

  8. Reversible binding kinetics of a cytoskeletal protein at the erythrocyte submembrane.

    PubMed Central

    Stout, A. L.; Axelrod, D.

    1994-01-01

    removed most of the band 3. CF-4.1 binded significantly less to these trypsinized membranes and most of the decrease was a loss of the irreversibly binding sites. The third treatment simply preserved the native 4.1 and ankyrin. CF-4.1 binded less to this sample too, and the loss involved both the irreversible and reversible sites. The fourth treatment blocked the gycophorin C sites on the native 4.1-stripped membranes with an antibody. CF-4.1 again binded less to this sample than to a nonimmune serum control, and almost all of the decrease is a loss of irreversible sites. These rest suggest that 1) protein 4.1 binds to membrane or submembrane sites at least in part reversibly ; 2) the most reversible sites are probably not proteinaceous and not glycophorin C, but possibly are phospholipids (especially phosphatidylserine); and 3) TIWRFRAP can successfully examine the fast reversible dynamics of cytoskeletal components binding to biological membranes. Images FIGURE 2 FIGURE 3 FIGURE 4 PMID:7811947

  9. E-4-hydroxy-2-nonenal is cytotoxic and cross-links cytoskeletal proteins in P19 neuroglial cultures.

    PubMed Central

    Montine, T. J.; Amarnath, V.; Martin, M. E.; Strittmatter, W. J.; Graham, D. G.

    1996-01-01

    Lipid peroxidation increases with age in brain and is elevated further in Alzheimer's disease. E-4-hydroxy-2-nonenal and malondialdehyde are products of lipid peroxidation that can adduct and cross-link protein. Neurofibrillary tangles, a feature of Alzheimer's disease composed mostly of tau protein, contain cross-linked and ubiquitin-conjugated protein. In P19 neuroglial cultures, E-4-hydroxy-2-nonenal was a potent cytotoxin that cross-linked cytoskeletal proteins, including tau into high molecular weight species that were conjugated with ubiquitin. Malondialdehyde formed monoadducts with cell protein but did not cross-link and was not cytotoxic. A non-crosslinking analogue of E-4-hydroxy-2-nonenal was not cytotoxic. E-4-Hydroxy-2-nonenal may contribute to neurodegeneration and neurofibrillary tangle formation in Alzheimer's disease. Images Figure 2 Figure 3 PMID:8546230

  10. Early Cytoskeletal Protein Modifications Precede Overt Structural Degeneration in the DBA/2J Mouse Model of Glaucoma

    PubMed Central

    Wilson, Gina N.; Smith, Matthew A.; Inman, Denise M.; Dengler-Crish, Christine M.; Crish, Samuel D.

    2016-01-01

    Axonal transport deficits precede structural loss in glaucoma and other neurodegenerations. Impairments in structural support, including modified cytoskeletal proteins, and microtubule-destabilizing elements, could be initiating factors in glaucoma pathogenesis. We investigated the time course of changes in protein levels and post-translational modifications in the DBA/2J mouse model of glaucoma. Using anterograde tract tracing of the retinal projection, we assessed major cytoskeletal and transported elements as a function of transport integrity in different stages of pathological progression. Using capillary-based electrophoresis, single- and multiplex immunosorbent assays, and immunofluorescence, we quantified hyperphosphorylated neurofilament-heavy chain, phosphorylated tau (ptau), calpain-mediated spectrin breakdown product (145/150 kDa), β–tubulin, and amyloid-β42 proteins based on age and transport outcome to the superior colliculus (SC; the main retinal target in mice). Phosphorylated neurofilament-heavy chain (pNF-H) was elevated within the optic nerve (ON) and SC of 8–10 month-old DBA/2J mice, but was not evident in the retina until 12–15 months, suggesting that cytoskeletal modifications first appear in the distal retinal projection. As expected, higher pNF-H levels in the SC and retina were correlated with axonal transport deficits. Elevations in hyperphosphorylated tau (ptau) occurred in ON and SC between 3 and 8 month of age while retinal ptau accumulations occurred at 12–15 months in DBA/2J mice. In vitro co-immunoprecipitation experiments suggested increased affinity of ptau for the retrograde motor complex protein dynactin. We observed a transport-related decrease of β-tubulin in ON of 10–12 month-old DBA/2J mice, suggesting destabilized microtubule array. Elevations in calpain-mediated spectrin breakdown product were seen in ON and SC at the earliest age examined, well before axonal transport loss is evident. Finally, transport

  11. Antibody-based analysis reveals “filamentous vs. non-filamentous” and “cytoplasmic vs. nuclear” crosstalk of cytoskeletal proteins

    SciTech Connect

    Kumeta, Masahiro; Hirai, Yuya; Yoshimura, Shige H.; Horigome, Tsuneyoshi; Takeyasu, Kunio

    2013-12-10

    To uncover the molecular composition and dynamics of the functional scaffold for the nucleus, three fractions of biochemically-stable nuclear protein complexes were extracted and used as immunogens to produce a variety of monoclonal antibodies. Many helix-based cytoskeletal proteins were identified as antigens, suggesting their dynamic contribution to nuclear architecture and function. Interestingly, sets of antibodies distinguished distinct subcellular localization of a single isoform of certain cytoskeletal proteins; distinct molecular forms of keratin and actinin were found in the nucleus. Their nuclear shuttling properties were verified by the apparent nuclear accumulations under inhibition of CRM1-dependent nuclear export. Nuclear keratins do not take an obvious filamentous structure, as was revealed by non-filamentous cytoplasmic keratin-specific monoclonal antibody. These results suggest the distinct roles of the helix-based cytoskeletal proteins in the nucleus. - Highlights: • A set of monoclonal antibodies were raised against nuclear scaffold proteins. • Helix-based cytoskeletal proteins were involved in nuclear scaffold. • Many cytoskeletal components shuttle into the nucleus in a CRM1-dependent manner. • Sets of antibodies distinguished distinct subcellular localization of a single isoform. • Nuclear keratin is soluble and does not form an obvious filamentous structure.

  12. Effects of transforming growth factor type beta on expression of cytoskeletal proteins in endosteal mouse osteoblastic cells

    SciTech Connect

    Lomri, A.; Marie, P.J. )

    1990-01-01

    Transforming growth factor beta (TGF beta) has been shown to influence the growth and differentiation of many cell types in vitro. We have examined the effects of TGF beta on cell morphology and cytoskeletal organization in relation to parameters of cell proliferation and differentiation in endosteal osteoblastic cells isolated from mouse caudal vertebrae. Treatment of mouse osteoblastic cells cultured in serum free medium for 24 hours with TGF beta (1.5-30 ng/mL) slightly (-23%) inhibited alkaline phosphatase activity. In parallel, TGF beta (0.5-30 ng/mL, 24 hours) greatly increased cell replication as evaluated by (3H)-thymidine incorporation into DNA (157% to 325% of controls). At a median dose (1.5 ng/mL) that affected both alkaline phosphatase and DNA synthesis (235% of controls) TGF beta induced rapid (six hours) cell respreading of quiescent mouse osteoblastic cells. This effect was associated with increased polymerization of actin, alpha actinin, and tubulins, as evaluated by both biochemical and immunofluorescence methods. In addition, TGF beta (1.5 ng/mL) increased the de novo biosynthesis of actin, alpha actinin, vimentin, and tubulins, as determined by {sup 35}S methionine labeling and fractionation of cytoskeletal proteins using two-dimensional gel electrophoresis. These effects were rapid and transient, as they occurred at six hours and were reversed after 24 hours of TGF beta exposure. The results indicate that the stimulatory effect of TGF beta on DNA synthesis in endosteal mouse osteoblastic cells is associated with a transient increase in cell spreading associated with enhanced polymerization and synthesis of cytoskeletal proteins.

  13. Basic proteins of the perinuclear theca of mammalian spermatozoa and spermatids: a novel class of cytoskeletal elements

    PubMed Central

    1987-01-01

    The nuclei of bovine spermatids and spermatozoa are surrounded by dense cytoplasmic webs sandwiched between the nuclear envelope and the acrosome and plasma membrane, respectively, filling most of the cytoplasmic space of the sperm head. This web contains a complex structure, the perinuclear theca, which is characterized by resistance to extractions in nondenaturing detergents and high salt buffers, and can be divided into two major subcomponents, the subacrosomal layer and the postacrosomal calyx. Using calyces isolated from bull and rat spermatozoa we have identified two kinds of basic proteins as major constituents of the thecal structure and have localized them by specific antibodies at the light and electron microscopic level. These are an Mr 60,000 protein, termed calicin, localized almost exclusively to the calyx, and a group of multiple-band polypeptides (MBP; Mr 56,000- 74,000), which occur in both the calyx and the subacrosomal layer. The polypeptides of the MBP group are immunologically related to each other, but unrelated, by antibody reactions and peptide maps, to calicin. We show that these basic cytoskeletal proteins are first detectable in the round spermatid stage. As we have not detected any intermediate filament proteins and proteins related to nuclear lamins of somatic cells in sperm heads, we conclude that the perinuclear theca and its constituents, calicin and MBP proteins, are the predominant cytoskeletal elements of the sperm head. Immunologically cross-reacting polypeptides with similar properties have been identified in the heads of rat and human spermatozoa. We speculate that these insoluble basic proteins contribute, during spermiogenesis, to the formation of the perinuclear theca as an architectural element involved in the shape changes and the intimate association of the nucleus with the acrosome and the plasma membrane. PMID:3308904

  14. Cytoskeletal Expression and Remodeling in Pluripotent Stem Cells

    PubMed Central

    Boraas, Liana C.; Guidry, Julia B.; Pineda, Emma T.; Ahsan, Tabassum

    2016-01-01

    Many emerging cell-based therapies are based on pluripotent stem cells, though complete understanding of the properties of these cells is lacking. In these cells, much is still unknown about the cytoskeletal network, which governs the mechanoresponse. The objective of this study was to determine the cytoskeletal state in undifferentiated pluripotent stem cells and remodeling with differentiation. Mouse embryonic stem cells (ESCs) and reprogrammed induced pluripotent stem cells (iPSCs), as well as the original un-reprogrammed embryonic fibroblasts (MEFs), were evaluated for expression of cytoskeletal markers. We found that pluripotent stem cells overall have a less developed cytoskeleton compared to fibroblasts. Gene and protein expression of smooth muscle cell actin, vimentin, lamin A, and nestin were markedly lower for ESCs than MEFs. Whereas, iPSC samples were heterogeneous with most cells expressing patterns of cytoskeletal proteins similar to ESCs with a small subpopulation similar to MEFs. This indicates that dedifferentiation during reprogramming is associated with cytoskeletal remodeling to a less developed state. In differentiation studies, it was found that shear stress-mediated differentiation resulted in an increase in expression of cytoskeletal intermediate filaments in ESCs, but not in iPSC samples. In the embryoid body model of spontaneous differentiation of pluripotent stem cells, however, both ESCs and iPSCs had similar gene expression for cytoskeletal proteins during early differentiation. With further differentiation, however, gene levels were significantly higher for iPSCs compared to ESCs. These results indicate that reprogrammed iPSCs more readily reacquire cytoskeletal proteins compared to the ESCs that need to form the network de novo. The strategic selection of the parental phenotype is thus critical not only in the context of reprogramming but also the ultimate functionality of the iPSC-differentiated cell population. Overall, this

  15. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

    SciTech Connect

    Woloschak, G.E. |; Felcher, P.; Chin-Mei Chang-Liu

    1995-06-01

    Experiments examined the effects of radiation dose-rate and protein synthesis inhibition expression of cytoskeletal and matrix elements in Syrian hamster embryo cells. Results demonstrated little effect of dose-rate for neutrons when comparing expression of {alpha}-tubulin and fibronectin genes. Cycloheximide repressed accumulation of {alpha}-tubulin-mRNA following exposure to high dose-rate neutrons or {gamma} rays. Cycloheximide did not affect accumulation of actin mRNA. Cycloheximide abrogated induction of fibronectin-mRNA which occurred following exposure to {gamma} rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of {alpha}-tubulin and fibronectin mRNA accumulation following exposure to radiation. 24 refs., 3 tabs.

  16. Persistent oxygen-glucose deprivation induces astrocytic death through two different pathways and calpain-mediated proteolysis of cytoskeletal proteins during astrocytic oncosis.

    PubMed

    Cao, Xu; Zhang, Ying; Zou, Liangyu; Xiao, Haibing; Chu, Yinghao; Chu, Xiaofan

    2010-07-26

    Astrocytes are thought to play a role in the maintenance of homeostasis and the provision of metabolic substrates for neurons as well as the coupling of cerebral blood flow to neuronal activity. Accordingly, astrocytic death due to various types of injury can critically influence neuronal survival. The exact pathway of cell death after brain ischemia is under debate. In the present study, we used astrocytes from rat primary culture treated with persistent oxygen-glucose-deprivation (OGD) as a model of ischemia to examine the pathway of cell death and the relevant mechanisms. We observed changes in the cellular morphology, the energy metabolism of astrocytes, and the percentage of apoptosis or oncosis of the astrocytes induced by OGD. Electron microscopy revealed the co-existence of ultrastructural features in both apoptosis and oncosis in individual cells. The cellular ATP content was gradually decreased and the percentages of apoptotic and oncotic cells were increased during OGD. After 4h of OGD, ATP depletion to less than 35% of the control was observed, and oncosis became the primary pathway for astrocytic death. Increased plasma membrane permeability due to oncosis was associated with increased calpain-mediated degradation of several cytoskeletal proteins, including paxillin, vinculin, vimentin and GFAP. Pre-treatment with the calpain inhibitor 3-(4-iodophenyl)-2-mercapto-(Z)-2-propenoic acid (PD150606) could delay the OGD-induced astrocytic oncosis. These results suggest that there is a narrow range of ATP that determines astrocytic oncotic death induced by persistent OGD and that calpain-mediated hydrolysis of the cytoskeletal-associated proteins may contribute to astrocytes oncosis.

  17. Growth factors and steroid mediated regulation of cytoskeletal protein expression in serum-deprived primary astrocyte cultures.

    PubMed

    Bramanti, Vincenzo; Bronzi, Daniela; Tomassoni, Daniele; Costa, Antonino; Raciti, Giuseppina; Avitabile, Marcello; Amenta, Francesco; Avola, Roberto

    2008-12-01

    In this research we aimed to investigate the interactions between growth factors (GFs) and dexamethasone (DEX) on cytoskeletal proteins GFAP and vimentin (VIM) expression under different experimental conditions. Condition I: 24 h pretreatment with bFGF, subsequent 72 h switching in serum-free medium (SFM) and final addition of GFs, alone or by two in the last 24 h, after a prolonged (60 h) DEX treatment. Condition II: 36 h pretreatment with DEX (with bFGF in the last 24 h), followed by SFM for 60 h and final addition for 24 h with growth factors alone or two of them together. Western blot analysis data showed a marked GFAP expression in cultures submitted to Condition I comparing results to untreated or treated controls. VIM expression was instead significantly reduced after GFs addition in the last 24 h of 60 h DEX treatment, respect to control DEX-pretreated ones. Referring data to untreated controls, VIM expression was significantly enhanced after GFs addition. GFAP showed also a significant increase in astrocytes submitted to Condition II, respect to untreated or treated control cultures. VIM expression was up and down regulated under Condition II. Collectively, our findings evidence an interactive dialogue between GFs and DEX in astroglial cultures, co-pretreated with DEX and bFGF, regulating cytoskeletal network under stressful conditions.

  18. Protein requirement in critical illness.

    PubMed

    Hoffer, Leonard John

    2016-05-01

    How much protein do critically ill patients require? For the many decades that nutritional support has been used there was a broad consensus that critically ill patients need much more protein than required for normal health. Now, however, some clinical investigators recommend limiting all macronutrient provision during the early phase of critical illness. How did these conflicting recommendations emerge? Which of them is correct? This review explains the longstanding recommendation for generous protein provision in critical illness, analyzes the clinical trials now being claimed to refute it, and concludes with suggestions for clinical investigation and practice.

  19. Association of blebbing with assembly of cytoskeletal proteins in ATP-depleted EL-4 ascites tumour cells.

    PubMed

    Gabai, V L; Kabakov, A E; Mosin, A F

    1992-01-01

    ATP depletion in EL-4 ascites tumour cells rapidly induced the changes in cell morphology (blebbing), cytoskeletal protein assembly and finally resulted in cell death. After 1 hr of incubation with 2 microM rotenone (inhibitor of respiration) in glucose-free medium, when ATP level was 4% of the initial level, there were increases in triton-insoluble actin and vinculin levels (2.5-fold and 2.8-fold, respectively) and 44% of cells showed blebs; such treatment damaged cells irreversibly. Ca2+ removal did not diminish the effect of ATP depletion on cytoskeleton, blebbing and cell death, although the elevation of free intracellular Ca2+ in rotenone-treated cells was prevented. The role of ATP in maintaining cytoskeleton and cell shape is discussed.

  20. Alteration of a yeast SH3 protein leads to conditional viability with defects in cytoskeletal and budding patterns.

    PubMed

    Bauer, F; Urdaci, M; Aigle, M; Crouzet, M

    1993-08-01

    Mutations in genes necessary for survival in stationary phase were isolated to understand the ability of wild-type Saccharomyces cerevisiae to remain viable during prolonged periods of nutritional deprivation. Here we report results concerning one of these mutants, rvs167, which shows reduced viability and abnormal cell morphology upon carbon and nitrogen starvation. The mutant exhibits the same response when cells are grown in high salt concentrations and other unfavorable growth conditions. The RVS167 gene product displays significant homology with the Rvs161 protein and contains a SH3 domain at the C-terminal end. Abnormal actin distribution is associated with the mutant phenotype. In addition, while the budding pattern of haploid strains remains axial in standard growth conditions, the budding pattern of diploid mutant strains is random. The gene RVS167 therefore could be implicated in cytoskeletal reorganization in response to environmental stresses and could act in the budding site selection mechanism.

  1. Alteration of a yeast SH3 protein leads to conditional viability with defects in cytoskeletal and budding patterns.

    PubMed Central

    Bauer, F; Urdaci, M; Aigle, M; Crouzet, M

    1993-01-01

    Mutations in genes necessary for survival in stationary phase were isolated to understand the ability of wild-type Saccharomyces cerevisiae to remain viable during prolonged periods of nutritional deprivation. Here we report results concerning one of these mutants, rvs167, which shows reduced viability and abnormal cell morphology upon carbon and nitrogen starvation. The mutant exhibits the same response when cells are grown in high salt concentrations and other unfavorable growth conditions. The RVS167 gene product displays significant homology with the Rvs161 protein and contains a SH3 domain at the C-terminal end. Abnormal actin distribution is associated with the mutant phenotype. In addition, while the budding pattern of haploid strains remains axial in standard growth conditions, the budding pattern of diploid mutant strains is random. The gene RVS167 therefore could be implicated in cytoskeletal reorganization in response to environmental stresses and could act in the budding site selection mechanism. Images PMID:8336735

  2. The Cytoskeletal Adapter Protein Spinophilin Regulates Invadopodia Dynamics and Tumor Cell Invasion in Glioblastoma.

    PubMed

    Cheerathodi, Mujeeburahiman; Avci, Naze G; Guerrero, Paola A; Tang, Leung K; Popp, Julia; Morales, John E; Chen, Zhihua; Carnero, Amancio; Lang, Frederick F; Ballif, Bryan A; Rivera, Gonzalo M; McCarty, Joseph H

    2016-12-01

    Glioblastoma is a primary brain cancer that is resistant to all treatment modalities. This resistance is due, in large part, to invasive cancer cells that disperse from the main tumor site, escape surgical resection, and contribute to recurrent secondary lesions. The adhesion and signaling mechanisms that drive glioblastoma cell invasion remain enigmatic, and as a result there are no effective anti-invasive clinical therapies. Here we have characterized a novel adhesion and signaling pathway comprised of the integrin αvβ8 and its intracellular binding partner, Spinophilin (Spn), which regulates glioblastoma cell invasion in the brain microenvironment. We show for the first time that Spn binds directly to the cytoplasmic domain of β8 integrin in glioblastoma cells. Genetically targeting Spn leads to enhanced invasive cell growth in preclinical models of glioblastoma. Spn regulates glioblastoma cell invasion by modulating the formation and dissolution of invadopodia. Spn-regulated invadopodia dynamics are dependent, in part, on proper spatiotemporal activation of the Rac1 GTPase. Glioblastoma cells that lack Spn showed diminished Rac1 activities, increased numbers of invadopodia, and enhanced extracellular matrix degradation. Collectively, these data identify Spn as a critical adhesion and signaling protein that is essential for modulating glioblastoma cell invasion in the brain microenvironment.

  3. Role of Mycoplasma genitalium MG218 and MG317 cytoskeletal proteins in terminal organelle organization, gliding motility and cytadherence.

    PubMed

    Pich, Oscar Q; Burgos, Raul; Ferrer-Navarro, Mario; Querol, Enrique; Piñol, Jaume

    2008-10-01

    The terminal organelle is a differentiated structure that plays a key role in mycoplasma cytadherence and locomotion. For this reason, the analysis of Mycoplasma genitalium mutants displaying anomalous terminal organelles could improve our knowledge regarding the structural elements required for proper locomotion. In this study, we isolated several M. genitalium mutants having transposon insertions within the mg218 or mg317 genes, which encode the orthologues of Mycoplasma pneumoniae HMW2 and HMW3 cytoskeletal proteins, respectively. As expected, mg218(-) and mg317(-) mutants exhibit a reduced gliding motility, although their ability to attach to solid surfaces was not completely abolished. Interestingly, most of the mg218(-) mutants expressed N-terminal MG218 derivatives and showed the presence of short terminal organelles retaining many of the functions displayed by this structure in the wild-type strain, suggesting that the N-terminal region of this protein is an essential element in the architecture of the terminal organelle. Separately, the analysis of mg317(-) mutants indicates that MG317 protein is involved in the formation of the terminal button and contributes to anchoring the electron-dense core to the cell membrane. The results presented here clearly show that MG218 and MG317 proteins are implicated in the maintenance of gliding motility and cytadherence in M. genitalium.

  4. The bacterial cell division proteins FtsA and FtsZ self-organize into dynamic cytoskeletal patterns.

    PubMed

    Loose, Martin; Mitchison, Timothy J

    2014-01-01

    Bacterial cytokinesis is commonly initiated by the Z-ring, a cytoskeletal structure that assembles at the site of division. Its primary component is FtsZ, a tubulin superfamily GTPase, which is recruited to the membrane by the actin-related protein FtsA. Both proteins are required for the formation of the Z-ring, but if and how they influence each other's assembly dynamics is not known. Here, we reconstituted FtsA-dependent recruitment of FtsZ polymers to supported membranes, where both proteins self-organize into complex patterns, such as fast-moving filament bundles and chirally rotating rings. Using fluorescence microscopy and biochemical perturbations, we found that these large-scale rearrangements of FtsZ emerge from its polymerization dynamics and a dual, antagonistic role of FtsA: recruitment of FtsZ filaments to the membrane and negative regulation of FtsZ organization. Our findings provide a model for the initial steps of bacterial cell division and illustrate how dynamic polymers can self-organize into large-scale structures.

  5. Dematin, a human erythrocyte cytoskeletal protein, is a substrate for a recombinant FIKK kinase from Plasmodium falciparum.

    PubMed

    Brandt, Gabriel S; Bailey, Scott

    2013-09-01

    P. falciparum causes the most deadly form of malaria, resulting from the adherence of infected red blood cells to blood vessels. During the blood stage of infection, the parasite secretes a large number of proteins into the host erythrocyte. The secretion of a 20-member family of protein kinases known as FIKK kinases, after a conserved Phe-Ile-Lys-Lys sequence motif, is unique to P. falciparum. Identification of physiological substrates of these kinases may provide perspective on the importance of FIKK kinase activity to P. falciparum virulence. We demonstrate, for the first time, the heterologous expression and purification of a FIKK kinase (PfFk4.1, PFD1165w). The recombinant kinase is active against general substrates and phosphorylates itself. Having demonstrated kinase activity, we incubated recombinant Fk4.1 with parasite and human erythrocyte lysates. No parasite-derived substrates were identified. However, treatment of erythrocyte ghosts shows that the FIKK kinase Fk4.1 phosphorylates dematin, a cytoskeletal protein found at the red blood cell spectrin-actin junction.

  6. Neuroactive molecules and growth factors modulate cytoskeletal protein expression during astroglial cell proliferation and differentiation in culture.

    PubMed

    Bramanti, Vincenzo; Grasso, Sonia; Tibullo, Daniele; Giallongo, Cesarina; Pappa, Rita; Brundo, Maria Violetta; Tomassoni, Daniele; Viola, Maria; Amenta, Francesco; Avola, Roberto

    2016-01-01

    Steroid hormones and neurotrophic factors regulate astroglial cell survival, proliferation, and differentiation in culture. The present study examines the interaction between glucocorticoids and growth factors (GFs) on cytoskeletal proteins and extracellular signal-regulated kinase 2 (ERK2) expression in stressed astroglial cultures at 25 days in vitro, according to the following experimental condition. Pretreatment with basic fibroblast growth factor alone or in combination with dexamethasone 10(-9) M for 48 hr induced an enhancement of glial fibrillary acidic protein, vimetin, and ERK2 expression. Treatment with "progression" GFs alone and in the last 12 hr significantly increased the above-mentioned markers' expression. The present study shows that glucocorticoids may cooperate with GFs or may abrogate their effects, depending on the experimental culture conditions used as well as the exposure time and the types of GFs added. Our findings provide evidence of interactive dialogue between GFs and neurosteroids in cultured astrocytes. This may have implications in the therapeutic approach to neurologic disorders associated with astrogliosis.

  7. Giardia duodenalis Surface Cysteine Proteases Induce Cleavage of the Intestinal Epithelial Cytoskeletal Protein Villin via Myosin Light Chain Kinase

    PubMed Central

    Bhargava, Amol; Cotton, James A.; Dixon, Brent R.; Gedamu, Lashitew; Yates, Robin M.; Buret, Andre G.

    2015-01-01

    Giardia duodenalis infections are among the most common causes of waterborne diarrhoeal disease worldwide. At the height of infection, G. duodenalis trophozoites induce multiple pathophysiological processes within intestinal epithelial cells that contribute to the development of diarrhoeal disease. To date, our understanding of pathophysiological processes in giardiasis remains incompletely understood. The present study reveals a previously unappreciated role for G. duodenalis cathepsin cysteine proteases in intestinal epithelial pathophysiological processes that occur during giardiasis. Experiments first established that Giardia trophozoites indeed produce cathepsin B and L in strain-dependent fashion. Co-incubation of G. duodenalis with human enterocytes enhanced cathepsin production by Assemblage A (NF and S2 isolates) trophozoites, but not when epithelial cells were exposed to Assemblage B (GSM isolate) trophozoites. Direct contact between G. duodenalis parasites and human intestinal epithelial monolayers resulted in the degradation and redistribution of the intestinal epithelial cytoskeletal protein villin; these effects were abolished when parasite cathepsin cysteine proteases were inhibited. Interestingly, inhibition of parasite proteases did not prevent degradation of the intestinal tight junction-associated protein zonula occludens 1 (ZO-1), suggesting that G. duodenalis induces multiple pathophysiological processes within intestinal epithelial cells. Finally, this study demonstrates that G. duodenalis-mediated disruption of villin is, at least, in part dependent on activation of myosin light chain kinase (MLCK). Taken together, this study indicates a novel role for parasite cathepsin cysteine proteases in the pathophysiology of G. duodenalis infections. PMID:26334299

  8. Giardia duodenalis Surface Cysteine Proteases Induce Cleavage of the Intestinal Epithelial Cytoskeletal Protein Villin via Myosin Light Chain Kinase.

    PubMed

    Bhargava, Amol; Cotton, James A; Dixon, Brent R; Gedamu, Lashitew; Yates, Robin M; Buret, Andre G

    2015-01-01

    Giardia duodenalis infections are among the most common causes of waterborne diarrhoeal disease worldwide. At the height of infection, G. duodenalis trophozoites induce multiple pathophysiological processes within intestinal epithelial cells that contribute to the development of diarrhoeal disease. To date, our understanding of pathophysiological processes in giardiasis remains incompletely understood. The present study reveals a previously unappreciated role for G. duodenalis cathepsin cysteine proteases in intestinal epithelial pathophysiological processes that occur during giardiasis. Experiments first established that Giardia trophozoites indeed produce cathepsin B and L in strain-dependent fashion. Co-incubation of G. duodenalis with human enterocytes enhanced cathepsin production by Assemblage A (NF and S2 isolates) trophozoites, but not when epithelial cells were exposed to Assemblage B (GSM isolate) trophozoites. Direct contact between G. duodenalis parasites and human intestinal epithelial monolayers resulted in the degradation and redistribution of the intestinal epithelial cytoskeletal protein villin; these effects were abolished when parasite cathepsin cysteine proteases were inhibited. Interestingly, inhibition of parasite proteases did not prevent degradation of the intestinal tight junction-associated protein zonula occludens 1 (ZO-1), suggesting that G. duodenalis induces multiple pathophysiological processes within intestinal epithelial cells. Finally, this study demonstrates that G. duodenalis-mediated disruption of villin is, at least, in part dependent on activation of myosin light chain kinase (MLCK). Taken together, this study indicates a novel role for parasite cathepsin cysteine proteases in the pathophysiology of G. duodenalis infections.

  9. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

    SciTech Connect

    Woloschak, G.E. |; Felcher, P.; Chang-Liu, Chin-Mei

    1994-05-01

    Experiments were designed to examine the effects Of radiation dose-rate and of the protein synthesis inhibitor cycloheximide on expression of cytoskeletal elements ({gamma}- and {beta}-actin and {alpha}-tubulin) and matrix elements (fibronectin) in Syrian hamster embryo cells. Past work from our laboratory had already demonstrated optimum time points and doses for examination of radiation effects on accumulation of specific transcripts. Our results here demonstrated little effect of dose-rate for JANUS fission spectrum neutrons when comparing expression of either {alpha}-tubulin or fibronectin genes. Past work had already documented similar results for expression of actin transcripts. Effects of cycloheximide revealed that cycloheximide repressed accumulation of {alpha}-tubulin following exposure to high dose-rate neutrons or {gamma} rays; this did not occur following similar low dose-rate exposure. (2) Cycloheximide did not affect accumulation of MRNA for actin genes; and that cycloheximide abrogated the moderate induction of fibronectin-mRNA which occurred following exposure to {gamma} rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of {alpha}-tubulin and fibronectin MRNA accumulation following exposure to ionizing radiation. in addition, they suggest that the cellular/molecular response to low dose-rate neutrons may be different from the response to high dose-rate neutrons.

  10. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

    SciTech Connect

    Woloschak, G.E. |; Felcher, P.; Chang-Liu, Chin-Mei

    1992-12-31

    Experiments were designed to examine the effects of radiation dose-rate and of the protein synthesis inhibitor cycloheximide on expression of cytoskeletal elements ({gamma}- and {beta}-actin and {alpha}-tubulin) and matrix elements (fibronectin) in Syrian hamster embryo cells. Past work from our laboratory had already demonstrated optimum time points and doses for examination of radiation effects on accumulation of specific transcripts. Our results here demonstrated little effect of dose-rate for JANUS fission spectrum neutrons when comparing expression of either {alpha}-tubulin or fibronectin genes. Past work had already documented similar results for expression of actin transcripts. Effects of cycloheximide, however, revealed several interesting and novel findings: (1) Cycloheximide repressed accumulation of {alpha}-tubulin following exposure to high dose-rate neutrons or {gamma} rays; this did not occur following similar low dose-rate exposure (2) Cycloheximide did not affect accumulation of mRNA for actin genes. Cycloheximide abrogated the moderate induction of fibronectin-mRNA which occurred following exposure to {gamma} rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of {alpha}-tubulin and fibronectin mRNA accumulation following exposure to ionizing radiation. In addition, they suggest that the cellular/molecular response to low dose-rate neutrons may be different from the response to high dose-rate neutrons.

  11. Expression of cytoskeletal and matrix genes following exposure to ionizing radiation: Dose-rate effects and protein synthesis requirements

    SciTech Connect

    Woloschak, G.E. |; Felcher, P.; Chang-Liu, Chin-Mei

    1993-12-31

    Experiments were designed to examine the effects of radiation dose-rate and of the protein synthesis inhibitor cycloheximide on expression of cytoskeletal elements ({gamma}- and {beta}-actin and {alpha}-tubulin) and matrix elements (fibronectin) in Syrian hamster embryo cells. Results demonstrated little effect of dose-rate for JANUS fission-spectrum neutrons when comparing expression of either a-tubulin or fibronectin genes. Past work had already documented similar results for expression of actin transcripts. Cycloheximide, however, repressed accumulation of {alpha}-tubulin following exposure to high dose-rate neutrons or {gamma} rays; this did not occur following similar low dose-rate exposures. Cycloheximide did not affect accumulation of mRNA for actin genes. Cycloheximide abrogated the moderate induction of fibronectin-mRNA which occurred following exposure to {gamma} rays and high dose-rate neutrons. These results suggest a role for labile proteins in the maintenance of {alpha}-tubulin and fibronectin mRNA accumulation following exposure to ionizing radiation and that the cellular/molecular response to low dose-rate neutrons may be different from the response to high dose-rate neutrons.

  12. Cytoplasmic Ig-Domain Proteins: Cytoskeletal Regulators with a Role in Human Disease

    PubMed Central

    Otey, Carol A.; Dixon, Richard; Stack, Christianna; Goicoechea, Silvia M.

    2009-01-01

    Immunoglobulin domains are found in a wide variety of functionally diverse transmembrane proteins, and also in a smaller number of cytoplasmic proteins. Members of this latter group are usually associated with the actin cytoskeleton, and most of them bind directly to either actin or myosin, or both. Recently, studies of inherited human disorders have identified disease-causing mutations in five cytoplasmic Ig-domain proteins: myosin-binding protein C, titin, myotilin, palladin, and myopalladin. Together with results obtained from cultured cells and mouse models, these clinical studies have yielded novel insights into the unexpected roles of Ig domain proteins in mechanotransduction and signaling to the nucleus. An emerging theme in this field is that cytoskeleton-associated Ig domain proteins are more than structural elements of the cell, and may have evolved to fill different needs in different cellular compartments. PMID:19466753

  13. EGF-like peptide-enhanced cell movement in Dictyostelium is mediated by protein kinases and the activity of several cytoskeletal proteins.

    PubMed

    Huber, Robert J; O'Day, Danton H

    2012-09-01

    DdEGFL1, a synthetic epidermal growth factor-like (EGFL) peptide based on the first EGFL repeat of the extracellular matrix, cysteine-rich, calmodulin-binding protein CyrA, has previously been shown to sustain the threonine phosphorylation of a 210kDa protein during the starvation of Dictyostelium cells. Immunoprecipitation coupled with a LC/MS/MS analysis identified the 210kDa protein as vinculin B (VinB). VinB shares sequence similarity with mammalian vinculin, a protein that links the actin cytoskeleton to the plasma membrane. Both threonine phosphorylated VinB (P-VinB) and VinB-GFP localized to the cytoplasm and cytoskeleton of Dictyostelium amoebae. VinB-GFP was also shown to be threonine phosphorylated and co-immunoprecipitated with established vinculin-binding cytoskeletal proteins (e.g. myosin II heavy chain, actin, alpha-actinin, talin). P-VinB and VinB-GFP were detected in DdEGFL1 pull-down assays, which also identified a 135kDa phosphothreonine protein and two phosphotyrosine proteins (35 and 32kDa) as potential components of the DdEGFL1 signaling pathway. DdEGFL1-enhanced cell movement required the cytoskeletal proteins talin B and paxillin B and tyrosine kinase activity mediated by PKA signaling, however VinB threonine phosphorylation was shown to be independent of PI3K/PLA2 signaling and PI3K and PKA kinase activity. Finally, VinB-GFP over-expression suppressed DdEGFL1-enhanced random cell movement, but not folic acid-mediated chemotaxis. Together, this study provides the first evidence for VinB function plus new insight into the signaling pathway(s) mediating EGFL repeat/peptide-enhanced cell movement in Dictyostelium. This information is integrated into an emerging model that summarizes existing knowledge.

  14. Use of Nanobodies to Localize Endogenous Cytoskeletal Proteins and to Determine Their Contribution to Cancer Cell Invasion by Using an ECM Degradation Assay.

    PubMed

    Van Audenhove, Isabel; Gettemans, Jan

    2016-01-01

    There are numerous ways to study actin cytoskeletal structures, and thereby identify the underlying mechanisms of organization and their regulating proteins. Traditional approaches make use of protein overexpression or siRNA. However to study or modulate resident endogenous proteins, complementary methods are required. Since the discovery of nanobodies in 1993, they have proven to represent interesting tools in a variety of applications due to their high affinity, solubility, and stability. Especially their intracellular functionality makes them ideally suited for the study of actin cytoskeletal regulation. Here we provide a protocol to clone nanobody cDNAs in frame with an EGFP or mCherry fluorescent tag. We explain how to transfect this fusion protein in eukaryotic (cancer) cells and how to perform immunofluorescence. This allows microscopic analysis of endogenous (cytoskeletal) proteins and gives insight into their endogenous localization. Moreover, we outline an extracellular matrix (ECM) degradation assay as an application of the general protocol. By seeding cells onto a fluorescently labeled gelatin matrix, degradation can be quantified by means of a matrix degradation index. This assay demonstrates the contribution of a protein during cancer cell invasiveness in vitro and the potential of a nanobody to inhibit this degradation through modulation of its target.

  15. Utilizing Ultrasound to Transiently Increase Blood-Brain Barrier Permeability, Modulate of the Tight Junction Proteins, and Alter Cytoskeletal Structure.

    PubMed

    Bae, Mi Jung; Lee, Young Mi; Kim, Yeoun Hee; Han, Hyung Soo; Lee, Hak Jong

    2015-01-01

    The central nervous system is protected by the blood-brain barrier (BBB). The tight junction (TJ) proteins claudin-5 and zonula occludens-1 (ZO-1) as well as the cytoskeletal component F-actin play key roles in maintaining homeostasis of the BBB. Increases in BBB permeability may be beneficial for the delivery of pharmacological substances into the brain. Therefore, here, we assessed the use of ultrasound to induce transient enhancement of BBB permeability. We used fluorescein isothiocyanate (FITC)-dextran 40 to detect changes in the membrane permeability of bEnd.3 cells during ultrasound treatment. Ultrasound increased FITC-dextran 40 uptake into bEnd.3 cells for 2-6 h after treatment; however, normal levels returned after 24 h. An insignificant increase in lactate dehydrogenase (LDH) leakage also occurred 3 and 6 h after ultrasound treatment, whereas at 24 h, LDH leakage was indistinguishable between the control and treatment groups. Expression of claudin-5, ZO-1, and F-actin at the messenger RNA (mRNA) and protein levels was assessed with real-time polymerase chain reaction and western blotting. Ultrasound induced a transient decrease in claudin-5 mRNA and protein expression within 2 h of treatment; however, no significant changes in ZO-1 and F-actin expression were observed. Claudin-5, ZO-1, and F-actin immunofluorescence demonstrated that the cellular structures incorporating these proteins were transiently impaired by ultrasound. In conclusion, our ultrasound technique can temporarily increase BBB permeability without cytotoxicity to exposed cells, and the method can be exploited in the delivery of drugs to the brain with minimal damage.

  16. Alternative cytoskeletal landscapes: cytoskeletal novelty and evolution in basal excavate protists

    PubMed Central

    Dawson, Scott C.; Paredez, Alexander R.

    2016-01-01

    Microbial eukaryotes encompass the majority of eukaryotic evolutionary and cytoskeletal diversity. The cytoskeletal complexity observed in multicellular organisms appears to be an expansion of components present in genomes of diverse microbial eukaryotes such as the basal lineage of flagellates, the Excavata. Excavate protists have complex and diverse cytoskeletal architectures and life cycles – essentially alternative cytoskeletal “landscapes” – yet still possess conserved microtubule- and actin-associated proteins. Comparative genomic analyses have revealed that a subset of excavates, however, lack many canonical actin-binding proteins central to actin cytoskeleton function in other eukaryotes. Overall, excavates possess numerous uncharacterized and “hypothetical” genes, and may represent an undiscovered reservoir of novel cytoskeletal genes and cytoskeletal mechanisms. The continued development of molecular genetic tools in these complex microbial eukaryotes will undoubtedly contribute to our overall understanding of cytoskeletal diversity and evolution. PMID:23312067

  17. EF-1[alpha] Is Associated with a Cytoskeletal Network Surrounding Protein Bodies in Maize Endosperm Cells.

    PubMed Central

    Clore, A. M.; Dannenhoffer, J. M.; Larkins, B. A.

    1996-01-01

    By using indirect immunofluorescence and confocal microscopy, we documented changes in the distribution of elongation factor-1[alpha] (EF-1[alpha]), actin, and microtubules during the development of maize endosperm cells. In older interphase cells actively forming starch grains and protein bodies, the protein bodies are enmeshed in EF-1[alpha] and actin and are found juxtaposed with a multidirectional array of microtubules. Actin and EF-1[alpha] appear to exist in a complex, because we observed that the two are colocalized, and treatment with cytochalasin D resulted in the redistribution of EF-1[alpa]. These data suggest that EF-1[alpha] and actin are associated in maize endosperm cells and may help to explain the basis of the correlation we found between the concentration of EF-1[alpha] and lysine content. The data also support the hypothesis that the cytoskeleton plays a role in storage protein deposition. The distributions of EF-1[alpha] actin, and microtubules change during development. We observed that in young cells before the accumulation of starch and storage protein, EF-1[alpha], actin, and microtubules are found mainly in the cell cortex or in association with nuclei. PMID:12239373

  18. Biochemical and structural properties of the integrin-associated cytoskeletal protein talin.

    PubMed

    Critchley, David R

    2009-01-01

    Interaction of cells with the extracellular matrix is fundamental to a wide variety of biological processes, such as cell proliferation, cell migration, embryogenesis, and organization of cells into tissues, and defects in cell-matrix interactions are an important element in many diseases. Cell-matrix interactions are frequently mediated by the integrin family of cell adhesion molecules, transmembrane alphabeta-heterodimers that are typically linked to the actin cytoskeleton by one of a number of adaptor proteins including talin, alpha-actinin, filamin, tensin, integrin-linked kinase, melusin, and skelemin. The focus of this review is talin, which appears unique among these proteins in that it also induces a conformational change in integrins that is propagated across the membrane, and increases the affinity of the extracellular domain for ligand. Particular emphasis is given to recent progress on the structure of talin, its interaction with binding partners, and its mode of regulation.

  19. Phosphorylation of the cytoskeletal protein CAP1 controls its association with cofilin and actin

    PubMed Central

    Zhou, Guo-Lei; Zhang, Haitao; Wu, Huhehasi; Ghai, Pooja; Field, Jeffrey

    2014-01-01

    ABSTRACT Cell signaling can control the dynamic balance between filamentous and monomeric actin by modulating actin regulatory proteins. One family of actin regulating proteins that controls actin dynamics comprises cyclase-associated proteins 1 and 2 (CAP1 and 2, respectively). However, cell signals that regulate CAPs remained unknown. We mapped phosphorylation sites on mouse CAP1 and found S307 and S309 to be regulatory sites. We further identified glycogen synthase kinase 3 as a kinase phosphorylating S309. The phosphomimetic mutant S307D/S309D lost binding to its partner cofilin and, when expressed in cells, caused accumulation of actin stress fibers similar to that in cells with reduced CAP expression. In contrast, the non-phosphorylatable S307A/S309A mutant showed drastically increased cofilin binding and reduced binding to actin. These results suggest that the phosphorylation serves to facilitate release of cofilin for a subsequent cycle of actin filament severing. Moreover, our results suggest that S307 and S309 function in tandem; neither the alterations in binding cofilin and/or actin, nor the defects in rescuing the phenotype of the enlarged cell size in CAP1 knockdown cells was observed in point mutants of either S307 or S309. In summary, we identify a novel regulatory mechanism of CAP1 through phosphorylation. PMID:25315833

  20. Phosphorylation of the cytoskeletal protein CAP1 controls its association with cofilin and actin.

    PubMed

    Zhou, Guo-Lei; Zhang, Haitao; Wu, Huhehasi; Ghai, Pooja; Field, Jeffrey

    2014-12-01

    Cell signaling can control the dynamic balance between filamentous and monomeric actin by modulating actin regulatory proteins. One family of actin regulating proteins that controls actin dynamics comprises cyclase-associated proteins 1 and 2 (CAP1 and 2, respectively). However, cell signals that regulate CAPs remained unknown. We mapped phosphorylation sites on mouse CAP1 and found S307 and S309 to be regulatory sites. We further identified glycogen synthase kinase 3 as a kinase phosphorylating S309. The phosphomimetic mutant S307D/S309D lost binding to its partner cofilin and, when expressed in cells, caused accumulation of actin stress fibers similar to that in cells with reduced CAP expression. In contrast, the non-phosphorylatable S307A/S309A mutant showed drastically increased cofilin binding and reduced binding to actin. These results suggest that the phosphorylation serves to facilitate release of cofilin for a subsequent cycle of actin filament severing. Moreover, our results suggest that S307 and S309 function in tandem; neither the alterations in binding cofilin and/or actin, nor the defects in rescuing the phenotype of the enlarged cell size in CAP1 knockdown cells was observed in point mutants of either S307 or S309. In summary, we identify a novel regulatory mechanism of CAP1 through phosphorylation.

  1. Cytoskeletal architecture of isolated mitotic spindle with special reference to microtubule-associated proteins and cytoplasmic dynein.

    PubMed

    Hirokawa, N; Takemura, R; Hisanaga, S

    1985-11-01

    We have studied cytoskeletal architectures of isolated mitotic apparatus from sea urchin eggs using quick-freeze, deep-etch electron microscopy. This method revealed the existence of an extensive three-dimensional network of straight and branching crossbridges between spindle microtubules. The surface of the spindle microtubules was almost entirely covered with hexagonally packed, small, round button-like structures which were very uniform in shape and size (approximately 8 nm in diameter), and these microtubule buttons frequently provided bases for crossbridges between adjacent microtubules. These structures were removed from the surface of microtubules by high salt (0.6 M NaCl) extraction. Microtubule-associated proteins (MAPs) and microtubules isolated from mitotic spindles which were mainly composed of a large amount of 75-kD protein and some high molecular mass (250 kD, 245 kD) proteins were polymerized in vitro and examined by quick-freeze, deep-etch electron microscopy. The surfaces of microtubules were entirely covered with the same hexagonally packed round buttons, the arrangement of which is intimately related to that of tubulin dimers. Short crossbridges and some longer crossbridges were also observed. High salt treatment (0.6 M NaCl) extracted both 75-kD protein and high molecular weight proteins and removed microtubule buttons and most of crossbridges from the surface of microtubules. Considering the relatively high amount of 75-kD protein among MAPs isolated from mitotic spindles, it is concluded that these microtubule buttons probably consist of 75-kD MAP and that some of the crossbridges in vivo could belong to MAPs. Another kind of granule, larger in size (11-26 nm in diameter), was also on occasion associated with the surface of microtubules of mitotic spindles. A fine sidearm sometimes connected the larger granule to adjacent microtubules. Localization of cytoplasmic dynein ATPase in the mitotic spindle was investigated by electron microscopic

  2. Dictyostelium mutants lacking the cytoskeletal protein coronin are defective in cytokinesis and cell motility

    PubMed Central

    1993-01-01

    Coronin is an actin-binding protein in Dictyostelium discoideum that is enriched at the leading edge of the cells and in projections of the cell surface called crowns. The polypeptide sequence of coronin is distinguished by its similarities to the beta-subunits of trimeric G proteins (E. L. de Hostos, B. Bradtke, F. Lottspeich, R. Guggenheim, and G. Gerisch, 1991. EMBO (Eur. Mol. Biol. Organ.) J. 10:4097-4104). To elucidate the in vivo function of coronin, null mutants have been generated by gene replacement. The mutant cells lacking coronin grow and migrate more slowly than wild-type cells. When these cor- cells grow in liquid medium they become multinucleate, indicating a role of coronin in cytokinesis. To explore this role, coronin has been localized in mitotic wild-type cells by immunofluorescence labeling. During separation of the daughter cells, coronin is strongly accumulated at their distal portions including the leading edges. This contrasts with the localization of myosin II in the cleavage furrow and suggests that coronin functions independently of the conventional myosin in facilitating cytokinesis. PMID:8380174

  3. The 13-kD FK506 binding protein, FKBP13, interacts with a novel homologue of the erythrocyte membrane cytoskeletal protein 4.1.

    PubMed

    Walensky, L D; Gascard, P; Fields, M E; Blackshaw, S; Conboy, J G; Mohandas, N; Snyder, S H

    1998-04-06

    We have identified a novel generally expressed homologue of the erythrocyte membrane cytoskeletal protein 4.1, named 4.1G, based on the interaction of its COOH-terminal domain (CTD) with the immunophilin FKBP13. The 129-amino acid peptide, designated 4.1G-CTD, is the first known physiologic binding target of FKBP13. FKBP13 is a 13-kD protein originally identified by its high affinity binding to the immunosuppressant drugs FK506 and rapamycin (Jin, Y., M.W. Albers, W.S. Lane, B.E. Bierer, and S.J. Burakoff. 1991. Proc. Natl. Acad. Sci. USA. 88:6677- 6681); it is a membrane-associated protein thought to function as an ER chaperone (Bush, K.T., B.A. Henrickson, and S.K. Nigam. 1994. Biochem. J. [Tokyo]. 303:705-708). We report the specific association of FKBP13 with 4.1G-CTD based on yeast two-hybrid, in vitro binding and coimmunoprecipitation experiments. The histidyl-proline moiety of 4.1G-CTD is required for FKBP13 binding, as indicated by yeast experiments with truncated and mutated 4.1G-CTD constructs. In situ hybridization studies reveal cellular colocalizations for FKBP13 and 4.1G-CTD throughout the body during development, supporting a physiologic role for the interaction. Interestingly, FKBP13 cofractionates with the red blood cell homologue of 4.1 (4.1R) in ghosts, inside-out vesicles, and Triton shell preparations. The identification of FKBP13 in erythrocytes, which lack ER, suggests that FKBP13 may additionally function as a component of membrane cytoskeletal scaffolds.

  4. The 13-kD FK506 Binding Protein, FKBP13, Interacts with a Novel Homologue of the Erythrocyte Membrane Cytoskeletal Protein 4.1

    PubMed Central

    Walensky, Loren D.; Gascard, Philippe; Field, Michael E.; Blackshaw, Seth; Conboy, John G.; Mohandas, Narla; Snyder, Solomon H.

    1998-01-01

    We have identified a novel generally expressed homologue of the erythrocyte membrane cytoskeletal protein 4.1, named 4.1G, based on the interaction of its COOH-terminal domain (CTD) with the immunophilin FKBP13. The 129-amino acid peptide, designated 4.1G–CTD, is the first known physiologic binding target of FKBP13. FKBP13 is a 13-kD protein originally identified by its high affinity binding to the immunosuppressant drugs FK506 and rapamycin (Jin, Y., M.W. Albers, W.S. Lane, B.E. Bierer, and S.J. Burakoff. 1991. Proc. Natl. Acad. Sci. USA. 88:6677– 6681); it is a membrane-associated protein thought to function as an ER chaperone (Bush, K.T., B.A. Henrickson, and S.K. Nigam. 1994. Biochem. J. [Tokyo]. 303:705–708). We report the specific association of FKBP13 with 4.1G–CTD based on yeast two-hybrid, in vitro binding and coimmunoprecipitation experiments. The histidyl-proline moiety of 4.1G–CTD is required for FKBP13 binding, as indicated by yeast experiments with truncated and mutated 4.1G–CTD constructs. In situ hybridization studies reveal cellular colocalizations for FKBP13 and 4.1G–CTD throughout the body during development, supporting a physiologic role for the interaction. Interestingly, FKBP13 cofractionates with the red blood cell homologue of 4.1 (4.1R) in ghosts, inside-out vesicles, and Triton shell preparations. The identification of FKBP13 in erythrocytes, which lack ER, suggests that FKBP13 may additionally function as a component of membrane cytoskeletal scaffolds. PMID:9531554

  5. Cytoskeletal protein Flightless (Flii) is elevated in chronic and acute human wounds and wound fluid: neutralizing its activity in chronic but not acute wound fluid improves cellular proliferation.

    PubMed

    Ruzehaji, Nadira; Grose, Randall; Krumbiegel, Doreen; Zola, Heddy; Dasari, Pallave; Wallace, Hilary; Stacey, Michael; Fitridge, Robert; Cowin, Allison J

    2012-01-01

    Chronic non-healing wounds form a medical need which will expand as the population ages and the obesity epidemic grows. Whilst the complex mechanisms underlying wound repair are not fully understood, remodelling of the actin cytoskeleton plays a critical role. Elevated expression of the actin cytoskeletal protein Flightless I (Flii) is known to impair wound outcomes. To determine if Flii is involved in the impaired healing observed in chronic wounds, its expression in non-healing human wounds from patients with venous leg ulcers was determined and compared to its expression in acute wounds and unwounded skin. Increased expression of Flii was observed in both chronic and acute wounds with wound fluid and plasma also containing secreted Flii protein. Inflammation is a key aspect of wound repair and fluorescence-activated cell sorting (FACS) analysis revealed Flii was located in neutrophils within the blood and that it co-localised with CD16+ neutrophils in chronic wounds. The function of secreted Flii was investigated as both chronic wound fluid and Flii have previously been shown to inhibit fibroblast proliferation. To determine if the inhibitory effect of wound fluid was due in part to the presence of Flii, wound fluids were depleted of Flii using Flii-specific neutralizing antibodies (FnAb). Flii depleted chronic wound fluid no longer inhibited fibroblast proliferation, suggesting that Flii may contribute to the inhibitory effect of chronic wound fluid on fibroblast function. Application of FnAbs to chronic wounds may therefore be a novel approach used to improve the local environment of non-healing wounds and potentially improve healing outcomes.

  6. Improved immunoelectron microscopic method for localizing cytoskeletal proteins in Lowicryl K4M embedded tissues.

    PubMed

    Loesser, K E; Doane, K J; Wilson, F J; Roisen, F J; Malamed, S

    1986-11-01

    We have modified the Lowicryl K4M low-temperature dehydration and embedding procedure for immunoelectron microscopy to provide improved ultrastructural detail and facilitate the localization of actin and tubulin in isolated rat adrenocortical cells, chick spinal cord with attached dorsal root ganglia (SC-DRG), and cultured dorsal root ganglia (DRG). Cells and tissues were fixed for immunocytochemistry either in a mixture of 2% paraformaldehyde and 0.25% glutaraldehyde (0.1 M PIPES buffer, pH 7.3) or in a mixture of 0.3% glutaraldehyde and 1.0% ethyldimethylaminopropylcarbodiimide (0.1 M phosphate buffered saline, pH 7.3). Dehydration was in ethanol at progressively lower temperatures to -35 degrees C. Infiltration at -35 degrees C was followed by ultraviolet polymerization at -20 degrees C. Comparable samples were fixed in glutaraldehyde and osmium tetroxide and embedded in Epon 812 or Epon-Araldite. Post-embedding immunostaining of thin sections utilized commercially available monoclonal antibodies to tubulin and actin followed by the protein A-gold technique (Roth et al., Endocrinology 108:247, 1981). Actin immunoreactivity was observed at the periphery of mitochondria and between mitochondria and lipid droplets in rat adrenocortical cells and at the periphery of neuronal cell processes of SC-DRG. Tubulin immunoreactivity was associated with microtubules throughout neurites of cultured DRG. Our modified technique allows preservation of ultrastructural details as well as localization of antigens by immunoelectron microscopy.

  7. Loss of the Cytoskeletal Protein Pdlim7 Predisposes Mice to Heart Defects and Hemostatic Dysfunction

    PubMed Central

    Krcmery, Jennifer; Gupta, Rajesh; Sadleir, Rudyard W.; Ahrens, Molly J.; Misener, Sol; Kamide, Christine; Fitchev, Philip; Losordo, Douglas W.; Crawford, Susan E.; Simon, Hans-Georg

    2013-01-01

    The actin-associated protein Pdlim7 is essential for heart and fin development in zebrafish; however, the expression and function of this PDZ-LIM family member in the mammal has remained unclear. Here, we show that Pdlim7 predominantly localizes to actin-rich structures in mice including the heart, vascular smooth muscle, and platelets. To test the requirement for Pdlim7 in mammalian development and function, we analyzed a mouse strain with global genetic inactivation of Pdlim7. We demonstrate that Pdlim7 loss-of-function leads to significant postnatal mortality. Inactivation of Pdlim7 does not disrupt cardiac development, but causes mild cardiac dysfunction in adult mice. Adult Pdlim7-/- mice displayed increased mitral and tricuspid valve annulus to body weight ratios. These structural aberrations in Pdlim7-/- mice were supported by three-dimensional reconstructions of adult cardiac valves, which revealed increased surface area to volume ratios for the mitral and tricuspid valve leaflets. Unexpectedly, we found that loss of Pdlim7 triggers systemic venous and arterial thrombosis, leading to significant mortality shortly after birth in Pdlim7+/- (11/60) and Pdlim7-/- (19/35) mice. In line with a prothrombotic phenotype, adult Pdlim7-/- mice exhibit dramatically decreased tail bleed times compared to controls. These findings reveal a novel and unexpected function for Pdlim7 in maintaining proper hemostasis in neonatal and adult mice. PMID:24278323

  8. A model for mammalian cochlear hair cell differentiation in vitro: effects of retinoic acid on cytoskeletal proteins and potassium conductances.

    PubMed

    Helyer, R; Cacciabue-Rivolta, D; Davies, D; Rivolta, M N; Kros, C J; Holley, M C

    2007-02-01

    We have established a model for the in-vitro differentiation of mouse cochlear hair cells and have used it to explore the influence of retinoic acid on proliferation, cytoskeletal proteins and voltage-gated potassium conductances. The model is based on the conditionally immortal cell line University of Sheffield/ventral otocyst-epithelial cell line clone 36 (US/VOT-E36), derived from ventral otic epithelial cells of the mouse at embryonic day 10.5 and transfected with a reporter for myosin VIIa. Retinoic acid did not increase cell proliferation but led to up-regulation of myosin VIIa and formation of prominent actin rings that gave rise to numerous large, linear actin bundles. Cells expressing myosin VIIa had larger potassium conductances and did not express the cyclin-dependent kinase inhibitor p27(kip1). US/VOT-E36 endogenously expressed the voltage-gated potassium channel alpha-subunits Kv1.3 and Kv2.1, which we subsequently identified in embryonic and neonatal hair cells in both auditory and vestibular sensory epithelia in vivo. These subunits could underlie the embryonic and neonatal delayed-rectifiers recorded in nascent hair cells in vivo. Kv2.1 was particularly prominent on the basolateral membrane of cochlear inner hair cells. Kv1.3 was distributed throughout all hair cells but tended to be localized to the cuticular plates. US/VOT-E36 recapitulates a coherent pattern of cell differentiation under the influence of retinoic acid and will provide a convenient model for screening the effects of other extrinsic factors on the differentiation of cochlear epithelial cell types in vitro.

  9. Activated ADF/cofilin sequesters phosphorylated microtubule-associated-protein during the assembly of Alzheimer-like neuritic cytoskeletal striations

    PubMed Central

    Whiteman, Ineka T.; Gervasio, Othon L.; Cullen, Karen M.; Guillemin, Gilles J.; Jeong, Erica V.; Witting, Paul K.; Antao, Shane T.; Minamide, Laurie S.; Bamburg, James R.; Goldsbury, Claire

    2009-01-01

    In Alzheimer disease (AD), rod-like cofilin aggregates (cofilin-actin rods) and thread-like inclusions containing phosphorylated microtubule-associated protein (pMAP) tau form in the brain (neuropil threads) and the extent of their presence correlates with cognitive decline and disease progression. The assembly mechanism of these respective pathological lesions and the relationship between them is poorly understood, yet vital to understanding the causes of sporadic AD. We demonstrate that during mitochondrial inhibition, activated actin-depolymerizing factor (ADF)/cofilin assemble into rods along processes of cultured primary neurons that recruit pMAP/tau and mimic neuropil threads. Fluorescence Resonance Energy Transfer (FRET) analysis revealed co-localization of cofilin-GFP and pMAP in rods, suggesting their close proximity within a cytoskeletal inclusion complex. The relationship between pMAP and cofilin-actin rods was further investigated using actin-modifying drugs and siRNA knockdown of ADF/cofilin in primary neurons. The results suggest that activation of ADF/cofilin and generation of cofilin-actin rods is required for the subsequent recruitment of pMAP into the inclusions. Additionally we were able to induce the formation of pMAP-positive ADF/cofilin rods by exposing cells to exogenous Aβ peptides. These results reveal a common pathway for pMAP and cofilin accumulation in neuronal processes. The requirement of activated ADF/cofilin for the sequestration of pMAP suggests that neuropil thread structures in the AD brain may be initiated by elevated cofilin activation and F-actin bundling that can be caused by oxidative stress, mitochondrial dysfunction or Aβ peptides, all suspected initiators of synaptic loss and neurodegeneration in AD. PMID:19828813

  10. Phosphoproteome Profiling of SH-SY5y Neuroblastoma Cells Treated with Anesthetics: Sevoflurane and Isoflurane Affect the Phosphorylation of Proteins Involved in Cytoskeletal Regulation

    PubMed Central

    Lee, Joomin; Ahn, Eunsook; Park, Wyun Kon; Park, Seyeon

    2016-01-01

    Inhalation anesthetics are used to decrease the spinal cord transmission of painful stimuli. However, the molecular or biochemical processes within cells that regulate anesthetic-induced responses at the cellular level are largely unknown. Here, we report the phosphoproteome profile of SH-SY5y human neuroblastoma cells treated with sevoflurane, a clinically used anesthetic. Phosphoproteins were isolated from cell lysates and analyzed using two-dimensional gel electrophoresis. The phosphorylation of putative anesthetic-responsive marker proteins was validated using western blot analysis in cells treated with both sevoflurane and isoflurane. A total of 25 phosphoproteins were identified as differentially phosphorylated proteins. These included key regulators that signal cytoskeletal remodeling steps in pathways related to vesicle trafficking, axonal growth, and cell migration. These proteins included the Rho GTPase, Ras-GAP SH3 binding protein, Rho GTPase activating protein, actin-related protein, and actin. Sevoflurane and isoflurane also resulted in the dissolution of F-actin fibers in SH-SY5y cells. Our results show that anesthetics affect the phosphorylation of proteins involved in cytoskeletal remodeling pathways. PMID:27611435

  11. Disruption of the three cytoskeletal networks in mammalian cells does not affect transcription, translation, or protein translocation changes induced by heat shock.

    PubMed Central

    Welch, W J; Feramisco, J R

    1985-01-01

    Mammalian cells show a complex series of transcriptional and translational switching events in response to heat shock treatment which ultimately lead to the production and accumulation of a small number of proteins, the so-called heat shock (or stress) proteins. We investigated the heat shock response in both qualitative and quantitative ways in cells that were pretreated with drugs that specifically disrupt one or more of the three major cytoskeletal networks. (These drugs alone, cytochalasin E and colcemid, do not result in induction of the heat shock response.) Our results indicated that disruption of the actin microfilaments, the vimentin-containing intermediate filaments, or the microtubules in living cells does not hinder the ability of the cell to undergo an apparently normal heat shock response. Even when all three networks were simultaneously disrupted (resulting in a loose, baglike appearance of the cells), the cells still underwent a complete heat shock response as assayed by the appearance of the heat shock proteins. In addition, the major induced 72-kilodalton heat shock protein was efficiently translocated from the cytoplasm into its proper location in the nucleus and nucleolus irrespective of the condition of the three cytoskeletal elements. Images PMID:4040602

  12. Smoking correlates with increased cytoskeletal protein-related coding region mutations in the lung and head and neck datasets of the cancer genome atlas.

    PubMed

    Yavorski, John M; Blanck, George

    2016-12-01

    Cancer from smoking tobacco is considered dependent on mutagens, but significant molecular aspects of smoking-specific, cancer development remain unknown. We defined sets of coding regions for oncoproteins, tumor suppressor proteins, and cytoskeletal-related proteins that were compared between nonsmokers and smokers, for mutation occurrences, in the lung adenocarcinoma (LUAD), head and neck squamous carcinoma (HNSC), bladder carcinoma (BLCA), and pancreatic adenocarcinoma ( PAAD) datasets from the cancer genome atlas (TCGA). We uncovered significant differences in overall mutation rates, and in mutation rates in cytoskeletal protein-related coding regions (CPCRs, including extracellular matrix protein coding regions), between nonsmokers and smokers in LUAD and HNSC (P < 0.001), raising the question of whether the CPCR mutation differences lead to different clinical courses for nonsmoker and smoker cancers. Another important question inspired by these results is, whether high smoker cancer mutation rates would facilitate genotoxicity or neoantigen-based therapies. No significant, mutation-based differences were found in the BLCA or PAAD datasets, between nonsmokers and smokers. However, a significant difference was uncovered for the average number of overall cancer mutations, in LUAD, for persons who stopped smoking more than 15 years ago, compared with more recent smokers (P < 0.032).

  13. Widespread mRNA Association with Cytoskeletal Motor Proteins and Identification and Dynamics of Myosin-Associated mRNAs in S. cerevisiae

    PubMed Central

    Casolari, Jason M.; Thompson, Michael A.; Salzman, Julia; Champion, Lowry M.; Moerner, W. E.; Brown, Patrick O.

    2012-01-01

    Programmed mRNA localization to specific subcellular compartments for localized translation is a fundamental mechanism of post-transcriptional regulation that affects many, and possibly all, mRNAs in eukaryotes. We describe her e a systematic approach to identify the RNA cargoes associated with the cytoskeletal motor proteins of Saccharomyces cerevisiae in combination with live-cell 3D super-localization microscopy of endogenously tagged mRNAs. Our analysis identified widespread association of mRNAs with cytoskeletal motor proteins, including association of Myo3 with mRNAs encoding key regulators of actin branching and endocytosis such as WASP and WIP. Using conventional fluorescence microscopy and expression of MS2-tagged mRNAs from endogenous loci, we observed a strong bias for actin patch nucleator mRNAs to localize to the cell cortex and the actin patch in a Myo3- and F-actin dependent manner. Use of a double-helix point spread function (DH-PSF) microscope allowed super-localization measurements of single mRNPs at a spatial precision of 25 nm in x and y and 50 nm in z in live cells with 50 ms exposure times, allowing quantitative profiling of mRNP dynamics. The actin patch mRNA exhibited distinct and characteristic diffusion coefficients when compared to a control mRNA. In addition, disruption of F-actin significantly expanded the 3D confinement radius of an actin patch nucleator mRNA, providing a quantitative assessment of the contribution of the actin cytoskeleton to mRNP dynamic localization. Our results provide evidence for specific association of mRNAs with cytoskeletal motor proteins in yeast, suggest that different mRNPs have distinct and characteristic dynamics, and lend insight into the mechanism of actin patch nucleator mRNA localization to actin patches. PMID:22359641

  14. Apo and calcium-bound crystal structures of cytoskeletal protein alpha-14 giardin (annexin E1) from the intestinal protozoan parasite Giardia lamblia.

    PubMed

    Pathuri, Puja; Nguyen, Emily Tam; Ozorowski, Gabriel; Svärd, Staffan G; Luecke, Hartmut

    2009-01-30

    Alpha-14 giardin (annexin E1), a member of the alpha giardin family of annexins, has been shown to localize to the flagella of the intestinal protozoan parasite Giardia lamblia. Alpha giardins show a common ancestry with the annexins, a family of proteins most of which bind to phospholipids and cellular membranes in a Ca(2+)-dependent manner and are implicated in numerous membrane-related processes including cytoskeletal rearrangements and membrane organization. It has been proposed that alpha-14 giardin may play a significant role during the cytoskeletal rearrangement during differentiation of Giardia. To gain a better understanding of alpha-14 giardin's mode of action and its biological role, we have determined the three-dimensional structure of alpha-14 giardin and its phospholipid-binding properties. Here, we report the apo crystal structure of alpha-14 giardin determined in two different crystal forms as well as the Ca(2+)-bound crystal structure of alpha-14 giardin, refined to 1.9, 1.6 and 1.65 A, respectively. Although the overall fold of alpha-14 giardin is similar to that of alpha-11 giardin, multiwavelength anomalous dispersion phasing was required to solve the alpha-14 giardin structure, indicating significant structural differences between these two members of the alpha giardin family. Unlike most annexin structures, which typically possess N-terminal domains, alpha-14 giardin is composed of only a core domain, followed by a C-terminal extension that may serve as a ligand for binding to cytoskeletal protein partners in Giardia. In the Ca(2+)-bound structure we detected five bound calcium ions, one of which is a novel, highly coordinated calcium-binding site not previously observed in annexin structures. This novel high-affinity calcium-binding site is composed of seven protein donor groups, a feature rarely observed in crystal structures. In addition, phospholipid-binding assays suggest that alpha-14 giardin exhibits calcium-dependent binding to

  15. Kinetic Proofreading of Cytoskeletal Structures

    NASA Astrophysics Data System (ADS)

    Swanson, Douglas; Wingreen, Ned

    2010-03-01

    Cytoskeletal polymer dynamics play a role in cellular processes as varied as reproduction, locomotion, and intracellular transport. Microtubules are cytoskeletal biopolymers that grow by accumulating tubulin subunits bound to guanosine triphosphate (GTP). The subunits hydrolyze GTP to guanosine diphosphate (GDP), causing a conformational change in the protein that destabilizes the microtubule. GDP-bound subunits tend to depolymerize, leading to stochastic microtubule disassembly in a process known as dynamic instability. Over time polymerization and depolymerization come to steady state, leading to a local steady-state concentration of tubulin subunits. This may be viewed as a kind of ``kinetic proofreading,'' in which the system consumes energy actively to ``proofread'' the steady-state subunit concentration. We suggest that the same mechanism could also ``proofread'' between different cytoskeletal structures. For example, we show that a small free-energy difference between two polymer orientations, combined with dynamic instability, can strongly drive the system towards the lower free-energy state. This might help to explain the long-time stability of many cytoskeletal structures despite the short-time rapid turnover of the individual subunits.

  16. ENH, containing PDZ and LIM domains, heart/skeletal muscle-specific protein, associates with cytoskeletal proteins through the PDZ domain.

    PubMed

    Nakagawa, N; Hoshijima, M; Oyasu, M; Saito, N; Tanizawa, K; Kuroda, S

    2000-06-07

    The Enigma homologue protein (ENH), containing an N-terminal PDZ domain and three C-terminal LIM domains, is a heart and skeletal muscle-specific protein that has been shown to preferentially interact with protein kinase C beta (PKCbeta) through the LIM domains (Kuroda et al., J. Biol. Chem. 271, 31029-31032, 1996). We here demonstrate that ENH is colocalized with a cytoskeletal protein alpha-actinin in the Z-disk region of rat neonatal cardiomyocytes. Pull-down assays using the glutathione-S-transferase-fusion system also showed the interaction of the PDZ domain of ENH with actin and alpha-actinin. Furthermore, by combined use of the in silico and conventional cDNA cloning methods, we have isolated three ENH-related clones from a mouse heart-derived cDNA library: mENH1 (591 amino acid residues) corresponding to rat ENH, mENH2 (337 residues), and mENH3 (239 residues); the latter two containing only a single PDZ domain. Deciphering their cDNA sequences, these mENH1-3 mRNAs appear to be generated from a single mENH gene by alternative splicing. Northern blot analyses using human cancer cells and mouse embryos have shown expression of each mENH mRNA to vary considerably among the cell types and during the developmental stage. Together with a recent finding that PKCbeta is markedly activated in the cardiac hypertrophic signaling, these results suggest that ENH1 plays an important role in the heart development by scaffolding PKCbeta to the Z-disk region and that ENH2 and ENH3 negatively modulate the scaffolding activity of ENH1.

  17. Toxaphene, but not beryllium, induces human neutrophil chemotaxis and apoptosis via reactive oxygen species (ROS): involvement of caspases and ROS in the degradation of cytoskeletal proteins.

    PubMed

    Lavastre, Valérie; Roberge, Charles J; Pelletier, Martin; Gauthier, Marc; Girard, Denis

    2002-07-01

    Chemicals of environmental concern are known to alter the immune system. Recent data indicate that some contaminants possess proinflammatory properties by activating neutrophils, an area of research that is still poorly investigated. We have previously documented that toxaphene activates human neutrophils to produce reactive oxygen species (ROS) and accelerates apoptosis by a yet unknown mechanism. In this study, we found that toxaphene induces another neutrophil function, chemotaxis. Furthermore, we found that toxaphene induces both chemotaxis and apoptosis via a ROS-dependent mechanism, since these responses were blocked by the addition of catalase to the culture. In addition, toxaphene was found to induce the degradation of the cytoskeletal proteins gelsolin, paxillin, and vimentin during apoptosis, and this was reversed by the addition of z-VAD-FMK (caspase inhibitor) or catalase, demonstrating the importance of caspases and ROS in this process. In contrast to toxaphene, we found that beryllium does not induce superoxide production, and, this correlates with its inability to induce chemotaxis and apoptosis. We conclude that toxaphene induces chemotaxis and apoptosis via ROS and that caspases and ROS are involved in the degradation of cytoskeletal proteins.

  18. Clinicopathological Analysis and Multipronged Quantitative Proteomics Reveal Oxidative Stress and Cytoskeletal Proteins as Possible Markers for Severe Vivax Malaria.

    PubMed

    Ray, Sandipan; Patel, Sandip K; Venkatesh, Apoorva; Bhave, Amruta; Kumar, Vipin; Singh, Vaidhvi; Chatterjee, Gangadhar; Shah, Veenita G; Sharma, Sarthak; Renu, Durairaj; Nafis, Naziya; Gandhe, Prajakta; Gogtay, Nithya; Thatte, Urmila; Sehgal, Kunal; Verma, Sumit; Karak, Avik; Khanra, Dibbendhu; Talukdar, Arunansu; Kochar, Sanjay K; S B, Vijeth; Kochar, Dhanpat K; Rojh, Dharmendra; Varma, Santosh G; Gandhi, Mayuri N; Srikanth, Rapole; Patankar, Swati; Srivastava, Sanjeeva

    2016-04-19

    In Plasmodium vivax malaria, mechanisms that trigger transition from uncomplicated to fatal severe infections are obscure. In this multi-disciplinary study we have performed a comprehensive analysis of clinicopathological parameters and serum proteome profiles of vivax malaria patients with different severity levels of infection to investigate pathogenesis of severe malaria and identify surrogate markers of severity. Clinicopathological analysis and proteomics profiling has provided evidences for the modulation of diverse physiological pathways including oxidative stress, cytoskeletal regulation, lipid metabolism and complement cascades in severe malaria. Strikingly, unlike severe falciparum malaria the blood coagulation cascade was not found to be affected adversely in acute P. vivax infection. To the best of our knowledge, this is the first comprehensive proteomics study, which identified some possible cues for severe P. vivax infection. Our results suggest that Superoxide dismutase, Vitronectin, Titin, Apolipoprotein E, Serum amyloid A, and Haptoglobin are potential predictive markers for malaria severity.

  19. The cytoskeletal protein alpha-actinin regulates acid-sensing ion channel 1a through a C-terminal interaction.

    PubMed

    Schnizler, Mikael K; Schnizler, Katrin; Zha, Xiang-Ming; Hall, Duane D; Wemmie, John A; Hell, Johannes W; Welsh, Michael J

    2009-01-30

    The acid-sensing ion channel 1a (ASIC1a) is widely expressed in central and peripheral neurons where it generates transient cation currents when extracellular pH falls. ASIC1a confers pH-dependent modulation on postsynaptic dendritic spines and has critical effects in neurological diseases associated with a reduced pH. However, knowledge of the proteins that interact with ASIC1a and influence its function is limited. Here, we show that alpha-actinin, which links membrane proteins to the actin cytoskeleton, associates with ASIC1a in brain and in cultured cells. The interaction depended on an alpha-actinin-binding site in the ASIC1a C terminus that was specific for ASIC1a versus other ASICs and for alpha-actinin-1 and -4. Co-expressing alpha-actinin-4 altered ASIC1a current density, pH sensitivity, desensitization rate, and recovery from desensitization. Moreover, reducing alpha-actinin expression altered acid-activated currents in hippocampal neurons. These findings suggest that alpha-actinins may link ASIC1a to a macromolecular complex in the postsynaptic membrane where it regulates ASIC1a activity.

  20. Differential expression of cytoskeletal proteins in the dendrites of parvalbumin-positive interneurons versus granule cells in the adult rat dentate gyrus.

    PubMed

    de Haas Ratzliff, A; Soltesz, I

    2000-01-01

    Parvalbumin-positive interneurons and granule cells of the dentate gyrus exhibit characteristic differences in morphological, cytochemical, physiological, and pathophysiological properties. Several of these defining features, including dendritic morphology, spine density, and sensitivity to insults, are likely to be influenced by the neuronal cytoskeleton. The data in this paper demonstrate striking differences in the expression levels of all three neurofilament triplet proteins, as well as alpha-internexin and beta-tubulin III, between the parvalbumin-positive interneurons and dentate granule cells. Therefore, the molecular composition of intermediate filaments and microtubules in the dendritic domain of parvalbumin-positive dentate interneurons is distinct from the cytoskeleton of neighboring granule cells, indicating the existence of highly cell type-specific cytoskeletal architecture within the dentate gyrus.

  1. A conserved proline-rich region of the Saccharomyces cerevisiae cyclase-associated protein binds SH3 domains and modulates cytoskeletal localization.

    PubMed Central

    Freeman, N L; Lila, T; Mintzer, K A; Chen, Z; Pahk, A J; Ren, R; Drubin, D G; Field, J

    1996-01-01

    Saccharomyces cerevisiae cyclase-associated protein (CAP or Srv2p) is multifunctional. The N-terminal third of CAP binds to adenylyl cyclase and has been implicated in adenylyl cyclase activation in vivo. The widely conserved C-terminal domain of CAP binds to monomeric actin and serves an important cytoskeletal regulatory function in vivo. In addition, all CAP homologs contain a centrally located proline-rich region which has no previously identified function. Recently, SH3 (Src homology 3) domains were shown to bind to proline-rich regions of proteins. Here we report that the proline-rich region of CAP is recognized by the SH3 domains of several proteins, including the yeast actin-associated protein Abp1p. Immunolocalization experiments demonstrate that CAP colocalizes with cortical actin-containing structures in vivo and that a region of CAP containing the SH3 domain binding site is required for this localization. We also demonstrate that the SH3 domain of yeast Abp1p and that of the yeast RAS protein guanine nucleotide exchange factor Cdc25p complex with adenylyl cyclase in vitro. Interestingly, the binding of the Cdc25p SH3 domain is not mediated by CAP and therefore may involve direct binding to adenylyl cyclase or to an unidentified protein which complexes with adenylyl cyclase. We also found that CAP homologous from Schizosaccharomyces pombe and humans bind SH3 domains. The human protein binds most strongly to the SH3 domain from the abl proto-oncogene. These observations identify CAP as an SH3 domain-binding protein and suggest that CAP mediates interactions between SH3 domain proteins and monomeric actin. PMID:8552082

  2. A conserved proline-rich region of the Saccharomyces cerevisiae cyclase-associated protein binds SH3 domains and modulates cytoskeletal localization.

    PubMed

    Freeman, N L; Lila, T; Mintzer, K A; Chen, Z; Pahk, A J; Ren, R; Drubin, D G; Field, J

    1996-02-01

    Saccharomyces cerevisiae cyclase-associated protein (CAP or Srv2p) is multifunctional. The N-terminal third of CAP binds to adenylyl cyclase and has been implicated in adenylyl cyclase activation in vivo. The widely conserved C-terminal domain of CAP binds to monomeric actin and serves an important cytoskeletal regulatory function in vivo. In addition, all CAP homologs contain a centrally located proline-rich region which has no previously identified function. Recently, SH3 (Src homology 3) domains were shown to bind to proline-rich regions of proteins. Here we report that the proline-rich region of CAP is recognized by the SH3 domains of several proteins, including the yeast actin-associated protein Abp1p. Immunolocalization experiments demonstrate that CAP colocalizes with cortical actin-containing structures in vivo and that a region of CAP containing the SH3 domain binding site is required for this localization. We also demonstrate that the SH3 domain of yeast Abp1p and that of the yeast RAS protein guanine nucleotide exchange factor Cdc25p complex with adenylyl cyclase in vitro. Interestingly, the binding of the Cdc25p SH3 domain is not mediated by CAP and therefore may involve direct binding to adenylyl cyclase or to an unidentified protein which complexes with adenylyl cyclase. We also found that CAP homologous from Schizosaccharomyces pombe and humans bind SH3 domains. The human protein binds most strongly to the SH3 domain from the abl proto-oncogene. These observations identify CAP as an SH3 domain-binding protein and suggest that CAP mediates interactions between SH3 domain proteins and monomeric actin.

  3. Bni1p implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae.

    PubMed Central

    Kohno, H; Tanaka, K; Mino, A; Umikawa, M; Imamura, H; Fujiwara, T; Fujita, Y; Hotta, K; Qadota, H; Watanabe, T; Ohya, Y; Takai, Y

    1996-01-01

    The RHO1 gene encodes a homolog of mammalian RhoA small GTP binding protein in the yeast Saccharomyces cerevisiae. Rho1p is localized at the growth sites, including the bud tip and the cytokinesis site, and is required for bud formation. We have recently shown that Pkc1p, a yeast homolog of mammalian protein kinase C, and glucan synthase are targets of Rho1p. Using the two-hybrid screening system, we cloned a gene encoding a protein which interacted with the GTP-bound form of Rho1p. This gene was identified as BNI1, known to be implicated in cytokinesis or establishment of cell polarity in S.cerevisiae. Bni1p shares homologous domains (FH1 and FH2 domains) with proteins involved in cytokinesis or establishment of cell polarity, including formin of mouse, capu and dia of Drosophila and FigA of Aspergillus. A temperature-sensitive mutation in which the RHO1 gene was replaced by the mammalian RhoA gene showed a synthetically lethal interaction with the bni1 mutation and the RhoA bni1 mutant accumulated cells with a deficiency in cytokinesis. Furthermore, this synthetic lethality was caused by the incapability of RhoA to activate Pkc1p, but not glucan synthase. These results suggest that Rho1p regulates cytoskeletal reorganization at least through Bni1p and Pkc1p. Images PMID:8947028

  4. Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling.

    PubMed

    Turner, C E; Brown, M C; Perrotta, J A; Riedy, M C; Nikolopoulos, S N; McDonald, A R; Bagrodia, S; Thomas, S; Leventhal, P S

    1999-05-17

    Paxillin is a focal adhesion adaptor protein involved in the integration of growth factor- and adhesion-mediated signal transduction pathways. Repeats of a leucine-rich sequence named paxillin LD motifs (Brown M.C., M.S. Curtis, and C.E. Turner. 1998. Nature Struct. Biol. 5:677-678) have been implicated in paxillin binding to focal adhesion kinase (FAK) and vinculin. Here we demonstrate that the individual paxillin LD motifs function as discrete and selective protein binding interfaces. A novel scaffolding function is described for paxillin LD4 in the binding of a complex of proteins containing active p21 GTPase-activated kinase (PAK), Nck, and the guanine nucleotide exchange factor, PIX. The association of this complex with paxillin is mediated by a new 95-kD protein, p95PKL (paxillin-kinase linker), which binds directly to paxillin LD4 and PIX. This protein complex also binds to Hic-5, suggesting a conservation of LD function across the paxillin superfamily. Cloning of p95PKL revealed a multidomain protein containing an NH2-terminal ARF-GAP domain, three ankyrin-like repeats, a potential calcium-binding EF hand, calmodulin-binding IQ motifs, a myosin homology domain, and two paxillin-binding subdomains (PBS). Green fluorescent protein- (GFP-) tagged p95PKL localized to focal adhesions/complexes in CHO.K1 cells. Overexpression in neuroblastoma cells of a paxillin LD4 deletion mutant inhibited lamellipodia formation in response to insulin-like growth fac- tor-1. Microinjection of GST-LD4 into NIH3T3 cells significantly decreased cell migration into a wound. These data implicate paxillin as a mediator of p21 GTPase-regulated actin cytoskeletal reorganization through the recruitment to nascent focal adhesion structures of an active PAK/PIX complex potentially via interactions with p95PKL.

  5. Differential carbonylation of cytoskeletal proteins in blood group O erythrocytes: potential role in protection against severe malaria.

    PubMed

    Méndez, Darío; Hernáez, María L; Kamali, Ali N; Diez, Amalia; Puyet, Antonio; Bautista, José M

    2012-12-01

    The molecular basis for the prevalence of blood group O in regions where malaria is endemic remains unclear. In some genetic backgrounds oxidative modifications have been linked to a reduced susceptibility to severe malaria disease. Through redox proteomics, we detected differences in carbonylated membrane proteins among the different blood groups, both in Plasmodium-infected and uninfected erythrocytes (RBC). Carbonylation profiles of RBC membrane proteins revealed that group O blood shows a reduced protein oxidation pattern compared to groups A, B and AB. Upon infection with Plasmodium falciparum Dd2, erythrocytes of all blood groups showed increased oxidation of membrane proteins. By examining 4-hydroxy-2-nonenal (4-HNE) modified proteins by LC-MS/MS (liquid chromatography/mass spectrometry) we observed that, upon malaria infection, the protein components of lipid rafts and cytoskeleton were the main targets of 4-HNE carbonylation in all blood groups. Ankyrins and protein bands 4.2 and 4.1 were differentially carbonylated in group O as compared to A and B groups. During trophozoite maturation in group O erythrocytes, a steady increase was observed in the number of 4-HNE-modified proteins, suggesting a parasite-driven 4-HNE-carbonylation process. Our findings indicate a possible correlation between the protection against severe malaria in blood group O individuals and a specific pattern of 4-HNE-carbonylation of cytoskeleton proteins.

  6. Organization of pp60src and selected cytoskeletal proteins within adhesion plaques and junctions of Rous sarcoma virus-transformed rat cells

    PubMed Central

    1981-01-01

    The localization of pp60src within adhesion structures of epithelioid rat kidney cells transformed by the Schmidt-Ruppin strain of Rous sarcoma virus was compared to the organization of actin, alpha-actinin, vinculin (a 130,000-dalton protein), tubulin, and the 58,000-dalton intermediate filament protein. The adhesion structures included both adhesion plaques and previously uncharacterized adhesive regions formed at cell-cell junctions. We have termed these latter structures "adhesion junctions." Both adhesion plaques and adhesion junctions were identified by interference-reflection microscopy and compared to the location of pp60src and the various cytoskeletal proteins by double fluorescence. The results demonstrated that the src gene product was found within both adhesion plaques and the adhesion junctions. In addition, actin, alpha-actinin, and vinculin were also localized within the same pp60src-containing adhesion structures. In contrast, tubulin and the 58,000-dalton intermediate filament protein were not associated with either adhesion plaques or adhesion junctions. Both adhesion plaques and adhesion junctions were isolated as substratum-bound structures and characterized by scanning electron microscopy. Immunofluorescence revealed that pp60src, actin, alpha-actinin, and vinculin were organized within specific regions of the adhesion junctions. Heavy accumulations of actin and alpha-actinin were found on both sides of the junctions with a narrow gap of unstained material at the midline, whereas pp60src stain was more intense in this central region. Antibody to vinculin stained double narrow lines defining the periphery of the junctional complexes but was excluded from the intervening region. In addition, the distribution of vinculin relative to pp60src within adhesion plaques suggested an inverse relationship between the presence of these two proteins. Overall, these results establish a close link between the src gene product and components of the

  7. Intracellular fibril formation, calcification, and enrichment of chaperones, cytoskeletal, and intermediate filament proteins in the adult hippocampus CA1 following neonatal exposure to the nonprotein amino acid BMAA.

    PubMed

    Karlsson, Oskar; Berg, Anna-Lena; Hanrieder, Jörg; Arnerup, Gunnel; Lindström, Anna-Karin; Brittebo, Eva B

    2015-03-01

    The environmental neurotoxin β-N-methylamino-L-alanine (BMAA) has been implicated in the etiology of neurodegenerative disease, and recent studies indicate that BMAA can be misincorporated into proteins. BMAA is a developmental neurotoxicant that can induce long-term learning and memory deficits, as well as regionally restricted neuronal degeneration and mineralization in the hippocampal CA1. The aim of the study was to characterize long-term changes (2 weeks to 6 months) further in the brain of adult rats treated neonatally (postnatal days 9-10) with BMAA (460 mg/kg) using immunohistochemistry (IHC), transmission electron microscopy, and laser capture microdissection followed by LC-MS/MS for proteomic analysis. The histological examination demonstrated progressive neurodegenerative changes, astrogliosis, microglial activation, and calcification in the hippocampal CA1 3-6 months after exposure. The IHC showed an increased staining for α-synuclein and ubiquitin in the area. The ultrastructural examination revealed intracellular deposition of abundant bundles of closely packed parallel fibrils in neurons, axons, and astrocytes of the CA1. Proteomic analysis of the affected site demonstrated an enrichment of chaperones (e.g., clusterin, GRP-78), cytoskeletal and intermediate filament proteins, and proteins involved in the antioxidant defense system. Several of the most enriched proteins (plectin, glial fibrillar acidic protein, vimentin, Hsp 27, and ubiquitin) are known to form complex astrocytic inclusions, so-called Rosenthal fibers, in the neurodegenerative disorder Alexander disease. In addition, TDP-43 and the negative regulator of autophagy, GLIPR-2, were exclusively detected. The present study demonstrates that neonatal exposure to BMAA may offer a novel model for the study of hippocampal fibril formation in vivo.

  8. Protein Folding and Self-Organized Criticality

    NASA Astrophysics Data System (ADS)

    Bajracharya, Arun; Murray, Joelle

    Proteins are known to fold into tertiary structures that determine their functionality in living organisms. However, the complex dynamics of protein folding and the way they consistently fold into the same structures is not fully understood. Self-organized criticality (SOC) has provided a framework for understanding complex systems in various systems (earthquakes, forest fires, financial markets, and epidemics) through scale invariance and the associated power law behavior. In this research, we use a simple hydrophobic-polar lattice-bound computational model to investigate self-organized criticality as a possible mechanism for generating complexity in protein folding.

  9. The activity-regulated cytoskeletal-associated protein (Arc/Arg3.1) is required for memory consolidation of pavlovian fear conditioning in the lateral amygdala.

    PubMed

    Ploski, Jonathan E; Pierre, Vicki J; Smucny, Jason; Park, Kevin; Monsey, Melissa S; Overeem, Kathie A; Schafe, Glenn E

    2008-11-19

    The activity-regulated cytoskeletal-associated protein (Arc/Arg3.1) is an immediate early gene that has been widely implicated in hippocampal-dependent learning and memory and is believed to play an integral role in synapse-specific plasticity. Here, we examined the role of Arc/Arg3.1 in amygdala-dependent Pavlovian fear conditioning. We first examined the regulation of Arc/Arg3.1 mRNA and protein after fear conditioning and LTP-inducing stimulation of thalamic inputs to the lateral amygdala (LA). Quantitative real-time PCR, in situ hybridization, Western blotting and immunohistochemistry revealed a significant upregulation of Arc/Arg3.1 mRNA and protein in the LA relative to controls. In behavioral experiments, intra-LA infusion of an Arc/Arg3.1 antisense oligodeoxynucleotide (ODN) was observed to be anatomically restricted to the LA, taken up by LA cells, and to promote significant knockdown of Arc/Arg3.1 protein. Rats given intra-LA infusions of multiple doses of the Arc/Arg3.1 ODN showed an impairment of LTM (tested approximately 24 later), but no deficit in STM (tested 3 h later) relative to controls infused with scrambled ODN. Finally, to determine whether upregulation of Arc/Arg3.1 occurs downstream of ERK/MAPK activation, we examined Arc/Arg3.1 expression in rats given intra-LA infusion of the MEK inhibitor U0126. Relative to vehicle controls, infusion of U0126 impaired training-induced increases in Arc/Arg3.1 expression. These findings suggest that Arc/Arg3.1 expression in the amygdala is required for fear memory consolidation, and further suggest that Arc/Arg3.1 regulation in the LA is downstream of the ERK/MAPK signaling pathway.

  10. Arsenic trioxide (AT) is a novel human neutrophil pro-apoptotic agent: effects of catalase on AT-induced apoptosis, degradation of cytoskeletal proteins and de novo protein synthesis.

    PubMed

    Binet, François; Cavalli, Hélène; Moisan, Eliane; Girard, Denis

    2006-02-01

    The anti-cancer drug arsenic trioxide (AT) induces apoptosis in a variety of transformed or proliferating cells. However, little is known regarding its ability to induce apoptosis in terminally differentiated cells, such as neutrophils. Because neutropenia has been reported in some cancer patients after AT treatment, we hypothesised that AT could induce neutrophil apoptosis, an issue that has never been investigated. Herein, we found that AT-induced neutrophil apoptosis and gelsolin degradation via caspases. AT did not increase neutrophil superoxide production and did not induce mitochondrial generation of reactive oxygen species. AT-induced apoptosis in PLB-985 and X-linked chronic granulomatous disease (CGD) cells (PLB-985 cells deficient in gp91(phox) mimicking CGD) at the same potency. Addition of catalase, an inhibitor of H2O2, reversed AT-induced apoptosis and degradation of the cytoskeletal proteins gelsolin, alpha-tubulin and lamin B1. Unexpectedly, AT-induced de novo protein synthesis, which was reversed by catalase. Cycloheximide partially reversed AT-induced apoptosis. We conclude that AT induces neutrophil apoptosis by a caspase-dependent mechanism and via de novo protein synthesis. H2O2 is of major importance in AT-induced neutrophil apoptosis but its production does not originate from nicotinamide adenine dinucleotide phosphate dehydrogenase activation and mitochondria. Cytoskeletal structures other than microtubules can now be considered as novel targets of AT.

  11. A cytoskeletal localizing domain in the cyclase-associated protein, CAP/Srv2p, regulates access to a distant SH3-binding site.

    PubMed

    Yu, J; Wang, C; Palmieri, S J; Haarer, B K; Field, J

    1999-07-09

    In the yeast, Saccharomyces cerevisiae, adenylyl cyclase consists of a 200-kDa catalytic subunit (CYR1) and a 70-kDa subunit (CAP/SRV2). CAP/Srv2p assists the small G protein Ras to activate adenylyl cyclase. CAP also regulates the cytoskeleton through an actin sequestering activity and is directed to cortical actin patches by a proline-rich SH3-binding site (P2). In this report we analyze the role of the actin cytoskeleton in Ras/cAMP signaling. Two alleles of CAP, L16P(Srv2) and R19T (SupC), first isolated in genetic screens for mutants that attenuate cAMP levels, reduced adenylyl cyclase binding, and cortical actin patch localization. A third mutation, L27F, also failed to localize but showed no loss of either cAMP signaling or adenylyl cyclase binding. However, all three N-terminal mutations reduced CAP-CAP multimer formation and SH3 domain binding, although the SH3-binding site is about 350 amino acids away. Finally, disruption of the actin cytoskeleton with latrunculin-A did not affect the cAMP phenotypes of the hyperactive Ras2(Val19) allele. These data identify a novel region of CAP that controls access to the SH3-binding site and demonstrate that cytoskeletal localization of CAP or an intact cytoskeleton per se is not necessary for cAMP signaling.

  12. Seasonal Changes in the Immunolocalization of Cytoskeletal Proteins and Laminin in the Testis of the Black-Backed Jackal (Canis mesomelas).

    PubMed

    Madekurozwa, M-C; Booyse, D

    2017-02-01

    Manipulation of the reproductive activity of jackals is dependent on a thorough understanding of the reproductive biology of this species. This study describes seasonal morphological changes in the adult testis of the black-backed jackal in relation to the immunoexpression of the basement membrane marker, laminin and the cytoskeletal proteins, cytokeratin, smooth muscle actin and vimentin. Laminin was immunolocalized in basement membranes surrounding seminiferous tubules, as well as in basement membranes associated with Leydig, peritubular myoid and vascular smooth muscle cells. Scalloped basement membranes enclosed seminiferous tubules in regressing testes. The seminiferous epithelium and interstitial tissue in all animals studied were cytokeratin immunonegative. Smooth muscle actin was demonstrated in vascular smooth muscle cells, as well as in peritubular myoid cells encircling seminiferous tubules. Vimentin immunoreactivity was exhibited in the cytoplasm of Sertoli cells, Leydig cells, vascular endothelial cells, vascular smooth muscle cells and fibrocytes. Vimentin immunostaining in Sertoli, Leydig and peritubular myoid cells varied depending on the functional state of the testis. The results of the study have shown that dramatic seasonal histological changes occur in the testes of the jackal. In addition, the use of immunohistochemistry accentuates these morphological changes.

  13. Sub-lethal concentrations of CdCl2 disrupt cell migration and cytoskeletal proteins in cultured mouse TM4 Sertoli cells.

    PubMed

    Egbowon, Biola F; Harris, Wayne; Arnott, Gordon; Mills, Chris Lloyd; Hargreaves, Alan J

    2016-04-01

    The aims of this study were to examine the effects of CdCl2 on the viability, migration and cytoskeleton of cultured mouse TM4 Sertoli cells. Time- and concentration-dependent changes were exhibited by the cells but 1 μM CdCl2 was sub-cytotoxic at all time-points. Exposure to 1 and 12 μM CdCl2 for 4 h resulted in disruption of the leading edge, as determined by chemical staining. Cell migration was inhibited by both 1 and 12 μM CdCl2 in a scratch assay monitored by live cell imaging, although exposure to the higher concentration was associated with cell death. Western blotting and immunofluorescence staining indicated that CdCl2 caused a concentration dependent reduction in actin and tubulin levels. Exposure to Cd(2+) also resulted in significant changes in the levels and/or phosphorylation status of the microtubule and microfilament destabilising proteins cofilin and stathmin, suggesting disruption of cytoskeletal dynamics. Given that 1-12 μM Cd(2+) is attainable in vivo, our findings are consistent with the possibility that Cd(2+) induced impairment of testicular development and reproductive health may involve a combination of reduced Sertoli cell migration and impaired Sertoli cell viability depending on the timing, level and duration of exposure.

  14. Myotonic dystrophy protein kinase (DMPK) induces actin cytoskeletal reorganization and apoptotic-like blebbing in lens cells

    NASA Technical Reports Server (NTRS)

    Jin, S.; Shimizu, M.; Balasubramanyam, A.; Epstein, H. F.

    2000-01-01

    DMPK, the product of the DM locus, is a member of the same family of serine-threonine protein kinases as the Rho-associated enzymes. In DM, membrane inclusions accumulate in lens fiber cells producing cataracts. Overexpression of DMPK in cultured lens epithelial cells led to apoptotic-like blebbing of the plasma membrane and reorganization of the actin cytoskeleton. Enzymatically active DMPK was necessary for both effects; inactive mutant DMPK protein did not produce either effect. Active RhoA but not constitutive GDP-state mutant protein produced similar effects as DMPK. The similar actions of DMPK and RhoA suggest that they may function in the same regulatory network. The observed effects of DMPK may be relevant to the removal of membrane organelles during normal lens differentiation and the retention of intracellular membranes in DM lenses. Copyright 2000 Wiley-Liss, Inc.

  15. Tenotomy of m.soleus antagonists prevents the changes in fiber type characteristics and sarcomeric cytoskeletal proteins in unloaded rats

    NASA Astrophysics Data System (ADS)

    Moukhina, Alexandra; Ardabievskaya, Anna; Vikhlyantsev, Ivan; Podlubnaya, Zoya; Nemirovskaya, Tatiana; Shenkman, Boris

    2005-08-01

    It is known that activity of postural extensors (m. soleus) decreases and activity of flexors (m. tibialis anterior) increases under unloading conditions. We have tested the hypothesis supposing that increased flexor activities during unloading exert suppressive influence on postural extensor activities and thus lead to dramatic changes in fiber size, MHC expression, sarcomeric proteins content in m.soleus. We have inactivated hindlimb flexor muscles (m.soleus antagonists) by bilateral tenotomy. 20 male Wistar rats were divided on 3 groups: cage control (C), hindlimb suspension for 14 days (HS), tenotomy of hindlimb flexor muscles with 14 days hindlimb suspension afterwards (HST). Several soleus muscle fiber characteristics decreased significantly in HS group (p<0.05) as compared with C group: cross sectional area (CSA) of type I muscle fibers, titin/MyHC ratio and nebulin/MyHC ratio. MyHC isoform pattern shifted slow-to-fast significantly. NFATc1 content increased in nuclear protein extract of m. soleus in HS group. None of these parameters was significantly different in HST group from those of C group. It has been concluded that the tenotomy of flexors under hindlimb suspension prevents atrophy of type I muscle fibers, decrease the degradation of titin and nebulin and prevent slow-to-fast shift of fiber MyHC isoform pattern, possibly through prevention of increase NFATc1 content in muscle fiber nuclear protein extract. Therefore, suppressive influence of increased flexor activity could be one of mechanisms that lead to the changes in m. soleus under unloading conditions. The work was supported by RFBR grants: 02-04-50025, 03- 04-48487 and the special program of RAS "Integration mechanisms of functional control in the living system".

  16. The cytotoxic effect of memantine and its effect on cytoskeletal proteins expression in metastatic breast cancer cell line

    PubMed Central

    Seifabadi, Sima; Vaseghi, Golnaz; Javanmard, Shaghayegh Haghjooy; Omidi, Elham; Tajadini, Mohammadhasan; Zarrin, Bahareh

    2017-01-01

    Objective(s): Breast cancer is an important leading cause of death from cancer. Stathmin and tau proteins are regulators of cell motility, and their overexpression is associated with the progression and bad prognosis of breast cancer. Memantine, an N-methyl-D-aspartate (NMDA) receptor antagonist, is the potential inhibitor of tau protein in neurons. This study determines the effect of memantine on breast cancer cell migration and proliferation, tau and stathmin gene expression in cancer cells and its synergistic effect with paclitaxel. Materials and Methods: The cell proliferation was evaluated by MTT assay and for this purpose, MCF-7 breast cancer cells were treated with various concentration of memantine (2, 20 and 100 μg/ml). Tau and stathmin mRNA expression was evaluated through quantitative real time RT-PCR method. The migration of cancer cells treated with memantine for 24 hr was compared to non-treated cells using an in vitro transmembrane migration assay. Results: Incubation of breast cancer cells with memantine resulted in a dose dependent reduction in cell survival (P=0.0001). Paclitaxel (100 nM) showed synergistic effect with memantine (P=0.0001). Memantine significantly decreased tau and stathmin mRNA expression (by RT-PCR), so that 100 µmol/l of memantine decreased tau and stathmin expression by 46% (P=0.0341) and 33% (P=0.043), respectively. Migration of cells was also decreased by memantine (P=0.0001). Conclusion: The presented data shows that memantine reduced mRNA levels of tau and stathmin proteins and also reduced cellular migration. PMID:28133523

  17. Effects of sub-lethal neurite outgrowth inhibitory concentrations of chlorpyrifos oxon on cytoskeletal proteins and acetylcholinesterase in differentiating N2a cells

    SciTech Connect

    Flaskos, J.; Nikolaidis, E.; Harris, W.; Sachana, M.; Hargreaves, A.J.

    2011-11-15

    protein are reduced Black-Right-Pointing-Pointer Neurofilament heavy chain forms aggregates in cell bodies Black-Right-Pointing-Pointer Thus at least two axon-associated cytoskeletal proteins are disrupted by this agent.

  18. Bactofilins, a ubiquitous class of cytoskeletal proteins mediating polar localization of a cell wall synthase in Caulobacter crescentus

    PubMed Central

    Kühn, Juliane; Briegel, Ariane; Mörschel, Erhard; Kahnt, Jörg; Leser, Katja; Wick, Stephanie; Jensen, Grant J; Thanbichler, Martin

    2010-01-01

    The cytoskeleton has a key function in the temporal and spatial organization of both prokaryotic and eukaryotic cells. Here, we report the identification of a new class of polymer-forming proteins, termed bactofilins, that are widely conserved among bacteria. In Caulobacter crescentus, two bactofilin paralogues cooperate to form a sheet-like structure lining the cytoplasmic membrane in proximity of the stalked cell pole. These assemblies mediate polar localization of a peptidoglycan synthase involved in stalk morphogenesis, thus complementing the function of the actin-like cytoskeleton and the cell division machinery in the regulation of cell wall biogenesis. In other bacteria, bactofilins can establish rod-shaped filaments or associate with the cell division apparatus, indicating considerable structural and functional flexibility. Bactofilins polymerize spontaneously in the absence of additional cofactors in vitro, forming stable ribbon- or rod-like filament bundles. Our results suggest that these structures have evolved as an alternative to intermediate filaments, serving as versatile molecular scaffolds in a variety of cellular pathways. PMID:19959992

  19. Nonsteroidal anti-inflammatory drugs attenuate amyloid-β protein-induced actin cytoskeletal reorganization through Rho signaling modulation.

    PubMed

    Ferrera, Patricia; Zepeda, Angélica; Arias, Clorinda

    2017-01-25

    Amyloid-β protein (Aβ) neurotoxicity occurs along with the reorganization of the actin-cytoskeleton through the activation of the Rho GTPase pathway. In addition to the classical mode of action of the non-steroidal anti-inflammatory drugs (NSAIDs), indomethacin, and ibuprofen have Rho-inhibiting effects. In order to evaluate the role of the Rho GTPase pathway on Aβ-induced neuronal death and on neuronal morphological modifications in the actin cytoskeleton, we explored the role of NSAIDS in human-differentiated neuroblastoma cells exposed to Aβ. We found that Aβ induced neurite retraction and promoted the formation of different actin-dependent structures such as stress fibers, filopodia, lamellipodia, and ruffles. In the presence of Aβ, both NSAIDs prevented neurite collapse and formation of stress fibers without affecting the formation of filopodia and lamellipodia. Similar results were obtained when the downstream effector, Rho kinase inhibitor Y27632, was applied in the presence of Aβ. These results demonstrate the potential benefits of the Rho-inhibiting NSAIDs in reducing Aβ-induced effects on neuronal structural alterations.

  20. Cytoskeletal protein flightless I inhibits apoptosis, enhances tumor cell invasion and promotes cutaneous squamous cell carcinoma progression

    PubMed Central

    Kopecki, Zlatko; Yang, Gink N.; Jackson, Jessica E.; Melville, Elizabeth L.; Cal1ey, Matthew P.; Murrell, Dedee F.; Darby, Ian A.; O'Toole, Edel A.; Samuel, Michael S.; Cowin, Allison J.

    2015-01-01

    Flightless I (Flii) is an actin remodeling protein that affects cellular processes including adhesion, proliferation and migration. In order to determine the role of Flii during carcinogenesis, squamous cell carcinomas (SCCs) were induced in Flii heterozygous (Flii+/−), wild-type and Flii overexpressing (FliiTg/Tg) mice by intradermal injection of 3-methylcholanthrene (MCA). Flii levels were further assessed in biopsies from human SCCs and the human SCC cell line (MET-1) was used to determine the effect of Flii on cellular invasion. Flii was highly expressed in human SCC biopsies particularly by the invading cells at the tumor edge. FliiTg/Tg mice developed large, aggressive SCCs in response to MCA. In contrast Flii+/− mice had significantly smaller tumors that were less invasive. Intradermal injection of Flii neutralizing antibodies during SCC initiation and progression significantly reduced the size of the tumors and, in vitro, decreased cellular sphere formation and invasion. Analysis of the tumors from the Flii overexpressing mice showed reduced caspase I and annexin V expression suggesting Flii may negatively regulate apoptosis within these tumors. These studies therefore suggest that Flii enhances SCC tumor progression by decreasing apoptosis and enhancing tumor cell invasion. Targeting Flii may be a potential strategy for reducing the severity of SCCs. PMID:26497552

  1. Immediate Early Gene Activity-Regulated Cytoskeletal-Associated Protein Regulates Estradiol-Induced Lordosis Behavior in Female Rats

    PubMed Central

    Christensen, Amy; Dewing, Phoebe; Micevych, Pavel

    2016-01-01

    Sensory feedback is an important component of any behavior, with each instance influencing subsequent activity. Female sexual receptivity is mediated both by the steroid hormone milieu and interaction with the male. We tested the influence of repeated mating on the level of sexual receptivity in ovariectomized rats treated with estradiol benzoate (EB) once every fourth day to mimic the normal phasic changes of circulating estradiol. Females were divided into two groups: naïve, which were tested for lordosis behavior once, and experienced rats, which were tested for lordosis after each EB injection. To monitor the effect of mating, the number of neurons expressing the immediate early gene activity-regulated cytoskeleton-associated protein (Arc) were counted in the mediobasal hypothalamus. Females were unreceptive following the first EB treatment, but the mating induced Arc expression. In naïve rats, each subsequent EB injection increased the levels of sexual receptivity. This ramping was not observed in experienced rats, which achieved only a moderate level of sexual receptivity. However, experienced females treated with EB and progesterone were maximally receptive and did not have Arc expresion. To test whether the expression of Arc attenuated lordosis, Arc antisense oligodeoxynucleotides (asODN) were microinjected into experienced females’ arcuate nuclei. Arc expression was attenuated, and the experienced EB-treated females achieved maximal sexual receptivity. These results demonstrate that Arc expression in the hypothalamus might influence future sexual receptivity and provides evidence of learning in the arcuate nucleus. The loss of Arc results in unrestrained sexual receptivity. PMID:25088303

  2. Early and Late Loss of the Cytoskeletal Scaffolding Protein, Ankyrin G Reveals its Role in Maturation and Maintenance of Nodes of Ranvier in Myelinated Axons.

    PubMed

    Saifetiarova, Julia; Taylor, Anna M; Bhat, Manzoor A

    2017-02-01

    The mechanisms that govern node of Ranvier organization, stability and long-term maintenance remain to be fully elucidated. One of the molecular components of the node is the cytoskeletal scaffolding protein, Ankyrin G (AnkG), which interacts with multiple members of the nodal complex. The role of AnkG in nodal organization and maintenance is still not clearly defined, as to whether AnkG functions as an initial nodal organizer or whether it functions as a nodal stabilizer after the nodal complex has been assembled. Using a mouse model system, we report here that perinatal and juvenile neuronal ablation of AnkG has differential consequences on nodal stability. Early loss of AnkG creates immature nodes with abnormal morphology, which undergo accelerated destabilization within a month, resulting in rapid NaV channel and βIV Spectrin loss with reduced effects on Neurofascin 186. On the other hand, late ablation of AnkG from established nodal complexes leads to slow but progressive nodal destabilization over 10 months, primarily affecting βIV Spectrin, followed by NaV channels, with modest impact on Neurofascin 186. We also show that Ankyrin R and βI Spectrin are not sufficient to prevent nodal disorganization after AnkG ablation. Additionally, nodal disorganization in both early and late AnkG mutants is accompanied by axonal pathology and neurological dysfunction. Together, our results suggest that AnkG plays an indispensable role in maturation and long-term stabilization of the newly assembled nodal complex, and that loss of AnkG after nodal stabilization does not lead to rapid nodal disassembly but loss of specific nodal components in a time-dependent manner.

  3. Involvement of cytoskeletal proteins in the barrier function of the human erythrocyte membrane. III. Permeability of spectrin-depleted inside-out membrane vesicles to hydrophilic nonelectrolytes. Formation of leaks by chemical or enzymatic modification of membrane proteins.

    PubMed

    Klonk, S; Deuticke, B

    1992-04-29

    Spectrin-depleted inside-out vesicles (IOV's) prepared from human erythrocyte membranes were characterized in terms of size, ground permeability to hydrophilic nonelectrolytes and their sensitivity to modification by SH reagents, DIDS and trypsin. IOV's proved to have the same permeability of their lipid domain to erythritol as native erythrocytes, in contrast to resealed ghosts (Klonk, S. and Deuticke, B. (1992) Biochim. Biophys. Acta 1106, 126-136 (Part I in this series)), which have a residual leak. On the other hand, IOV's have a slightly elevated permeability for mannitol and sucrose, nonelectrolytes which are almost (mannitol) or fully (sucrose) impermeant in the native membrane. These increased fluxes, which have a high activation energy and can be stimulated by phloretin, are, however, also much smaller than the corresponding leak fluxes observed in resealed ghosts. In view of these differences, formation of IOV's can be concluded to go along with partial annealing of barrier defects persisting in the erythrocyte membrane after preparation of resealed ghosts. Oxidation of SH groups of the IOV membrane by diamide produces an enhancement of permeability for hydrophilic nonelectrolytes which is much less pronounced than that induced by a similar treatment of erythrocytes or ghosts (Klonk, S. and Deuticke, B. (1992) Biochim. Biophys. Acta 1106, 126-136 (Part I in this series)). Moreover, proteolytic treatment of the vesicle membrane, although leading to a marked digestion of integral membrane proteins, only induces a minor, saturating increase of permeability, much lower than that in trypsinized resealed ghosts (Klonk, S. and Deuticke, B. (1992) Biochim. Biophys. Acta 1106, 137-142 (Part II of this series)). Since absence of the cytoskeletal proteins, spectrin and actin, is the major difference between IOV's and resealed ghosts, these results may be taken as further evidence for a dependence of the barrier properties of the erythrocyte membrane bilayer domain

  4. Genetic study of interactions between the cytoskeletal assembly protein sla1 and prion-forming domain of the release factor Sup35 (eRF3) in Saccharomyces cerevisiae.

    PubMed Central

    Bailleul, P A; Newnam, G P; Steenbergen, J N; Chernoff, Y O

    1999-01-01

    Striking similarities between cytoskeletal assembly and the "nucleated polymerization" model of prion propagation suggest that similar or overlapping sets of proteins may assist in both processes. We show that the C-terminal domain of the yeast cytoskeletal assembly protein Sla1 (Sla1C) specifically interacts with the N-terminal prion-forming domain (Sup35N) of the yeast release factor Sup35 (eRF3) in the two-hybrid system. Sla1C and several other Sup35N-interacting proteins also exhibit two-hybrid interactions with the poly-Gln-expanded N-proximal fragment of human huntingtin, which promotes Huntington disease-associated aggregation. The Sup35N-Sla1C interaction is inhibited by Sup35N alterations that make Sup35 unable to propagate the [PSI(+)] state and by the absence of the chaperone protein Hsp104, which is essential for [PSI] propagation. In a Sla1(-) background, [PSI] curing by dimethylsulfoxide or excess Hsp104 is increased, while translational readthrough and de novo [PSI] formation induced by excess Sup35 or Sup35N are decreased. These data show that, in agreement with the proposed function of Sla1 during cytoskeletal formation, Sla1 assists in [PSI] formation and propagation, but is not required for these processes. Sla1(-) strains are sensitive to some translational inhibitors, and some sup35 mutants, obtained in a Sla1(-) background, are sensitive to Sla1, suggesting that the interaction between Sla1 and Sup35 proteins may play a role in the normal function of the translational apparatus. We hypothesize that Sup35N is involved in regulatory interactions with intracellular structural networks, and [PSI] prion may be formed as a by-product of this process. PMID:10471702

  5. Intracellular cytoskeletal elements and cytoskeletons in bacteria.

    PubMed

    Madkour, Mohamed H F; Mayer, Frank

    2007-01-01

    Within a short period of time after the discovery of bacterial cytoskletons, major progress had been made in areas such as general spatial layout of cytoskeletons, their involvement in a variety of cellfunctions (shape control, cell division, chromosome segregation, cell motility). This progress was achieved by application of advanced investigation techniques. Homologs of eukaryotic actin, tubulin, and intermediate filaments were found in bacteria; cytoskeletal proteins not closely or not at all related to any of these major cytoskeletal proteins were discovered in a number of bacteria such as Mycoplasmas, Spiroplasmas, Spirochetes, Treponema, Caulobacter. A structural role for bacterial elongation factor Tu was indicated. On the basis of this new thinking, new approaches in biotechnology and new drugs are on the way.

  6. Cytoskeletal Network Morphology Regulates Intracellular Transport Dynamics.

    PubMed

    Ando, David; Korabel, Nickolay; Huang, Kerwyn Casey; Gopinathan, Ajay

    2015-10-20

    Intracellular transport is essential for maintaining proper cellular function in most eukaryotic cells, with perturbations in active transport resulting in several types of disease. Efficient delivery of critical cargos to specific locations is accomplished through a combination of passive diffusion and active transport by molecular motors that ballistically move along a network of cytoskeletal filaments. Although motor-based transport is known to be necessary to overcome cytoplasmic crowding and the limited range of diffusion within reasonable timescales, the topological features of the cytoskeletal network that regulate transport efficiency and robustness have not been established. Using a continuum diffusion model, we observed that the time required for cellular transport was minimized when the network was localized near the nucleus. In simulations that explicitly incorporated network spatial architectures, total filament mass was the primary driver of network transit times. However, filament traps that redirect cargo back to the nucleus caused large variations in network transport. Filament polarity was more important than filament orientation in reducing average transit times, and transport properties were optimized in networks with intermediate motor on and off rates. Our results provide important insights into the functional constraints on intracellular transport under which cells have evolved cytoskeletal structures, and have potential applications for enhancing reactions in biomimetic systems through rational transport network design.

  7. Cytoskeletal mechanics: Structure and Dynamics

    NASA Astrophysics Data System (ADS)

    Bausch, Andreas

    2008-03-01

    The actin cytoskeleton, a dynamic network of semiflexible filaments and associated regulatory proteins, is responsible for the extraordinary viscoelastic properties of cells. Especially for cellular motility the controlled self assembly to defined structures and the dynamic reorganization on different time scales are of outstanding importance. A prominent example for the controlled self assembly are actin bundles: in many cytoskeletal processes cells rely on the tight control of the structural and mechanical properties of the actin bundles. Using an in vitro model system we show that size control relies on a mismatch between the helical structure of individual actin filaments and the packing symmetry within bundles. While such self assembled structure may evoke the picture of a static network the contrary is the case: the cytoskeleton is highly dynamic and a constant remodeling takes place in vivo. Such dynamic reorganization of the cytoskeleton relies on the non-static nature of single actin/ABP bonds. Here, we study the thermal and forced unbinding events of individual ABP in such in vitro networks. The binding kinetics of the transient crosslinkers determines the mechanical response of such networks -- in the linear as well in the non-linear regime. These effects are important prerequisites for the high adaptability of cells and at the same time might be the molecular mechanism employed by them for mechanosensing.

  8. Structures of the nucleoid occlusion protein SlmA bound to DNA and the C-terminal domain of the cytoskeletal protein FtsZ

    PubMed Central

    Schumacher, Maria A.; Zeng, Wenjie

    2016-01-01

    Cell division in most prokaryotes is mediated by FtsZ, which polymerizes to create the cytokinetic Z ring. Multiple FtsZ-binding proteins regulate FtsZ polymerization to ensure the proper spatiotemporal formation of the Z ring at the division site. The DNA-binding protein SlmA binds to FtsZ and prevents Z-ring formation through the nucleoid in a process called “nucleoid occlusion” (NO). As do most FtsZ-accessory proteins, SlmA interacts with the conserved C-terminal domain (CTD) that is connected to the FtsZ core by a long, flexible linker. However, SlmA is distinct from other regulatory factors in that it must be DNA-bound to interact with the FtsZ CTD. Few structures of FtsZ regulator–CTD complexes are available, but all reveal the CTD bound as a helix. To deduce the molecular basis for the unique SlmA–DNA–FtsZ CTD regulatory interaction and provide insight into FtsZ–regulator protein complex formation, we determined structures of Escherichia coli, Vibrio cholera, and Klebsiella pneumonia SlmA–DNA–FtsZ CTD ternary complexes. Strikingly, the FtsZ CTD does not interact with SlmA as a helix but binds as an extended conformation in a narrow, surface-exposed pocket formed only in the DNA-bound state of SlmA and located at the junction between the DNA-binding and C-terminal dimer domains. Binding studies are consistent with the structure and underscore key interactions in complex formation. Combined, these data reveal the molecular basis for the SlmA–DNA–FtsZ interaction with implications for SlmA’s NO function and underscore the ability of the FtsZ CTD to adopt a wide range of conformations, explaining its ability to bind diverse regulatory proteins. PMID:27091999

  9. Nitrogen Balance and Protein Requirements for Critically Ill Older Patients

    PubMed Central

    Dickerson, Roland N.

    2016-01-01

    Critically ill older patients with sarcopenia experience greater morbidity and mortality than younger patients. It is anticipated that unabated protein catabolism would be detrimental for the critically ill older patient. Healthy older subjects experience a diminished response to protein supplementation when compared to their younger counterparts, but this anabolic resistance can be overcome by increasing protein intake. Preliminary evidence suggests that older patients may respond differently to protein intake than younger patients during critical illness as well. If sufficient protein intake is given, older patients can achieve a similar nitrogen accretion response as younger patients even during critical illness. However, there is concern among some clinicians that increasing protein intake in older patients during critical illness may lead to azotemia due to decreased renal functional reserve which may augment the propensity towards worsened renal function and worsened clinical outcomes. Current evidence regarding protein requirements, nitrogen balance, ureagenesis, and clinical outcomes during nutritional therapy for critically ill older patients is reviewed. PMID:27096868

  10. Electron Tomographic Analysis of Cytoskeletal Cross-Bridges in the Paranodal Region of the Node of Ranvier in Peripheral Nerves

    PubMed Central

    Perkins, Guy A.; Sosinsky, Gina E.; Ghassemzadeh, Sassan; Perez, Alex; Jones, Ying; Ellisman, Mark H.

    2008-01-01

    The node of Ranvier is a site for ionic conductances along myelinated nerves and governs the saltatory transmission of action potentials. Defects in the cross-bridging and spacing of the cytoskeleton is a prominent pathologic feature in diseases of the peripheral nerve. Electron tomography was used to examine cytoskeletal-cytoskeletal, membrane-cytoskeletal, and heterologous cell connections in the paranodal region of the node of Ranvier in peripheral nerves. Focal attachment of cytoskeletal filaments to each other and to the axolemma and paranodal membranes of the Schwann cell via narrow cross-bridges was visualized in both neuronal and glial cytoplasms. A subset of intermediate filaments associates with the cytoplasmic surfaces of supramolecular complexes of transmembrane structures that are presumed to include known and unknown junctional proteins. Mitochondria were linked to both microtubules and neurofilaments in the axoplasm and to neighboring smooth endoplasmic reticulum by narrow cross-bridges. Tubular cisternae in the glial cytoplasm were also linked to the paranodal glial cytoplasmic loop juxtanodal membrane by short cross-bridges. In the extracellular matrix between axon and Schwann cell, junctional bridges formed long cylinders inking the two membranes. Interactions between cytoskeleton, membranes, and extracellular matrix associations in the paranodal region is likely critical not only for scaffolding, but also for intracellular and extracellular communication. PMID:18096402

  11. Heterogeneous Porphyromonas gingivalis LPS modulates immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in human gingival fibroblasts

    PubMed Central

    Herath, Thanuja D. K.; Darveau, Richard P.; Seneviratne, Chaminda J.; Wang, Cun-Yu; Wang, Yu; Jin, Lijian

    2016-01-01

    Periodontal (gum) disease is a highly prevalent infection and inflammation accounting for the majority of tooth loss in adult population worldwide. Porphyromonas gingivalis is a keystone periodontal pathogen and its lipopolysaccharide (PgLPS) acts as a major virulence attribute to the disease. Herein, we deciphered the overall host response of human gingival fibroblasts (HGFs) to two featured isoforms of tetra-acylated PgLPS1435/1449 and penta-acylated PgLPS1690 with reference to E. coli LPS through quantitative proteomics. This study unraveled differentially expressed novel biomarkers of immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in HGFs. PgLPS1690 greatly upregulated inflammatory proteins (e.g. cyclophilin, inducible nitric oxide synthase, annexins, galectin, cathepsins and heat shock proteins), whereas the anti-inflammatory proteins (e.g. Annexin A2 and Annexin A6) were significantly upregulated by PgLPS1435/1449. Interestingly, the antioxidants proteins such as mitochondrial manganese-containing superoxide dismutase and peroxiredoxin 5 were only upregulated by PgLPS1690. The cytoskeletal rearrangement-related proteins like myosin were differentially regulated by these PgLPS isoforms. The present study gives new insight into the biological properties of P. gingivalis LPS lipid A moiety that could critically modulate immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in HGFs, and thereby enhances our understanding of periodontal pathogenesis. PMID:27538450

  12. Cytoskeletal to Nuclear Strain Transfer Regulates YAP Signaling in Mesenchymal Stem Cells

    PubMed Central

    Driscoll, Tristan P.; Cosgrove, Brian D.; Heo, Su-Jin; Shurden, Zach E.; Mauck, Robert L.

    2015-01-01

    Mechanical forces transduced to cells through the extracellular matrix are critical regulators of tissue development, growth, and homeostasis, and can play important roles in directing stem cell differentiation. In addition to force-sensing mechanisms that reside at the cell surface, there is growing evidence that forces transmitted through the cytoskeleton and to the nuclear envelope are important for mechanosensing, including activation of the Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) pathway. Moreover, nuclear shape, mechanics, and deformability change with differentiation state and have been likewise implicated in force sensing and differentiation. However, the significance of force transfer to the nucleus through the mechanosensing cytoskeletal machinery in the regulation of mesenchymal stem cell mechanobiologic response remains unclear. Here we report that actomyosin-generated cytoskeletal tension regulates nuclear shape and force transmission through the cytoskeleton and demonstrate the differential short- and long-term response of mesenchymal stem cells to dynamic tensile loading based on the contractility state, the patency of the actin cytoskeleton, and the connections it makes with the nucleus. Specifically, we show that while some mechanoactive signaling pathways (e.g., ERK signaling) can be activated in the absence of nuclear strain transfer, cytoskeletal strain transfer to the nucleus is essential for activation of the YAP/TAZ pathway with stretch. PMID:26083918

  13. Viscum album agglutinin-I (VAA-I) increases cell surface expression of cytoskeletal proteins in apoptotic human neutrophils: moesin and ezrin are two novel targets of VAA-I.

    PubMed

    Simon, M M; Simard, J C; Girard, D

    2013-10-01

    Viscum album agglutinin-I (VAA-I) is a plant lectin, which possesses anti-inflammatory properties, including the ability to induce neutrophil apoptosis by a mechanism that is not completely understood. Among the three actin-binding membrane-anchoring proteins ezrin/radixin/moesin (ERM), neutrophils are known to express ezrin and moesin. The behavior of these proteins in apoptotic neutrophils is not well established. In the present study, the expression and localization of ezrin and moesin by Western blot and immunofluorescence revealed a clear degradation and relocalization of both the proteins during VAA-I-induced apoptosis. Also, flow cytometry analysis revealed that VAA-I markedly and significantly induced the cell surface expression of ezrin and moesin and this was reversed when cells were pretreated with the Syk inhibitor piceatannol. The expression of ezrin and moesin on the cell surface of apoptotic neutrophils may represent a mechanism responsible for the appearance of autoantibodies directed against ERM proteins, which have been found in the serum of patients suffering from autoimmune diseases. Therefore, the ability of VAA-I to increase cell surface expression of cytoskeletal proteins in apoptotic neutrophils provides important insight into a possible toxic mechanism of this plant lectin and this has to be considered for its potential utilization for in vivo treatment.

  14. The role of cytoskeletal elements in shaping bacterial cells.

    PubMed

    Cho, Hongbaek

    2015-03-01

    Beginning from the recognition of FtsZ as a bacterial tubulin homolog in the early 1990s, many bacterial cytoskeletal elements have been identified, including homologs to the major eukaryotic cytoskeletal elements (tubulin, actin, and intermediate filament) and the elements unique in prokaryotes (ParA/MinD family and bactofilins). The discovery and functional characterization of the bacterial cytoskeleton have revolutionized our understanding of bacterial cells, revealing their elaborate and dynamic subcellular organization. As in eukaryotic systems, the bacterial cytoskeleton participates in cell division, cell morphogenesis, DNA segregation, and other important cellular processes. However, in accordance with the vast difference between bacterial and eukaryotic cells, many bacterial cytoskeletal proteins play distinct roles from their eukaryotic counterparts; for example, control of cell wall synthesis for cell division and morphogenesis. This review is aimed at providing an overview of the bacterial cytoskeleton, and discussing the roles and assembly dynamics of bacterial cytoskeletal proteins in more detail in relation to their most widely conserved functions, DNA segregation and coordination of cell wall synthesis.

  15. Critical Fluctuations in the Native State of Proteins

    NASA Astrophysics Data System (ADS)

    Tang, Qian-Yuan; Zhang, Yang-Yang; Wang, Jun; Wang, Wei; Chialvo, Dante R.

    2017-02-01

    Based on protein structural ensembles determined by nuclear magnetic resonance, we study the position fluctuations of residues by calculating distance-dependent correlations and conducting finite-size scaling analysis. The fluctuations exhibit high susceptibility and long-range correlations up to the protein sizes. The scaling relations between the correlations or susceptibility and protein sizes resemble those in other physical and biological systems near their critical points. These results indicate that, at the native states, motions of each residue are felt by every other one in the protein. We also find that proteins with larger susceptibility are more frequently observed in nature. Overall, our results suggest that the protein's native state is critical.

  16. Modeling Cytoskeletal Active Matter Systems

    NASA Astrophysics Data System (ADS)

    Blackwell, Robert

    Active networks of filamentous proteins and crosslinking motor proteins play a critical role in many important cellular processes. One of the most important microtubule-motor protein assemblies is the mitotic spindle, a self-organized active liquid-crystalline structure that forms during cell division and that ultimately separates chromosomes into two daughter cells. Although the spindle has been intensively studied for decades, the physical principles that govern its self-organization and function remain mysterious. To evolve a better understanding of spindle formation, structure, and dynamics, I investigate course-grained models of active liquid-crystalline networks composed of microtubules, modeled as hard spherocylinders, in diffusive equilibrium with a reservoir of active crosslinks, modeled as hookean springs that can adsorb to microtubules and and translocate at finite velocity along the microtubule axis. This model is investigated using a combination of brownian dynamics and kinetic monte carlo simulation. I have further refined this model to simulate spindle formation and kinetochore capture in the fission yeast S. pombe. I then make predictions for experimentally realizable perturbations in motor protein presence and function in S. pombe.

  17. Gamma-diketone axonopathy: analyses of cytoskeletal motors and highways in CNS myelinated axons.

    PubMed

    Zhang, Lihai; Gavin, Terrence; DeCaprio, Anthony P; LoPachin, Richard M

    2010-09-01

    2,5-Hexanedione (HD) intoxication is associated with axon atrophy that might be responsible for the characteristic gait abnormalities, hindlimb skeletal muscle weakness and other neurological deficits that accompany neurotoxicity. Although previous mechanistic research focused on neurofilament triplet proteins (NFL, NFM, NFH), other cytoskeletal targets are possible. Therefore, to identify potential non-NF protein targets, we characterized the effects of HD on protein-protein interactions in cosedimentation assays using microtubules and NFs prepared from spinal cord of rats intoxicated at different daily dose rates (175 and 400 mg/kg/day). Results indicate that HD did not alter the presence of alpha- or beta-tubulins in these preparations, nor were changes noted in the distribution of either anterograde (KIF1A, KIF3, KIF5) or retrograde (dynein) molecular motors. The cosedimentation of dynactin, a dynein-associated protein, also was not affected. Immunoblot analysis of microtubule-associated proteins (MAPs) in microtubule preparations revealed substantial reductions (45-80%) in MAP1A, MAP1B heavy chain, MAP2, and tau regardless of HD dose rate. MAP1B light chain content was not altered. Finally, HD intoxication did not influence native NF protein content in either preparation. As per previous research, microtubule and NF preparations were enriched in high-molecular weight NF species. However, these NF derivatives were common to both HD and control samples, suggesting a lack of pathognomonic relevance. These data indicate that, although motor proteins were not affected, HD selectively impaired MAP-microtubule binding, presumably through adduction of lysine residues that mediate such interactions. Given their critical role in cytoskeletal physiology, MAPs could represent a relevant target for the induction of gamma-diketone axonopathy.

  18. Structure of Cytoskeletal Supramolecular Assemblies in the Nerve Cell Axon

    NASA Astrophysics Data System (ADS)

    Ojeda-López, Miguel A.; Case, Ryan; Miller, Herb P.; Wilson, Leslie; Safinya, Cyrus R.

    2001-03-01

    The cytoskeleton of eucaryotic cells is an intricate network of supramolecular assemblies of protein filaments, e.g., actin, intermediate filaments (IFs), tubulin, and a multi-associated family of cross-linking proteins. Most of its multiple functions rely on its structural stability, which depends on a variety of specific interactions of the subunit proteins and its local physico-chemical environment. In neurodegenerative diseases the cytoskeletal supramolecular structure is almost universally altered. Preliminary results on the supramolecular structure of cytoskeletal filaments in isolated axons from bovine white matter will be presented as obtained using synchrotron small angle x-ray diffraction. These results will be compared to our ongoing cell-free studies on the structures formed by neurofilaments in vitro. Supported by NIH GM59288, NSF-DMR-9972246, and University of California Biotechnology Grant 99-14 & UC.

  19. Cytoskeletal stability and heat shock-mediated thermoprotection of central pattern generation in Locusta migratoria.

    PubMed

    Garlick, Kristopher M; Robertson, R Meldrum

    2007-06-01

    Prior exposure to extreme temperatures can induce thermoprotection in migratory locusts, which is important for survival in their natural environment. An important motor activity that needs to be protected is ventilation. The mechanism underlying heat shock is not fully understood, and our goal was to test the idea that cytoskeletal stability is critical for such thermoprotection. Cytoskeletal stabilizers (concanavalin A) and destabilizers (colchicine) were bath-applied in semi-intact locust preparations in both control (C) and pre-treated heat-shocked (3 h, 45 degrees C) animals. We measured parameters of the ventilatory motor pattern during maintained high temperature (43 degrees C) and recorded the times taken for motor pattern generation to fail and then recover on returning to room temperature. We found that concanavalin A mimicked the effects of a prior heat stress in control animals by increasing time to failure and decreasing time to recovery of motor pattern generation. However, colchicine destroyed protection in heat-shocked animals by decreasing time to failure and increasing time to recovery. Our findings confirm that the cytoskeleton has a mechanistic role in preserving neural function at high temperatures, possibly through stabilizing ion channels and other integral membrane proteins (e.g. Na(+)/K(+) ATPase) and their interactions with heat shock proteins.

  20. kakapo, a gene required for adhesion between and within cell layers in Drosophila, encodes a large cytoskeletal linker protein related to plectin and dystrophin.

    PubMed

    Gregory, S L; Brown, N H

    1998-11-30

    Mutations in kakapo were recovered in genetic screens designed to isolate genes required for integrin-mediated adhesion in Drosophila. We cloned the gene and found that it encodes a large protein (>5,000 amino acids) that is highly similar to plectin and BPAG1 over the first 1,000-amino acid region, and contains within this region an alpha-actinin type actin-binding domain. A central region containing dystrophin-like repeats is followed by a carboxy domain that is distinct from plectin and dystrophin, having neither the intermediate filament-binding domain of plectin nor the dystroglycan/syntrophin-binding domain of dystrophin. Instead, Kakapo has a carboxy terminus similar to the growth arrest-specific protein Gas2. Kakapo is strongly expressed late during embryogenesis at the most prominent site of position-specific integrin adhesion, the muscle attachment sites. It is concentrated at apical and basal surfaces of epidermal muscle attachment cells, at the termini of the prominent microtubule bundles, and is required in these cells for strong attachment to muscles. Kakapo is also expressed more widely at a lower level where it is essential for epidermal cell layer stability. These results suggest that the Kakapo protein forms essential links among integrins, actin, and microtubules.

  1. Elevated Glucose Levels Promote Contractile and Cytoskeletal Gene Expression in Vascular Smooth Muscle via Rho/Protein Kinase C and Actin Polymerization*

    PubMed Central

    Hien, Tran Thi; Turczyńska, Karolina M.; Dahan, Diana; Ekman, Mari; Grossi, Mario; Sjögren, Johan; Nilsson, Johan; Braun, Thomas; Boettger, Thomas; Garcia-Vaz, Eliana; Stenkula, Karin; Swärd, Karl; Gomez, Maria F.; Albinsson, Sebastian

    2016-01-01

    Both type 1 and type 2 diabetes are associated with increased risk of cardiovascular disease. This is in part attributed to the effects of hyperglycemia on vascular endothelial and smooth muscle cells, but the underlying mechanisms are not fully understood. In diabetic animal models, hyperglycemia results in hypercontractility of vascular smooth muscle possibly due to increased activation of Rho-kinase. The aim of the present study was to investigate the regulation of contractile smooth muscle markers by glucose and to determine the signaling pathways that are activated by hyperglycemia in smooth muscle cells. Microarray, quantitative PCR, and Western blot analyses revealed that both mRNA and protein expression of contractile smooth muscle markers were increased in isolated smooth muscle cells cultured under high compared with low glucose conditions. This effect was also observed in hyperglycemic Akita mice and in diabetic patients. Elevated glucose activated the protein kinase C and Rho/Rho-kinase signaling pathways and stimulated actin polymerization. Glucose-induced expression of contractile smooth muscle markers in cultured cells could be partially or completely repressed by inhibitors of advanced glycation end products, L-type calcium channels, protein kinase C, Rho-kinase, actin polymerization, and myocardin-related transcription factors. Furthermore, genetic ablation of the miR-143/145 cluster prevented the effects of glucose on smooth muscle marker expression. In conclusion, these data demonstrate a possible link between hyperglycemia and vascular disease states associated with smooth muscle contractility. PMID:26683376

  2. Effects of sub-lethal neurite outgrowth inhibitory concentrations of chlorpyrifos oxon on cytoskeletal proteins and acetylcholinesterase in differentiating N2a cells.

    PubMed

    Flaskos, J; Nikolaidis, E; Harris, W; Sachana, M; Hargreaves, A J

    2011-11-01

    Previous work in our laboratory has shown that sub-lethal concentrations (1-10 μM) of chlorpyrifos (CPF), diazinon (DZ) and diazinon oxon (DZO) inhibit the outgrowth of axon-like neurites in differentiating mouse N2a neuroblastoma cells concomitant with altered levels and/or phosphorylation state of axonal cytoskeleton and growth-associated proteins. The aim of the present work was to determine whether chlorpyrifos oxon (CPO) was capable of inhibiting N2a cell differentiation in a similar manner. Using experimental conditions similar to our previous work, sub-lethal concentrations (1-10 μM) of CPO were found to inhibit N2a cell differentiation. However, unlike previous studies with DZ and DZO, there was a high level of sustained inhibition of acetylcholinesterase (AChE) in CPO treated cells. Impairment of neurite outgrowth was also associated with reduced levels of growth associated protein-43 and neurofilament heavy chain (NFH), and the distribution of NFH in cells stained by indirect immunofluorescence was disrupted. However, in contrast to previous findings for DZO, the absolute level of phosphorylated NFH was unaffected by CPO exposure. Taken together, the findings suggest that sub-lethal concentrations of CPO inhibit axon outgrowth in differentiating N2a cells and that this effect involves reduced levels of two proteins that play key roles in axon outgrowth and maintenance. Although the inhibition of neurite outgrowth is unlikely to involve AChE inhibition directly, further work will help to determine whether the persistent inhibition of AChE by CPO can account for the different effects induced by CPO and DZO on the levels of total and phosphorylated NFH.

  3. Cell-substrate interactions and locomotion of Dictyostelium wild-type and mutants defective in three cytoskeletal proteins: a study using quantitative reflection interference contrast microscopy.

    PubMed Central

    Schindl, M; Wallraff, E; Deubzer, B; Witke, W; Gerisch, G; Sackmann, E

    1995-01-01

    Reflection interference contrast microscopy combined with digital image processing was applied to study the motion of Dictyostelium discoideum cells in their pre-aggregative state on substrata of different adhesiveness (glass, albumin-covered glass, and freshly cleaved mica). The temporal variations of the size and shape of the cell/substratum contact area and the time course of advancement of pseudopods protruding in contact with the substratum were analyzed. The major goal was to study differences between the locomotion of wild-type cells and strains of triple mutants deficient in two F-actin cross-linking proteins (alpha-actinin and the 120-kDa gelation factor) and one F-actin fragmenting protein (severin). The size of contact area, AC, of both wild-type and mutant cells fluctuates between minimum and maximum values on the order of minutes, pointing toward an intrinsic switching mechanism associated with the mechanochemical control system. The fluctuation amplitudes are much larger on freshly cleaved mica than on glass. Wild-type and mutant cells exhibit remarkable differences on mica but not on glass. These differences comprise the population median of AC and alterations in pseudopod protrusion. AC is smaller by a factor of two or more for all mutants. Pseudopods protrude slower and shorter in the mutants. It is concluded that cell shape and pseudopods are destabilized by defects in the actin-skeleton, which can be overcompensated by strongly adhesive substrata. Several features of amoeboid cell locomotion on substrata can be understood on the basis of the minimum bending energy concept of soft adhering shells and by assuming that adhesion induces local alterations of the composite membrane consisting of the protein/lipid bilayer on the cell surface and the underlying actin-cortex. Images FIGURE 3 FIGURE 4 FIGURE 6 FIGURE 8 FIGURE 9 FIGURE 10 FIGURE 11 FIGURE 12 PMID:7756537

  4. Espin actin-cytoskeletal proteins are in rat type I spiral ganglion neurons and include splice-isoforms with a functional nuclear localization signal.

    PubMed

    Sekerková, Gabriella; Zheng, Lili; Mugnaini, Enrico; Bartles, James R

    2008-08-20

    The espins are Ca(2+)-resistant actin-bundling proteins that are enriched in hair cell stereocilia and sensory cell microvilli. Here, we report a novel localization of espins to a large proportion of rat type I spiral ganglion neurons (SGNs) and their projections to the cochlear nucleus (CN). Moreover, we show that a fraction of these espins is in the nucleus of SGNs owing to the presence of splice-isoforms that contain a functional nuclear localization signal (NLS). Espin antibody labeled approximately 83% of type I SGNs, and the labeling intensity increased dramatically during early postnatal development. Type II SGNs and vestibular ganglion neurons were unlabeled. In the CN, espin-positive auditory nerve fibers showed a projection pattern typical of type I SGNs, with intense labeling in the nerve root region and posteroventral CN (PVCN). The anteroventral CN (AVCN) showed moderate labeling, whereas the dorsal CN showed weak labeling that was restricted to the deep layer. Espin-positive synaptic terminals were enriched around nerve root neurons and octopus cells in the PVCN and were also found on globular bushy cells and multipolar neurons in the PVCN and AVCN. SGNs expressed multiple espin transcripts and proteins, including splice-isoforms that contain a nonapeptide, which is rich in positively charged amino acids and creates a bipartite NLS. The nonapeptide was necessary to target espin isoforms to the nucleus and was sufficient to target an unrelated protein to the nucleus when joined with the upstream di-arginine-containing octapeptide. The presence of cytoplasmic and nuclear espins in SGNs suggests additional roles for espins in auditory neuroscience.

  5. An ultraviolet-sensitive maternal mRNA encoding a cytoskeletal protein may be involved in axis formation in the ascidian embryo

    SciTech Connect

    Jeffery, W.R. )

    1990-09-01

    Ultraviolet (uv) irradiation of the vegetal hemisphere of fertilized eggs during ooplasmic segregation inhibits subsequent gastrulation and axis formation in ascidian embryos. The molecular basis of this phenomenon was investigated in by comparing in vivo protein synthesis and in vitro mRNA translation in normal and uv-irradiated embryos of the ascidian Styela clava. Analysis of protein synthesis by (35S)methionine incorporation, two-dimensional (2D) gel electrophoresis, and autoradiography showed that only 21 of 433 labeled polypeptides were missing or decreased in labeling intensity in uv-irradiated embryos. The most prominent of these was a 30,000 molecular weight (pI 6.0) polypeptide (p30). Extraction of gastrulae with the nonionic detergent Triton X-100 showed that p30 is retained in the detergent insoluble residue, suggesting that it is associated with the cytoskeleton. Several lines of evidence suggest that p30 may be involved in axis formation. First, p30 labeling peaks during gastrulation, when the embryonic axis is being established. Second, axis formation and p30 labeling are abolished by the same threshold uv dose, which is distinct from that required to inactivate muscle cell development. Third, the uv sensitivity period for abolishing p30 labeling and axis formation are both restricted to ooplasmic segregation. In vitro translation of egg RNA followed by 2D gel electrophoresis and autoradiography of the protein products showed that p30 is encoded by a maternal mRNA. The translation of p30 mRNA was abolished by uv irradiation of fertilized eggs during ooplasmic segregation suggesting that this message is a uv-sensitive target. The results are consistent with the hypothesis that uv irradiation blocks gastrulation and axis formation by inhibiting the translation of maternal mRNA localized in the vegetal hemisphere of the fertilized egg.

  6. G proteins: critical control points for transmembrane signals.

    PubMed Central

    Neer, E. J.

    1994-01-01

    Heterotrimeric GTP-binding proteins (G proteins) that are made up of alpha and beta gamma subunits couple many kinds of cell-surface receptors to intracellular effector enzymes or ion channels. Every cell contains several types of receptors, G proteins, and effectors. The specificity with which G protein subunits interact with receptors and effectors defines the range of responses a cell is able to make to an external signal. Thus, the G proteins act as a critical control point that determines whether a signal spreads through several pathways or is focused to a single pathway. In this review, I will summarize some features of the structure and function of mammalian G protein subunits, discuss the role of both alpha and beta gamma subunits in regulation of effectors, the role of the beta gamma subunit in macromolecular assembly, and the mechanisms that might make some responses extremely specific and others rather diffuse. PMID:8142895

  7. N-WASP, a novel actin-depolymerizing protein, regulates the cortical cytoskeletal rearrangement in a PIP2-dependent manner downstream of tyrosine kinases.

    PubMed Central

    Miki, H; Miura, K; Takenawa, T

    1996-01-01

    Here we identify a 65 kDa protein (N-WASP) from brain that binds the SH3 domains of Ash/Grb2. The sequence is homologous to Wiskott-Aldrich syndrome protein (WASP). N-WASP has several functional motifs, such as a pleckstrin homology (PH) domain and cofilin-homologous region, through which N-WASP depolymerizes actin filaments. When overexpressed in COS 7 cells, the wild-type N-WASP causes several surface protrusions where N-WASP co-localizes with actin filaments. Epidermal growth factor (EGF) treatment induces the complex formation of EGF receptors and N-WASP, and produces microspikes. On the other hand, two mutants, C38W (a point mutation in the PH domain) and deltaVCA (deletion of the actin binding domain), localize predominantly in the nucleus and do not cause a change in the cytoskeleton, irrespective of EGF treatment. Interestingly, the C38W PH domain binds less effectively to phosphatidylinositol 4,5-bisphosphate (PIP2) than the wild-type PH domain. These results suggest the importance of the PIP2 binding ability of the PH domain and the actin binding for retention in membranes. Collectively, we conclude that N-WASP transmits signals from tyrosine kinases to cause a polarized rearrangement of cortical actin filaments dependent on PIP2. Images PMID:8895577

  8. The cytoskeletal proteins in the contractile tissues of the testis and its excurrent ducts of the passerine bird, Masked Weaver (Ploceus velatus).

    PubMed

    Ozegbe, P C; Aire, T A; Deokar, M S

    2012-02-01

    The cellular composition of the testicular capsule, seminiferous peritubular tissue, the epithelia as well as periductal muscle cell layers of the excurrent ducts was studied, in sexually mature and active Masked Weaver (Ploceus velatus) birds of the passerine family, Ploceidae. Ultrastructure of the contractile cells in the testicular capsule, peritubular and periductal tissues showed that these cells were smooth muscles of typical morphological characteristics. Variability in the immunohistochemical co-expression of microfilaments and intermediate filaments in the different tissues was evident. Actin and desmin proteins were co-expressed immunohistochemically in the testicular capsule and seminiferous peritubular smooth muscle layer. Actin was singly and very weakly expressed in the rete testis epithelium while cytokeratins and desmin were co-expressed in the epithelium of the excurrent ducts. The periductal muscle layer of all ducts of the epididymis, the ductus deferens as well as the seminal glomus, strongly co-expressed actin and desmin. Vimentin was absent in all cells and tissue types studied. There is clear evidence that the tissues of the male gonad and its excurrent ducts in the Masked Weaver, as has been reported for members of the Galloanserae and Ratitae, contain well-formed contractile tissues whose function would include the transportation of luminal through-flow from the testis into, and through, its excurrent ducts. The microtubule helix in the head and of the mid-piece, of elongating spermatids, as well as of the mature spermatozoa in the various excurrent ducts, including some spermatozoa in the seminal glomus, also co-expressed these three proteins.

  9. Links between critical proteins drive the controllability of protein interaction networks.

    PubMed

    Wuchty, Stefan; Boltz, Toni; Küçük-McGinty, Hande

    2017-04-10

    Focusing on the interactomes of H. sapiens, S. cerevisiae, and E. coli, we investigated interactions between controlling proteins. In particular, we determined critical, intermittent, and redundant proteins based on their tendency to participate in minimum dominating sets (MDSets). Independently of the organisms considered, we found that interactions that involved critical nodes had the most prominent effects on the topology of their corresponding networks. Furthermore, we observed that phosphorylation and regulatory events were considerably enriched when the corresponding transcription factors and kinases were critical proteins, while such interactions were depleted when they were redundant proteins. Moreover, interactions involving critical proteins were enriched with essential genes, disease genes and drug targets, suggesting that such characteristics may be key for the detection of novel drug targets as well as assess their efficacy. This article is protected by copyright. All rights reserved.

  10. The time course of activity-regulated cytoskeletal (ARC) gene and protein expression in the whisker-barrel circuit using two paradigms of whisker stimulation.

    PubMed

    Khodadad, Aida; Adelson, P David; Lifshitz, Jonathan; Thomas, Theresa Currier

    2015-05-01

    Immediate early genes have previously demonstrated a rapid increase in gene expression after various behavioral paradigms. The main focus of this article is to identify a molecular marker of circuit activation after manual whisker stimulation or exploration of a novel environment. To this end, we investigated the dynamics of ARC transcription in adult male rats during whisker somatosensation throughout the whisker barrel circuit. At various time points, tissue was biopsied from the ventral posterior medial nucleus (VPM) of the thalamus, primary somatosensory barrel field (S1BF) cortex and hippocampus for quantification using real-time PCR and western blot. Our results show that there were no significant differences in ARC gene or protein expression in the VPM after both types of stimulation. However, manual whisker stimulation resulted in increased ARC gene expression at 15, 30, 60 and 300 min in the S1BF, and 15 min in the hippocampus (p<0.05). Also, exploration of a novel environment resulted in increased ARC mRNA expression at 15 and 30 min in the S1BF and at 15 min in the hippocampus (p<0.05). The type of stimulation (manual versus exploration of a novel environment) influenced the magnitude of ARC gene expression in the S1BF (p<0.05). These data are the first to demonstrate that ARC is a specific, quantifiable and input dependent molecular marker of circuit activation which can serve to quantify the impact of brain injury and subsequent rehabilitation on whisker sensation.

  11. Pattern formation in actin gels: A study in the mechanics of gels formed by the important cytoskeletal protein actin, especially as applied to cellular motility

    NASA Astrophysics Data System (ADS)

    Balter, Ariel

    We have studied pattern formation in actin gels to better understand how they function in biological systems, especially in the motility mechanism used by some pathogenic bacteria such as Listeria. By coating themselves with certain enzymes, these bacteria appropriate actin (a protein) from the surrounding host cell's cytoplasm and cause a network or "gel" of actin filaments to grow on their outer surface. As the resulting "comet tail" shaped protrusion grows, it pushes the bacterium away. In experiments, polystyrene beads coated with the same enzymes will also generate comet tails and swim in a very similar manner. However, these bead experiments have also generated anomalous results such as the formation of many comet tails. In some experiments, when two comet tails formed they systematically grew into regular, oppositely handed helices. The formation of any comet tails on a bead poses a physical conundrum. The bacterial enzyme coating is asymmetrical so the comet tail forms in a particular place. But the beads are symmetrical, so comet tails formation constitutes symmetry breaking and spontaneous pattern formation. We have modeled this process as a competition between elastic energy (which favors many tails) and chemical energy (which favors few tails). Our analytical model explains the factors that experimentally determine the number of tails, and numerical simulations confirm these predictions. To understand the helical tails, we did extensive data analysis involving image processing, statistical analysis and mathematical modeling of images of the helical tails. We identified some important features of how the twin tails form. For instance, the tail growth rate is independent of drag force, and bead rotation must accompany helical tail formation. We also created a physical model for helical growth. Numerical simulations of our model show that at very low Reynolds number, a cylindrical object growing under the conditions of an actin comet tail can spontaneously

  12. A set of fluorescent protein-based markers expressed from constitutive and arbuscular mycorrhiza-inducible promoters to label organelles, membranes and cytoskeletal elements in Medicago truncatula.

    PubMed

    Ivanov, Sergey; Harrison, Maria J

    2014-12-01

    Medicago truncatula is widely used for analyses of arbuscular mycorrhizal (AM) symbiosis and nodulation. To complement the genetic and genomic resources that exist for this species, we generated fluorescent protein fusions that label the nucleus, endoplasmic reticulum, Golgi apparatus, trans-Golgi network, plasma membrane, apoplast, late endosome/multivesicular bodies (MVB), transitory late endosome/ tonoplast, tonoplast, plastids, mitochondria, peroxisomes, autophagosomes, plasmodesmata, actin, microtubules, periarbuscular membrane (PAM) and periarbuscular apoplastic space (PAS) and expressed them from the constitutive AtUBQ10 promoter and the AM symbiosis-specific MtBCP1 promoter. All marker constructs showed the expected expression patterns and sub-cellular locations in M. truncatula root cells. As a demonstration of their utility, we used several markers to investigate AM symbiosis where root cells undergo major cellular alterations to accommodate their fungal endosymbiont. We demonstrate that changes in the position and size of the nuclei occur prior to hyphal entry into the cortical cells and do not require DELLA signaling. Changes in the cytoskeleton, tonoplast and plastids also occur in the colonized cells and in contrast to previous studies, we show that stromulated plastids are abundant in cells with developing and mature arbuscules, while lens-shaped plastids occur in cells with degenerating arbuscules. Arbuscule development and secretion of the PAM creates a periarbuscular apoplastic compartment which has been assumed to be continuous with apoplast of the cell. However, fluorescent markers secreted to the periarbuscular apoplast challenge this assumption. This marker resource will facilitate cell biology studies of AM symbiosis, as well as other aspects of legume biology.

  13. Cytoskeletal and membrane dynamics during higher plant cytokinesis.

    PubMed

    McMichael, Colleen M; Bednarek, Sebastian Y

    2013-03-01

    Following mitosis, cytoplasm, organelles and genetic material are partitioned into daughter cells through the process of cytokinesis. In somatic cells of higher plants, two cytoskeletal arrays, the preprophase band and the phragmoplast, facilitate the positioning and de novo assembly of the plant-specific cytokinetic organelle, the cell plate, which develops across the division plane and fuses with the parental plasma membrane to yield distinct new cells. The coordination of cytoskeletal and membrane dynamics required to initiate, assemble and shape the cell plate as it grows toward the mother cell cortex is dependent upon a large array of proteins, including molecular motors, membrane tethering, fusion and restructuring factors and biosynthetic, structural and regulatory elements. This review focuses on the temporal and molecular requirements of cytokinesis in somatic cells of higher plants gleaned from recent studies using cell biology, genetics, pharmacology and biochemistry.

  14. Protein hydration dynamics in solution: a critical survey.

    PubMed Central

    Halle, Bertil

    2004-01-01

    The properties of water in biological systems have been studied for well over a century by a wide range of physical techniques, but progress has been slow and erratic. Protein hydration--the perturbation of water structure and dynamics by the protein surface--has been a particularly rich source of controversy and confusion. Our aim here is to critically examine central concepts in the description of protein hydration, and to assess the experimental basis for the current view of protein hydration, with the focus on dynamic aspects. Recent oxygen-17 magnetic relaxation dispersion (MRD) experiments have shown that the vast majority of water molecules in the protein hydration layer suffer a mere twofold dynamic retardation compared with bulk water. The high mobility of hydration water ensures that all thermally activated processes at the protein-water interface, such as binding, recognition and catalysis, can proceed at high rates. The MRD-derived picture of a highly mobile hydration layer is consistent with recent molecular dynamics simulations, but is incompatible with results deduced from intermolecular nuclear Overhauser effect spectroscopy, dielectric relaxation and fluorescence spectroscopy. It is also inconsistent with the common view of hydration effects on protein hydrodynamics. Here, we show how these discrepancies can be resolved. PMID:15306377

  15. c-myc mRNA in cytoskeletal-bound polysomes in fibroblasts.

    PubMed

    Hesketh, J E; Campbell, G P; Whitelaw, P F

    1991-03-01

    3T3 fibroblasts were treated sequentially with 25 mM-KCl/0.05% Nonidet P40, 130 mM-KCl/0.05% Nonidet P40 and finally with 1% Nonidet P40/1% deoxycholate in order to release free, cytoskeletal-bound and membrane-bound polysomes respectively. The membrane-bound fraction was enriched in the mRNA for the membrane protein beta 2-microglobulin, whereas the cytoskeletal-bound polysomes were enriched in c-myc mRNA. Actin mRNA was present in both free and cytoskeletal-bound polysomes. The results suggest that cytoskeletal-bound polysomes are involved in the translation of specific mRNA species.

  16. Simulated Microgravity Induced Cytoskeletal Rearrangements are Modulated by Protooncogenes

    NASA Technical Reports Server (NTRS)

    Melhado, C. D.; Sanford, G. L.; Bosah, F.; Harris-Hooker, S.

    1998-01-01

    Microgravity is the environment living systems encounter during space flight and gravitational unloading is the effect of this environment on living systems. The cell, being a multiphasic chemical system, is a useful starting point to study the potential impact of gravity unloading on physiological function. In the absence of gravity, sedimentation of organelles including chromosomes, mitochondria, nuclei, the Golgi apparatus, vacuoles, and the endoplasmic reticulum may be affected. Most of these organelles, however, are somewhat held in place by cytoskeleton. Hansen and Igber suggest that intermediate filaments act to stabilize the nuleus against rotational movement, and integrate cell and nuclear structure. The tensegrity theory supports the idea that mechanical or physical forces alters the cytoskeletal structures of a cell resulting in the changes in cell: matrix interactions and receptor-signaling coupling. This type of stress to the cytoskeleton may be largely responsible regulating cell shape, growth, movement and metabolism. Mouse MC3T3 El cells under microgravity exhibited significant cytoskeletal changes and alterations in cell growth. The alterations in cytoskeleton architecture may be due to changes in the expression of actin related proteins or integrins. Philopott and coworkers reported on changes in the distribution of microtubule and cytoskeleton elements in the cells of heart tissue from space flight rats and those centrifuged at 1.7g. Other researchers have showed that microgravity reduced EGF-induced c-fos and c-jun expression compared to 1 g controls. Since c-fos and c-jun are known regulators of cell growth, it is likely that altered signal transduction involving protooncogenes may play a crucial role in the reduced growth and alterations in cytoskeletal arrangements found during space flight. It is clear that a microgravity environment induces a number of changes in cell shape, cell surface molecules, gene expression, and cytoskeletal

  17. Methods of measuring Protein Disulfide Isomerase activity: a critical overview

    NASA Astrophysics Data System (ADS)

    Watanabe, Monica; Laurindo, Francisco; Fernandes, Denise

    2014-09-01

    Protein disulfide isomerase is an essential redox chaperone from the endoplasmic reticulum (ER) and is responsible for correct disulfide bond formation in nascent proteins. PDI is also found in other cellular locations in the cell, particularly the cell surface. Overall, PDI contributes to ER and global cell redox homeostasis and signaling. The knowledge about PDI structure and function progressed substantially based on in vitro studies using recombinant PDI and chimeric proteins. In these experimental scenarios, PDI reductase and chaperone activities are readily approachable. In contrast, assays to measure PDI isomerase activity, the hallmark of PDI family, are more complex. Assessment of PDI roles in cells and tissues mainly relies on gain- or loss-of-function studies. However, there is limited information regarding correlation of experimental readouts with the distinct types of PDI activities. In this mini-review, we evaluate the main methods described for measuring the different kinds of PDI activity: thiol reductase, thiol oxidase, thiol isomerase and chaperone. We emphasize the need to use appropriate controls and the role of critical interferents (e.g., detergent, presence of reducing agents). We also discuss the translation of results from in vitro studies with purified recombinant PDI to cellular and tissue samples, with critical comments on the interpretation of results.

  18. Scaling and self-organized criticality in proteins: Lysozyme c

    NASA Astrophysics Data System (ADS)

    Phillips, J. C.

    2009-11-01

    Proteins appear to be the most dramatic natural example of self-organized criticality (SOC), a concept that explains many otherwise apparently unlikely phenomena. Protein functionality is often dominated by long-range hydro(phobic/philic) interactions, which both drive protein compaction and mediate protein-protein interactions. In contrast to previous reductionist short-range hydrophobicity scales, the holistic Moret-Zebende hydrophobicity scale [Phys. Rev. E 75, 011920 (2007)] represents a hydroanalytic tool that bioinformatically quantifies SOC in a way fully compatible with evolution. Hydroprofiling identifies chemical trends in the activities and substrate binding abilities of model enzymes and antibiotic animal lysozymes c , as well as defensins, which have been the subject of tens of thousands of experimental studies. The analysis is simple and easily performed and immediately yields insights not obtainable by traditional methods based on short-range real-space interactions, as described either by classical force fields used in molecular-dynamics simulations, or hydrophobicity scales based on transference energies from water to organic solvents or solvent-accessible areas.

  19. A critical comparison of protein microarray fabrication technologies.

    PubMed

    Romanov, Valentin; Davidoff, S Nikki; Miles, Adam R; Grainger, David W; Gale, Bruce K; Brooks, Benjamin D

    2014-03-21

    Of the diverse analytical tools used in proteomics, protein microarrays possess the greatest potential for providing fundamental information on protein, ligand, analyte, receptor, and antibody affinity-based interactions, binding partners and high-throughput analysis. Microarrays have been used to develop tools for drug screening, disease diagnosis, biochemical pathway mapping, protein-protein interaction analysis, vaccine development, enzyme-substrate profiling, and immuno-profiling. While the promise of the technology is intriguing, it is yet to be realized. Many challenges remain to be addressed to allow these methods to meet technical and research expectations, provide reliable assay answers, and to reliably diversify their capabilities. Critical issues include: (1) inconsistent printed microspot morphologies and uniformities, (2) low signal-to-noise ratios due to factors such as complex surface capture protocols, contamination, and static or no-flow mass transport conditions, (3) inconsistent quantification of captured signal due to spot uniformity issues, (4) non-optimal protocol conditions such as pH, temperature, drying that promote variability in assay kinetics, and lastly (5) poor protein (e.g., antibody) printing, storage, or shelf-life compatibility with common microarray assay fabrication methods, directly related to microarray protocols. Conventional printing approaches, including contact (e.g., quill and solid pin), non-contact (e.g., piezo and inkjet), microfluidics-based, microstamping, lithography, and cell-free protein expression microarrays, have all been used with varying degrees of success with figures of merit often defined arbitrarily without comparisons to standards, or analytical or fiduciary controls. Many microarray performance reports use bench top analyte preparations lacking real-world relevance, akin to "fishing in a barrel", for proof of concept and determinations of figures of merit. This review critiques current protein

  20. Protein for the critically ill patient--what and when?

    PubMed

    Plank, L D

    2013-05-01

    Critical illness is characterised by catabolism of the skeletal muscle that releases amino acids for protein synthesis to support tissue repair, immune defence and inflammatory and acute-phase responses. Protein requirements for these patients have generally been based on levels that result in the lowest catabolic rates or most favourable nitrogen balance. The definition of these levels, in particular, in relation to indexing to a measure of patient weight or lean body mass, is controversial. Furthermore, optimal nitrogen balance may not necessarily equate to best clinical outcome. There is some evidence that administration of specific amino acids may be advantageous at least during the early or most catabolic phases of illness, in order to support the specific amino acid requirements of the metabolic pathways activated by the injury or infection. Current widely used guidelines differ in the protein prescription they recommend and in the timing of administration in relation to intensive care admission. A pressing need exists for well-designed randomised trials that compare differing levels of protein or amino acid provision, and the timing of this provision, for their effects on clinical endpoints.

  1. Supramolecular Assembly in Cytoskeletal Filaments and their Associated Biomolecules

    NASA Astrophysics Data System (ADS)

    Safinya, Cyrus R.

    2002-03-01

    With the completion of the Human Genome Project and the emerging proteomics era, the biosciences community is beginning the daunting task of understanding the functions of a large number of interacting proteins. Cellular activity, which is usually tightly regulated, results from protein-protein and protein-nucleic acid interactions, which often lead to the formation of very large assemblies of biomolecules for distinct functions. Examples include DNA condensation states during the cell cycle, and bundle and network formation of filamentous proteins in cell attachment, motility, and cytokinesis. We present recent synchrotron x-ray diffraction and optical imaging data, in cell-free systems of cytoskeletal filaments and their associated biomolecules, which reveal novel supramolecular assemblies, spanning lengths from the nanometer to the micrometer scale. Supported by NSF DMR-9972246 and NIH GM59288.

  2. Biophysical models of length control of cytoskeletal structures

    NASA Astrophysics Data System (ADS)

    Mohapatra, Lishibanya

    Cells contain elaborate and interconnected networks of protein polymers which make up the cytoskeleton. The cytoskeleton governs the internal positioning and movement of vesicles and organelles, and controls dynamic changes in cell polarity, shape and movement. Many of these processes require tight control of the size and shape of these cytoskeletal structures. A key question in cell biology is how these structures maintain a particular size and shape despite the rapid turnover of their components. In this thesis I show that the emerging mechanisms by which cells control and regulate the size of filamentous cytoskeletal structures can be classified using key parameters related to their assembly and disassembly kinetics. First, I examine quantitative models based on these specific molecular mechanisms of length control and make experimentally testable predictions that can be used to distinguish different mechanisms of length-control. Second, I study the length control of actin cables in budding yeast cells. Inspired by recent experimental observations in cells, I propose a novel antenna mechanism for cable length control which involves three key proteins: formins, which polymerize actin, Smy1 proteins, which bind formins and inhibit actin polymerization, and myosin motors, which deliver Smy1 to formins, leading to a length-dependent actin polymerization rate. My results provide testable predictions of the antenna mechanism of actin-cable length control. Next I consider the question of how different sized structures can co-exist in the same cytoplasm while making use of the same building blocks. Using theory, I discover limitations imposed by physics on the finite monomer pool as a mechanism of size control and conclude that additional length control mechanisms are required if a cell is to maintain multiple structures. While the primary focus of this thesis is on cytoskeletal structures, the broader principles and mechanisms discussed herein will apply to a range of

  3. Building Blocks of Functioning Brain: Cytoskeletal Dynamics in Neuronal Development

    PubMed Central

    Menon, Shalini; Gupton, Stephanie L.

    2016-01-01

    Neural connectivity requires proper polarization of neurons, guidance to appropriate target locations, and establishment of synaptic connections. From when neurons are born to when they finally reach their synaptic partners, neurons undergo constant rearrangment of the cytoskeleton to achieve appropriate shape and polarity. Of particular importance to neuronal guidance to target locations is the growth cone at the tip of the axon. Growth-cone steering is also dictated by the underlying cytoskeleton. All these changes require spatiotemporal control of the cytoskeletal machinery. This review summarizes the proteins that are involved in modulating the actin and microtubule cytoskeleton during the various stages of neuronal development. PMID:26940519

  4. Visualization of Actin Cytoskeletal Dynamics in Fixed and Live Drosophila Egg Chambers.

    PubMed

    Groen, Christopher M; Tootle, Tina L

    2015-01-01

    Visualization of actin cytoskeletal dynamics is critical for understanding the spatial and temporal regulation of actin remodeling. Drosophila oogenesis provides an excellent model system for visualizing the actin cytoskeleton. Here, we present methods for imaging the actin cytoskeleton in Drosophila egg chambers in both fixed samples by phalloidin staining and in live egg chambers using transgenic actin labeling tools.

  5. Critical Features of Fragment Libraries for Protein Structure Prediction.

    PubMed

    Trevizani, Raphael; Custódio, Fábio Lima; Dos Santos, Karina Baptista; Dardenne, Laurent Emmanuel

    2017-01-01

    The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction.

  6. Critical Features of Fragment Libraries for Protein Structure Prediction

    PubMed Central

    dos Santos, Karina Baptista

    2017-01-01

    The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction. PMID:28085928

  7. Rho-kinase mediated cytoskeletal stiffness in skinned smooth muscle

    PubMed Central

    Lan, Bo; Wang, Lu; Zhang, Jenny; Pascoe, Chris D.; Norris, Brandon A.; Liu, Jeffrey C.-Y.; Solomon, Dennis; Paré, Peter D.; Deng, Linhong

    2013-01-01

    The structurally dynamic cytoskeleton is important in many cell functions. Large gaps still exist in our knowledge regarding what regulates cytoskeletal dynamics and what underlies the structural plasticity. Because Rho-kinase is an upstream regulator of signaling events leading to phosphorylation of many cytoskeletal proteins in many cell types, we have chosen this kinase as the focus of the present study. In detergent skinned tracheal smooth muscle preparations, we quantified the proteins eluted from the muscle cells over time and monitored the muscle's ability to respond to acetylcholine (ACh) stimulation to produce force and stiffness. In a partially skinned preparation not able to generate active force but could still stiffen upon ACh stimulation, we found that the ACh-induced stiffness was independent of calcium and myosin light chain phosphorylation. This indicates that the myosin light chain-dependent actively cycling crossbridges are not likely the source of the stiffness. The results also indicate that Rho-kinase is central to the ACh-induced stiffness, because inhibition of the kinase by H1152 (1 μM) abolished the stiffening. Furthermore, the rate of relaxation of calcium-induced stiffness in the skinned preparation was faster than that of ACh-induced stiffness, with or without calcium, suggesting that different signaling pathways lead to different means of maintenance of stiffness in the skinned preparation. PMID:24072407

  8. Adaptor protein cerebral cavernous malformation 3 (CCM3) mediates phosphorylation of the cytoskeletal proteins ezrin/radixin/moesin by mammalian Ste20-4 to protect cells from oxidative stress.

    PubMed

    Fidalgo, Miguel; Guerrero, Ana; Fraile, María; Iglesias, Cristina; Pombo, Celia M; Zalvide, Juan

    2012-03-30

    While studying the functions of CCM3/PDCD10, a gene encoding an adaptor protein whose mutation results in vascular malformations, we have found that it is involved in a novel response to oxidative stress that results in phosphorylation and activation of the ezrin/radixin/moesin (ERM) family of proteins. This phosphorylation protects cells from accidental cell death induced by oxidative stress. We also present evidence that ERM phosphorylation is performed by the GCKIII kinase Mst4, which is activated and relocated to the cell periphery after oxidative stress. The cellular levels of Mst4 and its activation after oxidative stress depend on the presence of CCM3, as absence of the latter impairs the phosphorylation of ERM proteins and enhances death of cells exposed to reactive oxygen species. These findings shed new light on the response of cells to oxidative stress and identify an important pathophysiological situation in which ERM proteins and their phosphorylation play a significant role.

  9. Regulation of protein phosphatase 2A methylation by LCMT1 and PME-1 plays a critical role in differentiation of neuroblastoma cells.

    PubMed

    Sontag, Jean-Marie; Nunbhakdi-Craig, Viyada; Mitterhuber, Martina; Ogris, Egon; Sontag, Estelle

    2010-12-01

    Neuritic alterations are a major feature of many neurodegenerative disorders. Methylation of protein phosphatase 2A (PP2A) catalytic C subunit by the leucine carboxyl methyltransferase (LCMT1), and demethylation by the protein phosphatase methylesterase 1, is a critical PP2A regulatory mechanism. It modulates the formation of PP2A holoenzymes containing the Bα subunit, which dephosphorylate key neuronal cytoskeletal proteins, including tau. Significantly, we have reported that LCMT1, methylated C and Bα expression levels are down-regulated in Alzheimer disease-affected brain regions. In this study, we show that enhanced expression of LCMT1 in cultured N2a neuroblastoma cells, which increases endogenous methylated C and Bα levels, induces changes in F-actin organization. It promotes serum-independent neuritogenesis and development of extended tau-positive processes upon N2a cell differentiation. These stimulatory effects can be abrogated by LCMT1 knockdown and S-adenosylhomocysteine, an inhibitor of methylation reactions. Expression of protein phosphatase methylesterase 1 and the methylation-site L309Δ C subunit mutant, which decrease intracellular methylated C and Bα levels, block N2a cell differentiation and LCMT1-mediated neurite formation. Lastly, inducible and non-inducible knockdown of Bα in N2a cells inhibit process outgrowth. Altogether, our results establish a novel mechanistic link between PP2A methylation and development of neurite-like processes.

  10. Cytoskeletal elements in the bacterium Mycoplasma pneumoniae

    NASA Astrophysics Data System (ADS)

    Hegermann, Jan; Herrmann, Richard; Mayer, Frank

    2002-09-01

    Mycoplasma pneumoniae is a pathogenic eubacterium lacking a cell wall. Three decades ago, a "rod", an intracellular cytoskeletal structure, was discovered that was assumed to define and stabilize the elongated cell shape. Later, by treatment with detergent, a "Triton shell" (i.e. a fraction of detergent-insoluble cell material) could be obtained, believed to contain additional cytoskeletal elements. Now, by application of a modified Triton X-100 treatment, we are able to demonstrate that M. pneumoniae possesses a cytoskeleton consisting of a blade-like rod and a peripheral lining located close to the inner face of the cytoplasmic membrane, exhibiting features of a highly regular network. Attached "stalks" may support the cytoplasmic membrane. The rod was connected to the cell periphery by "spokes" and showed a defined ultrastructure. Its proximal end was found to be attached to a wheel-like complex. Fibrils extended from the proximal end of the rod into the cytoplasm.

  11. The cytoskeletal arrangements necessary to neurogenesis.

    PubMed

    Compagnucci, Claudia; Piemonte, Fiorella; Sferra, Antonella; Piermarini, Emanuela; Bertini, Enrico

    2016-04-12

    During the process of neurogenesis, the stem cell committed to the neuronal cell fate starts a series of molecular and morphological changes. The understanding of the physio-pathology of mechanisms controlling the molecular and morphological changes occurring during neuronal differentiation is fundamental to the development of effective therapies for many neurologic diseases. Unfortunately, our knowledge of the biological events occurring in the cell during neuronal differentiation is still poor. In this study, we focus preliminarily on the relevance of the cytoskeletal rearrangements, which earlier drive the morphology of the neuronal precursors, and later the migrating/mature neurons. In fact, neuritogenesis, neurite branching, outgrowth and retraction are seminal to the development of a fully functional nervous system. With this in mind, we highlight the importance of iPSC technology to study the processes of cytoskeletal-driven morphological changes during neuronal differentiation.

  12. The cytoskeletal arrangements necessary to neurogenesis

    PubMed Central

    Compagnucci, Claudia; Piemonte, Fiorella; Sferra, Antonella; Piermarini, Emanuela; Bertini, Enrico

    2016-01-01

    During the process of neurogenesis, the stem cell committed to the neuronal cell fate starts a series of molecular and morphological changes. The understanding of the physio-pathology of mechanisms controlling the molecular and morphological changes occurring during neuronal differentiation is fundamental to the development of effective therapies for many neurologic diseases. Unfortunately, our knowledge of the biological events occurring in the cell during neuronal differentiation is still poor. In this study, we focus preliminarily on the relevance of the cytoskeletal rearrangements, which earlier drive the morphology of the neuronal precursors, and later the migrating/mature neurons. In fact, neuritogenesis, neurite branching, outgrowth and retraction are seminal to the development of a fully functional nervous system. With this in mind, we highlight the importance of iPSC technology to study the processes of cytoskeletal-driven morphological changes during neuronal differentiation. PMID:26760504

  13. Cell Forces and Cytoskeletal Order Parameters

    NASA Astrophysics Data System (ADS)

    Discher, Dennis

    2012-02-01

    Nematic, Smectic and Isotropic Order parameters have found wide-spread use in characterizing all manner of soft matter systems, but have not yet been applied to characterize and understand the structures within living cells, particularly cytoskeletal structures. Several examples will be used to illustrate the utility of such analyses, ranging from experiments on stem cells attached to or in various elastic matrices to embryonic heart tissue and simulations of membrane cytoskeletons under all manner of stressing. Recently developed theory will be shown to apply in general with account of cell contractility, matrix elasticity and dimensionality as well as cell shape and a newly defined ``cytoskeletal polarizability.'' The latter property of cells is likely different between different cell types due to different amounts of key cytoskeletal components with some types of stem cells being more polarizable than others. Evidence of coupling to the nucleus as a viscoelastic inclusion will also be presented. [4pt] References: (1) P. Dalhaimer, D.E. Discher, T. Lubensky. Crosslinked actin networks exhibit liquid crystal elastomer behavior, including soft-mode elasticity. Nature Physics 3: 354-360 (2007). (2) A. Zemel, F.Rehfeldt, A.E.X. Brown, D.E. Discher, and S.A. Safran. Optimal matrix rigidity in the self-polarization of stem cells. Nature Physics 6: 468 - 473 (2010).

  14. HSF-1-mediated cytoskeletal integrity determines thermotolerance and life span.

    PubMed

    Baird, Nathan A; Douglas, Peter M; Simic, Milos S; Grant, Ana R; Moresco, James J; Wolff, Suzanne C; Yates, John R; Manning, Gerard; Dillin, Andrew

    2014-10-17

    The conserved heat shock transcription factor-1 (HSF-1) is essential to cellular stress resistance and life-span determination. The canonical function of HSF-1 is to regulate a network of genes encoding molecular chaperones that protect proteins from damage caused by extrinsic environmental stress or intrinsic age-related deterioration. In Caenorhabditis elegans, we engineered a modified HSF-1 strain that increased stress resistance and longevity without enhanced chaperone induction. This health assurance acted through the regulation of the calcium-binding protein PAT-10. Loss of pat-10 caused a collapse of the actin cytoskeleton, stress resistance, and life span. Furthermore, overexpression of pat-10 increased actin filament stability, thermotolerance, and longevity, indicating that in addition to chaperone regulation, HSF-1 has a prominent role in cytoskeletal integrity, ensuring cellular function during stress and aging.

  15. Visualization of Cytoskeletal Elements by the Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Berdyyeva, Tamara; Woodworth, Craig; Sokolov, Igor

    2004-03-01

    We describe a novel application of atomic force microscopy (AFM) to directly visualize cytoskeletal fibers in human foreskin epithelial cells. The nonionic detergent Triton X-100 in a low concentration was used to remove the membrane, soluble proteins, and organelles from the cell. The remaining cytoskeleton can then be directly visualized in either liquid or air-dried ambient conditions. These two types of scanning provide complimentary information. Scanning in liquids visualizes the surface filaments of the cytoskeleton, whereas scanning in air shows both the surface filaments and the total volume of the cytoskeletal fibers. The smallest fibers observed were ca. 50 nm in diameter. The lateral resolution of this technique was ca.20 nm, which can be increased to a single nanometer level by choosing sharper AFM tips. Because the AFM is a true 3 dimensional technique, we are able to quantify the observed cytoskeleton by its density and volume. The types of fibers can be identified by their size, similar to electron microscopy.

  16. Cytoskeletal Reorganization Drives Mesenchymal Condensation and Regulates Downstream Molecular Signaling.

    PubMed

    Ray, Poulomi; Chapman, Susan C

    2015-01-01

    Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis.

  17. Cdk6 contributes to cytoskeletal stability in erythroid cells.

    PubMed

    Uras, Iris Z; Scheicher, Ruth M; Kollmann, Karoline; Glösmann, Martin; Prchal-Murphy, Michaela; Tigan, Anca S; Fux, Daniela A; Altamura, Sandro; Neves, Joana; Muckenthaler, Martina; Bennett, Keiryn L; Kubicek, Stefan; Hinds, Philip W; von Lindern, Marieke; Sexl, Veronika

    2017-03-02

    Mice lacking Cdk6 kinase activity suffer from mild anemia accompanied by elevated numbers of Ter119+ cells in the bone marrow. The animals show hardly any alterations in erythroid development, indicating that Cdk6 is not required for proliferation and maturation of erythroid cells. There is also no difference in stress erythropoiesis following hemolysis in vivo. However, Cdk6-/- erythrocytes have a shortened lifespan and are more sensitive to mechanical stress in vitro, suggesting differences in the cytoskeletal architecture. Erythroblasts contain both Cdk4 and Cdk6, while mature erythrocytes apparently lack Cdk4 and their Cdk6 is partly associated with the cytoskeleton. We used mass spectrometry to show that Cdk6 interacts with a number of proteins involved in cytoskeletal organization. Cdk6-/- erythroblasts show impaired F-actin formation and lower levels of gelsolin, which interacts with Cdk6. We show further that Cdk6 regulates the transcription of a panel of genes involved in actin (de-) polymerization. Cdk6-deficient cells are sensitive to drugs that interfere with the cytoskeleton, suggesting that our findings are relevant to the treatment of patients with anemia and may be relevant to cancer patients treated with the new generation of CDK6 inhibitors.

  18. TRPV4 regulates calcium homeostasis, cytoskeletal remodeling, conventional outflow and intraocular pressure in the mammalian eye

    PubMed Central

    Ryskamp, Daniel A.; Frye, Amber M.; Phuong, Tam T. T.; Yarishkin, Oleg; Jo, Andrew O.; Xu, Yong; Lakk, Monika; Iuso, Anthony; Redmon, Sarah N.; Ambati, Balamurali; Hageman, Gregory; Prestwich, Glenn D.; Torrejon, Karen Y.; Križaj, David

    2016-01-01

    An intractable challenge in glaucoma treatment has been to identify druggable targets within the conventional aqueous humor outflow pathway, which is thought to be regulated/dysregulated by elusive mechanosensitive protein(s). Here, biochemical and functional analyses localized the putative mechanosensitive cation channel TRPV4 to the plasma membrane of primary and immortalized human TM (hTM) cells, and to human and mouse TM tissue. Selective TRPV4 agonists and substrate stretch evoked TRPV4-dependent cation/Ca2+ influx, thickening of F-actin stress fibers and reinforcement of focal adhesion contacts. TRPV4 inhibition enhanced the outflow facility and lowered perfusate pressure in biomimetic TM scaffolds populated with primary hTM cells. Systemic delivery, intraocular injection or topical application of putative TRPV4 antagonist prodrug analogs lowered IOP in glaucomatous mouse eyes and protected retinal neurons from IOP-induced death. Together, these findings indicate that TRPV4 channels function as a critical component of mechanosensitive, Ca2+-signaling machinery within the TM, and that TRPV4-dependent cytoskeletal remodeling regulates TM stiffness and outflow. Thus, TRPV4 is a potential IOP sensor within the conventional outflow pathway and a novel target for treating ocular hypertension. PMID:27510430

  19. PTP-PEST controls EphA3 activation and ephrin-induced cytoskeletal remodelling.

    PubMed

    Mansour, Mariam; Nievergall, Eva; Gegenbauer, Kristina; Llerena, Carmen; Atapattu, Lakmali; Hallé, Maxime; Tremblay, Michel L; Janes, Peter W; Lackmann, Martin

    2016-01-15

    Eph receptors and their corresponding membrane-bound ephrin ligands regulate cell positioning and establish tissue patterns during embryonic and oncogenic development. Emerging evidence suggests that assembly of polymeric Eph signalling clusters relies on cytoskeletal reorganisation and underlies regulation by protein tyrosine phosphatases (PTPs). PTP-PEST (also known as PTPN12) is a central regulator of actin cytoskeletal dynamics. Here, we demonstrate that an N-terminal fragment of PTP-PEST, generated through an ephrinA5-triggered and spatially confined cleavage mediated by caspase-3, attenuates EphA3 receptor activation and its internalisation. Isolation of EphA3 receptor signalling clusters within intact plasma membrane fragments obtained by detergent-free cell fractionation reveals that stimulation of cells with ephrin triggers effective recruitment of this catalytically active truncated form of PTP-PEST together with key cytoskeletal and focal adhesion proteins. Importantly, modulation of actin polymerisation using pharmacological and dominant-negative approaches affects EphA3 phosphorylation in a similar manner to overexpression of PTP-PEST. We conclude that PTP-PEST regulates EphA3 activation both by affecting cytoskeletal remodelling and through its direct action as a PTP controlling EphA3 phosphorylation, indicating its multifaceted regulation of Eph signalling.

  20. Early changes in Huntington's disease patient brains involve alterations in cytoskeletal and synaptic elements.

    PubMed

    DiProspero, Nicholas A; Chen, Er-Yun; Charles, Vinod; Plomann, Markus; Kordower, Jeffrey H; Tagle, Danilo A

    2004-09-01

    Huntington's disease (HD) is caused by a polyglutamine repeat expansion in the N-terminus of the huntingtin protein. Huntingtin is normally present in the cytoplasm where it may interact with structural and synaptic elements. The mechanism of HD pathogenesis remains unknown but studies indicate a toxic gain-of-function possibly through aberrant protein interactions. To investigate whether early degenerative changes in HD involve alterations of cytoskeletal and vesicular components, we examined early cellular changes in the frontal cortex of HD presymptomatic (PS), early pathological grade (grade 1) and late-stage (grade 3 and 4) patients as compared to age-matched controls. Morphologic analysis using silver impregnation revealed a progressive decrease in neuronal fiber density and organization in pyramidal cell layers beginning in presymptomatic HD cases. Immunocytochemical analyses for the cytoskeletal markers alpha -tubulin, microtubule-associated protein 2, and phosphorylated neurofilament demonstrated a concomitant loss of staining in early grade cases. Immunoblotting for synaptic proteins revealed a reduction in complexin 2, which was marked in some grade 1 HD cases and significantly reduced in all late stage cases. Interestingly, we demonstrate that two synaptic proteins, dynamin and PACSIN 1, which were unchanged by immunoblotting, showed a striking loss by immunocytochemistry beginning in early stage HD tissue suggesting abnormal distribution of these proteins. We propose that mutant huntingtin affects proteins involved in synaptic function and cytoskeletal integrity before symptoms develop which may influence early disease onset and/or progression.

  1. Tristetraprolin functions in cytoskeletal organization during mouse oocyte maturation

    PubMed Central

    Liu, Xiaohui; Li, Xiaoyan; Ma, Rujun; Xiong, Bo; Sun, Shao-Chen; Liu, Honglin; Gu, Ling

    2016-01-01

    Tristetraprolin (TTP), a member of TIS11 family containing CCCH tandem zinc finger, is one of the best characterized RNA-binding proteins. However, to date, the role of TTP in mammalian oocytes remains completely unknown. In the present study, we report the altered maturational progression and cytokinesis, upon specific knockdown of TTP in mouse oocytes. Furthermore, by confocal scanning, we observe the failure to form cortical actin cap during meiosis of TTP-depleted oocytes. Loss of TTP in oocytes also results in disruption of meiotic spindle morphology and chromosome alignment. In support of these findings, incidence of aneuploidy is accordingly increased when TTP is abated in oocytes. Our results suggest that TTP as a novel cytoskeletal regulator is required for spindle morphology/chromosome alignment and actin polymerization in oocytes. PMID:27458159

  2. HSF-1 mediated cytoskeletal integrity determines thermotolerance and lifespan

    PubMed Central

    Baird, Nathan A.; Douglas, Peter M.; Simic, Milos S.; Grant, Ana R.; Moresco, James J.; Wolff, Suzanne C.; Yates, John R.; Manning, Gerard; Dillin, Andrew

    2015-01-01

    The conserved transcription factor HSF-1 is essential to cellular stress resistance and organismal lifespan determination. The canonical function of HSF-1 is to regulate a network of molecular chaperones that maintain protein homeostasis during extrinsic environmental stresses or intrinsic age related deterioration. In the metazoan C. elegans, we engineered a modified HSF-1 strain that increases stress resistance and longevity without enhancing chaperone induction. This HSF-1 dependent health assurance acts through the regulation of pat-10. Upon heat stress pat-10 upregulation maintains a functional actin cytoskeleton and endocytic network. Loss of pat-10 causes a collapse of organismal health and failure of stress resistance. Furthermore, overexpression of pat-10 is sufficient to increase both thermotolerance and longevity by mechanisms that affect actin stability. Our findings indicate that in addition to chaperone induction, HSF-1 plays a prominent role in cytoskeletal integrity to ensure proper cellular function during times of stress and aging. PMID:25324391

  3. Critical examination of the colloidal particle model of globular proteins.

    PubMed

    Sarangapani, Prasad S; Hudson, Steven D; Jones, Ronald L; Douglas, Jack F; Pathak, Jai A

    2015-02-03

    Recent studies of globular protein solutions have uniformly adopted a colloidal view of proteins as particles, a perspective that neglects the polymeric primary structure of these biological macromolecules, their intrinsic flexibility, and their ability to sample a large configurational space. While the colloidal perspective often serves as a useful idealization in many cases, the macromolecular identity of proteins must reveal itself under thermodynamic conditions in which the native state is no longer stable, such as denaturing solvents and high protein concentrations where macromolecules tend to have screened excluded volume, charge, and hydrodynamic interactions. Under extreme pH conditions, charge repulsion interactions within the protein chain can overcome the attractive hydrogen-bonding interactions, holding it in its native globular state. Conformational changes can therefore be expected to have great significance on the shear viscosity and other rheological properties of protein solutions. These changes are not envisioned in conventional colloidal protein models and we have initiated an investigation of the scattering and rheological properties of model proteins. We initiate this effort by considering bovine serum albumin because it is a globular protein whose solution properties have also been extensively investigated as a function of pH, temperature, ionic strength, and concentration. As we anticipated, near-ultraviolet circular dichroism measurements and intrinsic viscosity measurements clearly indicate that the bovine serum albumin tertiary structure changes as protein concentration and pH are varied. Our findings point to limited validity of the colloidal protein model and to the need for further consideration and quantification of the effects of conformational changes on protein solution viscosity, protein association, and the phase behavior. Small-angle Neutron Scattering measurements have allowed us to assess how these conformational changes

  4. Critical Examination of the Colloidal Particle Model of Globular Proteins

    PubMed Central

    Sarangapani, Prasad S.; Hudson, Steven D.; Jones, Ronald L.; Douglas, Jack F.; Pathak, Jai A.

    2015-01-01

    Recent studies of globular protein solutions have uniformly adopted a colloidal view of proteins as particles, a perspective that neglects the polymeric primary structure of these biological macromolecules, their intrinsic flexibility, and their ability to sample a large configurational space. While the colloidal perspective often serves as a useful idealization in many cases, the macromolecular identity of proteins must reveal itself under thermodynamic conditions in which the native state is no longer stable, such as denaturing solvents and high protein concentrations where macromolecules tend to have screened excluded volume, charge, and hydrodynamic interactions. Under extreme pH conditions, charge repulsion interactions within the protein chain can overcome the attractive hydrogen-bonding interactions, holding it in its native globular state. Conformational changes can therefore be expected to have great significance on the shear viscosity and other rheological properties of protein solutions. These changes are not envisioned in conventional colloidal protein models and we have initiated an investigation of the scattering and rheological properties of model proteins. We initiate this effort by considering bovine serum albumin because it is a globular protein whose solution properties have also been extensively investigated as a function of pH, temperature, ionic strength, and concentration. As we anticipated, near-ultraviolet circular dichroism measurements and intrinsic viscosity measurements clearly indicate that the bovine serum albumin tertiary structure changes as protein concentration and pH are varied. Our findings point to limited validity of the colloidal protein model and to the need for further consideration and quantification of the effects of conformational changes on protein solution viscosity, protein association, and the phase behavior. Small-angle Neutron Scattering measurements have allowed us to assess how these conformational changes

  5. Regulation of protein phosphatase 2A methylation by LCMT1 and PME-1 plays a critical role in differentiation of neuroblastoma cells

    PubMed Central

    Sontag, Jean-Marie; Nunbhakdi-Craig, Viyada; Mitterhuber, Martina; Ogris, Egon; Sontag, Estelle

    2010-01-01

    Neuritic alterations are a major feature of many neurodegenerative disorders. Methylation of protein phosphatase 2A (PP2A) catalytic C subunit by the leucine carboxyl methyltransferase LCMT1, and demethylation by the methylesterase PME-1, is a critical PP2A regulatory mechanism. It modulates the formation of PP2A holoenzymes containing the Bα subunit, which dephosphorylate key neuronal cytoskeletal proteins, including tau. Significantly, we have reported that LCMT1, methylated C and Bα expression levels are down-regulated in Alzheimer disease-affected brain regions. Here, we show that enhanced expression of LCMT1 in cultured N2a neuroblastoma cells, which increases endogenous methylated C and Bα levels, induces changes in F-actin organization. It promotes serum-independent neuritogenesis and development of extended tau-positive processes upon N2a cell differentiation. These stimulatory effects can be abrogated by LCMT1 knockdown and S-adenosylhomocysteine, an inhibitor of methylation reactions. Expression of PME-1 and the methylation-site L309Δ C subunit mutant, which decrease intracellular methylated C and Bα levels, block N2a cell differentiation and LCMT1-mediated neurite formation. Lastly, inducible and non-inducible knockdown of Bα in N2a cells inhibit process outgrowth. Altogether, our results establish a novel mechanistic link between PP2A methylation and development of neurite-like processes. PMID:21044074

  6. Aggregatibacter actinomycetemcomitans lipopolysaccharide affects human gingival fibroblast cytoskeletal organization.

    PubMed

    Gutiérrez-Venegas, Gloria; Contreras-Marmolejo, Luis Arturo; Román-Alvárez, Patricia; Barajas-Torres, Carolina

    2008-04-01

    The cytoskeleton is a dynamic structure that plays a key role in maintaining cell morphology and function. This study investigates the effect of bacterial wall lipopolysaccharide (LPS), a strong inflammatory agent, on the dynamics and organization of actin, tubulin, vimentin, and vinculin proteins in human gingival fibroblasts (HGF). A time-dependent study showed a noticeable change in actin architecture after 1.5 h of incubation with LPS (1 microg/ml) with the formation of orthogonal fibers and further accumulation of actin filament at the cell periphery by 24 h. When 0.01-10 microg/ml of LPS was added to human gingival fibroblast cultures, cells acquired a round, flat shape and gradually developed cytoplasmic ruffling. Lipopolysaccharides extracted from Aggregatibacter actinomycetemcomitans periodontopathogenic bacteria promoted alterations in F-actin stress fibres of human gingival cells. Normally, human gingival cells have F-actin fibres that are organized in linear distribution throughout the cells, extending along the cell's length. LPS-treated cells exhibited changes in cytoskeletal protein organization, and F-actin was reorganized by the formation of bundles underneath and parallel to the cell membrane. We also found the reorganization of the vimentin network into vimentin bundling after 1.5 h of treatment. HGF cells exhibited diffuse and granular gamma-tubulin stain. There was no change in LPS-treated HGF. However, vinculin plaques distributed in the cell body diminished after LPS treatment. We conclude that the dynamic and structured organization of cytoskeletal filaments and actin assembly in human gingival fibroblasts is altered by LPS treatment and is accompanied by a decrease in F-actin pools.

  7. Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis

    NASA Technical Reports Server (NTRS)

    Ingber, D. E.; Prusty, D.; Sun, Z.; Betensky, H.; Wang, N.

    1995-01-01

    Capillary endothelial cells can be switched between growth and differentiation by altering cell-extracellular matrix interactions and thereby, modulating cell shape. Studies were carried out to determine when cell shape exerts its growth-regulatory influence during cell cycle progression and to explore the role of cytoskeletal structure and mechanics in this control mechanism. When G0-synchronized cells were cultured in basic fibroblast growth factor (FGF)-containing defined medium on dishes coated with increasing densities of fibronectin or a synthetic integrin ligand (RGD-containing peptide), cell spreading, nuclear extension, and DNA synthesis all increased in parallel. To determine the minimum time cells must be adherent and spread on extracellular matrix (ECM) to gain entry into S phase, cells were removed with trypsin or induced to retract using cytochalasin D at different times after plating. Both approaches revealed that cells must remain extended for approximately 12-15 h and hence, most of G1, in order to enter S phase. After this restriction point was passed, normally 'anchorage-dependent' endothelial cells turned on DNA synthesis even when round and in suspension. The importance of actin-containing microfilaments in shape-dependent growth control was confirmed by culturing cells in the presence of cytochalasin D (25-1000 ng ml-1): dose-dependent inhibition of cell spreading, nuclear extension, and DNA synthesis resulted. In contrast, induction of microtubule disassembly using nocodazole had little effect on cell or nuclear spreading and only partially inhibited DNA synthesis. Interestingly, combination of nocodazole with a suboptimal dose of cytochalasin D (100 ng ml-1) resulted in potent inhibition of both spreading and growth, suggesting that microtubules are redundant structural elements which can provide critical load-bearing functions when microfilaments are partially compromised. Similar synergism between nocodazole and cytochalasin D was observed

  8. "Protein" Measurement in Biological Wastewater Treatment Systems: A Critical Evaluation.

    PubMed

    Le, Chencheng; Kunacheva, Chinagarn; Stuckey, David C

    2016-03-15

    Five commercially available assay kits were tested on the same protein sample with the addition of 17 different types of interfering substances typically found in the biological wastewater treatment, and a comparison of the use of these assays with 22 different protein and peptide samples is also presented. It was shown that a wide variety of substances can interfere dramatically with these assays; the metachromatic response was also clearly influenced by different proteinaceous material. Measurement of the "protein" content in the effluent of an anaerobic membrane bioreactor was then carried out using these assay methods. Quantitative results of the "protein" concentration in the different effluent samples, with or without spiked additions of Bovine Serum Albumin (BSA), showed considerable disagreement. We concluded that the "protein" measured in wastewater samples using standard colorimetric assays often shows false positive results and has little correlation to their real value. A new analytical method needs to be developed in order to gain greater insight into the biological transformations occurring in anaerobic digestion, and how soluble microbial products (SMPs) are produced.

  9. Aggregation propensity of critical regions of the protein Tau

    NASA Astrophysics Data System (ADS)

    Muthee, Micaiah; Ahmed, Azka; Larini, Luca

    The Alzheimer's disease is an irreversible, progressive brain disorder that slowly destroys memory and thinking skills, which eventually leads to the ability to not able to carry out the simplest tasks. The Alzheimer's disease is characterized by the formation of protein aggregates both within and outside of the brain's cells, the neurons. Within the neurons, the aggregation of the protein tau leads to the destruction of the microtubules in the axon of the neuron. Tau belongs to a group of proteins referred to as Microtubule-Associated Proteins. It is extremely flexible and is classified as an intrinsically unstructured protein due to its low propensity to form secondary structure. Tau promotes tubulin assembly into microtubules thereby stabilizing the cytoskeleton of the axon of the neurons. The microtubule binding region of tau consists of 4 pseudo-repeats. In this study, we will focus on the aggregation propensity of two fragments. In this study we will focus on the PHF43 fragment that contains the third pseudo-repeat and has been shown experimentally to aggregate readily. Another fragment that contains the second pseudo-repeat will be considered as well. Mutations in this region are associated with various form of dementia and for this reason we will consider the mutant P301L.

  10. Protein bio-corona: critical issue in immune nanotoxicology.

    PubMed

    Neagu, Monica; Piperigkou, Zoi; Karamanou, Konstantina; Engin, Ayse Basak; Docea, Anca Oana; Constantin, Carolina; Negrei, Carolina; Nikitovic, Dragana; Tsatsakis, Aristidis

    2017-03-01

    With the expansion of the nanomedicine field, the knowledge focusing on the behavior of nanoparticles in the biological milieu has rapidly escalated. Upon introduction to a complex biological system, nanomaterials dynamically interact with all the encountered biomolecules and form the protein "bio-corona." The decoration with these surface biomolecules endows nanoparticles with new properties. The present review will address updates of the protein bio-corona characteristics as influenced by nanoparticle's physicochemical properties and by the particularities of the encountered biological milieu. Undeniably, bio-corona generation influences the efficacy of the nanodrug and guides the actions of innate and adaptive immunity. Exploiting the dynamic process of protein bio-corona development in combination with the new engineered horizons of drugs linked to nanoparticles could lead to innovative functional nanotherapies. Therefore, bio-medical nanotechnologies should focus on the interactions of nanoparticles with the immune system for both safety and efficacy reasons.

  11. Heterotrimeric G protein subunit Gγ13 is critical to olfaction

    PubMed Central

    Li, Feng; Ponissery-Saidu, Samsudeen; Yee, Karen; Wang, Hong; Chen, Meng-Ling; Iguchi, Naoko; Zhang, Genhua; Jiang, Ping; Reisert, Johannes; Huang, Liquan

    2013-01-01

    The activation of G-protein-coupled olfactory receptors on the olfactory sensory neurons (OSNs) triggers a signaling cascade, which is mediated by a heterotrimeric G protein consisting of α, β and γ subunits. Although its α subunit, Gαolf, has been identified and well characterized, the identities of its β and γ subunits and their function in olfactory signal transduction, however, have not been well established yet. We and others have found the expression of Gγ13 in the olfactory epithelium, particularly in the cilia of the OSNs. In this study, we generated a conditional gene knockout mouse line to specifically nullify Gγ13 expression in the olfactory marker protein-expressing OSNs. Immunohistochemical and Western blot results showed that Gγ13 subunit was indeed eliminated in the mutant mice’s olfactory epithelium. Intriguingly, Gαolf, β1 subunits, Ric-8B and CEP290 proteins were also absent in the epithelium whereas the presence of the effector enzyme adenylyl cyclase III remained largely unaltered. Electro-olfactogram studies showed that the mutant animals had greatly reduced responses to a battery of odorants including three presumable pheromones. Behavioral tests indicated that the mutant mice had a remarkably reduced ability to perform an odor-guided search task although their motivation and agility seemed normal. Our results indicate that Gαolf exclusively forms a functional heterotrimeric G protein with Gβ1 and Gγ13 in OSNs, mediating olfactory signal transduction. The identification of the olfactory G protein’s βγ moiety has provided a novel approach to understanding the feedback regulation of olfactory signal transduction pathways as well as the control of subcellular structures of OSNs. PMID:23637188

  12. A Critical Assessment of Protein Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Pusey, Marc

    1997-01-01

    Experiments to grow higher diffraction quality protein crystals in the microgravity environment of an orbiting spacecraft are one of the most frequently flown space experiments. Ground-based research has shown that convective flows occur even about protein crystals growing in the Earth's gravitational field. Further, this research has shown that the resultant flow velocities can cause growth cessation, and probably affect the measured X-ray data quality obtained. How flow deleteriously affects protein crystal growth (PCG) is still not known, and is the subject of ongoing research. Failing a rational method for ameliorating flow effects on Earth, one can, through NASA and other nations space agency sponsored programs, carry out protein crystal growth in the microgravity environment of an orbiting spacecraft. Early first generation PCG hardware was characterized by a very low success rate and a steep design learning curve. Subsequent hardware designs have improved upon their predecessors. Now the crystal grower has a wide variety of hardware configurations and crystal growth protocols to choose from, many of which implement "standard" laboratory protein crystal growth methods. While many of these are first or early second generation hardware the success rate, defined as growing crystals giving data better than has been obtained on Earth, is at least 20% overall and may be considerably higher if one only considers latter experiments. There are a large number of protein crystals grown every year, with hundreds of structures determined. Those crystallized in microgravity represent a small proportion of this total, and there is concern that the costs of the microgravity PCG program(s) do not justify such limited returns. Empirical evidence suggests that optimum crystal growth conditions in microgravity differ from those determined on Earth, further exacerbating the chances of success. Microgravity PCG is probably best suited for "mature" crystallizations, where one has

  13. Critical importance of RAB proteins for synaptic function.

    PubMed

    Mignogna, Maria Lidia; D'Adamo, Patrizia

    2017-02-01

    Neurons are highly polarized cells that exhibit one of the more complex morphology and function. Neuronal intracellular trafficking plays a key role in dictating the directionality and specificity of vesicle formation, transport and fusion, allowing the transmission of information in sophisticate cellular network. Thus, the integrity of protein trafficking and spatial organization is especially important in neuronal cells. RAB proteins, small monomeric GTPases belonging to the RAS superfamily, spatially and temporally orchestrate specific vesicular trafficking steps. In this review we summarise the known roles of RAB GTPases involved in the maintenance of neuronal vesicular trafficking in the central nervous system. In particular, we discriminate the axonal pre-synaptic trafficking and dendritic post-synaptic trafficking, to better underlie how a correct orchestration of vesicle movement is necessary to maintain neuronal polarity and then, to permit an accurate architecture and functionality of synaptic activity.

  14. Glycosylation of Dentin Matrix Protein 1 is critical for osteogenesis.

    PubMed

    Sun, Yao; Weng, Yuteng; Zhang, Chenyang; Liu, Yi; Kang, Chen; Liu, Zhongshuang; Jing, Bo; Zhang, Qi; Wang, Zuolin

    2015-12-04

    Proteoglycans play important roles in regulating osteogenesis. Dentin matrix protein 1 (DMP1) is a highly expressed bone extracellular matrix protein that regulates both bone development and phosphate metabolism. After glycosylation, an N-terminal fragment of DMP1 protein was identified as a new proteoglycan (DMP1-PG) in bone matrix. In vitro investigations showed that Ser(89) is the key glycosylation site in mouse DMP1. However, the specific role of DMP1 glycosylation is still not understood. In this study, a mutant DMP1 mouse model was developed in which the glycosylation site S(89) was substituted with G(89) (S89G-DMP1). The glycosylation level of DMP1 was down-regulated in the bone matrix of S89G-DMP1 mice. Compared with wild type mice, the long bones of S89G-DMP1 mice showed developmental changes, including the speed of bone remodeling and mineralization, the morphology and activities of osteocytes, and activities of both osteoblasts and osteoclasts. These findings indicate that glycosylation of DMP1 is a key posttranslational modification process during development and that DMP1-PG functions as an indispensable proteoglycan in osteogenesis.

  15. Glycosylation of Dentin Matrix Protein 1 is critical for osteogenesis

    PubMed Central

    Sun, Yao; Weng, Yuteng; Zhang, Chenyang; Liu, Yi; Kang, Chen; Liu, Zhongshuang; Jing, Bo; Zhang, Qi; Wang, Zuolin

    2015-01-01

    Proteoglycans play important roles in regulating osteogenesis. Dentin matrix protein 1 (DMP1) is a highly expressed bone extracellular matrix protein that regulates both bone development and phosphate metabolism. After glycosylation, an N-terminal fragment of DMP1 protein was identified as a new proteoglycan (DMP1-PG) in bone matrix. In vitro investigations showed that Ser89 is the key glycosylation site in mouse DMP1. However, the specific role of DMP1 glycosylation is still not understood. In this study, a mutant DMP1 mouse model was developed in which the glycosylation site S89 was substituted with G89 (S89G-DMP1). The glycosylation level of DMP1 was down-regulated in the bone matrix of S89G-DMP1 mice. Compared with wild type mice, the long bones of S89G-DMP1 mice showed developmental changes, including the speed of bone remodeling and mineralization, the morphology and activities of osteocytes, and activities of both osteoblasts and osteoclasts. These findings indicate that glycosylation of DMP1 is a key posttranslational modification process during development and that DMP1-PG functions as an indispensable proteoglycan in osteogenesis. PMID:26634432

  16. Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking

    PubMed Central

    Wilson, Carlos; González-Billault, Christian

    2015-01-01

    A proper balance between chemical reduction and oxidation (known as redox balance) is essential for normal cellular physiology. Deregulation in the production of oxidative species leads to DNA damage, lipid peroxidation and aberrant post-translational modification of proteins, which in most cases induces injury, cell death and disease. However, physiological concentrations of oxidative species are necessary to support important cell functions, such as chemotaxis, hormone synthesis, immune response, cytoskeletal remodeling, Ca2+ homeostasis and others. Recent evidence suggests that redox balance regulates actin and microtubule dynamics in both physiological and pathological contexts. Microtubules and actin microfilaments contain certain amino acid residues that are susceptible to oxidation, which reduces the ability of microtubules to polymerize and causes severing of actin microfilaments in neuronal and non-neuronal cells. In contrast, inhibited production of reactive oxygen species (ROS; e.g., due to NOXs) leads to aberrant actin polymerization, decreases neurite outgrowth and affects the normal development and polarization of neurons. In this review, we summarize emerging evidence suggesting that both general and specific enzymatic sources of redox species exert diverse effects on cytoskeletal dynamics. Considering the intimate relationship between cytoskeletal dynamics and trafficking, we also discuss the potential effects of redox balance on intracellular transport via regulation of the components of the microtubule and actin cytoskeleton as well as cytoskeleton-associated proteins, which may directly impact localization of proteins and vesicles across the soma, dendrites and axon of neurons. PMID:26483635

  17. Wiskott-Aldrich syndrome protein (WASP) and N-WASP are critical for peripheral B-cell development and function

    PubMed Central

    Dahlberg, Carin; Baptista, Marisa; Moran, Christopher J.; Detre, Cynthia; Keszei, Marton; Eston, Michelle A.; Alt, Frederick W.; Terhorst, Cox; Notarangelo, Luigi D.

    2012-01-01

    The Wiskott-Aldrich syndrome protein (WASP) is a key cytoskeletal regulator of hematopoietic cells. Although WASP-knockout (WKO) mice have aberrant B-cell cytoskeletal responses, B-cell development is relatively normal. We hypothesized that N-WASP, a ubiquitously expressed homolog of WASP, may serve some redundant functions with WASP in B cells. In the present study, we generated mice lacking WASP and N-WASP in B cells (conditional double knockout [cDKO] B cells) and show that cDKO mice had decreased numbers of follicular and marginal zone B cells in the spleen. Receptor-induced activation of cDKO B cells led to normal proliferation but a marked reduction of spreading compared with wild-type and WKO B cells. Whereas WKO B cells showed decreased migration in vitro and homing in vivo compared with wild-type cells, cDKO B cells showed an even more pronounced decrease in the migratory response in vivo. After injection of 2,4,6-trinitrophenol (TNP)–Ficoll, cDKO B cells had reduced antigen uptake in the splenic marginal zone. Despite high basal serum IgM, cDKO mice mounted a reduced immune response to the T cell–independent antigen TNP-Ficoll and to the T cell–dependent antigen TNP–keyhole limpet hemocyanin. Our results reveal that the combined activity of WASP and N-WASP is required for peripheral B-cell development and function. PMID:22411869

  18. The use of neural networks and texture analysis for rapid objective selection of regions of interest in cytoskeletal images.

    PubMed

    Derkacs, Amanda D Felder; Ward, Samuel R; Lieber, Richard L

    2012-02-01

    Understanding cytoskeletal dynamics in living tissue is prerequisite to understanding mechanisms of injury, mechanotransduction, and mechanical signaling. Real-time visualization is now possible using transfection with plasmids that encode fluorescent cytoskeletal proteins. Using this approach with the muscle-specific intermediate filament protein desmin, we found that a green fluorescent protein-desmin chimeric protein was unevenly distributed throughout the muscle fiber, resulting in some image areas that were saturated as well as others that lacked any signal. Our goal was to analyze the muscle fiber cytoskeletal network quantitatively in an unbiased fashion. To objectively select areas of the muscle fiber that are suitable for analysis, we devised a method that provides objective classification of regions of images of striated cytoskeletal structures into "usable" and "unusable" categories. This method consists of a combination of spatial analysis of the image using Fourier methods along with a boosted neural network that "decides" on the quality of the image based on previous training. We trained the neural network using the expert opinion of three scientists familiar with these types of images. We found that this method was over 300 times faster than manual classification and that it permitted objective and accurate classification of image regions.

  19. Critical roles of TIPE2 protein in murine experimental colitis

    PubMed Central

    Lou, Yunwei; Sun, Honghong; Morrissey, Samantha; Porturas, Thomas; Liu, Suxia; Hua, Xianxin; Chen, Youhai H.

    2014-01-01

    Both commensal bacteria and infiltrating inflammatory cells play essential roles in the pathogenesis of inflammatory bowel disease. The molecular mechanisms whereby these pathogenic factors are regulated during the disease are not fully understood. We report here that a member of the TNFAIP8 (tumor necrosis factor-α-induced protein 8) family called TIPE2 (TNFAIP8-like 2, or TNFAIP8L2) plays a crucial role in regulating commensal bacteria dissemination and inflammatory cell function in experimental colitis induced by dextran sodium sulfate (DSS). Following DSS treatment, TIPE2-deficient mice, or chimeric mice that are deficient in TIPE2 only in their hematopoietic cells, lost less body weight and survived longer than wild type controls. Consistent with this clinical observation, TIPE2-deficient mice exhibited significantly less severe colitis and colonic damage. This was associated with a marked reduction in the colonic expression of inflammatory cytokines such as TNF-α, IL-6, and IL-12. Importantly, the ameliorated DSS-induced colitis in TIPE2−/− mice was also associated with reduced local dissemination of commensal bacteria and a weaker systemic inflammatory response. Combined with our previous report that TIPE2 is a negative regulator of anti-bacterial immunity, these results indicate that TIPE2 promotes colitis by inhibiting mucosal immunity to commensal bacteria. PMID:24973456

  20. Cytoskeletal Mechanisms for Breaking Cellular Symmetry

    PubMed Central

    Mullins, R. Dyche

    2010-01-01

    Cytoskeletal systems are networks of polymers found in all eukaryotic and many prokaryotic cells. Their purpose is to transmit and integrate information across cellular dimensions and help turn a disorderly mob of macromolecules into a spatially organized, living cell. Information, in this context, includes physical and chemical properties relevant to cellular physiology, including: the number and activity of macromolecules, cell shape, and mechanical force. Most animal cells are 10–50 microns in diameter, whereas the macromolecules that comprise them are 10,000-fold smaller (2–20 nm). To establish long-range order over cellular length scales, individual molecules must, therefore, self-assemble into larger polymers, with lengths (0.1–20 m) comparable to the size of a cell. These polymers must then be cross-linked into organized networks that fill the cytoplasm. Such cell-spanning polymer networks enable different parts of the cytoplasm to communicate directly with each other, either by transmitting forces or by carrying cargo from one spot to another. PMID:20182610

  1. Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness.

    PubMed

    Krishnan, Ramaswamy; Park, Chan Young; Lin, Yu-Chun; Mead, Jere; Jaspers, Richard T; Trepat, Xavier; Lenormand, Guillaume; Tambe, Dhananjay; Smolensky, Alexander V; Knoll, Andrew H; Butler, James P; Fredberg, Jeffrey J

    2009-01-01

    Every adherent eukaryotic cell exerts appreciable traction forces upon its substrate. Moreover, every resident cell within the heart, great vessels, bladder, gut or lung routinely experiences large periodic stretches. As an acute response to such stretches the cytoskeleton can stiffen, increase traction forces and reinforce, as reported by some, or can soften and fluidize, as reported more recently by our laboratory, but in any given circumstance it remains unknown which response might prevail or why. Using a novel nanotechnology, we show here that in loading conditions expected in most physiological circumstances the localized reinforcement response fails to scale up to the level of homogeneous cell stretch; fluidization trumps reinforcement. Whereas the reinforcement response is known to be mediated by upstream mechanosensing and downstream signaling, results presented here show the fluidization response to be altogether novel: it is a direct physical effect of mechanical force acting upon a structural lattice that is soft and fragile. Cytoskeletal softness and fragility, we argue, is consistent with early evolutionary adaptations of the eukaryotic cell to material properties of a soft inert microenvironment.

  2. Guaifenesin stone matrix proteomics: a protocol for identifying proteins critical to stone formation.

    PubMed

    Kolbach-Mandel, A M; Mandel, N S; Cohen, S R; Kleinman, J G; Ahmed, F; Mandel, I C; Wesson, J A

    2016-07-19

    Drug-related kidney stones are a diagnostic problem, since they contain a large matrix (protein) fraction and are frequently incorrectly identified as matrix stones. A urine proteomics study patient produced a guaifenesin stone during her participation, allowing us to both correctly diagnose her disease and identify proteins critical to this drug stone-forming process. The patient provided three random midday urine samples for proteomics studies; one of which contained stone-like sediment with two distinct fractions. These solids were characterized with optical microscopy and Fourier transform infrared spectroscopy. Immunoblotting and quantitative mass spectrometry were used to quantitatively identify the proteins in urine and stone matrix. Infrared spectroscopy showed that the sediment was 60 % protein and 40 % guaifenesin and its metabolite guaiacol. Of the 156 distinct proteins identified in the proteomic studies, 49 were identified in the two stone-components with approximately 50 % of those proteins also found in this patient's urine. Many proteins observed in this drug-related stone have also been reported in proteomic matrix studies of uric acid and calcium containing stones. More importantly, nine proteins were highly enriched and highly abundant in the stone matrix and 8 were reciprocally depleted in urine, suggesting a critical role for these proteins in guaifenesin stone formation. Accurate stone analysis is critical to proper diagnosis and treatment of kidney stones. Many matrix proteins were common to all stone types, but likely not related to disease mechanism. This protocol defined a small set of proteins that were likely critical to guaifenesin stone formation based on their high enrichment and high abundance in stone matrix, and it should be applied to all stone types.

  3. Cytoskeletal Configuration Modulates Mechanically Induced Changes in Mesenchymal Stem Cell Osteogenesis, Morphology, and Stiffness

    NASA Astrophysics Data System (ADS)

    Pongkitwitoon, Suphannee; Uzer, Gunes; Rubin, Janet; Judex, Stefan

    2016-10-01

    Mesenchymal stem cells (MSC) responding to mechanical cues generated by physical activity is critical for skeletal development and remodeling. Here, we utilized low intensity vibrations (LIV) as a physiologically relevant mechanical signal and hypothesized that the confined cytoskeletal configuration imposed by 2D culture will enable human bone marrow MSCs (hBMSC) to respond more robustly when LIV is applied in-plane (horizontal-LIV) rather than out-of-plane (vertical-LIV). All LIV signals enhanced hBMSC proliferation, osteogenic differentiation, and upregulated genes associated with cytoskeletal structure. The cellular response was more pronounced at higher frequencies (100 Hz vs 30 Hz) and when applied in the horizontal plane. Horizontal but not vertical LIV realigned the cell cytoskeleton, culminating in increased cell stiffness. Our results show that applying very small oscillatory motions within the primary cell attachment plane, rather than perpendicular to it, amplifies the cell’s response to LIV, ostensibly facilitating a more effective transfer of intracellular forces. Transcriptional and structural changes in particular with horizontal LIV, together with the strong frequency dependency of the signal, emphasize the importance of intracellular cytoskeletal configuration in sensing and responding to high-frequency mechanical signals at low intensities.

  4. Hierarchical self-organization of cytoskeletal active networks

    NASA Astrophysics Data System (ADS)

    Gordon, Daniel; Bernheim-Groswasser, Anne; Keasar, Chen; Farago, Oded

    2012-04-01

    The structural reorganization of the actin cytoskeleton is facilitated through the action of motor proteins that crosslink the actin filaments and transport them relative to each other. Here, we present a combined experimental-computational study that probes the dynamic evolution of mixtures of actin filaments and clusters of myosin motors. While on small spatial and temporal scales the system behaves in a very noisy manner, on larger scales it evolves into several well distinct patterns such as bundles, asters and networks. These patterns are characterized by junctions with high connectivity, whose formation is possible due to the organization of the motors in ‘oligoclusters’ (intermediate-size aggregates). The simulations reveal that the self-organization process proceeds through a series of hierarchical steps, starting from local microscopic moves and ranging up to the macroscopic large scales where the steady-state structures are formed. Our results shed light on the mechanisms involved in processes such as cytokinesis and cellular contractility, where myosin motors organized in clusters operate cooperatively to induce the structural organization of cytoskeletal networks.

  5. Cytoskeletal Dynamics and Fluid Flow in Drosophila Oocytes

    NASA Astrophysics Data System (ADS)

    de Canio, Gabriele; Goldstein, Raymond; Lauga, Eric

    2015-11-01

    The biological world includes a broad range of phenomena in which transport in a fluid plays a central role. Among these is the fundamental issue of cell polarity arising during development, studied historically using the model organism Drosophila melanogaster. The polarity of the oocyte is known to be induced by the translocation of mRNAs by kinesin motor proteins along a dense microtubule cytoskeleton, a process which also induces cytoplasmic streaming. Recent experimental observations have revealed the remarkable fluid-structure interactions that occur as the streaming flows back-react on the microtubules. In this work we use a combination of theory and simulations to address the interplay between the fluid flow and the configuration of cytoskeletal filaments leading to the directed motion inside the oocyte. We show in particular that the mechanical coupling between the fluid motion and the orientation of the microtubules can lead to a transition to coherent motion within the oocyte, as observed. Supported by EPSRC and ERC Advanced Investigator Grant 247333.

  6. Cytoskeletal Modulation of Lipid Interactions Regulates Lck Kinase Activity*

    PubMed Central

    Chichili, Gurunadh R.; Cail, Robert C.; Rodgers, William

    2012-01-01

    The actin cytoskeleton promotes clustering of proteins associated with cholesterol-dependent rafts, but its effect on lipid interactions that form and maintain rafts is not understood. We addressed this question by determining the effect of disrupting the cytoskeleton on co-clustering of dihexadecyl-(C16)-anchored DiO and DiI, which co-enrich in ordered lipid environments such as rafts. Co-clustering was assayed by fluorescence resonance energy transfer (FRET) in labeled T cells, where rafts function in the phosphoregulation of the Src family kinase Lck. Our results show that probe co-clustering was sensitive to depolymerization of actin filaments with latrunculin B (Lat B), inhibition of myosin II with blebbistatin, and treatment with neomycin to sequester phosphatidylinositol 4,5-bisphosphate. Cytoskeletal effects on lipid interactions were not restricted to order-preferring label because co-clustering of C16-anchored DiO with didodecyl (C12)-anchored DiI, which favors disordered lipids, was also reduced by Lat B and blebbistatin. Furthermore, conditions that disrupted probe co-clustering resulted in activation of Lck. These data show that the cytoskeleton globally modulates lipid interactions in the plasma membrane, and this property maintains rafts that function in Lck regulation. PMID:22613726

  7. ZEB1 drives prometastatic actin cytoskeletal remodeling by downregulating miR-34a expression

    PubMed Central

    Ahn, Young-Ho; Gibbons, Don L.; Chakravarti, Deepavali; Creighton, Chad J.; Rizvi, Zain H.; Adams, Henry P.; Pertsemlidis, Alexander; Gregory, Philip A.; Wright, Josephine A.; Goodall, Gregory J.; Flores, Elsa R.; Kurie, Jonathan M.

    2012-01-01

    Metastatic cancer is extremely difficult to treat, and the presence of metastases greatly reduces a cancer patient’s likelihood of long-term survival. The ZEB1 transcriptional repressor promotes metastasis through downregulation of microRNAs (miRs) that are strong inducers of epithelial differentiation and inhibitors of stem cell factors. Given that each miR can target multiple genes with diverse functions, we posited that the prometastatic network controlled by ZEB1 extends beyond these processes. We tested this hypothesis using a mouse model of human lung adenocarcinoma metastasis driven by ZEB1, human lung carcinoma cells, and human breast carcinoma cells. Transcriptional profiling studies revealed that ZEB1 controls the expression of numerous oncogenic and tumor-suppressive miRs, including miR-34a. Ectopic expression of miR-34a decreased tumor cell invasion and metastasis, inhibited the formation of promigratory cytoskeletal structures, suppressed activation of the RHO GTPase family, and regulated a gene expression signature enriched in cytoskeletal functions and predictive of outcome in human lung adenocarcinomas. We identified several miR-34a target genes, including Arhgap1, which encodes a RHO GTPase activating protein that was required for tumor cell invasion. These findings demonstrate that ZEB1 drives prometastatic actin cytoskeletal remodeling by downregulating miR-34a expression and provide a compelling rationale to develop miR-34a as a therapeutic agent in lung cancer patients. PMID:22850877

  8. Sporadic inclusion body myositis: morphology, regeneration, and cytoskeletal structure of muscle fibres

    PubMed Central

    Arnardottir, S; Borg, K; Ansved, T

    2004-01-01

    Methods: 14 muscle biopsies from 11 patients with s-IBM were characterised for morphological abnormalities and fibre type composition as well as muscle fibre regeneration and cytoskeletal structure, using histochemical and immunohistochemical techniques. Results: Morphological abnormalities included inflammatory infiltrates and "rimmed vacuoles," and pronounced variation in fibre size. There were no significant differences in fibre type composition between s-IBM patients and controls based on the myofibrillar ATPase staining. A differential effect on muscle fibre sizes was noted, type II fibres being smaller in the s-IBM patients than in the controls. Conversely, the mean type I muscle fibre diameter in the s-IBM patients was larger than in the controls, though this difference was not significant. An ongoing intense regeneration process was present in s-IBM muscle, as indicated by the expression of neonatal myosin heavy chain, vimentin, and CD56 (Leu-19) in most of the muscle fibres. The cytoskeletal proteins dystrophin and desmin were normally expressed in s-IBM muscle fibres that were not undergoing degeneration or regeneration. Conclusions: There are extensive morphological and morphometric alterations in s-IBM, affecting different muscle fibre types in different ways. The cytoskeletal structure of type I and II muscle fibres remains unaffected in different stages of the disease. PMID:15146016

  9. Moesin is activated in cardiomyocytes in experimental autoimmune myocarditis and mediates cytoskeletal reorganization with protrusion formation.

    PubMed

    Miyawaki, Akimitsu; Mitsuhara, Yusuke; Orimoto, Aya; Nakayasu, Yusuke; Tsunoda, Shin-Ichi; Obana, Masanori; Maeda, Makiko; Nakayama, Hiroyuki; Yoshioka, Yasuo; Tsutsumi, Yasuo; Fujio, Yasushi

    2016-08-01

    Acute myocarditis is a self-limiting disease. Most patients with myocarditis recover without cardiac dysfunction in spite of limited capacity of myocardial regeneration. Therefore, to address intrinsic reparative machinery of inflamed hearts, we investigated the cellular dynamics of cardiomyocytes in response to inflammation using experimental autoimmune myocarditis (EAM) model. EAM was induced by immunization of BALB/c mice with α-myosin heavy chain peptides twice. The inflammatory reaction was evoked with myocardial damage with the peak at 3 wk after the first immunization (EAM3w). Morphological and functional restoration started from EAM3w, when active protrusion formation, a critical process of myocardial healing, was observed in cardiomyocytes. Shotgun proteomics revealed that cytoskeletal proteins were preferentially increased in cardiomyocytes at EAM3w, compared with preimmunized (EAM0w) hearts, and that moesin was the most remarkably upregulated among them. Immunoblot analyses demonstrated that the expression of both total and phosphorylated moesin was upregulated in isolated cardiomyocytes from EAM3w hearts. Immunofluorescence staining showed that moesin was localized at cardiomyocyte protrusions at EAM3w. Adenoviral vectors expressing wild-type, constitutively active and inactive form of moesin (wtMoesin, caMoesin, and iaMoesin, respectively) were transfected in neonatal rat cardiomyocytes. The overexpression of wtMoesin and caMoesin resulted in protrusion formation, while not iaMoesin. Finally, we found that cardiomyocyte protrusions were accompanied by cell-cell contact formation. The expression of moesin was upregulated in cardiomyocytes under inflammation, inducing protrusion formation in a phosphorylation-dependent fashion. Moesin signal could be a novel therapeutic target that stimulates myocardial repair by promoting contact formation of cardiomyocytes.

  10. Rapidly transported organelles containing membrane and cytoskeletal components: their relation to axonal growth

    PubMed Central

    1987-01-01

    We have examined the movements, composition, and cellular origin of phase-dense varicosities in cultures of chick sympathetic and sensory neurons. These organelles are variable in diameter (typically between 0.2 and 2 microns) and undergo saltatory movements both towards and away from the neuronal cell body. Their mean velocities vary inversely with the size of the organelle and are greater in the retrograde than the anterograde direction. Organelles stain with the lipophilic dye 1, 1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine and with antibodies to cytoskeletal components. In cultures double-stained with antibodies to alpha-tubulin and 70-kD neurofilament protein (NF-L), approximately 40% of the organelles stain for tubulin, 30% stain for NF- L, 10% stain for both tubulin and NF-L, and 40% show no staining with either antibody. The association of cytoskeletal proteins with the organelles shows that these proteins are able to move by a form of rapid axonal transport. Under most culture conditions the predominant direction of movement is towards the cell body, suggesting that the organelles are produced at or near the growth cone. Retrograde movements continue in culture medium lacking protein or high molecular mass components and increase under conditions in which the advance of the growth cone is arrested. There is a fourfold increase in the number of organelles moving retrogradely in neurites that encounter a substratum-associated barrier to elongation; retrograde movements increase similarly in cultures exposed to cytochalasin at levels known to block growth cone advance. No previously described organelle shows behavior coordinated with axonal growth in this way. We propose that the organelles contain membrane and cytoskeletal components that have been delivered to the growth cone, by slow or fast anterograde transport, in excess of the amounts required to synthesize more axon. In view of their rapid mobility and variable contents, we suggest that they

  11. The TRPM7 interactome defines a cytoskeletal complex linked to neuroblastoma progression.

    PubMed

    Middelbeek, Jeroen; Vrenken, Kirsten; Visser, Daan; Lasonder, Edwin; Koster, Jan; Jalink, Kees; Clark, Kristopher; van Leeuwen, Frank N

    2016-11-01

    Neuroblastoma is the second-most common solid tumor in children and originates from poorly differentiated neural crest-derived progenitors. Although most advanced stage metastatic neuroblastoma patients initially respond to treatment, a therapy resistant pool of poorly differentiated cells frequently arises, leading to refractory disease. A lack of insight into the molecular mechanisms that underlie neuroblastoma progression hampers the development of effective new therapies for these patients. Normal neural crest development and maturation is guided by physical interactions between the cell and its surroundings, in addition to soluble factors such as growth factors. This mechanical crosstalk is mediated by actin-based adhesion structures and cell protrusions that probe the cellular environment to modulate migration, proliferation, survival and differentiation. Whereas such signals preserve cellular quiescence in non-malignant cells, perturbed adhesion signaling promotes de-differentiation, uncontrolled cell proliferation, tissue invasion and therapy resistance. We previously reported that high expression levels of the channel-kinase TRPM7, a protein that maintains the progenitor state of embryonic neural crest cells, are closely associated with progenitor-like features of tumor cells, accompanied by extensive cytoskeletal reorganization and adhesion remodeling. To define mechanisms by which TRPM7 may contribute to neuroblastoma progression, we applied a proteomics approach to identify TRPM7 interacting proteins. We show that TRPM7 is part of a large complex of proteins, many of which function in cytoskeletal organization, cell protrusion formation and adhesion dynamics. Expression of a subset of these TRPM7 interacting proteins strongly correlates with neuroblastoma progression in independent neuroblastoma patient datasets. Thus, TRPM7 is part of a large cytoskeletal complex that may affect the malignant potential of tumor cells by regulating actomyosin dynamics

  12. Support vector machines for learning to identify the critical positions of a protein.

    PubMed

    Dubey, Anshul; Realff, Matthew J; Lee, Jay H; Bommarius, Andreas S

    2005-06-07

    A method for identifying the positions in the amino acid sequence, which are critical for the catalytic activity of a protein using support vector machines (SVMs) is introduced and analysed. SVMs are supported by an efficient learning algorithm and can utilize some prior knowledge about the structure of the problem. The amino acid sequences of the variants of a protein, created by inducing mutations, along with their fitness are required as input data by the method to predict its critical positions. To investigate the performance of this algorithm, variants of the beta-lactamase enzyme were created in silico using simulations of both mutagenesis and recombination protocols. Results from literature on beta-lactamase were used to test the accuracy of this method. It was also compared with the results from a simple search algorithm. The algorithm was also shown to be able to predict critical positions that can tolerate two different amino acids and retain function.

  13. Involvement of cytoskeletal proteins in the barrier function of the human erythrocyte membrane. I. Impairment of resealing and formation of aqueous pores in the ghost membrane after modification of SH groups.

    PubMed

    Klonk, S; Deuticke, B

    1992-04-29

    Resealed human erythrocyte ghosts prepared by a two-step procedure were shown to have small residual barrier defects with the properties of aqueous pores, such as size discrimination of hydrophilic nonelectrolytes (erythritol to sucrose), indicative of an apparent pore radius of about 0.7 nm, and a low activation energy (about 12-20 kJ/mol (mannitol, sucrose)) of the leak fluxes. As in other cases (Deuticke et al. (1991) Biochim. Biophys. Acta 1067, 111-122) these leak fluxes can be inhibited by phloretin. Treatment of such resealed ghosts with the mild SH oxidizing agent, diamide, induces additional membrane leaks to the same extent and with the same properties as in native erythrocytes (Deuticke et al. (1983) Biochim. Biophys. Acta 731, 196-210), including reversibility of the leak by SH reducing agents, inhibition by phloretin and stimulation by alkanols. In contrast, resealed ghosts prepared either from diamide-treated erythrocytes or by adding diamide to the 'open' membranes prior to reconstitution of high ionic strength and raising the temperature, exhibit a state of greater leakiness. This leakiness is somewhat different in its origin from the former class of leaks, since it can also be produced by N-ethylmaleimide, which is essentially ineffective when added to the membrane in its 'tight' state. The leaks induced in the 'open' state of the membrane, which can be regarded as a consequence of an impaired resealing, are nevertheless reversible by reducing agents added after resealing and are comparable in many, but not all their characteristics to leaks induced in the 'tight' state of the membrane. Resealing in the presence of the isothiocyanostilbenes DIDS or SITS mimicks the leak forming effect of diamide by modifying a small population of SH groups, while amino groups seem not to be involved. The findings indicate and substantiate an important role of the redox state of membrane skeletal protein sulfhydryls in the maintenance and the re-establishment of the

  14. In silico protein fragmentation reveals the importance of critical nuclei on domain reassembly.

    PubMed

    Contreras Martínez, Lydia M; Borrero Quintana, Ernesto E; Escobedo, Fernando A; DeLisa, Matthew P

    2008-03-01

    Protein complementation assays (PCAs) based on split protein fragments have become powerful tools that facilitate the study and engineering of intracellular protein-protein interactions. These assays are based on the observation that a given protein can be split into two inactive fragments and these fragments can reassemble into the original properly folded and functional structure. However, one experimentally observed limitation of PCA systems is that the folding of a protein from its fragments is dramatically slower relative to that of the unsplit parent protein. This is due in part to a poor understanding of how PCA design parameters such as split site position in the primary sequence and size of the resulting fragments contribute to the efficiency of protein reassembly. We used a minimalist on-lattice model to analyze how the dynamics of the reassembly process for two model proteins was affected by the location of the split site. Our results demonstrate that the balanced distribution of the "folding nucleus," a subset of residues that are critical to the formation of the transition state leading to productive folding, between protein fragments is key to their reassembly.

  15. A Critical Appraisal of Quantitative Studies of Protein Degradation in the Framework of Cellular Proteostasis

    PubMed Central

    Alvarez-Castelao, Beatriz; Ruiz-Rivas, Carmen; Castaño, José G.

    2012-01-01

    Protein homeostasis, proteostasis, is essential to understand cell function. Protein degradation is a crucial component of the proteostatic mechanisms of the cell. Experiments on protein degradation are nowadays present in many investigations in the field of molecular and cell biology. In the present paper, we focus on the different experimental approaches to study protein degradation and present a critical appraisal of the results derived from steady-state and kinetic experiments using detection of unlabelled and labelled protein methodologies with a proteostatic perspective. This perspective allows pinpointing the limitations in interpretation of results and the need of further experiments and/or controls to establish “definitive evidence” for the role of protein degradation in the proteostasis of a given protein or the entire proteome. We also provide a spreadsheet for simple calculations of mRNA and protein decays for mimicking different experimental conditions and a checklist for the analysis of experiments dealing with protein degradation studies that may be useful for researchers interested in the area of protein turnover. PMID:23119163

  16. Coactosin-like protein, a human F-actin-binding protein: critical role of lysine-75.

    PubMed Central

    Provost, P; Doucet, J; Stock, A; Gerisch, G; Samuelsson, B; Rådmark, O

    2001-01-01

    Coactosin-like protein (CLP) was recently identified in a yeast two-hybrid screen using 5-lipoxygenase as bait. In the present study, we report the functional characterization of CLP as a human filamentous actin (F-actin)-binding protein. CLP mRNA shows a wide tissue distribution and is predominantly expressed in placenta, lung, kidney and peripheral-blood leucocytes. Endogenous CLP is localized in the cytosol of myeloid cells. Using a two-hybrid approach, actin was identified as a CLP-interacting protein. Binding experiments indicated that CLP associates with F-actin, but does not form a stable complex with globular actin. In transfected mammalian cells, CLP co-localized with actin stress fibres. CLP bound to actin filaments with a stoichiometry of 1:2 (CLP: actin subunits), but could be cross-linked to only one subunit of actin. Site-directed mutagenesis revealed the involvement of Lys(75) of CLP in actin binding, a residue highly conserved in related proteins and supposed to be exposed on the surface of the CLP protein. Our results identify CLP as a new human protein that binds F-actin in vitro and in vivo, and indicate that Lys(75) is essential for this interaction. PMID:11583571

  17. The phosphorylation status and cytoskeletal remodeling of striatal astrocytes treated with quinolinic acid

    SciTech Connect

    Pierozan, Paula; Ferreira, Fernanda; Ortiz de Lima, Bárbara; Gonçalves Fernandes, Carolina; Totarelli Monteforte, Priscila; Castro Medaglia, Natalia de; Bincoletto, Claudia; Soubhi Smaili, Soraya; Pessoa-Pureur, Regina

    2014-04-01

    Quinolinic acid (QUIN) is a glutamate agonist which markedly enhances the vulnerability of neural cells to excitotoxicity. QUIN is produced from the amino acid tryptophan through the kynurenine pathway (KP). Dysregulation of this pathway is associated with neurodegenerative conditions. In this study we treated striatal astrocytes in culture with QUIN and assayed the endogenous phosphorylating system associated with glial fibrillary acidic protein (GFAP) and vimentin as well as cytoskeletal remodeling. After 24 h incubation with 100 µM QUIN, cells were exposed to {sup 32}P-orthophosphate and/or protein kinase A (PKA), protein kinase dependent of Ca{sup 2+}/calmodulin II (PKCaMII) or protein kinase C (PKC) inhibitors, H89 (20 μM), KN93 (10 μM) and staurosporin (10 nM), respectively. Results showed that hyperphosphorylation was abrogated by PKA and PKC inhibitors but not by the PKCaMII inhibitor. The specific antagonists to ionotropic NMDA and non-NMDA (50 µM DL-AP5 and CNQX, respectively) glutamate receptors as well as to metabotropic glutamate receptor (mGLUR; 50 µM MCPG), mGLUR1 (100 µM MPEP) and mGLUR5 (10 µM 4C3HPG) prevented the hyperphosphorylation provoked by QUIN. Also, intra and extracellular Ca{sup 2+} quelators (1 mM EGTA; 10 µM BAPTA-AM, respectively) prevented QUIN-mediated effect, while Ca{sup 2+} influx through voltage-dependent Ca{sup 2+} channel type L (L-VDCC) (blocker: 10 µM verapamil) is not implicated in this effect. Morphological analysis showed dramatically altered actin cytoskeleton with concomitant change of morphology to fusiform and/or flattened cells with retracted cytoplasm and disruption of the GFAP meshwork, supporting misregulation of actin cytoskeleton. Both hyperphosphorylation and cytoskeletal remodeling were reversed 24 h after QUIN removal. Astrocytes are highly plastic cells and the vulnerability of astrocyte cytoskeleton may have important implications for understanding the neurotoxicity of QUIN in neurodegenerative

  18. A critical examination of dietary protein requirements, benefits, and excesses in athletes.

    PubMed

    Phillips, Stuart M; Moore, Daniel R; Tang, Jason E

    2007-08-01

    There is likely no other dietary component that inspires as much debate, insofar as athletes are concerned, as protein. How much dietary protein is required, optimal, or excessive? Dietary guidelines from a variety of sources have settled on an adequate dietary protein intake for those over the age of 19 of ~0.8-0.9 g protein.kg body weight(-1).d(-1). According to U.S. and Canadian dietary reference intakes (33), the recommended allowance for protein of 0.8 g protein.kg(-1).d(-1) is "the average daily intake level that is sufficient to meet the nutrient requirement of nearly all [~98%] . . . healthy individuals" (p. 22). The panel also stated, "in view of the lack of compelling evidence to the contrary, no additional dietary protein is suggested for healthy adults undertaking resistance or endurance exercise" (33, p. 661). Currently, no group or groups of scientists involved in establishing dietary guidelines see a need for any statement that athletes or people engaging in regular physical activity require more protein than their sedentary counterparts. Popular magazines, numerous Web sites, trainers, and many athletes decry protein intakes even close to those recommended. Even joint position stands from policy-setting groups state that "protein recommendations for endurance athletes are 1.2 to 1.4 g/kg body weight per day, whereas those for resistance and strength-trained athletes may be as high as 1.6 to 1.7 g/kg body weight per day" (1, p. 1544). The divide between those setting dietary protein requirements and those who might be making practical recommendations for athletes appears substantial, but ultimately, most athletes indicate that they consume protein at levels beyond even the highest recommendations. Thus, one might conclude that any debate on protein "requirements" for athletes is inconsequential; however, a critical analysis of existing and new data reveals novel ideas and concepts that may represent some common ground between these apparently

  19. Hydropathic self-organized criticality: a magic wand for protein physics.

    PubMed

    Phillips, J C

    2012-10-01

    Self-organized criticality (SOC) is a popular concept that has been the subject of more than 3000 articles in the last 25 years. The characteristic signature of SOC is the appearance of self-similarity (power-law scaling) in observable properties. A characteristic observable protein property that describes protein-water interactions is the water-accessible (hydropathic) interfacial area of compacted globular protein networks. Here we show that hydropathic power-law (size- or length-scale-dependent) exponents derived from SOC enable theory to connect standard Web-based (BLAST) short-range amino acid (aa) sequence similarities to long-range aa sequence hydropathic roughening form factors that hierarchically describe evolutionary trends in water - membrane protein interactions. Our method utilizes hydropathic aa exponents that define a non-Euclidean metric realistically rooted in the atomic coordinates of 5526 protein segments. These hydropathic aa exponents thereby encapsulate universal (but previously only implicit) non-Euclidean long-range differential geometrical features of the Protein Data Bank. These hydropathic aa exponents easily organize small mutated aa sequence differences between human and proximate species proteins. For rhodopsin, the most studied transmembrane signaling protein associated with night vision, analysis shows that this approach separates Euclidean short- and non-Euclidean long-range aa sequence properties, and shows that they correlate with 96% success for humans, monkeys, cats, mice and rabbits. Proper application of SOC using hydropathic aa exponents promises unprecedented simplifications of exponentially complex protein sequence-structure-function problems, both conceptual and practical.

  20. Disrupted cytoskeletal homeostasis, astrogliosis and apoptotic cell death in the cerebellum of preweaning rats injected with diphenyl ditelluride.

    PubMed

    Heimfarth, Luana; Loureiro, Samanta Oliveira; Dutra, Márcio Ferreira; Petenuzzo, Letícia; de Lima, Bárbara Ortiz; Fernandes, Carolina Gonçalves; da Rocha, João Batista Teixeira; Pessoa-Pureur, Regina

    2013-01-01

    In the present report 15 day-old rats were injected with 0.3μmol of diphenyl ditelluride (PhTe)(2)/kg body weight and parameters of neurodegeneration were analyzed in slices from cerebellum 3 and 6 days afterwards. The earlier responses, at day 3 after injection, included hyperphosphorylation of intermediate filament (IF) proteins from astrocyte (glial fibrillary acidic protein - GFAP - and vimentin) and neuron (low-, medium- and high molecular weight neurofilament subunits: NF-L, NF-M and NF-H); increased mitogen-activated protein kinase (MAPK) (Erk and p38MAPK) and cAMP-dependent protein kinase (PKA) activities. Also, reactive astrogliosis takes part of the early responses to the insult with (PhTe)(2), evidenced by upregulated GFAP in Western blot, PCR and immunofluorescence analysis. Six days after (PhTe)(2) injection we found persistent astrogliosis, increased propidium iodide (PI) positive cells in NeuN positive population evidenced by flow cytometry and reduced immunofluorescence for NeuN, suggesting that the in vivo exposure to (PhTe)(2) progressed to neuronal death. Moreover, activated caspase 3 suggested apoptotic neuronal death. Neurodegeneration was related with decreased [(3)H]glutamate uptake and decreased Akt immunoreactivity, however phospho-GSK-3-β (Ser9) was not altered in (PhTe)(2) injected rat. Therefore, the present results show that the earlier cerebellar responses to (PhTe)(2) include disruption of cytoskeletal homeostasis that could be related with MAPK and PKA activation and reactive astrogliosis. Akt inhibition observed at this time could also play a role in the neuronal death evidenced afterwards. The later events of the neurodegenerative process are characterized by persistent astrogliosis and activation of apoptotic neuronal death through caspase 3 mediated mechanisms, which could be related with glutamate excitotoxicity. The progression of these responses are therefore likely to be critical for the outcome of the neurodegeneration

  1. Beta-Actin Deficiency with Oxidative Posttranslational Modifications in Rett Syndrome Erythrocytes: Insights into an Altered Cytoskeletal Organization

    PubMed Central

    Pecorelli, Alessandra; Belmonte, Giuseppe; Signorini, Cinzia; Leoncini, Silvia; Zollo, Gloria; Capone, Antonietta; Giovampaola, Cinzia Della; Sticozzi, Claudia; Valacchi, Giuseppe; Ciccoli, Lucia; Guerranti, Roberto; Hayek, Joussef

    2014-01-01

    Beta-actin, a critical player in cellular functions ranging from cell motility and the maintenance of cell shape to transcription regulation, was evaluated in the erythrocyte membranes from patients with typical Rett syndrome (RTT) and methyl CpG binding protein 2 (MECP2) gene mutations. RTT, affecting almost exclusively females with an average frequency of 1∶10,000 female live births, is considered the second commonest cause of severe cognitive impairment in the female gender. Evaluation of beta-actin was carried out in a comparative cohort study on red blood cells (RBCs), drawn from healthy control subjects and RTT patients using mass spectrometry-based quantitative analysis. We observed a decreased expression of the beta-actin isoforms (relative fold changes for spots 1, 2 and 3: −1.82±0.15, −2.15±0.06, and −2.59±0.48, respectively) in pathological RBCs. The results were validated by western blotting and immunofluorescence microscopy. In addition, beta-actin from RTT patients also showed a dramatic increase in oxidative posttranslational modifications (PTMs) as the result of its binding with the lipid peroxidation product 4-hydroxy-2-nonenal (4-HNE). Our findings demonstrate, for the first time, a beta-actin down-regulation and oxidative PTMs for RBCs of RTT patients, thus indicating an altered cytoskeletal organization. PMID:24671107

  2. Binary liquid phase separation and critical phenomena in a protein/water solution.

    PubMed Central

    Thomson, J A; Schurtenberger, P; Thurston, G M; Benedek, G B

    1987-01-01

    We have investigated the phase diagram of aqueous solutions of the bovine lens protein gamma II-crystallin. For temperatures T less than Tc = 278.5 K, we find that these solutions exhibit a reversible coexistence between two isotropic liquid phases differing in protein concentration. The dilute and concentrated branches of the coexistence curve were characterized, consistently, both by measurements of the two coexisting concentrations, c(T), and by measuring the cloud temperatures for various initial concentrations. We estimate that the critical concentration, cc, is 244 mg of protein per ml solution. The coexistence curve is well represented by the absolute value of (c - cc)/cc = 5.2 square root (Tc - T)/Tc. Using the temperature dependence of the scattered light intensity along isochores parallel to the critical isochore, we estimated the location of the spinodal line and found it to have the form (c - cc)/cc = 3.0 square root (Tc - T)/Tc. The ratio of the widths of the coexistence curve and the spinodal line, (5.2/3.0), is close to the mean-field value square root 3. We have also observed the growth of large crystals of gamma II-crystallin in some of these aqueous solutions and have made preliminary observations as to the factors that promote or delay the onset of crystallization. These findings suggest that selected protein/water systems can serve as excellent model systems for the study of phase transitions and critical phenomena. PMID:3478681

  3. A Conserved Region between the Heptad Repeats of Paramyxovirus Fusion Proteins is Critical for Proper F Protein Folding†

    PubMed Central

    Gardner, Amanda E.; Martin, Kimberly L.; Dutch, Rebecca E.

    2008-01-01

    Paramyxoviruses are a diverse family which utilizes a fusion (F) protein to enter cells via fusion of the viral lipid bilayer with a target cell membrane. Although certain regions of F are known to play critical roles in membrane fusion, the function of much of the protein remains unclear. Sequence alignment of a set of paramyxovirus F proteins and analysis utilizing Block Maker identified a region of conserved amino acid sequence in a large domain between the heptad repeats of F1, designated CBF1. We employed site-directed mutagenesis to analyze the function of completely conserved residues of CBF1 in both the simian virus 5 (SV5) and Hendra virus F proteins. The majority of CBF1 point mutants were deficient in homotrimer formation, proteolytic processing, and transport to the cell surface. For some SV5 F mutants, proteolytic cleavage and surface expression could be restored by expression at 30°C, and varying levels of fusion promotion were observed at this temperature. In addition, the mutant SV5 F V402A displayed a hyperfusogenic phenotype at both 30°C and 37°C, indicating this mutation allows for efficient fusion with only an extremely small amount of cleaved, active protein. The recently published prefusogenic structure of PIV5/SV5 F [Yin, H.S., et al. (2006) Nature 439, 38–44] indicates that residues within and flanking CBF1 interact with the fusion peptide domain. Together, these data suggest that CBF1-fusion peptide interactions are critical for the initial folding of paramyxovirus F proteins from across this important viral family, and can also modulate subsequent membrane fusion promotion. PMID:17417875

  4. The Emerging Role of Protein Phosphorylation as a Critical Regulatory Mechanism Controlling Cellulose Biosynthesis

    PubMed Central

    Jones, Danielle M.; Murray, Christian M.; Ketelaar, KassaDee J.; Thomas, Joseph J.; Villalobos, Jose A.; Wallace, Ian S.

    2016-01-01

    Plant cell walls are extracellular matrices that surround plant cells and critically influence basic cellular processes, such as cell division and expansion. Cellulose is a major constituent of plant cell walls, and this paracrystalline polysaccharide is synthesized at the plasma membrane by a large protein complex known as the cellulose synthase complex (CSC). Recent efforts have identified numerous protein components of the CSC, but relatively little is known about regulation of cellulose biosynthesis. Numerous phosphoproteomic surveys have identified phosphorylation events in CSC associated proteins, suggesting that protein phosphorylation may represent an important regulatory control of CSC activity. In this review, we discuss the composition and dynamics of the CSC in vivo, the catalog of CSC phosphorylation sites that have been identified, the function of experimentally examined phosphorylation events, and potential kinases responsible for these phosphorylation events. Additionally, we discuss future directions in cellulose synthase kinase identification and functional analyses of CSC phosphorylation sites. PMID:27252710

  5. Cytoskeletal Components of an Invasion Machine—The Apical Complex of Toxoplasma gondii

    PubMed Central

    Hu, Ke; Johnson, Jeff; Florens, Laurence; Fraunholz, Martin; Suravajjala, Sapna; DiLullo, Camille; Yates, John; Roos, David S; Murray, John M

    2006-01-01

    The apical complex of Toxoplasma gondii is widely believed to serve essential functions in both invasion of its host cells (including human cells), and in replication of the parasite. The understanding of apical complex function, the basis for its novel structure, and the mechanism for its motility are greatly impeded by lack of knowledge of its molecular composition. We have partially purified the conoid/apical complex, identified ~200 proteins that represent 70% of its cytoskeletal protein components, characterized seven novel proteins, and determined the sequence of recruitment of five of these proteins into the cytoskeleton during cell division. Our results provide new markers for the different subcompartments within the apical complex, and revealed previously unknown cellular compartments, which facilitate our understanding of how the invasion machinery is built. Surprisingly, the extreme apical and extreme basal structures of this highly polarized cell originate in the same location and at the same time very early during parasite replication. PMID:16518471

  6. Thermally Driven and Cytoskeletal-Assisted Dynamics of the Mitochondrial Reticulum

    NASA Astrophysics Data System (ADS)

    Knowles, Michelle K.; Marcus, Andrew H.

    2003-05-01

    We report Fourier imaging correlation spectroscopy (FICS) and digital video fluorescence microscopy (DVFM) measurements of the dynamics of the mitochondrial reticulum in living osteosarcoma cells. Mitochondrial dynamics are strongly influenced by interactions with cytoskeletal filaments and their associated motor proteins, which lead to complex multi-exponential relaxations that occur over a wide range of spatial and temporal scales. The cytoskeleton consists of an interconnected polymer network whose primary components are microfilaments (actin) and microtubules (tubulin). These filaments work with motor proteins to translate organelles through the cell. We studied the dynamics of osteosarcoma cells labeled with red fluorescent protein in the mitochondrial matrix space using DVFM and FICS. Cells were then treated with cytoskeletal destabilizing drugs. Analysis of microscopy data allows for us to determine whether dynamic processes are diffusive or driven (by the cytoskeleton or collective dynamics). In FICS experiments, the control cells exhibit a unique pattern of dynamics that are then simplified when the cytoskeleton is depolymerized. Upon depolymerization, the dynamics of the organelle appear primarily diffusive.

  7. Actin cytoskeletal remodeling with protrusion formation is essential for heart regeneration in Hippo-deficient mice

    PubMed Central

    Morikawa, Yuka; Zhang, Min; Heallen, Todd; Leach, John; Tao, Ge; Xiao, Yang; Bai, Yan; Li, Wei; Willerson, James T.; Martin, James F.

    2015-01-01

    The mammalian heart regenerates poorly, and damage commonly leads to heart failure. Hippo signaling is an evolutionarily conserved kinase cascade that regulates organ size during development and prevents adult mammalian cardiomyocyte regeneration by inhibiting the transcriptional coactivator Yap, which also responds to mechanical signaling in cultured cells to promote cell proliferation. To identify Yap target genes that are activated during cardiomyocyte renewal and regeneration, we performed Yap chromatin immunoprecipitation sequencing (ChIP-Seq) and mRNA expression profiling in Hippo signaling-deficient mouse hearts. We found that Yap directly regulated genes encoding cell cycle progression proteins, as well as genes encoding proteins that promote F-actin polymerization and that link the actin cytoskeleton to the extracellular matrix. Included in the latter group were components of the dystrophin glycoprotein complex (DGC), a large molecular complex that, when defective, results in muscular dystrophy in humans. Cardiomyocytes near scar tissue of injured Hippo signaling-deficient mouse hearts showed cellular protrusions suggestive of cytoskeletal remodeling. The hearts of mdx mutant mice, which lack functional dystrophin and are a model for muscular dystrophy, showed impaired regeneration and cytoskeleton remodeling, but normal cardiomyocyte proliferation after injury. Our data showed that, in addition to genes encoding cell cycle progression proteins, Yap regulated genes that enhance cytoskeletal remodeling Thus, blocking the Hippo pathway input to Yap may tip the balance so that Yap responds to the mechanical changes associated with heart injury to promote repair. PMID:25943351

  8. Dynamic association of L-selectin with the lymphocyte cytoskeletal matrix.

    PubMed

    Evans, S S; Schleider, D M; Bowman, L A; Francis, M L; Kansas, G S; Black, J D

    1999-03-15

    L-selectin mediates lymphocyte extravasation into lymphoid tissues through binding to sialomucin-like receptors on the surface of high endothelial venules (HEV). This study examines the biochemical basis and regulation of interactions between L-selectin, an integral transmembrane protein, and the lymphocyte cytoskeleton. Using a detergent-based extraction procedure, constitutive associations between L-selectin and the insoluble cytoskeletal matrix could not be detected. However, engagement of the L-selectin lectin domain by Abs or by glycosylation-dependent cell adhesion molecule-1, an HEV-derived ligand for L-selectin, rapidly triggered redistribution of L-selectin to the detergent-insoluble cytoskeleton. L-selectin attachment to the cytoskeleton was not prevented by inhibitors of actin/microtubule polymerization (cytochalasin B, colchicine, or nocodozole) or serine/threonine and tyrosine kinase activity (staurosporine, calphostin C, or genistein), although L-selectin-mediated adhesion of human PBL was markedly suppressed by these agents. Exposure of human PBL or murine pre-B transfectants expressing full-length human L-selectin to fever-range hyperthermia also markedly increased L-selectin association with the cytoskeleton, directly correlating with enhanced L-selectin-mediated adhesion. In contrast, a deletion mutant of L-selectin lacking the COOH-terminal 11 amino acids failed to associate with the cytoskeletal matrix in response to Ab cross-linking or hyperthermia stimulation and did not support adhesion to HEV. These studies, when taken together with the previously demonstrated interaction between the L-selectin cytoplasmic domain and the cytoskeletal linker protein alpha-actinin, strongly implicate the actin-based cytoskeleton in dynamically controlling L-selectin adhesion.

  9. Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes.

    PubMed

    Lee, Hyungsuk; Adams, William J; Alford, Patrick W; McCain, Megan L; Feinberg, Adam W; Sheehy, Sean P; Goss, Josue A; Parker, Kevin Kit

    2015-11-01

    Mechanical stresses on the myocyte nucleus have been associated with several diseases and potentially transduce mechanical stimuli into cellular responses. Although a number of physical links between the nuclear envelope and cytoplasmic filaments have been identified, previous studies have focused on the mechanical properties of individual components of the nucleus, such as the nuclear envelope and lamin network. The mechanical interaction between the cytoskeleton and chromatin on nuclear deformability remains elusive. Here, we investigated how cytoskeletal and chromatin structures influence nuclear mechanics in cardiac myocytes. Rapid decondensation of chromatin and rupture of the nuclear membrane caused a sudden expansion of DNA, a consequence of prestress exerted on the nucleus. To characterize the prestress exerted on the nucleus, we measured the shape and the stiffness of isolated nuclei and nuclei in living myocytes during disruption of cytoskeletal, myofibrillar, and chromatin structure. We found that the nucleus in myocytes is subject to both tensional and compressional prestress and its deformability is determined by a balance of those opposing forces. By developing a computational model of the prestressed nucleus, we showed that cytoskeletal and chromatin prestresses create vulnerability in the nuclear envelope. Our studies suggest the cytoskeletal-nuclear-chromatin interconnectivity may play an important role in mechanics of myocyte contraction and in the development of laminopathies by lamin mutations.

  10. DNA binding residues in the RQC domain of Werner protein are critical for its catalytic activities.

    PubMed

    Tadokoro, Takashi; Kulikowicz, Tomasz; Dawut, Lale; Croteau, Deborah L; Bohr, Vilhelm A

    2012-06-01

    Werner protein (WRN), member of the RecQ helicase family, is a helicase and exonuclease, and participates in multiple DNA metabolic processes including DNA replication, recombination and DNA repair. Mutations in the WRN gene cause Werner syndrome, associated with premature aging, genome instability and cancer predisposition. The RecQ C-terminal (RQC) domain of WRN, containing α2-α3 loop and β-wing motifs, is important for DNA binding and for many protein interactions. To better understand the critical functions of this domain, we generated recombinant WRN proteins (using a novel purification scheme) with mutations in Arg-993 within the α2-α3 loop of the RQC domain and in Phe-1037 of the -wing motif. We then studied the catalytic activities and DNA binding of these mutant proteins as well as some important functional protein interactions. The mutant proteins were defective in DNA binding and helicase activity, and interestingly, they had deficient exonuclease activity and strand annealing function. The RQC domain of WRN has not previously been implicated in exonuclease or annealing activities. The mutant proteins could not stimulate NEIL1 incision activity as did the wild type. Thus, the Arg-993 and Phe-1037 in the RQC domain play essential roles in catalytic activity, and in functional interactions mediated by WRN.

  11. Critical controllability in proteome-wide protein interaction network integrating transcriptome

    NASA Astrophysics Data System (ADS)

    Ishitsuka, Masayuki; Akutsu, Tatsuya; Nacher, Jose C.

    2016-04-01

    Recently, the number of essential gene entries has considerably increased. However, little is known about the relationships between essential genes and their functional roles in critical network control at both the structural (protein interaction network) and dynamic (transcriptional) levels, in part because the large size of the network prevents extensive computational analysis. Here, we present an algorithm that identifies the critical control set of nodes by reducing the computational time by 180 times and by expanding the computable network size up to 25 times, from 1,000 to 25,000 nodes. The developed algorithm allows a critical controllability analysis of large integrated systems composed of a transcriptome- and proteome-wide protein interaction network for the first time. The data-driven analysis captures a direct triad association of the structural controllability of genes, lethality and dynamic synchronization of co-expression. We believe that the identified optimized critical network control subsets may be of interest as drug targets; thus, they may be useful for drug design and development.

  12. Critical controllability in proteome-wide protein interaction network integrating transcriptome

    PubMed Central

    Ishitsuka, Masayuki; Akutsu, Tatsuya; Nacher, Jose C.

    2016-01-01

    Recently, the number of essential gene entries has considerably increased. However, little is known about the relationships between essential genes and their functional roles in critical network control at both the structural (protein interaction network) and dynamic (transcriptional) levels, in part because the large size of the network prevents extensive computational analysis. Here, we present an algorithm that identifies the critical control set of nodes by reducing the computational time by 180 times and by expanding the computable network size up to 25 times, from 1,000 to 25,000 nodes. The developed algorithm allows a critical controllability analysis of large integrated systems composed of a transcriptome- and proteome-wide protein interaction network for the first time. The data-driven analysis captures a direct triad association of the structural controllability of genes, lethality and dynamic synchronization of co-expression. We believe that the identified optimized critical network control subsets may be of interest as drug targets; thus, they may be useful for drug design and development. PMID:27040162

  13. Tumorigenicity of Ewing sarcoma is critically dependent on the trithorax proteins MLL1 and menin

    PubMed Central

    Svoboda, Laurie K.; Bailey, Natashay; Van Noord, Raelene A.; Krook, Melanie A.; Harris, Ashley; Cramer, Cassondra; Jasman, Brooke; Patel, Rajiv M.; Thomas, Dafydd; Borkin, Dmitry; Cierpicki, Tomasz; Grembecka, Jolanta; Lawlor, Elizabeth R.

    2017-01-01

    Developmental transcription programs are epigenetically regulated by the competing actions of polycomb and trithorax (TrxG) protein complexes, which repress and activate genes, respectively. Ewing sarcoma is a developmental tumor that is associated with widespread de-regulation of developmental transcription programs, including HOX programs. Posterior HOXD genes are abnormally over-expressed by Ewing sarcoma and HOXD13, in particular, contributes to the tumorigenic phenotype. In MLL1 fusion-driven leukemia, aberrant activation of HOXA genes is epigenetically mediated by the TrxG complex and HOXA gene expression and leukemogenesis are critically dependent on the protein-protein interaction between the TrxG proteins MLL1 and menin. Based on these data, we investigated whether posterior HOXD gene activation and Ewing sarcoma tumorigenicity are similarly mediated by and dependent on MLL1 and/or menin. Our findings demonstrate that Ewing sarcomas express high levels of both MLL1 and menin and that continued expression of both proteins is required for maintenance of tumorigenicity. In addition, exposure of Ewing sarcoma cells to MI-503, an inhibitor of the MLL1-menin protein-protein interaction developed for MLL1-fusion driven leukemia, leads to loss of tumorigenicity and down-regulated expression of the posterior HOXD gene cluster. Together these data demonstrate an essential role for MLL1 and menin in mediating tumor maintenance and posterior HOXD gene activation in Ewing sarcoma. A critical dependency of these tumors on the MLL1-menin interaction presents a potentially novel therapeutic target. PMID:27888797

  14. Cytoskeletal regulation dominates temperature-sensitive proteomic changes of hibernation in forebrain of 13-lined ground squirrels.

    PubMed

    Hindle, Allyson G; Martin, Sandra L

    2013-01-01

    13-lined ground squirrels, Ictidomys tridecemlineatus, are obligate hibernators that transition annually between summer homeothermy and winter heterothermy - wherein they exploit episodic torpor bouts. Despite cerebral ischemia during torpor and rapid reperfusion during arousal, hibernator brains resist damage and the animals emerge neurologically intact each spring. We hypothesized that protein changes in the brain underlie winter neuroprotection. To identify candidate proteins, we applied a sensitive 2D gel electrophoresis method to quantify protein differences among forebrain extracts prepared from ground squirrels in two summer, four winter and fall transition states. Proteins that differed among groups were identified using LC-MS/MS. Only 84 protein spots varied significantly among the defined states of hibernation. Protein changes in the forebrain proteome fell largely into two reciprocal patterns with a strong body temperature dependence. The importance of body temperature was tested in animals from the fall; these fall animals use torpor sporadically with body temperatures mirroring ambient temperatures between 4 and 21°C as they navigate the transition between summer homeothermy and winter heterothermy. Unlike cold-torpid fall ground squirrels, warm-torpid individuals strongly resembled the homeotherms, indicating that the changes observed in torpid hibernators are defined by body temperature, not torpor per se. Metabolic enzymes were largely unchanged despite varied metabolic activity across annual and torpor-arousal cycles. Instead, the majority of the observed changes were cytoskeletal proteins and their regulators. While cytoskeletal structural proteins tended to differ seasonally, i.e., between summer homeothermy and winter heterothermy, their regulatory proteins were more strongly affected by body temperature. Changes in the abundance of various isoforms of the microtubule assembly and disassembly regulatory proteins dihydropyrimidinase

  15. Mechanics of composite cytoskeletal and extracellular networks

    NASA Astrophysics Data System (ADS)

    Das, Moumita

    2014-03-01

    Living cells sense and respond to mechanical forces in their surroundings. This mechanical response is mainly due to the cell cytoskeleton, and its interaction with the extracellular matrix (ECM). The cell cytoskeleton is a composite polymeric scaffold made of many different types of protein filaments and crosslinking proteins. Two major filament systems in the cytoskeleton are actin filaments (F-actin) and microtubules (MTs). Actin filaments are semiflexible, while the much stiffer MTs behave as rigid rods. I shall discuss theories that help understand how the direct coupling to the surrounding F-actin matrix allows intracellular MTs to bear large compressive forces and controls the range of force transmission along the MTs, and how the MTs not only enhance the stiffness of the cell cytoskeleton, but can also dramatically endow an initially nearly incompressible F-actin matrix with enhanced compressibility relative to its shear compliance. A second source of compositeness in the cytoskeleton is the presences of different types of crosslinkers that can interact cooperatively leading to enhanced mechanical rigidity and tunable response. Like the cytoskeleton, the ECM is also a polymeric composite. It is primarily composed of a mesh of fibrous proteins, mainly stiff collagen filaments, and a comparatively flexible gel of proteoglycans and hyaluronan. I shall discuss a model that shows how the interplay between the collagen network and the background elastic gel leads to a mechanically robust ECM.

  16. Botrytis cinerea Protein O-Mannosyltransferases Play Critical Roles in Morphogenesis, Growth, and Virulence

    PubMed Central

    González, Mario; Brito, Nélida; Frías, Marcos; González, Celedonio

    2013-01-01

    Protein O-glycosylation is crucial in determining the structure and function of numerous secreted and membrane-bound proteins. In fungi, this process begins with the addition of a mannose residue by protein O-mannosyltransferases (PMTs) in the lumen side of the ER membrane. We have generated mutants of the three Botrytis cinerea pmt genes to study their role in the virulence of this wide-range plant pathogen. B. cinerea PMTs, especially PMT2, are critical for the stability of the cell wall and are necessary for sporulation and for the generation of the extracellular matrix. PMTs are also individually required for full virulence in a variety of hosts, with a special role in the penetration of intact plant leaves. The most significant case is that of grapevine leaves, whose penetration requires the three functional PMTs. Furthermore, PMT2 also contributes significantly to fungal adherence on grapevine and tobacco leaves. Analysis of extracellular and membrane proteins showed significant changes in the pattern of protein secretion and glycosylation by the pmt mutants, and allowed the identification of new protein substrates putatively glycosylated by specific PMTs. Since plants do no possess these enzymes, PMTs constitute a promising target in the development of novel control strategies against B. cinerea. PMID:23762450

  17. Botrytis cinerea protein O-mannosyltransferases play critical roles in morphogenesis, growth, and virulence.

    PubMed

    González, Mario; Brito, Nélida; Frías, Marcos; González, Celedonio

    2013-01-01

    Protein O-glycosylation is crucial in determining the structure and function of numerous secreted and membrane-bound proteins. In fungi, this process begins with the addition of a mannose residue by protein O-mannosyltransferases (PMTs) in the lumen side of the ER membrane. We have generated mutants of the three Botrytis cinerea pmt genes to study their role in the virulence of this wide-range plant pathogen. B. cinerea PMTs, especially PMT2, are critical for the stability of the cell wall and are necessary for sporulation and for the generation of the extracellular matrix. PMTs are also individually required for full virulence in a variety of hosts, with a special role in the penetration of intact plant leaves. The most significant case is that of grapevine leaves, whose penetration requires the three functional PMTs. Furthermore, PMT2 also contributes significantly to fungal adherence on grapevine and tobacco leaves. Analysis of extracellular and membrane proteins showed significant changes in the pattern of protein secretion and glycosylation by the pmt mutants, and allowed the identification of new protein substrates putatively glycosylated by specific PMTs. Since plants do no possess these enzymes, PMTs constitute a promising target in the development of novel control strategies against B. cinerea.

  18. Transcriptional networks regulating the costamere, sarcomere, and other cytoskeletal structures in striated muscle.

    PubMed

    Estrella, Nelsa L; Naya, Francisco J

    2014-05-01

    Structural abnormalities in striated muscle have been observed in numerous transcription factor gain- and loss-of-function phenotypes in animal and cell culture model systems, indicating that transcription is important in regulating the cytoarchitecture. While most characterized cytoarchitectural defects are largely indistinguishable by histological and ultrastructural criteria, analysis of dysregulated gene expression in each mutant phenotype has yielded valuable information regarding specific structural gene programs that may be uniquely controlled by each of these transcription factors. Linking the formation and maintenance of each subcellular structure or subset of proteins within a cytoskeletal compartment to an overlapping but distinct transcription factor cohort may enable striated muscle to control cytoarchitectural function in an efficient and specific manner. Here we summarize the available evidence that connects transcription factors, those with established roles in striated muscle such as MEF2 and SRF, as well as other non-muscle transcription factors, to the regulation of a defined cytoskeletal structure. The notion that genes encoding proteins localized to the same subcellular compartment are coordinately transcriptionally regulated may prompt rationally designed approaches that target specific transcription factor pathways to correct structural defects in muscle disease.

  19. Nesprin-3 regulates endothelial cell morphology, perinuclear cytoskeletal architecture, and flow-induced polarization

    PubMed Central

    Morgan, Joshua T.; Pfeiffer, Emily R.; Thirkill, Twanda L.; Kumar, Priyadarsini; Peng, Gordon; Fridolfsson, Heidi N.; Douglas, Gordon C.; Starr, Daniel A.; Barakat, Abdul I.

    2011-01-01

    Changes in blood flow regulate gene expression and protein synthesis in vascular endothelial cells, and this regulation is involved in the development of atherosclerosis. How mechanical stimuli are transmitted from the endothelial luminal surface to the nucleus is incompletely understood. The linker of nucleus and cytoskeleton (LINC) complexes have been proposed as part of a continuous physical link between the plasma membrane and subnuclear structures. LINC proteins nesprin-1, -2, and -4 have been shown to mediate nuclear positioning via microtubule motors and actin. Although nesprin-3 connects intermediate filaments to the nucleus, no functional consequences of nesprin-3 mutations on cellular processes have been described. Here we show that nesprin-3 is robustly expressed in human aortic endothelial cells (HAECs) and localizes to the nuclear envelope. Nesprin-3 regulates HAEC morpho­logy, with nesprin-3 knockdown inducing prominent cellular elongation. Nesprin-3 also organizes perinuclear cytoskeletal organization and is required to attach the centrosome to the nuclear envelope. Finally, nesprin-3 is required for flow-induced polarization of the centrosome and flow-induced migration in HAECs. These results represent the most complete description to date of nesprin-3 function and suggest that nesprin-3 regulates vascular endothelial cell shape, perinuclear cytoskeletal architecture, and important aspects of flow-mediated mechanotransduction. PMID:21937718

  20. Atomic-resolution structure of cytoskeletal bactofilin by solid-state NMR.

    PubMed

    Shi, Chaowei; Fricke, Pascal; Lin, Lin; Chevelkov, Veniamin; Wegstroth, Melanie; Giller, Karin; Becker, Stefan; Thanbichler, Martin; Lange, Adam

    2015-12-01

    Bactofilins are a recently discovered class of cytoskeletal proteins of which no atomic-resolution structure has been reported thus far. The bacterial cytoskeleton plays an essential role in a wide range of processes, including morphogenesis, cell division, and motility. Among the cytoskeletal proteins, the bactofilins are bacteria-specific and do not have a eukaryotic counterpart. The bactofilin BacA of the species Caulobacter crescentus is not amenable to study by x-ray crystallography or solution nuclear magnetic resonance (NMR) because of its inherent noncrystallinity and insolubility. We present the atomic structure of BacA calculated from solid-state NMR-derived distance restraints. We show that the core domain of BacA forms a right-handed β helix with six windings and a triangular hydrophobic core. The BacA structure was determined to 1.0 Å precision (heavy-atom root mean square deviation) on the basis of unambiguous restraints derived from four-dimensional (4D) HN-HN and 2D C-C NMR spectra.

  1. Molecular Mechanotransduction: how forces trigger cytoskeletal dynamics

    NASA Astrophysics Data System (ADS)

    Ehrlicher, Allen

    2012-02-01

    Mechanical stresses elicit cellular reactions mediated by chemical signals. Defective responses to forces underlie human medical disorders, such as cardiac failure and pulmonary injury. Despite detailed knowledge of the cytoskeleton's structure, the specific molecular switches that convert mechanical stimuli into chemical signals have remained elusive. Here we identify the actin-binding protein, filamin A (FLNa) as a central mechanotransduction element of the cytoskeleton by using Fluorescence Loss After photoConversion (FLAC), a novel high-speed alternative to FRAP. We reconstituted a minimal system consisting of actin filaments, FLNa and two FLNa-binding partners: the cytoplasmic tail of ß-integrin, and FilGAP. Integrins form an essential mechanical linkage between extracellular and intracellular environments, with ß integrin tails connecting to the actin cytoskeleton by binding directly to filamin. FilGAP is a FLNa-binding GTPase-activating protein specific for Rac, which in vivo regulates cell spreading and bleb formation. We demonstrate that both externally-imposed bulk shear and myosin II driven forces differentially regulate the binding of integrin and FilGAP to FLNa. Consistent with structural predictions, strain increases ß-integrin binding to FLNa, whereas it causes FilGAP to dissociate from FLNa, providing a direct and specific molecular basis for cellular mechanotransduction. These results identify the first molecular mechanotransduction element within the actin cytoskeleton, revealing that mechanical strain of key proteins regulates the binding of signaling molecules. Moreover, GAP activity has been shown to switch cell movement from mesenchymal to amoeboid motility, suggesting that mechanical forces directly impact the invasiveness of cancer.

  2. Critical roles for WDR72 in calcium transport and matrix protein removal during enamel maturation

    PubMed Central

    Wang, Shih-Kai; Hu, Yuanyuan; Yang, Jie; Smith, Charles E; Nunez, Stephanie M; Richardson, Amelia S; Pal, Soumya; Samann, Andrew C; Hu, Jan C-C; Simmer, James P

    2015-01-01

    Defects in WDR72 (WD repeat-containing protein 72) cause autosomal recessive hypomaturation amelogenesis imperfecta. We generated and characterized Wdr72-knockout/lacZ-knockin mice to investigate the role of WDR72 in enamel formation. In all analyses, enamel formed by Wdr72 heterozygous mice was indistinguishable from wild-type enamel. Without WDR72, enamel mineral density increased early during the maturation stage but soon arrested. The null enamel layer was only a tenth as hard as wild-type enamel and underwent rapid attrition following eruption. Despite the failure to further mineralize enamel deposited during the secretory stage, ectopic mineral formed on the enamel surface and penetrated into the overlying soft tissue. While the proteins in the enamel matrix were successfully degraded, the digestion products remained inside the enamel. Interactome analysis of WDR72 protein revealed potential interactions with clathrin-associated proteins and involvement in ameloblastic endocytosis. The maturation stage mandibular incisor enamel did not stain with methyl red, indicating that the enamel did not acidify beneath ruffle-ended ameloblasts. Attachment of maturation ameloblasts to the enamel layer was weakened, and SLC24A4, a critical ameloblast calcium transporter, did not localize appropriately along the ameloblast distal membrane. Fewer blood vessels were observed in the papillary layer supporting ameloblasts. Specific WDR72 expression by maturation stage ameloblasts explained the observation that enamel thickness and rod decussation (established during the secretory stage) are normal in the Wdr72 null mice. We conclude that WDR72 serves critical functions specifically during the maturation stage of amelogenesis and is required for both protein removal and enamel mineralization. PMID:26247047

  3. CONSERVED ROLES FOR CYTOSKELETAL COMPONENTS IN DETERMINING LATERALITY

    PubMed Central

    McDowell, Gary S.; Lemire, Joan M.; Paré, Jean-Francois; Cammarata, Garrett; Lowery, Laura Anne; Levin, Michael

    2016-01-01

    SUMMARY Consistently-biased left-right (LR) patterning is required for the proper placement of organs including the heart and viscera. The LR axis is especially fascinating as an example of multi-scale pattern formation, since here chiral events at the subcellular level are integrated and amplified into asymmetric transcriptional cascades and ultimately into the anatomical patterning of the entire body. In contrast to the other two body axes, there is considerable controversy about the earliest mechanisms of embryonic laterality. Many molecular components of asymmetry have not been widely tested among phyla with diverse bodyplans, and it is unknown whether parallel (redundant) pathways may exist that could reverse abnormal asymmetry states at specific checkpoints in development. To address conservation of the early steps of LR patterning, we used the Xenopus laevis (frog) embryo to functionally test a number of protein targets known to direct asymmetry in plants, fruit fly, and rodent. Using the same reagents that randomize asymmetry in Arabidopsis, Drosophila, and mouse embryos, we show that manipulation of the microtubule and actin cytoskeleton immediately post-fertilization, but not later, results in laterality defects in Xenopus embryos. Moreover, we observed organ-specific randomization effects and a striking dissociation of organ situs from effects on the expression of left side control genes, which parallel data from Drosophila and mouse. Remarkably, some early manipulations that disrupt laterality of transcriptional asymmetry determinants can be subsequently “rescued” by the embryo, resulting in normal organ situs. These data reveal the existence of novel corrective mechanisms, demonstrate that asymmetric expression of Nodal is not a definitive marker of laterality, and suggest the existence of amplification pathways that connect early cytoskeletal processes to control of organ situs bypassing Nodal. Counter to alternative models of symmetry breaking

  4. Sumoylation of critical proteins in amyotrophic lateral sclerosis: emerging pathways of pathogenesis

    PubMed Central

    Foran, Emily; Rosenblum, Lauren; Bogush, Alexey I.; Trotti, Davide

    2013-01-01

    Emerging lines of evidence suggest a relationship between amyotrophic lateral sclerosis (ALS) and protein sumoylation. Multiple studies have demonstrated that several of the proteins involved in the pathogenesis of ALS, including superoxide dismutase 1 (SOD1), fused in liposarcoma (FUS), and TAR DNA binding protein 43 (TDP43), are substrates for sumoylation. Additionally, recent studies in cellular and animal models of ALS revealed that sumoylation of these proteins impact their localization, longevity and how they functionally perform in disease, providing novel areas for mechanistic investigations and therapeutics. In this article, we summarize the current literature examining the impact of sumoylation of critical proteins involved in ALS and discuss the potential impact for the pathogenesis of the disease. In addition, we report and discuss the implications of new evidence demonstrating that sumoylation of a fragment derived from the proteolytic cleavage of the astroglial glutamate transporter, EAAT2, plays a direct role in downregulating the expression levels of full length EAAT2 by binding to a regulatory region of its promoter. PMID:24062161

  5. Gadd45 Proteins as Critical Signal Transducers Linking NF-κB to MAPK Cascades

    PubMed Central

    Yang, Z.; Song, L.; Huang, C.

    2013-01-01

    The growth arrest and DNA damage-inducible 45 (Gadd45) proteins are a group of critical signal transducers that are involved in regulations of many cellular functions. Accumulated data indicate that all three Gadd45 proteins (i.e., Gadd45α, Gadd45β, and Gadd45γ) play essential roles in connecting an upstream sensor module, the transcription Nuclear Factor-κB (NF-κB), to a transcriptional regulating module, mitogen-activated protein kinase (MAPK). This NF-κB-Gadd45(s)-MAPK pathway responds to various kinds of extracellular stimuli and regulates such cell activities as growth arrest, differentiation, cell survival, and apoptosis. Defects in this pathway can also be related to oncogenesis. In the first part of this review, the functions of Gadd45 proteins, and briefly NF-κB and MAPK, are summarized. In the second part, the mechanisms by which Gadd45 proteins are regulated by NF-κB, and how they affect MAPK activation, are reviewed. PMID:20025601

  6. Podocyte-Specific Deletion of Dicer Alters Cytoskeletal Dynamics and Causes Glomerular Disease

    PubMed Central

    Harvey, Scott J.; Jarad, George; Cunningham, Jeanette; Goldberg, Seth; Schermer, Bernhard; Harfe, Brian D.; McManus, Michael T.; Benzing, Thomas; Miner, Jeffrey H.

    2008-01-01

    MicroRNAs (miRNAs) regulate gene expression by binding the 3′ untranslated region of mRNAs. To define their role in glomerular function, miRNA biogenesis was disrupted in mouse podocytes using a conditional Dicer allele. Mutant mice developed proteinuria by 3 wk after birth and progressed rapidly to end-stage kidney disease. Podocyte pathology included effacement, vacuolization, and hypertrophy with crescent formation. Despite normal expression of WT1, podocytes underwent dedifferentiation, exemplified by cytoskeletal disruption with early transcriptional downregulation of synaptopodin. These abnormalities differed from Cd2ap−/− mice, indicating they were not a general consequence of glomerular disease. Glomerular labeling of ezrin, moesin, and gelsolin was altered at 3 wk, but expression of nestin and α-actinin was unchanged. Abnormal cell proliferation or apoptosis was not responsible for the glomerular injury. Mutant podocytes were incapable of synthesizing mature miRNA, as revealed by their loss of miR-30a. In contrast, expression of glomerular endothelial and mesangial cell miRNAs (miR-126 and miR-145, respectively) was unchanged. These findings demonstrate a critical role for miRNA in glomerular function and suggest a pathway that may participate in the pathogenesis of kidney diseases of podocyte origin. The unique architecture of podocytes may make them especially susceptible to cytoskeletal alterations initiated by aberrant miRNA dynamics. PMID:18776121

  7. Probing bilayer-cytoskeletal interactions in erythrocytes using a two-component dissipative particle dynamics model

    NASA Astrophysics Data System (ADS)

    Peng, Zhangli; Li, Xuejin; Pivkin, Igor; Dao, Ming; Karniadakis, George

    2013-11-01

    We develop a two-component dissipative particle dynamics (DPD) model of the red blood cell (RBC) membrane by modeling the lipid bilayer and the cytoskeleton separately. By applying this model to simulate four different experiments on RBCs, including micropipette aspiration, membrane fluctuations, tank-treading motions in shear flow and bilayer tethering in a flow channel, we validated our model and studied the mechanical properties of the bilayer-cytoskeletal interaction in a systematic and controlled manner, such as its elastic stiffness, viscous friction and strength. In the same time, we also resolved several controversies in RBC mechanics, e.g., the dependence of tank-treading frequency on shear rates and the possibility of bilayer-cytoskeletal slip. Furthermore, to investigate RBC dynamics in the microcirculation, we simulated the passages of RBCs through narrow channels of the flow cytometer in vitro and their passages through the splenic inter-endothelial slits in vivo. The effects of RBC geometry and membrane stiffness on the critical pressure gradient of passage were studied, and the simulation results agree well with experimental measurements. This work was supported by National Institutes of Health Grant R01HL094270 and the new Department of Energy Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4).

  8. GRIM-19 inhibits v-Src-induced cell motility by interfering with cytoskeletal restructuring

    PubMed Central

    Sun, Peng; Nallar, Shreeram C.; Kalakonda, Sudhakar; Lindner, Daniel J.; Martin, Stuart S.; Kalvakolanu, Dhananjaya V.

    2008-01-01

    GRIM-19 (Gene associated with Retinoid-Interferon-induced Mortality 19) is a novel tumor suppressor regulated by Interferon/retinoid combination. We have recently shown that GRIM-19 inhibits v-Src-induced oncogenic transformation and metastatic behavior of cells. Oncogenic v-Src induces cell motility by cytoskeletal remodeling especially the formation of podosomes and. Here we show that GRIM-19 inhibited the v-Src-induced cell motility by inhibiting cytoskeletal remodeling i.e., podosome formation. We also show that the N-terminus of GRIM-19 played a major role in this process and identified critical residues in this region. More importantly, we show that tumor-associated GRIM-19 mutations disrupted its ability to inhibit v-Src-induced cell motility. These actions appear to occur independently of STAT3, a known target of GRIM-19-mediated inhibition. Lastly, tumor-associated GRIM-19 mutants significantly lost their ability to control v-Src-induced metastases in vivo, indicating the biological and pathological significance of these observations. PMID:19151760

  9. Cytoskeletal organization by motor and polymerization forces

    NASA Astrophysics Data System (ADS)

    Koenderink, Gijsje

    2014-03-01

    Cells need to constantly change their change to perform vital functions, such as growth, division, and movement. Dysregulation of cell shape can have severe consequences such as cancer. Our goal is to resolve physical mechanisms that contribute to cell shape control. For this purpose, we study simplified experimental model systems reconstituted from purified cellular components. In this talk, I will give two examples of our recent work. The first example concerns active contractility of the actin cortex, which lies underneath the cell membrane and drives shape changes by means of myosin motors. Using in vitro models, we studied how myosin motors and actin filaments collectively self-organize into force-generating arrays. I will show that motors contract actin networks only above a sharp threshold in crosslink density. We discovered that right at this threshold, the motors rupture the network into clusters that exhibit a broad distribution of sizes, as expected in filamentous networks near a percolation threshold. The second example I will discuss concerns cell shape polarization directed by interactions between the actin and microtubule (MT) cytoskeletons. A prominent example is the guidance of MT growth along F-actin bundles towards specific targets, i.e. focal adhesions. It has been suggested that MT end-tracking proteins (+TIPs) that also bind F-actin are responsible for this process. We built an in vitro system involving a simplified actin-MT crosslinker molecule and could show that the interaction between MT ends and actin is sufficient to capture and re-direct MT growth along actin bundles. By keeping MT growth tightly coupled to F-actin, this mechanism allows linear arrays of actin bundles to act as templates for MT organization. Instead, when interacting with single actin filaments, MT ends become the dominant organizing factor, exerting forces that align, pull and even transport actin filaments in the direction of MT growth. We conclude that actin and MTs

  10. Mitogen-Activated Protein Kinases and Mitogen Kinase Phosphatase 1: A Critical Interplay in Macrophage Biology

    PubMed Central

    Lloberas, Jorge; Valverde-Estrella, Lorena; Tur, Juan; Vico, Tania; Celada, Antonio

    2016-01-01

    Macrophages are necessary in multiple processes during the immune response or inflammation. This review emphasizes the critical role of the mitogen-activated protein kinases (MAPKs) and mitogen kinase phosphatase-1 (MKP-1) in the functional activities of macrophages. While the phosphorylation of MAPKs is required for macrophage activation or proliferation, MKP-1 dephosphorylates these kinases, thus playing a balancing role in the control of macrophage behavior. MKP-1 is a nuclear-localized dual-specificity phosphatase whose expression is regulated at multiple levels, including at the transcriptional and post-transcriptional level. The regulatory role of MKP-1 in the interplay between MAPK phosphorylation/dephosphorylation makes this molecule a critical regulator of macrophage biology and inflammation. PMID:27446931

  11. Eight proteins play critical roles in RCC with bone metastasis via mitochondrial dysfunction.

    PubMed

    Wang, Jiang; Zhao, Xiaolin; Qi, Jun; Yang, Caihong; Cheng, Hao; Ren, Ye; Huang, Lei

    2015-08-01

    Most kidney cancers are renal cell carcinomas (RCC). RCC lacks early warning signs and 70 % of patients with RCC develop metastases. Among them, 50 % of patients having skeletal metastases developed a dismal survival of less than 10 % at 5 years. Therefore, exploring the key driving proteins and pathways involved in RCC bone metastasis could benefit patients' therapy and prolong their survival. We examined the difference between the OS-RC-2 cells and the OS-RC-2-BM5 cells (subpopulation from OS-RC-2) of RCC with proteomics. Then we employed Western-blot, immunohistochemistry and the clinical database (oncomine) to screen and verify the key proteins and then we analyzed the functions and the related pathways of selected key proteins with system biology approaches. Our proteomic data revealed 26 significant changed spots (fold change <0.5 and >1.9, P < 0.05) between two cells. The Western blotting results validated for these identified spots were consistent with the proteomics'. From the public clinical database, 23 out of 26 proteins were connected with RCC metastases and 9 out of 23 with survival time directly (P < 0.05). Finally, only 8 out of 9 proteins had significantly positive results in tissues of RCC patients with bone metastasis compared with primary tumor (P < 0.05). System biology analyzing results showed these eight proteins mainly distributed in oxidative phosphorylation which indicates that mitochondria dysfunction played the critical role to regulate cells metastasis. Our article used a variety of experimental techniques to find eight proteins which abnormally regulated mitochondrial function to achieve a successful induction for RCC metastasis to bone.

  12. In vivo definition of cardiac myosin-binding protein C’s critical interactions with myosin

    PubMed Central

    Bhuiyan, Shenuarin; McLendon, Patrick; James, Jeanne; Osinska, Hanna; Gulick, James; Bhandary, Bidur; Lorenz, John N.

    2017-01-01

    Cardiac myosin-binding protein C (cMyBP-C) is an integral part of the sarcomeric machinery in cardiac muscle that enables normal function. cMyBP-C regulates normal cardiac contraction by functioning as a brake through interactions with the sarcomere’s thick, thin, and titin filaments. cMyBP-C’s precise effects as it binds to the different filament systems remain obscure, particularly as it impacts on the myosin heavy chain’s head domain, contained within the subfragment 2 (S2) region. This portion of the myosin heavy chain also contains the ATPase activity critical for myosin’s function. Mutations in myosin’s head, as well as in cMyBP-C, are a frequent cause of familial hypertrophic cardiomyopathy (FHC). We generated transgenic lines in which endogenous cMyBP-C was replaced by protein lacking the residues necessary for binding to S2 (cMyBP-CS2−). We found, surprisingly, that cMyBP-C lacking the S2 binding site is incorporated normally into the sarcomere, although systolic function is compromised. We show for the first time the acute and chronic in vivo consequences of ablating a filament-specific interaction of cMyBP-C. This work probes the functional consequences, in the whole animal, of modifying a critical structure-function relationship, the protein’s ability to bind to a region of the critical enzyme responsible for muscle contraction, the subfragment 2 domain of the myosin heavy chain. We show that the binding is not critical for the protein’s correct insertion into the sarcomere’s architecture, but is essential for long-term, normal function in the physiological context of the heart. PMID:27568194

  13. Processive cytoskeletal motors studied with single-molecule fluorescence techniques.

    PubMed

    Belyy, Vladislav; Yildiz, Ahmet

    2014-10-01

    Processive cytoskeletal motors from the myosin, kinesin, and dynein families walk on actin filaments and microtubules to drive cellular transport and organization in eukaryotic cells. These remarkable molecular machines are able to take hundreds of successive steps at speeds of up to several microns per second, allowing them to effectively move vesicles and organelles throughout the cytoplasm. Here, we focus on single-molecule fluorescence techniques and discuss their wide-ranging applications to the field of cytoskeletal motor research. We cover both traditional fluorescence and sub-diffraction imaging of motors, providing examples of how fluorescence data can be used to measure biophysical parameters of motors such as coordination, stepping mechanism, gating, and processivity. We also outline some remaining challenges in the field and suggest future directions.

  14. Quantitative Evaluation of Plant Actin Cytoskeletal Organization During Immune Signaling.

    PubMed

    Lu, Yi-Ju; Day, Brad

    2017-01-01

    High spatial and temporal resolution microscopy-based methods are valuable tools for the precise real-time imaging of changes in cellular organization in response to stimulus perception. Here, we describe a quantitative method for the evaluation of the plant actin cytoskeleton during immune stimulus perception and the activation of defense signaling. As a measure of the biotic stress-induced changes in actin filament organization, we present methods for analyzing changes in actin filament organization following elicitation of pattern-triggered immunity and effector-triggered immunity. Using these methods, it is possible to not only quantitatively evaluate changes in actin cytoskeletal organization following biotic stress perception, but to also use these protocols to assess changes in actin filament organization following perception of a wide range of stimuli, including abiotic and developmental cues. As described herein, we present an example application of this method, designed to evaluate changes in actin cytoskeletal organization following pathogen perception and immune signaling.

  15. Implementing cell contractility in filament-based cytoskeletal models.

    PubMed

    Fallqvist, B

    2016-02-01

    Cells are known to respond over time to mechanical stimuli, even actively generating force at longer times. In this paper, a microstructural filament-based cytoskeletal network model is extended to incorporate this active response, and a computational study to assess the influence on relaxation behaviour was performed. The incorporation of an active response was achieved by including a strain energy function of contractile activity from the cross-linked actin filaments. A four-state chemical model and strain energy function was adopted, and generalisation to three dimensions and the macroscopic deformation field was performed by integration over the unit sphere. Computational results in MATLAB and ABAQUS/Explicit indicated an active cellular response over various time-scales, dependent on contractile parameters. Important features such as force generation and increasing cell stiffness due to prestress are qualitatively predicted. The work in this paper can easily be extended to encompass other filament-based cytoskeletal models as well.

  16. SAS-1 is a C2 domain protein critical for centriole integrity in C. elegans.

    PubMed

    von Tobel, Lukas; Mikeladze-Dvali, Tamara; Delattre, Marie; Balestra, Fernando R; Blanchoud, Simon; Finger, Susanne; Knott, Graham; Müller-Reichert, Thomas; Gönczy, Pierre

    2014-11-01

    Centrioles are microtubule-based organelles important for the formation of cilia, flagella and centrosomes. Despite progress in understanding the underlying assembly mechanisms, how centriole integrity is ensured is incompletely understood, including in sperm cells, where such integrity is particularly critical. We identified C. elegans sas-1 in a genetic screen as a locus required for bipolar spindle assembly in the early embryo. Our analysis reveals that sperm-derived sas-1 mutant centrioles lose their integrity shortly after fertilization, and that a related defect occurs when maternal sas-1 function is lacking. We establish that sas-1 encodes a C2 domain containing protein that localizes to centrioles in C. elegans, and which can bind and stabilize microtubules when expressed in human cells. Moreover, we uncover that SAS-1 is related to C2CD3, a protein required for complete centriole formation in human cells and affected in a type of oral-facial-digital (OFD) syndrome.

  17. SAS-1 Is a C2 Domain Protein Critical for Centriole Integrity in C. elegans

    PubMed Central

    Delattre, Marie; Balestra, Fernando R.; Blanchoud, Simon; Finger, Susanne; Knott, Graham; Müller-Reichert, Thomas; Gönczy, Pierre

    2014-01-01

    Centrioles are microtubule-based organelles important for the formation of cilia, flagella and centrosomes. Despite progress in understanding the underlying assembly mechanisms, how centriole integrity is ensured is incompletely understood, including in sperm cells, where such integrity is particularly critical. We identified C. elegans sas-1 in a genetic screen as a locus required for bipolar spindle assembly in the early embryo. Our analysis reveals that sperm-derived sas-1 mutant centrioles lose their integrity shortly after fertilization, and that a related defect occurs when maternal sas-1 function is lacking. We establish that sas-1 encodes a C2 domain containing protein that localizes to centrioles in C. elegans, and which can bind and stabilize microtubules when expressed in human cells. Moreover, we uncover that SAS-1 is related to C2CD3, a protein required for complete centriole formation in human cells and affected in a type of oral-facial-digital (OFD) syndrome. PMID:25412110

  18. RNA-binding protein hnRNPLL as a critical regulator of lymphocyte homeostasis and differentiation.

    PubMed

    Chang, Xing

    2016-05-01

    RNA-binding proteins orchestrate posttranscriptional regulation of gene expression, such as messenger RNA (mRNA) splicing, RNA stability regulation, and translation regulation. Heterogeneous nuclear RNA-binding proteins (hnRNPs) refer to a collection of unrelated RNA-binding proteins predominantly located in the nucleus (Han et al. Biochem J 2010, 430:379-392). Although canonical functions of hnRNPs are to promote pre-mRNA splicing, they are involved in all the processes of RNA metabolism through recognizing specific cis-elements on RNA (Dreyfuss et al. Annu Rev Biochem 1993, 62:289-321; Huelga et al. Cell Rep 2012, 1:167-178; Krecic and Swanson. Curr Opin Cell Biol 1999, 11:363-371). Heterogeneous nuclear RNA-binding protein L like (hnRNPLL) is a tissue-specific hnRNP, which was identified as a regulator of CD45RA to CD45RO switching during memory T-cell development (Oberdoerffer et al. Science 2008, 321:686-691; Topp et al. RNA 2008, 14:2038-2049; Wu et al. Immunity 2008, 29:863-875). Since then, hnRNPLL has emerged as a critical regulator of lymphocyte homeostasis and terminal differentiation, controlling alternative splicing or expression of critical genes for the lymphocytes development (Wu et al. Immunity 2008, 29:863-875; Chang et al. Proc Natl Acad Sci USA 2015, 112:E1888-E1897). This review will summarize recent advances in understanding the functions of hnRNPLL, focusing on its biochemical functions and physiological roles in lymphocyte differentiation and homeostasis. WIREs RNA 2016, 7:295-302. doi: 10.1002/wrna.1335 For further resources related to this article, please visit the WIREs website.

  19. Cytoskeletal prestress regulates nuclear shape and stiffness in cardiac myocytes

    PubMed Central

    Lee, Hyungsuk; Adams, William J; Alford, Patrick W; McCain, Megan L; Feinberg, Adam W; Sheehy, Sean P; Goss, Josue A

    2015-01-01

    Mechanical stresses on the myocyte nucleus have been associated with several diseases and potentially transduce mechanical stimuli into cellular responses. Although a number of physical links between the nuclear envelope and cytoplasmic filaments have been identified, previous studies have focused on the mechanical properties of individual components of the nucleus, such as the nuclear envelope and lamin network. The mechanical interaction between the cytoskeleton and chromatin on nuclear deformability remains elusive. Here, we investigated how cytoskeletal and chromatin structures influence nuclear mechanics in cardiac myocytes. Rapid decondensation of chromatin and rupture of the nuclear membrane caused a sudden expansion of DNA, a consequence of prestress exerted on the nucleus. To characterize the prestress exerted on the nucleus, we measured the shape and the stiffness of isolated nuclei and nuclei in living myocytes during disruption of cytoskeletal, myofibrillar, and chromatin structure. We found that the nucleus in myocytes is subject to both tensional and compressional prestress and its deformability is determined by a balance of those opposing forces. By developing a computational model of the prestressed nucleus, we showed that cytoskeletal and chromatin prestresses create vulnerability in the nuclear envelope. Our studies suggest the cytoskeletal–nuclear–chromatin interconnectivity may play an important role in mechanics of myocyte contraction and in the development of laminopathies by lamin mutations. PMID:25908635

  20. Cytoskeletal Regulation of Inflammation and Its Impact on Skin Blistering Disease Epidermolysis Bullosa Acquisita

    PubMed Central

    Kopecki, Zlatko; Ludwig, Ralf J.; Cowin, Allison J.

    2016-01-01

    Actin remodelling proteins regulate cytoskeletal cell responses and are important in both innate and adaptive immunity. These responses play a major role in providing a fine balance in a cascade of biological events that results in either protective acute inflammation or chronic inflammation that leads to a host of diseases including autoimmune inflammation mediated epidermolysis bullosa acquisita (EBA). This review describes the role of the actin cytoskeleton and in particular the actin remodelling protein called Flightless I (Flii) in regulating cellular inflammatory responses and its subsequent effect on the autoimmune skin blistering disease EBA. It also outlines the potential of an antibody based therapy for decreasing Flii expression in vivo to ameliorate the symptoms associated with EBA. PMID:27420054

  1. Labeling cytoskeletal F-actin with rhodamine phalloidin or fluorescein phalloidin for imaging.

    PubMed

    Chazotte, Brad

    2010-05-01

    The eukaryotic cell has evolved to compartmentalize its functions and transport various metabolites among cellular compartments. Therefore, in cell biology, the study of organization and structure/function relationships is of great importance. The cytoskeleton is composed of a series of filamentous structures, including intermediate filaments, actin filaments, and microtubules. Immunofluorescent staining has been most frequently used to study cytoskeletal components. However, it is also possible to fluorescently label isolated cytoskeletal proteins and either microinject them back into the cell or add them to fixed, permeabilized cells. Alternatively, it is possible to use the mushroom-derived fluorescinated toxins, phalloidin or phallacidin, to label F-actin of the cytoskeleton, as is described in this article. Phalloidin is available labeled with different fluorophores. The choice of the specific fluorophore should depend on whether phalloidin labeling for actin is part of a double-label experiment. In most cells, the abundance of actin filaments should provide a very strong signal. In double-label experiments, the fluorophore should be chosen to take this into account. In general, rhodamine labels are more resistant to photobleaching and can be subjected to the longer exposures required for finer structures.

  2. α-Synuclein and Its A30P Mutant Affect Actin Cytoskeletal Structure and Dynamics

    PubMed Central

    Sousa, Vítor L.; Bellani, Serena; Giannandrea, Maila; Yousuf, Malikmohamed; Valtorta, Flavia; Meldolesi, Jacopo

    2009-01-01

    The function of α-synuclein, a soluble protein abundant in the brain and concentrated at presynaptic terminals, is still undefined. Yet, α-synuclein overexpression and the expression of its A30P mutant are associated with familial Parkinson's disease. Working in cell-free conditions, in two cell lines as well as in primary neurons we demonstrate that α-synuclein and its A30P mutant have different effects on actin polymerization. Wild-type α-synuclein binds actin, slows down its polymerization and accelerates its depolymerization, probably by monomer sequestration; A30P mutant α-synuclein increases the rate of actin polymerization and disrupts the cytoskeleton during reassembly of actin filaments. Consequently, in cells expressing mutant α-synuclein, cytoskeleton-dependent processes, such as cell migration, are inhibited, while exo- and endocytic traffic is altered. In hippocampal neurons from mice carrying a deletion of the α-synuclein gene, electroporation of wild-type α-synuclein increases actin instability during remodeling, with growth of lamellipodia-like structures and apparent cell enlargement, whereas A30P α-synuclein induces discrete actin-rich foci during cytoskeleton reassembly. In conclusion, α-synuclein appears to play a major role in actin cytoskeletal dynamics and various aspects of microfilament function. Actin cytoskeletal disruption induced by the A30P mutant might alter various cellular processes and thereby play a role in the pathogenesis of neurodegeneration. PMID:19553474

  3. MIEN1 drives breast tumor cell migration by regulating cytoskeletal-focal adhesion dynamics

    PubMed Central

    Van Treuren, Timothy; Vishwanatha, Jamboor K.

    2016-01-01

    Migration and invasion enhancer 1 (MIEN1) is an important regulator of cell migration and invasion. MIEN1 overexpression represents an oncogenic event that promotes tumor cell dissemination and metastasis. The underlying mechanism by which MIEN1 regulates migration and invasion has yet to be deciphered. Here, we demonstrate that MIEN1 acts as a cytoskeletal-signaling adapter protein to drive breast cancer cell migration. MIEN1 localization is concentrated underneath the actin-enriched protrusive structures of the migrating breast cancer cells. Depletion of MIEN1 led to the loss of actin-protrusive structures whereas the over-expression of MIEN1 resulted in rich and thick membrane extensions. Knockdown of MIEN1 also decreased the cell-substratum adhesion, suggesting a role for MIEN1 in actin cytoskeletal dynamics. Our results show that MIEN1 supports the transition of G-actin to F-actin polymerization and stabilizes F-actin polymers. Additionally, MIEN1 promotes cellular adhesion and actin dynamics by inducing phosphorylation of FAK at Tyr-925 and reducing phosphorylation of cofilin at Ser-3, which results in breast cancer cell migration. Collectively, our data show that MIEN1 plays an essential role in maintaining the plasticity of the dynamic membrane-associated actin cytoskeleton, which leads to an increase in cell motility. Hence, targeting MIEN1 might represent a promising means to prevent breast tumor metastasis. PMID:27462783

  4. Fluorescent Protein Aided Insights on Plastids and their Extensions: A Critical Appraisal

    PubMed Central

    Delfosse, Kathleen; Wozny, Michael R.; Jaipargas, Erica-Ashley; Barton, Kiah A.; Anderson, Cole; Mathur, Jaideep

    2016-01-01

    Multi-colored fluorescent proteins targeted to plastids have provided new insights on the dynamic behavior of these organelles and their interactions with other cytoplasmic components and compartments. Sub-plastidic components such as thylakoids, stroma, the inner and outer membranes of the plastid envelope, nucleoids, plastoglobuli, and starch grains have been efficiently highlighted in living plant cells. In addition, stroma filled membrane extensions called stromules have drawn attention to the dynamic nature of the plastid and its interactions with the rest of the cell. Use of dual and triple fluorescent protein combinations has begun to reveal plastid interactions with mitochondria, the nucleus, the endoplasmic reticulum and F-actin and suggests integral roles of plastids in retrograde signaling, cell to cell communication as well as plant-pathogen interactions. While the rapid advances and insights achieved through fluorescent protein based research on plastids are commendable it is necessary to endorse meaningful observations but subject others to closer scrutiny. Here, in order to develop a better and more comprehensive understanding of plastids and their extensions we provide a critical appraisal of recent information that has been acquired using targeted fluorescent protein probes. PMID:26834765

  5. Pseudomonas aeruginosa PA1006 Is a Persulfide-Modified Protein That Is Critical for Molybdenum Homeostasis

    PubMed Central

    Tombline, Gregory; Schwingel, Johanna M.; Lapek, John D.; Friedman, Alan E.; Darrah, Thomas; Maguire, Michael; Van Alst, Nadine E.; Filiatrault, Melanie J.; Iglewski, Barbara H.

    2013-01-01

    A companion manuscript revealed that deletion of the Pseudomonas aeruginosa (Pae) PA1006 gene caused pleiotropic defects in metabolism including a loss of all nitrate reductase activities, biofilm maturation, and virulence. Herein, several complementary approaches indicate that PA1006 protein serves as a persulfide-modified protein that is critical for molybdenum homeostasis in Pae. Mutation of a highly conserved Cys22 to Ala or Ser resulted in a loss of PA1006 activity. Yeast-two-hybrid and a green-fluorescent protein fragment complementation assay (GFP-PFCA) in Pae itself revealed that PA1006 interacts with Pae PA3667/CsdA and PA3814/IscS Cys desulfurase enzymes. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) “top-down” analysis of PA1006 purified from Pae revealed that conserved Cys22 is post-translationally modified in vivo in the form a persulfide. Inductively-coupled-plasma (ICP)-MS analysis of ΔPA1006 mutant extracts revealed that the mutant cells contain significantly reduced levels of molybdenum compared to wild-type. GFP-PFCA also revealed that PA1006 interacts with several molybdenum cofactor (MoCo) biosynthesis proteins as well as nitrate reductase maturation factor NarJ and component NarH. These data indicate that a loss of PA1006 protein’s persulfide sulfur and a reduced availability of molybdenum contribute to the phenotype of a ΔPA1006 mutant. PMID:23409003

  6. The anaphase promoting complex: a critical target for viral proteins and anti-cancer drugs.

    PubMed

    Heilman, Destin W; Green, Michael R; Teodoro, Jose G

    2005-04-01

    The study of animal viruses has provided extraordinary insights into cell cycle dynamics and tumor biology. The significance of the p53 and Rb tumor suppressor proteins, for example, was discovered due to their interactions with viral oncogenes. In the past several years, investigations with four viral proteins, human immunodeficiency virus type 1 (HIV-1) vpr, adenovirus E4orf4, chicken anemia virus (CAV) apoptin and human T lymphotropic virus type I (HTLV-I) Tax, have indicated that there are also critical viral targets involved in G2/M control. In particular, recent studies with E4orf4 and apoptin have shown that they induce G2/M arrest by targeting and inhibiting the anaphase-promoting complex/cyclosome (APC/C). Notably, these two viral proteins induce apoptosis selectively in transformed cells in a p53-independent manner; thus pathways affected by these proteins are of significant therapeutic interest. Further investigation of the underlying mechanism of G2/M arrest and subsequent apoptosis induced by viral APC/C inhibitors may shed light on the mechanisms of current cancer therapies and provide the foundation for developing novel therapeutic targets.

  7. VPS36-Dependent Multivesicular Bodies Are Critical for Plasmamembrane Protein Turnover and Vacuolar Biogenesis1[OPEN

    PubMed Central

    Wang, Huei-Jing; Guo, Cian-Ling; Jane, Wann-Neng; Wang, Hao; Jiang, Liwen

    2017-01-01

    Most eukaryotic cells target ubiquitinated plasma membrane (PM) proteins for vacuolar degradation in response to environmental and developmental cues. This process involves endosomal sorting complexes required for transport (ESCRT). However, little is known about the cellular mechanisms of ESCRTs in plants. Here, we studied the function of one ESCRT-II component, VPS36, which shows ubiquitin-binding activity and may form a putative ESCRT-II with VPS22 and VPS25 in Arabidopsis (Arabidopsis thaliana). Recessive mutation of the ubiquitously expressed VPS36 causes multiple defects, including delayed embryogenesis, defective root elongation, and limited expansion of cotyledons, and these effects can be complemented by its genomic DNA. Abnormal intracellular compartments containing several membrane transporters, including members of the PIN-FORMEDs, AUXIN RESISTANT 1, and PIP1 families, were found in vps36-1 plants. Employing a genetic approach to cross vps36-1/+ with transgenic plants harboring various fluorescent protein-tagged organelle markers, as well as fluorescent probe and ultrastructural approaches, revealed PM proteins in microsomal fractions from vps36-1 seedlings and demonstrated that VPS36 is critical for forming multivesicular bodies and vacuolar biogenesis for protein degradation. Our study shows that functional VPS36 is essential for a proper endosomal sorting pathway and for vacuolar biogenesis in Arabidopsis. PMID:27879389

  8. Distribution of language-related Cntnap2 protein in neural circuits critical for vocal learning.

    PubMed

    Condro, Michael C; White, Stephanie A

    2014-01-01

    Variants of the contactin associated protein-like 2 (Cntnap2) gene are risk factors for language-related disorders including autism spectrum disorder, specific language impairment, and stuttering. Songbirds are useful models for study of human speech disorders due to their shared capacity for vocal learning, which relies on similar cortico-basal ganglia circuitry and genetic factors. Here we investigate Cntnap2 protein expression in the brain of the zebra finch, a songbird species in which males, but not females, learn their courtship songs. We hypothesize that Cntnap2 has overlapping functions in vocal learning species, and expect to find protein expression in song-related areas of the zebra finch brain. We further expect that the distribution of this membrane-bound protein may not completely mirror its mRNA distribution due to the distinct subcellular localization of the two molecular species. We find that Cntnap2 protein is enriched in several song control regions relative to surrounding tissues, particularly within the adult male, but not female, robust nucleus of the arcopallium (RA), a cortical song control region analogous to human layer 5 primary motor cortex. The onset of this sexually dimorphic expression coincides with the onset of sensorimotor learning in developing males. Enrichment in male RA appears due to expression in projection neurons within the nucleus, as well as to additional expression in nerve terminals of cortical projections to RA from the lateral magnocellular nucleus of the nidopallium. Cntnap2 protein expression in zebra finch brain supports the hypothesis that this molecule affects neural connectivity critical for vocal learning across taxonomic classes.

  9. The Arabidopsis PLAT domain protein1 is critically involved in abiotic stress tolerance.

    PubMed

    Hyun, Tae Kyung; van der Graaff, Eric; Albacete, Alfonso; Eom, Seung Hee; Großkinsky, Dominik K; Böhm, Hannah; Janschek, Ursula; Rim, Yeonggil; Ali, Walid Wahid; Kim, Soo Young; Roitsch, Thomas

    2014-01-01

    Despite the completion of the Arabidopsis genome sequence, for only a relatively low percentage of the encoded proteins experimental evidence concerning their function is available. Plant proteins that harbour a single PLAT (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase) domain and belong to the PLAT-plant-stress protein family are ubiquitously present in monocot and dicots. However, the function of PLAT-plant-stress proteins is still poorly understood. Therefore, we have assessed the function of the uncharacterised Arabidopsis PLAT-plant-stress family members through a combination of functional genetic and physiological approaches. PLAT1 overexpression conferred increased abiotic stress tolerance, including cold, drought and salt stress, while loss-of-function resulted in opposite effects on abiotic stress tolerance. Strikingly, PLAT1 promoted growth under non-stressed conditions. Abiotic stress treatments induced PLAT1 expression and caused expansion of its expression domain. The ABF/ABRE transcription factors, which are positive mediators of abscisic acid signalling, activate PLAT1 promoter activity in transactivation assays and directly bind to the ABRE elements located in this promoter in electrophoretic mobility shift assays. This suggests that PLAT1 represents a novel downstream target of the abscisic acid signalling pathway. Thus, we showed that PLAT1 critically functions as positive regulator of abiotic stress tolerance, but also is involved in regulating plant growth, and thereby assigned a function to this previously uncharacterised PLAT domain protein. The functional data obtained for PLAT1 support that PLAT-plant-stress proteins in general could be promising targets for improving abiotic stress tolerance without yield penalty.

  10. Neuronal migration and protein kinases

    PubMed Central

    Ohshima, Toshio

    2015-01-01

    The formation of the six-layered structure of the mammalian cortex via the inside-out pattern of neuronal migration is fundamental to neocortical functions. Extracellular cues such as Reelin induce intracellular signaling cascades through the protein phosphorylation. Migrating neurons also have intrinsic machineries to regulate cytoskeletal proteins and adhesion properties. Protein phosphorylation regulates these processes. Moreover, the balance between phosphorylation and dephosphorylation is modified by extracellular cues. Multipolar-bipolar transition, radial glia-guided locomotion and terminal translocation are critical steps of radial migration of cortical pyramidal neurons. Protein kinases such as Cyclin-dependent kinase 5 (Cdk5) and c-Jun N-terminal kinases (JNKs) involve these steps. In this review, I shall give an overview the roles of protein kinases in neuronal migration. PMID:25628530

  11. Vitreous-induced cytoskeletal rearrangements via the Rac1 GTPase-dependent signaling pathway in human retinal pigment epithelial cells

    SciTech Connect

    Huang, Xionggao; Wei, Yantao; Ma, Haizhi; Zhang, Shaochong

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Vitreous induces morphological changes and cytoskeletal rearrangements in RPE cells. Black-Right-Pointing-Pointer Rac1 is activated in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition prevents morphological changes in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition suppresses cytoskeletal rearrangements in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer The vitreous-induced effects are mediated by a Rac1 GTPase/LIMK1/cofilin pathway. -- Abstract: Proliferative vitreoretinopathy (PVR) is mainly caused by retinal pigment epithelial (RPE) cell migration, invasion, proliferation and transformation into fibroblast-like cells that produce the extracellular matrix (ECM). The vitreous humor is known to play an important role in PVR. An epithelial-to-mesenchymal transdifferentiation (EMT) of human RPE cells induced by 25% vitreous treatment has been linked to stimulation of the mesenchymal phenotype, migration and invasion. Here, we characterized the effects of the vitreous on the cell morphology and cytoskeleton in human RPE cells. The signaling pathway that mediates these effects was investigated. Serum-starved RPE cells were incubated with 25% vitreous, and the morphological changes were examined by phase-contrast microscopy. Filamentous actin (F-actin) was examined by immunofluorescence and confocal microscopy. Protein phosphorylation of AKT, ERK1/2, Smad2/3, LIM kinase (LIMK) 1 and cofilin was analyzed by Western blot analysis. Vitreous treatment induced cytoskeletal rearrangements, activated Rac1 and enhanced the phosphorylation of AKT, ERK1/2 and Smad2/3. When the cells were treated with a Rac activation-specific inhibitor, the cytoskeletal rearrangements were prevented, and the phosphorylation of Smad2/3 was blocked. Vitreous treatment also enhanced the phosphorylation of LIMK1 and cofilin and the Rac inhibitor blocked this effect. We propose that vitreous

  12. Gasp, a Grb2-associating protein, is critical for positive selection of thymocytes

    PubMed Central

    Patrick, Michael S.; Oda, Hiroyo; Hayakawa, Kunihiro; Sato, Yoshinori; Eshima, Koji; Kirikae, Teruo; Iemura, Shun-ichiro; Shirai, Mutsunori; Abe, Takaya; Natsume, Tohru; Sasazuki, Takehiko; Suzuki, Harumi

    2009-01-01

    T cells develop in the thymus through positive and negative selection, which are responsible for shaping the T cell receptor (TCR) repertoire. To elucidate the molecular mechanisms involved in selection remains an area of intense interest. Here, we identified and characterized a gene product Gasp (Grb2-associating protein, also called Themis) that is critically required for positive selection. Gasp is a cytosolic protein with no known functional motifs that is expressed only in T cells, especially immature CD4/CD8 double positive (DP) thymocytes. In the absence of Gasp, differentiation of both CD4 and CD8 single positive cells in the thymus was severely inhibited, whereas all other TCR-induced events such as β-selection, negative selection, peripheral activation, and homeostatic proliferation were unaffected. We found that Gasp constitutively associates with Grb2 via its N-terminal Src homology 3 domain, suggesting that Gasp acts as a thymocyte-specific adaptor for Grb2 or regulates Ras signaling in DP thymocytes. Collectively, we have described a gene called Gasp that is critical for positive selection. PMID:19805304

  13. Beta atomic contacts: identifying critical specific contacts in protein binding interfaces.

    PubMed

    Liu, Qian; Kwoh, Chee Keong; Hoi, Steven C H

    2013-01-01

    Specific binding between proteins plays a crucial role in molecular functions and biological processes. Protein binding interfaces and their atomic contacts are typically defined by simple criteria, such as distance-based definitions that only use some threshold of spatial distance in previous studies. These definitions neglect the nearby atomic organization of contact atoms, and thus detect predominant contacts which are interrupted by other atoms. It is questionable whether such kinds of interrupted contacts are as important as other contacts in protein binding. To tackle this challenge, we propose a new definition called beta (β) atomic contacts. Our definition, founded on the β-skeletons in computational geometry, requires that there is no other atom in the contact spheres defined by two contact atoms; this sphere is similar to the van der Waals spheres of atoms. The statistical analysis on a large dataset shows that β contacts are only a small fraction of conventional distance-based contacts. To empirically quantify the importance of β contacts, we design βACV, an SVM classifier with β contacts as input, to classify homodimers from crystal packing. We found that our βACV is able to achieve the state-of-the-art classification performance superior to SVM classifiers with distance-based contacts as input. Our βACV also outperforms several existing methods when being evaluated on several datasets in previous works. The promising empirical performance suggests that β contacts can truly identify critical specific contacts in protein binding interfaces. β contacts thus provide a new model for more precise description of atomic organization in protein quaternary structures than distance-based contacts.

  14. Proline and gamma-carboxylated glutamate residues in matrix Gla protein are critical for binding of bone morphogenetic protein-4.

    PubMed

    Yao, Yucheng; Shahbazian, Ani; Boström, Kristina I

    2008-05-09

    Arterial calcification is ubiquitous in vascular disease and is, in part, prevented by matrix Gla protein (MGP). MGP binds calcium ions through gamma-carboxylated glutamates (Gla residues) and inhibits bone morphogenetic protein (BMP)-2/-4. We hypothesized that a conserved proline (Pro)64 is essential for BMP inhibition. We further hypothesized that calcium binding by the Gla residues is a prerequisite for BMP inhibition. Site-directed mutagenesis was used to modify Pro64 and the Gla residues, and the effect on BMP-4 activity, and binding of BMP-4 and calcium was tested using luciferase reporter gene assays, coimmunoprecipitation, crosslinking, and calcium quantification. The results showed that Pro64 was critical for binding and inhibition of BMP-4 but not for calcium binding. The Gla residues were also required for BMP-4 binding but flexibility existed. As long as 1 Gla residue remained on each side of Pro64, the ability to bind and inhibit BMP-4 was preserved. Chelation of calcium ions by EDTA or warfarin treatment of cells led to loss of ability of MGP to bind BMP-4. Our results also showed that phenylalanine could replace Pro64 without loss of function and that zebrafish MGP, which lacks upstream Gla residues, did not function as a BMP inhibitor. The effect of MGP mutagenesis on vascular calcification was determined in calcifying vascular cells. Only MGP proteins with preserved ability to bind and inhibit BMP-4 prevented osteogenic differentiation and calcification. Together, our results suggest that BMP and calcium binding in MGP are independent but functionally intertwined processes and that the BMP binding is essential for prevention of vascular calcification.

  15. Protein O-GlcNAcylation: A critical regulator of the cellular response to stress

    PubMed Central

    Chatham, John C.; Marchase, Richard B.

    2012-01-01

    The post-translational modification of serine and threonine residues of nuclear and cytoplasmic proteins by the O-linked attachment of the monosaccharide ß-N-acetyl-glucosamine (O-GlcNAc) is a highly dynamic and ubiquitous protein modification that plays a critical role in regulating numerous biological processes. Much of our understanding of the mechanisms underlying the role of O-GlcNAc on cellular function has been in the context of chronic disease processes. However, there is increasing evidence that O-GlcNAc levels are increased in response to stress and that acute augmentation of this response is cytoprotective, at least in the short term. Conversely, a reduction in O-GlcNAc levels appears to be associated with decreased cell survival in response to an acute stress. Here we summarize our current understanding of protein O-GlcNAcylation on the cellular response to stress and in mediating cellular protective mechanisms focusing primarily on the cardiovascular system as an example. We consider the potential link between O-GlcNAcylation and cardiomyocyte calcium homeostasis and explore the parallels between O-GlcNAc signaling and redox signaling. We also discuss the apparent paradox between the reported adverse effects of increased O-GlcNAcylation with its recently reported role in mediating cell survival mechanisms. PMID:22308107

  16. Quinolinic acid induces disrupts cytoskeletal homeostasis in striatal neurons. Protective role of astrocyte-neuron interaction.

    PubMed

    Pierozan, Paula; Ferreira, Fernanda; de Lima, Bárbara Ortiz; Pessoa-Pureur, Regina

    2015-02-01

    Quinolinic acid (QUIN) is an endogenous metabolite of the kynurenine pathway involved in several neurological disorders. Among the several mechanisms involved in QUIN-mediated toxicity, disruption of the cytoskeleton has been demonstrated in striatally injected rats and in striatal slices. The present work searched for the actions of QUIN in primary striatal neurons. Neurons exposed to 10 µM QUIN presented hyperphosphorylated neurofilament (NF) subunits (NFL, NFM, and NFH). Hyperphosphorylation was abrogated in the presence of protein kinase A and protein kinase C inhibitors H89 (20 μM) and staurosporine (10 nM), respectively, as well as by specific antagonists to N-methyl-D-aspartate (50 µM DL-AP5) and metabotropic glutamate receptor 1 (100 µM MPEP). Also, intra- and extracellular Ca(2+) chelators (10 µM BAPTA-AM and 1 mM EGTA, respectively) and Ca(2+) influx through L-type voltage-dependent Ca(2+) channel (10 µM verapamil) are implicated in QUIN-mediated effects. Cells immunostained for the neuronal markers βIII-tubulin and microtubule-associated protein 2 showed altered neurite/neuron ratios and neurite outgrowth. NF hyperphosphorylation and morphological alterations were totally prevented by conditioned medium from QUIN-treated astrocytes. Cocultured astrocytes and neurons interacted with one another reciprocally, protecting them against QUIN injury. Cocultured cells preserved their cytoskeletal organization and cell morphology together with unaltered activity of the phosphorylating system associated with the cytoskeleton. This article describes cytoskeletal disruption as one of the most relevant actions of QUIN toxicity in striatal neurons in culture with soluble factors secreted by astrocytes, with neuron-astrocyte interaction playing a role in neuroprotection.

  17. Pathways of Ca2+ entry and cytoskeletal damage following eccentric contractions in mouse skeletal muscle

    PubMed Central

    Zhang, Bao-Ting; Whitehead, Nicholas P.; Gervasio, Othon L.; Reardon, Trent F.; Vale, Molly; Fatkin, Diane; Dietrich, Alexander; Yeung, Ella W.

    2012-01-01

    Muscles that are stretched during contraction (eccentric contractions) show deficits in force production and a variety of structural changes, including loss of antibody staining of cytoskeletal proteins. Extracellular Ca2+ entry and activation of calpains have been proposed as mechanisms involved in these changes. The present study used isolated mouse extensor digitorum longus (EDL) muscles subjected to 10 eccentric contractions and monitored force production, immunostaining of cytoskeletal proteins, and resting stiffness. Possible pathways for Ca2+ entry were tested with streptomycin (200 μM), a blocker of stretch-activated channels, and with muscles from mice deficient in the transient receptor potential canonical 1 gene (TRPC1 KO), a candidate gene for stretch-activated channels. At 30 min after the eccentric contractions, the isometric force was decreased to 75 ± 3% of initial control and this force loss was reduced by streptomycin but not in the TRPC1 KO. Desmin, titin, and dystrophin all showed patchy loss of immunostaining 30 min after the eccentric contractions, which was substantially reduced by streptomycin and in the TRPC1 KO muscles. Muscles showed a reduction of resting stiffness following eccentric contractions, and this reduction was eliminated by streptomycin and absent in the TRPC1 KO muscles. Calpain activation was determined by the appearance of a lower molecular weight autolysis product and μ-calpain was activated at 30 min, whereas the muscle-specific calpain-3 was not. To test whether the loss of stiffness was caused by titin cleavage, protein gels were used but no significant titin cleavage was detected. These results suggest that Ca2+ entry following eccentric contractions is through a stretch-activated channel that is blocked by streptomycin and encoded or modulated by TRPC1. PMID:22461447

  18. Cytoskeletal disruption activates the DLK/JNK pathway, which promotes axonal regeneration and mimics a preconditioning injury

    PubMed Central

    Valakh, Vera; Frey, Erin; Babetto, Elisabetta; Walker, Lauren J; DiAntonio, Aaron

    2015-01-01

    Nerve injury can lead to axonal regeneration, axonal degeneration, and/or neuronal cell death. Remarkably, the MAP3K dual leucine zipper kinase, DLK, promotes each of these responses, suggesting that DLK is a sensor of axon injury. In Drosophila, mutations in proteins that stabilize the actin and microtubule cytoskeletons activate the DLK pathway, suggesting that DLK may be activated by cytoskeletal disruption. Here we test this model in mammalian sensory neurons. We find that pharmacological agents designed to disrupt either the actin or microtubule cytoskeleton activate the DLK pathway, and that activation is independent of calcium influx or induction of the axon degeneration program. Moreover, activation of the DLK pathway by targeting the cytoskeleton induces a pro-regenerative state, enhancing axon regeneration in response to a subsequent injury in a process akin to preconditioning. This highlights the potential utility of activating the DLK pathway as a method to improve axon regeneration. Moreover, DLK is required for these responses to cytoskeletal perturbations, suggesting that DLK functions as a key neuronal sensor of cytoskeletal damage. PMID:25726747

  19. Residue network in protein native structure belongs to the universality class of a three-dimensional critical percolation cluster.

    PubMed

    Morita, Hidetoshi; Takano, Mitsunori

    2009-02-01

    Single protein molecules are regarded as contact networks of amino-acid residues. Relationships between the shortest path lengths and the numbers of residues within single molecules in the native structures are examined for various sized proteins. A universal scaling among proteins is obtained, which shows that the residue networks are fractal networks. This universal fractal network is characterized with three kinds of dimensions: the network topological dimension D{c} approximately 1.9 , the fractal dimension D{f} approximately 2.5 , and the spectral dimension D{s} approximately 1.3 . These values are in surprisingly good coincidence with those of the three-dimensional critical percolation cluster. Hence the residue contact networks in the protein native structures belong to the universality class of the three-dimensional percolation cluster. The criticality is relevant to the ambivalence in the protein native structures, the coexistence of stability and instability, both of which are necessary for protein functions.

  20. Residue network in protein native structure belongs to the universality class of a three-dimensional critical percolation cluster

    NASA Astrophysics Data System (ADS)

    Morita, Hidetoshi; Takano, Mitsunori

    2009-02-01

    Single protein molecules are regarded as contact networks of amino-acid residues. Relationships between the shortest path lengths and the numbers of residues within single molecules in the native structures are examined for various sized proteins. A universal scaling among proteins is obtained, which shows that the residue networks are fractal networks. This universal fractal network is characterized with three kinds of dimensions: the network topological dimension Dc≈1.9 , the fractal dimension Df≈2.5 , and the spectral dimension Ds≈1.3 . These values are in surprisingly good coincidence with those of the three-dimensional critical percolation cluster. Hence the residue contact networks in the protein native structures belong to the universality class of the three-dimensional percolation cluster. The criticality is relevant to the ambivalence in the protein native structures, the coexistence of stability and instability, both of which are necessary for protein functions.

  1. Vibration induced osteogenic commitment of mesenchymal stem cells is enhanced by cytoskeletal remodeling but not fluid shear.

    PubMed

    Uzer, Gunes; Pongkitwitoon, Suphannee; Ete Chan, M; Judex, Stefan

    2013-09-03

    Consistent across studies in humans, animals and cells, the application of vibrations can be anabolic and/or anti-catabolic to bone. The physical mechanisms modulating the vibration-induced response have not been identified. Recently, we developed an in vitro model in which candidate parameters including acceleration magnitude and fluid shear can be controlled independently during vibrations. Here, we hypothesized that vibration induced fluid shear does not modulate mesenchymal stem cell (MSC) proliferation and mineralization and that cell's sensitivity to vibrations can be promoted via actin stress fiber formation. Adipose derived human MSCs were subjected to vibration frequencies and acceleration magnitudes that induced fluid shear stress ranging from 0.04 Pa to 5 Pa. Vibrations were applied at magnitudes of 0.15 g, 1g, and 2g using frequencies of both 100 Hz and 30 Hz. After 14 d and under low fluid shear conditions associated with 100 Hz oscillations, mineralization was greater in all vibrated groups than in controls. Greater levels of fluid shear produced by 30 Hz vibrations enhanced mineralization only in the 2g group. Over 3d, vibrations led to the greatest increase in total cell number with the frequency/acceleration combination that induced the smallest level of fluid shear. Acute experiments showed that actin remodeling was necessary for early mechanical up-regulation of RUNX-2 mRNA levels. During osteogenic differentiation, mechanically induced up-regulation of actin remodeling genes including Wiskott-Aldrich syndrome (WAS) protein, a critical regulator of Arp2/3 complex, was related to the magnitude of the applied acceleration but not to fluid shear. These data demonstrate that fluid shear does not regulate vibration induced proliferation and mineralization and that cytoskeletal remodeling activity may play a role in MSC mechanosensitivity.

  2. Cytoskeletal polarization of T cells is regulated by an immunoreceptor tyrosine-based activation motif-dependent mechanism.

    PubMed

    Lowin-Kropf, B; Shapiro, V S; Weiss, A

    1998-02-23

    Binding of a T cell to an appropriate antigen-presenting cell (APC) induces the rapid reorientation of the T cell cytoskeleton and secretory apparatus towards the cell-cell contact site in a T cell antigen receptor (TCR) and peptide/major histocompatibility complex-dependent process. Such T cell polarization directs the delivery of cytokines and cytotoxic mediators towards the APC and contributes to the highly selective and specific action of effector T cells. To study the signaling pathways that regulate cytoskeletal rearrangements in T lymphocytes, we set up a conjugate formation assay using Jurkat T cells as effectors and cell-sized latex beads coated with various antibodies as artificial APCs. Here, we report that beads coated with antibodies specific for the TCR-CD3 complex were sufficient to induce T cell polarization towards the bead attachment site, as judged by reorientation of the microtubule-organizing center (MTOC) and localized actin polymerization. Thus, these cytoskeletal changes did not depend on activation of additional coreceptors. Moreover, single subunits of the TCR complex, namely TCR-zeta and CD3epsilon, were equally effective in inducing cytoskeletal polarization. However, mutagenesis of the immunoreceptor tyrosine-based activation motifs (ITAMs), present three times in TCR-zeta and once in CD3epsilon, revealed that the induction of cytoskeletal rearrangements required the presence of at least one intact ITAM. In agreement with this result, lack of functional Lck, the protein tyrosine kinase responsible for ITAM phosphorylation, abolished both MTOC reorientation and polarized actin polymerization. Both inhibitor and transient overexpression studies demonstrated that MTOC reorientation could occur in the absence of Ras activation. Our results suggest that APC-induced T cell polarization is a TCR-mediated event that is coupled to the TCR by the same signaling motif as TCR-induced gene activation, but diverges in its distal signaling

  3. Role of Cyclic Nucleotide-Dependent Actin Cytoskeletal Dynamics: [Ca2+]i and Force Suppression in Forskolin-Pretreated Porcine Coronary Arteries

    PubMed Central

    Hocking, Kyle M.; Baudenbacher, Franz J.; Putumbaka, Gowthami; Venkatraman, Sneha; Cheung-Flynn, Joyce; Brophy, Colleen M.; Komalavilas, Padmini

    2013-01-01

    Initiation of force generation during vascular smooth muscle contraction involves a rise in intracellular calcium ([Ca2+]i) and phosphorylation of myosin light chains (MLC). However, reversal of these two processes alone does not account for the force inhibition that occurs during relaxation or inhibition of contraction, implicating that other mechanisms, such as actin cytoskeletal rearrangement, play a role in the suppression of force. In this study, we hypothesize that forskolin-induced force suppression is dependent upon changes in actin cytoskeletal dynamics. To focus on the actin cytoskeletal changes, a physiological model was developed in which forskolin treatment of intact porcine coronary arteries (PCA) prior to treatment with a contractile agonist resulted in complete suppression of force. Pretreatment of PCA with forskolin suppressed histamine-induced force generation but did not abolish [Ca2+]i rise or MLC phosphorylation. Additionally, forskolin pretreatment reduced filamentous actin in histamine-treated tissues, and prevented histamine-induced changes in the phosphorylation of the actin-regulatory proteins HSP20, VASP, cofilin, and paxillin. Taken together, these results suggest that forskolin-induced complete force suppression is dependent upon the actin cytoskeletal regulation initiated by the phosphorylation changes of the actin regulatory proteins and not on the MLC dephosphorylation. This model of complete force suppression can be employed to further elucidate the mechanisms responsible for smooth muscle tone, and may offer cues to pathological situations, such as hypertension and vasospasm. PMID:23593369

  4. Role of cyclic nucleotide-dependent actin cytoskeletal dynamics:Ca(2+)](i) and force suppression in forskolin-pretreated porcine coronary arteries.

    PubMed

    Hocking, Kyle M; Baudenbacher, Franz J; Putumbaka, Gowthami; Venkatraman, Sneha; Cheung-Flynn, Joyce; Brophy, Colleen M; Komalavilas, Padmini

    2013-01-01

    Initiation of force generation during vascular smooth muscle contraction involves a rise in intracellular calcium ([Ca(2+)]i) and phosphorylation of myosin light chains (MLC). However, reversal of these two processes alone does not account for the force inhibition that occurs during relaxation or inhibition of contraction, implicating that other mechanisms, such as actin cytoskeletal rearrangement, play a role in the suppression of force. In this study, we hypothesize that forskolin-induced force suppression is dependent upon changes in actin cytoskeletal dynamics. To focus on the actin cytoskeletal changes, a physiological model was developed in which forskolin treatment of intact porcine coronary arteries (PCA) prior to treatment with a contractile agonist resulted in complete suppression of force. Pretreatment of PCA with forskolin suppressed histamine-induced force generation but did not abolish [Ca(2+)]i rise or MLC phosphorylation. Additionally, forskolin pretreatment reduced filamentous actin in histamine-treated tissues, and prevented histamine-induced changes in the phosphorylation of the actin-regulatory proteins HSP20, VASP, cofilin, and paxillin. Taken together, these results suggest that forskolin-induced complete force suppression is dependent upon the actin cytoskeletal regulation initiated by the phosphorylation changes of the actin regulatory proteins and not on the MLC dephosphorylation. This model of complete force suppression can be employed to further elucidate the mechanisms responsible for smooth muscle tone, and may offer cues to pathological situations, such as hypertension and vasospasm.

  5. Domain compatibility in Ire1 kinase is critical for the unfolded protein response.

    PubMed

    Poothong, Juthakorn; Sopha, Pattarawut; Kaufman, Randal J; Tirasophon, Witoon

    2010-07-16

    The unfolded protein response is a mechanism to cope with endoplasmic reticulum stress. In Saccharomyces cerevisiae, Ire1 senses the stress and mediates a signaling cascade to upregulate responsive genes through an unusual HAC1 mRNA splicing. The splicing requires interconnected activity (kinase and endoribonuclease (RNase)) of Ire1 to cleave HAC1 mRNA at the non-canonical splice sites before translation into Hac1 transcription factor. Analysis of the truncated kinase domain from Ire1 homologs revealed that this domain is highly conserved. Characterization by domain swapping indicated that a functional ATP/ADP binding domain is minimally required. However the overall domain compatibility is critical for eliciting its full RNase function.

  6. Cytoskeletal mechanics in pressure-overload cardiac hypertrophy

    NASA Technical Reports Server (NTRS)

    Tagawa, H.; Wang, N.; Narishige, T.; Ingber, D. E.; Zile, M. R.; Cooper, G. 4th

    1997-01-01

    We have shown that the cellular contractile dysfunction characteristic of pressure-overload cardiac hypertrophy results not from an abnormality intrinsic to the myofilament portion of the cardiocyte cytoskeleton but rather from an increased density of the microtubule component of the extramyofilament portion of the cardiocyte cytoskeleton. To determine how, in physical terms, this increased microtubule density mechanically overloads the contractile apparatus at the cellular level, we measured cytoskeletal stiffness and apparent viscosity in isolated cardiocytes via magnetic twisting cytometry, a technique by which magnetically induced force is applied directly to the cytoskeleton through integrin-coupled ferromagnetic beads coated with Arg-Gly-Asp (RGD) peptide. Measurements were made in two groups of cardiocytes from cats with right ventricular (RV) hypertrophy induced by pulmonary artery banding: (1) those from the pressure-overloaded RV and (2) those from the normally loaded same-animal control left ventricle (LV). Cytoskeletal stiffness increased almost twofold, from 8.53 +/- 0.77 dyne/cm2 in the normally loaded LV cardiocytes to 16.46 +/- 1.32 dyne/cm2 in the hypertrophied RV cardiocytes. Cytoskeletal apparent viscosity increased almost fourfold, from 20.97 +/- 1.92 poise in the normally loaded LV cardiocytes to 87.85 +/- 6.95 poise in the hypertrophied RV cardiocytes. In addition to these baseline data showing differing stiffness and, especially, apparent viscosity in the two groups of cardiocytes, microtubule depolymerization by colchicine was found to return both the stiffness and the apparent viscosity of the pressure overload-hypertrophied RV cells fully to normal. Conversely, microtubule hyperpolymerization by taxol increased the stiffness and apparent viscosity values of normally loaded LV cardiocytes to the abnormal values given above for pressure-hypertrophied RV cardiocytes. Thus, increased microtubule density constitutes primarily a viscous load on

  7. Identification of residues in beta-lactamase critical for binding beta-lactamase inhibitory protein.

    PubMed

    Rudgers, G W; Palzkill, T

    1999-03-12

    beta-Lactamase inhibitory protein (BLIP) is a potent inhibitor of several beta-lactamases including TEM-1 beta-lactamase (Ki = 0.1 nM). The co-crystal structure of TEM-1 beta-lactamase and BLIP has been solved, revealing the contact residues involved in the interface between the enzyme and inhibitor. To determine which residues in TEM-1 beta-lactamase are critical for binding BLIP, the method of monovalent phage display was employed. Random mutants of TEM-1 beta-lactamase in the 99-114 loop-helix and 235-240 B3 beta-strand regions were displayed as fusion proteins on the surface of the M13 bacteriophage. Functional mutants were selected based on the ability to bind BLIP. After three rounds of enrichment, the sequences of a collection of functional beta-lactamase mutants revealed a consensus sequence for the binding of BLIP. Seven loop-helix residues including Asp-101, Leu-102, Val-103, Ser-106, Pro-107, Thr-109, and His-112 and three B3 beta-strand residues including Ser-235, Gly-236, and Gly-238 were found to be critical for tight binding of BLIP. In addition, the selected beta-lactamase mutants A113L/T114R and E240K were found to increase binding of BLIP by over 6- and 11-fold, respectively. Combining these substitutions resulted in 550-fold tighter binding between the enzyme and BLIP with a Ki of 0.40 pM. These results reveal that the binding between TEM-1 beta-lactamase and BLIP can be improved and that there are a large number of sequences consistent with tight binding between BLIP and beta-lactamase.

  8. On the significance of microtubule flexural behavior in cytoskeletal mechanics.

    PubMed

    Mehrbod, Mehrdad; Mofrad, Mohammad R K

    2011-01-01

    Quantitative description of cell mechanics has challenged biological scientists for the past two decades. Various structural models have been attempted to analyze the structure of the cytoskeleton. One important aspect that has been largely ignored in all these modeling approaches is related to the flexural and buckling behavior of microtubular filaments. The objective of this paper is to explore the influence of this flexural and buckling behavior in cytoskeletal mechanics.In vitro the microtubules are observed to buckle in the first mode, reminiscent of a free, simply-supported beam. In vivo images of microtubules, however, indicate that the buckling mostly occurs in higher modes. This buckling mode switch takes place mostly because of the lateral support of microtubules via their connections to actin and intermediate filaments. These lateral loads are exerted throughout the microtubule length and yield a considerable bending behavior that, unless properly accounted for, would produce erroneous results in the modeling and analysis of the cytoskeletal mechanics.One of the promising attempts towards mechanical modeling of the cytoskeleton is the tensegrity model, which simplifies the complex network of cytoskeletal filaments into a combination merely of tension-bearing actin filaments and compression-bearing microtubules. Interestingly, this discrete model can qualitatively explain many experimental observations in cell mechanics. However, evidence suggests that the simplicity of this model may undermine the accuracy of its predictions, given the model's underlying assumption that "every single member bears solely either tensile or compressive behavior," i.e. neglecting the flexural behavior of the microtubule filaments. We invoke an anisotropic continuum model for microtubules and compare the bending energy stored in a single microtubule with its axial strain energy at the verge of buckling. Our results suggest that the bending energy can exceed the axial energy

  9. Coiled coils and SAH domains in cytoskeletal molecular motors.

    PubMed

    Peckham, Michelle

    2011-10-01

    Cytoskeletal motors include myosins, kinesins and dyneins. Myosins move along tracks of actin filaments, whereas kinesins and dyneins move along microtubules. Many of these motors are involved in trafficking cargo in cells. However, myosins are mostly monomeric, whereas kinesins are mostly dimeric, owing to the presence of a coiled coil. Some myosins (myosins 6, 7 and 10) contain an SAH (single α-helical) domain, which was originally thought to be a coiled coil. These myosins are now known to be monomers, not dimers. The differences between SAH domains and coiled coils are described and the potential roles of SAH domains in molecular motors are discussed.

  10. Effect of Cytoskeletal Reagents on Stretch Activated Ion Channels

    DTIC Science & Technology

    1992-11-12

    transduction. Biophys J59: 1143-1145, 1991. 23. SACHS, F., W. SIGURDSON, A. RUKNUDIN, AND C. BOWMAN. Single- channel mechanosensitive currents. Science 253: 800... mechanosensitive ion channels . In: Advances in Comparative and Environmental Physiology, v0C, edited by F. Ito. Berlin: Springer-Verlag, 1992, p. 55-77. Report of Inventions: None 4 ...EFFECT OF CYTOSKELETAL REAGENTS ON STRETCH ACTIVATED ION CHANNELS b lfli..3-f-I’- o0*’t 6. AUTHOR(S) Dr.-Frederick Sachs DI 7. PERFORMING ORGANIZATION NAME

  11. Development of a Novel Green Fluorescent Protein-Based Binding Assay to Study the Association of Plakins with Intermediate Filament Proteins.

    PubMed

    Favre, Bertrand; Begré, Nadja; Bouameur, Jamal-Eddine; Borradori, Luca

    2016-01-01

    Protein-protein interactions are fundamental for most biological processes, such as the formation of cellular structures and enzymatic complexes or in signaling pathways. The identification and characterization of protein-protein interactions are therefore essential for understanding the mechanisms and regulation of biological systems. The organization and dynamics of the cytoskeleton, as well as its anchorage to specific sites in the plasma membrane and organelles, are regulated by the plakins. These structurally related proteins anchor different cytoskeletal networks to each other and/or to other cellular structures. The association of several plakins with intermediate filaments (IFs) is critical for maintenance of the cytoarchitecture. Pathogenic mutations in the genes encoding different plakins can lead to dramatic manifestations, occurring principally in the skin, striated muscle, and/or nervous system, due to cytoskeletal disorganization resulting in abnormal cell fragility. Nevertheless, it is still unclear how plakins bind to IFs, although some general rules are slowly emerging. We here describe in detail a recently developed protein-protein fluorescence binding assay, based on the production of recombinant proteins tagged with green fluorescent protein (GFP) and their use as fluid-phase fluorescent ligands on immobilized IF proteins. Using this method, we have been able to assess the ability of C-terminal regions of GFP-tagged plakin proteins to bind to distinct IF proteins and IF domains. This simple and sensitive technique, which is expected to facilitate further studies in this area, can also be potentially employed for any kind of protein-protein interaction studies.

  12. Cytoskeletal regulation of calcium-permeable cation channels in the human syncytiotrophoblast: role of gelsolin

    PubMed Central

    Montalbetti, Nicolás; Li, Qiang; Timpanaro, Gustavo A; González-Perrett, Silvia; Dai, Xiao-Qing; Chen, Xing-Zhen; Cantiello, Horacio F

    2005-01-01

    The human syncytiotrophoblast (hST) is the most apical epithelial barrier that covers the villous tree of the human placenta. An intricate and highly organized network of cytoskeletal structures supports the hST. Recently, polycystin-2 (PC2), a TRP-type nonselective cation channel, was functionally observed in hST, where it may be an important player to Ca2+ transport. Little is known, however, about channel regulation in hST. In this report, the regulatory role of actin dynamics on PC2 channels reconstituted from hST apical membranes was explored. Acute addition of cytochalasin D (CD, 5 μg ml−1) to reconstituted hST apical membranes transiently increased K+-permeable channel activity. The actin-binding proteins α-actinin and gelsolin, as well as PC2, were observed by Western blot and immunofluorescence analyses in hST vesicles. CD treatment of hST vesicles resulted in a re-distribution of actin filaments, in agreement with the effect of CD on K+ channel activity. In contrast, addition of exogenous monomeric actin, but not prepolymerized actin, induced a rapid inhibition of channel function in hST. This inhibition was obliterated by the presence of CD in the medium. The acute (<15 min) CD stimulation of K+ channel activity was mimicked by addition of the actin-severing protein gelsolin in the presence, but not in the absence, of micromolar Ca2+. Ca2+ transport through PC2 triggers a regulatory feedback mechanism, which is based on the severing and re-formation of filamentous actin near the channels. Cytoskeletal structures may thus be relevant to ion transport regulation in the human placenta. PMID:15845576

  13. The secretory mechanisms in equine platelets are independent of cytoskeletal polymerization and occur through membrane fusion.

    PubMed

    Brunso, L; Segura, D; Monreal, L; Escolar, G; White, J G; Diaz-Ricart, M

    2010-01-01

    Studies in animal models are useful to understand the basic mechanisms involved in hemostasis and the functional differences among species. Ultrastructural observations led us to predict differences in the activation and secretion mechanisms between equine and human platelets. The potential mechanisms involved have been comparatively explored in the present study. Equine and human platelets were activated with thrombin (0.5 U/ml) and collagen (20 µg/ml), for 90 seconds, and samples processed to evaluate: i) ultrastructural changes, by electron microscopy, ii) actin polymerization and cytoskeletal assembly, by polyacrylamide gel electrophoresis, and iii) specific molecules involved in activation and secretion, by western blot. In activated human platelets, centralization of granules, cytoskeletal assembly and fusion of granules with the open canalicular system were observed. In activated equine platelets, granules fused together forming an organelle chain that fused with the surface membrane and released its content directly outside the platelets. Human platelets responded to activation with actin polymerization and the assembly of other contractile proteins to the cytoskeleton. These events were almost undetectable in equine platelets. When exploring the involvement of the synaptosomal-associated protein-23 (SNAP-23), a known regulator of secretory granule/plasma membrane fusion events, it was present in both human and equine platelets. SNAP-23 was shown to be more activated in equine platelets than human platelets in response to activation, especially with collagen. Thus, there are significant differences in the secretion mechanisms between human and equine platelets. While in human platelets, activation and secretion of granules depend on mechanisms of internal contraction and membrane fusion, in equine platelets the fusion mechanisms seem to be predominant.

  14. A critical evaluation of Amicon Ultra centrifugal filters for separating proteins, drugs and nanoparticles in biosamples.

    PubMed

    Johnsen, Elin; Brandtzaeg, Ole Kristian; Vehus, Tore; Roberg-Larsen, Hanne; Bogoeva, Vanya; Ademi, Ornela; Hildahl, Jon; Lundanes, Elsa; Wilson, Steven Ray

    2016-02-20

    Amicon(®) Ultra centrifugal filters were critically evaluated for various sample preparations, namely (a) proteome fractionation, (b) sample cleanup prior to liquid chromatography mass spectrometry (LC-MS) measurement of small molecules in cell lysate, and (c) separating drug-loaded nanoparticles and released drugs for accurate release profiling in biological samples. (a) Filters of supposedly differing molar mass (MM) selectivity (10, 30, 50 and 100K) were combined to attempt fractionation of samples of various complexity and concentration. However, the products had surprisingly similar MM retentate/filtrate profiles, and the filters were unsuited for proteome fractionation. (b) Centrifugal filtration was the only clean-up procedure in a FDA-guideline validated LC-MS method for determining anti-tuberculosis agents rifampicin and thioridazine in macrophage cell lysate. An additional organic solvent washing step (drug/protein-binding disruption) was required for satisfactory recovery. (c) The centrifugation filters are well suited for separating drugs and nanoparticles in simple aqueous solutions, but significantly less so for biological samples, as common drug-protein binding disruptors can dissolve NPs or be incompatible with LC-MS instrumentation.

  15. Caspases cleave and inhibit the microRNA processing protein DiGeorge Critical Region 8.

    PubMed

    Gong, Ming; Chen, Yanqiu; Senturia, Rachel; Ulgherait, Matthew; Faller, Michael; Guo, Feng

    2012-06-01

    DGCR8 (DiGeorge Critical Region 8) is an essential microRNA (miRNA) processing protein that recognizes primary transcripts of miRNAs (pri-miRNAs) and triggers their cleavage by the Drosha nuclease. We previously found that Fe(III) heme binds and activates DGCR8. Here we report that in HeLa cells, DGCR8 undergoes two proteolytic events that produce two C-terminal fragments called DGCR8(C1) and DGCR8(C2) , respectively. DGCR8(C2) accumulates during apoptosis and is generated through cleavage by a caspase. The caspase cleavage site is located in the central loop of the heme-binding domain. Cleavage of DGCR8 by caspase-3 in vitro results in loss of the otherwise tightly bound Fe(III) heme cofactor, dissociation of the N- and C-terminal proteolytic fragments, and inhibition of the pri-miRNA processing activity. These results reveal an intrinsic mechanism in the DGCR8 protein that seems to have evolved for regulating miRNA processing via association with Fe(III) heme and proteolytic cleavage by caspases. Decreased expression of miRNAs has been observed in apoptotic cells, and this change was attributed to caspase-mediated cleavage of a down-stream miRNA processing nuclease Dicer. We suggest that both the Drosha and Dicer cleavage steps of the miRNA maturation pathway may be inhibited in apoptosis and other biological processes where caspases are activated.

  16. Bone Regeneration in Rat Cranium Critical-Size Defects Induced by Cementum Protein 1 (CEMP1)

    PubMed Central

    Serrano, Janeth; Romo, Enrique; Bermúdez, Mercedes; Narayanan, A. Sampath; Zeichner-David, Margarita; Santos, Leticia; Arzate, Higinio

    2013-01-01

    Gene therapy approaches to bone and periodontal tissue engineering are being widely explored. While localized delivery of osteogenic factors like BMPs is attractive for promotion of bone regeneration; method of delivery, dosage and side effects could limit this approach. A novel protein, Cementum Protein 1 (CEMP1), has recently been shown to promote regeneration of periodontal tissues. In order to address the possibility that CEMP1 can be used to regenerate other types of bone, experiments were designed to test the effect of hrCEMP1 in the repair/regeneration of a rat calvaria critical-size defect. Histological and microcomputed tomography (µCT) analyses of the calvaria defect sites treated with CEMP1 showed that after 16 weeks, hrCEMP1 is able to induce 97% regeneration of the defect. Furthermore, the density and characteristics of the new mineralized tissues were normal for bone. This study demonstrates that hrCEMP1 stimulates bone formation and regeneration and has therapeutic potential for the treatment of bone defects and regeneration of mineralized tissues. PMID:24265720

  17. Activity Dependent Protein Degradation Is Critical for the Formation and Stability of Fear Memory in the Amygdala

    PubMed Central

    Jarome, Timothy J.; Helmstetter, Fred J.

    2011-01-01

    Protein degradation through the ubiquitin-proteasome system [UPS] plays a critical role in some forms of synaptic plasticity. However, its role in memory formation in the amygdala, a site critical for the formation of fear memories, currently remains unknown. Here we provide the first evidence that protein degradation through the UPS is critically engaged at amygdala synapses during memory formation and retrieval. Fear conditioning results in NMDA-dependent increases in degradation-specific polyubiquitination in the amygdala, targeting proteins involved in translational control and synaptic structure and blocking the degradation of these proteins significantly impairs long-term memory. Furthermore, retrieval of fear memory results in a second wave of NMDA-dependent polyubiquitination that targets proteins involved in translational silencing and synaptic structure and is critical for memory updating following recall. These results indicate that UPS-mediated protein degradation is a major regulator of synaptic plasticity necessary for the formation and stability of long-term memories at amygdala synapses. PMID:21961035

  18. Measuring protein-bound glutathioine (PSSG): Critical correction for cytosolic glutathione species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction: Protein glutathionylation is gaining recognition as an important posttranslational protein modification. The common first step in measuring protein glutathionylation is the denaturation and precipitation of protein away from soluble, millimolar quantities of glutathione (GSH) and glut...

  19. Reorganization of the actin cytoskeleton via transcriptional regulation of cytoskeletal/focal adhesion genes by myocardin-related transcription factors (MRTFs/MAL/MKLs)

    SciTech Connect

    Morita, Tsuyoshi; Mayanagi, Taira; Sobue, Kenji

    2007-10-01

    RhoA is a crucial regulator of stress fiber and focal adhesion formation through the activation of actin nucleation and polymerization. It also regulates the nuclear translocation of myocardin-related transcription factor-A and -B (MRTF-A/B, MAL or MKL 1/2), which are co-activators of serum response factor (SRF). In dominant-negative MRTF-A (DN-MRTF-A)-expressing NIH 3T3 cell lines, the expressions of several cytoskeletal/focal adhesion genes were down-regulated, and the formation of stress fiber and focal adhesion was severely diminished. MRTF-A/B-knockdown cells also exhibited such cytoskeletal defects. In reporter assays, both RhoA and MRTF-A enhanced promoter activities of these genes in a CArG-box-dependent manner, and DN-MRTF-A inhibited the RhoA-mediated activation of these promoters. In dominant-negative RhoA (RhoA-N19)-expressing NIH 3T3 cell lines, the nuclear translocation of MRTF-A/B was predominantly prevented, resulting in the reduced expression of cytoskeletal/focal adhesion proteins. Further, constitutive-active MRTF-A/B increased the expression of endogenous cytoskeletal/focal adhesion proteins, and thereby rescued the defective phenotype of stress fibers and focal adhesions in RhoA-N19 expressing cells. These results indicate that MRTF-A/B act as pivotal mediators of stress fiber and focal adhesion formation via the transcriptional regulation of a subset of cytoskeletal/focal adhesion genes.

  20. Proteomic and Microscopic Strategies towards the Analysis of the Cytoskeletal Networks in Major Neuropsychiatric Disorders

    PubMed Central

    Coumans, Joëlle V. F.; Palanisamy, Suresh K. A.; McFarlane, Jim; Moens, Pierre D. J.

    2016-01-01

    Mental health disorders have become worldwide health priorities. It is estimated that in the next 20 years they will account for a 16 trillion United State dollars (US$) loss. Up to now, the underlying pathophysiology of psychiatric disorders remains elusive. Altered cytoskeleton proteins expression that may influence the assembly, organization and maintenance of cytoskeletal integrity has been reported in major depressive disorders, schizophrenia and to some extent bipolar disorders. The use of quantitative proteomics, dynamic microscopy and super-resolution microscopy to investigate disease-specific protein signatures holds great promise to improve our understanding of these disorders. In this review, we present the currently available quantitative proteomic approaches use in neurology, gel-based, stable isotope-labelling and label-free methodologies and evaluate their strengths and limitations. We also reported on enrichment/subfractionation methods that target the cytoskeleton associated proteins and discuss the need of alternative methods for further characterization of the neurocytoskeletal proteome. Finally, we present live cell imaging approaches and emerging dynamic microscopy technology that will provide the tools necessary to investigate protein interactions and their dynamics in the whole cells. While these areas of research are still in their infancy, they offer huge potential towards the understanding of the neuronal network stability and its modification across neuropsychiatric disorders. PMID:27104521

  1. Subcellular targeting and cytoskeletal attachment of SAP97 to the epithelial lateral membrane.

    PubMed

    Wu, H; Reuver, S M; Kuhlendahl, S; Chung, W J; Garner, C C

    1998-08-01

    The synapse-associated protein SAP97 is a member of a novel family of cortical cytoskeletal proteins involved in the localization of ion channels at such membrane specializations as synaptic junctions. These multidomain proteins have binding sites for protein 4.1, GKAPs/SAPAPs, voltage- and ligand-gated ion channels and cell-adhesion molecules containing C-terminal T/SXV motifs. In this study, we evaluated the contribution of individual domains in SAP97 to its selective recruitment and attachment to the cortical cytoskeleton in epithelial cells. We find that the PDZ, SH3 and GK domains, as well as the I3 insert in SAP97, are not essential for subcellular targeting, though both PDZ1-2 domains and the I3 insert affect the efficiency of localization. Instead, we show that the first 65 amino acid residues in SAP97, which are absent from SAP90/PSD-95 and SAP102, direct the selective subcellular localization and can mediate at least one point of attachment of SAP97 to the cytoskeleton assembled at sites of cell-cell contact. Our data demonstrate that it is the sequences unique to SAP97 that direct its subcellular targeting to the epithelial lateral membrane.

  2. Plasticity in cell defence: access to and reactivity of critical protein residues and DNA response elements.

    PubMed

    Goldring, Chris; Kitteringham, Neil; Jenkins, Rosalind; Copple, Ian; Jeannin, Jean-Francois; Park, B Kevin

    2006-06-01

    Cellular and whole organ defence against pathogenic or chemical challenge is manifest as an adaptive response. Where appropriate, this may lead to induction of a cellular defence programme, thereby enhancing cell survival. When the challenge is overwhelming, the defence is breached and a switch is made to yield cell death, either by apoptosis or necrosis. Thus, a cell will defend itself where possible, but in extremis, it may recognise the futility of its resistance and allow itself to die. Transcription factor activation and access to the DNA regulatory elements that control a particular pattern of expression of defence genes is a major issue that may ultimately decide the fate of a cell in a changed environment. It is possible to visualise the access to the nucleus and to the genome, of paradigm gene loci or transcription factors, using a number of molecular techniques such as chromatin immunoprecipitation, in vivo footprinting and live/whole cell imaging. These methods are informative as to the array of transcription factors that may regulate a given gene, as well as the transitory nature of the transcriptional activation. The initial triggering of active transcription factor complexes typically occurs within the cytoplasm of the cell. Protein-protein interactions and signal transduction pathways, elucidated using a classical molecular genetics approach, have long been recognised as pivotal to the initial control of the levels and activity of transcription factors. We can now visualise modifications in critical residues of transcription factors and regulators during cellular response to chemical stress. These modifications may yield enhanced or repressed activity of transcription factors, they may be non-covalent or covalent, and they may occur in response to a variety of classes of chemicals. Such promiscuous signalling can provide plasticity in the cellular response to a wide array of chemical agents.

  3. Rho GTPase protein Cdc42 is critical for postnatal cartilage development.

    PubMed

    Nagahama, Ryo; Yamada, Atsushi; Tanaka, Junichi; Aizawa, Ryo; Suzuki, Dai; Kassai, Hidetoshi; Yamamoto, Matsuo; Mishima, Kenji; Aiba, Atsu; Maki, Koutaro; Kamijo, Ryutaro

    2016-02-19

    Cdc42, a small Rho GTPase family member, has been shown to regulate multiple cellular functions in vitro, including actin cytoskeletal reorganization, cell migration, proliferation, and gene expression. However, its tissue-specific roles in vivo remain largely unknown, especially in postnatal cartilage development, as cartilage-specific Cdc42 inactivated mice die within a few days after birth. In this study, we investigated the physiological functions of Cdc42 during cartilage development after birth using tamoxifen-induced cartilage-specific inactivated Cdc42 conditional knockout (Cdc42 (fl/fl); Col2-CreERT) mice, which were generated by crossing Cdc42 flox mice (Cdc42 (fl/fl)) with tamoxifen-induced type II collagen (Col2) Cre transgenic mice using a Cre/loxP system. The gross morphology of the Cdc42 cKO mice was shorter limbs and body, as well as reduced body weight as compared with the controls. In addition, severe defects were found in growth plate chondrocytes of the long bones, characterized by a shorter proliferating zone (PZ), wider hypertrophic zone (HZ), and loss of columnar organization of proliferating chondrocytes, resulting in delayed endochondral bone formation associated with abnormal bone growth. Our findings demonstrate the importance of Cdc42 for cartilage development during both embryonic and postnatal stages.

  4. PDB2Graph: A toolbox for identifying critical amino acids map in proteins based on graph theory.

    PubMed

    Niknam, Niloofar; Khakzad, Hamed; Arab, Seyed Shahriar; Naderi-Manesh, Hossein

    2016-05-01

    The integrative and cooperative nature of protein structure involves the assessment of topological and global features of constituent parts. Network concept takes complete advantage of both of these properties in the analysis concomitantly. High compatibility to structural concepts or physicochemical properties in addition to exploiting a remarkable simplification in the system has made network an ideal tool to explore biological systems. There are numerous examples in which different protein structural and functional characteristics have been clarified by the network approach. Here, we present an interactive and user-friendly Matlab-based toolbox, PDB2Graph, devoted to protein structure network construction, visualization, and analysis. Moreover, PDB2Graph is an appropriate tool for identifying critical nodes involved in protein structural robustness and function based on centrality indices. It maps critical amino acids in protein networks and can greatly aid structural biologists in selecting proper amino acid candidates for manipulating protein structures in a more reasonable and rational manner. To introduce the capability and efficiency of PDB2Graph in detail, the structural modification of Calmodulin through allosteric binding of Ca(2+) is considered. In addition, a mutational analysis for three well-identified model proteins including Phage T4 lysozyme, Barnase and Ribonuclease HI, was performed to inspect the influence of mutating important central residues on protein activity.

  5. The involvement of heat-shock proteins in the pathogenesis of autoimmune arthritis: a critical appraisal

    PubMed Central

    Huang, Min-Nung; Yu, Hua; Moudgil, Kamal D.

    2012-01-01

    Objectives To review the literature on the role of heat-shock proteins (HSPs) in the pathogenesis of autoimmune arthritis in animal models ans patients with rheumatoid arthritis (RA). Methods The published literature in Medline (PubMed), including our published work on the cell-mediated as well as humoral immune response to various HSPs was reviewed. Studies in both the pre-clinical animal models of arthritis as well as RA were examined critically and the data presented. Results In experimental arthritis, disease induction by different arthritogenic stimuli, including an adjuvant, led to immune response to mycobacterial HSP65 (BHSP65). However, attempts to induce arthritis by a purified HSP have not met with success. There are several reports of a significant immune response to HSP65 in RA patients. But, the issue of cause and effect is difficult to address. Nevertheless, several studies in animal models and a couple of clinical trials in RA patients have shown the beneficial effect of HSPs against autoimmune arthritis. Conclusions There is a clear association between immune response to HSPs, particularly HSP65, and the initiation and propagation of autoimmune arthritis in experimental models. The correlation is relatively less convincing in RA patients. In both cases, the ability of HSPs to modulate arthritis offers support, albeit an indirect one, for the involvement of these antigens in the disease process. PMID:19969325

  6. Altered cytoskeletal organization characterized lethal but not surviving Brtl+/− mice: insight on phenotypic variability in osteogenesis imperfecta

    PubMed Central

    Bianchi, Laura; Gagliardi, Assunta; Maruelli, Silvia; Besio, Roberta; Landi, Claudia; Gioia, Roberta; Kozloff, Kenneth M.; Khoury, Basma M.; Coucke, Paul J.; Symoens, Sofie; Marini, Joan C.; Rossi, Antonio; Bini, Luca; Forlino, Antonella

    2015-01-01

    Osteogenesis imperfecta (OI) is a heritable bone disease with dominant and recessive transmission. It is characterized by a wide spectrum of clinical outcomes ranging from very mild to lethal in the perinatal period. The intra- and inter-familiar OI phenotypic variability in the presence of an identical molecular defect is still puzzling to the research field. We used the OI murine model Brtl+/− to investigate the molecular basis of OI phenotypic variability. Brtl+/− resembles classical dominant OI and shows either a moderately severe or a lethal outcome associated with the same Gly349Cys substitution in the α1 chain of type I collagen. A systems biology approach was used. We took advantage of proteomic pathway analysis to functionally link proteins differentially expressed in bone and skin of Brtl+/− mice with different outcomes to define possible phenotype modulators. The skin/bone and bone/skin hybrid networks highlighted three focal proteins: vimentin, stathmin and cofilin-1, belonging to or involved in cytoskeletal organization. Abnormal cytoskeleton was indeed demonstrated by immunohistochemistry to occur only in tissues from Brtl+/− lethal mice. The aberrant cytoskeleton affected osteoblast proliferation, collagen deposition, integrin and TGF-β signaling with impairment of bone structural properties. Finally, aberrant cytoskeletal assembly was detected in fibroblasts obtained from lethal, but not from non-lethal, OI patients carrying an identical glycine substitution. Our data demonstrated that compromised cytoskeletal assembly impaired both cell signaling and cellular trafficking in mutant lethal mice, altering bone properties. These results point to the cytoskeleton as a phenotypic modulator and potential novel target for OI treatment. PMID:26264579

  7. Neuronal loss and cytoskeletal disruption following intrahippocampal administration of the metabolic inhibitor malonate: lack of protection by MK-801.

    PubMed

    Pang, Z; Umberger, G H; Geddes, J W

    1996-02-01

    Impaired energy metabolism may contribute to the pathogenesis of late-onset neurodegenerative disorders such as Alzheimer's disease by increasing neuronal vulnerability to excitotoxic damage through the NMDA receptor. The effects of metabolic impairment on the striatum have been extensively examined, but relatively little is known regarding the vulnerability of the hippocampus. To examine the effect of metabolic impairment on the hippocampal formation, malonate (0.25-2.5 mumol), a reversible inhibitor of succinate dehydrogenase, was administered by stereotaxic injection into the hippocampus of male Sprague-Dawley rats. Neuronal loss was assessed by Nissl stain, and immunocytochemistry was used to examine cytoskeletal disruption. Malonate produced a dose-dependent lesion in which CA1 pyramidal neurons were most vulnerable, followed by CA3 and dentate gyrus. Cytoskeletal alterations included the loss of microtubule-associated protein 2 (MAP2) and dendritic MAP1B immunoreactivity, whereas axonal MAP1B and tau proteins were relatively spared. Spatially and temporally correlated with the loss of MAP2 was an increase in the immunoreactivity of calpain-cleaved spectrin. A similar pattern of neuronal damage and cytoskeletal disruption was produced by intrahippocampal injection of quinolinate (0.1 mumol), an NMDA agonist. Although these results are consistent with the hypothesis that metabolic impairment results in excitotoxic death, MK-801 (dizocilipine maleate), a noncompetitive NMDA receptor antagonist, did not attenuate the lesions produced by malonate but was effective against quinolinate. The results suggest that NMDA receptor activation is not required for malonate-induced damage in the hippocampal formation.

  8. Cytoskeletal Basis of Ion Channel Function in Cardiac Muscle

    PubMed Central

    Vatta, Matteo; Faulkner, Georgine

    2009-01-01

    Summary The heart is a force-generating organ that responds to self-generated electrical stimuli from specialized cardiomyocytes. This function is modulated by sympathetic and parasympathetic activity. In order to contract and accommodate the repetitive morphological changes induced by the cardiac cycle, cardiomyocytes depend on their highly evolved and specialized cytoskeletal apparatus. Defects in components of the cytoskeleton, in the long term, affect the ability of the cell to compensate at both functional and structural levels. In addition to the structural remodeling, the myocardium becomes increasingly susceptible to altered electrical activity leading to arrhythmogenesis. The development of arrhythmias secondary to structural remodeling defects has been noted, although the detailed molecular mechanisms are still elusive. Here I will review the current knowledge of the molecular and functional relationships between the cytoskeleton and ion channels and, I will discuss the future impact of new data on molecular cardiology research and clinical practice. PMID:19774097

  9. Alkylation damage by lipid electrophiles targets functional protein systems.

    PubMed

    Codreanu, Simona G; Ullery, Jody C; Zhu, Jing; Tallman, Keri A; Beavers, William N; Porter, Ned A; Marnett, Lawrence J; Zhang, Bing; Liebler, Daniel C

    2014-03-01

    Protein alkylation by reactive electrophiles contributes to chemical toxicities and oxidative stress, but the functional impact of alkylation damage across proteomes is poorly understood. We used Click chemistry and shotgun proteomics to profile the accumulation of proteome damage in human cells treated with lipid electrophile probes. Protein target profiles revealed three damage susceptibility classes, as well as proteins that were highly resistant to alkylation. Damage occurred selectively across functional protein interaction networks, with the most highly alkylation-susceptible proteins mapping to networks involved in cytoskeletal regulation. Proteins with lower damage susceptibility mapped to networks involved in protein synthesis and turnover and were alkylated only at electrophile concentrations that caused significant toxicity. Hierarchical susceptibility of proteome systems to alkylation may allow cells to survive sublethal damage while protecting critical cell functions.

  10. Proceedings of the 2016 Clinical Nutrition Week Research Workshop-The Optimal Dose of Protein Provided to Critically Ill Patients.

    PubMed

    Heyland, Daren K; Rooyakers, Olav; Mourtzakis, Marina; Stapleton, Renee D

    2017-02-01

    Recent literature has created considerable confusion about the optimal amount of protein/amino acids that should be provided to the critically ill patient. In fact, the evidentiary basis that directly tries to answer this question is relatively small. As a clinical nutrition research community, there is an urgent need to develop the optimal methods to assess the impact of exogenous protein/amino acid administration in the intensive care unit setting. That assessment can be conducted at various levels: (1) impact on stress response pathways, (2) impact on muscle synthesis and protein balance, (3) impact on muscle mass and function, and (4) impact on the patient's recovery. The objective of this research workshop was to review current literature relating to protein/amino acid administration for the critically ill patient and clinical outcomes and to discuss the key measurement and methodological features of future studies that should be done to inform the optimal protein/amino acid dose provided to critically ill patients.

  11. Functional implications of axon initial segment cytoskeletal disruption in stroke

    PubMed Central

    Stoler, Ohad; Fleidervish, Ilya A.

    2016-01-01

    Axon initial segment (AIS) is the proximal part of the axon, which is not covered with a myelin sheath and possesses a distinctive, specialized assembly of voltage-gated ion channels and associated proteins. AIS plays critical roles in synaptic integration and action potential generation in central neurons. Recent evidence shows that stroke causes rapid, irreversible calpain-mediated proteolysis of the AIS cytoskeleton of neurons surrounding the ischemic necrotic core. A better understanding of the molecular mechanisms underlying this “non-lethal” neuronal damage might provide new therapeutic strategies for improving stroke outcome. Here, we present a brief overview of the structure and function of the AIS. We then discuss possible mechanisms underlying stroke-induced AIS damage, including the roles of calpains and possible sources of Ca2+ ions, which are necessary for the activation of calpains. Finally, we discuss the potential functional implications of the loss of the AIS cytoskeleton and ion channel clusters for neuronal excitability. PMID:26687934

  12. p38MAPK, Rho/ROCK and PKC pathways are involved in influenza-induced cytoskeletal rearrangement and hyperpermeability in PMVEC via phosphorylating ERM.

    PubMed

    Zhang, Chenyue; Wu, Ying; Xuan, Zinan; Zhang, Shujing; Wang, Xudan; Hao, Yu; Wu, Jun; Zhang, Shu

    2014-11-04

    Severe influenza infections are featured by acute lung injury, a syndrome of pulmonary microvascular leak. A growing number of evidences have shown that the pulmonary microvascular endothelial cells (PMVEC) are critical target of influenza virus, promoting microvascular leak. It is reported that there are multiple mechanisms by which influenza virus could elicit increased pulmonary endothelial permeability, in both direct and indirect manners. Ezrin/radixin/moesin family proteins, the linkers between plasma membrane and actin cytoskeleton, have been reported to be involved in cell adhesion, motility and may modulate endothelial permeability. Studies have also shown that ERM is phosphorylated in response to various stimuli via p38MAPK, Rho/ROCK or PKC pathways. However, it is unclear that whether influenza infection could induce ERM phosphorylation and its relocalization. In the present study, we have found that there are cytoskeletal reorganization and permeability increases in the course of influenza virus infection, accompanied by upregulated levels of p-ERM. p-ERM's aggregation along the periphery of PMVEC upon influenza virus infection was detected via confocal microscopy. Furthermore, we sought to determine the role of p38MAPK, Rho/ROCK and PKC pathways in ERM phosphorylation as well as their involvement in influenza virus-induced endothelial malfunction. The activation of p38MAPK, Rho/ROCK and PKC pathways upon influenza virus stimulation were observed, as evidenced by the evaluation of phosphorylated p38 (p-p38), phosphorylated MKK (p-MKK) in p38MAPK pathway, ROCK1 in Rho/ROCK pathway and phosphorylated PKC (p-PKC) in PKC pathway. We also showed that virus-induced ERM phosphorylation was reduced by using p38MAPK inhibitor, SB203580 (20 μM), Rho/ROCK inhibitor, Y27632 (20 μM), PKC inhibitor, LY317615 (10 μM). Additionally, influenza virus-induced F-actin reorganization and hyperpermeability were attenuated by pretreatment with SB203580, Y27632 and LY317615

  13. Critical role of the SPAK protein kinase CCT domain in controlling blood pressure

    PubMed Central

    Zhang, Jinwei; Siew, Keith; Macartney, Thomas; O'Shaughnessy, Kevin M.; Alessi, Dario R.

    2015-01-01

    The STE20/SPS1-related proline/alanine-rich kinase (SPAK) controls blood pressure (BP) by phosphorylating and stimulating the Na-Cl (NCC) and Na-K-2Cl (NKCC2) co-transporters, which regulate salt reabsorption in the kidney. SPAK possesses a conserved carboxy-terminal (CCT) domain, which recognises RFXV/I motifs present in its upstream activator [isoforms of the With-No-lysine (K) kinases (WNKs)] as well as its substrates (NCC and NKCC2). To define the physiological importance of the CCT domain, we generated knock-in mice in which the critical CCT domain Leu502 residue required for high affinity recognition of the RFXI/V motif was mutated to Alanine. The SPAK CCT domain defective knock-in animals are viable, and the Leu502Ala mutation abolished co-immunoprecipitation of SPAK with WNK1, NCC and NKCC2. The CCT domain defective animals displayed markedly reduced SPAK activity and phosphorylation of NCC and NKCC2 co-transporters at the residues phosphorylated by SPAK. This was also accompanied by a reduction in the expression of NCC and NKCC2 protein without changes in mRNA levels. The SPAK CCT domain knock-in mice showed typical features of Gitelman Syndrome with mild hypokalaemia, hypomagnesaemia, hypocalciuria and displayed salt wasting on switching to a low-Na diet. These observations establish that the CCT domain plays a crucial role in controlling SPAK activity and BP. Our results indicate that CCT domain inhibitors would be effective at reducing BP by lowering phosphorylation as well as expression of NCC and NKCC2. PMID:25994507

  14. Dentin matrix protein 1 and phosphate homeostasis are critical for postnatal pulp, dentin and enamel formation

    PubMed Central

    Rangiani, Afsaneh; Cao, Zheng-Guo; Liu, Ying; Voisey Rodgers, Anika; Jiang, Yong; Qin, Chun-Lin; Feng, Jian-Quan

    2012-01-01

    Deletion or mutation of dentin matrix protein 1 (DMP1) leads to hypophosphatemic rickets and defects within the dentin. However, it is largely unknown if this pathological change is a direct role of DMP1 or an indirect role of phosphate (Pi) or both. It has also been previously shown that Klotho-deficient mice, which displayed a high Pi level due to a failure of Pi excretion, causes mild defects in the dentinal structure. This study was to address the distinct roles of DMP1 and Pi homeostasis in cell differentiation, apoptosis and mineralization of dentin and enamel. Our working hypothesis was that a stable Pi homeostasis is critical for postnatal tooth formation, and that DMP1 has an antiapoptotic role in both amelogenesis and dentinogenesis. To test this hypothesis, Dmp1-null (Dmp1−/−), Klotho-deficient (kl/kl), Dmp1/Klotho-double-deficient (Dmp1−/−/kl/kl) and wild-type (WT) mice were killed at the age of 6 weeks. Combinations of X-ray, microcomputed tomography (μCT), scanning electron microscopy (SEM), histology, apoptosis and immunohistochemical methods were used for characterization of dentin, enamel and pulp structures in these mutant mice. Our results showed that Dmp1−/− (a low Pi level) or kl/kl (a high Pi level) mice displayed mild dentin defects such as thin dentin and a reduction of dentin tubules. Neither deficient mouse line exhibited any apparent changes in enamel or pulp structure. However, the double-deficient mice (a high Pi level) displayed severe defects in dentin and enamel structures, including loss of dentinal tubules and enamel prisms, as well as unexpected ectopic ossification within the pulp root canal. TUNEL assay showed a sharp increase in apoptotic cells in ameloblasts and odontoblasts. Based on the above findings, we conclude that DMP1 has a protective role for odontoblasts and ameloblasts in a pro-apoptotic environment (a high Pi level). PMID:23258378

  15. Actin Cytoskeletal Organization in Drosophila Germline Ring Canals Depends on Kelch Function in a Cullin-RING E3 Ligase

    PubMed Central

    Hudson, Andrew M.; Mannix, Katelynn M.; Cooley, Lynn

    2015-01-01

    The Drosophila Kelch protein is required to organize the ovarian ring canal cytoskeleton. Kelch binds and cross-links F-actin in vitro, and it also functions with Cullin 3 (Cul3) as a component of a ubiquitin E3 ligase. How these two activities contribute to cytoskeletal remodeling in vivo is not known. We used targeted mutagenesis to investigate the mechanism of Kelch function. We tested a model in which Cul3-dependent degradation of Kelch is required for its function, but we found no evidence to support this hypothesis. However, we found that mutant Kelch deficient in its ability to interact with Cul3 failed to rescue the kelch cytoskeletal defects, suggesting that ubiquitin ligase activity is the principal activity required in vivo. We also determined that the proteasome is required with Kelch to promote the ordered growth of the ring canal cytoskeleton. These results indicate that Kelch organizes the cytoskeleton in vivo by targeting a protein substrate for degradation by the proteasome. PMID:26384358

  16. A Model for Stress Fiber Realignment Caused by Cytoskeletal Fluidization During Cyclic Stretching.

    PubMed

    Pirentis, Athanassios P; Peruski, Elizabeth; Iordan, Andreea L; Stamenović, Dimitrije

    2011-03-01

    Uniaxial cyclic substrate stretching results in a concerted change of cytoskeletal organization such that stress fibers (SFs) realign away from the direction of stretching. Recent experiments revealed that brief transient stretch promptly ablates cellular contractile stress by means of cytoskeletal fluidization, followed by a slow stress recovery by means of resolidification. This, in turn, suggests that fluidization, resolidification and SF realignment may be linked together during stretching. We propose a mathematical model that simulates the effects of fluidization and resolidification on cytoskeletal contractile stress in order to investigate how these phenomena affect cytoskeletal realignment in response to pure uniaxial stretching of the substrate. The model comprises of individual elastic SFs anchored at the endpoints to an elastic substrate. Employing the global stability convention, the model predicts that in response to repeated stretch-unstretch cycles, SFs tend to realign in the direction perpendicular to stretching, consistent with data from the literature. The model is used to develop a computational scheme for predicting changes in cell orientation and polarity during stretching and how they relate to the underlying alterations in the cytoskeletal organization. We conclude that depletion of cytoskeletal contractile stress by means of fluidization and subsequent stress recovery by means of resolidification may play a key role in reorganization of cytoskeletal SFs in response to uniaxial stretching of the substrate.

  17. Two Plasmodium 6-Cys family-related proteins have distinct and critical roles in liver-stage development.

    PubMed

    Annoura, Takeshi; van Schaijk, Ben C L; Ploemen, Ivo H J; Sajid, Mohammed; Lin, Jing-wen; Vos, Martijn W; Dinmohamed, Avinash G; Inaoka, Daniel K; Rijpma, Sanna R; van Gemert, Geert-Jan; Chevalley-Maurel, Severine; Kiełbasa, Szymon M; Scheltinga, Fay; Franke-Fayard, Blandine; Klop, Onny; Hermsen, Cornelus C; Kita, Kiyoshi; Gego, Audrey; Franetich, Jean-Francois; Mazier, Dominique; Hoffman, Stephen L; Janse, Chris J; Sauerwein, Robert W; Khan, Shahid M

    2014-05-01

    The 10 Plasmodium 6-Cys proteins have critical roles throughout parasite development and are targets for antimalaria vaccination strategies. We analyzed the conserved 6-cysteine domain of this family and show that only the last 4 positionally conserved cysteine residues are diagnostic for this domain and identified 4 additional "6-Cys family-related" proteins. Two of these, sequestrin and B9, are critical to Plasmodium liver-stage development. RT-PCR and immunofluorescence assays show that B9 is translationally repressed in sporozoites and is expressed after hepatocyte invasion where it localizes to the parasite plasma membrane. Mutants lacking B9 expression in the rodent malaria parasites P. berghei and P. yoelii and the human parasite P. falciparum developmentally arrest in hepatocytes. P. berghei mutants arrest in the livers of BALB/c (100%) and C57BL6 mice (>99.9%), and in cultures of Huh7 human-hepatoma cell line. Similarly, P. falciparum mutants while fully infectious to primary human hepatocytes abort development 3 d after infection. This growth arrest is associated with a compromised parasitophorous vacuole membrane a phenotype similar to, but distinct from, mutants lacking the 6-Cys sporozoite proteins P52 and P36. Our results show that 6-Cys proteins have critical but distinct roles in establishment and maintenance of a parasitophorous vacuole and subsequent liver-stage development.

  18. Complementary analysis of the hard and soft protein corona: sample preparation critically effects corona composition

    NASA Astrophysics Data System (ADS)

    Winzen, S.; Schoettler, S.; Baier, G.; Rosenauer, C.; Mailaender, V.; Landfester, K.; Mohr, K.

    2015-02-01

    Here we demonstrate how a complementary analysis of nanocapsule-protein interactions with and without application media allows gaining insights into the so called hard and soft protein corona. We have investigated how both human plasma and individual proteins (human serum albumin (HSA), apolipoprotein A-I (ApoA-I)) adsorb and interact with hydroxyethyl starch (HES) nanocapsules possessing different functionalities. To analyse the hard protein corona we used sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and a protein quantitation assay. No significant differences were observed with regards to the hard protein corona. For analysis of the soft protein corona we characterized the nanocapsule-protein interaction with isothermal titration calorimetry (ITC) and dynamic light scattering (DLS). DLS and ITC measurements revealed that a high amount of plasma proteins were adsorbed onto the capsules' surface. Although HSA was not detected in the hard protein corona, ITC measurements indicated the adsorption of an HSA amount similar to plasma with a low binding affinity and reaction heat. In contrast, only small amounts of ApoA-I protein adsorb to the capsules with high binding affinities. Through a comparison of these methods we have identified ApoA-I to be a component of the hard protein corona and HSA as a component of the soft corona. We demonstrate a pronounced difference in the protein corona observed depending on the type of characterization technique applied. As the biological identity of a particle is given by the protein corona it is crucial to use complementary characterization techniques to analyse different aspects of the protein corona.Here we demonstrate how a complementary analysis of nanocapsule-protein interactions with and without application media allows gaining insights into the so called hard and soft protein corona. We have investigated how both human plasma and individual proteins (human serum albumin (HSA), apolipoprotein A

  19. Intracellular transport driven by cytoskeletal motors: General mechanisms and defects

    NASA Astrophysics Data System (ADS)

    Appert-Rolland, C.; Ebbinghaus, M.; Santen, L.

    2015-09-01

    Cells are the elementary units of living organisms, which are able to carry out many vital functions. These functions rely on active processes on a microscopic scale. Therefore, they are strongly out-of-equilibrium systems, which are driven by continuous energy supply. The tasks that have to be performed in order to maintain the cell alive require transportation of various ingredients, some being small, others being large. Intracellular transport processes are able to induce concentration gradients and to carry objects to specific targets. These processes cannot be carried out only by diffusion, as cells may be crowded, and quite elongated on molecular scales. Therefore active transport has to be organized. The cytoskeleton, which is composed of three types of filaments (microtubules, actin and intermediate filaments), determines the shape of the cell, and plays a role in cell motion. It also serves as a road network for a special kind of vehicles, namely the cytoskeletal motors. These molecules can attach to a cytoskeletal filament, perform directed motion, possibly carrying along some cargo, and then detach. It is a central issue to understand how intracellular transport driven by molecular motors is regulated. The interest for this type of question was enhanced when it was discovered that intracellular transport breakdown is one of the signatures of some neuronal diseases like the Alzheimer. We give a survey of the current knowledge on microtubule based intracellular transport. Our review includes on the one hand an overview of biological facts, obtained from experiments, and on the other hand a presentation of some modeling attempts based on cellular automata. We present some background knowledge on the original and variants of the TASEP (Totally Asymmetric Simple Exclusion Process), before turning to more application oriented models. After addressing microtubule based transport in general, with a focus on in vitro experiments, and on cooperative effects in the

  20. Mitochondrial and cytoskeletal alterations are involved in the pathogenesis of hydronephrosis in ICR/Mlac-hydro mice.

    PubMed

    Isarangkul, Duangnate; Wiyakrutta, Suthep; Kengkoom, Kanchana; Reamtong, Onrapak; Ampawong, Sumate

    2015-01-01

    The pathogenesis of congenital hydronephrosis in laboratory animals has been studied for many years, yet little is known about the underlying mechanism of this disease. In this study, we investigated a MS-based comparative proteomics approach to characterize the differently expressed proteins between kidney tissue samples of ICR/Mlac-hydro and wild-type mice. Interestingly, proteomic results exhibited several mitochondrial protein alterations especially the up-regulation of 60 kDa heat shock protein (Hsp60), stress-70 protein (GRP75) dysfunction, and down-regulation of voltage-dependent anion-selective channel protein 1 (VDAC-1). The results demonstrated that mitochondrial alteration may lead to inadequate energy-supply to maintain normal water reabsorption from the renal tubule, causing hydronephrosis. Moreover, the alteration of cytoskeleton proteins in the renal tubule, in particular the up-regulation of tubulin beta-4B chain (Tb4B) and N-myc downstream-regulated gene 1 protein (Ndr-1) may also be related due to their fundamental roles in maintaining cell morphology and tissue stability. In addition, cytoskeletal alterations may consequence to the reduction of glyceraldehydes-3-phosphate dehydrogenase (GAPDH), cytoplasmic enzyme, which modulates the capacity of structural proteins. Our findings highlight a number of target proteins that may play a crucial role in congenital hydronephrosis and emphasize that the disorder of mitochondria and cytoskeleton proteins may be involved.

  1. Complementary analysis of the hard and soft protein corona: sample preparation critically effects corona composition.

    PubMed

    Winzen, S; Schoettler, S; Baier, G; Rosenauer, C; Mailaender, V; Landfester, K; Mohr, K

    2015-02-21

    Here we demonstrate how a complementary analysis of nanocapsule-protein interactions with and without application media allows gaining insights into the so called hard and soft protein corona. We have investigated how both human plasma and individual proteins (human serum albumin (HSA), apolipoprotein A-I (ApoA-I)) adsorb and interact with hydroxyethyl starch (HES) nanocapsules possessing different functionalities. To analyse the hard protein corona we used sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and a protein quantitation assay. No significant differences were observed with regards to the hard protein corona. For analysis of the soft protein corona we characterized the nanocapsule-protein interaction with isothermal titration calorimetry (ITC) and dynamic light scattering (DLS). DLS and ITC measurements revealed that a high amount of plasma proteins were adsorbed onto the capsules' surface. Although HSA was not detected in the hard protein corona, ITC measurements indicated the adsorption of an HSA amount similar to plasma with a low binding affinity and reaction heat. In contrast, only small amounts of ApoA-I protein adsorb to the capsules with high binding affinities. Through a comparison of these methods we have identified ApoA-I to be a component of the hard protein corona and HSA as a component of the soft corona. We demonstrate a pronounced difference in the protein corona observed depending on the type of characterization technique applied. As the biological identity of a particle is given by the protein corona it is crucial to use complementary characterization techniques to analyse different aspects of the protein corona.

  2. Purinoreceptor P2X7 Regulation of Ca2+ Mobilization and Cytoskeletal Rearrangement Is Required for Corneal Reepithelialization after Injury

    PubMed Central

    Minns, Martin S.; Teicher, Gregory; Rich, Celeste B.; Trinkaus-Randall, Vickery

    2017-01-01

    The process of wound healing involves a complex network of signaling pathways working to promote rapid cell migration and wound closure. Activation of purinergic receptors by secreted nucleotides plays a major role in calcium mobilization and the subsequent calcium-dependent signaling that is essential for proper healing. The role of the purinergic receptor P2X7 in wound healing is still relatively unknown. We demonstrate that P2X7 expression increases at the leading edge of corneal epithelium after injury in an organ culture model, and that this change occurs despite an overall decrease in P2X7 expression throughout the epithelium. Inhibition of P2X7 prevents this change in localization after injury and impairs wound healing. In cell culture, P2X7 inhibition attenuates the amplitude and duration of injury-induced calcium mobilization in cells at the leading edge. Immunofluorescence analysis of scratch-wounded cells reveals that P2X7 inhibition results in an overall decrease in the number of focal adhesions along with a concentration of focal adhesions at the wound margin. Live cell imaging of green fluorescent protein–labeled actin and talin shows that P2X7 inhibition alters actin cytoskeletal rearrangements and focal adhesion dynamics after injury. Together, these data demonstrate that P2X7 plays a critical role in mediating calcium signaling and coordinating cytoskeletal rearrangement at the leading edge, both of which processes are early signaling events necessary for proper epithelial wound healing. PMID:26683661

  3. Self-Organizing Feature Maps Identify Proteins Critical to Learning in a Mouse Model of Down Syndrome.

    PubMed

    Higuera, Clara; Gardiner, Katheleen J; Cios, Krzysztof J

    2015-01-01

    Down syndrome (DS) is a chromosomal abnormality (trisomy of human chromosome 21) associated with intellectual disability and affecting approximately one in 1000 live births worldwide. The overexpression of genes encoded by the extra copy of a normal chromosome in DS is believed to be sufficient to perturb normal pathways and normal responses to stimulation, causing learning and memory deficits. In this work, we have designed a strategy based on the unsupervised clustering method, Self Organizing Maps (SOM), to identify biologically important differences in protein levels in mice exposed to context fear conditioning (CFC). We analyzed expression levels of 77 proteins obtained from normal genotype control mice and from their trisomic littermates (Ts65Dn) both with and without treatment with the drug memantine. Control mice learn successfully while the trisomic mice fail, unless they are first treated with the drug, which rescues their learning ability. The SOM approach identified reduced subsets of proteins predicted to make the most critical contributions to normal learning, to failed learning and rescued learning, and provides a visual representation of the data that allows the user to extract patterns that may underlie novel biological responses to the different kinds of learning and the response to memantine. Results suggest that the application of SOM to new experimental data sets of complex protein profiles can be used to identify common critical protein responses, which in turn may aid in identifying potentially more effective drug targets.

  4. The protein synthesis inhibitor anisomycin reduces sex behavior during a critical period after testosterone treatment in male Syrian hamsters.

    PubMed

    Piekarski, David J; Seto, Tiffany; Zucker, Irving

    2012-01-18

    Testosterone (T) is critical for maintaining male sexual behavior (MSB) in rodents, in part by altering protein synthesis in a well-defined neural circuit. The specific timing of protein synthesis essential for expression of MSB has never been investigated. We administered the protein synthesis inhibitor anisomycin (Ani) to castrated male Syrian hamsters treated sc with 100 μg T in an aqueous vehicle once weekly; this T regimen maintains MSB while elevating circulating T concentrations for only a few hours after each injection. Hamsters were injected s.c. with the vehicle or 12.5 mg Ani at one of several times relative to T administration; MSB was assessed once per week, 6 days after the previous T injection, for 5 weeks. Anisomycin administered 6-12 h after T injection significantly reduced the expression of sexual behavior, whereas Ani treatment between 3 h before and 3 h after T injection did not impair MSB. This experiment is the first to assess the specific timing of protein synthesis relative to a T pulse that is required for the expression of MSB. The demarcation of a critical interval for T-induced protein synthesis necessary for maintenance of MSB should facilitate specification of the genomic, proteomic, and biochemical cascades that subserve actions of T on male copulation.

  5. Self-Organizing Feature Maps Identify Proteins Critical to Learning in a Mouse Model of Down Syndrome

    PubMed Central

    Higuera, Clara; Gardiner, Katheleen J.; Cios, Krzysztof J.

    2015-01-01

    Down syndrome (DS) is a chromosomal abnormality (trisomy of human chromosome 21) associated with intellectual disability and affecting approximately one in 1000 live births worldwide. The overexpression of genes encoded by the extra copy of a normal chromosome in DS is believed to be sufficient to perturb normal pathways and normal responses to stimulation, causing learning and memory deficits. In this work, we have designed a strategy based on the unsupervised clustering method, Self Organizing Maps (SOM), to identify biologically important differences in protein levels in mice exposed to context fear conditioning (CFC). We analyzed expression levels of 77 proteins obtained from normal genotype control mice and from their trisomic littermates (Ts65Dn) both with and without treatment with the drug memantine. Control mice learn successfully while the trisomic mice fail, unless they are first treated with the drug, which rescues their learning ability. The SOM approach identified reduced subsets of proteins predicted to make the most critical contributions to normal learning, to failed learning and rescued learning, and provides a visual representation of the data that allows the user to extract patterns that may underlie novel biological responses to the different kinds of learning and the response to memantine. Results suggest that the application of SOM to new experimental data sets of complex protein profiles can be used to identify common critical protein responses, which in turn may aid in identifying potentially more effective drug targets. PMID:26111164

  6. Identification and immunolocalization of actin cytoskeletal components in light- and dark-adapted octopus retinas.

    PubMed

    De Velasco, B; Martinez, J M; Ochoa, G H; Miller, A M; Clark, Y M; Matsumoto, B; Robles, L J

    1999-06-01

    speculate that these proteins and actin remain associated with an avillar membrane that connects opposing sets of rhabdomeres in light-adapted retinas. Association of these cytoskeletal proteins with the avillar membrane would constitute a pool of proteins that could be recruited for rapid microvillus formation from the previously avillar region.

  7. Cytoskeletal architecture and motility in a giant freshwater amoeba, Reticulomyxa.

    PubMed

    Koonce, M P; Euteneuer, U; McDonald, K L; Menzel, D; Schliwa, M

    1986-01-01

    Reticulomyxa is a large, multinucleated freshwater protozoan with striking intracellular transport. Cytoplasmic streaming and saltatory movements of individual organelles (at rates of up to 25 micron/sec) are observed within the naked cell body and the extensive reticulate peripheral network of fine cytoplasmic strands. As demonstrated by video-enhanced light microscopy, individual organelles move only when associated with cytoskeletal linear elements. The linear elements are composed of mixed colinear bundles of microtubules and actin filaments, which form the backbone of the reticulopodial network. The constant branching, sprouting, and fusion of network strands suggest unique membrane properties and an unusually dynamic cytoskeleton. The electrophoretic mobility of Reticulomyxa tubulins and the lack of crossreactivity with several antibodies known to react with many plant and animal tubulins suggest that they may differ from other tubulins more widely than might be expected. Reticulomyxa's large size, the rapidity and pervasiveness of the two forms of transport, and the simple and ordered cytoskeleton make the organism well suited for future studies on the mechanisms of intracellular transport.

  8. RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal dynamics.

    PubMed

    Salzer, Elisabeth; Cagdas, Deniz; Hons, Miroslav; Mace, Emily M; Garncarz, Wojciech; Petronczki, Özlem Yüce; Platzer, René; Pfajfer, Laurène; Bilic, Ivan; Ban, Sol A; Willmann, Katharina L; Mukherjee, Malini; Supper, Verena; Hsu, Hsiang Ting; Banerjee, Pinaki P; Sinha, Papiya; McClanahan, Fabienne; Zlabinger, Gerhard J; Pickl, Winfried F; Gribben, John G; Stockinger, Hannes; Bennett, Keiryn L; Huppa, Johannes B; Dupré, Loïc; Sanal, Özden; Jäger, Ulrich; Sixt, Michael; Tezcan, Ilhan; Orange, Jordan S; Boztug, Kaan

    2016-12-01

    RASGRP1 is an important guanine nucleotide exchange factor and activator of the RAS-MAPK pathway following T cell antigen receptor (TCR) signaling. The consequences of RASGRP1 mutations in humans are unknown. In a patient with recurrent bacterial and viral infections, born to healthy consanguineous parents, we used homozygosity mapping and exome sequencing to identify a biallelic stop-gain variant in RASGRP1. This variant segregated perfectly with the disease and has not been reported in genetic databases. RASGRP1 deficiency was associated in T cells and B cells with decreased phosphorylation of the extracellular-signal-regulated serine kinase ERK, which was restored following expression of wild-type RASGRP1. RASGRP1 deficiency also resulted in defective proliferation, activation and motility of T cells and B cells. RASGRP1-deficient natural killer (NK) cells exhibited impaired cytotoxicity with defective granule convergence and actin accumulation. Interaction proteomics identified the dynein light chain DYNLL1 as interacting with RASGRP1, which links RASGRP1 to cytoskeletal dynamics. RASGRP1-deficient cells showed decreased activation of the GTPase RhoA. Treatment with lenalidomide increased RhoA activity and reversed the migration and activation defects of RASGRP1-deficient lymphocytes.

  9. Quasi-3D Cytoskeletal Dynamics of Osteocytes under Fluid Flow

    PubMed Central

    Baik, Andrew D.; Lu, X. Lucas; Qiu, Jun; Huo, Bo; Hillman, Elizabeth M.C.; Dong, Cheng; Guo, X. Edward

    2010-01-01

    Osteocytes respond to dynamic fluid shear loading by activating various biochemical pathways, mediating a dynamic process of bone formation and resorption. Whole-cell deformation and regional deformation of the cytoskeleton may be able to directly regulate this process. Attempts to image cellular deformation by conventional microscopy techniques have been hindered by low temporal or spatial resolution. In this study, we developed a quasi-three-dimensional microscopy technique that enabled us to simultaneously visualize an osteocyte's traditional bottom-view profile and a side-view profile at high temporal resolution. Quantitative analysis of the plasma membrane and either the intracellular actin or microtubule (MT) cytoskeletal networks provided characterization of their deformations over time. Although no volumetric dilatation of the whole cell was observed under flow, both the actin and MT networks experienced primarily tensile strains in all measured strain components. Regional heterogeneity in the strain field of normal strains was observed in the actin networks, especially in the leading edge to flow, but not in the MT networks. In contrast, side-view shear strains exhibited similar subcellular distribution patterns in both networks. Disruption of MT networks caused actin normal strains to decrease, whereas actin disruption had little effect on the MT network strains, highlighting the networks' mechanical interactions in osteocytes. PMID:21044578

  10. Brain-Specific Cytoskeletal Damage Markers in Cerebrospinal Fluid: Is There a Common Pattern between Amyotrophic Lateral Sclerosis and Primary Progressive Multiple Sclerosis?

    PubMed Central

    Abdelhak, Ahmed; Junker, Andreas; Brettschneider, Johannes; Kassubek, Jan; Ludolph, Albert C.; Otto, Markus; Tumani, Hayrettin

    2015-01-01

    Many neurodegenerative disorders share a common pathophysiological pathway involving axonal degeneration despite different etiological triggers. Analysis of cytoskeletal markers such as neurofilaments, protein tau and tubulin in cerebrospinal fluid (CSF) may be a useful approach to detect the process of axonal damage and its severity during disease course. In this article, we review the published literature regarding brain-specific CSF markers for cytoskeletal damage in primary progressive multiple sclerosis and amyotrophic lateral sclerosis in order to evaluate their utility as a biomarker for disease progression in conjunction with imaging and histological markers which might also be useful in other neurodegenerative diseases associated with affection of the upper motor neurons. A long-term benefit of such an approach could be facilitating early diagnostic and prognostic tools and assessment of treatment efficacy of disease modifying drugs. PMID:26263977

  11. Lack of Drosophila cytoskeletal tropomyosin affects head morphogenesis and the accumulation of oskar mRNA required for germ cell formation.

    PubMed Central

    Tetzlaff, M T; Jäckle, H; Pankratz, M J

    1996-01-01

    Drosophila encodes five muscle and one cytoskeletal isoform of the actin-binding protein tropomyosin. We have identified a lack-of-function mutation in the cytoskeletal isoform (cTmII). Zygotic mutant embryos show a defect in head morphogenesis, while embryos lacking maternal cTmII are defective in germ cell formation but otherwise give rise to viable adults. oskar mRNA, which is required for both germ cell formation and abdominal segmentation, fails to accumulate at the posterior pole in these embryos. nanos mRNA, however, which is required exclusively for abdominal segmentation, is localized at wild-type levels. These results indicate that head morphogenesis and the accumulation of high levels of oskar mRNA necessary for germ cell formation require tropomyosin-dependent cytoskeleton. Images PMID:8635457

  12. Target Highlights in CASP9: Experimental Target Structures for the Critical Assessment of Techniques for Protein Structure Prediction

    PubMed Central

    Kryshtafovych, Andriy; Moult, John; Bartual, Sergio G.; Bazan, J. Fernando; Berman, Helen; Casteel, Darren E.; Christodoulou, Evangelos; Everett, John K.; Hausmann, Jens; Heidebrecht, Tatjana; Hills, Tanya; Hui, Raymond; Hunt, John F.; Jayaraman, Seetharaman; Joachimiak, Andrzej; Kennedy, Michael A.; Kim, Choel; Lingel, Andreas; Michalska, Karolina; Montelione, Gaetano T.; Otero, José M.; Perrakis, Anastassis; Pizarro, Juan C.; van Raaij, Mark J.; Ramelot, Theresa A.; Rousseau, Francois; Tong, Liang; Wernimont, Amy K.; Young, Jasmine; Schwede, Torsten

    2011-01-01

    One goal of the CASP Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction is to identify the current state of the art in protein structure prediction and modeling. A fundamental principle of CASP is blind prediction on a set of relevant protein targets, i.e. the participating computational methods are tested on a common set of experimental target proteins, for which the experimental structures are not known at the time of modeling. Therefore, the CASP experiment would not have been possible without broad support of the experimental protein structural biology community. In this manuscript, several experimental groups discuss the structures of the proteins which they provided as prediction targets for CASP9, highlighting structural and functional peculiarities of these structures: the long tail fibre protein gp37 from bacteriophage T4, the cyclic GMP-dependent protein kinase Iβ (PKGIβ) dimerization/docking domain, the ectodomain of the JTB (Jumping Translocation Breakpoint) transmembrane receptor, Autotaxin (ATX) in complex with an inhibitor, the DNA-Binding J-Binding Protein 1 (JBP1) domain essential for biosynthesis and maintenance of DNA base-J (β-D-glucosyl-hydroxymethyluracil) in Trypanosoma and Leishmania, an so far uncharacterized 73 residue domain from Ruminococcus gnavus with a fold typical for PDZ-like domains, a domain from the Phycobilisome (PBS) core-membrane linker (LCM) phycobiliprotein ApcE from Synechocystis, the Heat shock protein 90 (Hsp90) activators PFC0360w and PFC0270w from Plasmodium falciparum, and 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae. PMID:22020785

  13. Changes in cytoskeletal dynamics and nonlinear rheology with metastatic ability in cancer cell lines

    NASA Astrophysics Data System (ADS)

    Coughlin, Mark F.; Fredberg, Jeffrey J.

    2013-12-01

    Metastatic outcome is impacted by the biophysical state of the primary tumor cell. To determine if changes in cancer cell biophysical properties facilitate metastasis, we quantified cytoskeletal biophysics in well-characterized human skin, bladder, prostate and kidney cell line pairs that differ in metastatic ability. Using magnetic twisting cytometry with optical detection, cytoskeletal dynamics was observed through spontaneous motion of surface bound marker beads and nonlinear rheology was characterized through large amplitude forced oscillations of probe beads. Measurements of cytoskeletal dynamics and nonlinear rheology differed between strongly and weakly metastatic cells. However, no set of biophysical parameters changed systematically with metastatic ability across all cell lines. Compared to their weakly metastatic counterparts, the strongly metastatic kidney cancer cells exhibited both increased cytoskeletal dynamics and stiffness at large deformation which are thought to facilitate the process of vascular invasion.

  14. A theoretical model of cytokinesis implicates feedback between membrane curvature and cytoskeletal organization in asymmetric cytokinetic furrowing

    PubMed Central

    Dorn, Jonas F.; Zhang, Li; Phi, Tan-Trao; Lacroix, Benjamin; Maddox, Paul S.; Liu, Jian; Maddox, Amy Shaub

    2016-01-01

    During cytokinesis, the cell undergoes a dramatic shape change as it divides into two daughter cells. Cell shape changes in cytokinesis are driven by a cortical ring rich in actin filaments and nonmuscle myosin II. The ring closes via actomyosin contraction coupled with actin depolymerization. Of interest, ring closure and hence the furrow ingression are nonconcentric (asymmetric) within the division plane across Metazoa. This nonconcentricity can occur and persist even without preexisting asymmetric cues, such as spindle placement or cellular adhesions. Cell-autonomous asymmetry is not explained by current models. We combined quantitative high-resolution live-cell microscopy with theoretical modeling to explore the mechanistic basis for asymmetric cytokinesis in the Caenorhabditis elegans zygote, with the goal of uncovering basic principles of ring closure. Our theoretical model suggests that feedback among membrane curvature, cytoskeletal alignment, and contractility is responsible for asymmetric cytokinetic furrowing. It also accurately predicts experimental perturbations of conserved ring proteins. The model further suggests that curvature-mediated filament alignment speeds up furrow closure while promoting energy efficiency. Collectively our work underscores the importance of membrane–cytoskeletal anchoring and suggests conserved molecular mechanisms for this activity. PMID:26912796

  15. Chromatin Remodeling Protein SMAR1 Is a Critical Regulator of T Helper Cell Differentiation and Inflammatory Diseases

    PubMed Central

    Mirlekar, Bhalchandra; Gautam, Dipendra; Chattopadhyay, Samit

    2017-01-01

    T cell differentiation from naïve T cells to specialized effector subsets of mature cells is determined by the iterative action of transcription factors. At each stage of specific T cell lineage differentiation, transcription factor interacts not only with nuclear proteins such as histone and histone modifiers but also with other factors that are bound to the chromatin and play a critical role in gene expression. In this review, we focus on one of such nuclear protein known as tumor suppressor and scaffold matrix attachment region-binding protein 1 (SMAR1) in CD4+ T cell differentiation. SMAR1 facilitates Th1 differentiation by negatively regulating T-bet expression via recruiting HDAC1–SMRT complex to its gene promoter. In contrast, regulatory T (Treg) cell functions are dependent on inhibition of Th17-specific genes mainly IL-17 and STAT3 by SMAR1. Here, we discussed a critical role of chromatin remodeling protein SMAR1 in maintaining a fine-tuned balance between effector CD4+ T cells and Treg cells by influencing the transcription factors during allergic and autoimmune inflammatory diseases. PMID:28232831

  16. Evaluation of rhBMP-2 and natural latex as potential osteogenic proteins in critical size defects by histomorphometric methods.

    PubMed

    Issa, João Paulo Mardegan; Defino, Helton Luiz Aparecido; Netto, Joaquim Coutinho; Volpon, José Batista; Regalo, Simone Cecílio Hallak; Iyomasa, Mamie Mizusaki; Siéssere, Selma; Tiossi, Rodrigo

    2010-05-01

    This in vivo study evaluated the osteogenic potential of two proteins, recombinant human bone morphogenetic protein-2 (rhBMP-2) and a protein extracted from natural latex (Hevea brasiliensis, P-1), and compared their effects on bone defects when combined with a carrier or a collagen gelatin. Eighty-four (84) Wistar rats were divided into two groups, with and without the use of collagen gelatin, and each of these were divided into six treatment groups of seven animals each. The treatment groups were: (1) 5 microg of pure rhBMP-2; (2) 5 microg of rhBMP-2/monoolein gel; (3) pure monoolein gel; (4) 5 microg of pure P-1; (5) 5 microg of P-1/monoolein gel; (6) critical bone defect control. The animals were anesthetized and a 6 mm diameter critical bone defect was made in the left posterior region of the parietal bone. Animals were submitted to intracardiac perfusion after 4 weeks and the calvaria tissue was removed for histomorphometric analysis. In this experimental study, it was concluded that rhBMP-2 allowed greater new bone formation than P-1 protein and this process was more effective when the bone defect was covered with collagen gelatin (P < 0.05).

  17. Development of a Critical Value for Late-Season Nitrogen to Increase Spring Wheat Protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Producers receiving a premium for spring wheat with a protein content greater than or equal to 14%. Obtaining that protein content can be problematic without proper nitrogen (N) fertilizer management. Sensor-based technologies have been used for predicting yield. The question is whether this technol...

  18. Leucine 245 is a critical residue for folding and function of the manganese stabilizing protein of photosystem II.

    PubMed

    Lydakis-Simantiris, N; Betts, S D; Yocum, C F

    1999-11-23

    In solution, Manganese Stabilizing Protein, the polypeptide which is responsible for the structural and functional integrity of the manganese cluster in photosystem II, is a natively unfolded protein with a prolate ellipsoid shape [Lydakis-Simantiris et al. (1999) Biochemistry 38, 404-414; Zubrzycki et al. (1998) Biochemistry 37, 13553-13558]. The C-terminal tripeptide of Manganese Stabilizing Protein was shown to be critical for binding to photosystem II and restoration of O(2) evolution activity [Betts et al. (1998) Biochemistry 37, 14230-14236]. Here, we report new biochemical, hydrodynamic, and spectroscopic data on mutants E246K, E246STOP, L245E, L245STOP, and Q244STOP. Truncation of the final dipeptide (E246STOP) or substitution of Glu246 with Lys resulted in no significant changes in secondary and tertiary structures of Manganese Stabilizing Protein as monitored by CD spectroscopy. The apparent molecular mass of the protein remained unchanged, both mutants were able to rebind to photosystem II, and both proteins reactivate O(2) evolution. Manganese Stabilizing Protein lacking the final tripeptide (L245STOP), or substitution of Glu for Leu245 dramatically modified the protein's solution structure. The apparent molecular masses of these mutants increased significantly, which might indicate unfolding of the protein in solution. This was verified by CD spectroscopy. Both mutant proteins rebound to photosystem II with lower affinities, and activation of O(2) evolution was decreased dramatically. Enhancement of these defects was observed upon removal of the final tetrapeptide (Q244STOP). These results indicate that Leu245 is essential to maintaining Manganese Stabilizing Protein's solution structure in a conformation that promotes efficient binding to photosystem II and/or for the subsequent steps that lead to enzyme activation. Based on an analysis of the properties of C-terminal mutations, a hypothesis for structural requirements for functional binding of

  19. Critical role for peptide YY in protein-mediated satiation and body-weight regulation.

    PubMed

    Batterham, Rachel L; Heffron, Helen; Kapoor, Saloni; Chivers, Joanna E; Chandarana, Keval; Herzog, Herbert; Le Roux, Carel W; Thomas, E Louise; Bell, Jimmy D; Withers, Dominic J

    2006-09-01

    Dietary protein enhances satiety and promotes weight loss, but the mechanisms by which appetite is affected remain unclear. We investigated the role of gut hormones, key regulators of ingestive behavior, in mediating the satiating effects of different macronutrients. In normal-weight and obese human subjects, high-protein intake induced the greatest release of the anorectic hormone peptide YY (PYY) and the most pronounced satiety. Long-term augmentation of dietary protein in mice increased plasma PYY levels, decreased food intake, and reduced adiposity. To directly determine the role of PYY in mediating the satiating effects of protein, we generated Pyy null mice, which were selectively resistant to the satiating and weight-reducing effects of protein and developed marked obesity that was reversed by exogenous PYY treatment. Our findings suggest that modulating the release of endogenous satiety factors, such as PYY, through alteration of specific diet constituents could provide a rational therapy for obesity.

  20. The cytoskeletal binding domain of band 3 is required for multiprotein complex formation and retention during erythropoiesis

    PubMed Central

    Satchwell, Timothy J; Hawley, Bethan R; Bell, Amanda J; Ribeiro, M. Leticia; Toye, Ashley M

    2015-01-01

    Band 3 is the most abundant protein in the erythrocyte membrane and forms the core of a major multiprotein complex. The absence of band 3 in human erythrocytes has only been reported once, in the homozygous band 3 Coimbra patient. We used in vitro culture of erythroblasts derived from this patient, and separately short hairpin RNA-mediated depletion of band 3, to investigate the development of a band 3-deficient erythrocyte membrane and to specifically assess the stability and retention of band 3 dependent proteins in the absence of this core protein during terminal erythroid differentiation. Further, using lentiviral transduction of N-terminally green fluorescent protein-tagged band 3, we demonstrated the ability to restore expression of band 3 to normal levels and to rescue secondary deficiencies of key proteins including glycophorin A, protein 4.2, CD47 and Rh proteins arising from the absence of band 3 in this patient. By transducing band 3-deficient erythroblasts from this patient with band 3 mutants with absent or impaired ability to associate with the cytoskeleton we also demonstrated the importance of cytoskeletal connectivity for retention both of band 3 and of its associated dependent proteins within the reticulocyte membrane during the process of erythroblast enucleation. PMID:25344524

  1. Cytoskeletal reorganization by mycophenolic acid alters mesangial cell migration and contractility.

    PubMed

    Dubus, Isabelle; L'Azou, Beatrice; Gordien, Myriam; Delmas, Yahsou; Labouyrie, Jean-Pierre; Bonnet, Jacques; Combe, Christian

    2003-11-01

    Cytoskeleton alterations are a hallmark of mesangial cell activation during glomerulosclerosis. The aim of this study was to investigate whether mycophenolic acid (MPA) affects cytoskeletal organization and motility of human mesangial cells. Using the IP15 cell line, we found that treatment with 1 micromol/L MPA inhibited both receptor-dependent (angiotensin II) and receptor-independent (KCl) contractile responses, as well as serum-induced migration activity, suggesting alterations in the intracellular mechanisms that control mesangial cell motility. Immunofluorescence studies of MPA-treated cells provided evidence for decreased membrane disassembly/reassembly of alpha-smooth muscle actin and F-actin fibers, which was correlated with sustained quantitative and qualitative modifications of actin-associated proteins: calponin was overexpressed and became associated with actin fibers, whereas phosphorylation levels of cofilin and myosin light chain increased, suggesting both an activation of the mechanisms responsible for actin polymerization and an inhibition of actin-depolymerizing processes. These observations support a stabilizing effect of MPA on the mesangial actin cytoskeleton, which constitutes an additive action by which MPA, beyond its anti-inflammatory, antiproliferative and antifibrotic properties, might protect against excessive mesangial activation in the context of various glomerulopathies and kidney transplantation.

  2. Immunohistochemical Studies of Cytoskeletal and Extracellular Matrix Components in Dogfish Scyliorhinus canicula L. Notochordal Cells.

    PubMed

    Restović, Ivana; Vukojević, Katarina; Paladin, Antonela; Saraga-Babić, Mirna; Bočina, Ivana

    2015-10-01

    Immunofluorescence and immunohistochemical techniques were used to define the distribution of cytoskeletal (cytokeratin 8, vimentin) and extracellular matrix components (collagen type I, collagen type II, hyaluronic acid, and aggrecan) and bone morphogenetic proteins 4 and 7 (BMP4 and BMP7) in the notochord of the lesser spotted dogfish Scyliorhinus canicula L. Immunolocalization of hyaluronic acid was observed in the notochord, vertebral centrum, and neural and hemal arches, while positive labeling to aggrecan was observed in the ossified centrum, notochord, and the perichondrium of the hyaline cartilage. Type I collagen was observed in the mineralized cartilage of the vertebral bodies, the notochord, the fibrocartilage of intervertebral disc, and the perichondrium. A positive labeling to type II collagen was observed in the inner part of the cartilaginous vertebral centrum and the notochord, as well as in the neural arch and muscle tissue, but there was no appreciable labeling of the hyaline cartilage. The presence of both BMP4 and BMP7 was seen in the mineralized vertebral centrum, notochordal cells, and neural arch. The notochordal cells expressed both cytokeratin 8 and vimentin, but predominantly vimentin. Hyaluronic acid, collagen type I, and collagen type II expression confirmed the presence of a mixture of notochordal and fibrocartilaginous tissue in the intervertebral disc, while BMPs confirmed the presence of an ossification in the cartilaginous skeleton of the spotted dogfish.

  3. Directional memory arises from long-lived cytoskeletal asymmetries in polarized chemotactic cells.

    PubMed

    Prentice-Mott, Harrison V; Meroz, Yasmine; Carlson, Andreas; Levine, Michael A; Davidson, Michael W; Irimia, Daniel; Charras, Guillaume T; Mahadevan, L; Shah, Jagesh V

    2016-02-02

    Chemotaxis, the directional migration of cells in a chemical gradient, is robust to fluctuations associated with low chemical concentrations and dynamically changing gradients as well as high saturating chemical concentrations. Although a number of reports have identified cellular behavior consistent with a directional memory that could account for behavior in these complex environments, the quantitative and molecular details of such a memory process remain unknown. Using microfluidics to confine cellular motion to a 1D channel and control chemoattractant exposure, we observed directional memory in chemotactic neutrophil-like cells. We modeled this directional memory as a long-lived intracellular asymmetry that decays slower than observed membrane phospholipid signaling. Measurements of intracellular dynamics revealed that moesin at the cell rear is a long-lived element that when inhibited, results in a reduction of memory. Inhibition of ROCK (Rho-associated protein kinase), downstream of RhoA (Ras homolog gene family, member A), stabilized moesin and directional memory while depolymerization of microtubules (MTs) disoriented moesin deposition and also reduced directional memory. Our study reveals that long-lived polarized cytoskeletal structures, specifically moesin, actomyosin, and MTs, provide a directional memory in neutrophil-like cells even as they respond on short time scales to external chemical cues.

  4. β-Helical architecture of cytoskeletal bactofilin filaments revealed by solid-state NMR

    PubMed Central

    Vasa, Suresh; Lin, Lin; Shi, Chaowei; Habenstein, Birgit; Riedel, Dietmar; Kühn, Juliane; Thanbichler, Martin; Lange, Adam

    2015-01-01

    Bactofilins are a widespread class of bacterial filament-forming proteins, which serve as cytoskeletal scaffolds in various cellular pathways. They are characterized by a conserved architecture, featuring a central conserved domain (DUF583) that is flanked by variable terminal regions. Here, we present a detailed investigation of bactofilin filaments from Caulobacter crescentus by high-resolution solid-state NMR spectroscopy. De novo sequential resonance assignments were obtained for residues Ala39 to Phe137, spanning the conserved DUF583 domain. Analysis of the secondary chemical shifts shows that this core region adopts predominantly β-sheet secondary structure. Mutational studies of conserved hydrophobic residues located in the identified β-strand segments suggest that bactofilin folding and polymerization is mediated by an extensive and redundant network of hydrophobic interactions, consistent with the high intrinsic stability of bactofilin polymers. Transmission electron microscopy revealed a propensity of bactofilin to form filament bundles as well as sheet-like, 2D crystalline assemblies, which may represent the supramolecular arrangement of bactofilin in the native context. Based on the diffraction pattern of these 2D crystalline assemblies, scanning transmission electron microscopy measurements of the mass per length of BacA filaments, and the distribution of β-strand segments identified by solid-state NMR, we propose that the DUF583 domain adopts a β-helical architecture, in which 18 β-strand segments are arranged in six consecutive windings of a β-helix. PMID:25550503

  5. The formation of cortical actin arrays in human trabecular meshwork cells in response to cytoskeletal disruption.

    PubMed

    Murphy, Kaitlin C; Morgan, Joshua T; Wood, Joshua A; Sadeli, Adeline; Murphy, Christopher J; Russell, Paul

    2014-10-15

    The cytoskeleton of human trabecular meshwork (HTM) cells is known to be altered in glaucoma and has been hypothesized to reduce outflow facility through contracting the HTM tissue. Latrunculin B (Lat-B) and Rho-associated protein kinase (ROCK) inhibitors disrupt the actin cytoskeleton and are in clinical trials as glaucoma therapeutics. We have previously reported a transient increase in HTM cell stiffness peaking at 90 min after Lat-B treatment with a return to pretreatment values after 270 min. We hypothesize that changes in actin morphology correlate with alterations in cell stiffness induced by Lat-B but this is not a general consequence of other cytoskeletal disrupting agents such as Rho kinase inhibitors. We treated HTM cells with 2 µM Lat-B or 100 µM Y-27632 and allowed the cells to recover for 30-270 min. While examining actin morphology in Lat-B treated cells, we observed striking cortical actin arrays (CAAs). The percentage of CAA positive cells (CPCs) was time dependent and exceeded 30% at 90 min and decreased after 270 min. Y-27632 treated cells exhibited few CAAs and no changes in cell stiffness. Together, these data suggest that the increase in cell stiffness after Lat-B treatment is correlated with CAAs.

  6. Rhomboid family member 2 regulates cytoskeletal stress-associated Keratin 16

    PubMed Central

    Maruthappu, Thiviyani; Chikh, Anissa; Fell, Benjamin; Delaney, Paul J.; Brooke, Matthew A.; Levet, Clemence; Moncada-Pazos, Angela; Ishida-Yamamoto, Akemi; Blaydon, Diana; Waseem, Ahmad; Leigh, Irene M.; Freeman, Matthew; Kelsell, David P.

    2017-01-01

    Keratin 16 (K16) is a cytoskeletal scaffolding protein highly expressed at pressure-bearing sites of the mammalian footpad. It can be induced in hyperproliferative states such as wound healing, inflammation and cancer. Here we show that the inactive rhomboid protease RHBDF2 (iRHOM2) regulates thickening of the footpad epidermis through its interaction with K16. K16 expression is absent in the thinned footpads of irhom2−/− mice compared with irhom2+/+mice, due to reduced keratinocyte proliferation. Gain-of-function mutations in iRHOM2 underlie Tylosis with oesophageal cancer (TOC), characterized by palmoplantar thickening, upregulate K16 with robust downregulation of its type II keratin binding partner, K6. By orchestrating the remodelling and turnover of K16, and uncoupling it from K6, iRHOM2 regulates the epithelial response to physical stress. These findings contribute to our understanding of the molecular mechanisms underlying hyperproliferation of the palmoplantar epidermis in both physiological and disease states, and how this ‘stress' keratin is regulated. PMID:28128203

  7. Integrin β1 regulates leiomyoma cytoskeletal integrity and growth

    PubMed Central

    Malik, Minnie; Segars, James; Catherino, William H.

    2014-01-01

    Uterine leiomyomas are characterized by an excessive extracellular matrix, increased mechanical stress, and increased active RhoA. Previously, we observed that mechanical signaling was attenuated in leiomyoma, but the mechanisms responsible remain unclear. Integrins, especially integrin β1, are transmembrane adhesion receptors that couple extracellular matrix stresses to the intracellular cytoskeleton to influence cell proliferation and differentiation. Here we characterized integrin and laminin to signaling in leiomyoma cells. We observed a 2.25 ± 0.32 fold increased expression of integrin β1 in leiomyoma cells, compared to myometrial cells. Antibody-mediated inhibition of integrin β1 led to significant growth inhibition in leiomyoma cells and a loss of cytoskeletal integrity. Specifically, polymerization of actin filaments and formation of focal adhesions were reduced by inhibition of integrin p1. Inhibition of integrin β1 in leiomyoma cells led to 0.81 ± 0.02 fold decrease in active RhoA, and resembled levels found in serum-starved cells. Likewise, inhibition of integrin β1 was accompanied by a decrease in phospho-ERK. Compared to myometrial cells, leiomyoma cells demonstrated increased expression of integrin α6 subunit to laminin receptor (1.91 ± 0.11 fold), and increased expression of laminin 5α (1.52±0.02), laminin 5β (3.06±0.92), and laminin 5γ (1.66 ± 0.06). Of note, leiomyoma cells grown on laminin matrix appear to realign themselves. Taken together, the findings reveal that the attenuated mechanical signaling in leiomyoma cells is accompanied by an increased expression and a dependence on integrin β1 signaling in leiomyoma cells, compared to myometrial cells. PMID:23023061

  8. Neuroprotective effects of hypothermia on synaptic actin cytoskeletal changes induced by perinatal asphyxia.

    PubMed

    Muñiz, Javier; Romero, Juan; Holubiec, Mariana; Barreto, George; González, Janneth; Saint-Martin, Madeleine; Blanco, Eduardo; Carlos Cavicchia, Juan; Castilla, Rocío; Capani, Francisco

    2014-05-14

    Cerebral hypoxia-ischemia damages synaptic proteins, resulting in cytoskeletal alterations, protein aggregation and neuronal death. In the previous works, we have shown neuronal and synaptic changes in rat neostriatum subjected to hypoxia that leads to ubi-protein accumulation. Recently, we also showed that, changes in F-actin organization could be related to early alterations induced by hypoxia in the Central Nervous System. However, little is known about effective treatment to diminish the damage. The main aim of this work is to study the effects of birth hypothermia on the actin cytoskeleton of neostriatal post-synaptic densities (PSD) in 60 days olds rats by immunohistochemistry, photooxidation and western blot. We used 2 different protocols of hypothermia: (a) intrahypoxic hypothermia at 15°C and (b) post-hypoxia hypothermia at 32°C. Consistent with previous data at 30 days, staining with phalloidin-Alexa(488) followed by confocal microscopy analysis showed an increase of F-actin fluorescent staining in the neostriatum of hypoxic animals. Correlative photooxidation electron microscopy confirmed these observations showing an increment in the number of mushroom-shaped F-actin staining spines in neostriatal excitatory synapses in rats subjected to hypoxia. In addition, western blot revealed β-actin increase in PSDs in hypoxic animals. The optic relative density measurement showed a significant difference between controls and hypoxic animals. When hypoxia was induced under hypothermic conditions, the changes observed in actin cytoskeleton were blocked. Post-hypoxic hypothermia showed similar answer but actin cytoskeleton modifications were not totally reverted as we observed at 15°C. These data suggest that the decrease of the body temperature decreases the actin modifications in dendritic spines preventing the neuronal death.

  9. Tables of critical values for examining compositional non-randomness in proteins and nucleic acids

    NASA Technical Reports Server (NTRS)

    Laird, M.; Holmquist, R.

    1975-01-01

    A binomially distributed statistic is defined to show whether or not the proportion of a particular amino acid in a protein deviates from random expectation. An analogous statistic is derived for nucleotides in nucleic acids. These new statistics are simply related to the classical chi-squared test. They explicitly account for the compositional fluctuations imposed by the finite length of proteins, and they are more accurate than previous tables.

  10. Predictive value of C-reactive protein in critically ill patients after abdominal surgery

    PubMed Central

    Sapin, Frédéric; Biston, Patrick; Piagnerelli, Michael

    2017-01-01

    OBJECTIVES: The development of sepsis after abdominal surgery is associated with high morbidity and mortality. Due to inflammation, it may be difficult to diagnose infection when it occurs, but measurement of C-reactive protein could facilitate this diagnosis. In the present study, we evaluated the predictive value and time course of C-reactive protein in relation to outcome in patients admitted to the intensive care unit (ICU) after abdominal surgery. METHODS: We included patients admitted to the ICU after abdominal surgery over a period of two years. The patients were divided into two groups according to their outcome: favorable (F; left the ICU alive, without modification of the antibiotic regimen) and unfavorable (D; death in the ICU, surgical revision with or without modification of the antibiotic regimen or just modification of the regimen). We then compared the highest C-reactive protein level on the first day of admission between the two groups. RESULTS: A total of 308 patients were included: 86 patients had an unfavorable outcome (group D) and 222 had a favorable outcome (group F). The groups were similar in terms of leukocytosis, neutrophilia, and platelet count. C-reactive protein was significantly higher at admission in group D and was the best predictor of an unfavorable outcome, with a sensitivity of 74% and a specificity of 72% for a threshold of 41 mg/L. No changes in C-reactive protein, as assessed based on the delta C-reactive protein, especially at days 4 and 5, were associated with a poor prognosis. CONCLUSIONS: A C-reactive protein cut-off of 41 mg/L during the first day of ICU admission after abdominal surgery was a predictor of an adverse outcome. However, no changes in the C-reactive protein concentration, especially by day 4 or 5, could identify patients at risk of death. PMID:28226029

  11. Nucleation of protein crystals: critical nuclei, phase behavior, and control pathways

    NASA Astrophysics Data System (ADS)

    Galkin, Oleg; Vekilov, Peter G.

    2001-11-01

    We have studied the nucleation of crystals of the model protein lysozyme using a novel technique that allows direct determinations of homogeneous nucleation rates. At constant temperature of 12.6°C we varied the thermodynamic supersaturation by changing the concentrations of protein and precipitant. We found a broken dependence of the homogeneous nucleation rate on supersaturation that is beyond the predictions of the classical nucleation theory. The nucleation theorem allows us to relate this to discrete changes of the size of the crystal nuclei with increasing supersaturation as (10 or 11)→(4 or 5)→(1 or 2). Furthermore, we observe that the existence of a second liquid phase at high protein concentrations strongly affects crystal nucleation kinetics. We show that the rate of homogeneous nucleation of lysozyme crystals passes through a maximum in the vicinity of the liquid-liquid phase boundary hidden below the liquidus (solubility) line in the phase diagram of the protein solution. We found that glycerol and polyethylene glycol (PEG), which do not specifically bind to proteins, shift this phase boundary and significantly suppress or enhance the crystal nucleation rates, although no simple correlation exists between the action of PEG on the phase diagram and the nucleation kinetics. This provides for a control mechanism which does not require changes in the protein concentration, or the acidity and ionicity of the solution. The effects of the two additives on the phase diagram strongly depend on their concentration and this provides opportunities for further tuning of nucleation rates.

  12. Structure and Function of the Escherichia coli Protein YmgB: A Protein Critical for Biofilm Formation and Acid-resistance

    SciTech Connect

    Lee,J.; Page, R.; Garcia-Contreras, R.; Palermino, J.; Zhang, X.; Doshi, O.; Wood, T.; Peti, W.

    2007-01-01

    The Escherichia coli gene cluster ymgABC was identified in transcriptome studies to have a role in biofilm development and stability. In this study, we showed that YmgB represses biofilm formation in rich medium containing glucose, decreases cellular motility, and protects the cell from acid indicating that YmgB has a major role in acid-resistance in E. coli. Our data show that these phenotypes are potentially mediated through interactions with the important cell signal indole. In addition, gel mobility-shift assays suggest that YmgB may be a non-specific DNA-binding protein. Using nickel-enrichment DNA microarrays, we showed that YmgB binds, either directly or indirectly, via a probable ligand, genes important for biofilm formation. To advance our understanding of the function of YmgB, we used X-ray crystallography to solve the structure of the protein to 1.8 A resolution. YmgB is a biological dimer that is structurally homologous to the E. coli gene regulatory protein Hha, despite having only 5% sequence identity. This supports our DNA microarray data showing that YmgB is a gene regulatory protein. Therefore, this protein, which clearly has a critical role in acid-resistance in E. coli, has been renamed as AriR for regulator of acid resistance influenced by indole.

  13. Formation of critical oligomers is a key event during conformational transition of recombinant syrian hamster prion protein.

    PubMed

    Sokolowski, Fabian; Modler, Andreas Johannes; Masuch, Ralf; Zirwer, Dietrich; Baier, Michael; Lutsch, Gudrun; Moss, David Alan; Gast, Klaus; Naumann, Dieter

    2003-10-17

    We have investigated the conformational transition and aggregation process of recombinant Syrian hamster prion protein (SHaPrP90-232) by Fourier transform infrared spectroscopy, circular dichroism spectroscopy, light scattering, and electron microscopy under equilibrium and kinetic conditions. SHaPrP90-232 showed an infrared absorbance spectrum typical of proteins with a predominant alpha-helical structure both at pH 7.0 and at pH 4.2 in the absence of guanidine hydrochloride. At pH 4.2 and destabilizing conditions (0.3-2 m guanidine hydrochloride), the secondary structure of SHaPrP90-232 was transformed to a strongly hydrogen-bonded, most probably intermolecularly arranged antiparallel beta-sheet structure as indicated by dominant amide I band components at 1620 and 1691 cm-1. Kinetic analysis of the transition process showed that the decrease in alpha-helical structures and the increase in beta-sheet structures occurred concomitantly according to a bimolecular reaction. However, the concentration dependence of the corresponding rate constant pointed to an apparent third order reaction. No beta-sheet structure was formed within the dead time (190 ms) of the infrared experiments. Light scattering measurements revealed that the structural transition of SHaPrP90-232 was accompanied by formation of oligomers, whose size was linearly dependent on protein concentration. Extrapolation to zero protein concentration yielded octamers as the smallest oligomers, which are considered as "critical oligomers." The small oligomers showed spherical and annular shapes in electron micrographs. Critical oligomers seem to play a key role during the transition and aggregation process of SHaPrP90-232. A new model for the structural transition and aggregation process of the prion protein is described.

  14. Hic-5 Regulates Actin Cytoskeletal Reorganization and Expression of Fibrogenic Markers and Myocilin in Trabecular Meshwork Cells

    PubMed Central

    Pattabiraman, Padmanabhan Paranji; Rao, Ponugoti Vasantha

    2015-01-01

    Purpose To explore the role of inducible focal adhesion (FA) protein Hic-5 in actin cytoskeletal reorganization, FA formation, fibrogenic activity, and expression of myocilin in trabecular meshwork (TM) cells. Methods Using primary cultures of human TM (HTM) cells, the effects of various external factors on Hic-5 protein levels, as well as the effects of recombinant Hic-5 and Hic-5 small interfering RNA (siRNA) on actin cytoskeleton, FAs, myocilin, α-smooth muscle actin (αSMA), and collagen-1 were determined by immunofluorescence and immunoblot analyses. Results Hic-5 distributes discretely to the FAs in HTM cells and throughout the TM and Schlemm's canal of the human aqueous humor (AH) outflow pathway. Transforming growth factor-β2 (TGF-β2), endothelin-1, lysophosphatidic acid, hydrogen peroxide, and RhoA significantly increased Hic-5 protein levels in HTM cells in association with reorganization of actin cytoskeleton and FAs. While recombinant Hic-5 induced actin stress fibers, FAs, αv integrin redistribution to the FAs, increased levels of αSMA, collagen-1, and myocilin, Hic-5 siRNA suppressed most of these responses in HTM cells. Hic-5 siRNA also suppressed TGF-β2-induced fibrogenic activity and dexamethasone-induced myocilin expression in HTM cells. Conclusions Taken together, these results reveal that Hic-5, whose levels were increased by various external factors implicated in elevated intraocular pressure, induces actin cytoskeletal reorganization, FAs, expression of fibrogenic markers, and myocilin in HTM cells. These characteristics of Hic-5 in TM cells indicate its importance in regulation of AH outflow through the TM in both normal and glaucomatous eyes. PMID:26313302

  15. Pathways of Ca²⁺ entry and cytoskeletal damage following eccentric contractions in mouse skeletal muscle.

    PubMed

    Zhang, Bao-Ting; Whitehead, Nicholas P; Gervasio, Othon L; Reardon, Trent F; Vale, Molly; Fatkin, Diane; Dietrich, Alexander; Yeung, Ella W; Allen, David G

    2012-06-01

    Muscles that are stretched during contraction (eccentric contractions) show deficits in force production and a variety of structural changes, including loss of antibody staining of cytoskeletal proteins. Extracellular Ca(2+) entry and activation of calpains have been proposed as mechanisms involved in these changes. The present study used isolated mouse extensor digitorum longus (EDL) muscles subjected to 10 eccentric contractions and monitored force production, immunostaining of cytoskeletal proteins, and resting stiffness. Possible pathways for Ca(2+) entry were tested with streptomycin (200 μM), a blocker of stretch-activated channels, and with muscles from mice deficient in the transient receptor potential canonical 1 gene (TRPC1 KO), a candidate gene for stretch-activated channels. At 30 min after the eccentric contractions, the isometric force was decreased to 75 ± 3% of initial control and this force loss was reduced by streptomycin but not in the TRPC1 KO. Desmin, titin, and dystrophin all showed patchy loss of immunostaining 30 min after the eccentric contractions, which was substantially reduced by streptomycin and in the TRPC1 KO muscles. Muscles showed a reduction of resting stiffness following eccentric contractions, and this reduction was eliminated by streptomycin and absent in the TRPC1 KO muscles. Calpain activation was determined by the appearance of a lower molecular weight autolysis product and μ-calpain was activated at 30 min, whereas the muscle-specific calpain-3 was not. To test whether the loss of stiffness was caused by titin cleavage, protein gels were used but no significant titin cleavage was detected. These results suggest that Ca(2+) entry following eccentric contractions is through a stretch-activated channel that is blocked by streptomycin and encoded or modulated by TRPC1.

  16. Pokeweed antiviral protein region Gly209-Lys225 is critical for RNA N-glycosidase activity of the prokaryotic ribosome.

    PubMed

    Nagasawa, Yoshimi; Fujii, Kazuyuki; Yoshikawa, Takafumi; Kobayashi, Yoshinori; Kondo, Toshiya

    2008-05-01

    Pokeweed antiviral protein (PAP) isolated from Phytolacca americana is a ribosome-inactivating protein (RIP) that has RNA N-glycosidase (RNG) activity towards both eukaryotic and prokaryotic ribosomes. In contrast, karasurin-A (KRN), a RIP from Trichosanthes kirilowii var. japonica, is active only on eukaryotic ribosomes. Stepwise selection of chimera proteins between PAP and KRN indicated that the C-terminal region of PAP (residues 209-225) was critical for RNG activity toward prokaryotic ribosomes. When the region of PAP (residues 209-225) was replaced with the corresponding region of KRN the PAP chimera protein, like KRN, was active only on eukaryotic ribosomes. Furthermore, insertion of the region of PAP (residues 209-225) into the KRN chimera protein resulted not only in the detectable RNG activity toward prokaryotic ribosome, but also activity toward the eukaryotic ribosomes as well that was seven-fold higher than for the original KRN. In this study, the possibility of genetic manipulation of the activity and substrate specificity of RIPs is demonstrated.

  17. Intrathecal delivery of protein therapeutics to the brain: a critical reassessment.

    PubMed

    Calias, Pericles; Banks, William A; Begley, David; Scarpa, Maurizio; Dickson, Patricia

    2014-11-01

    Disorders of the central nervous system (CNS), including stroke, neurodegenerative diseases, and brain tumors, are the world's leading causes of disability. Delivery of drugs to the CNS is complicated by the blood-brain barriers that protect the brain from the unregulated leakage and entry of substances, including proteins, from the blood. Yet proteins represent one of the most promising classes of therapeutics for the treatment of CNS diseases. Many strategies for overcoming these obstacles are in development, but the relatively straightforward approach of bypassing these barriers through direct intrathecal administration has been largely overlooked. Originally discounted because of its lack of usefulness for delivering small, lipid-soluble drugs to the brain, the intrathecal route has emerged as a useful, in some cases perhaps the ideal, route of administration for certain therapeutic protein and targeted disease combinations. Here, we review blood-brain barrier functions and cerebrospinal fluid dynamics and their relevance to drug delivery via the intrathecal route, discuss animal and human studies that have investigated intrathecal delivery of protein therapeutics, and outline several characteristics of protein therapeutics that can allow them to be successfully delivered intrathecally.

  18. Quality requirements for critical assay reagents used in bioanalysis of therapeutic proteins: what bioanalysts should know about their reagents.

    PubMed

    Staack, Roland F; Stracke, Jan O; Stubenrauch, Kay; Vogel, Rudolf; Schleypen, Julia; Papadimitriou, Apollon

    2011-03-01

    Ligand-binding assays are the standard technology used for bioanalysis of therapeutic proteins, for example, for drug quantification (pharmacokinetics assays) and immunogenicity testing (antidrug antibody assays). Besides the selection of the most suitable technology platform (e.g., ELISA, electrochemiluminescence assays and surface plasmon resonance assays) and assay procedure, a pivotal prerequisite for good assay performance on any technology platform is the design, production and characterization of high quality reagents. To enable bioanalytical project support over the complete product life cycle, an appropriate long-term reagent supply is needed. This perspective describes our opinion on the requirements for generation and QC of critical reagents used in ligand-binding assays for drug quantification and antidrug antibody detection to enable high-quality assays and long-term supply, including reagent batch switches. The critical parameters during reagent design, production and long-term supply, along with the appropriate analytical methods for QC testing and appropriate certification, are discussed.

  19. Exploring the roles of integrin binding and cytoskeletal reorganization during mesenchymal stem cell mechanotransduction in soft and stiff hydrogels subjected to dynamic compression.

    PubMed

    Steward, Andrew J; Wagner, Diane R; Kelly, Daniel J

    2014-10-01

    The objective of this study was to explore how the response of mesenchymal stem cells (MSCs) to dynamic compression (DC) depends on their pericellular environment and the development of their cytoskeleton. MSCs were first seeded into 3% agarose hydrogels, stimulated with the chondrogenic growth factor TGF-β3 and exposed to DC (~10% strain at 1Hz) for 1h on either day 7, 14, or 21 of culture. At each time point, the actin, vimentin and tubulin networks of the MSCs were assessed using confocal microscopy. Similar to previous results, MSCs displayed a temporal response to DC; however, no dramatic changes in gross cytoskeletal organization were observed with time in culture. Vinculin (a membrane-cytoskeletal protein in focal adhesions) staining appeared more intense with time in culture. We next aimed to explore how changes to the pericellular environment, independent of the duration of exposure to TGF-β3, would influence the response of MSCs to DC. To this end, MSCs were encapsulated into either 'soft' or 'stiff' agarose hydrogels that are known to differentially support pericellular matrix (PCM) development. The application of DC led to greater relative increases in the expression of chondrogenic marker genes in the stiffer hydrogels, where the MSCs were found to have a more well developed PCM. These increases in gene expression were not observed following the addition of RGDS, an integrin blocker, suggesting that integrin binding plays a role in determining the response of MSCs to DC. Microtubule organization in MSCs was found to adapt in response to DC, but this effect was not integrin mediated, as this cytoskeletal reorganization was also observed in the presence of RGDS. In conclusion, although the PCM, integrin binding, and cytoskeletal reorganization are all involved in mechanotransduction of DC, none of these factors in isolation was able to completely explain the temporal mechanosensitivity of MSCs to dynamic compression.

  20. Biochemical characterisation of the proteins encoded by the DiGeorge critical region 6 (DGCR6) genes.

    PubMed

    Pfuhl, Thorsten; Dürr, Matthias; Spurk, Andreas; Schwalbert, Björn; Nord, Ruth; Mysliwietz, Josef; Kremmer, Elisabeth; Grässer, Friedrich A

    2005-06-01

    The DiGeorge critical region 6 (DGCR6) gene exists in two highly homologous copies (DGCR6 and DGCR6L) on chromosome 22q11 and is deleted in patients with velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS). The DGCR6 mRNA levels are increased in metastatic mammary tumour cells and regulate the expression of neighbouring genes at the 22q11 region. Newly developed monoclonal antibodies detected predominantly nuclear phosphoproteins of approximately 25 kDa, with low expression levels in the cytoplasm. Both proteins have half-lives of about 2.5 h. Exogenously expressed DGCR6 and DGCR6L migrated with slightly different mobility in SDS-gels in accordance with two immunoreactive bands observed for the endogenous proteins. DGCR6 is found at low levels in primary human fibroblasts or peripheral blood mononuclear cells, while tumour cells, B-cells transformed by EBV as well as activated normal human T cells, contain elevated levels of the proteins. The proteins are differentially expressed in mammalian tissues, with high protein levels in heart, liver and skeletal muscle. These observations are important as some patients with DGCR6 syndrome exhibit a T-cell deficiency and/or cardiac malformations. As the DGCR6 protein(s) influence gene expression in trans, we analysed the influence of DGCR6/DGCR6L on the Epstein-Barr virus-encoded oncoproteins EBNA2 and EBNA3c in the activation of the viral LMP1 promoter, as well as LMP1-mediated activation of NFkB, but found no effect in either setting.

  1. Heat shock protein 27 and gross cystic disease fluid protein 15 play critical roles in molecular apocrine breast cancer.

    PubMed

    Liu, Xiaozhen; Feng, Changyun; Liu, Junjun; Zhao, Lin; Liu, Jian; Zhang, Wei; Liu, Ning; Niu, Yun

    2016-06-01

    Molecular apocrine breast cancer (MABC) has a distinct hormonal profile, being estrogen receptor (ER) and progesterone receptor (PR) negative but androgen receptor (AR) positive. The clinical significance of MABC and its relative variables have not been absolutely clarified and remain to be determined. Five hundred cases of invasive breast carcinoma were randomly selected in this study, including 158 MABC cases and 342 nonMABC cases. Expression of ER, PR, epidermal growth factor receptor 2 (HER2), Ki67, AR, gross cystic disease fluid protein 15 (GCDFP15), and heat shock protein 27 (HSP27) were analyzed by immunohistochemistry. Differences of continuous variables between MABC and nonMABC subgroups were evaluated by the chi-square test. The Kaplan-Meier method was performed to evaluate disease-free survival (DFS) and overall survival (OS). The MABC subgroup had higher histological grade, bigger tumor size, more lymph node metastasis, and higher pTNM stage than the nonMABC subgroup (P < 0.05), and patients with MABC had poorer prognosis than those of the nonMABC subgroup (P < 0.05). Both GCDFP15 and HSP27 were expressed differently in the MABC and nonMABC subgroups (P < 0.05). Furthermore, in the MABC subgroup, positive HSP27 expression indicated higher risk of recurrence (P < 0.05) and positive GCDFP15 expression was also a poor marker for patient outcome (P < 0.05). MABC patients with HSP27 and GCDFP15 co-expression had worse outcome (P < 0.05). Our data suggested that MABC had a high risk of recurrence. Positive expression of both GCDFP15 and HSP27 were correlated with MABC malignancy. Targeting AR and HSP27 at the same time might offer a useful strategy to MABC.

  2. Heterotrimeric G-protein Signaling Is Critical to Pathogenic Processes in Entamoeba histolytica

    PubMed Central

    Muller, Robin E.; Giguère, Patrick M.; Machius, Mischa; Willard, Francis S.; Temple, Brenda R. S.; Siderovski, David P.

    2012-01-01

    Heterotrimeric G-protein signaling pathways are vital components of physiology, and many are amenable to pharmacologic manipulation. Here, we identify functional heterotrimeric G-protein subunits in Entamoeba histolytica, the causative agent of amoebic colitis. The E. histolytica Gα subunit EhGα1 exhibits conventional nucleotide cycling properties and is seen to interact with EhGβγ dimers and a candidate effector, EhRGS-RhoGEF, in typical, nucleotide-state-selective fashions. In contrast, a crystal structure of EhGα1 highlights unique features and classification outside of conventional mammalian Gα subfamilies. E. histolytica trophozoites overexpressing wildtype EhGα1 in an inducible manner exhibit an enhanced ability to kill host cells that may be wholly or partially due to enhanced host cell attachment. EhGα1-overexpressing trophozoites also display enhanced transmigration across a Matrigel barrier, an effect that may result from altered baseline migration. Inducible expression of a dominant negative EhGα1 variant engenders the converse phenotypes. Transcriptomic studies reveal that modulation of pathogenesis-related trophozoite behaviors by perturbed heterotrimeric G-protein expression includes transcriptional regulation of virulence factors and altered trafficking of cysteine proteases. Collectively, our studies suggest that E. histolytica possesses a divergent heterotrimeric G-protein signaling axis that modulates key aspects of cellular processes related to the pathogenesis of this infectious organism. PMID:23166501

  3. Crystal Structure of Vaccinia Viral A27 Protein Reveals a Novel Structure Critical for Its Function and Complex Formation with A26 Protein

    PubMed Central

    Hsieh, Fu-Lien; Ko, Tzu-Ping; Lin, Cheng-Tse; Ho, Meng-Ru; Wang, Iren; Hsu, Shang-Te Danny; Guo, Rey-Ting; Chang, Wen; Wang, Andrew H. J.

    2013-01-01

    Vaccinia virus envelope protein A27 has multiple functions and is conserved in the Orthopoxvirus genus of the poxvirus family. A27 protein binds to cell surface heparan sulfate, provides an anchor for A26 protein packaging into mature virions, and is essential for egress of mature virus (MV) from infected cells. Here, we crystallized and determined the structure of a truncated form of A27 containing amino acids 21–84, C71/72A (tA27) at 2.2 Å resolution. tA27 protein uses the N-terminal region interface (NTR) to form an unexpected trimeric assembly as the basic unit, which contains two parallel α-helices and one unusual antiparallel α-helix; in a serpentine way, two trimers stack with each other to form a hexamer using the C-terminal region interface (CTR). Recombinant tA27 protein forms oligomers in a concentration-dependent manner in vitro in gel filtration. Analytical ultracentrifugation and multi-angle light scattering revealed that tA27 dimerized in solution and that Leu47, Leu51, and Leu54 at the NTR and Ile68, Asn75, and Leu82 at the CTR are responsible for tA27 self-assembly in vitro. Finally, we constructed recombinant vaccinia viruses expressing full length mutant A27 protein defective in either NTR, CTR, or both interactions; the results demonstrated that wild type A27 dimer/trimer formation was impaired in NTR and CTR mutant viruses, resulting in small plaques that are defective in MV egress. Furthermore, the ability of A27 protein to form disulfide-linked protein complexes with A26 protein was partially or completely interrupted by NTR and CTR mutations, resulting in mature virion progeny with increased plasma membrane fusion activity upon cell entry. Together, these results demonstrate that A27 protein trimer structure is critical for MV egress and membrane fusion modulation. Because A27 is a neutralizing target, structural information will aid the development of inhibitors to block A27 self-assembly or complex formation against vaccinia virus

  4. Fisetin antagonizes cell fusion, cytoskeletal organization and bone resorption in RANKL-differentiated murine macrophages.

    PubMed

    Kim, Yun-Ho; Kim, Jung-Lye; Lee, Eun-Jung; Park, Sin-Hye; Han, Seon-Young; Kang, Soon Ah; Kang, Young-Hee

    2014-03-01

    Osteoclastogenesis is comprised of several stage s including progenitor survival, differentiation to mononuclear preosteoclasts, cell fusion to multinuclear mature osteoclasts, and activation to osteoclasts with bone resorbing activity. Botanical antioxidants are now being increasingly investigated for their health-promoting effects on bone. This study investigated that fisetin, a flavonol found naturally in many fruits and vegetables, suppressed osteoclastogenesis by disturbing receptor activator of nuclear factor (NF)-κB ligand (RANKL)-mediated signaling pathway and demoting osteoclastogenic protein induction. Nontoxic fisetin at ≤10 μM inhibited the induction of RANK, tumor necrosis factor receptor associated factor 6 (TRAF6) and the activation of NF-κB in RANKL-stimulated RAW 264.7 macrophages. In RANKL-differentiated osteoclasts cell fusion protein of E-cadherin was induced, which was dampened by fisetin. The formation of tartrate-resistance acid phosphatase-positive multinucleated osteoclasts was suppressed by adding fisetin to RANKL-exposed macrophages. It was also found that fisetin reduced actin ring formation and gelsolin induction of osteclasts enhanced by RANKL through disturbing c-Src-proline-rich tyrosine kinase 2 signaling. Fisetin deterred preosteoclasts from the cell-cell fusion and the organization of the cytoskeleton to seal the resorbing area and to secret protons for bone resorption. Consistently, the 5 day-treatment of fisetin diminished RANKL-induced cellular expression of carbonic anhydrase II and integrin β3 concurrently with a reduction of osteoclast bone-resorbing activity. Therefore, fisetin was a natural therapeutic agent retarding osteoclast fusion and cytoskeletal organization such as actin rings and ruffled boarder, which is a property of mature osteoclasts and is required for osteoclasts to resorb bone.

  5. Centrosomal Localization of the Psoriasis Candidate Gene Product, CCHCR1, Supports a Role in Cytoskeletal Organization

    PubMed Central

    Tervaniemi, Mari H.; Siitonen, H. Annika; Söderhäll, Cilla; Minhas, Gurinder; Vuola, Jyrki; Tiala, Inkeri; Sormunen, Raija; Samuelsson, Lena; Suomela, Sari; Kere, Juha; Elomaa, Outi

    2012-01-01

    CCHCR1 (Coiled-Coil α-Helical Rod protein 1), within the major psoriasis susceptibility locus PSORS1, is a plausible candidate gene with the psoriasis associated risk allele CCHCR1*WWCC. Although its expression pattern in psoriatic skin differs from healthy skin and its overexpression influences cell proliferation in transgenic mice, its role as a psoriasis effector gene has remained unsettled. The 5′-region of the gene contains a SNP (rs3130453) that controls a 5′-extended open reading frame and thus the translation of alternative isoforms. We have now compared the function of two CCHCR1 isoforms: the novel longer isoform 1 and the previously studied isoform 3. In samples of Finnish and Swedish families, the allele generating only isoform 3 shows association with psoriasis (P<10−7). Both isoforms localize at the centrosome, a cell organelle playing a role in cell division. In stably transfected cells the isoform 3 affects cell proliferation and with the CCHCR1*WWCC allele, also apoptosis. Furthermore, cells overexpressing CCHCR1 show isoform- and haplotype-specific influences in the cell size and shape and alterations in the organization and expression of the cytoskeletal proteins actin, vimentin, and cytokeratins. The isoform 1 with the non-risk allele induces the expression of keratin 17, a hallmark for psoriasis; the silencing of CCHCR1 reduces its expression in HEK293 cells. CCHCR1 also regulates EGF-induced STAT3 activation in an isoform-specific manner: the tyrosine phosphorylation of STAT3 is disturbed in isoform 3-transfected cells. The centrosomal localization of CCHCR1 provides a connection to the abnormal cell proliferation and offers a link to possible cellular pathways altered in psoriasis. PMID:23189171

  6. Cytoskeletal Signaling: Is Memory Encoded in Microtubule Lattices by CaMKII Phosphorylation?

    PubMed Central

    Craddock, Travis J. A.; Tuszynski, Jack A.; Hameroff, Stuart

    2012-01-01

    Memory is attributed to strengthened synaptic connections among particular brain neurons, yet synaptic membrane components are transient, whereas memories can endure. This suggests synaptic information is encoded and ‘hard-wired’ elsewhere, e.g. at molecular levels within the post-synaptic neuron. In long-term potentiation (LTP), a cellular and molecular model for memory, post-synaptic calcium ion (Ca2+) flux activates the hexagonal Ca2+-calmodulin dependent kinase II (CaMKII), a dodacameric holoenzyme containing 2 hexagonal sets of 6 kinase domains. Each kinase domain can either phosphorylate substrate proteins, or not (i.e. encoding one bit). Thus each set of extended CaMKII kinases can potentially encode synaptic Ca2+ information via phosphorylation as ordered arrays of binary ‘bits’. Candidate sites for CaMKII phosphorylation-encoded molecular memory include microtubules (MTs), cylindrical organelles whose surfaces represent a regular lattice with a pattern of hexagonal polymers of the protein tubulin. Using molecular mechanics modeling and electrostatic profiling, we find that spatial dimensions and geometry of the extended CaMKII kinase domains precisely match those of MT hexagonal lattices. This suggests sets of six CaMKII kinase domains phosphorylate hexagonal MT lattice neighborhoods collectively, e.g. conveying synaptic information as ordered arrays of six “bits”, and thus “bytes”, with 64 to 5,281 possible bit states per CaMKII-MT byte. Signaling and encoding in MTs and other cytoskeletal structures offer rapid, robust solid-state information processing which may reflect a general code for MT-based memory and information processing within neurons and other eukaryotic cells. PMID:22412364

  7. Cytoskeletal changes induced by allosteric modulators of calcium-sensing receptor in esophageal epithelial cells

    PubMed Central

    Abdulnour-Nakhoul, Solange; Brown, Karen L; Rabon, Edd C; Al-Tawil, Youhanna; Islam, Mohammed T; Schmieg, John J; Nakhoul, Nazih L

    2015-01-01

    The calcium-sensing receptor (CaSR), a G-protein-coupled receptor, plays a role in glandular and fluid secretion in the gastrointestinal tract, and regulates differentiation and proliferation of epithelial cells. We examined the expression of CaSR in normal and pathological conditions of human esophagus and investigated the effect of a CaSR agonist, cinacalcet (CCT), and antagonist, calhex (CHX), on cell growth and cell–cell junctional proteins in primary cultures of porcine stratified squamous esophageal epithelium. We used immunohistochemistry and Western analysis to monitor expression of CaSR and cell–cell adhesion molecules, and MTT assay to monitor cell proliferation in cultured esophageal cells. CCT treatment significantly reduced proliferation, changed the cell shape from polygonal to spindle-like, and caused redistribution of E-cadherin and β-catenin from the cell membrane to the cytoplasm. Furthermore, it reduced expression of β-catenin by 35% (P < 0.02) and increased expression of a proteolysis cleavage fragment of E-cadherin, Ecad/CFT2, by 2.3 folds (P < 0.01). On the other hand, CHX treatment enhanced cell proliferation by 27% (P < 0.01), increased the expression of p120-catenin by 24% (P < 0.04), and of Rho, a GTPase involved in cytoskeleton remodeling, by 18% (P < 0.03). In conclusion, CaSR is expressed in normal esophagus as well as in Barrett’s, esophageal adenocarcinoma, squamous cell carcinoma, and eosinophilic esophagitis. Long-term activation of CaSR with CCT disrupted the cadherin–catenin complex, induced cytoskeletal remodeling, actin fiber formation, and redistribution of CaSR to the nuclear area. These changes indicate a significant and complex role of CaSR in epithelial remodeling and barrier function of esophageal cells. PMID:26603452

  8. Cytoskeletal changes induced by allosteric modulators of calcium-sensing receptor in esophageal epithelial cells.

    PubMed

    Abdulnour-Nakhoul, Solange; Brown, Karen L; Rabon, Edd C; Al-Tawil, Youhanna; Islam, Mohammed T; Schmieg, John J; Nakhoul, Nazih L

    2015-11-01

    The calcium-sensing receptor (CaSR), a G-protein-coupled receptor, plays a role in glandular and fluid secretion in the gastrointestinal tract, and regulates differentiation and proliferation of epithelial cells. We examined the expression of CaSR in normal and pathological conditions of human esophagus and investigated the effect of a CaSR agonist, cinacalcet (CCT), and antagonist, calhex (CHX), on cell growth and cell-cell junctional proteins in primary cultures of porcine stratified squamous esophageal epithelium. We used immunohistochemistry and Western analysis to monitor expression of CaSR and cell-cell adhesion molecules, and MTT assay to monitor cell proliferation in cultured esophageal cells. CCT treatment significantly reduced proliferation, changed the cell shape from polygonal to spindle-like, and caused redistribution of E-cadherin and β-catenin from the cell membrane to the cytoplasm. Furthermore, it reduced expression of β-catenin by 35% (P < 0.02) and increased expression of a proteolysis cleavage fragment of E-cadherin, Ecad/CFT2, by 2.3 folds (P < 0.01). On the other hand, CHX treatment enhanced cell proliferation by 27% (P < 0.01), increased the expression of p120-catenin by 24% (P < 0.04), and of Rho, a GTPase involved in cytoskeleton remodeling, by 18% (P < 0.03). In conclusion, CaSR is expressed in normal esophagus as well as in Barrett's, esophageal adenocarcinoma, squamous cell carcinoma, and eosinophilic esophagitis. Long-term activation of CaSR with CCT disrupted the cadherin-catenin complex, induced cytoskeletal remodeling, actin fiber formation, and redistribution of CaSR to the nuclear area. These changes indicate a significant and complex role of CaSR in epithelial remodeling and barrier function of esophageal cells.

  9. Toward Rational Design of Protein Detergent Complexes: Determinants of Mixed Micelles That Are Critical for the In Vitro Stabilization of a G-Protein Coupled Receptor

    PubMed Central

    O'Malley, Michelle A.; Helgeson, Matthew E.; Wagner, Norman J.; Robinson, Anne S.

    2011-01-01

    Although reconstitution of membrane proteins within protein detergent complexes is often used to enable their structural or biophysical characterization, it is unclear how one should rationally choose the appropriate micellar environment to preserve native protein folding. Here, we investigated model mixed micelles consisting of a nonionic glucosylated alkane surfactant from the maltoside and thiomaltoside families, bile salt surfactant, and the steryl derivative cholesteryl hemisuccinate. We correlated several key attributes of these micelles with the in vitro ligand-binding activity of hA2aR in these systems. Through small-angle neutron scattering and radioligand-binding analysis, we found several key aspects of mixed micellar systems that preserve the activity of hA2aR, including a critical amount of cholesteryl hemisuccinate per micelle, and an optimal hydrophobic thickness of the micelle that is analogous to the thickness of native mammalian bilayers. These features are closely linked to the headgroup chemistry of the surfactant and the hydrocarbon chain length, which influence both the morphology and composition of resulting micelles. This study should serve as a general guide for selecting the appropriate mixed surfactant systems to stabilize membrane proteins for biophysical analysis. PMID:22004748

  10. A novel human-specific splice isoform alters the critical C-terminus of Survival Motor Neuron protein

    PubMed Central

    Seo, Joonbae; Singh, Natalia N.; Ottesen, Eric W.; Lee, Brian M.; Singh, Ravindra N.

    2016-01-01

    Spinal muscular atrophy (SMA), a leading genetic disease of children and infants, is caused by mutations or deletions of Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, fails to compensate for the loss of SMN1 due to skipping of exon 7. SMN2 predominantly produces SMNΔ7, an unstable protein. Here we report exon 6B, a novel exon, generated by exonization of an intronic Alu-like sequence of SMN. We validate the expression of exon 6B-containing transcripts SMN6B and SMN6BΔ7 in human tissues and cell lines. We confirm generation of SMN6B transcripts from both SMN1 and SMN2. We detect expression of SMN6B protein using antibodies raised against a unique polypeptide encoded by exon 6B. We analyze RNA-Seq data to show that hnRNP C is a potential regulator of SMN6B expression and demonstrate that SMN6B is a substrate of nonsense-mediated decay. We show interaction of SMN6B with Gemin2, a critical SMN-interacting protein. We demonstrate that SMN6B is more stable than SMNΔ7 and localizes to both the nucleus and the cytoplasm. Our finding expands the diversity of transcripts generated from human SMN genes and reveals a novel protein isoform predicted to be stably expressed during conditions of stress. PMID:27481219

  11. Translational regulation of protein synthesis, in response to light, at a critical stage of Volvox development

    SciTech Connect

    Kirk, M.M.; Kirk, D.L.

    1985-06-01

    In Volvox cultures synchronized by a light-dark cycle, juveniles containing presumptive somatic and reproductive cells are produced during the dark, but their cells do not differentiate until after the lights come on. The pattern of protein synthesis changes rapidly after the lights come on. Action spectra and effects of photosynthesis inhibitors indicate that this protein synthetic change is not simply a consequence of renewed flow of energy from illuminated chloroplasts. Actinomycin, at a level adequate to block the response to heat shock, has virtually no effect on the response of the same cells to light; furthermore, RNAs isolated from unilluminated and illuminated juveniles yield indistinguishable in vitro translation products. The authors conclude, therefore, that this effect of light is exerted almost exclusively at the translational level, generating one of the most striking examples of translational regulation yet described.

  12. Glucose regulated protein 78: a critical link between tumor microenvironment and cancer hallmarks.

    PubMed

    Li, Zongwei; Li, Zhuoyu

    2012-08-01

    Glucose regulated protein 78 (GRP78) has long been recognized as a molecular chaperone in the endoplasmic reticulum (ER) and can be induced by the ER stress response. Besides its location in the ER, GRP78 has been found to be present in cell plasma membrane, cytoplasm, mitochondria, nucleus as well as cellular secretions. GRP78 is implicated in tumor cell proliferation, apoptosis resistance, immune escape, metastasis and angiogenesis, and its elevated expression usually correlates with a variety of tumor microenvironmental stresses, including hypoxia, glucose deprivation, lactic acidosis and inflammatory response. GRP78 protein acts as a centrally located sensor of stress, which feels and adapts to the alteration in the tumor microenvironment. This article reviews the potential contributions of GRP78 to the acquisition of cancer hallmarks based on intervening in stress responses caused by tumor niche alterations. The paper also introduces several potential GRP78 relevant targeted therapies.

  13. Critical evaluation of in silico methods for prediction of coiled-coil domains in proteins.

    PubMed

    Li, Chen; Ching Han Chang, Catherine; Nagel, Jeremy; Porebski, Benjamin T; Hayashida, Morihiro; Akutsu, Tatsuya; Song, Jiangning; Buckle, Ashley M

    2016-03-01

    Coiled-coils refer to a bundle of helices coiled together like strands of a rope. It has been estimated that nearly 3% of protein-encoding regions of genes harbour coiled-coil domains (CCDs). Experimental studies have confirmed that CCDs play a fundamental role in subcellular infrastructure and controlling trafficking of eukaryotic cells. Given the importance of coiled-coils, multiple bioinformatics tools have been developed to facilitate the systematic and high-throughput prediction of CCDs in proteins. In this article, we review and compare 12 sequence-based bioinformatics approaches and tools for coiled-coil prediction. These approaches can be categorized into two classes: coiled-coil detection and coiled-coil oligomeric state prediction. We evaluated and compared these methods in terms of their input/output, algorithm, prediction performance, validation methods and software utility. All the independent testing data sets are available at http://lightning.med.monash.edu/coiledcoil/. In addition, we conducted a case study of nine human polyglutamine (PolyQ) disease-related proteins and predicted CCDs and oligomeric states using various predictors. Prediction results for CCDs were highly variable among different predictors. Only two peptides from two proteins were confirmed to be CCDs by majority voting. Both domains were predicted to form dimeric coiled-coils using oligomeric state prediction. We anticipate that this comprehensive analysis will be an insightful resource for structural biologists with limited prior experience in bioinformatics tools, and for bioinformaticians who are interested in designing novel approaches for coiled-coil and its oligomeric state prediction.

  14. Matrix protein CCN1 is critical for prostate carcinoma cell proliferation and TRAIL-induced apoptosis.

    PubMed

    Franzen, Carrie A; Chen, Chih-Chiun; Todorović, Viktor; Juric, Vladislava; Monzon, Ricardo I; Lau, Lester F

    2009-07-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) plays an important role in immune surveillance and preferentially induces apoptosis in cancer cells over normal cells, suggesting its potential in cancer therapy. However, the molecular basis for its selective killing of cancer cells is not well understood. Recent studies have identified the CCN family of integrin-binding matricellular proteins as important regulators of cell behavior, including cell adhesion, proliferation, migration, differentiation, and survival. We show here that CCN1 (CYR61) supports the adhesion of prostatic carcinoma cells as an adhesion substrate through integrins and heparan sulfate proteoglycans. Knockdown of CCN1 expression in PC-3 and DU-145 androgen-independent prostate cancer cells strongly inhibited their proliferation without causing apoptosis, indicating that CCN1 promotes their growth. However, CCN1 also significantly enhances TRAIL-induced apoptosis through interaction with integrins alphavbeta3 and alpha6beta4 and the cell-surface heparan sulfate proteoglycan syndecan-4, acting through a protein kinase Calpha-dependent mechanism without requiring de novo protein synthesis. Knockdown of CCN1 expression in PC-3, DU-145, and LNCaP cells severely blunted their sensitivity to TRAIL, an effect that was reversed by exogenously added CCN1 protein. These findings reveal a functional dichotomy for CCN1 in prostate carcinoma cells, because it contributes to both cell proliferation and TRAIL-induced cell death and suggest that CCN1 expression status may be an important parameter in assessing the efficacy of TRAIL-dependent cancer therapy.

  15. FHIP and FTS proteins are critical for dynein-mediated transport of early endosomes in Aspergillus

    PubMed Central

    Yao, Xuanli; Wang, Xiangfeng; Xiang, Xin

    2014-01-01

    The minus end–directed microtubule motor cytoplasmic dynein transports various cellular cargoes, including early endosomes, but how dynein binds to its cargo remains unclear. Recently fungal Hook homologues were found to link dynein to early endosomes for their transport. Here we identified FhipA in Aspergillus nidulans as a key player for HookA (A. nidulans Hook) function via a genome-wide screen for mutants defective in early-endosome distribution. The human homologue of FhipA, FHIP, is a protein in the previously discovered FTS/Hook/FHIP (FHF) complex, which contains, besides FHIP and Hook proteins, Fused Toes (FTS). Although this complex was not previously shown to be involved in dynein-mediated transport, we show here that loss of either FhipA or FtsA (A. nidulans FTS homologue) disrupts HookA–early endosome association and inhibits early endosome movement. Both FhipA and FtsA associate with early endosomes, and interestingly, while FtsA–early endosome association requires FhipA and HookA, FhipA–early endosome association is independent of HookA and FtsA. Thus FhipA is more directly linked to early endosomes than HookA and FtsA. However, in the absence of HookA or FtsA, FhipA protein level is significantly reduced. Our results indicate that all three proteins in the FtsA/HookA/FhipA complex are important for dynein-mediated early endosome movement. PMID:24870033

  16. Kalirin and Trio proteins serve critical roles in excitatory synaptic transmission and LTP

    PubMed Central

    Herring, Bruce E.; Nicoll, Roger A.

    2016-01-01

    The molecular mechanism underlying long-term potentiation (LTP) is critical for understanding learning and memory. CaMKII, a key kinase involved in LTP, is both necessary and sufficient for LTP induction. However, how CaMKII gives rise to LTP is currently unknown. Recent studies suggest that Rho GTPases are necessary for LTP. Rho GTPases are activated by Rho guanine exchange factors (RhoGEFs), but the RhoGEF(s) required for LTP also remain unknown. Here, using a combination of molecular, electrophysiological, and imaging techniques, we show that the RhoGEF Kalirin and its paralog Trio play critical and redundant roles in excitatory synapse structure and function. Furthermore, we show that CaMKII phosphorylation of Kalirin is sufficient to enhance synaptic AMPA receptor expression, and that preventing CaMKII signaling through Kalirin and Trio prevents LTP induction. Thus, our data identify Kalirin and Trio as the elusive targets of CaMKII phosphorylation responsible for AMPA receptor up-regulation during LTP. PMID:26858404

  17. Kalirin and Trio proteins serve critical roles in excitatory synaptic transmission and LTP.

    PubMed

    Herring, Bruce E; Nicoll, Roger A

    2016-02-23

    The molecular mechanism underlying long-term potentiation (LTP) is critical for understanding learning and memory. CaMKII, a key kinase involved in LTP, is both necessary and sufficient for LTP induction. However, how CaMKII gives rise to LTP is currently unknown. Recent studies suggest that Rho GTPases are necessary for LTP. Rho GTPases are activated by Rho guanine exchange factors (RhoGEFs), but the RhoGEF(s) required for LTP also remain unknown. Here, using a combination of molecular, electrophysiological, and imaging techniques, we show that the RhoGEF Kalirin and its paralog Trio play critical and redundant roles in excitatory synapse structure and function. Furthermore, we show that CaMKII phosphorylation of Kalirin is sufficient to enhance synaptic AMPA receptor expression, and that preventing CaMKII signaling through Kalirin and Trio prevents LTP induction. Thus, our data identify Kalirin and Trio as the elusive targets of CaMKII phosphorylation responsible for AMPA receptor up-regulation during LTP.

  18. Activated Ca2+/calmodulin-dependent protein kinase IIgamma is a critical regulator of myeloid leukemia cell proliferation.

    PubMed

    Si, Jutong; Collins, Steven J

    2008-05-15

    Ca(2+) signaling is an important component of signal transduction pathways regulating B and T lymphocyte proliferation, but the functional role of Ca(2+) signaling in regulating myeloid leukemia cell proliferation has been largely unexplored. We observe that the activated (autophosphorylated) Ca(2+)/calmodulin-dependent protein kinase IIgamma (CaMKIIgamma) is invariably present in myeloid leukemia cell lines as well as in the majority of primary acute myelogenous leukemia patient samples. In contrast, myeloid leukemia cells induced to terminally differentiate or undergo growth arrest display a marked reduction in this CaMKIIgamma autophosphorylation. In cells harboring the bcr-abl oncogene, the activation (autophosphorylation) of CaMKIIgamma is regulated by this oncogene. Moreover, inhibition of CaMKIIgamma activity with pharmacologic agents, dominant-negative constructs, or short hairpin RNAs inhibits the proliferation of myeloid leukemia cells, and this is associated with the inactivation/down-regulation of multiple critical signal transduction networks involving the mitogen-activated protein kinase, Janus-activated kinase/signal transducers and activators of transcription (Jak/Stat), and glycogen synthase kinase (GSK3beta)/beta-catenin pathways. In myeloid leukemia cells, CaMKIIgamma directly phosphorylates Stat3 and enhances its transcriptional activity. Thus, CaMKIIgamma is a critical regulator of multiple signaling networks regulating the proliferation of myeloid leukemia cells. Inhibiting CaMKIIgamma may represent a novel approach in the targeted therapy of myeloid leukemia.

  19. Docking protein SNT1 is a critical mediator of fibroblast growth factor signaling during Xenopus embryonic development.

    PubMed

    Akagi, Keiko; Kyun Park, Eui; Mood, Kathleen; Daar, Ira O

    2002-03-01

    The docking protein SNT1/FRS2 (fibroblast growth factor receptor substrate 2) is implicated in the transmission of extracellular signals from several growth factor receptors to the mitogen-activated protein (MAP) kinase signaling cascade, but its biological function during development is not well characterized. Here, we show that the Xenopus homolog of mammalian SNT1/FRS-2 (XSNT1) plays a critical role in the appropriate formation of mesoderm-derived tissue during embryogenesis. XSNT1 has an expression pattern that is quite similar to the fibroblast growth factor receptor-1 (FGFR1) during Xenopus development. Ectopic expression of XSNT1 markedly enhanced the embryonic defects induced by an activated FGF receptor, and increased the MAP kinase activity as well as the expression of a mesodermal marker in response to FGF receptor signaling. A loss-of-function study using antisense XSNT1 morpholino oligonucleotides (XSNT-AS) shows severe malformation of trunk and posterior structures. Moreover, XSNT-AS disrupts muscle and notochord formation, and inhibits FGFR-induced MAP kinase activation. In ectodermal explants, XSNT-AS blocks FGFR-mediated induction of mesoderm and the accompanying elongation movements. Our results indicate that XSNT1 is a critical mediator of FGF signaling and is required for early Xenopus development.

  20. High Mobility Group Box-1 Protein and Outcomes in Critically Ill Surgical Patients Requiring Open Abdominal Management

    PubMed Central

    Malig, Michelle S.; Jenne, Craig N.; Ball, Chad G.; Roberts, Derek J.; Xiao, Zhengwen

    2017-01-01

    Background. Previous studies assessing various cytokines in the critically ill/injured have been uninformative in terms of translating to clinical care management. Animal abdominal sepsis work suggests that enhanced intraperitoneal (IP) clearance of Damage-Associated Molecular Patterns (DAMPs) improves outcome. Thus measuring the responses of DAMPs offers alternate potential insights and a representative DAMP, High Mobility Group Box-1 protein (HMGB-1), was considered. While IP biomediators are being recognized in critical illness/trauma, HMGB-1 behaviour has not been examined in open abdomen (OA) management. Methods. A modified protocol for HMGB-1 detection was used to examine plasma/IP fluid samples from 44 critically ill/injured OA patients enrolled in a randomized controlled trial comparing two negative pressure peritoneal therapies (NPPT): Active NPPT (ANPPT) and Barker's Vacuum Pack NPPT (BVP). Samples were collected and analyzed at the time of laparotomy and at 24 and 48 hours after. Results. There were no statistically significant differences in survivor versus nonsurvivor HMGB-1 plasma or IP concentrations at baseline, 24 hours, or 48 hours. However, plasma HMGB-1 levels tended to increase continuously in the BVP cohort. Conclusions. HMGB-1 appeared to behave differently between NPPT cohorts. Further studies are needed to elucidate the relationship of HMGB-1 and outcomes in septic/injured patients. PMID:28286376

  1. Domain compatibility in Ire1 kinase is critical for the Unfolded Protein Response

    PubMed Central

    Poothong, Juthakorn; Sopha, Pattarawut; Kaufman, Randal J.; Tirasophon, Witoon

    2013-01-01

    The unfolded phrotein response is a mechanism to cope with endoplasmic reticulum stress. In Saccharomyces cerevisiae, Ire1 senses the stress and mediates a signaling cascade to upregulate responsive genes through an unusual HAC1 mRNA splicing. The splicing requires interconnected activity (kinase and endoribonuclease) of Ire1 to cleave HAC1 mRNA at the non-canonical splice sites before translation into Hac1 transcription factor. Analysis of the truncated kinase domain from Ire1 homologs revealed that this domain is highly conserved. Characterization by domain swapping indicated that a functional ATP/ADP binding domain is minimally required. However the overall domain compatibility is critical for eliciting its full endoribonuclease function. PMID:20541549

  2. An 18 kDa scaffold protein is critical for Staphylococcus epidermidis biofilm formation.

    PubMed

    Decker, Rahel; Burdelski, Christoph; Zobiak, Melanie; Büttner, Henning; Franke, Gefion; Christner, Martin; Saß, Katharina; Zobiak, Bernd; Henke, Hanae A; Horswill, Alexander R; Bischoff, Markus; Bur, Stephanie; Hartmann, Torsten; Schaeffer, Carolyn R; Fey, Paul D; Rohde, Holger

    2015-03-01

    Virulence of the nosocomial pathogen Staphylococcus epidermidis is crucially linked to formation of adherent biofilms on artificial surfaces. Biofilm assembly is significantly fostered by production of a bacteria derived extracellular matrix. However, the matrix composition, spatial organization, and relevance of specific molecular interactions for integration of bacterial cells into the multilayered biofilm community are not fully understood. Here we report on the function of novel 18 kDa Small basic protein (Sbp) that was isolated from S. epidermidis biofilm matrix preparations by an affinity chromatographic approach. Sbp accumulates within the biofilm matrix, being preferentially deposited at the biofilm-substratum interface. Analysis of Sbp-negative S. epidermidis mutants demonstrated the importance of Sbp for sustained colonization of abiotic surfaces, but also epithelial cells. In addition, Sbp promotes assembly of S. epidermidis cell aggregates and establishment of multilayered biofilms by influencing polysaccharide intercellular-adhesin (PIA) and accumulation associated protein (Aap) mediated intercellular aggregation. While inactivation of Sbp indirectly resulted in reduced PIA-synthesis and biofilm formation, Sbp serves as an essential ligand during Aap domain-B mediated biofilm accumulation. Our data support the conclusion that Sbp serves as an S. epidermidis biofilm scaffold protein that significantly contributes to key steps of surface colonization. Sbp-negative S. epidermidis mutants showed no attenuated virulence in a mouse catheter infection model. Nevertheless, the high prevalence of sbp in commensal and invasive S. epidermidis populations suggests that Sbp plays a significant role as a co-factor during both multi-factorial commensal colonization and infection of artificial surfaces.

  3. An 18 kDa Scaffold Protein Is Critical for Staphylococcus epidermidis Biofilm Formation

    PubMed Central

    Zobiak, Melanie; Büttner, Henning; Franke, Gefion; Christner, Martin; Saß, Katharina; Zobiak, Bernd; Henke, Hanae A.; Horswill, Alexander R.; Bischoff, Markus; Bur, Stephanie; Hartmann, Torsten; Schaeffer, Carolyn R.; Fey, Paul D.; Rohde, Holger

    2015-01-01

    Virulence of the nosocomial pathogen Staphylococcus epidermidis is crucially linked to formation of adherent biofilms on artificial surfaces. Biofilm assembly is significantly fostered by production of a bacteria derived extracellular matrix. However, the matrix composition, spatial organization, and relevance of specific molecular interactions for integration of bacterial cells into the multilayered biofilm community are not fully understood. Here we report on the function of novel 18 kDa Small basic protein (Sbp) that was isolated from S. epidermidis biofilm matrix preparations by an affinity chromatographic approach. Sbp accumulates within the biofilm matrix, being preferentially deposited at the biofilm–substratum interface. Analysis of Sbp-negative S. epidermidis mutants demonstrated the importance of Sbp for sustained colonization of abiotic surfaces, but also epithelial cells. In addition, Sbp promotes assembly of S. epidermidis cell aggregates and establishment of multilayered biofilms by influencing polysaccharide intercellular-adhesin (PIA) and accumulation associated protein (Aap) mediated intercellular aggregation. While inactivation of Sbp indirectly resulted in reduced PIA-synthesis and biofilm formation, Sbp serves as an essential ligand during Aap domain-B mediated biofilm accumulation. Our data support the conclusion that Sbp serves as an S. epidermidis biofilm scaffold protein that significantly contributes to key steps of surface colonization. Sbp-negative S. epidermidis mutants showed no attenuated virulence in a mouse catheter infection model. Nevertheless, the high prevalence of sbp in commensal and invasive S. epidermidis populations suggests that Sbp plays a significant role as a co-factor during both multi-factorial commensal colonization and infection of artificial surfaces. PMID:25799153

  4. A Critical Role for the GluA1 Accessory Protein, SAP97, in Cocaine Seeking

    PubMed Central

    White, Samantha L; Ortinski, Pavel I; Friedman, Shayna H; Zhang, Lei; Neve, Rachael L; Kalb, Robert G; Schmidt, Heath D; Pierce, R Christopher

    2016-01-01

    A growing body of evidence indicates that the transport of GluA1 subunit-containing calcium-permeable AMPA receptors (CP-AMPARs) to synapses in subregions of the nucleus accumbens promotes cocaine seeking. Consistent with these findings, the present results show that administration of the CP-AMPAR antagonist, Naspm, into the caudal lateral core or caudal medial shell of the nucleus accumbens attenuated cocaine priming-induced reinstatement of drug seeking. Moreover, viral-mediated overexpression of ‘pore dead' GluA1 subunits (via herpes simplex virus (HSV) GluA1-Q582E) in the lateral core or medial shell attenuated the reinstatement of cocaine seeking. The overexpression of wild-type GluA1 subunits (via HSV GluA1-WT) in the medial shell, but not the lateral core, enhanced the reinstatement of cocaine seeking. These results indicate that activation of GluA1-containing AMPARs in subregions of the nucleus accumbens reinstates cocaine seeking. SAP97 and 4.1N are proteins involved in GluA1 trafficking to and stabilization in synapses; SAP97-GluA1 interactions also influence dendritic growth. We next examined potential roles of SAP97 and 4.1N in cocaine seeking. Viral-mediated expression of a microRNA that reduces SAP97 protein expression (HSV miSAP97) in the medial accumbens shell attenuated cocaine seeking. In contrast, a virus that overexpressed a dominant-negative form of a 4.1N C-terminal domain (HSV 4.1N-CTD), which prevents endogenous 4.1N binding to GluA1 subunits, had no effect on cocaine seeking. These results indicate that the GluA1 subunit accessory protein SAP97 may represent a novel target for pharmacotherapeutic intervention in the treatment of cocaine craving. PMID:26149358

  5. A critical role of spinal Shank2 proteins in NMDA-induced pain hypersensitivity

    PubMed Central

    Yoon, Seo-Yeon; Kwon, Soon-Gu; Kim, Yong Ho; Yeo, Ji-Hee; Ko, Hyoung-Gon; Roh, Dae-Hyun; Kaang, Bong-Kiun; Beitz, Alvin J; Lee, Jang-Hern

    2017-01-01

    Background Self-injurious behaviors (SIBs) are devastating traits in autism spectrum disorder (ASD). Although deficits in pain sensation might be one of the contributing factors underlying the development of SIBs, the mechanisms have yet to be addressed. Recently, the Shank2 synaptic protein has been considered to be a key component in ASD, and mutations of SHANK2 gene induce the dysfunction of N-methyl-D-aspartate (NMDA) receptors, suggesting a link between Shank2 and NMDA receptors in ASD. Given that spinal NMDA receptors play a pivotal role in pain hypersensitivity, we investigated the possible role of Shank2 in nociceptive hypersensitivity by examining changes in spontaneous pain following intrathecal NMDA injection in Shank2−/− (Shank2 knock-out, KO) mice. Results Intrathecal NMDA injection evoked spontaneous nociceptive behaviors. These NMDA-induced nociceptive responses were significantly reduced in Shank2 KO mice. We also observed a significant decrease of NMDA currents in the spinal dorsal horn of Shank2 KO mice. Subsequently, we examined whether mitogen-activated protein kinase or AKT signaling is involved in this reduced pain behavior in Shank2 KO mice because the NMDA receptor is closely related to these signaling molecules. Western blotting and immunohistochemistry revealed that spinally administered NMDA increased the expression of a phosphorylated form of extracellular signal-regulated kinase (p-ERK) which was significantly reduced in Shank2 KO mice. However, p38, JNK, or AKT were not changed by NMDA administration. The ERK inhibitor, PD98059, decreased NMDA-induced spontaneous pain behaviors in a dose-dependent manner in wild-type mice. Moreover, it was found that the NMDA-induced increase in p-ERK was primarily colocalized with Shank2 proteins in the spinal cord dorsal horn. Conclusion Shank2 protein is involved in spinal NMDA receptor-mediated pain, and mutations of Shank2 may suppress NMDA-ERK signaling in spinal pain transmission. This study

  6. Threonine-497 is a critical site for permissive activation of protein kinase C alpha.

    PubMed

    Cazaubon, S; Bornancin, F; Parker, P J

    1994-07-15

    Phosphorylation of the region containing Thr-494, Thr-495 and Thr-497, present in the catalytic domain of protein kinase C alpha (PKC alpha), is a preliminary event necessary for subsequent PKC activation [Cazaubon and Parker (1993) J. Biol. Chem. 268, 17559-17563]. To define the essential residues in this region, various combinations of alanine substitutions for threonine residues 494, 495 and 497 have been tested. These mutations yielded expressed polypeptides of 76 and 80 kDa in ratios that vary from 100% 80 kDa (wild-type kinase, active) to 100% 76 kDa (AAA mutant, inactive) with the hierarchy being wild-type PKC alpha (TTT), ATT, AAT, TTA, ATA, TAA, AAA (the nomenclature indicates the location of alanine residues substituted for Thr-494, Thr-495 and Thr-497 respectively). Only the mutants retaining Thr-497 displayed kinase activity in vitro. The results overall indicate that Thr-497 plays the dominant role in the regulation of PKC alpha activity but that in the wild-type protein, Thr-495 may also be important. Consistent with the need for phosphorylation in this region, an intrinsically active PKC alpha could be produced in bacteria by exchanging Thr-495 for a glutamic acid residue.

  7. Autism-specific maternal autoantibodies recognize critical proteins in developing brain

    PubMed Central

    Braunschweig, D; Krakowiak, P; Duncanson, P; Boyce, R; Hansen, R L; Ashwood, P; Hertz-Picciotto, I; Pessah, I N; Van de Water, J

    2013-01-01

    Autism spectrum disorders (ASDs) are neurodevelopmental in origin, affecting an estimated 1 in 88 children in the United States. We previously described ASD-specific maternal autoantibodies that recognize fetal brain antigens. Herein, we demonstrate that lactate dehydrogenase A and B (LDH), cypin, stress-induced phosphoprotein 1 (STIP1), collapsin response mediator proteins 1 and 2 (CRMP1, CRMP2) and Y-box-binding protein to comprise the seven primary antigens of maternal autoantibody-related (MAR) autism. Exclusive reactivity to specific antigen combinations was noted in 23% of mothers of ASD children and only 1% of controls. ASD children from mothers with specific reactivity to LDH, STIP1 and CRMP1 and/or cypin (7% vs 0% in controls; P<0.0002; odds ratios of 24.2 (95% confidence interval: 1.45–405)) had elevated stereotypical behaviors compared with ASD children from mothers lacking these antibodies. We describe the first panel of clinically significant biomarkers with over 99% specificity for autism risk thereby advancing our understanding of the etiologic mechanisms and therapeutic possibilities for MAR autism. PMID:23838888

  8. Evidence for Critical Role of Lymphocyte Cytosolic Protein 1 in Oral Cancer

    PubMed Central

    Koide, Nao; Kasamatsu, Atsushi; Endo-Sakamoto, Yosuke; Ishida, Sho; Shimizu, Toshihiro; Kimura, Yasushi; Miyamoto, Isao; Yoshimura, Shusaku; Shiiba, Masashi; Tanzawa, Hideki; Uzawa, Katsuhiro

    2017-01-01

    Lymphocyte cytosolic protein 1 (LCP1), a member of actin-binding protein of the plastin family, has been identified in several malignant tumors of non-hematopoietic sites, such as the colon, prostate, and breast. However, little is known about the roles of LCP1 in oral squamous cell carcinomas (OSCCs). This present study sought to clarify the clinical relevance of LCP1 in OSCCs and investigate possible clinical applications for treating OSCCs by regulating LCP1 expression. We found up-regulation of LCP1in OSCCs compared with normal counterparts using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunoblotting, and immunohistochemistry (P < 0.05). We used shRNA models for LCP1 (shLCP1) and enoxacin (ENX), a fluoroquinolone antibiotic drug, as a regulator of LCP1 expression. In addition to the LCP1 knockdown experiments in which shLCP1 cells showed several depressed functions, including cellular proliferation, invasiveness, and migratory activities, ENX-treated cells also had attenuated functions. Consistent with our hypothesis from our in vitro data, LCP1-positive OSCC samples were correlated closely with the primary tumoral size and regional lymph node metastasis. These results suggested that LCP1 is a useful biomarker for determining progression of OSCCs and that ENX might be a new therapeutic agent for treating OSCCs by controlling LCP1 expression. PMID:28230172

  9. Accumulation of Glucosylceramide in the Absence of the Beta-Glucosidase GBA2 Alters Cytoskeletal Dynamics

    PubMed Central

    Raju, Diana; Schonauer, Sophie; Hamzeh, Hussein; Flynn, Kevin C.; Bradke, Frank; vom Dorp, Katharina; Dörmann, Peter; Yildiz, Yildiz; Trötschel, Christian; Poetsch, Ansgar; Breiden, Bernadette; Sandhoff, Konrad; Körschen, Heinz G.; Wachten, Dagmar

    2015-01-01

    Glycosphingolipids are key elements of cellular membranes, thereby, controlling a variety of cellular functions. Accumulation of the simple glycosphingolipid glucosylceramide results in life-threatening lipid storage-diseases or in male infertility. How glucosylceramide regulates cellular processes is ill defined. Here, we reveal that glucosylceramide accumulation in GBA2 knockout-mice alters cytoskeletal dynamics due to a more ordered lipid organization in the plasma membrane. In dermal fibroblasts, accumulation of glucosylceramide augments actin polymerization and promotes microtubules persistence, resulting in a higher number of filopodia and lamellipodia and longer microtubules. Similar cytoskeletal defects were observed in male germ and Sertoli cells from GBA2 knockout-mice. In particular, the organization of F-actin structures in the ectoplasmic specialization and microtubules in the sperm manchette is affected. Thus, glucosylceramide regulates cytoskeletal dynamics, providing mechanistic insights into how glucosylceramide controls signaling pathways not only during sperm development, but also in other cell types. PMID:25803043

  10. Dynamic membrane-cytoskeletal interactions: specific association of integrin and talin arises in vivo after phorbol ester treatment of peripheral blood lymphocytes.

    PubMed Central

    Burn, P; Kupfer, A; Singer, S J

    1988-01-01

    Members of the family of transmembrane integral membrane proteins called integrins have been implicated in forming attachments to actin microfilaments of the cytoskeleton. These attachments are thought to involve one or more intervening peripheral membrane proteins linked to integrin. To detect such possible linkages in vivo, the integrin molecules on the surfaces of intact chicken peripheral blood lymphocytes were collected into caps by cross-linking with specific antibodies, and the capped cells were examined by double immunofluorescence to determine whether particular cytoskeletal proteins were co-collected with the integrin. With resting lymphocytes, the capping of integrin did not result in any detectable redistribution of either talin, vinculin, or alpha-actinin inside the cells. However, if the capping was carried out upon the addition of phorbol 12-myristate 13-acetate (PMA) to the cells, then talin, but not vinculin or alpha-actinin, was found associated with the integrin caps. PMA is known to activate protein kinase C. These results suggest that after, but not before, PMA stimulation of intact cells, talin becomes linked either directly or indirectly with integrin, reflecting the formation of a membrane-cytoskeletal association that is metabolically regulated. Images PMID:3124107

  11. Preparation of Active Proteins, Vaccines and Pharmaceuticals as Fine Powders using Supercritical or Near-Critical Fluids

    PubMed Central

    Villa, Joseph A.; Huang, Edward T. S.; Yang, Tzung-Horng; Carpenter, John F.; Sievers, Robert E.

    2008-01-01

    Supercritical or near-critical fluid processes for generating microparticles have enjoyed considerable attention in the past decade or so, with good success for substances soluble in supercritical fluids or organic solvents. In this review, we survey their application to the production of protein particles. A recently developed process known as CO2-assisted nebulization with a Bubble Dryer® (CAN-BD) has been demonstrated to have broad applicability to small-molecule as well as macromolecule substances (including therapeutic proteins). The principles of CAN-BD are discussed as well as the stabilization, micronization and drying of a wide variety of materials. More detailed case studies are presented for three proteins, two of which are of therapeutic interest: anti-CD4 antibody (rheumatoid arthritis), α1-antitrypsin (cystic fibrosis and emphysema), and trypsinogen (a model enzyme). Dry powders were formed in which stability and activity are maintained and which are fine enough to be inhaled and reach the deep lung. Enhancement of apparent activity after CAN-BD processing was also observed in some formulation and processing conditions. PMID:18581212

  12. p38 and a p38-interacting protein are critical for downregulation of E-cadherin during mouse gastrulation.

    PubMed

    Zohn, Irene E; Li, Yingqiu; Skolnik, Edward Y; Anderson, Kathryn V; Han, Jiahuai; Niswander, Lee

    2006-06-02

    During vertebrate gastrulation, an epithelial to mesenchymal transition (EMT) is necessary for migration of mesoderm from the primitive streak. We demonstrate that p38 MAP kinase and a p38-interacting protein (p38IP) are critically required for downregulation of E-cadherin during gastrulation. In an ENU-mutagenesis screen we identified the droopy eye (drey) mutation, which affects splicing of p38IP. p38IP(drey) mutant embryos display incompletely penetrant defects in neural tube closure, eye development, and gastrulation. A stronger allele (p38IP(RRK)) exhibits gastrulation defects in which mesoderm migration is defective due to deficiency in E-cadherin protein downregulation in the primitive streak. We show that p38IP binds directly to p38 and is required for p38 activation in vivo. Moreover, both p38 and p38IP are required for E-cadherin downregulation during gastrulation. Finally, p38 regulates E-cadherin protein expression downstream from NCK-interacting kinase (NIK) and independently of the regulation of transcription by Fibroblast Growth Factor (Fgf) signaling and Snail.

  13. The F13 residue is critical for interaction among the coat protein subunits of papaya mosaic virus.

    PubMed

    Laliberté Gagné, M E; Lecours, K; Gagné, S; Leclerc, D

    2008-04-01

    Papaya mosaic virus (PapMV) coat protein (CP) in Escherichia coli was previously showed to self-assemble in nucleocapsid-like particles (NLPs) that were similar in shape and appearance to the native virus. We have also shown that a truncated CP missing the N-terminal 26 amino acids is monomeric and loses its ability to bind RNA. It is likely that the N-terminus of the CP is important for the interaction between the subunits in self-assembly into NLPs. In this work, through deletion and mutation analysis, we have shown that the deletion of 13 amino acids is sufficient to generate the monomeric form of the CP. Furthermore, we have shown that residue F13 is critical for self-assembly of the CP subunits into NLPs. The replacement of F13 with hydrophobic residues (L or Y) generated mutated forms of the CP that were able to self-assemble into NLPs. However, the replacement of F13 by A, G, R, E or S was detrimental to the self-assembly of the protein into NLPs. We concluded that a hydrophobic interaction at the N-terminus is important to ensure self-assembly of the protein into NLPs. We also discuss the importance of F13 for assembly of other members of the potexvirus family.

  14. The Presynaptic Active Zone Protein RIM1α Is Critical for Normal Learning and Memory

    PubMed Central

    Powell, Craig M.; Schoch, Susanne; Monteggia, Lisa; Barrot, Michel; Matos, Maria F.; Feldmann, Nicole; Südhof, Thomas C.; Nestler, Eric J.

    2014-01-01

    Summary The active zone protein RIM1α is required both for maintaining normal probability of neurotransmitter release and for long-term presynaptic potentiation at brain synapses. We now demonstrate that RIM1α−/− mice exhibit normal coordination and anxiety-related behaviors but display severely impaired learning and memory. Mice with a synaptotagmin 1 mutation, which selectively lowers release probability, and mice with Rab3A deletion, which selectively abolishes presynaptic long-term potentiation, do not exhibit this abnormality. Our data suggest that a decrease in release probability or a loss of presynaptic LTP alone is not sufficient to cause major behavioral alterations, but the combination of presynaptic abnormalities in RIM1α−/− mice severely alters learning and memory. PMID:15066271

  15. The Caenorhabditis elegans protein SAS-5 forms large oligomeric assemblies critical for centriole formation

    PubMed Central

    Rogala, Kacper B; Dynes, Nicola J; Hatzopoulos, Georgios N; Yan, Jun; Pong, Sheng Kai; Robinson, Carol V; Deane, Charlotte M; Gönczy, Pierre; Vakonakis, Ioannis

    2015-01-01

    Centrioles are microtubule-based organelles crucial for cell division, sensing and motility. In Caenorhabditis elegans, the onset of centriole formation requires notably the proteins SAS-5 and SAS-6, which have functional equivalents across eukaryotic evolution. Whereas the molecular architecture of SAS-6 and its role in initiating centriole formation are well understood, the mechanisms by which SAS-5 and its relatives function is unclear. Here, we combine biophysical and structural analysis to uncover the architecture of SAS-5 and examine its functional implications in vivo. Our work reveals that two distinct self-associating domains are necessary to form higher-order oligomers of SAS-5: a trimeric coiled coil and a novel globular dimeric Implico domain. Disruption of either domain leads to centriole duplication failure in worm embryos, indicating that large SAS-5 assemblies are necessary for function in vivo. DOI: http://dx.doi.org/10.7554/eLife.07410.001 PMID:26023830

  16. The Caenorhabditis elegans protein SAS-5 forms large oligomeric assemblies critical for centriole formation.

    PubMed

    Rogala, Kacper B; Dynes, Nicola J; Hatzopoulos, Georgios N; Yan, Jun; Pong, Sheng Kai; Robinson, Carol V; Deane, Charlotte M; Gönczy, Pierre; Vakonakis, Ioannis

    2015-05-29

    Centrioles are microtubule-based organelles crucial for cell division, sensing and motility. In Caenorhabditis elegans, the onset of centriole formation requires notably the proteins SAS-5 and SAS-6, which have functional equivalents across eukaryotic evolution. Whereas the molecular architecture of SAS-6 and its role in initiating centriole formation are well understood, the mechanisms by which SAS-5 and its relatives function is unclear. Here, we combine biophysical and structural analysis to uncover the architecture of SAS-5 and examine its functional implications in vivo. Our work reveals that two distinct self-associating domains are necessary to form higher-order oligomers of SAS-5: a trimeric coiled coil and a novel globular dimeric Implico domain. Disruption of either domain leads to centriole duplication failure in worm embryos, indicating that large SAS-5 assemblies are necessary for function in vivo.

  17. A Critical Assessment of Information-guided Protein–Protein Docking Predictions*

    PubMed Central

    Shih, Edward S. C.; Hwang, Ming-Jing

    2013-01-01

    The structures of protein complexes are increasingly predicted via protein–protein docking (PPD) using ambiguous interaction data to help guide the docking. These data often are incomplete and contain errors and therefore could lead to incorrect docking predictions. In this study, we performed a series of PPD simulations to examine the effects of incompletely and incorrectly assigned interface residues on the success rate of PPD predictions. The results for a widely used PPD benchmark dataset obtained using a new interface information-driven PPD (IPPD) method developed in this work showed that the success rate for an acceptable top-ranked model varied, depending on the information content used, from as high as 95% when contact relationships (though not contact distances) were known for all residues to 78% when only the interface/non-interface state of the residues was known. However, the success rates decreased rapidly to ∼40% when the interface/non-interface state of 20% of the residues was assigned incorrectly, and to less than 5% for a 40% incorrect assignment. Comparisons with results obtained by re-ranking a global search and with those reported for other data-guided PPD methods showed that, in general, IPPD performed better than re-ranking when the information used was more complete and more accurate, but worse when it was not, and that when using bioinformatics-predicted information on interface residues, IPPD and other data-guided PPD methods performed poorly, at a level similar to simulations with a 40% incorrect assignment. These results provide guidelines for using information about interface residues to improve PPD predictions and reveal a bottleneck for such improvement imposed by the low accuracy of current bioinformatic interface residue predictions. PMID:23242549

  18. Abl2/Arg controls dendritic spine and dendrite arbor stability via distinct cytoskeletal control pathways.

    PubMed

    Lin, Yu-Chih; Yeckel, Mark F; Koleske, Anthony J

    2013-01-30

    Rho family GTPases coordinate cytoskeletal rearrangements in neurons, and mutations in their regulators are associated with mental retardation and other neurodevelopmental disorders (Billuart et al., 1998; Kutsche et al., 2000; Newey et al., 2005; Benarroch, 2007). Chromosomal microdeletions encompassing p190RhoGAP or its upstream regulator, the Abl2/Arg tyrosine kinase, have been observed in cases of mental retardation associated with developmental defects (Scarbrough et al., 1988; James et al., 1996; Takano et al., 1997; Chaabouni et al., 2006; Leal et al., 2009). Genetic knock-out of Arg in mice leads to synapse, dendritic spine, and dendrite arbor loss accompanied by behavioral deficits (Moresco et al., 2005; Sfakianos et al., 2007). To elucidate the cell-autonomous mechanisms by which Arg regulates neuronal stability, we knocked down Arg in mouse hippocampal neuronal cultures. We find that Arg knockdown significantly destabilizes dendrite arbors and reduces dendritic spine density by compromising dendritic spine stability. Inhibiting RhoA prevents dendrite arbor loss following Arg knockdown in neurons, but does not block spine loss. Interestingly, Arg-deficient neurons exhibit increased miniature EPSC amplitudes, and their remaining spines exhibit larger heads deficient in the actin stabilizing protein cortactin. Spine destabilization in Arg knockdown neurons is prevented by blocking NMDA receptor-dependent relocalization of cortactin from spines, or by forcing cortactin into spines via fusion to an actin-binding region of Arg. Thus, Arg employs distinct mechanisms to selectively regulate spine and dendrite stability: Arg dampens activity-dependent disruption of cortactin localization to stabilize spines and attenuates Rho activity to stabilize dendrite arbors.

  19. Corticosterone treatment results in enhanced release of peptidergic vesicles in astrocytes via cytoskeletal rearrangements.

    PubMed

    Chatterjee, Sreejata; Sikdar, Sujit K

    2013-12-01

    While the effect of stress on neuronal physiology is widely studied, its effect on the functionality of astrocytes is not well understood. We studied the effect of high doses of stress hormone corticosterone, on two physiological properties of astrocytes, i.e., gliotransmission and interastrocytic calcium waves. To study the release of peptidergic vesicles from astrocytes, hippocampal astrocyte cultures were transfected with a plasmid to express pro-atrial natriuretic peptide (ANP) fused with the emerald green fluorescent protein (ANP.emd). The rate of decrease in fluorescence of ANP.emd on application of ionomycin, a calcium ionophore was monitored. Significant increase in the rate of calcium-dependent exocytosis of ANP.emd was observed with the 100 nM and 1 μM corticosterone treatments for 3 h, which depended on the activation of the glucocorticoid receptor. ANP.emd tagged vesicles exhibited increased mobility in astrocyte culture upon corticosterone treatment. Increasing corticosterone concentrations also resulted in concomitant increase in the calcium wave propagation velocity, initiated by focal ATP application. Corticosterone treatment also resulted in increased GFAP expression and F-actin rearrangements. FITC-Phalloidin immunostaining revealed increased formation of cross linked F-actin networks with the 100 nM and 1 μM corticosterone treatment. Alternatively, blockade of actin polymerization and disruption of microtubules prevented the corticosterone-mediated increase in ANP.emd release kinetics. This study reports for the first time the effect of corticosterone on gliotransmission via modulation of cytoskeletal elements. As ANP acts on both neurons and blood vessels, modulation of its release could have functional implications in neurovascular coupling under pathophysiological conditions of stress.

  20. Real space flight travel is associated with ultrastructural changes, cytoskeletal disruption and premature senescence of HUVEC.

    PubMed

    Kapitonova, M Y; Muid, S; Froemming, G R A; Yusoff, W N W; Othman, S; Ali, A M; Nawawi, H M

    2012-12-01

    Microgravity, hypergravity, vibration, ionizing radiation and temperature fluctuations are major factors of outer space flight affecting human organs and tissues. There are several reports on the effect of space flight on different human cell types of mesenchymal origin while information regarding changes to vascular endothelial cells is scarce. Ultrastructural and cytophysiological features of macrovascular endothelial cells in outer space flight and their persistence during subsequent culturing were demonstrated in the present investigation. At the end of the space flight, endothelial cells displayed profound changes indicating cytoskeletal lesions and increased cell membrane permeability. Readapted cells of subsequent passages exhibited persisting cytoskeletal changes, decreased metabolism and cell growth indicating cellular senescence.

  1. Simultaneous Visualization of Peroxisomes and Cytoskeletal Elements Reveals Actin and Not Microtubule-Based Peroxisome Motility in Plants1[w

    PubMed Central

    Mathur, Jaideep; Mathur, Neeta; Hülskamp, Martin

    2002-01-01

    Peroxisomes were visualized in living plant cells using a yellow fluorescent protein tagged with a peroxisomal targeting signal consisting of the SKL motif. Simultaneous visualization of peroxisomes and microfilaments/microtubules was accomplished in onion (Allium cepa) epidermal cells transiently expressing the yellow fluorescent protein-peroxi construct, a green fluorescent protein-mTalin construct that labels filamentous-actin filaments, and a green fluorescent protein-microtubule-binding domain construct that labels microtubules. The covisualization of peroxisomes and cytoskeletal elements revealed that, contrary to the reports from animal cells, peroxisomes in plants appear to associate with actin filaments and not microtubules. That peroxisome movement is actin based was shown by pharmacological studies. For this analysis we used onion epidermal cells and various cell types of Arabidopsis including trichomes, root hairs, and root cortex cells exhibiting different modes of growth. In transient onion epidermis assay and in transgenic Arabidopsis plants, an interference with the actin cytoskeleton resulted in progressive loss of saltatory movement followed by the aggregation and a complete cessation of peroxisome motility within 30 min of drug application. Microtubule depolymerization or stabilization had no effect. PMID:11891258

  2. Presynaptic calcium channels and α3-integrins are complexed with synaptic cleft laminins, cytoskeletal elements and active zone components.

    PubMed

    Carlson, Steven S; Valdez, Gregorio; Sanes, Joshua R

    2010-11-01

    At chemical synapses, synaptic cleft components interact with elements of the nerve terminal membrane to promote differentiation and regulate function. Laminins containing the β2 subunit are key cleft components, and they act in part by binding the pore-forming subunit of a pre-synaptic voltage-gated calcium channel (Ca(v)α) (Nishimune et al. 2004). In this study, we identify Ca(v)α-associated intracellular proteins that may couple channel-anchoring to assembly or stabilization of neurotransmitter release sites called active zones. Using Ca(v)α-antibodies, we isolated a protein complex from Torpedo electric organ synapses, which resemble neuromuscular junctions but are easier to isolate in bulk. We identified 10 components of the complex: six cytoskeletal proteins (α2/β2 spectrins, plectin 1, AHNAK/desmoyokin, dystrophin, and myosin 1), two active zone components (bassoon and piccolo), synaptic laminin, and a calcium channel β subunit. Immunocytochemistry confirmed these proteins in electric organ synapses, and PCR analysis revealed their expression by developing mammalian motor neurons. Finally, we show that synaptic laminins also interact with pre-synaptic integrins containing the α3 subunit. Together with our previous finding that a distinct synaptic laminin interacts with SV2 on nerve terminals (Son et al. 2000), our results identify three paths by which synaptic cleft laminins can send developmentally important signals to nerve terminals.

  3. Critical Diamond-Blackfan anemia due to ribosomal protein S19 missense mutation.

    PubMed

    Ozono, Shuichi; Mitsuo, Miho; Noguchi, Maiko; Nakagawa, Shin-Ichiro; Ueda, Koichiro; Inada, Hiroko; Ohga, Shouichi; Ito, Etsuro

    2016-09-01

    Diamond-Blackfan anemia (DBA) is a rare congenital disorder characterized by pure erythrocyte aplasia, and approximately 70% of patients carry mutations in the genes encoding ribosomal proteins (RP). Here, we report the case of a male infant with DBA who presented with anemic crisis (hemoglobin [Hb] concentration 1.5 g/dL) at 58 days after birth. On admission, the infant was pale and had tachypnea, but recovered with intensive care, including red blood cell transfusions, and prednisolone. Based on the clinical diagnosis of DBA, the father of the infant had cyclosporine-A-dependent anemia. On analysis of RP genes when the infant was 6 months old, both the infant and the father, but not the mother, were found to harbor a mutation of RPS19 (c.167G > C, p. R56P). Therefore, genetic background search and early neonatal health check-ups are recommended for families with a history of inherited bone marrow failure syndromes.

  4. Crystal Structure of CCM3, a Cerebral Cavernous Malformation Protein Critical for Vascular Integrity

    SciTech Connect

    Li, X.; Zhang, R; Zhang, H; He, Y; Ji, W; Min, W; Boggon, T

    2010-01-01

    CCM3 mutations are associated with cerebral cavernous malformation (CCM), a disease affecting 0.1-0.5% of the human population. CCM3 (PDCD10, TFAR15) is thought to form a CCM complex with CCM1 and CCM2; however, the molecular basis for these interactions is not known. We have determined the 2.5 {angstrom} crystal structure of CCM3. This structure shows an all {alpha}-helical protein containing two domains, an N-terminal dimerization domain with a fold not previously observed, and a C-terminal focal adhesion targeting (FAT)-homology domain. We show that CCM3 binds CCM2 via this FAT-homology domain and that mutation of a highly conserved FAK-like hydrophobic pocket (HP1) abrogates CCM3-CCM2 interaction. This CCM3 FAT-homology domain also interacts with paxillin LD motifs using the same surface, and partial CCM3 co-localization with paxillin in cells is lost on HP1 mutation. Disease-related CCM3 truncations affect the FAT-homology domain suggesting a role for the FAT-homology domain in the etiology of CCM.

  5. Crystal structure of CCM3, a cerebral cavernous malformation protein critical for vascular integrity.

    PubMed

    Li, Xiaofeng; Zhang, Rong; Zhang, Haifeng; He, Yun; Ji, Weidong; Min, Wang; Boggon, Titus J

    2010-07-30

    CCM3 mutations are associated with cerebral cavernous malformation (CCM), a disease affecting 0.1-0.5% of the human population. CCM3 (PDCD10, TFAR15) is thought to form a CCM complex with CCM1 and CCM2; however, the molecular basis for these interactions is not known. We have determined the 2.5 A crystal structure of CCM3. This structure shows an all alpha-helical protein containing two domains, an N-terminal dimerization domain with a fold not previously observed, and a C-terminal focal adhesion targeting (FAT)-homology domain. We show that CCM3 binds CCM2 via this FAT-homology domain and that mutation of a highly conserved FAK-like hydrophobic pocket (HP1) abrogates CCM3-CCM2 interaction. This CCM3 FAT-homology domain also interacts with paxillin LD motifs using the same surface, and partial CCM3 co-localization with paxillin in cells is lost on HP1 mutation. Disease-related CCM3 truncations affect the FAT-homology domain suggesting a role for the FAT-homology domain in the etiology of CCM.

  6. Critical role of s465 in protein kinase C-increased rat glutamate transporter type 3 activity.

    PubMed

    Baik, Hee Jung; Huang, Yueming; Washington, Jacqueline M; Zuo, Zhiyi

    2009-01-01

    Glutamate transporters, also called excitatory amino acid transporters (EAATs), uptake extracellular glutamate and regulate neurotransmission. Activation of protein kinase C (PKC) increases the activity of EAAT type 3 (EAAT3), the major neuronal EAAT. We designed this study to determine which amino acid residue(s) in EAAT3 may be involved in this PKC effect. Selective potential PKC phosphorylation sites were mutated. These EAAT3 mutants were expressed in the Xenopus oocytes. Phorbol 12-myristate 13-acetate, a PKC activator, significantly increased wild-type EAAT3 activity. Mutation of serine 465 to alanine or aspartic acid, but not the mutation of threonine 5 to alanine, abolished PKC-increased EAAT3 activity. Our results suggest a critical role of serine 465 in the increased EAAT3 activity by PKC activation.

  7. Mammalian enabled (Mena) is a critical regulator of cardiac function.

    PubMed

    Aguilar, Frédérick; Belmonte, Stephen L; Ram, Rashmi; Noujaim, Sami F; Dunaevsky, Olga; Protack, Tricia L; Jalife, Jose; Todd Massey, H; Gertler, Frank B; Blaxall, Burns C

    2011-05-01

    Mammalian enabled (Mena) of the Drosophila enabled/vasodilator-stimulated phosphoprotein gene family is a cytoskeletal protein implicated in actin regulation and cell motility. Cardiac Mena expression is enriched in intercalated discs (ICD), the critical intercellular communication nexus between adjacent muscle cells. We previously identified Mena gene expression to be a key predictor of human and murine heart failure (HF). To determine the in vivo function of Mena in the heart, we assessed Mena protein expression in multiple HF models and characterized the effects of genetic Mena deletion on cardiac structure and function. Immunoblot analysis revealed significant upregulation of Mena protein expression in left ventricle tissue from patients with end-stage HF, calsequestrin-overexpressing mice, and isoproterenol-infused mice. Characterization of the baseline cardiac function of adult Mena knockout mice (Mena(-/-)) via echocardiography demonstrated persistent cardiac dysfunction, including a significant reduction in percent fractional shortening compared with wild-type littermates. Electrocardiogram PR and QRS intervals were significantly prolonged in Mena(-/-) mice, manifested by slowed conduction on optical mapping studies. Ultrastructural analysis of Mena(-/-) hearts revealed disrupted organization and widening of ICD structures, mislocalization of the gap junction protein connexin 43 (Cx43) to the lateral borders of cardiomyoycytes, and increased Cx43 expression. Furthermore, the expression of vinculin (an adherens junction protein) was significantly reduced in Mena(-/-) mice. We report for the first time that genetic ablation of Mena results in cardiac dysfunction, highlighted by diminished contractile performance, disrupted ICD structure, and slowed electrical conduction.

  8. Substrate-protein interaction in human tryptophan dioxygenase: the critical role of H76.

    PubMed

    Batabyal, Dipanwita; Yeh, Syun-Ru

    2009-03-11

    The initial and rate-limiting step of the kynurenine pathway in humans involves the oxidation of tryptophan to N-formyl kynurenine catalyzed by two hemeproteins, tryptophan 2,3-dioxygenase (hTDO) and indoleamine 2,3-dioxygenase (hIDO). In hTDO, the conserved H76 residue is believed to act as an active site base to deprotonate the indole NH group of Trp, the initial step of the Trp oxidation reaction. In hIDO, this histidine is replaced by a serine. To investigate the role of the H76, we have studied the H76S and H76A mutants of hTDO. Activity assays show that the mutations cause a decrease in k(cat) and an increase in K(M) for both mutants. The decrease in the k(cat) is accounted for by the replacement of the active site base catalyst, H76, with a weaker base, possibly a water, whereas the increase in K(M) is attributed to the loss of the specific interactions between the H76 and the substrate as well as the protein matrix. Resonance Raman studies with various Trp analogs indicate that the substrate is positioned in the active site by the ammonium, carboxylate, and indole groups, via intricate H-bonding and hydrophobic interactions. This scenario is consistent with the observation that l-Trp binding significantly perturbs the electronic properties of the O(2)-adduct of hTDO. The important structural and functional roles of H76 in hTDO is underscored by the observation that the electronic configuration of the active ternary complex, l-Trp-O(2)-hTDO, is sensitive to the H76 mutations.

  9. The matricellular protein CCN1/Cyr61 is a critical regulator of Sonic Hedgehog in pancreatic carcinogenesis.

    PubMed

    Haque, Inamul; De, Archana; Majumder, Monami; Mehta, Smita; McGregor, Douglas; Banerjee, Sushanta K; Van Veldhuizen, Peter; Banerjee, Snigdha

    2012-11-09

    CCN1 is a matricellular protein and a member of the CCN family of growth factors. CCN1 is associated with the development of various cancers including pancreatic ductal adenocarcinoma (PDAC). Our recent studies found that CCN1 plays a critical role in pancreatic carcinogenesis through the induction of EMT and stemness. CCN1 mRNA and protein were detected in the early precursor lesions, and their expression intensified with disease progression. However, biochemical activity and the molecular targets of CCN1 in pancreatic cancer cells are unknown. Here we show that CCN1 regulates the Sonic Hedgehog (SHh) signaling pathway, which is associated with the PDAC progression and poor prognosis. SHh regulation by CCN1 in pancreatic cancer cells is mediated through the active Notch-1. Notably, active Notch-1is recruited by CCN1 in these cells via the inhibition of proteasomal degradation results in stabilization of the receptor. We find that CCN1-induced activation of SHh signaling might be necessary for CCN1-dependent in vitro pancreatic cancer cell migration and tumorigenicity of the side population of pancreatic cancer cells (cancer stem cells) in a xenograft in nude mice. Moreover, the functional role of CCN1 could be mediated through the interaction with the αvβ3 integrin receptor. These extensive studies propose that targeting CCN1 can provide a new treatment option for patients with pancreatic cancer since blocking CCN1 simultaneously blocks two critical pathways (i.e. SHh and Notch1) associated with the development of the disease as well as drug resistance.

  10. The Matricellular Protein CCN1/Cyr61 Is a Critical Regulator of Sonic Hedgehog in Pancreatic Carcinogenesis*

    PubMed Central

    Haque, Inamul; De, Archana; Majumder, Monami; Mehta, Smita; McGregor, Douglas; Banerjee, Sushanta K.; Van Veldhuizen, Peter; Banerjee, Snigdha

    2012-01-01

    CCN1 is a matricellular protein and a member of the CCN family of growth factors. CCN1 is associated with the development of various cancers including pancreatic ductal adenocarcinoma (PDAC). Our recent studies found that CCN1 plays a critical role in pancreatic carcinogenesis through the induction of EMT and stemness. CCN1 mRNA and protein were detected in the early precursor lesions, and their expression intensified with disease progression. However, biochemical activity and the molecular targets of CCN1 in pancreatic cancer cells are unknown. Here we show that CCN1 regulates the Sonic Hedgehog (SHh) signaling pathway, which is associated with the PDAC progression and poor prognosis. SHh regulation by CCN1 in pancreatic cancer cells is mediated through the active Notch-1. Notably, active Notch-1is recruited by CCN1 in these cells via the inhibition of proteasomal degradation results in stabilization of the receptor. We find that CCN1-induced activation of SHh signaling might be necessary for CCN1-dependent in vitro pancreatic cancer cell migration and tumorigenicity of the side population of pancreatic cancer cells (cancer stem cells) in a xenograft in nude mice. Moreover, the functional role of CCN1 could be mediated through the interaction with the αvβ3 integrin receptor. These extensive studies propose that targeting CCN1 can provide a new treatment option for patients with pancreatic cancer since blocking CCN1 simultaneously blocks two critical pathways (i.e. SHh and Notch1) associated with the development of the disease as well as drug resistance. PMID:23027863

  11. Advanced oxidation protein products (AOPP) for monitoring oxidative stress in critically ill patients: a simple, fast and inexpensive automated technique.

    PubMed

    Selmeci, László; Seres, Leila; Antal, Magda; Lukács, Júlia; Regöly-Mérei, Andrea; Acsády, György

    2005-01-01

    Oxidative stress is known to be involved in many human pathological processes. Although there are numerous methods available for the assessment of oxidative stress, most of them are still not easily applicable in a routine clinical laboratory due to the complex methodology and/or lack of automation. In research into human oxidative stress, the simplification and automation of techniques represent a key issue from a laboratory point of view at present. In 1996 a novel oxidative stress biomarker, referred to as advanced oxidation protein products (AOPP), was detected in the plasma of chronic uremic patients. Here we describe in detail an automated version of the originally published microplate-based technique that we adapted for a Cobas Mira Plus clinical chemistry analyzer. AOPP reference values were measured in plasma samples from 266 apparently healthy volunteers (university students; 81 male and 185 female subjects) with a mean age of 21.3 years (range 18-33). Over a period of 18 months we determined AOPP concentrations in more than 300 patients in our department. Our experiences appear to demonstrate that this technique is especially suitable for monitoring oxidative stress in critically ill patients (sepsis, reperfusion injury, heart failure) even at daily intervals, since AOPP exhibited rapid responses in both directions. We believe that the well-established relationship between AOPP response and induced damage makes this simple, fast and inexpensive automated technique applicable in daily routine laboratory practice for assessing and monitoring oxidative stress in critically ill or other patients.

  12. Novel insights into G protein and G protein-coupled receptor signaling in cancer.

    PubMed

    O'Hayre, Morgan; Degese, Maria S; Gutkind, J Silvio

    2014-04-01

    G protein-coupled receptors (GPCRs) play a central role in signal transmission, thereby controlling many facets of cellular function. Overwhelming evidence now implicates GPCRs, G proteins and their downstream signaling targets in cancer initiation and progression, where they can influence aberrant cell growth and survival, largely through activation of AKT/mTOR, MAPKs, and Hippo signaling pathways. GPCRs also play critical roles in the invasion and metastasis of cancer cells via activation of Rho GTPases and cytoskeletal changes, and angiogenesis to supply the tumor with nutrients and provide routes for metastasis. Lastly, GPCRs contribute to the establishment and maintenance of a permissive tumor microenvironment. Understanding GPCR involvement in cancer malignancy may help identify novel therapeutic opportunities for cancer prevention and treatment.

  13. Multiple mutations of the critical amino acid residues for the sweetness of the sweet-tasting protein, brazzein.

    PubMed

    Lee, Joo-Won; Cha, Ji-Eun; Jo, Hyun-Joo; Kong, Kwang-Hoon

    2013-06-01

    We have previously identified critical residues important for sweetness of the sweet protein brazzein by site-directed mutagenesis (Yoon, Kong, Jo, & Kong, 2011). In order to elucidate the interaction mechanisms of brazzein with the sweet taste receptor, we made multiple mutations of three residues (His31 in loop 30-33, Glu36 in β-strand III, and Glu41 in loop 40-43). We found that all double mutations (H31R/E36D, H31R/E41A and E36D/E41A) made the molecules sweeter than des-pE1M-brazzein and three single mutants. Moreover, the triple mutation (H31R/E36D/E41A) made the molecule significantly sweeter than three double mutants. These results strongly support the hypothesis that brazzein binds to the multisite surface of the sweet taste receptor. Our findings also suggest that mutations reducing the overall negative charge and/or increasing the positive charge favour sweet-tasting protein potency.

  14. Endothelial Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 Is Critical for Lymphatic Vascular Development and Function

    PubMed Central

    Guo, Chang-An; Danai, Laura V.; Yawe, Joseph C.; Gujja, Sharvari; Edwards, Yvonne J. K.

    2016-01-01

    The molecular mechanisms underlying lymphatic vascular development and function are not well understood. Recent studies have suggested a role for endothelial cell (EC) mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) in developmental angiogenesis and atherosclerosis. Here, we show that constitutive loss of EC Map4k4 in mice causes postnatal lethality due to chylothorax, suggesting that Map4k4 is required for normal lymphatic vascular function. Mice constitutively lacking EC Map4k4 displayed dilated lymphatic capillaries, insufficient lymphatic valves, and impaired lymphatic flow; furthermore, primary ECs derived from these animals displayed enhanced proliferation compared with controls. Yeast 2-hybrid analyses identified the Ras GTPase-activating protein Rasa1, a known regulator of lymphatic development and lymphatic endothelial cell fate, as a direct interacting partner for Map4k4. Map4k4 silencing in ECs enhanced basal Ras and extracellular signal-regulated kinase (Erk) activities, and primary ECs lacking Map4k4 displayed enhanced lymphatic EC marker expression. Taken together, these results reveal that EC Map4k4 is critical for lymphatic vascular development by regulating EC quiescence and lymphatic EC fate. PMID:27044870

  15. Scaffold mediated regulation of MAPK signaling and cytoskeletal dynamics: A perspective

    PubMed Central

    Pullikuth, Ashok K.; Catling, Andrew D.

    2008-01-01

    Cell migration is critical for many physiological processes and is often misregulated in developmental disorders and pathological conditions including cancer and neurodegeneration. MAPK signaling and the Rho family of proteins are known regulators of cell migration that exert their influence on cellular cytoskeleton during cell adhesion and migration. Here we review data supporting the view that localized ERK signaling mediated through recently identified scaffold proteins may regulate cell migration. PMID:17553668

  16. Temporal changes in cytoskeletal organisation within isolated chondrocytes quantified using a novel image analysis technique.

    PubMed

    Knight, M M; Idowu, B D; Lee, D A; Bader, D L

    2001-05-01

    This paper examines temporal changes in the organisation of the cytoskeleton within isolated articular chondrocytes cultured for up to 7 days in agarose constructs. Fluorescent labelling and confocal microscopy were employed to visualise microtubules (MT), vimentin intermediate filaments (VIF) and actin microfilaments (AMF). To quantify the degree of cytoskeletal organisation within populations of cells, a novel image analysis technique has been developed and fully characterised. Organisation was quantified in terms of an Edge Index, which reflects the density of 'edges' present within the confocal images as defined by a Sobel digital filter. This parameter was shown to be independent of image intensity and, for all three cytoskeletal components, was validated statistically against a visual assessment of organisation. Both MT and VIF exhibited fibrous networks extending throughout the cytoplasm, while AMF appeared as punctate units associated with the cell membrane. The use of the Edge Index parameter revealed statistical significant temporal variation, in particular associated with VIF and AMF. These findings indicate the possibility of cytoskeletal mediated temporal variation in many aspects of cell behaviour following isolation from the intact tissue. Furthermore, the image analysis techniques are likely to be useful for future studies aiming to quantify changes in cytoskeletal organisation.

  17. Stepwise cytoskeletal polarization as a series of checkpoints in innate but not adaptive cytolytic killing

    NASA Astrophysics Data System (ADS)

    Wülfing, Christoph; Purtic, Bozidar; Klem, Jennifer; Schatzle, John D.

    2003-06-01

    Cytolytic killing is a major effector mechanism in the elimination of virally infected and tumor cells. The innate cytolytic effectors, natural killer (NK) cells, and the adaptive effectors, cytotoxic T cells (CTL), despite differential immune recognition, both use the same lytic mechanism, cytolytic granule release. Using live cell video fluorescence microscopy in various primary cell models of NK cell and CTL killing, we show here that on tight target cell contact, a majority of the NK cells established cytoskeletal polarity required for effective lytic function slowly or incompletely. In contrast, CTLs established cytoskeletal polarity rapidly. In addition, NK cell killing was uniquely sensitive to minor interference with cytoskeletal dynamics. We propose that the stepwise NK cell cytoskeletal polarization constitutes a series of checkpoints in NK cell killing. In addition, the use of more deliberate progression to effector function to compensate for inferior immune recognition specificity provides a mechanistic explanation for how the same effector function can be used in the different functional contexts of the innate and adaptive immune response.

  18. Morphometric analysis of Mauthner axon cytoskeletal components in adult and subadult fish.

    PubMed

    Alfei, L; Medolago-Albani, L; Zezze, G M; Stefanelli, A

    1992-01-01

    A previous cytoskeletal analysis on trout MA during developmental stages demonstrated, during the subadult stages, neurofilaments (NF) as main components as expressed by the high values of neurofilament to microtubules (MT) ratio which was found to be of the order of 300:1. Since the MA cytoskeletal composition is not known in the adult fish, the MA cytoskeletal composition has been compared to other axons of much smaller diameter of the fasciculus longitudinalis medialis (flm) among which the MA run in the ventral spinal cord. The following parameters were measured on conventional electron microscopy in MA and flm axons cross sections micrographs by means of a computer linked graphic tablet (Apple II): axonal caliber, number of microtubules (MT), microtubular (MT/microns2) and neurofilament (NF/microns2) densities. The analysis of these parameters demonstrated that neurofilaments are the main architectural components in the adult and subadult fish MA and flm axons. However, MA cytoskeletal composition differs from the other flm axons because of its particular very high ratio of neurofilaments to microtubules. The inverse relationship of axonal caliber to microtubular density, previously found in the trout during developmental stages and suggested also for many other vertebrate species, was further confirmed for flm axons which, with calibers 10 times smaller than MA, exhibit a microtubular density 10 times larger.

  19. Photoelectron microscopy and immunofluorescence microscopy of cytoskeletal elements in the same cells.

    PubMed Central

    Nadakavukaren, K K; Chen, L B; Habliston, D L; Griffith, O H

    1983-01-01

    Pt K2 rat kangaroo epithelial cells and Rat-1 fibroblasts were grown on conductive glass discs, fixed, and permeabilized, and the cytoskeletal elements actin, keratin, and vimentin were visualized by indirect immunofluorescence. After the fluorescence microscopy, the cells were postfixed and dehydrated for photoelectron microscopy. The contrast in these photoelectron micrographs is primarily topographical in origin, and the presence of fluorescent dyes at low density does not contribute significantly to the material contrast. By comparison with fluorescence micrographs obtained on the same individual cells, actin-containing stress fibers, keratin filaments, and vimentin filaments were identified in the photoelectron micrographs. The apparent volume occupied by the cytoskeletal network in the cells as judged from the photoelectron micrographs is much less than it appears to be from the fluorescence micrographs because the higher resolution of photoelectron microscopy shows the fibers closer to their true dimensions. Photoelectron microscopy is a surface technique, and the images highlight the exposed cytoskeletal structures and suppress those extending along the substrate below the nuclei. The results reported here show marked improvement in image quality of photoelectron micrographs and that this technique has the potential of contributing to higher resolution studies of cytoskeletal structures. Images PMID:6191327

  20. Nano-ZnO leads to tubulin macrotube assembly and actin bundling, triggering cytoskeletal catastrophe and cell necrosis

    NASA Astrophysics Data System (ADS)

    García-Hevia, Lorena; Valiente, Rafael; Martín-Rodríguez, Rosa; Renero-Lecuna, Carlos; González, Jesús; Rodríguez-Fernández, Lidia; Aguado, Fernando; Villegas, Juan C.; Fanarraga, Mónica L.

    2016-05-01

    Zinc is a crucial element in biology that plays chief catalytic, structural and protein regulatory roles. Excess cytoplasmic zinc is toxic to cells so there are cell-entry and intracellular buffering mechanisms that control intracellular zinc availability. Tubulin and actin are two zinc-scavenging proteins that are essential components of the cellular cytoskeleton implicated in cell division, migration and cellular architecture maintenance. Here we demonstrate how exposure to different ZnO nanostructures, namely ZnO commercial nanoparticles and custom-made ZnO nanowires, produce acute cytotoxic effects in human keratinocytes (HaCat) and epithelial cells (HeLa) triggering a dose-dependent cell retraction and collapse. We show how engulfed ZnO nanoparticles dissolve intracellularly, triggering actin filament bundling and structural changes in microtubules, transforming these highly dynamic 25 nm diameter polymers into rigid macrotubes of tubulin, severely affecting cell proliferation and survival. Our results demonstrate that nano-ZnO causes acute cytoskeletal collapse that triggers necrosis, followed by a late reactive oxygen species (ROS)-dependent apoptotic process.Zinc is a crucial element in biology that plays chief catalytic, structural and protein regulatory roles. Excess cytoplasmic zinc is toxic to cells so there are cell-entry and intracellular buffering mechanisms that control intracellular zinc availability. Tubulin and actin are two zinc-scavenging proteins that are essential components of the cellular cytoskeleton implicated in cell division, migration and cellular architecture maintenance. Here we demonstrate how exposure to different ZnO nanostructures, namely ZnO commercial nanoparticles and custom-made ZnO nanowires, produce acute cytotoxic effects in human keratinocytes (HaCat) and epithelial cells (HeLa) triggering a dose-dependent cell retraction and collapse. We show how engulfed ZnO nanoparticles dissolve intracellularly, triggering actin

  1. The cytoskeletal framework of sea urchin eggs and embryos: developmental changes in the association of messenger RNA.

    PubMed

    Moon, R T; Nicosia, R F; Olsen, C; Hille, M B; Jeffery, W R

    1983-02-01

    Extraction of sea urchin eggs and embryos with Triton X-100 generated a cytoskeletal framework (CSK) composed of a cortical filamentous network and an internal system of filaments associated with ribosomes. The CSK contained only 10-20% of the cellular protein, RNA, and lipid. A specific subset of proteins was enriched in the CSK. Several lines of evidence suggest that mRNA is a component of the CSK of both eggs and embryos. First, the CSK contained poly(A) sequences which hybridized with [3H]poly(U). Second, the CSK contained polyribosomes. Finally, RNA extracted from the CSK showed translational activity in an in vitro system. The nonhistone messages present in the CSK were qualitatively similar to those solubilized by detergent, as determined by separation on polyacrylamide gels of the products of in vitro translation. In the unfertilized egg, most mRNA was present as nonpolyribosomal messenger ribonucleoprotein complexes which, along with monoribosomes, were efficiently extracted by Triton X-100. The converse was found in blastulae, as most of the mRNA was present as polyribosomes associated with the CSK, although monoribosomes were still efficiently extracted by detergent. These results indicate a correlation between the activation of protein synthesis in eggs and the association of polyribosomes with the CSK.

  2. Association of dopamine D(3) receptors with actin-binding protein 280 (ABP-280).

    PubMed

    Li, Ming; Li, Chuanyu; Weingarten, Paul; Bunzow, James R; Grandy, David K; Zhou, Qun Yong

    2002-03-01

    Proteins that bind to G protein-coupled receptors have been identified as regulators of receptor localization and signaling. In our previous studies, a cytoskeletal protein, actin-binding protein 280 (ABP-280), was found to associate with the third cytoplasmic loop of dopamine D(2) receptors. In this study, we demonstrate that ABP-280 also interacts with dopamine D(3) receptors, but not with D(4) receptors. Similar to the dopamine D(2) receptor, the D(3)/ABP-280 association is of signaling importance. In human melanoma M2 cells lacking ABP-280, D(3) receptors were unable to inhibit forskolin-stimulated cyclic AMP (cAMP) production significantly. D(4) receptors, however, exhibited a similar degree of inhibition of forskolin-stimulated cAMP production in ABP-280-deficient M2 cells and ABP-280-replent M2 subclones (A7 cells). Further experiments revealed that the D(3)/ABP-280 interaction was critically dependent upon a 36 amino acid carboxyl domain of the D(3) receptor third loop, which is conserved in the D(2) receptor but not in the D(4) receptor. Our results demonstrate a subtype-specific regulation of dopamine D(2)-family receptor signaling by the cytoskeletal protein ABP-280.

  3. Glycoprotein Ib-IX-V Complex Transmits Cytoskeletal Forces That Enhance Platelet Adhesion.

    PubMed

    Feghhi, Shirin; Munday, Adam D; Tooley, Wes W; Rajsekar, Shreya; Fura, Adriane M; Kulman, John D; López, Jose A; Sniadecki, Nathan J

    2016-08-09

    Platelets bind to exposed vascular matrix at a wound site through a highly specialized surface receptor, glycoprotein (GP) Ib-IX-V complex, which recognizes von Willebrand factor (VWF) in the matrix. GPIb-IX-V is a catch bond for it becomes more stable as force is applied to it. After attaching to the wound site, platelets generate cytoskeletal forces to compact and reinforce the hemostatic plug. Here, we evaluated the role of the GPIb-IX-V complex in the transmission of cytoskeletal forces. We used arrays of flexible, silicone nanoposts to measure the contractility of individual platelets on VWF. We found that a significant proportion of cytoskeletal forces were transmitted to VWF through GPIb-IX-V, an unexpected finding given the widely held notion that platelet forces are transmitted exclusively through its integrins. In particular, we found that the interaction between GPIbα and the A1 domain of VWF mediates this force transmission. We also demonstrate that the binding interaction between GPIbα and filamin A is involved in force transmission. Furthermore, our studies suggest that cytoskeletal forces acting through GPIbα are involved in maintaining platelet adhesion when external forces are absent. Thus, the GPIb-IX-V/VWF bond is able to transmit force, and uses this force to strengthen the bond through a catch-bond mechanism. This finding expands our understanding of how platelets attach to sites of vascular injury, describing a new, to the best of our knowledge, mechanism in which the catch bonds of GPIb-IX-V/VWF can be supported by internal forces produced by cytoskeletal tension.

  4. Hippocampal damage and cytoskeletal disruption resulting from impaired energy metabolism. Implications for Alzheimer disease.

    PubMed

    Geddes, J W; Pang, Z; Wiley, D H

    1996-01-01

    To determine if impaired energy metabolism might contribute to some aspects of Alzheimer disease (AD), including the vulnerability of the CA1 region of the hippocampal formation and the altered cytoskeleton evident in neurofibrillary tangles, we examined the effects of metabolic poisons on neuronal damage and cytoskeletal disruption in the hippocampal formation. Intrahippocampal injection of 3-nitropropionic acid (3-NP) and malonic acid resulted in neuronal death, particularly in CA1. Cytoskeletal disruption included loss of dendritic MAP2, but sparing of axonal gamma. MK-801 (a noncompetitive NMDA receptor antagonist) did not atentuate the lesions produced by intrahippocampal injection of malonate. MK-801, however, was effective against intrastriatal malonate. Acute systemic 3-NP resulted in neuronal damage and cytoskeletal disruption in the CA1 region of the hippocampal formation, including an extensive loss of MAP2 immuno-reactivity, but sparing of gamma. The neuronal loss in CA1 was delayed as compared to striatum. Chronic intraventricular infusion of 3-NP produced a different pattern of neuronal damage. Loss of gamma-1 immuno-reactivity was observed in CA3 and CA1 s. orients, whereas MAP2 immunostaining was preserved. These results demonstrate that chronic and acute administration of metabolic inhibitors produce distinct patterns of neuronal damage and cytoskeletal disruption. The results further suggest a differential involvement of the NMDA receptor in malonate-induced neuronal damage in striatum as compared to the hippocampus. The pattern of neuronal damage and cytoskeletal disruption observed following acute metabolic impairment resembled some aspects of neurofibrillary pathology in AD, but did not result in gamma hyperphosphorylation.

  5. Cytoskeletal tension induces the polarized architecture of the nucleus

    PubMed Central

    Kim, Dong-Hwee; Wirtz, Denis

    2016-01-01

    The nuclear lamina is a thin filamentous meshwork that provides mechanical support to the nucleus and regulates essential cellular processes such as DNA replication, chromatin organization, cell division, and differentiation. Isolated horizontal imaging using fluorescence and electron microscopy has long suggested that the nuclear lamina is composed of structurally different A-type and B-type lamin proteins and nuclear lamin-associated membrane proteins that together form a thin layer that is spatially isotropic with no apparent difference in molecular content or density between the top and bottom of the nucleus. Chromosomes are condensed differently along the radial direction from the periphery of the nucleus to the nuclear center; therefore, chromatin accessibility for gene expression is different along the nuclear radius. However, 3D confocal reconstruction reveals instead that major lamin protein lamin A/C forms an apically polarized Frisbee-like dome structure in the nucleus of adherent cells. Here we show that both A-type lamins and transcriptionally active chromatins are vertically polarized by the tension exercised by the perinuclear actin cap (or actin cap) that is composed of highly contractile actomyosin fibers organized at the apical surface of the nucleus. Mechanical coupling between actin cap and lamina through LINC (linkers of nucleoskeleton and cytoskeleton) protein complexes induces an apical distribution of transcription-active subnucleolar compartments and epigenetic markers of transcription-active genes. This study reveals that intranuclear structures, such as nuclear lamina and chromosomal architecture, are apically polarized through the extranuclear perinuclear actin cap in a wide range of somatic adherent cells. PMID:25701041

  6. Actin Re-Organization Induced by Chlamydia trachomatis Serovar D - Evidence for a Critical Role of the Effector Protein CT166 Targeting Rac

    PubMed Central

    May, Martin; Sommer, Kirsten; Ebeling, Jenny; Hofmann, Fred; Genth, Harald; Klos, Andreas

    2010-01-01

    , chlamydial uptake was impaired in CT166 over-expressing cells. Our data strongly suggest CT166's participation as an effector protein during host-cell entry, ensuring a balanced uptake into host-cells by interfering with Rac-dependent cytoskeletal changes. PMID:20360858

  7. Kaempferol inhibits Entamoeba histolytica growth by altering cytoskeletal functions.

    PubMed

    Bolaños, Verónica; Díaz-Martínez, Alfredo; Soto, Jacqueline; Marchat, Laurence A; Sanchez-Monroy, Virginia; Ramírez-Moreno, Esther

    2015-11-01

    The flavonoid kaempferol obtained from Helianthemum glomeratum, an endemic Mexican medicinal herb used to treat gastrointestinal disorders, has been shown to inhibit growth of Entamoeba histolytica trophozoites in vitro; however, the mechanisms associated with this activity have not been documented. Several works reported that kaempferol affects cytoskeleton in mammalian cells. In order to gain insights into the action mechanisms involved in the anti-amoebic effect of kaempferol, here we evaluated the effect of this compound on the pathogenic events driven by the cytoskeleton during E. histolytica infection. We also carried out a two dimensional gel-based proteomic analysis to evidence modulated proteins that could explain the phenotypical changes observed in trophozoites. Our results showed that kaempferol produces a dose-dependent effect on trophozoites growth and viability with optimal concentration being 27.7 μM. Kaempferol also decreased adhesion, it increased migration and phagocytic activity, but it did not affect erythrocyte binding nor cytolytic capacity of E. histolytica. Congruently, proteomic analysis revealed that the cytoskeleton proteins actin, myosin II heavy chain and cortexillin II were up-regulated in response to kaempferol treatment. In conclusion, kaempferol anti-amoebic effects were associated with deregulation of proteins related with cytoskeleton, which altered invasion mechanisms.

  8. Time courses of post-injury mitochondrial oxidative damage and respiratory dysfunction and neuronal cytoskeletal degradation in a rat model of focal traumatic brain injury.

    PubMed

    Hill, Rachel L; Singh, Indrapal N; Wang, Juan A; Hall, Edward D

    2017-03-23

    Traumatic brain injury (TBI) results in rapid reactive oxygen species (ROS) production and oxidative damage to essential brain cellular components leading to neuronal dysfunction and cell death. It is increasingly appreciated that a major player in TBI-induced oxidative damage is the reactive nitrogen species (RNS) peroxynitrite (PN) which is produced in large part in injured brain mitochondria. Once formed, PN decomposes into highly reactive free radicals that trigger membrane lipid peroxidation (LP) of polyunsaturated fatty acids (e.g. arachidonic acid) and protein nitration (3-nitrotyrosine, 3-NT) in mitochondria and other cellular membranes causing various functional impairments to mitochondrial oxidative phosphorylation and calcium (Ca(2+)) buffering capacity. The LP also results in the formation of neurotoxic reactive aldehyde byproducts including 4-hydroxynonenal (4-HNE) and propenal (acrolein) which exacerbates ROS/RNS production and oxidative protein damage in the injured brain. Ultimately, this results in intracellular Ca(2+) overload that activates proteolytic degradation of α-spectrin, a neuronal cytoskeletal protein. Therefore, the aim of this study was to establish the temporal evolution of mitochondrial dysfunction, oxidative damage and cytoskeletal degradation in the brain following a severe controlled cortical impact (CCI) TBI in young male adult rats. In mitochondria isolated from an 8 mm diameter cortical punch including the 5 mm wide impact site and their respiratory function studied ex vivo, we observed an initial decrease in complex I and II mitochondrial bioenergetics within 3 h (h). For complex I bioenergetics, this partially recovered by 12-16 h, whereas for complex II respiration the recovery was complete by 12 h. During the first 24 h, there was no evidence of an injury-induced increase in LP or protein nitration in mitochondrial or cellular homogenates. However, beginning at 24 h, there was a gradual secondary decline in complex

  9. Effect of collagen I and fibronectin on the adhesion, elasticity and cytoskeletal organization of prostate cancer cells

    SciTech Connect

    Docheva, Denitsa; Padula, Daniela; Schieker, Matthias; Clausen-Schaumann, Hauke

    2010-11-12

    Research highlights: {yields} Depending on the metastatic origin, prostate cancer cells differ in their affinity to COL1. {yields} COL1 affects specifically the F-actin and cell elasticity of bone-derived prostate cancer cells. {yields} Cell elasticity can be used as a biomarker for cancer cells from different metastases. -- Abstract: Despite of intensive research efforts, the precise mechanism of prostate cancer metastasis in bone is still not fully understood. Several studies have suggested that specific matrix production by the bone cells, such as collagen I, supports cancer cell invasion. The aim of this study was to investigate the effect of collagen I (COL1) and fibronectin (FN) on cell adhesion, cell elasticity and cytoskeletal organization of prostate cancer cells. Two cell lines, bone marrow- (PC3) and lymph node-derived (LNCaP) were cultivated on COL1 and FN (control protein). By using a quantitative adhesion assay and time-lapse analysis, it was found that PC3, but not LNCaP, adhered strongly and were more spread on COL1. Next, PC3 and LNCaP were evaluated by atomic force microscopy (AFM) and flatness shape factor and cellular Young's modulus were calculated. The shape analysis revealed that PC3 were significantly flatter when grown on COL1 in comparison to LNCaP. In general, PC3 were also significantly stiffer than LNCaP and furthermore, their stiffness increased upon interaction with COL1. Since cell stiffness is strongly dependent on actin organization, phalloidin-based actin staining was performed and revealed that, of the two cell types as well as the two different matrix proteins, only PC3 grown on COL1 formed robust actin cytoskeleton. In conclusion, our study showed that PC3 cells have a strong affinity towards COL1. On this matrix protein, the cells adhered strongly and underwent a specific cell flattening. Moreover, with the establishment of PC3 contact to COL1 a significant increase of PC3 stiffness was observed due to a profound cytoskeletal

  10. Inflammasome adaptor protein Apoptosis-associated speck-like protein containing CARD (ASC) is critical for the immune response and survival in west Nile virus encephalitis.

    PubMed

    Kumar, Mukesh; Roe, Kelsey; Orillo, Beverly; Muruve, Daniel A; Nerurkar, Vivek R; Gale, Michael; Verma, Saguna

    2013-04-01

    West Nile virus (WNV) is a neurotropic flavivirus that has emerged globally as a significant cause of viral encephalitis in humans. The WNV-induced innate immune response, including production of antiviral cytokines, is critical for controlling virus infection. The adaptor protein ASC mediates a critical step in innate immune signaling by bridging the interaction between the pathogen recognition receptors and caspase 1 in inflammasome complexes, but its role in WNV immunopathogenesis is not defined. Here, we demonstrate that ASC is essential for interleukin-1β (IL-1β) production and development of effective host immunity against WNV. ASC-deficient mice exhibited increased susceptibility to WNV infection, and reduced survival was associated with enhanced virus replication in the peripheral tissues and central nervous system (CNS). Infection of cultured bone marrow-derived dendritic cells showed that ASC was essential for the activation of caspase 1, a key component of inflammasome assembly. ASC(-/-) mice exhibited attenuated levels of proinflammatory cytokines in the serum. Intriguingly, infected ASC(-/-) mice also displayed reduced levels of alpha interferon (IFN-α) and IgM in the serum, indicating the overall protective role of ASC in restricting WNV infection. However, brains from ASC(-/-) mice displayed unrestrained inflammation, including elevated levels of proinflammatory cytokines and chemokines, such as IFN-γ, CCL2, and CCL5, which correlated with more pronounced activation of the astrocytes, enhanced infiltration of peripheral immune cells in the CNS, and increased neuronal cell death. Collectively, our data provide new insights into the role of ASC as an essential modulator of inflammasome-dependent and -independent immune responses to effectively control WNV infection.

  11. Expression of cytoskeletal and molt-related genes is temporally scheduled in the hypodermis of the crayfish Procambarus clarkii during premolt.

    PubMed

    Tom, Moshe; Manfrin, Chiara; Chung, Sook J; Sagi, Amir; Gerdol, Marco; De Moro, Gianluca; Pallavicini, Alberto; Giulianini, Piero G

    2014-12-01

    The rigid crustacean exoskeleton, the cuticle, is composed of the polysaccharide chitin, structural proteins and mineral deposits. It is periodically replaced to enable growth and its construction is an energy-demanding process. Ecdysis, the shedding event of the old cuticle, is preceded by a preparatory phase, termed premolt, in which the present cuticle is partially degraded and a new one is formed underneath it. Procambarus clarkii (Girard 1852), an astacid crustacean, was used here to comprehensively examine the changing patterns of gene expression in the hypodermis underlying the cuticle of the carapace at seven time points along ~14 premolt days. Next generation sequencing was used to construct a multi-tissue P. clarkii transcript sequence assembly for general use in a variety of transcriptomic studies. A reference transcriptome was created here in order to perform digital transcript expression analysis, determining the gene expression profiles in each of the examined premolt stages. The analysis revealed a cascade of sequential expression events of molt-related genes involved in chitin degradation, synthesis and modification, as well as synthesis of collagen and four groups of cuticular structural genes. The new description of major transcriptional events during premolt and the determination of their timing provide temporal markers for future studies of molt progress and regulation. The peaks of the expression of the molt-related genes were preceded by expression peaks of cytoskeletal genes that are hypothesized to be essential for premolt progress through regulating protein synthesis and/or transport, probably by remodeling the cytoskeletal structure.

  12. Properties of rat erythrocyte membrane cytoskeletal structures produced by digitonin extraction: digitonin-insoluble beta-adrenergic receptor, adenylate cyclase, and cholera toxin substrate.

    PubMed

    LeVine, H; Sahyoun, N E; Cuatrecasas, P

    1982-01-01

    Rat erythrocyte plasma membranes have been extracted exhaustively with digitonin at low temperature, and the residual, detergent-extracted membrane cytoskeletal material is compared to that prepared with Triton X-100 with respect to protein, glycoprotein, phospholipid, and cholesterol content. Digitonin, a weaker detergent than Triton X-100, solubilizes only 26% of the phospholipids and none of the cholesterol. SDS-polyacrylamide gel electrophoresis reveals that differences between the proteins extracted by the two detergents are primarily quantitative. In terms of functional preservation, digitonin retains in the cytoskeleton 28% of the beta-adrenergic receptor binding activity (with the balance accounted for in the supernatant), greater than 90% of the adenylate cyclase and greater than 90% of the 45,000 mol wt polypeptide cholera toxin substrate. The cytoskeletal-associated beat-adrenergic receptor retains binding properties for antagonist and agonist which are identical to those of the native membrane receptor. The digitonin-extracted cytoskeleton containing the beta-adrenergic receptor may provide a useful vehicle for the reconstitution of a hormone-sensitive adenylate cyclase.

  13. Autothixotropy of Water and its Possible Importance for the Cytoskeletal Structures

    NASA Astrophysics Data System (ADS)

    Vybíral, Bohumil

    2011-12-01

    The article deals with newly observed phenomenon in water that was called 'the autothixotropy of water'. A history of the phenomenon is connected with very fine gravimetric measurements which were made by author in years 1978 till 1986. Autothixotropy is a very weak macroscopic phenomenon that is observed in water that has remained at rest for a certain time (in tens of hours or days). For the experiments distilled water was used, re-boiled before use. The phenomenon is manifested by force (mechanical resistance) to the immersed body in water with a tendency of changing its position. The static and dynamic methods were used for the research. With the static method a moment of force is measured that is necessary for a very distinctive turn of a stainless steel plate hung up on a thin filament and immersed in standing water. With a certain angular torsion of the filament a certain moment of force is achieved when a state of stress reaches a critical value in water which is demonstrated with an expressive changing of angular position of the plate. When the direction of moment of force is changed, it is reflected in the differential rotation of the angle plate (the phenomenon of hysteresis was observed). The phenomenon of autothixotropy expires after a certain time, if water is mechanically mixed or re-boiled. It is significant that the phenomenon of the autothixotropy is not present in deionised distilled water. When using a dynamic method both oscillations of the plate and a very slow fall of a small ball in standing water was observed. The autothixotropy of water can be explained by a hypothesis of a cluster formation by H2O molecules in standing water. As the phenomenon of autothixotropy is not present in deionised water, it may be primarily caused by a presence of ions in water, as it was demonstrated in the experiment with a salt solution (NaCl). Biophysical applications of the autothixotropy of water remain open. Some possible applications of the phenomenon in

  14. The SD1 Subdomain of Venezuelan Equine Encephalitis Virus Capsid Protein Plays a Critical Role in Nucleocapsid and Particle Assembly

    PubMed Central

    Reynaud, Josephine M.; Lulla, Valeria; Kim, Dal Young; Frolova, Elena I.

    2015-01-01

    ABSTRACT Venezuelan equine encephalitis virus (VEEV) is an important human and animal pathogen, for which no safe and efficient vaccines or therapeutic means have been developed. Viral particle assembly and budding processes represent potential targets for therapeutic intervention. However, our understanding of the mechanistic process of VEEV assembly, RNA encapsidation, and the roles of different capsid-specific domains in these events remain to be described. The results of this new study demonstrate that the very amino-terminal VEEV capsid-specific subdomain SD1 is a critical player in the particle assembly process. It functions in a virus-specific mode, and its deletion, mutation, or replacement by the same subdomain derived from other alphaviruses has strong negative effects on infectious virus release. VEEV variants with mutated SD1 accumulate adaptive mutations in both SD1 and SD2, which result in a more efficiently replicating phenotype. Moreover, efficient nucleocapsid and particle assembly proceeds only when the two subdomains, SD1 and SD2, are derived from the same alphavirus. These two subdomains together appear to form the central core of VEEV nucleocapsids, and their interaction is one of the driving forces of virion assembly and budding. The similar domain structures of alphavirus capsid proteins suggest that this new knowledge can be applied to other alphaviruses. IMPORTANCE Alphaviruses are a group of human and animal pathogens which cause periodic outbreaks of highly debilitating diseases. Despite significant progress made in understanding the overall structure of alphavirus and VEEV virions, and glycoprotein spikes in particular, the mechanistic process of nucleocapsid assembly, RNA encapsidation, and the roles of different capsid-specific domains in these processes remain to be described. Our new data demonstrate that the very amino-terminal subdomain of Venezuelan equine encephalitis virus capsid protein, SD1, plays a critical role in the

  15. The core microprocessor component DiGeorge syndrome critical region 8 (DGCR8) is a nonspecific RNA-binding protein.

    PubMed

    Roth, Braden M; Ishimaru, Daniella; Hennig, Mirko

    2013-09-13

    MicroRNA (miRNA) biogenesis follows a conserved succession of processing steps, beginning with the recognition and liberation of an miRNA-containing precursor miRNA hairpin from a large primary miRNA transcript (pri-miRNA) by the Microprocessor, which consists of the nuclear RNase III Drosha and the double-stranded RNA-binding domain protein DGCR8 (DiGeorge syndrome critical region protein 8). Current models suggest that specific recognition is driven by DGCR8 detection of single-stranded elements of the pri-miRNA stem-loop followed by Drosha recruitment and pri-miRNA cleavage. Because countless RNA transcripts feature single-stranded-dsRNA junctions and DGCR8 can bind hundreds of mRNAs, we explored correlations between RNA binding properties of DGCR8 and specific pri-miRNA substrate processing. We found that DGCR8 bound single-stranded, double-stranded, and random hairpin transcripts with similar affinity. Further investigation of DGCR8/pri-mir-16 interactions by NMR detected intermediate exchange regimes over a wide range of stoichiometric ratios. Diffusion analysis of DGCR8/pri-mir-16 interactions by pulsed field gradient NMR lent further support to dynamic complex formation involving free components in exchange with complexes of varying stoichiometry, although in vitro processing assays showed exclusive cleavage of pri-mir-16 variants bearing single-stranded flanking regions. Our results indicate that DGCR8 binds RNA nonspecifically. Therefore, a sequential model of DGCR8 recognition followed by Drosha recruitment is unlikely. Known RNA substrate requirements are broad and include 70-nucleotide hairpins with unpaired flanking regions. Thus, specific RNA processing is likely facilitated by preformed DGCR8-Drosha heterodimers that can discriminate between authentic substrates and other hairpins.

  16. Central Nodes in Protein Interaction Networks Drive Critical Functions in Transforming Growth Factor Beta-1 Stimulated Kidney Cells

    PubMed Central

    Gheisari, Yousof

    2017-01-01

    Objective Despite the huge efforts, chronic kidney disease (CKD) remains as an unsolved problem in medicine. Many studies have shown a central role for transforming growth factor beta-1 (TGFβ-1) and its downstream signaling cascades in the pathogenesis of CKD. In this study, we have reanalyzed a microarray dataset to recognize critical signaling pathways controlled by TGFβ-1. Materials and Methods This study is a bioinformatics reanalysis for a microarray data. The GSE23338 dataset was downloaded from the gene expression omnibus (GEO) database which assesses the mRNA expression profile of TGFβ-1 treated human kidney cells after 24 and 48 hours incubation. The protein interaction networks for differentially expressed (DE) genes in both time points were constructed and enriched. In addition, by network topology analysis, genes with high centrality were identified and then pathway enrichment analysis was performed with either the total network genes or with the central nodes. Results We found 110 and 170 genes differentially expressed in the time points 24 and 48 hours, respectively. As the genes in each time point had few interactions, the networks were enriched by adding previously known genes interacting with the differentially expressed ones. In terms of degree, betweenness, and closeness centrality parameters 62 and 60 nodes were considered to be central in the enriched networks of 24 hours and 48 hours treatment, respectively. Pathway enrichment analysis with the central nodes was more informative than those with all network nodes or even initial DE genes, revealing key signaling pathways. Conclusion We here introduced a method for the analysis of microarray data that integrates the expression pattern of genes with their topological properties in protein interaction networks. This holistic novel approach allows extracting knowledge from raw bulk omics data. PMID:28042536

  17. Chorein sensitivity of cytoskeletal organization and degranulation of platelets.

    PubMed

    Schmidt, Eva-Maria; Schmid, Evi; Münzer, Patrick; Hermann, Andreas; Eyrich, Ann-Kathrin; Russo, Antonella; Walker, Britta; Gu, Shuchen; vom Hagen, Jennifer Müller; Faggio, Caterina; Schaller, Martin; Föller, Michael; Schöls, Ludger; Gawaz, Meinrad; Borst, Oliver; Storch, Alexander; Stournaras, Christos; Lang, Florian

    2013-07-01

    Chorea-acanthocytosis (ChAc), a lethal disease caused by defective chorein, is characterized by neurodegeneration and erythrocyte acanthocytosis. The functional significance of chorein in other cell types remained ill-defined. The present study revealed chorein expression in blood platelets. As compared to platelets from healthy volunteers, platelets from patients with ChAc displayed a 47% increased globular/filamentous actin ratio, indicating actin depolymerization. Moreover, phosphoinositide-3-kinase subunit p85 phosphorylation, p21 protein-activated kinase (PAK1) phosphorylation, as well as vesicle-associated membrane protein 8 (VAMP8) expression were significantly reduced in platelets from patients with ChAc (by 17, 22, and 39%, respectively) and in megakaryocytic (MEG-01) cells following chorein silencing (by 16, 54, and 11%, respectively). Activation-induced platelet secretion from dense granules (ATP release) and α granules (P-selectin exposure) were significantly less (by 55% after stimulation with 1 μg/ml CRP and by 33% after stimulation with 5 μM TRAP, respectively) in ChAc platelets than in control platelets. Furthermore, platelet aggregation following stimulation with different platelet agonists was significantly impaired. These observations reveal a completely novel function of chorein, i.e., regulation of secretion and aggregation of blood platelets.

  18. A Legionella Effector Disrupts Host Cytoskeletal Structure by Cleaving Actin

    PubMed Central

    Liu, Yao; Zhu, Wenhan; Tan, Yunhao; Nakayasu, Ernesto S.; Staiger, Christopher J.

    2017-01-01

    Legionella pneumophila, the etiological agent of Legionnaires’ disease, replicates intracellularly in protozoan and human hosts. Successful colonization and replication of this pathogen in host cells requires the Dot/Icm type IVB secretion system, which translocates approximately 300 effector proteins into the host cell to modulate various cellular processes. In this study, we identified RavK as a Dot/Icm substrate that targets the host cytoskeleton and reduces actin filament abundance in mammalian cells upon ectopic expression. RavK harbors an H95EXXH99 motif associated with diverse metalloproteases, which is essential for the inhibition of yeast growth and for the induction of cell rounding in HEK293T cells. We demonstrate that the actin protein itself is the cellular target of RavK and that this effector cleaves actin at a site between residues Thr351 and Phe352. Importantly, RavK-mediated actin cleavage also occurs during L. pneumophila infection. Cleavage by RavK abolishes the ability of actin to form polymers. Furthermore, an F352A mutation renders actin resistant to RavK-mediated cleavage; expression of the mutant in mammalian cells suppresses the cell rounding phenotype caused by RavK, further establishing that actin is the physiological substrate of RavK. Thus, L. pneumophila exploits components of the host cytoskeleton by multiple effectors with distinct mechanisms, highlighting the importance of modulating cellular processes governed by the actin cytoskeleton in the intracellular life cycle of this pathogen. PMID:28129393

  19. Multiscale View of Cytoskeletal Mechanoregulation of Cell and Tissue Polarity.

    PubMed

    Luxenburg, Chen; Geiger, Benjamin

    2017-01-01

    The ability of cells to generate, maintain, and repair tissues with complex architecture, in which distinct cells function as coherent units, relies on polarity cues. Polarity can be described as an asymmetry along a defined axis, manifested at the molecular, structural, and functional levels. Several types of cell and tissue polarities were described in the literature, including front-back, apical-basal, anterior-posterior, and left-right polarity. Extensive research provided insights into the specific regulators of each polarization process, as well as into generic elements that affect all types of polarities. The actin cytoskeleton and the associated adhesion structures are major regulators of most, if not all, known forms of polarity. Actin filaments exhibit intrinsic polarity and their ability to bind many proteins including the mechanosensitive adhesion and motor proteins, such as myosins, play key roles in cell polarization. The actin cytoskeleton can generate mechanical forces and together with the associated adhesions, probe the mechanical, structural, and chemical properties of the environment, and transmit signals that impact numerous biological processes, including cell polarity. In this article we highlight novel mechanisms whereby the mechanical forces and actin-adhesion complexes regulate cell and tissue polarity in a variety of natural and experimental systems.

  20. Nano-ZnO leads to tubulin macrotube assembly and actin bundling, triggering cytoskeletal catastrophe and cell necrosis.

    PubMed

    García-Hevia, Lorena; Valiente, Rafael; Martín-Rodríguez, Rosa; Renero-Lecuna, Carlos; González, Jesús; Rodríguez-Fernández, Lidia; Aguado, Fernando; Villegas, Juan C; Fanarraga, Mónica L

    2016-06-07

    Zinc is a crucial element in biology that plays chief catalytic, structural and protein regulatory roles. Excess cytoplasmic zinc is toxic to cells so there are cell-entry and intracellular buffering mechanisms that control intracellular zinc availability. Tubulin and actin are two zinc-scavenging proteins that are essential components of the cellular cytoskeleton implicated in cell division, migration and cellular architecture maintenance. Here we demonstrate how exposure to different ZnO nanostructures, namely ZnO commercial nanoparticles and custom-made ZnO nanowires, produce acute cytotoxic effects in human keratinocytes (HaCat) and epithelial cells (HeLa) triggering a dose-dependent cell retraction and collapse. We show how engulfed ZnO nanoparticles dissolve intracellularly, triggering actin filament bundling and structural changes in microtubules, transforming these highly dynamic 25 nm diameter polymers into rigid macrotubes of tubulin, severely affecting cell proliferation and survival. Our results demonstrate that nano-ZnO causes acute cytoskeletal collapse that triggers necrosis, followed by a late reactive oxygen species (ROS)-dependent apoptotic process.

  1. Cytoskeletal dynamics during in vitro neurogenesis of induced pluripotent stem cells (iPSCs).

    PubMed

    Compagnucci, Claudia; Piermarini, Emanuela; Sferra, Antonella; Borghi, Rossella; Niceforo, Alessia; Petrini, Stefania; Piemonte, Fiorella; Bertini, Enrico

    2016-12-01

    Patient-derived induced pluripotent stem cells (iPSCs) provide a novel tool to investigate the pathophysiology of poorly known diseases, in particular those affecting the nervous system, which has been difficult to study for its lack of accessibility. In this emerging and promising field, recent iPSCs studies are mostly used as "proof-of-principle" experiments that are confirmatory of previous findings obtained from animal models and postmortem human studies; its promise as a discovery tool is just beginning to be realized. A recent number of studies point to the functional similarities between in vitro neurogenesis and in vivo neuronal development, suggesting that similar morphogenetic and patterning events direct neuronal differentiation. In this context, neuronal adhesion, cytoskeletal organization and cell metabolism emerge as an integrated and unexplored processes of human neurogenesis, mediated by the lack of data due to the difficult accessibility of the human neural tissue. These observations raise the necessity to understand which are the players controlling cytoskeletal reorganization and remodeling. In particular, we investigated human in vitro neurogenesis using iPSCs of healthy subjects to unveil the underpinnings of the cytoskeletal dynamics with the aim to shed light on the physiologic events controlling the development and the functionality of neuronal cells. We validate the iPSCs system to better understand the development of the human nervous system in order to set the bases for the future understanding of pathologies including developmental disorders (i.e. intellectual disability), epilepsy but also neurodegenerative disorders (i.e. Friedreich's Ataxia). We investigate the changes of the cytoskeletal components during the 30days of neuronal differentiation and we demonstrate that human neuronal differentiation requires a (time-dependent) reorganization of actin filaments, intermediate filaments and microtubules; and that immature neurons present

  2. What is critical for plant thermogenesis? Differences in mitochondrial activity and protein expression between thermogenic and non-thermogenic skunk cabbages.

    PubMed

    Ito-Inaba, Yasuko; Hida, Yamato; Inaba, Takehito

    2009-12-01

    Thermogenesis during the blooming of inflorescence is found in several but not all aroids. To understand what is critical for thermogenesis, we investigated the difference between thermogenic and non-thermogenic skunk cabbages (Symplocarpus renifolius and Lysichiton camtschatcensis), which are closely related in morphology and phylogeny. Critical parameters of mitochondrial biogenesis, including density, respiratory activity, and protein expression were compared between these two species. Mitochondrial density, respiratory activity, and the amount of alternative oxidase (AOX) in L. camtschatcensis spadix mitochondria were lower than in S. renifolius spadix mitochondria, while the level of uncoupling protein (UCP) was higher. AOX and UCP mRNAs in L. camtschatcensis were constitutively expressed in various tissues, such as the spadix, the spathe, the stalk, and the leaves. cDNA encoding two putative thermogenic proteins, AOX and UCP were isolated from L. camtschatcensis, and their primary structure was analyzed by multiple alignment and phylogenetic tree reconstruction. AOX and UCP protein of two the skunk cabbage species are closely related in structure, compared with other isoforms in thermogenic plants. Our results suggest that mitochondrial density, respiratory activity, and protein expression, rather than the primary structure of AOX or UCP proteins, may play critical roles in thermogenesis in plants.

  3. Asparagine and Aspartate Hydroxylation of the Cytoskeletal Ankyrin Family Is Catalyzed by Factor-inhibiting Hypoxia-inducible Factor*

    PubMed Central

    Yang, Ming; Ge, Wei; Chowdhury, Rasheduzzaman; Claridge, Timothy D. W.; Kramer, Holger B.; Schmierer, Bernhard; McDonough, Michael A.; Gong, Lingzhi; Kessler, Benedikt M.; Ratcliffe, Peter J.; Coleman, Mathew L.; Schofield, Christopher J.

    2011-01-01

    Factor-inhibiting hypoxia-inducible factor (FIH) catalyzes the β-hydroxylation of an asparagine residue in the C-terminal transcriptional activation domain of the hypoxia inducible factor (HIF), a modification that negatively regulates HIF transcriptional activity. FIH also catalyzes the hydroxylation of highly conserved Asn residues within the ubiquitous ankyrin repeat domain (ARD)-containing proteins. Hydroxylation has been shown to stabilize localized regions of the ARD fold in the case of a three-repeat consensus ankyrin protein, but this phenomenon has not been demonstrated for the extensive naturally occurring ARDs. Here we report that the cytoskeletal ankyrin family are substrates for FIH-catalyzed hydroxylations. We show that the ARD of ankyrinR is multiply hydroxylated by FIH both in vitro and in endogenous proteins purified from human and mouse erythrocytes. Hydroxylation of the D34 region of ankyrinR ARD (ankyrin repeats 13–24) increases its conformational stability and leads to a reduction in its interaction with the cytoplasmic domain of band 3 (CDB3), demonstrating the potential for FIH-catalyzed hydroxylation to modulate protein-protein interactions. Unexpectedly we found that aspartate residues in ankyrinR and ankyrinB are hydroxylated and that FIH-catalyzed aspartate hydroxylation also occurs in other naturally occurring AR sequences. The crystal structure of an FIH variant in complex with an Asp-substrate peptide together with NMR analyses of the hydroxylation product identifies the 3S regio- and stereoselectivity of the FIH-catalyzed Asp hydroxylation, revealing a previously unprecedented posttranslational modification. PMID:21177872

  4. Lecithin:retinol acyltransferase is critical for cellular uptake of vitamin A from serum retinol-binding protein.

    PubMed

    Amengual, Jaume; Golczak, Marcin; Palczewski, Krzysztof; von Lintig, Johannes

    2012-07-13

    Vitamin A (all-trans-retinol) must be adequately distributed within the mammalian body to produce visual chromophore in the eyes and all-trans-retinoic acid in other tissues. Vitamin A is transported in the blood bound to retinol-binding protein (holo-RBP), and its target cells express an RBP receptor encoded by the Stra6 (stimulated by retinoic acid 6) gene. Here we show in mice that cellular uptake of vitamin A from holo-RBP depends on functional coupling of STRA6 with intracellular lecithin:retinol acyltransferase (LRAT). Thus, vitamin A uptake from recombinant holo-RBP exhibited by wild type mice was impaired in Lrat(-/-) mice. We further provide evidence that vitamin A uptake is regulated by all-trans-retinoic acid in non-ocular tissues of mice. When in excess, vitamin A was rapidly taken up and converted to its inert ester form in peripheral tissues, such as lung, whereas in vitamin A deficiency, ocular retinoid uptake was favored. Finally, we show that the drug fenretinide, used clinically to presumably lower blood RBP levels and thus decrease circulating retinol, targets the functional coupling of STRA6 and LRAT to increase cellular vitamin A uptake in peripheral tissues. These studies provide mechanistic insights into how vitamin A is distributed to peripheral tissues in a regulated manner and identify LRAT as a critical component of this process.

  5. An Epididymis-Specific Secretory Protein HongrES1 Critically Regulates Sperm Capacitation and Male Fertility

    PubMed Central

    Zhou, Yuchuan; Zheng, Min; Shi, Qixian; Zhang, Li; Zhen, Wei; Chen, Wenying; Zhang, Yonglian

    2008-01-01

    Mammalian sperm capacitation is an essential prerequisite to fertilizion. Although progress had been made in understanding the physiology and biochemistry of capacitation, little is known about the potential roles of epididymal proteins during this process. Here we report that HongrES1, a new member of the SERPIN (serine proteinase inhibitor) family exclusively expressed in the rat cauda epididymis and up-regulated by androgen, is secreted into the lumen and covers the sperm head. Co-culture of caudal sperms with HongrES1 antibody in vitro resulted in a significant increase in the percentage of capacitated spermatozoa. Furthermore, the percentage of capacitated spermatozoa clearly increased in rats when HongrES1 was down-regulated by RNAi in vivo. Remarkably, knockdown of HongrES1 in vivo led to reduced fertility accompanied with deformed appearance of fetuses and pups. These results identify HongrES1 as a novel and critical molecule in the regulation of sperm capacitation and male fertility. PMID:19116669

  6. Morphological Transformation and Force Generation of Active Cytoskeletal Networks

    PubMed Central

    Maruri, Daniel; Kamm, Roger D.

    2017-01-01

    Cells assemble numerous types of actomyosin bundles that generate contractile forces for biological processes, such as cytokinesis and cell migration. One example of contractile bundles is a transverse arc that forms via actomyosin-driven condensation of actin filaments in the lamellipodia of migrating cells and exerts significant forces on the surrounding environments. Structural reorganization of a network into a bundle facilitated by actomyosin contractility is a physiologically relevant and biophysically interesting process. Nevertheless, it remains elusive how actin filaments are reoriented, buckled, and bundled as well as undergo tension buildup during the structural reorganization. In this study, using an agent-based computational model, we demonstrated how the interplay between the density of myosin motors and cross-linking proteins and the rigidity, initial orientation, and turnover of actin filaments regulates the morphological transformation of a cross-linked actomyosin network into a bundle and the buildup of tension occurring during the transformation. PMID:28114384

  7. Chaperone-Assisted Protein Folding Is Critical for Yellow Fever Virus NS3/4A Cleavage and Replication

    PubMed Central

    Bozzacco, Leonia; Yi, Zhigang; Andreo, Ursula; Conklin, Claire R.; Li, Melody M. H.; Rice, Charles M.

    2016-01-01

    polyprotein, which is cleaved by host and viral proteases to generate viral proteins required for genome replication and virion production. Several studies suggest a role for molecular chaperones during these processes. While the details of chaperone roles have been elusive, in this report we show that overexpression of the ER-resident cochaperone DNAJC14 affects YFV polyprotein processing at the NS3/4A site. This work reveals that DNAJC14 modulation of NS3/4A site processing is an important mechanism to ensure virus replication. Our work highlights the importance of finely regulating flavivirus polyprotein processing. In addition, it suggests future studies to address similarities and/or differences among flaviviruses and to interrogate the precise mechanisms employed for polyprotein processing, a critical step that can ultimately be targeted for novel drug development. PMID:26739057

  8. The Critical Role of the Cytoskeleton in the Pathogenesis of Giardia

    PubMed Central

    Nosala, Christopher

    2016-01-01

    Giardia lamblia is a flagellated parasite of the gut and causes significant morbidity worldwide. Novel druggable targets are sorely needed due to Giardia’s prevalence and the growing threat of antibiotic resistance. Giardia’s conserved and unique cytoskeletal features, such as its eight flagella and ventral disc, are required for host colonization by facilitating motility, attachment, and cell division. Therapies that target these processes could interfere with trophozoite colonization, reduce the time or severity of the infection, and reduce the number of infectious cysts shed into the environment. This requires vetting and prioritizing critical cellular processes and identifying specific Giardia proteins in those processes as targets. It is time to leverage the wealth of data gathered through genome sequencing and proteomic studies, and new insights on the cytoskeleton of Giardia to design effective new drugs to treat giardiasis. PMID:27347476

  9. Probing Cytoskeletal Structures by Coupling Optical Superresolution and AFM Techniques for a Correlative Approach

    PubMed Central

    Chacko, Jenu Varghese; Zanacchi, Francesca Cella; Diaspro, Alberto

    2013-01-01

    In this article, we describe and show the application of some of the most advanced fluorescence superresolution techniques, STED AFM and STORM AFM microscopy towards imaging of cytoskeletal structures, such as microtubule filaments. Mechanical and structural properties can play a relevant role in the investigation of cytoskeletal structures of interest, such as microtubules, that provide support to the cell structure. In fact, the mechanical properties, such as the local stiffness and the elasticity, can be investigated by AFM force spectroscopy with tens of nanometers resolution. Force curves can be analyzed in order to obtain the local elasticity (and the Young's modulus calculation by fitting the force curves from every pixel of interest), and the combination with STED/STORM microscopy integrates the measurement with high specificity and yields superresolution structural information. This hybrid modality of superresolution-AFM working is a clear example of correlative multimodal microscopy. PMID:24027190

  10. Systematic perturbation of cytoskeletal function reveals a linear scaling relationship between cell geometry and fitness.

    PubMed

    Monds, Russell D; Lee, Timothy K; Colavin, Alexandre; Ursell, Tristan; Quan, Selwyn; Cooper, Tim F; Huang, Kerwyn Casey

    2014-11-20

    Diversification of cell size is hypothesized to have occurred through a process of evolutionary optimization, but direct demonstrations of causal relationships between cell geometry and fitness are lacking. Here, we identify a mutation from a laboratory-evolved bacterium that dramatically increases cell size through cytoskeletal perturbation and confers a large fitness advantage. We engineer a library of cytoskeletal mutants of different sizes and show that fitness scales linearly with respect to cell size over a wide physiological range. Quantification of the growth rates of single cells during the exit from stationary phase reveals that transitions between "feast-or-famine" growth regimes are a key determinant of cell-size-dependent fitness effects. We also uncover environments that suppress the fitness advantage of larger cells, indicating that cell-size-dependent fitness effects are subject to both biophysical and metabolic constraints. Together, our results highlight laboratory-based evolution as a powerful framework for studying the quantitative relationships between morphology and fitness.

  11. Cytoskeletal changes in Eimeria bovis-infected host endothelial cells during first merogony.

    PubMed

    Hermosilla, Carlos; Schröpfer, Elmar; Stowasser, Michael; Eckstein-Ludwig, Ursula; Behrendt, Jan Hillern; Zahner, Horst

    2008-10-01

    The first merogony of Eimeria bovis takes place in lymphatic endothelial cells of the ileum, resulting in the formation of macromeronts up to 250 microm. In this study, we investigated the host cell cytoskeleton (actin filaments, microtubules, spectrin, vimentin intermediate filaments) associated with parasitic development in vitro by confocal laser scanning microscopy (CLSM) using primary bovine umbilical vein endothelial cells (BUVEC) and bovine spleen lymphatic endothelial cells (BSLEC) as host cells. No prominent changes in the host cell cytoskeleton were detected 1-3 days after E. bovis sporozoite invasion. With ongoing meront maturation a significant increase in microtubules and actin filaments close to the parasitophorous vacuole (PV) was found. Mature macromeronts within the PV were completely enclosed by these cytoskeletal elements. Our findings suggest, that in order to guarantee the survival of the host cell on the enlargement of macromeronts, E. bovis needs not only to augment but also to rearrange its cytoskeletal system.

  12. Fragility of foot process morphology in kidney podocytes arises from chaotic spatial propagation of cytoskeletal instability

    PubMed Central

    Deerinck, Thomas J.; Chen, Yibang; He, John C.; Ellisman, Mark H.; Iyengar, Ravi

    2017-01-01

    Kidney podocytes’ function depends on fingerlike projections (foot processes) that interdigitate with those from neighboring cells to form the glomerular filtration barrier. The integrity of the barrier depends on spatial control of dynamics of actin cytoskeleton in the foot processes. We determined how imbalances in regulation of actin cytoskeletal dynamics could result in pathological morphology. We obtained 3-D electron microscopy images of podocytes and used quantitative features to build dynamical models to investigate how regulation of actin dynamics within foot processes controls local morphology. We find that imbalances in regulation of actin bundling lead to chaotic spatial patterns that could impair the foot process morphology. Simulation results are consistent with experimental observations for cytoskeletal reconfiguration through dysregulated RhoA or Rac1, and they predict compensatory mechanisms for biochemical stability. We conclude that podocyte morphology, optimized for filtration, is intrinsically fragile, whereby local transient biochemical imbalances may lead to permanent morphological changes associated with pathophysiology. PMID:28301477

  13. Composite polymer systems with control of local substrate elasticity and their effect on cytoskeletal and morphological characteristics of adherent cells.

    PubMed

    Chou, Szu-Yuan; Cheng, Chao-Min; LeDuc, Philip R

    2009-06-01

    At the interface between extracellular substrates and biological materials, substrate elasticity strongly influences cell morphology and function. The associated biological ramifications comprise a diversity of critical responses including apoptosis, differentiation, and motility, which can affect medical devices such as stents. The interactions of the extracellular environment with the substrate are also affected by local properties wherein cells sense and respond to different physical inputs. To investigate the effects of having localized elasticity control of substrate microenvironments on cell response, we have developed a method to control material interface interactions with cells by dictating local substrate elasticity. This system is created by generating a composite material system with alternating, linear regions of polymers that have distinct stiffness characteristics. This approach was used to examine cytoskeletal and morphological changes in NIH 3T3 fibroblasts with emphasis on both local and global properties, noting that cells sense and respond to distinct material elasticities. Isolated cells sense and respond to these local differences in substrate elasticity by extending processes along the interface. Also, cells grown on softer elastic regions at higher densities (in contact with each other) have a higher projected area than isolated cells. Furthermore, when using chemical agents such as cytochalasin-D to disrupt the actin cytoskeleton, there is a significant increase in projected area for cells cultured on softer elastic regions This method has the potential to promote understanding of biomaterial-affected responses in a diversity of areas including morphogenesis, mechanotransduction, stents, and stem cell differentiation.

  14. Defects in TRPM7 channel function deregulate thrombopoiesis through altered cellular Mg2+ homeostasis and cytoskeletal architecture

    PubMed Central

    Stritt, Simon; Nurden, Paquita; Favier, Remi; Favier, Marie; Ferioli, Silvia; Gotru, Sanjeev K.; van Eeuwijk, Judith M M.; Schulze, Harald; Nurden, Alan T.; Lambert, Michele P.; Turro, Ernest; Burger-Stritt, Stephanie; Matsushita, Masayuki; Mittermeier, Lorenz; Ballerini, Paola; Zierler, Susanna; Laffan, Michael A.; Chubanov, Vladimir; Gudermann, Thomas; Nieswandt, Bernhard; Braun, Attila

    2016-01-01

    Mg2+ plays a vital role in platelet function, but despite implications for life-threatening conditions such as stroke or myocardial infarction, the mechanisms controlling [Mg2+]i in megakaryocytes (MKs) and platelets are largely unknown. Transient receptor potential melastatin-like 7 channel (TRPM7) is a ubiquitous, constitutively active cation channel with a cytosolic α-kinase domain that is critical for embryonic development and cell survival. Here we report that impaired channel function of TRPM7 in MKs causes macrothrombocytopenia in mice (Trpm7fl/fl-Pf4Cre) and likely in several members of a human pedigree that, in addition, suffer from atrial fibrillation. The defect in platelet biogenesis is mainly caused by cytoskeletal alterations resulting in impaired proplatelet formation by Trpm7fl/fl-Pf4Cre MKs, which is rescued by Mg2+ supplementation or chemical inhibition of non-muscle myosin IIA heavy chain activity. Collectively, our findings reveal that TRPM7 dysfunction may cause macrothrombocytopenia in humans and mice. PMID:27020697

  15. Formins: Actin nucleators that regulate cytoskeletal dynamics during spermatogenesis

    PubMed Central

    Li, Nan; Mruk, Dolores D; Tang, Elizabeth I; Wong, Chris KC; Lee, Will M; Silvestrini, Bruno; Cheng, C Yan

    2015-01-01

    Formins are a growing class of actin nucleation proteins that promote the polymerization of actin microfilaments, forming long stretches of actin microfilaments to confer actin filament bundling in mammalian cells. As such, microfilament bundles can be formed in specific cellular domains, in particular in motile mammalian cells, such as filopodia. Since ectoplasmic specialization (ES), a testis-specific adherens junction (AJ), at the Sertoli cell-cell and Sertoli-spermatid interface is constituted by arrays of actin microfilament bundles, it is likely that formins are playing a significant physiological role on the homeostasis of ES during the epithelial cycle of spermatogenesis. In this Commentary, we provide a timely discussion on formin 1 which was recently shown to be a crucial regulator of actin microfilaments at the ES in the rat testis (Li N et al. Endocrinology, 2015, in press; DOI: 10.1210/en.2015-1161, PMID:25901598). We also highlight research that is needed to unravel the functional significance of formins in spermatogenesis. PMID:26413414

  16. Formins: Actin nucleators that regulate cytoskeletal dynamics during spermatogenesis.

    PubMed

    Li, Nan; Mruk, Dolores D; Tang, Elizabeth I; Wong, Chris Kc; Lee, Will M; Silvestrini, Bruno; Cheng, C Yan

    2015-01-01

    Formins are a growing class of actin nucleation proteins that promote the polymerization of actin microfilaments, forming long stretches of actin microfilaments to confer actin filament bundling in mammalian cells. As such, microfilament bundles can be formed in specific cellular domains, in particular in motile mammalian cells, such as filopodia. Since ectoplasmic specialization (ES), a testis-specific adherens junction (AJ), at the Sertoli cell-cell and Sertoli-spermatid interface is constituted by arrays of actin microfilament bundles, it is likely that formins are playing a significant physiological role on the homeostasis of ES during the epithelial cycle of spermatogenesis. In this Commentary, we provide a timely discussion on formin 1 which was recently shown to be a crucial regulator of actin microfilaments at the ES in the rat testis (Li N et al. Endocrinology, 2015, in press; DOI: 10.1210/en.2015-1161, PMID:25901598). We also highlight research that is needed to unravel the functional significance of formins in spermatogenesis.

  17. Phosphocreatine as an energy source for actin cytoskeletal rearrangements during myoblast fusion.

    PubMed

    O'Connor, Roddy S; Steeds, Craig M; Wiseman, Robert W; Pavlath, Grace K

    2008-06-15

    Myoblast fusion is essential for muscle development, postnatal growth and muscle repair after injury. Recent studies have demonstrated roles for actin polymerization during myoblast fusion. Dynamic cytoskeletal assemblies directing cell-cell contact, membrane coalescence and ultimately fusion require substantial cellular energy demands. Various energy generating systems exist in cells but the partitioning of energy sources during myoblast fusion is unknown. Here, we demonstrate a novel role for phosphocreatine (PCr) as a spatiotemporal energy buffer during primary mouse myoblast fusion with nascent myotubes. Creatine treatment enhanced cell fusion in a creatine kinase (CK)-dependent manner suggesting that ATP-consuming reactions are replenished through the PCr/CK system. Furthermore, selective inhibition of actin polymerization prevented myonuclear addition following creatine treatment. As myotube formation is dependent on cytoskeletal reorganization, our findings suggest that PCr hydrolysis is coupled to actin dynamics during myoblast fusion. We conclude that myoblast fusion is a high-energy process, and can be enhanced by PCr buffering of energy demands during actin cytoskeletal rearrangements in myoblast fusion. These findings implicate roles for PCr as a high-energy phosphate buffer in the fusion of multiple cell types including sperm/oocyte, trophoblasts and macrophages. Furthermore, our results suggest the observed beneficial effects of oral creatine supplementation in humans may result in part from enhanced myoblast fusion.

  18. Cytoskeletal modulators and pleiotropic strategies for Alzheimer drug discovery.

    PubMed

    Schenk, Dale; Carrillo, Maria C; Trojanowski, John Q

    2006-10-01

    The Alzheimer's Association Research Roundtable, a consortium of Association senior scientists and leaders from pharmaceutical, biotech, and imaging companies, met to discuss strategies for developing novel therapeutics for the treatment of Alzheimer's disease (AD). The goal of the meeting was to address, primarily, strategies that do not hinge on directly modulating levels of beta-amyloid. The identification of beta-amyloid as the major constituent of senile plaques and the subsequent discovery that familial AD can be caused by mutations in either the beta-amyloid precursor protein or presenilins, proteases that cleaves beta-amyloid from its precursor, has spawned numerous therapeutic strategies for treating AD. These include passive and active vaccines for clearing beta-amyloid from the brain and the development of small molecule inhibitors of beta- and gamma-secretases that can attenuate the production of beta-amyloid. But the field recognizes that there is more to AD than beta-amyloid alone. What role do neurofibrillary tangles play in the disease, for example, and how are they influenced by beta-amyloid? What lies upstream of beta-amyloid production in the sporadic AD brain, and how do apolipoproteins and cholesterol influence disease progression? Are there environmental or behavioral factors that contribute to the initiation or progression of sporadic AD? Because of the complexity of AD, the field is continually looking to other therapeutic strategies that may complement or substitute for therapies that target beta-amyloid. This roundtable meeting was charged with discussing and evaluating some of those strategies.

  19. Wheat germ cell-free expression: Two detergents with a low critical micelle concentration allow for production of soluble HCV membrane proteins.

    PubMed

    Fogeron, Marie-Laure; Badillo, Aurélie; Jirasko, Vlastimil; Gouttenoire, Jérôme; Paul, David; Lancien, Loick; Moradpour, Darius; Bartenschlager, Ralf; Meier, Beat H; Penin, François; Böckmann, Anja

    2015-01-01

    Membrane proteins are notoriously difficult to express in a soluble form. Here, we use wheat germ cell-free expression in the presence of various detergents to produce the non-structural membrane proteins 2, 4B and 5A of the hepatitis C virus (HCV). We show that lauryl maltose neopentyl glycol (MNG-3) and dodecyl octaethylene glycol ether (C12E8) detergents can yield essentially soluble membrane proteins at detergent concentrations that do not inhibit the cell-free reaction. This finding can be explained by the low critical micelle concentration (CMC) of these detergents, which keeps the monomer concentrations low while at the same time providing the necessary