Sample records for czochralski pulling method

  1. Telescoping low vibration pulling mechanism for Czochralski crystal growth

    NASA Astrophysics Data System (ADS)

    Iseler, G. W.

    1985-02-01

    A telescoping low vibration pulling mechanism is described for use in Czochralski crystal growth apparatus, comprising a broached brushing which defines an internal circumference of teeth on the circumference of a splined shaft. The brushing is coupled to the means for rotation via a hollow tube and the splined shaft, couplable to a seed shaft, and an elevation means telescopes through said brushing within said hollow tube.

  2. Fast Pulling of n-Type Si Ingots for Enhanced Si Solar Cell Production

    NASA Astrophysics Data System (ADS)

    Kim, Kwanghun; Park, Sanghyun; Park, Jaechang; Pang, Ilsun; Ryu, Sangwoo; Oh, Jihun

    2018-07-01

    Reducing the manufacturing costs of silicon substrates is an important issue in the silicon-based solar cell industry. In this study, we developed a high-throughput ingot growth method by accelerating the pulling speed in the Czochralski process. By controlling the heat flow of the ingot growth chamber and at the solid-liquid interfaces, the pulling speed of an ingot could be increased by 15% compared to the conventional method, while retaining high quality. The wafer obtained at a high pulling speed showed an enhanced minority carrier lifetime compared with conventional wafers, due to the vacancy passivation effect, and also demonstrated comparable bulk resistivity and impurities. The results in this work are expected to open a new way to enhance the productivity of Si wafers used for Si solar cells, and therefore, to reduce the overall manufacturing cost.

  3. Fast Pulling of n-Type Si Ingots for Enhanced Si Solar Cell Production

    NASA Astrophysics Data System (ADS)

    Kim, Kwanghun; Park, Sanghyun; Park, Jaechang; Pang, Ilsun; Ryu, Sangwoo; Oh, Jihun

    2018-03-01

    Reducing the manufacturing costs of silicon substrates is an important issue in the silicon-based solar cell industry. In this study, we developed a high-throughput ingot growth method by accelerating the pulling speed in the Czochralski process. By controlling the heat flow of the ingot growth chamber and at the solid-liquid interfaces, the pulling speed of an ingot could be increased by 15% compared to the conventional method, while retaining high quality. The wafer obtained at a high pulling speed showed an enhanced minority carrier lifetime compared with conventional wafers, due to the vacancy passivation effect, and also demonstrated comparable bulk resistivity and impurities. The results in this work are expected to open a new way to enhance the productivity of Si wafers used for Si solar cells, and therefore, to reduce the overall manufacturing cost.

  4. Development of advanced methods for continuous Czochralski growth. Silicon sheet growth development for the large area silicon sheet task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Wolfson, R. G.; Sibley, C. B.

    1978-01-01

    The three components required to modify the furnace for batch and continuous recharging with granular silicon were designed. The feasibility of extended growth cycles up to 40 hours long was demonstrated by a recharge simulation experiment; a 6 inch diameter crystal was pulled from a 20 kg charge, remelted, and pulled again for a total of four growth cycles, 59-1/8 inch of body length, and approximately 65 kg of calculated mass.

  5. Microtube-Czochralski technique (μT-CZ):. a novel way of seeding the melt to grow bulk single crystal

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, K.; Ramasamy, P.

    1998-09-01

    A novel microtube seeding has been proposed in the conventional Czochralski pulling technique to grow a bulk single crystal. The versatility of the technique has been shown by adopting this method for the growth of benzil. Benzil single crystals having hexagonal facets are grown by this technique called the microtube-Czochralski technique (μT-CZ). Due to capillary rise, a fine column of melt was crystallized inside the microtube, which leads to the formation of the single crystal nucleation and ends up with hexagonal morphology. The reproducibility for getting single crystal is about 80%. It is evident that this technique is more viable to grow a bulk single crystal from the melt without a pregrown-seed. Further, the proposed μT-CZ technique can also be extended to other newer materials with the proper choice of the microtube.

  6. Shallow melt apparatus for semicontinuous czochralski crystal growth

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2006-01-10

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  7. Development and melt growth of novel scintillating halide crystals

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akira; Yokota, Yuui; Shoji, Yasuhiro; Kral, Robert; Kamada, Kei; Kurosawa, Shunsuke; Ohashi, Yuji; Arakawa, Mototaka; Chani, Valery I.; Kochurikhin, Vladimir V.; Yamaji, Akihiro; Andrey, Medvedev; Nikl, Martin

    2017-12-01

    Melt growth of scintillating halide crystals is reviewed. The vertical Bridgman growth technique is still considered as very popular method that enables production of relatively large and commercially attractive crystals. On the other hand, the micro-pulling-down method is preferable when fabrication of small samples, sufficient for preliminary characterization of their optical and/or scintillation performance, is required. Moreover, bulk crystal growth is also available using the micro-pulling-down furnace. The examples of growths of various halide crystals by industrially friendly melt growth techniques including Czochralski and edge-defined film-fed growth methods are also discussed. Finally, traveling molten zone growth that in some degree corresponds to horizontal zone melting is briefly overviewed.

  8. Single crystal growth of Ga3Ni2 by the Czochralski method

    NASA Astrophysics Data System (ADS)

    Wencka, Magdalena; Pillaca, Mirtha; Gille, Peter

    2016-09-01

    Intermetallic compounds have proved to be interesting alternatives to heterogeneous catalysts prepared from pure noble metals or their alloys. As to study their intrinsic properties, to determine the crystalline structures of specific surfaces and finally to understand elementary processes of heterogeneous catalysis, single crystals of these intermetallics are needed. Inspired by the recent discovery of Ga-Ni catalysts for carbon dioxide reduction to methanol, we have grown for the first time cm3-size single crystals of trigonal Ga3Ni2. We report in detail on the synthesis and Czochralski growth from high-temperature solution using Ga as native solvent. Inclusion formation of Ga-rich fluid proved to be the most severe problem that was minimized by using an extremely low pulling rate down to 25 μm/h.

  9. In Situ Determination of Thermal Profiles during Czochralski Silicon Crystal Growth by an Eddy Current Technique.

    NASA Astrophysics Data System (ADS)

    Choe, Kwang Su.

    An eddy current testing method was developed to continuously monitor crystal growth process and determine thermal profiles in situ during Czochralski silicon crystal growth. The work was motivated by the need to improve the quality of the crystal by controlling thermal gradients and annealing history over the growth cycle. The experimental concept is to monitor intrinsic electrical conductivities of the growing crystal and deduce temperature values from them. The experiments were performed in a resistance-heated Czochralski puller with a 203 mm (8 inch) diameter crucible containing 6.5 kg melt. The silicon crystals being grown were about 80 mm in diameter and monitored by an encircling sensor operating at three different test frequencies (86, 53 and 19 kHz). A one-dimensional analytical solution was employed to translate the detected signals into electrical conductivities. In terms of experiments, the effects of changes in growth condition, which is defined by crystal and crucible rotation rates, crucible position, pull rate, and hot-zone configuration, were investigated. Under a given steady-state condition, the thermal profile was usually stable over the entire length of crystal growth. The profile shifted significantly, however, when the crucible rotation rate was kept too high. As a direct evidence to the effects of melt flow on heat transfer process, a thermal gradient minimum was observed about the crystal/crucible rotation combination of 20/-10 rpm cw. The thermal gradient reduction was still most pronounced when the pull rate or the radiant heat loss to the environment was decreased: a nearly flat axial thermal gradient was achieved when either the pull rate was halved or the height of the exposed crucible wall was effectively doubled. Under these conditions, the average axial thermal gradient along the surface of the crystal was about 4-5 ^{rm o}C/mm. Regardless of growth condition, the three-frequency data revealed radial thermal gradients much larger than what were predicted by existing theoretical models. This discrepancy seems to indicate that optical effects, which are neglected in theoretical modeling, play a major role in the internal heat transfer of the crystal.

  10. Solar silicon via the Dow Corning process

    NASA Technical Reports Server (NTRS)

    Hunt, L. P.; Dosaj, V. D.

    1979-01-01

    Technical feasibility for high volume production of solar cell-grade silicon is investigated. The process consists of producing silicon from pure raw materials via the carbothermic reduction of quartz. This silicon was then purified to solar grade by impurity segregation during Czochralski crystal growth. Commercially available raw materials were used to produce 100 kg quantities of silicon during 60 hour periods in a direct arc reactor. This silicon produced single crystalline ingot, during a second Czochralski pull, that was fabricated into solar cells having efficiencies ranging from 8.2 percent to greater than 14 percent. An energy analysis of the entire process indicated a 5 month payback time.

  11. Simulation of the temperature distribution in crystals grown by Czochralski method

    NASA Technical Reports Server (NTRS)

    Dudokovic, M. P.; Ramachandran, P. A.

    1985-01-01

    Production of perfect crystals, free of residual strain and dislocations and with prescribed dopant concentration, by the Czochralski method is possible only if the complex, interacting phenomena that affect crystal growth in a Cz-puller are fully understood and quantified. Natural and forced convection in the melt, thermocapillary effect and heat transfer in and around the crystal affect its growth rate, the shape of the crystal-melt interface and the temperature gradients in the crystal. The heat transfer problem in the crystal and between the crystal and all other surfaces present in the crystal pulling apparatus are discussed at length. A simulation and computer algorithm are used, based on the following assumptions: (1) only conduction occurs in the crystal (experimentally determined conductivity as a function of temperature is used), (2) melt temperature and the melt-crystal heat transfer coefficient are available (either as constant values or functions of radial position), (3) pseudo-steady state is achieved with respect to temperature gradients, (4) crystal radius is fixed, and (5) both direct and reflected radiation exchange occurs among all surfaces at various temperatures in the crystal puller enclosure.

  12. A first-principle model of 300 mm Czochralski single-crystal Si production process for predicting crystal radius and crystal growth rate

    NASA Astrophysics Data System (ADS)

    Zheng, Zhongchao; Seto, Tatsuru; Kim, Sanghong; Kano, Manabu; Fujiwara, Toshiyuki; Mizuta, Masahiko; Hasebe, Shinji

    2018-06-01

    The Czochralski (CZ) process is the dominant method for manufacturing large cylindrical single-crystal ingots for the electronics industry. Although many models and control methods for the CZ process have been proposed, they were only tested with small equipment and only a few industrial application were reported. In this research, we constructed a first-principle model for controlling industrial CZ processes that produce 300 mm single-crystal silicon ingots. The developed model, which consists of energy, mass balance, hydrodynamic, and geometrical equations, calculates the crystal radius and the crystal growth rate as output variables by using the heater input, the crystal pulling rate, and the crucible rise rate as input variables. To improve accuracy, we modeled the CZ process by considering factors such as changes in the positions of the crucible and the melt level. The model was validated with the operation data from an industrial 300 mm CZ process. We compared the calculated and actual values of the crystal radius and the crystal growth rate, and the results demonstrated that the developed model simulated the industrial process with high accuracy.

  13. Continuous Czochralski growth: Silicon sheet growth development of the large area silicon sheet task of the Low Cost Silicon Solar Array project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The primary objective of this contract is to develop equipment and methods for the economic production of single crystal ingot material by the continuous Czochralski (CZ) process. Continuous CZ is defined for the purpose of this work as the growth of at least 100 kilograms of ingot from only one melt container. During the reporting period (October, 1977 - September, 1978), a modified grower was made fully functional and several recharge runs were performed. The largest run lasted 44 hours and over 42 kg of ingot was produced. Little, if any, degradation in efficiency was observed as a result of pulling multiple crystals from one crucible. Solar efficiencies observed were between 9.3 and 10.4% AMO (13.0 and 14.6% AMI) compared to 10.5% (14.7% AMI) for optimum CZ material control samples. Using the SAMICS/IPEG format, economic analysis of continuous CZ suggests that 1986 DoE cost goals can only be met by the growth of large diameter, large mass crystals.

  14. Analysis and evaluation of processes and equipment in tasks 2 and 4 of the low-cost solar array project

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1978-01-01

    Several experimental and projected Czochralski crystal growing process methods were studied and compared to available operations and cost-data of recent production Cz-pulling, in order to elucidate the role of the dominant cost contributing factors. From this analysis, it becomes apparent that the specific add-on costs of the Cz-process can be expected to be reduced by about a factor of three by 1982, and about a factor of five by 1986. A format to guide in the accumulation of the data needed for thorough techno-economic analysis of solar cell production processes was developed.

  15. Modelling of thermal field and point defect dynamics during silicon single crystal growth using CZ technique

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2018-05-01

    Mathematical modelling is employed to numerically analyse the dynamics of the Czochralski (CZ) silicon single crystal growth. The model is axisymmetric, its thermal part describes heat transfer by conduction and thermal radiation, and allows to predict the time-dependent shape of the crystal-melt interface. Besides the thermal field, the point defect dynamics is modelled using the finite element method. The considered process consists of cone growth and cylindrical phases, including a short period of a reduced crystal pull rate, and a power jump to avoid large diameter changes. The influence of the thermal stresses on the point defects is also investigated.

  16. Improvement of minority carrier life time in N-type monocrystalline Si by the Czochralski method

    NASA Astrophysics Data System (ADS)

    Baik, Sungsun; Pang, Ilsun; Kim, Jaemin; Kim, Kwanghun

    2016-07-01

    The installation amount of solar power plants increases every year. Multi-crystalline Si solar cells comprise a large share of the market of solar power plants. Multi-crystalline and single-crystalline Si solar cells are competing against one another in the market. Many single-crystalline companies are trying to develop and produce n-type solar cells with higher cell efficiency than that of p-type. In n-type wafers with high cell efficiency, wafer quality has become increasingly important. In order to make ingots with higher MCLT, the effects of both poly types related to metal impurities and pull speeds related to vacancy concentration on minority carrier life time were studied. In the final part of ingots, poly types related to the metal impurities are a dominant factor on MCLT. In the initial part of ingots, pull speeds related to vacancy concentration are a dominant factor on MCLT. [Figure not available: see fulltext.

  17. Shallow Melt Apparatus for Semicontinuous Czochralski Crystal Growth

    DOEpatents

    Wang, T.; Ciszek, T. F.

    2006-01-10

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  18. Global simulation of the Czochralski silicon crystal growth in ANSYS FLUENT

    NASA Astrophysics Data System (ADS)

    Kirpo, Maksims

    2013-05-01

    Silicon crystals for high efficiency solar cells are produced mainly by the Czochralski (CZ) crystal growth method. Computer simulations of the CZ process established themselves as a basic tool for optimization of the growth process which allows to reduce production costs keeping high quality of the crystalline material. The author shows the application of the general Computational Fluid Dynamics (CFD) code ANSYS FLUENT to solution of the static two-dimensional (2D) axisymmetric global model of the small industrial furnace for growing of silicon crystals with a diameter of 100 mm. The presented numerical model is self-sufficient and incorporates the most important physical phenomena of the CZ growth process including latent heat generation during crystallization, crystal-melt interface deflection, turbulent heat and mass transport, oxygen transport, etc. The demonstrated approach allows to find the heater power for the specified pulling rate of the crystal but the obtained power values are smaller than those found in the literature for the studied furnace. However, the described approach is successfully verified with the respect to the heater power by its application for the numerical simulations of the real CZ pullers by "Bosch Solar Energy AG".

  19. Growing Organic Crystals By The Czochralski Method

    NASA Technical Reports Server (NTRS)

    Shields, Angela; Frazier, Donald O.; Penn, Benjamin G.; Aggarwal, M. D.; Wang, W. S.

    1994-01-01

    Apparatus grows high-quality single crystals of organic compounds by Czochralski method. In Czochralski process, growing crystal lifted from middle of molten material without touching walls. Because of low melting temperatures of organic crystals, glass vessels usable. Traditional method for inorganic semiconductors adapted to optically nonlinear organic materials.

  20. Mutiple Czochralski growth of silicon crystals from a single crucible

    NASA Technical Reports Server (NTRS)

    Lane, R. L.; Kachare, A. H.

    1980-01-01

    An apparatus for the Czochralski growth of silicon crystals is presented which is capable of producing multiple ingots from a single crucible. The growth chamber features a refillable crucible with a water-cooled, vacuum-tight isolation valve located between the pull chamber and the growth furnace tank which allows the melt crucible to always be at vacuum or low argon pressure when retrieving crystal or introducing recharge polysilicon feed stock. The grower can thus be recharged to obtain 100 kg of silicon crystal ingots from one crucible, and may accommodate crucibles up to 35 cm in diameter. Evaluation of the impurity contents and I-V characteristics of solar cells fabricated from seven ingots grown from two crucibles reveals a small but consistent decrease in cell efficiency from 10.4% to 9.6% from the first to the fourth ingot made in a single run, which is explained by impurity build-up in the residual melt. The crystal grower thus may offer economic benefits through the extension of crucible lifetime and the reduction of furnace downtime.

  1. Development of advanced Czochralski Growth Process to produce low cost 150 KG silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The goals in this program for advanced czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness are outlined. To provide a modified CG2000 crystal power capable of pulling a minimum of five crystals, each of approximately 30 kg in weight, 150 mm diameter from a single crucible with periodic melt replenishment. Crystals to have: resistivity of 1 to 3 ohm cm, p-type; dislocation density below 1- to the 6th power per cm; orientation (100); after growth yield of greater than 90%. Growth throughput of greater than 2.5 kg per hour of machine operation using a radiation shield. Prototype equipment suitable for use as a production facility. The overall cost goal is $.70 per peak watt by 1986. To accomplish these goals, the modified CG2000 grower and development program includes: (1) increased automation with a microprocessor based control system; (2) sensors development which will increase the capability of the automatic controls system, and provide technology transfer of the developed systems.

  2. Micro pulling down growth of very thin shape memory alloys single crystals

    NASA Astrophysics Data System (ADS)

    López-Ferreño, I.; Juan, J. San; Breczewski, T.; López, G. A.; Nó, M. L.

    Shape memory alloys (SMAs) have attracted much attention in the last decades due to their thermo-mechanical properties such as superelasticity and shape memory effect. Among the different families of SMAs, Cu-Al-Ni alloys exhibit these properties in a wide range of temperatures including the temperature range of 100-200∘C, where there is a technological demand of these functional materials, and exhibit excellent behavior at small scale making them more competitive for applications in Micro Electro-Mechanical Systems (MEMS). However, polycrystalline alloys of Cu-based SMAs are very brittle so that they show their best thermo-mechanical properties in single-crystal state. Nowadays, conventional Bridgman and Czochralski methods are being applied to elaborate single-crystal rods up to a minimum diameter of 1mm, but no works have been reported for smaller diameters. With the aim of synthesizing very thin single-crystals, the Micro-Pulling Down (μ-PD) technique has been applied, for which the capillarity and surface tension between crucible and the melt play a critical role. The μ-PD method has been successfully applied to elaborate several cylindrical shape thin single-crystals down to 200μm in diameter. Finally, the martensitic transformation, which is responsible for the shape memory properties of these alloys, has been characterized for different single-crystals. The experimental results evidence the good quality of the grown single-crystals.

  3. Analysis and evaluation of process and equipment in tasks 2 and 4 of the Low Cost Solar Array project

    NASA Technical Reports Server (NTRS)

    Goldman, H.; Wolf, M.

    1978-01-01

    Several experimental and projected Czochralski crystal growing process methods were studied and compared to available operations and cost-data of recent production Cz-pulling, in order to elucidate the role of the dominant cost contributing factors. From this analysis, it becomes apparent that substantial cost reductions can be realized from technical advancements which fall into four categories: an increase in furnace productivity; the reduction of crucible cost through use of the crucible for the equivalent of multiple state-of-the-art crystals; the combined effect of several smaller technical improvements; and a carry over effect of the expected availability of semiconductor grade polysilicon at greatly reduced prices. A format for techno-economic analysis of solar cell production processes was developed, called the University of Pennsylvania Process Characterization (UPPC) format. The accumulated Cz process data are presented.

  4. Czochralski growth of LaPd2Al2 single crystals

    NASA Astrophysics Data System (ADS)

    Doležal, P.; Rudajevová, A.; Vlášková, K.; Kriegner, D.; Václavová, K.; Prchal, J.; Javorský, P.

    2017-10-01

    The present study is focused on the preparation of single crystalline LaPd2Al2 by the Czochralski method. Differential scanning calorimetry (DSC) and energy dispersive X-ray spectroscopy (EDX) analyses reveal that LaPd2Al2 is an incongruently melting phase which causes difficulties for the preparation of single crystalline LaPd2Al2 by the Czochralski method. Therefore several non-stoichiometric polycrystalline samples were studied for its preparation. Finally the successful growth of LaPd2Al2 without foreign phases has been achieved by using a non-stoichiometric precursor with atomic composition 22:39:39 (La:Pd:Al). X-ray powder diffraction, EDX analysis and DSC were used for the characterisation. A single crystalline sample was separated from the ingot prepared by the Czochralski method using the non-stoichiometric precursor. The presented procedure for the preparation of pure single phase LaPd2Al2 could be modified for other incongruently melting phases.

  5. High-T sub c thin films on low microwave loss alkaline-rare-earth-aluminate crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolewski, R.; Gierlowski, P.; Kula, W.

    1991-03-01

    This paper reports on the alkaline-rare-earth aluminates (K{sub 2}NiF{sub 4}-type perovskites) which are an excellent choice as the substrate material for the growth of high-T{sub c} thin films suitable for microwave and far-infrared applications. The CaNdAlO{sub 4}, and SrLaAlO{sub 4} single crystals have been grown by Czochralski pulling and fabricated into the form of (001) oriented wafers. The Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O films deposited on these substrates by a single-target magnetron sputtering exhibited very good superconducting and structural properties.

  6. Czochralski crystal growth: Modeling study

    NASA Technical Reports Server (NTRS)

    Dudukovic, M. P.; Ramachandran, P. A.; Srivastava, R. K.; Dorsey, D.

    1986-01-01

    The modeling study of Czochralski (Cz) crystal growth is reported. The approach was to relate in a quantitative manner, using models based on first priniciples, crystal quality to operating conditions and geometric variables. The finite element method is used for all calculations.

  7. Furnace and support equipment for space processing. [space manufacturing - Czochralski method

    NASA Technical Reports Server (NTRS)

    Mazelsky, R.; Duncan, C. S.; Seidensticker, R. G.; Johnson, R. A.; Hopkins, R. H.; Roland, G. W.

    1975-01-01

    A core facility capable of performing a majority of materials processing experiments is discussed. Experiment classes are described, the needs peculiar to each experiment type are outlined, and projected facility requirements to perform the experiments are treated. Control equipment (automatic control) and variations of the Czochralski method for use in space are discussed.

  8. Experimental analysis and modeling of melt growth processes

    NASA Astrophysics Data System (ADS)

    Müller, Georg

    2002-04-01

    Melt growth processes provide the basic crystalline materials for many applications. The research and development of crystal growth processes is therefore driven by the demands which arise from these specific applications; however, common goals include an increased uniformity of the relevant crystal properties at the micro- and macro-scale, a decrease of deleterious crystal defects, and an increase of crystal dimensions. As melt growth equipment and experimentation becomes more and more expensive, little room remains for improvements by trial and error procedures. A more successful strategy is to optimize the crystal growth process by a combined use of experimental process analysis and computer modeling. This will be demonstrated in this paper by several examples from the bulk growth of silicon, gallium arsenide, indium phosphide, and calcium fluoride. These examples also involve the most important melt growth techniques, crystal pulling (Czochralski methods) and vertical gradient freeze (Bridgman-type methods). The power and success of the above optimization strategy, however, is not limited only to the given examples but can be generalized and applied to many types of bulk crystal growth.

  9. Dependence of the critical temperature of laser-ablated YBa2Cu3O(7-delta) thin films on LaAlO3 substrate growth technique

    NASA Technical Reports Server (NTRS)

    Warner, Joseph D.; Bhasin, Kul B.; Miranda, Felix A.

    1991-01-01

    Samples of LaAlO3 made by flame fusion and Czochralski method were subjected to the same temperature conditions that they have to undergo during the laser ablation deposition of YBa2Cu3O(7 - delta) thin films. After oxygen annealing at 750 C, the LaAlO3 substrate made by two methods experienced surface roughening. The degree of roughening on the substrate made by Czochralski method was three times greater than that on the substrate made by flame fusion. This excessive surface roughening may be the origin of the experimentally observed lowering of the critical temperature of a film deposited by laser ablation on a LaAlO3 substrate made by Czochralski method with respect to its counterpart deposited on LaAlO3 substrates made by flame fusion.

  10. Analysis of the effect of symmetric/asymmetric CUSP magnetic fields on melt/crystal interface during Czochralski silicon growth

    NASA Astrophysics Data System (ADS)

    Daggolu, Parthiv; Ryu, Jae Woo; Galyukov, Alex; Kondratyev, Alexey

    2016-10-01

    With the use of 300 mm silicon wafers for industrial semiconductor device manufacturing, the Czochralski (Cz) crystal growth process has to be optimized to achieve higher quality and productivity. Numerical studies based on 2D global thermal models combined with 3D simulation of melt convection are widely used today to save time and money in the process development. Melt convection in large scale Cz Si growth is controlled by a CUSP or transversal magnetic field (MF) to suppress the melt turbulence. MF can be optimized to meet necessary characteristics of the growing crystal, in terms of point defects, as MF affects the melt/crystal interface geometry and allows adjustment of the pulling rate. Among the different knobs associated with the CUSP magnetic field, the nature of its configuration, going from symmetric to asymmetric, is also reported to be an important tool for the control of crystallization front. Using a 3D unsteady model of the CGSim software, we have studied these effects and compared with several experimental results. In addition, physical mechanisms behind these observations are explored through a detailed modeling analysis of the effect of an asymmetric CUSP MF on convection features governing the heat transport in the silicon melt.

  11. Crystal growth and piezoelectric properties of Ca3Ta(Ga0.9Sc0.1)3Si2O14 bulk single crystal

    NASA Astrophysics Data System (ADS)

    Igarashi, Yu; Yokota, Yuui; Ohashi, Yuji; Inoue, Kenji; Yamaji, Akihiro; Shoji, Yasuhiro; Kamada, Kei; Kurosawa, Shunsuke; Yoshikawa, Akira

    2018-03-01

    Ca3Ta(Ga0.9Sc0.1)3Si2O14 langasite-type single crystal with a diameter of 1 in. was grown by Czochralski (Cz) method. Obtained crystal had good crystallinity and its lattice constants exceeded those of Ca3TaGa3Si2O14 (CTGS) according to the X-ray analysis. A crack-free specimen cut from the grown crystal was used for the measurements of dielectric constant ε11T/ε0, electromechanical coupling factor k12, and piezoelectric constant d11. The accuracies of these measurements were better than those for the crystal grown by micro-pulling-down (μ-PD) method. Substitution of Ga with Sc resulted modification of these constants in the directions opposite to those observed after partial substitution of Ga (of CTGS) with Al. This suggests that increase of |d14| was most probably associated with enlargement of average size of the Ga sites. The crystal reported here had greater dimensions as compared to analogous crystals grown by the μ-PD method. As a result, accuracy of determination of acoustic constants of this material may be improved.

  12. A preliminary review of organic materials single crystal growth by the Czochralski technique

    NASA Astrophysics Data System (ADS)

    Penn, B. G.; Shields, A. W.; Frazier, D. O.

    1988-09-01

    The growth of single crystals of organic compounds by the Czochralski method is reviewed. From the literature it is found that single crystals of benzil, a nonlinear optical material with a d sub 11 value of 11.2 + or - 1.5 x d sub 11 value of alpha quartz, has fewer dislocations than generally contained in Bridgman crystals. More perfect crystals were grown by repeated Czochralski growth. This consists of etching away the defect-containing portion of a Czochralski grown crystal and using it as a seed for further growth. Other compounds used to grow single crystals are benzophenone, 12-tricosanone (laurone), and salol. The physical properties, growth apparatus, and processing conditions presented in the literature are discussed. Moreover, some of the possible advantages of growing single crystals of organic compounds in microgravity to obtain more perfect crystals than on Earth are reviewed.

  13. A preliminary review of organic materials single crystal growth by the Czochralski technique

    NASA Technical Reports Server (NTRS)

    Penn, B. G.; Shields, A. W.; Frazier, D. O.

    1988-01-01

    The growth of single crystals of organic compounds by the Czochralski method is reviewed. From the literature it is found that single crystals of benzil, a nonlinear optical material with a d sub 11 value of 11.2 + or - 1.5 x d sub 11 value of alpha quartz, has fewer dislocations than generally contained in Bridgman crystals. More perfect crystals were grown by repeated Czochralski growth. This consists of etching away the defect-containing portion of a Czochralski grown crystal and using it as a seed for further growth. Other compounds used to grow single crystals are benzophenone, 12-tricosanone (laurone), and salol. The physical properties, growth apparatus, and processing conditions presented in the literature are discussed. Moreover, some of the possible advantages of growing single crystals of organic compounds in microgravity to obtain more perfect crystals than on Earth are reviewed.

  14. Growth of a decagonal Al 70Ni 15Co 15 single quasicrystal by the Czochralski method

    NASA Astrophysics Data System (ADS)

    Jeong, H. T.; Kim, S. H.; Kim, W. T.; Kim, D. H.; Inkson, B. J.

    2000-07-01

    Single decagonal quasicrystals of Al 70Ni 15Co 15 were grown by the Czochralski method at Ar atmosphere. The grown crystals were of single decagonal phase without any secondary phases due to the peritectic reaction and contained a large single quasicrystal of cm order size. The high quality and single quasicrystallinity of them were examined by the Laue transmission photography, single crystal X-ray diffraction, and high-resolution electron microscopy investigations.

  15. Li+, Na+ and K+ co-doping effects on scintillation properties of Ce:Gd3Ga3Al2O12 single crystals

    NASA Astrophysics Data System (ADS)

    Yoshino, Masao; Kamada, Kei; Kochurikhin, Vladimir V.; Ivanov, Mikhail; Nikl, Martin; Okumura, Satoshi; Yamamoto, Seiichi; Yeom, Jung Yeol; Shoji, Yasuhiro; Kurosawa, Shunsuke; Yokota, Yuui; Ohashi, Yuji; Yoshikawa, Akira

    2018-06-01

    Ce0.5%: Ce:Gd3Ga3Al2O12(GGAG) single crystals co-doped with 500at.ppm Li+, Na+ and K+ were grown by using the micro-pulling down method. The smooth Ce4+ charge transfer absorption below 350 nm and decay time acceleration were observed in Li co-doped sample. Na+ and K+ co-doping did not show a large effect on the acceleration of decay time compared with Li co-doping. Ce0.5%:GGAG single crystals co-doped with 500 at.ppm Li+ were also grown by the Czochralski method. Optical, scintillation properties and timing performance were evaluated to investigate the effect of univalent alkali metal ions co-doping on Ce:GGAG scintillators. The scintillation decay curves were accelerated by Li co-doping: the decay time was significantly accelerated to 54.8 ns (47%) for the faster component and 158 ns (53%) for the slower component. The light output was 94% of the non co-doped Ce:GGAG standard. The coincidence time resolution was improved to 258 ps by Li co-doping.

  16. Growth and spectral properties of Tm:BaY2F8 crystals with different Tm3+ concentration

    NASA Astrophysics Data System (ADS)

    Liu, Wang; Li, Chun; Xu, Jialin; Zhou, Yao; Xie, Huishuang; Gao, Meiling; Yin, Ru; Zheng, Dongyang; Lin, Hai; Liu, Jinghe; Zeng, Fanming

    2016-01-01

    Tm3+:BaY2F8 (Tm:BYF) laser crystals with different doping concentrations were successfully grown by Czochralski method. The optimal growth parameters obtained are as follows: the pulling rate is 0.5 mm/h; the rotation speed is 5 rpm; the cooling rate is 10°C/h. Phase composition, absorption spectra, and fluorescence properties of crystals were studied by XRD and spectral methods. XRD analysis indicates that the crystal belongs to monoclinic system with the C2/ m space group. The lattice parameters were calculated and the anisotropy of the crystals was studied, confirming that the a axis is the best growth direction. The absorption peaks around 790 nm became larger with increase of Tm3+ concentration. The cross section of 15% Tm:BYF crystal around 791 nm is 9.47 × 10-21 cm2. The 10% Tm:BYF crystal has the strongest emission peak around 1879.6 nm with the FWHM of 79 nm and the emission cross-section of 2.13 × 10-21 cm2, which is favorable for the 1.88 μm laser output.

  17. Potential productivity benefits of float-zone versus Czochralski crystal growth

    NASA Technical Reports Server (NTRS)

    Abe, T.

    1985-01-01

    Efficient mass production of single-crystal silicon is necessary for the efficient silicon solar arrays needed in the coming decade. However, it is anticipated that there will be difficulty growing such volumes of crystals using conventional Czochralski (Cz) methods. While the productivity of single crystals might increase with a crystal diameter increase, there are two obstacles to the mass production of large diameter Czochralski crystals, the long production cycle due to slow growth rate and the high heat requirements of the furnaces. Also counterproductive would be the large resistivity gradient along the growth direction of the crystals due to impurity concentration. Comparison between Float zone (FZ) and Cz crystal growth on the basis of a crystal 150 mm in diameter is on an order of two to four times in favor of the FZ method. This advantage results from high growth rates and steady-state growth while maintaining a dislocation-free condition and impurity segregation.

  18. Single crystal growth and nonlinear optical properties of Nd3+ doped STGS crystal for self-frequency-doubling application

    NASA Astrophysics Data System (ADS)

    Chen, Feifei; Wang, Lijuan; Wang, Xinle; Cheng, Xiufeng; Yu, Fapeng; Wang, Zhengping; Zhao, Xian

    2017-11-01

    The self-frequency-doubling crystal is an important kind of multi-functional crystal materials. In this work, Nd3+ doped Sr3TaGa3Si2O14 (Nd:STGS) single crystals were successfully grown by using Czochralski pulling method, in addition, the nonlinear and laser-frequency-doubling properties of Nd:STGS crystals were studied. The continuous-wave laser at 1064 nm was demonstrated along different physical axes, where the maximum output power was obtained to be 295 mW for the Z-cut samples, much higher than the Y-cut (242 mW) and X-cut (217 mW) samples. Based on the measured refractive indexes, the phase matching directions were discussed and determined for type I (42.5°, 30°) and type II (69.5°, 0°) crystal cuts. As expected, self-frequency-doubling green laser at 529 nm was achieved with output powers being around 16 mW and 12 mW for type I and type II configurations, respectively.

  19. Wide gap, permanent magnet biased magnetic bearing system

    NASA Technical Reports Server (NTRS)

    Boden, Karl

    1992-01-01

    The unique features and applications of the presented electrical permanent magnetic bearing system essentially result from three facts: (1) the only bearing rotor components are nonlaminated ferromagnetic steel collars or cylinders; (2) all radial and axial forces are transmitted via radial gaps; and (3) large radial bearing gaps can be provided with minimum electric power consumption. The large gaps allow for effective encapsulation and shielding of the rotors at elevated or low temperatures, corrosive or ultra clean atmosphere or vacuum or high pressure environment. Two significant applications are described: (1) a magnetically suspended x ray rotary anode was operated under high vacuum conditions at 100 KV anode potential, 600 C temperature at the rotor collars and speed 18000 rpm with 13 mm radial bearing gap; and (2) an improved Czochralski type crystal growth apparatus using the hot wall method for pulling GaAs single crystals of low dislocation density. Both crystal and crucible are carried and transported by magnetically suspended shafts inside a hermetically sealed housing at 800 C shaft and wall temperature. The radial magnetic bearing gap measures 24 mm.

  20. Investigating reliability attributes of silicon photovoltaic cells - An overview

    NASA Technical Reports Server (NTRS)

    Royal, E. L.

    1982-01-01

    Reliability attributes are being developed on a wide variety of advanced single-crystal silicon solar cells. Two separate investigations: cell-contact integrity (metal-to-silicon adherence), and cracked cells identified with fracture-strength-reducing flaws are discussed. In the cell-contact-integrity investigation, analysis of contact pull-strength data shows that cell types made with different metallization technologies, i.e., vacuum, plated, screen-printed and soldered, have appreciably different reliability attributes. In the second investigation, fracture strength was measured using Czochralski wafers and cells taken at various stages of processing and differences were noted. Fracture strength, which is believed to be governed by flaws introduced during wafer sawing, was observed to improve (increase) after chemical polishing and other process steps that tend to remove surface and edge flaws.

  1. Partially-Averaged Navier-Stokes (PANS) approach for study of fluid flow and heat transfer characteristics in Czochralski melt

    NASA Astrophysics Data System (ADS)

    Verma, Sudeep; Dewan, Anupam

    2018-01-01

    The Partially-Averaged Navier-Stokes (PANS) approach has been applied for the first time to model turbulent flow and heat transfer in an ideal Czochralski set up with the realistic boundary conditions. This method provides variable level of resolution ranging from the Reynolds-Averaged Navier-Stokes (RANS) modelling to Direct Numerical Simulation (DNS) based on the filter control parameter. For the present case, a low-Re PANS model has been developed for Czochralski melt flow, which includes the effect of coriolis, centrifugal, buoyant and surface tension induced forces. The aim of the present study is to assess improvement in results on switching to PANS modelling from unsteady RANS (URANS) approach on the same computational mesh. The PANS computed results were found to be in good agreement with the reported experimental, DNS and Large Eddy Simulation (LES) data. A clear improvement in computational accuracy is observed in switching from the URANS approach to the PANS methodology. The computed results further improved with a reduction in the PANS filter width. Further the capability of the PANS model to capture key characteristics of the Czochralski crystal growth is also highlighted. It was observed that the PANS model was able to resolve the three-dimensional turbulent nature of the melt, characteristic flow structures arising due to flow instabilities and generation of thermal plumes and vortices in the Czochralski melt.

  2. Silicon Materials Task of the Low Cost Solar Array Project, Phase 3. Effect of Impurities and Processing on Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.

    1979-01-01

    The effects of impurities, various thermochemical processes, and any impurity process interactions on the performance of terrestrial silicon solar cells are defined. Determinations of the segregation coefficients of tungsten, tantalum, and cobalt for the Czochralski pulling of silicon single crystals are reported. Sensitive neutron activation analysis was used to determine the metal impurity content of the silicon while atomic absorption was used to measure the metal content of the residual liquid from which the doped crystals were grown. Gettering of Ti doped silicon wafers improved cell performance by one to two percent for the highest temperatures and longest times. The HCl is more effective than POCl3 treatments for deactivating Ti but POCl3 and HCl produced essentially identical results for Mo or Fe.

  3. X-Ray Diffraction (XRD) Characterization Methods for Sigma=3 Twin Defects in Cubic Semiconductor (100) Wafers

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Kim, Hyun Jung (Inventor); Skuza, Jonathan R. (Inventor); Lee, Kunik (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor)

    2017-01-01

    An X-ray defraction (XRD) characterization method for sigma=3 twin defects in cubic semiconductor (100) wafers includes a concentration measurement method and a wafer mapping method for any cubic tetrahedral semiconductor wafers including GaAs (100) wafers and Si (100) wafers. The methods use the cubic semiconductor's (004) pole figure in order to detect sigma=3/{111} twin defects. The XRD methods are applicable to any (100) wafers of tetrahedral cubic semiconductors in the diamond structure (Si, Ge, C) and cubic zinc-blend structure (InP, InGaAs, CdTe, ZnSe, and so on) with various growth methods such as Liquid Encapsulated Czochralski (LEC) growth, Molecular Beam Epitaxy (MBE), Organometallic Vapor Phase Epitaxy (OMVPE), Czochralski growth and Metal Organic Chemical Vapor Deposition (MOCVD) growth.

  4. Do thermal donors reduce the lifetimes of Czochralski-grown silicon crystals?

    NASA Astrophysics Data System (ADS)

    Miyamura, Y.; Harada, H.; Nakano, S.; Nishizawa, S.; Kakimoto, K.

    2018-05-01

    High-performance electronics require long carrier lifetimes within their silicon crystals. This paper reports the effects of thermal donors on the lifetimes of carriers in as-grown n-type silicon crystals grown by the Czochralski method. We grew silicon crystals with two different concentrations of thermal donors using the following two cooling processes: one was cooled with a 4-h halt after detaching the crystal from the melt, and the other was cooled continuously. The crystal grown with the cooling halt contained higher concentrations of thermal donors of the order of 1 × 1013 cm-3, while the crystal without the halt had no thermal donors. The measured bulk lifetimes were in the range of 15-18 ms. We concluded that thermal donors in Czochralski-grown silicon crystals do not act to reduce their lifetimes.

  5. Crystal growth by Bridgman and Czochralski method of the ferromagnetic quantum critical material YbNi4P2

    NASA Astrophysics Data System (ADS)

    Kliemt, K.; Krellner, C.

    2016-09-01

    The tetragonal YbNi4P2 is one of the rare examples of compounds that allow the investigation of a ferromagnetic quantum critical point. We report in detail on two different methods which have been used to grow YbNi4P2 single crystals from a self-flux. The first, a modified Bridgman method, using a closed crucible system yields needle-shaped single crystals oriented along the [001]-direction. The second method, the Czochralski growth from a levitating melt, yields large single crystals which can be cut in any desired orientation. With this crucible-free method, samples without flux inclusions and a resistivity ratio at 1.8 K of RR1.8K = 17 have been grown.

  6. Optical Properties of LiNbO3 Single Crystal Grown by Czochralski Method

    NASA Astrophysics Data System (ADS)

    Sahar, M. R.; Naim, N. M.; Hamzah, K.

    2011-03-01

    Pure LiNbO3 single crystal was grown by Czochralski method using Automatic Diameter Control—Crystal Growth System (ADC-CGS). The transmission spectrum was determined by using Infrared Spectroscopy while the refractive index was determined using UV-Vis spectroscopy via the Sellmeier equation. The density was also measured using the Archimedes principle. It was found that the peak for the absorption vibrational spectrum for LiNbO3 crystal occurs at 801 cm-1, 672 cm-1, 639 cm-1 and 435 cm-1. The refractive index, ne was found to be 2.480 and the crystal density was around 4.64 g/cm3.

  7. Electrooptic crystal growth and properties

    NASA Astrophysics Data System (ADS)

    1994-02-01

    A new member in the tungsten-bronze family of ferroelectric lead potassium niobate (PKN), with general formula Pb(1-x)K(2x)Nb2O6, has been grown as bulk single crystal. Growth of PKN with charge composition x = 0.23 has been achieved using the Czochralski technique of crystal pulling. Large diameter boules were grown in platinum crucibles at temperatures between 1280 and 1300 C. Crystallographic studies were conducted using x ray diffraction techniques. The samples were characterized for ferroelectric properties between 25 and 600 C and for optical absorption. This paper presents the crystal synthesis and the results of ferroelectric and optical characterization. Bulk single crystals of potassium tantalate niobate, KTa(1-x)Nb(x)O3, ferroelectric with different values of Ta/Nb ratios have been grown by temperature gradient transport technique (TGTT). A second attached paper presents the results of the crystal growth experiments, ferroelectric characterization techniques, and properties of potassium tantalate niobate crystals.

  8. Numerical simulation of thermal stress distributions in Czochralski-grown silicon crystals

    NASA Astrophysics Data System (ADS)

    Kumar, M. Avinash; Srinivasan, M.; Ramasamy, P.

    2018-04-01

    Numerical simulation is one of the important tools in the investigation and optimization of the single-crystal silicon grown by the Czochralski (Cz) method. A 2D steady global heat transfer model was used to investigate the temperature distribution and the thermal stress distributions at particular crystal position during the Cz growth process. The computation determines the thermal stress such as von Mises stress and maximum shear stress distribution along grown crystal and shows possible reason for dislocation formation in the Cz-grown single-crystal silicon.

  9. Computational analysis of heat transfer, thermal stress and dislocation density during resistively Czochralski growth of germanium single crystal

    NASA Astrophysics Data System (ADS)

    Tavakoli, Mohammad Hossein; Renani, Elahe Kabiri; Honarmandnia, Mohtaram; Ezheiyan, Mahdi

    2018-02-01

    In this paper, a set of numerical simulations of fluid flow, temperature gradient, thermal stress and dislocation density for a Czochralski setup used to grow IR optical-grade Ge single crystal have been done for different stages of the growth process. A two-dimensional steady state finite element method has been applied for all calculations. The obtained numerical results reveal that the thermal field, thermal stress and dislocation structure are mainly dependent on the crystal height, heat radiation and gas flow in the growth system.

  10. Structural and photoluminescence studies on europium-doped lithium tetraborate (Eu:Li2B4O7) single crystal grown by microtube Czochralski (μT-Cz) technique

    NASA Astrophysics Data System (ADS)

    A, Kumaresh; R, Arun Kumar; N, Ravikumar; U, Madhusoodanan; B, S. Panigrahi; K, Marimuthu; M, Anuradha

    2016-05-01

    Rare earth europium (Eu3+)-doped lithium tetraborate (Eu:Li2B4O7) crystal is grown from its stoichiometric melt by microtube Czochralski pulling technique (μT-Cz) for the first time. The grown crystals are subjected to powder x-ray diffraction (PXRD) analysis which reveals the tetragonal crystal structure of the crystals. UV-vis-NIR spectral analysis is carried out to study the optical characteristics of the grown crystals. The crystal is transparent in the entire visible region, and the lower cutoff is observed to be at 304 nm. The existence of BO3 and BO4 bonding structure and the molecular associations are analyzed by Fourier transform infrared (FTIR) spectroscopy. The results of excitation and emission-photoluminescence spectra of europium ion incorporated in lithium tetraborate (LTB) single crystal reveal that the observations of peaks at 258, 297, and 318 nm in the excitation spectra and peaks at 579, 591, 597, 613, and 651 nm are observed in the emission spectra. The chromaticity coordinates are calculated from the emission spectra, and the emission intensity of the grown crystal is characterized through a CIE 1931 (Commission International d’Eclairage) color chromaticity diagram. Project supported by the Department of Science and Technology-Science and Engineering Research Board (Grant No. SR/S2/LOP-0012/2011), the Government of India for Awarding Major Research Project, the University Grants Commission-Department of Atomic Research-Consortium for Scientific Research (Grant No. CSR-KN/CSR-63/2014-2015/503), and the Kalpakkam and Indore, India.

  11. Investigation of Backside Textures for Genesis Solar Wind Silicon Collectors

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. P.; Burkett, P. J.; Rodriguez, M. C.; Allton, J. H.

    2014-01-01

    Genesis solar wind collectors were comprised of a suite of 15 types of ultrapure materials. The single crystal, pure silicon collectors were fabricated by two methods: float zone (FZ) and Czochralski (CZ). Because of slight differences in bulk purity and surface cleanliness among the fabrication processes and the specific vendor, it is desirable to know which variety of silicon and identity of vendor, so that appropriate reference materials can be used. The Czochralski method results in a bulk composition with slightly higher oxygen, for example. The CZ silicon array wafers that were Genesis-flown were purchased from MEMC Electronics. Most of the Genesis-flown FZ silicon was purchased from Unisil and cleaned by MEMC, although a few FZ wafers were acquired from International Wafer Service (IWS).

  12. Edge facet dynamics during the growth of heavily doped n-type silicon by the Czochralski-method

    NASA Astrophysics Data System (ADS)

    Stockmeier, L.; Kranert, C.; Raming, G.; Miller, A.; Reimann, C.; Rudolph, P.; Friedrich, J.

    2018-06-01

    During the growth of [0 0 1]-oriented, heavily n-type doped silicon crystals by the Czochralski (CZ) method dislocation formation occurs frequently which leads to a reduction of the crystal yield. In this publication the evolution of the solid-liquid interface and the formation of the {1 1 1} edge facets are analyzed on a microscopic scale as possible reason for dislocation formation in heavily n-type doped [0 0 1]-oriented CZ crystals. A correlation between the length of the {1 1 1} edge facets and the curvature of the interface is found. They ultimately promote supercooled areas and interrupted growth kinetics, which increase the probability for dislocation formation at the boundary between the {1 1 1} edge facets and the atomically rough interface.

  13. Optical characteristics of novel bulk and nanoengineered laser host materials

    NASA Astrophysics Data System (ADS)

    Prasad, Narasimha S.; Sova, Stacey; Kelly, Lisa; Bevan, Talon; Arnold, Bradley; Cooper, Christopher; Choa, Fow-Sen; Singh, N. B.

    2018-02-01

    The hexagonal apatite single crystals have been investigated for their applications as laser host materials. Czochralksi and flux growth methods have been utilized to obtain single crystals. For low temperature processing (<100 0C), several techniques for crystal growth have been developed. The hexagonal apatite structure (space group P63/m) is characteristic of several compounds, some of which have extremely interesting and useful properties as laser hosts and bone materials. Calcium lanthanum silicate (Nd-doped) and lanthanum aluminate material systems were studied in detail. Nanoengineered calcium and lanthanum based silicates were synthesized by a solution method and their optical and morphological characteristics were compared with Czochralski grown bulk hydroxyapatite single crystals. Materials were evaluated by absorbance, fluorescence and Raman characteristics. Neodymium, iron and chromium doped crystals grown by a solution method showed weak but similar optical properties to that of Czochralski grown single crystals.

  14. Determination of Low C Concentration in Czochralski-Grown Si for Solar Cell Applications by Liquid-N-Temperature Photoluminescence After Electron Irradiation

    NASA Astrophysics Data System (ADS)

    Tajima, Michio; Kiuchi, Hirotatsu; Higuchi, Fumito; Ishikawa, Yoichiro; Ogura, Atsushi

    2018-05-01

    The effectiveness of liquid-N-temperature photoluminescence (PL) after electron irradiation for quantification of low-level C has been demonstrated in Czochralski (CZ)-grown Si for solar cell applications. We focused on the intensity ratios of the C- and G-lines to the band-edge emission, which were used as indexes for determining the C concentration in the PL activation method at 4.2 K. Good correlations of the ratio between 4.2 K and 77 K were obtained for samples with similar P and O concentrations after electron irradiation at fluence varying from 1 × 1015 cm-2 to 10 × 1015 cm-2. We applied the present method to quantify the C concentration along the solidified fraction in CZ-Si ingots.

  15. LSA Large Area Silicon Sheet Task Continuous Czochralski Process Development

    NASA Technical Reports Server (NTRS)

    Rea, S. N.

    1979-01-01

    A commercial Czochralski crystal growing furnace was converted to a continuous growth facility by installation of a small, in-situ premelter with attendant silicon storage and transport mechanisms. Using a vertical, cylindrical graphite heater containing a small fused quartz test tube linear from which the molten silicon flowed out the bottom, approximately 83 cm of nominal 5 cm diamter crystal was grown with continuous melt addition furnished by the test tube premelter. High perfection crystal was not obtained, however, due primarily to particulate contamination of the melt. A major contributor to the particulate problem was severe silicon oxide buildup on the premelter which would ultimately drop into the primary melt. Elimination of this oxide buildup will require extensive study and experimentation and the ultimate success of continuous Czochralski depends on a successful solution to this problem. Economically, the continuous Czochralski meets near-term cost goals for silicon sheet material.

  16. Cold crucible Czochralski for solar cells

    NASA Technical Reports Server (NTRS)

    Trumble, T. M.

    1982-01-01

    The efficiency and radiation resistance of present silicon solar cells are a function of the oxygen and carbon impurities and the boron doping used to provide the proper resistivity material. The standard Czochralski process used grow single crystal silicon contaminates the silicon stock material due to the use of a quartz crucible and graphite components. The use of a process which replaces these elements with a water cooled copper to crucible has provided a major step in providing gallium doped (100) crystal orientation, low oxygen, low carbon, silicon. A discussion of the Cold Crucible Czochralski process and recent float Zone developments is provided.

  17. Cold crucible Czochralski for solar cells

    NASA Astrophysics Data System (ADS)

    Trumble, T. M.

    The efficiency and radiation resistance of present silicon solar cells are a function of the oxygen and carbon impurities and the boron doping used to provide the proper resistivity material. The standard Czochralski process used grow single crystal silicon contaminates the silicon stock material due to the use of a quartz crucible and graphite components. The use of a process which replaces these elements with a water cooled copper to crucible has provided a major step in providing gallium doped (100) crystal orientation, low oxygen, low carbon, silicon. A discussion of the Cold Crucible Czochralski process and recent float Zone developments is provided.

  18. Digital Control of the Czochralski Growth of Gallium Arsenide. System Reference Manual. Valid for Czochralski Growth Controller Software Version 2.4

    DTIC Science & Technology

    1988-01-04

    Controller Routine .......... ........................ 405 -viii- ’ O, ...1 . • N SList of Illustrations i p List of Illustrations . Fig. 1: A...J------ - - - 6 - -- -w -- -w -r n . w ~ - P a CGCS Program Versions ~CGCS Program Versions This section describes the "evolution" of the...8217 ~- 134 - ,d" - 1’ , n "W , ’." " a 4 r P . ’ ,’ r t r 1 "."." , . L t * 5.1 CGCS Concept and Structure 5. The Czochralski Growth Control System Software

  19. Thermal system design and modeling of meniscus controlled silicon growth process for solar applications

    NASA Astrophysics Data System (ADS)

    Wang, Chenlei

    The direct conversion of solar radiation to electricity by photovoltaics has a number of significant advantages as an electricity generator. That is, solar photovoltaic conversion systems tap an inexhaustible resource which is free of charge and available anywhere in the world. Roofing tile photovoltaic generation, for example, saves excess thermal heat and preserves the local heat balance. This means that a considerable reduction of thermal pollution in densely populated city areas can be attained. A semiconductor can only convert photons with the energy of the band gap with good efficiency. It is known that silicon is not at the maximum efficiency but relatively close to it. There are several main parts for the photovoltaic materials, which include, single- and poly-crystalline silicon, ribbon silicon, crystalline thin-film silicon, amorphous silicon, copper indium diselenide and related compounds, cadmium telluride, et al. In this dissertation, we focus on melt growth of the single- and poly-crystalline silicon manufactured by Czochralski (Cz) crystal growth process, and ribbon silicon produced by the edge-defined film-fed growth (EFG) process. These two methods are the most commonly used techniques for growing photovoltaic semiconductors. For each crystal growth process, we introduce the growth mechanism, growth system design, general application, and progress in the numerical simulation. Simulation results are shown for both Czochralski and EFG systems including temperature distribution of the growth system, velocity field inside the silicon melt and electromagnetic field for the EFG growth system. Magnetic field is applied on Cz system to reduce the melt convection inside crucible and this has been simulated in our numerical model. Parametric studies are performed through numerical and analytical models to investigate the relationship between heater power levels and solidification interface movement and shape. An inverse problem control scheme is developed to control the solidification interface of Cz system by adjusting heater powers. For the EFG system, parametric studies are performed to discuss the effect of several growth parameters including window opening size, argon gas flow rate and growth thermal environment on the temperature distribution, silicon tube thickness and pulling rate. Two local models are developed and integrated with the global model to investigate the detailed transport phenomena in a small region around the solidification interface including silicon crystal, silicon melt, free surface, liquid-solid interface and graphite die design. Different convection forms are taken into consideration.

  20. Advanced crystal growth techniques for thallium bromide semiconductor radiation detectors

    NASA Astrophysics Data System (ADS)

    Datta, Amlan; Becla, Piotr; Guguschev, Christo; Motakef, Shariar

    2018-02-01

    Thallium Bromide (TlBr) is a promising room-temperature radiation detector candidate with excellent charge transport properties. Currently, Travelling Molten Zone (TMZ) technique is widely used for growth of semiconductor-grade TlBr crystals. However, there are several challenges associated with this type of crystal growth process including lower yield, high thermal stress, and low crystal uniformity. To overcome these shortcomings of the current technique, several different crystal growth techniques have been implemented in this study. These include: Vertical Bridgman (VB), Physical Vapor Transport (PVT), Edge-defined Film-fed Growth (EFG), and Czochralski Growth (Cz). Techniques based on melt pulling (EFG and Cz) were demonstrated for the first time for semiconductor grade TlBr material. The viability of each process along with the associated challenges for TlBr growth has been discussed. The purity of the TlBr crystals along with its crystalline and electronic properties were analyzed and correlated with the growth techniques. Uncorrected 662 keV energy resolutions around 2% were obtained from 5 mm x 5 mm x 10 mm TlBr devices with virtual Frisch-grid configuration.

  1. Boron codoping of Czochralski grown lutetium aluminum garnet and the effect on scintillation properties

    NASA Astrophysics Data System (ADS)

    Foster, Camera; Koschan, Merry; Wu, Yuntao; Melcher, Charles L.

    2018-03-01

    Many single crystal scintillators, such as Lu3Al5O12, have intrinsic defects that impede their performance. In addition to doping with activators such as cerium, codoping can be used to improve the scintillation properties of a variety of scintillators. In particular, boron has been shown to improve the light yield, energy resolution, and self-absorption of other garnet scintillators, such as GGAG, when incorporated into the lattice via codoping. In this study, single crystals of LuAG: 0.2 at.% Ce codoped with varying concentrations of boron were grown via the Czochralski method at a rate of 1.2 mm/h. Results will show the effect boron codoping has on the scintillation properties of LuAG: Ce, including light yield, decay time, and self-absorption.

  2. Modeling of dislocation dynamics in germanium Czochralski growth

    NASA Astrophysics Data System (ADS)

    Artemyev, V. V.; Smirnov, A. D.; Kalaev, V. V.; Mamedov, V. M.; Sidko, A. P.; Podkopaev, O. I.; Kravtsova, E. D.; Shimansky, A. F.

    2017-06-01

    Obtaining very high-purity germanium crystals with low dislocation density is a practically difficult problem, which requires knowledge and experience in growth processes. Dislocation density is one of the most important parameters defining the quality of germanium crystal. In this paper, we have performed experimental study of dislocation density during 4-in. germanium crystal growth using the Czochralski method and comprehensive unsteady modeling of the same crystal growth processes, taking into account global heat transfer, melt flow and melt/crystal interface shape evolution. Thermal stresses in the crystal and their relaxation with generation of dislocations within the Alexander-Haasen model have been calculated simultaneously with crystallization dynamics. Comparison to experimental data showed reasonable agreement for the temperature, interface shape and dislocation density in the crystal between calculation and experiment.

  3. Crystal front shape control by use of an additional heater in a Czochralski sapphire single crystal growth system

    NASA Astrophysics Data System (ADS)

    Hur, Min-Jae; Han, Xue-Feng; Choi, Ho-Gil; Yi, Kyung-Woo

    2017-09-01

    The quality of sapphire single crystals used as substrates for LED production is largely influenced by two defects: dislocation density and bubbles trapped in the crystal. In particular, the dislocation density has a higher value in sapphire grown by the Czochralski (CZ) method than by other methods. In the present study, we predict a decreased value for the convexity and thermal gradient at the crystal front (CF) through the use of an additional heater in an induction-heated CZ system. In addition, we develop a solute concentration model by which the location of bubble formation in CZ growth is calculated, and the results are compared with experimental results. We further calculate the location of bubble entrapment corresponding with the use of an additional heater. We find that sapphire crystal growth with an additional heater yields a decreased thermal gradient at the CF, together with decreased CF convexity, improved energy efficiency, and improvements in terms of bubble formation location.

  4. Method for fabricating silicon cells

    DOEpatents

    Ruby, Douglas S.; Basore, Paul A.; Schubert, W. Kent

    1998-08-11

    A process for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon.

  5. Drawbar Pull

    DTIC Science & Technology

    2017-01-26

    Includes procedures for hard surface, soil , and water tests. Discusses vehicle preparation, instrumentation method of computing results, data reduction...and amphibious vehicles. 15. SUBJECT TERMS Bollard pull Soft- soil mobility Drawbar pull Vehicle, amphibious Drawbar horsepower Vehicle...4.3 Drawbar Pull in Soft Soil ................................................. 8 4.4 Amphibious Vehicle Tests (Drawbar Pull in Water and Bollard Pull

  6. Method for fabricating silicon cells

    DOEpatents

    Ruby, D.S.; Basore, P.A.; Schubert, W.K.

    1998-08-11

    A process is described for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon. 9 figs.

  7. Real time thermal imaging for analysis and control of crystal growth by the Czochralski technique

    NASA Technical Reports Server (NTRS)

    Wargo, M. J.; Witt, A. F.

    1992-01-01

    A real time thermal imaging system with temperature resolution better than +/- 0.5 C and spatial resolution of better than 0.5 mm has been developed. It has been applied to the analysis of melt surface thermal field distributions in both Czochralski and liquid encapsulated Czochralski growth configurations. The sensor can provide single/multiple point thermal information; a multi-pixel averaging algorithm has been developed which permits localized, low noise sensing and display of optical intensity variations at any location in the hot zone as a function of time. Temperature distributions are measured by extraction of data along a user selectable linear pixel array and are simultaneously displayed, as a graphic overlay, on the thermal image.

  8. Luminescence and Scintillation Properties of Czochralski Grown LYGBO Crystals

    NASA Astrophysics Data System (ADS)

    Fawad, U.; Kim, Hong Joo; Park, H.; Kim, Sunghwan; Khan, Sajid

    2016-06-01

    Mixed crystals Li6YxGd1-x(BO3)3:Ce3+ (LYGBO) (where, x = 0.0, 0.2, 0.5, 0.8, 1.0) are grown by using Czochralski method with different proportions of Li6Y(BO3)3 and Li6Gd(BO3)3. All crystals are doped with 3 mole% optimized concentrations of Ce3+ ions. The grown crystals are 20-70 mm in length and 5-10 mm in diameter. Detailed sintering and crystal growth procedure is presented in this study. The required phase of the grown crystals is confirmed by powder X-ray diffraction (XRD) analysis. Ultraviolet (UV) photoluminescence and X-ray induced luminescence of the grown crystals at room temperature are measured. Various scintillation properties such as energy resolution, light yield, α/β ratio and fluorescence decay time under the excitation by 137Cs γ-ray and 241Am particles are also presented.

  9. Czochralski and modified Bridgman-Stockbarger growth of pure, Cd 2+ and Nd 3+ doped benzil single crystals

    NASA Astrophysics Data System (ADS)

    Aggarwal, M. D.; Wang, W. S.; Tambwe, M.

    1993-03-01

    Pure, Cd2+ and Nd3+-doped benzil C6H5COCOC6H5 have been grown from melt using the Czochralski and modified Bridgman-Stockbarger methods. Angle-tuned second harmonic generation of pure benzil from Nd:YAG laser radiation of λ = 1.06 μm with a conversion efficiency η = I2w/Iw = 0.4% has been demonstrated. We have used a Nd:YAG pulse laser to measure the radiation damage threshold as 15.9 MW/cm2 (c-axis) and 23.9 MW/cm2 (a-axis) under the conditions that laser pulse width is 10 ns. Under the same conditions, the conversion efficiency of Nd3+ and Cd2+-doped benzil, η= I2w/Iw = 1.1%, has been demonstrated. The radiation threshold is higher than for pure benzil crystals.

  10. Crucible-free pulling of germanium crystals

    NASA Astrophysics Data System (ADS)

    Wünscher, Michael; Lüdge, Anke; Riemann, Helge

    2011-03-01

    Commonly, germanium crystals are grown after the Czochralski (CZ) method. The crucible-free pedestal and floating zone (FZ) methods, which are widely used for silicon growth, are hardly known to be investigated for germanium. The germanium melt is more than twice as dense as liquid silicon, which could destabilize a floating zone. Additionally, the lower melting point and the related lower radiative heat loss is shown to reduce the stability especially of the FZ process with the consequence of a screw-like crystal growth. We found that the lower heat radiation of Ge can be compensated by the increased convective cooling of a helium atmosphere instead of the argon ambient. Under these conditions, the screw-like growth could be avoided. Unfortunately, the helium cooling deteriorates the melting behavior of the feed rod. Spikes appear along the open melt front, which touch on the induction coil. In order to improve the melting behavior, we used a lamp as a second energy source as well as a mixture of Ar and He. With this, we found a final solution for growing stable crystals from germanium by using both gases in different parts of the furnace. The experimental work is accompanied by the simulation of the stationary temperature field. The commercially available software FEMAG-FZ is used for axisymmetric calculations. Another tool for process development is the lateral photo-voltage scanning (LPS), which can determine the shape of the solid-liquid phase boundary by analyzing the growth striations in a lateral cut of a grown crystal. In addition to improvements of the process, these measurements can be compared with the calculated results and, hence, conduce to validate the calculation.

  11. Growth and laser properties of Yb : Ca 4YO(BO 3) 3 crystal

    NASA Astrophysics Data System (ADS)

    Zhang, Huaijin; Meng, Xianlin; Zhu, Li; Wang, Pu; Liu, Xuesong; Cheng, Ruiping; Dawes, Judith; Dekker, Peter; Zhang, Shaojun; Sun, Lianke

    1999-04-01

    Yb : Ca 4YO(BO 3) 3 (Yb : YCOB) crystal has been grown by the Czochralski method. The absorption and fluorescence spectra have been measured. The green luminescence is also observed. The output laser at 1032 nm has been demonstrated pumped by laser diode (LD) at 976.4 nm.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zhe, E-mail: zhenzhe1201@sina.com; Yang, Lei; Hang, Yin

    Highly transparent Dy{sup 3+}-doped terbium gallium garnet (TGG) single crystal was grown by Czochralski (Cz) method. Phase composition of the crystal was tested by XRD measurements. The distribution coefficient of Dy{sup 3+} in the crystal was obtained. The optical and magneto-optical properties were analyzed in detail, and magnetic properties of the Dy{sup 3+}-TGG crystal were studied. The paramagnetic behavior is observed down to 10 K. The as-grown crystal exhibited high optical transmittance, particularly in the visible region. The Faraday rotation was investigated over visible and near-infrared regions (VIS–NIR) at room temperature. The Verdet constants increase at measured wavelengths and highmore » thermal stability was found in Dy{sup 3+}-doped TGG, as compared to the properties of pure TGG, indicating that Dy{sup 3+}-doped crystals are preferable for magneto-active materials used in Faraday devices at VIS–NIR wavelengths. - Graphical abstract: Highly transparent Dy{sup 3+}-doped terbium gallium garnet (TGG) and pure TGG single crystals were grown by Czochralski method. The Dy{sup 3+}-doped TGG possesses 20–30% higher Verdet values in reference to TGG independently on wavelength.« less

  13. Control of heat transfer in continuous-feeding Czochralski-silicon crystal growth with a water-cooled jacket

    NASA Astrophysics Data System (ADS)

    Zhao, Wenhan; Liu, Lijun

    2017-01-01

    The continuous-feeding Czochralski method is an effective method to reduce the cost of single crystal silicon. By promoting the crystal growth rate, the cost can be reduced further. However, more latent heat will be released at the melt-crystal interface under a high crystal growth rate. In this study, a water-cooled jacket was applied to enhance the heat transfer at the melt-crystal interface. Quasi-steady-state numerical calculation was employed to investigate the impact of the water-cooled jacket on the heat transfer at the melt-crystal interface. Latent heat released during the crystal growth process at the melt-crystal interface and absorbed during feedstock melting at the feeding zone was modeled in the simulations. The results show that, by using the water-cooled jacket, heat transfer in the growing crystal is enhanced significantly. Melt-crystal interface deflection and thermal stress increase simultaneously due to the increase of radial temperature at the melt-crystal interface. With a modified heat shield design, heat transfer at the melt-crystal interface is well controlled. The crystal growth rate can be increased by 20%.

  14. Ultrasonic Evaluation of the Pull-Off Adhesion between Added Repair Layer and a Concrete Substrate

    NASA Astrophysics Data System (ADS)

    Czarnecki, Slawomir

    2017-10-01

    This paper concerns the evaluation of the pull-off adhesion between a concrete added repair layer with variable thickness and a concrete substrate, based on parameters assessed using ultrasonic pulse velocity (UPV) method. In construction practice, the experimental determination of pull-off adhesion f b, between added repair layer and a concrete substrate is necessary to assess the quality of repair. This is usually carried out with the use of pull-off method which results in local damage of the added concrete layer in all the testing areas. Bearing this in mind, it is important to describe the method without these disadvantages. The prediction of the pull-off adhesion of the two-layer concrete elements with variable thickness of each layer might be provided by means of UPV method with two-sided access to the investigated element. For this purpose, two-layered cylindrical specimens were obtained by drilling the borehole from a large size specially prepared concrete element. Those two-layer elements were made out of concrete substrate layer and Polymer Cement Concrete (PCC) mortar as an added repair layer. The values of pull-off adhesion f b of the elements were determined before obtaining the samples by using the semi-destructive pull-off method. The ultrasonic wave velocity was determined in samples with variable thickness of each layer and was then compared to theoretical ultrasonic wave velocity predicted for those specimens. The regression curve for the dependence of velocity and pull-off adhesion, determined by the pulloff method, was made. It has been proved that together with an increase of ratio of investigated ultrasonic wave velocity divided by theoretical ultrasonic wave velocity, the pull-off adhesion value f b between added repair layer with variable thickness and a substrate layer also increases.

  15. Development of advanced Czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design and development of an advanced Czochralski crystal grower are described. Several exhaust gas analysis system equipment specifications studied are discussed. Process control requirements were defined and design work began on the melt temperature, melt level, and continuous diameter control. Sensor development included assembly and testing of a bench prototype of a diameter scanner system.

  16. LSSA large area silicon sheet task continuous Czochralski process development

    NASA Technical Reports Server (NTRS)

    Rea, S. N.

    1978-01-01

    A Czochralski crystal growing furnace was converted to a continuous growth facility by installation of a premelter to provide molten silicon flow into the primary crucible. The basic furnace is operational and several trial crystals were grown in the batch mode. Numerous premelter configurations were tested both in laboratory-scale equipment as well as in the actual furnace. The best arrangement tested to date is a vertical, cylindrical graphite heater containing small fused silicon test tube liner in which the incoming silicon is melted and flows into the primary crucible. Economic modeling of the continuous Czochralski process indicates that for 10 cm diameter crystal, 100 kg furnace runs of four or five crystals each are near-optimal. Costs tend to asymptote at the 100 kg level so little additional cost improvement occurs at larger runs. For these conditions, crystal cost in equivalent wafer area of around $20/sq m exclusive of polysilicon and slicing was obtained.

  17. Synchrotron X-ray topography of electronic materials.

    PubMed

    Tuomi, T

    2002-05-01

    Large-area transmission, transmission section, large-area back-reflection, back-reflection section and grazing-incidence topography are the geometries used when recording high-resolution X-ray diffraction images with synchrotron radiation from a bending magnet, a wiggler or an undulator of an electron or a positron storage ring. Defect contrast can be kinematical, dynamical or orientational even in the topographs recorded on the same film at the same time. In this review article limited to static topography experiments, examples of defect studies on electronic materials cover the range from voids and precipitates in almost perfect float-zone and Czochralski silicon, dislocations in gallium arsenide grown by the liquid-encapsulated Czochralski technique, the vapour-pressure controlled Czochralski technique and the vertical-gradient freeze technique, stacking faults and micropipes in silicon carbide to misfit dislocations in epitaxic heterostructures. It is shown how synchrotron X-ray topographs of epitaxic laterally overgrown gallium arsenide layer structures are successfully explained by orientational contrast.

  18. Raman spectrum method for characterization of pull-in voltages of graphene capacitive shunt switches

    NASA Astrophysics Data System (ADS)

    Li, Peng; You, Zheng; Cui, Tianhong

    2012-12-01

    An approach using Raman spectrum method is reported to measure pull-in voltages of graphene capacitive shunt switches. When the bias excesses the pull-in voltage, the Raman spectrum's intensity largely decreases. Two factors that contribute to the intensity reduction are investigated. Moreover, by monitoring the frequency shift of G peak and 2D band, we are able to detect the pull-in voltage and measure the strain change in graphene beams during switching.

  19. Generation of (F+2)_AH Centres in Sodium Ion Doped KCl:CO^{2-3}

    NASA Astrophysics Data System (ADS)

    Diaf, M.; Chihi, I.; Hamaïdia, A.; Akrmi, El.

    1996-01-01

    We demonstrate that (F+2)AH centres of KCl may be obtained from crystals doped with K{2}CO{3} and NaCl, grown by the Czochralski method in open atmosphere. The optical properties of (F+2)AH centres thus produced are exactly the same as those of (F+2)AH centres prepared by the usual technique, which involves superoxide doping and a controlled atmosphere. Nous montrons que les centres (F+2)AH de KCl peuvent être obtenus à partir de cristaux dopés par K{2}CO{3} et NaCl, fabriqués par la méthode de Czochralski à l'air libre. Les propriétés optiques des centres (F+2)AH ainsi produits sont exactement les mêmes que celles des centres (F+2)AH préparés par la technique habituelle, qui comporte le dopage par un superoxyde et l'emploi d'une atmosphère contrôlée.

  20. 2 inch size Czochralski growth and scintillation properties of Li+ co-doped Ce:Gd3Ga3Al2O12

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Shoji, Yasuhiro; Kochurikhin, Vladimir V.; Yoshino, Masao; Okumura, Satoshi; Yamamoto, Seiichi; Yeom, Jung Yeol; Kurosawa, Shunsuke; Yokota, Yuui; Ohashi, Yuji; Nikl, Martin; Yoshino, Masao; Yoshikawa, Akira

    2017-03-01

    The 2 inch size Li 0.15 and 1.35 mol% co-doped Ce:Gd3Al2Ga3O12 single crystals were prepared by the Czochralski (Cz) method. Absorption and luminescence spectra were measured together with several other scintillation characteristics, namely the scintillation decay and light yield to reveal the effect of Li co-doping. Ce4+ CT absorption below 350 nm is clearly enhanced by Li co-doping as same as divalent ions co-doping. By 1.35 at.% Li co-doping, light yield was decrease to 88% of the Ce: GAGG standard and decay time was accelerated to 34.3ns 21.0%, 84.6ns 68.7%, 480ns 10.3%. The timing resolution measurement for a pair of 3 × 3 × 3mm3 size Li,Ce:GAGG scintillator crystals was performed using Si-PMs and the timing resolution of the 1.35 at.% Li co-doped Ce:GAGG was 218ps.

  1. Progress in the Development of the Lead Tungstate Crystals for EM-Calorimetry in High-Energy Physics

    NASA Astrophysics Data System (ADS)

    Novotny, R. W.; Brinkmann, K.-T.; Borisevich, A.; Dormenev, V.; Houzvicka, J.; Korjik, M.; Zaunick, H.-G.

    2017-11-01

    Even at present time there is a strong interest and demand for high quality lead tungstate crystals (PbWO4, PWO) for electromagnetic (EM) calorimetry. PWO is implemented into the EM calorimeter of the CMS-ECAL detector at LHC [1] and required for the completion of the PANDA EMC [2] and various ongoing detector projects at Jefferson Lab. The successful mass production of PWO using the Czochralski method was stopped after bankruptcy of the Bogoroditsk Technical Chemical Plant (BTCP) in Russia as major producer so far. The Shanghai Institute of Ceramics, Chinese Academy of Science (China) was considered as an alternative producer using the modified Bridgman method. The company CRYTUR (Turnov, Czech Republic) with good experience in the development and production of different types of inorganic oxide crystals has restarted at the end of 2014 the development of lead tungstate for mass production based on the Czochralski method. An impressive progress was achieved since then. The growing technology was optimized to produce full size samples with the quality meeting the PANDA-EMC specifications for PWO-II. We will present a detailed progress report on the research program in collaboration with groups at Orsay and JLab. The full size crystals will be characterized with respect to optical performance, light yield, kinetics and radiation hardness.

  2. Automatic control of oscillatory penetration apparatus

    DOEpatents

    Lucon, Peter A

    2015-01-06

    A system and method for controlling an oscillatory penetration apparatus. An embodiment is a system and method for controlling a sonic drill having a displacement and an operating range and operating at a phase difference, said sonic drill comprising a push-pull piston and eccentrics, said method comprising: operating the push-pull piston at an initial push-pull force while the eccentrics are operated at a plurality of different operating frequencies within the operating range of the sonic drill and measuring the displacement at each operating frequency; determining an efficient operating frequency for the material being drilled and operating the eccentrics at said efficient operating frequency; determining the phase difference at which the sonic drill is operating; and if the phase difference is not substantially equal to minus ninety degrees, operating the push-pull piston at another push-pull force.

  3. Digital Control of the Czochralski Growth of Gallium Arsenide-Controller Software Reference Manual

    DTIC Science & Technology

    1987-07-15

    possible with regard to the format of the commands. Several help menus and extensive command prompts guide the operator. The dialog between the...single-zone heater is in use.) - 4 - Kfc ^&S^^ p IS’ K: i 1. Digital Control of Czochralski GaAs Crystal Growth (2) Four tachometers which are...commands for the display of menus or auxiliary information. The scrolled portion shrinks to four lines if auxiliary data display is re- quested with the

  4. Oxygen-induced recombination centers in as-grown Czochralski silicon crystals

    NASA Technical Reports Server (NTRS)

    Nauka, K.; Gatos, H. C.; Lagowski, J.

    1983-01-01

    Simultaneous quantitative microprofiles of the interstitial oxygen concentration and of the excess carrier lifetime are obtained in Czochralski-grown Si crystals employing double laser absorption scanning. It is found that oxygen concentration maxima and minima along the crystal growth direction coincide with lifetime minima and maxima, respectively. Another finding is that the magnitude of oxygen-induced lifetime changes increases dramatically in going from the center to the periphery of the crystal. The findings discussed imply that 'as-grown' oxygen precipitates figure in lifetime-limiting processes.

  5. Study the relation between the yarn pulling force and the bursting strength of single jersey knitted fabric

    NASA Astrophysics Data System (ADS)

    El-Tarfawy, S. Y.

    2017-10-01

    There are various methods to evaluate knitted fabric’s properties; the yarn pulling force is a suitable experimental method to investigate the properties of single jersey knitted fabric.In this study, a frame is attached to the electronic tensile strength tester to fix different single jersey knitted fabrics with different dimensional properties. A hook is connected to the upper load cell in the tensile tester to ravel the first upper course then records the values of the yarn pulling force. In addition to that, the effect of the loop length, yarn count, and raw material on yarn pulling force and specific fabric bursting strength are studied. It is concluded that yarn pulling force has a significant relation with specific fabric bursting strength.

  6. Numerical simulation of convection and heat transfer in Czochralski crystal growth by multiple-relaxation-time LBM

    NASA Astrophysics Data System (ADS)

    Liu, Ding; Huang, Weichao; Zhang, Ni

    2017-07-01

    A two-dimensional axisymmetric swirling model based on the lattice Boltzmann method (LBM) in a pseudo Cartesian coordinate system is posited to simulate Czochralski (Cz) crystal growth in this paper. Specifically, the multiple-relaxation-time LBM (MRT-LBM) combined with the finite difference method (FDM) is used to analyze the melt convection and heat transfer in the process of Cz crystal growth. An incompressible axisymmetric swirling MRT-LB D2Q9 model is applied to solve for the axial and radial velocities by inserting thermal buoyancy and rotational inertial force into the two-dimensional lattice Boltzmann equation. In addition, the melt temperature and the azimuthal velocity are solved by MRT-LB D2Q5 models, and the crystal temperature is solved by FDM. The comparison results of stream functions values of different methods demonstrate that our hybrid model can be used to simulate the fluid-thermal coupling in the axisymmetric swirling model correctly and effectively. Furthermore, numerical simulations of melt convection and heat transfer are conducted under the conditions of high Grashof (Gr) numbers, within the range of 105 ˜ 107, and different high Reynolds (Re) numbers. The experimental results show our hybrid model can obtain the exact solution of complex crystal-growth models and analyze the fluid-thermal coupling effectively under the combined action of natural convection and forced convection.

  7. A multiple p-n junction structure obtained from as-grown Czochralski silicon crystals by heat treatment - Application to solar cells

    NASA Technical Reports Server (NTRS)

    Chi, J. Y.; Gatos, H. C.; Mao, B. Y.

    1980-01-01

    Multiple p-n junctions have been prepared in as-grown Czochralski p-type silicon through overcompensation near the oxygen periodic concentration maxima by oxygen thermal donors generated during heat treatment at 450 C. Application of the multiple p-n-junction configuration to photovoltaic energy conversion has been investigated. A new solar-cell structure based on multiple p-n-junctions was developed. Theoretical analysis showed that a significant increase in collection efficiency over the conventional solar cells can be achieved.

  8. Optical properties and refractive indices of Gd3Al2Ga3O12:Ce3+ crystals

    NASA Astrophysics Data System (ADS)

    Kozlova, N. S.; Busanov, O. A.; Zabelina, E. V.; Kozlova, A. P.; Kasimova, V. M.

    2016-05-01

    Crystals of cerium-doped gadolinium-gallium-aluminum garnet have been grown by the Czochralski method. The transmission and reflection spectra of these crystals in the wavelength range of 250-800 nm have been obtained by optical spectroscopy. Refractive indices are calculated based on the measured Brewster angles, the experimental results are approximated using the Cauchy equation, and a dispersion dependence is obtained.

  9. Continuous replenishment of molten semiconductor in a Czochralski-process, single-crystal-growing furnace

    NASA Technical Reports Server (NTRS)

    Fiegl, George (Inventor); Torbet, Walter (Inventor)

    1981-01-01

    A replenishment crucible is mounted adjacent the usual drawing crucible, from which a monocrystalline boule is drawn according to the Czochralski method. A siphon tube for molten semiconductor transfer extends from the replenishment crucible to the drawing crucible. Each crucible is enclosed within its own hermetic shell and is provided with its own heater. The siphon tube is initially filled with molten semiconductor by raising the inert atmospheric pressure in the shell surrounding the replenishment crucible above that surrounding the drawing crucible. Thereafter, adjustment of the level of molten semiconductor in the drawing crucible may be achieved by adjusting the level in either crucible, since the siphon tube will establish the same level in both crucibles. For continuous processing, solid semiconductor may be added to and melted in the replenishment crucible during the process of drawing crystals from the drawing crucible. A constant liquid level of melted semiconductor is maintained in the system by an optical monitoring device and any of several electromechanical controls of the rate of replenishment or crucible height.

  10. Growth of platinum fibers using the micro-pulling-down method

    NASA Astrophysics Data System (ADS)

    Nihei, Takayuki; Yokota, Yuui; Arakawa, Mototaka; Ohashi, Yuji; Kurosawa, Shunsuke; Kamada, Kei; Chani, Valery; Yoshikawa, Akira

    2017-06-01

    Platinum (Pt) crystalline fibers were grown from the melt by the micro-pulling-down (μ-PD) method using the ZrO2 ceramics crucible. The diameter of the grown Pt fiber was controlled by the ϕ1 mm outlet made at the bottom of the crucible and the Pt fiber of 0.95±0.03 mm in diameter and over 5 m in length was obtained at 10 mm/min pulling-down rate. In addition, the Pt fiber was grown at 1-110 mm/min pulling rates while the liquid-solid interface reached the bottom of the crucible and the crystal growth became unstable at 120 mm/min pulling rate. Few grain boundaries were observed in the scanning electron microscopy image of the Pt fibers and there were some spots with high intensity in the pole figures.

  11. Numerical modeling of Czochralski growth of Li2MoO4 crystals for heat-scintillation cryogenic bolometers

    NASA Astrophysics Data System (ADS)

    Stelian, Carmen; Velázquez, Matias; Veber, Philippe; Ahmine, Abdelmounaim; Sand, Jean-Baptiste; Buşe, Gabriel; Cabane, Hugues; Duffar, Thierry

    2018-06-01

    Lithium molybdate Li2MoO4 (LMO) crystals of mass ranging between 350 and 500 g are excellent candidates to build heat-scintillation cryogenic bolometers likely to be used for the detection of rare events in astroparticle physics. In this work, numerical modeling is applied in order to investigate the Czochralski growth of Li2MoO4 crystals in an inductive furnace. The numerical model was validated by comparing the numerical predictions of the crystal-melt interface shape to experimental visualization of the growth interface. Modeling was performed for two different Czochralski furnaces that use inductive heating. The simulation of the first furnace, which was used to grow Li2MoO4 crystals of 3-4 cm in diameter, reveals non-optimal heat transfer conditions for obtaining good quality crystals. The second furnace, which will be used to grow crystals of 5 cm in diameter, was numerically optimized in order to reduce the temperature gradients in the crystal and to avoid fast crystallization of the bath at the later stages of the growth process.

  12. Delayed pull-in transitions in overdamped MEMS devices

    NASA Astrophysics Data System (ADS)

    Gomez, Michael; Moulton, Derek E.; Vella, Dominic

    2018-01-01

    We consider the dynamics of overdamped MEMS devices undergoing the pull-in instability. Numerous previous experiments and numerical simulations have shown a significant increase in the pull-in time under DC voltages close to the pull-in voltage. Here the transient dynamics slow down as the device passes through a meta-stable or bottleneck phase, but this slowing down is not well understood quantitatively. Using a lumped parallel-plate model, we perform a detailed analysis of the pull-in dynamics in this regime. We show that the bottleneck phenomenon is a type of critical slowing down arising from the pull-in transition. This allows us to show that the pull-in time obeys an inverse square-root scaling law as the transition is approached; moreover we determine an analytical expression for this pull-in time. We then compare our prediction to a wide range of pull-in time data reported in the literature, showing that the observed slowing down is well captured by our scaling law, which appears to be generic for overdamped pull-in under DC loads. This realization provides a useful design rule with which to tune dynamic response in applications, including state-of-the-art accelerometers and pressure sensors that use pull-in time as a sensing mechanism. We also propose a method to estimate the pull-in voltage based only on data of the pull-in times.

  13. Silicon crystal growth in vacuum

    NASA Technical Reports Server (NTRS)

    Khattak, C. P.; Schmid, F.

    1982-01-01

    The most developed process for silicon crystal growth is the Czochralski (CZ) method which was in production for over two decades. In an effort to reduce cost of single crystal silicon for photovoltaic applications, a directional solidification technique, Heat Exchanger Method (HEM), was adapted. Materials used in HEM and CZ furnaces are quite similar (heaters, crucibles, insulation, etc.). To eliminate the cost of high purity argon, it was intended to use vacuum operation in HEM. Two of the major problems encountered in vacuum processing of silicon are crucible decomposition and silicon carbide formation in the melt.

  14. Paramagnetic resonance of LaGaO3: Mn single crystals grown by floating zone melting

    NASA Astrophysics Data System (ADS)

    Vazhenin, V. A.; Potapov, A. P.; Artyomov, M. Yu.; Salosin, M. A.; Fokin, A. V.; Gil'mutdinov, I. F.; Mukhamedshin, I. R.

    2016-02-01

    The EPR spectrum of Mn-doped lanthanum gallate single crystals grown by floating zone melting with optical heating has been studied. In contrast to the crystals grown according to the Czochralski method, no manganese is found in these crystals even after high-temperature annealing in air. The spectral characteristics of Fe3+ and Gd3+ centers in crystals prepared by various methods have been compared in the rhombohedral phase, and the fourth-rank nondiagonal parameters of the Fe3+ trigonal centers have been determined, as well.

  15. Pull-pull position control of dual motor wire rope transmission.

    PubMed

    Guo, Quan; Jiao, Zongxia; Yan, Liang; Yu, Qian; Shang, Yaoxing

    2016-08-01

    Wire rope transmission is very efficient because of the small total moving object mass. The wire rope could only transmit pulling force. Therefore it has to be kept in a tightened state during transmission; in high speed applications the dynamic performance depends on the rope's stiffness, which can be adjusted by the wire rope tension. To improve the system dynamic performance output, this paper proposes a novel pull-pull method based on dual motors connected by wire ropes, for precise, high speed position control applications. The method can regulate target position and wire rope tension simultaneously. Wire ropes remain in a pre-tightening state at all times, which prevents the influence of elasticity and reduces the position tracking error in the changing direction process. Simulations and experiments were conducted; the results indicate that both position precision and superior dynamic performance can be synchronously achieved. The research is relevant to space craft precision pointing instruments.

  16. On the scaling analysis of the solute boundary layer in idealized growth configurations

    NASA Astrophysics Data System (ADS)

    Garandet, J. P.; Duffar, T.; Favier, J. J.

    1990-11-01

    A scaling procedure is applied to the equation governing chemical transport in idealized Czochralski and horizontal Bridgman growth experiments. Our purpose is to get a fair estimate of the solute boundary layer in front of the solidification interface. The results are very good in the Czochralski type configuration, the maximum error with respect to the semi-analytical solution of Burton, Prim and Schlichter being of the order of 20%. In the Bridgman type configuration, our predictions compare well with the values of the numerical simulations; however, more data would be needed for a definite conclusion to be drawn.

  17. 40 CFR 60.685 - Test methods and procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... average of three glass pull rate (Pi) determinations taken at intervals of at least 30 minutes during each run. The individual glass pull rates (Pi) shall be computed using the following equation: Pi = K′ Ls Wm M [1.0−(LOI/100)] where: Pi = glass pull rate at interval “i”, Mg/hr (ton/hr). Ls = line speed, m...

  18. Numerical study on the effect of temperature oscillations on the crystallization front shape during Czochralski growth of gadolinium gallium garnet crystal

    NASA Astrophysics Data System (ADS)

    Faiez, Reza; Rezaei, Yazdan

    2017-10-01

    Time-dependent, finite volume method calculations of momentum and heat transfer were carried out to investigate the correlation between oscillatory convection and the crystallization front dynamics during the Czochralski (Cz) growth of an oxide material. The present modeling allows us to illustrate the modification of the interface shape during the time period of oscillation of the flow manifesting as the formation of a cold plume beneath the phase boundary. It was shown that the instability mechanism is associated with an irreversible dramatic change in the interface shape, which occurs at a critical Reynolds number significantly lower than that is predicted by the quasi-stationary global model analysis of the Cz growth system. The baroclinic term which appears in the vorticity equation in a rotating stratified fluid is used to describe the numerical results of the model. The properties of the thermal waves were studied in the monitoring points located nearby the interface. The waves are regular but not in fact vertically correlated as observed in the case of baroclinic waves. The Rayleigh-Benard dynamics is suggested to be the predominant mechanism even though the instability is primarily baroclinic.

  19. Properties of high quality GaP single crystals grown by computer controlled liquid encapsulated Czochralski technique

    NASA Astrophysics Data System (ADS)

    Kokubun, Y.; Washizuka, S.; Ushizawa, J.; Watanabe, M.; Fukuda, T.

    1982-11-01

    The properties of GaP single crystals grown by an automatically diameter controlled liquid encapsulated Czochralski technique using a computer have been studied. A dislocation density less than 5×104 cm-2 has been observed for crystal grown in a temperature gradient lower than 70 °C/cm near the solid-liquid interface. Crystals have about 10% higher electron mobility than that of commercially available coracle controlled crystals and have 0.2˜0.5 compensation ratios. Yellow light emitting diodes using computer controlled (100) substrates have shown extremely high external quantum efficiency of 0.3%.

  20. New electron trap in p-type Czochralski silicon

    NASA Technical Reports Server (NTRS)

    Mao, B.-Y.; Lagowski, J.; Gatos, H. C.

    1984-01-01

    A new electron trap (acceptor level) was discovered in p-type Czochralski (CZ) silicon by current transient spectroscopy. The behavior of this trap was found to be similar to that of the oxygen thermal donors; thus, 450 C annealing increases the trap concentration while high-temperature annealing (1100-1200 C) leads to the virtual elimination of the trap. The new trap is not observed in either float-zone or n-type CZ silicon. Its energy level depends on the group III doping element in the sample. These findings suggest that the trap is related to oxygen, and probably to the acceptor impurity as well.

  1. 40 CFR 60.685 - Test methods and procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... average of three glass pull rate (Pi) determinations taken at intervals of at least 30 minutes during each run. The individual glass pull rates (Pi) shall be computed using the following equation: Pi=K′ Ls Wm M [1.0−(LOI/100)] where: Pi=glass pull rate at interval “i”, Mg/hr (ton/hr). Ls=line speed, m/min...

  2. 40 CFR 60.685 - Test methods and procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... average of three glass pull rate (Pi) determinations taken at intervals of at least 30 minutes during each run. The individual glass pull rates (Pi) shall be computed using the following equation: Pi=K′ Ls Wm M [1.0−(LOI/100)] where: Pi=glass pull rate at interval “i”, Mg/hr (ton/hr). Ls=line speed, m/min...

  3. 40 CFR 60.685 - Test methods and procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... average of three glass pull rate (Pi) determinations taken at intervals of at least 30 minutes during each run. The individual glass pull rates (Pi) shall be computed using the following equation: Pi=K′ Ls Wm M [1.0−(LOI/100)] where: Pi=glass pull rate at interval “i”, Mg/hr (ton/hr). Ls=line speed, m/min...

  4. 40 CFR 60.685 - Test methods and procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... average of three glass pull rate (Pi) determinations taken at intervals of at least 30 minutes during each run. The individual glass pull rates (Pi) shall be computed using the following equation: Pi=K′ Ls Wm M [1.0−(LOI/100)] where: Pi=glass pull rate at interval “i”, Mg/hr (ton/hr). Ls=line speed, m/min...

  5. Apparent Covariation between Child Habit Disorders: Effects of Successful Treatment for Thumb Sucking on Untargeted Chronic Hair Pulling.

    ERIC Educational Resources Information Center

    Friman, Patrick C.; Hove, Gayleen

    1987-01-01

    The study examined effects of aversive taste treatment of thumb sucking on untreated habitual hair pulling by two young males (ages 2 and 5). Concomitant with successful treatment of thumb sucking, hair pulling was also eliminated. Results suggest an efficient method for changing behaviors that are difficult to treat directly. (Author/JW)

  6. Novel duplex vapor-electrochemical method for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Nanis, L.; Sanjurjo, A.; Sancier, K. M.; Kapur, V. K.; Bartlett, R. W.; Westphal, S.

    1980-01-01

    A process was developed for the economic production of high purity Si from inexpensive reactants, based on the Na reduction of SiF4 gas. The products of reaction (NaF, Si) are separated by either aqueous leaching or by direct melting of the NaF-Si product mixture. Impurities known to degrade solar cell performance are all present at sufficiently low concentrations so that melt solidification (e.g., Czochralski) will provide a silicon material suitable for solar cells.

  7. Scintillation properties of Pr-activated LuAlO 3

    NASA Astrophysics Data System (ADS)

    Drozdowski, Winicjusz; Wojtowicz, Andrzej J.; Wiśniewski, Dariusz; Łukasiewicz, Tadeusz; Kisielewski, Jarosław

    2006-01-01

    Praseodymium activated LuAlO 3 (LuAP) crystals have been grown using the Czochralski method at ITME, Warsaw. In this communication the measurements of radioluminescence (RL), low temperature thermoluminescence (TL), room temperature afterglow (AG), scintillation light yields (LY), and scintillation time profiles (STP), performed on polished 2 × 2 × 10 mm pixels with three Pr concentrations (0.003, 0.04, and 0.08 at.%), are reported. Two sets of samples are compared: (i) "as grown", and (ii) annealed in H 2 atmosphere.

  8. Solar technology assessment project. Volume 6: Photovoltaic technology assessment

    NASA Astrophysics Data System (ADS)

    Backus, C. E.

    1981-04-01

    Industrial production of photovoltaic systems and volume of sales are reviewed. Low cost silicon production techniques are reviewed, including the Czochralski process, heat exchange method, edge defined film fed growth, dentritic web growth, and silicon on ceramic process. Semicrystalline silicon, amorphous silicon, and low cost poly-silicon are discussed as well as advanced materials and concentrator systems. Balance of system components beyond those needed to manufacture the solar panels are included. Nontechnical factors are assessed. The 1986 system cost goals are briefly reviewed.

  9. Microhardness of carbon-doped (111) p-type Czochralski silicon

    NASA Technical Reports Server (NTRS)

    Danyluk, S.; Lim, D. S.; Kalejs, J.

    1985-01-01

    The effect of carbon on (111) p-type Czochralski silicon is examined. The preparation of the silicon and microhardness test procedures are described, and the equation used to determine microhardness from indentations in the silicon wafers is presented. The results indicate that as the carbon concentration in the silicon increases the microhardness increases. The linear increase in microhardness is the result of carbon hindering dislocation motion, and the effect of temperature on silicon deformation and dislocation mobility is explained. The measured microhardness was compared with an analysis which is based on dislocation pinning by carbon; a good correlation was observed. The Labusch model for the effect of pinning sites on dislocation motion is given.

  10. Three-dimensional evaluation of gettering ability for oxygen atoms at small-angle tilt boundaries in Czochralski-grown silicon crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohno, Yutaka, E-mail: yutakaohno@imr.tohoku.ac.jp; Inoue, Kaihei; Fujiwara, Kozo

    2015-06-22

    Three-dimensional distribution of oxygen atoms at small-angle tilt boundaries (SATBs) in Czochralski-grown p-type silicon ingots was investigated by atom probe tomography combined with transmission electron microscopy. Oxygen gettering along edge dislocations composing SATBs, post crystal growth, was observed. The gettering ability of SATBs would depend both on the dislocation strain and on the dislocation density. Oxygen atoms would agglomerate in the atomic sites under the tensile hydrostatic stress larger than about 2.0 GPa induced by the dislocations. It was suggested that the density of the atomic sites, depending on the tilt angle of SATBs, determined the gettering ability of SATBs.

  11. Kinetics of thermal donor generation in silicon

    NASA Technical Reports Server (NTRS)

    Mao, B.-Y.; Lagowski, J.; Gatos, H. C.

    1984-01-01

    The generation kinetics of thermal donors at 450 C in Czochralski-grown silicon was found to be altered by high-temperature preannealing (e.g., 1100 C for 30 min). Thus, when compared with as-grown Si, high-temperature preannealed material exhibits a smaller concentration of generated thermal donors and a faster thermal donor saturation. A unified mechanism of nucleation and oxygen diffusion-controlled growth (based on solid-state plate transformation theory) is proposed to account for generation kinetics of thermal donors at 450 C, in as-grown and high-temperature preannealed Czochralski silicon crystals. This mechanism is consistent with the main features of the models which have been proposed to explain the formation of oxygen thermal donors in silicon.

  12. Control Issues for Microelectromechanical Systems

    DTIC Science & Technology

    2006-04-01

    par- ticular, electrostatic drives suffer from electromechani- cal instabilities such as lateral pull -in, side pull -in, and lateral instability...standard robust feed- back methods can compensate for lateral pull -in and signifi- cantly extend the range of travel of the mechanical shuttle. MEMS...DAAD19-02-1-0366 and NSF GOALI BES 0201773. REFERENCES [1] J. Bryzek, E. Abbott, A. Flannery, D. Cagle, and J. Maitan, “Control issues for MEMS,” in

  13. Design of push-pull system to control diesel particular matter inside a dead-end entry.

    PubMed

    Zheng, Yi; Thiruvengadam, Magesh; Lan, Hai; Tien, Jerry C

    Diesel particulate matter (DPM) is considered to be carcinogenic after prolonged exposure. With more diesel-powered equipment used in underground mines, miners' exposure to DPM has become an increasing concern. This paper used computational fluid dynamics method to study the DPM dispersion in a dead-end entry with loading operation. The effects of different push-pull ventilation systems on DPM distribution were evaluated to improve the working conditions for underground miners. The four push-pull systems considered include: long push and short pull tubing; short push and long pull tubing, long push and curved pull tubing, and short push and curved pull tubing. A species transport model with buoyancy effect was used to examine the DPM dispersion pattern with unsteady state analysis. During the 200 s of loading operation, high DPM levels were identified in the face and dead-end entry regions. This study can be used for mining engineer as guidance to design and setup local ventilation, select DPM control strategies and for DPM annual training for underground miners.

  14. Method of measuring metal coating adhesion

    DOEpatents

    Roper, J.R.

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

  15. Method of measuring metal coating adhesion

    DOEpatents

    Roper, John R.

    1985-01-01

    A method for measuring metal coating adhesion to a substrate material comprising the steps of preparing a test coupon of substrate material having the metal coating applied to one surface thereof, applying a second metal coating of gold or silver to opposite surfaces of the test coupon by hot hollow cathode process, applying a coating to one end of each of two pulling rod members, joining the coated ends of the pulling rod members to said opposite coated surfaces of the test coupon by a solid state bonding technique and finally applying instrumented static tensile loading to the pulling rod members until fracture of the metal coating adhesion to the substrate material occurs.

  16. Surveillance of Endoscopes: Comparison of Different Sampling Techniques.

    PubMed

    Cattoir, Lien; Vanzieleghem, Thomas; Florin, Lisa; Helleputte, Tania; De Vos, Martine; Verhasselt, Bruno; Boelens, Jerina; Leroux-Roels, Isabel

    2017-09-01

    OBJECTIVE To compare different techniques of endoscope sampling to assess residual bacterial contamination. DESIGN Diagnostic study. SETTING The endoscopy unit of an 1,100-bed university hospital performing ~13,000 endoscopic procedures annually. METHODS In total, 4 sampling techniques, combining flushing fluid with or without a commercial endoscope brush, were compared in an endoscope model. Based on these results, sterile physiological saline flushing with or without PULL THRU brush was selected for evaluation on 40 flexible endoscopes by adenosine triphosphate (ATP) measurement and bacterial culture. Acceptance criteria from the French National guideline (<25 colony-forming units [CFU] per endoscope and absence of indicator microorganisms) were used as part of the evaluation. RESULTS On biofilm-coated PTFE tubes, physiological saline in combination with a PULL THRU brush generated higher mean ATP values (2,579 relative light units [RLU]) compared with saline alone (1,436 RLU; P=.047). In the endoscope samples, culture yield using saline plus the PULL THRU (mean, 43 CFU; range, 1-400 CFU) was significantly higher than that of saline alone (mean, 17 CFU; range, 0-500 CFU; P<.001). In samples obtained using the saline+PULL THRU brush method, ATP values of samples classified as unacceptable were significantly higher than those of samples classified as acceptable (P=.001). CONCLUSION Physiological saline flushing combined with PULL THRU brush to sample endoscopes generated higher ATP values and increased the yield of microbial surveillance culture. Consequently, the acceptance rate of endoscopes based on a defined CFU limit was significantly lower when the saline+PULL THRU method was used instead of saline alone. Infect Control Hosp Epidemiol 2017;38:1062-1069.

  17. Comparison of a novel fixation device with standard suturing methods for spinal cord stimulators.

    PubMed

    Bowman, Richard G; Caraway, David; Bentley, Ishmael

    2013-01-01

    Spinal cord stimulation is a well-established treatment for chronic neuropathic pain of the trunk or limbs. Currently, the standard method of fixation is to affix the leads of the neuromodulation device to soft tissue, fascia or ligament, through the use of manually tying general suture. A novel semiautomated device is proposed that may be advantageous to the current standard. Comparison testing in an excised caprine spine and simulated bench top model was performed. Three tests were performed: 1) perpendicular pull from fascia of caprine spine; 2) axial pull from fascia of caprine spine; and 3) axial pull from Mylar film. Six samples of each configuration were tested for each scenario. Standard 2-0 Ethibond was compared with a novel semiautomated device (Anulex fiXate). Upon completion of testing statistical analysis was performed for each scenario. For perpendicular pull in the caprine spine, the failure load for standard suture was 8.95 lbs with a standard deviation of 1.39 whereas for fiXate the load was 15.93 lbs with a standard deviation of 2.09. For axial pull in the caprine spine, the failure load for standard suture was 6.79 lbs with a standard deviation of 1.55 whereas for fiXate the load was 12.31 lbs with a standard deviation of 4.26. For axial pull in Mylar film, the failure load for standard suture was 10.87 lbs with a standard deviation of 1.56 whereas for fiXate the load was 19.54 lbs with a standard deviation of 2.24. These data suggest a novel semiautomated device offers a method of fixation that may be utilized in lieu of standard suturing methods as a means of securing neuromodulation devices. Data suggest the novel semiautomated device in fact may provide a more secure fixation than standard suturing methods. © 2012 International Neuromodulation Society.

  18. Effects of van der Waals Force and Thermal Stresses on Pull-in Instability of Clamped Rectangular Microplates

    PubMed Central

    Batra, Romesh C.; Porfiri, Maurizio; Spinello, Davide

    2008-01-01

    We study the influence of von Kármán nonlinearity, van der Waals force, and thermal stresses on pull-in instability and small vibrations of electrostatically actuated microplates. We use the Galerkin method to develop a tractable reduced-order model for electrostatically actuated clamped rectangular microplates in the presence of van der Waals forces and thermal stresses. More specifically, we reduce the governing two-dimensional nonlinear transient boundary-value problem to a single nonlinear ordinary differential equation. For the static problem, the pull-in voltage and the pull-in displacement are determined by solving a pair of nonlinear algebraic equations. The fundamental vibration frequency corresponding to a deflected configuration of the microplate is determined by solving a linear algebraic equation. The proposed reduced-order model allows for accurately estimating the combined effects of van der Waals force and thermal stresses on the pull-in voltage and the pull-in deflection profile with an extremely limited computational effort. PMID:27879752

  19. Effects of van der Waals Force and Thermal Stresses on Pull-in Instability of Clamped Rectangular Microplates.

    PubMed

    Batra, Romesh C; Porfiri, Maurizio; Spinello, Davide

    2008-02-15

    We study the influence of von Karman nonlinearity, van der Waals force, and a athermal stresses on pull-in instability and small vibrations of electrostatically actuated mi-croplates. We use the Galerkin method to develop a tractable reduced-order model for elec-trostatically actuated clamped rectangular microplates in the presence of van der Waals forcesand thermal stresses. More specifically, we reduce the governing two-dimensional nonlineartransient boundary-value problem to a single nonlinear ordinary differential equation. For thestatic problem, the pull-in voltage and the pull-in displacement are determined by solving apair of nonlinear algebraic equations. The fundamental vibration frequency corresponding toa deflected configuration of the microplate is determined by solving a linear algebraic equa-tion. The proposed reduced-order model allows for accurately estimating the combined effectsof van der Waals force and thermal stresses on the pull-in voltage and the pull-in deflectionprofile with an extremely limited computational effort.

  20. Analysis of Phase Separation in Czochralski Grown Single Crystal Ilmenite

    NASA Technical Reports Server (NTRS)

    Wilkins, R.; Powell, Kirk St. A.; Loregnard, Kieron R.; Lin, Sy-Chyi; Muthusami, Jayakumar; Zhou, Feng; Pandey, R. K.; Brown, Geoff; Hawley, M. E.

    1998-01-01

    Ilmenite (FeTiOs) is a wide bandgap semiconductor with an energy gap of 2.58 eV. Ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Single crystal ilmenite has been grown from the melt using the Czochralski method. Growth conditions have a profound effect on the microstructure of the samples. Here we present data from a variety of analytical techniques which indicate that some grown crystals exhibit distinct phase separation during growth. This phase separation is apparent for both post-growth annealed and unannealed samples. Under optical microscopy, there appear two distinct areas forming a matrix with an array of dots on order of 5 pm diameter. While appearing bright in the optical micrograph, atomic force microscope (AFM) shows the dots to be shallow pits on the surface. Magnetic force microscope (MFM) shows the dots to be magnetic. Phase identification via electron microprobe analysis (EMPA) indicates two major phases in the unannealed samples and four in the annealed samples, where the dots appear to be almost pure iron. This is consistent with micrographs taken with a scanning probe microscope used in the magnetic force mode. Samples that do not exhibit the phase separation have little or no discernible magnetic structure detectable by the MFM.

  1. Cryogenic insulation strength and bond tester

    NASA Technical Reports Server (NTRS)

    Schuerer, P. H.; Ehl, J. H.; Prasthofer, W. P. (Inventor)

    1985-01-01

    A method and apparatus for testing the tensile strength and bonding strength of sprayed-on foam insulation attached to metal cryogenic fuel tanks is described. A circular cutter is used to cut the insulation down to the surface of the metal tank to form plugs of the insulation for testing in situ on the tank. The apparatus comprises an electromechanical pulling device powered by a belt battery pack. The pulling device comprises a motor driving a mechanical pulling structure comprising a horizontal shaft connected to two bell cracks which are connected to a central member. When the lower end of member is attached to a fitting, which in turn is bonded to a plug, a pulling force is exerted on the plug sufficient to rupture it. The force necessary to rupture the plug or pull it loose is displayed as a digital read-out.

  2. Impurity engineering of Czochralski silicon used for ultra large-scaled-integrated circuits

    NASA Astrophysics Data System (ADS)

    Yang, Deren; Chen, Jiahe; Ma, Xiangyang; Que, Duanlin

    2009-01-01

    Impurities in Czochralski silicon (Cz-Si) used for ultra large-scaled-integrated (ULSI) circuits have been believed to deteriorate the performance of devices. In this paper, a review of the recent processes from our investigation on internal gettering in Cz-Si wafers which were doped with nitrogen, germanium and/or high content of carbon is presented. It has been suggested that those impurities enhance oxygen precipitation, and create both denser bulk microdefects and enough denuded zone with the desirable width, which is benefit of the internal gettering of metal contamination. Based on the experimental facts, a potential mechanism of impurity doping on the internal gettering structure is interpreted and, a new concept of 'impurity engineering' for Cz-Si used for ULSI is proposed.

  3. Radiation damage in lithium-counterdoped N/P silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hermann, A. M.; Swartz, C. K.; Brandhorst, H. W., Jr.; Weinberg, I.

    1980-01-01

    The radiation resistance and low-temperature annealing properties of lithium-counterdoped n(+)-p silicon solar cells are investigated. Cells fabricated from float zone and Czochralski grown silicon were irradiated with 1 MeV electrons and their performance compared to that of 0.35 ohm-cm control cells. The float zone cells demonstrated superior radiation resistance compared to the control cells, while no improvement was noted for the Czochralski grown cells. Annealing kinetics were found to lie between first and second order for relatively short times, and the most likely annealing mechanism was found to be the diffusion of lithium to defects with the subsequent neutralization of defects by combination with lithium. Cells with zero lithium gradients exhibited the best radiation resistance.

  4. Dynamic global model of oxide Czochralski process with weighing control

    NASA Astrophysics Data System (ADS)

    Mamedov, V. M.; Vasiliev, M. G.; Yuferev, V. S.

    2011-03-01

    A dynamic model of oxide Czochralski growth with weighing control has been developed for the first time. A time-dependent approach is used for the calculation of temperature fields in different parts of a crystallization set-up and convection patterns in a melt, while internal radiation in crystal is considered in a quasi-steady approximation. A special algorithm is developed for the calculation of displacement of a triple point and simulation of a crystal surface formation. To calculate variations in the heat generation, a model of weighing control with a commonly used PID regulator is applied. As an example, simulation of the growth process of gallium-gadolinium garnet (GGG) crystals starting from the stage of seeding is performed.

  5. Synthesis, structure characterization and optical properties of a new tripotassium cadmium pentaborate, K{sub 3}CdB{sub 5}O{sub 10}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Hongwei; Graduate school of Chinese Academy of Sciences, Beijing 100049; Pan Shilie, E-mail: slpan@ms.xjb.ac.cn

    A new ternary borate oxide, K{sub 3}CdB{sub 5}O{sub 10}, has been synthesized by solid-state reaction at 580 deg. C. The compound crystallizes in the monoclinic space group P2{sub 1}/n with a=7.6707 (7) A, b=19.1765 (17) A, c=7.8784 (6) A, {beta}=115.6083 (49){sup o}, and Z=4. The crystal structure consists of a two-dimensional infinite [CdB{sub 5}O{sub 10}] layer, which forms by connecting isolated double ring [B{sub 5}O{sub 10}] groups and CdO{sub 4} tetrahedra. K atoms filling in the interlayer and intralayer link the layers together and balance charge. The IR spectrum has been studied and confirmed the presence of both BO{sub 3}more » and BO{sub 4} groups, and the UV-vis-IR diffuse reflectance spectrum exhibits a band gap of about 3.4 eV. The DSC analysis proves that K{sub 3}CdB{sub 5}O{sub 10} is a congruent melting compound. - Graphical abstract: A new phase, K{sub 3}CdB{sub 5}O{sub 10}, has been discovered in the ternary K{sub 2}O-CdO-B{sub 2}O{sub 3} system. The crystal structure consists of a two-dimensional infinite [CdB{sub 5}O{sub 10}] layer. Highlights: > The compound, K{sub 3}CdB{sub 5}O{sub 10}, was synthesized and characterized for the first time. {yields}K{sub 3}CdB{sub 5}O{sub 10} is a congruent melting compound, which means the large single crystals could be grown from the melt using the Czochralski pulling method. {yields}The crystal structure consists of a two-dimensional infinite [CdB{sub 5}O{sub 10}].« less

  6. Spectral and multi-wavelength continuous-wave laser properties of Yb3+:BaLaGa3O7

    NASA Astrophysics Data System (ADS)

    Gao, Shufang; Xu, Shan

    2018-05-01

    Yb3+ doped BaLaGa3O7 crystal has been successfully grown by Czochralski method. The polarized absorption spectra, the fluorescence spectra and the fluorescence decay lifetime of Yb3+:BaLaGa3O7 crystal were measured at room temperature. The spectroscopic parameters of Yb3+:BaLaGa3O7 crystal are calculated. A continuous wave output power of 1.32W was obtained with four-wavelength emission corresponding to an optical-optical slope efficiency of 55%.

  7. Purification of organic nonlinear optical materials for bulk crystal growth from melt

    NASA Astrophysics Data System (ADS)

    Gebre, Tesfaye; Bhat, Kamala N.; Batra, Ashok K.; Lal, Ravindra B.; Aggarwal, Mohan D.; Penn, Benjamin G.; Frazier, Donald O.

    2002-10-01

    The techniques developed for purification of nonlinear optical organic materials, such as benzil, 2-methyl-4-nitroaniline (MNA), Dicyanovinyl anisole (DIVA) and its derivatives, nitrophenyl prolinol (NPP) and other Schiff's base compounds, include Kugelrohy method, physical vapor transport, zone refining and recrystallization from the solvent are described. Purity of the materials is tested using differential thermal analysis, gas chromatograph/Mass detector, Fourier Transform Infrared spectroscopy and melting point measurements. The purified materials were later used in the growth of single crystal by Bridgman-Stockbarger and Czochralski techniques.

  8. Apparatus and method for in Situ installation of underground containment barriers under contaminated lands

    DOEpatents

    Carter, Jr., Ernest E.; Sanford, Frank L.; Saugier, R. Kent

    1999-09-28

    An apparatus for constructing a subsurface containment barrier under a waste site disposed in soil is provided. The apparatus uses a reciprocating cutting and barrier forming device which forms a continuous elongate panel through the soil having a defined width. The reciprocating cutting and barrier forming device has multiple jets which eject a high pressure slurry mixture through an arcuate path or transversely across the panel being formed. A horizontal barrier can be formed by overlapping a plurality of such panels. The cutting device and barrier forming device is pulled through the soil by two substantially parallel pulling pipes which are directionally drilled under the waste site. A tractor or other pulling device is attached to the pulling pipes at one end and the cutting and barrier forming device is attached at the other. The tractor pulls the cutting and barrier forming device through the soil under the waste site without intersecting the waste site. A trailing pipe, attached to the cutting and barrier forming device, travels behind one of the pulling pipes. In the formation of an adjacent panel the trailing pipe becomes one of the next pulling pipes. This assures the formation of a continuous barrier.

  9. Push-Pull Locomotion for Vehicle Extrication

    NASA Technical Reports Server (NTRS)

    Creager, Colin M.; Johnson, Kyle A.; Plant, Mark; Moreland, Scott J.; Skonieczny, Krzysztof

    2014-01-01

    For applications in which unmanned vehicles must traverse unfamiliar terrain, there often exists the risk of vehicle entrapment. Typically, this risk can be reduced by using feedback from on-board sensors that assess the terrain. This work addressed the situations where a vehicle has already become immobilized or the desired route cannot be traversed using conventional rolling. Specifically, the focus was on using push-pull locomotion in high sinkage granular material. Push-pull locomotion is an alternative mode of travel that generates thrust through articulated motion, using vehicle components as anchors to push or pull against. It has been revealed through previous research that push-pull locomotion has the capacity for generating higher net traction forces than rolling, and a unique optical flow technique indicated that this is the result of a more efficient soil shearing method. It has now been found that pushpull locomotion results in less sinkage, lower travel reduction, and better power efficiency in high sinkage material as compared to rolling. Even when starting from an "entrapped" condition, push-pull locomotion was able to extricate the test vehicle. It is the authors' recommendation that push-pull locomotion be considered as a reliable back-up mode of travel for applications where terrain entrapment is a possibility.

  10. Optical and scintillation properties of ce-doped (Gd2Y1)Ga2.7Al2.3O12 single crystal grown by Czochralski method

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Wu, Yuntao; Ding, Dongzhou; Li, Huanying; Chen, Xiaofeng; Shi, Jian; Ren, Guohao

    2016-06-01

    Multicomponent garnets, due to their excellent light yield and energy resolution, become one of the most promising scintillators used for homeland security and nuclear non-proliferation applications. This work focuses on the optimization of Ce-doped (Gd,Y)3(Ga,Al)5O12 scintillators using a combination strategy of pre-screening and scale-up. Ce-doped GdxY1-xGayAl5-yO12 (x=1, 2 and y=2, 2.2, 2.5, 2.7, 3) polycrystalline powders were prepared by high-temperature solid state reaction method. The desired garnet phase in all the samples was confirmed using X-ray diffraction measurement. By comparing the radioluminescence intensity, the highest scintillation efficiency was achieved at a component of Gd2Y1Ga2.7Al2.3O12:Ce powders. A (Gd2Y1)Ga2.7Al2.3O12 doped with 1% Ce single crystal with dimensions of Ø35×40 mm was grown by Czochralski method using a <111> oriented seed. Luminescence and scintillation properties were measured. An optical transmittance of 84% was achieved in the concerned wavelength from 500 to 800 nm. Its 5d-4f emission of Ce3+ is at 530 nm. The light yield of a Ce1%: Gd2Y1Ga2.7Al2.3O12 single crystal slab at a size of 5×5×1 mm3 can reach about 65,000±3000 Ph/MeV along with two decay components of 94 and 615 ns under 137Cs source irradiation.

  11. Preparation (pulling) of needles for gene delivery by microinjection.

    PubMed

    Dean, David A

    2006-12-01

    INTRODUCTIONThis protocol contains methods for pulling microinjection needles using two different models of pipette pullers. The advantage of pulling needles in the laboratory is that a variety of different needle types can be pulled, depending on the samples and cells being injected. An added advantage is cost; once a pipette puller has been purchased, boxes of glass capillaries are inexpensive compared to premade microinjection needles. The advantages to buying preformed and sterilized needles include increased uniformity of needles from one to another, ease of use, high quality, and not having to invest in a pipette puller. The pipette puller models described in this article are the Flaming/Brown Pipette Puller Model P-97 (Sutter) and the PUL-1 Micropipette Puller (World Precision Instruments). The PUL-1 instrument is the less expensive of the two, but it requires more user input, and it cannot be used to pull Femtotip-like microinjection pipettes.

  12. Pushing and pulling in relation to musculoskeletal disorders: a review of risk factors.

    PubMed

    Hoozemans, M J; van der Beek, A J; Frings-Dresen, M H; van Dijk, F J; van der Woude, L H

    1998-06-01

    The objective was to review the literature on risk factors for musculoskeletal disorders related to pushing and pulling. The risk factors have been described and evaluated from four perspectives: epidemiology, psychophysics, physiology, and biomechanics. Epidemiological studies have shown, based on cross-sectional data, that pushing and pulling is associated with low back pain. Evidence with respect to complaints of other parts of the musculoskeletal system is lacking. Risk factors have been found to influence the maximum (acceptable) push or pull forces as well as the physiological and mechanical strain on the human body. The risk factors have been divided into: (a) work situation, such as distance, frequency, handle height, and cart weight, (b) actual working method and posture/movement/exerted forces, such as foot distance and velocity, and (c) worker's characteristics, such as body weight. Longitudinal epidemiological studies are needed to relate pushing and pulling to musculoskeletal disorders.

  13. Scapula kinematics of pull-up techniques: Avoiding impingement risk with training changes.

    PubMed

    Prinold, Joe A I; Bull, Anthony M J

    2016-08-01

    Overhead athletic activities and scapula dyskinesia are linked with shoulder pathology; pull-ups are a common training method for some overhead sports. Different pull-up techniques exist: anecdotally some are easier to perform, and others linked to greater incidences of pathology. This study aims to quantify scapular kinematics and external forces for three pull-up techniques, thus discussing potential injury implications. An observational study was performed with eleven participants (age=26.8±2.4 years) who regularly perform pull-ups. The upward motions of three pull-up techniques were analysed: palms facing anterior, palms facing posterior and wide-grip. A skin-fixed scapula tracking technique with attached retro-reflective markers was used. High intra-participant repeatability was observed: mean coefficients of multiple correlations of 0.87-1.00 in humerothoracic rotations and 0.77-0.90 for scapulothoracic rotations. Standard deviations of hand force was low: <5% body weight. Significantly different patterns of humerothoracic, scapulothoracic and glenohumeral kinematics were observed between the pull-up techniques. The reverse technique has extreme glenohumeral internal-external rotation and large deviation from the scapula plane. The wide technique has a reduced range of pro/retraction in the same HT plane of elevation and 90° of arm abduction with 45° external rotation was observed. All these factors suggest increased sub-acromial impingement risk. The scapula tracking technique showed high repeatability. High arm elevation during pull-ups reduces sub-acromial space and increases pressure, increasing the risk of impingement injury. Wide and reverse pull-ups demonstrate kinematics patterns linked with increased impingement risk. Weight-assisted front pull-ups require further investigation and could be recommended for weaker participants. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. DC dynamic pull-in instability of a dielectric elastomer balloon: an energy-based approach

    NASA Astrophysics Data System (ADS)

    Sharma, Atul Kumar; Arora, Nitesh; Joglekar, M. M.

    2018-03-01

    This paper reports an energy-based method for the dynamic pull-in instability analysis of a spherical dielectric elastomer (DE) balloon subjected to a quasi-statically applied inflation pressure and a Heaviside step voltage across the balloon wall. The proposed technique relies on establishing the energy balance at the point of maximum stretch in an oscillation cycle, followed by the imposition of an instability condition for extracting the threshold parameters. The material models of the Ogden family are employed for describing the hyperelasticity of the balloon. The accuracy of the critical dynamic pull-in parameters is established by examining the saddle-node bifurcation in the transient response of the balloon obtained by integrating numerically the equation of motion, derived using the Euler-Lagrange equation. The parametric study brings out the effect of inflation pressure on the onset of the pull-in instability in the DE balloon. A quantitative comparison between the static and dynamic pull-in parameters at four different levels of the inflation pressure is presented. The results indicate that the dynamic pull-in instability gets triggered at electric fields that are lower than those corresponding to the static instability. The results of the present investigation can find potential use in the design and development of the balloon actuators subjected to transient loading. The method developed is versatile and can be used in the dynamic instability analysis of other conservative systems of interest.

  15. Establishment of a new pull-out strength testing method to quantify early osseointegration-An experimental pilot study.

    PubMed

    Nonhoff, J; Moest, T; Schmitt, Christian Martin; Weisel, T; Bauer, S; Schlegel, K A

    2015-12-01

    The animal study aims to evaluate a new experimental model for measuring sole the influence of the surface characteristics independent from implant macro-design on the level of osseointegration by registering the pull-out strength needed for removal of experimental devices with different surfaces from artificial defects. Seventy-two test bodies (36 with the FRIADENT(®) plus surface, 36 with the P15/HAp biofunctionalized surface) were inserted in six adult domestic pigs with artificial calvarial defects. The experimental devices were designed to fit in the defects leaving a gap between the test body and the local bone. After 21 days of healing, the animals were sacrificed and the test bodies were pulled out with a standardised reproducible pull-out device measuring the pull-out strength. The pull-out strength for both groups was compared. Twenty-one days after insertion a mean force of 412 ± 142 N for the P15/HAp group and 183 ± 105 N for the FRIADENT(®) plus group was measured for the removal of the specimens from the calvarial bone. The difference between the groups was statistically significant (p < 0.0001). The experimental set-up seems to be a suitable method when measuring the impact of implant surfaces on the early stage of osseointegration. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  16. DC dynamic pull-in instability of a dielectric elastomer balloon: an energy-based approach.

    PubMed

    Sharma, Atul Kumar; Arora, Nitesh; Joglekar, M M

    2018-03-01

    This paper reports an energy-based method for the dynamic pull-in instability analysis of a spherical dielectric elastomer (DE) balloon subjected to a quasi-statically applied inflation pressure and a Heaviside step voltage across the balloon wall. The proposed technique relies on establishing the energy balance at the point of maximum stretch in an oscillation cycle, followed by the imposition of an instability condition for extracting the threshold parameters. The material models of the Ogden family are employed for describing the hyperelasticity of the balloon. The accuracy of the critical dynamic pull-in parameters is established by examining the saddle-node bifurcation in the transient response of the balloon obtained by integrating numerically the equation of motion, derived using the Euler-Lagrange equation. The parametric study brings out the effect of inflation pressure on the onset of the pull-in instability in the DE balloon. A quantitative comparison between the static and dynamic pull-in parameters at four different levels of the inflation pressure is presented. The results indicate that the dynamic pull-in instability gets triggered at electric fields that are lower than those corresponding to the static instability. The results of the present investigation can find potential use in the design and development of the balloon actuators subjected to transient loading. The method developed is versatile and can be used in the dynamic instability analysis of other conservative systems of interest.

  17. [Research progresses on ergonomics assessment and measurement methods for push-pull behavior].

    PubMed

    Zhao, Yan; Li, Dongxu; Guo, Shengpeng

    2011-10-01

    Pushing and pulling (P&P) is a common operating mode of operator's physical works, and plays an important role in evaluation of human behavior health and operation performance. At present, there are many research methods of P&P, and this article is a state-of-art review of the classification of P&P research methods, the various impact factors in P&P program, technical details of internal/external P&P force measurement and evaluation, the limitation of current research methods and the future developments in the ergonomics field.

  18. Nonlinear resonance ultrasonic vibrations in Czochralski-silicon wafers

    NASA Astrophysics Data System (ADS)

    Ostapenko, S.; Tarasov, I.

    2000-04-01

    A resonance effect of generation of subharmonic acoustic vibrations is observed in as-grown, oxidized, and epitaxial silicon wafers. Ultrasonic vibrations were generated into a standard 200 mm Czochralski-silicon (Cz-Si) wafer using a circular ultrasound transducer with major frequency of the radial vibrations at about 26 kHz. By tuning frequency (f) of the transducer within a resonance curve, we observed a generation of intense f/2 subharmonic acoustic mode assigned as a "whistle." The whistle mode has a threshold amplitude behavior and narrow frequency band. The whistle is attributed to a nonlinear acoustic vibration of a silicon plate. It is demonstrated that characteristics of the whistle mode are sensitive to internal stress and can be used for quality control and in-line diagnostics of oxidized and epitaxial Cz-Si wafers.

  19. Modeling Czochralski growth of oxide crystals for piezoelectric and optical applications

    NASA Astrophysics Data System (ADS)

    Stelian, C.; Duffar, T.

    2018-05-01

    Numerical modeling is applied to investigate the impact of crystal and crucible rotation on the flow pattern and crystal-melt interface shape in Czochralski growth of oxide semi-transparent crystals used for piezoelectric and optical applications. Two cases are simulated in the present work: the growth of piezoelectric langatate (LGT) crystals of 3 cm in diameter in an inductive furnace, and the growth of sapphire crystals of 10 cm in diameter in a resistive configuration. The numerical results indicate that the interface shape depends essentially on the internal radiative heat exchanges in the semi-transparent crystals. Computations performed by applying crystal/crucible rotation show that the interface can be flattened during LGT growth, while flat-interface growth of large diameter sapphire crystals may not be possible.

  20. Adhesive behavior of micro/nano-textured surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Yuyan; Wang, Xiaoli; Li, Hanqing; Wang, Ben

    2015-02-01

    A numerical model of the adhesive contact between a rigid smooth sphere and an elastic textured surface based on the Lennard-Jones interatomic potential law and the Hamaker summation method is established. Textures are considered by introducing the texture height distribution into the gap equation. Simulation results show that the pull-off force on textured surfaces decreases compared to that on smooth surfaces. Furthermore, effects of sphere-shaped textures on reducing adhesion are more obvious than cylinder-shaped or cube-shaped textures when the coverage area ratio, maximum height and interval of textures are fixed. For surfaces with sphere-shaped textures, variation trends of the mean pull-off force with texture density are not monotonous, and there exists a certain range of texture densities in which the mean pull-off force is small and its variation is insignificant. In addition, the pull-off force depends also on the maximum height and radius of textures. On one hand, if the texture radius is fixed, larger maximum height results in smaller pull-off force, and if the maximum height is fixed, the pull-off force tends to increase almost linearly with increases in texture radius. On the other hand, if the height-diameter ratio of textures is fixed, the pull-off force reaches a minimum at an optimum texture radius or maximum height.

  1. Effectiveness of the California Tri-Pull Taping method for shoulder subluxation poststroke: a single-subject ABA design.

    PubMed

    Hayner, Kate A

    2012-01-01

    I evaluated the effectiveness of the California Tri-Pull Taping method for clients with poststroke inferior shoulder subluxation of the glenohumeral joint. Ten participants were followed for 9 wk using an interrupted time series quasi-experimental single-subject ABA design to examine shoulder pain, activities of daily living (ADL) function, active range of motion, tape comfort, and subluxation. The California Tri-Pull Taping method decreased inferior subluxation significantly from baseline to intervention but not at postintervention. Active range of motion was significantly increased in shoulder flexion and abduction between the baseline and intervention and the intervention and postintervention phases. Functional ADL scores were significant. The taping was reported to be comfortable. No significant difference in pain was found. This intervention is a promising adjunct to the management of the hemiplegic subluxed shoulder that warrants further research. Copyright © 2012 by the American Occupational Therapy Association, Inc.

  2. Microcatheter entrapment retrieval from Onyx embolization in brain arteriovenous malformations: A technical note.

    PubMed

    Vu, Phat D; Grigorian, Arthur A

    2015-10-01

    Many techniques have been use for retrieval of an entrapped microcatheter during Onyx (eV3 Neurovascular) embolization of brain arteriovenous malformations (BAVMs). We report our technique that we term "pull-push-pull" that can be utilized as first management in retrieving the microcatheter. We analyzed a total of 37 patients that underwent BAVM embolization with either Onyx 18 or 34 at our institution. Standard embolization techniques were utilized with the use of Marathon (eV3 Neurovascular) microcatheter. When difficulty in retrieving the microcatheter arose, we used the "pull-push-pull" technique. The technique comprises the eV3 protocol of retraction. In addition, the microcatheter is stretched causing the Onyx cast to stretch in its inner core, creating a more thorough cohesive property amongst the Onyx mixture. Then the microcatheter is pushed back and to its point of embolization origin. Afterwards, retraction of the microcatheter is enabled as it can be easily dislodged from the cast. Multiple attempts can be repeated as needed. We had three patients that had difficulty with removal of microcatheter (8.1%). Utilization of the "pull-push-pull" technique was used on two of those patients. No neurological complication was observed with our technique. We believe the cohesive property of Onyx solution helps in the retrieval of the catheter by our method and technique. We believe the "pull-push-pull" can be utilized and be an additional technique before attempting other catheter retrieval techniques in Onyx BAVM embolization. © The Author(s) 2015.

  3. Czochralski growth of 2 in. Ca3Ta(Ga,Al)3Si2O14 single crystals for piezoelectric applications

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Akira; Shoji, Yasuhiro; Ohashi, Yuji; Yokota, Yuui; Chani, Valery I.; Kitahara, Masanori; Kudo, Tetsuo; Kamada, Kei; Kurosawa, Shunsuke; Medvedev, Andrey; Kochurikhin, Vladimir

    2016-10-01

    Growth of 2-in. diameter Al-substituted Ca3TaGa3Si2O14 crystals by Czochralski method is reported. The crystals were grown from the melt of Ca3TaGa1.5Al1.5Si2O14 composition and had langasite structure. No inclusions of secondary phases were detected in these crystals. The Ca3Ta(Ga,Al)3Si2O14 mixed crystals produced using non-substituted Ca3TaGa3Si2O14 seeds were defective. They had cracks and/or poly-crystalline structure. However, those grown on the seed of approximately Ca3TaGa1.5Al1.5Si2O14 composition were defect-free. Phase diagram of the Ca3TaGa3Si2O14-Ca3TaAl3Si2O14 pseudo-binary system and segregation phenomenon are discussed in some details. Homogeneity of the crystals was evaluated by measuring 2D-mapping of leaky surface acoustic wave (LSAW) velocities for Y-cut Ca3TaGa1.5Al1.5Si2O14 substrate. Although some inhomogeneities were observed due to slight variations in chemical composition, the crystal had acceptable homogeneity for applications in acoustic wave devices exhibiting the LSAW velocity variation within ±0.048%.

  4. Pull-down Assay to Characterize Ca2+/Calmodulin Binding to Plant Receptor Kinases.

    PubMed

    Kaufmann, Christine; Sauter, Margret

    2017-01-01

    Plant receptor-like kinases (RLKs) are regulated by posttranscriptional modification and by interaction with regulatory proteins. A common modification of RLKs is (auto)phosphorylation, and a common regulatory protein is the calcium sensor calmodulin (CaM). We have developed protocols to detect the interaction of an RLK with CaM. The interaction with CaM was shown by bimolecular fluorescence complementation (BiFC) (see Chapter 14) and pull-down assay (this chapter). Both methods offer unique advantages. BiFC is useful in showing interaction of soluble as well as of membrane-bound proteins in planta. Pull-down assays are restricted to soluble proteins and provide in vitro data. The pull-down assay provides the advantage that proteins can be modified prior to binding and that experimental conditions such as the concentration of Ca 2+ or other divalent cations can be controlled. This chapter provides a pull-down protocol to study RLK-CaM interaction with optional steps to investigate the impact of RLK phosphorylation or of Ca 2+ .

  5. Minimizing pulling geometry errors in atomic force microscope single molecule force spectroscopy.

    PubMed

    Rivera, Monica; Lee, Whasil; Ke, Changhong; Marszalek, Piotr E; Cole, Daniel G; Clark, Robert L

    2008-10-01

    In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies.

  6. Pulse width modulated push-pull driven parallel resonant converter with active free-wheel

    DOEpatents

    Reass, William A.; Schrank, Louis

    2004-06-22

    An apparatus and method for high frequency alternating power generation to control kilowatts of supplied power in microseconds. The present invention includes a means for energy storage, push-pull switching means, control electronics, transformer means, resonant circuitry and means for excess energy recovery, all in electrical communication. A push-pull circuit works synchronously with a force commutated free-wheel transistor to provide current pulses to a transformer. A change in the conduction angle of the push-pull circuit changes the amount of energy coupled into the transformer's secondary oscillating circuit, thereby altering the induced secondary resonating voltage. At the end of each pulse, the force commutated free-wheel transistor causes residual excess energy in the primary circuit to be transmitted back to the storage capacitor for later use.

  7. Research on growth and defects of 5 in. YCOB single crystal

    NASA Astrophysics Data System (ADS)

    Tu, Xiaoniu; Wang, Sheng; Xiong, Kainan; Zheng, Yanqing; Shi, Erwei

    2018-04-01

    YCa4O(BO3)3 (YCOB) is an important nonlinear optical crystal, which is a key optical element in the SHG and OPCPA process to obtain high repetition rate, multi-petawatt laser pulse. In this work, we have grown 5 in. YCOB crystals by Czochralski method and investigated phase separation, defects, as well as their formation mechanism. Laser induced damage threshold (LiDT), rocking curve and transmission spectrum is characterized using the sample without defects. It is believed that, based on this work, large-sized YCOB crystal without defects will be obtained in the near future.

  8. Quantification of the tug-back by measuring the pulling force and micro computed tomographic evaluation.

    PubMed

    Jeon, Su-Jin; Moon, Young-Mi; Seo, Min-Seock

    2017-11-01

    The aims of this study were to quantify tug-back by measuring the pulling force and investigate the correlation of clinical tug-back pulling force with in vitro gutta-percha (GP) cone adaptation score using micro-computed tomography (µCT). Twenty-eight roots from human single-rooted teeth were divided into 2 groups. In the ProTaper Next (PTN) group, root canals were prepared with PTN, and in the ProFile (PF) group, root canals were prepared using PF ( n = 14). The degree of tug-back was scored after selecting taper-matched GP cones. A novel method using a spring balance was designed to quantify the tug-back by measuring the pulling force. The correlation between tug-back scores, pulling force, and percentage of the gutta-percha occupied area (pGPOA) within apical 3 mm was investigated using µCT. The data were analyzed using Pearson's correlation analysis, one-way analysis of variance (ANOVA) and Tukey's test. Specimens with a strong tug-back had a mean pulling force of 1.24 N (range, 0.15-1.70 N). This study showed a positive correlation between tug-back score, pulling force, and pGPOA. However, there was no significant difference in these factors between the PTN and PF groups. Regardless of the groups, pGPOA and pulling force were significantly higher in the specimens with a higher tug-back score ( p < 0.05). The degree of subjective tug-back was a definitive determinant for master cone adaptation in the root canal. The use of the tug-back scoring system and pulling force allows the interpretation of subjective tug-back in a more objective and quantitative manner.

  9. In Vitro Evaluation and Mechanism Analysis of the Fiber Shedding Property of Textile Pile Debridement Materials

    PubMed Central

    Fu, Yijun; Xie, Qixue; Lao, Jihong; Wang, Lu

    2016-01-01

    Fiber shedding is a critical problem in biomedical textile debridement materials, which leads to infection and impairs wound healing. In this work, single fiber pull-out test was proposed as an in vitro evaluation for the fiber shedding property of a textile pile debridement material. Samples with different structural design (pile densities, numbers of ground yarns and coating times) were prepared and estimated under this testing method. Results show that single fiber pull-out test offers an appropriate in vitro evaluation for the fiber shedding property of textile pile debridement materials. Pull-out force for samples without back-coating exhibited a slight escalating trend with the supplement in pile density and number of ground yarn plies, while back-coating process significantly raised the single fiber pull-out force. For fiber shedding mechanism analysis, typical pull-out behavior and failure modes of the single fiber pull-out test were analyzed in detail. Three failure modes were found in this study, i.e., fiber slippage, coating point rupture and fiber breakage. In summary, to obtain samples with desirable fiber shedding property, fabric structural design, preparation process and raw materials selection should be taken into full consideration. PMID:28773428

  10. Integration of Lean Method in English Language Teaching and Learning: A New Perspective

    ERIC Educational Resources Information Center

    Tilfarlioglu, Filiz Yalçin; Anwer, Jivan Kamal

    2017-01-01

    Lean is regarded as a systematic approach to maximizing value by minimizing waste, and by flowing the product or service at the pull of the customer demand. These key concepts of "value," "flow," and "pull," align with the ultimate lean goal: "perfection," or a continuous striving for improvement in the…

  11. Noncontact Measurement of Doping Profile for Bare Silicon

    NASA Astrophysics Data System (ADS)

    Kohno, Motohiro; Matsubara, Hideaki; Okada, Hiroshi; Hirae, Sadao; Sakai, Takamasa

    1998-10-01

    In this study, we evaluate the doping concentrations of bare silicon wafers by noncontact capacitance voltage (C V) measurements. The metal-air-insulator-semiconductor (MAIS) method enables the measurement of C V characteristics of silicon wafers without oxidation and electrode preparation. This method has the advantage that a doping profile close to the wafer surface can be obtained. In our experiment, epitaxial silicon wafers were used to compare the MAIS method with the conventional MIS method. The experimental results obtained from the two methods showed good agreement. Then, doping profiles of boron-doped Czochralski (CZ) wafers were measured by the MAIS method. The result indicated a significant reduction of the doping concentration near the wafer surface. This observation is attributed to the well-known deactivation of boron with atomic hydrogen which permeated the silicon bulk during the polishing process. This deactivation was recovered by annealing in air at 180°C for 120 min.

  12. Characterizing Surfaces of the Wide Bandgap Semiconductor Ilmenite with Scanning Probe Microcopies

    NASA Technical Reports Server (NTRS)

    Wilkins, R.; Powell, Kirk St. A.

    1997-01-01

    Ilmenite (FeTiO3) is a wide bandgap semiconductor with an energy gap of about 2.5eV. Initial radiation studies indicate that ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Two scanning probe microscopy methods have been used to characterize the surface of samples taken from Czochralski grown single crystals. The two methods, atomic force microscopy (AFM) and scanning tunneling microscopy (STM), are based on different physical principles and therefore provide different information about the samples. AFM provides a direct, three-dimensional image of the surface of the samples, while STM give a convolution of topographic and electronic properties of the surface. We will discuss the differences between the methods and present preliminary data of each method for ilmenite samples.

  13. Small-scale field evaluation of push-pull system against early- and outdoor-biting malaria mosquitoes in an area of high pyrethroid resistance in Tanzania

    PubMed Central

    Mmbando, Arnold S.; Ngowo, Halfan S.; Kilalangongono, Masoud; Abbas, Said; Matowo, Nancy S.; Moore, Sarah J.; Okumu, Fredros O.

    2017-01-01

    Background: Despite high coverage of indoor interventions like insecticide-treated nets, mosquito-borne infections persist, partly because of outdoor-biting, early-biting and insecticide-resistant vectors. Push-pull systems, where mosquitoes are repelled from humans and attracted to nearby lethal targets, may constitute effective complementary interventions. Methods: A partially randomized cross-over design was used to test efficacy of push-pull in four experimental huts and four local houses, in an area with high pyrethroid resistance in Tanzania. The push-pull system consisted of 1.1% or 2.2% w/v transfluthrin repellent dispensers and an outdoor lure-and-kill device (odour-baited mosquito landing box). Matching controls were set up without push-pull. Adult male volunteers collected mosquitoes attempting to bite them outdoors, but collections were also done indoors using exit traps in experimental huts and by volunteers in the local houses. The collections were done hourly (1830hrs-0730hrs) and mosquito catches compared between push-pull and controls. An. gambiae s.l. and An. funestus s.l. were assessed by PCR to identify sibling species, and ELISA to detect Plasmodium falciparum and blood meal sources. Results: Push-pull in experimental huts reduced outdoor-biting for An. arabiensis and Mansonia species by 30% and 41.5% respectively. However, the reductions were marginal and insignificant for An. funestus (12.2%; p>0.05) and Culex (5%; p>0.05). Highest protection against all species occurred before 2200hrs. There was no significant difference in number of mosquitoes inside exit traps in huts with or without push-pull. In local households, push-pull significantly reduced indoor and outdoor-biting of An. arabiensis by 48% and 25% respectively, but had no effect on other species. Conclusion: This push-pull system offered modest protection against outdoor-biting An. arabiensis, without increasing indoor mosquito densities. Additional experimentation is required to assess how transfluthrin-based products affect mosquito blood-feeding and mortality in push-pull contexts. This approach, if optimised, could potentially complement existing malaria interventions even in areas with high pyrethroid resistance. PMID:29568808

  14. Theoretical study of the impact of stress and interstitial oxygen on the behavior of intrinsic point defects in growing Czochralski Si crystals

    NASA Astrophysics Data System (ADS)

    Sueoka, K.; Nakamura, K.; Vanhellemont, J.

    2017-09-01

    For the development of crystal pulling processes for 450 mm-diameter defect-free Si crystals, it is important to evaluate the impact of thermal stress on intrinsic point defect behavior during crystal growth. In a crystal growing from a melt, the melt/solid interface can be considered as being stress-free. Due to that the thermal stress in the growing substrate near the interface is internal plane stress. Previously, we evaluated the impact of (001) planar-isotropic stress on the formation enthalpy (Hf) of the vacancy (V) and the self-interstitial (I) using density functional theory (DFT) calculations, and explained quantitatively the published experimental values of the so-called ;Voronkov criterion;. The thermal stress in a growing crystal is indeed planar but is not isotropic in the plane except for the central region of the crystal. The purpose of the present study is to estimate the impact of planar-anisotropic stress on the formation enthalpy Hf of V and I. It is found that the three stress dependencies of σx: σy=1: 1 (planar-isotropic), 2: 1, 5: 1 (planar-anisotropic) are close to each other, independent of the assumption of isotropic or anisotropic planar stress. This is the reason why the experimental results obtained over the whole radial direction of the crystal are well reproduced by the calculated results assuming planar-isotropic stress. A uniaxial stress dependence which is a good assumption for the crystal peripheral region, leads also to results that are close to those for the planar stress dependence. Also the mechanisms behind the experimentally observed impact of interstitial oxygen (Oi), introduced during Czochralski Si growth, on V and I concentrations are clarified. DFT calculations are performed to obtain the formation energies (Ef) of V and I at all sites within a sphere with 5 Å radius around the Oi atom. Formation (vibration) entropy (Sf) calculations for V and I are also performed. It is found that both EfV and SfV of V in the zigzag-bond (1st, 2nd, 5th) including the Oi atom decrease while EfI of I is not affected by the Oi atom. ;Total V; is defined as the sum of free V and V trapped by the Oi atoms. The total V concentration at the melting point is evaluated by considering the EfV and SfV at each site. The calculated V concentration increases by about 2.9% with 1×1018 Oi cm-3 and agrees well with the experimentally estimated value of a few % increase with 1×1018 Oi cm-3.

  15. Electronic structure of α-SrB4O7: experiment and theory

    NASA Astrophysics Data System (ADS)

    Atuchin, V. V.; Kesler, V. G.; Zaitsev, A. I.; Molokeev, M. S.; Aleksandrovsky, A. S.; Kuzubov, A. A.; Ignatova, N. Y.

    2013-02-01

    The investigation of valence band structure and electronic parameters of constituent element core levels of α-SrB4O7 has been carried out with x-ray photoemission spectroscopy. Optical-quality crystal α-SrB4O7 has been grown by the Czochralski method. Detailed photoemission spectra of the element core levels have been recorded from the powder sample under excitation by nonmonochromatic Al Kα radiation (1486.6 eV). The band structure of α-SrB4O7 has been calculated by ab initio methods and compared to XPS measurements. It has been found that the band structure of α-SrB4O7 is weakly dependent on the Sr-related states.

  16. Research on Precision Tracking on Fast Steering Mirror and Control Strategy

    NASA Astrophysics Data System (ADS)

    Di, Lin; Yi-ming, Wu; Fan, Zhu

    2018-01-01

    Fast steering mirror is a device used for controlling the beam direction precisely. Due to the short travel of the push-pull FSM, a compound fast steering mirror system driven by both limited-angle voice coil motor and push-pull FSM together is proposed. In the compound FSM system, limited-angle voice coil motor quickly swings at wide angle, while the push-pull FSM do high frequency movement in a small range, which provides the system with the high bandwidth and long travel. In the control strategy, the method of combining feed-forward control in Kalman filtering with auto-disturbance rejection control is used to improve trajectory tracking accuracy. The simulation result shows that tracking accuracy measured by the compound method can be improved by more than 5 times than that of the conventional PID.

  17. Free energy calculation of single molecular interaction using Jarzynski's identity method: the case of HIV-1 protease inhibitor system

    NASA Astrophysics Data System (ADS)

    Li, De-Chang; Ji, Bao-Hua

    2012-06-01

    Jarzynski' identity (JI) method was suggested a promising tool for reconstructing free energy landscape of biomolecular interactions in numerical simulations and experiments. However, JI method has not yet been well tested in complex systems such as ligand-receptor molecular pairs. In this paper, we applied a huge number of steered molecular dynamics (SMD) simulations to dissociate the protease of human immunodeficiency type I virus (HIV-1 protease) and its inhibitors. We showed that because of intrinsic complexity of the ligand-receptor system, the energy barrier predicted by JI method at high pulling rates is much higher than experimental results. However, with a slower pulling rate and fewer switch times of simulations, the predictions of JI method can approach to the experiments. These results suggested that the JI method is more appropriate for reconstructing free energy landscape using the data taken from experiments, since the pulling rates used in experiments are often much slower than those in SMD simulations. Furthermore, we showed that a higher loading stiffness can produce higher precision of calculation of energy landscape because it yields a lower mean value and narrower bandwidth of work distribution in SMD simulations.

  18. Selectively Encrypted Pull-Up Based Watermarking of Biometric data

    NASA Astrophysics Data System (ADS)

    Shinde, S. A.; Patel, Kushal S.

    2012-10-01

    Biometric authentication systems are becoming increasingly popular due to their potential usage in information security. However, digital biometric data (e.g. thumb impression) are themselves vulnerable to security attacks. There are various methods are available to secure biometric data. In biometric watermarking the data are embedded in an image container and are only retrieved if the secrete key is available. This container image is encrypted to have more security against the attack. As wireless devices are equipped with battery as their power supply, they have limited computational capabilities; therefore to reduce energy consumption we use the method of selective encryption of container image. The bit pull-up-based biometric watermarking scheme is based on amplitude modulation and bit priority which reduces the retrieval error rate to great extent. By using selective Encryption mechanism we expect more efficiency in time at the time of encryption as well as decryption. Significant reduction in error rate is expected to be achieved by the bit pull-up method.

  19. Comparison on mechanical properties of heavily phosphorus- and arsenic-doped Czochralski silicon wafers

    NASA Astrophysics Data System (ADS)

    Yuan, Kang; Sun, Yuxin; Lu, Yunhao; Liang, Xingbo; Tian, Daxi; Ma, Xiangyang; Yang, Deren

    2018-04-01

    Heavily phosphorus (P)- and arsenic (As)-doped Czochralski silicon (CZ-Si) wafers generally act as the substrates for the epitaxial silicon wafers used to fabricate power and communication devices. The mechanical properties of such two kinds of n-type heavily doped CZ silicon wafers are vital to ensure the quality of epitaxial silicon wafers and the manufacturing yields of devices. In this work, the mechanical properties including the hardness, Young's modulus, indentation fracture toughness and the resistance to dislocation motion have been comparatively investigated for heavily P- and As-doped CZ-Si wafers. It is found that heavily P-doped CZ-Si possesses somewhat higher hardness, lower Young's modulus, larger indentation fracture toughness and stronger resistance to dislocation motion than heavily As-doped CZ-Si. The mechanisms underlying this finding have been tentatively elucidated by considering the differences in the doping effects of P and As in silicon.

  20. Physical modelling of Czochralski crystal growth in horizontal magnetic field

    NASA Astrophysics Data System (ADS)

    Grants, Ilmārs; Pal, Josef; Gerbeth, Gunter

    2017-07-01

    This study addresses experimentally the heat transfer, the temperature azimuthal non-uniformity and the onset of oscillations in a low temperature physical model of a medium-sized Czochralski crystal growth process with a strong horizontal magnetic field (HMF). It is observed that under certain conditions the integral heat flux may decrease with increasing magnetic field strength at the same time as the flow velocity increases. The azimuthal non-uniformity of the temperature field in the melt near the crystal model rim is only little influenced by its rotation rate outside of a narrow range where the centrifugal force balances the buoyant one. The flow oscillation onset has been observed for two values of the HMF strength. Conditions of this onset are little influenced by the crystal rotation. The critical temperature difference of the oscillation onset considerably exceeds that of the Rayleigh-Bénard (RB) cell in a strong HMF.

  1. Silicon Solar Cell Process Development, Fabrication and Analysis, Phase 1

    NASA Technical Reports Server (NTRS)

    Yoo, H. I.; Iles, P. A.; Tanner, D. P.

    1979-01-01

    Solar cells from RTR ribbons, EFG (RF and RH) ribbons, dendritic webs, Silso wafers, cast silicon by HEM, silicon on ceramic, and continuous Czochralski ingots were fabricated using a standard process typical of those used currently in the silicon solar cell industry. Back surface field (BSF) processing and other process modifications were included to give preliminary indications of possible improved performance. The parameters measured included open circuit voltage, short circuit current, curve fill factor, and conversion efficiency (all taken under AM0 illumination). Also measured for typical cells were spectral response, dark I-V characteristics, minority carrier diffusion length, and photoresponse by fine light spot scanning. the results were compared to the properties of cells made from conventional single crystalline Czochralski silicon with an emphasis on statistical evaluation. Limited efforts were made to identify growth defects which will influence solar cell performance.

  2. Impact of Carbon Codoping on Generation and Dissociation of Boron-Oxygen Defects in Czochralski Silicon

    NASA Astrophysics Data System (ADS)

    Xie, Meng; Yu, Xuegong; Wu, Yichao; Yang, Deren

    2018-06-01

    It has been previously reported that boron-oxygen (B-O) defects in Czochralski (CZ) silicon can be effectively suppressed by carbon codoping. In this work, the kinetics of B-O defect generation and dissociation in carbon-codoped CZ (CCZ) silicon has been investigated. It was found that the activation energy for B-O defect generation in CCZ silicon is 0.56 eV, much larger than that in conventional CZ silicon. However, the activation energy for B-O defect dissociation in CCZ silicon is almost the same as that in conventional CZ silicon, viz. ˜ 1.37 eV. Moreover, the binding energy of B-O defects in both CZ and CCZ silicon is determined to be 0.93 eV. Based on these results, it is believed that carbon atoms in CCZ silicon participate in formation of B-O latent centers before transforming into recombination-active centers under illumination.

  3. Biomechanical Comparisons of Pull Out Strengths After Pedicle Screw Augmentation with Hydroxyapatite, Calcium Phosphate, or Polymethylmethacrylate in the Cadaveric Spine.

    PubMed

    Yi, Seong; Rim, Dae-Cheol; Park, Seoung Woo; Murovic, Judith A; Lim, Jesse; Park, Jon

    2015-06-01

    In vertebrae with low bone mineral densities pull out strength is often poor, thus various substances have been used to fill screw holes before screw placement for corrective spine surgery. We performed biomechanical cadaveric studies to compare nonaugmented pedicle screws versus hydroxyapatite, calcium phosphate, or polymethylmethacrylate augmented pedicle screws for screw tightening torques and pull out strengths in spine procedures requiring bone screw insertion. Seven human cadaveric T10-L1 spines with 28 vertebral bodies were examined by x-ray to exclude bony abnormalities. Dual-energy x-ray absorptiometry scans evaluated bone mineral densities. Twenty of 28 vertebrae underwent ipsilateral fluoroscopic placement of 6-mm holes augmented with hydroxyapatite, calcium phosphate, or polymethylmethacrylate, followed by transpedicular screw placements. Controls were pedicle screw placements in the contralateral hemivertebrae without augmentation. All groups were evaluated for axial pull out strength using a biomechanical loading frame. Mean pedicle screw axial pull out strength compared with controls increased by 12.5% in hydroxyapatite augmented hemivertebrae (P = 0.600) and by 14.9% in calcium phosphate augmented hemivertebrae (P = 0.234), but the increase was not significant for either method. Pull out strength of polymethylmethacrylate versus hydroxyapatite augmented pedicle screws was 60.8% higher (P = 0.028). Hydroxyapatite and calcium phosphate augmentation in osteoporotic vertebrae showed a trend toward increased pedicle screw pull out strength versus controls. Pedicle screw pull out force of polymethylmethacrylate in the insertion stage was higher than that of hydroxyapatite. However, hydroxyapatite is likely a better clinical alternative to polymethylmethacrylate, as hydroxyapatite augmentation, unlike polymethylmethacrylate augmentation, stimulates bone growth and can be revised. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. The "Push-Pull" Approach to Fast-Track Management Development: A Case Study in Scientific Publishing

    ERIC Educational Resources Information Center

    Fojt, Martin; Parkinson, Stephen; Peters, John; Sandelands, Eric

    2008-01-01

    Purpose: The purpose of this paper is to explore how a medium sized business has addressed what it has termed a "push-pull" method of management and organization development, based around an action learning approach. Design/methodology/approach: The paper sets out a methodology that other SMEs might look to replicate in their management and…

  5. Motivation and Perception of Tourists as Push and Pull Factors to Visit National Park

    NASA Astrophysics Data System (ADS)

    Said, Jumrin; Maryono

    2018-02-01

    Push-pull theoretical framework is a popular theory to explain the reason why the tourists decide to visit the destination rather than other place, the kind of experience they want to get and the type of activity they want to do. In this paper, it is explained the motivation as push factors and the perception as pull factors of the tourist in deciding the destination based on previous literature and research using descriptive method. The framework asumed that tourists are motivated to fulfill their needs, including to reduce the psychological imbalance and to gain recognition of social status. National Park is one of destination based on nature or commonly knowns as ecotourism. In choosing the destination, the tourists tend to classify their alternative choice based on several criteria, such as the domination perception of tourist from one destination (pull factor), self motivation (push factor) and the available time and money (situational constraints).

  6. Electronic properties of light-induced recombination centers in boron-doped Czochralski silicon

    NASA Astrophysics Data System (ADS)

    Schmidt, Jan; Cuevas, Andrés

    1999-09-01

    In order to study the electronic properties of the recombination centers responsible for the light-induced carrier lifetime degradation commonly observed in high-purity boron-doped Czochralski (Cz) silicon, injection-level dependent carrier lifetime measurements are performed on a large number of boron-doped p-type Cz silicon wafers of various resistivities (1-31 Ω cm) prior to and after light degradation. The measurement technique used is the contactless quasi-steady-state photoconductance method, allowing carrier lifetime measurements over a very broad injection range between 1012 and 1017cm-3. To eliminate all recombination channels not related to the degradation effect, the difference of the inverse lifetimes measured after and before light degradation is evaluated. A detailed analysis of the injection level dependence of the carrier lifetime change using the Shockley-Read-Hall theory shows that the fundamental recombination center created during illumination has an energy level between Ev+0.35 and Ec-0.45 eV and an electron/hole capture time constant ratio between 0.1 and 0.2. This deep-level center is observed in all samples and is attributed to a new type of boron-oxygen complex. Besides this fundamental defect, in some samples an additional shallow-level recombination center at 0.15 eV below Ec or above Ev is found to be activated during light exposure. This second center dominates the light-degraded carrier lifetime only under high-injection conditions and is hence only of minor importance for low-injection operated devices.

  7. Carbon nanotube switches for memory, RF communications and sensing applications, and methods of making the same

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B. (Inventor); Wong, Eric W. (Inventor); Baron, Richard L. (Inventor); Epp, Larry (Inventor)

    2008-01-01

    Switches having an in situ grown carbon nanotube as an element thereof, and methods of fabricating such switches. A carbon nanotube is grown in situ in mechanical connection with a conductive substrate, such as a heavily doped silicon wafer or an SOI wafer. The carbon nanotube is electrically connected at one location to a terminal. At another location of the carbon nanotube there is situated a pull electrode that can be used to elecrostatically displace the carbon nanotube so that it selectively makes contact with either the pull electrode or with a contact electrode. Connection to the pull electrode is sufficient to operate the device as a simple switch, while connection to a contact electrode is useful to operate the device in a manner analogous to a relay. In various embodiments, the devices disclosed are useful as at least switches for various signals, multi-state memory, computational devices, and multiplexers.

  8. Thermal, spectroscopic properties and laser performance at 1.06 and 1.33 μm of Nd : Ca 4YO(BO 3) 3 and Nd : Ca 4GdO(BO 3) 3 crystals

    NASA Astrophysics Data System (ADS)

    Wang, Changqing; Zhang, Huaijin; Meng, Xianlin; Zhu, Li; Chow, Y. T.; Liu, Xuesong; Cheng, Ruiping; Yang, Zhaohe; Zhang, Shaojun; Sun, Lianke

    2000-11-01

    Nd : Ca 4YO(BO 3) 3 (Nd : YCOB) and Nd : Ca 4GdO(BO 3) 3 (Nd : GdCOB) crystals were grown by Czochralski method. Thermal expansion and specific heat of these two crystals were experimentally determined. Their fluorescence spectra were measured within the range from 1000 to 1500 nm. Laser output experiments at 1.06 and 1.33 μm of Nd : YCOB and Nd : GdCOB crystals were performed with a cw Ti : sapphire laser as the pump source.

  9. Correlation between impurity distribution and location of ferroelectric domain walls in Nd : Mg : LiNbO 3 single crystal

    NASA Astrophysics Data System (ADS)

    Naumova, I. I.; Evlanova, N. F.; Blokhin, S. A.; Lavrishchev, S. V.

    1998-04-01

    Using selective chemical etching, scanning electron microscope (SEM) and wave dispersive X-ray (WDX) microanalysis we showed that the ferroelectric domain walls coincide with the maxima and minima Nd-impurity modulation in a periodically poled Nd : Mg : LiNbO 3 crystal grown by the Czochralski method along the normal to the (0 1 1¯ 2) face. Asymmetric form of the Nd-modulation produces nonequal positive and negative domains for one period. Variations of instantaneous rate of growth were estimated for facet and nonfacet crystal region in the framework of Burton-Prim-Slichter theory.

  10. Growth and characterization of a Li2Mg2(MoO4)3 scintillating bolometer

    NASA Astrophysics Data System (ADS)

    Danevich, F. A.; Degoda, V. Ya.; Dulger, L. L.; Dumoulin, L.; Giuliani, A.; de Marcillac, P.; Marnieros, S.; Nones, C.; Novati, V.; Olivieri, E.; Pavlyuk, A. A.; Poda, D. V.; Trifonov, V. A.; Yushina, I. V.; Zolotarova, A. S.

    2018-05-01

    Lithium magnesium molybdate (Li2Mg2(MoO4)3) crystals were grown by the low-thermal-gradient Czochralski method. Luminescence properties of the material (emission spectra, thermally stimulated luminescence, dependence of intensity on temperature, phosphorescence) have been studied under X-ray excitation in the temperature interval from 8 to 400 K, while at the same being operated as a scintillating bolometer at 20 mK for the first time. We demonstrated that Li2Mg2(MoO4)3 crystals are a potentially promising detector material to search for neutrinoless double beta decay of 100Mo.

  11. Optical spectroscopy and diode-pumped laser characteristics of codoped Tm-Ho:YLF and Tm-Ho:BaYF: a comparative analysis

    NASA Astrophysics Data System (ADS)

    Cornacchia, F.; Sani, E.; Toncelli, A.; Tonelli, M.; Marano, M.; Taccheo, S.; Galzerano, G.; Laporta, P.

    Single crystals of monoclinic BaY2F8 and tetragonal LiYF4 codoped with the same Tm3+ and Ho3+ concentrations were successfully grown by the Czochralski method. Here we present a comparative analysis of the two hosts including spectroscopic characterization and cw diode-pumped laser experiments in the 2-μm wavelength region at room temperature. The main differences between the two hosts are a lower slope efficiency associated with a much wider tuning range (2005-2094 nm) of BaY2F8 with respect to LiYF4.

  12. Are single-well "push-pull" tests suitable tracer methods for aquifer characterization?

    NASA Astrophysics Data System (ADS)

    Hebig, Klaus; Zeilfelder, Sarah; Ito, Narimitsu; Machida, Isao; Scheytt, Traugott; Marui, Atsunao

    2013-04-01

    Recently, investigations were conducted for geological and hydrogeological characterisation of the sedimentary coastal basin of Horonobe (Hokkaido, Japan). Coastal areas are typical geological settings in Japan, which are less tectonically active than the mountain ranges. In Asia, and especially in Japan, these areas are often densely populated. Therefore, it is important to investigate the behaviour of solutes in such unconsolidated aquifers. In such settings sometimes only single boreholes or groundwater monitoring wells are available for aquifer testing for various reasons, e.g. depths of more than 100 m below ground level and slow groundwater velocities due to density driven flow. A standard tracer test with several involved groundwater monitoring wells is generally very difficult or even not possible at these depths. One of the most important questions in our project was how we can obtain information about chemical and hydraulic properties in such aquifers. Is it possible to characterize solute transport behaviour parameters with only one available groundwater monitoring well or borehole? A so-called "push-pull" test may be one suitable method for aquifer testing with only one available access point. In a push-pull test a known amount of several solutes including a conservative tracer is injected into the aquifer ("push") and afterwards extracted ("pull"). The measured breakthrough curve during the pumping back phase can then be analysed. This method has already been used previously with various aims, also in the recent project (e.g. Hebig et al. 2011, Zeilfelder et al. 2012). However, different test setups produced different tracer breakthrough curves. As no systematic evaluation of this aquifer tracer test method was done so far, nothing is known about its repeatability. Does the injection and extraction rate influence the shape of the breakthrough curve? Which role plays the often applied "chaser", which is used to push the test solution out from the borehole and gravel pack? How does density difference between the original groundwater and the test solution influence the tracer breakthrough curves? To solve these questions, seven push-pull tests were performed under controlled boundary conditions in the same well DD-2 (100 m depth). Only single parameters, as e.g. flow rate or salinization of the test solution, were varied during the experiments. By conducting these different test setups, conclusions could be drawn about the application of the push-pull method under different settings. References: Hebig, K.H., Ito, N., Scheytt, T.J. & Marui, A. (2011). Hydraulic and hydrochemical characterization of deep coastal sedimentary basins by single-well Push-Pull tests. GSA Annual Meeting, 9-12 October 2011, Minneapolis, USA. Zeilfelder, S., Ito, N., Marui, A., Hebig, K. & Scheytt, T. (2012). Push-Pull-Test und Tracer-Test in ei-nem tiefen Grundwasserleiter in Kameoka, Japan. Kurzfassung in: Liedl, R., Burghardt, D., Simon, E., Reimann, T. & Kaufmann-Knoke (Hg.). Grundwasserschutz und Grundwassernutzung. Tagung der Fachsektion Hydrogeologie in der DGG (FH-DGG). 16. - 20. Mai 2012, Dresden. Kurfassungen der Vorträge und Poster. Schriftenreihe der DGG, Heft 78, S. 192.

  13. Bridgman growth of large-aperture yttrium calcium oxyborate crystal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Anhua, E-mail: wuanhua@mail.sic.ac.cn; Jiang, Linwen; Qian, Guoxing

    2012-09-15

    Highlights: ► YCOB is a novel non-linear optical crystal possessing good thermal, mechanical and nonlinear optical properties. ► Large size crystal growth is key technology question for YCOB crystal. ► YCOB crystals 3 in. in diameter were grown with modified vertical Bridgman method. ► It is a more effective growth method to obtain large size and high quality YCOB crystal. -- Abstract: Large-aperture yttrium calcium oxyborate YCa{sub 4}O(BO{sub 3}){sub 3} (YCOB) crystals with 3 in. in diameter were grown with modified vertical Bridgman method, and the large crystal plate (63 mm × 68 mm × 20 mm) was harvested formore » high-average power frequency conversion system. The crack, facet growth and spiral growth can be effectively controlled in the as-grown crystal, and Bridgman method displays more effective in obtain large size and high quality YCOB crystal plate than Czochralski technique.« less

  14. Evolution of the sapphire industry: Rubicon Technology and Gavish

    NASA Astrophysics Data System (ADS)

    Harris, Daniel C.

    2009-05-01

    A. Verneuil developed flame fusion to grow sapphire and ruby on a commercial scale around 1890. Flame fusion was further perfected by Popov in the Soviet Union in the 1930s and by Linde Air Products Co. in the U.S. during World War II. Union Carbide Corp., the successor to Linde, developed Czochralski crystal growth for sapphire laser materials in the 1960s. Stepanov in the Soviet Union published his sapphire growth method in 1959. Edge-Defined Film-Fed Growth (EFG), which is similar to the Stepanov method, was developed by H. Labelle in the U. S. in the 1960s and 1970s. The Heat Exchanger Method (HEM), invented by F. Schmid and D. Viechnicki in 1967 was commercialized in the 1970s. Gradient solidification was invented in Israel in the 1970s by J. Makovsky. The Horizontal Directional Solidification Method (HDSM) proposed by Kh. S. Bagdasorov in the Soviet Union in the 1960s was further developed at the Institute for Single Crystals in Ukraine. Kyropoulos growth of sapphire, known as GOI crystal growth in the Soviet Union, was developed by M. Musatov at the State Optical Institute in St. Petersburg in the 1970s and 1980s. At the Institute for Single Crystals in Ukraine, E. Dobrovinskaya characterized Verneuil, Czochralsky, Bagdasarov, and GOI sapphire. In 1995, she emigrated to the United States and joined S&R Rubicon, founded near Chicago by R. Mogilevsky initially to import sapphire and ruby. Mogilevsky began producing sapphire by the Kyropoulos method in 1999. In 2000 the company name was changed to Rubicon Technology. Today, Dobrovinskaya is Chief Scientist and Rubicon produces high quality Kyropoulos sapphire substrates for solid-state lighting. In 1995, H. Branover of Ben Gurion University and a sole investor founded Gavish, which is Hebrew for "crystal." They invited another veteran of the Ukrainian Institute for Single Crystals, V. Pishchik, to become Chief Scientist. Under Pishchik's technical leadership and J. Sragowicz's business leadership, Gavish now makes finished products for the semiconductor and medical industries from HDSM, Stepanov, and Kyropoulos sapphire.

  15. Diffraction analysis and evaluation of several focus- and track-error detection schemes for magneto-optical disk systems

    NASA Technical Reports Server (NTRS)

    Bernacki, Bruce E.; Mansuripur, M.

    1992-01-01

    A commonly used tracking method on pre-grooved magneto-optical (MO) media is the push-pull technique, and the astigmatic method is a popular focus-error detection approach. These two methods are analyzed using DIFFRACT, a general-purpose scalar diffraction modeling program, to observe the effects on the error signals due to focusing lens misalignment, Seidel aberrations, and optical crosstalk (feedthrough) between the focusing and tracking servos. Using the results of the astigmatic/push-pull system as a basis for comparison, a novel focus/track-error detection technique that utilizes a ring toric lens is evaluated as well as the obscuration method (focus error detection only).

  16. Scapular Stabilization and Muscle Strength in Manual Wheelchair Users with Spinal Cord Injury and Subacromial Impingement.

    PubMed

    Wilbanks, Susan R; Bickel, C Scott

    2016-01-01

    Background: Manual wheelchair users with spinal cord injury (SCI) are frequently diagnosed with subacromial impingement. Objective: To determine whether the pattern of muscle imbalance and impaired scapular stabilization in able-bodied (AB) adults with impingement is different from that in manual wheelchair users with SCI and impingement. Methods: The following measurements were collected from 22 adults with subacromial impingement (11 SCI, 11 AB): ratio of normalized muscle electrical activity of upper and lower trapezius (UT:LT) during arm abduction; force during abduction, adduction, internal rotation, external rotation, and push and pull; ratios of force for abduction to adduction (AB:ADD), internal to external rotation (IR:ER), and push to pull (PUSH:PULL). Results: Shoulders with impingement had significantly higher UT:LT activation (1.46 ± 0.52) than shoulders without impingement (0.93 ± 0.45) ( P = .006), regardless of wheelchair user status. Significant differences between AB participants and those with SCI were observed for ABD:ADD ( P = .005), PUSH:PULL ( P = .012), and pull strength ( P = .043). Participants with SCI had a significantly greater ABD:ADD (1.37 ± 0.36) than AB participants (1.04 ± 0.22) ( P = .002) and a significantly greater PUSH:PULL (1.53 ± 0.36) than AB participants (1.26 ± 0.18) ( P = .005) because of decreased strength in adduction ( P = .021) and pull ( P = .013). Conclusions: Strategies targeting the posterior shoulder girdle for AB adults are appropriate for manual wheelchair users with SCI and impingement and should focus on scapular retractors and arm adductors with emphasis on scapular depression and posterior tilting.

  17. Influence of various force fields in estimating the binding affinity of acetylcholinesterase inhibitors using fast pulling of ligand scheme

    NASA Astrophysics Data System (ADS)

    Tam, Nguyen Minh; Vu, Khanh B.; Vu, Van V.; Ngo, Son Tung

    2018-06-01

    Acetylcholinesterase (AChE) is considered as one of the most favored drug targets for Alzheimer's disease. The effects of different force fields (FFs) on ranking affinity of acetylcholinesterase inhibitors were obtained using the fast pulling of ligand (FPL) method in steered-molecular dynamics (SMD) simulations. GROMOS, AMBER, CHARMM, and OPLS-AA FFs were investigated in this work. The pulling work derived with GROMOS FF has the strongest correlation and smallest error compared with experimental binding affinity. Moreover, the CPU consumption in the calculations using GROMOS FF is the lowest, which could allow us to rank affinity of a large number of AChE ligands.

  18. Growth of concentrated GaInSb alloys with improved chemical homogeneity at low and variable pulling rates

    NASA Astrophysics Data System (ADS)

    Stelian, C.; Duffar, T.; Mitric, A.; Corregidor, V.; Alves, L. C.; Barradas, N. P.

    2005-09-01

    Crystal growth of concentrated GaInSb alloys during vertical Bridgman method has been numerically and experimentally investigated. The numerical and experimental results show a strong solutal damping effect on the melt convection in the case of concentrated (x=0.1 and 0.2) alloys grown at 1 μm/s pulling rate of the crucible. This leads to a huge increase of chemical heterogeneities and solid-liquid interface curvature. Analytical relations, which describe the solutal effect on the melt convection, show that the damping effect can be avoided by using low growth rates. The experimental results for Bridgman solidification of Ga0.85In0.15Sb at V=0.4 μm/s pulling rate, show that the axial and radial variations of indium concentration in the sample are reduced as compared with crystals grown at high pulling rates. The interface deflection is maintained at lower values during the growth process and the morphological destabilization of the interface occurs only at the end of the solidification. The growth at variable pulling rates is also investigated and from the numerical modeling it is found that the axial chemical homogeneity of the sample can be improved.

  19. Power-assisted liposuction and the pull-through technique for the treatment of gynecomastia.

    PubMed

    Lista, Frank; Ahmad, Jamil

    2008-03-01

    Gynecomastia is a common condition affecting many adolescent and adult males. Surgical techniques utilizing a variety of incisions, excisions, suction-assisted lipectomy, ultrasound-assisted liposuction, power-assisted liposuction, or some combination of these methods have been used in the treatment of gynecomastia. This article describes the authors' method of using power-assisted liposuction and the pull-through technique to treat gynecomastia. This technique involves the use of power-assisted liposuction to remove fatty breast tissue. The pull-through technique is then performed utilizing several instruments to sever the subdermal attachments of fibroglandular breast tissue; this tissue is removed through the incision used for liposuction. Finally, power-assisted liposuction is performed again to contour the remaining breast tissue. A chart review of 99 consecutive patients (197 breasts) treated between January of 2003 and November of 2006 was performed. Ninety-six patients (192 breasts) were successfully treated using this technique. Power-assisted liposuction was performed in all cases, and the average volume aspirated per breast was 459 ml (range, 25 to 1400 ml). Using the pull-through technique, the authors were able to remove between 5 and 70 g of tissue per breast. Complications were minimal (1.0 percent of breasts), and no revisions were required. Since January of 2003, the authors have used this technique to successfully treat 97 percent of their gynecomastia patients. Combining power-assisted liposuction and the pull-through technique has proven to be a versatile approach for the treatment of gynecomastia and consistently produces a naturally contoured male breast while resulting in a single inconspicuous scar.

  20. Mechanism of oil-pulling therapy - in vitro study.

    PubMed

    Asokan, Sharath; Rathinasamy, T K; Inbamani, N; Menon, Thangam; Kumar, S Senthil; Emmadi, Pamela; Raghuraman, R

    2011-01-01

    Oil pulling has been used extensively as a traditional Indian folk remedy without scientific proof for many years for strengthening teeth, gums and jaws and to prevent decay, oral malodor, bleeding gums and dryness of throat and cracked lips. The aim of this study was to evaluate the antibacterial activity of sesame oil and lignans isolated from sesame oil on oral microorganisms and to check whether saponification or emulsification occurs during oil-pulling therapy. The in vitro study was carried out in three different phases: (1) Antibacterial activity of the lignans and sesame oil were tested by minimum inhibitory concentration assay by agar dilution method and agar well diffusion method, respectively. (2) Increase in free fatty acid level of oil and the quantity of sodium hydroxide (NaOH) used up in the titration are good indicators of saponification process. This was assessed using analytical tests for vegetable oils. (3) Swished oil was observed under light microscope to assess the status of the oil, presence of microorganisms, oral debris and foreign bodies. Sesamin and sesamolin isolated from sesame oil did not have any antibacterial effect against oral microorganisms like Streptococcus mutans, Streptococcus mitis and Streptococcus viridans. Emulsification of sesame oil occurs during oil-pulling therapy. Increased consumption of NaOH in titration is a definite indication of a possible saponification process. The myth that the effect of oil-pulling therapy on oral health was just a placebo effect has been broken and there are clear indications of possible saponification and emulsification process, which enhances its mechanical cleaning action.

  1. Modeling dislocation generation in high pressure Czochralski growth of indium phosphide single crystals

    NASA Astrophysics Data System (ADS)

    Pendurti, Srinivas

    InP is an important material for opto-electronic and high speed electronics applications. Its main use today is as the substrate material for epitaxy to produce GaInAsP lasers. The present technology for growing bulk InP is the high pressure Czochralski process. Bulk InP grown through this technique suffers from presence of a high density of line defects or dislocations, which are produced by thermal stresses the material goes through during its growth in the high temperature furnace. Modeling of these thermal stresses and the resulting plastic deformation, giving rise to dislocation densities, entails simulation of the entire thermal history of the crystal during its growth in the furnace, and studying the deformation of the crystal through suitable visco-plastic constitutive equations. Accordingly, a suitable visco-plastic model for deformation of InP was constructed, integrated with the ABAQUS finite element code, and verified through experimental data for uniaxial constant strain rate deformation tests available in literature. This was then coupled with a computation fluid dynamics model, predicting the entire temperature history in the furnace during crystal growth, to study the plastic deformation and dislocation density evolution in the crystal during growth. Growth in a variety of conditions was simulated and those conditions that generate minimum dislocation density identified. Macroscopic controllable parameters that affect the dislocation densities the most, have also been delineated. It was found that the strength of gas convection in the Czochralski furnace has the strongest effect on the dislocation densities in the fully grown crystal. Comparison of the simulated dislocation densities on wafers, with experimentally recorded etch pit profiles on as-grown crystals was reasonable. Finally some limitations in the work are discussed and avenues for future work identified.

  2. Discrete Element Method Simulation of a Boulder Extraction From an Asteroid

    NASA Technical Reports Server (NTRS)

    Kulchitsky, Anton K.; Johnson, Jerome B.; Reeves, David M.; Wilkinson, Allen

    2014-01-01

    The force required to pull 7t and 40t polyhedral boulders from the surface of an asteroid is simulated using the discrete element method considering the effects of microgravity, regolith cohesion and boulder acceleration. The connection between particle surface energy and regolith cohesion is estimated by simulating a cohesion sample tearing test. An optimal constant acceleration is found where the peak net force from inertia and cohesion is a minimum. Peak pulling forces can be further reduced by using linear and quadratic acceleration functions with up to a 40% reduction in force for quadratic acceleration.

  3. Physical Employment Standards for UK Firefighters

    PubMed Central

    Stevenson, Richard D.M.; Siddall, Andrew G.; Turner, Philip F.J.; Bilzon, James L.J.

    2017-01-01

    Objective: The aim of this study was to assess sensitivity and specificity of surrogate physical ability tests as predictors of criterion firefighting task performance and to identify corresponding minimum muscular strength and endurance standards. Methods: Fifty-one (26 male; 25 female) participants completed three criterion tasks (ladder lift, ladder lower, ladder extension) and three corresponding surrogate tests [one-repetition maximum (1RM) seated shoulder press; 1RM seated rope pull-down; repeated 28 kg seated rope pull-down]. Surrogate test standards were calculated that best identified individuals who passed (sensitivity; true positives) and failed (specificity; true negatives) criterion tasks. Results: Best sensitivity/specificity achieved were 1.00/1.00 for a 35 kg seated shoulder press, 0.79/0.92 for a 60 kg rope pull-down, and 0.83/0.93 for 23 repetitions of the 28 kg rope pull-down. Conclusions: These standards represent performance on surrogate tests commensurate with minimum acceptable performance of essential strength-based occupational tasks in UK firefighters. PMID:28045801

  4. INTERSESSION RELIABILITY OF UPPER EXTREMITY ISOKINETIC PUSH-PULL TESTING.

    PubMed

    Riemann, Bryan L; Davis, Sarah E; Huet, Kevin; Davies, George J

    2016-02-01

    Based on the frequency pushing and pulling patterns are used in functional activities, there is a need to establish an objective method of quantifying the muscle performance characteristics associated with these motions, particularly during the later stages of rehabilitation as criteria for discharge. While isokinetic assessment offers an approach to quantifying muscle performance, little is known about closed kinetic chain (CKC) isokinetic testing of the upper extremity (UE). To determine the intersession reliability of isokinetic upper extremity measurement of pushing and pulling peak force and average power at slow (0.24 m/s), medium (0.43 m/s) and fast (0.61 m/s) velocities in healthy young adults. The secondary purpose was to compare pushing and pulling peak force (PF) and average power (AP) between the upper extremity limbs (dominant, non-dominant) across the three velocities. Twenty-four physically active men and women completed a test-retest (>96 hours) protocol in order to establish isokinetic UE CKC reliability of PF and AP during five maximal push and pull repetitions at three velocities. Both limb and speed orders were randomized between subjects. High test-retest relative reliability using intraclass correlation coefficients (ICC2, 1) were revealed for PF (.91-.97) and AP (.85-.95) across velocities, limbs and directions. PF typical error (% coefficient of variation) ranged from 6.1% to 11.3% while AP ranged from 9.9% to 26.7%. PF decreased significantly (p < .05) as velocity increased whereas AP increased as velocity increased. PF and AP during pushing were significantly greater than pulling at all velocities, however the push-pull differences in PF became less as velocity increased. There were no significant differences identified between the dominant and nondominant limbs. Isokinetically derived UE CKC push-pull PF and AP are reliable measures. The lack of limb differences in healthy normal participants suggests that clinicians can consider bilateral comparisons when interpreting test performance. The increase in pushing PF and AP compared to pulling can be attributed to the muscles involved and the frequency that pushing patterns are used during functional activities. 3.

  5. Toward automating Hammersmith pulled-to-sit examination of infants using feature point based video object tracking.

    PubMed

    Dogra, Debi P; Majumdar, Arun K; Sural, Shamik; Mukherjee, Jayanta; Mukherjee, Suchandra; Singh, Arun

    2012-01-01

    Hammersmith Infant Neurological Examination (HINE) is a set of tests used for grading neurological development of infants on a scale of 0 to 3. These tests help in assessing neurophysiological development of babies, especially preterm infants who are born before (the fetus reaches) the gestational age of 36 weeks. Such tests are often conducted in the follow-up clinics of hospitals for grading infants with suspected disabilities. Assessment based on HINE depends on the expertise of the physicians involved in conducting the examinations. It has been noted that some of these tests, especially pulled-to-sit and lateral tilting, are difficult to assess solely based on visual observation. For example, during the pulled-to-sit examination, the examiner needs to observe the relative movement of the head with respect to torso while pulling the infant by holding wrists. The examiner may find it difficult to follow the head movement from the coronal view. Video object tracking based automatic or semi-automatic analysis can be helpful in this case. In this paper, we present a video based method to automate the analysis of pulled-to-sit examination. In this context, a dynamic programming and node pruning based efficient video object tracking algorithm has been proposed. Pulled-to-sit event detection is handled by the proposed tracking algorithm that uses a 2-D geometric model of the scene. The algorithm has been tested with normal as well as marker based videos of the examination recorded at the neuro-development clinic of the SSKM Hospital, Kolkata, India. It is found that the proposed algorithm is capable of estimating the pulled-to-sit score with sensitivity (80%-92%) and specificity (89%-96%).

  6. Effect of coconut oil in plaque related gingivitis — A preliminary report

    PubMed Central

    Peedikayil, Faizal C.; Sreenivasan, Prathima; Narayanan, Arun

    2015-01-01

    Background: Oil pulling or oil swishing therapy is a traditional procedure in which the practitioners rinse or swish oil in their mouth. It is supposed to cure oral and systemic diseases but the evidence is minimal. Oil pulling with sesame oil and sunflower oil was found to reduce plaque related gingivitis. Coconut oil is an easily available edible oil. It is unique because it contains predominantly medium chain fatty acids of which 45-50 percent is lauric acid. Lauric acid has proven anti inflammatory and antimicrobial effects. No studies have been done on the benefits of oil pulling using coconut oil to date. So a pilot study was planned to assess the effect of coconut oil pulling on plaque induced gingivitis. Materials and Methods: The aim of the study was to evaluate the effect of coconut oil pulling/oil swishing on plaque formation and plaque induced gingivitis. A prospective interventional study was carried out. 60 age matched adolescent boys and girls in the age-group of 16-18 years with plaque induced gingivitis were included in the study and oil pulling was included in their oral hygiene routine. The study period was 30 days. Plaque and gingival indices of the subjects were assessed at baseline days 1,7,15 and 30. The data was analyzed using paired t test. Results: A statistically significant decrease in the plaque and gingival indices was noticed from day 7 and the scores continued to decrease during the period of study. Conclusion: Oil pulling using coconut oil could be an effective adjuvant procedure in decreasing plaque formation and plaque induced gingivitis. PMID:25838632

  7. Push versus pull gastrostomy in cancer patients: A single center retrospective analysis of complications and technical success rates.

    PubMed

    Currie, B M; Getrajdman, G I; Covey, A M; Alago, W; Erinjeri, J P; Maybody, M; Boas, F E

    2018-04-28

    To compare the technical success and complication rates of push versus pull gastrostomy tubes in cancer patients, and to examine their dependence on operator experience. A retrospective review was performed of 304 cancer patients (170 men, 134 women; mean age 60.3±12.6 [SD], range: 19-102 years) referred for primary gastrostomy tube placement, 88 (29%) of whom had a previously unsuccessful attempt at percutaneous endoscopic gastrostomy (PEG) placement. Analyzed variables included method of insertion (push versus pull), indication for gastrostomy, technical success, operator experience, and procedure-related complications within 30 days of placement. Gastrostomy tubes were placed for feeding in 189 patients and palliative decompression in 115 patients. Technical success was 91%: 78% after endoscopy had previously been unsuccessful and 97% when excluding failures associated with prior endoscopy. In the first 30 days, there were 29 minor complications (17.2%) associated with push gastrostomies, and only 8 minor complications (7.5%) with pull gastrostomies (P<0.05). There was no significant difference in major complications (push gastrostomy 5.3%, pull gastrostomy 5.6%). For decompressive gastrostomy tubes, the pull technique resulted in lower rates of both minor and major complications. There was no difference in complications or technical success rates for more versus less experienced operators. Pull gastrostomy tube placement had a lower rate of complications than push gastrostomy tube placement, especially when the indication was decompression. The technical success rate was high, even after a failed attempt at endoscopic placement. Both the rates of success and complications were independent of operator experience. Copyright © 2018 Société française de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  8. Processing experiments on non-Czochralski silicon sheet

    NASA Technical Reports Server (NTRS)

    Pryor, R. A.; Grenon, L. A.; Sakiotis, N. G.; Pastirik, E. M.; Sparks, T. O.; Legge, R. N.

    1981-01-01

    A program is described which supports and promotes the development of processing techniques which may be successfully and cost-effectively applied to low-cost sheets for solar cell fabrication. Results are reported in the areas of process technology, cell design, cell metallization, and production cost simulation.

  9. Boron deactivation in heavily boron-doped Czochralski silicon during rapid thermal anneal: Atomic level understanding

    NASA Astrophysics Data System (ADS)

    Gao, Chao; Lu, Yunhao; Dong, Peng; Yi, Jun; Ma, Xiangyang; Yang, Deren

    2014-01-01

    The changes in hole concentration of heavily boron (B)-doped Czochralski silicon subjected to high temperature rapid thermal anneal (RTA) and following conventional furnace anneal (CFA) have been investigated. It is found that decrease in hole concentration, namely, B deactivation, is observed starting from 1050 °C and increases with RTA temperature. The following CFA at 300-500 °C leads to further B deactivation, while that at 600-800 °C results in B reactivation. It is supposed that the interaction between B atoms and silicon interstitials (I) thus forming BI pairs leads to the B deactivation during the high temperature RTA, and, moreover, the formation of extended B2I complexes results in further B deactivation in the following CFA at 300-500 °C. On the contrary, the dissociation of BI pairs during the following CFA at 600-800 °C enables the B reactivation. Importantly, the first-principles calculation results can soundly account for the above-mentioned supposition.

  10. Large area Czochralski silicon

    NASA Technical Reports Server (NTRS)

    Rea, S. N.; Gleim, P. S.

    1977-01-01

    The overall cost effectiveness of the Czochralski process for producing large-area silicon was determined. The feasibility of growing several 12 cm diameter crystals sequentially at 12 cm/h during a furnace run and the subsequent slicing of the ingot using a multiblade slurry saw were investigated. The goal of the wafering process was a slice thickness of 0.25 mm with minimal kerf. A slice + kerf of 0.56 mm was achieved on 12 cm crystal using both 400 grit B4C and SiC abrasive slurries. Crystal growth experiments were performed at 12 cm diameter in a commercially available puller with both 10 and 12 kg melts. Several modifications to the puller hoz zone were required to achieve stable crystal growth over the entire crystal length and to prevent crystallinity loss a few centimeters down the crystal. The maximum practical growth rate for 12 cm crystal in this puller design was 10 cm/h, with 12 to 14 cm/h being the absolute maximum range at which melt freeze occurred.

  11. Record Efficiency on Large Area P-Type Czochralski Silicon Substrates

    NASA Astrophysics Data System (ADS)

    Hallam, Brett; Wenham, Stuart; Lee, Haeseok; Lee, Eunjoo; Lee, Hyunwoo; Kim, Jisun; Shin, Jeongeun; Cho, Kyeongyeon; Kim, Jisoo

    2012-10-01

    In this work we report a world record independently confirmed efficiency of 19.4% for a large area p-type Czochralski grown solar cell fabricated with a full area aluminium back surface field. This is achieved using the laser doped selective emitter solar cell technology on an industrial screen print production line with the addition of laser doping and light induced plating equipment. The use of a modified diffusion process is explored in which the emitter is diffused to a sheet resistance of 90 Ω/square and subsequent etch back of the emitter to 120 Ω/square. This results in a lower surface concentration of phosphorus compared to that of emitters diffused directly to 120 Ω/square. This modified diffusion process subsequently reduces the conductivity of the surface in relation to that of the heavily diffused laser doped contacts and avoids parasitic plating, resulting an average absolute increase in efficiency of 0.4% compared to cells fabricated without an emitter etch back process.

  12. Low-temperature TCT characterization of heavily proton irradiated p-type magnetic Czochralski silicon detectors

    NASA Astrophysics Data System (ADS)

    Härkönen, J.; Tuovinen, E.; Luukka, P.; Kassamakov, I.; Autioniemi, M.; Tuominen, E.; Sane, P.; Pusa, P.; Räisänen, J.; Eremin, V.; Verbitskaya, E.; Li, Z.

    2007-12-01

    n +/p -/p + pad detectors processed at the Microelectronics Center of Helsinki University of Technology on boron-doped p-type high-resistivity magnetic Czochralski (MCz-Si) silicon substrates have been investigated by the transient current technique (TCT) measurements between 100 and 240 K. The detectors were irradiated by 9 MeV protons at the Accelerator Laboratory of University of Helsinki up to 1 MeV neutron equivalent fluence of 2×10 15 n/cm 2. In some of the detectors the thermal donors (TD) were introduced by intentional heat treatment at 430 °C. Hole trapping time constants and full depletion voltage values were extracted from the TCT data. We observed that hole trapping times in the order of 10 ns were found in heavily (above 1×10 15 n eq/cm 2) irradiated samples. These detectors could be fully depleted below 500 V in the temperature range of 140-180 K.

  13. Radiation damage in lithium-counterdoped n/p silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hermann, A. M.; Swartz, C. K.; Brandhorst, H. W., Jr.; Weinberg, I.

    1980-01-01

    Lithium counterdoped n+/p silicon solar cells were irradiated with 1 MV electrons and their post irradiation performance and low temperature annealing properties were compared to that of the 0.35 ohm cm control cells. Cells fabricated from float zone and Czochralski grown silicon were investigated. It was found that the float zone cells exhibited superior radiation resistance compared to the control cells, while no improvement was noted for the Czochralski grown cells. Room temperature and 60 C annealing studies were conducted. The annealing was found to be a combination of first and second order kinetics for short times. It was suggested that the principal annealing mechanism was migration of lithium to a radiation induced defect with subsequent neutralization of the defect by combination with lithium. The effects of base lithium gradient were investigated. It was found that cells with negative base lithium gradients exhibited poor radiation resistance and performance compared to those with positive or no lithium gradients; the latter being preferred for overall performance and radiation resistance.

  14. Continuous Czochralski growth. Development of advanced Czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The improvement of growth rates using radiation shielding and investigation of the crucible melt interaction for improved yields were emphasized. Growth runs were performed from both 15 and 16 inch diameter crucibles, producing 30 and 37 kg ingots respectively. Efforts to increase the growth rate of 150 mm diameter ingots were limited by temperature instabilities believed to be caused by undesirable thermal convections in the larger melts. The radiation shield improved the growth rate somewhat, but the thermal instability was still evident, leading to nonround ingots and loss of dislocation-free structure. A 38 kg crystal was grown to demonstrate the feasibility of producing 150 kg with four growth cycles. After the grower construction phase, the Hamco microprocessor control system was interfaced to the growth facility, including the sensor for automatic control of seeding temperature, and the sensor for automatic shouldering. Efforts focused upon optimization of the seeding, necking, and shoulder growth automation programs.

  15. Czochralski growth of Gd3(Al5-xGax)O12 (GAGG) single crystals and their scintillation properties

    NASA Astrophysics Data System (ADS)

    Kurosawa, Shunsuke; Shoji, Yasuhiro; Yokota, Yuui; Kamada, Kei; Chani, Valery I.; Yoshikawa, Akira

    2014-05-01

    Ce:Gd3(AlxGa1-x)5O12 (x=2.5/5 and 3/5, Ce:GAGG-2.5 and Ce:GAGG-3) crystals were grown by the Czochralski process in order to reduce cost of the starting materials as compared with conventional Ce:Gd3Al2Ga3O12 (Ce:GAGG-2) crystal which have high light output. Although perovskite phase was detected in Ce:GAGG-3, Ce:GAGG-2.5 had single-phase garnet structure. Solidification fraction for the Ce:GAGG-2.5 growth was 0.52. Optical properties including transmittance, emission, and excitation spectra of 30 samples cut from the Ce:GAGG-2.5 bulk ingot did not depend on their original position along the growth axis. These samples had light outputs of approximately 58,000±3000 photons/MeV. However, scintillation decay times varied from 140 to 200 ns and depended on the position clearly.

  16. Performance evaluation of a mobile satellite system modem using an ALE method

    NASA Technical Reports Server (NTRS)

    Ohsawa, Tomoki; Iwasaki, Motoya

    1990-01-01

    Experimental performance of a newly designed demodulation concept is presented. This concept applies an Adaptive Line Enhancer (ALE) to a carrier recovery circuit, which makes pull-in time significantly shorter in noisy and large carrier offset conditions. This new demodulation concept was actually developed as an INMARSAT standard-C modem, and was evaluated. On a performance evaluation, 50 symbol pull-in time is confirmed under 4 dB Eb/No condition.

  17. Electro-optical detection of THz radiation in Fe implanted LiNbO3

    NASA Astrophysics Data System (ADS)

    Wang, Yuhua; Ni, Hongwei; Zhan, Weiting; Yuan, Jie; Wang, Ruwu

    2013-01-01

    In this letter, the authors present first observation of terahertz generation from Fe implantation of LiNbO3 crystal substrate. LiNbO3 single crystal is grown by Czochralski method. Metal nanoparticles synthesized by Fe ion implantation were implanted into LiNbO3 single crystal using metal vapor vacuum arc (MEVVA) ion source. 1 kHz, 35 fs laser pulsed centered at 800 nm were focused onto the samples. Terahertz was generated via optical rectification. The findings suggest that under the investigated implantation parameter, a spectral component in excess of 0.44 THz emission were found from Fe ion implantation of LiNbO3.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuz'micheva, G. M., E-mail: galkuz@mitht.ru; Zaharko, O.; Tyunina, E. A.

    Langatate crystals of the general composition La{sub 3}(Ga{sub 0.5}Ta{sub 0.5})Ga{sub 5}O{sub 14}, grown by the Czochralski method, have been investigated by neutron diffraction (single crystals) and X-ray diffraction (ground single crystals). The crystals were grown in an atmosphere of 99% Ar + 1% O{sub 2} in the Y54{sup o} direction (rotation by 54{sup o} with respect to the y axis), without subsequent annealing (orange crystal) or with vacuum annealing (colorless crystal). It is established that colorless crystals have a higher gallium content and, therefore, a larger number of oxygen vacancies in comparison with colored crystals; this is a possible reasonmore » for their lower microhardness.« less

  19. Structure and thermal expansion of Ca9Gd(VO4)7: A combined powder-diffraction and dilatometric study of a Czochralski-grown crystal

    NASA Astrophysics Data System (ADS)

    Paszkowicz, Wojciech; Shekhovtsov, Alexei; Kosmyna, Miron; Loiko, Pavel; Vilejshikova, Elena; Minikayev, Roman; Romanowski, Przemysław; Wierzchowski, Wojciech; Wieteska, Krzysztof; Paulmann, Carsten; Bryleva, Ekaterina; Belikov, Konstantin; Fitch, Andrew

    2017-11-01

    Materials of the Ca9RE(VO4)7 (CRVO) formula (RE = rare earth) and whitlockite-related structures are considered for applications in optoelectronics, e.g., in white-light emitting diodes and lasers. In the CRVO structure, the RE atoms are known to share the site occupation with Ca atoms at two or three among four Ca sites, with partial occupancy values depending on the choice of the RE atom. In this work, the structure and quality of a Czochralski-grown crystal of this family, Ca9Gd(VO4)7 (CGVO), are studied using X-ray diffraction methods. The room-temperature structure is refined using the powder diffraction data collected at a high-resolution synchrotron beamline ID22 (ESRF, Grenoble); for comparison purposes, a laboratory diffraction pattern was collected and analyzed, as well. The site occupancies are discussed on the basis of comparison with literature data of isostructural synthetic crystals of the CRVO series. The results confirm the previously reported site-occupation scheme and indicate a tendency of the CGVO compound to adopt a Gd-deficient composition. Moreover, the thermal expansion coefficient is determined for CGVO as a function of temperature in the 302-1023 K range using laboratory diffraction data. Additionally, for CGVO and six other single crystals of the same family, thermal expansion is studied in the 298-473 K range, using the dilatometric data. The magnitude and anisotropy of thermal expansion, being of importance for laser applications, are discussed for these materials.

  20. Modeling the influence of the Casimir force on the pull-in instability of nanowire-fabricated nanotweezers

    NASA Astrophysics Data System (ADS)

    Farrokhabadi, Amin; Mokhtari, Javad; Rach, Randolph; Abadyan, Mohamadreza

    2015-09-01

    The Casimir force can strongly interfere with the pull-in performance of ultra-small structures. The strength of the Casimir force is significantly affected by the geometries of interacting bodies. Previous investigators have exclusively studied the effect of the Casimir force on the electromechanical instability of nanostructures with planar geometries. However no work has yet considered this effect on the pull-in instability of systems with cylindrical geometries such as nanotweezers fabricated from nanotube/nanowires. In our present work, the influence of the Casimir attraction on the electrostatic response and pull-in instability of nanotweezers fabricated from cylindrical conductive nanowires/nanotubes is theoretically investigated. An asymptotic solution, based on scattering theory, is applied to consider the effect of vacuum fluctuations in the theoretical model. The Euler-Bernoulli beam model is employed, in conjunction with the size-dependent modified couple stress continuum theory, to derive the governing equation of the nanotweezers. The governing nonlinear equations are solved by two different approaches, i.e., the modified Adomian-Padé method (MAD-Padé) and a numerical solution. Various aspects of the problem, i.e., the variation of pull-in parameters, effect of geometry, coupling between the Casimir force and size dependency effects and comparison with the van der Waals force regime are discussed.

  1. Comparison of Transverse Intraosseous Loop Technique and Pull Out Suture for Reinsertion of the Flexor Digitorum Profundus tendon. A Retrospective Study.

    PubMed

    Rigó, István Zoltán; Røkkum, Magne

    2013-12-01

    We compared the results of two methods for reinsertion of flexor digitorum profundus tendons retrospectively. In 35 fingers of 29 patients pull-out suture and in 13 fingers of 11 patients transverse intraosseous loop technique was performed with a mean follow-up of 8 and 6 months, respectively. Eleven and nine fingers achieved "excellent" or "good" function according to Strickland and Glogovac at 8 weeks; 20 and ten at the last control in the pull-out and transverse intraosseous loop groups, respectively. The difference at 8 weeks was statistically significant in favour of the transverse intraosseous loop group. Ten patients underwent 12 complications in the pull-out group (four superficial infections; one rerupture, one PIP and one DIP joint contracture, one adhesion, two granulomas, one nail deformity and one carpal tunnel syndrome) and four of them were reoperated (one carpal tunnel release, one teno-arthrolysis and two resections of granuloma). There was no complication and no reoperation in the transverse intraosseous loop group, the difference being statistically significant for the former. In our study the transverse intraosseous loop technique seemed to be a safe alternative with possibly better functional results compared to the pull-out suture.

  2. Effect of components and surface treatments of fiber-reinforced composite posts on bond strength to composite resin.

    PubMed

    Asakawa, Yuya; Takahashi, Hidekazu; Kobayashi, Masahiro; Iwasaki, Naohiko

    2013-10-01

    The aim of this study was to clarify the effect of the components and surface treatments of fiber-reinforced composite (FRC) posts on the durable bonding to core build-up resin evaluated using the pull-out and microtensile tests. Four types of experimental FRC posts, combinations of two types of matrix resins (polymethyl methacrylate and urethane dimethacrylate) and two types of fiberglass (E-glass and zirconia-containing glass) were examined. The FRC posts were subjected to one of three surface treatments (cleaned with ethanol, dichloromethane, or sandblasting). The bond strength between the FRC posts and core build-up resin were measured using the pull-out and microtensile tests before and after thermal cycling. The bond strengths obtained by each test before and after thermal cycling were statistically analyzed by three-way ANOVA and Tukey's multiple comparisons test (p<0.05). The bond strengths except for UDMA by the pull-out test decreased after thermal cycling. Regardless the test method and thermal cycling, matrix resins, the surface treatment and their interaction were statistically significant, but fiberglass did not. Dichloromethane treatment was effective for the PMMA-based FRC posts by the pull-out test, but not by the microtensile test. Sandblasting was effective for both PMMA- and UDMA-based FRC posts, regardless of the test method. The bond strengths were influenced by the matrix resin of the FRC post and the surface treatment. The bond strengths of the pull-out test showed a similar tendency of those of the microtensile test, but the value obtained by these test were different. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Engineered microbes and methods for microbial oil production

    DOEpatents

    Stephanopoulos, Gregory; Tai, Mitchell; Chakraborty, Sagar

    2015-02-10

    Some aspects of this invention provide engineered microbes for oil production. Methods for microbe engineering and for use of engineered microbes are also provided herein. In some embodiments, microbes are provided that are engineered to modulate a combination of rate-controlling steps of lipid synthesis, for example, a combination of a step generating metabolites, acetyl-CoA, ATP or NADPH for lipid synthesis (a push step), and a step sequestering a product or an intermediate of a lipid synthesis pathway that mediates feedback inhibition of lipid synthesis (a pull step). Such push-and-pull engineered microbes exhibit greatly enhanced conversion yields and TAG synthesis and storage properties.

  4. Strategies of Production Control as Tools of Efficient Management of Production Enterprises

    NASA Astrophysics Data System (ADS)

    Budynek, Mateusz; Celińska, Elżbieta; Dybikowska, Adrianna; Kozak, Monika; Ratajczak, Joanna; Urban, Jagoda; Materne, Karolina

    2016-03-01

    The paper discusses the problem of principle methods of production control as a strategy supporting the production system and stimulating efficient solutions in respect management in production enterprises. The article describes MRP, ERP, JIT, KANBAN and TOC methods and focuses on their main goals, principles of functioning as well as benefits resulting from their application. The methods represent two diverse strategies of production control, i.e. pull and push strategies. Push strategies are used when the plans apply to the first and principle part of production and are based on the demand forecasts. Pull strategies are used when all planning decisions apply to the final stage and depend on the actual demand or orders from customers.

  5. Textural and Optical Properties of Ce-Doped YAG/Al2O3 Melt Growth Composite Grown by Micro-Pulling-Down Method

    NASA Astrophysics Data System (ADS)

    Simura, Rayko; Taniuchi, Tetsuo; Sugiyama, Kazumasa; Fukuda, Tsuguo

    2018-01-01

    Ce-doped YAG/Al2O3 melt-growth composite (MGC) samples were grown by the micro-pulling-down (μ-PD) method, and their physical and chemical properties were investigated. The grown MGC samples exhibit fine-grained granophyric texture at the micron scale. Fluorescence spectra, excited by a blue laser diode, were recorded, and, in particular, the finely textured granophyric MGC sample doped with 0.1 at% Ce and prepared with a growth rate of 3 mm/min shows superior fluorescence properties without high-temperature deterioration of fluorescence intensity. The μ-PD method is demonstrated to be applicable for manufacturing finely textured MGC samples with improved luminous efficiency as phosphors for white LEDs.

  6. Processing of n+/p-/p+ strip detectors with atomic layer deposition (ALD) grown Al2O3 field insulator on magnetic Czochralski silicon (MCz-si) substrates

    NASA Astrophysics Data System (ADS)

    Härkönen, J.; Tuovinen, E.; Luukka, P.; Gädda, A.; Mäenpää, T.; Tuominen, E.; Arsenovich, T.; Junkes, A.; Wu, X.; Li, Z.

    2016-08-01

    Detectors manufactured on p-type silicon material are known to have significant advantages in very harsh radiation environment over n-type detectors, traditionally used in High Energy Physics experiments for particle tracking. In p-type (n+ segmentation on p substrate) position-sensitive strip detectors, however, the fixed oxide charge in the silicon dioxide is positive and, thus, causes electron accumulation at the Si/SiO2 interface. As a result, unless appropriate interstrip isolation is applied, the n-type strips are short-circuited. Widely adopted methods to terminate surface electron accumulation are segmented p-stop or p-spray field implantations. A different approach to overcome the near-surface electron accumulation at the interface of silicon dioxide and p-type silicon is to deposit a thin film field insulator with negative oxide charge. We have processed silicon strip detectors on p-type Magnetic Czochralski silicon (MCz-Si) substrates with aluminum oxide (Al2O3) thin film insulator, grown with Atomic Layer Deposition (ALD) method. The electrical characterization by current-voltage and capacitance-voltage measurement shows reliable performance of the aluminum oxide. The final proof of concept was obtained at the test beam with 200 GeV/c muons. For the non-irradiated detector the charge collection efficiency (CCE) was nearly 100% with a signal-to-noise ratio (S/N) of about 40, whereas for the 2×1015 neq/cm2 proton irradiated detector the CCE was 35%, when the sensor was biased at 500 V. These results are comparable with the results from p-type detectors with the p-spray and p-stop interstrip isolation techniques. In addition, interestingly, when the aluminum oxide was irradiated with Co-60 gamma-rays, an accumulation of negative fixed oxide charge in the oxide was observed.

  7. Slab-pull and slab-push earthquakes in the Mexican, Chilean and Peruvian subduction zones

    NASA Astrophysics Data System (ADS)

    Lemoine, A.; Madariaga, R.; Campos, J.

    2002-09-01

    We studied intermediate depth earthquakes in the Chile, Peru and Mexican subduction zones, paying special attention to slab-push (down-dip compression) and slab-pull (down-dip extension) mechanisms. Although, slab-push events are relatively rare in comparison with slab-pull earthquakes, quite a few have occurred recently. In Peru, a couple slab-push events occurred in 1991 and one slab-pull together with several slab-push events occurred in 1970 near Chimbote. In Mexico, several slab-push and slab-pull events occurred near Zihuatanejo below the fault zone of the 1985 Michoacan event. In central Chile, a large M=7.1 slab-push event occurred in October 1997 that followed a series of four shallow Mw>6 thrust earthquakes on the plate interface. We used teleseismic body waveform inversion of a number of Mw>5.9 slab-push and slab-pull earthquakes in order to obtain accurate mechanisms, depths and source time functions. We used a master event method in order to get relative locations. We discussed the occurrence of the relatively rare slab-push events in the three subduction zones. Were they due to the geometry of the subduction that produces flexure inside the downgoing slab, or were they produced by stress transfer during the earthquake cycle? Stress transfer can not explain the occurence of several compressional and extensional intraplate intermediate depth earthquakes in central Chile, central Mexico and central Peru. It seemed that the heterogeneity of the stress field produced by complex slab geometry has an important influence on intraplate intermediate depth earthquakes.

  8. Ideas from Future Technologies Workshop Held by ARL/TARDEC in Aberdeen Proving Ground, Maryland on 9-11 June, 1993

    DTIC Science & Technology

    1994-08-01

    goalie moving his stick to block a puck. The first estimates of the predicted impact point may be available around 1 s before impact, and positioning...Innovation thrives in a "technology push" environment, not in a "demand pull " siruation. • Micromanagement is lethal to innovation. • Very few...strongest of "demand pull " conditions imaginable-a management method that reduces innovation. This could be counterbalanced with a strong "Tech Base

  9. Identifying chromatin readers using a SILAC-based histone peptide pull-down approach.

    PubMed

    Vermeulen, Michiel

    2012-01-01

    Posttranslational modifications (PTMs) on core histones regulate essential processes inside the nucleus such as transcription, replication, and DNA repair. An important function of histone PTMs is the recruitment or stabilization of chromatin-modifying proteins, which are also called chromatin "readers." We have developed a generic SILAC-based peptide pull-down approach to identify such readers for histone PTMs in an unbiased manner. In this chapter, the workflow behind this method will be presented in detail. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Calibrating the interaction matrix for the LINC-NIRVANA high layer wavefront sensor.

    PubMed

    Zhang, Xianyu; Arcidiacono, Carmelo; Conrad, Albert R; Herbst, Thomas M; Gaessler, Wolfgang; Bertram, Thomas; Ragazzoni, Roberto; Schreiber, Laura; Diolaiti, Emiliano; Kuerster, Martin; Bizenberger, Peter; Meschke, Daniel; Rix, Hans-Walter; Rao, Changhui; Mohr, Lars; Briegel, Florian; Kittmann, Frank; Berwein, Juergen; Trowitzsch, Jan

    2012-03-26

    LINC-NIRVANA is a near-infrared Fizeau interferometric imager that will operate at the Large Binocular Telescope. In preparation for the commissioning of this instrument, we conducted experiments for calibrating the high-layer wavefront sensor of the layer-oriented multi-conjugate adaptive optics system. For calibrating the multi-pyramid wavefront sensor, four light sources were used to simulate guide stars. Using this setup, we developed the push-pull method for calibrating the interaction matrix. The benefits of this method over the traditional push-only method are quantified, and also the effects of varying the number of push-pull frames over which aberrations are averaged is reported. Finally, we discuss a method for measuring mis-conjugation between the deformable mirror and the wavefront sensor, and the proper positioning of the wavefront sensor detector with respect to the four pupil positions.

  11. Mechanical modeling and characteristic study for the adhesive contact of elastic layered media

    NASA Astrophysics Data System (ADS)

    Zhang, Yuyan; Wang, Xiaoli; Tu, Qiaoan; Sun, Jianjun; Ma, Chenbo

    2017-11-01

    This paper investigates the adhesive contact between a smooth rigid sphere and a smooth elastic layered medium with different layer thicknesses, layer-to-substrate elastic modulus ratios and adhesion energy ratios. A numerical model is established by combining elastic responses of the contact system and an equation of equivalent adhesive contact pressure which is derived based on the Hamaker summation method and the Lennard-Jones intermolecular potential law. Simulation results for hard layer cases demonstrate that variation trends of the pull-off force with the layer thickness and elastic modulus ratio are complex. On one hand, when the elastic modulus ratio increases, the pull-off force decreases at smaller layer thicknesses, decreases at first and then increases at middle layer thicknesses, while increases monotonously at larger layer thicknesses. On the other hand, the pull-off force decreases at first and then increases with the increase in the layer thickness. Furthermore, a critical layer thickness above which the introduction of hard layer cannot reduce adhesion and an optimum layer thickness under which the pull-off force reaches a minimum are found. Both the critical and optimum layer thicknesses become larger with an increase in the Tabor parameter, while they tend to decrease with the increase in the elastic modulus ratio. In addition, the pull-off force increases sublinearly with the adhesion energy ratio if the layer thickness and elastic modulus ratio are fixed.

  12. Introduction of steered molecular dynamics into UNRES coarse-grained simulations package.

    PubMed

    Sieradzan, Adam K; Jakubowski, Rafał

    2017-03-30

    In this article, an implementation of steered molecular dynamics (SMD) in coarse-grain UNited RESidue (UNRES) simulations package is presented. Two variants of SMD have been implemented: with a constant force and a constant velocity. The huge advantage of SMD implementation in the UNRES force field is that it allows to pull with the speed significantly lower than the accessible pulling speed in simulations with all-atom representation of a system, with respect to a reasonable computational time. Therefore, obtaining pulling speed closer to those which appear in the atomic force spectroscopy is possible. The newly implemented method has been tested for behavior in a microcanonical run to verify the influence of introduction of artificial constrains on keeping total energy of the system. Moreover, as time dependent artificial force was introduced, the thermostat behavior was tested. The new method was also tested via unfolding of the Fn3 domain of human contactin 1 protein and the I27 titin domain. Obtained results were compared with Gø-like force field, all-atom force field, and experimental results. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Scintillation properties of Gd3Al2Ga3O12:Ce (GAGG:Ce): a comparison between monocrystalline and nanoceramic samples

    NASA Astrophysics Data System (ADS)

    Drozdowski, Winicjusz; Witkowski, Marcin E.; Solarz, Piotr; Głuchowski, Paweł; Głowacki, Michał; Brylew, Kamil

    2018-05-01

    In this Communication the behavior of two types of Gd3Al2Ga3O12:Ce samples under gamma and X-ray excitation is compared. Single crystals of GAGG:1%Ce have been grown by the Czochralski technique, while nanoceramic pills of GAGG:1%Ce have been fabricated by the LTHP sintering from nanocrystalline powders prepared by the Pechini method. The results of pulse height, scintillation time profile, radioluminescence as a function of temperature, and low temperature thermoluminescence measurements, are reported, indicating that monocrystals are still a better choice for scintillator application, nevertheless some of the properties of nanoceramics are indeed promising and there should be a room for improvement.

  14. Psychophysical basis for maximum pushing and pulling forces: A review and recommendations.

    PubMed

    Garg, Arun; Waters, Thomas; Kapellusch, Jay; Karwowski, Waldemar

    2014-03-01

    The objective of this paper was to perform a comprehensive review of psychophysically determined maximum acceptable pushing and pulling forces. Factors affecting pushing and pulling forces are identified and discussed. Recent studies show a significant decrease (compared to previous studies) in maximum acceptable forces for males but not for females when pushing and pulling on a treadmill. A comparison of pushing and pulling forces measured using a high inertia cart with those measured on a treadmill shows that the pushing and pulling forces using high inertia cart are higher for males but are about the same for females. It is concluded that the recommendations of Snook and Ciriello (1991) for pushing and pulling forces are still valid and provide reasonable recommendations for ergonomics practitioners. Regression equations as a function of handle height, frequency of exertion and pushing/pulling distance are provided to estimate maximum initial and sustained forces for pushing and pulling acceptable to 75% male and female workers. At present it is not clear whether pushing or pulling should be favored. Similarly, it is not clear what handle heights would be optimal for pushing and pulling. Epidemiological studies are needed to determine relationships between psychophysically determined maximum acceptable pushing and pulling forces and risk of musculoskeletal injuries, in particular to low back and shoulders.

  15. Psychophysical basis for maximum pushing and pulling forces: A review and recommendations

    PubMed Central

    Garg, Arun; Waters, Thomas; Kapellusch, Jay; Karwowski, Waldemar

    2015-01-01

    The objective of this paper was to perform a comprehensive review of psychophysically determined maximum acceptable pushing and pulling forces. Factors affecting pushing and pulling forces are identified and discussed. Recent studies show a significant decrease (compared to previous studies) in maximum acceptable forces for males but not for females when pushing and pulling on a treadmill. A comparison of pushing and pulling forces measured using a high inertia cart with those measured on a treadmill shows that the pushing and pulling forces using high inertia cart are higher for males but are about the same for females. It is concluded that the recommendations of Snook and Ciriello (1991) for pushing and pulling forces are still valid and provide reasonable recommendations for ergonomics practitioners. Regression equations as a function of handle height, frequency of exertion and pushing/pulling distance are provided to estimate maximum initial and sustained forces for pushing and pulling acceptable to 75% male and female workers. At present it is not clear whether pushing or pulling should be favored. Similarly, it is not clear what handle heights would be optimal for pushing and pulling. Epidemiological studies are needed to determine relationships between psychophysically determined maximum acceptable pushing and pulling forces and risk of musculoskeletal injuries, in particular to low back and shoulders. PMID:26664045

  16. High purity, low dislocation GaAs single crystals

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Holmes, D. E.; Kirkpatrick, C. G.

    1983-01-01

    Liquid encapsulated Czochralski crystal growth techniques for producing undoped, high resistivity, low dislocation material suitable for device applications is described. Technique development resulted in reduction of dislocation densities in 3 inch GaAs crystals. Control over the melt stoichiometry was determined to be of critical importance for the reduction of twinning and polycrystallinity during growth.

  17. Combined use of ultrasonic liposuction with the pull-through technique for the treatment of gynecomastia.

    PubMed

    Hammond, Dennis C; Arnold, Jame F; Simon, Amy M; Capraro, Philippe A

    2003-09-01

    The authors present a method of treatment for gynecomastia that combines the use of two techniques of soft-tissue contouring. This method uses ultrasonic liposuction in conjunction with the pull-through technique of direct excision to effectively remove the fibrofatty tissue of the male breast and the fibrous breast bud through a single 1-cm incision. Fifteen patients were treated in this fashion, and each patient demonstrated a smooth, masculine breast contour with a well-concealed scar, which eliminates the stigma of breast surgery. The procedure is technically straightforward and provides consistent results. It is offered as an additional option for the treatment of gynecomastia.

  18. Engineered microbes and methods for microbial oil production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephanopoulos, Gregory; Tai, Mitchell; Chakraborty, Sagar

    Some aspects of this invention provide engineered microbes for oil production. Methods for microbe engineering and for use of engineered microbes are also provided herein. In some embodiments, microbes are provided that are engineered to modulate a combination of rate-controlling steps of lipid synthesis, for example, a combination of a step generating metabolites, acetyl-CoA, ATP or NADPH for lipid synthesis (a push step), and a step sequestering a product or an intermediate of a lipid synthesis pathway that mediates feedback inhibition of lipid synthesis (a pull step). Such push-and-pull engineered microbes exhibit greatly enhanced conversion yields and TAG synthesis andmore » storage properties.« less

  19. Adhesion Strength Study of EVA Encapsulants on Glass Substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pern, F. J.; Glick, S. H.

    2003-05-01

    An extensive peel-test study was conducted to investigate the various factors that may affect the adhesion strength of photovoltaic module encapsulants, primarily ethylene-vinyl acetate (EVA), on glass substrates of various laminates based on a common configuration of glass/encapsulant/backfoil. The results show that"pure" or"absolute" adhesion strength of EVA-to-glass was very difficult to obtain because of tensile deformation of the soft, semi-elastic EVA layer upon pulling. A mechanically"strong enough" backing foil on the EVA was critical to achieving the"apparent" adhesion strength. Peel test method with a 90-degree-pull yielded similar results to a 180-degree-pull. The 90-degree-pull method better revealed the four stages ofmore » delamination failure of the EVA/backfoil layers. The adhesion strength is affected by a number of factors, which include EVA type, formulation, backfoil type and manufacturing source, glass type, and surface priming treatment on the glass surface or on the backfoil. Effects of the glass-cleaning method and surface texture are not obvious. Direct priming treatments used in the work did not improve, or even worsened, the adhesion. Aging of EVA by storage over~5 years reduced notably the adhesion strength. Lower adhesion strengths were observed for the blank (unformulated) EVA and non-EVA copolymers, such as poly(ethylene-co-methacrylate) (PEMA) or poly(ethylene-co-butylacrylate) (PEBA). Their adhesion strengths increased if the copolymers were cross-linked. Transparent fluoropolymer superstrates such as TefzelTM and DureflexTM films used for thin-film PV modules showed low adhesion strengths to the EVA at a level of~2 N/mm.« less

  20. Electromigration process for the purification of molten silicon during crystal growth

    DOEpatents

    Lovelace, Alan M. Administrator of the National Aeronautics and Space; Shlichta, Paul J.

    1982-01-01

    A process for the purification of molten materials during crystal growth by electromigration of impurities to localized dirty zones. The process has particular applications for silicon crystal growth according to Czochralski techniques and edge-defined film-fed growth (EFG) conditions. In the Czochralski crystal growing process, the impurities are electromigrated away from the crystallization interface by applying a direct electrical current to the molten silicon for electromigrating the charged impurities away from the crystal growth interface. In the EFG crystal growth process, a direct electrical current is applied between the two faces which are used in forming the molten silicon into a ribbon. The impurities are thereby migrated to one side only of the crystal ribbon. The impurities may be removed or left in place. If left in place, they will not adversely affect the ribbon when used in solar collectors. The migration of the impurity to one side only of the silicon ribbon is especially suitable for use with asymmetric dies which preferentially crystallize uncharged impurities along one side or face of the ribbon.

  1. Boron deactivation in heavily boron-doped Czochralski silicon during rapid thermal anneal: Atomic level understanding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Chao; Dong, Peng; Yi, Jun

    The changes in hole concentration of heavily boron (B)-doped Czochralski silicon subjected to high temperature rapid thermal anneal (RTA) and following conventional furnace anneal (CFA) have been investigated. It is found that decrease in hole concentration, namely, B deactivation, is observed starting from 1050 °C and increases with RTA temperature. The following CFA at 300–500 °C leads to further B deactivation, while that at 600–800 °C results in B reactivation. It is supposed that the interaction between B atoms and silicon interstitials (I) thus forming BI pairs leads to the B deactivation during the high temperature RTA, and, moreover, the formation of extendedmore » B{sub 2}I complexes results in further B deactivation in the following CFA at 300–500 °C. On the contrary, the dissociation of BI pairs during the following CFA at 600–800 °C enables the B reactivation. Importantly, the first-principles calculation results can soundly account for the above-mentioned supposition.« less

  2. Intrinsic Gettering in Nitrogen-Doped and Hydrogen-Annealed Czochralski-Grown Silicon Wafers

    NASA Astrophysics Data System (ADS)

    Goto, Hiroyuki; Pan, Lian-Sheng; Tanaka, Masafumi; Kashima, Kazuhiko

    2001-06-01

    The properties of nitrogen-doped and hydrogen-annealed Czochralski-grown silicon (NHA-CZ-Si) wafers were investigated in this study. The quality of the subsurface was investigated by monitoring the generation lifetime of minority carriers, as measured by the capacitance-time measurements of a metal oxide silicon capacitor (MOS C-t). The intrinsic gettering (IG) ability was investigated by determining the nickel concentration on the surface and in the subsurface as measured by graphite furnace atomic absorption spectrometry (GFAAS) after the wafer was deliberately contaminated with nickel. From the results obtained, the generation lifetimes of these NHA-CZ-Si wafers were determined to be almost the same as, or a little longer than those of epitaxial wafers, and the IG ability was proportional to the total volume of oxygen precipitates [i.e., bulk micro defects (BMDs)], which was influenced by the oxygen and nitrogen concentrations in the wafers. Therefore, it is suggested that the subsurface of the NHA-CZ-Si wafers is of good quality and the IG capacity is controllable by the nitrogen and oxygen concentrations in the wafers.

  3. Modeling the effect of crystal and crucible rotation on the interface shape in Czochralski growth of piezoelectric langatate crystals

    NASA Astrophysics Data System (ADS)

    Stelian, C.; Nehari, A.; Lasloudji, I.; Lebbou, K.; Dumortier, M.; Cabane, H.; Duffar, T.

    2017-10-01

    Single La3Ga5.5Ta0.5O14 (LGT) crystals have been grown by using the Czochralski technique with inductive heating. Some ingots exhibit imperfections such as cracks, dislocations and striations. Numerical modeling is applied to investigate the factors affecting the shape of the crystal-melt interface during the crystallization of ingots having 3 cm in diameter. It was found that the conical shape of the interface depends essentially on the internal radiative exchanges in the semi-transparent LGT crystal. Numerical results are compared to experimental visualization of the growth interface, showing a good agreement. The effect of the forced convection produced by the crystal and crucible rotation is numerically investigated at various rotation rates. Increasing the crystal rotation rate up to 50 rpm has a significant flattening effect on the interface shape. Applying only crucible rotation enhances the downward flow underneath the crystal, leading to an increased interface curvature. Counter rotation between the crystal and the crucible results in a distorted shape of the interface.

  4. Silicon Sheet Growth Development for the Large Area Sheet Task of the Low Cost Solar Array Project. Heat Exchanger Method - Ingot Casting Fixed Abrasive Method - Multi-Wire Slicing

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.

    1978-01-01

    Solar cells fabricated from HEM cast silicon yielded up to 15% conversion efficiencies. This was achieved in spite of using unpurified graphite parts in the HEM furnace and without optimization of material or cell processing parameters. Molybdenum retainers prevented SiC formation and reduced carbon content by 50%. The oxygen content of vacuum cast HEM silicon is lower than typical Czochralski grown silicon. Impregnation of 45 micrometers diamonds into 7.5 micrometers copper sheath showed distortion of the copper layer. However, 12.5 micrometers and 15 micrometers copper sheath can be impregnated with 45 micrometers diamonds to a high concentration. Electroless nickel plating of wires impregnated only in the cutting edge showed nickel concentration around the diamonds. This has the possibility of reducing kerf. The high speed slicer fabricated can achieve higher speed and longer stroke with vibration isolation.

  5. The density and compositional analysis of titanium doped sapphire single crystal grown by the Czocharlski method

    NASA Astrophysics Data System (ADS)

    Kusuma, H. H.; Ibrahim, Z.; Othaman, Z.

    2018-03-01

    Titanium doped sapphire (Ti:Al2O3) crystal has attracted attention not only as beautiful gemstones, but also due to their applications as high power laser action. It is very important crystal for tunable solid state laser. Ti:Al2O3 crystals have been success grown using the Czocharlski method with automatic diameter control (ADC) system. The crystals were grown with different pull rates. The structure of the crystal was characterized with X-Ray Diffraction (XRD). The density of the crystal was measurement based on the Archimedes principle and the chemical composition of the crystal was confirmed by the Energy Dispersive X-ray (EDX) Spectroscopy. The XRD patterns of crystals are showed single main peak with a high intensity. Its shows that the samples are single crystal. The Ti:Al2O3 grown with different pull rate will affect the distribution of the concentration of dopant Ti3+ and densities on the sapphire crystals boules as well on the crystal growth process. The increment of the pull rate will increase the percentage distribution of Ti3+ and on the densities of the Ti:Al2O3 crystal boules. This may be attributed to the speed factor of the pull rate of the crystal that then caused changes in the heat flow in the furnace and then causes the homogeneities is changed of species distribution of atoms along crystal.

  6. Doping of Czochralski-grown bulk β-Ga2O3 single crystals with Cr, Ce and Al

    NASA Astrophysics Data System (ADS)

    Galazka, Zbigniew; Ganschow, Steffen; Fiedler, Andreas; Bertram, Rainer; Klimm, Detlef; Irmscher, Klaus; Schewski, Robert; Pietsch, Mike; Albrecht, Martin; Bickermann, Matthias

    2018-03-01

    We experimentally evaluated segregation of Cr, Ce and Al in bulk β-Ga2O3 single crystals grown by the Czochralski method, as well as the impact of these dopants on optical properties. The segregation of Cr and Ce and their incorporation into the β-Ga2O3 crystal structure strongly depends on O2 concentration in the growth atmosphere which has a noticeable impact on decomposition of Ga2O3 and Cr2O3, as well as on the charge state of Cr and Ce. Effective segregation coefficients for Cr are in the range of 3.1-1.5 at 7-24 vol% O2, while for Ce they are roughly below 0.01 at 1.5-34 vol% O2. The effective segregation coefficient for Al is 1.1 at 1.5-21 vol% O2. Both dopants Ce and Al have a thermodynamically stabilizing effect on β-Ga2O3 crystal growth by supressing decomposition. While Ce has no impact on the optical transmittance in the ultraviolet and visible regions, in Cr doped crystals we observe three absorption bands due to Cr3+ on octahedral Ga sites, one in the ultraviolet merging with the band edge absorption of β-Ga2O3 and two in the visible spectrum, for which we estimate the absorption cross sections. Al doping also does not induce dopant related absorption bands but clearly shifts the absorption edge as one expects for a solid-solution crystal Ga2(1-x)Al2xO3 still in the monoclinic phase. For the highest doping concentration (Ga1.9Al0.1O3) we estimate an increase of the energy gap by 0.11 eV.

  7. Push-pull tracer tests: Their information content and use for characterizing non-Fickian, mobile-immobile behavior: INFORMATION CONTENT OF PUSH-PULL TESTS

    DOE PAGES

    Hansen, Scott K.; Berkowitz, Brian; Vesselinov, Velimir V.; ...

    2016-12-01

    Path reversibility and radial symmetry are often assumed in push-pull tracer test analysis. In reality, heterogeneous flow fields mean that both assumptions are idealizations. In this paper, to understand their impact, we perform a parametric study which quantifies the scattering effects of ambient flow, local-scale dispersion, and velocity field heterogeneity on push-pull breakthrough curves and compares them to the effects of mobile-immobile mass transfer (MIMT) processes including sorption and diffusion into secondary porosity. We identify specific circumstances in which MIMT overwhelmingly determines the breakthrough curve, which may then be considered uninformative about drift and local-scale dispersion. Assuming path reversibility, wemore » develop a continuous-time-random-walk-based interpretation framework which is flow-field-agnostic and well suited to quantifying MIMT. Adopting this perspective, we show that the radial flow assumption is often harmless: to the extent that solute paths are reversible, the breakthrough curve is uninformative about velocity field heterogeneity. Our interpretation method determines a mapping function (i.e., subordinator) from travel time in the absence of MIMT to travel time in its presence. A mathematical theory allowing this function to be directly “plugged into” an existing Laplace-domain transport model to incorporate MIMT is presented and demonstrated. Algorithms implementing the calibration are presented and applied to interpretation of data from a push-pull test performed in a heterogeneous environment. A successful four-parameter fit is obtained, of comparable fidelity to one obtained using a million-node 3-D numerical model. In conclusion, we demonstrate analytically and numerically how push-pull tests quantifying MIMT are sensitive to remobilization, but not immobilization, kinetics.« less

  8. Push-pull tracer tests: Their information content and use for characterizing non-Fickian, mobile-immobile behavior: INFORMATION CONTENT OF PUSH-PULL TESTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Scott K.; Berkowitz, Brian; Vesselinov, Velimir V.

    Path reversibility and radial symmetry are often assumed in push-pull tracer test analysis. In reality, heterogeneous flow fields mean that both assumptions are idealizations. In this paper, to understand their impact, we perform a parametric study which quantifies the scattering effects of ambient flow, local-scale dispersion, and velocity field heterogeneity on push-pull breakthrough curves and compares them to the effects of mobile-immobile mass transfer (MIMT) processes including sorption and diffusion into secondary porosity. We identify specific circumstances in which MIMT overwhelmingly determines the breakthrough curve, which may then be considered uninformative about drift and local-scale dispersion. Assuming path reversibility, wemore » develop a continuous-time-random-walk-based interpretation framework which is flow-field-agnostic and well suited to quantifying MIMT. Adopting this perspective, we show that the radial flow assumption is often harmless: to the extent that solute paths are reversible, the breakthrough curve is uninformative about velocity field heterogeneity. Our interpretation method determines a mapping function (i.e., subordinator) from travel time in the absence of MIMT to travel time in its presence. A mathematical theory allowing this function to be directly “plugged into” an existing Laplace-domain transport model to incorporate MIMT is presented and demonstrated. Algorithms implementing the calibration are presented and applied to interpretation of data from a push-pull test performed in a heterogeneous environment. A successful four-parameter fit is obtained, of comparable fidelity to one obtained using a million-node 3-D numerical model. In conclusion, we demonstrate analytically and numerically how push-pull tests quantifying MIMT are sensitive to remobilization, but not immobilization, kinetics.« less

  9. Characterization of power induced heating and damage in fiber optic probes for near-field scanning optical microscopy

    NASA Astrophysics Data System (ADS)

    Dickenson, Nicholas E.; Erickson, Elizabeth S.; Mooren, Olivia L.; Dunn, Robert C.

    2007-05-01

    Tip-induced sample heating in near-field scanning optical microscopy (NSOM) is studied for fiber optic probes fabricated using the chemical etching technique. To characterize sample heating from etched NSOM probes, the spectra of a thermochromic polymer sample are measured as a function of probe output power, as was previously reported for pulled NSOM probes. The results reveal that sample heating increases rapidly to ˜55-60°C as output powers reach ˜50nW. At higher output powers, the sample heating remains approximately constant up to the maximum power studied of ˜450nW. The sample heating profiles measured for etched NSOM probes are consistent with those previously measured for NSOM probes fabricated using the pulling method. At high powers, both pulled and etched NSOM probes fail as the aluminum coating is damaged. For probes fabricated in our laboratory we find failure occurring at input powers of 3.4±1.7 and 20.7±6.9mW for pulled and etched probes, respectively. The larger half-cone angle for etched probes (˜15° for etched and ˜6° for pulled probes) enables more light delivery and also apparently leads to a different failure mechanism. For pulled NSOM probes, high resolution images of NSOM probes as power is increased reveal the development of stress fractures in the coating at a taper diameter of ˜6μm. These stress fractures, arising from the differential heating expansion of the dielectric and the metal coating, eventually lead to coating removal and probe failure. For etched tips, the absence of clear stress fractures and the pooled morphology of the damaged aluminum coating following failure suggest that thermal damage may cause coating failure, although other mechanisms cannot be ruled out.

  10. Characterization of power induced heating and damage in fiber optic probes for near-field scanning optical microscopy.

    PubMed

    Dickenson, Nicholas E; Erickson, Elizabeth S; Mooren, Olivia L; Dunn, Robert C

    2007-05-01

    Tip-induced sample heating in near-field scanning optical microscopy (NSOM) is studied for fiber optic probes fabricated using the chemical etching technique. To characterize sample heating from etched NSOM probes, the spectra of a thermochromic polymer sample are measured as a function of probe output power, as was previously reported for pulled NSOM probes. The results reveal that sample heating increases rapidly to approximately 55-60 degrees C as output powers reach approximately 50 nW. At higher output powers, the sample heating remains approximately constant up to the maximum power studied of approximately 450 nW. The sample heating profiles measured for etched NSOM probes are consistent with those previously measured for NSOM probes fabricated using the pulling method. At high powers, both pulled and etched NSOM probes fail as the aluminum coating is damaged. For probes fabricated in our laboratory we find failure occurring at input powers of 3.4+/-1.7 and 20.7+/-6.9 mW for pulled and etched probes, respectively. The larger half-cone angle for etched probes ( approximately 15 degrees for etched and approximately 6 degrees for pulled probes) enables more light delivery and also apparently leads to a different failure mechanism. For pulled NSOM probes, high resolution images of NSOM probes as power is increased reveal the development of stress fractures in the coating at a taper diameter of approximately 6 microm. These stress fractures, arising from the differential heating expansion of the dielectric and the metal coating, eventually lead to coating removal and probe failure. For etched tips, the absence of clear stress fractures and the pooled morphology of the damaged aluminum coating following failure suggest that thermal damage may cause coating failure, although other mechanisms cannot be ruled out.

  11. Lifetime degradation of n-type Czochralski silicon after hydrogenation

    NASA Astrophysics Data System (ADS)

    Vaqueiro-Contreras, M.; Markevich, V. P.; Mullins, J.; Halsall, M. P.; Murin, L. I.; Falster, R.; Binns, J.; Coutinho, J.; Peaker, A. R.

    2018-04-01

    Hydrogen plays an important role in the passivation of interface states in silicon-based metal-oxide semiconductor technologies and passivation of surface and interface states in solar silicon. We have shown recently [Vaqueiro-Contreras et al., Phys. Status Solidi RRL 11, 1700133 (2017)] that hydrogenation of n-type silicon slices containing relatively large concentrations of carbon and oxygen impurity atoms {[Cs] ≥ 1 × 1016 cm-3 and [Oi] ≥ 1017 cm-3} can produce a family of C-O-H defects, which act as powerful recombination centres reducing the minority carrier lifetime. In this work, evidence of the silicon's lifetime deterioration after hydrogen injection from SiNx coating, which is widely used in solar cell manufacturing, has been obtained from microwave photoconductance decay measurements. We have characterised the hydrogenation induced deep level defects in n-type Czochralski-grown Si samples through a series of deep level transient spectroscopy (DLTS), minority carrier transient spectroscopy (MCTS), and high-resolution Laplace DLTS/MCTS measurements. It has been found that along with the hydrogen-related hole traps, H1 and H2, in the lower half of the gap reported by us previously, hydrogenation gives rise to two electron traps, E1 and E2, in the upper half of the gap. The activation energies for electron emission from the E1 and E2 trap levels have been determined as 0.12, and 0.14 eV, respectively. We argue that the E1/H1 and E2/H2 pairs of electron/hole traps are related to two energy levels of two complexes, each incorporating carbon, oxygen, and hydrogen atoms. Our results show that the detrimental effect of the C-O-H defects on the minority carrier lifetime in n-type Si:O + C materials can be very significant, and the carbon concentration in Czochralski-grown silicon is a key parameter in the formation of the recombination centers.

  12. 30 CFR 75.828 - Trailing cable pulling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Trailing cable pulling. 75.828 Section 75.828... Longwalls § 75.828 Trailing cable pulling. The trailing cable must be de-energized prior to being pulled by... procedures must be followed when pulling the trailing cable with equipment other than the continuous mining...

  13. Evolutionary selection growth of two-dimensional materials on polycrystalline substrates

    NASA Astrophysics Data System (ADS)

    Vlassiouk, Ivan V.; Stehle, Yijing; Pudasaini, Pushpa Raj; Unocic, Raymond R.; Rack, Philip D.; Baddorf, Arthur P.; Ivanov, Ilia N.; Lavrik, Nickolay V.; List, Frederick; Gupta, Nitant; Bets, Ksenia V.; Yakobson, Boris I.; Smirnov, Sergei N.

    2018-03-01

    There is a demand for the manufacture of two-dimensional (2D) materials with high-quality single crystals of large size. Usually, epitaxial growth is considered the method of choice1 in preparing single-crystalline thin films, but it requires single-crystal substrates for deposition. Here we present a different approach and report the synthesis of single-crystal-like monolayer graphene films on polycrystalline substrates. The technological realization of the proposed method resembles the Czochralski process and is based on the evolutionary selection2 approach, which is now realized in 2D geometry. The method relies on `self-selection' of the fastest-growing domain orientation, which eventually overwhelms the slower-growing domains and yields a single-crystal continuous 2D film. Here we have used it to synthesize foot-long graphene films at rates up to 2.5 cm h-1 that possess the quality of a single crystal. We anticipate that the proposed approach could be readily adopted for the synthesis of other 2D materials and heterostructures.

  14. Novel analytical model for optimizing the pull-in voltage in a flexured MEMS switch incorporating beam perforation effect

    NASA Astrophysics Data System (ADS)

    Guha, K.; Laskar, N. M.; Gogoi, H. J.; Borah, A. K.; Baishnab, K. L.; Baishya, S.

    2017-11-01

    This paper presents a new method for the design, modelling and optimization of a uniform serpentine meander based MEMS shunt capacitive switch with perforation on upper beam. The new approach is proposed to improve the Pull-in Voltage performance in a MEMS switch. First a new analytical model of the Pull-in Voltage is proposed using the modified Mejis-Fokkema capacitance model taking care of the nonlinear electrostatic force, the fringing field effect due to beam thickness and etched holes on the beam simultaneously followed by the validation of same with the simulated results of benchmark full 3D FEM solver CoventorWare in a wide range of structural parameter variations. It shows a good agreement with the simulated results. Secondly, an optimization method is presented to determine the optimum configuration of switch for achieving minimum Pull-in voltage considering the proposed analytical mode as objective function. Some high performance Evolutionary Optimization Algorithms have been utilized to obtain the optimum dimensions with less computational cost and complexity. Upon comparing the applied algorithms between each other, the Dragonfly Algorithm is found to be most suitable in terms of minimum Pull-in voltage and higher convergence speed. Optimized values are validated against the simulated results of CoventorWare which shows a very satisfactory results with a small deviation of 0.223 V. In addition to these, the paper proposes, for the first time, a novel algorithmic approach for uniform arrangement of square holes in a given beam area of RF MEMS switch for perforation. The algorithm dynamically accommodates all the square holes within a given beam area such that the maximum space is utilized. This automated arrangement of perforation holes will further improve the computational complexity and design accuracy of the complex design of perforated MEMS switch.

  15. Conditions for sustainability of Academic Collaborative Centres for Public Health in the Netherlands: a mixed methods design.

    PubMed

    Jansen, Maria W J; van Oers, Hans A M; Middelweerd, Mizzi D R; van de Goor, Ien A M; Ruwaard, Dirk

    2015-08-21

    Contemporary research should increasingly be carried out in the context of application. Nowotny called this new form of knowledge production Mode-2. In line with Mode-2 knowledge production, the Dutch government in 2006 initiated the so-called Academic Collaborative Centres (ACC) for Public Health. The aim of these ACCs is to build a regional, sustainable knowledge-sharing network to deliver socially robust knowledge. The present study aims to highlight the enabling and constraining push and pull factors of these ACCs in order to assess whether the ACCs are able to build and strengthen a sustainable integrated organizational network between public health policy, practice, and research. Our empirical analysis builds on a mixed methods design. Quantitative data was derived from records of a survey sent to all 11 ACCs about personnel investments, number and nature of projects, and earning power. Qualitative data was derived from 21 in-depth interviews with stakeholders involved. The interviews were tape-recorded, transcribed, and manually coded as favourable or unfavourable pull or push factors. The extra funding appeared to be the most enabling push factor. The networks secured external grants for about 150 short- and long-term Mode-2 knowledge production projects in the past years. Enabling pull factors improved, especially the number of policy-driven short-term research projects. Exchange agents were able to constructively deal with the constraining push factors, like university's publication pressure and budget limitations. However, the constraining pull factors like local government's involvement and their low demand for scientific evidence were difficult to overcome. A clear improvement of the organizational networks was noticed whereby the ACC's were pushed rather than pulled. Efforts are needed to increase the demand for scientific and socially robust evidence from policymakers and to resolve the regime differences between the research and policy systems, in order to make the bidirectionality of the links sustainable.

  16. Verbal Feedback in Therapeutic Communities: Pull-ups and Reciprocated Pull-ups as Predictors of Graduation

    PubMed Central

    Warren, Keith; Hiance, Danielle; Doogan, Nathan; De Leon, George; Phillips, Gary

    2012-01-01

    The most important proximal outcomes for residents of therapeutic communities (TCs) are retention and successful completion of the program. At this point there has been no quantitative analysis of the relationship between the exchange of corrective reminders, or pull-ups, between peers in TCs and graduation. This study draws on a database of pull-ups exchanged between 5,464 residents of three Midwestern TCs. Residents who send more pull-ups to peers and who reciprocate pull-ups with a larger percentage of peers are more likely to graduate. Residents who receive more pull-ups from peers and staff and a larger percentage of whose peers reciprocate pull-ups that they send are less likely to graduate. Implications of these findings for program theory and program improvement are discussed. PMID:23068980

  17. Thermal, size and surface effects on the nonlinear pull-in of small-scale piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    SoltanRezaee, Masoud; Ghazavi, Mohammad-Reza

    2017-09-01

    Electrostatically actuated miniature wires/tubes have many operational applications in the high-tech industries. In this research, the nonlinear pull-in instability of piezoelectric thermal small-scale switches subjected to Coulomb and dissipative forces is analyzed using strain gradient and modified couple stress theories. The discretized governing equation is solved numerically by means of the step-by-step linearization method. The correctness of the formulated model and solution procedure is validated through comparison with experimental and several theoretical results. Herein, the length-scale, surface energy, van der Waals attraction and nonlinear curvature are considered in the present comprehensive model and the thermo-electro-mechanical behavior of cantilever piezo-beams are discussed in detail. It is found that the piezoelectric actuation can be used as a design parameter to control the pull-in phenomenon. The obtained results are applicable in stability analysis, practical design and control of actuated miniature intelligent devices.

  18. Urethral pull-through operation for the management of pelvic fracture urethral distraction defects.

    PubMed

    Yin, Lei; Li, Zhenhua; Kong, Chuize; Yu, Xiuyue; Zhu, Yuyan; Zhang, Yuxi; Jiang, Yuanjun

    2011-10-01

    To present our institutional experience in the management of pelvic fracture urethral distraction defects with urethral pull-through operation. Seventy-six patients (average age 34.5 years) with posterior urethral strictures caused by pelvic fracture urethral distraction defects underwent urethral pull-through operation at our department from July 1995 to September 2009. The estimated urethral stricture length was 2.0-3.5 cm (mean 2.5). Of these patients, 31 (41%) had undergone failed urethroplasty or urethrotomy after the initial management, and 5 (7%) had urethrorectal fistula. Urethral pull-through operation was performed 4-7 months (mean 4.9) after initial treatment or failed urethral reconstruction. The clinical outcome was considered a failure when any postoperative intervention was needed. Follow-up was 14-74 months (mean 42.5). The overall success rate was 89% (68/76). All treatment failures occurred within the first 6 months postoperatively. Failed repairs were successfully managed with internal urethrotomy in 1 patient, by urethral dilation in 6, and by another urethroplasty in 1. All patients were urinary-continent postoperatively. Of the potent patients, 2 (5%) became impotent after urethroplasty. There was no chordee, penile shortening, or urethral fistula recurrence. Urethral pull-through operation might be a less demanding and less time-consuming procedure. It does not increase the rate of impotence or incontinence and, with a high success rate, might serve as an alternative method for the management of pelvic fracture urethral distraction defects. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Beyond Kickboards & Pull Buoys.

    ERIC Educational Resources Information Center

    Armstrong, Charles W.; Imwold, Charles H.

    1983-01-01

    Swimming teachers must analyze their students' strokes for errors and provide constructive feedback. To do this requires mastering complex movement analysis techniques and feedback methods. An aquatics instructional methods course at Florida State University made use of strategies to develop these competencies. (PP)

  20. Construct Related Validity for the Baumgartner Modified Pull-Up Test

    ERIC Educational Resources Information Center

    Baumgartner, Ted A.; Gaunt, Sharon j.

    2005-01-01

    Traditionally the pull-up was used as a measure of arm and shoulder girdle strength and endurance. This measure did not discriminate among ability levels because many zero scores occur. Baumgartner (1978) developed a modified pull-up test that was easier than the traditional pull-up test. The Baumgartner Modified Pull-Up (BMPU) has been used as an…

  1. Trichotillomania (Hair-Pulling Disorder)

    MedlinePlus

    Trichotillomania (hair-pulling disorder) Overview Trichotillomania (trik-o-til-o-MAY-nee-uh), also called hair-pulling disorder, is a mental disorder that involves recurrent, irresistible urges to pull out hair from your scalp, eyebrows or other areas of ...

  2. [Design on tester of pull-out force for orthodontic micro implant].

    PubMed

    Su, He; Wu, Pei; Wang, Huiyuan; Chen, Yan; Bao, Xuemei

    2013-09-01

    A special device for measuring the pull-out force of orthodontic micro implant was designed, which has the characteristics of simple construction and easy operation, and can be used to detect the pull-out-force of orthodontic micro implant. The tested data was stored and analyzed by a computer, and as the results, the pull-out-force curve, maximum pull-out force as well as average pull-out force were outputted, which was applied in analyzing or investigating the initial stability and immediate loading property of orthodontic micro implant.

  3. CO2 Push-Pull Dual (Conjugate) Faults Injection Simulations

    DOE Data Explorer

    Oldenburg, Curtis (ORCID:0000000201326016); Lee, Kyung Jae; Doughty, Christine; Jung, Yoojin; Borgia, Andrea; Pan, Lehua; Zhang, Rui; Daley, Thomas M.; Altundas, Bilgin; Chugunov, Nikita

    2017-07-20

    This submission contains datasets and a final manuscript associated with a project simulating carbon dioxide push-pull into a conjugate fault system modeled after Dixie Valley- sensitivity analysis of significant parameters and uncertainty prediction by data-worth analysis. Datasets include: (1) Forward simulation runs of standard cases (push & pull phases), (2) Local sensitivity analyses (push & pull phases), and (3) Data-worth analysis (push & pull phases).

  4. Perception of Egocentric Distance during Gravitational Changes in Parabolic Flight.

    PubMed

    Clément, Gilles; Loureiro, Nuno; Sousa, Duarte; Zandvliet, Andre

    2016-01-01

    We explored the effect of gravity on the perceived representation of the absolute distance of objects to the observers within the range from 1.5-6 m. Experiments were performed on board the CNES Airbus Zero-G during parabolic flights eliciting repeated exposures to short periods of microgravity (0 g), hypergravity (1.8 g), and normal gravity (1 g). Two methods for obtaining estimates of perceived egocentric distance were used: verbal reports and visually directed motion toward a memorized visual target. For the latter method, because normal walking is not possible in 0 g, blindfolded subjects translated toward the visual target by pulling on a rope with their arms. The results showed that distance estimates using both verbal reports and blind pulling were significantly different between normal gravity, microgravity, and hypergravity. Compared to the 1 g measurements, the estimates of perceived distance using blind pulling were shorter for all distances in 1.8 g, whereas in 0 g they were longer for distances up to 4 m and shorter for distances beyond. These findings suggest that gravity plays a role in both the sensorimotor system and the perceptual/cognitive system for estimating egocentric distance.

  5. Perception of Egocentric Distance during Gravitational Changes in Parabolic Flight

    PubMed Central

    Clément, Gilles; Loureiro, Nuno; Sousa, Duarte; Zandvliet, Andre

    2016-01-01

    We explored the effect of gravity on the perceived representation of the absolute distance of objects to the observers within the range from 1.5–6 m. Experiments were performed on board the CNES Airbus Zero-G during parabolic flights eliciting repeated exposures to short periods of microgravity (0 g), hypergravity (1.8 g), and normal gravity (1 g). Two methods for obtaining estimates of perceived egocentric distance were used: verbal reports and visually directed motion toward a memorized visual target. For the latter method, because normal walking is not possible in 0 g, blindfolded subjects translated toward the visual target by pulling on a rope with their arms. The results showed that distance estimates using both verbal reports and blind pulling were significantly different between normal gravity, microgravity, and hypergravity. Compared to the 1 g measurements, the estimates of perceived distance using blind pulling were shorter for all distances in 1.8 g, whereas in 0 g they were longer for distances up to 4 m and shorter for distances beyond. These findings suggest that gravity plays a role in both the sensorimotor system and the perceptual/cognitive system for estimating egocentric distance. PMID:27463106

  6. Stress distribution in maxillary first molar periodontium using straight pull headgear with vertical and horizontal tubes: A finite element analysis

    PubMed Central

    Feizbakhsh, Masood; Kadkhodaei, Mahmoud; Zandian, Dana; Hosseinpour, Zahra

    2017-01-01

    Background: One of the most effective ways for distal movement of molars to treat Class II malocclusion is using extraoral force through a headgear device. The purpose of this study was the comparison of stress distribution in maxillary first molar periodontium using straight pull headgear in vertical and horizontal tubes through finite element method. Materials and Methods: Based on the real geometry model, a basic model of the first molar and maxillary bone was obtained using three-dimensional imaging of the skull. After the geometric modeling of periodontium components through CATIA software and the definition of mechanical properties and element classification, a force of 150 g for each headgear was defined in ABAQUS software. Consequently, Von Mises and Principal stresses were evaluated. The statistical analysis was performed using T-paired and Wilcoxon nonparametric tests. Results: Extension of areas with Von Mises and Principal stresses utilizing straight pull headgear with a vertical tube was not different from that of using a horizontal tube, but the numerical value of the Von Mises stress in the vertical tube was significantly reduced (P < 0/05). On the other hand, the difference of the principal stress between both tubes was not significant (P > 0/05). Conclusion: Based on the results, when force applied to the straight pull headgear with a vertical tube, Von Mises stress was reduced significantly in comparison with the horizontal tube. Therefore, to correct the mesiolingual movement of the maxillary first molar, vertical headgear tube is recommended. PMID:28584535

  7. Microcatheter entrapment retrieval from Onyx embolization in brain arteriovenous malformations: A technical note

    PubMed Central

    Grigorian, Arthur A

    2015-01-01

    Objective Many techniques have been use for retrieval of an entrapped microcatheter during Onyx (eV3 Neurovascular) embolization of brain arteriovenous malformations (BAVMs). We report our technique that we term “pull-push-pull” that can be utilized as first management in retrieving the microcatheter. Method We analyzed a total of 37 patients that underwent BAVM embolization with either Onyx 18 or 34 at our institution. Standard embolization techniques were utilized with the use of Marathon (eV3 Neurovascular) microcatheter. When difficulty in retrieving the microcatheter arose, we used the “pull-push-pull” technique. The technique comprises the eV3 protocol of retraction. In addition, the microcatheter is stretched causing the Onyx cast to stretch in its inner core, creating a more thorough cohesive property amongst the Onyx mixture. Then the microcatheter is pushed back and to its point of embolization origin. Afterwards, retraction of the microcatheter is enabled as it can be easily dislodged from the cast. Multiple attempts can be repeated as needed. Result and discussion We had three patients that had difficulty with removal of microcatheter (8.1%). Utilization of the “pull-push-pull” technique was used on two of those patients. No neurological complication was observed with our technique. We believe the cohesive property of Onyx solution helps in the retrieval of the catheter by our method and technique. Conclusion We believe the “pull-push-pull” can be utilized and be an additional technique before attempting other catheter retrieval techniques in Onyx BAVM embolization. PMID:26232252

  8. Probing Single Pt Atoms in Complex Intermetallic Al13Fe4.

    PubMed

    Yamada, Tsunetomo; Kojima, Takayuki; Abe, Eiji; Kameoka, Satoshi; Murakami, Yumi; Gille, Peter; Tsai, An Pang

    2018-03-21

    The atomic structure of a 0.2 atom % Pt-doped complex metallic alloy, monoclinic Al 13 Fe 4 , was investigated using a single crystal prepared by the Czochralski method. High-angle annular dark-field scanning transmission electron microscopy showed that the Pt atoms were dispersed as single atoms and substituted at Fe sites in Al 13 Fe 4 . Single-crystal X-ray structural analysis revealed that the Pt atoms preferentially substitute at Fe(1). Unlike those that have been reported, Pt single atoms in the surface layers showed lower activity and selectivity than those of Al 2 Pt and bulk Pt for propyne hydrogenation, indicating that the active state of a given single-atom Pt site is strongly dominated by the bonding to surrounding Al atoms.

  9. Spectroscopic analysis and efficient diode-pumped 1.9 μm Tm3+-doped β'-Gd2(MoO4)3 crystal laser.

    PubMed

    Tang, Jianfeng; Chen, Yujin; Lin, Yanfu; Gong, Xinghong; Huang, Jianhua; Luo, Zundu; Huang, Yidong

    2011-07-04

    Tm3+-doped β'-Gd2(MoO4)3 single crystal was grown by the Czochralski method. Spectroscopic analysis was carried out along different polarizations. End-pumped by a quasi-cw diode laser at 795 nm in a plano-concave cavity, an average laser output power of 58 mW around 1.9 μm was achieved in a 0.93-mm-thick crystal when the output coupler transmission was 7.1%. The absorbed pump threshold was 8 mW and the slope efficiency of the laser was 57%. This crystal has smooth and broad gain curve around 1.9 μm, which shows that it is also a potential gain medium for tunable and short pulse lasers.

  10. Effect of oxygen on dislocation multiplication in silicon crystals

    NASA Astrophysics Data System (ADS)

    Fukushima, Wataru; Harada, Hirofumi; Miyamura, Yoshiji; Imai, Masato; Nakano, Satoshi; Kakimoto, Koichi

    2018-03-01

    This paper aims to clarify the effect of oxygen on dislocation multiplication in silicon single crystals grown by the Czochralski and floating zone methods using numerical analysis. The analysis is based on the Alexander-Haasen-Sumino model and involves oxygen diffusion from the bulk to the dislocation cores during the annealing process in a furnace. The results show that after the annealing process, the dislocation density in silicon single crystals decreases as a function of oxygen concentration. This decrease can be explained by considering the unlocking stress caused by interstitial oxygen atoms. When the oxygen concentration is 7.5 × 1017 cm-3, the total stress is about 2 MPa and the unlocking stress is less than 1 MPa. As the oxygen concentration increases, the unlocking stress also increases; however, the dislocation velocity decreases.

  11. Dopant occupancy and UV-VIS-NIR spectroscopy of Mg (0, 4, 5 and 6 mol.%):Dy:LiNbO3 crystal

    NASA Astrophysics Data System (ADS)

    Dai, Li; Liu, Chunrui; Han, Xianbo; Wang, Luping; Tan, Chao; Yan, Zhehua; Xu, Yuheng

    2017-09-01

    A series of Dy:LiNbO3 crystals with x mol.% Mg2+ ions (x =0, 4, 5 and 6 mol.%) were grown by the Czochralski method. The effective segregation coefficient of Mg2+ and Dy3+ ions was studied by the inductively coupled plasma-atomic emission spectrometry (ICP-AES). UV-VIS-NIR absorption spectra and Judd-Ofelt theory were used to investigate their spectroscopic properties. J-O intensity parameters (Ω2 = 7.53 × 10-20cm2, Ω4 = 6.98 × 10-20cm2, and Ω6 = 3.09 × 10-20cm2) and larger spectroscopic quality factor (X = 2.26) for Mg:(6 mol.%)Dy:LiNbO3 crystals were obtained.

  12. Features of bicrystal growth during the directional crystallization of metal melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gubernatorov, V. V.; Sycheva, T. S., E-mail: sych@imp.uran.ru; Gundyrev, V. M.

    2017-03-15

    The factors responsible for the formation of different configurations of boundaries between adjacent crystallites during their growth from melt by Bridgman and Czochralski methods have been considered by an of example Fe–20 wt % Ga alloy and Ni bicrystals. It is found that the configuration of intercrystallite boundary is related to the features of crystallite growth, caused by the strained state of intercrystallite and interphase (crystal–melt) boundaries, the difference in the linear thermal expansion coefficients of the crystallite boundaries and bulk, and the shape (geometry) of the bicrystal cross section. It is suggested that the strained state of boundaries andmore » the formation of substructure in crystallites during directional crystallization from metal melt are significantly affected by their deformation under the melt weight.« less

  13. Laser action of Pr3+ in LiYF4 and spectroscopy of Eu2+-sensitized Pr in BaY2F8

    NASA Astrophysics Data System (ADS)

    Knowles, David S.; Gabbe, David; Jenssen, H. P.; Zhang, Z.

    1988-06-01

    Laser action in flashlamp-pumped Pr:LiYF4 at room temperature is observed at 640 nm with a 15-J threshold, but only about 0.01 percent slope efficiency. Increased efficiency from sensitizing the Pr with Eu2+ is explored in the system Eu,Pr:BaY2F8. Codoped samples have been grown by the Czochralski growth method, and energy transfer between 2+ and Pr3+ is observed to be very weak. This is probably due to the poor overlap of the Eu2+ emission with the Pr3+ absorption lines, leading to the conclusion that hosts with a stronger crystal field at the Eu2+ site need to be identified.

  14. Development of silicon growth techniques from melt with surface heating

    NASA Astrophysics Data System (ADS)

    Kravtsov, Anatoly

    2018-05-01

    The paper contains literary and personal data on the development history of silicon-growing technology with volumetric and surface melt heating. It discusses the advantages and disadvantages of surface-heating technology. Examples are given of the implementation of such processes in the 60s-70s of the last century, and the reasons for the discontinuation of the relevant work. It describes the main solutions for the implementation of crystal growth process with the electron-beam heating of the melt surface, implemented by KEPP EU (Latvia). It discusses differences in the management of the growth process for the crystals with constant diameters compared to the Czochralski method. It lists geometrical and electro-physical properties of the obtained crystals. It describes the possible use of such crystals and the immediate challenges of technology development.

  15. Growth and spectral-luminescent study of SrMoO4 crystals doped with Tm3+ ions

    NASA Astrophysics Data System (ADS)

    Dunaeva, E. E.; Zverev, P. G.; Doroshenko, M. E.; Nekhoroshikh, A. V.; Ivleva, L. I.; Osiko, V. V.

    2016-03-01

    SrMoO4 crystals doped with Tm3+ ions have been produced from a melt using the Czochralski method; their spectral-luminescent characteristics have been studied, and laser radiation has been generated at the wavelength of 1.94 μm using laser-diode excitation. The high absorption section at the wavelength of 795 nm, the fairly high luminescence section, the long lifetime at the upper laser level 3F4 of 1.5 ms, and a wide luminescence band allow one to hope for developing efficient tunable Tm3+: SrMoO4 crystal lasers with diode pumping in the range of 1.7-2.0 μm, which are capable of implementing SRS self-transformation of radiation into the middle IR band.

  16. Shape optimization of electrostatically driven microcantilevers using simulated annealing to enhance static travel range

    NASA Astrophysics Data System (ADS)

    Trivedi, R. R.; Joglekar, M. M.; Shimpi, R. P.; Pawaskar, D. N.

    2013-12-01

    The objective of this paper is to present a systematic development of the generic shape optimization of elec- trostatically actuated microcantilever beams for extending their static travel range. Electrostatic actuators are widely used in micro electro mechanical system (MEMS) devices because of low power density and ease of fab- rication. However, their useful travel range is often restricted by a phenomenon known as pull-in instability. The Rayleigh- Ritz energy method is used for computation of pull-in parameters which includes electrostatic potential and fringing field effect. Appropriate width function and linear thickness functions are employed along the length of the non-prismatic beam to achieve enhanced travel range. Parameters used for varying the thick- ness and width functions are optimized using simulated annealing with pattern search method towards the end to refine the results. Appropriate penalties are imposed on the violation of volume, width, thickness and area constraints. Nine test cases are considered for demonstration of the said optimization method. Our results indicate that around 26% increase in the travel range of a non-prismatic beam can be achieved after optimiza- tion compared to that in a prismatic beam having the same volume. Our results also show an improvement in the pull-in displacement of around 5% compared to that of a variable width constant thickness actuator. We show that simulated annealing is an effective and flexible method to carry out design optimization of structural elements under electrostatic loading.

  17. The geometry of pull-apart basins in the southern part of Sumatran strike-slip fault zone

    NASA Astrophysics Data System (ADS)

    Aribowo, Sonny

    2018-02-01

    Models of pull-apart basin geometry have been described by many previous studies in a variety tectonic setting. 2D geometry of Ranau Lake represents a pull-apart basin in the Sumatran Fault Zone. However, there are unclear geomorphic traces of two sub-parallel overlapping strike-slip faults in the boundary of the lake. Nonetheless, clear geomorphic traces that parallel to Kumering Segment of the Sumatran Fault are considered as inactive faults in the southern side of the lake. I demonstrate the angular characteristics of the Ranau Lake and Suoh complex pull-apart basins and compare with pull-apart basin examples from published studies. I use digital elevation model (DEM) image to sketch the shape of the depression of Ranau Lake and Suoh Valley and measure 2D geometry of pull-apart basins. This study shows that Ranau Lake is not a pull-apart basin, and the pull-apart basin is actually located in the eastern side of the lake. Since there is a clear connection between pull-apart basin and volcanic activity in Sumatra, I also predict that the unclear trace of the pull-apart basin near Ranau Lake may be covered by Ranau Caldera and Seminung volcanic products.

  18. Identifying Advanced Technologies for Education's Future.

    ERIC Educational Resources Information Center

    Moore, Gwendolyn B.; Yin, Robert K.

    A study to determine how three advanced technologies might be applied to the needs of special education students helped inspire the development of a new method for identifying such applications. This new method, named the "Hybrid Approach," combines features of the two traditional methods: technology-push and demand-pull. Technology-push involves…

  19. Foot placement strategy in pushing and pulling.

    PubMed

    Lee, Tzu-Hsien

    2018-01-01

    Pushing and pulling tasks are very common in daily and industrial workplaces. They are one major source of musculoskeletal complaints. This study aimed to examine the foot placement strategy while pushing and pulling. Thirteen young males and ten young females were recruited as participants. A two (pushing and pulling) by four (48 cm, 84 cm, 120 cm, and 156 cm) factorial design was used. Exertion direction and exertion height significantly affected foot placement strategy. Pushing task needed more anteroposterior space than pulling task. The percentages of female/male for trailing foot position ranged from 77% to 90% (pushing) and from 80% to 93% (pulling) across the exertion heights. Practitioners should provide an anteroposterior space approximately to 70% body stature for workers to exert their maximum pulling and pushing strengths.

  20. Finger-attachment device for the feedback of gripping and pulling force in a manipulating system for brain tumor resection.

    PubMed

    Chinbe, Hiroyuki; Yoneyama, Takeshi; Watanabe, Tetsuyou; Miyashita, Katsuyoshi; Nakada, Mitsutoshi

    2018-01-01

    Development and evaluation of an effective attachment device for a bilateral brain tumor resection robotic surgery system based on the sensory performance of the human index finger in order to precisely detect gripping- and pulling-force feedback. First, a basic test was conducted to investigate the performance of the human index finger in the gripping- and pulling-force feedback system. Based on the test result, a new finger-attachment device was designed and constructed. Then, discrimination tests were conducted to assess the pulling force and the feedback on the hardness of the gripped material. The results of the basic test show the application of pulling force on the side surface of the finger has an advantage to distinguish the pulling force when the gripping force is applied on the finger-touching surface. Based on this result, a finger-attachment device that applies a gripping force on the finger surface and pulling force on the side surface of the finger was developed. By conducting a discrimination test to assess the hardness of the gripped material, an operator can distinguish whether the gripped material is harder or softer than a normal brain tissue. This will help in confirming whether the gripped material is a tumor. By conducting a discrimination test to assess the pulling force, an operator can distinguish the pulling-force resistance when attempting to pull off the soft material. Pulling-force feedback may help avoid the breaking of blood pipes when they are trapped in the gripper or attached to the gripped tissue. The finger-attachment device that was developed for detecting gripping- and pulling-force feedback may play an important role in the development of future neurosurgery robotic systems for precise and safe resection of brain tumors.

  1. Kinematic analysis of the snatch lift with elite female weightlifters during the 2010 World Weightlifting Championship.

    PubMed

    Akkuş, Hasan

    2012-04-01

    The objectives of this study were to determine the mechanical work, the power output, and the angular kinematics of the lower limb and the linear kinematics of the barbell during the first and second pulls in the snatch lift event of the 2010 Women's World Weightlifting Championship, an Olympic qualifying competition, and to compare the snatch performances of the women weightlifters to those reported in the literature. The heaviest successful snatch lifts of 7 female weightlifters who won gold medals were analyzed. The snatch lifts were recorded using 2 Super-Video Home System cameras (50 fields·s), and points on the body and the barbell were manually digitized using the Ariel Performance Analysis System. The results revealed that the duration of the first pull was significantly greater than the duration of the transition phase, the second pull, and the turnover under the barbell (p < 0.05). The maximum extension velocities of the lower limb in the second pull were significantly greater than the maximum extension velocities in the first pull. The fastest extensions were observed at the knee joint during the first pull and at the hip joint during the second pull (p < 0.05). The barbell trajectories for the heaviest snatch lifts of these elite female weightlifters were similar to those of men. The maximum vertical velocity of the barbell was greater during the second pull than in the first pull (p < 0.05). The mechanical work performed in the first pull was greater than the second pull, and the power output during the second pull was greater than that of the first pull (p < 0.05). Although the magnitudes of the barbell's linear kinematics, the angular kinematics of the lower limb, and other energy characteristics did not exactly reflect those reported in the literature, the snatch lift patterns of the elite women weightlifters were similar to those of male weightlifters.

  2. Dynamic push-pull characteristics at three hand-reach envelopes: applications for the workplace.

    PubMed

    Calé-Benzoor, Maya; Dickstein, Ruth; Arnon, Michal; Ayalon, Moshe

    2016-01-01

    Pushing and pulling are common tasks in the workplace. Overexertion injuries related to manual pushing and pulling are often observed, and therefore the understanding of work capacity is important for efficient and safe workstation design. The purpose of the present study was to describe workloads obtained during different reach envelopes during a seated push-pull task. Forty-five women performed an isokinetic push-pull sequence at two velocities. Strength, work and agonist/antagonist muscle ratio were calculated for the full range of motion (ROM). We then divided the ROM into three reach envelopes - neutral, medium, and maximum reach. The work capacity for each direction was determined and the reach envelope work data were compared. Push capability was best at medium reach envelope and pulling was best at maximum reach envelope. Push/pull strength ratio was approximately 1. A recommendation was made to avoid strenuous push-pull tasks at neutral reach envelopes. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  3. Study on cord/rubber interface at elevated temperatures by H-pull test method

    NASA Astrophysics Data System (ADS)

    Jamshidi, M.; Afshar, F.; Mohammadi, N.; Pourmahdian, S.

    2005-08-01

    Cords are used as reinforcing materials in rubber compounds. To increase cord/rubber interfacial adhesion, they are coated by an adhesive (usually based on resorcinol-formaldehyde-latex). These composites are used in many sectors such as tire and belt industries. Cord/rubber adhesion strength is an important aspect to determine the durability of system. Due to temperature increase during running tires, the adhesion energy becomes different from initial one. To study cord/rubber interface at elevated temperatures, H-adhesion test method was used. H-pull test is a simple method for adhesion evaluation at ambient temperature, so it is usually used for material quality control. In this research, cord/rubber systems were vulcanized at different temperatures and H-adhesion of samples were evaluated at elevated temperatures. Also cord/rubber interface was studied by ATR analyze to determine interfacial interactions kind.

  4. A review of high-efficiency silicon solar cells

    NASA Technical Reports Server (NTRS)

    Rohatgi, A.

    1986-01-01

    Various parameters that affect solar cell efficiency were discussed. It is not understood why solar cells produced from less expensive Czochralski (Cz) silicon are less efficient than cells fabricated from more expensive float-zone (Fz) silicon. Performance characteristics were presented for recently produced, high-efficient solar cells fabricated by Westinghouse Electric Corp., Spire Corp., University of New South Wales, and Stanford University.

  5. Effect of void shape in Czochralski-Si wafers on the intensity of laser-scattering

    NASA Astrophysics Data System (ADS)

    Takahashi, J.; Kawakami, K.; Nakai, K.

    2001-06-01

    The shape effect of anisotropic-shaped microvoid defects in Czochralski-grown silicon wafers on the intensity of laser scattering has been investigated. The size and shape of the defects were examined by means of transmission electron microscopy. Octahedral voids in conventional (nitrogen-undoped) wafers showed an almost isotropic scattering property under the incident condition of a p-polarization beam. On the other hand, parallelepiped-plate-shaped voids in nitrogen-doped wafers showed an anisotropic scattering property on both p- and s-polarized components of scattered light, depending strongly on the incident laser direction. The measured results were explained not by scattering calculation using Born approximation but by calculation based on Rayleigh scattering. It was found that the s component is explained by an inclination of a dipole moment induced on a defect from the scattering plane. Furthermore, using numerical electromagnetic analysis it was shown that the asymmetric behavior of the s component on the parallelepiped-plate voids is ascribed to the parallelepiped shape effect. These results suggest that correction of the scattering intensity is necessary to evaluate the size and volume of anisotropic-shaped defects from the scattered intensity.

  6. The effect of isolated dislocations on substrate and device properties in low-dislocation czochralski GaAs

    NASA Astrophysics Data System (ADS)

    Hunter, A. T.; Kimura, H.; Olsen, H. M.; Winston, H. V.

    1986-07-01

    Czochralski GaAs grown with In incorporated into the melt has large regions with fewer than 100 cm-2 dislocations. We have examined the effect of these dislocations on substrate and device properties. Infrared transmission images reveal dark filaments of high EL2 concentration a few tens of microns in diameter surrounding dislocations, Cathodo and photoluminescence images show orders of magnitude contrast in band-edge luminescence intensity near dislocations. Single dislocations appear to be surrounded by bright rings ˜200 μm in diameter in luminescence images, with dark spots 50 to 75 μm across centered on the dislocation. More complex luminescence structures with larger dark regions (˜150 μ across) and central bright spots are centered on small dislocation clusters. Differences in lifetime of photogenerated electrons or holes are the most likely cause of the luminescence contrast. Anneals typical of our post-implant processing substantially lower the luminescence contrast, suggesting the defect lowering the lifetime is removed by annealing. This may partially explain why we do not observe any effect of dislocation proximity on the properties of devices made in the material, in spite of the enormous luminescence contrast observed near dislocations.

  7. Reduction of oxygen concentration by heater design during Czochralski Si growth

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Chen, Wenliang; Li, Zhihui; Yue, Ruicun; Liu, Guowei; Huang, Xinming

    2018-02-01

    Oxygen is one of the highest-concentration impurities in single crystals grown by the Czochralski (CZ) process, and seriously impairs the quality of the Si wafer. In this study, computer simulations were applied to design a new CZ system. A more appropriate thermal field was acquired by optimization of the heater structure. The simulation results showed that, compared with the conventional system, the oxygen concentration in the newly designed CZ system was reduced significantly throughout the entire CZ process because of the lower crucible wall temperature and optimized convection. To verify the simulation results, experiments were conducted on an industrial single-crystal furnace. The experimental results showed that the oxygen concentration was reduced significantly, especially at the top of the CZ-Si ingot. Specifically, the oxygen concentration was 6.19 × 1017 atom/cm3 at the top of the CZ-Si ingot with the newly designed CZ system, compared with 9.22 × 1017 atom/cm3 with the conventional system. Corresponding light-induced degradation of solar cells based on the top of crystals from the newly designed CZ system was 1.62%, a reduction of 0.64% compared with crystals from the conventional system (2.26%).

  8. The Phenomenology of Hair Pulling Urges in Trichotillomania: A Comparative Approach

    PubMed Central

    Madjar, Shai; Sripada, Chandra S.

    2016-01-01

    Trichotillomania is a disorder characterized by recurrent urges to pull out one's hair, but the experiential characteristics of hair pulling urges are poorly understood. This study used a comparative approach to understand the subjective phenomenology of hair pulling: participants with trichotillomania symptoms were asked about their hair pulling urges as well as their urges to eat unhealthy foods. Participants who reported experiencing problematic unhealthy food urges were identified and asked to compare the phenomenological characteristics of their hair pulling and unhealthy food urges across a variety of dimensions. Results revealed significant differences for only some urge properties measured, and differences that existed were small to moderate in magnitude. Qualitative comparisons of the two urges revealed situational characteristics of hair pulling that could explain these small to moderate differences between the two urges. We conclude that hair pulling urges may be more comparable to ordinary urges such as unhealthy food urges than one might expect, but that hair pulling urges may nevertheless be rated as slightly more severe due to situational characteristics of these urges. This conception may improve clinician and lay understanding of the condition, assist with destigmatization efforts, and facilitate the development of treatment strategies. PMID:26925017

  9. Pulled Motzkin paths

    NASA Astrophysics Data System (ADS)

    Janse van Rensburg, E. J.

    2010-08-01

    In this paper the models of pulled Dyck paths in Janse van Rensburg (2010 J. Phys. A: Math. Theor. 43 215001) are generalized to pulled Motzkin path models. The generating functions of pulled Motzkin paths are determined in terms of series over trinomial coefficients and the elastic response of a Motzkin path pulled at its endpoint (see Orlandini and Whittington (2004 J. Phys. A: Math. Gen. 37 5305-14)) is shown to be R(f) = 0 for forces pushing the endpoint toward the adsorbing line and R(f) = f(1 + 2cosh f))/(2sinh f) → f as f → ∞, for forces pulling the path away from the X-axis. In addition, the elastic response of a Motzkin path pulled at its midpoint is shown to be R(f) = 0 for forces pushing the midpoint toward the adsorbing line and R(f) = f(1 + 2cosh (f/2))/sinh (f/2) → 2f as f → ∞, for forces pulling the path away from the X-axis. Formal combinatorial identities arising from pulled Motzkin path models are also presented. These identities are the generalization of combinatorial identities obtained in directed paths models to their natural trinomial counterparts.

  10. Awareness Enhancing and Monitoring Device plus Habit Reversal in the Treatment of Trichotillomania: An Open Feasibility Trial.

    PubMed

    Himle, Joseph A; Bybee, Deborah; O'Donnell, Lisa A; Weaver, Addie; Vlnka, Sarah; DeSena, Daniel T; Rimer, Jessica M

    2018-01-01

    Habit Reversal Therapy (HRT) is helpful for many persons suffering from trichotillomania. However successful habit reversal therapy requires awareness of hair pulling behaviors. Available methods to monitor hair pulling behaviors are less than ideal, particularly when sufferers are unaware of their pulling-related behaviors. This open feasibility trial included 20 persons with trichotillomania who were treated with nine weeks of HRT with experienced clinicians following a well-established HRT protocol. HRT was augmented with an electronic Awareness Enhancing and Monitoring Device (AEMD) designed to alert users of hand to head contact and to monitor the frequency of pulling-related behaviors. The AEMD included a neck unit and two wrist units, each equipped with vibrating alert functions. The results of the open trial revealed significant improvements in trichotillomania symptoms as measured by clinician and self-report rating scales. Most participants met study criteria for HRT completion and treatment effects were large. Participants reported that the AEMD, when operational, was effective in alerting participants to TTM-related behaviors. The monitoring function of the AEMD did not operate as designed. Subjective feedback focused on the AEMD concept was positive but AEMD reliability problems and complaints about the wearability the units were common. Recommendations for AEMD design modifications were included.

  11. Quantitative modeling of forces in electromagnetic tweezers

    NASA Astrophysics Data System (ADS)

    Bijamov, Alex; Shubitidze, Fridon; Oliver, Piercen M.; Vezenov, Dmitri V.

    2010-11-01

    This paper discusses numerical simulations of the magnetic field produced by an electromagnet for generation of forces on superparamagnetic microspheres used in manipulation of single molecules or cells. Single molecule force spectroscopy based on magnetic tweezers can be used in applications that require parallel readout of biopolymer stretching or biomolecular binding. The magnetic tweezers exert forces on the surface-immobilized macromolecule by pulling a magnetic bead attached to the free end of the molecule in the direction of the field gradient. In a typical force spectroscopy experiment, the pulling forces can range between subpiconewton to tens of piconewtons. In order to effectively provide such forces, an understanding of the source of the magnetic field is required as the first step in the design of force spectroscopy systems. In this study, we use a numerical technique, the method of auxiliary sources, to investigate the influence of electromagnet geometry and material parameters of the magnetic core on the magnetic forces pulling the target beads in the area of interest. The close proximity of the area of interest to the magnet body results in deviations from intuitive relations between magnet size and pulling force, as well as in the force decay with distance. We discuss the benefits and drawbacks of various geometric modifications affecting the magnitude and spatial distribution of forces achievable with an electromagnet.

  12. Designing a Double-Pole Nanoscale Relay Based on a Carbon Nanotube: A Theoretical Study

    NASA Astrophysics Data System (ADS)

    Mu, Weihua; Ou-Yang, Zhong-can; Dresselhaus, Mildred S.

    2017-08-01

    We theoretically investigate a novel and powerful double-pole nanoscale relay based on a carbon nanotube, which is one of the nanoelectromechanical switches being able to work under the strong nuclear radiation, and analyze the physical mechanism of the operating stages in the operation, including "pull in," "connection," and "pull back," as well as the key factors influencing the efficiency of the devices. We explicitly provide the analytical expression of the two important operation voltages, Vpull in and Vpull back , therefore clearly showing the dependence of the material properties and geometry of the present devices by the analytical method from basic physics, avoiding complex numerical calculations. Our method is easy to use in preparing the design guide for fabricating the present device and other nanoelectromechanical devices.

  13. Treatment of patients with a congenital transversal vaginal septum or a partial aplasia of the vagina. The vaginal pull-through versus the push-through technique.

    PubMed

    van Bijsterveldt, Chantal; Willemsen, Wim

    2009-06-01

    The aim of this study is to describe the different modalities of congenital obstructing vaginal malformations and the evaluation of techniques to solve the problem. A retrospective study. The University Hospital Nijmegen, the Netherlands. The medical records of 18 patients with congenital obstructive malformations of the vagina operated on by one gynecologist were retrospectively reviewed. The conditions were classified in three groups: group I with one uterus and vagina and with a transverse vaginal septum, group II with a partial vaginal agenesis and group III with a double genital system and a septum with occlusion of one vagina. Operating technique used, mold treatment after surgery, menstruation outflow, the possibility of having intercourse and the need for additional surgery. 18 patients were evaluated. Of 10 patients in group I, 8 patients were treated with the pull-through technique and 2 patients with the push-through technique. Four of the patients with a pull-through operation did not get mold treatment; of these patients, 3 needed repeat surgery because of the tendency for constriction. Of 4 patients in group II, 1 patient was treated with the pull-through technique and 3 with the push-through technique. The patient with the pull-through technique needed repeat surgery because of constriction. There was no mold treatment after the first procedure. Group III were 4 patients all treated with the pull-through technique. None of them received mold treatment, and none of these patients needed repeat surgery. The push-through method is a good surgical technique for the patients in whom problems of constriction after surgery are expected and for patients with difficulties during surgery. Mold treatment is recommended after surgery in patients with a thick transversal vaginal septum or a partial vaginal aplasia.

  14. Evaluation of the Viking-Cives towplow for winter maintenance.

    DOT National Transportation Integrated Search

    2014-01-01

    To maximize efficiency while minimizing costs within ODOTs winter maintenance budget, ODOT is : evaluating new methods of snow and ice removal. One method is the use of the Viking-Cives TowPlow. The : TowPlow is pulled behind a tandem axle truck a...

  15. Friction Pull Plug and Material Configuration for Anti-Chatter Friction Pull Plug Weld

    NASA Technical Reports Server (NTRS)

    Littell, Justin Anderson (Inventor)

    2016-01-01

    A friction pull plug is provided for use in forming a plug weld in a hole in a material. The friction pull plug includes a shank and a series of three frustoconical sections. The relative sizes of the sections assure that a central one of the sections defines the initial contact point between the hole's sides. The angle defined by the central one of the sections reduces or eliminates chatter as the plug is pulled into the hole.

  16. 29 CFR 1915.114 - Chain falls and pull-lifts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Chain falls and pull-lifts. 1915.114 Section 1915.114 Labor... and Materials Handling § 1915.114 Chain falls and pull-lifts. The provisions of this section shall apply to ship repairing, shipbuilding and shipbreaking. (a) Chain falls and pull-lifts shall be clearly...

  17. 29 CFR 1915.114 - Chain falls and pull-lifts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Chain falls and pull-lifts. 1915.114 Section 1915.114 Labor... and Materials Handling § 1915.114 Chain falls and pull-lifts. The provisions of this section shall apply to ship repairing, shipbuilding and shipbreaking. (a) Chain falls and pull-lifts shall be clearly...

  18. 29 CFR 1915.114 - Chain falls and pull-lifts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Chain falls and pull-lifts. 1915.114 Section 1915.114 Labor... and Materials Handling § 1915.114 Chain falls and pull-lifts. The provisions of this section shall apply to ship repairing, shipbuilding and shipbreaking. (a) Chain falls and pull-lifts shall be clearly...

  19. 29 CFR 1915.114 - Chain falls and pull-lifts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Chain falls and pull-lifts. 1915.114 Section 1915.114 Labor... and Materials Handling § 1915.114 Chain falls and pull-lifts. The provisions of this section shall apply to ship repairing, shipbuilding and shipbreaking. (a) Chain falls and pull-lifts shall be clearly...

  20. 29 CFR 1915.114 - Chain falls and pull-lifts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Chain falls and pull-lifts. 1915.114 Section 1915.114 Labor... and Materials Handling § 1915.114 Chain falls and pull-lifts. The provisions of this section shall apply to ship repairing, shipbuilding and shipbreaking. (a) Chain falls and pull-lifts shall be clearly...

  1. Pull-out simulations of a capped carbon nanotube in carbon nanotube-reinforced nanocomposites

    NASA Astrophysics Data System (ADS)

    Li, Y.; Liu, S.; Hu, N.; Han, X.; Zhou, L.; Ning, H.; Wu, L.; Alamusi, Yamamoto, G.; Chang, C.; Hashida, T.; Atobe, S.; Fukunaga, H.

    2013-04-01

    Systematic atomic simulations based on molecular mechanics were conducted to investigate the pull-out behavior of a capped carbon nanotube (CNT) in CNT-reinforced nanocomposites. Two common cases were studied: the pull-out of a complete CNT from a polymer matrix in a CNT/polymer nanocomposite and the pull-out of the broken outer walls of a CNT from the intact inner walls (i.e., the sword-in-sheath mode) in a CNT/alumina nanocomposite. By analyzing the obtained relationship between the energy increment (i.e., the difference in the potential energy between two consecutive pull-out steps) and the pull-out displacement, a set of simple empirical formulas based on the nanotube diameter was developed to predict the corresponding pull-out force. The predictions from these formulas are quite consistent with the experimental results. Moreover, the much higher pull-out force for a capped CNT than that of the corresponding open-ended CNT implies a significant contribution from the CNT cap to the interfacial properties of the CNT-reinforced nanocomposites. This finding provides a valuable insight for designing nanocomposites with desirable mechanical properties.

  2. Enhanced Basicity of Push-Pull Nitrogen Bases in the Gas Phase.

    PubMed

    Raczyńska, Ewa D; Gal, Jean-François; Maria, Pierre-Charles

    2016-11-23

    Nitrogen bases containing one or more pushing amino-group(s) directly linked to a pulling cyano, imino, or phosphoimino group, as well as those in which the pushing and pulling moieties are separated by a conjugated spacer (C═X) n , where X is CH or N, display an exceptionally strong basicity. The n-π conjugation between the pushing and pulling groups in such systems lowers the basicity of the pushing amino-group(s) and increases the basicity of the pulling cyano, imino, or phosphoimino group. In the gas phase, most of the so-called push-pull nitrogen bases exhibit a very high basicity. This paper presents an analysis of the exceptional gas-phase basicity, mostly in terms of experimental data, in relation with structure and conjugation of various subfamilies of push-pull nitrogen bases: nitriles, azoles, azines, amidines, guanidines, vinamidines, biguanides, and phosphazenes. The strong basicity of biomolecules containing a push-pull nitrogen substructure, such as bioamines, amino acids, and peptides containing push-pull side chains, nucleobases, and their nucleosides and nucleotides, is also analyzed. Progress and perspectives of experimental determinations of GBs and PAs of highly basic compounds, termed as "superbases", are presented and benchmarked on the basis of theoretical calculations on existing or hypothetical molecules.

  3. Experimental Investigations on the Pull-Out Behavior of Tire Strips Reinforced Sands.

    PubMed

    Li, Li-Hua; Chen, Yan-Jun; Ferreira, Pedro Miguel Vaz; Liu, Yong; Xiao, Heng-Lin

    2017-06-27

    Waste tires have excellent mechanical performance and have been used as reinforcing material in geotechnical engineering; however, their interface properties are poorly understood. To further our knowledge, this paper examines the pull-out characteristics of waste tire strips in a compacted sand, together with uniaxial and biaxial geogrids also tested under the same conditions. The analysis of the results shows that the interlocking effect and pull-out resistance between the tire strip and the sand is very strong and significantly higher than that of the geogrids. In the early stages of the pull-out test, the resistance is mainly provided by the front portion of the embedded tire strips, as the pull-out test continues, more and more of the areas towards the end of the tire strips are mobilized, showing a progressive failure mechanism. The deformations are proportional to the frictional resistance between the tire-sand interface, and increase as the normal stresses increase. Tire strips of different wear intensities were tested and presented different pull-out resistances; however, the pull-out resistance mobilization patterns were generally similar. The pull-out resistance values obtained show that rubber reinforcement can provide much higher pull-out forces than the geogrid reinforcements tested here, showing that waste tires are an excellent alternative as a reinforcing system, regardless of the environmental advantages.

  4. Bond Strength of Composite CFRP Reinforcing Bars in Timber

    PubMed Central

    Corradi, Marco; Righetti, Luca; Borri, Antonio

    2015-01-01

    The use of near-surface mounted (NSM) fibre-reinforced polymer (FRP) bars is an interesting method for increasing the shear and flexural strength of existing timber members. This article examines the behaviour of carbon FRP (CFRP) bars in timber under direct pull-out conditions. The objective of this experimental program is to investigate the bond strength between composite bars and timber: bars were epoxied into small notches made into chestnut and fir wood members using a commercially-available epoxy system. Bonded lengths varied from 150 to 300 mm. Failure modes, stress and strain distributions and the bond strength of CFRP bars have been evaluated and discussed. The pull-out capacity in NSM CFRP bars at the onset of debonding increased with bonded length up to a length of 250 mm. While CFRP bar’s pull-out was achieved only for specimens with bonded lengths of 150 and 200 mm, bar tensile failure was mainly recorded for bonded lengths of 250 and 300 mm. PMID:28793423

  5. Method and device for determining bond separation strength using induction heating

    NASA Technical Reports Server (NTRS)

    Coultrip, Robert H. (Inventor); Johnson, Samuel D. (Inventor); Copeland, Carl E. (Inventor); Phillips, W. Morris (Inventor); Fox, Robert L. (Inventor)

    1994-01-01

    An induction heating device includes an induction heating gun which includes a housing, a U-shaped pole piece having two spaced apart opposite ends defining a gap there between, the U-shaped pole piece being mounted in one end of the housing, and a tank circuit including an induction coil wrapped around the pole piece and a capacitor connected to the induction coil. A power source is connected to the tank circuit. A pull test machine is provided having a stationary chuck and a movable chuck, the two chucks holding two test pieces bonded together at a bond region. The heating gun is mounted on the pull test machine in close proximity to the bond region of the two test pieces, whereby when the tank circuit is energized, the two test pieces are heated by induction heating while a tension load is applied to the two test pieces by the pull test machine to determine separation strength of the bond region.

  6. Economic feeder for recharging and ``topping off''

    NASA Astrophysics Data System (ADS)

    Fickett, Bryan; Mihalik, G.

    2000-04-01

    Increasing the size of the melt charge significantly increases yield and reduces costs. Siemens Solar Industries is optimizing a method to charge additional material after meltdown (top-off) using an external feeder system. A prototype feeder system was fabricated consisting of a hopper and feed delivery system. The low-cost feeder is designed for simple operation and maintenance. The system is capable of introducing up to 60 kg of granular silicon while under vacuum. An isolation valve permits refilling of the hopper while maintaining vacuum in the growth furnace. Using the feeder system in conjunction with Siemens Solar Industries' energy efficient hot zone dramatically reduces power and argon consumption. Throughput is also improved as faster pull speeds can be attained. The increased pull speeds have an even greater impact when the charge size is increased. Further cost reduction can be achieved by refilling the crucible after crystal growth and pulling a second ingot run. Siemens Solar Industries is presently testing the feeder in production.

  7. A new model for the initiation, crustal architecture, and extinction of pull-apart basins

    NASA Astrophysics Data System (ADS)

    van Wijk, J.; Axen, G. J.; Abera, R.

    2015-12-01

    We present a new model for the origin, crustal architecture, and evolution of pull-apart basins. The model is based on results of three-dimensional upper crustal numerical models of deformation, field observations, and fault theory, and answers many of the outstanding questions related to these rifts. In our model, geometric differences between pull-apart basins are inherited from the initial geometry of the strike-slip fault step which results from early geometry of the strike-slip fault system. As strike-slip motion accumulates, pull-apart basins are stationary with respect to underlying basement and the fault tips may propagate beyond the rift basin. Our model predicts that the sediment source areas may thus migrate over time. This implies that, although pull-apart basins lengthen over time, lengthening is accommodated by extension within the pull-apart basin, rather than formation of new faults outside of the rift zone. In this aspect pull-apart basins behave as narrow rifts: with increasing strike-slip the basins deepen but there is no significant younging outward. We explain why pull-apart basins do not go through previously proposed geometric evolutionary stages, which has not been documented in nature. Field studies predict that pull-apart basins become extinct when an active basin-crossing fault forms; this is the most likely fate of pull-apart basins, because strike-slip systems tend to straighten. The model predicts what the favorable step-dimensions are for the formation of such a fault system, and those for which a pull-apart basin may further develop into a short seafloor-spreading ridge. The model also shows that rift shoulder uplift is enhanced if the strike-slip rate is larger than the fault-propagation rate. Crustal compression then contributes to uplift of the rift flanks.

  8. History, rare, and multiple events of mechanical unfolding of repeat proteins

    NASA Astrophysics Data System (ADS)

    Sumbul, Fidan; Marchesi, Arin; Rico, Felix

    2018-03-01

    Mechanical unfolding of proteins consisting of repeat domains is an excellent tool to obtain large statistics. Force spectroscopy experiments using atomic force microscopy on proteins presenting multiple domains have revealed that unfolding forces depend on the number of folded domains (history) and have reported intermediate states and rare events. However, the common use of unspecific attachment approaches to pull the protein of interest holds important limitations to study unfolding history and may lead to discarding rare and multiple probing events due to the presence of unspecific adhesion and uncertainty on the pulling site. Site-specific methods that have recently emerged minimize this uncertainty and would be excellent tools to probe unfolding history and rare events. However, detailed characterization of these approaches is required to identify their advantages and limitations. Here, we characterize a site-specific binding approach based on the ultrastable complex dockerin/cohesin III revealing its advantages and limitations to assess the unfolding history and to investigate rare and multiple events during the unfolding of repeated domains. We show that this approach is more robust, reproducible, and provides larger statistics than conventional unspecific methods. We show that the method is optimal to reveal the history of unfolding from the very first domain and to detect rare events, while being more limited to assess intermediate states. Finally, we quantify the forces required to unfold two molecules pulled in parallel, difficult when using unspecific approaches. The proposed method represents a step forward toward more reproducible measurements to probe protein unfolding history and opens the door to systematic probing of rare and multiple molecule unfolding mechanisms.

  9. Oscillating-Crucible Technique for Silicon Growth

    NASA Technical Reports Server (NTRS)

    Daud, T.; Dumas, K. A.; Kim, K. M.; Schwuttke, G. H.; Smetana, P.

    1984-01-01

    Technique yields better mixing of impurities and superior qualiity crystals. Accellerated motion stirs melt which reduces temperature gradients and decreases boundary layer for diffusion of impurities near growing surface. Results better mixing of impurities into melt, decrease in tendency for dendritic growth or cellular growth and crystals with low dislocation density. Applied with success to solution growth and Czochralski growth, resulting in large crystals of superior quality.

  10. The low thermal gradient CZ technique as a way of growing of dislocation-free germanium crystals

    NASA Astrophysics Data System (ADS)

    Moskovskih, V. A.; Kasimkin, P. V.; Shlegel, V. N.; Vasiliev, Y. V.; Gridchin, V. A.; Podkopaev, O. I.

    2014-09-01

    This paper considers the possibility of growth of dislocation-free germanium single crystals. This is achieved by reducing the temperature gradients at the level of 1 K/cm and lower. Single germanium crystals 45-48 mm in diameter with a dislocation density of 102 cm-2 were grown by a Low Thermal Gradient Czochralski technique (LTG CZ).

  11. Experiment and density functional theory analyses of GdTaO4 single crystal

    NASA Astrophysics Data System (ADS)

    Ding, Shoujun; Kinross, Ashlie; Wang, Xiaofei; Yang, Huajun; Zhang, Qingli; Liu, Wenpeng; Sun, Dunlu

    2018-05-01

    GdTaO4 is a type of excellent materials that can be used as scintillation, laser matrix as well as self-activated phosphor has generated significant interest. Whereas its band structure, electronic structure and optical properties are still need elucidation. To solve this intriguing problem, high-quality GdTaO4 single crystal (M-type) was grown successfully using Czochralski method. Its structure as well as optical properties was determined in experiment. Moreover, a systematic theoretical calculation based on the density function theory methods were performed on M-type and M‧-type GdTaO4 and their band structure, density of state as well as optical properties were obtained. Combine with the performed experiment results, the calculated results were proved with high reliability. Hence, the calculated results obtained in this work could provide a deep understanding of GdTaO4 material, which also useful for the further investigation on GdTaO4 material.

  12. 75 FR 52263 - Airworthiness Directives; Empresa Brasileira de Aeronautica S.A. (EMBRAER) Model ERJ 170...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ...] during its retraction. In case of RAT failure or malfunction, it will not provide electrical power to... [the] aircraft, due to downlock pin not [being] pull[ed] during its retraction. In case of RAT failure... [being] pull[ed] during its retraction. In case of RAT failure or malfunction, it will not provide...

  13. Self-Induced Backaction Optical Pulling Force

    NASA Astrophysics Data System (ADS)

    Zhu, Tongtong; Cao, Yongyin; Wang, Lin; Nie, Zhongquan; Cao, Tun; Sun, Fangkui; Jiang, Zehui; Nieto-Vesperinas, Manuel; Liu, Yongmin; Qiu, Cheng-Wei; Ding, Weiqiang

    2018-03-01

    We achieve long-range and continuous optical pulling in a periodic photonic crystal background, which supports a unique Bloch mode with the self-collimation effect. Most interestingly, the pulling force reported here is mainly contributed by the intensity gradient force originating from the self-induced backaction of the object to the self-collimation mode. This force is sharply distinguished from the widely held conception of optical tractor beams based on the scattering force. Also, this pulling force is insensitive to the angle of incidence and can pull multiple objects simultaneously.

  14. Analysis of Carbon Nanotube Pull-out from a Polymer Matrix

    NASA Technical Reports Server (NTRS)

    Frankland, S. J. V.; Harik, V. M.; Bushnell, Dennis M. (Technical Monitor)

    2002-01-01

    Molecular dynamics (MD) simulations of carbon nanotube (NT) pull-out from a polymer matrix are carried out. As the NT pull-out develops in the simulation, variations in the displacement and velocities of the NT are monitored. The existence of a carbon-ring-based period in NT sliding during pull-out is identified. Linear trends in the NT velocity-force relation are observed and used to estimate an effective viscosity coefficient for interfacial sliding at the NT/polymer interface. As a result, the entire process of NT pull-out is characterized by an interfacial friction model that is based on a critical pull-out force, and an analog of Newton's friction law used to describe the NT/polymer interfacial sliding.

  15. Growth, spectroscopic properties and laser output of Er : Ca 4YO(BO 3) 3 and Er : Yb : Ca 4YO(BO 3) 3 crystals

    NASA Astrophysics Data System (ADS)

    Zhang, Huaijin; Meng, Xianlin; Wang, Changqing; Wang, Pu; Zhu, Li; Liu, Xuesong; Dong, Chunming; Yang, Yuyong; Cheng, Ruiping; Dawes, Judith; Piper, Jim; Zhang, Shaojun; Sun, Lianke

    2000-09-01

    In this paper, Er : Ca 4YO(BO 3) 3 (Er : YCOB) and Er : Yb : Ca 4YO(BO 3) 3 (Er : Yb : YCOB) crystals with large size and excellent quality have been grown by the Czochralski method. The absorption and emission spectra of Er : YCOB and Er : Yb : YCOB crystals have been measured; the emission spectrum of Er : Yb : YCOB crystal shows that the strongest emission peak is located at 1537 nm. An output power of about 2 mW at the wavelength of 1553 nm has been obtained under the pumping power of a fiber-coupled laser diode (LD) of 1600 mW at 976 nm, using a Y direction cut 2.5 mm thick Er : Yb : YCOB crystal sample.

  16. Polarized spectral properties and 1.5-1.6 μm laser operation of Er:Sr3Yb2(BO3)4 crystal

    NASA Astrophysics Data System (ADS)

    Lin, F. L.; Huang, J. H.; Chen, Y. J.; Gong, X. H.; Lin, Y. F.; Luo, Z. D.; Huang, Y. D.

    2013-10-01

    Undoped and Er3+-doped Sr3Yb2(BO3)4 crystals were grown by the Czochralski method. Room temperature polarized spectral properties of the Er:Sr3Yb2(BO3)4 crystal were investigated. The efficiency of the energy transfer from Yb3+ to Er3+ ions in this crystal was calculated to be about 95%. End-pumped by a diode laser at 970 nm in a hemispherical cavity, a 0.75 W quasi-CW laser at 1.5-1.6 μm with a slope efficiency of 7% and an absorbed pump threshold of 3.8 W was achieved in a 0.5-mm-thick Z-cut crystal glued on a 5-mm-thick pure YAG crystal with UV-curable adhesive.

  17. Optical study of Tm-doped solid solution (Sc0.5Y0.5)2SiO5 crystal

    NASA Astrophysics Data System (ADS)

    Shi, Jiaojiao; Liu, Bin; Zheng, Lihe; Wang, Qingguo; Tang, Huili; Liu, Junfang; Su, Liangbi; Wu, Feng; Zhao, Hengyu; He, Nuotian; Li, Na; Li, Qiu; Guo, Chao; Xu, Jun; Yang, Kejian; Xu, Xiaodong; Ryba-Romanowski, Witold; Lisiecki, Radosław; Solarz, Piotr

    2018-04-01

    Tm-doped (Sc0.5Y0.5)2SiO5 (SYSO) crystals were grown by Czochralski method. The UV-VIR-NIR absorption spectra and the near-infrared emission spectra were measured and analysed by the Judd-Ofelt approach. Temperature influence on both absorption and emission spectra has been determined from the data recorded at room temperature and 10 K. It has been found that the structural disorder resulting from dissimilar ionic radii of Sc3+ and Y3+ in the solid solution (Sc0.5Y0.5)2SiO5 crystal brings about a strong inhomogeneous broadening of Tm3+ ions spectra. However, it affects the excited state relaxation dynamics inherent to thulium-doped Y2SiO5 and Sc2SiO5 hosts weakly.

  18. Spectral and laser properties of Er3+/Yb3+/Ce3+ tri-doped Ca3NbGa3Si2O14 crystal at 1.55 µm

    NASA Astrophysics Data System (ADS)

    Gong, Guoliang; Chen, Yujin; Lin, Yanfu; Huang, Jianhua; Gong, Xinghong; Luo, Zundu; Huang, Yidong

    2018-04-01

    An Er3+/Yb3+/Ce3+ tri-doped Ca3NbGa3Si2O14 (CNGS) crystal was grown by the Czochralski method. Spectral properties of the crystal, including the polarized absorption and fluorescence spectra, the fluorescence decay, as well as the energy transfer efficiency from Yb3+ to Er3+ were investigated in detail. End-pumped by a 976 nm diode laser, a 1556 nm continuous-wave laser with a maximum output power of 202 mW and a slope efficiency of 11.4% was achieved in the Er,Yb,Ce:CNGS crystal. The results indicate the Er,Yb,Ce:CNGS crystal is a promising 1.55 µm laser gain medium.

  19. Study on growth techniques and macro defects of large-size Nd:YAG laser crystal

    NASA Astrophysics Data System (ADS)

    Quan, Jiliang; Yang, Xin; Yang, Mingming; Ma, Decai; Huang, Jinqiang; Zhu, Yunzhong; Wang, Biao

    2018-02-01

    Large-size neodymium-doped yttrium aluminum garnet (Nd:YAG) single crystals were grown by the Czochralski method. The extinction ratio and wavefront distortion of the crystal were tested to determine the optical homogeneity. Moreover, under different growth conditions, the macro defects of inclusion, striations, and cracking in the as-grown Nd:YAG crystals were analyzed. Specifically, the inclusion defects were characterized using scanning electron microscopy and energy dispersive spectroscopy. The stresses of growth striations and cracking were studied via a parallel plane polariscope. These results demonstrate that improper growth parameters and temperature fields can enhance defects significantly. Thus, by adjusting the growth parameters and optimizing the thermal environment, high-optical-quality Nd:YAG crystals with a diameter of 80 mm and a total length of 400 mm have been obtained successfully.

  20. Laser-zone Growth in a Ribbon-to-ribbon (RTR) Process Silicon Sheet Growth Development for the Large Area Silicon Sheet Task of the Low Cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Baghdadi, A.; Gurtler, R. W.; Legge, R.; Sopori, B.; Rice, M. J.; Ellis, R. J.

    1979-01-01

    A technique for growing limited-length ribbons continually was demonstrated. This Rigid Edge technique can be used to recrystallize about 95% of the polyribbon feedstock. A major advantage of this method is that only a single, constant length silicon ribbon is handled throughout the entire process sequence; this may be accomplished using cassettes similar to those presently in use for processing Czochralski waters. Thus a transition from Cz to ribbon technology can be smoothly affected. The maximum size being considered, 3 inches x 24 inches, is half a square foot, and will generate 6 watts for 12% efficiency at 1 sun. Silicon dioxide has been demonstrated as an effective, practical diffusion barrier for use during the polyribbon formation.

  1. Impact of Lu/Gd ratio and activator concentration on structure and scintillation properties of LGSO:Ce crystals

    NASA Astrophysics Data System (ADS)

    Sidletskiy, O.; Bondar, V.; Grinyov, B.; Kurtsev, D.; Baumer, V.; Belikov, K.; Katrunov, K.; Starzhinsky, N.; Tarasenko, O.; Tarasov, V.; Zelenskaya, O.

    2010-02-01

    We have studied the dependence of structural and scintillation characteristics of Lu 2 xGd 2-2 xSiO 5:Ce (LGSO:Ce) crystals on cation composition. LGSO:Ce crystals at x=0-1 have been obtained by the Czochralski method. We report here a strong correlation between ionic radii of trivalent cations and their distribution between non-equivalent sites in lattice. By choosing the optimal Lu/Gd ratio and Ce concentration we were able to obtain the light output by˜70%, as compared to LSO:Ce crystals, and energy resolution ˜7 at% 662 KeV ( 137Cs); the afterglow level was decreased by 1-3 orders of magnitude as compared to LSO:Ce. We also discuss the possible mechanisms of control on scintillation characteristics of mixed orthosilicates.

  2. Optimization of the cooling profile to achieve crack-free Yb:S-FAP crystals

    NASA Astrophysics Data System (ADS)

    Fang, H. S.; Qiu, S. R.; Zheng, L. L.; Schaffers, K. I.; Tassano, J. B.; Caird, J. A.; Zhang, H.

    2008-08-01

    Yb:S-FAP [Yb 3+:Sr 5(PO 4) 3F] crystals are an important gain medium for diode-pumped laser applications. Growth of 7.0 cm diameter Yb:S-FAP crystals utilizing the Czochralski (CZ) method from SrF 2-rich melts often encounters cracks during the post-growth cool-down stage. To suppress cracking during cool-down, a numerical simulation of the growth system was used to understand the correlation between the furnace power during cool-down and the radial temperature differences within the crystal. The critical radial temperature difference, above which the crystal cracks, has been determined by benchmarking the simulation results against experimental observations. Based on this comparison, an optimal three-stage ramp-down profile was implemented, which produced high-quality, crack-free Yb:S-FAP crystals.

  3. Evolutionary selection growth of two-dimensional materials on polycrystalline substrates

    DOE PAGES

    Vlassiouk, Ivan V.; Stehle, Yijing; Pudasaini, Pushpa Raj; ...

    2018-03-12

    There is a demand for the manufacture of two-dimensional (2D) materials with high-quality single crystals of large size. Usually, epitaxial growth is considered the method of choice in preparing single-crystalline thin films, but it requires single-crystal substrates for deposition. Here in this paper we present a different approach and report the synthesis of single-crystal-like monolayer graphene films on polycrystalline substrates. The technological realization of the proposed method resembles the Czochralski process and is based on the evolutionary selection approach, which is now realized in 2D geometry. The method relies on ‘self-selection’ of the fastest-growing domain orientation, which eventually overwhelms themore » slower-growing domains and yields a single-crystal continuous 2D film. Here we have used it to synthesize foot-long graphene films at rates up to 2.5 cm h -1 that possess the quality of a single crystal. We anticipate that the proposed approach could be readily adopted for the synthesis of other 2D materials and heterostructures.« less

  4. Evolutionary selection growth of two-dimensional materials on polycrystalline substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlassiouk, Ivan V.; Stehle, Yijing; Pudasaini, Pushpa Raj

    There is a demand for the manufacture of two-dimensional (2D) materials with high-quality single crystals of large size. Usually, epitaxial growth is considered the method of choice in preparing single-crystalline thin films, but it requires single-crystal substrates for deposition. Here in this paper we present a different approach and report the synthesis of single-crystal-like monolayer graphene films on polycrystalline substrates. The technological realization of the proposed method resembles the Czochralski process and is based on the evolutionary selection approach, which is now realized in 2D geometry. The method relies on ‘self-selection’ of the fastest-growing domain orientation, which eventually overwhelms themore » slower-growing domains and yields a single-crystal continuous 2D film. Here we have used it to synthesize foot-long graphene films at rates up to 2.5 cm h -1 that possess the quality of a single crystal. We anticipate that the proposed approach could be readily adopted for the synthesis of other 2D materials and heterostructures.« less

  5. A new isometric quadriceps-strengthening exercise using EMG-biofeedback.

    PubMed

    Kesemenli, Cumhur C; Sarman, Hakan; Baran, Tuncay; Memisoglu, Kaya; Binbir, Ismail; Savas, Yilmaz; Isik, Cengiz; Boyraz, Ismail; Koc, Bunyamin

    2014-01-01

    A new isometric contraction quadriceps-strengthening exercise was developed to restore the quadriceps strength lost after knee surgery more rapidly. This study evaluated the results of this new method. Patients were taught to perform the isometric quadriceps-strengthening exercise in the unaffected knee in the supine position, and then they performed it in the affected knee. First, patients were taught the classical isometric quadriceps-strengthening exercise, and then they were taught our new alternative method: "pull the patella superiorly tightly and hold the leg in the same position for 10 seconds". Afterward, the quadriceps contraction was evaluated using a non-invasive Myomed 932 EMG-biofeedback device (Enraf-Nonius, The Netherlands) with gel-containing 48 mm electrodes (Türklab, The Turkey) placed on both knees. The isometric quadriceps-strengthening exercise performed using our new method had stronger contraction than the classical method (P < 0.01). The new method involving pulling the patella superiorly appears to be a better choice, which can be applied easily, leading to better patient compliance and greater quadriceps force after arthroscopic and other knee surgeries.

  6. Experimental models for cancellous bone healing in the rat

    PubMed Central

    Bernhardsson, Magnus; Sandberg, Olof; Aspenberg, Per

    2015-01-01

    Background and purpose — Cancellous bone appears to heal by mechanisms different from shaft fracture healing. There is a paucity of animal models for fractures in cancellous bone, especially with mechanical evaluation. One proposed model consists of a screw in the proximal tibia of rodents, evaluated by pull-out testing. We evaluated this model in rats by comparing it to the healing of empty drill holes, in order to explain its relevance for fracture healing in cancellous bone. To determine the sensitivity to external influences, we also compared the response to drugs that influence bone healing. Methods — Mechanical fixation of the screws was measured by pull-out test and related to the density of the new bone formed around similar, but radiolucent, PMMA screws. The pull-out force was also related to the bone density in drill holes at various time points, as measured by microCT. Results — The initial bone formation was similar in drill holes and around the screw, and appeared to be reflected by the pull-out force. Both models responded similarly to alendronate or teriparatide (PTH). Later, the models became different as the bone that initially filled the drill hole was resorbed to restore the bone marrow cavity, whereas on the implant surface a thin layer of bone remained, making it change gradually from a trauma-related model to an implant fixation model. Interpretation — The similar initial bone formation in the different models suggests that pull-out testing in the screw model is relevant for assessment of metaphyseal bone healing. The subsequent remodeling would not be of clinical relevance in either model. PMID:26200395

  7. Which is the preferred revision technique for loosened iliac screw? A novel technique of boring cement injection from the outer cortical shell.

    PubMed

    Yu, Bin-Sheng; Yang, Zhan-Kun; Li, Ze-Min; Zeng, Li-Wen; Wang, Li-Bing; Lu, William Weijia

    2011-08-01

    An in vitro biomechanical cadaver study. To evaluate the pull-out strength after 5000 cyclic loading among 4 revision techniques for the loosened iliac screw using corticocancellous bone, longer screw, traditional cement augmentation, and boring cement augmentation. Iliac screw loosening is still a clinical problem for lumbo-iliac fusion. Although many revision techniques using corticocancellous bone, larger screw, and polymethylmethacrylate (PMMA) augmentation were applied in repairing pedicle screw loosening, their biomechanical effects on the loosened iliac screw remain undetermined. Eight fresh human cadaver pelvises with the bone mineral density values ranging from 0.83 to 0.97 g/cm were adopted in this study. After testing the primary screw of 7.5 mm diameter and 70 mm length, 4 revision techniques were sequentially established and tested on the same pelvis as follows: corticocancellous bone, longer screw with 100 mm length, traditional PMMA augmentation, and boring PMMA augmentation. The difference of the boring technique from traditional PMMA augmentation is that PMMA was injected into the screw tract through 3 boring holes of outer cortical shell without removing the screw. On an MTS machine, after 5000 cyclic compressive loading of -200∼-500 N to the screw head, axial maximum pull-out strengths of the 5 screws were measured and analyzed. The pull-out strengths of the primary screw and 4 revised screws with corticocancellous bone, longer screw and traditional and boring PMMA augmentation were 1167 N, 361 N, 854 N, 1954 N, and 1820 N, respectively. Although longer screw method obtained significantly higher pull-out strength than corticocancellous bone (P<0.05), the revised screws using these 2 techniques exhibited notably lower pull-out strength than the primary screw and 2 PMMA-augmented screws (P<0.05). Either traditional or boring PMMA screw showed obviously higher pull-out strength than the primary screw (P<0.05); however, no significant difference of pull-out strength was detected between the 2 PMMA screws (P>0.05). Wadding corticocancellous bone and increasing screw length failed to provide sufficient anchoring strength for a loosened iliac screw; however, both traditional and boring PMMA-augmented techniques could effectively increase the fixation strength. On the basis of the viewpoint of minimal invasion, the boring PMMA augmentation may serve as a suitable salvage technique for iliac screw loosening.

  8. Pull-in instability of paddle-type and double-sided NEMS sensors under the accelerating force

    NASA Astrophysics Data System (ADS)

    Keivani, M.; Khorsandi, J.; Mokhtari, J.; Kanani, A.; Abadian, N.; Abadyan, M.

    2016-02-01

    Paddle-type and double-sided nanostructures are potential for use as accelerometers in flying vehicles and aerospace applications. Herein the pull-in instability of the cantilever paddle-type and double-sided sensors in the Casimir regime are investigated under the acceleration. The D'Alembert principle is employed to transform the accelerating system into an equivalent static system by incorporating the accelerating force. Based on the couple stress theory (CST), the size-dependent constitutive equations of the sensors are derived. The governing nonlinear equations are solved by two approaches, i.e. modified variational iteration method and finite difference method. The influences of the Casimir force, geometrical parameters, acceleration and the size phenomenon on the instability performance have been demonstrated. The obtained results are beneficial to design and fabricate paddle-type and double-sided accelerometers.

  9. BiFC Assay to Detect Calmodulin Binding to Plant Receptor Kinases.

    PubMed

    Fischer, Cornelia; Sauter, Margret; Dietrich, Petra

    2017-01-01

    Plant receptor-like kinases (RLKs) are regulated at various levels including posttranscriptional modification and interaction with regulatory proteins. Calmodulin (CaM) is a calcium-sensing protein that was shown to bind to some RLKs such as the PHYTOSULFOKINE RECEPTOR1 (PSKR1). The CaM-binding site is embedded in subdomain VIa of the kinase domain. It is possible that many more of RLKs interact with CaM than previously described. To unequivocally confirm CaM binding, several methods exist. Bimolecular fluorescence complementation (BiFC) and pull-down assays have been successfully used to study CaM binding to PSKR1 and are described in this chapter (BiFC) and in Chapter 15 (pull down). The two methods are complementary. BiFC is useful to show localization and interaction of soluble as well as of membrane-bound proteins in planta.

  10. Automated multi-plug filtration cleanup for liquid chromatographic-tandem mass spectrometric pesticide multi-residue analysis in representative crop commodities.

    PubMed

    Qin, Yuhong; Zhang, Jingru; Zhang, Yuan; Li, Fangbing; Han, Yongtao; Zou, Nan; Xu, Haowei; Qian, Meiyuan; Pan, Canping

    2016-09-02

    An automated multi-plug filtration cleanup (m-PFC) method on modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) extracts was developed. The automatic device was aimed to reduce labor-consuming manual operation workload in the cleanup steps. It could control the volume and the speed of pulling and pushing cycles accurately. In this work, m-PFC was based on multi-walled carbon nanotubes (MWCNTs) mixed with other sorbents and anhydrous magnesium sulfate (MgSO4) in a packed tip for analysis of pesticide multi-residues in crop commodities followed by liquid chromatography with tandem mass spectrometric (LC-MS/MS) detection. It was validated by analyzing 25 pesticides in six representative matrices spiked at two concentration levels of 10 and 100μg/kg. Salts, sorbents, m-PFC procedure, automated pulling and pushing volume, automated pulling speed, and pushing speed for each matrix were optimized. After optimization, two general automated m-PFC methods were introduced to relatively simple (apple, citrus fruit, peanut) and relatively complex (spinach, leek, green tea) matrices. Spike recoveries were within 83 and 108% and 1-14% RSD for most analytes in the tested matrices. Matrix-matched calibrations were performed with the coefficients of determination >0.997 between concentration levels of 10 and 1000μg/kg. The developed method was successfully applied to the determination of pesticide residues in market samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. An on-line push/pull perfusion-based hollow-fiber liquid-phase microextraction system for high-performance liquid chromatographic determination of alkylphenols in water samples.

    PubMed

    Chao, Yu-Ying; Jian, Zhi-Xuan; Tu, Yi-Ming; Wang, Hsaio-Wen; Huang, Yeou-Lih

    2013-06-07

    In this study, we employed a novel on-line method, push/pull perfusion hollow-fiber liquid-phase microextraction (PPP-HF-LPME), to extract 4-tert-butylphenol, 2,4-di-tert-butylphenol, 4-n-nonylphenol, and 4-n-octylphenol from river and tap water samples; we then separated and quantified the extracted analytes through high-performance liquid chromatography (HPLC). Using this approach, we overcame the problem of fluid loss across the porous HF membrane to the donor phase, permitting on-line coupling of HF-LPME to HPLC. In our PPP-HF-LPME system, we used a push/pull syringe pump as the driving source to perfuse the acceptor phase, while employing a heating mantle and an ultrasonic probe to accelerate mass transfer. We optimized the experimental conditions such as the nature of the HF supported intermediary phase and the acceptor phase, the composition of the donor and acceptor phases, the sample temperature, and the sonication conditions. Our proposed method provided relative standard deviations of 3.1-6.2%, coefficients of determination (r(2)) of 0.9989-0.9998, and limits of detection of 0.03-0.2 ng mL(-1) for the analytes under the optimized conditions. When we applied this method to analyses of river and tap water samples, our results confirmed that this microextraction technique allows reliable monitoring of alkylphenols in water samples.

  12. Acceptor number-dependent ultrafast photo-physical properties of push-pull chromophores using time-resolved methods

    NASA Astrophysics Data System (ADS)

    Chi, Xiao-Chun; Wang, Ying-Hui; Gao, Yu; Sui, Ning; Zhang, Li-Quan; Wang, Wen-Yan; Lu, Ran; Ji, Wen-Yu; Yang, Yan-Qiang; Zhang, Han-Zhuang

    2018-04-01

    Three push-pull chromophores comprising a triphenylamine (TPA) as electron-donating moiety and functionalized β-diketones as electron acceptor units are studied by various spectroscopic techniques. The time-correlated single-photon counting data shows that increasing the number of electron acceptor units accelerates photoluminescence relaxation rate of compounds. Transient spectra data shows that intramolecular charge transfer (ICT) takes place from TPA units to β-diketones units after photo-excitation. Increasing the number of electron acceptor units would prolong the generation process of ICT state, and accelerate the excited molecule reorganization process and the relaxation process of ICT state.

  13. Installing fiber insulation

    NASA Technical Reports Server (NTRS)

    Wang, D. S.; Warren, A. D. (Inventor)

    1980-01-01

    A method for installing fragile, high temperature insulation batting in an elongated cavity or in a resilient wire sleeve to form a resilient seal. The batting is preformed to rough dimensions and wrapped in a plastic film, the film being of a material which is fugitive at a high temperature. The film is heat sealed and trimmed to form a snugly fit skin which overlaps at least at one end to permit attachment of a pull cord. The film absorbs the tensile force of pulling the film enclosed batting through the cavity or wire mesh sleeve and is subsequently driven off by high temperature baking, leaving only the insulation in the cavity or wire mesh sleeve.

  14. Hair pull test: Evidence-based update and revision of guidelines.

    PubMed

    McDonald, Katherine A; Shelley, Amanda J; Colantonio, Sophia; Beecker, Jennifer

    2017-03-01

    The hair pull test lacks validation and has unclear pretest guidelines. We sought to quantify normal hair pull test values and elucidate the effect of pretest hair washing and brushing. The impact of hair texture and lifestyle was also examined. Participants (n = 181) completed a questionnaire recording demographics, medications, and hair health/history. A single hair pull test (scalp vertex) was performed. The mean number of hairs removed per pull was 0.44 (SD 0.75). There was no significant difference in the mean number of hairs removed regardless of when participants washed (P = .20) or brushed (P = .25) their hair. Hair pull test values were similar between Caucasian-, Asian-, and Afro-textured hair. There was no significant difference in hair pull values between participants taking medications affecting hair loss and participants not taking these medications (P = .33). Tight hairstyles did not influence hair pull test values. Participant hair washing and brushing could not be controlled during the study, but this information was documented and analyzed. Normal values for the hair pull test should be reduced to 2 hairs or fewer (97.2% of participants). The current 5-day restriction on pretest hair washing can be reduced and brushing be made permissible. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  15. Experimental Investigations on the Pull-Out Behavior of Tire Strips Reinforced Sands

    PubMed Central

    Li, Li-Hua; Chen, Yan-Jun; Ferreira, Pedro Miguel Vaz; Liu, Yong; Xiao, Heng-Lin

    2017-01-01

    Waste tires have excellent mechanical performance and have been used as reinforcing material in geotechnical engineering; however, their interface properties are poorly understood. To further our knowledge, this paper examines the pull-out characteristics of waste tire strips in a compacted sand, together with uniaxial and biaxial geogrids also tested under the same conditions. The analysis of the results shows that the interlocking effect and pull-out resistance between the tire strip and the sand is very strong and significantly higher than that of the geogrids. In the early stages of the pull-out test, the resistance is mainly provided by the front portion of the embedded tire strips, as the pull-out test continues, more and more of the areas towards the end of the tire strips are mobilized, showing a progressive failure mechanism. The deformations are proportional to the frictional resistance between the tire-sand interface, and increase as the normal stresses increase. Tire strips of different wear intensities were tested and presented different pull-out resistances; however, the pull-out resistance mobilization patterns were generally similar. The pull-out resistance values obtained show that rubber reinforcement can provide much higher pull-out forces than the geogrid reinforcements tested here, showing that waste tires are an excellent alternative as a reinforcing system, regardless of the environmental advantages. PMID:28773069

  16. Pull-out simulations of a capped carbon nanotube in carbon nanotube-reinforced nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Liu, S.; Hu, N.

    2013-04-14

    Systematic atomic simulations based on molecular mechanics were conducted to investigate the pull-out behavior of a capped carbon nanotube (CNT) in CNT-reinforced nanocomposites. Two common cases were studied: the pull-out of a complete CNT from a polymer matrix in a CNT/polymer nanocomposite and the pull-out of the broken outer walls of a CNT from the intact inner walls (i.e., the sword-in-sheath mode) in a CNT/alumina nanocomposite. By analyzing the obtained relationship between the energy increment (i.e., the difference in the potential energy between two consecutive pull-out steps) and the pull-out displacement, a set of simple empirical formulas based on themore » nanotube diameter was developed to predict the corresponding pull-out force. The predictions from these formulas are quite consistent with the experimental results. Moreover, the much higher pull-out force for a capped CNT than that of the corresponding open-ended CNT implies a significant contribution from the CNT cap to the interfacial properties of the CNT-reinforced nanocomposites. This finding provides a valuable insight for designing nanocomposites with desirable mechanical properties.« less

  17. RATE-DEPENDENT PULL-OUT BEARING CAPACITY OF PILES BY SIMILITUDE MODEL TESTS USING SEEPAGE FORCE

    NASA Astrophysics Data System (ADS)

    Kato, Tatsuya; Kokusho, Takaji

    Pull-out test of model piles was conducted by varying the pull-out velocity and skin friction of piles using a seepage force similitude model test apparatus. Due to the seepage consolidation under the pressure of 150kPa, the effective stress distribution in a prototype saturated soil of 17m could be successfully reproduced in the model ground of 28cm thick, in which the pull-out tests were carried out. The pull-out load rose to a peak value at small displacement, and then decreased to a residual value. At the same time, pore pressure in the vicinity of the pile decreased due to suction near the tip and the positive dilatancy near the pile skin. The maximum pull-out load, pile axial load, side friction and the corresponding displacement increased dramatically with increasing pull-out velocity. It was found that these rate-dependent trends become more prominent with increasing skin friction.

  18. Hair Pulling (Trichotillomania)

    MedlinePlus

    ... for Families - Vietnamese Spanish Facts for Families Guide Hair Pulling (Trichotillomania) No. 96; Reviewed July 2013 It ... for children and adolescents to play with their hair. However, frequent or obsessive hair pulling can lead ...

  19. Comparison of three different orthodontic wires for bonded lingual retainer fabrication

    PubMed Central

    Uysal, Tancan; Gul, Nisa; Alan, Melike Busra; Ramoglu, Sabri Ilhan

    2012-01-01

    Objective We evaluated the detachment force, amount of deformation, fracture mode, and pull-out force of 3 different wires used for bonded lingual retainer fabrication. Methods We tested 0.0215-inch five-stranded wire (PentaOne, Masel; group I), 0.016 × 0.022-inch dead-soft eight-braided wire (Bond-A-Braid, Reliance; group II), and 0.0195-inch dead-soft coaxial wire (Respond, Ormco; group III). To test detachment force, deformation, and fracture mode, we embedded 94 lower incisor teeth in acrylic blocks in pairs. Retainer wires were bonded to the teeth and vertically directed force was applied to the wire. To test pull-out force, wires were embedded in composite that was placed in a hole at the center of an acrylic block. Tensile force was applied along the long axis of the wire. Results Detachment force and mode of fracture were not different between groups. Deformation was significantly higher in groups II and III than in group I (p < 0.001). Mean pull-out force was significantly higher for group I compared to groups II and III (p < 0.001). Conclusions Detachment force and fracture mode were similar for all wires, but greater deformations were seen in dead-soft wires. Wire pull-out force was significantly higher for five-stranded coaxial wire than for the other wires tested. Five-stranded coaxial wires are suggested for use in bonded lingual retainers. PMID:23112930

  20. Field Evaluation of a Push-Pull System to Reduce Malaria Transmission

    PubMed Central

    Menger, David J.; Omusula, Philemon; Holdinga, Maarten; Homan, Tobias; Carreira, Ana S.; Vandendaele, Patrice; Derycke, Jean-Luc; Mweresa, Collins K.; Mukabana, Wolfgang Richard; van Loon, Joop J. A.; Takken, Willem

    2015-01-01

    Malaria continues to place a disease burden on millions of people throughout the tropics, especially in sub-Saharan Africa. Although efforts to control mosquito populations and reduce human-vector contact, such as long-lasting insecticidal nets and indoor residual spraying, have led to significant decreases in malaria incidence, further progress is now threatened by the widespread development of physiological and behavioural insecticide-resistance as well as changes in the composition of vector populations. A mosquito-directed push-pull system based on the simultaneous use of attractive and repellent volatiles offers a complementary tool to existing vector-control methods. In this study, the combination of a trap baited with a five-compound attractant and a strip of net-fabric impregnated with micro-encapsulated repellent and placed in the eaves of houses, was tested in a malaria-endemic village in western Kenya. Using the repellent delta-undecalactone, mosquito house entry was reduced by more than 50%, while the traps caught high numbers of outdoor flying mosquitoes. Model simulations predict that, assuming area-wide coverage, the addition of such a push-pull system to existing prevention efforts will result in up to 20-fold reductions in the entomological inoculation rate. Reductions of such magnitude are also predicted when mosquitoes exhibit a high resistance against insecticides. We conclude that a push-pull system based on non-toxic volatiles provides an important addition to existing strategies for malaria prevention. PMID:25923114

  1. A Gender-Based Kinematic and Kinetic Analysis of the Snatch Lift In Elite Weightlifters in 69-Kg Category

    PubMed Central

    Harbili, Erbil

    2012-01-01

    The objective of this study was to compare the kinematic and kinetic differences in snatch performances of elite 69-kg men and women weightlifters, the only category common to both genders. The heaviest lifts performed by 9 men and 9 women weightlifters competing in 69-kg weight class in Group A in the 2010 World Weightlifting Championship were analyzed. The snatch lifts were recorded using 2 cameras (PAL). Points on the barbell and body were manually digitized by using Ariel Performance Analysis System. The results showed that maximal extension angle of the ankle and knee during the first pull, the knee angle at the end of the transition phase, and maximal extension angle of the knee in the second pull were significantly greater in men (p < 0.05). The angular velocity of the hip was significantly greater in men during the first pull (p < 0.05). During the second pull, women showed significantly greater maximal angular velocity at the hip and ankle joints (p < 0.05). Moreover, the maximal vertical linear velocity of the barbell was significantly greater in women (p < 0.05). The absolute mechanical work and power output in the first pull and power output in the second pull were significantly greater in men (p < 0.05). However, the relative mechanical work was significantly greater in women during the second pull (p < 0.05). The results revealed that in 69-kg weight class, women were less efficient than men in the first pull, which is strength oriented, whereas they were as efficient as men in the second pull, which is more power oriented. Key points Women weightlifters should do assistant exercises to strengthen their ankle flexor and knee extensor muscles in order to increase their maximal strength in the first pull. Women weightlifters should be able to execute a deeper and faster knee flexion in the transition phase in order to obtain a greater explosive strength during the second pull. PMID:24149133

  2. Pull-out testing facility for geosynthetics.

    DOT National Transportation Integrated Search

    1992-11-01

    The considerable increase in using geosynthetics in soil reinforcement made it necessary to develop methods of measuring the interaction properties and modeling load transfer in reinforced-soil structures. The large number of factors that influence t...

  3. Microstructure of ceramics fabricated by unidirectional solidification

    NASA Technical Reports Server (NTRS)

    Kokubo, T.

    1984-01-01

    The unidirectional solidification methods are zone melting, crystal pulling, Bridgemen, and slow cooling. In order to obtain excellent properties (such as transparency), pores, voids and cracks must be avoided, and elimination of such defects is described.

  4. Methylation Integration (Mint) | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    A comprehensive software pipeline and set of Galaxy tools/workflows for integrative analysis of genome-wide DNA methylation and hydroxymethylation data. Data types can be either bisulfite sequencing and/or pull-down methods.

  5. Mechanical load on the low back and shoulders during pushing and pulling of two-wheeled waste containers compared with lifting and carrying of bags and bins.

    PubMed

    Schibye, B; Søgaard, K; Martinsen, D; Klausen, K

    2001-08-01

    Compare the mechanical load on the low back and shoulders during pushing and pulling a two-wheeled container with the load during lifting and carrying the same amount of waste. Only little is known about risk factors and mechanical loads during push/pull operations. A complete 2(3) factor push/pull experiment. A two-wheeled container with 25 or 50 kg was pushed in front of and pulled behind the body by seven waste collectors. Further, the same subjects lifted and carried a paper bag and a dustbin both loaded with 7 and 25 kg. All operations were video recorded and the push/pull force was measured by means of a three-dimensional force transducer. Peak Motus and Watbak software were used for digitising and calculation of torque at L4/L5 and the shoulder joints and compression and shear forces at L4/L5. During pushing and pulling the compression at L4/L5 is from 605 to 1445 N. The extension torque at L4/L5 produced by the push/pull force is counteracted by the forward leaning of the upper body. The shear force is below 202 N in all situations. The torque at the shoulders is between 1 and 38 Nm. In the present experiments the torques at the low back and the shoulders are low during pushing and pulling. No relation exists between the size of the external force and the torque at the low back and the shoulder. Pushing and pulling are common in many workplaces and have often replaced lifting and carrying situations. This has emphasised the need for more knowledge of the internal mechanical load on the body during these activities.

  6. Characteristics and phenomenology of hair-pulling: an exploration of subtypes.

    PubMed

    du Toit, P L; van Kradenburg, J; Niehaus, D J; Stein, D J

    2001-01-01

    This study was designed to detail the demographic and phenomenological features of adult chronic hair-pullers. Key possible subtypes were identified a priori. On the basis of the phenomenological data, differences between the following possible subtypes were investigated: hair-pullers with and without DSM-IV trichotillomania (TTM), oral habits, automatic versus focused hair-pulling, positive versus negative affective cues prior to hair-pulling, comorbid self-injurious habits, obsessive-compulsive disorder (OCD), and tics. Forty-seven participants were drawn from an outpatient population of chronic adult hair-pullers. A structured interview that focused on hair-pulling and associated behaviors was administered to participants. Six of the participants (12.8%) were male, and 41 (87.7%) were female. A large number of hair-pullers (63.8%) had comorbid self-injurious habits. A greater proportion of male hair-pullers had comorbid tics when compared with females. Certain subgroups of chronic hair-pullers (e.g., hairpullers with or without automatic/focused hair-pulling, comorbid self-injurious habits, and oral habits) were found to differ on a number of phenomenological and hair-pulling characteristics. However, differences between other possible subgroups (e.g., hair-pullers with or without DSM-IV TTM, comorbid OCD, and negative versus positive affective cues) may reflect greater severity in hair-pulling symptomatology rather than distinct subtypes of chronic hair-pulling. The findings of the present study also indicated that chronic hair-pulling (even in cases where DSM-IV criteria for TTM were not met) has a significant impact on quality of life. The present study provided limited support for the existence of possible subtypes of chronic hair-pulling. Recommendations are made for further investigations into such subtypes. Copyright 2001 by W.B. Saunders Company

  7. Stress studies in edge-defined film-fed growth of silicon ribbons

    NASA Technical Reports Server (NTRS)

    Kalejs, J.

    1985-01-01

    Stress and efficiency studies on sheet silicon are reported. It was found that the bulk diffusion length of stressed float zone and Czochralski silicon is limited by point defect recombination to about 20 micrometers in dislocation free regions after high temperature heat treatment and stress application. If in-diffusion by iron occurs, dislocations, carbon and oxygen, do not produce significant gettering with annealing. Further work ideas are suggested.

  8. Analytical studies on the crystal melt interface shape in the Czochralski process for oxide single crystals

    NASA Astrophysics Data System (ADS)

    Jeong, Ja Hoon; Kang, In Seok

    2000-09-01

    Effects of the operating conditions on the crystal-melt interface shape are analytically investigated for the Czochralski process of the oxide single crystals. The ideas, which were used for the silicon single-crystal growth by Jeong et al. (J. Crystal Growth 177 (1997) 157), are extended to the oxide single-crystal growth problem by considering the internal radiation in the crystal phase and the melt phase heat transfer with the high Prandtl number. The interface shape is approximated in the simplest form as a quadratic function of radial position and an expression for the deviation from the flat interface shape is derived as a function of operating conditions. The radiative heat transfer rate between the interface and the ambient is computed by calculating the view factors for the curved interface shape with the assumption that the crystal phase is completely transparent. For the melt phase, the well-known results from the thermal boundary layer analysis are applied for the asymptotic case of high Prandtl number based on the idea that the flow field near the crystal-melt interface can be modeled as either a uniaxial or a biaxial flow. Through this work, essential information on the interface shape deformation and the effects of operating conditions are brought out for the oxide single-crystal growth.

  9. Pull rod assembly

    DOEpatents

    Cioletti, O.C.

    1988-04-21

    A pull rod assembly comprising a pull rod having three peripheral grooves, a piston device including an adaptor ring and a seal ring, said piston device being mounted on the pull rod by a split ring retainer situated in one groove and extending into an interior groove in the adaptor and a resilient split ring retained in another groove and positioned to engage the piston device and to retain the seal on its adaptor.

  10. Children's and women's ability to fire handguns. The Pediatric Practice Research Group.

    PubMed

    Naureckas, S M; Galanter, C; Naureckas, E T; Donovan, M; Christoffel, K K

    1995-12-01

    To evaluate whether strength differences between children and women might keep children from firing handguns and to determine how many young children can fire available handguns. One- and two-index finger trigger-pull strength was tested using a standard protocol. Data on trigger-pull settings of 64 commercially available handguns were obtained. Convenience sample of well children and their mothers at four Chicago (Ill)-area pediatric practices for health supervision visits, and of siblings of emergency department patients, during an 8-week period. None. One- and two-index finger trigger-pull strength of mothers and children. Twenty-five percent of 3- to 4-year-olds, 70% of 5- to 6-year-olds, and 90% of 7- to 8-year-olds have a two-finger trigger-pull strength of at least 10 lb, the fifth percentile one-finger trigger-pull strength of adult women. Forty (62.5%) of 64 handguns require trigger-pull strength of less than 5 lb; 19 (30%) of 64 require 5 to 10 lb. Significant overlap exists in the trigger-pull strength of young children and women, limiting the potential use of increased trigger-pull settings to discourage firearm discharge by children. Young children are strong enough to fire many handguns now in circulation.

  11. Optical pulling of airborne absorbing particles and smut spores over a meter-scale distance with negative photophoretic force

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jinda; Hart, Adam G.; Li, Yong-qing, E-mail: liy@ecu.edu

    2015-04-27

    We demonstrate optical pulling of single light-absorbing particles and smut spores in air over a meter-scale distance using a single collimated laser beam based on negative photophoretic force. The micron-sized particles are pulled towards the light source at a constant speed of 1–10 cm/s in the optical pulling pipeline while undergoing transverse rotation at 0.2–10 kHz. The pulled particles can be manipulated and precisely positioned on the entrance window with an accuracy of ∼20 μm, and their chemical compositions can be characterized with micro-Raman spectroscopy.

  12. Friction pull plug welding: chamfered heat sink pull plug design

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2005-01-01

    The average strength of a pull plug weld is increased and weak bonding eliminated by providing a dual included angle at the top one third of the pull plug. Plugs using the included angle of the present invention had consistent high strength, no weak bonds and were substantially defect free. The dual angle of the pull plug body increases the heat and pressure of the weld in the region of the top one third of the plug. This allows the plug to form a tight high quality solid state bond. The dual angle was found to be successful in elimination of defects on both small and large plugs.

  13. Test and Analysis of Composite Hat Stringer Pull-off Test Specimens

    NASA Technical Reports Server (NTRS)

    Li, Jian; OBrien, T. Kevin; Rousseau, Carl Q.

    1996-01-01

    Hat stringer pull-off tests were performed to evaluate the delamination failure mechanisms in the flange region for a rod-reinforced hat stringer section. A special test fixture was used to pull the hat off the stringer while reacting the pull-off load through roller supports at both stringer flanges. Microscopic examinations of the failed specimens revealed that failure occurred at the ply termination in the flange area where the flange of the stiffener is built up by adding 45/-45 tape plies on the top surface. Test results indicated that the as-manufactured microstructure in the flange region has a strong influence on the delamination initiation and the associated pull-off loads. Finite element models were created for each specimen with a detailed mesh based on micrographs of the critical location. A fracture mechanics approach and a mixed mode delamination criterion were used to predict the onset of delamination and the pull-off load. By modeling the critical local details of each specimen from micrographs, the model was able to accurately predict the hat stringer pull-off loads and replicate the variability in the test results.

  14. The compression and expansion waves of the forward and backward flows: an in-vitro arterial model.

    PubMed

    Feng, J; Khir, A W

    2008-05-01

    Although the propagation of arterial waves of forward flows has been studied before, that of backward flows has not been thoroughly investigated. The aim of this research is to investigate the propagation of the compression and expansion waves of backward flows in terms of wave speed and dissipation, in flexible tubes. The aim is also to compare the propagation of these waves with those of forward flows. A piston pump generated a flow waveform in the shape of approximately half-sinusoid, in flexible tubes (12 mm and 16 mm diameter). The pump produced flow in either the forward or the backward direction by moving the piston forward, in a 'pushing action' or backward, in a 'pulling action', using a graphite brushes d.c. motor. Pressure and flow were measured at intervals of 5 cm along each tube and wave speed was determined using the PU-loop method. The simultaneous measurements of diameter were also taken at the same position of the pressure and flow in the 16 mm tube. Wave intensity analysis was used to determine the magnitude of the pressure and velocity waveforms and wave intensity in the forward and backward directions. Under the same initial experimental conditions, wave speed was higher during the pulling action (backward flow) than during the pushing action (forward flow). The amplitudes of pressure and velocity in the pulling action were significantly higher than those in the pushing action. The tube diameter was approximately 20 per cent smaller in the pulling action than in the pushing action in the 16 mm tube. The compression and expansion waves resulting from the pushing and pulling actions dissipated exponentially along the travelling distance, and their dissipation was greater in the smaller than in the larger tubes. Local wave speed in flexible tubes is flow direction- and wave nature-dependent and is greater with expansion than with compression waves. Wave dissipation has an inverse relationship with the vessel diameter, and dissipation of the expansion wave of the pulling action was greater than that of the pushing action.

  15. Direct sampling for stand density index

    Treesearch

    Mark J. Ducey; Harry T. Valentine

    2008-01-01

    A direct method of estimating stand density index in the field, without complex calculations, would be useful in a variety of silvicultural situations. We present just such a method. The approach uses an ordinary prism or other angle gauge, but it involves deliberately "pushing the point" or, in some cases, "pulling the point." This adjusts the...

  16. Experimental determination and numerical modelling of solid liquid interface shapes for vertical Bridgman grown GaSb crystals

    NASA Astrophysics Data System (ADS)

    Boiton, P.; Giacometti, N.; Santailler, J. L.; Duffar, T.; Nabot, J. P.

    1998-11-01

    A facility, based on a profiled resistive heater, has been designed for the growth of antimonide crystals (GaSb, InSb) by the vertical Bridgman method. Solid-liquid interface shapes during the growth of 2-in diameter crystals are marked by means of variations of the pulling rate and are revealed by chemical etching. The comparison with the calculated interface shapes, obtained using a finite element method, gives a satisfactory agreement. It is shown that the heat transfer and consequently the interface shapes are greatly influenced by the crucible assembly. For example, small spacings around the crucible or slots in the crucible holder can change the interface curvature from convex to concave. From numerical simulations it is also shown that convection in the melt flattens the interface but that an increase of the pulling rate has the reverse effect.

  17. Growth of Nd doped (Lu, Gd)3(Ga, Al)5O12 single crystal by the micro pulling down method and their scintillation properties

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Kurosawa, Shunsuke; Yamaji, Akihiro; Shoji, Yasuhiro; Pejchal, Jan; Ohashi, Yuji; Yokota, Yuui; Yoshikawa, Akira

    2015-03-01

    Nd 1 mol% doped (Lu, Gd)3(Ga, Al)5O12 (LGGAG) single crystals were grown by the micro-pulling down (μ-PD) method. Luminescence and scintillation properties such as absorption, excitation and emission spectra, light yield and decay time were evaluated. Nd1%:Lu3Al5O12 showed the highest light output of around 8200 photons/MeV among the grown crystals. Scintillation decay time of Nd:Y3Al5O12 was 1.32 μs (36%) 2.02 μs (64%). Nd:Lu3Ga3Al2O12 was relatively high dense scintillator of 7.38 g/cm3 with good light yield of 6800 photons/MeV and scintillation decay time of 0.20 μs (5%) 2.60 μs (95%).

  18. Mg,Ce co-doped Lu2Gd1(Ga,Al)5O12 by micro-pulling down method and their luminescence properties

    NASA Astrophysics Data System (ADS)

    Kamada, Kei; Yamaguchi, Hiroaki; Yoshino, Masao; Kurosawa, Shunsuke; Shoji, Yasuhiro; Yokota, Yuui; Ohashi, Yuji; Pejchal, Jan; Nikl, Martin; Yoshikawa, Akira

    2018-04-01

    The effects of Mg co-doping on the scintillation properties of Ce:Lu2Gd1(Ga,Al)5O12 (LGGAG) single crystals with different Ga/Al ratios were investigated. Mg co-doped and non co-doped Ce:LGGAG single crystals were grown by the micro-pulling down (µ-PD) method and then cut, polished and annealed for each measurement. Absorption spectra, radioluminescence (RL) spectra, pulse height spectra, and scintillation decay were measured to reveal the effect of Mg co-doping. Ce4+ charge transfer (CT) absorption band peaking at ∼260 nm was observed in Mg co-doped samples, which is in good agreement with previous reports for the Ce4+ CT absorption band in other garnet-based crystals. The scintillation decay time tended to be accelerated and the light yield tended to be decreased by Mg co-doping at higher Ga concentrations.

  19. Plasma Polymer Coatings to Prevent Pipeline Corrosion and Reduce Friction.

    DTIC Science & Technology

    1986-05-21

    w fairnt lime rainbiNw Salt (1) failed R. 6% ; Pull (3) 10 or- 90%/ film left): Y1 c rc.. (4) CluSO4, very small silIver- crys, a. COLIC . e r-ust Cu...Pull C 0% 10 500 440 S film left, Pull E 60% film S left, both Pulls cream film 4 90 120 S peels off St 1 Repeat run 864214; film flaky G rainbow

  20. Pushing, pulling and manoeuvring an industrial cart: a psychophysiological study.

    PubMed

    Giagloglou, Evanthia; Radenkovic, Milan; Brankovic, Sasa; Antoniou, Panagiotis; Zivanovic-Macuzic, Ivana

    2017-09-18

    One of the most frequent manual occupational tasks involves the pushing and pulling of a cart. Although several studies have associated health risks with pushing and pulling, the effects are not clear since occupational tasks have social, cognitive and physical components. The present work investigates a real case of a pushing and pulling occupational task from a manufacturing company. The study initially characterizes the case in accordance with Standard No. ISO 11228-2:2007 as low risk. An experiment with 14 individuals during three modalities of pushing and pulling was performed in order to further investigate the task with the application of electrophysiology. At the end, a simple questionnaire was given. The results show electrophysiological differences among the three modalities of pushing and pulling, with a major difference between action with no load and fully loaded with a full range of motions on the cart to handle.

  1. Characterization and Effects of Fiber Pull-Outs in Hole Quality of Carbon Fiber Reinforced Plastics Composite.

    PubMed

    Alizadeh Ashrafi, Sina; Miller, Peter W; Wandro, Kevin M; Kim, Dave

    2016-10-13

    Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP), this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM) images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal.

  2. In-situ temperature field measurements and direct observation of crystal/melt at vertical Bridgman growth of lead chloride under stationary and dynamic arrangement

    NASA Astrophysics Data System (ADS)

    Král, Robert; Nitsch, Karel

    2015-10-01

    Influence of growth conditions, i.e. temperature gradient in the furnace and the pulling rate, on the position and the shape of the crystal/melt interface during vertical Bridgman growth was studied. The position and the shape of the crystal/melt interface are a key factor for describing the final quality of growing crystal. Following two methods for characterization of its position and shape were used: (i) direct observation and (ii) direct temperature field measurement during simulated vertical Bridgman growth. As a model compound a lead chloride is used. Three different ampoule positions in two different temperature gradients in the furnace and two experimental arrangements - stationary (0 mm/h pulling rate) and dynamic (3 mm/h pulling rate) were analyzed. Obtained temperature data were projected as 2D planar cut under radial symmetry and denoted as isolevels. Their further conversion by linear approximation into isotherms allowed detail analysis of heat conditions in the system during simulated growth by comparison of isotherms 500 °C (m.p. of lead chloride) at different growth conditions.

  3. Weightlifting performance is related to kinematic and kinetic patterns of the hip and knee joints.

    PubMed

    Kipp, Kristof; Redden, Josh; Sabick, Michelle B; Harris, Chad

    2012-07-01

    The purpose of this study was to investigate the correlations between biomechanical outcome measures and weightlifting performance. Joint kinematics and kinetics of the hip, knee, and ankle were calculated while 10 subjects performed a clean at 85% of 1 repetition maximum (1RM). Kinematic and kinetic time-series patterns were extracted with principal components analysis. Discrete scores for each time-series pattern were calculated and used to determine how each pattern was related to body mass-normalized 1RM. Two hip kinematic and 2 knee kinetic patterns were significantly correlated with relative 1RM. The kinematic patterns captured hip and trunk motions during the first pull and hip joint motion during the movement transition between the first and second pulls. The first kinetic pattern captured a peak in the knee extension moment during the second pull. The second kinetic pattern captured a spatiotemporal shift in the timing and amplitude of the peak knee extension moment. The kinematic results suggest that greater lift mass was associated with steady trunk position during the first pull and less hip extension motion during the second-knee bend transition. Further, the kinetic results suggest that greater lift mass was associated with a smaller knee extensor moments during the first pull, but greater knee extension moments during the second pull, and an earlier temporal transition between knee flexion-extension moments at the beginning of the second pull. Collectively, these results highlight the importance of controlled trunk and hip motions during the first pull and rapid employment of the knee extensor muscles during the second pull in relation to weightlifting performance.

  4. Analysis of the stiffness and load-bearing capacity of glued laminated timber beams reinforced with strands

    NASA Astrophysics Data System (ADS)

    Sardiko, R.; Rocens, K.; Iejavs, J.; Jakovlevs, V.; Ziverts, K.

    2017-10-01

    In this paper a benefit of glulam pinewood beams reinforced strands is discussed. In the first phase, series of pull-out tests were performed on specimens made up of different types of glue (melamine-urea-formaldehyde, epoxy and others) to detect pull-out force and failure mode of a specimens. In the second phase, series of equal cross-section glulam beams with strand and rod reinforcement were theoretically analysed using transformed cross-section method. Additionally, series of experimental testing were made. Benefits of strand reinforcement use as glulam beams’ reinforcement were identified and examined the possibility of one glue type application in all operations of reinforced glulam beams manufacturing.

  5. Free energy profiles from single-molecule pulling experiments.

    PubMed

    Hummer, Gerhard; Szabo, Attila

    2010-12-14

    Nonequilibrium pulling experiments provide detailed information about the thermodynamic and kinetic properties of molecules. We show that unperturbed free energy profiles as a function of molecular extension can be obtained rigorously from such experiments without using work-weighted position histograms. An inverse Weierstrass transform is used to relate the system free energy obtained from the Jarzynski equality directly to the underlying molecular free energy surface. An accurate approximation for the free energy surface is obtained by using the method of steepest descent to evaluate the inverse transform. The formalism is applied to simulated data obtained from a kinetic model of RNA folding, in which the dynamics consists of jumping between linker-dominated folded and unfolded free energy surfaces.

  6. Pulling of 3 mm diameter AlSb rods by micro-pulling down method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourret-Courchesne Ph.D., Edith; Perrodin, Didier

    2009-05-14

    We designed and supplied special crucibles for AlSb material. Thermal insulation and limitation of Sb losses were our first work. The protection of the growth environment was also one of our priority to avoid any pollution of the Fibercryst {mu}PD facility. When this work was achieved, the next step was the calibration of the heating power for these new crucibles. Then, it was the definition of single crystal growth conditions that oriented our research. Following our proposal, many growths attempts were performed. We started from Al & Sb pure powder or from LBNL AlSb crystal as expected. We used differentmore » crucibles and different seeds.« less

  7. Barnacles resist removal by crack trapping

    PubMed Central

    Hui, Chung-Yuen; Long, Rong; Wahl, Kathryn J.; Everett, Richard K.

    2011-01-01

    We study the mechanics of pull-off of a barnacle adhering to a thin elastic layer which is bonded to a rigid substrate. We address the case of barnacles having acorn shell geometry and hard, calcarious base plates. Pull-off is initiated by the propagation of an interface edge crack between the base plate and the layer. We compute the energy release rate of this crack as it grows along the interface using a finite element method. We also develop an approximate analytical model to interpret our numerical results and to give a closed-form expression for the energy release rate. Our result shows that the resistance of barnacles to interfacial failure arises from a crack-trapping mechanism. PMID:21208968

  8. Future Food Production System Development Pulling From Space Biology Crop Growth Testing in Veggie

    NASA Technical Reports Server (NTRS)

    Massa, Gioia; Romeyn, Matt; Fritsche, Ralph

    2017-01-01

    Preliminary crop testing using Veggie indicates the environmental conditions provided by the ISS are generally suitable for food crop production. When plant samples were returned to Earth for analysis, their levels of nutrients were comparable to Earth-grown ground controls. Veggie-grown produce food safety microbiology analysis indicated that space-grown crops are safe to consume. Produce sanitizing wipes were used on-orbit to further reduce risk of foodborne illness. Validation growth tests indicated abiotic challenges of insufficient or excess fluid delivery, potentially reduced air flow leading to excess water, elevated CO2 leading to physiological responses, and microorganisms that became opportunistic pathogens. As NASA works to develop future space food production, several areas of research to define these systems pull from the Veggie technology validation tests. Research into effective, reusable water delivery and water recovery methods for future food production systems arises from abiotic challenges observed. Additionally, impacts of elevated CO2 and refinement of fertilizer and light recipes for crops needs to be assessed. Biotic pulls include methods or technologies to effectively sanitize produce with few consumables and low inputs; work to understand the phytomicrobiome and potentially use it to protect crops or enhance growth; selection of crops with high harvest index and desirable flavors for supplemental nutrition; crops that provide psychosocial benefits, and custom space crop development. Planning for future food production in a deep space gateway or a deep space transit vehicle requires methods of handling and storing seeds, and ensuring space seeds are free of contaminants and long-lived. Space food production systems may require mechanization and autonomous operation, with preliminary testing initiated to identify operations and capabilities that are candidates for automation. Food production design is also pulling from Veggie logistics lessons, as we learn about growing at different scales and move toward developing systems that require less launch mass. Veggie will be used as a test bed for novel food production technologies. Veggie is a relatively simple precursor food production system but the knowledge gained from space biology validation tests in Veggie will have far reaching repercussions on future exploration food production. This work is supported by NASA.

  9. Future Food Production System Development Pulling from Space Biology Crop Growth Testing in Veggie

    NASA Technical Reports Server (NTRS)

    Massa, G. D.; Romeyn, M. W.; Fritsche, R. F.

    2017-01-01

    Preliminary crop testing using Veggie indicates the environmental conditions provided by the ISS are generally suitable for food crop production. When plant samples were returned to Earth for analysis, their levels of nutrients were comparable to Earth-grown ground controls. Veggie-grown produce food safety microbiology analysis indicated that space-grown crops are safe to consume. Produce sanitizing wipes were used on-orbit to further reduce risk of foodborne illness. Validation growth tests indicated abiotic challenges of insufficient or excess fluid delivery, potentially reduced air flow leading to excess water, elevated CO2 leading to physiological responses, and microorganisms that became opportunistic pathogens. As NASA works to develop future space food production, several areas of research to define these systems pull from the Veggie technology validation tests. Research into effective, reusable water delivery and water recovery methods for future food production systems arises from abiotic challenges observed. Additionally, impacts of elevated CO2 and refinement of fertilizer and light recipes for crops needs to be assessed. Biotic pulls include methods or technologies to effectively sanitize produce with few consumables and low inputs; work to understand the phytomicrobiome and potentially use it to protect crops or enhance growth; selection of crops with high harvest index and desirable flavors for supplemental nutrition; crops that provide psychosocial benefits, and custom space crop development. Planning for future food production in a deep space gateway or a deep space transit vehicle requires methods of handling and storing seeds, and ensuring space seeds are free of contaminants and long-lived. Space food production systems may require mechanization and autonomous operation, with preliminary testing initiated to identify operations and capabilities that are candidates for automation. Food production design is also pulling from Veggie logistics lessons, as we learn about growing at different scales and move toward developing systems that require less launch mass. Veggie will be used as a test bed for novel food production technologies. Veggie is a relatively simple precursor food production system but the knowledge gained from space biology validation tests in Veggie will have far reaching repercussions on future exploration food production.

  10. Grip Force and 3D Push-Pull Force Estimation Based on sEMG and GRNN

    PubMed Central

    Wu, Changcheng; Zeng, Hong; Song, Aiguo; Xu, Baoguo

    2017-01-01

    The estimation of the grip force and the 3D push-pull force (push and pull force in the three dimension space) from the electromyogram (EMG) signal is of great importance in the dexterous control of the EMG prosthetic hand. In this paper, an action force estimation method which is based on the eight channels of the surface EMG (sEMG) and the Generalized Regression Neural Network (GRNN) is proposed to meet the requirements of the force control of the intelligent EMG prosthetic hand. Firstly, the experimental platform, the acquisition of the sEMG, the feature extraction of the sEMG and the construction of GRNN are described. Then, the multi-channels of the sEMG when the hand is moving are captured by the EMG sensors attached on eight different positions of the arm skin surface. Meanwhile, a grip force sensor and a three dimension force sensor are adopted to measure the output force of the human's hand. The characteristic matrix of the sEMG and the force signals are used to construct the GRNN. The mean absolute value and the root mean square of the estimation errors, the correlation coefficients between the actual force and the estimated force are employed to assess the accuracy of the estimation. Analysis of variance (ANOVA) is also employed to test the difference of the force estimation. The experiments are implemented to verify the effectiveness of the proposed estimation method and the results show that the output force of the human's hand can be correctly estimated by using sEMG and GRNN method. PMID:28713231

  11. Grip Force and 3D Push-Pull Force Estimation Based on sEMG and GRNN.

    PubMed

    Wu, Changcheng; Zeng, Hong; Song, Aiguo; Xu, Baoguo

    2017-01-01

    The estimation of the grip force and the 3D push-pull force (push and pull force in the three dimension space) from the electromyogram (EMG) signal is of great importance in the dexterous control of the EMG prosthetic hand. In this paper, an action force estimation method which is based on the eight channels of the surface EMG (sEMG) and the Generalized Regression Neural Network (GRNN) is proposed to meet the requirements of the force control of the intelligent EMG prosthetic hand. Firstly, the experimental platform, the acquisition of the sEMG, the feature extraction of the sEMG and the construction of GRNN are described. Then, the multi-channels of the sEMG when the hand is moving are captured by the EMG sensors attached on eight different positions of the arm skin surface. Meanwhile, a grip force sensor and a three dimension force sensor are adopted to measure the output force of the human's hand. The characteristic matrix of the sEMG and the force signals are used to construct the GRNN. The mean absolute value and the root mean square of the estimation errors, the correlation coefficients between the actual force and the estimated force are employed to assess the accuracy of the estimation. Analysis of variance (ANOVA) is also employed to test the difference of the force estimation. The experiments are implemented to verify the effectiveness of the proposed estimation method and the results show that the output force of the human's hand can be correctly estimated by using sEMG and GRNN method.

  12. Optical pulling force and conveyor belt effect in resonator-waveguide system.

    PubMed

    Intaraprasonk, Varat; Fan, Shanhui

    2013-09-01

    We present the theoretical condition and actual numerical design that achieves an optical pulling force in resonator-waveguide systems, where the direction of the force on the resonator is in the opposite direction to the input light in the waveguide. We also show that this pulling force can occur in conjunction with the lateral optical equilibrium effect, such that the resonator is maintained at the fixed distance from the waveguide while experiencing the pulling force.

  13. Optical and transient capacitance study of EL2 in the absence and presence of other midgap levels. [in gallium arsenide crystals

    NASA Technical Reports Server (NTRS)

    Skowronski, M.; Lagowski, J.; Gatos, H. C.

    1986-01-01

    A high-resolution optical study was carried out on GaAs crystals grown by horizontal Bridgman and liquid-encapsulated-Czochralski methods. An excellent correlation was found between the intensity of the 1.039-eV no-phonon line and the characteristic absorption of EL2, the major deep donor level in GaAs. A correlation was also found between the characteristic optical absorption of EL2 and its concentration as determined by junction capacitance measurements. The presence of EL0, another midgap level contained in heavily oxygen-doped crystals at concentration always less than those of EL2, had no effect on the optical spectra, but altered the capacitance measurements. Accordingly, an accurate calibration for the determination of EL2 by optical absorption was obtained from capacitance measurements on crystals containing only EL2; in this way the uncertainties introduced by other midgap levels were eliminated.

  14. Features of changes in electrophysical properties of silicon under the influence of thermal treatment

    NASA Astrophysics Data System (ADS)

    Gaidar, G. P.; Baranskii, P. I.

    2018-06-01

    The influence of the annealing temperatures and cooling rates of n-silicon crystals, grown by the Czochralski method and doped with phosphorus impurity, on their electric and thermoelectric properties was studied. In the region of predominantly impurity scattering a more essential dependence of the charge carrier mobility on the cooling conditions of crystals was established in comparison with the dependence on the annealing temperature. The analysis of the measurement results of tensoresistance and tenso-thermo-emf was carried out, on the basis of which the dependence of the anisotropy parameter of drag thermo-emf on the cooling rate was obtained. The feature of the anisotropy parameter of thermo-emf M in the form of its maximal deviation from the linear dependence M = M(lg(υcl)) was revealed in the region of cooling rates from 8 to 15 K/min.

  15. Scintillation properties of Gd3Al2Ga3O12:Ce3+ single crystal scintillators

    NASA Astrophysics Data System (ADS)

    Sakthong, Ongsa; Chewpraditkul, Weerapong; Wanarak, Chalerm; Kamada, Kei; Yoshikawa, Akira; Prusa, Petr; Nikl, Martin

    2014-07-01

    The scintillation properties of Gd3Al2Ga3O12:Ce3+ (GAGG:Ce) single crystals grown by the Czochralski method with 1 at% cerium in the melt were investigated and results were compared with so far published results in the literature. The light yield (LY) and energy resolution were measured using a XP5200B photomultiplier. Despite about twice higher LY for GAGG:Ce, the energy resolution is only slightly better than that of LuAG:Ce due to its worse intrinsic resolution and non-proportionality of LY. The LY dependences on the sample thickness and amplifier shaping time were measured. The estimated photofraction in pulse height spectra of 320 and 662 keV γ-rays and the total mass attenuation coefficient at 662 keV γ-rays were also determined and compared with the theoretical ones calculated using the WinXCom program.

  16. Growth and optical properties of Dy:Y3Al5O12 crystal

    NASA Astrophysics Data System (ADS)

    Pan, Yuxin; Zhou, Shidong; Li, Dongzhen; Liu, Bin; Song, Qingsong; Liu, Jian; Liu, Peng; Ding, Yuchong; Wang, Xiaodan; Xu, Xiaodong; Xu, Jun

    2018-02-01

    High optical quality Dy:Y3Al5O12 (Dy:YAG) crystal has been grown by the Czochralski method. Absorption spectra, fluorescence spectra and fluorescence decay curve of Dy:YAG have been recorded at room temperature. The strongest emission of Dy:YAG crystal is near 583 nm, corresponding to the 4F9/2 → 6H13/2 transition. The Judd-Ofelt parameters Ω2, Ω4 and Ω6 were calculated to be 1.49 × 10-20 cm2, 0.94 × 10-20 cm2 and 3.20 × 10-20 cm2, respectively. The radiative transition rates, branching ratios and the emission cross sections were calculated. The fluorescence and radiative lifetimes are 0.40 ms and 1.02 ms, respectively, resulting in a quantum efficiency of 39.2%. The results indicate that the Dy:YAG crystal would be a promising yellow solid state laser material.

  17. Novel solid state lasers for Lidar applications at 2 μm

    NASA Astrophysics Data System (ADS)

    Della Valle, G.; Galzerano, G.; Toncelli, A.; Tonelli, M.; Laporta, P.

    2005-09-01

    A review on the results achieved by our group in the development of novel solid-state lasers for Lidar applications at 2 μm is presented. These lasers, based on fluoride crystals (YLF4, BaY2F8, and KYF4) doped with Tm and Ho ions, are characterized by high-efficiency and wide wavelength tunability around 2 μm. Single crystals of LiYF4, BaY2F8, and KYF4 codoped with the same Tm3+ and Ho3+ concentrations were successfully grown by the Czochralski method. The full spectroscopic characterization of the different laser crystals and the comparison between the laser performance are presented. Continuous wave operation was efficiently demonstrated by means of a CW diode-pumping. These oscillators find interesting applications in the field of remote sensing (Lidar and Dial systems) as well as in high-resolution molecular spectroscopy, frequency metrology, and biomedical applications.

  18. Optical spectroscopy of low-phonon Ho3+ doped BaY2F8 single crystal

    NASA Astrophysics Data System (ADS)

    Li, Chun; Zeng, Fanming; Lin, Hai; Zheng, Dongyang; Yang, Xiaodong; Liu, Wang; Liu, Jinghe

    2014-12-01

    The Ho:BaY2F8 crystal was grown by Czochralski method. The crystal phase structure and absorption spectra were tested, the absorption peak exists near 899 nm, the absorption cross section was 1.27 × 10-21 cm2. The emission spectra of crystals in the vicinity of 2 and 3.9 μm were measured, the 2 μm near infrared light induced by 5I7 → 5I8 transition of Ho3+ ions was observed, as well as the fluorescence output at 3.9 μm (5I5 → 5I6), emission cross section at 3.9 μm was calculated to be 0.86 × 10-21 cm2. We suppose that the Ho:BaY2F8 crystal has a large application prospect for the 2-4 μm wavelength near infrared laser.

  19. Optimization of the cooling profile to achieve crack-free Yb:S-FAP crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, H; Qiu, S; Kheng, L

    Yb:S-FAP [Yb{sup 3+}:Sr{sub 5}(PO{sub 4}){sub 3}F] crystals are an important gain medium for diode-pumped laser applications. Growth of 7.0 cm diameter Yb:S-FAP crystals utilizing the Czochralski (CZ) method from SrF{sub 2}-rich melts often encounter cracks during the post growth cool down stage. To suppress cracking during cool down, a numerical simulation of the growth system was used to understand the correlation between the furnace power during cool down and the radial temperature differences within the crystal. The critical radial temperature difference, above which the crystal cracks, has been determined by benchmarking the simulation results against experimental observations. Based on thismore » comparison, an optimal three-stage ramp-down profile was implemented and produced high quality, crack-free Yb:S-FAP crystals.« less

  20. Perspectives on integrated modeling of transport processes in semiconductor crystal growth

    NASA Technical Reports Server (NTRS)

    Brown, Robert A.

    1992-01-01

    The wide range of length and time scales involved in industrial scale solidification processes is demonstrated here by considering the Czochralski process for the growth of large diameter silicon crystals that become the substrate material for modern microelectronic devices. The scales range in time from microseconds to thousands of seconds and in space from microns to meters. The physics and chemistry needed to model processes on these different length scales are reviewed.

  1. Five Bit, Five Gigasample TED Analog-to-Digital Converter Development.

    DTIC Science & Technology

    1981-06-01

    pliers. TRW uses two sources at present: materials grown by Horizontal I Bridgman technique from Crystal Specialties, and Czochralski from MRI. The...the circuit modelling and circuit design tasks. A number of design iterations were required to arrive at a satisfactory design. In or-der to riake...made by modeling the TELD as a voltage-controlled current generator with a built-in time delay between impressed voltage and output current. Based on

  2. Energy Transfer Processes in (Lu,Gd)AlO3:Ce

    DTIC Science & Technology

    2001-01-01

    studies on energy transfer processes in Ce-activated Lu, Y and Gd aluminum perovskite crystals that contribute to production of scintillation light in...LuAIO3, GdA10 3, cerium, scintillators, VUV spectroscopy, luminescence, time profiles, energy transfer 1. INTRODUCTION The yttrium aluminum perovskite...The Czochralski-grown monocrystals of LuAP:Ce were first evaluated in a garnet -free perovskite phase by Lempicki et al. in 1994 .4 More detailed

  3. Analysis of Pull-In Instability of Geometrically Nonlinear Microbeam Using Radial Basis Artificial Neural Network Based on Couple Stress Theory

    PubMed Central

    Heidari, Mohammad; Heidari, Ali; Homaei, Hadi

    2014-01-01

    The static pull-in instability of beam-type microelectromechanical systems (MEMS) is theoretically investigated. Two engineering cases including cantilever and double cantilever microbeam are considered. Considering the midplane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, capable of capturing the size effect. By selecting a range of geometric parameters such as beam lengths, width, thickness, gaps, and size effect, we identify the static pull-in instability voltage. A MAPLE package is employed to solve the nonlinear differential governing equations to obtain the static pull-in instability voltage of microbeams. Radial basis function artificial neural network with two functions has been used for modeling the static pull-in instability of microcantilever beam. The network has four inputs of length, width, gap, and the ratio of height to scale parameter of beam as the independent process variables, and the output is static pull-in voltage of microbeam. Numerical data, employed for training the network, and capabilities of the model have been verified in predicting the pull-in instability behavior. The output obtained from neural network model is compared with numerical results, and the amount of relative error has been calculated. Based on this verification error, it is shown that the radial basis function of neural network has the average error of 4.55% in predicting pull-in voltage of cantilever microbeam. Further analysis of pull-in instability of beam under different input conditions has been investigated and comparison results of modeling with numerical considerations shows a good agreement, which also proves the feasibility and effectiveness of the adopted approach. The results reveal significant influences of size effect and geometric parameters on the static pull-in instability voltage of MEMS. PMID:24860602

  4. Apparatus for in situ installation of underground containment barriers under contaminated lands

    DOEpatents

    Carter, Jr., Ernest E.; Sanford, Frank L.; Saugier, R. Kent

    1998-06-16

    An apparatus for constructing a subsurface containment barrier under a waste site disposed in soil is provided. The apparatus uses a reciprocating cutting and barrier forming device which forms a continuous elongate panel through the soil having a defined width. The reciprocating cutting and barrier forming device has multiple jets which eject a high pressure slurry mixture through an arcuate path or transversely across the panel being formed. A horizontal barrier can be formed by overlapping a plurality of such panels. The cutting device and barrier forming device is pulled through the soil by two substantially parallel pulling pipes which are directionally drilled under the waste site. A tractor or other pulling device is attached to the pulling pipes at one end and the cutting and barrier forming device is attached at the other. The tractor pulls the cutting and barrier forming device through the soil under the waste site without intersecting the waste site. A trailing pipe, attached to the cutting and barrier forming device, travels behind one of the pulling pipes. In the formation of an adjacent panel the trailing pipe becomes one of the next pulling pipes. This assures the formation of a continuous barrier.

  5. A push-pull system to reduce house entry of malaria mosquitoes

    PubMed Central

    2014-01-01

    Background Mosquitoes are the dominant vectors of pathogens that cause infectious diseases such as malaria, dengue, yellow fever and filariasis. Current vector control strategies often rely on the use of pyrethroids against which mosquitoes are increasingly developing resistance. Here, a push-pull system is presented, that operates by the simultaneous use of repellent and attractive volatile odorants. Method/Results Experiments were carried out in a semi-field set-up: a traditional house which was constructed inside a screenhouse. The release of different repellent compounds, para-menthane-3,8-diol (PMD), catnip oil e.o. and delta-undecalactone, from the four corners of the house resulted in significant reductions of 45% to 81.5% in house entry of host-seeking malaria mosquitoes. The highest reductions in house entry (up to 95.5%), were achieved by simultaneously repelling mosquitoes from the house (push) and removing them from the experimental set-up using attractant-baited traps (pull). Conclusions The outcome of this study suggests that a push-pull system based on attractive and repellent volatiles may successfully be employed to target mosquito vectors of human disease. Reductions in house entry of malaria vectors, of the magnitude that was achieved in these experiments, would likely affect malaria transmission. The repellents used are non-toxic and can be used safely in a human environment. Delta-undecalactone is a novel repellent that showed higher effectiveness than the established repellent PMD. These results encourage further development of the system for practical implementation in the field. PMID:24674451

  6. Closed-form solution for static pull-in voltage of electrostatically actuated clamped-clamped micro/nano beams under the effect of fringing field and van der Waals force

    NASA Astrophysics Data System (ADS)

    Bhojawala, V. M.; Vakharia, D. P.

    2017-12-01

    This investigation provides an accurate prediction of static pull-in voltage for clamped-clamped micro/nano beams based on distributed model. The Euler-Bernoulli beam theory is used adapting geometric non-linearity of beam, internal (residual) stress, van der Waals force, distributed electrostatic force and fringing field effects for deriving governing differential equation. The Galerkin discretisation method is used to make reduced-order model of the governing differential equation. A regime plot is presented in the current work for determining the number of modes required in reduced-order model to obtain completely converged pull-in voltage for micro/nano beams. A closed-form relation is developed based on the relationship obtained from curve fitting of pull-in instability plots and subsequent non-linear regression for the proposed relation. The output of regression analysis provides Chi-square (χ 2) tolerance value equals to 1  ×  10-9, adjusted R-square value equals to 0.999 29 and P-value equals to zero, these statistical parameters indicate the convergence of non-linear fit, accuracy of fitted data and significance of the proposed model respectively. The closed-form equation is validated using available data of experimental and numerical results. The relative maximum error of 4.08% in comparison to several available experimental and numerical data proves the reliability of the proposed closed-form equation.

  7. Comparative Evaluation of Antiplaque Efficacy of Coconut Oil Pulling and a Placebo, Among Dental College Students: A Randomized Controlled Trial

    PubMed Central

    Kulkarni, Suhas; Madupu, Padma Reddy; Doshi, Dolar; Bandari, Srikanth Reddy; Srilatha, Adepu

    2017-01-01

    Introduction Oil pulling, has been extensively used as traditional Indian folk remedy since many years to prevent dental diseases and for strengthening teeth and gums. Aim To compare and evaluate antiplaque efficacy of coconut oil pulling with a placebo among dental students, in Hyderabad city of India. Materials and Methods A randomized controlled study was carried out among 40 dental students. Out of 40, 20 subjects were randomly assigned to study group and other 20 to control group. Subjects in the study group were given the coconut oil and control group a placebo, and advised to rinse for 10 minutes, once daily in the morning for a period of seven days. Plaque levels were assessed on day zero, third and seventh day using Turesky-Gilmore-Glickman Modification of the Quigley-Hein Plaque Index (1970) for both the groups. Results The mean plaque scores showed a significant difference at baseline, third day and seventh day among both study (p<0.001) and control groups (p<0.001). Group wise comparison revealed, though the mean plaque scores were low among study group on third day and seventh day on comparison with the control group, significant difference was noticed only on the seventh day. Furthermore, the mean percentage reduction of plaque scores were also significant only on the seventh day with a high mean plaque reduction among study groups (p<0.001). Conclusion Oil pulling is effective in controlling plaque levels. PMID:29207824

  8. No-Drain Single Incision Liposuction Pull-Through Technique for Gynecomastia.

    PubMed

    Khalil, Ashraf A; Ibrahim, Amr; Afifi, Ahmed M

    2017-04-01

    Several different methods have been proposed for treatment of gynecomastia, depending on the amount of breast enlargement and skin redundancy. The liposuction pull-through technique has been proposed as an efficacious treatment for many gynecomastia cases. This work aims to study the outcome of this technique when applied as an outpatient procedure, without the use of drains and through a single incision. Fifty-two patients with bilateral gynecomastia without significant skin excess were included in this study. The liposuction pull-through technique was performed through a single incision just above the inframammary fold and without the use of drains. Patients were followed up for 6 months. The proposed technique was able to treat the gynecomastia in all patients, with a revision rate of 1.9% to remove residual glandular tissues. There were no seromas, hematomas, nipple distortion, permanent affection of nipple sensation or wound healing problems. The liposuction pull-through technique is an effective treatment for gynecomastia without significant skin redundancy. It combines the benefits of the direct excision of glandular tissues, with the minimally invasive nature of liposuction. Performing the procedure through a single incision without the use of drains and without general anesthesia is a safe alternative. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors http://www.springer.com/00266 .

  9. Stress distribution in maxillary first molar periodontium using straight pull headgear with vertical and horizontal tubes: A finite element analysis.

    PubMed

    Feizbakhsh, Masood; Kadkhodaei, Mahmoud; Zandian, Dana; Hosseinpour, Zahra

    2017-01-01

    One of the most effective ways for distal movement of molars to treat Class II malocclusion is using extraoral force through a headgear device. The purpose of this study was the comparison of stress distribution in maxillary first molar periodontium using straight pull headgear in vertical and horizontal tubes through finite element method. Based on the real geometry model, a basic model of the first molar and maxillary bone was obtained using three-dimensional imaging of the skull. After the geometric modeling of periodontium components through CATIA software and the definition of mechanical properties and element classification, a force of 150 g for each headgear was defined in ABAQUS software. Consequently, Von Mises and Principal stresses were evaluated. The statistical analysis was performed using T-paired and Wilcoxon nonparametric tests. Extension of areas with Von Mises and Principal stresses utilizing straight pull headgear with a vertical tube was not different from that of using a horizontal tube, but the numerical value of the Von Mises stress in the vertical tube was significantly reduced ( P < 0/05). On the other hand, the difference of the principal stress between both tubes was not significant ( P > 0/05). Based on the results, when force applied to the straight pull headgear with a vertical tube, Von Mises stress was reduced significantly in comparison with the horizontal tube. Therefore, to correct the mesiolingual movement of the maxillary first molar, vertical headgear tube is recommended.

  10. Leg preference associated with protective stepping responses in older adults

    PubMed Central

    Young, Patricia M.; Whitall, Jill; Bair, Woei-Nan; Rogers, Mark W.

    2014-01-01

    Background Asymmetries in dynamic balance stability have been previously observed. The goal of this study was to determine whether leg preference influenced the stepping response to a waist-pull perturbation in older adult fallers and non-fallers. Methods 39 healthy, community-dwelling, older adult (>65 years) volunteers participated. Participants were grouped into non-faller and faller cohorts based on fall history in the 12 months prior to the study. Participants received 60 lateral waist-pull perturbations of varying magnitude towards their preferred and non-preferred sides during quiet standing. Outcome measures included balance tolerance limit, number of recovery steps taken and type of recovery step taken for perturbations to each side. Findings No significant differences in balance tolerance limit (P ≥ 0.102) or number of recovery steps taken (η2partial ≤ 0.027; P ≥ 0.442) were observed between perturbations towards the preferred and non-preferred legs. However, non-faller participants more frequently responded with a medial step when pulled towards their non-preferred side and cross-over steps when pulled towards their preferred side (P = 0.015). Interpretation Leg preference may influence the protective stepping response to standing balance perturbations in older adults at risk for falls, particularly with the type of recovery responses used. Such asymmetries in balance stability recovery may represent a contributing factor for falls among older individuals and should be considered for rehabilitation interventions aimed at improving balance stability and reducing fall risk. PMID:23962655

  11. Trunk response and stability in standing under sagittal-symmetric pull-push forces at different orientations, elevations and magnitudes.

    PubMed

    El Ouaaid, Z; Shirazi-Adl, A; Plamondon, A

    2018-03-21

    To reduce lifting and associated low back injuries, manual material handling operations often involve pulling-pushing of carts at different weights, orientations, and heights. The loads on spine and risk of injury however need to be investigated. The aim of this study was to evaluate muscle forces, spinal loads and trunk stability in pull-push tasks in sagittal-symmetric, static upright standing posture. Three hand-held load magnitudes (80, 120 and 160 N) at four elevations (0, 20, 40 and 60 cm to the L5-S1) and 24 force directions covering all pull/push orientations were considered. For this purpose, a musculoskeletal finite element model with kinematics measured earlier were used. Results demonstrated that peak spinal forces occur under inclined pull (lift) at upper elevations but inclined push at the lowermost one. Minimal spinal loads, on the other hand, occurred at and around vertical pull directions. Overall, spinal forces closely followed variations in the net external moment of pull-push forces at the L5-S1. Local lumbar muscles were most active in pulls while global extensor muscles in lifts. The trunk stability margin decreased with load elevation except at and around horizontal push; it peaked under pulls and reached minimum at vertical lifts. It also increased with antagonist activity in muscles and intra-abdominal pressure. Results provide insight into the marked effects of variation in the load orientation and elevation on muscle forces, spinal loads and trunk stability and hence offer help in rehabilitation, performance enhancement training and design of safer workplaces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Submucosal nerve diameter of greater than 40 μm is not a valid diagnostic index of transition zone pull-through.

    PubMed

    Kapur, Raj P

    2016-10-01

    Submucosal nerve hypertrophy is a feature of the transition zone in Hirschsprung disease and has been used as a primary diagnostic feature of transition zone pull-through for patients with persistent obstructive symptoms after their initial surgery. Most published criteria for identification of hypertrophy rely on a nerve diameter of greater than 40μm, based primarily on data from a relatively small number of infants with Hirschsprung disease and controls. The validity of these objective measures has not been validated in appropriate controls for post-pull-through patients. The primary pull-through specimens and post pull-through biopsies +/- redo pull-through resections from a series of 9 patients with Hirschsprung disease were reviewed to assess the prevalence of submucosal nerves >40μm in diameter and 400× microscopic fields containing two or more such nerves. Similar data from multiple colonic locations were collected from a series of 40 non-Hirschsprung autopsy and surgical controls. The overwhelming majority of Hirschsprung patients harbored submucosal nerves >40μm in their post-pull-through specimens independent of other features of transition zone pathology, and despite normal innervation at the proximal margins of their initial resections. Measurement of submucosal nerve diameters in autopsy and surgical non-Hirschsprung control samples indicated that nerves >40μm are normal in the distal rectum after 1year of age and are found in more proximal colon at older ages. These results suggest that diagnostic criteria currently used to recognize submucosal nerve hypertrophy in the neorectum after a pull-through for Hirschsprung disease are not justified and should not be regarded as definitive evidence for transition zone pull-through. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Accurate electrostatic and van der Waals pull-in prediction for fully clamped nano/micro-beams using linear universal graphs of pull-in instability

    NASA Astrophysics Data System (ADS)

    Tahani, Masoud; Askari, Amir R.

    2014-09-01

    In spite of the fact that pull-in instability of electrically actuated nano/micro-beams has been investigated by many researchers to date, no explicit formula has been presented yet which can predict pull-in voltage based on a geometrically non-linear and distributed parameter model. The objective of present paper is to introduce a simple and accurate formula to predict this value for a fully clamped electrostatically actuated nano/micro-beam. To this end, a non-linear Euler-Bernoulli beam model is employed, which accounts for the axial residual stress, geometric non-linearity of mid-plane stretching, distributed electrostatic force and the van der Waals (vdW) attraction. The non-linear boundary value governing equation of equilibrium is non-dimensionalized and solved iteratively through single-term Galerkin based reduced order model (ROM). The solutions are validated thorough direct comparison with experimental and other existing results reported in previous studies. Pull-in instability under electrical and vdW loads are also investigated using universal graphs. Based on the results of these graphs, non-dimensional pull-in and vdW parameters, which are defined in the text, vary linearly versus the other dimensionless parameters of the problem. Using this fact, some linear equations are presented to predict pull-in voltage, the maximum allowable length, the so-called detachment length, and the minimum allowable gap for a nano/micro-system. These linear equations are also reduced to a couple of universal pull-in formulas for systems with small initial gap. The accuracy of the universal pull-in formulas are also validated by comparing its results with available experimental and some previous geometric linear and closed-form findings published in the literature.

  14. Is trichotillomania a stereotypic movement disorder? An analysis of body-focused repetitive behaviors in people with hair-pulling.

    PubMed

    Stein, Dan J; Flessner, Christopher A; Franklin, Martin; Keuthen, Nancy J; Lochner, Christine; Woods, Douglas W

    2008-01-01

    Stereotypic movement disorder (SMD) is characterized by nonfunctional repetitive movements, is typically diagnosed in people with intellectual disability, and by definition excludes people with trichotillomania (TTM). Nevertheless, hair-pulling may be one of a number of body-focused repetitive behaviors (BFRBs) that are seen in the general population. Comorbidity of symptoms might support the idea that they are indicative of an underlying stereotypic disorder, and we therefore explored their frequency in people with hair-pulling. Participants were recruited with the help of the Trichotillomania Learning Center, the largest advocacy group for people with hair-pulling. Participants completed a self-report survey on the Internet, which included questions about the presence of both hair-pulling and other BFRBs. Measures included the Massachusetts General Hospital Hairpulling Scale (MGH-HS), the Milwaukee Inventory for Subtypes of Trichotillomania-Adult Version (MIST-A), the Depression and Anxiety Stress Scale (DASS), and the Sheehan Disability Scale (SDS). The majority of participants with hair-pulling (70%) report the presence of other BFRBs, most commonly skin-picking and nail-biting. There were particularly strong associations between the total number of BFRBs and increased scores on ratings of focused hair-pulling, depression, anxiety, stress, and functional impairment. Similar results were found in participants who met more rigorous criteria for trichotillomania. This study is limited by its self-report nature, and by the lack of detailed information on the phenomenology of comorbid BFRBs. While further nosological research is needed, the high rates of these behaviors in people with hair-pulling, and their association with increased disability, is consistent with previous clinical observations, and supports the argument that trichotillomania can usefully be conceptualized as a stereotypic disorder. Speculatively, this argument may be especially valid in trichotillomania patients with more focused hair-pulling symptoms.

  15. Initial atomic coherences and Ramsey frequency pulling in fountain clocks

    NASA Astrophysics Data System (ADS)

    Gerginov, Vladislav; Nemitz, Nils; Weyers, Stefan

    2014-09-01

    In the uncertainty budget of primary atomic cesium fountain clocks, evaluations of frequency-pulling shifts of the hyperfine clock transition caused by unintentional excitation of its nearby transitions (Rabi and Ramsey pulling) have been based so far on an approach developed for cesium beam clocks. We re-evaluate this type of frequency pulling in fountain clocks and pay particular attention to the effect of initial coherent atomic states. We find significantly enhanced frequency shifts caused by Ramsey pulling due to sublevel population imbalance and corresponding coherences within the state-selected hyperfine component of the initial atom ground state. Such shifts are experimentally investigated in an atomic fountain clock and quantitative agreement with the predictions of the model is demonstrated.

  16. Characterization and Effects of Fiber Pull-Outs in Hole Quality of Carbon Fiber Reinforced Plastics Composite

    PubMed Central

    Alizadeh Ashrafi, Sina; Miller, Peter W.; Wandro, Kevin M.; Kim, Dave

    2016-01-01

    Hole quality plays a crucial role in the production of close-tolerance holes utilized in aircraft assembly. Through drilling experiments of carbon fiber-reinforced plastic composites (CFRP), this study investigates the impact of varying drilling feed and speed conditions on fiber pull-out geometries and resulting hole quality parameters. For this study, hole quality parameters include hole size variance, hole roundness, and surface roughness. Fiber pull-out geometries are quantified by using scanning electron microscope (SEM) images of the mechanically-sectioned CFRP-machined holes, to measure pull-out length and depth. Fiber pull-out geometries and the hole quality parameter results are dependent on the drilling feed and spindle speed condition, which determines the forces and undeformed chip thickness during the process. Fiber pull-out geometries influence surface roughness parameters from a surface profilometer, while their effect on other hole quality parameters obtained from a coordinate measuring machine is minimal. PMID:28773950

  17. Microstructure and crystallography of Al2O3-Y3Al5O12-ZrO2 ternary eutectic oxide grown by the micropulling down technique

    NASA Astrophysics Data System (ADS)

    Benamara, Omar; Cherif, Maya; Duffar, Thierry; Lebbou, Kheirreddine

    2015-11-01

    The directional solidification of Al2O3-YAG-ZrO2 eutectic ceramic by a micro-pulling down (μ-PD) technique is investigated. The effect of the pulling rate (0.1-1 mm min-1) on the crystallography and the microstructure is discussed. This ternary eutectic system has a Chinese script microstructure and the eutectic spacing λ depends on the pulling rate υ following the law: λ = 6.5υ-1/2 where λ is in μm and υ in μm/s as derived from the Jackson-Hunt model. With the lower pulling rates, all phases are oriented with the <100> direction parallel to the growth direction; however other orientations appear at the higher pulling rates. The Cr3+ ions R-lines emission in the sapphire phase in the ternary eutectic composite is measured to estimate the stress in the alumina phase which is also shown to depend on the pulling rate.

  18. Friction pull plug welding: chamfered heat sink pull plug design

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2002-01-01

    Friction Pull Plug Welding (FPPW) is a solid state repair process for defects up to one inch in length, only requiring single sided tooling (OSL) for usage on flight hardware. Experimental data has shown that the mass of plug heat sink remaining above the top of the plate surface after a weld is completed (the plug heat sink) affects the bonding at the plug top. A minimized heat sink ensures complete bonding of the plug to the plate at the plug top. However, with a minimal heat sink three major problems can arise, the entire plug could be pulled through the plate hole, the central portion of the plug could be separated along grain boundaries, or the plug top hat can be separated from the body. The Chamfered Heat Sink Pull Plug Design allows for complete bonding along the ISL interface through an outside diameter minimal mass heat sink, while maintaining enough central mass in the plug to prevent plug pull through, central separation, and plug top hat separation.

  19. Optical trapping, pulling, and Raman spectroscopy of airborne absorbing particles based on negative photophoretic force

    NASA Astrophysics Data System (ADS)

    Chen, Gui-hua; He, Lin; Wu, Mu-ying; Yang, Guang; Li, Y. Q.

    2017-08-01

    Optical pulling is the attraction of objects back to the light source by the use of optically induced "negative forces". The light-induced photophoretic force is generated by the momentum transfer between the heating particles and surrounding gas molecules and can be several orders of magnitude larger than the radiation force and gravitation force. Here, we demonstrate that micron-sized absorbing particles can be optically pulled and manipulated towards the light source over a long distance in air with a collimated Gaussian laser beam based on a negative photophoretic force. A variety of airborne absorbing particles can be pulled by this optical pipeline to the region where they are optically trapped with another focused laser beam and their chemical compositions are characterized with Raman spectroscopy. We found that micron-sized particles are pulled over a meter-scale distance in air with a pulling speed of 1-10 cm/s in the optical pulling pipeline and its speed can be controlled by changing the laser intensity. When an aerosol particle is optically trapped with a focused Gaussian beam, we measured its rotation motion around the laser propagation direction and measured its Raman spectroscopy for chemical identification by molecular fingerprints. The centripetal acceleration of the trapped particle as high as 20 times the gravitational acceleration was observed. Optical pulling over large distances with lasers in combination with Raman spectroscopy opens up potential applications for the collection and identification of atmospheric particles.

  20. The Effect of Coconut Oil pulling on Streptococcus mutans Count in Saliva in Comparison with Chlorhexidine Mouthwash.

    PubMed

    Kaushik, Mamta; Reddy, Pallavi; Sharma, Roshni; Udameshi, Pooja; Mehra, Neha; Marwaha, Aditya

    2016-01-01

    Oil pulling is an age-old practice that has gained modern popularity in promoting oral and systemic health. The scientific verification for this practice is insufficient. Thus, this study evaluated the effect of coconut oil pulling on the count of Streptococcus mutans in saliva and to compare its efficacy with that of Chlorhexidine mouthwash: in vivo. The null hypothesis was that coconut oil pulling has no effect on the bacterial count in saliva. A randomized controlled study was planned and 60 subjects were selected. The subjects were divided into three groups, Group A: Oil pulling, Group B: Chlorhexidine, and Group C: Distilled water. Group A subjects rinsed mouth with 10 ml of coconut oil for 10 minutes. Group B subjects rinsed mouth with 5 ml Chlorhexidine mouthwash for 1 minute and Group C with 5 ml distilled water for 1 minute in the morning before brushing. Saliva samples were collected and cultured on 1st day and after 2 weeks from all subjects. Colonies were counted to compare the efficacy of coconut oil and Chlorhexidine with distilled water. Statistically significant reduction in S. mutans count was seen in both the coconut oil pulling and Chlorhexidine group. Oil pulling can be explored as a safe and effective alternative to Chlorhexidine. Edible oil-pulling therapy is natural, safe and has no side effects. Hence, it can be considered as a preventive therapy at home to maintain oral hygiene.

  1. Applications of novel effects derived from Si ingot growth inside Si melt without contact with crucible wall using noncontact crucible method to high-efficiency solar cells

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuo; Ono, Satoshi; Kaneko, Yuzuru; Murai, Ryota; Shirasawa, Katsuhiko; Fukuda, Tetsuo; Takato, Hidetaka; Jensen, Mallory A.; Youssef, Amanda; Looney, Erin E.; Buonassisi, Tonio; Martel, Benoit; Dubois, Sèbastien; Jouini, Anis

    2017-06-01

    The noncontact crucible (NOC) method was proposed for obtaining Si single bulk crystals with a large diameter and volume using a cast furnace and solar cells with high conversion efficiency and yield. This method has several novel characteristics that originate from its key feature that ingots can be grown inside a Si melt without contact with a crucible wall. Si ingots for solar cells were grown by utilizing the merits resulting from these characteristics. Single ingots with high quality were grown by the NOC method after furnace cleaning, and the minority carrier lifetime was measured to investigate reduction of the number of impurities. A p-type ingot with a convex growth interface in the growth direction was also grown after furnace cleaning. For p-type solar cells prepared using wafers cut from the ingot, the highest and average conversion efficiencies were 19.14% and 19.0%, respectively, which were obtained using the same solar cell structure and process as those employed to obtain a conversion efficiency of 19.1% for a p-type Czochralski (CZ) wafer. Using the cast furnace, solar cells with a conversion efficiency and yield as high as those of CZ solar cells were obtained by the NOC method.

  2. Push pull microfluidics on a multi-level 3D CD.

    PubMed

    Thio, Tzer Hwai Gilbert; Ibrahim, Fatimah; Al-Faqheri, Wisam; Moebius, Jacob; Khalid, Noor Sakinah; Soin, Norhayati; Kahar, Maria Kahar Bador Abdul; Madou, Marc

    2013-08-21

    A technique known as thermo-pneumatic (TP) pumping is used to pump fluids on a microfluidic compact disc (CD) back towards the CD center against the centrifugal force that pushes liquids from the center to the perimeter of the disc. Trapped air expands in a TP air chamber during heating, and this creates positive pressure on liquids located in chambers connected to that chamber. While the TP air chamber and connecting channels are easy to fabricate in a one-level CD manufacturing technique, this approach provides only one way pumping between two chambers, is real-estate hungry and leads to unnecessary heating of liquids in close proximity to the TP chamber. In this paper, we present a novel TP push and pull pumping method which allows for pumping of liquid in any direction between two connected liquid chambers. To ensure that implementation of TP push and pull pumping also addresses the issue of space and heating challenges, a multi-level 3D CD design is developed, and localized forced convection heating, rather than infra-red (IR) is applied. On a multi-level 3D CD, the TP features are placed on a top level separate from the rest of the microfluidic processes that are implemented on a lower separate level. This approach allows for heat shielding of the microfluidic process level, and efficient usage of space on the CD for centrifugal handling of liquids. The use of localized forced convection heating, rather than infra-red (IR) or laser heating in earlier implementations allows not only for TP pumping of liquids while the CD is spinning but also makes heat insulation for TP pumping and other fluidic functions easier. To aid in future implementations of TP push and pull pumping on a multi-level 3D CD, study on CD surface heating is also presented. In this contribution, we also demonstrate an advanced application of pull pumping through the implementation of valve-less switch pumping.

  3. Push pull microfluidics on a multi-level 3D CD

    PubMed Central

    Thio, Tzer Hwai Gilbert; Ibrahim, Fatimah; Al-Faqheri, Wisam; Moebius, Jacob; Khalid, Noor Sakinah; Soin, Norhayati; Kahar, Maria Kahar Bador Abdul; Madou, Marc

    2013-01-01

    A technique known as thermo-pneumatic (TP) pumping is used to pump fluids on a microfluidic compact disc (CD) back towards the CD center against the centrifugal force that pushes liquids from the center to the perimeter of the disc. Trapped air expands in a TP air chamber during heating, and this creates positive pressure on liquids located in chambers connected to that chamber. While the TP air chamber and connecting channels are easy to fabricate in a one-level CD manufacturing technique, this approach provides only one way pumping between two chambers, is real-estate hungry and leads to unnecessary heating of liquids in close proximity to the TP chamber. In this paper, we present a novel TP push and pull pumping method which allows for pumping of liquid in any direction between two connected liquid chambers. To ensure that implementation of TP push and pull pumping also addresses the issue of space and heating challenges, a multi-level 3D CD design is developed, and localized forced convection heating, rather than infra-red (IR) is applied. On a multi-level 3D CD, the TP features are placed on a top level separate from the rest of the microfluidic processes that are implemented on a lower separate level. This approach allows for heat shielding of the microfluidic process levels, and efficient usage of space on the CD for centrifugal handling of liquids. The use of localized forced convection heating, rather than infra-red (IR) or laser heating in earlier implementations allows not only for TP pumping of liquids while the CD is spinning but also makes heat insulation for TP pumping and other fluidic functions easier. To aid in future implementations of TP push and pull pumping on a multi-level 3D CD, study on CD surface heating is also presented. In this contribution, we also demonstrate an advanced application of pull pumping through the implementation of valve-less switch pumping. PMID:23774994

  4. Affective and Sensory Correlates of Hair Pulling in Pediatric Trichotillomania

    ERIC Educational Resources Information Center

    Meunier, Suzanne A.; Tolin, David F.; Franklin, Martin

    2009-01-01

    Hair pulling in pediatric populations has not received adequate empirical study. Investigations of the affective and sensory states contributing to the etiology and maintenance of hair pulling may help to elucidate the classification of trichotillomania (TTM) as an impulse control disorder or obsessive-compulsive spectrum disorder. The current…

  5. 40 CFR 63.1384 - Performance test requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... performance test, the owner or operator must monitor and record the glass pull rate for each glass-melting furnace and, if different, the glass pull rate for each rotary spin manufacturing line and flame attenuation manufacturing line. Record the glass pull rate every 15 minutes during any performance test...

  6. 40 CFR 63.1384 - Performance test requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... parameter. (3) During each performance test, the owner or operator must monitor and record the glass pull rate for each glass-melting furnace and, if different, the glass pull rate for each rotary spin manufacturing line and flame attenuation manufacturing line. Record the glass pull rate every 15 minutes during...

  7. 40 CFR 63.1384 - Performance test requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... parameter. (3) During each performance test, the owner or operator must monitor and record the glass pull rate for each glass-melting furnace and, if different, the glass pull rate for each rotary spin manufacturing line and flame attenuation manufacturing line. Record the glass pull rate every 15 minutes during...

  8. 13. PULL CURVE RECONSTRUCTION: Photocopy of a September 1907 photograph ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. PULL CURVE RECONSTRUCTION: Photocopy of a September 1907 photograph showing the reconstruction of a pull curve at Sacramento and Larkin Streets following the earthquake and fire. The tracks belong to United Railroads of San Francisco. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  9. Proceedings of the Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting (22nd) Held in Vienna, Virginia on 4-6 Dec 1990

    DTIC Science & Technology

    1991-05-01

    the problem of the frequency drift is still open. In- this context, the cavity pulling has drawn a lot of attention. Today, to our knowledge, 4...term maser frequency drift associated with the cavity pulling is a well known subject due to the high level of -precision obtainable in principle by...microprocessors. The frequency pulling due to microwave AM = =1:transitions (Ramsey pulling ) has been analyzed and shown to be important. Status of

  10. Tuning the sapphire EFG process to the growth of Al2O3/YAG/ZrO2:Y eutectic

    NASA Astrophysics Data System (ADS)

    Carroz, L.; Duffar, T.

    2018-05-01

    In this work, a model is proposed, in order to analytically study the working point of the Edge defined Film-fed Growth (EFG) pulling of crystal plates. The model takes into account the heat equilibrium at the interface and the pressure equilibrium across the meniscus. It is validated on an industrial device dedicated to the pulling of sapphire ribbons. Then, the model is applied to pulling ceramic alloy plates, of the ternary eutectic Al2O3/YAG/ZrO2:Y. This allowed understanding the experimental difficulties of pulling this new material and suggested improvements of the control software. From these results, pulling net shaped ceramic alloy plates was successful in the same industrial equipment as used for sapphire.

  11. Influence of imbalance on distortion in optical push-pull frontends

    NASA Astrophysics Data System (ADS)

    Hagensen, Morten

    1995-04-01

    The influence of imbalance on second-order inter-modulation distortion (IMD2) in optical push-pull frontends for Subcarrier Multiplex CATV applications is investigated theoretically and experimentally. The investigation focuses on imbalance introduced in either the photodiode, the push-pull amplifier, or the output balun, and expressions describing the overall IMD2 cancellation efficiency are derived. The developed theory is used to predict the IMD2 cancellation behavior of an optical push-pull fronted. Commercially available PIN photodiodes for CATV purposes and ferrite core transformers are characterised for phase and amplitude balance up to 1 GHz. The overall IMD2 cancellation efficiency of an optical push-pull frontend based on the best of these devices is calculated. The theory is finally verified experimentally with an optical push-pull frontend designed with the characterised photodiode and transformer. The improvement in IMD2 suppression obtained with the push-pull structure relative to a single-ended structure is in average 29 dB across the band from 47-862 MHz. The total IMD2 suppression obtained for the frontend is between 60 dBc and 79 dBc at an average optical input power of 1 mW and with an optical modulation index (OMI) of 35% per carrier in a two-tone setup.

  12. Capuchin monkeys, Cebus apella fail to understand a cooperative task

    PubMed

    Chalmeau; Visalberghi; Gallo

    1997-11-01

    We investigated whether capuchin monkeys cooperate to solve a task and to what extent they take into account the behaviour of another individual when cooperating. Two groups of capuchin monkeys (N=5 and 6) were tested in a task whose solution required simultaneous pulling of two handles which were too far from one another to be pulled by one monkey. Before carrying out the cooperation study, individual monkeys were trained to pull one handle (training phase 1) and to pull two handles simultaneously (training phase 2) for a food reward. Nine subjects were successful in training phase 1, and five in training phase 2. In the cooperation study seven subjects were successful, that is, pulled one handle while a companion pulled the other. Further analyses revealed that capuchins did not increase their pulling actions when a partner was close to or at the other handle, that is, when cooperation might occur. These data suggest that capuchin monkeys acted together at the task and got the reward without understanding the role of the partner and without taking its behaviour into consideration. Social tolerance, as well as their tendency to explore and their manual dexterity, were the major factors accounting for the capuchins' success.Copyright 1997 The Association for the Study of Animal Behaviour1997The Association for the Study of Animal Behaviour

  13. Influence of molecular designs on polaronic and vibrational transitions in a conjugated push-pull copolymer

    NASA Astrophysics Data System (ADS)

    Cobet, Christoph; Gasiorowski, Jacek; Menon, Reghu; Hingerl, Kurt; Schlager, Stefanie; White, Matthew S.; Neugebauer, Helmut; Sariciftci, N. Serdar; Stadler, Philipp

    2016-10-01

    Electron-phonon interactions of free charge-carriers in doped pi-conjugated polymers are conceptually described by 1-dimensional (1D) delocalization. Thereby, polaronic transitions fit the 1D-Froehlich model in quasi-confined chains. However, recent developments in conjugated polymers have diversified the backbones to become elaborate heterocylcic macromolecules. Their complexity makes it difficult to investigate the electron-phonon coupling. In this work we resolve the electron-phonon interactions in the ground and doped state in a complex push-pull polymer. We focus on the polaronic transitions using in-situ spectroscopy to work out the differences between single-unit and push-pull systems to obtain the desired structural- electronic correlations in the doped state. We apply the classic 1D-Froehlich model to generate optical model fits. Interestingly, we find the 1D-approach in push-pull polarons in agreement to the model, pointing at the strong 1D-character and plain electronic structure of the push-pull structure. In contrast, polarons in the single-unit polymer emerge to a multi- dimensional problem difficult to resolve due to their anisotropy. Thus, we report an enhancement of the 1D-character by the push-pull concept in the doped state - an important view in light of the main purpose of push-pull polymers for photovoltaic devices.

  14. An Investigation into the Cognition Behind Spontaneous String Pulling in New Caledonian Crows

    PubMed Central

    Taylor, Alex H.; Medina, Felipe S.; Holzhaider, Jennifer C.; Hearne, Lindsay J.; Hunt, Gavin R.; Gray, Russell D.

    2010-01-01

    The ability of some bird species to pull up meat hung on a string is a famous example of spontaneous animal problem solving. The “insight” hypothesis claims that this complex behaviour is based on cognitive abilities such as mental scenario building and imagination. An operant conditioning account, in contrast, would claim that this spontaneity is due to each action in string pulling being reinforced by the meat moving closer and remaining closer to the bird on the perch. We presented experienced and naïve New Caledonian crows with a novel, visually restricted string-pulling problem that reduced the quality of visual feedback during string pulling. Experienced crows solved this problem with reduced efficiency and increased errors compared to their performance in standard string pulling. Naïve crows either failed or solved the problem by trial and error learning. However, when visual feedback was available via a mirror mounted next to the apparatus, two naïve crows were able to perform at the same level as the experienced group. Our results raise the possibility that spontaneous string pulling in New Caledonian crows may not be based on insight but on operant conditioning mediated by a perceptual-motor feedback cycle. PMID:20179759

  15. Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications.

    PubMed

    Atila, Deniz; Keskin, Dilek; Tezcaner, Ayşen

    2015-11-20

    Skin defects that are not able to regenerate by themselves are among the major problems faced. Tissue engineering approach holds promise for treating such defects. Development of tissue-mimicking-scaffolds that can promote healing process receives an increasing interest in recent years. In this study, 3-dimensional electrospun cellulose acetate (CA) pullulan (PULL) scaffolds were developed for the first time. PULL was intentionally used to obtain 3D structures with adjustable height. It was removed from the electrospun mesh to increase the porosity and biostability. Different ratios of the polymers were electrospun and analyzed with respect to degradation, porosity, and mechanical properties. It has been observed that fiber diameter, thickness and porosity of scaffolds increased with increased PULL content, on the other hand this resulted with higher degradation of scaffolds. Mechanical strength of scaffolds was improved after PULL removal suggesting their suitability as cell carriers. Cell culture studies were performed with the selected scaffold group (CA/PULL: 50/50) using mouse fibroblastic cell line (L929). In vitro cell culture tests showed that cells adhered, proliferated and populated CA/PULL (50/50) scaffolds showing that they are cytocompatible. Results suggest that uncrosslinked CA/PULL (50/50) electrospun scaffolds hold potential for skin tissue engineering applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Atomic scale study of nanocontacts

    NASA Astrophysics Data System (ADS)

    Buldum, A.; Ciraci, S.; Batra, Inder P.; Fong, C. Y.

    1998-03-01

    Nanocontact and subsequent pulling off a sharp Ni(111) tip on a Cu(110) surface are investigated by using molecular dynamics method with embedded atom model. As the contact is formed, the sharp tip experiences multiple jump to contact in the attractive force range. The contact interface develops discontinuously mainly due to disorder-order transformations which lead to disappearance of a layer and hence abrupt changes in the normal force variation. Atom exchange occurs in the repulsive range. The connective neck is reduced also discontinuously by pulling off the tip. The novel atomic structure of the neck under the tensile force is analyzed. We also presented a comperative study for the contact by a Si(111) tip on Si(111)-(2x1) surface.

  17. Quantitative identification of proteins that influence miRNA biogenesis by RNA pull-down-SILAC mass spectrometry (RP-SMS).

    PubMed

    Choudhury, Nila Roy; Michlewski, Gracjan

    2018-06-08

    RNA-binding proteins mediate and control gene expression. As some examples, they regulate pre-mRNA synthesis and processing; mRNA localisation, translation and decay; and microRNA (miRNA) biogenesis and function. Here, we present a detailed protocol for RNA pull-down coupled to stable isotope labelling by amino acids in cell culture (SILAC) mass spectrometry (RP-SMS) that enables quantitative, fast and specific detection of RNA-binding proteins that regulate miRNA biogenesis. In general, this method allows for the identification of RNA-protein complexes formed using in vitro or chemically synthesized RNAs and protein extracts derived from cultured cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Luminescent and scintillation properties of Lu3Al5O12:Sc single crystal and single crystalline films

    NASA Astrophysics Data System (ADS)

    Zorenko, Y.; Gorbenko, V.; Voznyak, T.; Savchyn, V.; Nizhankovskiy, S.; Dan'ko, A.; Puzikov, V.; Laguta, V.; Mares, J. A.; Nikl, M.; Nejezchleb, K.; Batentschuk, M.; Winnacker, A.

    2012-10-01

    The work is dedicated to growth by the liquid phase epitaxy method and study of the luminescence and scintillation properties of Sc3+ doped single crystalline films (SCF) of Lu3Al5O12 (LuAG) garnet. The scintillation properties of SCF are compared with single crystal (SC) analogues grown by the Horizontal Direct Crystallization and Czochralski methods. We consider the dependence of intensity of the Sc3+ emission in LuAG host on the activator concentration and influence of flux contamination on the light yield (LY) of the Sc3+ luminescence in LuAG:Sc SCF with respect to their SC counterparts and the reference YAP:Ce scintillator. From the NMR investigations of LuAG:Sc SCF we confirm the substitution by Sc3+ ions both the octahedral and dodecahedral positions of LuAG host and formation of the ScAl and ScLu related emission centers, respectively. We also show that the luminescence spectrum in the UV range and decay kinetics of LuAG:Sc SCF can be effectively tuned by changing the scandium content.

  19. Misfit strain of oxygen precipitates in Czochralski silicon studied with energy-dispersive X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gröschel, A., E-mail: alexander.groeschel@fau.de; Will, J.; Bergmann, C.

    Annealed Czochralski Silicon wafers containing SiO{sub x} precipitates have been studied by high energy X-ray diffraction in a defocused Laue setup using a laboratory tungsten tube. The energy dispersive evaluation of the diffracted Bragg intensity of the 220 reflection within the framework of the statistical dynamical theory yields the static Debye-Waller factor E of the crystal, which gives access to the strain induced by the SiO{sub x} precipitates. The results are correlated with precipitate densities and sizes determined from transmission electron microscopy measurements of equivalent wafers. This allows for the determination of the constrained linear misfit ε between precipitate andmore » crystal lattice. For samples with octahedral precipitates the values ranging from ε = 0.39 (+0.28/−0.12) to ε = 0.48 (+0.34/−0.16) indicate that self-interstitials emitted into the matrix during precipitate growth contribute to the lattice strain. In this case, the expected value calculated from literature values is ε = 0.26 ± 0.05. Further, the precise evaluation of Pendellösung oscillations in the diffracted Bragg intensity of as-grown wafers reveals a thermal Debye-Waller parameter for the 220 reflection B{sup 220}(293 K) of 0.5582 ± 0.0039 Å{sup 2} for a structure factor based on spherically symmetric scattering contributions.« less

  20. Reduction of carbon contamination during the melting process of Czochralski silicon crystal growth

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Gao, Bing; Nakano, Satoshi; Kakimoto, Koichi

    2017-09-01

    Generation, incorporation, and accumulation of carbon (C) were investigated by transient global simulations of heat and mass transport during the melting process of Czochralski silicon (CZ-Si) crystal growth. Contact reaction between the quartz crucible and graphite susceptor was introduced as an extra origin of C contamination. The contribution of the contact reaction on C accumulation is affected by the back diffusion of C monoxide (CO) from the gap between the gas-guide and the crucible. The effect of the gas-guide coating on C reduction was elucidated by taking the reaction between the silicon carbide (SiC) coating and gaseous Si monoxide (SiO) into account. Application of the SiC coating on the gas-guide could effectively reduce the C contamination because of its higher thermochemical stability relative to that of graphite. Gas flow control on the back diffusion of the generated CO was examined by the parametric study of argon gas flow rate. Generation and back diffusion of CO were both effectively suppressed by the increase in the gas flow rate because of the high Péclet number of species transport. Strategies for C content reduction were discussed by analyzing the mechanisms of C accumulation process. According to the elucidated mechanisms of C accumulation, the final C content depends on the growth duration and contamination flux at the gas/melt interface.

  1. A novel method for passing cerebrospinal fluid shunt tubing: a proof of principle study.

    PubMed

    Tubbs, R Shane; Goodrich, Dylan; Tubbs, Isaiah; Loukas, Marios; Cohen-Gadol, Aaron A

    2014-12-01

    Few innovations in the method of tunneling shunt tubing for cerebrospinal fluid (CSF) shunt diversion have been made since this treatment of hydrocephalus was first developed. Therefore, this feasibility study was performed with the hope of identifying an improved technique that could potentially carry fewer complications. On 10 cadaver sides and when placed in the supine position, small skin incisions were made at the clavicle and ipsilateral subcostal region, and magnets were used to pass standard shunt tubing between the two incisions. Nickel-plated magnets were less effective in pulling the shunt tubing below the skin compared with ceramic magnets. Of these, magnets with pull strengths of 150-200 lbs were the most effective in dragging the subcutaneous tubing between the two incisions. No obvious damage to the skin from the overlying magnet was seen in any specimen. Few options exist for tunneling distal shunt tubing for CSF shunt procedures. Future patient studies are needed to determine if the technique described herein is superior to current methods, particularly when examining patient groups that are at a greater risk for injury during tunneling shunt catheters.

  2. Measuring the Strength of the Horned Passalus Beetle, Odontotaenius disjunctus: Revisiting an Old Topic with Modern Technology

    PubMed Central

    Davis, Andrew K.; Attarha, Barrett; Piefke, Taylor J.

    2013-01-01

    Over a century ago, a pioneering researcher cleverly devised a means to measure how much weight the horned passalus beetle, Odontotaenius disjunctus (Illiger) (Coleoptera: Passalidae), could pull using a series of springs, pulleys, and careful observation. The technology available in modern times now allows for more rigorous data collection on this topic, which could have a number of uses in scientific investigations. In this study, an apparatus was constructed using a dynamometer and a data logger in an effort to ascertain the pulling strength of this species. By allowing beetles to pull for 10 min, each beetle's mean and maximum pulling force (in Newtons) were obtained for analyses, and whether these measures are related was determined. Then, whether factors such as body length, thorax size, horn size, or gender affect either measure of strength was investigated. Basic body measurements, including horn size, of males versus females were compared. The measurements of 38 beetles (20 females, 18 males) showed there was no difference in overall body length between sexes, but females had greater girth (thorax width) than males, which could translate into larger muscle mass. A total of 21 beetles (10 females, 11 males) were tested for pulling strength. The grand mean pulling force was 0.14 N, and the grand mean maximum was 0.78 N. Despite the fact that beetles tended to pull at 20% of their maximum capacity most of the time, and that maximum force was over 5 times larger than the mean force, the 2 measures were highly correlated, suggesting they may be interchangeable for research purposes. Females had twice the pulling strength (both maximum and mean force) as males in this species overall, but when the larger thorax size of females was considered, the effect of gender was not significant. Beetle length was not a significant predictor of pulling force, but horn size was associated with maximum force. The best predictor of both measures of strength appeared to be thorax size. There are a multitude of interesting scientific questions that could be addressed using data on beetle pulling strength, and this project serves as a starting point for such work. PMID:24735074

  3. Advantages of Direct Insertion of a Straight Probe Without a Guide Tube During Anterior Odontoid Screw Fixation of Odontoid Fractures.

    PubMed

    Park, Jin Hoon; Kang, Dong-Ho; Lee, Moon Kyu; Yoo, Byoungwoo; Jung, Sang Ku; Hwang, Soo-Hyun; Kim, Jeoung Hee; Oh, Sunkyu; Lee, Eun Jung; Jeon, Sang Ryong; Roh, Sung Woo; Rhim, Seung Chul

    2016-05-01

    A retrospective cohort study. The aim of this study was to compare the anterior odontoid screw fixation (AOSF) with a guide tube or with a straight probe. AOSF associates with several complications, including malpositioning, fixation loss, and screw breakage. Screw pull-out from the C2 body is the most common complication. All consecutive patients with type II or rostral shallow type III odontoid fractures who underwent AOSFs during the study period were enrolled retrospectively. The guide-tube AOSF method followed the standard published method except C3 body and C2-3 disc annulus rimming was omitted to prevent disc injury; instead, the guide tube was anchored at the anterior inferior C2 vertebra corner. After 2 screw pull-outs, the guide-tube cohort was analyzed to identify the cause of instrument failure. Thereafter, the straight-probe method was developed. A guide tube was not used. A small pilot hole was made on the most anterior side of the inferior endplate, followed by insertion of a 2.5 mm straight probe through the C2 body. Non-union and instrument failure rates and screw-direction angles of the guide-tube and straight-probe groups were recorded. The guide-tube group (n = 13) had 2 screw pull-outs and 1 non-union. The straight-probe group (n = 8) had no complications and significantly larger screw-direction angles than the guide-tube group (60.5 ± 4.63 vs. 54.8 ± 3.82 degrees; P = 0.047). Straight-probe AOSF yielded larger direction angles without injuring bone and disc. Complications were absent. The procedure was easier than guide-tube AOSF and assured sufficient engagement, even in horizontal fracture orientation cases. 3.

  4. Influence of cement compressive strength and porosity on augmentation performance in a model of orthopedic screw pull-out.

    PubMed

    Pujari-Palmer, Michael; Robo, Celine; Persson, Cecilia; Procter, Philip; Engqvist, Håkan

    2018-01-01

    Disease and injuries that affect the skeletal system may require surgical intervention and internal fixation, i.e. orthopedic plate and screw insertion, to stabilize the injury and facilitate tissue repair. If the surrounding bone quality is poor the screws may migrate, or the bone may fail, resulting in fixation failure. While numerous studies have shown that cement augmentation of the interface between bone and implant can increase screw pull-out force, the physical properties of cement that influence pull-out force have not been investigated. The present study sought to determine how the physical properties of high strength calcium phosphate cements (hsCPCs, specifically dicalcium phosphate) affected the corresponding orthopedic screw pull-out force in urethane foam models of "healthy" and "osteoporotic" synthetic bone (Sawbones). In the simplest model, where only the bond strength between screw thread and cement (without Sawbone) was tested, the correlation between pull-out force and cement compressive strength (R 2 = 0.79) was weaker than correlation with total cement porosity (R 2 = 0.89). In open pore Sawbone that mimics "healthy" cancellous bone density the stronger cements produced higher pull-out force (50-60% increase). High strength, low porosity cements also produced higher pull-out forces (50-190% increase) in "healthy" Sawbones with cortical fixation if the failure strength of the cortical material was similar to, or greater than (a metal shell), actual cortical bone. This result is of particular clinical relevance where fixation with a metal plate implant is indicated, as the nearby metal can simulate a thicker cortical shell, thereby increasing the pull-out force of screws augmented with stronger cements. The improvement in pull-out force was apparent even at low augmentation volumes of 0.5mL (50% increase), which suggest that in clinical situations where augmentation volume is limited the stronger, lower porosity calcium phosphate cement (CPC) may still produce a significant improvement in screw pull-out force. When the correlation strength of all the tested models were compared both cement porosity and compressive strength accurately predicted pull-out force (R 2 =1.00, R 2 =0.808), though prediction accuracy depended upon the strength of the material surrounding the Sawbone. The correlations strength was low for bone with no, or weak, cortical fixation (R 2 =0.56, 0.36). Higher strength and lower porosity CPCs also produced greater pull-out force (1-1.5kN) than commercial CPC (0.2-0.5kN), but lower pull-out force than PMMA (2-3kN). The results of this study suggest that the likelihood of screw fixation failure may be reduced by selecting calcium phosphate cements with lower porosity and higher compressive strength, in patients with healthy bone mineral density and/or sufficient cortical thickness. This is of particular clinical relevance when fixation with metal plates is indicated, or where the augmentation volume is limited. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. TWO-LAYER MODEL FOR PULL-OUT BEHAVIOR OF POST-INSTALLED ANCHOR

    NASA Astrophysics Data System (ADS)

    Saleem, Muhammad; Tsubaki, Tatsuya

    A new two-layer anchor-infill assembly structure for the post-installed anchor is introduced with the analytical model to simulate its pull-out deformational response. The post-installed anchor is such that used in strengthening techniques for reinforced concrete structures. The properties of the infill material used for post-installed anchor are characterized by nonlinear interfaces. Because of the mechanical properties of the infill layer the existing pull-out model of deformed bars is not applicable in this case. Interfacial de-bonding is examined using energy criterion and strength criterion. The effect of the interface properties such as stiffness and strength on the pull-out behavior of a post-installed anchor is investigated. Using sensitivity analysis, the effect of these parameters on load-displacement curve, shear stress distribution, de-bonded length and damage to the surrounding concrete is clarified. Then, the optimum combination of these parameters is presented. It is confirmed that the elastic modulus of infill should be large to reduce the pull-out displacement and the increase of the shear strength of infill makes the pull-out load larger.

  6. Push-Pull Effects of Three Plant Secondary Metabolites on Oviposition of the Potato Tuber Moth, Phthorimaea operculella

    PubMed Central

    Ma, Y.F.; Xiao, C.

    2013-01-01

    The push-pull effects of three plant secondary metabolites, azadirachtin, eucalyptol, and heptanal, on the oviposition choices of potato tubers by the potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae) were tested in the laboratory. Azadirachtin at concentrations from 1.5 to 12 mg/L had a significant repellent effect on oviposition. Eucalyptol at concentrations from 3 to 12 mg/L promoted oviposition. Heptanal promoted oviposition at low concentrations from 0.1875 to 3.0 mg/L but repelled it at higher concentrations from 12 to 24 mg/L. The combination of azadirachtin (12 mg/L) with eucalyptol (3.0 mg/L) resulted in a significant pushpull effect of 56.3% on oviposition. The average maximum push-pull effects occurred with the combinations of azadirachtin with heptanal (12 and 0.375 mg/L, respectively; 38.7% push-pull effect), heptanal with eucalyptol (12 and 6 mg/L, respectively; 31.4% push-pull effect), and heptanal (high concentration) with heptanal (low concentration) (12.0 and 0.375 mg/L, respectively; 25% push-pull effect). PMID:24786822

  7. Common-pull, multiple-push, vacuum-activated telescope mirror cell.

    PubMed

    Ruiz, Elfego; Sohn, Erika; Salas, Luis; Luna, Esteban; Araiza-Durán, José A

    2014-11-20

    A new concept for push-pull active optics is presented, where the push-force is provided by means of individual airbag type actuators and a common force in the form of a vacuum is applied to the entire back of the mirror. The vacuum provides the pull-component of the system, in addition to gravity. Vacuum is controlled as a function of the zenithal angle, providing correction for the axial component of the mirror's weight. In this way, the push actuators are only responsible for correcting mirror deformations, as well as for supporting the axial mirror weight at the zenith, allowing for a uniform, full dynamic-range behavior of the system along the telescope's pointing range. This can result in the ability to perform corrections of up to a few microns for low-order aberrations. This mirror support concept was simulated using a finite element model and was tested experimentally at the 2.12 m San Pedro Mártir telescope. Advantages such as stress-free attachments, lighter weight, large actuator area, lower system complexity, and lower required mirror-cell stiffness could make this a method to consider for future large telescopes.

  8. Electroosmotic Sampling. Application to Determination of Ectopeptidase Activity in Organotypic Hippocampal Slice Cultures

    PubMed Central

    Xu, Hongjuan; Guy, Yifat; Hamsher, Amy; Shi, Guoyue; Sandberg, Mats; Weber, Stephen G.

    2010-01-01

    We hypothesize that peptide-containing solutions pulled through tissue should reveal the presence and activity of peptidases in the tissue. Using the natural ζ-potential in the organotypic hippocampal slice culture (OHSC), physiological fluids can be pulled through the tissue with an electric field. The hydrolysis of the peptides present in the fluid drawn through the tissue can be determined using capillary HPLC with electrochemical detection of the biuret complexes of the peptides following a postcolumn reaction. We have characterized this new sampling method by measuring the flow rate, examining the use of internal standards, and examining cell death caused by sampling. The sampling flow rate ranges from 60 to 150 nL/min with a 150 μm (ID) sampling capillary with an electric field (at the tip of the capillary) from 30 to 60 V/cm. Cell death can be negligible with controlled sampling conditions. Using this sampling approach, we have electroosmotically pulled Leu-enkephalin through OHSCs to identify ectopeptidase activity in the CA3 region. These studies show that a bestatin-sensitive aminopeptidase may be critical for the hydrolysis of exogenous Leu-enkephalin, a neuropeptide present in the CA3 region of OHSCs. PMID:20669992

  9. Theoretical study on the spectroscopic and third-order nonlinear optical properties of two-dimensional charge-transfer pyrazine derivatives

    NASA Astrophysics Data System (ADS)

    Li, Haipeng; Zhang, Yi; Bi, Zetong; Xu, Runfeng; Li, Mingxue; Shen, Xiaopeng; Tang, Gang; Han, Kui

    2017-12-01

    In this paper, density functional theory method was employed to study the electronic absorption spectrum and electronic static second hyperpolarisability of X-shaped pyrazine derivatives with two-dimensional charge-transfer structures. Computational results show that the push-pull electron abilities of the substituent groups and the length of the conjugated chains affect the electronic spectrum and static second hyperpolarisability of the pyrazine derivatives. As the push-pull electron abilities of the substituent groups or the length of the conjugated chains increases, the frontier molecular orbital energy gap decreases, resulting in increased second hyperpolarisability and redshift of the electronic absorption bands. The electronic absorption spectra of the pyrazine derivatives maintain good transparency in the blue light band. The electronic static second hyperpolarisability exhibits a linear relationship to the frontier molecular orbital energy gap. Particularly, increasing/decreasing the push-pull electron abilities of the substituent groups considerably affect the static second hyperpolarisability in long conjugated systems, which is important to the modulation of molecular organic nonlinear optical (NLO) properties. The studied pyrazine derivatives show large third-order NLO response and good transparency in the blue light band and are thus promising candidates as NLO materials for photonics applications.

  10. Designing for Diffusion: How Can We Increase Uptake of Cancer Communication Innovations?

    PubMed Central

    Dearing, James W.; Kreuter, Matthew W.

    2010-01-01

    Objective The best innovations in cancer communication do not necessarily achieve uptake by researchers, public health and clinical practitioners, and policy makers. This paper describes design activities that can be applied and combined for the purpose of spreading effective cancer communication innovations. Methods A previously developed Push-Pull-Infrastructure Model is used to organize and highlight the types of activities that can be deployed during the design phase of innovations. Scientific literature about the diffusion of innovations, knowledge utilization, marketing, public health, and our experiences in working to spread effective practices, programs, and policies are used for this purpose. Results Attempts to broaden the reach, quicken the uptake, and facilitate the use of cancer communication innovations can apply design activities to increase the likelihood of diffusion. Some simple design activities hold considerable promise for improving dissemination and subsequent diffusion. Conclusion Augmenting current dissemination practices with evidence-based concepts from diffusion science, marketing science, and knowledge utilization hold promise for improving results by eliciting greater market pull. Practice Implications Inventors and change agencies seeking to spread cancer communication innovations can experience more success by explicit consideration of design activities that reflect an expanded version of the Push-Pull-Infrastructure Model. PMID:21067884

  11. Yo-yo Pull Demonstration

    NASA Astrophysics Data System (ADS)

    Layton, William

    2013-03-01

    A popular demonstration involves placing a yo-yo on a level table and gently pulling the string horizontally when it is wrapped to come out below the center of the yo-yo's axis. Students are then asked to predict which way the yo-yo will move. A similar demonstration is performed with a tricycle by pulling forward on a pedal with the pedal down in its lowest position.2,3 As well as pulling the yo-yo horizontally, often the string is lifted until the angle it makes with the table causes no motion. This occurs when the line extended from the string intersects the point of contact of the yo-yo with the table.4 This paper describes an apparatus that extends these demonstrations to the situation where the force pulling the yo-yo is still horizontal yet is below the level of the table.

  12. Mitigating Oscillator Pulling Due To Magnetic Coupling in Monolithic Mixed-Signal Radio-Frequency Integrated Circuits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobering, Ian David

    2014-01-01

    An analysis of frequency pulling in a varactor-tuned LC VCO under coupling from an on-chip PA is presented. The large-signal behavior of the VCO's inversion-mode MOS varactors is outlined, and the susceptibility of the VCO to frequency pulling from PA aggressor signals with various modulation schemes is discussed. We show that if the aggressor signal is aperiodic, band-limited, or amplitude-modulated, the varactor-tuned LC VCO will experience frequency pulling due to time-modulation of the varactor capacitance. However, if the aggressor signal has constant-envelope phase modulation, VCO pulling can be eliminated, even in the presence of coupling, through careful choice of VCOmore » frequency and divider ratio. Additional mitigation strategies, including new inductor topologies and system-level architectural choices, are also examined.« less

  13. Multiple balance tests improve the assessment of postural stability in subjects with Parkinson's disease

    PubMed Central

    Jacobs, J V; Horak, F B; Tran, V K; Nutt, J G

    2006-01-01

    Objectives Clinicians often base the implementation of therapies on the presence of postural instability in subjects with Parkinson's disease (PD). These decisions are frequently based on the pull test from the Unified Parkinson's Disease Rating Scale (UPDRS). We sought to determine whether combining the pull test, the one‐leg stance test, the functional reach test, and UPDRS items 27–29 (arise from chair, posture, and gait) predicts balance confidence and falling better than any test alone. Methods The study included 67 subjects with PD. Subjects performed the one‐leg stance test, the functional reach test, and the UPDRS motor exam. Subjects also responded to the Activities‐specific Balance Confidence (ABC) scale and reported how many times they fell during the previous year. Regression models determined the combination of tests that optimally predicted mean ABC scores or categorised fall frequency. Results When all tests were included in a stepwise linear regression, only gait (UPDRS item 29), the pull test (UPDRS item 30), and the one‐leg stance test, in combination, represented significant predictor variables for mean ABC scores (r2 = 0.51). A multinomial logistic regression model including the one‐leg stance test and gait represented the model with the fewest significant predictor variables that correctly identified the most subjects as fallers or non‐fallers (85% of subjects were correctly identified). Conclusions Multiple balance tests (including the one‐leg stance test, and the gait and pull test items of the UPDRS) that assess different types of postural stress provide an optimal assessment of postural stability in subjects with PD. PMID:16484639

  14. Analogue modelling for localization of deformation in the extensional pull-apart basins: comparison with the west part of NAF, Turkey

    NASA Astrophysics Data System (ADS)

    Bulkan, Sibel; Storti, Fabrizio; Cavozzi, Cristian; Vannucchi, Paola

    2017-04-01

    Analogue modelling remains one of the best methods for investigating progressive deformation of pull apart systems in strike slip faults that are poorly known. Analogue model experiments for the North Anatolian Fault (NAF) system around the Sea of Marmara are extremely rare in the geological literature. Our purpose in this work is to monitor the relation between the horizontal propagation and branching of the strike slip fault, and the structural and topographic expression resulting from this process. These experiments may provide insights into the geometric evolution and kinematic of west part of the NAF system. For this purpose, we run several 3D sand box experiments, appropriately scaled. Plexiglass sheets were purposely cut to simulate the geometry of the NAF. Silicone was placed on the top of these to simulate the viscous lower crust, while the brittle upper crust was simulated with pure dry sand. Dextral relative fault motion was imposed as well using different velocities to reproduce different strain rates and pull apart formation at the releasing bend. Our experiments demonstrate the variation of the shear zone shapes and how the master-fault propagates during the deformation, helping to cover the gaps between geodetic and geologic slip information. Lower crustal flow may explain how the deformation is transferred to the upper crust, and stress partitioned among the strike slip faults and pull-apart basin systems. Stress field evolution seems to play an interesting role to help strain localization. We compare the results of these experiments with natural examples around the western part of NAF and with seismic observations.

  15. Long-Term Outcome in Pediatric Trichotillomania

    PubMed Central

    Schumer, Maya C.; Panza, Kaitlyn E.; Mulqueen, Jilian M.; Jakubovski, Ewgeni; Bloch, Michael H.

    2015-01-01

    Objective To examine long-term outcome in children with trichotillomania. Method We conducted follow-up clinical assessments an average of 2.8 ± 0.8 years after baseline evaluation in 30 out of 39 children who previously participated in a randomized, double-blind, placebo-controlled trial of N-acetylcysteine (NAC) for pediatric trichotillomania. Our primary outcome was change in hairpulling severity on the Massachusetts General Hospital-Hairpulling Scale (MGH-HPS) between the end of the acute phase and follow-up evaluation. We also obtained secondary measures examining styles of hairpulling, comorbid anxiety and depressive symptoms, as well as continued treatment utilization. We examined both correlates and predictors of outcome (change in MGH-HPS score) using linear regression. Results None of the participants continued to take NAC at the time of follow-up assessment. No significant changes in hairpulling severity were reported over the follow-up period. Subjects reported significantly increased anxiety and depressive symptoms but improvement in automatic pulling symptoms. Increased hairpulling symptoms during the follow-up period were associated with increased depression and anxiety symptoms and increased focused pulling. Older age and greater focused pulling at baseline assessment were associated with poor long-term prognosis. Conclusions Our findings suggest that few children with trichotillomania experience a significant improvement in trichotillomania symptoms if behavioral treatments are inaccessible or have failed to produce adequate symptom relief. Our findings also confirm results of previous cross-sectional studies that suggest an increased risk of depression and anxiety symptoms with age in pediatric trichotillomania. Increased focused pulling and older age among children with trichotillomania symptoms may be associated with poorer long-term prognosis. PMID:26139231

  16. From pull-down data to protein interaction networks and complexes with biological relevance.

    PubMed

    Zhang, Bing; Park, Byung-Hoon; Karpinets, Tatiana; Samatova, Nagiza F

    2008-04-01

    Recent improvements in high-throughput Mass Spectrometry (MS) technology have expedited genome-wide discovery of protein-protein interactions by providing a capability of detecting protein complexes in a physiological setting. Computational inference of protein interaction networks and protein complexes from MS data are challenging. Advances are required in developing robust and seamlessly integrated procedures for assessment of protein-protein interaction affinities, mathematical representation of protein interaction networks, discovery of protein complexes and evaluation of their biological relevance. A multi-step but easy-to-follow framework for identifying protein complexes from MS pull-down data is introduced. It assesses interaction affinity between two proteins based on similarity of their co-purification patterns derived from MS data. It constructs a protein interaction network by adopting a knowledge-guided threshold selection method. Based on the network, it identifies protein complexes and infers their core components using a graph-theoretical approach. It deploys a statistical evaluation procedure to assess biological relevance of each found complex. On Saccharomyces cerevisiae pull-down data, the framework outperformed other more complicated schemes by at least 10% in F(1)-measure and identified 610 protein complexes with high-functional homogeneity based on the enrichment in Gene Ontology (GO) annotation. Manual examination of the complexes brought forward the hypotheses on cause of false identifications. Namely, co-purification of different protein complexes as mediated by a common non-protein molecule, such as DNA, might be a source of false positives. Protein identification bias in pull-down technology, such as the hydrophilic bias could result in false negatives.

  17. Causal assessment of occupational pushing or pulling and low back pain: results of a systematic review.

    PubMed

    Roffey, Darren M; Wai, Eugene K; Bishop, Paul; Kwon, Brian K; Dagenais, Simon

    2010-06-01

    Low back pain (LBP) is a prevalent and expensive musculoskeletal condition that predominantly occurs in working-age individuals of industrialized nations. Although numerous occupational physical activities have been implicated in its etiology, determining the causation of occupational LBP still remains a challenge. To conduct a systematic review evaluating the causal relationship between occupational pushing or pulling and LBP. Systematic review of the literature. Studies reporting an association between occupational pushing or pulling and LBP. Numerical association between exposure to pushing or pulling and the presence of LBP. A systematic review was performed to identify, evaluate, and summarize the literature related to establishing a causal relationship, according to Bradford-Hill criteria for causation for occupational pushing or pulling and LBP. A search was conducted using Medline, EMBASE, CINAHL, Cochrane Library, and OSH-ROM, gray literature, hand-searching occupational health journals, reference lists of included studies, and expert knowledge. Methodological quality was assessed using a modified Newcastle-Ottawa Scale. This search yielded 2,766 citations. Thirteen studies met the inclusion criteria. Eight were high-quality studies and five were low-quality studies. There was conflicting evidence with one high-quality study demonstrating a positive association between occupational pushing or pulling and LBP and five studies showing no relationship. One study reported a nonstatistically significant dose-response trend, four studies discussed temporality of which one indicated a positive finding, two studies discussed the biological plausibility of a causal link between occupational pushing or pulling and LBP, and no evidence was uncovered to assess the experiment criterion. A qualitative summary of existing studies was not able to find any high-quality studies that fully satisfied any of the Bradford-Hill causation criteria for occupational pushing or pulling and LBP. Based on the evidence reviewed, it is unlikely that occupational pushing or pulling is independently causative of LBP in the populations of workers studied. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Free-energy landscape of glycerol permeation through aquaglyceroporin GlpF determined from steered molecular dynamics simulations.

    PubMed

    Chen, L Y

    2010-10-01

    The free-energy landscape of glycerol permeation through the aquaglyceroporin GlpF has been estimated in the literature by the nonequilibrium method of steered molecular dynamics (SMD) simulations and by the equilibrium method of adaptive biasing force (ABF) simulations. However, the ABF results qualitatively disagree with the SMD results that were based on the Jarzynski equality (JE) relating the equilibrium free-energy difference to the nonequilibrium work of the irreversible pulling experiments. In this paper, I present a new SMD study of the glycerol permeation through GlpF to explore the free-energy profile of glycerol along the permeation channel. Instead of the JE in terms of thermodynamic work, I use the fluctuation-dissipation theorem (FDT) of Brownian dynamics (BD), in terms of mechanical work, for extracting the free-energy difference from the nonequilibrium work of irreversible pulling experiments. The results of this new SMD-BD-FDT study are in agreement with the experimental data and with the ABF results. 2010 Elsevier B.V. All rights reserved.

  19. Predicting the Drop Performance of Solder Joints by Evaluating the Elastic Strain Energy from High-Speed Ball Pull Tests

    NASA Astrophysics Data System (ADS)

    You, Taehoon; Kim, Yunsung; Kim, Jina; Lee, Jaehong; Jung, Byungwook; Moon, Jungtak; Choe, Heeman

    2009-03-01

    Despite being expensive and time consuming, board-level drop testing has been widely used to assess the drop or impact resistance of the solder joints in handheld microelectronic devices, such as cellphones and personal digital assistants (PDAs). In this study, a new test method, which is much simpler and quicker, is proposed. The method involves evaluating the elastic strain energy and relating it to the impact resistance of the solder joint by considering the Young’s modulus of the bulk solder and the fracture stress of the solder joint during a ball pull test at high strain rates. The results show that solder joints can be ranked in order of descending elastic strain energy as follows: Sn-37Pb, Sn-1Ag-0.5Cu, Sn-3Ag-0.5Cu, and Sn-4Ag-0.5Cu. This order is consistent with the actual drop performances of the samples.

  20. 78 FR 24368 - Airworthiness Directives; Bell Helicopter Textron, Inc. (Bell) Model Helicopters

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-25

    ... chain and cable control system with a push-pull control system. Since we issued that AD, we have... requires replacing the existing chain and cable control system with a push-pull control system. Both... Model 205A-1 to replace the tail rotor chain and cable control system with a push-pull control system...

  1. 25 CFR 542.8 - What are the minimum internal control standards for pull tabs?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the accuracy of the ending balance in the pull tab control by reconciling the pull tabs on hand. (6) A.... (g) Standards for statistical reports. (1) Records shall be maintained, which include win, write (sales), and a win-to-write hold percentage as compared to the theoretical hold percentage derived from...

  2. On the Push-Pull Mobile Learning of Electric Welding

    ERIC Educational Resources Information Center

    Chung, Chih-Chao; Dzan, Wei-Yuan; Cheng, Yuh-Ming; Lou, Shi-Jer

    2017-01-01

    This study aims to explore the learning effects and attitudes of students in the course electric welding practice in a university of science and technology to which the push-pull technology-based mobile learning system is applied. In this study, the push-pull technology is adopted to establish a mobile learning system and develop the Push-pull…

  3. Simplified Habit Reversal Treatment for Chronic Hair Pulling in Three Adolescents: A Clinical Replication with Direct Observation.

    ERIC Educational Resources Information Center

    Rapp, John T.; Miltenberger, Raymond G.; Long, Ethan S.; Elliott, Amy J.; Lumley, Vicki A.

    1998-01-01

    Three developmentally normal adolescents with chronic hair pulling were treated with a simplified habit-reversal procedure consisting of awareness training, competing response training, and parental social support. Treatment resulted in immediate reduction to near-zero levels of hair pulling with one to three booster sessions. Results were…

  4. IRRADIATION METHOD AND APPARATUS

    DOEpatents

    Cabell, C.P.

    1962-12-18

    A method and apparatus are described for changing fuel bodies into a process tube of a reactor. According to this method fresh fuel elements are introduced into one end of the tube forcing used fuel elements out the other end. When sufficient fuel has been discharged, a reel and tape arrangement is employed to pull the column of bodies back into the center of the tube. Due provision is made for providing shielding in the tube. (AEC)

  5. Are pushing and pulling work-related risk factors for upper extremity symptoms? A systematic review of observational studies.

    PubMed

    Hoozemans, M J M; Knelange, E B; Frings-Dresen, M H W; Veeger, H E J; Kuijer, P P F M

    2014-11-01

    Systematically review observational studies concerning the question whether workers that perform pushing/pulling activities have an increased risk for upper extremity symptoms as compared to workers that perform no pushing/pulling activities. A search in MEDLINE via PubMed and EMBASE was performed with work-related search terms combined with push/pushing/pull/pulling. Studies had to examine exposure to pushing/pulling in relation to upper extremity symptoms. Two authors performed the literature selection and assessment of the risk of bias in the studies independently. A best evidence synthesis was used to draw conclusions in terms of strong, moderate or conflicting/insufficient evidence. The search resulted in 4764 studies. Seven studies were included, with three of them of low risk of bias, in total including 8279 participants. A positive significant relationship with upper extremity symptoms was observed in all four prospective cohort studies with effect sizes varying between 1.5 and 4.9. Two out of the three remaining studies also reported a positive association with upper extremity symptoms. In addition, significant positive associations with neck/shoulder symptoms were found in two prospective cohort studies with effect sizes of 1.5 and 1.6, and with shoulder symptoms in one of two cross-sectional studies with an effect size of 2.1. There is strong evidence that pushing/pulling is related to upper extremity symptoms, specifically for shoulder symptoms. There is insufficient or conflicting evidence that pushing/pulling is related to (combinations of) upper arm, elbow, forearm, wrist or hand symptoms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Silicon materials task of the low cost solar array project, part 2

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Rai-Choudhury, P.; Blais, P. D.; Mccormick, J. R.

    1976-01-01

    Purity requirements for solar cell grade silicon material was developed and defined by evaluating the effects of specific impurities and impurity levels on the performance of silicon solar cells. Also, data was generated forming the basis for cost-tradeoff analyses of silicon solar cell material. Growth, evaluation, solar cell fabrication and testing was completed for the baseline boron-doped Czochralski material. Measurements indicate Cn and Mn seriously degrade cell performance, while neither Ni nor Cu produce any serious reduction in cell efficiency.

  7. The Effect of High Pressure - High Temperature Treatment on Neutron Irradiation Induced Defects in Czochralski Silicon

    DTIC Science & Technology

    2001-01-01

    Spectra by the 830cm’ Localized Vibrational Mode (LVM) band. Upon annealing , this defect is converted to the V0 2 defect responsible for a LVM band at...887cmŕ. The purpose of this work is to study the effect of various combinations of HTHP treatment prior to irradiation on the annealing behaviour of...and stacking faults. Keywords: high temperature - high pressure treatments, annealing , neutron irradiation. 1. INTRODUCTION Oxygen is one of the two

  8. The establishment of a production-ready manufacturing process utilizing thin silicon substrates for solar cells

    NASA Technical Reports Server (NTRS)

    Pryor, R. A.

    1980-01-01

    Three inch diameter Czochralski silicon substrates sliced directly to 5 mil, 8 mil, and 27 mil thicknesses with wire saw techniques were procured. Processing sequences incorporating either diffusion or ion implantation technologies were employed to produce n+p or n+pp+ solar cell structures. These cells were evaluated for performance, ease of fabrication, and cost effectiveness. It was determined that the use of 7 mil or even 4 mil wafers would provide near term cost reductions for solar cell manufacturers.

  9. The growth of dislocation-free crystals of benzil

    NASA Astrophysics Data System (ADS)

    Katoh, K.; Kato, N.

    1985-11-01

    Dislocation-free crystals of benzil have been obtained by repeated Czochralski growth and have been characterized using X-ray diffraction topography. At each stage of growth, the parts containing the defects were etched off and the rest was used for the seed in the next growth. The growth behaviour could be interpreted in connection with the shape of the solid-liquid interface. The double image of the screw dislocation could be explained elementarily and it was concluded that the Burgers vector was c/3.

  10. Sunlight-switchable light shutter fabricated using liquid crystals doped with push-pull azobenzene.

    PubMed

    Oh, Seung-Won; Baek, Jong-Min; Yoon, Tae-Hoon

    2016-11-14

    We propose a sunlight-switchable light shutter using liquid crystal/polymer composite doped with push-pull azobenzene. The proposed light shutter is switchable between the translucent and transparent states by application of an electric field or by UV irradiation. Switching by UV irradiation is based on the change of the liquid crystal (LC) clearing point by the photo-isomerization effect of push-pull azobenzene. Under sunlight, the light shutter can be switched from the translucent to the transparent state by the nematic-isotropic phase transition of the LC domains triggered by trans-cis photo-isomerization of the push-pull azobenzene molecules. When the amount of sunlight is low because of cloud cover or when there is no sunlight at sunset, the light shutter rapidly relaxes from its transparent state back to its initial translucent state by the isotropic-nematic phase transition induced by cis-trans back-isomerization of the push-pull azobenzene molecules.

  11. Pushing and pulling: an assessment tool for occupational health and safety practitioners.

    PubMed

    Lind, Carl Mikael

    2018-03-01

    A tool has been developed for supporting practitioners when assessing manual pushing and pulling operations based on an initiative by two global companies in the manufacturing industry. The aim of the tool is to support occupational health and safety practitioners in risk assessment and risk management of pushing and pulling operations in the manufacturing and logistics industries. The tool is based on a nine-multiplier equation that includes a wide range of factors affecting an operator's health risk and capacity in pushing and pulling. These multipliers are based on psychophysical, physiological and biomechanical studies in combination with judgments from an expert group consisting of senior researchers and ergonomists. In order to consider usability, more than 50 occupational health and safety practitioners (e.g., ergonomists, managers, safety representatives and production personnel) participated in the development of the tool. An evaluation by 22 ergonomists supports that the push/pull tool is user friendly in general.

  12. Self-locking double retention redundant pull pin release

    NASA Technical Reports Server (NTRS)

    Killgrove, Thomas O. (Inventor)

    1987-01-01

    A double-retention redundant pull pin release system is disclosed. The system responds to a single pull during an intentional release operation. A spiral-threaded main pin is seated in a mating bore in a housing, which main pin has a flange fastened thereon at the part of the main pin which is exterior to the housing. Accidental release tends to rotate the main pin. A secondary pin passes through a slightly oversized opening in the flange and is seated in a second bore in the housing. The pins counteract against one another to prevent accidental release. A frictional lock is shared between the main and secondary pins to enhance further locking of the system. The secondary pin, in response to a first pull, is fully retracted from its bore and flange hole. Thereafter the pull causes the main pin to rotate free of the housing to release, for example, a parachute mechanism.

  13. Micro/nano-mechanical test system employing tensile test holder with push-to-pull transformer

    DOEpatents

    Oh, Yunje; Cyrankowski, Edward; Shan, Zhiwei; Asif, Syed Amanula Syed

    2013-05-07

    A micromachined or microelectromechanical system (MEMS) based push-to-pull mechanical transformer for tensile testing of micro-to-nanometer scale material samples including a first structure and a second structure. The second structure is coupled to the first structure by at least one flexible element that enables the second structure to be moveable relative to the first structure, wherein the second structure is disposed relative to the first structure so as to form a pulling gap between the first and second structures such that when an external pushing force is applied to and pushes the second structure in a tensile extension direction a width of the pulling gap increases so as to apply a tensile force to a test sample mounted across the pulling gap between a first sample mounting area on the first structure and a second sample mounting area on the second structure.

  14. Micro/nano-mechanical test system employing tensile test holder with push-to-pull transformer

    DOEpatents

    Oh, Yunje; Cyrankowski, Edward; Shan, Zhiwei; Syed Asif, Syed Amanula

    2014-07-29

    A micromachined or microelectromechanical system (MEMS) based push-to-pull mechanical transformer for tensile testing of micro-to-nanometer scale material samples including a first structure and a second structure. The second structure is coupled to the first structure by at least one flexible element that enables the second structure to be moveable relative to the first structure, wherein the second structure is disposed relative to the first structure so as to form a pulling gap between the first and second structures such that when an external pushing force is applied to and pushes the second structure in a tensile extension direction a width of the pulling gap increases so as to apply a tensile force to a test sample mounted across the pulling gap between a first sample mounting area on the first structure and a second sample mounting area on the second structure.

  15. Development of radon-222 as a natural tracer for monitoring the remediation of NAPL contamination in the subsurface. 1998 annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semprini, L.; Istok, J.

    'The objective of this research is to develop a unique method of using naturally occurring radon-222 as a tracer for locating and quantitatively describing the presence of subsurface NAPL contamination. The research will evaluate using radon as an inexpensive, yet highly accurate, means of detecting NAPL contamination and assessing the effectiveness of NAPL remediation. Laboratory, field, and modeling studies are being performed to evaluate this technique, and to develop methods for its successful implementation in practice. This report summarizes work that has been accomplished after 1-year of a 3-year project. The research to date has included radon tracer tests inmore » physical aquifer models (PAMs) and field studies at Site 300 of the Lawrence Livermore National Laboratory, CA, and Site 100D at Hanford DOE Facility, WA. The PAM tests have evaluated the ability of radon as a tracer to monitor the remediation of TCE NAPL contamination using surfactant treatment, and oxidation with permanganate. The surfactant tests were performed in collaboration with Dr. Jack Istok and Dr. Jennifer Field and their EMSP project ``In-situ, Field-Scale Evaluation of Surfactant Enhanced DNAPL Recovery Using a Single-Well-Push-Pull Test.'''' This collaboration enabled the EMSP radon project to make rapid progress. The PAM surfactant tests were performed in a radial flow geometry to simulate the push-pull-method that is being developed for surfactant field tests. The radon tests were easily incorporated into these experiments, since they simply rely on measuring the natural radon present in the subsurface fluids. Two types of radon tests were performed: (1) static tests where radon was permitted to build-up to steady-state concentrations in the pore fluids and the groundwater concentrations were monitored, and (2) dynamic tests were the radon response during push-pull surfactant tests was measured. Both methods were found to be useful in determining how NAPL remediation was progressing.'« less

  16. Biomechanical evaluation of a new fixation device for the thoracic spine.

    PubMed

    Hongo, Michio; Ilharreborde, Brice; Gay, Ralph E; Zhao, Chunfeng; Zhao, Kristin D; Berglund, Lawrence J; Zobitz, Mark; An, Kai-Nan

    2009-08-01

    The technology used in surgery for spinal deformity has progressed rapidly in recent years. Commonly used fixation techniques may include monofilament wires, sublaminar wires and cables, and pedicle screws. Unfortunately, neurological complications can occur with all of these, compromising the patients' health and quality of life. Recently, an alternative fixation technique using a metal clamp and polyester belt was developed to replace hooks and sublaminar wiring in scoliosis surgery. The goal of this study was to compare the pull-out strength of this new construct with sublaminar wiring, laminar hooks and pedicle screws. Forty thoracic vertebrae from five fresh frozen human thoracic spines (T5-12) were divided into five groups (8 per group), such that BMD values, pedicle diameter, and vertebral levels were equally distributed. They were then potted in polymethylmethacrylate and anchored with metal screws and polyethylene bands. One of five fixation methods was applied to the right side of the vertebra in each group: Pedicle screw, sublaminar belt with clamp, figure-8 belt with clamp, sublaminar wire, or laminar hook. Pull-out strength was then assessed using a custom jig in a servohydraulic tester. The mean failure load of the pedicle screw group was significantly larger than that of the figure-8 clamp (P = 0.001), sublaminar belt (0.0172), and sublaminar wire groups (P = 0.04) with no significant difference in pull-out strength between the latter three constructs. The most common mode of failure was the fracture of the pedicle. BMD was significantly correlated with failure load only in the figure-8 clamp and pedicle screw constructs. Only the pedicle screw had a statistically significant higher failure load than the sublaminar clamp. The sublaminar method of applying the belt and clamp device was superior to the figure-8 method. The sublaminar belt and clamp construct compared favorably to the traditional methods of sublaminar wires and laminar hooks, and should be considered as an alternative fixation device in the thoracic spine.

  17. Biomechanical evaluation of a new fixation device for the thoracic spine

    PubMed Central

    Hongo, Michio; Ilharreborde, Brice; Zhao, Chunfeng; Zhao, Kristin D.; Berglund, Lawrence J.; Zobitz, Mark; An, Kai-Nan

    2009-01-01

    The technology used in surgery for spinal deformity has progressed rapidly in recent years. Commonly used fixation techniques may include monofilament wires, sublaminar wires and cables, and pedicle screws. Unfortunately, neurological complications can occur with all of these, compromising the patients’ health and quality of life. Recently, an alternative fixation technique using a metal clamp and polyester belt was developed to replace hooks and sublaminar wiring in scoliosis surgery. The goal of this study was to compare the pull-out strength of this new construct with sublaminar wiring, laminar hooks and pedicle screws. Forty thoracic vertebrae from five fresh frozen human thoracic spines (T5–12) were divided into five groups (8 per group), such that BMD values, pedicle diameter, and vertebral levels were equally distributed. They were then potted in polymethylmethacrylate and anchored with metal screws and polyethylene bands. One of five fixation methods was applied to the right side of the vertebra in each group: Pedicle screw, sublaminar belt with clamp, figure-8 belt with clamp, sublaminar wire, or laminar hook. Pull-out strength was then assessed using a custom jig in a servohydraulic tester. The mean failure load of the pedicle screw group was significantly larger than that of the figure-8 clamp (P = 0.001), sublaminar belt (0.0172), and sublaminar wire groups (P = 0.04) with no significant difference in pull-out strength between the latter three constructs. The most common mode of failure was the fracture of the pedicle. BMD was significantly correlated with failure load only in the figure-8 clamp and pedicle screw constructs. Only the pedicle screw had a statistically significant higher failure load than the sublaminar clamp. The sublaminar method of applying the belt and clamp device was superior to the figure-8 method. The sublaminar belt and clamp construct compared favorably to the traditional methods of sublaminar wires and laminar hooks, and should be considered as an alternative fixation device in the thoracic spine. PMID:19404687

  18. Measuring spatial variability in soil characteristics

    DOEpatents

    Hoskinson, Reed L.; Svoboda, John M.; Sawyer, J. Wayne; Hess, John R.; Hess, J. Richard

    2002-01-01

    The present invention provides systems and methods for measuring a load force associated with pulling a farm implement through soil that is used to generate a spatially variable map that represents the spatial variability of the physical characteristics of the soil. An instrumented hitch pin configured to measure a load force is provided that measures the load force generated by a farm implement when the farm implement is connected with a tractor and pulled through or across soil. Each time a load force is measured, a global positioning system identifies the location of the measurement. This data is stored and analyzed to generate a spatially variable map of the soil. This map is representative of the physical characteristics of the soil, which are inferred from the magnitude of the load force.

  19. Low temperature-pressure batch experiments and field push-pull tests: Assessing potential effects of an unintended CO2 release from CCUS projects on groundwater chemistry

    NASA Astrophysics Data System (ADS)

    Mickler, P. J.; Yang, C.; Lu, J.; Reedy, R. C.; Scanlon, B. R.

    2012-12-01

    Carbon Capture Utilization and Storage projects (CCUS), where CO2 is captured at point sources such as power stations and compressed into a supercritical liquid for underground storage, has been proposed to reduce atmospheric CO2 and mitigate global climate change. Problems may arise from CO2 releases along discreet pathways such as abandoned wells and faults, upwards and into near surface groundwater. Migrating CO2 may inversely impact fresh water resources by increasing mineral solubility and dissolution rates and mobilizing harmful trace elements including As and Pb. This study addresses the impacts on fresh water resources through a combination of laboratory batch experiments, where aquifer sediment are reacted in their corresponding groundwater in 100% CO2 environments, and field push-pull tests where groundwater is equilibrated with 100% CO2, reacted in-situ in the groundwater system, and pulled out for analyses. Batch experiments were performed on aquifer material from carbonate dominated, mixed carbonate/silicalstic, and siliclastic dominated systems. A mixed silicalstic/carbonate system was chosen for the field based push-pull test. Batch experiment results suggest carbonate dissolution increased the concentration of Ca, Mg, Sr, Ba, Mn, U and HCO3- in groundwater. In systems with significant carbonate content, dissolution continued until carbonate saturation was achieved at approximately 1000 hr. Silicate dissolution increased the conc. of Si, K Ni and Co, but at much lower rates than carbonate dissolution. The elements As, Mo, V, Zn, Se and Cd generally show similar behavior where concentrations initially increase but soon drop to levels at or below the background concentrations (~48 hours). A Push-Pull test on one aquifer system produced similar geochemical behavior but observed reaction rates are higher in batch experiments relative to push-pull tests. Release of CO2 from CCUS sites into overlying aquifer systems may adversely impact groundwater quality primarily through carbonate dissolution which releases Ca and elements that substitute for Ca in crystal lattices. Silicate weathering releases primarily Si and K at lower rates. Chemical changes with the addition of CO2 may initially mobilize As, Mo, V, Zn, Se and Cd but these elements become immobile in the lowered pH water and sorb onto aquifer minerals. A combined laboratory batch experiment and field push-pull test in fresh water aquifers overlying CCUS projects will best characterize the response of the aquifer to increased pCO2. The long experimental duration of the batch experiments may allow reactions to reach equilibrium however; reaction rates may be artificially high due to increased mineral surface areas. Field based push-pull tests offer a more realistic water rock ratio and test a much larger volume of aquifer material but the test must be shorter in duration because the high pCO2 water is subject to mixing with low pCO2 background water and migration away from the test well with groundwater flow. A comparison of the two methods best characterizes the potential effects on groundwater chemistry

  20. --No Title--

    Science.gov Websites

    media print { .col-sm-1, .col-sm-2, .col-sm-3, .col-sm-4, .col-sm-5, .col-sm-6, .col-sm-7, .col-sm { width: 41.66666667%; } .col-sm-4 { width: 33.33333333%; } .col-sm-3 { width: 25%; } .col-sm-2 { width : 41.66666667%; } .col-sm-pull-4 { right: 33.33333333%; } .col-sm-pull-3 { right: 25%; } .col-sm-pull-2 { right

  1. Three Levels of Push-Pull Dynamics among Chinese International Students' Decision to Study Abroad in the Canadian Context

    ERIC Educational Resources Information Center

    Chen, Jun Mian

    2017-01-01

    The extant literature on student migration flows generally focus on the traditional push-pull factors of migration at the individual level. Such a tendency excludes the broader levels affecting international student mobility. This paper proposes a hybrid of three levels of push-pull dynamics (micro-individual decision-making, meso-academic…

  2. Yo-Yo Pull Demonstration

    ERIC Educational Resources Information Center

    Layton, William

    2013-01-01

    A popular demonstration involves placing a yo-yo on a level table and gently pulling the string horizontally when it is wrapped to come out below the center of the yo-yo's axis. Students are then asked to predict which way the yo-yo will move. A similar demonstration is performed with a tricycle by pulling forward on a pedal with the pedal down in…

  3. 25 CFR 542.8 - What are the minimum internal control standards for pull tabs?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 2 2013-04-01 2013-04-01 false What are the minimum internal control standards for pull tabs? 542.8 Section 542.8 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM INTERNAL CONTROL STANDARDS § 542.8 What are the minimum internal control standards for pull tabs? (a) Computer applications. For...

  4. 25 CFR 542.8 - What are the minimum internal control standards for pull tabs?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 2 2014-04-01 2014-04-01 false What are the minimum internal control standards for pull tabs? 542.8 Section 542.8 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM INTERNAL CONTROL STANDARDS § 542.8 What are the minimum internal control standards for pull tabs? (a) Computer applications. For...

  5. 25 CFR 542.8 - What are the minimum internal control standards for pull tabs?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 2 2012-04-01 2012-04-01 false What are the minimum internal control standards for pull tabs? 542.8 Section 542.8 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM INTERNAL CONTROL STANDARDS § 542.8 What are the minimum internal control standards for pull tabs? (a) Computer applications. For...

  6. AORN ergonomic tool 7: pushing, pulling, and moving equipment on wheels.

    PubMed

    Waters, Thomas; Lloyd, John D; Hernandez, Edward; Nelson, Audrey

    2011-09-01

    Pushing and pulling equipment in and around the OR can place high shear force demands on perioperative team members' shoulder and back muscles and joints. These high forces may lead to work-related musculoskeletal disorders. AORN Ergonomic Tool 7: Pushing, Pulling, and Moving Equipment on Wheels can help perioperative team members assess the risk of pushing and pulling tasks in the perioperative setting. The tool provides evidence-based suggestions about when assistive devices should be used for these tasks and is based on current ergonomic safety concepts, scientific evidence, and knowledge of effective technology and procedures, including equipment and devices for safe patient handling. Published by Elsevier Inc.

  7. Push-me-pull-you: how microtubules organize the cell interior

    PubMed Central

    2008-01-01

    Dynamic organization of the cell interior, which is crucial for cell function, largely depends on the microtubule cytoskeleton. Microtubules move and position organelles by pushing, pulling, or sliding. Pushing forces can be generated by microtubule polymerization, whereas pulling typically involves microtubule depolymerization or molecular motors, or both. Sliding between a microtubule and another microtubule, an organelle, or the cell cortex is also powered by molecular motors. Although numerous examples of microtubule-based pushing and pulling in living cells have been observed, it is not clear why different cell types and processes employ different mechanisms. This review introduces a classification of microtubule-based positioning strategies and discusses the efficacy of pushing and pulling. The positioning mechanisms based on microtubule pushing are efficient for movements over small distances, and for centering of organelles in symmetric geometries. Mechanisms based on pulling, on the other hand, are typically more elaborate, but are necessary when the distances to be covered by the organelles are large, and when the geometry is asymmetric and complex. Thus, taking into account cell geometry and the length scale of the movements helps to identify general principles of the intracellular layout based on microtubule forces. PMID:18404264

  8. Determinants and magnitudes of manual force strengths and joint moments during two-handed standing maximal horizontal pushing and pulling.

    PubMed

    Chow, Amy Y; Dickerson, Clark R

    2016-04-01

    Pushing and pulling are common occupational exertions that are increasingly associated with musculoskeletal complaints. This study focuses on the sensitivity of shoulder capacity to gender, handle height, exertion type (push or pull) and handle orientation for these tasks. All factors except for handle orientation influenced unilateral and total manual force strength (p < 0.01), with exertion type being the most influential. Interaction effects also existed between handle height and exertion type. Additionally, joint moments at the shoulders and low back were influenced by all factors studied (p < 0.01), with exertion type again being most influential. Knowledge of the relative influence of multiple factors on shoulder capacity can provide guidance regarding these factors when designing or evaluating occupational pushing and pulling tasks for a diverse population. Practitioner Summary: pushing and pulling comprise nearly half of all manual materials handling tasks. Practitioners often assess, design or modify these tasks while incorporating constraints, including manual force direction and handle interface. This study provides guidance to aid design of pushing and pulling tasks in the context of shoulder physical capacity.

  9. Effects of myofascial release leg pull and sagittal plane isometric contract-relax techniques on passive straight-leg raise angle.

    PubMed

    Hanten, W P; Chandler, S D

    1994-09-01

    Experimental evidence does not currently exist to support the claims of clinical effectiveness for myofascial release techniques. This presents an obvious need to document the effects of myofascial release. The purpose of this study was to compare the effects of two techniques, sagittal plane isometric contract-relax and myofascial release leg pull for increasing hip flexion range of motion (ROM) as measured by the angle of passive straight-leg raise. Seventy-five nondisabled, female subjects 18-29 years of age were randomly assigned to contract-relax, leg pull, or control groups. Pretest hip flexion ROM was measured for each subject's right hip with a passive straight-leg raise test using a fluid-filled goniometer. Subjects in the treatment groups received either contract-relax or leg pull treatment applied to the right lower extremity; subjects in the control group remained supine quietly for 5 minutes. Following treatment, posttest straight-leg raise measurements were performed. A one-way analysis of variance followed by a Newman-Keuls post hoc comparison of mean gain scores showed that subjects receiving contract-relax treatment increased their ROM significantly more than those who received leg pull treatment, and the increase in ROM of subjects in both treatment groups was significantly higher than those of the control group. The results suggest that while both contract-relax and leg pull techniques can significantly increase hip flexion ROM in normal subjects, contract-relax treatment may be more effective and efficient than leg pull treatment.

  10. Field Artillery Cannon Weapons Systems and Ammunition Handbook.

    DTIC Science & Technology

    1981-12-01

    velocity 472 meters per second Maximum range 11,000 meters Type breechblock Horizontal sliding wedge Type firing mechanism Continuous pull , M13 Type...interrupted screw Type of firing mechanism Continuous pull , M35 Type of recoil mechanism Hydropneumatic Minimum recoil 24 inches Maximum recoil 36...breechblock Threaded, interrupted screw Type of firing mechanism Continuous pull , M35 Type of recoil mechanism Hydropneurnatic Minimum recoil 50 inches +_2

  11. Tissue Engineering Initiative

    DTIC Science & Technology

    2002-08-01

    evaluate functionality, the FDP/SIS and FDS were independently pulled to determine the degree of distal interphalangeal (DIP) joint motion contributed by...each. In three digits the distal phalanx moved similarly whether pulling on the FDP/SIS or the FDS tendon. This suggests some scarring/adhesions between... pulled to determine the degree of distal interphalangeal (DIP) joint motion contributed by each. In three digits the distal phalanx moved similarly

  12. 25 CFR 543.9 - What are the minimum internal control standards for pull tabs?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 2 2013-04-01 2013-04-01 false What are the minimum internal control standards for pull tabs? 543.9 Section 543.9 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM INTERNAL CONTROL STANDARDS FOR CLASS II GAMING § 543.9 What are the minimum internal control standards for pull tabs? (a)...

  13. 25 CFR 543.9 - What are the minimum internal control standards for pull tabs?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 2 2014-04-01 2014-04-01 false What are the minimum internal control standards for pull tabs? 543.9 Section 543.9 Indians NATIONAL INDIAN GAMING COMMISSION, DEPARTMENT OF THE INTERIOR HUMAN SERVICES MINIMUM INTERNAL CONTROL STANDARDS FOR CLASS II GAMING § 543.9 What are the minimum internal control standards for pull tabs? (a)...

  14. A pull out test to compare two riparian species, Phyllanthus sellowianus and Sebastiania schottiana in terms of root anchorage ability

    NASA Astrophysics Data System (ADS)

    Hörbinger, Stephan; Sutili, Fabricio J.; Rauch, Hans Peter

    2013-04-01

    Soil bioengineering has become manifold applied in large parts of Brazil in recent years. The first projects were realized in the region of Rio Grande do Sul within river stabilization works to protect agricultural land of small regional farmers. As result of research work the species Sebastiania schottiana and Phyllanthus sellowianus showed very adequate morpho-physiological properties and seem to be appropriate for the use in soil bioengineering. The aim of the present study was to examine a still unknown but crucial factor, the resistance of the above mentioned species against being pulled out. The pull out resistance is an indicator for the stability of the soil-root matrix and expresses the stabilizing effects of plants on soil. Furthermore it is an applicable index to compare the qualification of the species to be used in soil bioengineering works. Another objective was to investigate plant characteristics, which correlate to the pull out resistance of the investigated species, to be able to draft up efficient plant strategies for future restoration works on eroded river embankments. For the experiment a special apparatus was designed, which enables to implement a pull out process with a constant rate and generate a graph of the plants resistance force versus its displacement. P. sellowianus showed a significant higher resistance against being pulled out than S. schottiana. The analyses of root and shoot properties of P. sellowianus showed more favorable morpho-physiological properties in terms of pull out resistance, a bigger amount of biomass, both above and below ground and also a higher amount of anchorage. The Cross-Sectional-Areas (CSA) of the shoots showed in both species the strongest correlation of the investigated shoot and root properties with the maximum resistance against being pulled out. Thus it can be concluded that the CSA can be used as a value to assess the stabilization effects of the plants. The experiments showed that some root and shoot properties do have a great impact on the pullout strength and that P. sellowianus can be preferred for slope stabilization works as it exhibits outstanding resistance against being pulled out.

  15. Fluoroscopy-Guided Pull-Through Gastrostomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pitton, M. B., E-mail: pitton@radiologie.klinik.uni-mainz.de; Herber, S.; Dueber, C.

    2008-01-15

    The purpose of this study was to simplify a fluoroscopy guided gastrostomy technique using pull-type tubes which are traditionally introduced with gastroscopic assistance. The stomach was transorally probed with a 5-Fr catheter and a guidewire. A second access was performed percutaneously through the anterior abdominal and gastric wall using an 8-Fr sheath and an 8-Fr guiding catheter. A duplicated guidewire was introduced through the guiding catheter in order to result in a great custom-made loop within the stomach. The transoral guidewire was captured and tightened with this loop and the guiding catheter, and both were subsequently pulled by the transoralmore » guidewire until the tip of the guiding catheter exited the mouth. A thread was fed through the guiding catheter for fixation of the pull-type gastrostomy tube. Finally, the fixed tube was pulled through the esophagus into the stomach and through the abdominal wall until the anterior gastric wall fixed the retention plate of the tube. Thirty-seven patients (28 male, 9 female; age, 65.1 {+-} 14.4 years) with miscellaneous indications for percutaneous gastrostomies were supplied with pull-type gastrostomy catheters in a fluoroscopy technique without endoscopic assistance. Twenty-five of the 37 patients (67.6%) had undergone unsuccessful preceding gastroscopically guided PEG attempts because of tumor stenosis (n = 12) or impossible transillumination of the abdominal wall (n = 13). All procedures were technically successful, without major complications. Particularly, all patients with frustrating gastroscopic attempts were successfully provided with pull-type gastrostomy tubes. Five minor complications occurred: one tube loss during the passage of the hypopoharynx because of a torn thread, one transient small leakage alongside the tube (both successfully treated), and three cases of transient moderate local pain without leakage (symptomatic treatment). We conclude that this fluoroscopy-guided pull-through gastrostomy technique is easy and safe to perform and may be suggested as a standard procedure for radiological gastrostomies. It combines the ease of the radiological approach with the advantages of the pull-type tube devices, particularly the benefits of the typical retention plates.« less

  16. Symptom accommodation, trichotillomania-by-proxy, and interpersonal functioning in trichotillomania (hair-pulling disorder).

    PubMed

    Falkenstein, Martha J; Haaga, David A F

    2016-02-01

    This study investigated relationship functioning in trichotillomania (TTM) as well as specific interpersonal behaviors that have received little attention in TTM research, including by-proxy pulling, symptom accommodation, and self-disclosure. The objective was to contribute data for future development of components of treatment that focus on interpersonal functioning. Data were collected through survey about relationships and related difficulties among adults who endorsed criteria consistent with DSM-5 criteria for TTM (n=670). Consistent with our hypotheses, TTM symptom severity was correlated negatively with relationship satisfaction and perceived social support, positively with perceived criticism, perceived risk in intimacy, and social interaction anxiety, though these correlations were small (absolute values r=.08 to .17). Approximately one-quarter of survey respondents had not told their closest friend about their trichotillomania, and one-fifth had not told their spouse or long-term romantic partner. TTM-by-proxy urges were reported by 54% of participants, and 37% of participants reported having actually pulled hair from other people, with the most common proxies specified as significant others (51%), parents (13%), friends (8%), siblings (8%), children (7%) and pets (5%). Higher levels of TTM-by-proxy urges were associated with "focused" pulling (d=.37) and perfectionistic thinking (d=.16 to .20), yet current by-proxy urges were not associated with, functional impairment. A small minority of individuals (7%) reported having asked other people to pull hair for them (78% of these requests were granted); there was increased endorsement of "focused" pulling among these individuals. The people who participants asked to pull hairs for them included significant others (66%), mothers (20%), siblings (11%), friends (9%) and one's children (9%). More than one-third of respondents had pulled hair from others, 7% had asked others to pull their hair, and sizable minorities kept TTM secret from their closest friends or even spouse/partners. Clinical levels of social interaction anxiety were endorsed by 51% of the sample. Understanding these interpersonal experiences more fully could improve our understanding of relationship functioning in TTM and guide efforts to individualize treatment for adults with TTM. Published by Elsevier Inc.

  17. Optimal Halbach Permanent Magnet Designs for Maximally Pulling and Pushing Nanoparticles

    PubMed Central

    Sarwar, A.; Nemirovski, A.; Shapiro, B.

    2011-01-01

    Optimization methods are presented to design Halbach arrays to maximize the forces applied on magnetic nanoparticles at deep tissue locations. In magnetic drug targeting, where magnets are used to focus therapeutic nanoparticles to disease locations, the sharp fall off of magnetic fields and forces with distances from magnets has limited the depth of targeting. Creating stronger forces at depth by optimally designed Halbach arrays would allow treatment of a wider class of patients, e.g. patients with deeper tumors. The presented optimization methods are based on semi-definite quadratic programming, yield provably globally optimal Halbach designs in 2 and 3-dimensions, for maximal pull or push magnetic forces (stronger pull forces can collect nano-particles against blood forces in deeper vessels; push forces can be used to inject particles into precise locations, e.g. into the inner ear). These Halbach designs, here tested in simulations of Maxwell’s equations, significantly outperform benchmark magnets of the same size and strength. For example, a 3-dimensional 36 element 2000 cm3 volume optimal Halbach design yields a ×5 greater force at a 10 cm depth compared to a uniformly magnetized magnet of the same size and strength. The designed arrays should be feasible to construct, as they have a similar strength (≤ 1 Tesla), size (≤ 2000 cm3), and number of elements (≤ 36) as previously demonstrated arrays, and retain good performance for reasonable manufacturing errors (element magnetization direction errors ≤ 5°), thus yielding practical designs to improve magnetic drug targeting treatment depths. PMID:23335834

  18. Optimal Halbach Permanent Magnet Designs for Maximally Pulling and Pushing Nanoparticles.

    PubMed

    Sarwar, A; Nemirovski, A; Shapiro, B

    2012-03-01

    Optimization methods are presented to design Halbach arrays to maximize the forces applied on magnetic nanoparticles at deep tissue locations. In magnetic drug targeting, where magnets are used to focus therapeutic nanoparticles to disease locations, the sharp fall off of magnetic fields and forces with distances from magnets has limited the depth of targeting. Creating stronger forces at depth by optimally designed Halbach arrays would allow treatment of a wider class of patients, e.g. patients with deeper tumors. The presented optimization methods are based on semi-definite quadratic programming, yield provably globally optimal Halbach designs in 2 and 3-dimensions, for maximal pull or push magnetic forces (stronger pull forces can collect nano-particles against blood forces in deeper vessels; push forces can be used to inject particles into precise locations, e.g. into the inner ear). These Halbach designs, here tested in simulations of Maxwell's equations, significantly outperform benchmark magnets of the same size and strength. For example, a 3-dimensional 36 element 2000 cm(3) volume optimal Halbach design yields a ×5 greater force at a 10 cm depth compared to a uniformly magnetized magnet of the same size and strength. The designed arrays should be feasible to construct, as they have a similar strength (≤ 1 Tesla), size (≤ 2000 cm(3)), and number of elements (≤ 36) as previously demonstrated arrays, and retain good performance for reasonable manufacturing errors (element magnetization direction errors ≤ 5°), thus yielding practical designs to improve magnetic drug targeting treatment depths.

  19. Identification of GPCR-Interacting Cytosolic Proteins Using HDL Particles and Mass Spectrometry-Based Proteomic Approach

    PubMed Central

    Chung, Ka Young; Day, Peter W.; Vélez-Ruiz, Gisselle; Sunahara, Roger K.; Kobilka, Brian K.

    2013-01-01

    G protein-coupled receptors (GPCRs) have critical roles in various physiological and pathophysiological processes, and more than 40% of marketed drugs target GPCRs. Although the canonical downstream target of an agonist-activated GPCR is a G protein heterotrimer; there is a growing body of evidence suggesting that other signaling molecules interact, directly or indirectly, with GPCRs. However, due to the low abundance in the intact cell system and poor solubility of GPCRs, identification of these GPCR-interacting molecules remains challenging. Here, we establish a strategy to overcome these difficulties by using high-density lipoprotein (HDL) particles. We used the β2-adrenergic receptor (β2AR), a GPCR involved in regulating cardiovascular physiology, as a model system. We reconstituted purified β2AR in HDL particles, to mimic the plasma membrane environment, and used the reconstituted receptor as bait to pull-down binding partners from rat heart cytosol. A total of 293 proteins were identified in the full agonist-activated β2AR pull-down, 242 proteins in the inverse agonist-activated β2AR pull-down, and 210 proteins were commonly identified in both pull-downs. A small subset of the β2AR-interacting proteins isolated was confirmed by Western blot; three known β2AR-interacting proteins (Gsα, NHERF-2, and Grb2) and 3 newly identified known β2AR-interacting proteins (AMPKα, acetyl-CoA carboxylase, and UBC-13). Profiling of the identified proteins showed a clear bias toward intracellular signal transduction pathways, which is consistent with the role of β2AR as a cell signaling molecule. This study suggests that HDL particle-reconstituted GPCRs can provide an effective platform method for the identification of GPCR binding partners coupled with a mass spectrometry-based proteomic analysis. PMID:23372797

  20. A Decade of Experience With the Primary Pull-Through for Hirschsprung Disease in the Newborn Period

    PubMed Central

    Teitelbaum, Daniel H.; Cilley, Robert E.; Sherman, Neil J.; Bliss, David; Uitvlugt, Neal D.; Renaud, Elizabeth J.; Kirstioglu, Irfan; Bengston, Tamara; Coran, Arnold G.

    2000-01-01

    Objective To determine whether use of a primary pull-through would result in equivalent perioperative and long-term complications compared with the two-stage approach. Summary Background Data During the past decade, the authors have advanced the use of a primary pull-through for Hirschsprung disease in the newborn, and preliminary results have suggested excellent outcomes. Methods From May 1989 through September 1999, 78 infants underwent a primary endorectal pull-through (ERPT) procedure at four pediatric surgical sites. Data were collected from medical records and a parental telephone interview (if the child was older than 3 years) to assess stooling patterns. A similar group of patients treated in a two-stage fashion served as a historical control. Results Mean age at the time of ERPT was 17.8 days of life. Comparing primary ERPT with a two-stage approach showed a trend toward a higher incidence of enterocolitis in the primary ERPT group compared with those with a two-stage approach (42.0% vs. 22.0%). Other complications were either lower in the primary ERPT group or similar, including rate of soiling and development of a bowel obstruction. Median number of stools per day was two at a mean follow-up of 4.1 ± 2.5 years, with 83% having three or fewer stools per day. Conclusions Performance of a primary ERPT for Hirschsprung disease in the newborn is an excellent option. Results were comparable to those of the two-stage procedure. The greater incidence of enterocolitis appears to be due to a lower threshold in diagnosing enterocolitis in more recent years. PMID:10973387

  1. Impact of interstitial iron on the study of meta-stable B-O defects in Czochralski silicon: Further evidence of a single defect

    NASA Astrophysics Data System (ADS)

    Kim, Moonyong; Chen, Daniel; Abbott, Malcolm; Nampalli, Nitin; Wenham, Stuart; Stefani, Bruno; Hallam, Brett

    2018-04-01

    We explore the influence of interstitial iron (Fei) on lifetime spectroscopy of boron-oxygen (B-O) related degradation in p-type Czochralski silicon. Theoretical and experimental evidence presented in this study indicate that iron-boron pair (Fe-B) related reactions could have influenced several key experimental results used to derive theories on the fundamental properties of the B-O defect. Firstly, the presence of Fei can account for higher apparent capture cross-section ratios (k) of approximately 100 observed in previous studies during early stages of B-O related degradation. Secondly, the association of Fe-B pairs can explain the initial stage of a two-stage recovery of carrier lifetime with dark annealing after partial degradation. Thirdly, Fei can result in high apparent k values after the permanent deactivation of B-O defects. Subsequently, we show that a single k value can describe the recombination properties associated with B-O defects throughout degradation, that the recovery during dark annealing occurs with a single-stage, and both the fast- and slow-stage B-O related degradation can be permanently deactivated during illuminated annealing. Accounting for the recombination activity of Fei provides further evidence that the B-O defect is a single defect, rather than two separate defects normally attributed to fast-forming recombination centers and slow-forming recombination centers. Implications of this finding for the nature of the B-O defect are also discussed.

  2. Effect of Rapid Thermal Processing on Light-Induced Degradation of Carrier Lifetime in Czochralski p-Type Silicon Bare Wafers

    NASA Astrophysics Data System (ADS)

    Kouhlane, Y.; Bouhafs, D.; Khelifati, N.; Belhousse, S.; Menari, H.; Guenda, A.; Khelfane, A.

    2016-11-01

    The electrical properties of Czochralski silicon (Cz-Si) p-type boron-doped bare wafers have been investigated after rapid thermal processing (RTP) with different peak temperatures. Treated wafers were exposed to light for various illumination times, and the effective carrier lifetime ( τ eff) measured using the quasi-steady-state photoconductance (QSSPC) technique. τ eff values dropped after prolonged illumination exposure due to light-induced degradation (LID) related to electrical activation of boron-oxygen (BO) complexes, except in the sample treated with peak temperature of 785°C, for which the τ eff degradation was less pronounced. Also, a reduction was observed when using the 830°C peak temperature, an effect that was enhanced by alteration of the wafer morphology (roughness). Furthermore, the electrical resistivity presented good stability under light exposure as a function of temperature compared with reference wafers. Additionally, the optical absorption edge shifted to higher wavelength, leading to increased free-carrier absorption by treated wafers. Moreover, a theoretical model is used to understand the lifetime degradation and regeneration behavior as a function of illumination time. We conclude that RTP plays an important role in carrier lifetime regeneration for Cz-Si wafers via modification of optoelectronic and structural properties. The balance between an optimized RTP cycle and the rest of the solar cell elaboration process can overcome the negative effect of LID and contribute to achievement of higher solar cell efficiency and module performance.

  3. Infrared studies of defects formed during postirradiation anneals of Czochralski silicon

    NASA Astrophysics Data System (ADS)

    Londos, C. A.; Sarlis, N. V.; Fytros, L. G.

    1998-10-01

    This article reports on defect studies of neutron-irradiated Czochralski-grown silicon (Cz-Si) material by means of infrared spectroscopy. In particular, the investigation was focused on the evolution of the 828 cm-1 well-known band of A-center, due to isochronal anneals from room temperature (RT) up to ≈700 °C. The strength of the VO band begins to increase above ≈200 gradually up to 300 °C (stage I); then, it begins to decrease up to ≈400 °C (stage II), where upon it stabilizes up to ≈550 °C (stage III). Upon re-irradiation under exactly the same conditions and repeating the annealing process, the increase of the VO signal in stage I disappears. The phenomenon is ascribed to the existence of defect aggregates labeled as Xi centers which are correlated with (impurity-defect) clusters that compete with Oi in capturing vacancies. The presence of Xi centers is related to the thermal annealings performed. Comparison of the evolution of VO (828 cm-1) and VO2 (887 cm-1) bands between irradiated and re-irradiated materials, during stage II, is made and the results are discussed in the framework of established reaction patterns. The stabilization of the amplitude of the 828 cm-1 line in stage III is examined. The prevailing aspect is that a portion of A-centers in neutron-irradiated Si acquires larger thermal stability by relaxing in the vicinity of larger defects.

  4. Study of structural and optical properties of YAG and Nd:YAG single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostić, S.; Lazarević, Z.Ž., E-mail: lzorica@yahoo.com; Radojević, V.

    2015-03-15

    Highlights: • Transparent YAG and pale pink Nd:YAG single crystals were produced by the Czochralski technique. • Growth mechanisms and shape of the liquid/solid interface and incorporation of Nd{sup 3+} were studied. • The structure of the crystals was investigated by X-ray diffraction, Raman and IR spectroscopy. • The 15 Raman and 17 IR modes were observed. • The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. - Abstract: Yttrium aluminum garnet (YAG, Y{sub 3}Al{sub 5}O{sub 12}) and yttrium aluminum garnet doped with neodymium (Nd:YAG) single crystals were grown by the Czochralski technique. Themore » critical diameter and the critical rate of rotation were calculated. Suitable polishing and etching solutions were determined. As a result of our experiments, the transparent YAG and pale pink Nd:YAG single crystals were produced. The obtained crystals were studied by X-ray diffraction, Raman and IR spectroscopy. The crystal structure was confirmed by XRD. The 15 Raman and 17 IR modes were observed. The Raman and IR spectroscopy results are in accordance with X-ray diffraction analysis. The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. The absence of a core was confirmed by viewing polished crystal slices. Also, it is important to emphasize that the obtained Nd:YAG single crystal has a concentration of 0.8 wt.% Nd{sup 3+} that is characteristic for laser materials.« less

  5. Friction pull plug welding: top hat plug design

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2001-01-01

    Friction Pull Plug Welding is a solid state repair process for defects up to one inch in length, only requiring single sided tooling, or outside skin line (OSL), for preferred usage on flight hardware. The most prevalent defect associated with Friction Pull Plug Welding (FPPW) was a top side or inside skin line (ISL) lack of bonding. Bonding was not achieved at this location due to the reduction in both frictional heat and welding pressure between the plug and plate at the end of the weld. Thus, in order to eliminate the weld defects and increase the plug strength at the plug `top` a small `hat` section is added to the pull plug for added frictional heating and pressure.

  6. Friction pull plug welding: top hat plug design

    NASA Technical Reports Server (NTRS)

    Coletta, Edmond R. (Inventor); Cantrell, Mark A. (Inventor)

    2002-01-01

    Friction Pull Plug Welding is a solid state repair process for defects up to one inch in length, only requiring single sided tooling, or outside skin line (OSL), for preferred usage on flight hardware. The most prevalent defect associated with Friction Pull Plug Welding (FPPW) was a top side or inside skin line (ISL) lack of bonding. Bonding was not achieved at this location due to the reduction in both frictional heat and welding pressure between the plug and plate at the end of the weld. Thus, in order to eliminate the weld defects and increase the plug strength at the plug `top` a small `hat` section is added to the pull plug for added frictional heating and pressure.

  7. Analysis of Effect of Rolling Pull-Outs on Wing and Aileron Loads of a Fighter Airplane

    NASA Technical Reports Server (NTRS)

    Pearson, Henry A.; Aiken, William S.

    1946-01-01

    An analysis was made to determine the effect of rolling pull-out maneuvers on the wing and aileron loads of a typical fighter airplane, the P-47B. The results obtained indicate that higher loads are imposed upon wings and ailerons because of the rolling pull-out maneuver, than would be obtained by application of the loading requirements to which the airplane was designed. An increase of 102 lb or 15 percent of wing weight would be required if the wing were designed for rolling pull-out maneuver. It was also determined that the requirements by which the aileron was originally designed were inadequate.

  8. Investigation of the influence of coolant-lubricant modification on selected effects of pull broaching

    NASA Astrophysics Data System (ADS)

    Adamczuk, Krzysztof; Legutko, Stanisław; Laber, Alicja; Serwa, Wojciech

    2017-10-01

    The paper presents the results of testing the wear of the tool (pull broach) and a gear wheel splineway surface roughness after the friction node of pull broach/gear wheel (CuSn12Ni2) had been lubricated with metal machining oil and the same oil modified with chemically active exploitation additive. To designate the influence of modifying metal machining oil by the exploitation additive on the lubricating properties, anti-wear and antiseizure indicators have been appointed. Exploitation tests have proved purposefulness of modifying metal machining oil. Modification of the lubricant has contributed to reduction of the wear of the tools - pull broaches and to reduction of roughness of the splineway surfaces.

  9. Analysis of Within-Test Variability of Non-Destructive Test Methods to Evaluate Compressive Strength of Normal Vibrated and Self-Compacting Concretes

    NASA Astrophysics Data System (ADS)

    Nepomuceno, Miguel C. S.; Lopes, Sérgio M. R.

    2017-10-01

    Non-destructive tests (NDT) have been used in the last decades for the assessment of in-situ quality and integrity of concrete elements. An important step in the application of NDT methods concerns to the interpretation and validation of the test results. In general, interpretation of NDT results should involve three distinct phases leading to the development of conclusions: processing of collected data, analysis of within-test variability and quantitative evaluation of property under investigation. The analysis of within-test variability can provide valuable information, since this can be compared with that of within-test variability associated with the NDT method in use, either to provide a measure of the quality control or to detect the presence of abnormal circumstances during the in-situ application. This paper reports the analysis of the experimental results of within-test variability of NDT obtained for normal vibrated concrete and self-compacting concrete. The NDT reported includes the surface hardness test, ultrasonic pulse velocity test, penetration resistance test, pull-off test, pull-out test and maturity test. The obtained results are discussed and conclusions are presented.

  10. Argonaute pull-down and RISC analysis using 2'-O-methylated oligonucleotides affinity matrices.

    PubMed

    Jannot, Guillaume; Vasquez-Rifo, Alejandro; Simard, Martin J

    2011-01-01

    During the last decade, several novel small non-coding RNA pathways have been unveiled, which reach out to many biological processes. Common to all these pathways is the binding of a small RNA molecule to a protein member of the Argonaute family, which forms a minimal core complex called the RNA-induced silencing complex or RISC. The RISC targets mRNAs in a sequence-specific manner, either to induce mRNA cleavage through the intrinsic activity of the Argonaute protein or to abrogate protein synthesis by a mechanism that is still under investigation. We describe here, in details, a method for the affinity chromatography of the let-7 RISC starting from extracts of the nematode Caenorhabditis elegans. Our method exploits the sequence specificity of the RISC and makes use of biotinylated and 2'-O-methylated oligonucleotides to trap and pull-down small RNAs and their associated proteins. Importantly, this technique may easily be adapted to target other small RNAs expressed in different cell types or model organisms. This method provides a useful strategy to identify the proteins associated with the RISC, and hence gain insight in the functions of small RNAs.

  11. Thermoplastic pultrusion development and characterization of residual in pultruded composites with modeling and experiments

    NASA Astrophysics Data System (ADS)

    Jamiyanaa, Khongor

    Pultrusion processing is a technique to make highly aligned fiber reinforced polymer composites. Thermoset pultrusion is a mature process and well established, while thermoplastic pultrusion in still in its infancy. Thermoplastic pultrusion has not been well established because thermoplastic resins are difficult to process due to their high viscosity. However, thermoplastic resins offer distinct advantages that make thermoplastic pultrusion worth exploring. The present work centers on developing a method to design and validate a die for a thermoplastic pultrusion system. Analytical models and various software tools were used to design a pultrusion die. Experimental measurements have been made to validate the models. One-dimensional transient heat transfer analysis was used to calculate the time required for pre-impregnated E-Glass/Polypropylene tapes to melt and consolidate into profiled shapes. Creo Element/Pro 1.0 was used to design the die, while ANSYS Work Bench 14.0 was used to conduct heat transfer analysis to understand the temperature profile of the pultrusion apparatus. Additionally Star-CCM+ was used to create a three-dimensional fluid flow model to capture the molten polymer flow inside the pultrusion die. The fluid model was used to understand the temperature of the flow and the force required to pull the material at any given temperature and line speed. A complete pultrusion apparatus including the die, heating unit, cooling unit, and the frame has been designed and manufactured as guided by the models, and pultruded profiles have been successfully produced. The results show that the analytical model and the fluid model show excellent correlation. The predicted and measured pulling forces are in agreement and show that the pull force increases as the pull speed increases. Furthermore, process induced residual stress and its influence on dimensional instability, such as bending or bowing, on pultruded composites was analyzed. The study indicated that unbalanced layup can produce asymmetrical residual stress through the thickness and causes the part to bow. Furthermore, the residual stress through the thickness was mapped with excellent accuracy. A design of experiments around the processing parameters indicated that increase in pull speed or decrease in die temperature increased the residual stress within the part.

  12. A square wave is the most efficient and reliable waveform for resonant actuation of micro switches

    NASA Astrophysics Data System (ADS)

    Ben Sassi, S.; Khater, M. E.; Najar, F.; Abdel-Rahman, E. M.

    2018-05-01

    This paper investigates efficient actuation methods of shunt MEMS switches and other parallel-plate actuators. We start by formulating a multi-physics model of the micro switch, coupling the nonlinear Euler-Bernoulli beam theory with the nonlinear Reynolds equation to describe the structural and fluidic domains, respectively. The model takes into account fringing field effects as well as mid-plane stretching and squeeze film damping nonlinearities. Static analysis is undertaken using the differential quadrature method (DQM) to obtain the pull-in voltage, which is verified by means of the finite element model and validated experimentally. We develop a reduced order model employing the Galerkin method for the structural domain and DQM for the fluidic domain. The proposed waveforms are intended to be more suitable for integrated circuit standards. The dynamic response of the micro switch to harmonic, square and triangular waveforms are evaluated and compared experimentally and analytically. Low voltage actuation is obtained using dynamic pull-in with the proposed waveforms. In addition, global stability analysis carried out for the three signals shows advantages of employing the square signal as the actuation method in enhancing the performance of the micro switch in terms of actuation voltage, switching time, and sensitivity to initial conditions.

  13. Investigation on Bond-Slip Behavior of Z-Pin Interfaces in X-Cor® Sandwich Structures Using Z-Pin Pull-Out Test

    NASA Astrophysics Data System (ADS)

    Shan, Hangying; Xiao, Jun; Chu, Qiyi

    2018-05-01

    The Z-Pin interfacial bond properties play an important role in the structural performance of X-Cor® sandwich structures. This paper presents an experimental investigation on bond-slip behavior of Z-Pin interfaces using Z-Pin pull-out test. Based on the experimental data the whole Z-Pin pull-out process consists of three stages: initial bonding, debonding and frictional sliding. Comparative experimental study on the influence of design parameters on bond-slip behavior of Z-Pin interfaces has also been performed. Numerical analyses were conducted with the ABAQUS finite element (FE) program to simulate the Z-Pins bond-slip response of the pull-out test. The Z-Pins interfacial bond-slip behavior was implemented using nonlinear spring elements characterized with the constitutive relation from experimental results. Numerical results were validated by comparison with experimental data, and reasonably good agreement was achieved between experimental and analytical pull-out force-slip curves.

  14. Molecular mechanisms of microtubule-dependent kinetochore transport toward spindle poles

    PubMed Central

    Tanaka, Kozo; Kitamura, Etsushi; Kitamura, Yoko; Tanaka, Tomoyuki U.

    2007-01-01

    In mitosis, kinetochores are initially captured by the lateral sides of single microtubules and are subsequently transported toward spindle poles. Mechanisms for kinetochore transport are not yet known. We present two mechanisms involved in microtubule-dependent poleward kinetochore transport in Saccharomyces cerevisiae. First, kinetochores slide along the microtubule lateral surface, which is mainly and probably exclusively driven by Kar3, a kinesin-14 family member that localizes at kinetochores. Second, kinetochores are tethered at the microtubule distal ends and pulled poleward as microtubules shrink (end-on pulling). Kinetochore sliding is often converted to end-on pulling, enabling more processive transport, but the opposite conversion is rare. The establishment of end-on pulling is partly hindered by Kar3, and its progression requires the Dam1 complex. We suggest that the Dam1 complexes, which probably encircle a single microtubule, can convert microtubule depolymerization into the poleward kinetochore-pulling force. Thus, microtubule-dependent poleward kinetochore transport is ensured by at least two distinct mechanisms. PMID:17620411

  15. Structure, spectroscopic properties and laser performance of Nd:YNbO4 at 1066 nm

    NASA Astrophysics Data System (ADS)

    Ding, Shoujun; Peng, Fang; Zhang, Qingli; Luo, Jianqiao; Liu, Wenpeng; Sun, Dunlu; Dou, Renqin; Sun, Guihua

    2016-12-01

    We have demonstrated continuous wave (CW) laser operation of Nd:YNbO4 crystal at 1066 nm for the first time. A maximum output power of 1.12 W with the incident power of 5.0 W is successfully achieved corresponding to an optical-to-optical conversion efficiency of 22.4% and a slope efficiency of 24.0%. The large absorption cross section (8.7 × 10-20 cm2) and wide absorption band (6 nm) at around 808 nm indicates the good pumping efficiency by laser diodes (LD). The small emission cross section (29 × 10-20 cm2) and relative long lifetime of the 4F3/2 → 4I11/2 transition indicates good energy storage capacity of Nd:YNbO4. Moreover, the raw materials of Nd:YNbO4 are stable, thus, it can grow high-quality and large-size by Czochralski (CZ) method. Therefore the Nd:YNbO4 crystal is a potentially new laser material suitable for LD pumping.

  16. Growth and anisotropic thermal properties of biaxial Ho:YAlO3 crystal

    NASA Astrophysics Data System (ADS)

    Dong, Qin; Zhao, Guangjun; Chen, Jianyu; Ding, Yuchong; Zhao, Chengchun

    2010-07-01

    Ho:YAlO3 (YAP) crystal with large size and good optical quality has been grown by the Czochralski method. Thermal properties of the as-grown Ho:YAP crystal have been investigated by measuring the temperature-dependent, anisotropic thermal expansion, specific heat, thermal diffusion, and thermal conductivity. The results show that Ho:YAP crystal possesses a large anisotropic thermal expansion and good thermal conductivity. The calculated average thermal expansion coefficients along a, b, and c axis are αa=9.18×10-6/K, αb=1.94×10-6/K, and αc=7.61×10-6/K from 293.15 to 770.15 K. The thermal conductivities along a, b, and c axis are up to 11.6, 9.9, and 12.3 W m-1 K-1 at 298.15 K. Compared with Ho: Y3Al5O12 (YAG), Ho:YAP crystal has a larger thermal conductivity along a axis from 298.15 to 568.15 K.

  17. Crystal growth, polarized spectroscopy and Judd-Ofelt analysis of Tb:YAlO3.

    PubMed

    Liu, Bin; Shi, Jiaojiao; Wang, Qingguo; Tang, Huili; Liu, Junfang; Zhao, Hengyu; Li, Dongzhen; Liu, Jian; Xu, Xiaodong; Wang, Zhanshan; Xu, Jun

    2018-07-05

    Tb 3+ -doped YAlO 3 (YAP) single crystal was grown by Czochralski (Cz) method. Based on the polarized absorption spectra, the spectroscopic parameters were calculated to be Ω 2 =3.49×10 -20 cm 2 , Ω 4 =5.87×10 -20 cm 2 and Ω 6 =2.55×10 -20 cm 2 , and then the spontaneous transition rate, fluorescent branching ratio and radiative lifetime of 5 D 4 multiplet were obtained. The yellow emission cross sections of 5 D 4 → 7 F 4 transition were calculated to be 1.72×10 -22 cm 2 , 2.73×10 -22 cm 2 and 2.65×10 -22 cm 2 for a, b and c polarization, respectively. The fluorescence lifetime of the 5 D 4 multiplet was fitted to be 1.72ms. All the data indicate that Tb:YAP crystal is a promising candidate for yellow laser operation. Copyright © 2018. Published by Elsevier B.V.

  18. Overview - Flat-plate technology. [review of Low Cost Solar Array Project

    NASA Technical Reports Server (NTRS)

    Callaghan, W. T.

    1981-01-01

    Progress and continuing plans for the joint NASA/DoE program at the JPL to develop the technologies and industrial processes necessary for mass production of low-cost solar arrays (LSA) which produce electricity from solar cells at a cost of less than $0.70/W are reviewed. Attention is given to plans for a demonstration Si refinement plant capable of yielding 1000 MT/yr, and to a CVD process with chlorosilane, which will yield material at a cost of $21/kg. Ingot and shaped-sheet technologies, using either Czochralski growth and film fed growth methods have yielded AM1 15% efficient cells in an automated process. Encapsulation procedures have been lowered to $14/sq m, and robotics have permitted assembled cell production at a rate of 10 sec/cell. Standards are being defined for module safety features. It is noted that construction of a pilot Si purification plant is essential to achieving the 1986 $0.70/W cost goals.

  19. A Co2+-doped alumina-rich Mg0.4Al2.4O4 spinel crystal as saturable absorber for a LD pumped Er: glass microchip laser at 1535 nm

    NASA Astrophysics Data System (ADS)

    Jiang, D. P.; Zou, Y. Q.; Su, L. B.; Tang, H. L.; Wu, F.; Zheng, L. H.; Li, H. J.; Xu, J.

    2011-05-01

    Co2+-doped Mg0.4Al2.4O4 single crystal up to varnothing28×40 mm3 was successfully grown by the Czochralski method. By using this crystal as saturable absorber, we have demonstrated a diode-end-pumped passively Q-switched Er:glass microchip laser operating at 1535 nm for the first time to the best of our knowledge. The dependences of average output power, repetition rate and pulse energy on the incident pump power were investigated. In the passive Q-switching regime, a maximum average output power of 22.12 mW was obtained at the incident pump power of 410 mW. The narrowest pulse width, the largest pulse energy and the highest peak power were obtained to be about 3.5 ns, 4.8 μJ, and 1.37 kW, respectively.

  20. Spectroscopic properties of heavily Ho3+-doped barium yttrium fluoride crystals

    NASA Astrophysics Data System (ADS)

    Ji, En-Cai; Liu, Qiang; Nie, Ming-Ming; Luo, Hui; Hu, Yu-Xi; Guan, Zhou-Guo; Gong, Ma-Li

    2015-09-01

    The 30 at.% Ho: BaY2F8 crystals were grown by the Czochralski method, and their spectroscopic properties are analyzed systematically by standard Judd-Ofelt theory. The Judd-Ofelt intensity parameters are estimated to be Ω2 = 6.74 × 10-20 cm2, Ω4 = 1.20 × 10-20 cm2, and Ω6 = 0.66 × 10-20 cm2, and the fluorescence branching ratios and radiative lifetimes for a series of excited state manifolds are also determined. The emission cross sections with our measured infrared luminescence spectra, especially important for 4.1 μm, are calculated to be about 4.37 × 10-21 cm2. The crystal quality is preliminarily tested through a mid-infrared laser emission experiment. Project supported by the National Natural Science Foundation of China (Grant No. 61275146), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120002110066), and the Special Program of the Co-construction with Beijing Municipal Government of China (Grant No. 20121000302).

  1. Growth and performance research of Tb3Ga5O12 magneto-optical crystal

    NASA Astrophysics Data System (ADS)

    Jin, Weizhao; Ding, Jingxin; Guo, Li; Gu, Qi; Li, Chun; Su, Liangbi; Wu, Anhua; Zeng, Fanming

    2018-02-01

    Tb3Ga5O12 (TGG) crystal was grown successfully by the Czochralski method in an iridium crucible with radio frequency (RF)-induced heating under high purity 80%N2 + 20% CO2 atmosphere. None impurity peaks could be found in the XRD patterns compared to standard cards of TGG. Transmittance spectrum was investigated in the visible-near infrared region (VIS-NIR) at room temperature, which indicated the TGG crystal had high transmittance at 500-1100 nm. The Faraday rotations, Verdet constants and magnetic susceptibility of (1 1 1), (1 0 0), (1 1 0) of as-grown crystal have been discussed in detail confirming that Faraday effects of the TGG crystals are anisotropic which is related with magnetic susceptibility, and the Faraday effects of [1 1 1] have been proved to be the best, and the Verdet constants of [1 1 1] was also investigated at different wavelength at room temperature. The thermal conductivity and laser induced damage threshold of the crystal were also analyzed in detailed.

  2. Structural analysis of as-deposited and annealed low-temperature gallium arsenide

    NASA Astrophysics Data System (ADS)

    Matyi, R. J.; Melloch, M. R.; Woodall, J. M.

    1993-04-01

    The structure of GaAs grown at low substrate temperatures (LT-GaAs) by molecular beam epitaxy has been studied using high resolution X-ray diffraction methods. Double crystal rocking curves from the as-deposited LT-GaAs show well defined interference fringes, indicating a high level of structural perfection. Triple crystal diffraction analysis of the as-deposited sample showed significantly less diffuse scattering near the LT-GaAs 004 reciprocal lattice point compared with the substrate 004 reciprocal lattice point, suggesting that despite the incorporation of approximately 1% excess arsenic, the epitaxial layer had superior crystalline perfection than did the GaAs substrate. Triple crystal scans of annealed LT-GaAs showed an increase in the integrated diffuse intensity by approximately a factor of three as the anneal temperature was increased from 700 to 900°C. Analogous to the effects of SiO2 precipitates in annealed Czochralski silicon, the diffuse intensity is attributed to distortions in the epitaxial LT-GaAs lattice by arsenic precipitates.

  3. Evaluation of the ion implantation process for production of solar cells from silicon sheet materials

    NASA Technical Reports Server (NTRS)

    Spitzer, M. B.

    1983-01-01

    The objective of this program is the investigation and evaluation of the capabilities of the ion implantation process for the production of photovoltaic cells from a variety of present-day, state-of-the-art, low-cost silicon sheet materials. Task 1 of the program concerns application of ion implantation and furnace annealing to fabrication of cells made from dendritic web silicon. Task 2 comprises the application of ion implantation and pulsed electron beam annealing (PEBA) to cells made from SEMIX, SILSO, heat-exchanger-method (HEM), edge-defined film-fed growth (EFG) and Czochralski (CZ) silicon. The goals of Task 1 comprise an investigation of implantation and anneal processes applied to dendritic web. A further goal is the evaluation of surface passivation and back surface reflector formation. In this way, processes yielding the very highest efficiency can be evaluated. Task 2 seeks to evaluate the use of PEBA for various sheet materials. A comparison of PEBA to thermal annealing will be made for a variety of ion implantation processes.

  4. A novel magneto-optical crystal Yb:TbVO4

    NASA Astrophysics Data System (ADS)

    Zhu, Xianchao; Tu, Heng; Hu, Zhanggui

    2018-04-01

    Highly transparent Yb:TbVO4 single crystal with dimensions of Ø27 × 41 mm3 alomost without scattering defects has been successfully grown by Czochralski technique. The spectra, thermal properties and laser-induced damage threshold were investigated in detailed. The Faraday rotation (FR) measurement was carried out by means of extinction method. The Verdet constant comes up to 80 rad m-1 T-1 at 1064 nm, significantly larger than TbVO4 (58 rad m-1 T-1) and TGG (40 rad m-1 T-1) reported. Meanwhile, the as-grown crystal presents lower absorption coefficient and higher magneto-optical figure of merit at measured wavelength in comparison with TGG. Moreover, the crystal exhibits a substantially improved extinction ratio (42 dB) in contrast with TbVO4 (29 dB), and exceeds the highest value of TGG (40 dB). These advantages make Yb:TbVO4 a highly promising magneto-optical material candidate for optical isolators in the visible-near infrared region.

  5. Energy Harvesting from Upper-Limb Pulling Motions for Miniaturized Human-Powered Generators

    PubMed Central

    Yeo, Jeongjin; Ryu, Mun-ho; Yang, Yoonseok

    2015-01-01

    The human-powered self-generator provides the best solution for individuals who need an instantaneous power supply for travel, outdoor, and emergency use, since it is less dependent on weather conditions and occupies less space than other renewable power supplies. However, many commercial portable self-generators that employ hand-cranking are not used as much as expected in daily lives although they have enough output capacity due to their intensive workload. This study proposes a portable human-powered generator which is designed to obtain mechanical energy from an upper limb pulling motion for improved human motion economy as well as efficient human-mechanical power transfer. A coreless axial-flux permanent magnet machine (APMM) and a flywheel magnet rotor were used in conjunction with a one-way clutched power transmission system in order to obtain effective power from the pulling motion. The developed prototype showed an average energy conversion efficiency of 30.98% and an average output power of 0.32 W with a maximum of 1.89 W. Its small form factor (50 mm × 32 mm × 43.5 mm, 0.05 kg) and the substantial electricity produced verify the effectiveness of the proposed method in the utilization of human power. It is expected that the developed generator could provide a mobile power supply. PMID:26151204

  6. Identification of RNAIII-binding proteins in Staphylococcus aureus using tethered RNAs and streptavidin aptamers based pull-down assay.

    PubMed

    Zhang, Xu; Zhu, Qing; Tian, Tian; Zhao, Changlong; Zang, Jianye; Xue, Ting; Sun, Baolin

    2015-05-15

    It has been widely recognized that small RNAs (sRNAs) play important roles in physiology and virulence control in bacteria. In Staphylococcus aureus, many sRNAs have been identified and some of them have been functionally studied. Since it is difficult to identify RNA-binding proteins (RBPs), very little has been known about the RBPs in S. aureus, especially those associated with sRNAs. Here we adopted a tRNA scaffold streptavidin aptamer based pull-down assay to identify RBPs in S. aureus. The tethered RNA was successfully captured by the streptavidin magnetic beads, and proteins binding to RNAIII were isolated and analyzed by mass spectrometry. We have identified 81 proteins, and expressed heterologously 9 of them in Escherichia coli. The binding ability of the recombinant proteins with RNAIII was further analyzed by electrophoresis mobility shift assay, and the result indicates that proteins CshA, RNase J2, Era, Hu, WalR, Pyk, and FtsZ can bind to RNAIII. This study suggests that some proteins can bind to RNA III in S. aureus, and may be involved in RNA III function. And tRSA based pull-down assay is an effective method to search for RBPs in bacteria, which should facilitate the identification and functional study of RBPs in diverse bacterial species.

  7. Energy Harvesting from Upper-Limb Pulling Motions for Miniaturized Human-Powered Generators.

    PubMed

    Yeo, Jeongjin; Ryu, Mun-ho; Yang, Yoonseok

    2015-07-03

    The human-powered self-generator provides the best solution for individuals who need an instantaneous power supply for travel, outdoor, and emergency use, since it is less dependent on weather conditions and occupies less space than other renewable power supplies. However, many commercial portable self-generators that employ hand-cranking are not used as much as expected in daily lives although they have enough output capacity due to their intensive workload. This study proposes a portable human-powered generator which is designed to obtain mechanical energy from an upper limb pulling motion for improved human motion economy as well as efficient human-mechanical power transfer. A coreless axial-flux permanent magnet machine (APMM) and a flywheel magnet rotor were used in conjunction with a one-way clutched power transmission system in order to obtain effective power from the pulling motion. The developed prototype showed an average energy conversion efficiency of 30.98% and an average output power of 0.32 W with a maximum of 1.89 W. Its small form factor (50 mm × 32 mm × 43.5 mm, 0.05 kg) and the substantial electricity produced verify the effectiveness of the proposed method in the utilization of human power. It is expected that the developed generator could provide a mobile power supply.

  8. Inclusion at Risk? Push- and Pull-Out Phenomena in Inclusive School Systems: The Italian and Norwegian Experiences

    ERIC Educational Resources Information Center

    Nes, Kari; Demo, Heidrun; Ianes, Dario

    2018-01-01

    The main objective of this article is to explore and compare research data on pull-out and push-out phenomena within inclusive school systems, discussing if and how they represent a risk for inclusion. The terms pull-out and push-out refer to situations in which some groups of students in regular schools learn in settings apart from their peers.…

  9. Pin-Retraction Mechanism On Quick-Release Cover

    NASA Technical Reports Server (NTRS)

    Macmartin, Malcolm

    1994-01-01

    Quick-release cover includes pin-retraction mechanism releasing cover quickly from lower of two sets of pin connections holding cover. Cover released at top by pulling lever as described in "Lever-Arm Pin Puller" (NPO-18788). Removal of cover begins when technician or robot pulls upper-pin-release lever. Cover swings downward until tabs on lower pins are pulled through slots in their receptacles. Lower pins are then free.

  10. Biomechanically determined hand force limits protecting the low back during occupational pushing and pulling tasks.

    PubMed

    Weston, Eric B; Aurand, Alexander; Dufour, Jonathan S; Knapik, Gregory G; Marras, William S

    2018-06-01

    Though biomechanically determined guidelines exist for lifting, existing recommendations for pushing and pulling were developed using a psychophysical approach. The current study aimed to establish objective hand force limits based on the results of a biomechanical assessment of the forces on the lumbar spine during occupational pushing and pulling activities. Sixty-two subjects performed pushing and pulling tasks in a laboratory setting. An electromyography-assisted biomechanical model estimated spinal loads, while hand force and turning torque were measured via hand transducers. Mixed modelling techniques correlated spinal load with hand force or torque throughout a wide range of exposures in order to develop biomechanically determined hand force and torque limits. Exertion type, exertion direction, handle height and their interactions significantly influenced dependent measures of spinal load, hand force and turning torque. The biomechanically determined guidelines presented herein are up to 30% lower than comparable psychophysically derived limits and particularly more protective for straight pushing. Practitioner Summary: This study utilises a biomechanical model to develop objective biomechanically determined push/pull risk limits assessed via hand forces and turning torque. These limits can be up to 30% lower than existing psychophysically determined pushing and pulling recommendations. Practitioners should consider implementing these guidelines in both risk assessment and workplace design moving forward.

  11. Angle-Dependent Atomic Force Microscopy Single-Chain Pulling of Adsorbed Macromolecules from Planar Surfaces Unveils the Signature of an Adsorption-Desorption Transition.

    PubMed

    Grebíková, Lucie; Whittington, Stuart G; Vancso, Julius G

    2018-05-23

    The adsorption-desorption behavior of polymer chains is at the heart of macromolecular surface science and technology. With the current developments in atomic force microscopy (AFM), it has now become possible to address the desorption problem from the perspective of a single macromolecule. Here, we report on desorption of single polymer chains on planar surfaces by AFM-based single molecule force spectroscopy (SMFS) as a function of the pulling angle with respect to the surface-normal direction. SMFS experiments were performed in water with various substrates using different polymers covalently attached to the AFM probe tip. End-grafting at the AFM tip was achieved by surface-initiated polymerization using initiator functionalized tips. We found that the desorption force increases with a decreasing pulling angle, i.e., an enhanced adhesion of the polymer chain was observed. The magnitude of the desorption force shows a weak angular dependence at pulling angles close to the surface normal. A significant increase of the force is observed at shallower pulling from a certain pulling angle. This behavior carries the signature of an adsorption-desorption transition. The angular dependence of the normalized desorption force exhibits a universal behavior. We compared and interpreted our results using theoretical predictions for single-chain adsorption-desorption transitions.

  12. Angle-Dependent Atomic Force Microscopy Single-Chain Pulling of Adsorbed Macromolecules from Planar Surfaces Unveils the Signature of an Adsorption–Desorption Transition

    PubMed Central

    2018-01-01

    The adsorption–desorption behavior of polymer chains is at the heart of macromolecular surface science and technology. With the current developments in atomic force microscopy (AFM), it has now become possible to address the desorption problem from the perspective of a single macromolecule. Here, we report on desorption of single polymer chains on planar surfaces by AFM-based single molecule force spectroscopy (SMFS) as a function of the pulling angle with respect to the surface-normal direction. SMFS experiments were performed in water with various substrates using different polymers covalently attached to the AFM probe tip. End-grafting at the AFM tip was achieved by surface-initiated polymerization using initiator functionalized tips. We found that the desorption force increases with a decreasing pulling angle, i.e., an enhanced adhesion of the polymer chain was observed. The magnitude of the desorption force shows a weak angular dependence at pulling angles close to the surface normal. A significant increase of the force is observed at shallower pulling from a certain pulling angle. This behavior carries the signature of an adsorption–desorption transition. The angular dependence of the normalized desorption force exhibits a universal behavior. We compared and interpreted our results using theoretical predictions for single-chain adsorption–desorption transitions. PMID:29712430

  13. Kinematics and kinetics of the bench-press and bench-pull exercises in a strength-trained sporting population.

    PubMed

    Pearson, Simon N; Cronin, John B; Hume, Patria A; Slyfield, David

    2009-09-01

    Understanding how loading affects power production in resistance training is a key step in identifying the most optimal way of training muscular power - an essential trait in most sporting movements. Twelve elite male sailors with extensive strength-training experience participated in a comparison of kinematics and kinetics from the upper body musculature, with upper body push (bench press) and pull (bench pull) movements performed across loads of 10-100% of one repetition maximum (1RM). 1RM strength and force were shown to be greater in the bench press, while velocity and power outputs were greater for the bench pull across the range of loads. While power output was at a similar level for the two movements at a low load (10% 1RM), significantly greater power outputs were observed for the bench pull in comparison to the bench press with increased load. Power output (Pmax) was maximized at higher relative loads for both mean and peak power in the bench pull (78.6 +/- 5.7% and 70.4 +/- 5.4% of 1RM) compared to the bench press (53.3 +/- 1.7% and 49.7 +/- 4.4% of 1RM). Findings can most likely be attributed to differences in muscle architecture, which may have training implications for these muscles.

  14. Optical pulling and pushing forces exerted on silicon nanospheres with strong coherent interaction between electric and magnetic resonances.

    PubMed

    Liu, Hongfeng; Panmai, Mingcheng; Peng, Yuanyuan; Lan, Sheng

    2017-05-29

    We investigated theoretically and numerically the optical pulling and pushing forces acting on silicon (Si) nanospheres (NSs) with strong coherent interaction between electric and magnetic resonances. We examined the optical pulling and pushing forces exerted on Si NSs by two interfering waves and revealed the underlying physical mechanism from the viewpoint of electric- and magnetic-dipole manipulation. As compared with a polystyrene (PS) NS, it was found that the optical pulling force for a Si NS with the same size is enlarged by nearly two orders of magnitude. In addition to the optical pulling force appearing at the long-wavelength side of the magnetic dipole resonance, very large optical pushing force is observed at the magnetic quadrupole resonance. The correlation between the optical pulling/pushing force and the directional scattering characterized by the ratio of the forward to backward scattering was revealed. More interestingly, it was found that the high-order electric and magnetic resonances in large Si NSs play an important role in producing optical pulling force which can be generated by not only s-polarized wave but also p-polarized one. Our finding indicates that the strong coherent interaction between the electric and magnetic resonances existing in nanoparticles with large refractive indices can be exploited to manipulate the optical force acting on them and the correlation between the optical force and the directional scattering can be used as guidance. The engineering and manipulation of optical forces will find potential applications in the trapping, transport and sorting of nanoparticles.

  15. Pulled elbow in children.

    PubMed

    Yamanaka, Syunsuke; Goldman, Ran D

    2018-06-01

    Question Our practice is seeing children with relatively minor injuries to their elbows, with a history of "swinging" them when their hands are being held to cross the road. Nothing is usually found on a physical examination. I know that this is likely a "pulled elbow." Can we manage this in the clinic setting rather than sending the family to the emergency department? What would be the best course of action in the clinic setting? Answer Pulled elbow, also called nursemaid's elbow , is a radial head subluxation caused by axial traction or a sudden pull of the extended pronated arm, and it is a very common phenomenon. The practice of swinging children while holding their hands should be abandoned. In the case of pulled elbow, the child usually avoids moving the affected arm, holding it close to his or her body, without considerable pain, and no obvious swelling or deformity can be seen. While a fracture should be excluded, pulled elbow can usually be identified based on this presentation. The reduction procedure can easily be done in the office setting, with an 80% success rate and no complications. The hyperpronation maneuver (holding the elbow at 90° and then firmly pronating the wrist) to reduce pulled elbow has been found to be better than a supination-flexion maneuver (holding the elbow at 90° with one hand, supinating and flexing the elbow rapidly with the other) and should be exercised first. When 2 trials of reduction are unsuccessful, the child's arm should be splinted and the family should be sent for further evaluation. Copyright© the College of Family Physicians of Canada.

  16. Effect of coconut oil in plaque related gingivitis - A preliminary report.

    PubMed

    Peedikayil, Faizal C; Sreenivasan, Prathima; Narayanan, Arun

    2015-01-01

    Oil pulling or oil swishing therapy is a traditional procedure in which the practitioners rinse or swish oil in their mouth. It is supposed to cure oral and systemic diseases but the evidence is minimal. Oil pulling with sesame oil and sunflower oil was found to reduce plaque related gingivitis. Coconut oil is an easily available edible oil. It is unique because it contains predominantly medium chain fatty acids of which 45-50 percent is lauric acid. Lauric acid has proven anti inflammatory and antimicrobial effects. No studies have been done on the benefits of oil pulling using coconut oil to date. So a pilot study was planned to assess the effect of coconut oil pulling on plaque induced gingivitis. The aim of the study was to evaluate the effect of coconut oil pulling/oil swishing on plaque formation and plaque induced gingivitis. A prospective interventional study was carried out. 60 age matched adolescent boys and girls in the age-group of 16-18 years with plaque induced gingivitis were included in the study and oil pulling was included in their oral hygiene routine. The study period was 30 days. Plaque and gingival indices of the subjects were assessed at baseline days 1,7,15 and 30. The data was analyzed using paired t test. A statistically significant decrease in the plaque and gingival indices was noticed from day 7 and the scores continued to decrease during the period of study. Oil pulling using coconut oil could be an effective adjuvant procedure in decreasing plaque formation and plaque induced gingivitis.

  17. Muscle activation levels of the gluteus maximus and medius during standing hip-joint strengthening exercises using elastic-tubing resistance.

    PubMed

    Youdas, James W; Adams, Kady E; Bertucci, John E; Brooks, Koel J; Nelson, Meghan M; Hollman, John H

    2014-02-01

    No published studies have compared muscle activation levels simultaneously for the gluteus maximus and medius muscles of stance and moving limbs during standing hip-joint strengthening while using elastic-tubing resistance. To quantify activation levels bilaterally of the gluteus maximus and medius during resisted lower-extremity standing exercises using elastic tubing for the cross-over, reverse cross-over, front-pull, and back-pull exercise conditions. Repeated measures. Laboratory. 26 active and healthy people, 13 men (25 ± 3 y) and 13 women (24 ± 1 y). Subjects completed 3 consecutive repetitions of lower-extremity exercises in random order. Surface electromyographic (EMG) signals were normalized to peak activity in the maximum voluntary isometric contraction (MVIC) trial and expressed as a percentage. Magnitudes of EMG recruitment were analyzed with a 2 × 4 repeated-measures ANOVA for each muscle (α = .05). For the gluteus maximus an interaction between exercise and limb factor was significant (F3,75 = 21.5; P < .001). The moving-limb gluteus maximus was activated more than the stance limb's during the back-pull exercise (P < .001), and moving-limb gluteus maximus muscle recruitment was greater for the back-pull exercise than for the cross-over, reverse cross-over, and front-pull exercises (P < .001). For the gluteus medius an interaction between exercise and limb factor was significant (F3,75 = 3.7; P < .03). Gluteus medius muscle recruitment (% MVIC) was greater in the stance limb than moving limb when performing the front-pull exercise (P < .001). Moving-limb gluteus medius muscle recruitment was greater for the reverse cross-over exercise than for the cross-over, front-pull, and back-pull exercises (P < .001). From a clinical standpoint there is no therapeutic benefit to selectively activate the gluteus maximus and gluteus medius muscles on the stance limb by resisting sagittal- and frontal-plane hip movements on the moving limb using resistance supplied by elastic tubing.

  18. Establishing a relationship between maximum torque production of isolated joints to simulate EVA ratchet push-pull maneuver: A case study

    NASA Technical Reports Server (NTRS)

    Pandya, Abhilash; Maida, James; Hasson, Scott; Greenisen, Michael; Woolford, Barbara

    1993-01-01

    As manned exploration of space continues, analytical evaluation of human strength characteristics is critical. These extraterrestrial environments will spawn issues of human performance which will impact the designs of tools, work spaces, and space vehicles. Computer modeling is an effective method of correlating human biomechanical and anthropometric data with models of space structures and human work spaces. The aim of this study is to provide biomechanical data from isolated joints to be utilized in a computer modeling system for calculating torque resulting from any upper extremity motions: in this study, the ratchet wrench push-pull operation (a typical extravehicular activity task). Established here are mathematical relationships used to calculate maximum torque production of isolated upper extremity joints. These relationships are a function of joint angle and joint velocity.

  19. Strong quantum squeezing near the pull-in instability of a nonlinear beam

    DOE PAGES

    Passian, Ali; Siopsis, George

    2016-08-04

    Microscopic silicon-based suspended mechanical oscillators, constituting an extremely sensitive force probe, transducer, and actuator, are being increasingly employed in many developing microscopies, spectroscopies, and emerging optomechanical and chem-bio sensors. Here, we predict a significant squeezing in the quantum state of motion of an oscillator constrained as a beam and subject to an electrically induced nonlinearity. When we take into account the quantum noise, the underlying nonlinear dynamics is investigated in both the transient and stationary regimes of the driving force leading to the finding that strongly squeezed states are accessible in the vicinity of the pull-in instability of the oscillator.more » We discuss a possible application of this strong quantum squeezing as an optomechanical method for detecting broad-spectrum single or low-count photons, and further suggest other novel sensing actions.« less

  20. Arthroscopic repair of the posterior horn of the medial meniscus with opening wedge high tibial osteotomy: surgical technique.

    PubMed

    Jung, Kwang Am; Kim, Sung Jae; Lee, Su Chan; Jeong, Jae Hoon; Song, Moon Bok; Lee, Choon Key

    2009-07-01

    Simultaneous repair of a radial tear at the tibial attachment site of the posterior horn of the medial meniscus under special circumstances requiring tibial valgus osteotomy is technically difficult. First, most patients who need an osteotomy have a narrowed medial tibiofemoral joint space. In such a situation, the pull-out suture technique is more difficult to perform than in a normal joint space. Second, pulling out suture strands that penetrate the posterior horn of the medial meniscus to the anterior tibial cortex increases the risk of transection during osteotomy. We performed a meniscus repair combined with an opening wedge tibial valgus osteotomy without complications and present our technique as a new method for use in selective cases necessitating both meniscus repair of a complete radial tear and opening wedge tibial osteotomy.

Top