Science.gov

Sample records for czochralski silicon crystals

  1. Future application of Czochralski crystal pulling for silicon

    NASA Astrophysics Data System (ADS)

    Matlcok, J. H.

    1985-08-01

    Czochralski (Cz) crystal pulling has been the predominant method used for preparing silicon single crystal for the past twenty years. The fundamental technology used has changed little. However, great strides have been made in learning how to make the crystals bigger and of better quality at ever increasing productivity rates. Currently charge sizes of 50 kg of polycrystal silicon are being used for production and crystals up to ten inches in diameter have been grown without major difficulty. The largest material actually being processed in silicon wafer form is 150 mm (6 inches) in diameter. Growing of crystals in a magnetic field has proved to be particularly useful for microscopic impurity control. Major developments in past years on equipment for Cz crystal pulling have included the automatic growth control of the diameter as well as the starting core of the crystal, the use of magnetic fields and around the crystal puller to supress convection, various recharging schemes for dopant control and the use of continuous liquid feed in the crystal puller. The latter, while far from being a reliable production process, is ideal in concept for major improvement in Cz crystal pulling. The Czochralski process will maintain its dominance of silicon crystal production for many years.

  2. Future application of Czochralski crystal pulling for silicon

    NASA Technical Reports Server (NTRS)

    Matlcok, J. H.

    1985-01-01

    Czochralski (Cz) crystal pulling has been the predominant method used for preparing silicon single crystal for the past twenty years. The fundamental technology used has changed little. However, great strides have been made in learning how to make the crystals bigger and of better quality at ever increasing productivity rates. Currently charge sizes of 50 kg of polycrystal silicon are being used for production and crystals up to ten inches in diameter have been grown without major difficulty. The largest material actually being processed in silicon wafer form is 150 mm (6 inches) in diameter. Growing of crystals in a magnetic field has proved to be particularly useful for microscopic impurity control. Major developments in past years on equipment for Cz crystal pulling have included the automatic growth control of the diameter as well as the starting core of the crystal, the use of magnetic fields and around the crystal puller to supress convection, various recharging schemes for dopant control and the use of continuous liquid feed in the crystal puller. The latter, while far from being a reliable production process, is ideal in concept for major improvement in Cz crystal pulling. The Czochralski process will maintain its dominance of silicon crystal production for many years.

  3. Flow pattern defects in Czochralski-grown silicon crystals

    NASA Astrophysics Data System (ADS)

    Rantamäki, R.; Molarius, J.; Tilli, M.; Tuomi, T.

    1997-01-01

    The radial distribution of grown-in microdefects in eight Czochralski-grown silicon crystals was measured by counting the flow pattern (FP) defects revealed by preferential etching. At the center of the crystal, the FP-defect density increased from 5.2 to 6.7 × 105 1/cm3, when the pulling speed was increased from 0.8 to 1.1 mm/min. The magnitude of this effect was only about half as large, when the pulling speed was increased from 1.1 to 1.3 mm/min. Annealing at 1200 °C for 2 h in argon ambient was found to decrease the FP-defect densities significantly, but less than that in oxygen ambient.

  4. Czochralski silicon crystal growth: Modeling and simulation study

    NASA Astrophysics Data System (ADS)

    Javidi, Massoud

    Czochralski (CZ) crystal growth process is a widely used technique in the manufacturing of silicon crystals and other semiconductor materials such as germanium (Ge) and gallium arsenide (GaAs). The ultimate goal for the Integrated Circuit (IC) industry is to have the highest quality substrate. There is a huge interest to manipulate the thermal field in both the melt and crystal and control the melt convection and crystal-annealing rate in order to reduce growth striations, impurity and dopant inhomogeneity concentrations, excess point defects generation at interface, and micro defects nucleation and growth within the growing crystal. The objective of this investigation has been to facilitate and spearhead the development of a simple/efficient simulation tool for the accurate prediction of global thermal and flow fields and the melt-crystal interface position in the CZ process. The numerical algorithm employs a rectangular (fixed or non-uniform) mesh for enhanced computational efficiency and an enthalpy-based technique for interface tracking. Turbulent flow in the melt is accounted for by utilizing a K-ε model. Radiative heat transfer is modeled in a lumped parameter sense without appreciably compromising on solution accuracy to further allow for CPU times savings. The simulation tool is validated in a number of benchmark flows such as Wheeler's problem. For the CZ crystal growth process, an entire growth cycle has been computed and reliable predictions for the evolution of interface position, and flow/thermal field characteristics have been obtained. The enhanced CPU efficiency of the approach developed here could help integrate it into on-line control strategies.

  5. Large area Czochralski silicon for solar cells

    NASA Technical Reports Server (NTRS)

    Rea, S. N.; Wakefield, G. F.

    1976-01-01

    A detailed model of a typical Czochralski silicon crystal puller is utilized to predict maximum crystal growth rate as a function of various furnace parameters. Results of this analysis, when combined with multiblade slurry sawing, indicate that the Czochralski process is highly attractive for achieving near-term cost reduction of solar cell silicon.

  6. Large area Czochralski silicon

    NASA Technical Reports Server (NTRS)

    Rea, S. N.; Gleim, P. S.

    1977-01-01

    The overall cost effectiveness of the Czochralski process for producing large-area silicon was determined. The feasibility of growing several 12 cm diameter crystals sequentially at 12 cm/h during a furnace run and the subsequent slicing of the ingot using a multiblade slurry saw were investigated. The goal of the wafering process was a slice thickness of 0.25 mm with minimal kerf. A slice + kerf of 0.56 mm was achieved on 12 cm crystal using both 400 grit B4C and SiC abrasive slurries. Crystal growth experiments were performed at 12 cm diameter in a commercially available puller with both 10 and 12 kg melts. Several modifications to the puller hoz zone were required to achieve stable crystal growth over the entire crystal length and to prevent crystallinity loss a few centimeters down the crystal. The maximum practical growth rate for 12 cm crystal in this puller design was 10 cm/h, with 12 to 14 cm/h being the absolute maximum range at which melt freeze occurred.

  7. Electrically detected magnetic resonance signal from iron contaminated Czochralski silicon crystal

    NASA Astrophysics Data System (ADS)

    Mchedlidze, T.; Matsumoto, K.

    1998-04-01

    The electrical detection of magnetic resonance (EDMR) measurement, a detection method for the spin-dependent recombination, was applied to characterize iron contaminated silicon samples grown by the Czochralski method. The observed signal was different than previously reported electron paramagnetic resonance signals from defects in silicon. In addition, as the signal was not detected from similarly contaminated samples prepared from floating zone grown silicon crystal, we propose that the signal originates from defects containing iron and oxygen, namely, from iron decorated oxide precipitates. The dependency of EDMR signal on different experimental conditions (microwave power, illumination intensity, and temperature) were studied.

  8. The effect of growth rate, diameter and impurity concentration on structure in Czochralski silicon crystal growth

    NASA Technical Reports Server (NTRS)

    Digges, T. G., Jr.; Shima, R.

    1980-01-01

    It is demonstrated that maximum growth rates of up to 80% of the theoretical limit can be attained in Czochralski-grown silicon crystals while maintaining single crystal structure. Attaining the other 20% increase is dependent on design changes in the grower, to reduce the temperature gradient in the liquid while increasing the gradient in the solid. The conclusions of Hopkins et al. (1977) on the effect of diameter on the breakdown of structure at fast growth rates are substantiated. Copper was utilized as the test impurity. At large diameters (greater than 7.5 cm), concentrations of greater than 1 ppm copper were attained in the solid (45,000 ppm in the liquid) without breakdown at maximum growth speeds. For smaller diameter crystals, the sensitivity of impurities is much more apparent. For solar cell applications, impurities will limit cell performance before they cause crystal breakdown for fast growth rates of large diameter crystals.

  9. Process design and simulation for optimizing the oxygen concentration in Czochralski-grown single-crystal silicon

    NASA Astrophysics Data System (ADS)

    Jung, Yu Jin; Kim, W. K.; Jung, Jae Hak

    2014-08-01

    The highest-concentration impurity in a single-crystal silicon ingot is oxygen, which infiltrates the ingot during growth stage. This oxygen adversely affects the wafer is quality. This study was aimed at finding an optimal design for the Czochralski (Cz) process to enable high-quality and lowcost (by reducing power consumption) wafer production by controlling the oxygen concentration in the silicon ingots. In the Cz process, the characteristics of silicon ingots during crystallization are greatly influenced by the design and the configuration of the hot zone, and by crystallization rate. In order to identify process conditions for obtaining an optimal oxygen concentration of 11-13 ppma (required for industrial-grade ingots), designed two shield shapes for the hot zone. Furthermore, oxygen concentrations corresponding to these two shapes were compared by evaluating each shape at five different production speeds. In addition, simulations were performed to identify the optimal shield design for industrial applications.

  10. Oxygen-induced recombination centers in as-grown Czochralski silicon crystals

    NASA Technical Reports Server (NTRS)

    Nauka, K.; Gatos, H. C.; Lagowski, J.

    1983-01-01

    Simultaneous quantitative microprofiles of the interstitial oxygen concentration and of the excess carrier lifetime are obtained in Czochralski-grown Si crystals employing double laser absorption scanning. It is found that oxygen concentration maxima and minima along the crystal growth direction coincide with lifetime minima and maxima, respectively. Another finding is that the magnitude of oxygen-induced lifetime changes increases dramatically in going from the center to the periphery of the crystal. The findings discussed imply that 'as-grown' oxygen precipitates figure in lifetime-limiting processes.

  11. Czochralski crystal growth: Modeling study

    NASA Technical Reports Server (NTRS)

    Dudukovic, M. P.; Ramachandran, P. A.; Srivastava, R. K.; Dorsey, D.

    1986-01-01

    The modeling study of Czochralski (Cz) crystal growth is reported. The approach was to relate in a quantitative manner, using models based on first priniciples, crystal quality to operating conditions and geometric variables. The finite element method is used for all calculations.

  12. LSA Large Area Silicon Sheet Task Continuous Czochralski Process Development

    NASA Technical Reports Server (NTRS)

    Rea, S. N.

    1979-01-01

    A commercial Czochralski crystal growing furnace was converted to a continuous growth facility by installation of a small, in-situ premelter with attendant silicon storage and transport mechanisms. Using a vertical, cylindrical graphite heater containing a small fused quartz test tube linear from which the molten silicon flowed out the bottom, approximately 83 cm of nominal 5 cm diamter crystal was grown with continuous melt addition furnished by the test tube premelter. High perfection crystal was not obtained, however, due primarily to particulate contamination of the melt. A major contributor to the particulate problem was severe silicon oxide buildup on the premelter which would ultimately drop into the primary melt. Elimination of this oxide buildup will require extensive study and experimentation and the ultimate success of continuous Czochralski depends on a successful solution to this problem. Economically, the continuous Czochralski meets near-term cost goals for silicon sheet material.

  13. Growing Organic Crystals By The Czochralski Method

    NASA Technical Reports Server (NTRS)

    Shields, Angela; Frazier, Donald O.; Penn, Benjamin G.; Aggarwal, M. D.; Wang, W. S.

    1994-01-01

    Apparatus grows high-quality single crystals of organic compounds by Czochralski method. In Czochralski process, growing crystal lifted from middle of molten material without touching walls. Because of low melting temperatures of organic crystals, glass vessels usable. Traditional method for inorganic semiconductors adapted to optically nonlinear organic materials.

  14. LSSA large area silicon sheet task continuous Czochralski process development

    NASA Technical Reports Server (NTRS)

    Rea, S. N.

    1978-01-01

    A Czochralski crystal growing furnace was converted to a continuous growth facility by installation of a premelter to provide molten silicon flow into the primary crucible. The basic furnace is operational and several trial crystals were grown in the batch mode. Numerous premelter configurations were tested both in laboratory-scale equipment as well as in the actual furnace. The best arrangement tested to date is a vertical, cylindrical graphite heater containing small fused silicon test tube liner in which the incoming silicon is melted and flows into the primary crucible. Economic modeling of the continuous Czochralski process indicates that for 10 cm diameter crystal, 100 kg furnace runs of four or five crystals each are near-optimal. Costs tend to asymptote at the 100 kg level so little additional cost improvement occurs at larger runs. For these conditions, crystal cost in equivalent wafer area of around $20/sq m exclusive of polysilicon and slicing was obtained.

  15. Three-dimensional evaluation of gettering ability for oxygen atoms at small-angle tilt boundaries in Czochralski-grown silicon crystals

    SciTech Connect

    Ohno, Yutaka Inoue, Kaihei; Fujiwara, Kozo; Deura, Momoko; Kutsukake, Kentaro; Yonenaga, Ichiro; Shimizu, Yasuo; Inoue, Koji; Ebisawa, Naoki; Nagai, Yasuyoshi

    2015-06-22

    Three-dimensional distribution of oxygen atoms at small-angle tilt boundaries (SATBs) in Czochralski-grown p-type silicon ingots was investigated by atom probe tomography combined with transmission electron microscopy. Oxygen gettering along edge dislocations composing SATBs, post crystal growth, was observed. The gettering ability of SATBs would depend both on the dislocation strain and on the dislocation density. Oxygen atoms would agglomerate in the atomic sites under the tensile hydrostatic stress larger than about 2.0 GPa induced by the dislocations. It was suggested that the density of the atomic sites, depending on the tilt angle of SATBs, determined the gettering ability of SATBs.

  16. Thermal-capillary analysis of Czochralski and liquid encapsulated Czochralski crystal growth. II - Processing strategies

    NASA Technical Reports Server (NTRS)

    Derby, J. J.; Brown, R. A.

    1986-01-01

    The pseudosteady-state heat transfer model developed in a previous paper is augmented with constraints for constant crystal radius and melt/solid interface deflection. Combinations of growth rate, and crucible and bottom-heater temperatures are tested as processing parameters for satisfying the constrained thermal-capillary problem over a range of melt volumes corresponding to the sequence occuring during the batchwise Czochralski growth of a small-diameter silicon crystal. The applicability of each processing strategy is judged by the range of existence of the solution, in terms of melt volume and the values of the axial and radial temperature gradients in the crystal.

  17. A multiple p-n junction structure obtained from as-grown Czochralski silicon crystals by heat treatment - Application to solar cells

    NASA Technical Reports Server (NTRS)

    Chi, J. Y.; Gatos, H. C.; Mao, B. Y.

    1980-01-01

    Multiple p-n junctions have been prepared in as-grown Czochralski p-type silicon through overcompensation near the oxygen periodic concentration maxima by oxygen thermal donors generated during heat treatment at 450 C. Application of the multiple p-n-junction configuration to photovoltaic energy conversion has been investigated. A new solar-cell structure based on multiple p-n-junctions was developed. Theoretical analysis showed that a significant increase in collection efficiency over the conventional solar cells can be achieved.

  18. Potential productivity benefits of float-zone versus Czochralski crystal growth

    NASA Technical Reports Server (NTRS)

    Abe, T.

    1985-01-01

    Efficient mass production of single-crystal silicon is necessary for the efficient silicon solar arrays needed in the coming decade. However, it is anticipated that there will be difficulty growing such volumes of crystals using conventional Czochralski (Cz) methods. While the productivity of single crystals might increase with a crystal diameter increase, there are two obstacles to the mass production of large diameter Czochralski crystals, the long production cycle due to slow growth rate and the high heat requirements of the furnaces. Also counterproductive would be the large resistivity gradient along the growth direction of the crystals due to impurity concentration. Comparison between Float zone (FZ) and Cz crystal growth on the basis of a crystal 150 mm in diameter is on an order of two to four times in favor of the FZ method. This advantage results from high growth rates and steady-state growth while maintaining a dislocation-free condition and impurity segregation.

  19. LSA Large Area Silicon Sheet Task. Continuous Liquid Feed Czochralski Growth. [for solar cell fabrication

    NASA Technical Reports Server (NTRS)

    Fiegl, G.

    1979-01-01

    The design and development of equipment and processes to demonstrate continuous growth of crystals by the Czochralski method suitable for producing single silicon crystals for use in solar cells is presented. The growth of at least 150 kg of mono silicon crystal, 150 mm in diameter is continuous from one growth container. A furnace with continuous liquid replenishment of the growth crucible, accomplished by a meltdown system with a continuous solid silicon feed mechanism and a liquid transfer system, with associated automatic feedback controls is discussed. Due to the silicon monoxide build up in the furnace and its retarding effect on crystal growth the furnace conversion for operation in the low pressure range is described. Development of systems for continuous solid recharging of the meltdown chamber for various forms of poly silicon is described.

  20. New electron trap in p-type Czochralski silicon

    NASA Technical Reports Server (NTRS)

    Mao, B.-Y.; Lagowski, J.; Gatos, H. C.

    1984-01-01

    A new electron trap (acceptor level) was discovered in p-type Czochralski (CZ) silicon by current transient spectroscopy. The behavior of this trap was found to be similar to that of the oxygen thermal donors; thus, 450 C annealing increases the trap concentration while high-temperature annealing (1100-1200 C) leads to the virtual elimination of the trap. The new trap is not observed in either float-zone or n-type CZ silicon. Its energy level depends on the group III doping element in the sample. These findings suggest that the trap is related to oxygen, and probably to the acceptor impurity as well.

  1. Modeling and control of the Czochralski crystal growth process

    NASA Astrophysics Data System (ADS)

    Martinez, Denise Marie

    The Czochralski process is a method of pulling crystal from the melt that is widely used by the semiconductor industry. The current breadth of this industry makes the method indespensible. The International Technology Roadmap for Semiconductors forecasts the use of 35 nm technology on 64 Gbit DRAM and 10 GHz processor speeds by the end of this decade. This implies the need for higher quality crystals, and therefore improved growth systems. Furthermore, industry has noted a problem with rapid pull rate variation contributing to structural defects in the grown crystals. It was proposed by industry to investigate elimination of the pull rate as a control input. The current state of the system as well as the predicted path of the industry served to motivate development of a new control scheme. The first objective of this work was to develop or enhance a first-principles based model of the process. This model must be kept at a manageable order to accommodate online simulation while still capturing the dominant process physics. The model must also be formulated as a time differential equation in order to apply the desired control theories. The second objective of this work was to answer industry's question regarding elimination of pull rate as a manipulated input. The final objective of this work was to use the model to design a new control algorithm. The control development includes consideration of the time delay between heater and the crystal. The work is based on silicon growth, but the developments are kept as generic as possible for future application to other materials. Data from industry crystal growths as well as experimental results reported in literature will be used to gauge the effectiveness of the new designs.

  2. Shallow melt apparatus for semicontinuous czochralski crystal growth

    DOEpatents

    Wang, Tihu; Ciszek, Theodore F.

    2006-01-10

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  3. Nonlinear resonance ultrasonic vibrations in Czochralski-silicon wafers

    NASA Astrophysics Data System (ADS)

    Ostapenko, S.; Tarasov, I.

    2000-04-01

    A resonance effect of generation of subharmonic acoustic vibrations is observed in as-grown, oxidized, and epitaxial silicon wafers. Ultrasonic vibrations were generated into a standard 200 mm Czochralski-silicon (Cz-Si) wafer using a circular ultrasound transducer with major frequency of the radial vibrations at about 26 kHz. By tuning frequency (f) of the transducer within a resonance curve, we observed a generation of intense f/2 subharmonic acoustic mode assigned as a "whistle." The whistle mode has a threshold amplitude behavior and narrow frequency band. The whistle is attributed to a nonlinear acoustic vibration of a silicon plate. It is demonstrated that characteristics of the whistle mode are sensitive to internal stress and can be used for quality control and in-line diagnostics of oxidized and epitaxial Cz-Si wafers.

  4. Crystal Growth of Mixed Optical Materials With the Automatic Czochralski Puller

    NASA Technical Reports Server (NTRS)

    Loutts, George B.

    1998-01-01

    Most of optical and semiconductor single crystalline materials produced in the electronic industry is grown with the Czochralski technique. This is the only technique capable of producing large high quality single crystals in a reasonable amount of time. The technique originated, and took its name, from pioneering work by Polish engineer J. Czochralski in 1917, who pulled single crystal wires (fibers) of low melting point metals from the melt in order to determine the maximum speeds at which they could be crystallized. The technique has been modified and its application has been extended first to the growth of silicon and later to a very wide range of compound semiconductors, metals, oxides and halides. It is now the dominant technique for the wide range of materials in the electronic industries. Czochralski growth is initiated by dipping a seed crystal of a chosen crystallographic orientation onto the surface of a melt contained in the heated crucible. The seed is then slowly withdrawn, solidifying the adherent column of the melt in steady state at an average rate given by the sum of the pulling rate and the rate of lowering the solid-liquid interface due to the depletion of the melt in the crucible. The control of the desired crystal diameter is achieved by closely controlling the heat balance at the solid-liquid interface.

  5. Czochralski growth and laser performance of alexandrite crystals

    SciTech Connect

    Guo, X.; Zhang, B.; Wu, L.; Chen, M.

    1986-08-15

    Alexandrite (BeAl/sub 2/O/sub 4/:Cr/sup 3 +/) crystals have been growing by the Czochralski technique and continually tunable laser output with energy of 304 mJ and slope efficiency of 0.46% in the wavelength range from 735 to 786 nm has been obtained using c-axis rods. Tunable Q-switch pulse output and LiIO/sub 3/ double-frequency have been also obtained.

  6. Model experiments for the Czochralski crystal growth technique

    NASA Astrophysics Data System (ADS)

    Cramer, A.; Pal, J.; Gerbeth, G.

    2013-03-01

    A lot of the physical and the numerical modeling of Czochralski crystal growth is done on the generic Rayleigh-Bénard system. To better approximate the conditions in a Czochralski puller, the influences of a rounded crucible bottom, deviations of the thermal boundary conditions from the generic case, crucible and/or crystal rotation, and the influence of magnetic fields are often studied separately. The present contribution reviews some of these topics while concentrating on studies of the flow and related temperature fluctuations in systems where a rotating magnetic field (RMF) was applied. The three-dimensional convective patterns and the resulting temperature fluctuations will be discussed both for the mere buoyant case and for the application of an RMF. It is shown that a system between a Rayleigh-Bénard and a more realistic configuration, which is still cylindrical but whose surface is partially covered by a crystal model, behaves much the same as a Rayleigh-Bénard system. An RMF can be used to damp the temperature fluctuations. Secondly, a more Czochralski-like system is examined. It turns out that the RMF does not provide the desired damping of the temperature fluctutions in the parameter range considered.

  7. Two-Crucible Czochralski Process

    NASA Technical Reports Server (NTRS)

    Fiegl, G.; Torbet, W.

    1985-01-01

    Scheme for continuous melt replenishment increases capacity of Czochralski crystal-growing furnace. Replenishing and drawing crucibles of improved Czochralski apparatus connected by heated quartz siphon. When doped silicon added to replenishing crucible, liquid silicon flows into drawing crucible, equalizing two melt levels. Addition of new material automatically controlled in response to optically sensed melt level. Results of this semicontinuous operation higher production speed, lower cost, and good control of crystal quality.

  8. Shallow Melt Apparatus for Semicontinuous Czochralski Crystal Growth

    DOEpatents

    Wang, T.; Ciszek, T. F.

    2006-01-10

    In a single crystal pulling apparatus for providing a Czochralski crystal growth process, the improvement of a shallow melt crucible (20) to eliminate the necessity supplying a large quantity of feed stock materials that had to be preloaded in a deep crucible to grow a large ingot, comprising a gas tight container a crucible with a deepened periphery (25) to prevent snapping of a shallow melt and reduce turbulent melt convection; source supply means for adding source material to the semiconductor melt; a double barrier (23) to minimize heat transfer between the deepened periphery (25) and the shallow melt in the growth compartment; offset holes (24) in the double barrier (23) to increase melt travel length between the deepened periphery (25) and the shallow growth compartment; and the interface heater/heat sink (22) to control the interface shape and crystal growth rate.

  9. Growth of LGSO: Ce crystals by the Czochralski method

    SciTech Connect

    Sidletskiy, O. Ts.; Bondar, V. G. Grynyov, B. V.; Kurtsev, D. A.; Baumer, V. N.; Belikov, K. N.; Shtitelman, Z. V.; Tkachenko, S. A.; Zelenskaya, O. V.; Starzhinsky, N. G.; Tarasov, V. A.

    2009-12-15

    Single crystals of Lu{sub 2x}Gd{sub 2-2x}SiO{sub 5}: Ce (0 < x < 1) compounds with different atomic ratios Lu/(Lu + Gd) have been grown by the Czochralski method. It has been shown that a change in the spatial symmetry from P2{sub 1}/c to C2/c in the course of substitution of lutetium for gadolinium occurs at the ratio Lu/(Lu + Gd) = 0.1. The lattice thus formed with symmetry C2/c in the structure of Lu{sub 2x}Gd{sub 2-2x}SiO{sub 5}: Ce crystals favors the maximum possible incorporation of Ce{sup 3+} ions into the sevenfold-coordinated position with respect to oxygen. This explains the substantial improvement of the scintillation characteristics of the grown crystals.

  10. Simulation of transport processes during Czochralski growth of YAG crystals

    NASA Astrophysics Data System (ADS)

    Banerjee, Jyotirmay; Muralidhar, K.

    2006-01-01

    Numerical simulation of transport phenomena in the solid, liquid and gaseous phases of a Czochralski process is reported. The Czochralski domain comprises a YAG melt, crystal and gas within the enclosure. The mathematical model is axisymmetric in space and unsteady in time. The governing equations are those of conservation of mass, momentum and energy. The simulation includes a bulk radiation model to account for the semi-transparency of the YAG melt and the growing crystal. Results have been obtained for thermal boundary conditions that do not change with time, a constant diameter growing crystal for which the pull velocity changes with time. Buoyant convection in the melt is seen to produce a melt-crystal interface that is convex into the melt. When the crystal is given rotation, centrifugal forces drive a clockwise roll that counteracts the thermally driven motion. At a specific rotation rate, the interface shape changes from convex to concave. The critical rotation rate for interface inversion has been obtained in the study as a function of the radius ratio and the aspect ratio. Marangoni convection has an effect of strengthening buoyancy-driven flow. Unsteadiness in the YAG melt is observed at high Grashof numbers. The introduction of crystal rotation at high Grashof numbers is found to change the periodic oscillations to aperiodic high amplitude fluctuations. Simulation that includes the crystal and the gas phases along with the melt reveals the possibility of superheating of the crystal beyond its melting point. Similarly, the possibility of subcooling of the melt near the crystal edge below the melting point of YAG is indicated for a certain range of parameters. The internal absorption of radiation in the crystal increases thermal losses from the melt, steepens temperature gradients and is found to create deeply convex melt-crystal interface towards the melt. Additionally, the bulk of the melt is found to become cooler. Scattering is found to have an

  11. The growth of Ho:YAG single crystals by Czochralski method and investigating the formed cores

    SciTech Connect

    Hasani Barbaran, J. Ghani Aragi, M. R.; Javaheri, I.; Baharvand, B.; Tabasi, M.; Layegh Ahan, R.; Jangjo, E.

    2015-12-15

    Ho:YAG single crystals were grown by Czochralski technique, and investigated by the X-ray diffraction (XRD) and optical methods. The crystals were cut and polished in order to observe and analyze their cores. It was found that the deviation of the cores formed in the Czochralski grown Ho:YAG single crystals are resulted from non-symmetrical status of thermal insulation around the Iridium crucible.

  12. Copper precipitation in large-diameter Czochralski silicon

    NASA Astrophysics Data System (ADS)

    Xi, Zhenqiang; Chen, Jun; Yang, Deren; Lawerenz, A.; Moeller, H. J.

    2005-05-01

    The behavior of the copper precipitation in the large-diameter Czochralski silicon (Cz -Si) annealed at 1100°C followed by air cooling or slow cooling was studied by means of scanning infrared microscopy (SIRM), optical microscopy, and surface photovoltage. For the air-cooled specimen, a high density of copper-precipitate colonies with strong contrast could be easily found in the A-defect zone, while in the D-defect zone of the same specimen almost no colonies could be observed through SIRM. However, optical images showed that the higher density of the etching pits induced by the copper-precipitate colonies occurred in the D-defect zone, which indicates that the copper-precipitate colonies in the D-defect zone was below the detection limitation of SIRM. This suggestion was confirmed by minority-carrier diffusion-length mapping, which revealed that the diffusion length of the minority carriers in the D-defect zone was noticeably lower than that in the A-defect zone. As for the slow-cooled specimen, big star-like colonies formed both in the D-defect zone and A-defect zone, but the diffusion length of the minority carriers in the D-defect zone was also lower than that in the A-defect zone. On the basis of experiments, it is suggested that the as-grown vacancies or their related defects in the D-defect zone enhance the nucleation of copper precipitation either under air cooling or under slow cooling, resulting in the lower diffusion length of minority carriers.

  13. Analysis of Phase Separation in Czochralski Grown Single Crystal Ilmenite

    NASA Technical Reports Server (NTRS)

    Wilkins, R.; Powell, Kirk St. A.; Loregnard, Kieron R.; Lin, Sy-Chyi; Muthusami, Jayakumar; Zhou, Feng; Pandey, R. K.; Brown, Geoff; Hawley, M. E.

    1998-01-01

    Ilmenite (FeTiOs) is a wide bandgap semiconductor with an energy gap of 2.58 eV. Ilmenite has properties suited for radiation tolerant applications, as well as a variety of other electronic applications. Single crystal ilmenite has been grown from the melt using the Czochralski method. Growth conditions have a profound effect on the microstructure of the samples. Here we present data from a variety of analytical techniques which indicate that some grown crystals exhibit distinct phase separation during growth. This phase separation is apparent for both post-growth annealed and unannealed samples. Under optical microscopy, there appear two distinct areas forming a matrix with an array of dots on order of 5 pm diameter. While appearing bright in the optical micrograph, atomic force microscope (AFM) shows the dots to be shallow pits on the surface. Magnetic force microscope (MFM) shows the dots to be magnetic. Phase identification via electron microprobe analysis (EMPA) indicates two major phases in the unannealed samples and four in the annealed samples, where the dots appear to be almost pure iron. This is consistent with micrographs taken with a scanning probe microscope used in the magnetic force mode. Samples that do not exhibit the phase separation have little or no discernible magnetic structure detectable by the MFM.

  14. A preliminary review of organic materials single crystal growth by the Czochralski technique

    NASA Technical Reports Server (NTRS)

    Penn, B. G.; Shields, A. W.; Frazier, D. O.

    1988-01-01

    The growth of single crystals of organic compounds by the Czochralski method is reviewed. From the literature it is found that single crystals of benzil, a nonlinear optical material with a d sub 11 value of 11.2 + or - 1.5 x d sub 11 value of alpha quartz, has fewer dislocations than generally contained in Bridgman crystals. More perfect crystals were grown by repeated Czochralski growth. This consists of etching away the defect-containing portion of a Czochralski grown crystal and using it as a seed for further growth. Other compounds used to grow single crystals are benzophenone, 12-tricosanone (laurone), and salol. The physical properties, growth apparatus, and processing conditions presented in the literature are discussed. Moreover, some of the possible advantages of growing single crystals of organic compounds in microgravity to obtain more perfect crystals than on Earth are reviewed.

  15. Development of advanced Czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness. [crystal growth

    NASA Technical Reports Server (NTRS)

    Lane, R. L.

    1981-01-01

    Six growth runs used the Kayex-Hameo Automatic Games Logic (AGILE) computer based system for growth from larger melts in the Mod CG2000. The implementation of the melt pyrometer sensor allowed for dip temperature monitoring and usage by the operator/AGILE system. Use of AGILE during recharge operations was successfully evaluated. The tendency of crystals to lose cylindrical shape (spiraling) continued to be a problem. The hygrometer was added to the Furnace Gas Analysis System and used on several growth runs. The gas chromatograph, including the integrator, was also used for more accurate carbon monoxide concentration measurements. Efforts continued for completing the automation of the total Gas Analysis System. An economic analysis, based on revised achievable straight growth rate, is presented.

  16. On the assumed impact of germanium doping on void formation in Czochralski-grown silicon

    NASA Astrophysics Data System (ADS)

    Vanhellemont, Jan; Zhang, Xinpeng; Xu, Wubing; Chen, Jiahe; Ma, Xiangyang; Yang, Deren

    2010-12-01

    The assumed impact of Ge doping on void formation during Czochralski-growth of silicon single crystals, is studied using scanning infrared microscopy. It has been reported that Ge doping leads to a reduction in the flow pattern defect density and of the crystal originated particle size, both suggesting an effect of Ge on vacancy concentration and void formation during crystal growth. The present study however reveals only a marginal-if any-effect of Ge doping on grown-in single void size and density. Double and multiple void formation might however be suppressed partially by Ge doping leading to the observed decrease in flow pattern defect density. The limited effect of Ge doping on single void formation is in agreement with earlier findings that Ge atoms are only a weak trap for vacancies at higher temperatures and therefor should have a smaller impact on the vacancy thermal equilibrium concentration and on single void nucleation than, e.g., interstitial oxygen and nitrogen.

  17. LSA large area silicon sheet task continuous liquid feed Czochralski growth. Quarterly report, January-March 1980

    SciTech Connect

    Walters, D.

    1980-04-01

    The purpose of this specific phase of the continuous liquid feed program is the design and development of equipment and processes in order to demonstrate the continuous growth of crystals, by use of the Czochralski method, suitable for producing monocrystalline silicon for use in solar cells. This involves the growth of at least 150 kgs of monocrystalline silicon ingots, 150 mm in diameter, obtained from a single growth container. Our approach to meeting this goal is to develop a furnace with continuous liquid replenishment to the growth crucible. The most significant event occurring this quarter was the repeated demonstration of the polyrod feed mechanism, providing continuous melt replenishment to the meltdown chamber, subsequent transfer of this melt, and the simultaneous growth of silicon ingots in the growth chamber.

  18. Quality evaluation of resistivity-controlled silicon crystals

    NASA Astrophysics Data System (ADS)

    Wang, Jong Hoe

    2006-01-01

    The segregation phenomenon of dopants causes a low production yield of silicon crystal that meets the resistivity tolerance required by device manufacturers. In order to control the macroscopic axial resistivity distribution in bulk crystal growth, numerous studies including continuous Czochralski method and double crucible technique have been studied. The simple B-P codoping method for improving the productivity of p-type silicon single-crystal growth by controlling axial specific resistivity distribution was proposed by Wang [Jpn. J. Appl. Phys. 43 (2004) 4079]. In this work, the quality of Czochralski-grown silicon single crystals with a diameter 200 mm using B-P codoping method was studied from the chemical and structural points of view. It was found that the characteristics of B-P codoped wafers including the oxygen precipitation behavior and the grown-in defects are same as that of conventional B-doped Czochralski crystals.

  19. Suppression of boron-oxygen defects in Czochralski silicon by carbon co-doping

    SciTech Connect

    Wu, Yichao; Yu, Xuegong He, Hang; Chen, Peng; Yang, Deren

    2015-03-09

    We have investigated the influence of carbon co-doping on the formation of boron-oxygen defects in Czochralski silicon. It is found that carbon can effectively suppress the formation of boron-oxygen defects. Based on our experiments and first-principle theoretical calculations, it is believed that this effect is attributed to the formation of more energetically favorable carbon-oxygen complexes. Moreover, the diffusion of oxygen dimers in carbon co-doped silicon also becomes more difficult. All these phenomena should be associated with the tensile stress field induced by carbon doping in silicon.

  20. Effect of ramping on oxygen precipitates and Cu-vacancy complex in Czochralski silicon

    NASA Astrophysics Data System (ADS)

    Xu, Jin; Lv, Yaochao; Guo, Weibin; Xie, Tingting

    2016-07-01

    The effect of ramping on oxygen precipitates and Cu-vacancy complex in Czochralski silicon has been investigated by means of Fourier transform infrared spectroscopy (FTIR) and photoluminescence (PL) measurements, respectively. It was found that ramping from low temperature could promote the formation of oxygen precipitates in copper-contaminated Czochralski silicon and the lower the start ramping temperature was, the more oxygen precipitates formed. Moreover, the amount of precipitated oxygen atoms increased with copper contamination temperature. Through the investigation of 0.97 eV PL line related with Cu-vacancy complex, it was revealed that a lower start ramping temperature led to a lower concentration of Cu-vacancy complex and the increase of the copper contamination temperature resulted in the decrease of concentration of Cu-vacancy complex.

  1. Rapid thermal processing of Czochralski silicon substrates: Defects, denuded zones, and minority carrier lifetime

    NASA Technical Reports Server (NTRS)

    Rozgonyi, G. S.; Yang, D. K.; Cao, Y. H.; Radzimski, Z.

    1986-01-01

    Rapid thermal processing (RTP) of Czochralski (Cz) silicon substrates is discussed with its attendant effects on defects, denuded zones, and minority carrier lifetime. Preferential chemical etching and X-ray topography was used to delineate defects which were subsequently correlated with minority carrier lifetime; determined by a pulse metallo-organic decompositon (MOD) test device. The X-ray delineation of grown-in defects was enhanced by a lithium decoration procedure. Results, thus far, show excellent correlation between process-induced defects.

  2. Effect of oxygen and associated residual stresses on the mechanical properties of high growth rate Czochralski silicon

    NASA Astrophysics Data System (ADS)

    Youssef, Khaled; Shi, Meirong; Radue, Chantelle; Good, Ethan; Rozgonyi, George

    2013-04-01

    The mechanical properties of Czochralski silicon (Cz-Si) crystals grown in vacancy rich regimes with elevated axial oxygen concentrations ranging from ˜6 × 1017 to ˜12 × 1017 atoms/cm3 have been investigated using nano- and micro-indentation techniques. Both hardness and fracture toughness were found to decrease with increasing oxygen concentration, while major differences in mechanical properties were found between the central core and the edge of the high oxygen concentration wafers. Photoluminescence imaging and Nomarski optical microscopy of high-oxygen wafers revealed the presence of a ring and swirl-like distributions of micro defects, including oxidation induced stacking faults. Micro-Raman analysis was used to measure local residual stress profiles associated with these characteristic defects. These results provide a quantitative understanding of the influence of the oxygen content and the associated defects resulting from the sub-optimal growth regimes within the Cz-Si process.

  3. A versatile low-cost Czochralski crystal growth system for nonlinear optical organic materials

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D.; Wang, W. S.; Shields, Angela W.; Penn, Benjamin G.; Frazier, Donald O.

    1992-01-01

    A versatile low-cost Czochralski system for pulling crystals from melt has been described. It is designed for low melting, transparent, and nonlinear optical materials. One of the most important novel feature of this crystal growth system is that the entire growth process including the solid-liquid interface can be viewed from any direction. Another is the use of an after-heater to reduce excess heat loss from the surface of the melt.

  4. A DLTS study of hydrogen doped czochralski-grown silicon

    NASA Astrophysics Data System (ADS)

    Jelinek, M.; Laven, J. G.; Kirnstoetter, S.; Schustereder, W.; Schulze, H.-J.; Rommel, M.; Frey, L.

    2015-12-01

    In this study we examine proton implanted and subsequently annealed commercially available CZ wafers with the DLTS method. Depth-resolved spreading resistance measurements are shown, indicating an additional peak in the induced doping profile, not seen in the impurity-lean FZ reference samples. The additional peak lies about 10-15 μm deeper than the main peak near the projected range of the protons. A DLTS characterization in the depth of the additional peak indicates that it is most likely not caused by classical hydrogen-related donors known also from FZ silicon but by an additional donor complex whose formation is assisted by the presence of silicon self-interstitials.

  5. KNbO3 single crystal growth by the radio frequency heating Czochralski method

    NASA Technical Reports Server (NTRS)

    Wang, W.; Zou, Q.; Geng, Z.

    1985-01-01

    A radio frequency heating Czochralski technique to obtain single crystal KNbO3 is first presented. The technological parameters of KNbO3 crystal growth by the Czochralski technique and its pulling conditions were studied in detail. The experiments on second harmonic generation using 1.06 micrometer Nd:YAG laser in KNbO3 have been conducted. The second harmonic efficiency for upconversion of KNbO3 is found to be as high as that of NaBa2Nb5O15. An automatic scanning measurement for the optical homogeneity of KNbO crystal is also described. KNbO3 is revealed to be a potentially useful nonlinear material for optical device applications.

  6. Effect of MeV nitrogen ion implantation on the resistivity transition in Czochralski silicon wafers

    NASA Astrophysics Data System (ADS)

    Moon, Byeong-Sam; Lee, In-Ji; Park, Jea-Gun

    2012-12-01

    We investigated how MeV nitrogen ion implantation affects the resistivity transition in Czochralski (CZ) silicon wafers. After annealing at 800 °C for 20 h and again at 1000 °C for 10 h, the implanted nitrogen atoms accumulated in the projected range (R P ) for ion doses less than 5 × 1014 cm-2 whereas they accumulated at both R P /2 and R P at ion doses above 3 × 1015 cm-2. These results indicate that no resistivity transition was found at nitrogen ion doses less than 5 × 1013 cm-2 whereas n-/p or n+/p resistivity transition was shown at ion doses higher than 5 × 1014 cm-2. Many fewer than 1% of the implanted nitrogen atoms were ionized after the heat treatment. Thus, the resistivity of nitrogen-doped silicon wafers is more than 100 times higher than that of phosphorous-doped silicon wafers.

  7. Progress in unconventional crystallization of silicon

    NASA Astrophysics Data System (ADS)

    Sirtl, E.

    The development status of advanced crystallization methods applicable to the production of silicon photovoltaic cells is considered, with a view to their potential for industrial scaling and high material quality reproducibility. Emphasis is given to the factor of compatibility between refining and crystallization concepts. Economic improvements are reported for the Czochralski-pulling and vertical float-zoning bulk crystallization methods, and attention is given to material synthesis through bulk segregation, semiconductor ribbon growth through pulling and foil casting, and comparisons between the performance of ingot technology and sheet technology industrial processes for solar cell production.

  8. Crystal-melt interface shape of Czochralski-grown large diameter germanium crystals

    NASA Astrophysics Data System (ADS)

    Roth, M.; Azoulay, M.; Gafni, G.; Mizrachi, M.

    1990-01-01

    Crystal-melt interface shapes of 100 to 200 mm diameter 111-line Ge grown by the Czochralski technique have been examined using the method of fast withdrawal from the melt. Initially, the interface shape is convex, then transforms gradually into a sigmoidal shape, becomes nearly planar at about one third of the final crystal length, and finally assumes a concave profile with progressively increasing curvature. The nearly planar interface has a double-facet structure, with an annular facet at the edge of the crystal in addition to the central (111) facet. Formation of the annular facet is accompanied by a giant oscillation of the pull rate when the maximum average pull rate is exceeded. Such oscillation is detrimental to crystal quality, since it introduces a region of high dislocation density. An average pull rate maximum of 2 cm/h has been found to allow for a smooth growth of 200 mm diameter crystals. The origin of the pull rate perturbation is discussed in terms of an instantaneous change in the equilibrium shape of the meniscus.

  9. Light-induced enhancement of the minority carrier lifetime in boron-doped Czochralski silicon passivated by doped silicon nitride

    NASA Astrophysics Data System (ADS)

    Wang, Hongzhe; Chen, Chao; Pan, Miao; Sun, Yiling; Yang, Xi

    2015-12-01

    This study reports a doubling of the effective minority carrier lifetime under light soaking conditions, observed in a boron-doped p-type Czochralski grown silicon wafer passivated by a phosphorus-doped silicon nitride thin film. The analysis of capacitance-voltage curves revealed that the fixed charge in this phosphorus-doped silicon nitride film was negative, which was unlike the well-known positive fixed charges observed in traditional undoped silicon nitride. The analysis results revealed that the enhancement phenomenon of minority carrier lifetime was caused by the abrupt increase in the density of negative fixed charge (from 7.2 × 1011 to 1.2 × 1012 cm-2) after light soaking.

  10. Czochralski growth of Gd2Ti2O7 single crystals

    NASA Astrophysics Data System (ADS)

    Guo, F. Y.; Zhang, W. H.; Ruan, M.; Kang, J. B.; Chen, J. Z.

    2014-09-01

    Gd2Ti2O7 (GTO) single crystals having dimensions of 17×17×20 mm3 were grown by the Czochralski method. These crystals displayed a strong growth habit with {1 1 1} facets. The colors of the as-grown crystals were sensitive to the oxygen concentration both during growth and post-growth annealing. The possible reason for the different colors is discussed and based on transmission, energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and electron spin resonance (ESR) analyses.

  11. Scale up aspects of directional solidification and Czochralski silicon growth processes in traveling magnetic fields

    NASA Astrophysics Data System (ADS)

    Dropka, Natasha; Ervik, Torunn; Czupalla, Matthias; Kiessling, Frank M.

    2016-10-01

    We performed 3D simulations of directional solidification (DS) and Czochralski (Cz) silicon growth processes in traveling magnetic fields (TMFs) and verified them with the experimental data that were available. Particularly, we studied silicon DS growth in real G1, G2 and G5 size setups and Cz growth in 6″ and 24″ crucibles in furnaces provided with KRISTMAG® heater magnet modules (HMMs). TMFs were used for a solid/liquid interface shaping and for a melt stirring. Based on our simulation findings, we discussed scale up challenges and proposed a method for safe upscaling. The method related all present driving forces using dimensionless numbers: Grashof (Gr), Stephan (Ste), Reynolds (Re), Shielding (S) and magnetic forcing number (F).

  12. Electrical Activity of Defects Induced by Oxygen Precipitation in Czochralski-Grown Silicon Wafers

    NASA Astrophysics Data System (ADS)

    Mchedlidze, Teimouraz; Matsumoto, Kei; Asano, Eiichi

    1999-06-01

    Majority and minority carrier traps introduced in p-type Czochralski-grown silicon (CZ-Si) wafers during two-step low-high temperature annealing procedures were investigated using deep level transient spectroscopy (DLTS). It was determined that the platelike silicon oxide precipitate surface and the punch-out dislocations introduce majority carrier traps having deep energy levels (EV+0.43 eV and EV+0.26 eV, repectively) in the Si band gap in concentrations proportional to the relevant defect density. The minority carrier traps are positioned at EC-0.42 eV and EC-0.22 eV. The majority carrier trap density on the surface of the platelikeprecipitate was estimated as ˜3×109 cm-2 and thelinear trap density for the punch-out dislocations as ˜ 4×104 cm-1.

  13. Influence of melt convection on the interface during Czochralski crystal growth

    NASA Astrophysics Data System (ADS)

    Miller, W.; Rehse, U.; Böttcher, K.

    2000-05-01

    During the growth process of single bulk crystals from melt, the defect density is strongly affected by the shape of the melt/crystal interface. The shape of the interface is governed by the construction of the growth equipment including the heating system and the convection in the melt. In this paper the flow in a GaAs melt and the boron oxide encapsulant in an equipment used for vapour pressure controlled Czochralski growth has been calculated. 2D-axisymmetric calculations have been performed by using the commercial general purpose program FIDAP TM. A simple model has been developed to describe the phase change problem in the weak form.

  14. Misfit strain of oxygen precipitates in Czochralski silicon studied with energy-dispersive X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Gröschel, A.; Will, J.; Bergmann, C.; Magerl, A.

    2014-06-01

    Annealed Czochralski Silicon wafers containing SiOx precipitates have been studied by high energy X-ray diffraction in a defocused Laue setup using a laboratory tungsten tube. The energy dispersive evaluation of the diffracted Bragg intensity of the 220 reflection within the framework of the statistical dynamical theory yields the static Debye-Waller factor E of the crystal, which gives access to the strain induced by the SiOx precipitates. The results are correlated with precipitate densities and sizes determined from transmission electron microscopy measurements of equivalent wafers. This allows for the determination of the constrained linear misfit ɛ between precipitate and crystal lattice. For samples with octahedral precipitates the values ranging from ɛ = 0.39 (+0.28/-0.12) to ɛ = 0.48 (+0.34/-0.16) indicate that self-interstitials emitted into the matrix during precipitate growth contribute to the lattice strain. In this case, the expected value calculated from literature values is ɛ = 0.26 ± 0.05. Further, the precise evaluation of Pendellösung oscillations in the diffracted Bragg intensity of as-grown wafers reveals a thermal Debye-Waller parameter for the 220 reflection B220(293 K) of 0.5582 ± 0.0039 Å2 for a structure factor based on spherically symmetric scattering contributions.

  15. Effect of intrinsic point defects on copper precipitation in large-diameter Czochralski silicon

    NASA Astrophysics Data System (ADS)

    Xi, Zhenqiang; Yang, Deren; Xu, Jin; Ji, Yujie; Que, Duanlin; Moeller, H. J.

    2003-10-01

    Effect of intrinsic point defects on copper precipitation in large-diameter Czochralski silicon annealed at 1100 °C under air cooling was studied by means of scanning infrared microscopy (SIRM), optical microscopy (OM), and transmission electron microscopy (TEM). The SIRM images showed that, in the A-defect zone of the Cu-contaminated silicon wafers, the copper-precipitate colonies with larger size were observed, while in the D-defect zone almost no copper precipitates could be observed. However, the OM results revealed that the density of etching pits in the D-defect zone was higher than that in the A-defect zone, indicating that the copper precipitates with smaller size and higher density formed in the D-defect zone. The TEM investigation showed that the size of copper precipitate colonies in the A-defect zone was about 300 nm, while that in the D-defect zone was about 50 nm. It is considered that as-grown vacancies in the D-defect zone enhanced the nucleation of copper precipitates but hindered their growth, whereas the role of as-grown interstitial silicon on copper precipitation was inverse.

  16. Light-induced degradation in compensated p- and n-type Czochralski silicon wafers

    NASA Astrophysics Data System (ADS)

    Geilker, Juliane; Kwapil, Wolfram; Rein, Stefan

    2011-03-01

    Light-induced degradation (LID) due to boron-oxygen complex formation seriously diminishes the minority carrier lifetime of p-type Czochralski-grown (Cz) wafers. Depending linearly on the boron concentration NA in uncompensated silicon, the boron-oxygen defect density was suggested to depend on the net doping concentration p0 = NA - ND in compensated p-type samples, containing similar amounts of boron and phosphorus [D. Macdonald, F. Rougieux, A. Cuevas, et al., Journal of Applied Physics 105, 093704 (2009)]. However, this dependency contradicts observations of LID in compensated n-type silicon wafers [T. Schutz-Kuchly, J. Veirman, S. Dubois, et al., Applied Physics Letters 96, 1 (2010)], which are confirmed in this study by investigating the boron-oxygen complex formation on a large variety of compensated p- and n-type samples. In spite of their high boron content, compensated n-type samples may show a less pronounced LID than p-type samples containing less boron. Our experiments indicate that in compensated silicon, the defect concentration is only a function of the compensation ratio RC = (NA + ND)/(NA - ND).

  17. Optical Properties of LiNbO3 Single Crystal Grown by Czochralski Method

    NASA Astrophysics Data System (ADS)

    Sahar, M. R.; Naim, N. M.; Hamzah, K.

    2011-03-01

    Pure LiNbO3 single crystal was grown by Czochralski method using Automatic Diameter Control—Crystal Growth System (ADC-CGS). The transmission spectrum was determined by using Infrared Spectroscopy while the refractive index was determined using UV-Vis spectroscopy via the Sellmeier equation. The density was also measured using the Archimedes principle. It was found that the peak for the absorption vibrational spectrum for LiNbO3 crystal occurs at 801 cm-1, 672 cm-1, 639 cm-1 and 435 cm-1. The refractive index, ne was found to be 2.480 and the crystal density was around 4.64 g/cm3.

  18. Simulation of the temperature distribution in crystals grown by Czochralski method

    NASA Technical Reports Server (NTRS)

    Dudokovic, M. P.; Ramachandran, P. A.

    1985-01-01

    Production of perfect crystals, free of residual strain and dislocations and with prescribed dopant concentration, by the Czochralski method is possible only if the complex, interacting phenomena that affect crystal growth in a Cz-puller are fully understood and quantified. Natural and forced convection in the melt, thermocapillary effect and heat transfer in and around the crystal affect its growth rate, the shape of the crystal-melt interface and the temperature gradients in the crystal. The heat transfer problem in the crystal and between the crystal and all other surfaces present in the crystal pulling apparatus are discussed at length. A simulation and computer algorithm are used, based on the following assumptions: (1) only conduction occurs in the crystal (experimentally determined conductivity as a function of temperature is used), (2) melt temperature and the melt-crystal heat transfer coefficient are available (either as constant values or functions of radial position), (3) pseudo-steady state is achieved with respect to temperature gradients, (4) crystal radius is fixed, and (5) both direct and reflected radiation exchange occurs among all surfaces at various temperatures in the crystal puller enclosure.

  19. Single crystal growth of Ga3Ni2 by the Czochralski method

    NASA Astrophysics Data System (ADS)

    Wencka, Magdalena; Pillaca, Mirtha; Gille, Peter

    2016-09-01

    Intermetallic compounds have proved to be interesting alternatives to heterogeneous catalysts prepared from pure noble metals or their alloys. As to study their intrinsic properties, to determine the crystalline structures of specific surfaces and finally to understand elementary processes of heterogeneous catalysis, single crystals of these intermetallics are needed. Inspired by the recent discovery of Ga-Ni catalysts for carbon dioxide reduction to methanol, we have grown for the first time cm3-size single crystals of trigonal Ga3Ni2. We report in detail on the synthesis and Czochralski growth from high-temperature solution using Ga as native solvent. Inclusion formation of Ga-rich fluid proved to be the most severe problem that was minimized by using an extremely low pulling rate down to 25 μm/h.

  20. Effect of tin doping on oxygen- and carbon-related defects in Czochralski silicon

    SciTech Connect

    Chroneos, A.; Londos, C. A.; Sgourou, E. N.

    2011-11-01

    Experimental and theoretical techniques are used to investigate the impact of tin doping on the formation and the thermal stability of oxygen- and carbon-related defects in electron-irradiated Czochralski silicon. The results verify previous reports that Sn doping reduces the formation of the VO defect and suppresses its conversion to the VO{sub 2} defect. Within experimental accuracy, a small delay in the growth of the VO{sub 2} defect is observed. Regarding carbon-related defects, it is determined that Sn doping leads to a reduction in the formation of the C{sub i}O{sub i}, C{sub i}C{sub s}, and C{sub i}O{sub i}(Si{sub I}) defects although an increase in their thermal stability is observed. The impact of strain induced in the lattice by the larger tin substitutional atoms, as well as their association with intrinsic defects and carbon impurities, can be considered as an explanation to account for the above observations. The density functional theory calculations are used to study the interaction of tin with lattice vacancies and oxygen- and carbon-related clusters. Both experimental and theoretical results demonstrate that tin co-doping is an efficient defect engineering strategy to suppress detrimental effects because of the presence of oxygen- and carbon-related defect clusters in devices.

  1. Coupled melt flow and thermal stress predictions for Czochralski crystal growth

    SciTech Connect

    Zou, Y.F.; Zhang, H.; Prasad, V.

    1995-12-31

    A coupled finite volume-finite element algorithm is developed to simulate the melt flows and predict the temperature distributions and thermal stresses in the Czochralski grown crystals. The computer model employs a multizone adaptive grid generation scheme together with curvilinear finite column discretization (MASTRAPP) to predict the transport phenomena associated with the crystal growth processes as well as the nonplanar melt/crystal interface shape and its dynamics (Zhang and Prasad, 1995a). The MASTRAPP has proven to be a robust and efficient scheme for the problems involving moving interfaces and free surfaces. Thermal stresses in the crystal are obtained by using a commercial finite element code, ALGOR, that uses the curvilinear mesh generated by the MASTRAPP. The numerical results show that the melt flows have a strong influence on thermal stresses in the crystal near the melt/crystal interface, and hence, melt convection must be included in the computer model for accurate stress predictions. The predicted stress phenomena agrees qualitatively with the report results.

  2. Reversible phase transition and relaxor behavior in Te2V2O9 single crystals grown by Czochralski technique

    NASA Astrophysics Data System (ADS)

    Shet, Tukaram; Varma, K. B. R.

    2016-09-01

    Te2V2O9 single crystals were grown along the polar c-axis via the Czochralski crystal growth technique. Dielectric studies carried out along the polar axis in a wide temperature range at different frequencies confirmed the relaxor nature of the Te2V2O9 single crystals. Temperature dependent polarized light optical microscopy along a-axis established a reversible phase transition around 614 K. Relaxor nature of Te2V2O9 was attributed to the compositional heterogeneity at micro/nano scale within the grown crystal as vanadium was observed to be present in different oxidation states by X-ray photoelectron spectroscopic studies.

  3. Influences of p- and n-Doped Czochralski Base Material on the Performance of Silicon Based Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Ziegler, Johannes; Montesdeoca-Santana, Amada; Platt, Dominik; Hohage, Stefan; Guerrero-Lemus, Ricardo; Borchert, Dietmar

    2012-10-01

    In this work we present a cell process for amorphous crystalline silicon heterojunction (SHJ) solar cells based on process steps well known in the photovoltaic industry. All amorphous silicon layers are deposited by plasma enhanced chemical vapor deposition (PECVD) in a one chamber direct plasma reactor working at a radio frequency of 13.56 MHz. The main focus of this work is to study the influence of p- and n-doped Czochralski (Cz) silicon base material with different surface morphology on the cell results of amorphous crystalline SHJ solar cells with intrinsic thin layers. Open circuit voltages Voc of up to 700 mV are obtained on n-type Cz based SHJ cells (area 100 cm2) with rough surfaces. On p-type Cz based SHJ cells open circuit voltages were limited by the minority carrier bulk lifetime of the used base material.

  4. Photovoltaic Czochralski silicon manufacturing technology improvements. Annual subcontract report, 1 April 1993--31 March 1994

    SciTech Connect

    Jester, T.

    1995-03-01

    This report describes work performed under a 3-year, 3-phase, cost-share contract to demonstrate significant cost reductions and improvements in manufacturing technology. The objective of the program is to reduce costs in photovoltaic manufacturing by approximately 10% per year. The work was focused in three main areas: (1) silicon crystal growth and thin wafer technology; (2) silicon cell processing; and (3) silicon module fabrication and environmental, safety, and health issues. During this reporting period, several significant improvements were achieved. The crystal growing operation improved significantly with an increase in growth capacity due to larger crucibles, higher polysilicon packing density, and high pull speeds. Wafer processing with wire saws progressed rapidly, and the operation is completely converted to wire saw wafer processing. The wire saws yield almost 50% more wafers per inch in production, thus improving manufacturing volume by 50% without any additional expense in crystal growth. Cell processing improvements focused on better understanding the contact paste and firing processes. Module designs for lower material and labor costs began with the focus on a new junction box, larger modules with larger cells, and a less costly framing technique. In addition, chlorofluorocarbon (CFC) usage was completely eliminated in the Siemens manufacturing facility during this period, resulting in significant reductions in the cost of caustic waste treatment.

  5. Continuous replenishment of molten semiconductor in a Czochralski-process, single-crystal-growing furnace

    NASA Technical Reports Server (NTRS)

    Fiegl, George (Inventor); Torbet, Walter (Inventor)

    1981-01-01

    A replenishment crucible is mounted adjacent the usual drawing crucible, from which a monocrystalline boule is drawn according to the Czochralski method. A siphon tube for molten semiconductor transfer extends from the replenishment crucible to the drawing crucible. Each crucible is enclosed within its own hermetic shell and is provided with its own heater. The siphon tube is initially filled with molten semiconductor by raising the inert atmospheric pressure in the shell surrounding the replenishment crucible above that surrounding the drawing crucible. Thereafter, adjustment of the level of molten semiconductor in the drawing crucible may be achieved by adjusting the level in either crucible, since the siphon tube will establish the same level in both crucibles. For continuous processing, solid semiconductor may be added to and melted in the replenishment crucible during the process of drawing crystals from the drawing crucible. A constant liquid level of melted semiconductor is maintained in the system by an optical monitoring device and any of several electromechanical controls of the rate of replenishment or crucible height.

  6. Processing experiments on non-Czochralski silicon sheet (MEPSDU support contract). Quarterly technical report No. 1, 14 October 1980-31 December 1980

    SciTech Connect

    Pryor, R.

    1980-01-01

    A program of six months duration has been initiated to support and promote the further development of processing techniques which may be successfully and cost-effectively applied to low-cost non-Czochralski silicon sheet for solar cell fabrication. Work is proceeding and results are reported in the areas of process technology, cell design, cell metallization, and production cost simulation.

  7. Development of advanced Czochralski Growth Process to produce low cost 150 KG silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The goals in this program for advanced czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness are outlined. To provide a modified CG2000 crystal power capable of pulling a minimum of five crystals, each of approximately 30 kg in weight, 150 mm diameter from a single crucible with periodic melt replenishment. Crystals to have: resistivity of 1 to 3 ohm cm, p-type; dislocation density below 1- to the 6th power per cm; orientation (100); after growth yield of greater than 90%. Growth throughput of greater than 2.5 kg per hour of machine operation using a radiation shield. Prototype equipment suitable for use as a production facility. The overall cost goal is $.70 per peak watt by 1986. To accomplish these goals, the modified CG2000 grower and development program includes: (1) increased automation with a microprocessor based control system; (2) sensors development which will increase the capability of the automatic controls system, and provide technology transfer of the developed systems.

  8. Development of advanced Czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design and development of an advanced Czochralski crystal grower are described. Several exhaust gas analysis system equipment specifications studied are discussed. Process control requirements were defined and design work began on the melt temperature, melt level, and continuous diameter control. Sensor development included assembly and testing of a bench prototype of a diameter scanner system.

  9. Determination of magneto-optical quality and refractive index of bismuth germanium oxide single crystals grown by Czochralski technique

    NASA Astrophysics Data System (ADS)

    Lazarević, Z. Ž.; Mihailović, P.; Kostić, S.; Romčević, M. J.; Mitrić, M.; Petričević, S.; Radunović, J.; Petrović-Damjanović, M.; Gilić, M.; Romčević, N. Ž.

    2012-09-01

    Bi12GeO20 single crystals were grown by the Czochralski technique. The critical diameter and the critical rate of rotation were calculated. Suitable polishing and etching solutions were determined. As a result of our experiments, the pale yellow and black single crystals were produced. The structure of the Bi12GeO20 has been investigated by X-ray diffraction, Raman and IR spectroscopy. The atomic ratio Bi/Ge was determined for the both crystals. The refractive indexes of both Bi12GeO20 crystals were determined by the spectroscopic ellipsometry method. Important properties of Bi12GeO20 for sensing applications, optical activity, Faraday rotation and absorption were measured and magneto optical quality was calculated and compared.

  10. Czochralski growth and Faraday rotation properties of Tb9.33(SiO4)6O2 crystals

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Gong, Zhongliang; Fu, Hao; Zhuang, Naifeng; Zhang, Wenhui; Xie, Xitong; Guo, Feiyun; Chen, Jianzhong

    2015-05-01

    Tb9.33(SiO4)6O2 crystals have been grown by the Czochralski technique for the first time for magneto-optical applications. Rietveld structure refinement of XRD data confirms that the compound crystallizes in the hexagonal system P63 / m, with oxyapatite structure. Transmittance spectra and the Faraday rotation have been investigated, which demonstrate that Tb9.33(SiO4)6O2 crystals show a higher visible transparency and a larger Faraday rotation than Tb3Ga5O12 crystals. Tb9.33(SiO4)6O2 is therefore a promising material in particular for new magneto-optical applications in the visible-near IR wavelength region.

  11. Semiempirical Model Would Control Czochralski Process

    NASA Technical Reports Server (NTRS)

    Dudukovic, M. P.; Ramachandran, P. A.; Srivastava, R. K.

    1989-01-01

    Semiempirical mathematical model proposed for control of growth of single crystals of silicon by Czochralski process. Expresses dependence of pulling rate and shape of liquid/solid interface upon important process variables; radius of growing crystal, temperature of crucible, level of melt, and height of exposed portion of crucible wall. Necessary to control shape of interface in manner consistent with other variables, to maintain radially uniform concentration of dopant, and reduce thermally induced stresses in vicinity of interface. Used to simulate complete growth cycles without requiring excessive computer time consumed by rigorous finite-element modeling.

  12. Continuous Czochralski growth: Silicon sheet growth development of the large area silicon sheet task of the Low Cost Silicon Solar Array project

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The primary objective of this contract is to develop equipment and methods for the economic production of single crystal ingot material by the continuous Czochralski (CZ) process. Continuous CZ is defined for the purpose of this work as the growth of at least 100 kilograms of ingot from only one melt container. During the reporting period (October, 1977 - September, 1978), a modified grower was made fully functional and several recharge runs were performed. The largest run lasted 44 hours and over 42 kg of ingot was produced. Little, if any, degradation in efficiency was observed as a result of pulling multiple crystals from one crucible. Solar efficiencies observed were between 9.3 and 10.4% AMO (13.0 and 14.6% AMI) compared to 10.5% (14.7% AMI) for optimum CZ material control samples. Using the SAMICS/IPEG format, economic analysis of continuous CZ suggests that 1986 DoE cost goals can only be met by the growth of large diameter, large mass crystals.

  13. Crystal growth by Bridgman and Czochralski method of the ferromagnetic quantum critical material YbNi4P2

    NASA Astrophysics Data System (ADS)

    Kliemt, K.; Krellner, C.

    2016-09-01

    The tetragonal YbNi4P2 is one of the rare examples of compounds that allow the investigation of a ferromagnetic quantum critical point. We report in detail on two different methods which have been used to grow YbNi4P2 single crystals from a self-flux. The first, a modified Bridgman method, using a closed crucible system yields needle-shaped single crystals oriented along the [001]-direction. The second method, the Czochralski growth from a levitating melt, yields large single crystals which can be cut in any desired orientation. With this crucible-free method, samples without flux inclusions and a resistivity ratio at 1.8 K of RR1.8K = 17 have been grown.

  14. Crystallization of Silicon Ribbons

    NASA Technical Reports Server (NTRS)

    Leipold, M. H.

    1984-01-01

    Purity constraints for reasonable solar-cell efficiency require that silicon-ribbon growth for photovoltaics occur in a regime in which constitutional supercooling or other compositional effects on the crystallization front are not important. A major consideration in the fundamentals of crystallization is the removal of the latent heat of fusion. The direction of removal, compared with the growth direction, has a major influence on the crystallization rate and the development of localized stresses. The detailed shape of the crystallization front appears to have two forms: that required for dendritic-web growth, and that occurring in all others. After the removal of the latent heat of fusion, the thermal-mechanical behavior of all ribbons appears similar within the constraints of the exothermal gradient. The technological constraints in achieving the required thermal and mechanical conditions vary widely among the growth processes.

  15. Evidence for the role of hydrogen in the stabilization of minority carrier lifetime in boron-doped Czochralski silicon

    SciTech Connect

    Nampalli, N. Hallam, B.; Chan, C.; Abbott, M.; Wenham, S.

    2015-04-27

    This study demonstrates that the presence of a hydrogen source during fast-firing is critical to the regeneration of B-O defects and that is it not a pure thermally based mechanism or due to plasma exposure. Boron-doped p-type wafers were fired with and without hydrogen-rich silicon nitride (SiN{sub x}:H) films present during the fast-firing process. After an initial light-induced degradation step, only wafers fired with the SiN{sub x}:H films present were found to undergo permanent and complete recovery of lifetime during subsequent illuminated annealing. In comparison, wafers fired bare, i.e., without SiN{sub x}:H films present during firing, were found to demonstrate no permanent recovery in lifetime. Further, prior exposure to hydrogen-rich plasma processing was found to have no impact on permanent lifetime recovery in bare-fired wafers. This lends weight to a hydrogen-based model for B-O defect passivation and casts doubt on the role of non-hydrogen species in the permanent passivation of B-O defects in commercial-grade p-type Czochralski silicon wafers.

  16. Continuous Czochralski growth: Silicon sheet growth development of the large area sheet task of the low cost silicon solar array project

    NASA Technical Reports Server (NTRS)

    Johnson, C. M.

    1980-01-01

    The growth of 100 kg of silicon single crystal material, ten cm in diameter or greater, and 150 kg of silicon single crystal material 15 cm or greater utilizing one common silicon container material (one crucible) is investigated. A crystal grower that is recharged with a new supply of polysilicon material while still under vacuum and at temperatures above the melting point of silicon is developed. It accepts large polysilicon charges up to 30 kg, grows large crystal ingots (to 15 cm diameter and 25 kg in weight), and holds polysilicon material for recharging (rod or lump) while, at the same time, growing crystal ingots. Special equipment is designed to recharge polysilicon rods, recharge polysilicon lumps, and handle and store large, hot silicon crystal ingots. Many continuous crystal growth runs were performed lasting as long as 109 hours and producing as many as ten crystal ingots, 15 cm with weights progressing to 27 kg.

  17. Modified low temperature Czochralski growth of xylenol orange doped benzopheone single crystal for fabricating dual band patch antenna

    NASA Astrophysics Data System (ADS)

    Yadav, Harsh; Sinha, Nidhi; Kumar, Binay

    2016-09-01

    Organic non-linear optical pure and xylenol orange (XO) doped benzophenone (BP) single crystals have been grown by a modified Czochralski technique. A low cost CZ system was designed and fabricated that is suitable for the growth of single crystals of low melting point organic materials. Structural analysis was performed by powder and single crystal XRD. LC-HRMS spectra reveal that the dye molecules are present in the doped crystal. The linear optical characterization was carried out by UV-vis spectroscopy. In the case of the XO doped BP crystal, two absorption peaks were found at 504 nm and 620 nm. The enhancement of photoluminescence intensity of blue emission was observed in the dye doped crystal. Dielectric studies reveal that the XO doped BP has shown improved a dielectric constant with low dielectric loss. A dual band compact circular patch antenna was simulated and fabricated using the XO doped crystal. Resonant frequencies of the dual bands at 4.80 GHz and 9.22 GHz were achieved by introducing a defect ground state in the circular patch antenna. The piezoelectric coefficient (d33) value was increased from 1 to 4 pC/N by XO dye doping, which opens up the possibilities of simultaneous transducer applications.

  18. High-efficiency cell structures and processes applied to photovoltaic-grade Czochralski silicon

    SciTech Connect

    Gee, J.M.; King, R.R.; Mitchell, K.W.

    1996-12-01

    The authors performed a detailed study to examine the limiting performance available using photovoltaic-grade Cz silicon. Photovoltaic-grade silicon refers to silicon produced by the photovoltaic industry, which may differ from the silicon used in the semiconductor device industry in impurity and defect concentrations.The study included optimization of fabrication processes, development of advanced device structures, and detailed model calculations to project future performance improvements. Process and device optimization resulted in demonstration of 75-{micro}s bulk lifetimes and 17.6%-efficient large-area cells using photovoltaic-grade Cz silicon. Detailed calculations based on the material and device evaluation of the present work project efficiencies of 20% for photovoltaic-grade Cz silicon with properly optimized processing and device structures.

  19. Electromigration process for the purification of molten silicon during crystal growth

    NASA Technical Reports Server (NTRS)

    Shlichta, P. J. (Inventor)

    1982-01-01

    A process for the purification of molten materials during crystal growth by electromigration of impurities to localized dirty zones. In the Czochralski crystal growing process, the impurities are electromigrated away from the crystallization interface by applying a direct electrical current to the molten silicon for electromigrating the charged impurities away from the crystal growth interface. The edge-defined film-fed crystal growth process, a direct electrical current is applied between the two faces which are used in forming the molten silicon into a ribbon. The impurities, migrated to one side only of the crystal ribbon, may be removed or left in place. If left in place, they will not adversely affect the ribbon when used in solar collectors. The migration of the impurity to one side only of the silicon ribbon is especially suitable for use with asymmetric dies which preferentially crystallize uncharged impurities along one side or face of the ribbon.

  20. Electromigration process for the purification of molten silicon during crystal growth

    DOEpatents

    Lovelace, Alan M. Administrator of the National Aeronautics and Space; Shlichta, Paul J.

    1982-01-01

    A process for the purification of molten materials during crystal growth by electromigration of impurities to localized dirty zones. The process has particular applications for silicon crystal growth according to Czochralski techniques and edge-defined film-fed growth (EFG) conditions. In the Czochralski crystal growing process, the impurities are electromigrated away from the crystallization interface by applying a direct electrical current to the molten silicon for electromigrating the charged impurities away from the crystal growth interface. In the EFG crystal growth process, a direct electrical current is applied between the two faces which are used in forming the molten silicon into a ribbon. The impurities are thereby migrated to one side only of the crystal ribbon. The impurities may be removed or left in place. If left in place, they will not adversely affect the ribbon when used in solar collectors. The migration of the impurity to one side only of the silicon ribbon is especially suitable for use with asymmetric dies which preferentially crystallize uncharged impurities along one side or face of the ribbon.

  1. Transformation of divacancies to divacancy-oxygen pairs in p-type Czochralski-silicon; mechanism of divacancy diffusion

    SciTech Connect

    Ganagona, N. Vines, L.; Monakhov, E. V.; Svensson, B. G.

    2014-01-21

    In this work, a comprehensive study on the transition of divacancy (V{sub 2}) to divacancy-oxygen (V{sub 2}O) pairs in p-type silicon has been performed with deep level transient spectroscopy (DLTS). Czochralski grown, boron doped p-type, silicon samples, with a doping concentration of 2 × 10{sup 15} cm{sup −3} and oxygen content of 7.0 ± 1.5 × 10{sup 17} cm{sup −3}, have been irradiated with 1.8 MeV protons. Isothermal annealing at temperatures in the range of 200 °C–300 °C shows a close to one-to-one correlation between the loss in the donor state of V{sub 2} and the formation of the donor state of V{sub 2}O, located at 0.23 eV above the valence band edge. A concurrent transition takes place between the single acceptor states of V{sub 2} and V{sub 2}O, as unveiled by injection of electrons through optical excitation during the trap filling sequence of the DLTS measurements. Applying the theory for diffusion limited reactions, the diffusivity of V{sub 2} in the studied p-type samples is determined to be (1.5 ± 0.7) × 10{sup −3}exp[−(1.31 ± 0.03) eV/kT] cm{sup 2}/s, and this represents the neutral charge state of V{sub 2}. Further, the data seem to favor a two-stage diffusion mechanism involving partial dissociation of V{sub 2}, although a one-stage process cannot be fully excluded.

  2. Enhanced polarization properties of ferrielectric AgNbO3 single crystals grown by Czochralski method under high-pressure oxygen atmosphere

    NASA Astrophysics Data System (ADS)

    Kitanaka, Yuuki; Egawa, Takuya; Noguchi, Yuji; Miyayama, Masaru

    2016-10-01

    We report crystal growth under high oxygen pressure (P O2) atmosphere that yields high-quality single crystals of AgNbO3. X-ray fluorescence analysis reveals that an increase in P O2 during crystal growth effectively suppresses the deficiency of Ag and then leads to low leakage currents. Single crystals grown via the Czochralski method at a P O2 of 0.9 MPa are demonstrated to show ferrielectric switching with enhanced polarization under electric fields along the [110] direction.

  3. Single Crystal Silicon Instrument Mirrors

    NASA Technical Reports Server (NTRS)

    Bly, Vince

    2007-01-01

    The goals for the fabrication of single crystal silicon instrument mirrors include the following: 1) Develop a process for fabricating lightweight mirrors from single crystal silicon (SCS); 2) Modest lightweighting: 3X to 4X less than equivalent solid mirror; 3) High surface quality, better than lambda/40 RMS @ 633nm; 4) Significantly less expensive than current technology; and 5) Negligible distortion when cooled to cryogenic temperatures.

  4. Electrically active light-element complexes in silicon crystals grown by cast method

    NASA Astrophysics Data System (ADS)

    Sato, Kuniyuki; Ogura, Atsushi; Ono, Haruhiko

    2016-09-01

    Electrically active light-element complexes called thermal donors and shallow thermal donors in silicon crystals grown by the cast method were studied by low-temperature far-infrared absorption spectroscopy. The relationship between these complexes and either crystal defects or light-element impurities was investigated by comparing different types of silicon crystals, that is, conventional cast-grown multicrystalline Si, seed-cast monolike-Si, and Czochralski-grown Si. The dependence of thermal and the shallow thermal donors on the light-element impurity concentration and their annealing behaviors were examined to compare the crystals. It was found that crystal defects such as dislocations and grain boundaries did not affect the formation of thermal or shallow thermal donors. The formation of these complexes was dominantly affected by the concentration of light-element impurities, O and C, independent of the existence of crystal defects.

  5. Effect of germanium doping on the annealing characteristics of oxygen and carbon-related defects in Czochralski silicon

    SciTech Connect

    Londos, C. A.; Andrianakis, A.; Sgourou, E. N.; Emtsev, V.; Ohyama, H.

    2010-05-15

    This paper is devoted to the annealing studies of defects produced in carbon-rich Ge-doped Czochralski-grown Si (Cz-Si) by 2 MeV electron irradiation. The annealing temperature of vacancy-oxygen (VO) complexes, carbon interstitial-oxygen interstitial (C{sub i}O{sub i}), and carbon interstitial-carbon substitutional (C{sub i}C{sub s}) pairs as well as the formation temperature of vacancy-two oxygen (VO{sub 2}) complexes are monitored as a function of Ge concentration. It has been established that the annealing of C{sub i}O{sub i} and C{sub i}C{sub s} defects remains practically unaffected by the Ge presence, whereas the annealing temperature of VO defects and the formation temperature of VO{sub 2} complexes are substantially lowered at Ge concentrations larger than 1x10{sup 19} cm{sup -3}. The hydrostatic component of elastic strains introduced by Ge atoms in the Si crystal lattice was calculated. It appears to be very small, at least insufficient to exert a pronounced effect upon the annealing behavior of radiation-produced defects. This conclusion is in line with what is observed for the C{sub i}O{sub i} and C{sub i}C{sub s} species. In the case of VO, whose annealing process in Cz-Si is concurrently conducted by two reaction paths VO+O{sub i}{yields}VO{sub 2} and VO+Si{sub I}{yields}O{sub i}, we suggest that the latter reaction in Ge-doped Cz-Si is enhanced by emitting self-interstitials (Si{sub I}) from loosely bound self-interstitial clusters predominantly formed around Ge impurity atoms. As a result, the liberation of self-interstitials at lower annealing temperatures leads to an enhanced annealing of VO defects. An enhanced formation of VO{sub 2} complexes at lower temperatures is also discussed in terms of other reactions running in parallel with the reaction VO+Si{sub I}{yields}O{sub i}.

  6. Continuous Czochralski growth. Development of advanced Czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The improvement of growth rates using radiation shielding and investigation of the crucible melt interaction for improved yields were emphasized. Growth runs were performed from both 15 and 16 inch diameter crucibles, producing 30 and 37 kg ingots respectively. Efforts to increase the growth rate of 150 mm diameter ingots were limited by temperature instabilities believed to be caused by undesirable thermal convections in the larger melts. The radiation shield improved the growth rate somewhat, but the thermal instability was still evident, leading to nonround ingots and loss of dislocation-free structure. A 38 kg crystal was grown to demonstrate the feasibility of producing 150 kg with four growth cycles. After the grower construction phase, the Hamco microprocessor control system was interfaced to the growth facility, including the sensor for automatic control of seeding temperature, and the sensor for automatic shouldering. Efforts focused upon optimization of the seeding, necking, and shoulder growth automation programs.

  7. Czochralski growth and scintillation properties of Li6LuxY1-x(BO3)3:Ce3+ single crystals

    NASA Astrophysics Data System (ADS)

    Fawad, U.; Kim, H. J.; Park, H.; Kim, Sunghwan; Khan, Sajid

    2016-01-01

    We report on Czochralski growth of Ce3+-doped mixed crystals of Li6Lu(BO3)3 (LLBO) and Li6Y(BO3)3 (LYBO) i.e. Li6LuxY1-x(BO3)3 (x=0.0, 0.5, 1.0) (LLYBO). Problems faced during the growth process and the techniques to overcome them are discussed. Single phase of the grown crystals is confirmed by powder X-ray diffraction (XRD) analysis. The grown crystals are characterized for their scintillation properties such as energy resolution, light yield, fluorescent decay time and α/β ratio under γ-rays and α-particles excitation. The X-ray induced luminescence is measured for the grown crystals.

  8. Processing of n+/p-/p+ strip detectors with atomic layer deposition (ALD) grown Al2O3 field insulator on magnetic Czochralski silicon (MCz-si) substrates

    NASA Astrophysics Data System (ADS)

    Härkönen, J.; Tuovinen, E.; Luukka, P.; Gädda, A.; Mäenpää, T.; Tuominen, E.; Arsenovich, T.; Junkes, A.; Wu, X.; Li, Z.

    2016-08-01

    Detectors manufactured on p-type silicon material are known to have significant advantages in very harsh radiation environment over n-type detectors, traditionally used in High Energy Physics experiments for particle tracking. In p-type (n+ segmentation on p substrate) position-sensitive strip detectors, however, the fixed oxide charge in the silicon dioxide is positive and, thus, causes electron accumulation at the Si/SiO2 interface. As a result, unless appropriate interstrip isolation is applied, the n-type strips are short-circuited. Widely adopted methods to terminate surface electron accumulation are segmented p-stop or p-spray field implantations. A different approach to overcome the near-surface electron accumulation at the interface of silicon dioxide and p-type silicon is to deposit a thin film field insulator with negative oxide charge. We have processed silicon strip detectors on p-type Magnetic Czochralski silicon (MCz-Si) substrates with aluminum oxide (Al2O3) thin film insulator, grown with Atomic Layer Deposition (ALD) method. The electrical characterization by current-voltage and capacitance-voltage measurement shows reliable performance of the aluminum oxide. The final proof of concept was obtained at the test beam with 200 GeV/c muons. For the non-irradiated detector the charge collection efficiency (CCE) was nearly 100% with a signal-to-noise ratio (S/N) of about 40, whereas for the 2×1015 neq/cm2 proton irradiated detector the CCE was 35%, when the sensor was biased at 500 V. These results are comparable with the results from p-type detectors with the p-spray and p-stop interstrip isolation techniques. In addition, interestingly, when the aluminum oxide was irradiated with Co-60 gamma-rays, an accumulation of negative fixed oxide charge in the oxide was observed.

  9. 11% efficient single-crystal solar cells and 10% efficient polycrystalline cells made from refined metallurgical silicon

    NASA Astrophysics Data System (ADS)

    Hanoka, J. I.; Strock, H. B.; Kotval, P. S.

    1981-09-01

    The performances of single-crystal and polycrystalline solar cells fabricated from a refined form of low-cost metallurgical silicon are presented. Czochralski-pulled single crystal and cast polycrystalline silicon solar cells with an n on p structure were made from metallurgical silicon processed by Al dissolution followed by Al removal through slagging and directional solidification to obtain material purities in the fractional ppm by weight range. For the single-crystal cells, measurements reveal AM1 efficiencies up to 11.1%, open circuit voltages up to 596 mV and fill factors up to 81%. The cast polycrystalline substrates have yielded cells with efficiencies up to 10.1%, fill factors of 79% and open circuit voltages of 585 mV. The low short circuit current densities are attributed to impurities in the base region in the single-crystal cell, and to grain boundary segregation of impurities and grain boundary recombination in the polycrystalline cells.

  10. Solar silicon via the Dow Corning process

    NASA Technical Reports Server (NTRS)

    Hunt, L. P.; Dosaj, V. D.

    1979-01-01

    Technical feasibility for high volume production of solar cell-grade silicon is investigated. The process consists of producing silicon from pure raw materials via the carbothermic reduction of quartz. This silicon was then purified to solar grade by impurity segregation during Czochralski crystal growth. Commercially available raw materials were used to produce 100 kg quantities of silicon during 60 hour periods in a direct arc reactor. This silicon produced single crystalline ingot, during a second Czochralski pull, that was fabricated into solar cells having efficiencies ranging from 8.2 percent to greater than 14 percent. An energy analysis of the entire process indicated a 5 month payback time.

  11. Effect of Rapid Thermal Processing on Light-Induced Degradation of Carrier Lifetime in Czochralski p-Type Silicon Bare Wafers

    NASA Astrophysics Data System (ADS)

    Kouhlane, Y.; Bouhafs, D.; Khelifati, N.; Belhousse, S.; Menari, H.; Guenda, A.; Khelfane, A.

    2016-11-01

    The electrical properties of Czochralski silicon (Cz-Si) p-type boron-doped bare wafers have been investigated after rapid thermal processing (RTP) with different peak temperatures. Treated wafers were exposed to light for various illumination times, and the effective carrier lifetime ( τ eff) measured using the quasi-steady-state photoconductance (QSSPC) technique. τ eff values dropped after prolonged illumination exposure due to light-induced degradation (LID) related to electrical activation of boron-oxygen (BO) complexes, except in the sample treated with peak temperature of 785°C, for which the τ eff degradation was less pronounced. Also, a reduction was observed when using the 830°C peak temperature, an effect that was enhanced by alteration of the wafer morphology (roughness). Furthermore, the electrical resistivity presented good stability under light exposure as a function of temperature compared with reference wafers. Additionally, the optical absorption edge shifted to higher wavelength, leading to increased free-carrier absorption by treated wafers. Moreover, a theoretical model is used to understand the lifetime degradation and regeneration behavior as a function of illumination time. We conclude that RTP plays an important role in carrier lifetime regeneration for Cz-Si wafers via modification of optoelectronic and structural properties. The balance between an optimized RTP cycle and the rest of the solar cell elaboration process can overcome the negative effect of LID and contribute to achievement of higher solar cell efficiency and module performance.

  12. Light-induced degradation and metastable-state recovery with reaction kinetics modeling in boron-doped Czochralski silicon solar cells

    SciTech Connect

    Kim, Soo Min; Chun, Seungju; Bae, Suhyun; Park, Seungeun; Lee, Hae-seok Kim, Donghwan; Kang, Min Gu; Song, Hee-eun; Kang, Yoonmook

    2014-08-25

    Solar cells fabricated from boron-doped p-type Czochralski silicon suffer from light-induced degradation that can lower the conversion efficiency by up to 10% relative. When solar cells are exposed to temperatures between 100 °C and 200 °C under illumination, regeneration, in which the minority carrier lifetime is gradually recovered, occurs after the initial light-induced degradation. We studied the light-induced degradation and regeneration process using carrier injection within a design chamber and observed open-circuit voltage trends at various sample temperatures. We proposed a cyclic reaction kinetics model to more precisely analyze the degradation and recovery phenomenon. Our model incorporated the reaction paths that were not counted in the original model between the three states (annealed, degradation, and regeneration). We calculated a rate constant for each reaction path based on the proposed model, extracted an activation energy for each reaction using these rate constants at various temperatures, and calculated activation energies of redegradation and the stabilization reaction.

  13. Effect of Rapid Thermal Processing on Light-Induced Degradation of Carrier Lifetime in Czochralski p-Type Silicon Bare Wafers

    NASA Astrophysics Data System (ADS)

    Kouhlane, Y.; Bouhafs, D.; Khelifati, N.; Belhousse, S.; Menari, H.; Guenda, A.; Khelfane, A.

    2016-07-01

    The electrical properties of Czochralski silicon (Cz-Si) p-type boron-doped bare wafers have been investigated after rapid thermal processing (RTP) with different peak temperatures. Treated wafers were exposed to light for various illumination times, and the effective carrier lifetime (τ eff) measured using the quasi-steady-state photoconductance (QSSPC) technique. τ eff values dropped after prolonged illumination exposure due to light-induced degradation (LID) related to electrical activation of boron-oxygen (BO) complexes, except in the sample treated with peak temperature of 785°C, for which the τ eff degradation was less pronounced. Also, a reduction was observed when using the 830°C peak temperature, an effect that was enhanced by alteration of the wafer morphology (roughness). Furthermore, the electrical resistivity presented good stability under light exposure as a function of temperature compared with reference wafers. Additionally, the optical absorption edge shifted to higher wavelength, leading to increased free-carrier absorption by treated wafers. Moreover, a theoretical model is used to understand the lifetime degradation and regeneration behavior as a function of illumination time. We conclude that RTP plays an important role in carrier lifetime regeneration for Cz-Si wafers via modification of optoelectronic and structural properties. The balance between an optimized RTP cycle and the rest of the solar cell elaboration process can overcome the negative effect of LID and contribute to achievement of higher solar cell efficiency and module performance.

  14. MCZ: Striations in CZ silicon crystals grown under various axial magnetic field strengths

    NASA Technical Reports Server (NTRS)

    Kim, G. K. M.

    1985-01-01

    Suppression of fluid flow instabilities in the melt by the axial magnetic field in Czochralski silicon crystal growth (AMCZ) is investigated precisely by a high-sensitivity striation etching in conjunction with temperature measurements. The magnetic strength (B) was varied up to 4.0 kG, incremented in 0.5 kG/5 cm crystal length. The convection flow was substantially suppressed at B 1.0 kG. A low oxygen level of 2-3 ppma and a high resistivity of 400 ohm-cm is achieved in the AMCZ silicon crystals at B 1.0 kG. Details of the striation formation as a function of B are presented. Computer simulation of the magnetohydrodynamics of the AMCZ silicon crystal growth are discussed briefly with regard to the solute, especially oxygen segregation at B=0, 1.0, and 2.0 kG. Earlier studies in the inverted Bridgman growth of InSb and Ge, which have established the cause and effect relationship between the convection in the melt and the striation formation as well as the suppression of the convections in the melt by transverse magnetic field are reviewed.

  15. Numerical simulation of oxygen transport during the CZ silicon crystal growth process

    NASA Astrophysics Data System (ADS)

    Chen, Jyh-Chen; Teng, Ying-Yang; Wun, Wan-Ting; Lu, Chung-Wei; Chen, Hsueh-I.; Chen, Chi-Yung; Lan, Wen-Chieh

    2011-03-01

    In this study, the effect of the flow motion and heat transfer generated by the crystal and crucible rotation on the oxygen distribution inside the melt during Czochralski silicon crystal growth is investigated. When the crucible rotates in a direction opposite to the crystal rotation, Taylor-Proundman vortices appear in the region below the crystal. The diffusion of oxygen impurity from the crucible wall to the crystal-melt interface is suppressed by these Taylor-Proundman vortices, while heat transport from the crucible wall to the crystal-melt interface is blocked by the Taylor-Proundman vortices. With a higher crucible rotation rate, the size of the Taylor-Proundman vortices increases and the size of the buoyancy-thermocapillary vortices decreases. This causes the temperature at the crucible wall to rise and the evaporation of oxygen impurity on the free surface to decrease. Hence, the amount of oxygen impurity that diffuses into the melt towards the crystal-melt interface increases. The suppression from the Taylor-Proundman vortices is dominant for the smaller crucible rotation rate, while the enhancement from the oxygen impurity diffusion prevails for the higher crucible rotation rate. Therefore, there is an optimum combination of crucible and crystal rotation for obtaining the lowest oxygen concentration.

  16. Photocarrier Radiometry Investigation of Light-Induced Degradation of Boron-Doped Czochralski-Grown Silicon Without Surface Passivation

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Li, Bincheng

    2016-04-01

    Light-induced degradation (LID) effects of boron-doped Cz silicon wafers without surface passivation are investigated in details by photocarrier radiometry (PCR). The resistivity of all samples is in the range of 0.006 Ω {\\cdot } {cm} to 38 Ω {\\cdot } {cm}. It is found that light-induced changes in surface state occupation have a great effect on LID under illumination. With the increasing contribution of light-induced changes in surface state occupation, the generation rate of the defect decreases. The light-induced changes in surface state occupation and light-induced degradation dominate the temporal behaviors of the excess carrier density of high- and low-resistivity Si wafers, respectively. Moreover, the temporal behaviors of PCR signals of these samples under laser illumination with different powers, energy of photons, and multiple illuminations were also analyzed to understand the light-induced change of material properties. Based on the nonlinear dependence of PCR signal on the excitation power, a theoretical model taking into account both light-induced changes in surface state occupation and LID processes was proposed to explain those temporal behaviors.

  17. Application of magnetic fields in industrial growth of silicon single crystals

    NASA Astrophysics Data System (ADS)

    von Ammon, W.; Gelfgat, Yu.; Gorbunov, L.; Mulbauer, A.; Muiznieks, A.; Makarov, Y.; Virbulis, J.; Muller, G.

    2006-12-01

    The use of magnetic fields for the growth of semiconductor crystals has already been considered many decades ago. As early as in 1966, Chedzey et al te{1} and Utech et al te{2} reported about InSb crystals grown in a horizontal boat under the influence of a magnetic field. They found a suppression of temperature fluctuations in the InSb melt and a decrease of growth variations (striations) in the crystal. In 1970, Witt et al te{3} applied a static transverse (horizontal) magnetic field to the Czochralski (CZ) growth of InSb crystals. 10 years later, in 1980, the transverse field was also used for the CZ growth of silicon single crystals te{4,5}. Since then, the method has received considerable attention over the years. One of the major driving forces for introducing magnetic fields in the industrial CZ growth of silicon crystals was the request by the semiconductor industry to replace floating zone (FZ) grown crystals, which had been the preferred substrate material for the manufacturing of high power devices, by low oxygen CZ crystals te{6}. The reason for this changeover was the fact that the FZ method in the early 80's could not follow the rapid crystal diameter increase as required by the industry, namely, the switch from 4" to 5" diameter in the early 80's. The application of magnetic fields to the CZ technique (MCZ) allowed the growth of low oxygen crystals with the required diameter and having similar properties as the FZ grown crystals. Figs 12, Refs 59.

  18. National solar technology roadmap: Wafer-silicon PV

    SciTech Connect

    Sopori, Bhushan

    2007-06-01

    This report applies to all bulk-silicon-based PV technologies, including those based on Czochralski, multicrystalline, float-zone wafers, and melt-grown crystals that are 100 μm or thicker, such as ribbons, sheet, or spheral silicon.

  19. Optical and scintillation properties of ce-doped (Gd2Y1)Ga2.7Al2.3O12 single crystal grown by Czochralski method

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Wu, Yuntao; Ding, Dongzhou; Li, Huanying; Chen, Xiaofeng; Shi, Jian; Ren, Guohao

    2016-06-01

    Multicomponent garnets, due to their excellent light yield and energy resolution, become one of the most promising scintillators used for homeland security and nuclear non-proliferation applications. This work focuses on the optimization of Ce-doped (Gd,Y)3(Ga,Al)5O12 scintillators using a combination strategy of pre-screening and scale-up. Ce-doped GdxY1-xGayAl5-yO12 (x=1, 2 and y=2, 2.2, 2.5, 2.7, 3) polycrystalline powders were prepared by high-temperature solid state reaction method. The desired garnet phase in all the samples was confirmed using X-ray diffraction measurement. By comparing the radioluminescence intensity, the highest scintillation efficiency was achieved at a component of Gd2Y1Ga2.7Al2.3O12:Ce powders. A (Gd2Y1)Ga2.7Al2.3O12 doped with 1% Ce single crystal with dimensions of Ø35×40 mm was grown by Czochralski method using a <111> oriented seed. Luminescence and scintillation properties were measured. An optical transmittance of 84% was achieved in the concerned wavelength from 500 to 800 nm. Its 5d-4f emission of Ce3+ is at 530 nm. The light yield of a Ce1%: Gd2Y1Ga2.7Al2.3O12 single crystal slab at a size of 5×5×1 mm3 can reach about 65,000±3000 Ph/MeV along with two decay components of 94 and 615 ns under 137Cs source irradiation.

  20. Silicon carbide - Progress in crystal growth

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony

    1987-01-01

    Recent progress in the development of two processes for producing large-area high-quality single crystals of SiC is described: (1) a modified Lely process for the growth of the alpha polytypes (e.g., 6H SiC) initially developed by Tairov and Tsvetkov (1978, 1981) and Ziegler et al. (1983), and (2) a process for the epitaxial growth of the beta polytype on single-crystal silicon or other substrates. Growth of large-area cubic SiC on Si is described together with growth of defect-free beta-SiC films on alpha-6H SiC crystals and TiC lattice. Semiconducting qualities of silicon carbide crystals grown by various techniques are discussed.

  1. Single crystal functional oxides on silicon

    PubMed Central

    Bakaul, Saidur Rahman; Serrao, Claudy Rayan; Lee, Michelle; Yeung, Chun Wing; Sarker, Asis; Hsu, Shang-Lin; Yadav, Ajay Kumar; Dedon, Liv; You, Long; Khan, Asif Islam; Clarkson, James David; Hu, Chenming; Ramesh, Ramamoorthy; Salahuddin, Sayeef

    2016-01-01

    Single-crystalline thin films of complex oxides show a rich variety of functional properties such as ferroelectricity, piezoelectricity, ferro and antiferromagnetism and so on that have the potential for completely new electronic applications. Direct synthesis of such oxides on silicon remains challenging because of the fundamental crystal chemistry and mechanical incompatibility of dissimilar interfaces. Here we report integration of thin (down to one unit cell) single crystalline, complex oxide films onto silicon substrates, by epitaxial transfer at room temperature. In a field-effect transistor using a transferred lead zirconate titanate layer as the gate insulator, we demonstrate direct reversible control of the semiconductor channel charge with polarization state. These results represent the realization of long pursued but yet to be demonstrated single-crystal functional oxides on-demand on silicon. PMID:26853112

  2. Configurable silicon photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Prorok, Stefan; Petrov, Alexander; Eich, Manfred; Luo, Jingdong; Jen, Alex K.-Y.

    2013-12-01

    In this Letter, we demonstrate that the mode cut off of a photonic crystal waveguide can be trimmed with high accuracy by electron beam bleaching of a chromophore doped polymer cladding. Using this method, configurable waveguides are realized, which allow for spatially resolved changes of the photonic crystal's effective lattice constant as small as 7.6 pm. We show three different examples how to take advantage of configurable photonic crystal waveguides: Shifting of the complete transmission spectrum, definition of cavities with high quality factor, and tuning of existing cavities.

  3. Configurable silicon photonic crystal waveguides

    SciTech Connect

    Prorok, Stefan; Petrov, Alexander; Eich, Manfred; Luo, Jingdong; Jen, Alex K.-Y.

    2013-12-23

    In this Letter, we demonstrate that the mode cut off of a photonic crystal waveguide can be trimmed with high accuracy by electron beam bleaching of a chromophore doped polymer cladding. Using this method, configurable waveguides are realized, which allow for spatially resolved changes of the photonic crystal's effective lattice constant as small as 7.6 pm. We show three different examples how to take advantage of configurable photonic crystal waveguides: Shifting of the complete transmission spectrum, definition of cavities with high quality factor, and tuning of existing cavities.

  4. Growth of InP single crystals by liquid encapsulated Czochralski (LEC) using glassy-carbon crucibles

    SciTech Connect

    Oliveira, C.E.M. de; Miskys, C.R.; Carvalho, M.M.G. de

    1996-12-31

    Using a high pressure puller and Glassy-Carbon crucibles, undoped InP single crystals weighing 100g and with 25 mm diameter were grown in the <100> direction. The residual carrier concentration of samples, measure by the Van der Pauw method at 300K, was about 5 {times} 10{sup 15}cm{sup {minus}3}, result as good as those obtained with Quartz crucibles with the advantage that Glassy-Carbon crucibles are fully reusable.

  5. Flexible single-crystal silicon nanomembrane photonic crystal cavity.

    PubMed

    Xu, Xiaochuan; Subbaraman, Harish; Chakravarty, Swapnajit; Hosseini, Amir; Covey, John; Yu, Yalin; Kwong, David; Zhang, Yang; Lai, Wei-Cheng; Zou, Yi; Lu, Nanshu; Chen, Ray T

    2014-12-23

    Flexible inorganic electronic devices promise numerous applications, especially in fields that could not be covered satisfactorily by conventional rigid devices. Benefits on a similar scale are also foreseeable for silicon photonic components. However, the difficulty in transferring intricate silicon photonic devices has deterred widespread development. In this paper, we demonstrate a flexible single-crystal silicon nanomembrane photonic crystal microcavity through a bonding and substrate removal approach. The transferred cavity shows a quality factor of 2.2×10(4) and could be bent to a curvature of 5 mm radius without deteriorating the performance compared to its counterparts on rigid substrates. A thorough characterization of the device reveals that the resonant wavelength is a linear function of the bending-induced strain. The device also shows a curvature-independent sensitivity to the ambient index variation.

  6. Interface and facet control during Czochralski growth of (111) InSb crystals for cost reduction and yield improvement of IR focal plane array substrates

    NASA Astrophysics Data System (ADS)

    Gray, Nathan W.; Perez-Rubio, Victor; Bolke, Joseph G.; Alexander, W. B.

    2014-10-01

    Focal plane arrays (FPAs) made on InSb wafers are the key cost-driving component in IR imaging systems. The electronic and crystallographic properties of the wafer directly determine the imaging device performance. The "facet effect" describes the non-uniform electronic properties of crystals resulting from anisotropic dopant segregation during bulk growth. When the segregation coefficient of dopant impurities changes notably across the melt/solid interface of a growing crystal the result is non-uniform electronic properties across wafers made from these crystals. The effect is more pronounced in InSb crystals grown on the (111) axis compared with other orientations and crystal systems. FPA devices made on these wafers suffer costly yield hits due to inconsistent device response and performance. Historically, InSb crystal growers have grown approximately 9-19 degree off-axis from the (111) to avoid the facet effect and produced wafers with improved uniformity of electronic properties. It has been shown by researchers in the 1960s that control of the facet effect can produce uniform small diameter crystals. In this paper, we share results employing a process that controls the facet effect when growing large diameter crystals from which 4, 5, and 6" wafers can be manufactured. The process change resulted in an increase in wafers yielded per crystal by several times, all with high crystal quality and uniform electronic properties. Since the crystals are grown on the (111) axis, manufacturing (111) oriented wafers is straightforward with standard semiconductor equipment and processes common to the high-volume silicon wafer industry. These benefits result in significant manufacturing cost savings and increased value to our customers.

  7. Investigation of the variations in the crystallization front shape during growth of gadolinium gallium and terbium gallium crystals by the Czochralski method

    SciTech Connect

    Budenkova, O. N. Vasiliev, M. G.; Yuferev, V. S.; Ivanov, I. A.; Bul'kanov, A. M.; Kalaev, V. V.

    2008-12-15

    Numerical investigation of the variations in the crystallization front shape during growth of gadolinium gallium and terbium gallium garnet crystals in the same thermal zone and comparison of the obtained results with the experimental data have been performed. It is shown that the difference in the behavior of the crystallization front during growth of the crystals is related to their different transparency in the IR region. In gadolinium gallium garnet crystals, which are transparent to thermal radiation, a crystallization front, strongly convex toward the melt, is formed in the growth stage, which extremely rapidly melts under forced convection. Numerical analysis of this process has been performed within the quasistationary and nonstationary models. At the same time, in terbium gallium garnet crystals, which are characterized by strong absorption of thermal radiation, the phase boundary shape changes fairly smoothly and with a small amplitude. In this case, as the crystal is pulled, the crystallization front tends to become convex toward the crystal bulk.

  8. Solar cell structure incorporating a novel single crystal silicon material

    DOEpatents

    Pankove, Jacques I.; Wu, Chung P.

    1983-01-01

    A novel hydrogen rich single crystal silicon material having a band gap energy greater than 1.1 eV can be fabricated by forming an amorphous region of graded crystallinity in a body of single crystalline silicon and thereafter contacting the region with atomic hydrogen followed by pulsed laser annealing at a sufficient power and for a sufficient duration to recrystallize the region into single crystal silicon without out-gassing the hydrogen. The new material can be used to fabricate semiconductor devices such as single crystal silicon solar cells with surface window regions having a greater band gap energy than that of single crystal silicon without hydrogen.

  9. Pressure induced crystallization in amorphous silicon

    NASA Astrophysics Data System (ADS)

    Pandey, K. K.; Garg, Nandini; Shanavas, K. V.; Sharma, Surinder M.; Sikka, S. K.

    2011-06-01

    We have investigated the high pressure behavior of amorphous silicon (a-Si) using x-ray diffraction and Raman scattering techniques. Our experiments show that a-Si undergoes a polyamorphous transition from the low density amorphous to the high density amorphous phase, followed by pressure induced crystallization to the primitive hexagonal (ph) phase. On the release path, the sequence of observed phase transitions depends on whether the pressure is reduced slowly or rapidly. Using the results of our first principles calculations, pressure induced preferential crystallization to the ph phase is explained in terms of a thermodynamic model based on phenomenological random nucleation and the growth process.

  10. The historical trend in float zone crystal diameters and power requirements for float zoned silicon crystals

    NASA Technical Reports Server (NTRS)

    Kramer, H. G.

    1981-01-01

    The power needed to zone silicon crystals by radio frequency heating was analyzed. The heat loss mechanisms are examined. Curves are presented for power as a function of crystal diameter for commercial silicon zoning.

  11. Analysis of local lattice strain around oxygen precipitates in silicon crystals using CBED technique

    NASA Astrophysics Data System (ADS)

    Yonemura, Mitsuharu; Sueoka, Koji; Kamei, Kazuhito

    1998-06-01

    Oxygen precipitates (SiO x) in Czochralski-grown silicon single crystals (CZ-Si) have been used for the `getter' sink for impurities introduced during the LSI wafer manufacturing process. In order to understand the `gettering' phenomena, lattice strain fields around the precipitates have been measured quantitatively using convergent beam electron diffraction (CBED). The local lattice strain can be measured from higher order Laue zone (HOLZ) patterns since the HOLZ pattern in the bright field disk is sensitive to the lattice displacement. As a result, a tetragonal distortion of silicon lattices was found in the vicinity of a platelet of an oxygen precipitate. That is, the strain due to the displacement of (001) Si planes is compressive along the direction normal to [001] Si and is tensile along the direction parallel to [001] Si. The normal strain is estimated to be about 0.3% near the flat plane of the platelet and 0.1% near the edge of the platelet whose edge length is about 500 nm. The results are discussed and compared to those from the finite element method (FEM) simulation.

  12. Cutting fluid study for single crystal silicon

    SciTech Connect

    Chargin, D.

    1998-05-05

    An empirical study was conducted to evaluate cutting fluids for Single Point Diamond Turning (SPDT) of single crystal silicon. The pH of distilled waster was adjusted with various additives the examine the effect of pH on cutting operations. Fluids which seemed to promote ductile cutting appeared to increase tool wear as well, an undesirable tradeoff. High Ph sodium hydroxide solutions showed promise for further research, as they yielded the best combination of reduced tool wear and good surface finish in the ductile regime. Negative rake tools were verified to improve the surface finish, but the negative rake tools used in the experiments also showed much higher wear than conventional 0{degree} rake tools. Effects of crystallographic orientation on SPDT, such as star patterns of fracture damage forming near the center of the samples, were observed to decrease with lower feedrates. Silicon chips were observed and photographed, indicative of a ductile materials removal process.

  13. Silicon heterojunction solar cell and crystallization of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Lu, Meijun

    The rapid growth of photovoltaics in the past decade brings on the soaring price and demand for crystalline silicon. Hence it becomes necessary and also profitable to develop solar cells with over 20% efficiency, using thin (˜100mum) silicon wafers. In this respect, diffused junction cells are not the best choice, since the inescapable heating in the diffusion process not only makes it hard to handle thin wafers, but also reduces carriers' bulk lifetime and impairs the crystal quality of the substrate, which could lower cell efficiency. An alternative is the heterojunction cells, such as amorphous silicon/crystalline silicon heterojunction (SHJ) solar cell, where the emitter layer can be grown at low temperature (<200°C). In first part of this dissertation, I will introduce our work on front-junction SHJ solar cell, including the importance of intrinsic buffer layer; the discussion on the often observed anomalous "S"-shaped J-V curve (low fill factor) by using band diagram analysis; the surface passivation quality of intrinsic buffer and its relationship to the performance of front-junction SHJ cells. Although the a-Si:H is found to help to achieve high efficiency in c-Si heterojuntion solar cells, it also absorbs short wavelength (<600 nm) light, leading to non-ideal blue response and lower short circuit currents (JSC) in the front-junction SHJ cells. Considering this, heterojunction with both a-Si:H emitter and base contact on the back side in an interdigitated pattern, i.e. interdigitated back contact silicon heterojunction (IBC-SHJ) solar cell, is developed. This dissertation will show our progress in developing IBC-SHJ solar cells, including the structure design; device fabrication and characterization; two dimensional simulation by using simulator Sentaurus Device; some special features of IBC-SHJ solar cells; and performance of IBC-SHJ cells without and with back surface buffer layers. Another trend for solar cell industry is thin film solar cells, since

  14. Structural and photoluminescence studies on europium-doped lithium tetraborate (Eu:Li2B4O7) single crystal grown by microtube Czochralski (μT-Cz) technique

    NASA Astrophysics Data System (ADS)

    A, Kumaresh; R, Arun Kumar; N, Ravikumar; U, Madhusoodanan; B, S. Panigrahi; K, Marimuthu; M, Anuradha

    2016-05-01

    Rare earth europium (Eu3+)-doped lithium tetraborate (Eu:Li2B4O7) crystal is grown from its stoichiometric melt by microtube Czochralski pulling technique (μT-Cz) for the first time. The grown crystals are subjected to powder x-ray diffraction (PXRD) analysis which reveals the tetragonal crystal structure of the crystals. UV–vis–NIR spectral analysis is carried out to study the optical characteristics of the grown crystals. The crystal is transparent in the entire visible region, and the lower cutoff is observed to be at 304 nm. The existence of BO3 and BO4 bonding structure and the molecular associations are analyzed by Fourier transform infrared (FTIR) spectroscopy. The results of excitation and emission-photoluminescence spectra of europium ion incorporated in lithium tetraborate (LTB) single crystal reveal that the observations of peaks at 258, 297, and 318 nm in the excitation spectra and peaks at 579, 591, 597, 613, and 651 nm are observed in the emission spectra. The chromaticity coordinates are calculated from the emission spectra, and the emission intensity of the grown crystal is characterized through a CIE 1931 (Commission International d’Eclairage) color chromaticity diagram. Project supported by the Department of Science and Technology–Science and Engineering Research Board (Grant No. SR/S2/LOP-0012/2011), the Government of India for Awarding Major Research Project, the University Grants Commission–Department of Atomic Research–Consortium for Scientific Research (Grant No. CSR–KN/CSR–63/2014–2015/503), and the Kalpakkam and Indore, India.

  15. Structural and photoluminescence studies on europium-doped lithium tetraborate (Eu:Li2B4O7) single crystal grown by microtube Czochralski (μT-Cz) technique

    NASA Astrophysics Data System (ADS)

    A, Kumaresh; R, Arun Kumar; N, Ravikumar; U, Madhusoodanan; B, S. Panigrahi; K, Marimuthu; M, Anuradha

    2016-05-01

    Rare earth europium (Eu3+)-doped lithium tetraborate (Eu:Li2B4O7) crystal is grown from its stoichiometric melt by microtube Czochralski pulling technique (μT-Cz) for the first time. The grown crystals are subjected to powder x-ray diffraction (PXRD) analysis which reveals the tetragonal crystal structure of the crystals. UV-vis-NIR spectral analysis is carried out to study the optical characteristics of the grown crystals. The crystal is transparent in the entire visible region, and the lower cutoff is observed to be at 304 nm. The existence of BO3 and BO4 bonding structure and the molecular associations are analyzed by Fourier transform infrared (FTIR) spectroscopy. The results of excitation and emission-photoluminescence spectra of europium ion incorporated in lithium tetraborate (LTB) single crystal reveal that the observations of peaks at 258, 297, and 318 nm in the excitation spectra and peaks at 579, 591, 597, 613, and 651 nm are observed in the emission spectra. The chromaticity coordinates are calculated from the emission spectra, and the emission intensity of the grown crystal is characterized through a CIE 1931 (Commission International d’Eclairage) color chromaticity diagram. Project supported by the Department of Science and Technology-Science and Engineering Research Board (Grant No. SR/S2/LOP-0012/2011), the Government of India for Awarding Major Research Project, the University Grants Commission-Department of Atomic Research-Consortium for Scientific Research (Grant No. CSR-KN/CSR-63/2014-2015/503), and the Kalpakkam and Indore, India.

  16. Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon

    PubMed Central

    2012-01-01

    Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications. PMID:22901341

  17. Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon.

    PubMed

    Ben Slama, Sonia; Hajji, Messaoud; Ezzaouia, Hatem

    2012-01-01

    Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications.

  18. Studying post-etching silicon crystal defects on 300mm wafer by automatic defect review AFM

    NASA Astrophysics Data System (ADS)

    Zandiatashbar, Ardavan; Taylor, Patrick A.; Kim, Byong; Yoo, Young-kook; Lee, Keibock; Jo, Ahjin; Lee, Ju Suk; Cho, Sang-Joon; Park, Sang-il

    2016-03-01

    Single crystal silicon wafers are the fundamental elements of semiconductor manufacturing industry. The wafers produced by Czochralski (CZ) process are very high quality single crystalline materials with known defects that are formed during the crystal growth or modified by further processing. While defects can be unfavorable for yield for some manufactured electrical devices, a group of defects like oxide precipitates can have both positive and negative impacts on the final device. The spatial distribution of these defects may be found by scattering techniques. However, due to limitations of scattering (i.e. light wavelength), many crystal defects are either poorly classified or not detected. Therefore a high throughput and accurate characterization of their shape and dimension is essential for reviewing the defects and proper classification. While scanning electron microscopy (SEM) can provide high resolution twodimensional images, atomic force microscopy (AFM) is essential for obtaining three-dimensional information of the defects of interest (DOI) as it is known to provide the highest vertical resolution among all techniques [1]. However AFM's low throughput, limited tip life, and laborious efforts for locating the DOI have been the limitations of this technique for defect review for 300 mm wafers. To address these limitations of AFM, automatic defect review AFM has been introduced recently [2], and is utilized in this work for studying DOI on 300 mm silicon wafer. In this work, we carefully etched a 300 mm silicon wafer with a gaseous acid in a reducing atmosphere at a temperature and for a sufficient duration to decorate and grow the crystal defects to a size capable of being detected as light scattering defects [3]. The etched defects form a shallow structure and their distribution and relative size are inspected by laser light scattering (LLS). However, several groups of defects couldn't be properly sized by the LLS due to the very shallow depth and low

  19. A silicon sheet casting experiment. [for solar cell water production

    NASA Technical Reports Server (NTRS)

    Bickler, D. B.; Sanchez, L. E.; Sampson, W. J.

    1980-01-01

    The casting of silicon blanks for solar cells directly without slicing is an exciting concept. An experiment was performed to investigate the feasibility of developing a machine that casts wafers directly. A Czochralski furnace was modified to accept a graphite ingot-simulating fixture. Silicon was melted in the middle of the ingot simulator in a boron nitride mold. Sample castings showed reasonable crystal size. Solar cells were made from the cast blanks. The performance is reported.

  20. Process Research on Polycrystalline Silicon Material (PROPSM)

    NASA Technical Reports Server (NTRS)

    Culik, J. S.

    1983-01-01

    The performance limiting mechanisms in large grain (greater than 1-2 mm in diameter) polycrystalline silicon was investigated by measuring the illuminated current voltage (I-V) characteristics of the minicell wafer set. The average short circuit current on different wafers is 3 to 14 percent lower than that of single crystal Czochralski silicon. The scatter was typically less than 3 percent. The average open circuit voltage is 20 to 60 mV less than that of single crystal silicon. The scatter in the open circuit voltage of most of the polycrystalline silicon wafers was 15 to 20 mV, although two wafers had significantly greater scatter than this value. The fill factor of both polycrystalline and single crystal silicon cells was typically in the range of 60 to 70 percent; however several polycrystalline silicon wafers have fill factor averages which are somewhat lower and have a significantly larger degree of scatter.

  1. Raman cooling in silicon photonic crystals

    NASA Astrophysics Data System (ADS)

    Chen, Yin-Chung; Bahl, Gaurav

    2016-03-01

    Laser cooling of solids can be achieved through various photon up-conversion processes including anti-Stokes photoluminescence and anti-Stokes light scattering. While it has been shown that cooling using photoluminescence-based methods can achieve efficiency comparable to that of thermoelectric cooling, the reliance on specific transitions of the rare-earth dopants limits material choice. Light scattering, on the other hand, occurs in all materials, and has the potential to enable cooling in most materials. We show that by engineering the photonic density of states of a material, one can suppress the Stokes process, and enhance the anti-Stokes radiation. We employ the well-known diamond-structured photonic crystal patterned in crystalline silicon to demonstrate theoretically that when operating within a high transparency regime, the net energy removal rate from phonon annihilation can overcome the optical absorption. The engineered photonic density of states can thus enable simultaneous cooling of all Raman-active phonon modes and the net cooling of the solid.

  2. Nanomanipulation using silicon photonic crystal resonators.

    PubMed

    Mandal, Sudeep; Serey, Xavier; Erickson, David

    2010-01-01

    Optical tweezers have enabled a number of microscale processes such as single cell handling, flow-cytometry, directed assembly, and optical chromatography. To extend this functionality to the nanoscale, a number of near-field approaches have been developed that yield much higher optical forces by confining light to subwavelength volumes. At present, these techniques are limited in both the complexity and precision with which handling can be performed. Here, we present a new class of nanoscale optical trap exploiting optical resonance in one-dimensional silicon photonic crystals. The trapping of 48 nm and 62 nm dielectric nanoparticles is demonstrated along with the ability to transport, trap, and manipulate larger nanoparticles by simultaneously exploiting the propagating nature of the light in a coupling waveguide and its stationary nature within the resonator. Field amplification within the resonator is shown to produce a trap several orders of magnitude stronger than conventional tweezers and an order of magnitude stiffer than other near-field techniques. Our approach lays the groundwork for a new class of optical trapping platforms that could eventually enable complex all-optical single molecule manipulation and directed assembly of nanoscale material.

  3. Kinetics of thermal donor generation in silicon

    NASA Technical Reports Server (NTRS)

    Mao, B.-Y.; Lagowski, J.; Gatos, H. C.

    1984-01-01

    The generation kinetics of thermal donors at 450 C in Czochralski-grown silicon was found to be altered by high-temperature preannealing (e.g., 1100 C for 30 min). Thus, when compared with as-grown Si, high-temperature preannealed material exhibits a smaller concentration of generated thermal donors and a faster thermal donor saturation. A unified mechanism of nucleation and oxygen diffusion-controlled growth (based on solid-state plate transformation theory) is proposed to account for generation kinetics of thermal donors at 450 C, in as-grown and high-temperature preannealed Czochralski silicon crystals. This mechanism is consistent with the main features of the models which have been proposed to explain the formation of oxygen thermal donors in silicon.

  4. Acoustic wave characterization of silicon phononic crystal plate

    NASA Astrophysics Data System (ADS)

    Feng, Duan; Jiang, Wanli; Xu, Dehui; Xiong, Bin; Wang, Yuelin

    2015-08-01

    In this paper, characterization of megahertz Lamb waves in a silicon phononic crystal based asymmetry filter by laser Doppler vibrometer is demonstrated. The acoustic power from a piezoelectric substrate was transmitted into the silicon superstrate by fluid coupling method, and measured results show that the displacement amplitude of the acoustic wave in the superstrate was approximately one fifth of that in the piezoelectric substrate. Effect of the phononic bandgap on the propagation of Lamb wave in the silicon superstrate is also measured, and the result shows that the phononic crystal structure could reflect part of the acoustic waves back.

  5. Crystallized Silicon Nanostructures - Experimental Characterization and Atomistic Simulations

    SciTech Connect

    Agbo, Solomon; Sutta, Pavol; Calta, Pavel; Biswas, Rana; Pan, Bicai

    2014-07-01

    We have synthesized silicon nanocrystalline structures from thermal annealing of thin film amorphous silicon-based multilayers. The annealing procedure that was carried out in vacuum at temperatures up to 1100 °C is integrated in a X-ray diffraction (XRD) setup for real-time monitoring of the formation phases of the nanostructures. The microstructure of the crystallized films is investigated through experimental measurements combined with atomistic simulations of realistic nanocrystalline silicon (nc-Si) models. The multilayers consisting of uniformly alternating thicknesses of hydrogenated amorphous silicon and silicon oxide (SiO2) were deposited by plasma enhanced chemical vapor deposition on crystalline silicon and Corning glass substrates. The crystallized structure consisting of nc-Si structures embedded in an amorphous matrix were further characterized through XRD, Raman spectroscopy, and Fourier transform infrared measurements. We are able to show the different stages of nanostructure formation and how the sizes and the crystallized mass fraction can be controlled in our experimental synthesis. The crystallized silicon structures with large crystalline filling fractions exceeding 50% have been simulated with a robust classical molecular dynamics technique. The crystalline filling fractions and structural order of nc-Si obtained from this simulation are compared with our Raman and XRD measurements.

  6. Study of the crystal structure of silicon nanoislands on sapphire

    SciTech Connect

    Krivulin, N. O. Pirogov, A. V.; Pavlov, D. A.; Bobrov, A. I.

    2015-02-15

    The results of studies of the crystal structure of silicon nanoislands on sapphire are reported. It is shown that the principal defects in silicon nanoislands on sapphire are twinning defects. As a result of the formation of such defects, different crystallographic orientations are formed in silicon nanoislands on sapphire. In the initial stages of the molecular-beam epitaxy of silicon on sapphire, there are two basic orientations: the (001) orientation parallel to the surface and the (001) orientation at an angle of 70° to the surface.

  7. Fluidized-Bed Deposition Of Single-Crystal Silicon

    NASA Technical Reports Server (NTRS)

    Hsu, George C.; Rohatgi, Naresh K.

    1988-01-01

    Uniformly thin single-crystal films of silicon produced by modification of fluidized-bed-reactor technique producing polysilicon by chemical vapor deposition. Proposed for silicon wafers for flat-plate solar arrays and results in different structural and electronic properties in deposition layer desirable for specific microelectronic or solar-cell processing. In process deposition occurs on silicon wafers, kept individually at temperatures above 1,000 degree C. Heated wafers held in unheated and minimally-agitated-fluidized bed of silicon particles and in low concentration of silane.

  8. Investigation of Backside Textures for Genesis Solar Wind Silicon Collectors

    NASA Technical Reports Server (NTRS)

    Gonzalez, C. P.; Burkett, P. J.; Rodriguez, M. C.; Allton, J. H.

    2014-01-01

    Genesis solar wind collectors were comprised of a suite of 15 types of ultrapure materials. The single crystal, pure silicon collectors were fabricated by two methods: float zone (FZ) and Czochralski (CZ). Because of slight differences in bulk purity and surface cleanliness among the fabrication processes and the specific vendor, it is desirable to know which variety of silicon and identity of vendor, so that appropriate reference materials can be used. The Czochralski method results in a bulk composition with slightly higher oxygen, for example. The CZ silicon array wafers that were Genesis-flown were purchased from MEMC Electronics. Most of the Genesis-flown FZ silicon was purchased from Unisil and cleaned by MEMC, although a few FZ wafers were acquired from International Wafer Service (IWS).

  9. Miniature liquid-crystal-on-silicon display assembly.

    PubMed

    Kazlas, P T; Johnson, K M; McKnight, D J

    1998-06-15

    A novel integrated assembly process for miniature liquid-crystal-on-silicon displays using photodefinable benzocyclobutene resin is presented. Spin coating speed defines the cell gap, photolithography defines the cell perimeter and spacers, and thermocompression bonding provides the adhesion. The photodefined adhesive spacers provide thin liquid-crystal cell gap control (<2.5 microm) with excellent uniformity (+/-100 nm) for glass-on-glass and glass-on-silicon assemblies. The resin is compatible with common liquid-crystal alignment films and exhibits a bonding shear strength of 22+/-3.2 MPa The assembly process flow and characterization of demonstration devices are described.

  10. Liquid Crystal on Silicon Wavefront Corrector

    NASA Technical Reports Server (NTRS)

    Pouch, John; Miranda, Felix; Wang, Xinghua; Bos, Philip, J.

    2004-01-01

    A low cost, high resolution, liquid crystal on silicon, spatial light modulator has been developed for the correction of huge aberrations in an optical system where the polarization dependence and the chromatic nature are tolerated. However, the overall system performance suggests that this device is also suitable for real time correction of aberration in human eyes. This device has a resolution of 1024 x 768, and is driven by an XGA display driver. The effective stroke length of the device is 700 nm and 2000 nm for the visible and IR regions of the device, respectively. The response speeds are 50 Hz and 5 Hz, respectively, which are fast enough for real time adaptive optics for aberrations in human eyes. By modulating a wavefront of 2 pi, this device can correct for arbitrary high order wavefront aberrations since the 2-D pixel array is independently controlled by the driver. The high resolution and high accuracy of the device allow for diffraction limited correction of the tip and tilt or defocus without an additional correction loop. We have shown that for every wave of aberration, an 8 step blazed grating is required to achieve high diffraction efficiency around 80%. In light of this, up to 125 waves peak to valley of tip and tilt can be corrected if we choose the simplest aberration. Corrections of 34 waves of aberration, including high order Zernicke terms in a high magnification telescope, to diffraction limited performance (residual wavefront aberration less than 1/30 lambda at 632.8 nm) have been observed at high efficiency.

  11. Friction and deformation behavior of single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1977-01-01

    Friction and deformation studies were conducted with single-crystal silicon carbide in sliding contact with diamond. When the radius of curvature of the spherical diamond rider was large (0.3), deformation of silicon carbide was primarily elastic. Under these conditions the friction coefficient was low and did not show a dependence on the silicon carbide orientation. Further, there was no detectable cracking of the silicon carbide surfaces. When smaller radii of curvature of the spherical diamond riders (0.15 and 0.02 mm) or a conical diamond rider was used, plastic grooving occured and the silicon carbide exhibited anisotropic friction and deformation behavior. Under these conditions the friction coefficient depended on load. Anisotropic friction and deformation of the basal plane of silicon carbide was controlled by the slip system. 10101120and cleavage of1010.

  12. Low cost Czochralski crystal growing technology. Near implementation of the flat plate photovoltaic cost reduction of the low cost solar array project

    NASA Technical Reports Server (NTRS)

    Roberts, E. G.

    1980-01-01

    Equipment developed for the manufacture of over 100 kg of silicon ingot from one crucible by rechanging from another crucible is described. Attempts were made to eliminate the cost of raising the furnace temperature to 250 C above the melting point of silicon by using an RF coil to melt polycrystalline silicon rod as a means of rechanging the crucible. Microprocessor control of the straight growth process was developed and domonstrated for both 4 inch and 6 inch diameter. Both meltdown and melt stabilization processes were achieved using operator prompting through the microprocessor. The use of the RF work coil in poly rod melting as a heat sink in the accelerated growth process was unsuccessful. The total design concept for fabrication and interfacing of the total cold crucible system was completed.

  13. Silicon and germanium crystallization techniques for advanced device applications

    NASA Astrophysics Data System (ADS)

    Liu, Yaocheng

    Three-dimensional architectures are believed to be one of the possible approaches to reduce interconnect delay in integrated circuits. Metal-induced crystallization (MIC) can produce reasonably high-quality Si crystals with low-temperature processing, enabling the monolithic integration of multilevel devices and circuits. A two-step MIC process was developed to make single-crystal Si pillars on insulator by forming a single-grain NiSi2 template in the first step and crystallizing the amorphous Si by NiSi2-mediated solid-phase epitaxy (SPE) in the second step. A transmission electron microscopy study clearly showed the quality improvement over the traditional MIC process. Another crystallization technique developed is rapid melt growth (RMG) for the fabrication of Ge crystals and Ge-on-insulator (GeOI) substrates. Ge is an important semiconductor with high carrier mobility and excellent optoelectronic properties. GeOI substrates are particularly desired to achieve high device performances and to solve the process problems traditionally associated with bulk Ge wafers. High-quality Ge crystals and GeOI structures were grown on Si substrates using the novel rapid melt growth technique that integrates the key elements in Czochralski growth---seeding, melting, epitaxy and defect necking. Growth velocity and nucleation rate were calculated to determine the RMG process window. Self-aligned microcrucibles were created to hold the Ge liquid during the RMG annealing. Material characterization showed a very low defect density in the RMG GeOI structures. The Ge films are relaxed, with their orientations controlled by the Si substrates. P-channel MOSFETs and p-i-n photodetectors were fabricated with the GeOI substrates. The device properties are comparable to those obtained with bulk Ge wafers, indicating that the RMG GeOI substrates are well suited for device fabrication. A new theory, growth-induced barrier lowering (GIBL), is proposed to understand the defect generation in

  14. Czochralski growth of Sr2Tb8(SiO4)6O2 crystals for visible-near IR magneto-optical applications

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Zhang, Wenhui; Wan, Qiping; Guo, Feiyun; Zhuang, Naifeng; Fu, Hao; Xie, Xitong; Chen, Jianzhong

    2014-11-01

    Sr2Tb8(SiO4)6O2 crystals have been grown and investigated for the first time for magneto-optical applications. The X-ray powder diffraction confirms that the compound crystallizes in the hexagonal system, with a common oxyapatite structure. The as-grown crystal exhibits low thermal expansion anisotropy (αa/αc ≈ 1.1), and the hardness is about 5.0 Moh. The temperature dependence of the magnetic susceptibility indicated that the Sr2Tb8(SiO4)6O2 crystal exhibits paramagnetic behavior over the experimental temperature-range 2-300 K. The present investigations demonstrate that Sr2Tb8(SiO4)6O2 crystals show a higher visible transparency and a larger Faraday rotation than terbium gallium garnet (TGG) crystals. Sr2Tb8(SiO4)6O2 is therefore a very promising material in particular for new magneto-optical applications in the visible-near IR wavelength region.

  15. Silicon Foils Growth by Interface-controlled Crystallization

    NASA Technical Reports Server (NTRS)

    Helmreich, D.

    1984-01-01

    During interface controlled crystallization (ICC) the chance to accelerate the removal of crystallization heat is the basis for high pulling rates of about 100 mm/min. The forced heat flow from the extended crystallization front to a cooling ramp is controlled by a lubricating melt film which also influences the crystallization behavior by suppressing nucleation centers. The basic principles of this full casting technique are presented and the influences of process parameters on the morphology of prepared silicon foils are demonstrated. Three different types of crystalline structure were found in silicon foils grown to ICC technique: dendritic, coarse granular and monocrystalline with (111) 211 orientation. The criteria for their appearance of process variables are discussed.

  16. Excimer laser crystallization of amorphous silicon on metallic substrate

    NASA Astrophysics Data System (ADS)

    Delachat, F.; Antoni, F.; Slaoui, A.; Cayron, C.; Ducros, C.; Lerat, J.-F.; Emeraud, T.; Negru, R.; Huet, K.; Reydet, P.-L.

    2013-06-01

    An attempt has been made to achieve the crystallization of silicon thin film on metallic foils by long pulse duration excimer laser processing. Amorphous silicon thin films (100 nm) were deposited by radiofrequency magnetron sputtering on a commercial metallic alloy (N42-FeNi made of 41 % of Ni) coated by a tantalum nitride (TaN) layer. The TaN coating acts as a barrier layer, preventing the diffusion of metallic impurities in the silicon thin film during the laser annealing. An energy density threshold of 0.3 J cm-2, necessary for surface melting and crystallization of the amorphous silicon, was predicted by a numerical simulation of laser-induced phase transitions and witnessed by Raman analysis. Beyond this fluence, the melt depth increases with the intensification of energy density. A complete crystallization of the layer is achieved for an energy density of 0.9 J cm-2. Scanning electron microscopy unveils the nanostructuring of the silicon after laser irradiation, while cross-sectional transmission electron microscopy reveals the crystallites' columnar growth.

  17. Crystal Growth of Germanium-Silicon Alloys on the ISS

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Croell, A.

    2015-01-01

    A series of Ge(1-x)Si(x) crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. The experiments are part of the investigation "Influence of Containment on the Growth of Silicon-Germanium" (ICESAGE). The primary objective of the research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and "detached" Bridgman methods and the ground-based float zone technique. Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. Long duration reduced gravity is essential to test the proposed theory of detached growth. Detached growth requires the establishment of a meniscus between the crystal and the ampoule wall. This meniscus can exist over a much larger range of processing parameters in microgravity and the meniscus is more stable under microgravity conditions. The plans for the flight experiments will be described.

  18. Distribution of radiative crystal imperfections through a silicon ingot

    NASA Astrophysics Data System (ADS)

    Flo̸, A.; Burud, I.; Kvaal, K.; So̸ndenå, R.; Olsen, E.

    2013-11-01

    Crystal imperfections limit the efficiency of multicrystalline silicon solar cells. Recombination through traps is more prominent in areas with high density of crystal imperfections. A method to visualize the distribution of radiative emission from Shockley Read Hall recombination in silicon is demonstrated. We use hyperspectral photoluminescence, a fast non-destructive method, to image radiatively active recombination processes on a set of 50 wafers through a silicon block. The defect related emission lines D1 and D2 may be detected together or alone. The D3 and D4 seem to be correlated if we assume that an emission at the similar energy as D3 (VID3) is caused by a separate mechanism. The content of interstitial iron (Fei) correlates with D4. This method yields a spectral map of the inter band gap transitions, which opens up for a new way to characterize mechanisms related to loss of efficiency for solar cells processed from the block.

  19. Microwave Induced Direct Bonding of Single Crystal Silicon Wafers

    NASA Technical Reports Server (NTRS)

    Budraa, N. K.; Jackson, H. W.; Barmatz, M.

    1999-01-01

    We have heated polished doped single-crystal silicon wafers in a single mode microwave cavity to temperatures where surface to surface bonding occurred. The absorption of microwaves and heating of the wafers is attributed to the inclusion of n-type or p-type impurities into these substrates. A cylindrical cavity TM (sub 010) standing wave mode was used to irradiate samples of various geometry's at positions of high magnetic field. This process was conducted in vacuum to exclude plasma effects. This initial study suggests that the inclusion of impurities in single crystal silicon significantly improved its microwave absorption (loss factor) to a point where heating silicon wafers directly can be accomplished in minimal time. Bonding of these substrates, however, occurs only at points of intimate surface to surface contact. The inclusion of a thin metallic layer on the surfaces enhances the bonding process.

  20. Polycrystalline silicon thin films crystallized by green laser

    NASA Astrophysics Data System (ADS)

    Yuan, Zhijun; Lou, Qihong; Zhou, Jun; Liu, Xia; Wang, Wei; Su, Zhouping

    2008-12-01

    A top hat beam of frequency-doubled Nd: YAG laser is obtained from our beam shaping optical system. With this beam, amorphous silicon thin films deposited on glass by plasma-enhanced chemical vapor deposition (PECVD) are successfully crystallized. The surface morphology of the laser-crystallized materials is studied by atomic force microscopy (AFM). Pronounced increase in surface roughness after the laser treatment could be observed from the Microscope Photos. Raman spectra of the Si films are measured to confirm the phase transition from amorphous to polycrystalline and to investigate the silicon structural properties. Crystalline fraction evaluated from the Raman spectra are found to increase almost linearly with the laser fluence. There exists the optimized laser fluence to produce the best crystallization in the range of 400 ~1000mJ/cm2.

  1. Interstitial silicon ions in rutile Ti O2 crystals

    NASA Astrophysics Data System (ADS)

    Golden, E. M.; Giles, N. C.; Yang, Shan; Halliburton, L. E.

    2015-04-01

    Electron paramagnetic resonance (EPR) is used to identify a new and unique photoactive silicon-related point defect in single crystals of rutile Ti O2 . The importance of this defect lies in its assignment to interstitial silicon ions and the unexpected establishment of silicon impurities as a major hole trap in Ti O2 . Principal g values of this new S =1 /2 center are 1.9159, 1.9377, and 1.9668 with principal axes along the [1 ¯10 ],[001 ] , and [110 ] directions, respectively. Hyperfine structure in the EPR spectrum shows the unpaired spin interacting equally with two Ti nuclei and unequally with two Si nuclei. These silicon ions are present in the Ti O2 crystals as unintentional impurities. Principal values for the larger of the two Si hyperfine interactions are 91.4, 95.4, and 316.4 MHz with principal axes also along the [1 ¯10 ],[001 ] , and [110 ] directions. The model for the defect consists of two adjacent Si ions, one at a tetrahedral interstitial site and the other occupying a Ti site. Together, they form a neutral nonparamagnetic [Siint-S iTi] 0 complex. When a crystal is illuminated below 40 K with 442-nm laser light, holes are trapped by these silicon complexes and form paramagnetic [Siint-S iTi] + defects, while electrons are trapped at oxygen vacancies. Thermal anneal results show that the [Siint-S iTi] + EPR signal disappears in two steps, coinciding with the release of electrons from neutral oxygen vacancies and singly ionized oxygen vacancies. These released electrons recombine with the holes trapped at the silicon complexes.

  2. Can the crystallization rate be independent from the crystallization enthalpy? The case of amorphous silicon.

    PubMed

    Kail, F; Molera, J; Farjas, J; Roura, P; Secouard, C; Roca i Cabarrocas, P

    2012-03-01

    The crystallization enthalpy measured in a large series of amorphous silicon (a-Si) materials varies within a factor of 2 from sample to sample (Kail et al 2011 Phys. Status Solidi RRL 5 361). According to the classical theory of nucleation, this variation should produce large differences in the crystallization kinetics leading to crystallization temperatures and activation energies exceeding 550 °C and 1.7 eV, respectively, the 'standard' values measured for a-Si obtained by self-implantation. In contrast, the observed crystallization kinetics is very similar for all the samples studied and has no correlation with the crystallization enthalpy. This discrepancy has led us to propose that crystallization in a-Si begins in microscopic domains that are almost identical in all samples, independently of their crystallization enthalpy. Probably the existence of microscopic inhomogeneities also plays a crucial role in the crystallization kinetics of other amorphous materials and glasses.

  3. Can the crystallization rate be independent from the crystallization enthalpy? The case of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Kail, F.; Molera, J.; Farjas, J.; Roura, P.; Secouard, C.; Cabarrocas, P. Roca i.

    2012-03-01

    The crystallization enthalpy measured in a large series of amorphous silicon (a-Si) materials varies within a factor of 2 from sample to sample (Kail et al 2011 Phys. Status Solidi RRL 5 361). According to the classical theory of nucleation, this variation should produce large differences in the crystallization kinetics leading to crystallization temperatures and activation energies exceeding 550 °C and 1.7 eV, respectively, the ‘standard’ values measured for a-Si obtained by self-implantation. In contrast, the observed crystallization kinetics is very similar for all the samples studied and has no correlation with the crystallization enthalpy. This discrepancy has led us to propose that crystallization in a-Si begins in microscopic domains that are almost identical in all samples, independently of their crystallization enthalpy. Probably the existence of microscopic inhomogeneities also plays a crucial role in the crystallization kinetics of other amorphous materials and glasses.

  4. High-Q silicon carbide photonic-crystal cavities

    SciTech Connect

    Lee, Jonathan Y.; Lu, Xiyuan; Lin, Qiang

    2015-01-26

    We demonstrate one-dimensional photonic-crystal nanobeam cavities in amorphous silicon carbide. The fundamental mode exhibits intrinsic optical quality factor as high as 7.69 × 10{sup 4} with mode volume ∼0.60(λ/n){sup 3} at wavelength 1.5 μm. A corresponding Purcell factor value of ∼10{sup 4} is the highest reported to date in silicon carbide optical cavities. The device exhibits great potential for integrated nonlinear photonics and cavity nano-optomechanics.

  5. Industry needs for silicon crystals and standards

    NASA Technical Reports Server (NTRS)

    Benson, K. E.

    1981-01-01

    The trend of the device fabrication industry requirement for larger crystals is reviewed. The ranges of properties and uniformities measurement standards needed for resistivity (four-point probe and spreading resistance) and for the chemical composition of oxygen and carbon impurities are presented.

  6. Shock compression of [001] single crystal silicon

    DOE PAGES

    Zhao, S.; Remington, B.; Hahn, E. N.; Kad, B.; Bringa, E. M.; Meyers, M. A.

    2016-03-14

    Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent withmore » dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Furthermore, application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.« less

  7. Shock compression of [001] single crystal silicon

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Hahn, E. N.; Kad, B.; Remington, B. A.; Bringa, E. M.; Meyers, M. A.

    2016-05-01

    Silicon is ubiquitous in our advanced technological society, yet our current understanding of change to its mechanical response at extreme pressures and strain-rates is far from complete. This is due to its brittleness, making recovery experiments difficult. High-power, short-duration, laser-driven, shock compression and recovery experiments on [001] silicon (using impedance-matched momentum traps) unveiled remarkable structural changes observed by transmission electron microscopy. As laser energy increases, corresponding to an increase in peak shock pressure, the following plastic responses are are observed: surface cleavage along {111} planes, dislocations and stacking faults; bands of amorphized material initially forming on crystallographic orientations consistent with dislocation slip; and coarse regions of amorphized material. Molecular dynamics simulations approach equivalent length and time scales to laser experiments and reveal the evolution of shock-induced partial dislocations and their crucial role in the preliminary stages of amorphization. Application of coupled hydrostatic and shear stresses produce amorphization below the hydrostatically determined critical melting pressure under dynamic shock compression.

  8. Solar power conversion efficiency in modulated silicon nanowire photonic crystals

    NASA Astrophysics Data System (ADS)

    Deinega, Alexei; John, Sajeev

    2012-10-01

    It is suggested that using only 1 μm of silicon, sculpted in the form of a modulated nanowire photonic crystal, solar power conversion efficiency in the range of 15%-20% can be achieved. Choosing a specific modulation profile provides antireflection, light trapping, and back-reflection over broad angles in targeted spectral regions for high efficiency power conversion without solar tracking. Solving both Maxwell's equations in the 3D photonic crystal and the semiconductor drift-diffusion equations in each nanowire, we identify optimal junction and contact geometries and study the influence of the nanowire surface curvature on solar cell efficiency. We demonstrate that suitably modulated nanowires enable 20% efficiency improvement over their straight counterparts made of an equivalent amount of silicon. We also discuss the efficiency of a tandem amorphous and crystalline silicon nanowire photonic crystal solar cell. Opportunities for "hot carrier" collection and up-conversion of infrared light, enhanced by photonic crystal geometry, facilitate further improvements in power efficiency.

  9. Studies of the Crystallization Process of Aluminum-Silicon Alloys Using a High Temperature Microscope. Thesis

    NASA Technical Reports Server (NTRS)

    Justi, S.

    1985-01-01

    It is shown that primary silicon crystals grow polyhedral in super-eutectic AlSi melts and that phosphorus additives to the melt confirm the strong seeding capacity. Primary silicon exhibits strong dendritic seeding effects in eutectic silicon phases of various silicon alloys, whereas primary aluminum does not possess this capacity. Sodium addition also produces a dendritic silicon network growth in the interior of the sample that is attributed to the slower silicon diffusion velocity during cooling.

  10. Novel silicon crystals and method for their preparation

    NASA Technical Reports Server (NTRS)

    Authier, B.

    1977-01-01

    Plate shaped silicon crystals and their preparation by pouring a silicon melt into a suitable mold and then allowing it to solidify in a temperature gradient were investigated. The production of energy by direct conversion of solar energy into electrical energy by means of solar cells takes on increasing importance. While this type of energy production is already the prevailing form today in the realm of satellite technology, its terrestrial application has thus far encountered strict limitations owing to the high price of such solar cells. Of the greatest interest in this connection are silicon cells. A substantial reduction in the semiconductor material costs and the costs involved in the further processing to make solar cells are prerequisites for a rational market growth for solar energy.

  11. Slow crack growth in single-crystal silicon.

    PubMed

    Connally, J A; Brown, S B

    1992-06-12

    Time-dependent crack growth has been measured on a precracked, single-crystal silicon cantilever beam 75 micrometers long that was excited at resonance. Growth of the precrack changes the resonant frequency of the beam, which is correlated to crack length. The measured steady-state crack growth rate was as slow as 2.9 x 10(-13) meter per second, although the apparatus can measure crack growth rates as low as 10(-15) meter per second. It is postulated that static fatigue of the native surface silica layer is the mechanism for crack growth. These experiments demonstrate the possibility of rate-dependent failure of silicon devices and the applicability of linear elastic fracture mechanics to small-scale micromechanical devices. The results indicate that slow crack growth must therefore be considered when evaluating the reliability of thin-film silicon structures.

  12. Proton extraction from the CERN SPS using bent silicon crystals

    NASA Astrophysics Data System (ADS)

    Elsener, K.; Fidecaro, G.; Gyr, M.; Herr, W.; Klem, J.; Mikkelsen, U.; Møller, S. P.; Uggerhøj, E.; Vuagnin, G.; Weisse, E.

    1996-10-01

    The extraction of high energy particles from a circular accelerator by means of channeling in bent crystals is an attractive alternative to classical extraction schemes, in particular for high energy proton colliders where a classical scheme becomes expensive and incompatible with normal operation. This paper reviews the ongoing extraction experiments at the CERN-SPS with bent silicon crystals. It describes the principles of beam extraction by means of a bent crystal and the different extraction schemes used: first- and multi-pass extraction and the methods to create diffusion. The limitations in tuning the accelerator to the desired impact parameters and crucial items concerning crystal preparation, bending and pre-alignment are discussed. The experimental procedures including an overview of the detection of circulating and extracted beam are given. Finally, the paper summarizes the results of these experiments together with ideas for future developments.

  13. Silicon dioxide nanoporous structure with liquid crystal for optical sensors

    NASA Astrophysics Data System (ADS)

    Sushynskyi, Orest; Vistak, Maria; Gotra, Zenon; Fechan, Andriy; Mikityuk, Zinoviy

    2013-05-01

    It has been studied the spectral characteristics of the porous silicon dioxide and cholesteric liquid crystal. It has been shown that doping of the EE1 cholesteric liquid crystal with Fe3O4 magnetite nanoparticles doesn't shift significantly the position of the transmittance minimum of the material. It has been found that the deformation of chiral pitch of cholesteric liquid crystal with magnetite is observed in case of doping of porous nanocomposite host with following shifting of minimum of transmittance into short wavelength direction. It has been shown that influence of carbon monoxide on optical characteristics of the cholesteric liquid crystal with magnetite can be explained by the interaction of CARBON MONOXIDE molecules with magnetite nanodopants.

  14. Crystallization Behavior of M97 Series Silicone Cushions

    SciTech Connect

    Chien, A.; DeTeresa, S.; Cohenour, R.; Schnieder, J.; LeMay, J.; Balazs, B.

    2000-09-07

    M97 series siloxanes are poly(dimethyl-diphenyl) siloxanes that are reinforced through a mixture of precipitated and fumed silica fillers which are blended in through the addition of a short chain polydimethylsiloxane processing aid. M97 silicones exhibit crystallization at -80.25 C by thermal (modulated differential scanning calorimetry) and mechanical (dynamic mechanical analysis) techniques. Isothermal dynamic mechanical analysis experiments illustrated that crystallization occurred over a 1.8 hour period in silica-filled systems and 2.8 hours in unfilled systems. The onset of crystallization typically occurred after a 30 minute incubation/nucleation period. {gamma}-radiation caused the crystallization rate to decrease proportionally with dosage, but did not decrease the amount of crystallization that ultimately occurred. Irradiation in vacuum resulted in slower overall crystallization rates compared to air irradiation due to increased crosslinking of the polymer matrix under vacuum. Modulated differential scanning calorimetry contrasted the crystallization and melting behavior of pure PDMS versus the M97 base polymer and helped determine which component of the composite was the origin of the crystallization phenomena.

  15. Role of liquid polymorphism during the crystallization of silicon.

    PubMed

    Desgranges, Caroline; Delhommelle, Jerome

    2011-03-01

    Using molecular simulation, we establish the pivotal role played by liquid polymorphs during the crystallization of silicon. When undercooled at a temperature 20% below the melting point, a silicon melt is under the form of the highly coordinated, high-density liquid (HDL) polymorph. We find that crystallization starts with the formation, within the HDL liquid, of a nanosized droplet of the least stable liquid polymorph, known as the almost tetracoordinated low-density liquid (LDL) polymorph. We then show that the crystalline embryo forms within the LDL droplet, close to the interface with the surrounding HDL liquid, thereby following a pathway associated with a much lower free energy barrier than the direct formation of the crystalline embryo from the HDL liquid would have required. This implies that, for substances exhibiting liquid polymorphs, theories, like the classical nucleation theory, and empirical rules, like Ostwald's rule, should be modified to account for the role of liquid polymorphs in the nucleation process. PMID:21322596

  16. Role of liquid polymorphism during the crystallization of silicon.

    PubMed

    Desgranges, Caroline; Delhommelle, Jerome

    2011-03-01

    Using molecular simulation, we establish the pivotal role played by liquid polymorphs during the crystallization of silicon. When undercooled at a temperature 20% below the melting point, a silicon melt is under the form of the highly coordinated, high-density liquid (HDL) polymorph. We find that crystallization starts with the formation, within the HDL liquid, of a nanosized droplet of the least stable liquid polymorph, known as the almost tetracoordinated low-density liquid (LDL) polymorph. We then show that the crystalline embryo forms within the LDL droplet, close to the interface with the surrounding HDL liquid, thereby following a pathway associated with a much lower free energy barrier than the direct formation of the crystalline embryo from the HDL liquid would have required. This implies that, for substances exhibiting liquid polymorphs, theories, like the classical nucleation theory, and empirical rules, like Ostwald's rule, should be modified to account for the role of liquid polymorphs in the nucleation process.

  17. Simulation of Electronic Center Formation by Irradiation in Silicon Crystals

    NASA Astrophysics Data System (ADS)

    Yeritsyan, H. N.; Sahakyan, A. A.; Grigoryan, N. E.; Harutyunyan, V. V.; Tsakanov, V. M.; Grigoryan, B. A.; Yeremyan, A. S.; Amatuni, G. A.

    2016-10-01

    We present the results of a study on localized electronic centers formed in crystals by external influences (impurity introduction and irradiation). The main aim is to determine the nature of these centers in the forbidden gap of the energy states of the crystal lattice. For the case of semiconductors, silicon (Si) was applied as model material to determine the energy levels and concentration of radiation defects for application to both doped and other materials. This method relies on solving the appropriate equation describing the variation of the charge carrier concentration as a function of temperature n(T) for silicon crystals with two different energy levels and for a large set of N 1, N 2 (concentrations of electronic centers at each level), and n values. A total of almost 500 such combinations were found. For silicon, energy level values of ɛ 1 = 0.22 eV and ɛ 2 = 0.34 eV were used for the forbidden gap (with corresponding slopes determined from experimental temperature-dependent Hall-effect measurements) and compared with photoconductivity spectra. Additionally, it was shown that, for particular correlations among N 1, N 2, and n, curve slopes of ɛ 1/2 = 0.11 eV, ɛ 2/2 = 0.17 eV, and α = 1/2(ɛ 1 + ɛ 2) = 0.28 eV also apply. Comparison between experimental results for irradiation of silicon crystals by 3.5-MeV energy electrons and Co60 γ-quanta revealed that the n(T) curve slopes do not always coincide with the actual energy levels (electronic centers).

  18. Silicon single-crystal cryogenic optical resonator.

    PubMed

    Wiens, Eugen; Chen, Qun-Feng; Ernsting, Ingo; Luckmann, Heiko; Rosowski, Ulrich; Nevsky, Alexander; Schiller, Stephan

    2014-06-01

    We report on the demonstration and characterization of a silicon optical resonator for laser frequency stabilization, operating in the deep cryogenic regime at temperatures as low as 1.5 K. Robust operation was achieved, with absolute frequency drift less than 20 Hz over 1 h. This stability allowed sensitive measurements of the resonator thermal expansion coefficient (α). We found that α=4.6×10(-13)  K(-1) at 1.6 K. At 16.8 K α vanishes, with a derivative equal to -6×10(-10)  K(-2). The temperature of the resonator was stabilized to a level below 10 μK for averaging times longer than 20 s. The sensitivity of the resonator frequency to a variation of the laser power was also studied. The corresponding sensitivities and the expected Brownian noise indicate that this system should enable frequency stabilization of lasers at the low-10(-17) level. PMID:24876023

  19. Crystalline silicon germanium films grown on crystalline silicon substrates by solid phase crystallization

    NASA Astrophysics Data System (ADS)

    Kojima, Yuji; Isomura, Masao

    2015-08-01

    We researched on crystalline silicon-germanium films (c-SiGe) for bottom cells of silicon-based multijunction solar cells. We conducted the epitaxial crystal growth of SiGe with approximately 75% Ge fraction due to solid phase crystallization (SPC) from amorphous silicon-germanium (a-SiGe) precursors on n-type (100) Si substrates. We evaluated the preparation conditions of a-SiGe precursors for the SPC epitaxial growth. The epitaxial growth was successfully conducted and (100)-oriented c-SiGe films were formed. The epitaxial growth was effectively promoted in the a-SiGe precursors prepared at the substrate temperature from 250 to 300 °C, but is not sufficiently promoted in the a-SiGe precursors prepared below 250 °C. The density of a-SiGe precursors is relatively low at the substrate temperature below 250 °C, and the low-density structures cause the impurity incorporation from the air-exposed surface. The impurities are probably the main cause of disturbance of the epitaxial growth. On the other hand, the random crystallization occurred in the SPC of the a-SiGe precursors prepared at 350 °C. The precursors have the slightly crystallized structure and are not suitable for the SPC.

  20. Annealing to reduce scattering centers in Czochralski-grown beta-BaB2O4.

    PubMed

    Kouta, H; Kuwano, Y

    1999-02-20

    When a visible laser beam passes through beta-BaB(2)O(4) (BBO), scattered light can be observed along the beam within the crystal. Scattering centers caused by structural defects in Czochralski-grown BBO can be reduced by 95% by annealing at 920 degrees C. In the flux-grown BBO, centers actually increase by the same annealing because the process causes microcracks and/or secondary inclusions. It is shown that annealed Czochralski-grown BBO is superior to flux-grown BBO (annealed or as-grown) in terms of optical loss.

  1. Detached Solidification of Germanium-Silicon Crystals on the ISS

    NASA Technical Reports Server (NTRS)

    Volz, M. P.; Mazuruk, K.; Croell, A.

    2016-01-01

    A series of Ge(sub 1-x) Si(sub x) crystal growth experiments are planned to be conducted in the Low Gradient Furnace (LGF) onboard the International Space Station. The primary objective of the research is to determine the influence of containment on the processing-induced defects and impurity incorporation in germanium-silicon alloy crystals. A comparison will be made between crystals grown by the normal and "detached" Bridgman methods and the ground-based float zone technique. Crystals grown without being in contact with a container have superior quality to otherwise similar crystals grown in direct contact with a container, especially with respect to impurity incorporation, formation of dislocations, and residual stress in crystals. "Detached" or "dewetted" Bridgman growth is similar to regular Bridgman growth in that most of the melt is in contact with the crucible wall, but the crystal is separated from the wall by a small gap, typically of the order of 10-100 microns. Long duration reduced gravity is essential to test the proposed theory of detached growth. Detached growth requires the establishment of a meniscus between the crystal and the ampoule wall. The existence of this meniscus depends on the ratio of the strength of gravity to capillary forces. On Earth, this ratio is large and stable detached growth can only be obtained over limited conditions. Crystals grown detached on the ground exhibited superior structural quality as evidenced by measurements of etch pit density, synchrotron white beam X-ray topography and double axis X-ray diffraction.

  2. Silicon photonic crystal thermal emitter at near-infrared wavelengths

    PubMed Central

    O’Regan, Bryan J.; Wang, Yue; Krauss, Thomas F.

    2015-01-01

    Controlling thermal emission with resonant photonic nanostructures has recently attracted much attention. Most of the work has concentrated on the mid-infrared wavelength range and/or was based on metallic nanostructures. Here, we demonstrate the experimental operation of a resonant thermal emitter operating in the near-infrared (≈1.5 μm) wavelength range. The emitter is based on a doped silicon photonic crystal consisting of a two dimensional square array of holes and using silicon-on-insulator technology with a device-layer thickness of 220 nm. The device is resistively heated by passing current through the photonic crystal membrane. At a temperature of ≈1100 K, we observe relatively sharp emission peaks with a Q factor around 18. A support structure system is implemented in order to achieve a large area suspended photonic crystal thermal emitter and electrical injection. The device demonstrates that weak absorption together with photonic resonances can be used as a wavelength-selection mechanism for thermal emitters, both for the enhancement and the suppression of emission. PMID:26293111

  3. Silicon photonic crystal thermal emitter at near-infrared wavelengths.

    PubMed

    O'Regan, Bryan J; Wang, Yue; Krauss, Thomas F

    2015-08-21

    Controlling thermal emission with resonant photonic nanostructures has recently attracted much attention. Most of the work has concentrated on the mid-infrared wavelength range and/or was based on metallic nanostructures. Here, we demonstrate the experimental operation of a resonant thermal emitter operating in the near-infrared (≈1.5 μm) wavelength range. The emitter is based on a doped silicon photonic crystal consisting of a two dimensional square array of holes and using silicon-on-insulator technology with a device-layer thickness of 220 nm. The device is resistively heated by passing current through the photonic crystal membrane. At a temperature of ≈1100 K, we observe relatively sharp emission peaks with a Q factor around 18. A support structure system is implemented in order to achieve a large area suspended photonic crystal thermal emitter and electrical injection. The device demonstrates that weak absorption together with photonic resonances can be used as a wavelength-selection mechanism for thermal emitters, both for the enhancement and the suppression of emission.

  4. Improved Silicon Carbide Crystals Grown From Atomically Flat Surfaces

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    2003-01-01

    The NASA Glenn Research Center is demonstrating that atomically flat (i.e., step-free) silicon carbide (SiC) surfaces are ideal for realizing greatly improved wide bandgap semiconductor films with lower crystal defect densities. Further development of these improved films could eventually enable harsh-environment electronics beneficial to jet engine and other aerospace and automotive applications, as well as much more efficient and compact power distribution and control. The technique demonstrated could also improve blue-light lasers and light-emitting-diode displays.

  5. Silicon photonic crystal resonators for label free biosensor

    NASA Astrophysics Data System (ADS)

    Sana, Amrita Kumar; Honzawa, Keita; Amemiya, Yoshiteru; Yokoyama, Shin

    2016-04-01

    We report the fabrication and characterization of a two-dimensional (2D) silicon photonic crystal biosensor consisting of waveguides and cavity-type and defect-type resonators for enhancing the interactions between light and biomaterials. Sensitivity was measured using sucrose solution and the sensor showed the highest sensitivity [1570 nm/RIU (refractive index unit)] ever reported. We also investigated cavity size effects on resonance wavelength shift, and we observed that a large cavity exhibits a greater resonance wavelength shift. The fabricated sensor has shown a high Q of ∼105 in water and a device figure of merit of 1.2 × 105, which represent the improvements of the device performance over other photonic-crystal-based sensors.

  6. Porous silicon photonic crystals for detection of infections

    NASA Astrophysics Data System (ADS)

    Gupta, B.; Guan, B.; Reece, P. J.; Gooding, J. J.

    2012-10-01

    In this paper we demonstrate the possibility of modifying porous silicon (PSi) particles with surface chemistry and immobilizing a biopolymer, gelatin for the detection of protease enzymes in solution. A rugate filter, a one-dimensional photonic crystal, is fabricated that exhibits a high-reflectivity optical resonance that is sensitive to small changes in the refractive index. To immobilize gelatin in the pores of the particles, the hydrogen-terminated silicon surface was first modified with an alkyne, 1,8-nonadiyne via hydrosilylation to protect the silicon surfaces from oxidation. This modification allows for further functionality to be added such as the coupling of gelatin. Exposure of the gelatin modified particles to the protease subtilisin in solution causes a change in the refractive index, resulting in a shift of the resonance to shorter wavelengths, indicating cleavage of organic material within the pores. The ability to monitor the spectroscopic properties of microparticles, and shifts in the optical signature due to changes in the refractive index of the material within the pore space, is demonstrated.

  7. Silicon crystal as a low work function collector

    NASA Technical Reports Server (NTRS)

    Chang, K. H.; Shimada, K.

    1975-01-01

    A test vehicle with a low work function collector which can be incorporated in a thermionic converter was constructed from standard vacuum components including an ultrahigh vacuum ion pump. The collector assembly was fabricated by diffusion bonding a (100) oriented silicon single crystal to a molybdenum block. The silicon surface was treated with cesium and oxygen to produce an NEA-type condition and the results were tested by photoemission and work function measurements. An n-type silicon collector was successfully activated to a work function of 1.0 eV, which was verified by photoemission spectral yield measurements. The stability test of an activated surface at elevated temperatures was conducted in the range from room temperature to 619 K, which was slightly lower than the designed collector temperature of 700 K. The work function measurements clearly demonstrated that the behavior of cesium replenishment on the activated Si surface was similar in nature to that of a metallic surface; that is, the loss of cesium by thermal desorption could be compensated by maintaining an adequate vapor pressure of cesium.

  8. Observation of soliton compression in silicon photonic crystals

    PubMed Central

    Blanco-Redondo, A.; Husko, C.; Eades, D.; Zhang, Y.; Li, J.; Krauss, T.F.; Eggleton, B.J.

    2014-01-01

    Solitons are nonlinear waves present in diverse physical systems including plasmas, water surfaces and optics. In silicon, the presence of two photon absorption and accompanying free carriers strongly perturb the canonical dynamics of optical solitons. Here we report the first experimental demonstration of soliton-effect pulse compression of picosecond pulses in silicon, despite two photon absorption and free carriers. Here we achieve compression of 3.7 ps pulses to 1.6 ps with <10 pJ energy. We demonstrate a ~1-ps free-carrier-induced pulse acceleration and show that picosecond input pulses are critical to these observations. These experiments are enabled by a dispersion-engineered slow-light photonic crystal waveguide and an ultra-sensitive frequency-resolved electrical gating technique to detect the ultralow energies in the nanostructured device. Strong agreement with a nonlinear Schrödinger model confirms the measurements. These results further our understanding of nonlinear waves in silicon and open the way to soliton-based functionalities in complementary metal-oxide-semiconductor-compatible platforms. PMID:24423977

  9. Maximizing Photoluminescence Extraction in Silicon Photonic Crystal Slabs

    NASA Astrophysics Data System (ADS)

    Mahdavi, Ali; Sarau, George; Xavier, Jolly; Paraïso, Taofiq K.; Christiansen, Silke; Vollmer, Frank

    2016-04-01

    Photonic crystal modes can be tailored for increasing light matter interactions and light extraction efficiencies. These PhC properties have been explored for improving the device performance of LEDs, solar cells and precision biosensors. Tuning the extended band structure of 2D PhC provides a means for increasing light extraction throughout a planar device. This requires careful design and fabrication of PhC with a desirable mode structure overlapping with the spectral region of emission. We show a method for predicting and maximizing light extraction from 2D photonic crystal slabs, exemplified by maximizing silicon photoluminescence (PL). Systematically varying the lattice constant and filling factor, we predict the increases in PL intensity from band structure calculations and confirm predictions in micro-PL experiments. With the near optimal design parameters of PhC, we demonstrate more than 500-fold increase in PL intensity, measured near band edge of silicon at room temperature, an enhancement by an order of magnitude more than what has been reported.

  10. Maximizing Photoluminescence Extraction in Silicon Photonic Crystal Slabs

    PubMed Central

    Mahdavi, Ali; Sarau, George; Xavier, Jolly; Paraïso, Taofiq K.; Christiansen, Silke; Vollmer, Frank

    2016-01-01

    Photonic crystal modes can be tailored for increasing light matter interactions and light extraction efficiencies. These PhC properties have been explored for improving the device performance of LEDs, solar cells and precision biosensors. Tuning the extended band structure of 2D PhC provides a means for increasing light extraction throughout a planar device. This requires careful design and fabrication of PhC with a desirable mode structure overlapping with the spectral region of emission. We show a method for predicting and maximizing light extraction from 2D photonic crystal slabs, exemplified by maximizing silicon photoluminescence (PL). Systematically varying the lattice constant and filling factor, we predict the increases in PL intensity from band structure calculations and confirm predictions in micro-PL experiments. With the near optimal design parameters of PhC, we demonstrate more than 500-fold increase in PL intensity, measured near band edge of silicon at room temperature, an enhancement by an order of magnitude more than what has been reported. PMID:27113674

  11. Maximizing Photoluminescence Extraction in Silicon Photonic Crystal Slabs.

    PubMed

    Mahdavi, Ali; Sarau, George; Xavier, Jolly; Paraïso, Taofiq K; Christiansen, Silke; Vollmer, Frank

    2016-01-01

    Photonic crystal modes can be tailored for increasing light matter interactions and light extraction efficiencies. These PhC properties have been explored for improving the device performance of LEDs, solar cells and precision biosensors. Tuning the extended band structure of 2D PhC provides a means for increasing light extraction throughout a planar device. This requires careful design and fabrication of PhC with a desirable mode structure overlapping with the spectral region of emission. We show a method for predicting and maximizing light extraction from 2D photonic crystal slabs, exemplified by maximizing silicon photoluminescence (PL). Systematically varying the lattice constant and filling factor, we predict the increases in PL intensity from band structure calculations and confirm predictions in micro-PL experiments. With the near optimal design parameters of PhC, we demonstrate more than 500-fold increase in PL intensity, measured near band edge of silicon at room temperature, an enhancement by an order of magnitude more than what has been reported. PMID:27113674

  12. Defects in silicon effect on device performance and relationship to crystal growth conditions

    NASA Technical Reports Server (NTRS)

    Jastrzebski, L.

    1985-01-01

    A relationship between material defects in silicon and the performance of electronic devices will be described. A role which oxygen and carbon in silicon play during the defects generation process will be discussed. The electronic properties of silicon are a strong function of the oxygen state in the silicon. This state controls mechanical properties of silicon efficiency for internal gettering and formation of defects in the device's active area. In addition, to temperature, time, ambience, and the cooling/heating rates of high temperature treatments, the oxygen state is a function of the crystal growth process. The incorporation of carbon and oxygen into silicon crystal is controlled by geometry and rotation rates applied to crystal and crucible during crystal growths. Also, formation of nucleation centers for oxygen precipitation is influenced by the growth process, although there is still a controversy which parameters play a major role. All these factors will be reviewed with special emphasis on areas which are still ambiguous and controversial.

  13. Crystallization and activation of silicon by microwave rapid annealing

    NASA Astrophysics Data System (ADS)

    Kimura, Shunsuke; Ota, Kosuke; Hasumi, Masahiko; Suzuki, Ayuta; Ushijima, Mitsuru; Sameshima, Toshiyuki

    2016-07-01

    A combination of the carbon-powder absorber with microwave irradiation is proposed as a rapid heat method. 2-μm-diameter carbon powders with a packing density of 0.08 effectively absorbed 2.45 GHz 1000-W-microwave and heated themselves to 1163 °C for 26 s. The present heat treatment recrystallized n-type crystalline silicon surfaces implanted with 1.0 × 10^{15}hbox {-cm}^{-2}-boron and phosphorus atoms with crystalline volume ratios of 0.99 and 0.93, respectively, by microwave irradiation at 1000 W for 20 s. Activation and carrier generation were simultaneously achieved with a sheet resistivity of 62 Ω / hbox {sq}. A high photo-induced-carrier effective lifetime of 1.0 × 10^{-4} s was also achieved. Typical electrical current-rectified characteristic and solar cell characteristic with an efficiency of 12.1 % under 100-mW/cm2-air-mass-1.5 illumination were obtained. Moreover, heat treatment with microwave irradiation at 1000 W for 22 s successfully crystallized silicon thin films with thicknesses ranging from 2.4 to 50 nm formed on quartz substrates. Nano-crystalline cluster structure with a high volume ratio of 50 % was formed in the 1.8-nm (initial 2.4-nm)-thick silicon films. Photoluminescence around 1.77 eV was observed for the 1.8-nm-thick silicon films annealed at 260 °C in 1.3 × 106-Pa-H2O-vapor for 3 h after the microwave heating.

  14. Isotropic behavior of an anisotropic material: single crystal silicon

    NASA Astrophysics Data System (ADS)

    McCarter, Douglas R.; Paquin, Roger A.

    2013-09-01

    Zero defect single crystal silicon (Single-Crystal Si), with its diamond cubic crystal structure, is completely isotropic in most properties important for advanced aerospace systems. This paper will identify behavior of the three most dominant planes of the Single-Crystal Si cube (110), (100) and (111). For example, thermal and optical properties are completely isotropic for any given plane. The elastic and mechanical properties however are direction dependent. But we show through finite element analysis that in spite of this, near-isotropic behavior can be achieved with component designs that utilize the optimum elastic modulus in directions with the highest loads. Using glass frit bonding to assemble these planes is the only bonding agent that doesn't degrade the performance of Single-Crystal Si. The most significant anisotropic property of Single-Crystal Si is the Young's modulus of elasticity. Literature values vary substantially around a value of 145 GPa. The truth is that while the maximum modulus is 185 GPa, the most useful <110< crystallographic direction has a high 169 GPa, still higher than that of many materials such as aluminum and invar. And since Poisson's ratio in this direction is an extremely low 0.064, distortion in the plane normal to the load is insignificant. While the minimum modulus is 130 GPa, a calculated average value is close to the optimum at approximately 160 GPa. The minimum modulus is therefore almost irrelevant. The (111) plane, referred to as the natural cleave plane survives impact that would overload the (110) and/or (100) plane due to its superior density. While mechanical properties vary from plane to plane each plane is uniform and response is predictable. Understanding the Single-Crystal Si diamond cube provides a design and manufacture path for building lightweight Single-Crystal Si systems with near-isotropic response to loads. It is clear then that near-isotropic elastic behavior is achievable in Single-Crystal Si

  15. Digital photofinishing system based on liquid crystal on silicon

    NASA Astrophysics Data System (ADS)

    Zheng, Minmin; Yan, Huimin; Zhang, Xiuda; Du, Yanli

    2006-01-01

    As the digital camera user base grows, so does the demand for digital imaging services. A new digital photo finishing system based on Liquid Crystal On Silicon (LCOS) is presented. The LCOS panel motherboard is made up of CMOS chip. Three individual streams of light (red, green, blue) are directed to corresponding Polarization Beam Spliter (PBS) to make the S polarization beam arrive at LCOS panel. When the Liquid appears light, the S polarization beam is changed to P polarization beam and reflected to pass through Polarization Beam Spliter. Compared with Thin Film Transistor-Liquid Crystal Display (TFT-LCD), LCOS has many merits including high resolution, high contrast, wide viewing angle, low cost and so on. In this work, we focus on the way in which the images will be displayed on LCOS. A liquid crystal on silicon microdisplay driver circuit for digital photo finishing system has been designed and fabricated using BRILLIAN microdisplay driver lite(MDD-LITE) ASIC and LCOS SXGA (1280×1024 pixel) with a 0.78"(20mm) diagonal active matrix reflective mode LCD. The driver includes a control circuit, which presents serial data, serial clock , write protect signals and control signals for LED, and a mixed circuit which implements RGB signal to input the LCOS. According to a minimum error sum of squares algorithm, we find a minimum offset and then shift RGB optical intensity vs voltage curves right and left to make these three curves almost coincide with each other. The design had great application in the digital photo finishing.

  16. Perspectives on integrated modeling of transport processes in semiconductor crystal growth

    NASA Technical Reports Server (NTRS)

    Brown, Robert A.

    1992-01-01

    The wide range of length and time scales involved in industrial scale solidification processes is demonstrated here by considering the Czochralski process for the growth of large diameter silicon crystals that become the substrate material for modern microelectronic devices. The scales range in time from microseconds to thousands of seconds and in space from microns to meters. The physics and chemistry needed to model processes on these different length scales are reviewed.

  17. Tailoring the optical constants in single-crystal silicon with embedded silver nanostructures for advanced silicon photonics applications

    SciTech Connect

    Akhter, Perveen; Huang, Mengbing Spratt, William; Kadakia, Nirag; Amir, Faisal

    2015-03-28

    Plasmonic effects associated with metal nanostructures are expected to hold the key to tailoring light emission/propagation and harvesting solar energy in materials including single crystal silicon which remains the backbone in the microelectronics and photovoltaics industries but unfortunately, lacks many functionalities needed for construction of advanced photonic and optoelectronics devices. Currently, silicon plasmonic structures are practically possible only in the configuration with metal nanoparticles or thin film arrays on a silicon surface. This does not enable one to exploit the full potential of plasmonics for optical engineering in silicon, because the plasmonic effects are dominant over a length of ∼50 nm, and the active device region typically lies below the surface much beyond this range. Here, we report on a novel method for the formation of silver nanoparticles embedded within a silicon crystal through metal gettering from a silver thin film deposited at the surface to nanocavities within the Si created by hydrogen ion implantation. The refractive index of the Ag-nanostructured layer is found to be 3–10% lower or higher than that of silicon for wavelengths below or beyond ∼815–900 nm, respectively. Around this wavelength range, the optical extinction values increase by a factor of 10–100 as opposed to the pure silicon case. Increasing the amount of gettered silver leads to an increased extinction as well as a redshift in wavelength position for the resonance. This resonance is attributed to the surface plasmon excitation of the resultant silver nanoparticles in silicon. Additionally, we show that the profiles for optical constants in silicon can be tailored by varying the position and number of nanocavity layers. Such silicon crystals with embedded metal nanostructures would offer novel functional base structures for applications in silicon photonics, optoelectronics, photovoltaics, and plasmonics.

  18. Material requirements for the adoption of unconventional silicon crystal and wafer growth techniques for high-efficiency solar cells

    SciTech Connect

    Hofstetter, Jasmin; del Cañizo, Carlos; Wagner, Hannes; Castellanos, Sergio; Buonassisi, Tonio

    2015-10-15

    Silicon wafers comprise approximately 40% of crystalline silicon module cost and represent an area of great technological innovation potential. Paradoxically, unconventional wafer-growth techniques have thus far failed to displace multicrystalline and Czochralski silicon, despite four decades of innovation. One of the shortcomings of most unconventional materials has been a persistent carrier lifetime deficit in comparison to established wafer technologies, which limits the device efficiency potential. In this perspective article, we review a defect-management framework that has proven successful in enabling millisecond lifetimes in kerfless and cast materials. Control of dislocations and slowly diffusing metal point defects during growth, coupled to effective control of fast-diffusing species during cell processing, is critical to enable high cell efficiencies. As a result, to accelerate the pace of novel wafer development, we discuss approaches to rapidly evaluate the device efficiency potential of unconventional wafers from injection-dependent lifetime measurements.

  19. Material requirements for the adoption of unconventional silicon crystal and wafer growth techniques for high-efficiency solar cells

    DOE PAGES

    Hofstetter, Jasmin; del Cañizo, Carlos; Wagner, Hannes; Castellanos, Sergio; Buonassisi, Tonio

    2015-10-15

    Silicon wafers comprise approximately 40% of crystalline silicon module cost and represent an area of great technological innovation potential. Paradoxically, unconventional wafer-growth techniques have thus far failed to displace multicrystalline and Czochralski silicon, despite four decades of innovation. One of the shortcomings of most unconventional materials has been a persistent carrier lifetime deficit in comparison to established wafer technologies, which limits the device efficiency potential. In this perspective article, we review a defect-management framework that has proven successful in enabling millisecond lifetimes in kerfless and cast materials. Control of dislocations and slowly diffusing metal point defects during growth, coupled tomore » effective control of fast-diffusing species during cell processing, is critical to enable high cell efficiencies. As a result, to accelerate the pace of novel wafer development, we discuss approaches to rapidly evaluate the device efficiency potential of unconventional wafers from injection-dependent lifetime measurements.« less

  20. Optical nonreciprocal transmission in an asymmetric silicon photonic crystal structure

    NASA Astrophysics Data System (ADS)

    Wu, Zheng; Chen, Juguang; Ji, Mengxi; Huang, Qingzhong; Xia, Jinsong; Wu, Ying; Wang, Yi

    2015-11-01

    An optical nonreciprocal transmission (ONT) is realized by employing the nonlinear effects in a compact asymmetric direct-coupled nanocavity-waveguide silicon photonic crystal structure with a high loaded quality factor (QL) of 42 360 and large extinction ratio exceeding 30 dB. Applying a single step lithography and successive etching, the device can realize the ONT in an individual nanocavity, alleviating the requirement to accurately control the resonance of the cavities. A maximum nonreciprocal transmission ratio of 21.1 dB as well as a working bandwidth of 280 pm in the telecommunication band are obtained at a low input power of 76.7 μW. The calculated results by employing a nonlinear coupled-mode model are in good agreement with the experiment.

  1. Path to meter class single crystal silicon (SCSi) space optics

    NASA Astrophysics Data System (ADS)

    McCarter, Douglas R.

    2012-03-01

    With the global financial crisis affecting funding for space systems development, customers are calling for lower cost systems. Yet, at the same time, these lower cost systems must have increased thermal response to operational environments and load survivability. We submit that single crystal silicon (SCSi) meets both of these requirements. This paper will highlight some key SCSi material properties, discuss the opportunities that led to the development of McCarter processing methods, and present the latest steps in the manufacturing path of McCarter Mirrors using SCSi, GFB (glass frit bonding) and MSF (McCarter super finish), including the concept drawing of a one meter SCSi lightweight mirror, which together sets up the last step toward a lower cost, high performing one meter SCSi space optic.

  2. Polarization recovery for liquid crystal-on-silicon pico projection

    NASA Astrophysics Data System (ADS)

    Zhang, Wenzi; Qu, Bixiang; Yu, Feihong

    2012-09-01

    A color-filter liquid crystal-on-silicon (LCoS) pico optical engine has been designed with polarization recovery. By combing nonimaging collection optics and a collimation lens, the collimated light's aperture is reshaped so that both of its two polarized parts can be polarization recovered and then collected by the relay lens. No polarization conversion system of traditional polarization recovery method is used, and the aperture of illumination optics does not increase. A design example of color-filter LCoS pico optical engine with 640×360 resolution is listed. High light efficiency of about 9.3 lumens per light-emitting diode watt and high irradiance uniformity of about 94% have been achieved. The thickness of the optical engine is 11 mm.

  3. Lifetime analysis of laser crystallized silicon films on glass

    SciTech Connect

    Kühnapfel, Sven; Amkreutz, Daniel; Gall, Stefan; Huang, Jialiang; Teal, Anthony; Kampwerth, Henner; Varlamov, Sergey

    2015-08-07

    Only recently, the quality of liquid phase crystallized silicon directly on glass substrates made a huge leap towards the quality of multi-crystalline wafers with open circuit voltages well above 600 mV. In this paper, we investigate the material quality in order to identify the factors limiting further performance improvements. We employ photoluminescence imaging on a state of the art test structure with lifetime calibration by transient photoluminescence. The resulting lifetime map is converted into an effective diffusion length map and the origin of regions with short lifetimes is investigated with electron backscattering and transmission electron microscopy. High local dislocation densities in areas with dissociated coincidence site lattice boundaries were found to be responsible for the localised quenching of the photoluminescence signal.

  4. Optical nonreciprocal transmission in an asymmetric silicon photonic crystal structure

    SciTech Connect

    Wu, Zheng; Chen, Juguang; Ji, Mengxi; Huang, Qingzhong; Xia, Jinsong; Wang, Yi E-mail: ywangwnlo@mail.hust.edu.cn; Wu, Ying E-mail: ywangwnlo@mail.hust.edu.cn

    2015-11-30

    An optical nonreciprocal transmission (ONT) is realized by employing the nonlinear effects in a compact asymmetric direct-coupled nanocavity-waveguide silicon photonic crystal structure with a high loaded quality factor (Q{sub L}) of 42 360 and large extinction ratio exceeding 30 dB. Applying a single step lithography and successive etching, the device can realize the ONT in an individual nanocavity, alleviating the requirement to accurately control the resonance of the cavities. A maximum nonreciprocal transmission ratio of 21.1 dB as well as a working bandwidth of 280 pm in the telecommunication band are obtained at a low input power of 76.7 μW. The calculated results by employing a nonlinear coupled-mode model are in good agreement with the experiment.

  5. Crystallization and doping of amorphous silicon on low temperature plastic

    DOEpatents

    Kaschmitter, J.L.; Truher, J.B.; Weiner, K.H.; Sigmon, T.W.

    1994-09-13

    A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate is disclosed. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900 C), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180 C for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180 C) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide. 5 figs.

  6. Crystallization and doping of amorphous silicon on low temperature plastic

    DOEpatents

    Kaschmitter, James L.; Truher, Joel B.; Weiner, Kurt H.; Sigmon, Thomas W.

    1994-01-01

    A method or process of crystallizing and doping amorphous silicon (a-Si) on a low-temperature plastic substrate using a short pulsed high energy source in a selected environment, without heat propagation and build-up in the substrate. The pulsed energy processing of the a-Si in a selected environment, such as BF3 and PF5, will form a doped micro-crystalline or poly-crystalline silicon (pc-Si) region or junction point with improved mobilities, lifetimes and drift and diffusion lengths and with reduced resistivity. The advantage of this method or process is that it provides for high energy materials processing on low cost, low temperature, transparent plastic substrates. Using pulsed laser processing a high (>900.degree. C.), localized processing temperature can be achieved in thin films, with little accompanying temperature rise in the substrate, since substrate temperatures do not exceed 180.degree. C. for more than a few microseconds. This method enables use of plastics incapable of withstanding sustained processing temperatures (higher than 180.degree. C.) but which are much lower cost, have high tolerance to ultraviolet light, have high strength and good transparency, compared to higher temperature plastics such as polyimide.

  7. Ferromagnetism in Silicon Single Crystals with Positively Charged Vacancy Clusters

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Zhang, Xinghong; Yuan, Quan; Han, Jiecai; Zhou, Shengqiang; Song, Bo

    Defect-induced ferromagnetism provides an alternative for organic and semiconductor spintronics. Here, we investigated the magnetism in Silicon after neutron irradiation and try to correlate the observed magnetism to particular defects in Si. Commercially available p-type Si single crystal wafer is cut into pieces for performing neutron irradiations. The magnetic impurities are ruled out as they can not be detected by secondary ion mass spectroscopy. With positron annihilation lifetime spectroscopy, the positron trapping center corresponding to lifetime 375 ps is assigned to a kind of stable vacancy clusters of hexagonal rings (V6) and its concentration is enhanced by increasing neutron doses. After irradiation, the samples still show strong diamagnetism. The weak ferromagnetic signal in Si after irradiation enhances and then weakens with increasing irradiation doses. The saturation magnetization at room temperature is almost the same as that at 5 K. The X-ray magnetic circular dichroism further provides the direct evidence that Silicon is the origin of this ferromagnetism. Using first-principles calculations, it is found that positively charged V6 brings the spin polarization and the defects have coupling with each other. The work is financially supported by the Helmholtz Postdoc Programme (Initiative and Networking Fund, PD-146).

  8. Process development for single-crystal silicon solar cells

    NASA Astrophysics Data System (ADS)

    Bohra, Mihir H.

    Solar energy is a viable, rapidly growing and an important renewable alternative to other sources of energy generation because of its abundant supply and low manufacturing cost. Silicon still remains the major contributor for manufacturing solar cells accounting for 80% of the market share. Of this, single-crystal solar cells account for half of the share. Laboratory cells have demonstrated 25% efficiency; however, commercial cells have efficiencies of 16% - 20% resulting from a focus on implementation processes geared to rapid throughput and low cost, thereby reducing the energy pay-back time. An example would be the use of metal pastes which dissolve the dielectric during the firing process as opposed to lithographically defined contacts. With current trends of single-crystal silicon photovoltaic (PV) module prices down to 0.60/W, almost all other PV technologies are challenged to remain cost competitive. This presents a unique opportunity in revisiting the PV cell fabrication process and incorporating moderately more expensive IC process practices into PV manufacturing. While they may drive the cost toward a 1/W benchmark, there is substantial room to "experiment", leading to higher efficiencies which will help maintain the overall system cost. This work entails a turn-key process designed to provide a platform for rapid evaluation of novel materials and processes. A two-step lithographic process yielding a baseline 11% - 13% efficient cell is described. Results of three studies have shown improvements in solar cell output parameters due to the inclusion of a back-surface field implant, a higher emitter doping and also an additional RCA Clean.

  9. Silicon-based one-dimensional photonic crystal microcavity

    NASA Astrophysics Data System (ADS)

    Chen, San; Qian, Bo; Chen, Kunji; Xu, Jun; Li, Wei; Huang, Xinfan

    2004-12-01

    The layer-by-layer method is employed to prepare a-SiNx:H microcavity structure in a Plasma Enhanced Chemical Vapor Deposition (PECVD) chamber. Measurements of transmittance spectrum of as-grown samples show that the transmittance resonant peak of a cavity mode at 750 nm is introduced into the band gap of one-dimensional photonic crystal distributed Bragg reflectors based on hydrogenated amorphous silicon nitride. Also the PL measurements of a-SiNx:H microcavities are performed. There is a well agreement between the transmittance spectra and the PL of microcavity samples. In order to clarify the microcavity effects on the bulk a-SiNx:H, the PL of a λ/2-thick layer of bulk a-SiNx:H obtained under the same experimental conditions is presented. By comparison, a dramatic narrowing of emission linewidth and enhancement of PL intensity is observed. The wide emission band with 208 nm is strongly narrowed to 17 nm, and the resonant enhancement of the peak PL intensity is about two orders of magnitude with respect to the emission of the λ/2-thick layer of bulk a-SiNx:H. A linewidth of Δλ=17 nm and a quality factor of Q=50 are achieved in our one-dimensional a-SiNx photonic crystal microcavities.

  10. A two dimensional silicon-based photonic crystal microcavity biosensor

    NASA Astrophysics Data System (ADS)

    Lee, Mindy; Fauchet, Philippe M.

    2006-08-01

    The optical properties of photonic bandgap (PBG) structures are highly sensitive to environmental variation. PBG structures thus are an attractive platform for biosensing applications. We experimentally demonstrate a label-free biosensor based on a two-dimensional (2-D) photonic crystal microcavity slab. The microcavity is fabricated on a silicon-on-insulator substrate and integrated with tapered ridge waveguides for light coupling. The Finite-Difference Time-Domain (FDTD) method is used to model the sensor. The resonance of the microcavity is designed to be around 1.58 μm. In order to capture the target biological materials, the internal surface of the photonic crystal is first functionalized. Binding of the targets is monitored by observing a red shift of the transmission resonance. The magnitude of the shift depends on the amount of material captured by the internal surface. Compared to 1-D PBG biosensors, 2-D devices require a smaller amount of target material and can accommodate larger targets. Experimental results are compared with the predictions obtained from the FDTD simulations.

  11. The effect of pulse energy on the removal form of silicon crystal in electrical discharge machining

    NASA Astrophysics Data System (ADS)

    Mingbo, Qiu; Zongjun, Tian; Ye, Tian; Lida, Shen; Haoran, Chen; Hao, Ding

    2016-09-01

    A single-pulse discharge system for semiconductors was designed and produced. Single-pulse discharge experiments with single-crystal silicon were conducted, and the morphology of the electric erosion pit under different discharge energy levels was observed. Three removal forms, namely, heat removal, stress removal, and secondary crushing in electrical discharge machining (EDM) of single-crystal silicon, were discovered, and the mechanisms of semiconductor discharge processing were described. Finally, the role of different removal forms in single-crystal silicon EDM was explained and verified.

  12. Crystallization of the glassy grain boundary phase in silicon nitride ceramics

    NASA Technical Reports Server (NTRS)

    Drummond, Charles H., III

    1991-01-01

    The role was studied of the intergranular glassy phase in silicon nitride as-processed with yttria as a sintering aid. The microstructure, crystallization, and viscosity of the glassy phase were areas studied. Crystallization of the intergranular glassy phase to more refractory crystalline phases should improve the high temperature mechanical properties of the silicon nitride. The addition of a nucleating agent will increase the rate of crystallization. The measurement of the viscosity of the glassy phase will permit the estimation of the high temperature deformation of the silicon nitride.

  13. Influence of a weak magnetic field on microplasticity of silicon crystals

    NASA Astrophysics Data System (ADS)

    Makara, V. A.; Steblenko, L. P.; Plyushchai, I. V.; Kurylyuk, A. N.; Kalinichenko, D. V.; Krit, A. N.; Naumenko, S. N.

    2014-08-01

    The possibility of magnetic ordering at dangling bonds in dislocation cores has been investigated theoretically. It has been experimentally shown that magnetic ordering in dislocations affects the spin-dependent effects occurring in dislocation crystals of silicon. It has been found that preliminary magnetic treatment of silicon crystals in a weak magnetic field leads to the suppression of the electroplastic effect induced in silicon crystals excited by an electric current. It has been assumed that a change in the microplasticity under the combined action of a magnetic field and an electric current is caused by a weakening of spin-dependent recombination at dislocation dangling bonds.

  14. Electrical and Structural Characterization of Web Dendrite Crystals

    NASA Technical Reports Server (NTRS)

    Schwuttke, G. H.; Koliwad, K.; Dumas, K. A.

    1985-01-01

    Minority carrier lifetime distributions in silicon web dendrites are measured. Emphasis is placed on measuring areal homogeneity of lifetime, show its dependency on structural defects, and its unique change during hot processing. The internal gettering action of defect layers present in web crystals and their relation to minority carrier lifetime distributions is discussed. Minority carrier lifetime maps of web dendrites obtained before and after high temperature heat treatment are compared to similar maps obtained from 100 mm diameter Czochralski silicon wafers. Such maps indicate similar or superior areal homogeneity of minority carrier lifetime in webs.

  15. Electrical and Structural Characterization of Web Dendrite Crystals

    NASA Technical Reports Server (NTRS)

    Schwuttke, G. H.

    1984-01-01

    Minority carrier lifetime distributions in silicon web dendrites are measured. Emphasis is placed on measuring areal homogeneity of lifetime, show its dependancy on structural defects, and its unique change during hot processing. The internal gettering action of defect layers present in web crystals and their relation to minority carrier lifetime distributions is discussed. Minority carrier lifetime maps of web dendrites obtained before and after high temperature heat treatment are compared to similar maps obtained from 100 mm diameter Czochralski silicon wafers. Such maps indicate similar or superior areal homogeneity of minority carrier lifetime in webs.

  16. Epitaxial growth of germanium thin films on crystal silicon substrates by solid phase crystallization

    NASA Astrophysics Data System (ADS)

    Isomura, Masao; Kanai, Mikuri

    2015-04-01

    We have investigated the solid phase crystallization (SPC) of amorphous germanium (a-Ge) precursors on single crystalline silicon (c-Si) substrates as seed layers and successfully obtained the epitaxial growth of Ge. The n-type (100) Si substrate is most suitable for preferential growth following the substrate orientation, because the velocity of preferential growth is higher than those on the other substrates and preferential growth is completed before random nucleation. The impurity contamination in the a-Ge precursors probably enhances random nucleation. The epitaxial growth is disturbed by the impurity contamination at a relatively high SPC temperature in the intrinsic and p-type Si substrates with the (100) orientation and the n-type and intrinsic Si substrates with the (111) orientation, because the lower velocity of preferential growth allows random crystallization. Almost no epitaxial growth is observed on the p-type (111) Si substrates even when low-impurity a-Ge precursors are used.

  17. Carbon-nanotube electron-beam (C-beam) crystallization technique for silicon TFTs

    NASA Astrophysics Data System (ADS)

    Lee, Su Woong; Kang, Jung Su; Park, Kyu Chang

    2016-02-01

    We introduced a carbon-nanotube (CNT) electron beam (C-beam) for thin film crystallization and thin film transistor (TFT) applications. As a source of electron emission, a CNT emitter which had been grown on a silicon wafer with a resist-assisted patterning (RAP) process was used. By using the C-beam exposure, we successfully crystallized a silicon thin film that had nano-sized crystalline grains. The distribution of crystalline grain size was about 10 ˜ 30 nm. This nanocrystalline silicon thin film definitely had three crystalline directions which are (111), (220) and (311), respectively. The silicon TFTs crystallized by using a C-beam exposure showed a field effect mobility of 20 cm2/Vs and an on/off ratio of more than 107. The C-beam exposure can modify the bonding network of amorphous silicon with its proper energy.

  18. Fabrication of high-aspect-ratio nanotips integrated with single-crystal silicon cantilevers

    NASA Astrophysics Data System (ADS)

    Chen, Henry J. H.; Hung, C. S.

    2007-09-01

    This work presents a novel fabrication technique for an atomic force microscope (AFM) nanotip. The high-aspect-ratio silicon nanotip on a single-crystal silicon cantilever was manufactured using inductive coupling plasma (ICP) anisotropic etching and XeF2 isotropic silicon etching processes. The cantilever shape was defined and the high-aspect-ratio silicon nanotip structure was fabricated by ICP anisotropic deep silicon etching (~50-80 µm deep). Nanotip sharpening and single-crystal Si cantilever undercutting were achieved simultaneously via two-step XeF2 isotropic silicon etching. The final structures were observed by a scanning electron microscope (SEM) and the diameter of the nanotip was about ~30 nm. This process is simple, easy to use, CMOS post-process-compatible and suitable for the future IC integrated AFM nanotip applications.

  19. Silicon ingot casting: Heat exchanger method. Multi-wire slicing: Fixed abrasive slicing technique, phase 3

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.

    1979-01-01

    In the area of ingot casting the proof of concept of heat exchanger method (HEM) was established. It was also established that HEM cast silicon yielded solar cell performance comparable to Czochralski grown material. Solar cells with conversion efficiencies of up to 15% were fabricated. It was shown that square cross-section ingots can be cast. In the area of crystal slicing, it was established that silicon can be sliced efficiently with the fixed abrasive slicing technique approach. This concept was carried forward to 10 cm diameter workpiece.

  20. Environmental Qualification of a Single-Crystal Silicon Mirror for Spaceflight Use

    NASA Technical Reports Server (NTRS)

    Hagopian, John; Chambers, John; Rohrback. Scott; Bly, Vincent; Morell, Armando; Budinoff, Jason

    2013-01-01

    This innovation is the environmental qualification of a single-crystal silicon mirror for spaceflight use. The single-crystal silicon mirror technology is a previous innovation, but until now, a mirror of this type has not been qualified for spaceflight use. The qualification steps included mounting, gravity change measurements, vibration testing, vibration- induced change measurements, thermal cycling, and testing at the cold operational temperature of 225 K. Typical mirrors used for cold applications for spaceflight instruments include aluminum, beryllium, glasses, and glass-like ceramics. These materials show less than ideal behavior after cooldown. Single-crystal silicon has been demonstrated to have the smallest change due to temperature change, but has not been spaceflight-qualified for use. The advantage of using a silicon substrate is with temperature stability, since it is formed from a stress-free single crystal. This has been shown in previous testing. Mounting and environmental qualification have not been shown until this testing.

  1. Computer-simulated X-ray three-beam pinhole topographs for spherical silicon crystals.

    PubMed

    Okitsu, Kouhei

    2011-11-01

    X-ray three-beam pinhole topograph images for spherical silicon crystals were computer-simulated based on the n-beam Takagi-Taupin (T-T) equation. They were compared with those for parallel-plate crystals. The procedure to integrate the n-beam T-T equation for a crystal with an arbitrary shape has been validated in a separate paper [Okitsu et al. (2011), Acta Cryst. A67, 550-556] from comparison between experimentally obtained and computer-simulated six-beam pinhole topographs for a channel-cut silicon crystal.

  2. Thermal-capillary model for Czochralski growth of semiconductor materials

    NASA Technical Reports Server (NTRS)

    Derby, J. J.; Brown, R. A.

    1985-01-01

    The success of efficiently calculating the temperature field, crystal radius, melt mensicus, and melt/solid interface in the Czochralski crystal growth system by full finite-element solution of the government thermal-capillary model is demonstrated. The model predicts realistic response to changes in pull rate, melt volume, and the thermal field. The experimentally observed phenomena of interface flipping, bumping, and the difficulty maintaining steady-state growth as the melt depth decreases are explained by model results. These calculations will form the basis for the first quantitative picture of Cz crystal growth. The accurate depiction of the melt meniscus is important in calculating the crystal radius and solidification interface. The sensitivity of the results to the equilibrium growth angle place doubt on less sophisticated attempts to model the process without inclusion of the meniscus. Quantitative comparison with experiments should be possible once more representation of the radiation and view factors in the thermal system and the crucible are included. Extensions of the model in these directions are underway.

  3. Surface morphological instability of silicon (100) crystals under microwave ion physical etching

    NASA Astrophysics Data System (ADS)

    Yafarov, R. K.; Shanygin, V. Ya.

    2016-02-01

    This paper presents the results of studies of the dynamics of relaxation modification of the morphological characteristics of atomically clean surfaces of silicon (100) crystals with different types of conductivity after microwave ion physical etching in an argon atmosphere. For the first time, the effect of the electronic properties on the morphological characteristics and the surface free energy of silicon crystals is experimentally shown and proven by physicochemical methods.

  4. X-ray and magnetic-field-enhanced change in physical characteristics of silicon crystals

    NASA Astrophysics Data System (ADS)

    Makara, V. A.; Steblenko, L. P.; Krit, A. N.; Kalinichenko, D. V.; Kurylyuk, A. N.; Naumenko, S. N.

    2012-07-01

    The effect of low-energy ( W = 8 keV) low-dose ((0.3-7.3) × 102 Gy) radiation and a dc magnetic field ( B = 0.17 T) on structural, micromechanical, and microplastic characteristics of silicon crystals has been studied. The features in the dynamic behavior of dislocations in silicon crystals, which manifest themselves upon only X-ray exposure and combined (X-ray and magnetic) exposure, have been revealed.

  5. Structural and energy properties of interstitial molecular hydrogen in single-crystal silicon

    SciTech Connect

    Melnikov, V. V.

    2015-06-15

    The structural and energy characteristics of interstitial molecular hydrogen in single-crystal silicon are theoretically studied. The dependence of the potential energy of the system on the position and orientation of the interstitial defect is investigated, and the mechanism of interaction of a hydrogen molecule with a silicon crystal is considered. A three-dimensional model is employed to calculate the energy spectrum of H{sub 2} in Si, and the obtained dispersion law is analyzed.

  6. Growing Single Crystals From Low-Purity Silicon

    NASA Technical Reports Server (NTRS)

    Schmid, F.

    1984-01-01

    Heat exchanger method continuously moves impurities to outside of growth interface. Silicon heated in crucible to above melting point, and melted silicon then solidified by extracting heat from bottom of crucible by means of heat exchanger.

  7. Silicon Materials Task of the Low Cost Solar Array Project, Phase 3. Effect of Impurities and Processing on Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.

    1979-01-01

    The effects of impurities, various thermochemical processes, and any impurity process interactions on the performance of terrestrial silicon solar cells are defined. Determinations of the segregation coefficients of tungsten, tantalum, and cobalt for the Czochralski pulling of silicon single crystals are reported. Sensitive neutron activation analysis was used to determine the metal impurity content of the silicon while atomic absorption was used to measure the metal content of the residual liquid from which the doped crystals were grown. Gettering of Ti doped silicon wafers improved cell performance by one to two percent for the highest temperatures and longest times. The HCl is more effective than POCl3 treatments for deactivating Ti but POCl3 and HCl produced essentially identical results for Mo or Fe.

  8. Microstructural analysis of the crystallization of silicon ribbons produced by the RGS process

    SciTech Connect

    Steinbach, I.; Hoefs, H.U.

    1997-12-31

    The microstructural evolution of multicrystalline silicon ribbons produced by the RGS process (Ribbon Growth on Substrate) is analyzed by numerical simulation. The crystallization model takes into account the faceted growth structure of silicon, thermal supercooling in front of the crystallization front and nucleation dependent on the thermal supercooling. The thermal conditions for the crystallization of the ribbon are taken from a macroscopic finite element simulation of the RGS process, as it is realized at Bayer AG, Germany. Different crystallization morphologies--single crystal, columnar multicrystal or dendritic--are discussed in their dependence on the process and nucleation conditions. The numerical results are compared to morphologies of silicon ribbons, grown on the pilot plant of Bayer AG, Germany.

  9. Integrated freestanding single-crystal silicon nanowires: conductivity and surface treatment.

    PubMed

    Lee, Chung-Hoon; Ritz, Clark S; Huang, Minghuang; Ziwisky, Michael W; Blise, Robert J; Lagally, Max G

    2011-02-01

    Integrated freestanding single-crystal silicon nanowires with typical dimension of 100 nm × 100 nm × 5 µm are fabricated by conventional 1:1 optical lithography and wet chemical silicon etching. The fabrication procedure can lead to wafer-scale integration of silicon nanowires in arrays. The measured electrical transport characteristics of the silicon nanowires covered with/without SiO(2) support a model of Fermi level pinning near the conduction band. The I-V curves of the nanowires reveal a current carrier polarity reversal depending on Si-SiO(2) and Si-H bonds on the nanowire surfaces.

  10. Distribution of oxygen in silicon and its effects on electronic characteristics on a microscale

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Rava, P.; Lagowski, J. J.

    1980-01-01

    The microdistribution of oxygen in silicon was obtained by scanning IR absorption in as grown Czochralski crystals. The crystals were subsequently submitted to various heat treatments. The profiles of the generated thermal donors were determined by spreading resistance measurements. Contrary to the prevailing views, it was found that the concentration of the activated thermal donors is not strictly a function of the oxygen concentration, but depends strongly on an additional factor, which was shown to be associated with vacancy concentration. These conclusions could only be reached on the basis of microscale characterization. In fact, commonly employed macroscale analysis has led to erroneous conclusions.

  11. Apparatus and method for the horizontal, crucible-free growth of silicon sheet crystals

    DOEpatents

    Ciszek, T.F.

    1984-09-12

    Apparatus is provided for continuously forming a silicon crystal sheet from a silicon rod in a non-crucible environment. The rod is rotated and fed toward an RF coil in an inert atmosphere so that the upper end of the rod becomes molten and the silicon sheet crystal is pulled therefrom substantially horizontally in a continuous strip. A shorting ring may be provided around the rod to limit the heating to the upper end only. Argon gas can be used to create the inert atmosphere within a suitable closed chamber. By use of this apparatus and method, a substantially defect-free silicon crystal sheet is formed which can be used for micro-circuitry chips or solar cells.

  12. Apparatus and method for the horizontal, crucible-free growth of silicon sheet crystals

    DOEpatents

    Ciszek, Theodore F.

    1987-01-01

    Apparatus for continuously forming a silicon crystal sheet from a silicon rod in a noncrucible environment. The rod is rotated and fed toward an RF coil in an inert atmosphere so that the upper end of the rod becomes molten and the silicon sheet crystal is pulled therefrom substantially horizontally in a continuous strip. A shorting ring may be provided around the rod to limit the heating to the upper end only. Argon gas can be used to create the inert atmosphere within a suitable closed chamber. By use of this apparatus and method, a substantially defect-free silicon crystal sheet is formed that can be used for microcircuitry chips or solar cells.

  13. Deflection of 450 GeV protons by planar channeling in a bent silicon crystal

    NASA Astrophysics Data System (ADS)

    Jensen, B. N.; Møller, S. P.; Uggerhøj, E.; Worm, T.; Atherton, H. W.; Clément, M.; Doble, N.; Elsener, K.; Gatignon, L.; Grafström, P.; Jeanneret, J. B.; Hage-Ali, M.; Siffert, P.

    1992-08-01

    A 450 GeV proton beam has been bent by various angles from 4 to 14 mrad using planar channeling in a (111) silicon crystal. Detailed investigations of the deflected beam as well as the unbent and scattered particles have been performed. The incident beam had a divergence of about 35 μrad (FWHM). 20% of the protons hitting the crystal front face were found to be initially channeled. The measured bending efficiencies range from 5 to 2% (for increasing deflection angles) are compared to theoretical estimates including surface acceptance and dechanneling in bent silicon crystals.

  14. High-Q silicon-on-insulator slot photonic crystal cavity infiltrated by a liquid

    SciTech Connect

    Caër, Charles; Le Roux, Xavier; Cassan, Eric

    2013-12-16

    We report the experimental realization of a high-Q slot photonic crystal cavity in Silicon-On-Insulator (SOI) configuration infiltrated by a liquid. Loaded Q-factor of 23 000 is measured at telecom wavelength. The intrinsic quality factor inferred from the transmission spectrum is higher than 200 000, which represents a record value for slot photonic crystal cavities on SOI, whereas the maximum of intensity of the cavity is roughly equal to 20% of the light transmitted in the waveguide. This result makes filled slot photonic crystal cavities very promising for silicon-based light emission and ultrafast nonlinear optics.

  15. Dendritic web silicon for solar cell application

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.

    1977-01-01

    The dendritic web process for growing long thin ribbon crystals of silicon and other semiconductors is described. Growth is initiated from a thin wirelike dendrite seed which is brought into contact with the melt surface. Initially, the seed grows laterally to form a button at the melt surface; when the seed is withdrawn, needlelike dendrites propagate from each end of the button into the melt, and the web portion of the crystal is formed by the solidification of the liquid film supported by the button and the bounding dendrites. Apparatus used for dendritic web growth, material characteristics, and the two distinctly different mechanisms involved in the growth of a single crystal are examined. The performance of solar cells fabricated from dendritic web material is indistinguishable from the performance of cells fabricated from Czochralski grown material.

  16. Czochralski growth of Yb doped oxyapatite for high power laser application

    NASA Astrophysics Data System (ADS)

    Yoshikawa, A.; Fujiwara, C.; Sato, H.; Nishi, T.; Ohta, H.; Fukuda, T.; Waseda, Y.; Boulon, G.; Ito, M.; Guyot, Y.; Lebbou, K.

    2004-09-01

    Ca 8(La,Yb) 2(PO 4) 6O 2 (Yb:CLPA) single crystals with the apatite-type structure could be grown from the melt using the Czochralski method. Grown crystal was 18 mm in diameter and 110 mm in length. It is transparent with slightly blue color. Neither visible inclusion nor crack was observed. Thermal conductivity of Yb:CLPA was calculated from the values of thermal diffusivity, heat capacity measurement and density. Luminescent characterization was carried out from the results of emission, absorption and Raman spectrum.

  17. Thin Single Crystal Silicon Solar Cells on Ceramic Substrates: November 2009 - November 2010

    SciTech Connect

    Kumar, A.; Ravi, K. V.

    2011-06-01

    In this program we have been developing a technology for fabricating thin (< 50 micrometres) single crystal silicon wafers on foreign substrates. We reverse the conventional approach of depositing or forming silicon on foreign substrates by depositing or forming thick (200 to 400 micrometres) ceramic materials on high quality single crystal silicon films ~ 50 micrometres thick. Our key innovation is the fabrication of thin, refractory, and self-adhering 'handling layers or substrates' on thin epitaxial silicon films in-situ, from powder precursors obtained from low cost raw materials. This 'handling layer' has sufficient strength for device and module processing and fabrication. Successful production of full sized (125 mm X 125 mm) silicon on ceramic wafers with 50 micrometre thick single crystal silicon has been achieved and device process flow developed for solar cell fabrication. Impurity transfer from the ceramic to the silicon during the elevated temperature consolidation process has resulted in very low minority carrier lifetimes and resulting low cell efficiencies. Detailed analysis of minority carrier lifetime, metals analysis and device characterization have been done. A full sized solar cell efficiency of 8% has been demonstrated.

  18. Comparison of the spiral growth modes of silicon-face and carbon-face silicon carbide crystals

    NASA Astrophysics Data System (ADS)

    Seiss, M.; Ouisse, T.; Chaussende, D.

    2013-12-01

    We have studied the dependence of the terrace width of growth spirals on local supersaturation during the growth of on-axis silicon carbide (SiC) crystals. Local supersaturation is adjusted by changing the residual argon gas pressure inside the sublimation growth chamber. Whereas Si-face crystals seem to partly verify the model of Burton, Cabrera and Frank, we found that on C-face crystals, the terrace width is independent of supersaturation. In contrast to previously reported data obtained from KDP crystals, we cannot ascribe our result to hollow-core dislocations or micropipes, as the observed growth spirals arose from independent and closed, unit or double-unit screw dislocations. Besides, we checked that neither the finite growth area nor the influence of the stress field of the dislocation can explain our data.

  19. Channeling, Volume Reection and Gamma Emission Using 14GeV Electrons in Bent Silicon Crystals

    SciTech Connect

    Benson, Brandon

    2015-08-14

    High energy electrons can be deflected with very tight bending radius using a bent silicon crystal. This produces gamma radiation. As these crystals can be thin, a series of bent silicon crystals with alternating direction has the potential to produce coherent gamma radiation with reasonable energy of the driving electron beam. Such an electron crystal undulator offers the prospect for higher energy radiation at lower cost than current methods. Permanent magnetic undulators like LCLS at SLAC National Accelerator Laboratory are expensive and very large (about 100 m in case of the LCLS undulator). Silicon crystals are inexpensive and compact when compared to the large magnetic undulators. Additionally, such a high energy coherent light source could be used for probing through materials currently impenetrable by x-rays. In this work we present the experimental data and analysis of experiment T523 conducted at SLAC National Accelerator Laboratory. We collected the spectrum of gamma ray emission from 14 GeV electrons on a bent silicon crystal counting single photons. We also investigated the dynamics of electron motion in the crystal i.e. processes of channeling and volume reflection at 14 GeV, extending and building off previous work. Our single photon spectrum for the amorphous crystal orientation is consistent with bremsstrahlung radiation and the volume reflection crystal orientation shows a trend consistent with synchrotron radiation at a critical energy of 740 MeV. We observe that in these two cases the data are consistent, but we make no further claims because of statistical limitations. We also extended the known energy range of electron crystal dechanneling length and channeling efficiency to 14 GeV.

  20. Development of low-cost silicon crystal growth techniques for terrestrial photovoltaic solar energy conversion

    NASA Technical Reports Server (NTRS)

    Zoutendyk, J. A.

    1976-01-01

    Because of the growing need for new sources of electrical energy, photovoltaic solar energy conversion is being developed. Photovoltaic devices are now being produced mainly from silicon wafers obtained from the slicing and polishing of cylindrically shaped single crystal ingots. Inherently high-cost processes now being used must either be eliminated or modified to provide low-cost crystalline silicon. Basic to this pursuit is the development of new or modified methods of crystal growth and, if necessary, crystal cutting. If silicon could be grown in a form requiring no cutting, a significant cost saving would potentially be realized. Therefore, several techniques for growth in the form of ribbons or sheets are being explored. In addition, novel techniques for low-cost ingot growth and cutting are under investigation.

  1. Wear of single-crystal silicon carbide in contact with various metals in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted in vacuum with single crystal silicon carbide (0001) surface in contact with transition metals (tungsten, iron, rhodium, nickel, titanium, and cobalt), copper, and aluminum. The hexagon shaped cracking and fracturing of silicon carbide that occurred is believed to be due to cleavages of both the prismatic and basal planes. The silicon carbide wear debris, which was produced by brittle fracture, slides or rolls on both the metal and silicon carbide and produces grooves and indentations on these surfaces. The wear scars of aluminum and titanium, which have much stronger chemical affinity for silicon and carbon, are generally rougher than those of the other metals. Fracturing and cracking along the grain boundary of rhodium and tungsten were observed. These may be primarily due to the greater shear moduli of the metals.

  2. Crystal growth for high-efficiency silicon solar cells workshop: Summary

    NASA Technical Reports Server (NTRS)

    Dumas, K. A.

    1985-01-01

    The state of the art in the growth of silicon crystals for high-efficiency solar cells are reviewed, sheet requirements are defined, and furture areas of research are identified. Silicon sheet material characteristics that limit cell efficiencies and yields were described as well as the criteria for the ideal sheet-growth method. The device engineers wish list to the material engineer included: silicon sheet with long minority carrier lifetime that is uniform throughout the sheet, and which doesn't change during processing; and sheet material that stays flat throughout device processing, has uniform good mechanical strength, and is low cost. Impurities in silicon solar cells depreciate cell performance by reducing diffusion length and degrading junctions. The impurity behavior, degradation mechanisms, and variations in degradation threshold with diffusion length for silicon solar cells were described.

  3. The development of an inspection system for defects in silicon crystal growth

    NASA Astrophysics Data System (ADS)

    Liu, Ya-Cheng; Tsai, Hsin-Yi; Hung, Min-Wei; Huang, Kuo-Cheng

    2013-03-01

    This study presents an inspection system to detect the growth defects of silicon crystals that comprise a CCD camera, an LED light source, and power modulation. The defects on multicrystalline silicon can be observed clearly while the silicon wafer were irradiated by the red LED light at a small lighting angle (i.e., 20-30°). However, the growth defects on monocrystalline silicon wafer were difficult to observe because of it low image intensity. And then, the growth defects image was significantly enhanced when the wafer was illuminated by a white LED (WLED) and rotated at a specific angle (i.e., 23°). The experimental results showed that the WLED illumination system made the growth defects more easily observable than did other LED sources (i.e., red, blue, and green LEDs). In addition, the proposed inspection system can be used for on-line fast detection for quality control of monocrystalline silicon wafer.

  4. Mechanism of apatite formation on hydrogen plasma-implanted single-crystal silicon

    NASA Astrophysics Data System (ADS)

    Liu, Xuanyong; Fu, Ricky K. Y.; Chu, Paul K.; Ding, Chuanxian

    2004-10-01

    Hydrogen is implanted into single-crystal silicon wafers using plasma ion immersion implantation to improve the surface bioactivity and the mechanism of apatite formation is investigated. Our micro-Raman and transmission electron microscopy results reveal the presence of a disordered silicon surface containing Si-H bonds after hydrogen implantation. When the sample is immersed in a simulated body fluid, the Si-H bonds on the silicon wafer initially react with water to produce a negatively charged surface containing the functional group (Si-O-) that subsequently induces the formation of apatite. A good understanding of the formation mechanism of apatite on hydrogen implanted silicon is not only important from the viewpoint of biophysics but also vital to the actual use of silicon-based microchips and MEMS inside a human body.

  5. Ultrasonic study of vacancy in single crystal silicon at low temperatures

    NASA Astrophysics Data System (ADS)

    Akatsu, M.; Goto, T.; Y-Kaneta, H.; Watanabe, H.; Nemoto, Y.; Mitsumoto, K.; Baba, S.; Nagai, Y.; Nakamura, S.

    2009-03-01

    We have performed ultrasonic measurements at low temperatures in order to investigate vacancy in single crystal silicon. The longitudinal elastic constants of non-doped and boron-doped silicon grown by a floating zone method exhibit appreciable softening with decreasing temperature down to 20 mK. The softening of boron-doped silicon is easily suppressed in applied magnetic field up to 2 T, while the softening of non-doped silicon is robust in fields even up to 16 T. The softening of elastic constants in high-purity crystalline silicon is certainly caused by the coupling of elastic strains of the ultrasonic waves to electric quadrupoles of the vacancy orbital.

  6. Sequential Purification and Crystal Growth for the Production of Low Cost Silicon Substrates

    SciTech Connect

    Liaw, M; D'Aragona, F S

    1980-08-01

    The objective of this program is to identify and develop low cost precessing for fabricating large grain size polycrystalline silicon substrates. Metallurgical grade silicon (MG-Si) is chosen as the starting material for sequential purification and crystal growth. Several purification techniques have been studied. They include (1) acid leaching with HCl, (2) physical separation of insoluble impurities, (3) reactive gas treatment of molten silicon, and (4) slagging using a mixed-oxide slag. In this quarterly period purification by vaccum treatment and by impurity redistribution using ingot pulling has been studied. Procedures and results are reported.

  7. Comment on "Investigations of interstitial generations near growth interface depending on crystal pulling rates during CZ silicon growth by detaching from the melt" by T. Abe et al. [J. Cryst. Growth 434 (2016) 128-137] and on "Observations of secondary defects and vacancies in CZ silicon crystals detached from melt using four different types of characterization technique" by T. Abe et al. [J. Cryst. Growth 436 (2016) 23-33

    NASA Astrophysics Data System (ADS)

    Vanhellemont, Jan; Kamiyama, Eiji; Nakamura, Kozo; Sueoka, Koji

    2016-09-01

    In the papers mentioned above, Abe et al. published beautiful experimental data on intrinsic point defect related defect distributions in detached growing Czochralski Si crystals with and without additional thermal anneals [1,2]. The new fact compared to the results published before [3] is that the crystals are pulled with decreasing speed before detaching, resulting in crystals that vary along the axis from initially vacancy-rich to interstitial-rich for the slowest pulling speed before detaching.

  8. Absolute Measurement of Lattice Spacing d(220) in Floating Zone Silicon Crystal

    NASA Astrophysics Data System (ADS)

    Fujimoto, Hiroyuki; Nakayama, Kan; Tanaka, Mitsuru; Misawa, Guento

    1995-09-01

    The lattice spacing d220 of a silicon crystal of National Research Laboratory of Metrology has been measured with a new combined X-ray and optical interferometer, with relative uncertainty of 0.16 ppm. This value is in good agreement with other reported values, whereas the ratio of molar mass M to density ρ measured for this crystal shows discrepancy of around 3 ppm from previously reported ratios. It seems that the conventional route to determining the Avogadro constant from M, ρ and d220 will require a new characterization technique to estimate the number of silicon atoms in a unit cell volume.

  9. Silicon ribbon study program. [dendritic crystals for use in solar cells

    NASA Technical Reports Server (NTRS)

    Seidensticker, R. G.; Duncan, C. S.

    1975-01-01

    The feasibility is studied of growing wide, thin silicon dendritic web for solar cell fabrication and conceptual designs are developed for the apparatus required. An analysis of the mechanisms of dendritic web growth indicated that there were no apparent fundamental limitations to the process. The analysis yielded quantitative guidelines for the thermal conditions required for this mode of crystal growth. Crucible designs were then investigated: the usual quartz crucible configurations and configurations in which silicon itself is used for the crucible. The quartz crucible design is feasible and is incorporated into a conceptual design for a laboratory scale crystal growth facility capable of semi-automated quasi-continuous operation.

  10. Polycrystalline silicon thin-film solar cell prepared by the solid phase crystallization (SPC) method

    SciTech Connect

    Baba, T.; Matsuyama, T.; Sawada, T.; Takahama, T.; Wakisaka, K.; Tsuda, S.; Nakano, S.

    1994-12-31

    A solid phase crystallization (SPC) method was applied to the fabrication of thin-film polycrystalline silicon (poly-Si) for solar cells for the first time. Among crystalline silicon solar cells crystallized at a low temperature of less than 600 C, the world`s highest conversion efficiency of 8.5% was achieved in a solar cell using thin-film poly-Si with only 10 {micro}m thickness prepared by the SPC method. This solar cell showed high photosensitivity in the long-wavelength region of more than 800 nm and also exhibited no light-induced degradation after light exposure.

  11. Study of silicon strip waveguides with diffraction gratings and photonic crystals tuned to a wavelength of 1.5 µm

    SciTech Connect

    Barabanenkov, M. Yu. Vyatkin, A. F.; Volkov, V. T.; Gruzintsev, A. N.; Il’in, A. I.; Trofimov, O. V.

    2015-12-15

    Single-mode submicrometer-thick strip waveguides on silicon-on-insulator substrates, fabricated by silicon-planar-technology methods are considered. To solve the problem of 1.5-µm wavelength radiation input-output and its frequency filtering, strip diffraction gratings and two-dimensional photonic crystals are integrated into waveguides. The reflection and transmission spectra of gratings and photonic crystals are calculated. The waveguide-mode-attenuation coefficient for a polycrystalline silicon waveguide is experimentally estimated.

  12. Wear particles of single-crystal silicon carbide in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1980-01-01

    Sliding friction experiments, conducted in vacuum with silicon carbide /000/ surface in contact with iron based binary alloys are described. Multiangular and spherical wear particles of silicon carbide are observed as a result of multipass sliding. The multiangular particles are produced by primary and secondary cracking of cleavage planes /000/, /10(-1)0/, and /11(-2)0/ under the Hertzian stress field or local inelastic deformation zone. The spherical particles may be produced by two mechanisms: (1) a penny shaped fracture along the circular stress trajectories under the local inelastic deformation zone, and (2) attrition of wear particles.

  13. Properties of reinforced carbon nanotube and laser-crystallized silicon films

    NASA Astrophysics Data System (ADS)

    Semler, Matthew Roy

    Flexible electronics are anticipated to be one of the next technological advancements of electronic devices. The enhanced durability, light-weight nature, and conformity of flexible electronics are desired properties in a variety of fields and are anticipated to reduce production costs. Two promising materials for use in flexible electronics are carbon nanotube (CNT) films and laser-crystallized thin silicon films. CNTs are in their infancy in respect to their presence in electronic devices; however their superb mechanical and electronic properties make them ideal candidates for flexible electronics. Thin silicon films are a natural transition from bulk silicon as bulk silicon has been the preferred material in electronics since the dawn of the transistor. Thin-film silicon retains the well-studied electronic properties of bulk silicon; however, it becomes flexible as it is thinned. Obstacles to the application of both these materials in flexible electronics nonetheless exist. Compressed CNT films undergo strain softening---a mechanism in which the CNT film restructures itself in response to an applied strain, which reduces the Young's modulus and electronic conductivity. In this dissertation, thin CNT films are capped with a thin polymer layer, with the aim to mitigate strain softening through excluded volume interactions in a bilayer format that serves as a paradigm for more sophisticated device relevant settings. More specifically, metallic and semiconducting CNT films of different thicknesses are capped with a polystyrene film of comparable thickness, and the mechanical and electronic strain response of the capped CNT film is examined and discussed. Ultrathin silicon films cannot be grown as monocrystalline silicon, so amorphous silicon films must be deposited and crystallized. Laser crystallization is an alternative to oven annealing and has a faster throughput. In this dissertation, amorphous silicon films of various thicknesses were deposited on several

  14. Study of silicon crystal surface formation based on molecular dynamics simulation results

    NASA Astrophysics Data System (ADS)

    Barinovs, G.; Sabanskis, A.; Muiznieks, A.

    2014-04-01

    The equilibrium shape of <110>-oriented single crystal silicon nanowire, 8 nm in cross-section, was found from molecular dynamics simulations using LAMMPS molecular dynamics package. The calculated shape agrees well to the shape predicted from experimental observations of nanocavities in silicon crystals. By parametrization of the shape and scaling to a known value of {111} surface energy, Wulff form for solid-vapor interface was obtained. The Wulff form for solid-liquid interface was constructed using the same model of the shape as for the solid-vapor interface. The parameters describing solid-liquid interface shape were found using values of surface energies in low-index directions known from published molecular dynamics simulations. Using an experimental value of the liquid-vapor interface energy for silicon and graphical solution of Herring's equation, we constructed angular diagram showing relative equilibrium orientation of solid-liquid, liquid-vapor and solid-vapor interfaces at the triple phase line. The diagram gives quantitative predictions about growth angles for different growth directions and formation of facets on the solid-liquid and solid-vapor interfaces. The diagram can be used to describe growth ridges appearing on the crystal surface grown from a melt. Qualitative comparison to the ridges of a Float zone silicon crystal cone is given.

  15. Anisotropy and crystal orientation of silicon--application to the modeling of a bent mirror

    SciTech Connect

    Zhang Lin

    2010-06-23

    Matrix formula and MATLAB algorithm are proposed to calculate the stiffness coefficient matrix C, the Young's modulus, shear modulus and Poisson ratio for the silicon crystal in any orientation. Results for Si(110) and Si(311) are given as an example. The anisotropic material properties of the silicon have been used in the mirror width profile optimization for the nano-imaging end-station ID22NI at the ESRF. As the Si(110) is used as the substrate of this multilayer coated KB mirror, the silicon crystal axis [0 0 1] is proposed to orient to the mirror axis. This is the case to have low stress in the mirror and low bending forces from actuators.

  16. Single crystal silicon capacitors with low microwave loss in the single photon regime

    NASA Astrophysics Data System (ADS)

    Weber, S. J.; Murch, K. W.; Slichter, D. H.; Vijay, R.; Siddiqi, I.

    2011-04-01

    We have fabricated superconducting microwave resonators in a lumped element geometry using single crystal silicon dielectric parallel plate capacitors with C >2 pF. Aluminum devices with resonant frequencies between 4.0 and 6.5 GHz exhibited an average internal quality factor Qi of 2×105 in the single photon excitation regime at T =20 mK. Attributing the observed loss solely to the capacitive element, our measurements place an upper bound on the loss tangent of the silicon dielectric layer of tan δi=5×10-6. This level of loss is an order of magnitude lower than is currently observed in structures incorporating amorphous dielectric materials, thus making single crystal silicon capacitors an attractive, robust route for realizing long-lived quantum circuits.

  17. Friction and wear behavior of single-crystal silicon carbide in sliding contact with various metals

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted with single-crystal silicon carbide in contact with various metals. Results indicate the coefficient of friction is related to the relative chemical activity of the metals. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to silicon carbide. The chemical activity of the metal and its shear modulus may play important roles in metal transfer, the form of the wear debris and the surface roughness of the metal wear scar. The more active the metal, and the less resistance to shear, the greater the transfer to silicon carbide and the rougher the wear scar on the surface of the metal. Hexagon shaped cracking and fracturing formed by cleavage of both prismatic and basal planes is observed on the silicon carbide surface.

  18. Thermal load leveling during silicon crystal growth from a melt using anisotropic materials

    DOEpatents

    Carlson, Frederick M.; Helenbrook, Brian T.

    2016-10-11

    An apparatus for growing a silicon crystal substrate comprising a heat source, an anisotropic thermal load leveling component, a crucible, and a cold plate component is disclosed. The anisotropic thermal load leveling component possesses a high thermal conductivity and may be positioned atop the heat source to be operative to even-out temperature and heat flux variations emanating from the heat source. The crucible may be operative to contain molten silicon in which the top surface of the molten silicon may be defined as a growth interface. The crucible may be substantially surrounded by the anisotropic thermal load leveling component. The cold plate component may be positioned above the crucible to be operative with the anisotropic thermal load leveling component and heat source to maintain a uniform heat flux at the growth surface of the molten silicon.

  19. Surface roughening during plasma-enhanced chemical-vapor deposition of hydrogenated amorphous silicon on crystal silicon substrates

    NASA Astrophysics Data System (ADS)

    Tanenbaum, D. M.; Laracuente, A. L.; Gallagher, Alan

    1997-08-01

    The morphology of a series of thin films of hydrogenated amorphous silicon (a-Si:H) grown by plasma-enhanced chemical-vapor deposition (PECVD) is studied using scanning tunneling microscopy. The substrates were atomically flat, oxide-free, single-crystal silicon. Films were grown in a PECVD chamber directly connected to a surface analysis chamber with no air exposure between growth and measurement. The homogeneous roughness of the films increases with film thickness. The quantification of this roughening is achieved by calculation of both rms roughness and lateral correlation lengths of the a-Si:H film surface from the height difference correlation functions of the measured topographs. Homogeneous roughening occurs over the film surface due to the collective behavior of the flux of depositing radical species and their interactions with the growth surface.

  20. Surface roughening during plasma-enhanced chemical-vapor deposition of hydrogenated amorphous silicon on crystal silicon substrates

    SciTech Connect

    Tanenbaum, D.M.; Laracuente, A.L.; Gallagher, A.

    1997-08-01

    The morphology of a series of thin films of hydrogenated amorphous silicon (a-Si:H) grown by plasma-enhanced chemical-vapor deposition (PECVD) is studied using scanning tunneling microscopy. The substrates were atomically flat, oxide-free, single-crystal silicon. Films were grown in a PECVD chamber directly connected to a surface analysis chamber with no air exposure between growth and measurement. The homogeneous roughness of the films increases with film thickness. The quantification of this roughening is achieved by calculation of both rms roughness and lateral correlation lengths of the a-Si:H film surface from the height difference correlation functions of the measured topographs. Homogeneous roughening occurs over the film surface due to the collective behavior of the flux of depositing radical species and their interactions with the growth surface. {copyright} {ital 1997} {ital The American Physical Society}

  1. Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon

    NASA Astrophysics Data System (ADS)

    Zeng, Y.; Roland, I.; Checoury, X.; Han, Z.; El Kurdi, M.; Sauvage, S.; Gayral, B.; Brimont, C.; Guillet, T.; Mexis, M.; Semond, F.; Boucaud, P.

    2015-02-01

    We demonstrate second harmonic generation in a gallium nitride photonic crystal cavity embedded in a two-dimensional free-standing photonic crystal platform on silicon. The photonic crystal nanocavity is optically pumped with a continuous-wave laser at telecom wavelengths in the transparency window of the nitride material. The harmonic generation is evidenced by the spectral range of the emitted signal, the quadratic power dependence vs. input power, and the spectral dependence of second harmonic signal. The harmonic emission pattern is correlated to the harmonic polarization generated by the second-order nonlinear susceptibilities χzxx (2 ), χzyy (2 ) and the electric fields of the fundamental cavity mode.

  2. XPS, AES and friction studies of single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The surface chemistry and friction behavior of a single crystal silicon carbide surface parallel to the 0001 plane in sliding contact with iron at various temperatures to 1500 C in a vacuum of 3 x 10 nPa are investigated using X-ray photoelectron and Auger electron spectroscopy. Results show that graphite and carbide-type carbon are seen primarily on the silicon carbide surface in addition to silicon at temperatures to 800 C by both types of spectroscopy. The coefficients of friction for iron sliding against a silicon carbide surface parallel to the 0001 plane surface are found to be high at temperatures up to 800 C, with the silicon and carbide-type carbon at maximum intensity in the X-ray photoelectron spectroscopy at 800 C. The concentration of the graphite increases rapidly on the surface as the temperature is increased above 800 C, while the concentrations of the carbide-type carbon and silicon decrease rapidly and this presence of graphite is accompanied by a significant decrease in friction. Preheating the surfaces to 1500 C also gives dramatically lower coefficients of friction when reheating in the sliding temperature range of from room temperature to 1200 C, with this reduction in friction due to the graphite layer on the silicon carbide surface.

  3. Friction, deformation and fracture of single-crystal silicon carbide

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1977-01-01

    Friction experiments were conducted with hemispherical and conical diamond riders sliding on the basal plane of silicon carbide. The results indicate that, when deformation is primarily elastic, the friction does not depend on crystallographic orientation and there is no detectable fracture or cracking. When, however, plastic deformation occurs, silicon carbide exhibits anisotropic friction and deformation behavior. Surface fracture crack patterns surrounding wear tracks are observed to be of three types. The crack-geometries of two types are generally independent of orientation, the third crack, however, depends on the orientation. All surface cracks extend into subsurface. Anisotropic friction, deformation and fracture on the basal plane are primarily controlled by the slip system and cleavage.

  4. Deactivation of metastable single-crystal silicon hyperdoped with sulfur

    SciTech Connect

    Simmons, C. B.; Akey, Austin J.; Sullivan, Joseph T.; Buonassisi, Tonio; Krich, Jacob J.; Recht, Daniel; Aziz, Michael J.

    2013-12-28

    Silicon supersaturated with sulfur by ion implantation and pulsed laser melting exhibits broadband optical absorption of photons with energies less than silicon's band gap. However, this metastable, hyperdoped material loses its ability to absorb sub-band gap light after subsequent thermal treatment. We explore this deactivation process through optical absorption and electronic transport measurements of sulfur-hyperdoped silicon subject to anneals at a range of durations and temperatures. The deactivation process is well described by the Johnson-Mehl-Avrami-Kolmogorov framework for the diffusion-mediated transformation of a metastable supersaturated solid solution, and we find that this transformation is characterized by an apparent activation energy of E{sub A}=1.7 ± 0.1 eV. Using this activation energy, the evolution of the optical and electronic properties for all anneal duration-temperature combinations collapse onto distinct curves as a function of the extent of reaction. We provide a mechanistic interpretation of this deactivation based on short-range thermally activated atomic movements of the dopants to form sulfur complexes.

  5. Solar-Grade Silicon from Metallurgical-Grade Silicon Via Iodine Chemical Vapor Transport Purification: Preprint

    SciTech Connect

    Ciszek, T. F.; Wang, T. H.; Page, M. R.; Bauer, R. E.; Landry, M. D.

    2002-05-01

    This conference paper describes the atmospheric-pressure in an ''open'' reactor, SiI2 transfers from a hot (>1100C) Si source to a cooler (>750C) Si substrate and decomposes easily via 2SiI2 Si+ SiI4 with up to 5?m/min deposition rate. SiI4 returns to cyclically transport more Si. When the source is metallurgical-grade Si, impurities can be effectively removed by three mechanisms: (1) differing free energies of formation in forming silicon and impurity iodides; (2) distillation; and (3) differing standard free energies of formation during deposition. Distillation has been previously reported. Here, we focused on mechanisms (1) and (3). We made feedstock, analyzed the impurity levels, grew Czochralski single crystals, and evaluated crystal and photovoltaic properties. Cell efficiencies of 9.5% were obtained. Incorporating distillation (step 2) should increase this to a viable level.

  6. Growth and characterization of Czochralski-grown n and p-type GaAs for space solar cell substrates

    NASA Technical Reports Server (NTRS)

    Chen, R. T.

    1983-01-01

    Progress in LEC (liquid encapsulated Czochralski) crystal growth techniques for producing high-quality, 3-inch-diameter, n- and p-type GaAs crystals suitable for solar cell applications is described. The LEC crystals with low dislocation densities and background impurities, high electrical mobilities, good dopant uniformity, and long diffusion lengths were reproducibly grown through control of the material synthesis, growth and doping conditions. The capability for producing these large-area, high-quality substrates should positively impact the manufacturability of highly efficiency, low cost, radiation-hard GaAs solar cells.

  7. Nematic and blue phase liquid crystals for temperature stabilization and active optical tuning of silicon photonic devices (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Ptasinski, Joanna N.; Khoo, Iam Choon; Fainman, Yeshaiahu

    2015-10-01

    We describe the underlying theories and experimental demonstrations of passive temperature stabilization of silicon photonic devices clad in nematic liquid crystal mixtures, and active optical tuning of silicon photonic resonant structures combined with dye-doped nematic and blue phase liquid crystals. We show how modifications to the resonator device geometry allow for not only enhanced tuning of the resonator response, but also aid in achieving complete athermal operations of silicon photonic circuits. [Ref.: I.C. Khoo, "DC-field-assisted grating formation and nonlinear diffractions in methyl-red dye-doped blue phase liquid crystals," Opt. Lett. 40, 60-63 (2015); J. Ptasinski, I.C. Khoo, and Y. Fainman, "Enhanced optical tuning of modified-geometry resonators clad in blue phase liquid crystals," Opt. Lett. 39, 5435-5438 (2014); J. Ptasinski, I.C. Khoo, and Y. Fainman, "Passive Temperature Stabilization of Silicon Photonic Devices Using Liquid Crystals," Materials 7(3), 2229-2241 (2014)].

  8. Electrical control of silicon photonic crystal cavity by graphene.

    PubMed

    Majumdar, Arka; Kim, Jonghwan; Vuckovic, Jelena; Wang, Feng

    2013-02-13

    The efficient conversion of an electrical signal to an optical signal in nanophotonics enables solid state integration of electronics and photonics. The combination of graphene with photonic crystals is promising for electro-optic modulation. In this paper, we demonstrate that by electrostatic gating a single layer of graphene on top of a photonic crystal cavity, the cavity resonance can be changed significantly. A ~2 nm change in the cavity resonance line width and almost 400% (6 dB) change in resonance reflectivity is observed. In addition, our analysis shows that a graphene-photonic crystal device can potentially be useful for a high speed and low power absorptive and refractive modulator, while maintaining a small physical footprint.

  9. Silicon-based filters, resonators and acoustic channels with phononic crystal structures

    NASA Astrophysics Data System (ADS)

    Huang, Zi-Gui

    2011-06-01

    This paper discusses the phenomenon of phononic crystal silicon-based filters, resonators and acoustic channels structured in geometrical periodic arrays created by a single silicon material. Component structured geometrical periodic array refers to a structure of square stubbed rods arranged in repeated arrays on a silicon plate. The study discovered that the band gap of the phononic crystal structure can be modulated under different heights and rotational angles of periodically arrayed square stubbed rods. In addition to band gap modulation, we used the finite element method (FEM) and supercell techniques to analyse the resonance characteristics of defect-containing phononic crystal structures with a larger band gap size design. In addition, the paper also investigated the effects on acoustic channels. Previous studies have already analysed defect-containing resonator and channel phenomenon by the plane-wave expansion method with supercell techniques. However, the FEM can solve numerical issues of extreme difficulty to reach convergence. The results of this study elaborated on the manufacturing feasibility of silicon-based acoustic resonance and filter devices under a complementary metal-oxide-semiconductor synchronization process.

  10. Photoluminescence properties and crystallization of silicon quantum dots in hydrogenated amorphous Si-rich silicon carbide films

    SciTech Connect

    Wen, Guozhi; Zeng, Xiangbin Wen, Xixin; Liao, Wugang

    2014-04-28

    Silicon quantum dots (QDs) embedded in hydrogenated amorphous Si-rich silicon carbide (α-SiC:H) thin films were realized by plasma-enhanced chemical vapor deposition process and post-annealing. Fluorescence spectroscopy was used to characterize the room-temperature photoluminescence properties. X-ray photoelectron spectroscopy was used to analyze the element compositions and bonding configurations. Ultraviolet visible spectroscopy, Raman scattering, and high-resolution transmission electron microscopy were used to display the microstructural properties. Photoluminescence measurements reveal that there are six emission sub-bands, which behave in different ways. The peak wavelengths of sub-bands P1, P2, P3, and P6 are pinned at about 425.0, 437.3, 465.0, and 591.0 nm, respectively. Other two sub-bands, P4 is red-shifted from 494.6 to 512.4 nm and P5 from 570.2 to 587.8 nm with temperature increasing from 600 to 900 °C. But then are both blue-shifted, P4 to 500.2 nm and P5 to 573.8 nm from 900 to 1200 °C. The X-ray photoelectron spectroscopy analysis shows that the samples are in Si-rich nature, Si-O and Si-N bonds consumed some silicon atoms. The structure characterization displays that a separation between silicon phase and SiC phase happened; amorphous and crystalline silicon QDs synthesized with increasing the annealing temperature. P1, P2, P3, and P6 sub-bands are explained in terms of defect-related emission, while P4 and P5 sub-bands are explained in terms of quantum confinement effect. A correlation between the peak wavelength shift, as well as the integral intensity of the spectrum and crystallization of silicon QDs is supposed. These results help clarify the probable luminescence mechanisms and provide the possibility to optimize the optical properties of silicon QDs in Si-rich α-SiC: H materials.

  11. Liquid gallium cooling of silicon crystals in high intensity photon beams (invited)

    NASA Astrophysics Data System (ADS)

    Smither, R. K.; Forster, G. A.; Bilderback, D. H.; Bedzyk, M.; Finkelstein, K.; Henderson, C.; White, J.; Berman, L. E.; Stefan, P.; Oversluizen, T.

    1989-07-01

    The high-brilliance, insertion-device-based photon beams of the next generation of synchrotron sources (Argonne's APS and Grenoble's ESRF) will deliver large thermal loads (1-10 kW) to the first optical elements. Considering the problems that present synchrotron users are experiencing with beams from recently installed insertion devices, new and improved methods of cooling these first optical elements, particularly when they are diffraction crystals, are clearly needed. A series of finite element calculations were performed to test the efficiency of new cooling geometries and various cooling fluids. The best results were obtained with liquid Ga metal flowing in channels just below the surface of the crystal. Ga was selected because of its good thermal conductivity and thermal capacity, low melting point, high boiling point, low kinetic viscosity, and very low vapor pressure. Its very low vapor pressure, even at elevated temperatures, makes it especially attractive in UHV conditions. A series of experiments were conducted at CHESS in February of 1988 that compared liquid gallium-cooled silicon diffraction crystals with water-cooled crystals. A six-pole wiggler beam was used to perform these tests on three different Si crystals, two with new cooling geometries and the one presently in use. A special high-pressure electromagnetic induction pump, recently developed at Argonne, was used to circulate the liquid gallium through the silicon crystals. In all experiments, the specially cooled crystal was used as the first crystal in a two crystal monochromator. An infrared camera was used to monitor the thermal profiles and correlated them with rocking curve measurements. A second set of cooling experiments were conducted in June of 1988 that used the intense, highly collimated beam from the newly installed ANL/CHESS undulator. Tests were performed on two new Ga-cooled Si crystals and compared with the standard water-cooled Si crystal. One of the crystals had cooling

  12. Liquid crystal over silicon device characteristics for holographic projection of high-definition television images.

    PubMed

    Georgiou, A; Christmas, J; Moore, J; Jeziorska-Chapman, A; Davey, A; Collings, N; Crossland, W A

    2008-09-10

    We discuss some fundamental characteristics of a phase-modulating device suitable to holographically project a monochrome video frame with 1280 x 720 resolution. The phase-modulating device is expected to be a liquid crystal over silicon chip with silicon area similar to that of commercial devices. Its basic characteristics, such as number of pixels, bits per pixel, and pixel dimensions, are optimized in terms of image quality and optical efficiency. Estimates of the image quality are made from the noise levels and contrast, while efficiency is calculated by considering the beam apodization, device dead space, diffraction losses, and the sinc envelope.

  13. Processing experiments on non-Czochralski silicon sheet

    NASA Technical Reports Server (NTRS)

    Pryor, R. A.; Grenon, L. A.; Sakiotis, N. G.; Pastirik, E. M.; Sparks, T. O.; Legge, R. N.

    1981-01-01

    A program is described which supports and promotes the development of processing techniques which may be successfully and cost-effectively applied to low-cost sheets for solar cell fabrication. Results are reported in the areas of process technology, cell design, cell metallization, and production cost simulation.

  14. Processing experiments on non-Czochralski silicon sheet. Final report

    SciTech Connect

    Pryor, R.A.; Grenon, L.A.; Sakiotis, N.G.; Pastirik, E.M.; Sparks, T.O.; Legge, R.N.

    1981-04-01

    A program is described which supports and promotes the development of processing techniques which may be successfully and cost-effectively applied to low-cost sheets for solar cell fabrication. Results are reported in the areas of process technology, cell design, cell metallization, and production cost simulation.

  15. Influence of intermediate layers on the surface condition of laser crystallized silicon thin films and solar cell performance

    NASA Astrophysics Data System (ADS)

    Höger, Ingmar; Himmerlich, Marcel; Gawlik, Annett; Brückner, Uwe; Krischok, Stefan; Andrä, Gudrun

    2016-01-01

    The intermediate layer (IL) between glass substrate and silicon plays a significant role in the optimization of multicrystalline liquid phase crystallized silicon thin film solar cells on glass. This study deals with the influence of the IL on the surface condition and the required chemical surface treatment of the crystallized silicon (mc-Si), which is of particular interest for a-Si:H heterojunction thin film solar cells. Two types of IL were investigated: sputtered silicon nitride (SiN) and a layer stack consisting of silicon nitride and silicon oxide (SiN/SiO). X-ray photoelectron spectroscopy measurements revealed the formation of silicon oxynitride (SiOxNy) or silicon oxide (SiO2) layers at the surface of the mc-Si after liquid phase crystallization on SiN or SiN/SiO, respectively. We propose that SiOxNy formation is governed by dissolving nitrogen from the SiN layer in the silicon melt, which segregates at the crystallization front during crystallization. This process is successfully hindered, when additional SiO layers are introduced into the IL. In order to achieve solar cell open circuit voltages above 500 mV, a removal of the formed SiOxNy top layer is required using sophisticated cleaning of the crystallized silicon prior to a-Si:H deposition. However, solar cells crystallized on SiN/SiO yield high open circuit voltage even when a simple wet chemical surface treatment is applied. The implementation of SiN/SiO intermediate layers facilitates the production of mesa type solar cells with open circuit voltages above 600 mV and a power conversion efficiency of 10%.

  16. Digital silicon photomultiplier readout of a new fast and bright scintillation crystal (Ce:GFAG)

    NASA Astrophysics Data System (ADS)

    Lee, Yong-Seok; Leem, Hyun-Tae; Yamamoto, Seiichi; Choi, Yong; Kamada, Kei; Yoshikawa, Akira; Park, Sang-Geon; Yeom, Jung-Yeol

    2016-10-01

    A new Gadolinium Fine Aluminum Gallate (Ce:GFAG) scintillation crystal with both high energy resolution and fast timing properties has successfully been grown. Compared to Gd3Al2Ga3O12 (Ce:GAGG), this new inorganic scintillation crystal has a high luminosity similar to and a faster decay time. In this paper, we report on the timing and energy performance results of the new GFAG scintillation crystal read out with digital silicon photomultipliers (dSiPM) for positron emission tomography (PET) application. The best coincidence resolving time (FWHM) of polished 3×3×5 mm3 crystals was 223±6 ps for GFAG crystals compared to 396±28 ps for GAGG crystals and 131±3 ps for LYSO crystals respectively. An energy resolution (511 keV peak of Na-22) of 10.9±0.2% was attained with GFAG coupled to dSiPM after correcting for saturation effect, compared to 9.5±0.3% for Ce:GAGG crystals and 11.9±0.4% for LYSO crystals respectively. It is expected that this new scintillator may be competitive in terms of overall properties such as energy resolution, timing resolution and growing (raw material) cost, compared to existing scintillators for positron emission tomography (PET).

  17. CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform.

    PubMed

    Ooka, Yuta; Tetsumoto, Tomohiro; Fushimi, Akihiro; Yoshiki, Wataru; Tanabe, Takasumi

    2015-01-01

    Progress on the fabrication of ultrahigh-Q photonic-crystal nanocavities (PhC-NCs) has revealed the prospect for new applications including silicon Raman lasers that require a strong confinement of light. Among various PhC-NCs, the highest Q has been recorded with silicon. On the other hand, microcavity is one of the basic building blocks in silicon photonics. However, the fusion between PhC-NCs and silicon photonics has yet to be exploited, since PhC-NCs are usually fabricated with electron-beam lithography and require an air-bridge structure. Here we show that a 2D-PhC-NC fabricated with deep-UV photolithography on a silica-clad silicon-on-insulator (SOI) structure will exhibit a high-Q of 2.2 × 10(5) with a mode-volume of ~ 1.7(λ/n)(3). This is the highest Q demonstrated with photolithography. We also show that this device exhibits an efficient thermal diffusion and enables high-speed switching. The demonstration of the photolithographic fabrication of high-Q silica-clad PhC-NCs will open possibility for mass-manufacturing and boost the fusion between silicon photonics and CMOS devices.

  18. Wafer-scale fabrication of plasmonic crystals from patterned silicon templates prepared by nanosphere lithography.

    PubMed

    Hall, Anthony Shoji; Friesen, Stuart A; Mallouk, Thomas E

    2013-06-12

    By combining nanosphere lithography with template stripping, silicon wafers were patterned with hexagonal arrays of nanowells or pillars. These silicon masters were then replicated in gold by metal evaporation, resulting in wafer-scale hexagonal gratings for plasmonic applications. In the nanosphere lithography step, two-dimensional colloidal crystals of 510 nm diameter polystyrene spheres were assembled at the air-water interface and transferred to silicon wafers. The spheres were etched in oxygen plasma in order to define their size for masking of the silicon wafer. For fabrication of metallic nanopillar arrays, an alumina film was grown over the nanosphere layer and the spheres were then removed by bath sonication. The well pattern was defined in the silicon wafer by reactive ion etching in a chlorine plasma. For fabrication of metal nanowell arrays, the nanosphere monolayer was used directly as a mask and exposed areas of the silicon wafer were plasma-etched anisotropically in SF6/Ar. Both techniques could be used to produce subwavelength metal replica structures with controlled pillar or well diameter, depth, and profile, on the wafer scale, without the use of direct writing techniques to fabricate masks or masters.

  19. CMOS compatible high-Q photonic crystal nanocavity fabricated with photolithography on silicon photonic platform

    PubMed Central

    Ooka, Yuta; Tetsumoto, Tomohiro; Fushimi, Akihiro; Yoshiki, Wataru; Tanabe, Takasumi

    2015-01-01

    Progress on the fabrication of ultrahigh-Q photonic-crystal nanocavities (PhC-NCs) has revealed the prospect for new applications including silicon Raman lasers that require a strong confinement of light. Among various PhC-NCs, the highest Q has been recorded with silicon. On the other hand, microcavity is one of the basic building blocks in silicon photonics. However, the fusion between PhC-NCs and silicon photonics has yet to be exploited, since PhC-NCs are usually fabricated with electron-beam lithography and require an air-bridge structure. Here we show that a 2D-PhC-NC fabricated with deep-UV photolithography on a silica-clad silicon-on-insulator (SOI) structure will exhibit a high-Q of 2.2 × 105 with a mode-volume of ~1.7(λ/n)3. This is the highest Q demonstrated with photolithography. We also show that this device exhibits an efficient thermal diffusion and enables high-speed switching. The demonstration of the photolithographic fabrication of high-Q silica-clad PhC-NCs will open possibility for mass-manufacturing and boost the fusion between silicon photonics and CMOS devices. PMID:26086849

  20. Liquid gallium cooling of silicon crystals in high intensity photon beams

    SciTech Connect

    Smither, R. K.; Forster, G. A.; Bilderback, D. H.; Bedzyk, M.; Finkelstein, K.; Henderson, C.; White, J.; Berman, L. E.; Stefan, P.; Oversluizen, T.; and others

    1989-07-01

    The high-brilliance, insertion-device-based photon beams of the next generation of synchrotron sources (Argonne's APS and Grenoble's ESRF) will deliver large thermal loads (1--10 kW) to the first optical elements. Considering the problems that present synchrotron users are experiencing with beams from recently installed insertion devices, new and improved methods of cooling these first optical elements, particularly when they are diffraction crystals, are clearly needed. A series of finite element calculations were performed to test the efficiency of new cooling geometries and various cooling fluids. The best results were obtained with liquid Ga metal flowing in channels just below the surface of the crystal. Ga was selected because of its good thermal conductivity and thermal capacity, low melting point, high boiling point, low kinetic viscosity, and very low vapor pressure. Its very low vapor pressure, even at elevated temperatures, makes it especially attractive in UHV conditions. A series of experiments were conducted at CHESS in February of 1988 that compared liquid gallium-cooled silicon diffraction crystals with water-cooled crystals. A six-pole wiggler beam was used to perform these tests on three different Si crystals, two with new cooling geometries and the one presently in use. A special high-pressure electromagnetic induction pump, recently developed at Argonne, was used to circulate the liquid gallium through the silicon crystals. In all experiments, the specially cooled crystal was used as the first crystal in a two crystal monochromator. An infrared camera was used to monitor the thermal profiles and correlated them with rocking curve measurements. A second set of cooling experiments were conducted in June of 1988 that used the intense, highly collimated beam from the newly installed ANL/CHESS undulator.

  1. Theory of High Frequency Rectification by Silicon Crystals

    DOE R&D Accomplishments Database

    Bethe, H. A.

    1942-10-29

    The excellent performance of British "red dot" crystals is explained as due to the knife edge contact against a polished surface. High frequency rectification depends critically on the capacity of the rectifying boundary layer of the crystal, C. For high conversion efficiency, the product of this capacity and of the "forward" (bulk) resistance R {sub b} of the crystal must be small. For a knife edge, this product depends primarily on the breadth of the knife edge and very little upon its length. The contact can therefore have a rather large area which prevents burn-out. For a wavelength of 10 cm. the computations show that the breadth of the knife edge should be less than about 10 {sup -3} cm. For a point contact the radius must be less than 1.5 x 10 {sup -3} cm. and the resulting small area is conducive to burn-out. The effect of "tapping" is probably to reduce the area of contact. (auth)

  2. Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching

    NASA Astrophysics Data System (ADS)

    Li, Zhiqin; Chen, Yiqin; Zhu, Xupeng; Zheng, Mengjie; Dong, Fengliang; Chen, Peipei; Xu, Lihua; Chu, Weiguo; Duan, Huigao

    2016-09-01

    Single-crystal silicon nanostructures have attracted much attention in recent years due in part to their unique optical properties. In this work, we demonstrate direct fabrication of single-crystal silicon nanotubes with sub-10 nm walls which show low reflectivity. The fabrication was based on a cryogenic inductively coupled plasma reactive ion etching process using high-resolution hydrogen silsesquioxane nanostructures as the hard mask. Two main etching parameters including substrate low-frequency power and SF6/O2 flow rate ratio were investigated to determine the etching mechanism in the process. With optimized etching parameters, high-aspect-ratio silicon nanotubes with smooth and vertical sub-10 nm walls were fabricated. Compared to commonly-used antireflection silicon nanopillars with the same feature size, the densely packed silicon nanotubes possessed a lower reflectivity, implying possible potential applications of silicon nanotubes in photovoltaics.

  3. Fabrication of single-crystal silicon nanotubes with sub-10 nm walls using cryogenic inductively coupled plasma reactive ion etching.

    PubMed

    Li, Zhiqin; Chen, Yiqin; Zhu, Xupeng; Zheng, Mengjie; Dong, Fengliang; Chen, Peipei; Xu, Lihua; Chu, Weiguo; Duan, Huigao

    2016-09-01

    Single-crystal silicon nanostructures have attracted much attention in recent years due in part to their unique optical properties. In this work, we demonstrate direct fabrication of single-crystal silicon nanotubes with sub-10 nm walls which show low reflectivity. The fabrication was based on a cryogenic inductively coupled plasma reactive ion etching process using high-resolution hydrogen silsesquioxane nanostructures as the hard mask. Two main etching parameters including substrate low-frequency power and SF6/O2 flow rate ratio were investigated to determine the etching mechanism in the process. With optimized etching parameters, high-aspect-ratio silicon nanotubes with smooth and vertical sub-10 nm walls were fabricated. Compared to commonly-used antireflection silicon nanopillars with the same feature size, the densely packed silicon nanotubes possessed a lower reflectivity, implying possible potential applications of silicon nanotubes in photovoltaics.

  4. Investigating reliability attributes of silicon photovoltaic cells - An overview

    NASA Technical Reports Server (NTRS)

    Royal, E. L.

    1982-01-01

    Reliability attributes are being developed on a wide variety of advanced single-crystal silicon solar cells. Two separate investigations: cell-contact integrity (metal-to-silicon adherence), and cracked cells identified with fracture-strength-reducing flaws are discussed. In the cell-contact-integrity investigation, analysis of contact pull-strength data shows that cell types made with different metallization technologies, i.e., vacuum, plated, screen-printed and soldered, have appreciably different reliability attributes. In the second investigation, fracture strength was measured using Czochralski wafers and cells taken at various stages of processing and differences were noted. Fracture strength, which is believed to be governed by flaws introduced during wafer sawing, was observed to improve (increase) after chemical polishing and other process steps that tend to remove surface and edge flaws.

  5. Optical characterization of alcohol-infiltrated one-dimensional silicon photonic crystals.

    PubMed

    Barillaro, Giuseppe; Merlo, Sabina; Strambini, Lucanos M

    2009-06-15

    In this work, experimental results on the optical characterization of alcohol-infiltrated silicon/air one-dimensional photonic crystals (1D-PhCs), fabricated by electrochemical micromachining of silicon, are presented. The spectral reflectivity of high-order hybrid 1D-PhCs with a spatial period of 8 microm was measured, in the wavelength range 1.0-1.7 microm, when alcohols (ethanol and isopropanol) substitute air inside the trenches. A reliable redshift is observed in the presence of alcohols, with respect to air, which allows one to discriminate the refractive index difference between the alcohols. Experimental data are in good agreement with numerical results calculated by using the characteristic matrix method, modified to take into account surface roughness of silicon walls.

  6. Thermoreflectance-based in-depth stress distribution measurement technique for single-crystal silicon structures

    NASA Astrophysics Data System (ADS)

    Miyake, Shugo; Kato, Takaaki; Taguchi, Hideyuki; Namazu, Takahiro

    2016-06-01

    In this paper, we suggest a new stress measurement technique based on the thermoreflectance method for the estimation of the in-depth stress distribution of fabricated silicon devices. Changing the modulated intensity of a heating laser beam of the frequency-domain thermoreflectance method (FD-TRM) can vary the estimation depth optionally. We developed a measurement system on the basis of the FD-TRM and demonstrated in-depth stress measurement for a single-crystal silicon (SCS) sample. The result measured at a modulation frequency of 3 MHz showed the phase distribution of the TR signal corresponding to the stress distribution determined by 632-nm-excited Raman spectroscopy. In addition, it was found that the phase distribution changed depending on the modulation frequency. The FD-TRM can be a powerful technique for estimating the in-depth stress distribution of silicon materials.

  7. Demonstration of two-dimensional photonic crystals based on silicon carbide.

    PubMed

    Song, Bong-Shik; Yamada, Shota; Asano, Takashi; Noda, Susumu

    2011-06-01

    We demonstrate two-dimensional photonic crystals of silicon carbide (SiC)-a wide bandgap semiconductor and one of the hardest materials-at near-infrared wavelengths. Although the refractive index of SiC is lower than that of a conventional semiconductor such as GaAs or Si, we show theoretically that a wide photonic bandgap, a broadband waveguide, and a high-quality nanocavity comparable to those of previous photonic crystals can be obtained in SiC photonic crystals. We also develop a process for fabricating SiC-based photonic crystals that experimentally show a photonic bandgap of 200 nm, a waveguide with a 40-nm bandwidth, and a nanocavity with a high quality factor of 4,500. This demonstration should stimulate further development of resilient and stable photonics at high power and high temperature analogous to SiC power electronics.

  8. High-speed light valve using an amorphous silicon photosensor and ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Takahashi, N. Shin-Ichi; Asada, Hideki; Miyahara, Masaki; Kurita, Shoichi; Kuriyama, Hiroyuki

    1987-10-01

    A novel high-speed response light valve composed of a hydrogenated amorphous silicon (a-Si:H) photosensor and a chiral smectic C phase liquid crystal is presented for the first time. This device is optically addressed. The switching between on and off states is caused by reversing the polarity of the applied voltage across the liquid crystal due to the photocurrent from the a-Si photosensor. The response time measured is about 400 microsec. The switching speed of this device is one to two orders of magnitude faster than that of the nematic liquid-crystal light valve. This device can be applied to optical bistable devices without optical feedback, using an electro-optic memory effect of the ferroelectric liquid crystal.

  9. Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks

    SciTech Connect

    Bayn, I.; Mouradian, S.; Li, L.; Goldstein, J. A.; Schröder, T.; Zheng, J.; Chen, E. H.; Gaathon, O.; Englund, Dirk; Lu, M.; Stein, A.; Ruggiero, C. A.; Salzman, J.; Kalish, R.

    2014-11-24

    A scalable approach for integrated photonic networks in single-crystal diamond using triangular etching of bulk samples is presented. We describe designs of high quality factor (Q = 2.51 × 10{sup 6}) photonic crystal cavities with low mode volume (V{sub m} = 1.062 × (λ/n){sup 3}), which are connected via waveguides supported by suspension structures with predicted transmission loss of only 0.05 dB. We demonstrate the fabrication of these structures using transferred single-crystal silicon hard masks and angular dry etching, yielding photonic crystal cavities in the visible spectrum with measured quality factors in excess of Q = 3 × 10{sup 3}.

  10. Wafer-scale synthesis of single-crystal zigzag silicon nanowire arrays with controlled turning angles.

    PubMed

    Chen, Huan; Wang, Hui; Zhang, Xiao-Hong; Lee, Chun-Sing; Lee, Shuit-Tong

    2010-03-10

    Silicon nanowires (SiNWs) having curved structures may have unique advantages in device fabrication. However, no methods are available to prepare curved SiNWs controllably. In this work, we report the preparation of three types of single-crystal SiNWs with various turning angles via metal-assisted chemical etching using (111)-oriented silicon wafers near room temperature. The zigzag SiNWs are single crystals and can be p- or n-doped using corresponding Si wafer as substrate. The controlled growth direction is attributed to the preferred movement of Ag nanoparticles along 001 and other directions in Si wafer. Our results demonstrate that metal-assisted chemical etching may be a viable approach to fabricate SiNWs with desired turning angles by utilizing the various crystalline directions in a Si wafer.

  11. Elemental characterization of the Avogadro silicon crystal WASO 04 by neutron activation analysis

    NASA Astrophysics Data System (ADS)

    D'Agostino, G.; Bergamaschi, L.; Giordani, L.; Mana, G.; Massa, E.; Oddone, M.

    2012-12-01

    Impurity measurements of the 28Si crystal used for the determination of the Avogadro constant are essential to prevent biased results or underestimated uncertainties. A review of the existing data confirmed the high purity of silicon with respect to a large number of elements. In order to obtain direct evidence of purity, we developed a relative analytical method based on neutron activation. As a preliminary test, this method was applied to a sample of the Avogadro natural silicon crystal WASO 04. The investigation concerned 29 elements. The mass fraction of Au was quantified to be (1.03 ± 0.18) × 10-12. For the remaining 28 elements, the mass fractions were below the detection limits, which ranged between 1 × 10-12 and 1 × 10-5.

  12. Reduction in the thermal conductivity of single crystalline silicon by phononic crystal patterning.

    PubMed

    Hopkins, Patrick E; Reinke, Charles M; Su, Mehmet F; Olsson, Roy H; Shaner, Eric A; Leseman, Zayd C; Serrano, Justin R; Phinney, Leslie M; El-Kady, Ihab

    2011-01-12

    Phononic crystals (PnCs) are the acoustic wave equivalent of photonic crystals, where a periodic array of scattering inclusions located in a homogeneous host material causes certain frequencies to be completely reflected by the structure. In conjunction with creating a phononic band gap, anomalous dispersion accompanied by a large reduction in phonon group velocities can lead to a massive reduction in silicon thermal conductivity. We measured the cross plane thermal conductivity of a series of single crystalline silicon PnCs using time domain thermoreflectance. The measured values are over an order of magnitude lower than those obtained for bulk Si (from 148 W m(-1) K(-1) to as low as 6.8 W m(-1) K(-1)). The measured thermal conductivity is much smaller than that predicted by only accounting for boundary scattering at the interfaces of the PnC lattice, indicating that coherent phononic effects are causing an additional reduction to the cross plane thermal conductivity.

  13. Strong opto-electro-mechanical coupling in a silicon photonic crystal cavity.

    PubMed

    Pitanti, Alessandro; Fink, Johannes M; Safavi-Naeini, Amir H; Hill, Jeff T; Lei, Chan U; Tredicucci, Alessandro; Painter, Oskar

    2015-02-01

    We fabricate and characterize a microscale silicon opto-electromechanical system whose mechanical motion is coupled capacitively to an electrical circuit and optically via radiation pressure to a photonic crystal cavity. To achieve large electromechanical interaction strength, we implement an inverse shadow mask fabrication scheme which obtains capacitor gaps as small as 30 nm while maintaining a silicon surface quality necessary for minimizing optical loss. Using the sensitive optical read-out of the photonic crystal cavity, we characterize the linear and nonlinear capacitive coupling to the fundamental ω(m)/2π = 63 MHz in-plane flexural motion of the structure, showing that the large electromechanical coupling in such devices may be suitable for realizing efficient microwave-to-optical signal conversion.

  14. Doping of germanium and silicon crystals with non-hydrogenic acceptors for far infrared lasers

    DOEpatents

    Haller, Eugene E.; Brundermann, Erik

    2000-01-01

    A method for doping semiconductors used for far infrared lasers with non-hydrogenic acceptors having binding energies larger than the energy of the laser photons. Doping of germanium or silicon crystals with beryllium, zinc or copper. A far infrared laser comprising germanium crystals doped with double or triple acceptor dopants permitting the doped laser to be tuned continuously from 1 to 4 terahertz and to operate in continuous mode. A method for operating semiconductor hole population inversion lasers with a closed cycle refrigerator.

  15. Commensurate germanium light emitters in silicon-on-insulator photonic crystal slabs.

    PubMed

    Jannesari, R; Schatzl, M; Hackl, F; Glaser, M; Hingerl, K; Fromherz, T; Schäffler, F

    2014-10-20

    We report on the fabrication and characterization of silicon-on-insulator (SOI) photonic crystal slabs (PCS) with commensurately embedded germanium quantum dot (QD) emitters for near-infrared light emission. Substrate pre-patterning defines preferential nucleation sites for the self-assembly of Ge QDs during epitaxial growth. Aligned two-dimensional photonic crystal slabs are then etched into the SOI layer. QD ordering enhances the photoluminescence output as compared to PCSs with randomly embedded QDs. Rigorously coupled wave analysis shows that coupling of the QD emitters to leaky modes of the PCS can be tuned via their location within the unit cell of the PCS.

  16. High-Efficiency Volume Reflection of an Ultrarelativistic Proton Beam with a Bent Silicon Crystal

    SciTech Connect

    Scandale, Walter; Still, Dean A.; Baricordi, Stefano; Dalpiaz, Pietro; Fiorini, Massimiliano; Guidi, Vincenzo; Martinelli, Giuliano; Mazzolari, Andrea; Milan, Emiliano; Ambrosi, Giovanni; Azzarello, Philipp; Battiston, Roberto; Bertucci, Bruna; Burger, William J.; Ionica, Maria; Zuccon, Paolo; Cavoto, Gianluca; Santacesaria, Roberta; Valente, Paolo; Vallazza, Erik

    2007-04-13

    The volume reflection phenomenon was detected while investigating 400 GeV proton interactions with bent silicon crystals in the external beam H8 of the CERN Super Proton Synchrotron. Such a process was observed for a wide interval of crystal orientations relative to the beam axis, and its efficiency exceeds 95%, thereby surpassing any previously observed value. These observations suggest new perspectives for the manipulation of high-energy beams, e.g., for collimation and extraction in new-generation hadron colliders, such as the CERN Large Hadron Collider.

  17. Single-crystal silicon beams formed by merged epitaxial lateral overgrowth (MELO) for optical reflectors

    NASA Astrophysics Data System (ADS)

    Neudeck, Gerold W.; Kabir, Abul E.

    1995-05-01

    Single crystalline silicon has very well known and predictable mechanical, optical, and electrical properties and is easily manufactured with consistent results. It is also integrated circuit compatible and leads to incorporation of circuits and high quality piezoresistors which are available to monitor motion for self-testing. We present for the first time a novel surface micro-machining process using merged epitaxial lateral overgrowth (MELO) silicon to demonstrate the fabrication of single crystal silicon, free standing cantilever beams 1 mm long and 5 micrometers X 10 micrometers in cross section. These beams had no evidence of stress related bending and were free from the substrate, returning to its original position after numerous electrostatic deflections. MELO has also shown great potential for advanced BJT and MOSFET device applications, hence active devices can be incorporated into the deflecting beam arrays. Diodes fabricated in the beams show excellent characteristics with average ideality factors of 1.01. Note that the technology permits adding of single crystal silicon to selected areas, hence it is an additive process as compared to traditional subtractive methods that deposit films over the entire wafer.

  18. Silver- and Gold-Ordered Structures on Single-Crystal Silicon Surface After Thermal Deposition

    NASA Astrophysics Data System (ADS)

    Karbivskyy, Vladimir; Karbivska, Love; Artemyuk, Viktor

    2016-02-01

    The formation mechanisms of Ag- and Au-ordered structures on single-crystal silicon (Si) (111) and Si (110) surfaces were researched using high-resolution scanning tunneling microscopy method. It was shown that different patterns of self-assembled nanostructures with very precise and regular geometric shapes can be produced by controlling process parameters of thermal metal spraying on the substrate. The surfaces of nanorelieves at each stage of deposition were researched, and the main stages of morphological transformation were fixed.

  19. Crystallization of the glassy phase of grain boundaries in silicon nitride

    NASA Technical Reports Server (NTRS)

    Jefferson, D. A.; Thomas, J. M.; Wen, S.

    1984-01-01

    Three types of hot-pressed silicon nitride specimens (containing 5wt% Y2O3 and 2wt% Al2O3 additives) which were subjected to different temperature heat treatments were studied by X-ray diffraction, X-ray microanalysis and high resolution electron microscopy. The results indicated that there were phase changes in the grain boundaries after heat treatment and the glassy phase at the grain boundaries was crystallized by heat treatment.

  20. Nanostructuring of single-crystal silicon carbide by picosecond UV laser radiation

    SciTech Connect

    Barmina, E V; Serkov, A A; Shafeev, G A

    2013-12-31

    Surface nanostructures are produced on single-crystal 4H-SiC by laser ablation in water using a Nd : YAG laser (355-nm wavelength, 10-ps pulse duration) as a radiation source. The morphology of the nanostructured surface and the nanostructure size distribution are examined in relation to the energy density of the incident laser beam. The potential of the described process for improving the luminosity of light-emitting diodes on silicon carbide substrates is discussed. (letters)

  1. Study the performance of LYSO and CeBr3 crystals using Silicon Photomultipliers

    NASA Astrophysics Data System (ADS)

    Kryemadhi, Abaz

    2016-03-01

    The Silicon Photomultipliers (SiPMs) are novel photon-detectors which have been progressively found their use in particle physics. Their small size, good single photon resolution, simple readout, and immunity to magnetic fields offers advantages compared to traditional photomultipliers. LYSO and CeBr3 crystals are relatively new scintillators with high light yield and fast decay time. The response of these detectors to low energy gamma rays and cosmic ray muons will be presented. Messiah College Workload Reallocation Program.

  2. Process for making silicon from halosilanes and halosilicons

    NASA Technical Reports Server (NTRS)

    Levin, Harry (Inventor)

    1988-01-01

    A reactor apparatus (10) adapted for continuously producing molten, solar grade purity elemental silicon by thermal reaction of a suitable precursor gas, such as silane (SiH.sub.4), is disclosed. The reactor apparatus (10) includes an elongated reactor body (32) having graphite or carbon walls which are heated to a temperature exceeding the melting temperature of silicon. The precursor gas enters the reactor body (32) through an efficiently cooled inlet tube assembly (22) and a relatively thin carbon or graphite septum (44). The septum (44), being in contact on one side with the cooled inlet (22) and the heated interior of the reactor (32) on the other side, provides a sharp temperature gradient for the precursor gas entering the reactor (32) and renders the operation of the inlet tube assembly (22) substantially free of clogging. The precursor gas flows in the reactor (32) in a substantially smooth, substantially axial manner. Liquid silicon formed in the initial stages of the thermal reaction reacts with the graphite or carbon walls to provide a silicon carbide coating on the walls. The silicon carbide coated reactor is highly adapted for prolonged use for production of highly pure solar grade silicon. Liquid silicon (20) produced in the reactor apparatus (10) may be used directly in a Czochralski or other crystal shaping equipment.

  3. Dislocation formation in seed crystals induced by feedstock indentation during growth of quasimono crystalline silicon ingots

    NASA Astrophysics Data System (ADS)

    Trempa, M.; Beier, M.; Reimann, C.; Roßhirth, K.; Friedrich, J.; Löbel, C.; Sylla, L.; Richter, T.

    2016-11-01

    In this work the dislocation formation in the seed crystal induced by feedstock indentation during the growth of quasimono (QM) silicon ingots for photovoltaic application was investigated. It could be shown by special laboratory indentation experiments that the formed dislocations propagate up to several millimeters deep into the volume of the seed crystal in dependence on the applied pressure of the feedstock particles on the surface of the seed crystal. Further, it was demonstrated that these dislocations if they were not back-melted during the seeding process grow further into the silicon ingot and drastically reduce its material quality. An estimation of the apparent pressure values in a G5 industrial crucible/feedstock setup reveals that the indentation phenomenon is a critical issue for the industrial production of QM silicon ingots. Therefore, some approaches to avoid/reduce the indentation events were tested with the result, that the most promising solution should be the usage of suitable feedstock particles as coverage of the seed.

  4. Reaction injection molding of silicon nitride ceramics having crystallized grain boundary phases

    SciTech Connect

    Lukacs, A. III; Matsumoto, R.L.K.

    1993-08-31

    A reaction injection molding process is described for preparing a sintered, silicon nitride-containing ceramic article comprising; (1) injecting into a heated mold a fluid, nondilatant mixture comprising (a) at least 40% by volume of a powder mixture of (i) from about 20 wt.% to about 98 wt.% silicon nitride, (ii) from about 0.5 wt.% to about 20 wt.% of a silicate glass-forming sintering aid, and (iii) from about 0.001 wt.% to about 80 wt.% of a high metal content transition metal silicide or a transition metal or metal compound that forms a high metal content silicide with silicon nitride under the conditions defined in steps (2) or (3), and (b) a curable silicon nitride precursor binder that is a liquid below its curing temperature, to cure the binder and produce a hardened molded article, (2) heating the hardened mol suitable atmosphere to a temperature sufficient to convert the cured binder to a silicon nitride-containing ceramic, and (3) sintering the article by (i) heating at a temperature of 1,300 to 1,800 C until a silicate glass forms, and (ii) further heating at a temperature of 1,300 to 1,800 C under a vacuum until oxygen is removed from the silicate glass and the glass crystallizes.

  5. A Hydrogen - Vacancy Defect In Single-Crystal Silicon

    NASA Astrophysics Data System (ADS)

    Melnikov, V. V.

    2016-09-01

    Results of a theoretical study of the interaction of interstitial molecular hydrogen with vacancies and the effect of generated defects on the structural and energy characteristics of the H2-Si system are considered. Within the framework of a 5D model it has been demonstrated that the decrease of system symmetry under transition to the crystal defect structure and the increase of the rotational barrier due to the strong interaction of the molecule with a vacancy lead to the significant restructuring of H2 energy spectrum. However, when the molecule is stable its rotational degrees of freedom remain active and H2 low-lying energy levels correspond to the definite values of the angular momentum.

  6. Interaction between cast silicon properties and solar cell performance

    NASA Technical Reports Server (NTRS)

    Hyland, S.; Iles, P.; Leung, D.; Schwuttke, G.; Engelbrecht, J. A. A.

    1982-01-01

    Three types of cast silicon, Silso, HEM (Heat-Exchanger Method) and UCP (Ubiquitous Crystallization Process) were studied for their use as solar cells. Optical microscopy after etching revealed a high density of uniform dislocations (approaching 1,000,000/sq cm), lines of dislocations indicating stress during crystal growth, and precipitates, some of which generate dislocations. Solar cells were fabricated by three processes. Results of solar cell processing revealed that these materials produce cells of lower efficiency than Czochralski control cells, and that the efficiencies of the three materials were quite close. Diffusion length and spectral response data are shown. Certain structural features are correlated with solar cell efficiency, diffusion length, and spectral response. Electron-beam induced current (EBIC) and light spot scanning are used to back up other measurements.

  7. Crystal defects in silicon integrated circuits with respect to very large scale integration (VLSI)

    NASA Astrophysics Data System (ADS)

    Franz, G.; Kolbesen, B.

    1982-04-01

    The impact of process induced crystal defects on single bit refresh loss in dynamic MOS memory devices (bipolar and MOS technology) was investigated. Analytical techniques for detection of crystal defects were preferential etching, X-ray topography, and high voltage electron microscopy. Impurity levels were determined by infrared spectroscopy (carbon and oxygen) and neutron activation analysis (metals). Device characteristics and measurements of the MOS relaxation time were utilized as electrical results for quality control. Nuclei, sources and driving forces were analyzed, correlated to special technology steps, and measures for elimination were determined. Results show that metallic impurities introduced during wafer processing influence the generation as well as the electrical activity of crystal defects. The gettering ability of defects, due to the precipitation of oxygen in liquid (CZ) silicon, is explained.

  8. Effect of surface morphology on laser-induced crystallization of amorphous silicon thin films

    NASA Astrophysics Data System (ADS)

    Huang, Lu; Jin, Jing; Wang, Guohua; Shi, Weimin; Yang, Weiguang; Yuan, Zhijun; Cao, Zechun; Zhou, Jun; Lou, Qihong; Liu, Jin; Wei, Guangpu

    2013-12-01

    The effect of surface morphology on laser-induced crystallization of hydrogenated intrinsic amorphous silicon (a-Si:H) thin films deposited by PECVD is studied in this paper. The thin films are irritated by a frequency-doubled (λ=532 nm) Nd:YAG pulsed nanosecond laser. An effective melting model is built to identify the variation of melting regime influenced by laser crystallization. Based on the experimental results, the established correlation between the grain growth characterized by AFM and the crystalline fraction (Xc) obtained from Raman spectroscopy suggests that the crystallized process form amorphous phase to polycrystalline phase. Therefore, the highest crystalline fraction (Xc) is obtained by a optimized laser energy density.

  9. Resonant second harmonic generation in a gallium nitride two-dimensional photonic crystal on silicon

    SciTech Connect

    Zeng, Y.; Roland, I.; Checoury, X.; Han, Z.; El Kurdi, M.; Sauvage, S.; Boucaud, P.; Gayral, B.; Brimont, C.; Guillet, T.; Mexis, M.; Semond, F.

    2015-02-23

    We demonstrate second harmonic generation in a gallium nitride photonic crystal cavity embedded in a two-dimensional free-standing photonic crystal platform on silicon. The photonic crystal nanocavity is optically pumped with a continuous-wave laser at telecom wavelengths in the transparency window of the nitride material. The harmonic generation is evidenced by the spectral range of the emitted signal, the quadratic power dependence vs. input power, and the spectral dependence of second harmonic signal. The harmonic emission pattern is correlated to the harmonic polarization generated by the second-order nonlinear susceptibilities χ{sub zxx}{sup (2)}, χ{sub zyy}{sup (2)} and the electric fields of the fundamental cavity mode.

  10. Method for fabricating silicon cells

    DOEpatents

    Ruby, D.S.; Basore, P.A.; Schubert, W.K.

    1998-08-11

    A process is described for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon. 9 figs.

  11. Method for fabricating silicon cells

    DOEpatents

    Ruby, Douglas S.; Basore, Paul A.; Schubert, W. Kent

    1998-08-11

    A process for making high-efficiency solar cells. This is accomplished by forming a diffusion junction and a passivating oxide layer in a single high-temperature process step. The invention includes the class of solar cells made using this process, including high-efficiency solar cells made using Czochralski-grown silicon.

  12. A new method of forming a thin single-crystal silicon diaphragm using merged epitaxial lateral overgrowth for sensor applications

    NASA Astrophysics Data System (ADS)

    Pak, James J.; Neudeck, Gerold W.; Kabir, Abul E.; Deroo, David W.; Staller, Steven E.; Logsdon, James H.

    1991-11-01

    Merged epitaxial lateral overgrowth (MELO) of silicon was combined with an SiO2 etch stop to form a 9-micron-thick and 250-micron x 1000-micron single-crystal Si membrane for micromechanical sensors. When epitaxial lateral overgrowth (ELO) silicon merges on SiO2 islands, it forms a local silicon-on-insulator film of moderate doping concentration. The SiO2 island then acts as a near-perfect etch stop in a KOH- or ethylenediamine-based solution. The silicon diaphragm thickness over a 3-in wafer has a standard deviation of 0.5 micron and is precisely controlled by the epitaxial silicon growth rate (approximately equal to 0.1 micron/min) rather than by conventional etching techniques. Diodes fabricated in the substrate and over MELO regions have nearly identical reverse-bias currents, indicating good-quality silicon in the membrane.

  13. Synthesis of Poly-Silicon Thin Films on Glass Substrate Using Laser Initiated Metal Induced Crystallization of Amorphous Silicon for Space Power Application

    NASA Technical Reports Server (NTRS)

    Abu-Safe, Husam H.; Naseem, Hameed A.; Brown, William D.

    2007-01-01

    Poly-silicon thin films on glass substrates are synthesized using laser initiated metal induced crystallization of hydrogenated amorphous silicon films. These films can be used to fabricate solar cells on low cost glass and flexible substrates. The process starts by depositing 200 nm amorphous silicon films on the glass substrates. Following this, 200 nm of sputtered aluminum films were deposited on top of the silicon layers. The samples are irradiated with an argon ion cw laser beam for annealing. Laser power densities ranging from 4 to 9 W/cm2 were used in the annealing process. Each area on the sample is irradiated for a different exposure time. Optical microscopy was used to examine any cracks in the films and loss of adhesion to the substrates. X-Ray diffraction patterns from the initial results indicated the crystallization in the films. Scanning electron microscopy shows dendritic growth. The composition analysis of the crystallized films was conducted using Energy Dispersive x-ray Spectroscopy. The results of poly-silicon films synthesis on space qualified flexible substrates such as Kapton are also presented.

  14. Spontaneous and stimulated Raman scattering in silica-cladded silicon photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Hsiao, Yi-Hua; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2015-04-01

    We report the observation of spontaneous and stimulated Raman scattering in a silica-cladded silicon photonic crystal (PhC) waveguide (WG) with modified holes. Spontaneous Raman scattering in the WG was enhanced when the Stokes wavelength was approached to the bandedge of a WG mode. A maximum enhancement up to ˜5 times was obtained in the present work. At a Stokes wavelength in the lower group velocity region, nonlinear increase of the Stokes power as the pump power, a clear indication of the onset of stimulated Raman scattering, was observed. Moreover, Raman amplification with an external signal beam was also demonstrated. On-off gain becomes small as the Stokes wavelength gets away from the bandedge of the WG mode. These are the first observations of Raman scattering effects in silica-cladded silicon PhC structures.

  15. Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon

    DOEpatents

    Kaschmitter, J.L.; Sigmon, T.W.

    1995-10-10

    A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby the amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenation can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.

  16. Stimulated Terahertz Stokes Emission of Silicon Crystals Doped with Antimony Donors

    SciTech Connect

    Pavlov, S.G.; Huebers, H.-W.; Hovenier, J.N.; Klaassen, T.O.; Carder, D.A.; Phillips, P.J.; Redlich, B.; Riemann, H.; Zhukavin, R.Kh.; Shastin, V.N.

    2006-01-27

    Stimulated Stokes emission has been observed from silicon crystals doped by antimony donors when optically excited by radiation from a tunable infrared free electron laser. The photon energy of the emission is equal to the pump photon energy reduced by the energy of the intervalley transverse acoustic (TA) g phonon in silicon ({approx_equal}2.92 THz). The emission frequency covers the range of 4.6-5.8 THz. The laser process occurs due to a resonant coupling of the 1s(E) and 1s(A{sub 1}) donor states (separation {approx_equal}2.97 THz) via the g-TA phonon, which conserves momentum and energy within a single impurity center.

  17. Solar cells utilizing pulsed-energy crystallized microcrystalline/polycrystalline silicon

    DOEpatents

    Kaschmitter, James L.; Sigmon, Thomas W.

    1995-01-01

    A process for producing multi-terminal devices such as solar cells wherein a pulsed high energy source is used to melt and crystallize amorphous silicon deposited on a substrate which is intolerant to high processing temperatures, whereby to amorphous silicon is converted into a microcrystalline/polycrystalline phase. Dopant and hydrogenization can be added during the fabrication process which provides for fabrication of extremely planar, ultra shallow contacts which results in reduction of non-current collecting contact volume. The use of the pulsed energy beams results in the ability to fabricate high efficiency microcrystalline/polycrystalline solar cells on the so-called low-temperature, inexpensive plastic substrates which are intolerant to high processing temperatures.

  18. Proposal for achieving in-plane magnetic mirrors by silicon photonic crystals.

    PubMed

    Zhou, You; He, Xin-Tao; Zhao, Fu-Li; Dong, Jian-Wen

    2016-05-15

    Magnetic mirrors exhibit predominant physical characteristics such as high surface impedance and strong near-field enhancement. However, there is no way to implement these materials on a silicon lab chip. Here, we propose a scheme for an in-plane magnetic mirror in a silicon-based photonic crystal with a high-impedance surface, in contrast to the previous electric mirrors with low surface impedance. A tortuous bending waveguide with zero-index core and magnetic mirror walls is designed that exhibits high transmission and zero phase change at the waveguide exit. This type of magnetic mirror opens the door to exploring the physics of high-impedance surfaces and applications in integrated photonics.

  19. Optical nanomechanical sensor using a silicon photonic crystal cantilever embedded with a nanocavity resonator.

    PubMed

    Lee, Chengkuo; Thillaigovindan, Jayaraj

    2009-04-01

    We present in-depth discussion of the design and optimization of a nanomechanical sensor using a silicon cantilever comprising a two-dimensional photonic crystal (PC) nanocavity resonator arranged in a U-shaped silicon PC waveguide. For example, the minimum detectable strain, vertical deflection at the cantilever end, and force load are observed as 0.0133%, 0.37 mum, and 0.0625 muN, respectively, for a 30 mum long and 15 mum wide cantilever. In the graph of strain versus resonant wavelength shift, a rather linear relationship is observed for various data derived from different cantilevers. Both the resonant wavelength and the resonant wavelength shift of cantilevers under deformation or force loads are mainly a function of defect length change. Results point out that all these mechanical parameters are mainly dependent on the defect length of the PC nanocavity resonator. This new PC cantilever sensor shows promising linear characteristics as an optical nanomechanical sensor. PMID:19340132

  20. Two-dimensional silicon photonic crystal based biosensing platform for protein detection.

    PubMed

    Lee, Mindy R; Fauchet, Philippe M

    2007-04-16

    We theoretically and experimentally demonstrate an ultrasensitive two-dimensional photonic crystal microcavity biosensor. The device is fabricated on a silicon-on-insulator wafer and operates near its resonance at 1.58 microm. Coating the sensor internal surface with proteins of different sizes produces a different amount of resonance redshift. The present device can detect a molecule monolayer with a total mass as small as 2.5 fg. The device performance is verified by measuring the redshift corresponding to the binding of glutaraldehyde and bovine serum albumin (BSA). The experimental results are in good agreement with theory and with ellipsometric measurements performed on a flat oxidized silicon wafer surface. PMID:19532700

  1. Two-dimensional silicon photonic crystal based biosensing platform for protein detection

    NASA Astrophysics Data System (ADS)

    Lee, Mindy R.; Fauchet, Philippe M.

    2007-04-01

    We theoretically and experimentally demonstrate an ultrasensitive two-dimensional photonic crystal microcavity biosensor. The device is fabricated on a silicon-on-insulator wafer and operates near its resonance at 1.58 μm. Coating the sensor internal surface with proteins of different sizes produces a different amount of resonance redshift. The present device can detect a molecule monolayer with a total mass as small as 2.5 fg. The device performance is verified by measuring the redshift corresponding to the binding of glutaraldehyde and bovine serum albumin (BSA). The experimental results are in good agreement with theory and with ellipsometric measurements performed on a flat oxidized silicon wafer surface.

  2. Rear surface spallation on single-crystal silicon in nanosecond laser micromachining

    NASA Astrophysics Data System (ADS)

    Ren, Jun; Orlov, Sergei S.; Hesselink, Lambertus

    2005-05-01

    Rear surface spallation of single-crystal silicon under 5-ns laser pulse ablation at intensities of 0.6-60GW/cm2 is studied through postablation examination of the ablated samples. The spallation threshold energy and the spallation depth's dependences on the energy and target thickness are measured. From the linear relation between the spallation threshold energy and the target thickness, an estimation of the material spall strength around 1.4GPa is obtained, in reasonable agreement with the spall strength estimation of 0.8-1.2GPa at a strain rate of 107s-1 using Grady's model for brittle materials. The experiment reveals the internal fracturing process over an extended zone in silicon, which is controlled by the competition between the shock pressure load and the laser ablation rate. The qualities of the laser microstructuring and micromachining results are greatly improved by using an acoustic impedance matching approach.

  3. High-Q silicon photonic crystal cavity for enhanced optical nonlinearities

    SciTech Connect

    Dharanipathy, Ulagalandha Perumal; Tonin, Mario; Houdré, Romuald; Minkov, Momchil Savona, Vincenzo

    2014-09-08

    We fabricate and experimentally characterize an H0 photonic crystal slab nanocavity with a design optimized for maximal quality factor, Q = 1.7 × 10{sup 6}. The cavity, fabricated from a silicon slab, has a resonant mode at λ = 1.59 μm and a measured Q-factor of 400 000. It displays nonlinear effects, including high-contrast optical bistability, at a threshold power among the lowest ever reported for a silicon device. With a theoretical modal volume as small as V = 0.34(λ/n){sup 3}, this cavity ranks among those with the highest Q/V ratios ever demonstrated, while having a small footprint suited for integration in photonic circuits.

  4. Modified Photoluminescence by Silicon-Based One-Dimensional Photonic Crystal Microcavities

    NASA Astrophysics Data System (ADS)

    Chen, San; Qian, Bo; Wei, Jun-Wei; Chen, Kun-Ji; Xu, Jun; Li, Wei; Huang, Xin-Fan

    2005-01-01

    Photoluminescence (PL) from one-dimensional photonic band structures is investigated. The doped photonic crystal with microcavities are fabricated by using alternating hydrogenated amorphous silicon nitride (a-SiNx:H/a-SiNy:H) layers in a plasma enhanced chemical vapour deposition (PECVD) chamber. It is observed that microcavities strongly modify the PL spectra from active hydrogenated amorphous silicon nitride (a-SiNz:H) thin film. By comparison, the wide emission band width 208 nm is strongly narrowed to 11 nm, and the resonant enhancement of the peak PL intensity is about two orders of magnitude with respect to the emission of the λ/2-thick layer of a-SiNz:H. A linewidth of Δλ = 11 nm and a quality factor of Q = 69 are achieved in our one-dimensional a-SiNz photonic crystal microcavities. Measurements of transmittance spectra of the as-grown samples show that the transmittance resonant peak of a cavity mode at 710 nm is introduced into the band gap of one-dimensional photonic crystal distributed Bragg reflector (DBR), which further verifies the microcavity effects.

  5. Label-free optical detection of bacteria on a 1-D photonic crystal of porous silicon

    NASA Astrophysics Data System (ADS)

    Wu, Chia-Chen; Alvarez, Sara D.; Rang, Camilla U.; Chao, Lin; Sailor, Michael J.

    2009-02-01

    The construction of a specific, label-free, bacteria biosensor using porous silicon 1-D photonic crystals will be described. Bacteria resident on the surface of porous silicon act as scattering centers for light resonant with the photonic crystal; the diffusely scattered light possesses the optical spectrum of the underlying photonic crystal. Using a spectrometer fitted to a light microscope, the bacteria are imaged without using exogenous dyes or labels and are quantified by measuring the intensity of scattered light. In order to selectively bind and identify bacteria using porous Si, we use surface modifications to reduce nonspecific binding to the surface and to engineer bacteria specificity onto the surface. Bovine serum albumin (BSA) was adsorbed to the porous Si surface to reduce nonspecific binding of bacteria. The coatings were then chemically activated to immobilize polyclonal antibodies specific to Escherichia coli. Two E. coli strains were used in our study, E. coli DH5α and non-pathogenic enterohemorrhagic Escherichia coli (EHEC) strain. The nonpathogenic Vibrio cholerae O1 strain was used to test for antibody specificity. Successful attachment of antibodies was measured using fluorescence microscopy and the scattering method was used to test for bacteria binding specificity.

  6. Liquid phase crystallized silicon on glass: Technology, material quality and back contacted heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Haschke, Jan; Amkreutz, Daniel; Rech, Bernd

    2016-04-01

    Liquid phase crystallization has emerged as a novel approach to grow large grained polycrystalline silicon films on glass with high electronic quality. In recent years a lot of effort was conducted by different groups to determine and optimize suitable interlayer materials, enhance the crystallographic quality or to improve post crystallization treatments. In this paper, we give an overview on liquid phase crystallization and describe the necessary process steps and discuss their influence on the absorber properties. Available line sources are compared and different interlayer configurations are presented. Furthermore, we present one-dimensional numerical simulations of a rear junction device, considering silicon absorber thicknesses between 1 and 500 µm. We vary the front surface recombination velocity as well as doping density and minority carrier lifetime in the absorber. The simulations suggest that a higher absorber doping density is beneficial for layer thicknesses below 20 µm or when the minority carrier lifetime is short. Finally, we discuss possible routes for device optimization and propose a hybride cell structure to circumvent current limitations in device design.

  7. Measurement of Silicone Rubber Using Impedance Change of a Quartz-Crystal Tuning-Fork Tactile Sensor

    NASA Astrophysics Data System (ADS)

    Itoh, Hideaki; Yamada, Yuuki

    2006-05-01

    Silicone rubber has been investigated experimentally using the impedance change (Δ R) of a quartz-crystal tuning-fork tactile sensor when its base is in contact with the surface of many kinds of rectangular silicone rubber plates in order to discover how viscosity and elasticity of silicone rubber may be separately determined. Eleven silicone rubber plates (the values of the rubber hardness are JIS85, 80, 70, 65, 60, 50, 45, 40, 35, 30, and 20) are investigated in this experiment. Δ R increases linearly according to acoustic impedance ρ C (ρ: density of silicone rubber, C: sound velocity of a longitudinal acoustic wave in silicone rubber). We compare Δ R with ρ C when C is calculated in three cases: in first, C is calculated using Young’s modulus of silicone rubber measured by a tensiometer; in second, using Young’s modulus which is converted by the shear modulus measured by a rotating viscometer using the Poisson ratio of silicone rubber, 0.49; in third, using a complex Young’s modulus which is converted by the complex shear modulus measured by a rotating viscometer. We investigated which case in the three described showed good linearity between Δ R and ρ C. In order to clarify how the longitudinal plane wave generated in the sensor’s base travels into the silicone rubber plate, Δ R is measured when the tactile sensor is in contact with the surface of the rectangular silicone rubber plates of varying thickness and a size.

  8. Microdistribution of oxygen in silicon and its effects on electronic properties

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Mao, B. Y.; Nauka, K.; Lagowski, J.

    1982-01-01

    The effects of interstitial oxygen on the electrical characteristics of Czochralski-grown silicon crystals were investigated for the first time on a microscale. It was found that the generation of thermal donors is not a direct function of the oxygen concentration. It was further found that the minority carrier life-time decreases with increasing oxygen concentration, on a microscale in as-grown crystals. It was thus shown, again for the first time, that oxygen in as grown crystals is not electronically inert as generally believed. Preannealing at 1200 C commonly employed in device fabrication, was found to suppress the donor generation at 450 C and to decrease the deep level concentrations.

  9. A liquid-crystal-on-silicon color sequential display using frame buffer pixel circuits

    NASA Astrophysics Data System (ADS)

    Lee, Sangrok

    Next generation liquid-crystal-on-silicon (LCOS) high definition (HD) televisions and image projection displays will need to be low-cost and high quality to compete with existing systems based on digital micromirror devices (DMDs), plasma displays, and direct view liquid crystal displays. In this thesis, a novel frame buffer pixel architecture that buffers data for the next image frame while displaying the current frame, offers such a competitive solution is presented. The primary goal of the thesis is to demonstrate the LCOS microdisplay architecture for high quality image projection displays and at potentially low cost. The thesis covers four main research areas: new frame buffer pixel circuits to improve the LCOS performance, backplane architecture design and testing, liquid crystal modes for the LCOS microdisplay, and system integration and demonstration. The design requirements for the LCOS backplane with a 64 x 32 pixel array are addressed and measured electrical characteristics matches to computer simulation results. Various liquid crystal (LC) modes applicable for LCOS microdisplays and their physical properties are discussed. One- and two-dimensional director simulations are performed for the selected LC modes. Test liquid crystal cells with the selected LC modes are made and their electro-optic effects are characterized. The 64 x 32 LCOS microdisplays fabricated with the best LC mode are optically tested with interface circuitry. The characteristics of the LCOS microdisplays are summarized with the successful demonstration.

  10. Fractal and spherulitic morphology of silicon nitride crystallized from amorphous films

    SciTech Connect

    Kahn, A.D.; Grabowski, K.S.; Donovan, E.P.; Carosella, C.A.; Hubler, G.K.

    1988-01-01

    Thin films of substoichiometric silicon nitride were grown by the use of ion beam assisted deposition. The amorphous films were annealed at high temperatures (1017-1200C) to produce crystalline alpha-Si3N4. Both highly symmetric spherulitic crystal morphologies and irregular fractal aggregates were seen. In the latter case, a fractal dimension of 1.2 was measured. These two macroscopically different forms possessed correspondingly different microstructures. The morphologies were found to be determined by the temperature of the anneal.

  11. Fabrication of large-area ultra-thin single crystal silicon membranes

    SciTech Connect

    Dang, Z. Y.; Motapothula, M.; Ow, Y. S.; Venkatesan, T.; Breese, M. B. H.; Rana, M. A.; Osman, A.

    2011-11-28

    Perfectly, crystalline, 55 nm thick silicon membranes have been fabricated over several square millimeters and used to observe transmission ion channeling patterns showing the early evolution of the axially channeled beam angular distribution for small tilts away from the [011] axis. The reduced multiple scattering through such thin layers allows fine angular structure produced by the highly non-equilibrium transverse momentum distribution of the channeled beam during its initial propagation in the crystal to be resolved. The membrane crystallinity and flatness were measured by using proton channeling measurements and the surface roughness of 0.4 nm using atomic force microscopy.

  12. Diffractive light trapping in crystal-silicon films: experiment and electromagnetic modeling.

    PubMed

    Weiss, Dirk N; Lee, Benjamin G; Richmond, Dustin A; Nemeth, William; Wang, Qi; Keszler, Douglas A; Branz, Howard M

    2011-10-10

    Diffractive light trapping in 1.5 μm thick crystal silicon films is studied experimentally through hemispherical reflection measurements and theoretically through rigorous coupled-wave analysis modeling. The gratings were fabricated by nanoimprinting of dielectric precursor films. The model data, which match the experimental results well without the use of any fitting parameters, are used to extract the light trapping efficiency. Diffractive light trapping is studied as a function of incidence angle, and an enhancement of light absorption is found for incidence angles up to 50° for both TE and TM polarizations.

  13. Modeling the deflection of relativistic electrons in a bent silicon crystal

    NASA Astrophysics Data System (ADS)

    Koshcheev, V. P.; Shtanov, Yu. N.; Morgun, D. A.; Panina, T. A.

    2015-10-01

    The deflection of electrons with energies 855 MeV and 6.3 GeV in planar (111) channels of a bent silicon crystal has been numerically simulated using a TROPICS computer code with atomic diffusion coefficient constructed in the Doyle-Turner approximation of the isolated atom potential. It is established that the atomic diffusion coefficient tends to a minimum value in the region of maximum nuclear density of atomic chain, where the Kitagawa-Ohtsuki diffusion coefficient reaches a maximum value.

  14. Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon

    SciTech Connect

    Roland, I.; Zeng, Y.; Han, Z.; Checoury, X.; Blin, C.; El Kurdi, M.; Ghrib, A.; Sauvage, S.; Boucaud, P.; Gayral, B.; Brimont, C.; Guillet, T.; Semond, F.

    2014-07-07

    We demonstrate a two-dimensional free-standing gallium nitride photonic crystal platform operating around 1550 nm and fabricated on a silicon substrate. Width-modulated waveguide cavities are integrated and exhibit loaded quality factors up to 34 000 at 1575 nm. We show the resonance tunability by varying the ratio of air hole radius to periodicity, and cavity hole displacement. We deduce a ∼7.9 dB/cm linear absorption loss for the suspended nitride structure from the power dependence of the cavity in-plane transmission.

  15. Near-infrared gallium nitride two-dimensional photonic crystal platform on silicon

    NASA Astrophysics Data System (ADS)

    Roland, I.; Zeng, Y.; Han, Z.; Checoury, X.; Blin, C.; El Kurdi, M.; Ghrib, A.; Sauvage, S.; Gayral, B.; Brimont, C.; Guillet, T.; Semond, F.; Boucaud, P.

    2014-07-01

    We demonstrate a two-dimensional free-standing gallium nitride photonic crystal platform operating around 1550 nm and fabricated on a silicon substrate. Width-modulated waveguide cavities are integrated and exhibit loaded quality factors up to 34 000 at 1575 nm. We show the resonance tunability by varying the ratio of air hole radius to periodicity, and cavity hole displacement. We deduce a ˜7.9 dB/cm linear absorption loss for the suspended nitride structure from the power dependence of the cavity in-plane transmission.

  16. On-chip integrated optofluidic complex refractive index sensing using silicon photonic crystal nanobeam cavities.

    PubMed

    Zhang, Xingwang; Zhou, Guangya; Shi, Peng; Du, Han; Lin, Tong; Teng, Jinghua; Chau, Fook Siong

    2016-03-15

    Complex refractive index sensing is proposed and experimentally demonstrated in optofluidic sensors based on silicon photonic crystal nanobeam cavities. The sensitivities are 58 and 139 nm/RIU, respectively, for the real part (n) and the imaginary part (κ) of the complex refractive index, and the corresponding detection limits are 1.8×10(-5) RIU for n and 4.1×10(-6) RIU for κ. Moreover, the capability of the complex refractive index sensing method to detect the concentration composition of the ternary mixture is demonstrated without the surface immobilization of functional groups, which is impossible to realize with the conventional refractive index sensing scheme.

  17. Wavelength-controlled external-cavity laser with a silicon photonic crystal resonant reflector

    NASA Astrophysics Data System (ADS)

    Gonzalez-Fernandez, A. A.; Liles, Alexandros A.; Persheyev, Saydulla; Debnath, Kapil; O'Faolain, Liam

    2016-03-01

    We report the experimental demonstration of an alternative design of external-cavity hybrid lasers consisting of a III-V Semiconductor Optical Amplifier with fiber reflector and a Photonic Crystal (PhC) based resonant reflector on SOI. The Silicon reflector comprises a polymer (SU8) bus waveguide vertically coupled to a PhC cavity and provides a wavelength-selective optical feedback to the laser cavity. This device exhibits milliwatt-level output power and sidemode suppression ratio of more than 25 dB.

  18. Observation of transparency of Erbium-doped silicon nitride in photonic crystal nanobeam cavities.

    PubMed

    Gong, Yiyang; Makarova, Maria; Yerci, Selcuk; Li, Rui; Stevens, Martin J; Baek, Burm; Nam, Sae Woo; Dal Negro, Luca; Vuckovic, Jelena

    2010-06-21

    One dimensional nanobeam photonic crystal cavities are fabricated in an Er-doped amorphous silicon nitride layer. Photoluminescence from the cavities around 1.54 microm is studied at cryogenic and room temperatures at different optical pump powers. The resonators demonstrate Purcell enhanced absorption and emission rates, also confirmed by time resolved measurements. Resonances exhibit linewidth narrowing with pump power, signifying absorption bleaching and the onset of stimulated emission in the material at both 5.5 K and room temperature. We estimate from the cavity linewidths that Er has been pumped to transparency at the cavity resonance wavelength.

  19. Investigations of structural, dielectric and optical properties on silicon ion irradiated glycine monophosphate single crystals

    NASA Astrophysics Data System (ADS)

    Kanagasekaran, T.; Mythili, P.; Bhagavannarayana, G.; Kanjilal, D.; Gopalakrishnan, R.

    2009-08-01

    The 50 MeV silicon ion irradiation induced modifications on structural, optical and dielectric properties of solution grown glycine monophosphate (GMP) crystals were studied. The high-resolution X-ray diffraction study shows the unaltered value of integrated intensity on irradiation. The dielectric constant as a function of frequency and temperature was studied. UV-visible studies reveal the decrease in bandgap values on irradiation and presence of F-centers. The fluorescence spectrum shows the existence of some energy levels, which remains unaffected after irradiation. The scanning electron micrographs reveal the defects formed on irradiation.

  20. Manufacturing and characterization of bent silicon crystals for studies of coherent interactions with negatively charged particles beams

    NASA Astrophysics Data System (ADS)

    Germogli, G.; Mazzolari, A.; Bandiera, L.; Bagli, E.; Guidi, V.

    2015-07-01

    Efficient steering of GeV-energy negatively charged particle beams was demonstrated to be possible with a new generation of thin bent silicon crystals. Suitable crystals were produced at the Sensor Semiconductor Laboratory of Ferrara starting from Silicon On Insulator wafers, adopting proper revisitation of silicon micromachining techniques such as Low Pressure Chemical Vapor Deposition, photolithography and anisotropic chemical etching. Mechanical holders, which allow to properly bend the crystal and to reduce unwanted torsions, were employed. Crystallographic directions and crystal holder design were optimized in order to excite quasi-mosaic effect along (1 1 1) planes. Prior to exposing the crystal to particle beams, a full set of characterizations were performed. Infrared interferometry was used to measure crystal thickness with high accuracy. White-light interferometry was employed to characterize surface deformational state and its torsion. High-resolution X-rays diffraction was used to precisely measure crystal bending angle along the beam. Manufactured crystals were installed and tested at the MAMI MAinz MIcrotron to steer sub-GeV electrons, and at SLAC to deflect an electron beam in the 1 to 10 GeV energy range.

  1. Heteroepitaxial film crystal silicon on Al2O3 for solar cells on cube-textured metal foil

    SciTech Connect

    Teplin, Charles W; Paranthaman, Mariappan Parans; Fanning, Thomas R; Alberi, Kirstin; Heatherly Jr, Lee; Wee, Sung Hun; Kim, Hyun Jung; List III, Frederick Alyious; Pineau, Jerry; Bornstein, Jon; Bowers, Karen; Lee, Dominic F; Cantoni, Claudia; Hane, Steve; Schroeter, Paul A; Young, David L.; Iwaniczko, Eugene; Jones, Kim M; Branz, Howard M

    2011-01-01

    Crystal silicon is an excellent photovoltaic (PV) semiconductor: silicon is abundant, environmentally benign, capable of high solar conversion efficiencies, and profits from an unparalleled scientific knowledge base. However, the energy-intensive, inefficient and expensive processes that turn sand into a crystal silicon (c-Si) wafer account for more than half of today s Si PV module costs. Because the peak flux of solar energy on Earth is only about 1 kW/m2, large areas must be covered with inexpensive PV to provide for TW-scale electrical power needs. To circumvent the costly wafer fabrication step, it would be ideal to grow 2-20 micron thick PV-quality silicon absorber layers directly from silane gas onto inexpensive substrates at temperatures below 800 C.

  2. Channeling, volume reflection, and volume capture study of electrons in a bent silicon crystal

    NASA Astrophysics Data System (ADS)

    Wistisen, T. N.; Uggerhøj, U. I.; Wienands, U.; Markiewicz, T. W.; Noble, R. J.; Benson, B. C.; Smith, T.; Bagli, E.; Bandiera, L.; Germogli, G.; Guidi, V.; Mazzolari, A.; Holtzapple, R.; Tucker, S.

    2016-07-01

    We present the experimental data and analysis of experiments conducted at SLAC National Accelerator Laboratory investigating the processes of channeling, volume-reflection and volume-capture along the (111) plane in a strongly bent quasimosaic silicon crystal. These phenomena were investigated at 5 energies: 3.35, 4.2, 6.3, 10.5, and 14.0 GeV with a crystal with bending radius of 0.15 m, corresponding to curvatures of 0.053, 0.066, 0.099, 0.16, and 0.22 times the critical curvature, respectively. Based on the parameters of fitting functions we have extracted important parameters describing the channeling process such as the dechanneling length, the angle of volume reflection, the surface transmission, and the widths of the distribution of channeled particles parallel and orthogonal to the plane.

  3. Bendable high-frequency microwave switches formed with single-crystal silicon nanomembranes on plastic substrates

    NASA Astrophysics Data System (ADS)

    Yuan, Hao-Chih; Qin, Guoxuan; Celler, George K.; Ma, Zhenqiang

    2009-07-01

    This letter presents realization of bendable rf switches operating at microwave frequencies formed with single-crystal Si nanomembranes (SiNMs) on a plastic substrate. Selectively doped 200-nm-thick SiNM is lifted off from silicon-on-insulator and transferred to a polymer substrate to form lateral P-intrinsic-N (PIN) diodes with minimized parasitic resistances. A single-pole single-throw switch, consisting of two PIN diodes connected in a shunt-series configuration, demonstrated very low insertion loss and high isolation from dc up to 20 GHz. The level of performance indicates a promise of properly processed single-crystal semiconductor nanomembranes for high-frequency applications in a number of consumer and military systems.

  4. Density-wave-modulated crystallization in nanoscale silicon films and droplets

    NASA Astrophysics Data System (ADS)

    Lü, Yongjun; Bi, Qingling; Yan, Xinqing

    2016-06-01

    Free surfaces have been known to significantly influence the crystallization of tetrahedral liquids. However, a comprehensive understanding of the influence mechanism is still lacking at present. By employing molecular dynamics simulations, we find that the nucleation probability in nanoscale silicon films and droplets exhibits a ripple-like distribution spatially. This phenomenon is closely related to the structural order wave, which is induced by the density fluctuations arisen from the volume expansion in a confinement environment defined by free surfaces. By the aid of the intrinsic relation between the tetrahedral order and the density, the analytic results based on the density wave equation well account for the nucleation probability distributions in both films and droplets. Our findings reveal the underlying mechanism of the surface-assisted nucleation in tetrahedral liquids and provide an overall description of crystallization in liquid films and droplets.

  5. Density-wave-modulated crystallization in nanoscale silicon films and droplets.

    PubMed

    Lü, Yongjun; Bi, Qingling; Yan, Xinqing

    2016-06-21

    Free surfaces have been known to significantly influence the crystallization of tetrahedral liquids. However, a comprehensive understanding of the influence mechanism is still lacking at present. By employing molecular dynamics simulations, we find that the nucleation probability in nanoscale silicon films and droplets exhibits a ripple-like distribution spatially. This phenomenon is closely related to the structural order wave, which is induced by the density fluctuations arisen from the volume expansion in a confinement environment defined by free surfaces. By the aid of the intrinsic relation between the tetrahedral order and the density, the analytic results based on the density wave equation well account for the nucleation probability distributions in both films and droplets. Our findings reveal the underlying mechanism of the surface-assisted nucleation in tetrahedral liquids and provide an overall description of crystallization in liquid films and droplets.

  6. Optical pendulum effect in one-dimensional diffraction-thick porous silicon based photonic crystals

    NASA Astrophysics Data System (ADS)

    Novikov, V. B.; Svyakhovskiy, S. E.; Maydykovskiy, A. I.; Murzina, T. V.; Mantsyzov, B. I.

    2015-11-01

    We present the realization of the multiperiodic optical pendulum effect in 1D porous silicon photonic crystals (PhCs) under dynamical Bragg diffraction in the Laue scheme. The diffraction-thick PhC contained 360 spatial periods with a large variation of the refractive index of adjacent layers of 0.4. The experiments reveal switching of the light leaving the PhC between the two spatial directions, which correspond to Laue diffraction maxima, as the fundamental wavelength or polarization of the incident light is varied. A similar effect can be achieved when the temperature of the sample or the intensity of the additional laser beam illuminating the crystal are changed. We show that in our PhC structures, the spectral period of the pendulum effect is down to 5 nm, while the thermal period is about 10 °C.

  7. A photonic crystal waveguide with silicon on insulator in the near-infrared band

    NASA Astrophysics Data System (ADS)

    Tang, Hai-Xia; Zuo, Yu-Hua; Yu, Jin-Zhong; Wang, Qi-Ming

    2007-07-01

    A two-dimensional (2D) photonic crystal waveguide in the Γ-K direction with triangular lattice on a silicon-on-insulator (SOI) substrate in the near-infrared band is fabricated by the combination of electron beam lithography and inductively coupled plasma etching. Its transmission characteristics are analysed from the stimulated band diagram by the effective index and the 2D plane wave expansion (PWE) methods. In the experiment, the transmission band edge in a longer wavelength of the photonic crystal waveguide is about 1590 nm, which is in good qualitative agreement with the simulated value. However, there is a disagreement between the experimental and the simulated results when the wavelength ranges from 1607 to 1630 nm, which can be considered as due to the unpolarized source used in the transmission measurement.

  8. Floating Silicon Method single crystal ribbon - observations and proposed limit cycle theory

    NASA Astrophysics Data System (ADS)

    Kellerman, Peter; Kernan, Brian; Helenbrook, Brian T.; Sun, Dawei; Sinclair, Frank; Carlson, Frederick

    2016-10-01

    In the Floating Silicon Method (FSM), a single-crystal Si ribbon is grown while floating on the surface of a Si melt. In this paper, we describe the phenomenology of FSM, including the observation of approximately regularly spaced "facet lines" on the ribbon surface whose orientation aligns with (111) crystal planes. Sb demarcation experiments sectioned through the thickness of the ribbon reveal that the solid/melt interface consists of dual (111) planes and that the leading edge facet growth is saccadic in nature, rather than steady-state. To explain this behavior, we propose a heuristic solidification limit cycle theory, using a continuum level of description with anisotropic kinetics as developed by others, and generalizing the interface kinetics to include a roughening transition as well as a re-faceting mechanism that involves curvature and the Gibbs-Thomson effect.

  9. Limitation of Liquid Crystal on Silicon Spatial Light Modular for Holographic Three-dimensional Displays

    NASA Technical Reports Server (NTRS)

    Wang, Xinghua; Wang, Bin; Bos, Philip J.; Anderson, James E.; Kujawinska, Malgorzata; Pouch, John; Miranda, Feliz

    2004-01-01

    In a 3-D display system based on an opto-electronic reconstruction of a digitally recorded hologram, the field of view of such a system is limited by the spatial resolution of the liquid crystal on silicon (LCOS) spatial light modular (SLM) used to perform the opto-electronic reconstruction. In this article, the special resolution limitation of LCOS SLM associated with the fringe field effect and interpixel coupling is determined by the liquid crystal detector simulation and the Finite Difference Time Domain (FDTD) simulation. The diffraction efficiency loss associated with the imperfection in the phase profile is studied with an example of opto-electronic reconstruction of an amplitude object. A high spatial resolution LCOS SLM with a wide reconstruction angle is proposed.

  10. Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities

    SciTech Connect

    Zou, Yi E-mail: swapnajit.chakravarty@omegaoptics.com Chen, Ray T. E-mail: swapnajit.chakravarty@omegaoptics.com; Chakravarty, Swapnajit E-mail: swapnajit.chakravarty@omegaoptics.com

    2015-08-24

    We experimentally demonstrate a photonic crystal (PC) microcavity side coupled to a W1.05 photonic crystal waveguide fabricated in silicon-on-sapphire working in mid-IR regime at 3.43 μm. Using a fixed wavelength laser source, propagation characteristics of PC waveguides without microcavity are characterized as a function of lattice constant to determine the light line position, stop gap, and guided mode transmission behavior. The resonance of an L21 PC microcavity coupled to the W1.05 PCW in the guided mode transmission region is then measured by thermal tuning of the cavity resonance across the source wavelength. Resonance quality factor ∼3500 is measured from the temperature dependency curve.

  11. Optical pendulum effect in one-dimensional diffraction-thick porous silicon based photonic crystals

    SciTech Connect

    Novikov, V. B. Svyakhovskiy, S. E.; Maydykovskiy, A. I.; Murzina, T. V.; Mantsyzov, B. I.

    2015-11-21

    We present the realization of the multiperiodic optical pendulum effect in 1D porous silicon photonic crystals (PhCs) under dynamical Bragg diffraction in the Laue scheme. The diffraction-thick PhC contained 360 spatial periods with a large variation of the refractive index of adjacent layers of 0.4. The experiments reveal switching of the light leaving the PhC between the two spatial directions, which correspond to Laue diffraction maxima, as the fundamental wavelength or polarization of the incident light is varied. A similar effect can be achieved when the temperature of the sample or the intensity of the additional laser beam illuminating the crystal are changed. We show that in our PhC structures, the spectral period of the pendulum effect is down to 5 nm, while the thermal period is about 10 °C.

  12. Channeling, volume reflection and gamma emission using 14GeV electrons in bent silicon crystals - Oral presentation

    SciTech Connect

    Benson, Brandon

    2015-08-23

    High energy electrons can be deflected with very tight bending radius using a bent silicon crystal. This produces gamma radiation. As these crystals can be thin, a series of bent silicon crystals with alternating direction has the potential to produce coherent gamma radiation with reasonable energy of the driving electron beam. Such an electron crystal undulator offers the prospect for higher energy radiation at lower cost than current methods. Permanent magnetic undulators like LCLS at SLAC National Accelerator Laboratory are expensive and very large (about 100 m in case of the LCLS undulator). Silicon crystals are inexpensive and compact when compared to the large magnetic undulators. Additionally, such a high energy coherent light source could be used for probing through materials currently impenetrable by x-rays. In this work we present the experimental data and analysis of experiment T523 conducted at SLAC National Accelerator Laboratory. We collected the spectrum of gamma ray emission from 14 GeV electrons on a bent silicon crystal counting single photons. We also investigated the dynamics of electron motion in the crystal i.e. processes of channeling and volume reflection at 14 GeV, extending and building off previous work. Our single photon spectrum for the amorphous crystal orientation is consistent with bremsstrahlung radiation and the volume reflection crystal orientation shows a trend consistent with synchrotron radiation at a critical energy of 740 MeV. We observe that in these two cases the data are consistent, but we make no further claims because of statistical limitations. We also extended the known energy range of electron crystal dechanneling length and channeling efficiency to 14 GeV.

  13. Modulation of quantum dot photoluminescence in porous silicon photonic crystals as a function of the depth of their penetration

    NASA Astrophysics Data System (ADS)

    Dovzhenko, Dmitriy S.; Martynov, Igor L.; Samokhvalov, Pavel S.; Mochalov, Konstantin E.; Chistyakov, Alexander A.; Nabiev, Igor

    2016-04-01

    Photonic crystals doped with fluorescent nanoparticles offer a plenty of interesting applications in photonics, laser physics, and biosensing. Understanding of the mechanisms and effects of modulation of the photoluminescent properties of photonic crystals by varying the depth of nanoparticle penetration should promote targeted development of nanocrystal-doped photonic crystals with desired optical and morphological properties. Here, we have investigated the penetration of semiconductor quantum dots (QDs) into porous silicon photonic crystals and performed experimental analysis and theoretical modeling of the effects of the depth of nanoparticle penetration on the photoluminescent properties of this photonic system. For this purpose, we fabricated porous silicon microcavities with an eigenmode width not exceeding 10 nm at a wavelength of 620 nm. CdSe/CdS/ZnS QDs fluorescing at 617 nm with a quantum yield of about 70% and a width at half-height of about 40 nm were used in the study. Confocal microscopy and scanning electron microscopy were used to estimate the depth of penetration of QDs into the porous silicon structure; the photoluminescence spectra, kinetics, and angular fluorescence distribution were also analyzed. Enhancement of QD photoluminescence at the microcavity eigenmode wavelength was observed. Theoretical modeling of porous silicon photonic crystals doped with QDs was performed using the finite-difference time-domain (FDTD) approach. Theoretical modeling has predicted, and the experiments have confirmed, that even a very limited depth of nanoparticle penetration into photonic crystals, not exceeding the first Bragg mirror of the microcavity, leads to significant changes in the QD luminescence spectrum determined by the modulation of the local density of photonic states in the microcavity. At the same time, complete and uniform filling of a photonic crystal with nanoparticles does not enhance this effect, which is as strong as in the case of a very

  14. Study and optimization of gas flow and temperature distribution in a Czochralski configuration

    NASA Astrophysics Data System (ADS)

    Fang, H. S.; Jin, Z. L.; Huang, X. M.

    2012-12-01

    The Czochralski (Cz) method has virtually dominated the entire production of bulk single crystals with high productivity. Since the Cz-grown crystals are cylindrical, axisymmetric hot zone arrangement is required for an ideally high-quality crystal growth. However, due to three-dimensional effects the flow pattern and temperature field are inevitably non-axisymmetric. The grown crystal suffers from many defects, among which macro-cracks and micro-dislocation are mainly related to inhomogeneous temperature distribution during the growth and cooling processes. The task of the paper is to investigate gas partition and temperature distribution in a Cz configuration, and to optimize the furnace design for the reduction of the three-dimensional effects. The general design is found to be unfavorable to obtain the desired temperature conditions. Several different types of the furnace designs, modified at the top part of the side insulation, are proposed for a comparative analysis. The optimized one is chosen for further study, and the results display the excellence of the proposed design in suppression of three-dimensional effects to achieve relatively axisymmetric flow pattern and temperature distribution for the possible minimization of thermal stress related crystal defects.

  15. Friction and metal transfer for single-crystal silicon carbide in contact with various metals in vacuum

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted with single-crystal silicon carbide in contact with transition metals (tungsten, iron, rhodium, nickel, titanium, and cobalt), copper, and aluminum. Results indicate the coefficient of friction for a silicon carbide-metal system is related to the d bond character and relative chemical activity of the metal. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to the surface of silicon carbide in sliding. The chemical activity of metal to silicon and carbon and shear modulus of the metal may play important roles in metal transfer and the form of the wear debris. The less active and greater resistance to shear the metal has, with the exception of rhodium and tungsten, the less transfer to silicon carbide.

  16. Liquid gallium cooling of silicon crystals in high intensity photon beam

    SciTech Connect

    Smither, R.K.; Forster, G.A.; Bilderback, D.H.; Bedzyk, M.; Finkelstein, K.; Henderson, C.; White, J.; Berman, L.E.; Stefan, P.; Oversluizen, T.

    1988-11-01

    The high-brilliance, insertion-device-based, photon beams of the next generation of synchrotron sources will deliver large thermal loads (1 kW to 10 kW) to the first optical elements. Considering the problems that present synchrotron users are experiencing with beams from recently installed insertion devices, new and improved methods of cooling these first optical elements, particularly when they are diffraction crystals, are clearly needed. A series of finite element calculations were performed to test the efficiency of new cooling geometries and new cooling fluids. The best results were obtained with liquid Ga metal flowing in channels just below the surface of the crystal. Ga was selected because of its good thermal conductivity and thermal capacity, low melting point, high boiling point, low kinetic viscosity, and very low vapor pressure. Its very low vapor pressure, even at elevated temperatures, makes it especially attractive in uhv conditions. A series of experiments were conducted at CHESS in February of 1988 that compared liquid gallium cooled silicon diffraction crystals with water cooled crystals. 2 refs., 16 figs., 1 tab.

  17. Thin, High Lifetime Silicon Wafers with No Sawing; Re-crystallization in a Thin Film Capsule

    SciTech Connect

    Emanuel Sachs Tonio Buonassisi

    2013-01-16

    The project fits within the area of renewable energy called photovoltaics (PV), or the generation of electricity directly from sunlight using semiconductor devices. PV has the greatest potential of any renewable energy technology. The vast majority of photovoltaic modules are made on crystalline silicon wafers and these wafers accounts for the largest fraction of the cost of a photovoltaic module. Thus, a method of making high quality, low cost wafers would be extremely beneficial to the PV industry The industry standard technology creates wafers by casting an ingot and then sawing wafers from the ingot. Sawing rendered half of the highly refined silicon feedstock as un-reclaimable dust. Being a brittle material, the sawing is actually a type of grinding operation which is costly both in terms of capital equipment and in terms of consumables costs. The consumables costs associated with the wire sawing technology are particularly burdensome and include the cost of the wire itself (continuously fed, one time use), the abrasive particles, and, waste disposal. The goal of this project was to make wafers directly from molten silicon with no sawing required. The fundamental concept was to create a very low cost (but low quality) wafer of the desired shape and size and then to improve the quality of the wafer by a specialized thermal treatment (called re-crystallization). Others have attempted to create silicon sheet by recrystallization with varying degrees of success. Key among the difficulties encountered by others were: a) difficulty in maintaining the physical shape of the sheet during the recrystallization process and b) difficulty in maintaining the cleanliness of the sheet during recrystallization. Our method solved both of these challenges by encapsulating the preform wafer in a protective capsule prior to recrystallization (see below). The recrystallization method developed in this work was extremely effective at maintaining the shape and the cleanliness of the

  18. Tracing the definition of the kilogram to the Avogadro constant using a silicon single crystal

    NASA Astrophysics Data System (ADS)

    Becker, Peter

    2003-12-01

    This paper describes attempts to replace the present definition of the SI unit mass, the kilogram, by a new one, based on the atomic mass unit; the kilogram then becomes the mass of a certain number of silicon atoms. The related research is planned and is to be performed within the scope of a worldwide collaboration coordinated by the Working Group on the Avogadro Constant of the CIPM Consultative Committee for Mass and Related Quantities. This requires determination of the Avogadro constant, NA, with a relative uncertainty close to 1 × 10-8. At present, the most important limiting factor is the uncertainty arising from observed differences between some primary density standards as well as the measurement of the molar mass of silicon, e.g. the determination of the natural isotopic composition. Improvements in crystal characterization and density determination are described that allow us to reach a relative uncertainty of about 10-7. A further reduction in the uncertainty is envisaged by measurements performed on a 99.99% enriched 28Si single crystal.

  19. Precision control of thermal transport in cryogenic single-crystal silicon devices

    SciTech Connect

    Rostem, K.; Chuss, D. T.; Colazo, F. A.; Crowe, E. J.; Denis, K. L.; Lourie, N. P.; Moseley, S. H.; Stevenson, T. R.; Wollack, E. J.

    2014-03-28

    We report on the diffusive-ballistic thermal conductance of multi-moded single-crystal silicon beams measured below 1 K. It is shown that the phonon mean-free-path ℓ is a strong function of the surface roughness characteristics of the beams. This effect is enhanced in diffuse beams with lengths much larger than ℓ, even when the surface is fairly smooth, 5–10 nm rms, and the peak thermal wavelength is 0.6 μm. Resonant phonon scattering has been observed in beams with a pitted surface morphology and characteristic pit depth of 30 nm. Hence, if the surface roughness is not adequately controlled, the thermal conductance can vary significantly for diffuse beams fabricated across a wafer. In contrast, when the beam length is of order ℓ, the conductance is dominated by ballistic transport and is effectively set by the beam cross-sectional area. We have demonstrated a uniformity of ±8% in fractional deviation for ballistic beams, and this deviation is largely set by the thermal conductance of diffuse beams that support the micro-electro-mechanical device and electrical leads. In addition, we have found no evidence for excess specific heat in single-crystal silicon membranes. This allows for the precise control of the device heat capacity with normal metal films. We discuss the results in the context of the design and fabrication of large-format arrays of far-infrared and millimeter wavelength cryogenic detectors.

  20. Precision Control of Thermal Transport in Cryogenic Single-Crystal Silicon Devices

    NASA Technical Reports Server (NTRS)

    Rostem, K.; Chuss, D. T.; Colazo, F. A.; Crowe, E. J.; Denis, K. L.; Lourie, N. P.; Moseley, S. H.; Stevenson, T. R.; Wollack, E. J.

    2014-01-01

    We report on the diffusive-ballistic thermal conductance of multi-moded single-crystal silicon beams measured below 1 K. It is shown that the phonon mean-free-path is a strong function of the surface roughness characteristics of the beams. This effect is enhanced in diffuse beams with lengths much larger than, even when the surface is fairly smooth, 510 nm rms, and the peak thermal wavelength is 0.6 microns. Resonant phonon scattering has been observed in beams with a pitted surface morphology and characteristic pit depth of 30 nm. Hence, if the surface roughness is not adequately controlled, the thermal conductance can vary significantly for diffuse beams fabricated across a wafer. In contrast, when the beam length is of order, the conductance is dominated by ballistic transport and is effectively set by the beam cross-sectional area. We have demonstrated a uniformity of +/-8% in fractional deviation for ballistic beams, and this deviation is largely set by the thermal conductance of diffuse beams that support the micro-electro-mechanical device and electrical leads. In addition, we have found no evidence for excess specific heat in single-crystal silicon membranes. This allows for the precise control of the device heat capacity with normal metal films. We discuss the results in the context of the design and fabrication of large-format arrays of far-infrared and millimeter wavelength cryogenic detectors.

  1. Fabrication of single crystal silicon mirror substrates for X-ray astronomical missions

    NASA Astrophysics Data System (ADS)

    Riveros, Raul E.; Bly, Vincent T.; Kolos, Linette D.; McKeon, Kevin P.; Mazzarella, James R.; Miller, Timothy M.; Zhang, William W.

    2014-07-01

    The advancement of X-ray astronomy largely depends on technological advances in the manufacturing of X-ray optics. Future X-ray astronomy missions will require thousands of nearly perfect mirror segments to produce an X-ray optical assembly with < 5 arcsecond resolving capability. Present-day optical manufacturing technologies are not capable of producing thousands of such mirrors within typical mission time and budget allotments. Therefore, efforts towards the establishment of a process capable of producing sufficiently precise X-ray mirrors in a time-efficient and cost-effective manner are needed. Single-crystal silicon is preferred as a mirror substrate material over glass since it is stronger and free of internal stress, allowing it to retain its precision when cut into very thin mirror substrates. This paper details our early pursuits of suitable fabrication technologies for the mass production of sub-arcsecond angular resolution single-crystal silicon mirror substrates for X-ray telescopes.

  2. High-efficiency deflection of high energy protons due to channeling along the <110> axis of a bent silicon crystal

    NASA Astrophysics Data System (ADS)

    Scandale, W.; Arduini, G.; Butcher, M.; Cerutti, F.; Garattini, M.; Gilardoni, S.; Lechner, A.; Masi, A.; Mirarchi, D.; Montesano, S.; Redaelli, S.; Rossi, R.; Smirnov, G.; Breton, D.; Burmistrov, L.; Chaumat, V.; Dubos, S.; Maalmi, J.; Puill, V.; Stocchi, A.; Bagli, E.; Bandiera, L.; Germogli, G.; Guidi, V.; Mazzolari, A.; Dabagov, S.; Murtas, F.; Addesa, F.; Cavoto, G.; Iacoangeli, F.; Galluccio, F.; Afonin, A. G.; Chesnokov, Yu. A.; Durum, A. A.; Maisheev, V. A.; Sandomirskiy, Yu. E.; Yanovich, A. A.; Kovalenko, A. D.; Taratin, A. M.; Denisov, A. S.; Gavrikov, Yu. A.; Ivanov, Yu. M.; Lapina, L. P.; Malyarenko, L. G.; Skorobogatov, V. V.; James, T.; Hall, G.; Pesaresi, M.; Raymond, M.

    2016-09-01

    A deflection efficiency of about 61% was observed for 400 GeV/c protons due to channeling, most strongly along the <110> axis of a bent silicon crystal. It is comparable with the deflection efficiency in planar channeling and considerably larger than in the case of the <111> axis. The measured probability of inelastic nuclear interactions of protons in channeling along the <110> axis is only about 10% of its amorphous level whereas in channeling along the (110) planes it is about 25%. High efficiency deflection and small beam losses make this axial orientation of a silicon crystal a useful tool for the beam steering of high energy charged particles.

  3. Fabrication issues for silicon backplane active matrix miniature liquid crystal display

    NASA Astrophysics Data System (ADS)

    Underwood, Ian; Burns, D. C.; Rankine, I. D.; Bennett, D. J.; Gourlay, James D.; O'Hara, Anthony; Vass, David G.

    1995-09-01

    We describe a new technology which is appropriate for the production of lightweight, highly compact displays. It is based upon a thin layer of ferroelectric liquid crystal (FLC) on top of, and directly driven by, an active matrix backplane fabricated on single crystal silicon. While devices can be produced using fairly standard techniques, we have developed custon fabrication and packaging techniques, required for optimization of optical quality and performance. We have successfully developed the technology for spatial light modulators for use in applications such as optical correlators and programmable holograms. The FLC is configured in the binary surface stabilized configuration: the CMOS circuits are digital in nature. The device operates in reflection with each pixel having an aluminium pad which acts as a mirror to reflect light and as an electorde to control the state of the overlying FLC. The technology also shows promise as a display technology so we have demonstrated the devices as displays capable of displaying both grey scale and color. We have built FLC devices upon commercially fabricated wafers but have found it advantageous to carry out custom post processing order to improve performance. The main thrust to date has been the use of ECR oxide deposition followed by chemical mechanical polishing to provide an optically flat substrate for mirror deposition. This allows the deposition of flat mirrors which fill almost all of the pixel area; it also allows optimization of the mirror deposition for high optical quality and good FLC alignment. Work is also well advanced on a technique to fill the vias connecting to the mirror layer and on packaging devices to reduce bowing of the silicon and increase the thickness uniformity of the FLC layer. Recent results are demonstrated on LCDs fabricated above two silicon backplanes containing 176 X 176 pixels and 256 X 256 pixels respectively, the former having dynamic signal storage at each pixel, the latter static

  4. Excimer laser annealing: A gold process for CZ silicon junction formation

    NASA Technical Reports Server (NTRS)

    Wong, David C.; Bottenberg, William R.; Byron, Stanley; Alexander, Paul

    1987-01-01

    A cold process using an excimer laser for junction formation in silicon has been evaluated as a way to avoid problems associated with thermal diffusion. Conventional thermal diffusion can cause bulk precipitation of SiOx and SiC or fail to completely activate the dopant, leaving a degenerate layer at the surface. Experiments were conducted to determine the feasibility of fabricating high quality p-n junctions using a pulsed excimer laser for junction formation at remelt temperature with ion-implanted surfaces. Solar-cell efficiency exceeding 16 percent was obtained using Czochralski single-crystal silicon without benefit of back surface field or surface passivation. Characterization shows that the formation of uniform, shallow junctions (approximately 0.25 micron) by excimer laser scanning preserves the minority carrier lifetime that leads to high current collection. However, the process is sensitive to initial surface conditions and handling parameters that drive the cost up.

  5. A candidate low-cost processing sequence for terrestrial silicon solar cell panel

    NASA Technical Reports Server (NTRS)

    Bickler, D. B.; Gallagher, B. D.; Sanchez, L. E.

    1978-01-01

    Manufacturing sequence for silicon solar cells using Czochralsky crystal growing techniques in order to produce at a rate of 20 MW per year on a 24-hour per day basis is discussed. Cost analysis of the manufacturing is presented and consideration is given to the following processing decision categories of the manufacturing of an unencapsulated solar cell from a silicon wafer: (1) treatment of the optical surface; (2) formation of the junction(s); and (3) metallization of electrical collectors. The manufacturing of encapsulated solar modules from solar cells, using two glass plates, a low iron front surface, and a standard float glass back plate, is described. Totaling the three major activities of wafer making, cell manufacturing, and module fabrication, the resulting contribution to module price will be 1.945 $/watt.

  6. Vibrational Spectroscopic Studies of Adsorbates on Metal and Silicon Single Crystal Surfaces.

    NASA Astrophysics Data System (ADS)

    Horn, Andrew B.

    Available from UMI in association with The British Library. The design of an experiment to investigate the surface chemistry of silicon, with specific application to the study of intermediates formed during the chemical vapour deposition of silicon from silane homologues was considered in a theoretical manner using classical optical techniques, and experimental verification of the ability to detect multilayers of physically adsorbed species was performed. Both reflection-absorption infrared spectroscopy and transmission infrared spectroscopy were investigated. Some of the steps involved in the cleaning of a silicon wafer were investigated. Chemical etching of the wafers was simulated using hydrofluoric acid solutions and hydrogen peroxide/sulphuric acid rinses and monitored using transmission infrared spectroscopy. Thermal annealing and argon ion sputter etching were investigated using transmission infrared spectroscopy, Auger electron spectroscopy and low energy electron diffraction. The adsorption of disilane, Si_{z}H_{rm e} on Si(100) was investigated at a variety of temperatures. Contamination was demonstrated to be significant in the passivation of the surface to a point where little reactivity could be observed at room temperature. Physical adsorption was seen to occur in a dynamic pressure of disilane at ca. 130K. The adsorption of disilane at temperatures ranging from 100K to 300K was investigated on Ru(0001). At low temperatures, disilane was seen to adsorb molecularly at 100K, with partial decomposition in the first layer. Annealing to higher temperatures and adsorption at 160K was seen to produce adsorbed SiH_{n } (n = 1-3), which desorbed above 270K. At room temperature, disilane adsorbed dissociatively to form an SiH species which formed a variety of structures at increasing coverage, evidenced by complex LEED patterns. At higher temperatures, the adsorbed silicon reacted with the ruthenium crystal to form a ruthenium silicide as an incommensurate

  7. High-heat-load synchrotron tests of room-temperature, silicon crystal monochromators at the CHESS F-2 wiggler station

    SciTech Connect

    Lee, W.K.; Fernandez, P.B.; Graber, T.; Assoufid, L.

    1995-09-08

    This note summarizes the results of the single crystal monochromator high-heat-load tests performed at the CHESS F-2 wiggler station. The results from two different cooling geometries are presented: (1) the ``pin-post`` crystal and (2) the ``criss-cross`` crystal. The data presented were taken in August 1993 (water-cooled pin-post) and in April 1995 (water- and gallium-cooled pin-post crystal and gallium-cooled criss-cross crystal). The motivation for trying these cooling (or heat exchanger) geometries is to improve the heat transfer efficiency over that of the conventional slotted crystals. Calculations suggest that the pin-post or the microchannel design can significantly improve the thermal performance of the crystal. The pin-post crystal used here was fabricated by Rocketdyne Albuquerque Operations. From the performance of the conventional slotted crystals, it was thought that increased turbulence in the flow pattern may also enhance the heat transfer. The criss-cross crystal was a simple attempt to achieve the increased flow turbulence. The criss-cross crystal was partly fabricated in-house (cutting, etching and polishing) and bonded by RAO. Finally, a performance comparison among all the different room temperature silicon monochromators that have been tested by the APS is presented. The data includes measurements with the slotted crystal and the core-drilled crystals. Altogether, the data presented here were taken at the CHESS F-2 wiggler station between 1991 and 1995.

  8. First Observation of the Deflection of a 33 TeV Pb Ion Beam in a Bent Silicon Crystal

    NASA Astrophysics Data System (ADS)

    Elsener, K.; Biino, C.; Clement, M.; Doble, N.; Gatignon, L.; Grafstrom, P.; Mikkelsen, U.; Taratin, A.; Møller, S. P.; Uggerhøj, E.

    1997-05-01

    The deflection of an ultra-relativistic, fully stripped Pb(82+) ion beam in a bent silicon crystal has been observed for the first time. The ions were provided by the CERN-SPS in the H4 beam at a momentum of 400 GeV/c/Z. A 60 mm long silicon crystal, bent over 50 mm to give a 4 mrad deflection angle, was used in this experiment. The measured Pb ion deflection efficiencies are comparable to the ones obtained with protons at an equivalent ratio p/Z, and are found to be about 15% for a beam with a divergence of 50 microradians (FWHM). The interaction rate observed in a background counter is reduced by about the same 15% when the crystal is well aligned with the beam. This corroborates further the channeling model, which predicts that channeled ions are steered away from regions of high electron densities as well as from the nuclei in the crystal.

  9. On the energy spectra of secondary ions emitted from silicon and graphite single crystals

    NASA Astrophysics Data System (ADS)

    Khvostov, V. V.; Khrustachev, I. K.; Minnebaev, K. F.; Zykova, E. Yu.; Ivanenko, I. P.; Yurasova, V. E.

    2014-03-01

    Secondary ion emission from silicon and graphite single crystals bombarded by argon ions with energies E 0 varied from 1 to 10 keV at various angles of incidence α has been studied. The evolution of the energy spectra of C+ and Si+ secondary ions has been traced in which the positions of maxima ( E max) shift toward higher secondary-ion energies E 1 with increasing polar emission angle θ (measured from the normal to the sample surface). The opposite trend has been observed for ions emitted from single crystals heated to several hundred degrees Centigrade; the E max values initially remain unchanged and then shift toward lower energies E 1 with increasing angle θ. It is established that the magnitude and position of a peak in the energy spectrum of secondary C+ ions is virtually independent of E 0, angle α, and the surface relief of the sample (in the E 0 and α intervals studied). Unusual oscillating energy distributions are discussed, which have been observed for secondary ions emitted from silicon (111) and layered graphite (0001) faces. Numerical simulations of secondary ion sputtering and charge exchange have been performed. A comparison of the measured and calculated data for graphite crystals has shown that C+ ions are formed as a result of charge exchange between secondary ions and bombarding Ar+ ions, which takes place both outside and inside the target. This substantially differs from the ion sputtering process in metals and must be taken into account when analyzing secondary ion emission mechanisms and in practical applications of secondary-ion mass spectrometry.

  10. Polycrystalline Silicon Sheets for Solar Cells by the Improved Spinning Method

    NASA Technical Reports Server (NTRS)

    Maeda, Y.; Yokoyama, T.; Hide, I.

    1984-01-01

    Cost reduction of silicon materials in the photovoltaic program of materials was examined. The current process of producing silicon sheets is based entirely on the conventional Czochralski ingot growth and wafering used in the semiconductor industry. The current technology cannot meet the cost reduction demands for producing low cost silicon sheets. Alternative sheet production processes such as unconventional crystallization are needed. The production of polycrystalline silicon sheets by unconventional ingot technology is the casting technique. Though large grain sheets were obtained by this technique, silicon ribbon growth overcomes deficiencies of the casting process by obtaining the sheet directly from the melt. The need to solve difficulties of growth stability and impurity effects are examined. The direct formation process of polycrystalline silicon sheets with large grain size, smooth surface, and sharp edges from the melt with a high growth rate which will yield low cost silicon sheets for solar cells and the photovoltaic characteristics associated with this type of sheet to include an EBIC study of the grain boundaries are described.

  11. Performance study of Philips digital silicon photomultiplier coupled to scintillating crystals

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Pizzichemi, M.; Auffray, E.; Lecoq, P.; Paganoni, M.

    2016-01-01

    Silicon photomultipliers (SiPMs) and scintillators are often arranged in the shape of arrays in Positron Emission Tomography (PET) systems. Digital SiPMs provide signal readout in single photon avalanche diode (SPAD) level. From the photon count rate measurement of each SPAD cell of digital SiPM, we found that the output scintillating photons distribute in an area larger than the scintillator physical coupling area. Taking advantage of the possibility to enable/disable individual cells of the digital SiPM, a group of Lutetium-yttrium oxyorthosilicate (LYSO) crystals with different dimensions coupled to a digital SiPM was used to study the influence of using different SiPM active area on the number of photons detected, energy resolution and coincidence time resolution (CTR). For the same crystal coupled to the digital SiPM, the larger the active area of digital SiPM, the higher the number of photons detected. The larger active area of the digital SiPM also results in a better energy resolution after saturation correction. The best energy resolution full width half maximum (FWHM) obtained for the 2 × 2 × 5 mm3, 2 × 2 × 10 mm3, 2 × 2 × 15 mm3, 2 × 2 × 20 mm3 LYSO crystals was 10.7%, 11.6%, 12.1%, 12.5%, respectively. For crystals with different cross sections coupled to the digital SiPM, we found that the larger the cross section of coupling area, the more photons were detected and thus a better energy resolution was obtained. The CTR of crystals fully wrapped with Teflon or without wrapping was measured by positioning two identical crystals facing each other. A larger area of digital SiPM improves the CTR and the CTR reaches the plateau when the active area is larger than 2.2 × 2.2 mm2 with both two configurations of wrapping. The best CTR value for the 2 × 2 × 5 mm3, 2 × 2 × 10 mm3, 2 × 2 × 15 mm3, 2 × 2 × 20 mm3 LYSO crystals was 128.9 ps, 148.4 ps, 171.6 ps, 177.9 ps, respectively. The measurements performed lead us to conclude that optimising the

  12. Silver- and Gold-Ordered Structures on Single-Crystal Silicon Surface After Thermal Deposition.

    PubMed

    Karbivskyy, Vladimir; Karbivska, Love; Artemyuk, Viktor

    2016-12-01

    The formation mechanisms of Ag- and Au-ordered structures on single-crystal silicon (Si) (111) and Si (110) surfaces were researched using high-resolution scanning tunneling microscopy method. It was shown that different patterns of self-assembled nanostructures with very precise and regular geometric shapes can be produced by controlling process parameters of thermal metal spraying on the substrate. The surfaces of nanorelieves at each stage of deposition were researched, and the main stages of morphological transformation were fixed.Self-ordered hexagonal pyramid-shaped nanostructures were formed at thermal deposition of gold on the Si (111), whereas only monolayer hexagonal formation could be observed on the plane Si (110). Gold monolayer flake nanostructures were obtained under certain technological parameters.Atomically smooth Ag film cannot be obtained on the Si (111) surface by means of thermal spraying at room temperature. The formation of two-dimensional (2D) clusters takes place; heating of these clusters at several hundred degrees Celsius leads to their transformation into atomically smooth covering.The weak interaction between Ag multilayer coatings and substrate was established that allows to clear crystal surface from metal with reproduction of the reconstructed Si (111) 7 × 7 surface by slight warming. The offered method can be used for single-crystal surface protection from destruction.

  13. A quality comparison of protein crystals grown under containerless conditions generated by diamagnetic levitation, silicone oil and agarose gel.

    PubMed

    Cao, Hui-Ling; Sun, Li-Hua; Li, Jian; Tang, Lin; Lu, Hui-Meng; Guo, Yun-Zhu; He, Jin; Liu, Yong-Ming; Xie, Xu-Zhuo; Shen, He-Fang; Zhang, Chen-Yan; Guo, Wei-Hong; Huang, Lin-Jun; Shang, Peng; He, Jian-Hua; Yin, Da-Chuan

    2013-10-01

    High-quality crystals are key to obtaining accurate three-dimensional structures of proteins using X-ray diffraction techniques. However, obtaining such protein crystals is often a challenge. Several containerless crystallization techniques have been reported to have the ability to improve crystal quality, but it is unknown which is the most favourable way to grow high-quality protein crystals. In this paper, a quality comparison of protein crystals which were grown under three containerless conditions provided by diamagnetic levitation, silicone oil and agarose gel was conducted. A control experiment on a vessel wall was also simultaneously carried out. Seven different proteins were crystallized under the four conditions, and the crystal quality was assessed in terms of the resolution limit, the mosaicity and the Rmerge. It was found that the crystals grown under the three containerless conditions demonstrated better morphology than those of the control. X-ray diffraction data indicated that the quality of the crystals grown under the three containerless conditions was better than that of the control. Of the three containerless crystallization techniques, the diamagnetic levitation technique exhibited the best performance in enhancing crystal quality. This paper is to our knowledge the first report of improvement of crystal quality using a diamagnetic levitation technique. Crystals obtained from agarose gel demonstrated the second best improvement in crystal quality. The study indicated that the diamagnetic levitation technique is indeed a favourable method for growing high-quality protein crystals, and its utilization is thus potentially useful in practical efforts to obtain well diffracting protein crystals.

  14. A quality comparison of protein crystals grown under containerless conditions generated by diamagnetic levitation, silicone oil and agarose gel.

    PubMed

    Cao, Hui-Ling; Sun, Li-Hua; Li, Jian; Tang, Lin; Lu, Hui-Meng; Guo, Yun-Zhu; He, Jin; Liu, Yong-Ming; Xie, Xu-Zhuo; Shen, He-Fang; Zhang, Chen-Yan; Guo, Wei-Hong; Huang, Lin-Jun; Shang, Peng; He, Jian-Hua; Yin, Da-Chuan

    2013-10-01

    High-quality crystals are key to obtaining accurate three-dimensional structures of proteins using X-ray diffraction techniques. However, obtaining such protein crystals is often a challenge. Several containerless crystallization techniques have been reported to have the ability to improve crystal quality, but it is unknown which is the most favourable way to grow high-quality protein crystals. In this paper, a quality comparison of protein crystals which were grown under three containerless conditions provided by diamagnetic levitation, silicone oil and agarose gel was conducted. A control experiment on a vessel wall was also simultaneously carried out. Seven different proteins were crystallized under the four conditions, and the crystal quality was assessed in terms of the resolution limit, the mosaicity and the Rmerge. It was found that the crystals grown under the three containerless conditions demonstrated better morphology than those of the control. X-ray diffraction data indicated that the quality of the crystals grown under the three containerless conditions was better than that of the control. Of the three containerless crystallization techniques, the diamagnetic levitation technique exhibited the best performance in enhancing crystal quality. This paper is to our knowledge the first report of improvement of crystal quality using a diamagnetic levitation technique. Crystals obtained from agarose gel demonstrated the second best improvement in crystal quality. The study indicated that the diamagnetic levitation technique is indeed a favourable method for growing high-quality protein crystals, and its utilization is thus potentially useful in practical efforts to obtain well diffracting protein crystals. PMID:24100310

  15. Light-trapping optimization in wet-etched silicon photonic crystal solar cells

    SciTech Connect

    Eyderman, Sergey; John, Sajeev; Hafez, M.; Al-Ameer, S. S.; Al-Harby, T. S.; Al-Hadeethi, Y.; Bouwes, D. M.

    2015-07-14

    We demonstrate, by numerical solution of Maxwell's equations, near-perfect solar light-trapping and absorption over the 300–1100 nm wavelength band in silicon photonic crystal (PhC) architectures, amenable to fabrication by wet-etching and requiring less than 10 μm (equivalent bulk thickness) of crystalline silicon. These PhC's consist of square lattices of inverted pyramids with sides comprised of various (111) silicon facets and pyramid center-to-center spacing in the range of 1.3–2.5 μm. For a wet-etched slab with overall height H = 10 μm and lattice constant a = 2.5 μm, we find a maximum achievable photo-current density (MAPD) of 42.5 mA/cm{sup 2}, falling not far from 43.5 mA/cm{sup 2}, corresponding to 100% solar absorption in the range of 300–1100 nm. We also demonstrate a MAPD of 37.8 mA/cm{sup 2} for a thinner silicon PhC slab of overall height H = 5 μm and lattice constant a = 1.9 μm. When H is further reduced to 3 μm, the optimal lattice constant for inverted pyramids reduces to a = 1.3 μm and provides the MAPD of 35.5 mA/cm{sup 2}. These wet-etched structures require more than double the volume of silicon, in comparison to the overall mathematically optimum PhC structure (consisting of slanted conical pores), to achieve the same degree of solar absorption. It is suggested these 3–10 μm thick structures are valuable alternatives to currently utilized 300 μm-thick textured solar cells and are suitable for large-scale fabrication by wet-etching.

  16. Influence of crystal-orientation effects on pulse-shape-based identification of heavy-ions stopped in silicon detectors

    NASA Astrophysics Data System (ADS)

    Bardelli, L.; Bini, M.; Casini, G.; Pasquali, G.; Poggi, G.; Barlini, S.; Becla, A.; Berjillos, R.; Borderie, B.; Bougault, R.; Bruno, M.; Cinausero, M.; D'Agostino, M.; de Sanctis, J.; Dueñas, J. A.; Edelbruck, P.; Geraci, E.; Gramegna, F.; Kordyasz, A.; Kozik, T.; Kravchuk, V. L.; Lavergne, L.; Marini, P.; Nannini, A.; Negoita, F.; Olmi, A.; Ordine, A.; Piantelli, S.; Rauly, E.; Rivet, M. F.; Rosato, E.; Scian, C.; Stefanini, A. A.; Vannini, G.; Velica, S.; Vigilante, M.; Fazia Collaboration

    2009-07-01

    Current and charge signals have been collected for Se ions at 408 MeV, S at 160 MeV and Ni at 703 MeV, all stopped in silicon detectors. Some detectors were cut 0∘ off the <1 1 1> axis and some off the <1 0 0> axis. Important effects on the shape of the silicon current and charge signals have been observed, depending on the orientation of the impinging ion relative to the crystal axes and planes. A degradation of the energy and risetime resolution of about a factor ˜3 with respect to the measured optimal values (for example 7∘ off-axis orientation) is observed for ion impinging directions close to crystal axes and/or planes, i.e. the common scenario for normal incidence on 0∘ cut detectors. For Pulse Shape Analysis applications, the necessity of using such "random" oriented silicon detectors is demonstrated.

  17. Holographic three-dimensional display and hologram calculation based on liquid crystal on silicon device [invited].

    PubMed

    Li, Junchang; Tu, Han-Yen; Yeh, Wei-Chieh; Gui, Jinbin; Cheng, Chau-Jern

    2014-09-20

    Based on scalar diffraction theory and the geometric structure of liquid crystal on silicon (LCoS), we study the impulse responses and image depth of focus in a holographic three-dimensional (3D) display system. Theoretical expressions of the impulse response and the depth of focus of reconstructed 3D images are obtained, and experimental verifications of the imaging properties are performed. The results indicated that the images formed by holographic display based on the LCoS device were periodic image fields surrounding optical axes. The widths of the image fields were directly proportional to the wavelength and diffraction distance, and inversely proportional to the pixel size of the LCoS device. Based on the features of holographic 3D imaging and focal depth, we enhance currently popular hologram calculation methods of 3D objects to improve the computing speed of hologram calculation.

  18. Thermal phonon transport in silicon nanowires and two-dimensional phononic crystal nanostructures

    NASA Astrophysics Data System (ADS)

    Nomura, Masahiro; Nakagawa, Junki; Kage, Yuta; Maire, Jeremie; Moser, Dominik; Paul, Oliver

    2015-04-01

    Thermal phonon transport in silicon nanowires (Si NWs) and two-dimensional phononic crystal (2D PnC) nanostructures was investigated by measuring thermal conductivity using a micrometer-scale time-domain thermoreflectance. The impact of nanopatterning on thermal conductivity strongly depends on the geometry, specularity parameter, and thermal phonon mean free path (MFP) distribution. Thermal conductivities for 2D PnC nanostructures were found to be much lower than that for NWs with similar characteristic length and surface-to-volume ratio due to stronger phonon back scattering. In single-crystalline Si, PnC patterning has a stronger impact at 4 K than at room temperature due to a higher specularity parameter and a longer thermal phonon MFP. Nanowire patterning has a stronger impact in polycrystalline Si, where thermal phonon MFP distribution is biased longer by grain boundary scattering.

  19. Photonic drop splitters based on silicon photonic crystal cascaded self-collimation ring resonators

    NASA Astrophysics Data System (ADS)

    Lin, Yuan-Yuan; Chen, Xi-Yao; Jiang, Jun-Zhen; Fu, Ping; Chen, Biao; Yang, Li-Hui; Liu, Jing-Ping; Lin, Bao-Cheng

    2014-10-01

    In this paper, the 1×5 optical splitters (OSs) based on 2D rod-type silicon photonic crystal embed cascaded self-collimation (SC) ring resonators (CSCRR) was proposed. The 1×5 OSs consist of eight beam splitters, which are formed by varying the radii of the rod. With self-collimation effect, we can manipulate the light's propagation in the OSs. Here we consider TM modes. Utilizing multiple-beam interference theory, the theoretical transmission spectra at different outputs were analysed. These transmission spectra can help us to set the radii of eight slitters properly, for we can control the light coming out from five ports with the light-intensity ratio we need. Meanwhile these outputs' transmission spectra were investigated by the finite-difference time-domain (FDTD) method. The simulative results have an agreement with the theoretical prediction. The 1×5 OSs will have practical applications in photonic integrated circuits.

  20. Enhanced electron-hole droplet emission from surface-oxidized silicon photonic crystal nanocavities.

    PubMed

    Sumikura, Hisashi; Kuramochi, Eiichi; Taniyama, Hideaki; Notomi, Masaya

    2016-01-25

    We have observed electron-hole droplet (EHD) emission enhanced by silicon photonic crystal (Si PhC) nanocavities with a surface oxide. The EHD is employed as a massive emitter that remains inside the nanocavity to achieve efficient cavity-emitter coupling. Time-resolved emission measurements demonstrate that the surface oxide greatly reduces the nonradiative annihilation of the EHDs and maintains them in the PhC nanocavities. It is found that the surface-oxidized Si PhC nanocavity enhances EHD emission in addition to the Purcell enhancement of the resonant cavity, which will contribute to works on Si light emission and the cavity quantum electrodynamics of electron-hole condensates. PMID:26832491

  1. Proton-silicon interaction potential extracted from high-resolution measurements of crystal rainbows

    NASA Astrophysics Data System (ADS)

    Petrović, S.; Nešković, N.; Ćosić, M.; Motapothula, M.; Breese, M. B. H.

    2015-10-01

    This study provides a way to produce very accurate ion-atom interaction potentials. We present the high-resolution measurements of angular distributions of protons of energies between 2.0 and 0.7 MeV channeled in a 55 nm thick (0 0 1) silicon membrane. Analysis is performed using the theory of crystal rainbows in which the Molière's interaction potential is modified to make it accurate both close to the channel axis and close to the atomic strings defining the channel. This modification is based on adjusting the shapes of the rainbow lines appearing in the transmission angle plane, with the resulting theoretical angular distributions of transmitted protons being in excellent agreement with the corresponding experimental distributions.

  2. Crystallization to polycrystalline silicon thin film and simultaneous inactivation of electrical defects by underwater laser annealing

    NASA Astrophysics Data System (ADS)

    Machida, Emi; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ikenoue, Hiroshi

    2012-12-01

    We propose a low-temperature laser annealing method of a underwater laser annealing (WLA) for polycrystalline silicon (poly-Si) films. We performed crystallization to poly-Si films by laser irradiation in flowing deionized-water where KrF excimer laser was used for annealing. We demonstrated that the maximum value of maximum grain size of WLA samples was 1.5 μm, and that of the average grain size was 2.8 times larger than that of conventional laser annealing in air (LA) samples. Moreover, WLA forms poly-Si films which show lower conductivity and larger carrier life time attributed to fewer electrical defects as compared to LA poly-Si films.

  3. Properties of localization in silicon-based lattice periodicity breaking photonic crystal waveguides

    SciTech Connect

    Wu, Yuquan; Wang, Xiaofei; Wang, Yufang; Zhang, Guoquan; Fan, Wande; Cao, Xuewei; Wu, Yuanbin

    2013-11-15

    The light localization effects in silicon photonic crystal cavities at different disorder degrees have been studied using the finite difference time domain (FDTD) method in this paper. Numerical results showed that localization occurs and enhancement can be gained in the region of the cavity under certain conditions. The stabilities of the localization effects due to the structural perturbations have been investigated too. Detailed studies showed that when the degree of structural disorder is small(about 10%), the localization effects are stable, the maximum enhancement factor can reach 16.5 for incident wavelength of 785 nm and 23 for 850 nm in the cavity, with the degree of disorder about 8%. The equivalent diameter of the localized spot is almost constant at different disorder degrees, approximating to λ/7, which turned out to be independent on the structural perturbation.

  4. Evidence of anisotropic quenched disorder effects on a smectic liquid crystal confined in porous silicon

    SciTech Connect

    Guegan, Regis; Morineau, Denis; Loverdo, Claude; Beziel, Wilfried; Guendouz, Mohammed

    2006-01-15

    We present a neutron scattering analysis of the structure of the smectic liquid crystal octylcyanobiphenyl (8CB) confined in one-dimensional nanopores of porous silicon films (PS). The smectic transition is completely suppressed, leading to the extension of a short-range ordered smectic phase aligned along the pore axis. It evolves reversibly over an extended temperature range, down to 50 K below the N-SmA transition in pure 8CB. This behavior strongly differs from previous observations of smectics in different one-dimensional porous materials. A coherent picture of this striking behavior requires that quenched disorder effects are invoked. The strongly disordered nature of the inner surface of PS acts as random fields coupling to the smectic order. The one-dimensionality of PS nanochannels offers perspectives on quenched disorder effects, of which observation has been restricted to homogeneous random porous materials so far.

  5. Crystallization to polycrystalline silicon thin film and simultaneous inactivation of electrical defects by underwater laser annealing

    SciTech Connect

    Machida, Emi; Horita, Masahiro; Ishikawa, Yasuaki; Uraoka, Yukiharu; Ikenoue, Hiroshi

    2012-12-17

    We propose a low-temperature laser annealing method of a underwater laser annealing (WLA) for polycrystalline silicon (poly-Si) films. We performed crystallization to poly-Si films by laser irradiation in flowing deionized-water where KrF excimer laser was used for annealing. We demonstrated that the maximum value of maximum grain size of WLA samples was 1.5 {mu}m, and that of the average grain size was 2.8 times larger than that of conventional laser annealing in air (LA) samples. Moreover, WLA forms poly-Si films which show lower conductivity and larger carrier life time attributed to fewer electrical defects as compared to LA poly-Si films.

  6. Performance Prediction for a Hockey-Puck Silicon Crystal Monochromator at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Liu, Zunping; Rosenbaum, Gerd; Navrotski, Gary

    2014-03-01

    One of the Key Performance Parameters of the upgrade of the Advanced Photon Source (APS) is the increase of the storage ring current from 100 to 150 mA. In order to anticipate the impact of this increased heat load on the X-ray optics of the beamlines, the APS has implemented a systematic review, by means of finite element analysis and computational fluid dynamics, of the thermal performance of the different types of monochromators installed at the highest-heat-load insertion device beamlines. We present here simulations of the performance of a directly liquid nitrogen-cooled silicon crystal, the hockey-puck design. Calculations of the temperature and slope error at multiple ring currents under multiple operational conditions, including the influence of power, cooling, and diffraction surface thickness are included.

  7. Diffraction based phase compensation method for phase-only liquid crystal on silicon devices in operation.

    PubMed

    Zhang, Zichen; Yang, Haining; Robertson, Brian; Redmond, Maura; Pivnenko, Mike; Collings, Neil; Crossland, William A; Chu, Daping

    2012-06-10

    A method to measure the optical response across the surface of a phase-only liquid crystal on silicon device using binary phase gratings is described together with a procedure to compensate its spatial optical phase variation. As a result, the residual power between zero and the minima of the first diffraction order for a binary grating can be reduced by more than 10 dB, from -15.98 dB to -26.29 dB. This phase compensation method is also shown to be useful in nonbinary cases. A reduction in the worst crosstalk by 5.32 dB can be achieved when quantized blazed gratings are used. PMID:22695663

  8. Indentation of single-crystal silicon nanolines: Buckling and contact friction at nanoscalesa)

    NASA Astrophysics Data System (ADS)

    Li, Bin; Zhao, Qiu; Huang, Huai; Luo, Zhiquan; Kang, Min K.; Im, Jang-Hi; Allen, Richard A.; Cresswell, Michael W.; Huang, Rui; Ho, Paul S.

    2009-04-01

    High-quality single-crystal silicon nanolines (SiNLs) with a 24 nm linewidth and a height/width aspect ratio of 15 were fabricated. The mechanical properties of the SiNLs were characterized by nanoindentation tests with an atomic force microscope. The indentation load-displacement curves showed an instability with large displacement bursts at a critical load ranging from 9 to 30 μN. This phenomenon was attributed to a transition of the buckling mode of the SiNLs under indentation, which occurred preceding the final fracture of the nanolines. The mechanics of SiNLs under indentation was analyzed by finite element simulations, which revealed two different buckling modes depending on the contact friction at the nanoscale.

  9. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    SciTech Connect

    Yan, Hai Zou, Yi; Yang, Chun-Ju; Chakravarty, Swapnajit; Wang, Zheng; Tang, Naimei; Chen, Ray T.; Fan, Donglei

    2015-03-23

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed.

  10. Optoelectronic optimization of mode selective converter based on liquid crystal on silicon

    NASA Astrophysics Data System (ADS)

    Wang, Yongjiao; Liang, Lei; Yu, Dawei; Fu, Songnian

    2016-03-01

    We carry out comprehensive optoelectronic optimization of mode selective converter used for the mode division multiplexing, based on liquid crystal on silicon (LCOS) in binary mode. The conversion error of digital-to-analog (DAC) is investigated quantitatively for the purpose of driving the LCOS in the application of mode selective conversion. Results indicate the DAC must have a resolution of 8-bit, in order to achieve high mode extinction ratio (MER) of 28 dB. On the other hand, both the fast axis position error of half-wave-plate (HWP) and rotation angle error of Faraday rotator (FR) have negative influence on the performance of mode selective conversion. However, the commercial products provide enough angle error tolerance for the LCOS-based mode selective converter, taking both of insertion loss (IL) and MER into account.

  11. Tailoring the crystal structure of individual silicon nanowires by polarized laser annealing.

    PubMed

    Chang, Chia-Chi; Chen, Haitian; Chen, Chun-Chung; Hung, Wei-Hsuan; Hsu, I-Kai; Theiss, Jesse; Zhou, Chongwu; Cronin, Stephen B

    2011-07-29

    We study the effect of polarized laser annealing on the crystalline structure of individual crystalline-amorphous core-shell silicon nanowires (NWs) using Raman spectroscopy. The crystalline fraction of the annealed spot increases dramatically from 0 to 0.93 with increasing incident laser power. We observe Raman lineshape narrowing and frequency hardening upon laser annealing due to the growth of the crystalline core, which is confirmed by high resolution transmission electron microscopy (HRTEM). The anti-Stokes:Stokes Raman intensity ratio is used to determine the local heating temperature caused by the intense focused laser, which exhibits a strong polarization dependence in Si NWs. The most efficient annealing occurs when the laser polarization is aligned along the axis of the NWs, which results in an amorphous-crystalline interface less than 0.5 µm in length. This paper demonstrates a new approach to control the crystal structure of NWs on the sub-micron length scale.

  12. Nickel-affected silicon crystallization and silicidation on polyimide by multipulse excimer laser annealing

    SciTech Connect

    Alberti, A.; La Magna, A.; Spinella, C.; Privitera, V.; Cuscuna, M.; Fortunato, G.

    2010-12-15

    Nickel enhanced amorphous Si crystallization and silicidation on polyimide were studied during multipulse excimer laser annealing (ELA) from submelting to melting conditions. A {approx}8 nm thick Ni film was deposited on a 100 nm thick {alpha}-Si layer at {approx}70 deg. C in order to promote partial nickel diffusion into silicon. In the submelting regime, Ni atoms distributed during deposition in {alpha}-Si and the thermal gradient due to the presence of the plastic substrate were crucial to induce low fluence ({>=}0.08 J/cm{sup 2}) Si crystallization to a depth which is strictly related to the starting Ni profile. {Alpha}morphous-Si crystallization is not expected on pure Si at those low fluences. Additional pulses at higher fluences do not modify the double poly-Si/{alpha}-Si structure until melting conditions are reached. At a threshold of {approx}0.2 J/cm{sup 2}, melting was induced simultaneously in the polycrystalline layer as well as in the residual {alpha}-Si due to a thermal gradient of {approx}200 deg. C. Further increasing the laser fluence causes the poly-Si layer to be progressively melted to a depth which is proportional to the energy density used. As a consequence of the complete Si melting, columnar poly-Si grains are formed above 0.3 J/cm{sup 2}. For all fluences, a continuous NiSi{sub 2} layer is formed at the surface which fills the large Si grain boundaries, with the beneficial effect of flattening the poly-Si surface. The results would open the perspective of integrating Ni-silicide layers as metallic contacts on Si during {alpha}-Si-crystallization by ELA on plastic substrate.

  13. A phononic crystal strip based on silicon for support tether applications in silicon-based MEMS resonators and effects of temperature and dopant on its band gap characteristics

    NASA Astrophysics Data System (ADS)

    Ha, Thi Dep; Bao, JingFu

    2016-04-01

    Phononic crystals (PnCs) and n-type doped silicon technique have been widely employed in silicon-based MEMS resonators to obtain high quality factor (Q) as well as temperature-induced frequency stability. For the PnCs, their band gaps play an important role in the acoustic wave propagation. Also, the temperature and dopant doped into silicon can cause the change in its material properties such as elastic constants, Young's modulus. Therefore, in order to design the simultaneous high Q and frequency stability silicon-based MEMS resonators by two these techniques, a careful design should study effects of temperature and dopant on the band gap characteristics to examine the acoustic wave propagation in the PnC. Based on these, this paper presents (1) a proposed silicon-based PnC strip structure for support tether applications in low frequency silicon-based MEMS resonators, (2) influences of temperature and dopant on band gap characteristics of the PnC strips. The simulation results show that the largest band gap can achieve up to 33.56 at 57.59 MHz and increase 1280.13 % (also increase 131.89 % for ratio of the widest gaps) compared with the counterpart without hole. The band gap properties of the PnC strips is insignificantly effected by temperature and electron doping concentration. Also, the quality factor of two designed length extensional mode MEMS resonators with proposed PnC strip based support tethers is up to 1084.59% and 43846.36% over the same resonators with PnC strip without hole and circled corners, respectively. This theoretical study uses the finite element analysis in COMSOL Multiphysics and MATLAB softwares as simulation tools. This findings provides a background in combination of PnC and dopant techniques for high performance silicon-based MEMS resonators as well as PnC-based MEMS devices.

  14. Preparation of dendritic-like Ag crystals using monocrystalline silicon as template

    SciTech Connect

    Wei, Yanlin; Chen, Yashao; Ye, Linjing; Chang, Pengmei

    2011-06-15

    Research highlights: {yields} Template-assisted method for synthesis of dendritic silver. {yields} Unique dendritic silver structure with stems, branches, and leaves. {yields} The morphology of silver depends on silicon surface roughness. {yields} Both diffusion and oriented attachment dominating the dendritic structure formation. -- Abstract: Symmetric dendritic silver structures with controlled morphology were successfully synthesized by a solvothermal method with the assistance of monocrystalline silicon. The morphology and structure of the dendritic silver were characterized by transmission electron microscopy (TEM), powder X-ray diffraction (XRD), and scanning electron microscopy (SEM). It was found that the architecture of silver crystals could be controlled via simply adjusting the experiment parameters: AgNO{sub 3} concentration, reaction time and temperature. Moreover, structural characterizations suggested that the dendritic silver structures preferentially grew along (1 1 1) and (2 0 0) directions, leading to the formation of dendritic structures with 1-2 {mu}m in stem diameter and 10-50 {mu}m in length. Additionally, the formation process of the dendritic silver structures was studied, and a possible formation mechanism was proposed based on the experimental results.

  15. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos

    2016-06-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.

  16. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries

    PubMed Central

    Shi, Feifei; Song, Zhichao; Ross, Philip N.; Somorjai, Gabor A.; Ritchie, Robert O.; Komvopoulos, Kyriakos

    2016-01-01

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives. PMID:27297565

  17. A super narrow band filter based on silicon 2D photonic crystal resonator and reflectors

    NASA Astrophysics Data System (ADS)

    Wang, Yuanyuan; Chen, Deyuan; Zhang, Gang; Wang, Juebin; Tao, Shangbin

    2016-03-01

    In this paper, a novel structure of super narrow band filter based on two-dimensional square lattice photonic crystals of silicon rods in air for 1.5 um communication is proposed and studied. COMSOL Multiphysics4.3b software is used to simulate the optical behavior of the filter. The filter consists of one point-defect-based resonator and two line-defect-based reflectors. The resonance frequency, transmission coefficient and quality factor are investigated by varying the parameters of the structure. In design, a silicon rod is removed to form the resonator; for the rows of rods above and below the resonator, a part of the rods are removed to form the reflectors. By optimizing the parameters of the filter, the quality factor and transmission coefficient of the filter at the resonance frequency of 2e14 Hz can reach 1330 and 0.953, respectively. The super narrow band filter can be integrated into optical circuit for its micron size. Also, it can be used for wavelength selection and noise filtering of optical amplifier in future communication application.

  18. Direct band gap silicon crystals predicted by an inverse design method

    NASA Astrophysics Data System (ADS)

    Oh, Young Jun; Lee, In-Ho; Lee, Jooyoung; Kim, Sunghyun; Chang, Kee Joo

    2015-03-01

    Cubic diamond silicon has an indirect band gap and does not absorb or emit light as efficiently as other semiconductors with direct band gaps. Thus, searching for Si crystals with direct band gaps around 1.3 eV is important to realize efficient thin-film solar cells. In this work, we report various crystalline silicon allotropes with direct and quasi-direct band gaps, which are predicted by the inverse design method which combines a conformation space annealing algorithm for global optimization and first-principles density functional calculations. The predicted allotropes exhibit energies less than 0.3 eV per atom and good lattice matches, compared with the diamond structure. The structural stability is examined by performing finite-temperature ab initio molecular dynamics simulations and calculating the phonon spectra. The absorption spectra are obtained by solving the Bethe-Salpeter equation together with the quasiparticle G0W0 approximation. For several allotropes with the band gaps around 1 eV, photovoltaic efficiencies are comparable to those of best-known photovoltaic absorbers such as CuInSe2. This work is supported by the National Research Foundation of Korea (2005-0093845 and 2008-0061987), Samsung Science and Technology Foundation (SSTF-BA1401-08), KIAS Center for Advanced Computation, and KISTI (KSC-2013-C2-040).

  19. Photolithographic strategy for patterning preformed, chemically modified, porous silicon photonic crystal using click chemistry.

    PubMed

    Zhu, Ying; Gupta, Bakul; Guan, Bin; Ciampi, Simone; Reece, Peter J; Gooding, J Justin

    2013-07-24

    Porous silicon (PSi) is an ideal platform for label-free biosensing, and the development of porous silicon patterning will open a pathway to the development of highly parallel PSi biochips for detecting multiple analytes. The optical response of PSi photonic crystal is determined by the changes in the effective bulk refractive index resulting from reactions/events occurring within the internal pore space. Therefore, introducing precise chemical functionalities in the pores of PSi is essential to ensure device selectivity. Here we describe the fabrication of PSi patterns that possess discrete chemical functionalities that are restricted to precise locations. The key difference to previous patterning protocols for PSi is that the entire porous material is first modified with a self-assembled monolayer of a α,ω-diyne adsorbate prior to patterning using a microfabricated titanium mask. The distal alkyne moieties in the monolayer are then amenable to further selective modification by the archetypal "click" reaction, the copper catalyzed alkyne-azide cycloaddition (CuAAC), using the titanium mask as a resist. This type of patterning is suitable for further immobilization of biological recognition elements, and presents a new platform for highly parallel PSi biosensor for multiple detections.

  20. Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries.

    PubMed

    Shi, Feifei; Song, Zhichao; Ross, Philip N; Somorjai, Gabor A; Ritchie, Robert O; Komvopoulos, Kyriakos

    2016-06-14

    Long-term durability is a major obstacle limiting the widespread use of lithium-ion batteries in heavy-duty applications and others demanding extended lifetime. As one of the root causes of the degradation of battery performance, the electrode failure mechanisms are still unknown. In this paper, we reveal the fundamental fracture mechanisms of single-crystal silicon electrodes over extended lithiation/delithiation cycles, using electrochemical testing, microstructure characterization, fracture mechanics and finite element analysis. Anisotropic lithium invasion causes crack initiation perpendicular to the electrode surface, followed by growth through the electrode thickness. The low fracture energy of the lithiated/unlithiated silicon interface provides a weak microstructural path for crack deflection, accounting for the crack patterns and delamination observed after repeated cycling. On the basis of this physical understanding, we demonstrate how electrolyte additives can heal electrode cracks and provide strategies to enhance the fracture resistance in future lithium-ion batteries from surface chemical, electrochemical and material science perspectives.

  1. Characterization of a PET detector head based on continuous LYSO crystals and monolithic, 64-pixel silicon photomultiplier matrices.

    PubMed

    Llosá, G; Barrio, J; Lacasta, C; Bisogni, M G; Del Guerra, A; Marcatili, S; Barrillon, P; Bondil-Blin, S; de la Taille, C; Piemonte, C

    2010-12-01

    The characterization of a PET detector head based on continuous LYSO crystals and silicon photomultiplier (SiPM) arrays as photodetectors has been carried out for its use in the development of a small animal PET prototype. The detector heads are composed of a continuous crystal and a SiPM matrix with 64 pixels in a common substrate, fabricated specifically for this project. Three crystals of 12 mm × 12 mm × 5 mm size with different types of painting have been tested: white, black and black on the sides but white on the back of the crystal. The best energy resolution, obtained with the white crystal, is 16% FWHM. The detector response is linear up to 1275 keV. Tests with different position determination algorithms have been carried out with the three crystals. The spatial resolution obtained with the center of gravity algorithm is around 0.9 mm FWHM for the three crystals. As expected, the use of this algorithm results in the displacement of the reconstructed position toward the center of the crystal, more pronounced in the case of the white crystal. A maximum likelihood algorithm has been tested that can reconstruct correctly the interaction position of the photons also in the case of the white crystal.

  2. Shaped Crystal Growth

    NASA Astrophysics Data System (ADS)

    Tatartchenko, Vitali A.

    Crystals of specified shape and size (shaped crystals) with controlled crystal growth (SCG) defect and impurity structure have to be grown for the successful development of modern engineering. Since the 1950s many hundreds of papers and patents concerned with shaped growth have been published. In this chapter, we do not try to enumerate the successful applications of shaped growth to different materials but rather to carry out a fundamental physical and mathematical analysis of shaping as well as the peculiarities of shaped crystal structures. Four main techniques, based on which the lateral surface can be shaped without contact with the container walls, are analyzed: the Czochralski technique (CZT), the Verneuil technique (VT), the floating zone technique (FZT), and technique of pulling from shaper (TPS). Modifications of these techniques are analyzed as well. In all these techniques the shape of the melt meniscus is controlled by surface tension forces, i.e., capillary forces, and here they are classified as capillary shaping techniques (CST). We look for conditions under which the crystal growth process in each CST is dynamically stable. Only in this case are all perturbations attenuated and a crystal of constant cross section shaping technique (CST) grown without any special regulation. The dynamic stability theory of the crystal growth process for all CST is developed on the basis of Lyapunov's dynamic stability theory. Lyapunov's equations for the crystal growth processes follow from fundamental laws. The results of the theory allow the choice of stable regimes for crystal growth by all CST as well as special designs of shapers in TPS. SCG experiments by CZT, VT, and FZT are discussed but the main consideration is given to TPS. Shapers not only allow crystal of very complicated cross section to be grown but provide a special distribution of impurities. A history of TPS is provided later in the chapter, because it can only be described after explanation of the

  3. Enhanced Crystallization Behaviors of Silicon-Doped Sb2Te Films: Optical Evidences

    PubMed Central

    Guo, Shuang; Xu, Liping; Zhang, Jinzhong; Hu, Zhigao; Li, Tao; Wu, Liangcai; Song, Zhitang; Chu, Junhao

    2016-01-01

    The optical properties and structural variations of silicon (Si) doped Sb2Te (SST) films as functions of temperature (210–620 K) and Si concentration (0–33%) have been investigated by the means of temperature dependent Raman scattering and spectroscopic ellipsometry experiments. Based upon the changes in Raman phonon modes and dielectric functions, it can be concluded that the temperature ranges for intermediates and transition states are estimated to 150, 120, 90, and 0 K, corresponding to ST, SST25%, SST28%, and SST33% films, respectively. The phenomenon also can be summarized by the thermal evolutions of interband electronic transition energies (En) and partial spectral weight integral (I). The disappearance of intermediate (INT) state for SST33% film between amorphous (AM) and hexagonal (HEX) phases can be attributed to the acceleratory crystallization of HEX phase by Si introduction. It illustrates that the risk of phase separation (Sb and Te) during the cyclic phase-change processes decreases with the increasing Si concentration. The enhanced crystallization behaviors can optimize the data retention ability and the long term stability of ST by Si doping, which are important indicators for phase change materials. The performance improvement has been analyzed qualitatively from the optical perspective. PMID:27640336

  4. Air-mode photonic crystal ring resonator on silicon-on-insulator.

    PubMed

    Gao, Ge; Zhang, Yong; Zhang, He; Wang, Yi; Huang, Qingzhong; Xia, Jinsong

    2016-01-01

    In this report, we propose and demonstrate an air-mode photonic crystal ring resonator (PhCRR) on silicon-on-insulator platform. Air mode is utilized to confine the optical field into photonic crystal (PhC) air holes, which is confirmed by the three-dimensional finite-difference time-domain simulation. PhCRR structure is employed to enhance the light-matter interaction through combining the whispering-gallery mode resonance of ring resonator with the slow-light effect in PhC waveguide. In the simulated and measured transmission spectra of air-mode PhCRR, nonuniform free spectral ranges are observed near the Brillouin zone edge of PhC, indicating the presence of the slow-light effect. A maximum group index of 27.3 and a highest quality factor of 14600 are experimentally obtained near the band edge. Benefiting from the strong optical confinement in the PhC holes and enhanced light-matter interaction in the resonator, the demonstrated air-mode PhCRR is expected to have potential applications in refractive index sensing, on-chip light emitting and nonlinear optics by integration with functional materials. PMID:26818430

  5. Air-mode photonic crystal ring resonator on silicon-on-insulator

    NASA Astrophysics Data System (ADS)

    Gao, Ge; Zhang, Yong; Zhang, He; Wang, Yi; Huang, Qingzhong; Xia, Jinsong

    2016-01-01

    In this report, we propose and demonstrate an air-mode photonic crystal ring resonator (PhCRR) on silicon-on-insulator platform. Air mode is utilized to confine the optical field into photonic crystal (PhC) air holes, which is confirmed by the three-dimensional finite-difference time-domain simulation. PhCRR structure is employed to enhance the light-matter interaction through combining the whispering-gallery mode resonance of ring resonator with the slow-light effect in PhC waveguide. In the simulated and measured transmission spectra of air-mode PhCRR, nonuniform free spectral ranges are observed near the Brillouin zone edge of PhC, indicating the presence of the slow-light effect. A maximum group index of 27.3 and a highest quality factor of 14600 are experimentally obtained near the band edge. Benefiting from the strong optical confinement in the PhC holes and enhanced light-matter interaction in the resonator, the demonstrated air-mode PhCRR is expected to have potential applications in refractive index sensing, on-chip light emitting and nonlinear optics by integration with functional materials.

  6. Ultra-thin distributed Bragg reflectors via stacked single-crystal silicon nanomembranes

    NASA Astrophysics Data System (ADS)

    Cho, Minkyu; Seo, Jung-Hun; Lee, Jaeseong; Zhao, Deyin; Mi, Hongyi; Yin, Xin; Kim, Munho; Wang, Xudong; Zhou, Weidong; Ma, Zhenqiang

    2015-05-01

    In this paper, we report ultra-thin distributed Bragg reflectors (DBRs) via stacked single-crystal silicon (Si) nanomembranes (NMs). Mesh hole-free single-crystal Si NMs were released from a Si-on-insulator substrate and transferred to quartz and Si substrates. Thermal oxidation was applied to the transferred Si NM to form high-quality SiO2 and thus a Si/SiO2 pair with uniform and precisely controlled thicknesses. The Si/SiO2 layers, as smooth as epitaxial grown layers, minimize scattering loss at the interface and in between the layers. As a result, a reflection of 99.8% at the wavelength range from 1350 nm to 1650 nm can be measured from a 2.5-pair DBR on a quartz substrate and 3-pair DBR on a Si substrate with thickness of 0.87 μm and 1.14 μm, respectively. The high reflection, ultra-thin DBRs developed here, which can be applied to almost any devices and materials, holds potential for application in high performance optoelectronic devices and photonics applications.

  7. 3D integration of photonic crystal devices: vertical coupling with a silicon waveguide.

    PubMed

    Ferrier, L; Romeo, P Rojo; Letartre, X; Drouard, E; Viktorovitch, P

    2010-07-19

    Two integrated devices based on the vertical coupling between a photonic crystal microcavity and a silicon (Si) ridge waveguide are presented in this paper. When the resonator is coupled to a single waveguide, light can be spectrally extracted from the waveguide to free space through the far field emission of the resonator. When the resonator is vertically coupled to two waveguides, a vertical add-drop filter can be realized. The dropping efficiency of these devices relies on a careful design of the resonator. In this paper, we use a Fabry-Perot (FP) microcavity composed of two photonic crystal (PhC) slab mirrors. Thanks to the unique dispersion properties of slow Bloch modes (SBM) at the flat extreme of the dispersion curve, it is possible to design a FP cavity exhibiting two quasi-degenerate modes. This specific configuration allows for a coupling efficiency that can theoretically achieve 100%. Using 3D FDTD calculations, we discuss the design of such devices and show that high dropping efficiency can be achieved between the Si waveguides and the PhC microcavity.

  8. High-pressure synthesis and crystal structure of silicon phosphate hydroxide, SiPO 4(OH)

    NASA Astrophysics Data System (ADS)

    Stearns, Linda A.; Groy, Thomas L.; Leinenweber, Kurt

    2005-09-01

    A new high-pressure phase, silicon phosphate hydroxide, was prepared at 8.3±0.5 GPa and 1000 °C in >98% purity. From X-ray diffraction on a pseudo-merohedrally twinned crystal, it was found that SiPO 4(OH) crystallizes in a monoclinic cell with space group P21/n (No. 14), a=6.8446(11) Å, b=6.8683(13) Å, c=6.8446(11) Å, β=119.77(1)∘, and Z=4. The refinement gave a conventional Robs of 0.0320 and wRobs of 0.0864 for the overlapped data from both twin components. In the structure, SiO 6 octahedra form chains along [101], with PO 4 tetrahedra alternating along the chain in the b-direction. The parallel chains link up with tetrahedral corners from other chains to form a 3-dimensional network. SiPO 4(OH) belongs to a structural family that includes HgSeO4·H2O. It is also related to the SbOPO 4 structure by a small distortion that lowers the symmetry from C2/c in SbOPO 4 to P21/c (P21/n) in SiPO 4(OH).

  9. Enhanced Crystallization Behaviors of Silicon-Doped Sb2Te Films: Optical Evidences

    NASA Astrophysics Data System (ADS)

    Guo, Shuang; Xu, Liping; Zhang, Jinzhong; Hu, Zhigao; Li, Tao; Wu, Liangcai; Song, Zhitang; Chu, Junhao

    2016-09-01

    The optical properties and structural variations of silicon (Si) doped Sb2Te (SST) films as functions of temperature (210–620 K) and Si concentration (0–33%) have been investigated by the means of temperature dependent Raman scattering and spectroscopic ellipsometry experiments. Based upon the changes in Raman phonon modes and dielectric functions, it can be concluded that the temperature ranges for intermediates and transition states are estimated to 150, 120, 90, and 0 K, corresponding to ST, SST25%, SST28%, and SST33% films, respectively. The phenomenon also can be summarized by the thermal evolutions of interband electronic transition energies (En) and partial spectral weight integral (I). The disappearance of intermediate (INT) state for SST33% film between amorphous (AM) and hexagonal (HEX) phases can be attributed to the acceleratory crystallization of HEX phase by Si introduction. It illustrates that the risk of phase separation (Sb and Te) during the cyclic phase-change processes decreases with the increasing Si concentration. The enhanced crystallization behaviors can optimize the data retention ability and the long term stability of ST by Si doping, which are important indicators for phase change materials. The performance improvement has been analyzed qualitatively from the optical perspective.

  10. Enhanced Crystallization Behaviors of Silicon-Doped Sb2Te Films: Optical Evidences.

    PubMed

    Guo, Shuang; Xu, Liping; Zhang, Jinzhong; Hu, Zhigao; Li, Tao; Wu, Liangcai; Song, Zhitang; Chu, Junhao

    2016-01-01

    The optical properties and structural variations of silicon (Si) doped Sb2Te (SST) films as functions of temperature (210-620 K) and Si concentration (0-33%) have been investigated by the means of temperature dependent Raman scattering and spectroscopic ellipsometry experiments. Based upon the changes in Raman phonon modes and dielectric functions, it can be concluded that the temperature ranges for intermediates and transition states are estimated to 150, 120, 90, and 0 K, corresponding to ST, SST25%, SST28%, and SST33% films, respectively. The phenomenon also can be summarized by the thermal evolutions of interband electronic transition energies (En) and partial spectral weight integral (I). The disappearance of intermediate (INT) state for SST33% film between amorphous (AM) and hexagonal (HEX) phases can be attributed to the acceleratory crystallization of HEX phase by Si introduction. It illustrates that the risk of phase separation (Sb and Te) during the cyclic phase-change processes decreases with the increasing Si concentration. The enhanced crystallization behaviors can optimize the data retention ability and the long term stability of ST by Si doping, which are important indicators for phase change materials. The performance improvement has been analyzed qualitatively from the optical perspective. PMID:27640336

  11. Air-mode photonic crystal ring resonator on silicon-on-insulator.

    PubMed

    Gao, Ge; Zhang, Yong; Zhang, He; Wang, Yi; Huang, Qingzhong; Xia, Jinsong

    2016-01-28

    In this report, we propose and demonstrate an air-mode photonic crystal ring resonator (PhCRR) on silicon-on-insulator platform. Air mode is utilized to confine the optical field into photonic crystal (PhC) air holes, which is confirmed by the three-dimensional finite-difference time-domain simulation. PhCRR structure is employed to enhance the light-matter interaction through combining the whispering-gallery mode resonance of ring resonator with the slow-light effect in PhC waveguide. In the simulated and measured transmission spectra of air-mode PhCRR, nonuniform free spectral ranges are observed near the Brillouin zone edge of PhC, indicating the presence of the slow-light effect. A maximum group index of 27.3 and a highest quality factor of 14600 are experimentally obtained near the band edge. Benefiting from the strong optical confinement in the PhC holes and enhanced light-matter interaction in the resonator, the demonstrated air-mode PhCRR is expected to have potential applications in refractive index sensing, on-chip light emitting and nonlinear optics by integration with functional materials.

  12. Ultra-thin distributed Bragg reflectors via stacked single-crystal silicon nanomembranes

    SciTech Connect

    Cho, Minkyu; Seo, Jung-Hun; Lee, Jaeseong; Mi, Hongyi; Kim, Munho; Ma, Zhenqiang; Zhao, Deyin; Zhou, Weidong; Yin, Xin; Wang, Xudong

    2015-05-04

    In this paper, we report ultra-thin distributed Bragg reflectors (DBRs) via stacked single-crystal silicon (Si) nanomembranes (NMs). Mesh hole-free single-crystal Si NMs were released from a Si-on-insulator substrate and transferred to quartz and Si substrates. Thermal oxidation was applied to the transferred Si NM to form high-quality SiO{sub 2} and thus a Si/SiO{sub 2} pair with uniform and precisely controlled thicknesses. The Si/SiO{sub 2} layers, as smooth as epitaxial grown layers, minimize scattering loss at the interface and in between the layers. As a result, a reflection of 99.8% at the wavelength range from 1350 nm to 1650 nm can be measured from a 2.5-pair DBR on a quartz substrate and 3-pair DBR on a Si substrate with thickness of 0.87 μm and 1.14 μm, respectively. The high reflection, ultra-thin DBRs developed here, which can be applied to almost any devices and materials, holds potential for application in high performance optoelectronic devices and photonics applications.

  13. Air-mode photonic crystal ring resonator on silicon-on-insulator

    PubMed Central

    Gao, Ge; Zhang, Yong; Zhang, He; Wang, Yi; Huang, Qingzhong; Xia, Jinsong

    2016-01-01

    In this report, we propose and demonstrate an air-mode photonic crystal ring resonator (PhCRR) on silicon-on-insulator platform. Air mode is utilized to confine the optical field into photonic crystal (PhC) air holes, which is confirmed by the three-dimensional finite-difference time-domain simulation. PhCRR structure is employed to enhance the light-matter interaction through combining the whispering-gallery mode resonance of ring resonator with the slow-light effect in PhC waveguide. In the simulated and measured transmission spectra of air-mode PhCRR, nonuniform free spectral ranges are observed near the Brillouin zone edge of PhC, indicating the presence of the slow-light effect. A maximum group index of 27.3 and a highest quality factor of 14600 are experimentally obtained near the band edge. Benefiting from the strong optical confinement in the PhC holes and enhanced light-matter interaction in the resonator, the demonstrated air-mode PhCRR is expected to have potential applications in refractive index sensing, on-chip light emitting and nonlinear optics by integration with functional materials. PMID:26818430

  14. Opto-structural studies of well-dispersed silicon nano-crystals grown by atom beam sputtering

    PubMed Central

    2012-01-01

    Synthesis and characterization of nano-crystalline silicon grown by atom beam sputtering technique are reported. Rapid thermal annealing of the deposited films is carried out in Ar + 5% H2 atmosphere for 5 min at different temperatures for precipitation of silicon nano-crystals. The samples are characterized for their optical and structural properties using various techniques. Structural studies are carried out by micro-Raman spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy, and selected area electron diffraction. The optical properties are studied by photoluminescence and UV-vis absorption spectroscopy, and bandgaps are evaluated. The bandgaps are found to decrease after rapid thermal treatment. The micro-Raman studies show the formation of nano-crystalline silicon in as-deposited as well as annealed films. The shifting and broadening in Raman peak suggest formation of nano-phase in the samples. Results of micro-Raman, photoluminescence, and TEM studies suggest the presence of a bimodal crystallite size distribution for the films annealed at higher temperatures. The results show that atom beam sputtering is a suitable technique to synthesize nearly mono-dispersed silicon nano-crystals. The size of the nano-crystals may be controlled by varying annealing parameters. PMID:23031449

  15. Opto-structural studies of well-dispersed silicon nano-crystals grown by atom beam sputtering.

    PubMed

    Saxena, Nupur; Kumar, Pragati; Kabiraj, Debulal; Kanjilal, Dinakar

    2012-10-03

    Synthesis and characterization of nano-crystalline silicon grown by atom beam sputtering technique are reported. Rapid thermal annealing of the deposited films is carried out in Ar + 5% H2 atmosphere for 5 min at different temperatures for precipitation of silicon nano-crystals. The samples are characterized for their optical and structural properties using various techniques. Structural studies are carried out by micro-Raman spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), high resolution transmission electron microscopy, and selected area electron diffraction. The optical properties are studied by photoluminescence and UV-vis absorption spectroscopy, and bandgaps are evaluated. The bandgaps are found to decrease after rapid thermal treatment. The micro-Raman studies show the formation of nano-crystalline silicon in as-deposited as well as annealed films. The shifting and broadening in Raman peak suggest formation of nano-phase in the samples. Results of micro-Raman, photoluminescence, and TEM studies suggest the presence of a bimodal crystallite size distribution for the films annealed at higher temperatures. The results show that atom beam sputtering is a suitable technique to synthesize nearly mono-dispersed silicon nano-crystals. The size of the nano-crystals may be controlled by varying annealing parameters.

  16. Cross two photon absorption in a silicon photonic crystal waveguide fiber taper coupler with a physical junction

    SciTech Connect

    Sarkissian, Raymond O'Brien, John

    2015-01-21

    Cross two photon absorption in silicon is characterized using a tapered fiber photonic crystal silicon waveguide coupler. There is a physical junction between the tapered fiber and the waveguide constituting a stand-alone device. This device is used to obtain the spectrum for cross two photon absorption coefficient per unit volume of interaction between photons of nondegenerate energy. The corresponding Kerr coefficient per unit volume of interaction is also experimentally extracted. The thermal resistance of the device is also experimentally determined and the response time of the device is estimated for on-chip all-optical signal processing and data transfer between optical signals of different photon energies.

  17. Growth of Oriented C11(b) MoSi(2) Bicrystals Using a Modified Czochralski Technique

    SciTech Connect

    Chu, F.; Garrett, J.D.; McClellan, K.J.; Michael J.R.; Mitchell, T.E.; Peralta, P.

    1999-06-02

    Oriented bicrystals of pure C11b MoSi2 have been grown in a tri-arc furnace using the Czochralski technique. Two single crystal seeds were used to initiate the growth. Each seed had the orientation intended for one of the grains of the bicrystals, which resulted in a 60° twist boundary on the (110) plane. Seeds were attached to a water-cooled seed rod, which was pulled at 120 mm/h with the seed rod rotating at 45 rpm. The water- cooled copper hearth was counter-rotated at 160 rpm. Asymmetric growth ridges associated with each seed crystal were observed during growth and confirmed the existence of a bicrystal. It was also found that careful alignment of the seeds was needed to keep the grain boundary from growing out of the boule. The resulting boundary was characterized by imaging and crystallographic techniques in a scanning electron microscope. The boundary was found to be fairly sharp and the misorientation between the grains remained within 2° from the disorientation between the seeds.

  18. Detached Bridgman Growth of Germanium and Germanium-Silicon Alloy Crystals

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Volz, M. P.; Schweizer, M.; Cobb, S. D.; Motakef, S.; Croell, A.; Dold, P.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Earth based experiments on the science of detached crystal growth are being conducted on germanium and germanium-silicon alloys (2 at% Si average composition) in preparation for a series of experiments aboard the International Space Station (ISS). The purpose of the microgravity experiments includes differentiating among proposed mechanisms contributing to detachment, and confirming or refining our understanding of the detachment mechanism. Because large contact angle are critical to detachment, sessile drop measurements were used to determine the contact angles as a function of temperature and composition for a large number of substrates made of potential ampoule materials. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. The contact angles were 173 deg (Ge) and 165 deg (GeSi) for pBN. For fused silica, the contact angle decreases from 150 deg to an equilibrium value of 117 deg (Ge) or from 129 deg to an equilibrium value of 100 deg (GeSi) over the duration of the experiment. The nature and extent of detachment is determined by using profilometry in conjunction with optical and electron microscopy. The stability of detachment has been analyzed, and an empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed. Results in this presentation will show that we have established the effects on detachment of ampoule material, pressure difference above and below the melt, and silicon concentration; samples that are nearly completely detached can be grown repeatedly in pBN.

  19. Monitoring of degradation of porous silicon photonic crystals using digital photography

    PubMed Central

    2014-01-01

    We report the monitoring of porous silicon (pSi) degradation in aqueous solutions using a consumer-grade digital camera. To facilitate optical monitoring, the pSi samples were prepared as one-dimensional photonic crystals (rugate filters) by electrochemical etching of highly doped p-type Si wafers using a periodic etch waveform. Two pSi formulations, representing chemistries relevant for self-reporting drug delivery applications, were tested: freshly etched pSi (fpSi) and fpSi coated with the biodegradable polymer chitosan (pSi-ch). Accelerated degradation of the samples in an ethanol-containing pH 10 aqueous basic buffer was monitored in situ by digital imaging with a consumer-grade digital camera with simultaneous optical reflectance spectrophotometric point measurements. As the nanostructured porous silicon matrix dissolved, a hypsochromic shift in the wavelength of the rugate reflectance peak resulted in visible color changes from red to green. While the H coordinate in the hue, saturation, and value (HSV) color space calculated using the as-acquired photographs was a good monitor of degradation at short times (t < 100 min), it was not a useful monitor of sample degradation at longer times since it was influenced by reflections of the broad spectral output of the lamp as well as from the narrow rugate reflectance band. A monotonic relationship was observed between the wavelength of the rugate reflectance peak and an H parameter value calculated from the average red-green-blue (RGB) values of each image by first independently normalizing each channel (R, G, and B) using their maximum and minimum value over the time course of the degradation process. Spectrophotometric measurements and digital image analysis using this H parameter gave consistent relative stabilities of the samples as fpSi > pSi-ch. PMID:25242902

  20. An all-silicon optical platform based on linear array of vertical high-aspect-ratio silicon/air photonic crystals

    NASA Astrophysics Data System (ADS)

    Surdo, Salvatore; Carpignano, Francesca; Silva, Gloria; Merlo, Sabina; Barillaro, Giuseppe

    2013-10-01

    An all-silicon optical platform (SiOP) that integrates a linear array of vertical (100-μm-deep) one-dimensional photonic crystals (1D-PhCs), with a different number of elementary silicon/air cells (from 2.5 to 11.5) and featuring a transmission peak around 1.55 μm, together with U-grooves (125-μm-wide) and end-stop-spacers for coupling/positioning/alignment of readout optical fibers in front of 1D-PhCs is reported. The SiOP is fabricated by electrochemical micromachining and characterized by measuring both reflection and transmission spectra of 1D-PhCs. An experimental/theoretical analysis of 1D-PhC features (transmissivity, quality factor, full-width-half-maximum) in transmission, around 1.55 μm, as a function of the number of elementary cells is reported.

  1. Antenna-coupled silicon-organic hybrid integrated photonic crystal modulator for broadband electromagnetic wave detection

    NASA Astrophysics Data System (ADS)

    Zhang, Xingyu; Hosseini, Amir; Subbaraman, Harish; Wang, Shiyi; Zhan, Qiwen; Luo, Jingdong; Jen, Alex K.; Chung, Chi-jui; Yan, Hai; Pan, Zeyu; Nelson, Robert L.; Lee, Charles Y.; Chen, Ray T.

    2015-03-01

    The detection and measurement of electromagnetic fields have attracted significant amounts of attention in recent years. Traditional electronic electromagnetic field sensors use large active conductive probes which perturb the field to be measured and also make the devices bulky. In order to address these problems, integrated photonic electromagnetic field sensors have been developed, in which an optical signal is modulated by an RF signal collected by a miniaturized antenna. In this work, we design, fabricate and characterize a compact, broadband and highly sensitive integrated photonic electromagnetic field sensor based on a silicon-organic hybrid modulator driven by a bowtie antenna. The large electro-optic (EO) coefficient of organic polymer, the slow-light effects in the silicon slot photonic crystal waveguide (PCW), and the broadband field enhancement provided by the bowtie antenna, are all combined to enhance the interaction of microwaves and optical waves, enabling a high EO modulation efficiency and thus a high sensitivity. The modulator is experimentally demonstrated with a record-high effective in-device EO modulation efficiency of r33=1230pm/V. Modulation response up to 40GHz is measured, with a 3-dB bandwidth of 11GHz. The slot PCW has an interaction length of 300μm, and the bowtie antenna has an area smaller than 1cm2. The bowtie antenna in the device is experimentally demonstrated to have a broadband characteristics with a central resonance frequency of 10GHz, as well as a large beam width which enables the detection of electromagnetic waves from a large range of incident angles. The sensor is experimentally demonstrated with a minimum detectable electromagnetic power density of 8.4mW/m2 at 8.4GHz, corresponding to a minimum detectable electric field of 2.5V/m and an ultra-high sensitivity of 0.000027V/m Hz-1/2 ever demonstrated. To the best of our knowledge, this is the first silicon-organic hybrid device and also the first PCW device used for the

  2. Detached Bridgman Growth of Germanium and Germanium-Silicon Alloy Crystals

    NASA Technical Reports Server (NTRS)

    Szofran, F. R.; Volz, M. P.; Schweizer, M.; Kaiser, N.; Cobb, S. D.; Motakef, S.; Vujisic, L. J.; Croell, A.; Dold, P.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Earth based experiments on the science of detached crystal growth are being conducted on germanium and germanium-silicon alloys (2at% Si average composition) in preparation for a series of experiments aboard the International Space Station (ISS) to differentiate among proposed mechanisms contributing to detachment. Sessile drop measurements were first carried out for a large number of substrates made of potential ampoule materials to determine the contact angles and the surface tension as a function of temperature and composition. The process atmosphere and duration of the experiment (for some cases) were also found to have significant influence on the wetting angle. Growth experiments have used pyrolytic boron nitride (pBN) and fused silica ampoules with the majority of the detached results occurring predictably in the pBN. The contact angles were 173 deg (Ge) and 165 deg (GeSi) for pBN. For fused silica, the contact angle decreases to an equilibrium value with duration of measurement ranging from 150 to 117 deg (Ge), 129 to 100 deg (GeSi). Forming gas (Ar + 2% H2) and vacuum have been used in the growth ampoules. With gas in the ampoule, a variation of the temperature profile during growth has been used to control the pressure difference between the top of the melt and the volume below the melt caused by detachment of the growing crystal. The stability of detachment has been modeled and substantial insight has been gained into the reasons that detachment has most often been observed in reduced gravity but nonetheless has occurred randomly even there. An empirical model for the conditions necessary to achieve sufficient stability to maintain detached growth for extended periods has been developed and will be presented. Methods for determining the nature and extent of detachment include profilometry and optical and electron microscopy. This surface study is the subject of another presentation at this Congress. Results in this presentation will show that we have

  3. Specific features of formation of GaAs nanowire crystals during molecular beam epitaxy on different silicon surfaces

    SciTech Connect

    Samsonenko, Yu. B. Cirlin, G. E.; Egorov, V. A.; Polyakov, N. K.; Ulin, V. P.; Dubrovskii, V. G.

    2008-12-15

    The results of experimental studies on the growth and the morphological and structural properties of GaAs nanowire crystals on different silicon surfaces are reported. It is shown that the nonplanar geometrical layout of growth allows the production of epitaxial nanowire crystals in a system with a large lattice mismatch. The growth on porous substrates, the role of the surface orientation, high-temperature annealing, and presence of an oxide layer at the surface, and some other effects typical of growth of III-V nanowire crystals on the Si surface are studied and analyzed. Intense emission from the array of GaAs nanowire crystals grown on the Si (111) surface is observed.

  4. Application of ITO/Al reflectors for increasing the efficiency of single-crystal silicon solar cells

    SciTech Connect

    Kopach, V. R.; Kirichenko, M. V. Khrypunov, G. S.; Zaitsev, R. V.

    2010-06-15

    It is shown that an increase in the efficiency and manufacturability of single-junction single-crystal silicon photoelectric converters of solar energy requires the use of a back-surface reflector based on conductive transparent indium-tin oxide (ITO) 0.25-2 {mu}m thick. To increase the efficiency and reduce the sensitivity to the angle of light incidence on the photoreceiving surface of multijunction photoelectric converters with vertical diode cells based on single-crystal silicon, ITO/Al reflectors with an ITO layer >1 {mu}m thick along vertical boundaries of diode cells should be fabricated. The experimental study of multijunction photoelectric converters with ITO/Al reflectors at diode cell boundaries shows the necessity of modernizing the used technology of ITO layers to achieve their theoretically calculated thickness.

  5. Proceedings of the Flat-Plate Solar Array Project Workshop on Crystal Gowth for High-Efficiency Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Dumas, K. A. (Editor)

    1985-01-01

    A Workshop on Crystal Growth for High-Efficiency Silicon Solar Cells was held December 3 and 4, 1984, in San Diego, California. The Workshop offered a day and a half of technical presentations and discussions and an afternoon session that involved a panel discussion and general discussion of areas of research that are necessary to the development of materials for high-efficiency solar cells. Topics included the theoretical and experimental aspects of growing high-quality silicon crystals, the effects of growth-process-related defects on photovoltaic devices, and the suitability of various growth technologies as cost-effective processes. Fifteen invited papers were presented, with a discussion period following each presentation. The meeting was organized by the Flat-Plate Solar Array Project of the Jet Propulsion Laboratory. These Proceedings are a record of the presentations and discussions, edited for clarity and continuity.

  6. Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate.

    PubMed

    Tanabe, Katsuaki; Nomura, Masahiro; Guimard, Denis; Iwamoto, Satoshi; Arakawa, Yasuhiko

    2009-04-27

    Room temperature, continuous-wave lasing in a quantum dot photonic crystal nanocavity on a Si substrate has been demonstrated by optical pumping. The laser was an air-bridge structure of a two-dimensional photonic crystal GaAs slab with InAs quantum dots inside on a Si substrate fabricated through wafer bonding and layer transfer. This surface-emitting laser exhibited emission at 1.3 microm with a threshold absorbed power of 2 microW, the lowest out of any type of lasers on silicon.

  7. Glass-embedded two-dimensional silicon photonic crystal devices with a broad bandwidth waveguide and a high quality nanocavity.

    PubMed

    Jeon, Seung-Woo; Han, Jin-Kyu; Song, Bong-Shik; Noda, Susumu

    2010-08-30

    To enhance the mechanical stability of a two-dimensional photonic crystal slab structure and maintain its excellent performance, we designed a glass-embedded silicon photonic crystal device consisting of a broad bandwidth waveguide and a nanocavity with a high quality (Q) factor, and then fabricated the structure using spin-on glass (SOG). Furthermore, we showed that the refractive index of the SOG could be tuned from 1.37 to 1.57 by varying the curing temperature of the SOG. Finally, we demonstrated a glass-embedded heterostructured cavity with an ultrahigh Q factor of 160,000 by adjusting the refractive index of the SOG. PMID:20940831

  8. Efficient poling of electro-optic polymers in thin films and silicon slot waveguides by detachable pyroelectric crystals.

    PubMed

    Huang, Su; Luo, Jingdong; Yip, Hin-Lap; Ayazi, Ali; Zhou, Xing-Hua; Gould, Michael; Chen, Antao; Baehr-Jones, Tom; Hochberg, Michael; Jen, Alex K-Y

    2012-03-01

    Pyroelectric crystals are used as a conformal and detachable electric field source to efficiently pole electro-optic (E-O) polymers in both parallel-plate (transverse) and in-plane (quasi-longitudinal) configurations. Large Pockels coefficients in poled thin films and high tunability of resonance wavelength shift in hybrid polymer silicon slot waveguide ring-resonator modulators have been achieved using this method. PMID:22213467

  9. Method for sputtering a PIN amorphous silicon semi-conductor device having partially crystallized P and N-layers

    DOEpatents

    Moustakas, Theodore D.; Maruska, H. Paul

    1985-07-09

    A high efficiency amorphous silicon PIN semiconductor device having partially crystallized (microcrystalline) P and N layers is constructed by the sequential sputtering of N, I and P layers and at least one semi-transparent ohmic electrode. The method of construction produces a PIN device, exhibiting enhanced electrical and optical properties, improved physical integrity, and facilitates the preparation in a singular vacuum system and vacuum pump down procedure.

  10. Polarization diversity circuit for a silicon optical switch using silica waveguides integrated with photonic crystal thin film waveplates

    NASA Astrophysics Data System (ADS)

    Sugiyama, Koki; Chiba, Takafumi; Kawashima, Takayuki; Kawakami, Shojiro; Takahashi, Hiroshi; Tsuda, Hiroyuki

    2016-03-01

    We propose a compact polarization diversity optical circuit using silica waveguides and photonic crystal waveplates. By setting these circuits at the front and rear of the silicon optical devices, the polarization dependence of the silicon devices can be suppressed. Photonic crystals can be produced artificially using nanolithography, so that the retardation and orientation of the photonic crystal waveplate can be locally varied on a single chip. This enables to dramatically reduce the size of the polarization diversity circuit, which consists of a 1x2 multimode interference (MMI) coupler, two arm waveguides with quarter-waveplates (QWPs), a 2x2 MMI coupler, and output waveguides with half-waveplates (HWPs). The input light, including the transverse electric (TE) and transverse magnetic (TM) modes, is split by the 1x2 MMI coupler. The optical axes of the two QWPs, spaced 125 μm apart, are set to be orthogonal to each other, so that the phases of the TE modes in the two arm waveguides differ by 90 degrees, and those of the TM modes differ by -90 degrees. The TE mode and the TM mode are separated at the outputs of the 2x2 MMI coupler, and the polarization of the light at one of the outputs is aligned to that at the other output by the HWP. In this paper, we designed a 4x8 polarization diversity circuit for a 4x4 silicon optical switch.

  11. Mueller-Stokes characterization and optimization of a liquid crystal on silicon display showing depolarization.

    PubMed

    Márquez, A; Moreno, I; Iemmi, C; Lizana, A; Campos, J; Yzuel, M J

    2008-02-01

    In this paper we characterize the polarimetric properties of a liquid crystal on silicon display (LCoS), including depolarization and diattenuation which are usually not considered when applying the LCoS in diffractive or adaptive optics. On one hand, we have found that the LCoS generates a certain degree (that can be larger than a 10%) of depolarized light, which depends on the addressed gray level and on the incident state of polarization (SOP), and can not be ignored in the above mentioned applications. The main origin of the depolarized light is related with temporal fluctuations of the SOP of the light reflected by the LCoS. The Mueller matrix of the LCoS is measured as a function of the gray level, which enables for a numerical optimization of the intensity modulation configurations. In particular we look for maximum intensity contrast modulation or for constant intensity modulation. By means of a heuristic approach we show that, using elliptically polarized light, amplitude-mostly or phase-mostly modulation can be obtained at a wavelength of 633 nm.

  12. Computer simulations of X-ray six-beam diffraction in a perfect silicon crystal. I.

    PubMed

    Kohn, V G; Khikhlukha, D R

    2016-05-01

    This paper reports computer simulations of the transmitted-beam intensity distribution for the case of six-beam (000, 220, 242, 044, -224, -202) diffraction of X-rays in a perfect silicon crystal of thickness 1 mm. Both the plane-wave angular dependence and the six-beam section topographs, which are usually obtained in experiments with a restricted beam (two-dimensional slit), are calculated. The angular dependence is calculated in accordance with Ewald's theory. The section topographs are calculated from the angular dependence by means of the fast Fourier transformation procedure. This approach allows one to consider, for the first time, the transformation of the topograph's structure due to the two-dimensional slit sizes and the distance between the slit and the detector. The results are in good agreement with the results of other works and with the experimental data. This method of calculation does not require a supercomputer and it was performed on a standard laptop. A detailed explanation of the main features of the diffraction patterns at different distances between the slit and the detector is presented. PMID:27126111

  13. Two-dimensionally grown single-crystal silicon nanosheets with tunable visible-light emissions.

    PubMed

    Kim, Sung Wook; Lee, Jaejun; Sung, Ji Ho; Seo, Dong-jae; Kim, Ilsoo; Jo, Moon-Ho; Kwon, Byoung Wook; Choi, Won Kook; Choi, Heon-Jin

    2014-07-22

    Since the discovery of graphene, growth of two-dimensional (2D) nanomaterials has greatly attracted attention. However, spontaneous growth of atomic two-dimensional (2D) materials is limitedly permitted for several layered-structure crystals, such as graphene, MoS2, and h-BN, and otherwise it is notoriously difficult. Here we report the gas-phase 2D growth of silicon (Si), that is cubic in symmetry, via dendritic growth and an interdendritic filling mechanism and to form Si nanosheets (SiNSs) of 1 to 13 nm in thickness. Thin SiNSs show strong thickness-dependent photoluminescence in visible range including red, green, and blue (RGB) emissions with the associated band gap energies ranging from 1.6 to 3.2 eV; these emission energies were greater than those from Si quantum dots (SiQDs) of the similar sizes. We also demonstrated that electrically driven white, as well as blue, emission in a conventional organic light-emitting diode (OLED) geometry with the SiNS assembly as the active emitting layers. Tunable light emissions in visible range in our observations suggest practical implications for novel 2D Si nanophotonics.

  14. Theory of pulsed four-wave mixing in one-dimensional silicon photonic crystal slab waveguides

    NASA Astrophysics Data System (ADS)

    Lavdas, Spyros; Panoiu, Nicolae C.

    2016-03-01

    We present a comprehensive theoretical analysis and computational study of four-wave mixing (FWM) of optical pulses co-propagating in one-dimensional silicon photonic crystal waveguides (Si-PhCWGs). Our theoretical analysis describes a very general setup of the interacting optical pulses, namely we consider nondegenerate FWM in a configuration in which at each frequency there exists a superposition of guiding modes. We incorporate in our theoretical model all relevant linear optical effects, including waveguide loss, free-carrier (FC) dispersion and FC absorption, nonlinear optical effects such as self- and cross-phase modulation (SPM, XPM), two-photon absorption (TPA), and cross-absorption modulation (XAM), as well as the coupled dynamics of free-carriers FCs and optical field. In particular, our theoretical analysis based on the coupled-mode theory provides rigorously derived formulas for linear dispersion coefficients of the guiding modes, linear coupling coefficients between these modes, as well as the nonlinear waveguide coefficients describing SPM, XPM, TPA, XAM, and FWM. In addition, our theoretical analysis and numerical simulations reveal key differences between the characteristics of FWM in the slow- and fast-light regimes, which could potentially have important implications to the design of ultracompact active photonic devices.

  15. Silicon Photonic Crystal Nanocavity-Coupled Waveguides for Error-Corrected Optical Biosensing

    PubMed Central

    Pal, Sudeshna; Guillermain, Elisa; Sriram, Rashmi; Miller, Benjamin L.; Fauchet, Philippe M.

    2011-01-01

    A photonic crystal (PhC) waveguide based optical biosensor capable of label-free and error-corrected sensing was investigated in this study. The detection principle of the biosensor involved shifts in the resonant mode wavelength of nanocavities coupled to the silicon PhC waveguide due to changes in ambient refractive index. The optical characteristics of the nanocavity structure were predicted by FDTD theoretical methods. The device was fabricated using standard nanolithography and reactive-ion-etching techniques. Experimental results showed that the structure had a refractive index sensitivity of 10−2 RIU. The biosensing capability of the nanocavity sensor was tested by detecting human IgG molecules. The device sensitivity was found to be 2.3 ± 0.24 × 105 nm/M with an achievable lowest detection limit of 1.5 fg for human IgG molecules. Additionally, experimental results demonstrated that the PhC devices were specific in IgG detection and provided concentration-dependent responses consistent with Langmuir behavior. The PhC devices manifest outstanding potential as microscale label-free error-correcting sensors, and may have future utility as ultrasensitive multiplex devices. PMID:21524903

  16. Low-damage surface smoothing of laser crystallized polycrystalline silicon using gas cluster ion beam

    NASA Astrophysics Data System (ADS)

    Tokioka, H.; Yamarin, H.; Fujino, T.; Inoue, M.; Seki, T.; Matsuo, J.

    2007-04-01

    Surface smoothing of laser crystallized polycrystalline silicon (poly-Si) films using gas cluster ion beam (GCIB) technology has been studied. It is found that both SF6-GCIB and O2-GCIB decrease the height of hillocks and reduce the surface roughness of the irradiated films. The mean surface roughness value of poly-Si films was reduced from 10.8 nm to 2.8 nm by SF6-GCIB irradiation at 80°. Ultraviolet reflectance measurement reveals that GCIB irradiation causes damage near-surface of the poly-Si films. Formation of the damage, however, can be suppressed by using GCIB irradiation at high incident angle. Effect of GCIB irradiation in a metal-insulator-semiconductor (MIS) capacitor has also been investigated. The capacitance-voltage curves of MIS capacitor with SF6-GCIB irradiation are distorted. On the contrary, the distortion is reduced by O2-GCIB irradiation at 80, which suggests that electrical-activated damage of the films can be decreased by using O2-GCIB irradiation.

  17. Young's Modulus, Residual Stress, and Crystal Orientation of Doubly Clamped Silicon Nanowire Beams.

    PubMed

    Calahorra, Y; Shtempluck, O; Kotchetkov, V; Yaish, Y E

    2015-05-13

    Initial or residual stress plays an important role in nanoelectronics. Valley degeneracy in silicon nanowires (SiNWs) is partially lifted due to built-in stresses, and consequently, electron-phonon scattering rate is reduced and device mobility and performance are improved. In this study we use a nonlinear model describing the force-deflection relationship to extract the Young's modulus, the residual stress, and the crystallographic growth orientation of SiNW beams. Measurements were performed on suspended doubly clamped SiNWs subjected to atomic force microscopy (AFM) three-point bending constraints. The nanowires comprised different growth directions and two SiO2 sheath thicknesses, and underwent different rapid thermal annealing processes. Analysis showed that rapid thermal annealing introduces compressive strains into the SiNWs and may result in buckling of the SiNWs. Furthermore, the core-shell model together with the residual stress analysis accurately describe the Young's modulus of oxide covered SiNWs and the crystal orientation of the measured nanowires. PMID:25826449

  18. Synthesis and characterization of large-grain solid-phase crystallized polycrystalline silicon thin films

    SciTech Connect

    Kumar, Avishek E-mail: dalapatig@imre.a-star.edu.sg; Law, Felix; Widenborg, Per I.; Dalapati, Goutam K. E-mail: dalapatig@imre.a-star.edu.sg; Subramanian, Gomathy S.; Tan, Hui R.; Aberle, Armin G.

    2014-11-01

    n-type polycrystalline silicon (poly-Si) films with very large grains, exceeding 30 μm in width, and with high Hall mobility of about 71.5 cm{sup 2}/V s are successfully prepared by the solid-phase crystallization technique on glass through the control of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The effect of this gas flow ratio on the electronic and structural quality of the n-type poly-Si thin film is systematically investigated using Hall effect measurements, Raman microscopy, and electron backscatter diffraction (EBSD), respectively. The poly-Si grains are found to be randomly oriented, whereby the average area weighted grain size is found to increase from 4.3 to 18 μm with increase of the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio. The stress in the poly-Si thin films is found to increase above 900 MPa when the PH{sub 3} (2% in H{sub 2})/SiH{sub 4} gas flow ratio is increased from 0.025 to 0.45. Finally, high-resolution transmission electron microscopy, high angle annular dark field-scanning tunneling microscopy, and EBSD are used to identify the defects and dislocations caused by the stress in the fabricated poly-Si films.

  19. Computer simulations of X-ray six-beam diffraction in a perfect silicon crystal. I.

    PubMed

    Kohn, V G; Khikhlukha, D R

    2016-05-01

    This paper reports computer simulations of the transmitted-beam intensity distribution for the case of six-beam (000, 220, 242, 044, -224, -202) diffraction of X-rays in a perfect silicon crystal of thickness 1 mm. Both the plane-wave angular dependence and the six-beam section topographs, which are usually obtained in experiments with a restricted beam (two-dimensional slit), are calculated. The angular dependence is calculated in accordance with Ewald's theory. The section topographs are calculated from the angular dependence by means of the fast Fourier transformation procedure. This approach allows one to consider, for the first time, the transformation of the topograph's structure due to the two-dimensional slit sizes and the distance between the slit and the detector. The results are in good agreement with the results of other works and with the experimental data. This method of calculation does not require a supercomputer and it was performed on a standard laptop. A detailed explanation of the main features of the diffraction patterns at different distances between the slit and the detector is presented.

  20. Analysis of multiple internal reflections in a parallel aligned liquid crystal on silicon SLM.

    PubMed

    Martínez, José Luis; Moreno, Ignacio; del Mar Sánchez-López, María; Vargas, Asticio; García-Martínez, Pascuala

    2014-10-20

    Multiple internal reflection effects on the optical modulation of a commercial reflective parallel-aligned liquid-crystal on silicon (PAL-LCoS) spatial light modulator (SLM) are analyzed. The display is illuminated with different wavelengths and different angles of incidence. Non-negligible Fabry-Perot (FP) effect is observed due to the sandwiched LC layer structure. A simplified physical model that quantitatively accounts for the observed phenomena is proposed. It is shown how the expected pure phase modulation response is substantially modified in the following aspects: 1) a coupled amplitude modulation, 2) a non-linear behavior of the phase modulation, 3) some amount of unmodulated light, and 4) a reduction of the effective phase modulation as the angle of incidence increases. Finally, it is shown that multiple reflections can be useful since the effect of a displayed diffraction grating is doubled on a beam that is reflected twice through the LC layer, thus rendering gratings with doubled phase modulation depth. PMID:25401619

  1. Crystallization of grain boundary phases in silicon nitride with low additive contents by microwave annealing

    SciTech Connect

    Tiegs, T.N.; Ploetz, K.L.; Kiggans, J.O.; Yeckley, R.L.

    1993-06-01

    Microwave annealing of dense Si{sub 3}N{sub 4}-4% Y{sub 2}O{sub 3} materials showed improvements over conventional heating. Increases in fracture toughness were observed for annealing between 1200--1650C. The high temperature strength was related to the residual {alpha}-Si{sub 3}N{sub 4} content which is indicative of a finer average grain size in the specimens. The high temperature dynamic fatigue showed increased stress to failure for specimens microwave annealed between 1400--1550C for periods >5 h. Silicon nitrides with different sintering additives would require different conditions for optimum crystallization. While there were some observed property improvements, they were not so dramatic to justify abandoning conventional over microwave heating. The Si{sub 3}N{sub 4}-4% Y{sub 2}O{sub 3} materials used in the study were developed for elevated temperature use and already posses excellent good high temperature strength, fatigue resistance and creep properties. This is due to the very refractory nature of the grain boundary phases and the small quantity of secondary phase present. However, microwave annealing of these materials may be necessary in applications where the maximum in fracture toughness and fatigue resistance are required and thus justifies its use.

  2. Young's Modulus, Residual Stress, and Crystal Orientation of Doubly Clamped Silicon Nanowire Beams.

    PubMed

    Calahorra, Y; Shtempluck, O; Kotchetkov, V; Yaish, Y E

    2015-05-13

    Initial or residual stress plays an important role in nanoelectronics. Valley degeneracy in silicon nanowires (SiNWs) is partially lifted due to built-in stresses, and consequently, electron-phonon scattering rate is reduced and device mobility and performance are improved. In this study we use a nonlinear model describing the force-deflection relationship to extract the Young's modulus, the residual stress, and the crystallographic growth orientation of SiNW beams. Measurements were performed on suspended doubly clamped SiNWs subjected to atomic force microscopy (AFM) three-point bending constraints. The nanowires comprised different growth directions and two SiO2 sheath thicknesses, and underwent different rapid thermal annealing processes. Analysis showed that rapid thermal annealing introduces compressive strains into the SiNWs and may result in buckling of the SiNWs. Furthermore, the core-shell model together with the residual stress analysis accurately describe the Young's modulus of oxide covered SiNWs and the crystal orientation of the measured nanowires.

  3. An adaptive optics imaging system based on a high-resolution liquid crystal on silicon device.

    PubMed

    Mu, Quanquan; Cao, Zhaoliang; Hu, Lifa; Li, Dayu; Xuan, Li

    2006-09-01

    An adaptive optics imaging system is introduced in this paper. A high resolution liquid crystal on silicon (LCOS) device was used as a phase only wave front corrector instead of a conversional deformable mirror. The wave front aberration was detected by a Shack-Hartmann (SH) wave front sensor, which has lambda/100 rms wave front measurement accuracy. Under this construction 0.09lambda (lambda=0.6328microm) Peak to Valley correction precision was reached. Further more, some low frequency hot convection turbulence induced by an electric iron was compensated in real time at the same precision. The Modulation Transfer Function (MTF) of this system was also measured before and after wave front correction. Under the active correction of LCOS, the system reached the diffraction limited resolution approximately 65l p/mm on the horizontal direction. All of this showed the ability of using this device in high resolution, low temporal turbulence imaging system, such as retinal imaging, to improve the resolution performance.

  4. Piezoresistive pressure sensor using low-temperature aluminium induced crystallization of sputter-deposited amorphous silicon film

    NASA Astrophysics Data System (ADS)

    Tiwari, Ruchi; Chandra, Sudhir

    2013-09-01

    In the present work, we have investigated the piezoresistive properties of silicon films prepared by the radio frequency magnetron sputtering technique, followed by the aluminium induced crystallization (AIC) process. Orientation and grain size of the polysilicon films were studied by x-ray diffraction analysis and found to be in the range 30-50 nm. Annealing of the Al-Si stack on an oxidized silicon substrate was performed in air ambient at 300-550 °C, resulting in layer exchange and transformation from amorphous to polysilicon phase. Van der Pauw and Hall measurement techniques were used to investigate the sheet resistance and carrier mobility of the resulting polycrystalline silicon film. The effect of Al thickness on the sheet resistance and mobility was also studied in the present work. A piezoresistive pressure sensor was fabricated on an oxidized silicon substrate in a Wheatstone bridge configuration, comprising of four piezoresistors made of polysilicon film obtained by the AIC process. The diaphragm was formed by the bulk-micromachining of silicon substrate. The response of the pressure sensor with applied negative pressure in 10-95 kPa range was studied. The gauge factor was estimated to be 5 and 18 for differently located piezoresistors on the diaphragm. The sensitivity of the pressure sensor was measured to be ˜ 30 mV MPa-1, when the Wheatstone bridge was biased at 1 V input voltage.

  5. Enhancement of light extraction in silicon-rich oxide light-emitting diodes by one-dimensional photonic crystal gratings

    NASA Astrophysics Data System (ADS)

    Llorens, J. M.; Postigo, P. A.; Juvert, J.; González, A.; Domínguez, C.

    2013-09-01

    In this work we show the design of one-dimensional nanophotonic structures (photonic crystal gratings) for enhancement of extraction of light with specific wavelengths in light-emitting diodes (LEDs). The LEDs are made of silicon-rich oxide embedding silicon nanolayers with emission in the visible spectrum. The LED structure consists of a poly-silicon top layer 310 nm thick, a silicon-rich oxide layer with nanoparticles and a silicon substrate. The gratings are formed by grooves separated with periods ranging from 200 nm to 600 nm and widths 0.72 times the period engraved on the top layer. We have performed two dimensional finite-difference time-domain simulations to obtain the values for the internal and external quantum efficiency (EQE) in the normal direction in a spectral window from 400 nm to 500 nm. The results show that it is possible to achieve a strong enhancement in the EQE in the short wavelength region (400 nm) while it reaches 5-fold enhancement at longer wavelengths.

  6. Effect of interphase mixing on the structure of calcium silicate intergranular film/silicon nitride crystal interfaces

    NASA Astrophysics Data System (ADS)

    Su, Xiaotao; Garofalini, Stephen H.

    2005-06-01

    Molecular-dynamics simulations of intergranular films (IGF) containing Si, O, N, and Ca in contact with Si3N4 surfaces containing different levels of interface mixing of the species from the IGF with the crystal surfaces were performed using a multibody interatomic potential. This mixing is equivalent to the formation of a roughened silicon oxynitride crystal surface. With significant interphase mixing at the crystal surfaces, less ordering into the IGF caused by the compositionally modified oxynitride interfaces is observed. Such results are in contrast to our earlier data that showed significant ordering into the IGF induced by the ideally terminated crystal surfaces with no interphase mixing. In all cases, the central position of the first peak in the Si-O pair distribution function (PDF) at the interface ranges from 1.62 to 1.64 Å, consistent with recent experimental findings. The central position of the first peak in the Si-N PDF ranges from 1.72 to 1.73 Å, consistent with experimental results. With increased interphase mixing, the intensity as well as the area of the first peak of the Si-O and Si-N PDFs for Si attached to the crystal decreases, indicating the decrease of coordination number of O or N with these silicon. Such combined decrease in coordination indicates a significant remnant of vacancies in the crystal surfaces due to the exchange process used here. The results imply a significant effect of interface roughness on the extent of ordering in the amorphous IGF induced by the crystal surface.

  7. The effects of copper and titanium on silicon solar cells

    NASA Technical Reports Server (NTRS)

    Salama, A. M.

    1978-01-01

    Copper-doped N/P silicon solar cells fabricated from the Czochralski grown single-crystal wafers were found to have good electrical characteristics, but the titanium-doped N/P silicon solar cells has considerably lower conversion efficiency. However, in the copper/titanium-doped solar cells, copper seems to mitigate the unfavorable effects of titanium. To explain this behavior, microstructural tests were performed on silicon wafers and solar cells doped with copper, titanium and copper/titanium. Dark forward and reverse I-V measurements were performed on the solar cells to correlate the microstructural defects with the p-n junction properties. It was found that copper precipitates were formed in the copper-doped and copper/titanium-doped wafers and cells. There was a significant voltage drop in the dark reverse I-V measurements of the titanium solar cells. Also, there were some electronically active defects in the depletion region of some titanium-doped cells. Reasons that lead to the above results are given in detail.

  8. Design, fabrication and test of prototype furnace for continuous growth of wide silicon ribbon

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Seidensticker, R. G.

    1976-01-01

    A program having the overall objective of growing wide, thin silicon dendritic web crystals quasi-continuously from a semi-automated facility is discussed. The design considerations and fabrication of the facility as well as the test and operation phase are covered; detailed engineering drawings are included as an appendix. During the test and operation phase of the program, more than eighty growth runs and numerous thermal test runs were performed. At the conclusion of the program, 2.4 cm wide web was being grown at thicknesses of 100 to 300 micrometers. As expected, the thickness and growth rate are closely related. Solar cells made from this material were tested at NASA-Lewis and found to have conversion efficiencies comparable to devices fabricated from Czochralski material.

  9. Oxygen and carbon impurities and related defects in silicon

    NASA Technical Reports Server (NTRS)

    Pearce, C. W.

    1985-01-01

    Oxygen and carbon are the predominant impurities in Czochralski-grown silicon. The incorporation of oxygen and carbon during crystal growth is reviewed and device effects are discussed. Methods for controlling oxygen and carbon incorporation during crystal growth are discussed and results supporting a segregation coefficient of k=0.5 for oxygen are presented. The nucleation and precipitation behavior of oxygen is complex. Temperature and doping level effects which add insight into the role of point defects in the nucleation process are highlighted. In general, precipitation is found to be retarded in N+ and P+ silicon. The types and quantities of defects resulting from the oxygen precipitates is of interest as they are technologically useful in the process called intrinsic gettering. A comparison is made between the available defect sites and the quantities of metallic impurities present in a typical wafer which need to be gettered. Finally, a discussion of the denuded-zone, intrinsic-gettered (DZ-IG) structure on device properties is presented.

  10. High-resolution transmission electron microscopy study of solid phase crystallized silicon thin films on SiO2: Crystal growth and defects formation

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Lee, J. Y.; Nam, K. S.

    1995-01-01

    A high-resolution transmission electron microscopy study of the solid phase crystallization of amorphous silicon thin films deposited on SiO2 at 520 C by low pressure chemical vapor deposition and annealed at 550 C in a dry N2 ambient was carried out so that the grain growth mechanism, various types of defects, and the origins of defect formation could be understood on an atomic level. Silicon crystallites formed at the initial stage of the crystallization had a circular shape and grains had a branched elliptical or a dendritic shape. Many twins, of which (111) coherent boundaries were parallel to the long axis of a grain, were observed in the interior of all the elongated grains. In addition to twins, the following defects are observed in the grain: intrinsic stacking faults, extrinsic stacking faults, perfect dislocations, extended screw dislocations, and Shockley partial dislocations. These defects were formed by the following reasons: errors in the stacking sequence at the amorphous/crystalline interface; jumps of a twin plane; the intersecting of two crystal growth fronts slightly misoriented; and the intersecting of two twin planes at the amorphous/crystalline interface. Among those defects, twins and stacking faults provided a preferable nucleation site for an atomic step of a (111) plane. As a result, it was concluded that grain growth in the (112) direction along the (111) plane parallel to the long axis of a grain was accelerated by twins and stacking faults.

  11. Crystallization induced by thermal annealing with millisecond pulses in silicon-on-insulator films implanted with high doses of hydrogen ions

    SciTech Connect

    Tyschenko, I. E.; Volodin, V. A.; Voelskow, M.; Cherkov, A. G.; Popov, V. P.

    2013-05-15

    The crystallization of silicon-on-insulator films, implanted with high doses of hydrogen ions, upon annealing with millisecond pulses is studied. Immediately after hydrogen-ion implantation, the formation of a three-phase structure composed of silicon nanocrystals, amorphous silicon, and hydrogen bubbles is detected. It is shown that the nanocrystalline structure of the films is retained upon pulsed annealing at temperatures of up to {approx}1000 Degree-Sign C. As the temperature of the millisecond annealing is increased, the nanocrystal dimensions increase from 2 to 5 nm and the fraction of the nanocrystalline phase increases to {approx}70%. From an analysis of the activation energy of crystal phase growth, it is inferred that the process of the crystallization of silicon films with a high ({approx}50 at %) hydrogen content is limited by atomic-hydrogen diffusion.

  12. 2D silicon-based surface-normal vertical cavity photonic crystal waveguide array for high-density optical interconnects

    NASA Astrophysics Data System (ADS)

    Ahn, JaeHyun; Subbaraman, Harish; Zhu, Liang; Chakravarty, Swapnajit; Tutuc, Emanuel; Chen, Ray T.

    2013-02-01

    In this paper, we present the design guidelines, fabrication challenges and device evaluation results of a surface-normal photonic crystal waveguide array for high-density optical interconnects. We utilize the slow light effect of photonic crystals to increase the effective interaction length between photons and medium, which in turn can be used to decrease the physical length and make compact devices. The effect of the structural parameters variations on the guided mode are studied in order to provide a guideline for fabrication. Photonic crystal waveguides are vertically implemented in a silicon-on insulator substrate. Our structure possesses advantages such as universal design, CMOS compatibility, and simple fabrication process, suitable for high dense on-chip applications. Transmission results show increase of power near 1.67 μm wavelength, which agrees with our simulation results.

  13. Transmission electron microscopic identification of silicon-containing particles in synovial fluid: potential confusion with calcium pyrophosphate dihydrate and apatite crystals.

    PubMed Central

    Bardin, T; Schumacher, H R; Lansaman, J; Rothfuss, S; Dryll, A

    1984-01-01

    Silicon-containing particles were identified by transmission electron microscopy (TEM) in thin sections of two synovial fluids, which also contained calcium pyrophosphate dihydrate (CPPD) crystals, aspirated during acute attacks of pseudogout. Such particles, which are interpreted as probably being artefacts from glassware, were electron dense and similar in appearance to some CPPD or hydroxyapatite crystals. Images PMID:6476921

  14. Defect studies in 4H- Silicon Carbide PVT grown bulk crystals, CVD grown epilayers and devices

    NASA Astrophysics Data System (ADS)

    Byrappa, Shayan M.

    Silicon Carbide [SiC] which exists as more than 200 different polytypes is known for superior high temperature and high power applications in comparison to conventional semiconductor materials like Silicon and Germanium. The material finds plethora of applications in a diverse fields due to its unique properties like large energy bandgap, high thermal conductivity and high electric breakdown field. Though inundated with superior properties the potential of this material has not been utilized fully due to impeding factors such as defects especially the crystalline ones which limit their performance greatly. Lots of research has been going on for decades to reduce these defects and there has been subsequent improvement in the quality as the diameter of SiC commercial wafers has reached 150mm from 25mm since its inception. The main focus of this thesis has been to study yield limiting defect structures in conjunction with several leading companies and national labs using advanced characterization tools especially the Synchrotron source. The in depth analysis of SiC has led to development of strategies to reduce or eliminate the density of defects by studying how the defects nucleate, replicate and interact in the material. The strategies discussed to reduce defects were proposed after careful deliberation and analysis of PVT grown bulk crystals and CVD grown epilayers. Following are some of the results of the study: [1] Macrostep overgrowth mechanism in SiC was used to study the deflection of threading defects onto the basal plane resulting in stacking faults. Four types of stacking faults associated with deflection of c/c+a threading defects have been observed to be present in 76mm, 100mm and 150mm diameter wafers. The PVT grown bulk crystals and CVD grown epilayers in study were subjected to contrast studies using synchrotron white beam X-ray topography [SWBXT]. The SWBXT image contrast studies of these stacking faults with comparison of calculated phase shifts for

  15. Experimental measurement of the near tip strain field in an iron-silicon single crystal

    NASA Astrophysics Data System (ADS)

    Shield, T. W.; Kim, K.-S.

    1994-05-01

    EXPERIMENTAL RESULTS are presented for the plastic deformation field near a crack (200 μm wide notch) tip in an iron-3% silicon single crystal. The specimen was loaded in four point bending and the measurements were made at zero load after extensive plastic deformation had occurred. Results are given for a crack on the (011) plane with its tip along the [01|T] direction. The surface deformation field was measured using moire microscopy and a grating on the specimen surface. The in-plane Almansi strain components have been obtained by digitally processing the moire fringes. A well-structured asymptotic field has been found at a distance of 350-500 μm from the notch tip, where the maximum plastic strain is about 9%. The asymptotic field is observed to be composed of many distinct angular sectors. Three (six symmetric) of these sectors are found to have approximately constant strains. In a fourth (two symmetric) sector, the surface strains are approximately 1/ r singular. Between these sectors there are interconnecting transition sectors. The location of the stress state on the yield surface and the active slip systems in each sector are identified by assuming that the plastic strain rates are normal to a Schmid law yield surface. The slip systems identified in this manner show excellent agreement with direct observations of the slip texture on the surface and dislocation etch pits in the interior of the specimen. The experimental strain measurements also show that the constant strain sectors are regions in which unloading occurs. Because of this unloading, the crack tip stress and deformation state is substantially different from an HRR type field which assumes proportional loading. This strong nonproportional loading is thought to be caused by the presence of material anisotropy. The nonproportional loading also provides a large amount of crack tip shielding that is evidence of a toughening mechanism that results from the presence of material anisotropy.

  16. Investigation of the surface of implanted silicon crystal by the contact angle

    SciTech Connect

    Lebedeva, N.N.; Bakovets, V.V.; Sedymova, E.A.; Pridachin, N.B.

    1987-03-01

    The authors study the dependence of the critical contact angle of silicon upon the dose of its irradiation by argon and boron ions. It is established that the system of immiscible liquids ether-water can be successfully used to study the influence of ion implantation of silicon on its wettability by water. The change in the wettability of implanted silicon is related to the increase in the level of the defect state of the layer surface. Wetting of implanted silicon by melts at high temperatures can be used for studying the kinetics and the annealing mechanism of defects.

  17. Calibration of the apparent temperature of silicon single crystals as a function of their true temperature and their thickness as determined by infrared measurements

    SciTech Connect

    Smither, R.K.; Fernandez, P.B.

    1993-09-01

    Viewing the surface of objects subjected to high heat fluxes with an infrared camera or infrared sensor has proved to be a very effective method for monitoring the magnitude and distribution of surface temperature on the object. This approach has been quite useful in studies of cooling silicon crystals in monochromators subject to high heat loads. The main drawback to this method is that single crystals of silicon are partially transparent to the infrared radiation monitored in most infrared cameras. This means that the infrared radiation emitted from the surface contains a component that comes from the interior of the crystal and that the intensity of the emitted radiation and thus the apparent temperature of the surface of the crystal depends on the thickness of the crystal and the kind of coating on the back (and/or the front) of the crystal. The apparent temperature of the crystal increases as the crystal is made thicker. A series of experiments were performed at Argonne National Laboratory to calibrate the apparent surface temperature of the crystal as measured with an infrared camera as a function of the crystal thickness and the type of coating (if any) on the back side of the crystal. A good reflecting surface on the back side of the crystal increases the apparent temperature of the crystal and simulates the response of a crystal twice the thickness. These measurements make it possible to interpret the infrared signals from cooled silicon crystals used in past high heat load experiments. A number of examples are given for data taken in synchrotron experiments with high intensity x-ray beams.

  18. In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers.

    PubMed

    Hwang, Geon-Tae; Im, Donggu; Lee, Sung Eun; Lee, Jooseok; Koo, Min; Park, So Young; Kim, Seungjun; Yang, Kyounghoon; Kim, Sung June; Lee, Kwyro; Lee, Keon Jae

    2013-05-28

    Biointegrated electronics have been investigated for various healthcare applications which can introduce biomedical systems into the human body. Silicon-based semiconductors perform significant roles of nerve stimulation, signal analysis, and wireless communication in implantable electronics. However, the current large-scale integration (LSI) chips have limitations in in vivo devices due to their rigid and bulky properties. This paper describes in vivo ultrathin silicon-based liquid crystal polymer (LCP) monolithically encapsulated flexible radio frequency integrated circuits (RFICs) for medical wireless communication. The mechanical stability of the LCP encapsulation is supported by finite element analysis simulation. In vivo electrical reliability and bioaffinity of the LCP monoencapsulated RFIC devices are confirmed in rats. In vitro accelerated soak tests are performed with Arrhenius method to estimate the lifetime of LCP monoencapsulated RFICs in a live body. The work could provide an approach to flexible LSI in biointegrated electronics such as an artificial retina and wireless body sensor networks.

  19. A 1 × 4 optical splitter for TE modes based on a silicon photonic crystal self-collimation ring resonator

    NASA Astrophysics Data System (ADS)

    Zhong, Yuangang; Chen, Xiyao; Qiang, Zexuan; Lin, Guimin; Jiang, Junzhen; Qiu, Yishen; Li, Hui

    2013-09-01

    A 1 × 4 optical splitter (OS) is proposed for TE modes based on a self-collimation (SC) effect ring resonator (SCRR) in an air-hole type silicon photonic crystal. A 1 × 4 OS consists of four beam splitters formed by varying the radii of the air holes. Utilizing multiple-beam interference theory, the theoretical transmission spectra at each port in the OS were analyzed. By forming four splitters in a SCRR properly, self-collimation light can come out from four ports with the light-intensity ratio we set. OSs were investigated using the two-dimensional finite-difference time-domain (FDTD) simulation technique. The simulation results have good agreement with the theoretical prediction. Because of its small dimensions, whole silicon material, and air-hole type, this structure may have an important role in photonic integrated circuits.

  20. Unambiguous demonstration of soliton evolution in slow-light silicon photonic crystal waveguides with SFG-XFROG.

    PubMed

    Li, Xiujian; Liao, Jiali; Nie, Yongming; Marko, Matthew; Jia, Hui; Liu, Ju; Wang, Xiaochun; Wong, Chee Wei

    2015-04-20

    We demonstrate the temporal and spectral evolution of picosecond soliton in the slow light silicon photonic crystal waveguides (PhCWs) by sum frequency generation cross-correlation frequency resolved optical grating (SFG-XFROG) and nonlinear Schrödinger equation (NLSE) modeling. The reference pulses for the SFG-XFROG measurements are unambiguously pre-characterized by the second harmonic generation frequency resolved optical gating (SHG-FROG) assisted with the combination of NLSE simulations and optical spectrum analyzer (OSA) measurements. Regardless of the inevitable nonlinear two photon absorption, high order soliton compressions have been observed remarkably owing to the slow light enhanced nonlinear effects in the silicon PhCWs. Both the measurements and the further numerical analyses of the pulse dynamics indicate that, the free carrier dispersion (FCD) enhanced by the slow light effects is mainly responsible for the compression, the acceleration, and the spectral blue shift of the soliton. PMID:25969070

  1. Liquid sensor based on high-Q slot photonic crystal cavity in silicon-on-insulator configuration.

    PubMed

    Caër, Charles; Serna-Otálvaro, Samuel F; Zhang, Weiwei; Le Roux, Xavier; Cassan, Eric

    2014-10-15

    We present the realization of an optical sensor based on an infiltrated high-Q slot photonic crystal cavity in a nonfreestanding membrane configuration. Successive infiltrations by liquids with refractive indices ranging from 1.345 to 1.545 yield a sensitivity S of 235 nm/RIU (refractive index unit), while the Q-factor is comprised between 8000 and 25,000, giving a sensor figure of merit up to 3700. This sensor has a detection limit of 1.25×10⁻⁵. The operation of this device on a silicon-on-insulator (SOI) substrate allows a straightforward integration in the silicon photonics platform, while providing a compliant mechanical stability. PMID:25361086

  2. Coupled fiber taper extraction of 1.53 microm photoluminescence from erbium doped silicon nitride photonic crystal cavities.

    PubMed

    Shambat, Gary; Gong, Yiyang; Lu, Jesse; Yerci, Selçuk; Li, Rui; Dal Negro, Luca; Vucković, Jelena

    2010-03-15

    Optical fiber tapers are used to collect photoluminescence emission at approximately 1.5 microm from photonic crystal cavities fabricated in erbium doped silicon nitride on silicon. In the experiment, photoluminescence collection via one arm of the fiber taper is enhanced 2.5 times relative to free space collection, corresponding to a net collection efficiency of 4%. Theoretically, the collection efficiency into one arm of the fiber-taper with this material system and cavity design can be as high as 12.5%, but the degradation of the experimental coupling efficiency relative to this value mainly comes from scattering loss within the short taper transition regions. By varying the fiber taper offset from the cavity, a broad tuning range of coupling strength and collection efficiency is obtained. This material system combined with fiber taper collection is promising for building on-chip optical amplifiers.

  3. Structural and electronic characterization of 355 nm laser-crystallized silicon: Interplay of film thickness and laser fluence

    SciTech Connect

    Semler, Matthew R.; Swenson, Orven F.; Hoey, Justin M.; Guruvenket, Srinivasan; Gette, Cody R.; Hobbie, Erik K.

    2014-04-28

    We present a detailed study of the laser crystallization of amorphous silicon thin films as a function of laser fluence and film thickness. Silicon films grown through plasma-enhanced chemical vapor deposition were subjected to a Q-switched, diode-pumped solid-state laser operating at 355 nm. The crystallinity, morphology, and optical and electronic properties of the films are characterized through transmission and reflectance spectroscopy, resistivity measurements, Raman spectroscopy, X-ray diffraction, atomic force microscopy, and optical and scanning-electron microscopy. Our results reveal a unique surface morphology that strongly couples to the electronic characteristics of the films, with a minimum laser fluence at which the film properties are optimized. A simple scaling model is used to relate film morphology to conductivity in the laser-processed films.

  4. Broadband single-mode waveguiding in two- and three-dimensional hybrid photonic crystals based on silicon inverse opals.

    PubMed

    Qiu, Gaoxin; Vynck, Kevin; Cassagne, David; Centeno, Emmanuel

    2007-03-19

    Hybrid 2D-3D heterostructures are a very promising way for waveguiding light in 3D photonic structures. Single-mode waveguiding of light has been demonstrated in heterostructures where a 2D photonic crystal consisting of a triangular lattice of silicon rods in air was intercalated between two silicon inverse opals. In this paper, we show that by using a graphite lattice of rods instead of a triangular one, it is possible to enlarge the maximal single-mode waveguiding bandwidth by more than 70 %, i.e. up to 129 nm centered on 1.55 mum. The sensibility to the 2D layer structure parameters is lower, offering enhanced experimental flexibility in the design of the structure.

  5. Microheater-integrated silicon coupled photonic crystal microcavities for low-power thermo-optic switching over a wide spectrum

    NASA Astrophysics Data System (ADS)

    Zhang, Xingyu; Chakravarty, Swapnajit; Chung, Chi-Jui; Pan, Zeyu; Yan, Hai; Chen, Ray T.

    2016-03-01

    We design, fabricate and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78μm-long coupled L0-type photonic crystal microcavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystal microcavity. Coupling between identical microcavities gives rise to bonding and antibonding states of the coupled photonic molecules. The coupled photonic crystal microcavities are numerically simulated and experimentally verified with a 6nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20dB, an on-off switching power of 18.2mW, a therm-optic tuning efficiency of 0.63nm/mW, a rise time of 14.8μsec and a fall time of 18.5μsec. The measured on-chip loss on the transmission band is as low as 1dB.

  6. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities

    NASA Astrophysics Data System (ADS)

    Zhang, Xingyu; Chakravarty, Swapnajit; Chung, Chi-Jui; Pan, Zeyu; Yan, Hai; Chen, Ray T.

    2015-11-01

    We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 μm-long coupled L0-type photonic crystal microcavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystal microcavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystal microcavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 μs, and a fall time of 18.5 μs. The measured on-chip loss on the transmission band is as low as 1 dB.

  7. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities

    SciTech Connect

    Zhang, Xingyu E-mail: swapnajit.chakravarty@omegaoptics.com Chung, Chi-Jui; Pan, Zeyu; Yan, Hai; Chakravarty, Swapnajit E-mail: swapnajit.chakravarty@omegaoptics.com; Chen, Ray T. E-mail: swapnajit.chakravarty@omegaoptics.com

    2015-11-30

    We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 μm-long coupled L0-type photonic crystal microcavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystal microcavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystal microcavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 μs, and a fall time of 18.5 μs. The measured on-chip loss on the transmission band is as low as 1 dB.

  8. Lateral diffusion epitaxy (LDE) of single crystal silicon with downward facing substrate

    NASA Astrophysics Data System (ADS)

    Yu, Luke H. L.; Li, Bo; Shen, Huaxiang; Kitai, Adrian H.

    2012-10-01

    An increase in the aspect ratio of silicon platelets grown by Lateral Diffusion Epitaxy (LDE) is achieved. Epitaxial growth is achieved by a compound graphite slider boat in which an oxidized silicon plate is placed above the seed line on the substrate. The function of the plate is to i) favor side wall growth by limiting vertical nucleation on the platelets, and ii) to enhance the surface smoothness by restricting diffusion of silicon to a horizontal direction. We have studied layer growth from the In-Si liquid phase by reducing the gap between substrate and plate. By reducing the gap, it allows for a more uniform growth of silicon from the side wall of the strip. In addition, we investigate repositioning the silicon seed line to a downward orientation. In this case, the diffusion rate increases due to a gravity effect.

  9. Fabrication of high-quality nanobeam photonic crystal cavities in 4H silicon carbide with embedded color centers

    NASA Astrophysics Data System (ADS)

    Bracher, David O.; Hu, Evelyn L.

    2016-03-01

    A wide band-gap semiconductor with a long history of growth and device fabrication, silicon carbide (SiC) has attracted recent attention for hosting several defects with properties similar to the nitrogen vacancy center in diamond. In the 4H polytype, these include the silicon vacancy center and the neutral divacancy, which have zero phonon lines (ZPL) in the near-IR and may be useful for quantum information and nanoscale sensing. For many such applications, it is critical to increase the defect emission into the ZPL by coupling the emission to an optical cavity. Accordingly, we have pursued the fabrication of high quality 1D nanobeam photonic crystal cavities (PCCs) in 4H-SiC, using homoepitaxially grown material and a photoelectrochemical etch to provide optical isolation. These PCCs are distinctive in their high theoretical quality factors (Q > 106) and low modal volumes (V < 0.5 (λ/n)3). Here, we present arrays of nanobeam PCCs with varied lattice constant containing embedded silicon vacancy defects generated by electron irradiation, to assess its viability as a method for defect creation. The lattice constant variation allows us to create devices with modes spanning the entire range of the silicon vacancy emission. We accordingly demonstrate nanobeam PCCs with resonant modes near both ZPLs of the silicon vacancy defect. Moreover, we measure devices with the highest Q cavity modes coupled to point defect emission in SiC yet reported, providing evidence that electron irradiation can be used to generate point defects while maintaining high quality optical devices.

  10. Process for the controlled growth of single-crystal films of silicon carbide polytypes on silicon carbide wafers

    NASA Astrophysics Data System (ADS)

    Larkin, David J.; Powell, J. Anthony

    1992-11-01

    A method for the controlled growth of single-crystal semiconductor-device-quality films of SiC polytypes on vicinal (0001) SiC wafers with low tilt angles is presented. Both homoepitaxial and heteroepitaxial SiC films can be produced on the same wafer. In particular, 3C-SiC and 6H-SiC films can be produced within selected areas of the same 6H-SiC wafer.

  11. Process for the controlled growth of single-crystal films of silicon carbide polytypes on silicon carbide wafers

    NASA Astrophysics Data System (ADS)

    Larkin, David J.; Powell, J. Anthony

    1994-11-01

    This invention is a method for the controlled growth of single-crystal semiconductor-device-quality films of SiC polytypes of vicinal (0001) SiC wafers with low tilt angles. Both homoepitaxial and heteroepitaxial SiC films can be produced on the same wafer. In particular, 3C-SiC and 6H-SiC films can be produced within selected areas of the same 6H-SiC wafer.

  12. Process for the controlled growth of single-crystal films of silicon carbide polytypes on silicon carbide wafers

    NASA Astrophysics Data System (ADS)

    Powell, J. Anthony

    1991-06-01

    This invention is a method for the controlled growth of single-crystal semiconductor device quality films of SiC polytypes on vicinal (0001) SiC wafers with low tilt angles. Both homoepitaxial and heteroepitaxial SiC films can be produced on the same wafer. In particular, 3C-SiC and 6H-SiC films can be produced within selected areas of the same 6H-SiC wafer.

  13. Process for the controlled growth of single-crystal films of silicon carbide polytypes on silicon carbide wafers

    NASA Technical Reports Server (NTRS)

    Powell, J. Anthony (Inventor)

    1991-01-01

    This invention is a method for the controlled growth of single-crystal semiconductor device quality films of SiC polytypes on vicinal (0001) SiC wafers with low tilt angles. Both homoepitaxial and heteroepitaxial SiC films can be produced on the same wafer. In particular, 3C-SiC and 6H-SiC films can be produced within selected areas of the same 6H-SiC wafer.

  14. Process for the controlled growth of single-crystal films of silicon carbide polytypes on silicon carbide wafers

    NASA Technical Reports Server (NTRS)

    Larkin, David J. (Inventor); Powell, J. Anthony (Inventor)

    1992-01-01

    A method for the controlled growth of single-crystal semiconductor-device-quality films of SiC polytypes on vicinal (0001) SiC wafers with low tilt angles is presented. Both homoepitaxial and heteroepitaxial SiC films can be produced on the same wafer. In particular, 3C-SiC and 6H-SiC films can be produced within selected areas of the same 6H-SiC wafer.

  15. Adaptive Optics with a Liquid-Crystal-on-Silicon Spatial Light Modulator and Its Behavior in Retinal Imaging

    NASA Astrophysics Data System (ADS)

    Shirai, Tomohiro; Takeno, Kohei; Arimoto, Hidenobu; Furukawa, Hiromitsu

    2009-07-01

    An adaptive optics system with a brand-new device of a liquid-crystal-on-silicon (LCOS) spatial light modulator (SLM) and its behavior in in vivo imaging of the human retina are described. We confirmed by experiments that closed-loop correction of ocular aberrations of the subject's eye was successfully achieved at the rate of 16.7 Hz in our system to obtain a clear retinal image in real time. The result suggests that an LCOS SLM is one of the promising candidates for a wavefront corrector in a prospective commercial ophthalmic instrument with adaptive optics.

  16. Liquid-crystal-on-silicon-based optical add/drop multiplexer for orbital-angular-momentum-multiplexed optical links.

    PubMed

    Huang, Hao; Yue, Yang; Yan, Yan; Ahmed, Nisar; Ren, Yongxiong; Tur, Moshe; Willner, Alan E

    2013-12-01

    We designed an optical add/drop multiplexer for orbital-angular-momentum (OAM)-multiplexed data links by taking advantage of the ring-shaped intensity profile of OAM beams. We demonstrated adding/dropping a single OAM beam from three multiplexed OAM beams using liquid-crystal-on-silicon-based diffraction optical elements. For multiplexed OAM beams carrying 100 Gbit/s quadrature phase-shift-keying data, a power penalty of <2 dB is observed to achieve a bit-error rate of 2.0×10(-3) for each channel of the add/drop multiplexer.

  17. Design and analysis of polarization independent all-optical logic gates in silicon-on-insulator photonic crystal

    NASA Astrophysics Data System (ADS)

    Rani, Preeti; Kalra, Yogita; Sinha, R. K.

    2016-09-01

    In this paper, we have reported design and analysis of polarization independent all optical logic gates in silicon-on-insulator photonic crystal consisting of two dimensional honeycomb lattices with two different air holes exhibiting photonic band gap for both TE and TM mode in the optical communication window. The proposed structures perform as an AND optical logic gate and all the optical logic gates based on the phenomenon of interference. The response period and bit rate for TE and TM polarizations at a wavelength of 1.55 μm show improved results as reported earlier.

  18. Design and Performance Evaluation of Optical Ethernet Switching Architecture with Liquid Crystal on Silicon-Based Beam-Steering Technology

    NASA Astrophysics Data System (ADS)

    Cheng, Yuh-Jiuh; Chou, H.-H.; Shiau, Yhi; Cheng, Shu-Ying

    2016-07-01

    A non-blocking optical Ethernet switching architecture with liquid crystal on a silicon-based beam-steering switch and optical output buffer strategies are proposed. For preserving service packet sequencing and fairness of routing sequence, priority and round-robin algorithms are adopted at the optical output buffer in this research. Four methods were used to implement tunable fiber delay modules for the optical output buffers to handle Ethernet packets with variable bit-rates. The results reported are based on the simulations performed to evaluate the proposed switching architecture with traffic analysis under a traffic model captured from a real-core network.

  19. Applying gray-scaled detour phase hologram on liquid crystal on silicon spatial light modulator (LCoS-SLM)

    NASA Astrophysics Data System (ADS)

    Sayem El-Daher, Moustafa

    2016-03-01

    In order to solve the representation problem of computer-generated holograms, multiple algorithms have been devised. One of which is the well-known detour phase method. This method has recently been modified to be optimized to display the generated hologram on twisted nematic spatial light modulators. In this paper, we apply the modified gray-scaled detour phase holograms on another type of spatial light modulators, which is of utmost importance in the field, namely the reflective liquid crystal on silicon spatial light modulator.

  20. Growth and characterization of Czochralski-grown n and p-type GaAs for space solar cell substrates. Final Report, 29 May 1981-28 May 1982

    SciTech Connect

    Chen, R.T.

    1983-06-01

    Progress in LEC (liquid encapsulated Czochralski) crystal growth techniques for producing high-quality, 3-inch-diameter, n- and p-type GaAs crystals suitable for solar cell applications is described. The LEC crystals with low dislocation densities and background impurities, high electrical mobilities, good dopant uniformity, and long diffusion lengths were reproducibly grown through control of the material synthesis, growth and doping conditions. The capability for producing these large-area, high-quality substrates should positively impact the manufacturability of highly efficiency, low cost, radiation-hard GaAs solar cells.

  1. Growth mechanism of carbon nanotubes: a nano Czochralski model

    PubMed Central

    2012-01-01

    Carbon nanotubes (CNTs) have been under intense investigations during the past two decades due to their unique physical and chemical properties; however, there is still no commonly accepted growth mechanism to describe the growth behavior of CNTs. Here, we propose a nano Czochralski (CZ) model which regards the catalytic growth of a CNT as a CZ process taking place on the nano scale. The main idea is that, during the CNT growth, each catalyst particle acts as a nano crucible to nucleate and maintain the CNT growth, and the extruding CNT rotates relative to the nano crucible, leading to a chirality-dependent growth rate. In this case, the structural quality gradually changes along the CNT due to the dynamic generation-reconstruction-diffusion of defects during the CNT growth. The nano CZ mechanism may also apply to the catalytic growth of many other one-dimensional (1D) nanostructures (including various nanotubes and nanowires), thus further efforts will be stimulated in the quality and property control, as well as application explorations of these 1D nanomaterials. PMID:22747835

  2. Photovoltaic investigation of minority carrier lifetime in the heavily-doped emitter layer of silicon junction solar cell

    NASA Technical Reports Server (NTRS)

    Ho, C.-T.

    1982-01-01

    The results of experiments on the recombination lifetime in a phosphorus diffused N(+) layer of a silicon solar cell are reported. The cells studied comprised three groups of Czochralski grown crystals: boron doped to one ohm-cm, boron doped to 6 ohm-cm, and aluminum doped to one ohm-cm, all with a shunt resistance exceeding 500 kilo-ohms. The characteristic bulk diffusion length of a cell sample was determined from the short circuit current response to light at a wavelength of one micron. The recombination rates were obtained by measurement of the open circuit voltage as a function of the photogeneration rate. The recombination rate was found to be dependent on the photoinjection level, and is positive-field controlled at low photoinjection, positive-field influence Auger recombination at a medium photoinjection level, and negative-field controlled Auger recombination at a high photoinjection level.

  3. A Two-Dimensional Photonic Crystal Slab Mirror with Silicon on Insulator for Wavelength 1.3 μm

    NASA Astrophysics Data System (ADS)

    Tang, Hai-Xia; Zuo, Yu-Hua; Yu, Jin-Zhong; Wang, Qi-Ming

    2006-10-01

    A concrete two-dimensional photonic crystal slab with triangular lattice used as a mirror for the light at wavelength 1.3 μm with a silicon-on-insulator (SOI) substrate is designed by the three-dimensional plane wave expansion method. For TE-like modes, the bandgap in the Γ-K direction is from 1087 nm to 1559 nm. The central wavelength in the bandgap is about 1.3 μm, hence the incident light at wavelength 1.3 μm will be strongly reflected. Experimentally, such a photonic crystal slab is fabricated on an SOI substrate by the combination of EBL and ICP etching. The measurement of its transmission characteristics shows the bandgap edge in a longer wavelength is about 1540 nm. The little discrepancy between the experimental data and the theoretical values is mainly due to the size discrepancy of the fabricated air holes.

  4. Performance of a monolithic LaBr3:Ce crystal coupled to an array of silicon photomultipliers

    NASA Astrophysics Data System (ADS)

    Ulyanov, Alexei; Morris, Oran; Hanlon, Lorraine; McBreen, Sheila; Foley, Suzanne; Roberts, Oliver J.; Tobin, Isaac; Murphy, David; Wade, Colin; Nelms, Nick; Shortt, Brian; Slavicek, Tomas; Granja, Carlos; Solar, Michael

    2016-02-01

    A gamma-ray detector composed of a single 28×28×20 mm3 LaBr3:Ce crystal coupled to a custom built 4×4 array of silicon photomultipliers was tested over an energy range of 30 keV to 9.3 MeV. The silicon photomultipliers were initially calibrated using 20 ns light pulses generated by a light emitting diode. The photodetector responses measured as a function of the number of incident photons were found to be non-linear and consistent with model predictions. Using corrections for the non-linearity of the silicon photomultipliers, the detector showed a linear response to gamma-rays with energies from 100 keV to the maximum available energy of 9.3 MeV. The energy resolution was found to be 4% FWHM at 662 keV. Despite the large thickness of the scintillator (20 mm) and a 5 mm thick optical window, the detector was capable of measuring the positions of the gamma-ray interaction points. The position resolution was measured at 356 keV and was found to be 8 mm FWHM in the detector plane and 11 mm FWHM for the depth of interaction. The detector can be used as a building block of a larger calorimeter system that is capable of measuring gamma-ray energies up to tens of MeV.

  5. Single crystal silicon filaments fabricated in SOI: A potential IR source for a microfabricated photometric CO2 sensor

    NASA Technical Reports Server (NTRS)

    Tu, Juliana; Smith, Rosemary L.

    1995-01-01

    The objective of this project was to design, fabricate, and test single crystal silicon filaments as potential black body IR sources for a spectrophotometric CO2 sensing microsystem. The design and fabrication of the silicon-on-insulator (SOI) filaments are summarized and figures showing the composite layout of the filament die (which contains four filaments of different lengths -- 500 microns, 1 mm, 1.5 mm and 2 mm -- and equal widths of 15 microns) are presented. The composite includes four mask layers: (1) silicon - defines the filament dimensions and contact pads; (2) release pit - defines the oxide removed from under the filament and hence, the length of the released filament; (3) Pyrex pit - defines the pit etched in the Pyrex cap (not used); and (4) metal - defines a metal pattern on the contact pads or used as a contact hole etch. I/V characteristics testing of the fabricated SOI filaments is described along with the nitride-coating procedures carried out to prevent oxidation and resistance instability.

  6. Testing a new generation 512 x 512, >200 Hz capable, liquid crystal on silicon (LCoS) with ferro-electric liquid crystal, IR scene projector

    NASA Astrophysics Data System (ADS)

    Lippert, Jack R.; Bauchert, Kipp

    2006-05-01

    A Liquid Crystal on Silicon (LCoS) Spatial Light Modulator device was fabricated into an IR Scene Projector Concept Demonstrator for MWIR Hardware-in-the-loop Testing. Presently on-going in-house efforts are establishing performance benchmarks that rival many of the capabilities of the alternative, and presently the high end performance standard device, the suspended-bridge resistor array. New adaptations, like incorporating Ferro-electric Liquid Crystal (FELC) can achieve improved IR performance values breaking through the "slow" settling time limit exhibited by earlier Liquid Crystal based systems. In fact, specific parameters may even exceed some of the resistor array parameter's performance values (such as apparent thermal rise time allowing an overall faster frame rate). In addition, the relatively simple CMOS fabrication for the basic chip and ease of system "customization" allows system fabrication cost to be more on the order of the economical low end performance Digital Mirror Devices for the Infrared waveband; but still keeps the analog controlled thermal gradient in a single switch time to accommodate fast integrating sensors of modern seeker systems. Our research is using a 512x512 array originally intended for visible applications, but tailored for the MWIR operational regime. A new CMOS fabrication run to incorporate additional features and achieve further performance benefits is planned, but the existing product capability is adequate for most HIL simulation requirements. The measured performance of our in-house prototype device using FELC will be discussed.

  7. Multiple batch recharging for industrial CZ silicon growth

    NASA Astrophysics Data System (ADS)

    Fickett, B.; Mihalik, G.

    2001-05-01

    The Czochralski (CZ) crystal growth process used in the Siemens Solar Industries’ (SSI) Vancouver, WA facility was non-continuous. Each furnace run's production was limited by the size of the starting charge. Once the charge was depleted, the furnace was shut down, cooled, and set back up for the next run. A recharge system was developed which transforms standard CZ growth into a semi-continuous process. Now when the charge is depleted, the crucible can be refilled in situ as the grown ingot is being removed from the furnace. SSI has demonstrated up to 14 recharge cycles in a single run. The resulting benefits included: significant cost reduction, increased yield, increased throughput, reduced energy consumption, improved process capability, reduced material handling requirements, and reduced labor. The recharge system also enables the use of granular silicon, which requires less than 30% of the energy required when manufacturing silicon-starting materials. This significantly reduces the energy “pay-back” time associated with SSI's finished product, photovoltaic panels.

  8. Direct detection of transcription factors in cotyledons during seedling development using sensitive silicon-substrate photonic crystal protein arrays.

    PubMed

    Jones, Sarah I; Tan, Yafang; Shamimuzzaman, Md; George, Sherine; Cunningham, Brian T; Vodkin, Lila

    2015-03-01

    Transcription factors control important gene networks, altering the expression of a wide variety of genes, including those of agronomic importance, despite often being expressed at low levels. Detecting transcription factor proteins is difficult, because current high-throughput methods may not be sensitive enough. One-dimensional, silicon-substrate photonic crystal (PC) arrays provide an alternative substrate for printing multiplexed protein microarrays that have greater sensitivity through an increased signal-to-noise ratio of the fluorescent signal compared with performing the same assay upon a traditional aminosilanized glass surface. As a model system to test proof of concept of the silicon-substrate PC arrays to directly detect rare proteins in crude plant extracts, we selected representatives of four different transcription factor families (zinc finger GATA, basic helix-loop-helix, BTF3/NAC [for basic transcription factor of the NAC family], and YABBY) that have increasing transcript levels during the stages of seedling cotyledon development. Antibodies to synthetic peptides representing the transcription factors were printed on both glass slides and silicon-substrate PC slides along with antibodies to abundant cotyledon proteins, seed lectin, and Kunitz trypsin inhibitor. The silicon-substrate PC arrays proved more sensitive than those performed on glass slides, detecting rare proteins that were below background on the glass slides. The zinc finger transcription factor was detected on the PC arrays in crude extracts of all stages of the seedling cotyledons, whereas YABBY seemed to be at the lower limit of their sensitivity. Interestingly, the basic helix-loop-helix and NAC proteins showed developmental profiles consistent with their transcript patterns, indicating proof of concept for detecting these low-abundance proteins in crude extracts. PMID:25635113

  9. Buried oxide layer in silicon

    DOEpatents

    Sadana, Devendra Kumar; Holland, Orin Wayne

    2001-01-01

    A process for forming Silicon-On-Insulator is described incorporating the steps of ion implantation of oxygen into a silicon substrate at elevated temperature, ion implanting oxygen at a temperature below 200.degree. C. at a lower dose to form an amorphous silicon layer, and annealing steps to form a mixture of defective single crystal silicon and polycrystalline silicon or polycrystalline silicon alone and then silicon oxide from the amorphous silicon layer to form a continuous silicon oxide layer below the surface of the silicon substrate to provide an isolated superficial layer of silicon. The invention overcomes the problem of buried isolated islands of silicon oxide forming a discontinuous buried oxide layer.

  10. Comparative analysis on surface property in anodic oxidation polishing of reaction-sintered silicon carbide and single-crystal 4H silicon carbide

    NASA Astrophysics Data System (ADS)

    Shen, Xinmin; Tu, Qunzhang; Deng, Hui; Jiang, Guoliang; He, Xiaohui; Liu, Bin; Yamamura, Kazuya

    2016-04-01

    For effective machining of difficult-to-machine materials, such as reaction-sintered silicon carbide (RS-SiC) and single-crystal 4H silicon carbide (4H-SiC), a novel polishing technique named anodic oxidation polishing was proposed, which combined with the anodic oxidation of substrate and slurry polishing of oxide. By scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM-EDX) observation and atomic force microscopy analysis, both the anodic oxidation behaviors of RS-SiC and 4H-SiC were investigated. Through comparison of the surfaces before and after hydrofluoric acid etching of the oxidized samples by the scanning white light interferometry (SWLI) measurement, the relationships between oxidation depth and oxidation time were obtained, and the calculated oxidation rate for RS-SiC was 5.3 nm/s and that for 4H-SiC was 5.8 nm/s based on the linear Deal-Grove model. Through anodic oxidation polishing of RS-SiC substrate and 4H-SiC substrate, respectively, the surface roughness rms obtained by SWLI was improved to 2.103 nm for RS-SiC and to 0.892 nm for 4H-SiC. Experimental results indicate that anodic oxidation polishing is an effective method for the machining of RS-SiC and 4H-SiC samples, which would improve the process level of SiC substrates and promote the application of SiC products in the fields of optics, ceramics, semiconductors, electronics, and so on.

  11. Crystal structure of the growth surface of silicon carbide obtained by sublimation

    SciTech Connect

    Babayants, G. I. Popenko, V. A.

    2007-03-15

    Structural study of polycrystalline silicon carbide obtained by sublimation performed via X-ray luminescence and X-ray diffraction analysis. It is shown that chemical vapor deposition of silicon carbide results in the formation of grains with the (00.1), (01.1), and (12.3) crystallographic planes parallel to the growth surface. The grains with the (00.1) growth planes are characterized by perfect structure and by red luminescence. Domains with yellow luminescence have a mosaic structure with the (01.1) and (12.3) growth planes.

  12. Metal-induced unilaterally crystallized polycrystalline silicon thin-film transistor technology and application to flat-panel displays

    NASA Astrophysics Data System (ADS)

    Meng, Zhiguo

    High quality flat-panel displays (FPD) typically use active-matrix (AM) addressing, with the optical state of each pixel controlled by one or more active devices such as amorphous silicon (a-Si) thin film transistors (TFT). The successful examples are portable computer and liquid-crystal television (LC-TV). A high level of system on panel (SoP) electronic integration is required for versatile and compact systems. Meanwhile, many self-emitting display technologies are developing fast, active matrix for self-emitting display is typically current driven. The a-Si TFTs suffer from limited current driving capability, polycrystalline silicon (poly-Si) device technology is required. A new technology employing metal-induced unilaterally crystallization (MIUC) is presently reported. The device characteristics are obviously better than those in rapid-thermal annealed (RTA) and solid-phase crystallization (SPC) TFTs and the fabrication equipment is much cheaper than excimer laser crystallization (ELC) technology. The field effect mobility (muFE) of p- and n-channel MIUC TFTs is about 100cm2/Vs. Ion/I off is more than seven orders. Gate-induced leakage current in LT-MIUC poly-Si TFTs has been reduced by crystallization before heavy junction implantation to improve material quality and incorporating a gate-modulated lightly-doped drain (gamo-LDD) structure to reduce the electric field near the drain/channel junction region. At the same time, recrystallized (RC) MIUC TFT was researched with device characteristics improved. The 6.6cm 120 x 160 active matrix for OLED display is fabricated using LT-MIUC TFT technology on glass substrate. This display has the advantages of self-emitting, large intrinsic view angle and very fast response. At the same time, 6.6cm 120X160 AM-reflective twist nematic (RTN) display is fabricated using RC-MIUC TFT technology. This display is capable of producing 16 grade levels, 10:1 contrast and video image. The SOP display for AM-OLED were designed

  13. Far-infrared transmission of diamond structure semiconductor single crystals--silicon and germanium

    NASA Astrophysics Data System (ADS)

    Peters, Jason E.; Ownby, P. D.

    1999-11-01

    The current research demonstrates the effectiveness of silicon as a transmissive material for use within the far infrared wavelength range of 20 to 160 microns. This study involves samples with a wide range of resistivities and temperatures including: n-type Si of 4000, 2000, 160, 65, 12, and 2.6 ohm-cm and p-type Si of 500 and 60 ohm-cm within a temperature range of -100 degree(s)C to 250 degree(s)C, as well as n-type Ge of 39, 25, 14.5, 5.0, 2.5, and 0.5 ohm-cm within a temperature range of -100 degree(s)C to 100 degree(s)C. Far infrared absorption mechanisms are briefly discussed. The experimental transmission data are used to discuss the interaction between absorption by lattice resonance and free carrier mechanisms. The effect of room temperature resistivity on silicon's far infrared transmission characteristics is shown. The primary free carrier scattering mechanism, at elevated temperature, is shown to be acoustic phonons. Highly resistive silicon is found to be an excellent transmissive material in the far infrared. These results may be used to develop silicon and germanium optical systems in the far infrared range.

  14. Titanium in silicon: Lattice positions and electronic properties

    NASA Astrophysics Data System (ADS)

    Markevich, V. P.; Leonard, S.; Peaker, A. R.; Hamilton, B.; Marinopoulos, A. G.; Coutinho, J.

    2014-04-01

    Secondary ion mass spectroscopy (SIMS) and deep level transient spectroscopy measurements were carried out on Czochralski (Cz)- and float-zone-grown (FZ) Si crystals, which were implanted with Ti ions and annealed in the temperature range 600-900 °C. The electrical behavior of Ti atoms is found to be different in Cz- and FZ-Si annealed at 650 °C, although the Ti SIMS profiles are similar. It is argued that interstitial Ti atoms (Tii) in FZ-Si crystals interact with implantation-induced vacancies and take a substitutional position (Tis). No energy levels which can be assigned to Tis have been detected in this work or in previous experimental literature. However, previous calculations suggest that Tis is a deep acceptor in Si. We show from density functional calculations that by taking proper account of interactions within the d-shell of the Ti impurity the electronic structure of Tis has no levels in the band gap. The calculations show that Tii is more energetically favorable than Tis and that Tii binds more strongly to the silicon vacancy than interstitial oxygen does, explaining the observed differences between FZ- and Cz-irradiated materials.

  15. Technology Development for High-Efficiency Solar Cells and Modules Using Thin (<80 um) Single-Crystal Silicon Wafers Produced by Epitaxy: June 11, 2011 - April 30, 2013

    SciTech Connect

    Ravi, T. S.

    2013-05-01

    Final technical progress report of Crystal Solar subcontract NEU-31-40054-01. The objective of this 18-month program was to demonstrate the viability of high-efficiency thin (less than 80 um) monocrystalline silicon (Si) solar cells and modules with a low-cost epitaxial growth process.

  16. Study of anticlastic deformation in a silicon crystal for channeling experiments

    SciTech Connect

    Guidi, V.; Mazzolari, A.; Lanzoni, L.

    2010-06-15

    Anticlastic deformation (AD) is an established mechanical property of isotropic solid bodies, which has been recently used to steer particle beams through channeling in Si crystals. An analysis of AD in an anisotropic material, such as Si, has been worked out with particular emphasis to the cases used in channeling experiments. Both a theoretical model and finite element simulations were developed and compared to experimental data achieved by optical profilometry on bent Si crystals. A quantifier of the extent of AD, namely the ratio between primary and secondary curvature radii, has been found to be orientation dependent and determined analytically. The realistic case of crystal bending by a mechanical holder has been studied for applications. We addressed the case of the holder with a crystal at the energy currently under operation in the CERN super proton synchrotron and its possible extension to higher energy cases such as for the large hadron collider. Anisotropy-driven torsion of the crystal was investigated, determining a limitation to the portion of the crystal suitable for channeling. The geometry of the jaws clamping the crystal was considered too.

  17. High purity, low dislocation GaAs single crystals

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Holmes, D. E.; Kirkpatrick, C. G.

    1983-01-01

    Liquid encapsulated Czochralski crystal growth techniques for producing undoped, high resistivity, low dislocation material suitable for device applications is described. Technique development resulted in reduction of dislocation densities in 3 inch GaAs crystals. Control over the melt stoichiometry was determined to be of critical importance for the reduction of twinning and polycrystallinity during growth.

  18. Performance of cryogenically cooled, high-heat-load silicon crystal monochromators with porous media augmentation

    SciTech Connect

    Rogers, C.S.; Mills, D.M.; Assoufid, L.; Graber, T.

    1996-09-01

    The performance of two Si crystal x-ray monochromators internally cooled with liquid nitrogen was tested on the F2-wiggler beamline at the Cornell High Energy Synchrotron Source (CHESS). Both crystals were (111)-oriented blocks of rectangular cross section having identical dimensions. Seven 6.4-mm-diameter coolant channels were drilled through the crystals along the beam direction. In one of the crystals, porous Cu mesh inserts were bonded into the channels to enhance the heat transfer. The channels of the second crystal were left as drilled. Symmetric, double-crystal rocking curves were recorded simultaneously for both the first and third order reflections at 8 and 24 keV. The power load on the cooled crystal was adjusted by varying the horizontal beam size using slits. The measured Si(333) rocking curve of the unenhanced crystal at 24 keV at low power was 1.9 arcsec FWHM. The theoretical width is 0.63 arcsec. The difference is due to residual fabrication and mounting strain. For a maximum incident power of 601 W and an average power density of about 10 W/mm{sup 2}, the rocking curve was 2.7 arcsec. The rocking curve width for the enhanced crystal at low power was 2.4 arcsec. At a maximum incident power of 1803 W and an average power density of about 19 W/mm{sup 2}, the rocking curve width was 2.2 arcsec FWHM. The use of porous mesh augmentation is a simple, but very effective, means to improve the performance of cryogenically cooled Si monochromators exposed to high power x-ray beams. {copyright} {ital 1996 American Institute of Physics.}

  19. Creating standard resistors based on germanium and silicon single crystals grown under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Kartavykh, A. V.; Rakov, V. V.

    2006-11-01

    Requirements on the creation of standard resistors (SRs), which are necessary for the calibration of microprobe complexes used for the diagnostics of electrical homogeneity of single crystal semiconductors, are considered. SR prototypes have been created based on Sb-doped Ge single crystals grown by float zone melting under microgravity conditions aboard the Photon series satellites, in which the inhomogeneity of the resistivity distribution does not exceed 1%. The main factors influencing the homogeneity of doping for Ge and Si crystals grown from melt under orbital flight conditions are formulated; methods for the optimization of this technological process are described.

  20. Analysis of an electro-optic modulator based on a graphene-silicon hybrid 1D photonic crystal nanobeam cavity.

    PubMed

    Pan, Ting; Qiu, Ciyuan; Wu, Jiayang; Jiang, Xinhong; Liu, Boyu; Yang, Yuxing; Zhou, Huanying; Soref, Richard; Su, Yikai

    2015-09-01

    We propose and numerically study an on-chip graphene-silicon hybrid electro-optic (EO) modulator operating at the telecommunication band, which is implemented by a compact 1D photonic crystal nanobeam (PCN) cavity coupled to a bus waveguide with a graphene sheet on top. Through electrically tuning the Fermi level of the graphene, both the quality factor and the resonance wavelength can be significantly changed, thus the in-plane lightwave can be efficiently modulated. Based on finite-difference time-domain (FDTD) simulation results, the proposed modulator can provide a large free spectral range (FSR) of 125.6 nm, a high modulation speed of 133 GHz, and a large modulation depth of ~12.5 dB in a small modal volume, promising a high performance EO modulator for wavelength-division multiplexed (WDM) optical communication systems.

  1. Experimental demonstration of ultracompact air hole photonic crystal ring resonator fabricated on silicon-on-insulator wafer.

    PubMed

    Ren, Xiaoyuan; Feng, Lishuang; Lin, Zhili; Feng, Junbo

    2013-05-01

    A photonic crystal ring resonator (PCRR) of air hole arrays is fabricated on a silicon-on-insulator wafer by using electron-beam lithography and inductively coupled plasma etching. The designed PCRR is modeled and its performance is simulated by the two-dimensional finite difference time domain method. The simulation results show that the PCRR has two resonant wavelengths, 1598 and 1606 nm, and their corresponding quality factors are 3994 and 4015, respectively. A sample of the PCRR structure is fabricated and tested by the established experimental setup. Compared with the simulation results, the experimental resonant wavelengths drift to some extent and the quality factors are reduced by about one order of magnitude. The fabrication error and irregularity are the main reasons for the above results, which can be further reduced by improving the process technology. In addition, one more resonant wavelength emerged for the PCRR sample, which can be attributed to the change of the coupling strength. PMID:23632503

  2. Observation of optical second-harmonic generation in porous-silicon-based photonic crystals in the Laue diffraction scheme

    NASA Astrophysics Data System (ADS)

    Kopylov, D. A.; Svyakhovskiy, S. E.; Dergacheva, L. V.; Bushuev, V. A.; Mantsyzov, B. I.; Murzina, T. V.

    2016-05-01

    Second-harmonic generation (SHG) in the Laue scheme of the dynamical Bragg diffraction in one-dimensional photonic crystal (PhC) is studied. The experiments are performed for partially annealed porous-silicon PhC containing 250 periods of the structure. Our measurements confirm that the phase-matched optical SHG is observed under the Bragg conditions, which is evidenced by a narrow angular and spectral distribution of the diffracted SHG outgoing the PhC. This is confirmed by both the analytical description of the SHG process performed in the two-wave approximation, and by direct calculations of the PhC dispersion curves for the fundamental and SHG wavelengths by the revised plane wave method. Possible types of phase- and quasi-phase-matching realized in the studied PhC under the Laue diffraction scheme are discussed.

  3. Demonstration of channelized tunable optical dispersion compensator based on arrayed-waveguide grating and liquid crystal on silicon.

    PubMed

    Seno, Kazunori; Suzuki, Kenya; Ooba, Naoki; Watanabe, Kei; Ishii, Motohaya; Ono, Hirotaka; Mino, Shinji

    2010-08-30

    We propose and demonstrate a multi-channel tunable optical dispersion compensator (TODC) that consists of an arrayed-waveguide grating (AWG) and liquid crystal on silicon (LCOS). By utilizing the AWG with a large angular dispersion and the LCOS with a flexible phase setting, we can construct a compact and flexible TODC that has a wide tuning range of chromatic dispersion. We confirmed experimentally that the TODC could realize channel-by-channel CD compensation for six WDM channels with a ± 800 ps/nm range and a 3 dB bandwidth of 24 GHz. We believe that the multi-channel operation of this TODC will help to reduce the cost and power consumption of high-speed optical transmission systems. PMID:20940749

  4. Quasi-periodic Fibonacci and periodic one-dimensional hypersonic phononic crystals of porous silicon: Experiment and simulation

    SciTech Connect

    Aliev, Gazi N. Goller, Bernhard

    2014-09-07

    A one-dimensional Fibonacci phononic crystal and a distributed Bragg reflector were constructed from porous silicon. The structures had the same number of layers and similar acoustic impedance mismatch, and were electrochemically etched in highly boron doped silicon wafers. The thickness of the individual layers in the stacks was approximately 2 μm. Both types of hypersonic band gap structure were studied by direct measurement of the transmittance of longitudinal acoustic waves in the 0.1–2.6 GHz range. Acoustic band gaps deeper than 50 dB were detected in both structures. The experimental results were compared with model calculations employing the transfer matrix method. The acoustic properties of periodic and quasi-periodic structures in which half-wave retarding bi-layers do not consist of two quarter-wave retarding layers are discussed. The strong correlation between width and depth of gaps in the transmission spectra is demonstrated. The dominant mechanisms of acoustic losses in porous multilayer structures are discussed. The elastic constants remain proportional over our range of porosity, and hence, the Grüneisen parameter is constant. This simplifies the expression for the porosity dependence of the Akhiezer damping.

  5. In situ characterization of formation and growth of high-pressure phases in single-crystal silicon during nanoindentation

    NASA Astrophysics Data System (ADS)

    Huang, Hu; Yan, Jiwang

    2016-04-01

    Pressure-induced intermediate phases of silicon exhibit unique characteristics in mechanics, chemistry, optics, and electrics. Clarifying the formation and growth processes of these new phases is essential for the preparation and application of them. For in situ characterization of the formation and growth of high-pressure phases in single-crystal silicon, a quantitative parameter, namely displacement change of indenter (Δ h) during the unloading holding process in nanoindentation, was proposed. Nanoindentation experiments under various unloading holding loads and loading/unloading rates were performed to investigate their effects on Δ h. Results indicate that Δ h varies significantly before and after the occurrence of pop-out; for the same maximum indentation load, it tends to increase with the decrease in the holding load and to increase with the increase in the loading/unloading rate. Thus, the value of Δ h can be regarded as an indicator that reflects the formation and growth processes of the high-pressure phases. Using Δ h, the initial position for the nucleation of the high-pressure phases, their growth, and their correlation to the loading/unloading rate were predictable.

  6. X-ray photoelectron spectroscopy analysis of boron defects in silicon crystal: A first-principles study

    NASA Astrophysics Data System (ADS)

    Yamauchi, Jun; Yoshimoto, Yoshihide; Suwa, Yuji

    2016-05-01

    We carried out a comprehensive study on the B 1s core-level X-ray photoelectron spectroscopy (XPS) binding energies and formation energies for boron defects in crystalline silicon by first-principles calculation with careful evaluation of the local potential boundary condition for the model system using the supercell corresponding to 1000 Si atoms. It is reconfirmed that the cubo-octahedral B12 cluster in silicon crystal is unstable and exists at the saddle point decaying to the icosahedral and S4 B12 clusters. The electrically active clusters without any postannealing of ion-implanted Si are identified as icosahedral B12 clusters. The experimentally proposed threefold coordinated B is also identified as a ⟨ 001 ⟩ B - Si defect. For an as-doped sample prepared by plasma doping, the calculated XPS spectra for complexes consisting of vacancies and substitutional B atoms are consistent with the experimental spectra. It is proposed that, assuming that the XPS peak at 187.1 eV is due to substitutional B (Bs), the experimental XPS peaks at 187.9 and 186.7 eV correspond to interstitial B at the H-site and ⟨ 001 ⟩ B - Si defects, respectively. In the annealed samples, the complex of Bs and interstitial Si near the T-site is proposed as a candidate for the experimental XPS peak at 188.3 eV.

  7. Crystal orientation dependence of femtosecond laser-induced periodic surface structure on (100) silicon.

    PubMed

    Jiang, Lan; Han, Weina; Li, Xiaowei; Wang, Qingsong; Meng, Fantong; Lu, Yongfeng

    2014-06-01

    It is widely believed that laser-induced periodic surface structures (LIPSS) are independent of material crystal structures. This Letter reports an abnormal phenomenon of strong dependence of the anisotropic formation of periodic ripples on crystal orientation, when Si (100) is processed by a linearly polarized femtosecond laser (800 nm, 50 fs, 1 kHz). LIPSS formation sensitivity with a π/2 modulation is found along different crystal orientations with a quasi-cosinusoid function when the angle between the crystal orientation and polarization direction is changed from 0° to 180°. Our experiments indicate that it is much easier (or more difficult) to form ripple structures when the polarization direction is aligned with the lattice axis [011]/[011¯] (or [001]). The modulated nonlinear ionization rate along different crystal orientations, which arises from the direction dependence of the effective mass of the electron is proposed to interpret the unexpected anisotropic LIPSS formation phenomenon. Also, we demonstrate that the abnormal phenomenon can be applied to control the continuity of scanned ripple lines along different crystal orientations.

  8. Furnace and support equipment for space processing. [space manufacturing - Czochralski method

    NASA Technical Reports Server (NTRS)

    Mazelsky, R.; Duncan, C. S.; Seidensticker, R. G.; Johnson, R. A.; Hopkins, R. H.; Roland, G. W.

    1975-01-01

    A core facility capable of performing a majority of materials processing experiments is discussed. Experiment classes are described, the needs peculiar to each experiment type are outlined, and projected facility requirements to perform the experiments are treated. Control equipment (automatic control) and variations of the Czochralski method for use in space are discussed.

  9. Theoretical investigation of the phonon-polariton mode in Czochralski-grown piezoelectric superlattice

    NASA Astrophysics Data System (ADS)

    Bai, Wen-Chao; Lan, Zhong-Jian; Zhang, Han-Zhuang; Zhang, Han; Jiang, Li

    2016-09-01

    The properties of phonon-polaritons in Czochralski-grown piezoelectric superlattice (CPSL), are studied theoretically. We propose the phonon-polariton mode of CPSL. The mechanism for polariton coupling is analyzed. We discuss the factors that influence the properties of the phonon-polariton. Some potential applications are also discussed.

  10. A study of beryllium and beryllium-lithium complexes in single crystal silicon

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.; Robertson, J. B.; Gilmer, T. E., Jr.

    1972-01-01

    When beryllium is thermally diffused into silicon, it gives rise to acceptor levels 191 MeV and 145 meV above the valence band. Quenching and annealing studies indicate that the 145-MeV level is due to a more complex beryllium configuration than the 191-MeV level. When lithium is thermally diffused into a beryllium-doped silicon sample, it produces two acceptor levels at 106 MeV and 81 MeV. Quenching and annealing studies indicate that these levels are due to lithium forming a complex with the defects responsible for the 191-MeV and 145-MeV beryllium levels, respectively. Electrical measurements imply that the lithium impurity ions are physically close to the beryllium impurity atoms. The ground state of the 106-MeV beryllium level is split into two levels, presumably by internal strains. Tentative models are proposed.

  11. Study of beryllium and beryllium-lithium complexes in single-crystal silicon.

    NASA Technical Reports Server (NTRS)

    Crouch, R. K.; Robertson, J. B.; Gilmer, T. E., Jr.

    1972-01-01

    When beryllium is thermally diffused into silicon, it gives rise to acceptor levels 191 and 145 meV above the valence band. Quenching and annealing studies indicate that the 145-meV level is due to a more complex beryllium configuration than the 191-meV level. When lithium is thermally diffused into a beryllium-doped silicon sample, it produces two new acceptor levels at 106 and 81 meV. Quenching and annealing studies indicate that these new levels are due to lithium forming a complex with the defects responsible for the 191- and 145-meV beryllium levels, respectively. Electrical measurements imply that the lithium impurity ions are physically close to the beryllium impurity atoms. The ground state of the 106-meV beryllium-lithium level is split into two levels, presumably by internal strains. Tentative models are proposed to explain these results.

  12. Anisotropic friction, deformation, and fracture of single-crystal silicon carbide at room temperature

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1979-01-01

    Anisotropic friction, deformation, and fracture studies were conducted with /0001/, /10(-1)0/, and /11(-2)0/ silicon carbide surfaces in sliding contact with diamond. The experiments were conducted with loads of 0.1, 0.2, and 0.3 N at a sliding velocity of 3 mm/min in mineral oil or in dry argon at room temperature. The 1010 direction on the basal /0001/ plane exhibits the lowest coefficient of friction and the greatest resistance to abrasion for silicon carbide. Anisotropic friction and deformation of the /0001/, /10(-1)0/, and /11(-2)0/ silicon carbide surfaces are primarily controlled by the slip system /10(-1)0/ 11(-2)0. The anisotropic fracture during sliding on the basal plane is due to surface cracking along /10(-1)0/ and subsurface cracking along /0001/. The fracture during sliding on the /11(-2)0/ or /10(-1)0/ surfaces is due to surface cracking along /0001/ and /11(-2)0/ or /10(-1)-1 and to subsurface cracking along /10(-1)0/.

  13. Observation of high deflection efficiency and narrow energy loss distributions for 450 GeV protons channeled in a bent silicon crystal

    NASA Astrophysics Data System (ADS)

    Møller, S. P.; Worm, T.; Clément, M.; Doble, N.; Elsener, K.; Gatignon, L.; Grafström, P.; Uggerhøj, E.; Hage-Ali, M.; Siffert, P.

    1994-03-01

    A 450 GeV proton beam has been deflected by various angles from 1 to 11 mrad using planar channeling in a (111) silicon crystal which was mechanically bent to achieve the desired beam deflection. High deflection efficiencies of up to 50% have been measured, in good agreement with present theoretical estimates. It is shown that bent crystals are also a unique tool for measurements of energy loss and straggling of channeled particles, without any influence from random particles: Selecting protons which are deflected by increasing angles corresponds to decreasing the transverse energy at the crystal entrance. With this technique energy loss and straggling was measured for protons channeled in the wide and narrow (111) planes in silicon for the first time.

  14. Higher order parametric x-ray spectra in mosaic graphite and single silicon crystals

    SciTech Connect

    Fiorito, R.B.; Rule, D.W.; Maruyama, X.K.

    1993-12-31

    We have observed up to eight orders (n) in the spectra of parametric x-radiation, in the range 5-40 keV, produced by interaction of a 90-MeV electron beam with mosaic graphite and 90 and 35 MeV beams with single Si crystals, Measured yields and intensity ratios, I(n{ge}2)/I(n=1), in graphite are not in agreement with PXR theory for mosaic crystals. In comparison, yield and ratios of intensities in Si are close to preductions for perfect crystals. Bandwidths of spectral lines measured in both Si and graphite are in good agreement with theory and are determined by the angular field of view of the detector.

  15. Optical bistability in a silicon nitride microring resonator with azo dye-doped liquid crystal as cladding material.

    PubMed

    Wang, Chun-Ta; Tseng, Chih-Wei; Yu, Jui-Hao; Li, Yuan-Cheng; Lee, Chun-Hong; Jau, Hung-Chang; Lee, Ming-Chang; Chen, Yung-Jui; Lin, Tsung-Hsien

    2013-05-01

    This investigation reports observations of optical bistability in a silicon nitride (SiN) micro-ring resonator with azo dye-doped liquid crystal cladding. The refractive index of the cladding can be changed by switching the liquid crystal between nematic (NLC) and photo-induced isotropic (PHI) states by. Both the NLC and the PHI states can be maintained for many hours, and can be rapidly switched from one state to the other by photo-induced isomerization using 532 nm and 408 nm addressing light, respectively. The proposed device exhibits optical bistable switching of the resonance wavelength without sustained use of a power source. It has a 1.9 nm maximum spectral shift with a Q-factor of over 10000. The hybrid SiN- LC micro-ring resonator possesses easy switching, long memory, and low power consumption. It therefore has the potential to be used in signal processing elements and switching elements in optically integrated circuits. PMID:23669955

  16. CMOS VLSI pilot and support chip for a liquid crystal on silicon 8x8 optical cross connect

    NASA Astrophysics Data System (ADS)

    Lelah, Alan; Vinouze, Bruno; Martel, Gilbert; Perez-Segovia, Tomas; Geoffroy, Philippe; Laval, Jean-Paul; Jayet, Philippe; Senn, Patrice; Gravey, Philippe; Wolffer, Nicole; Lever, Roger; Tan, Antione

    2001-12-01

    With the explosion of Internet and multi-service traffic, telecommunication transport networks today are turning to Wavelength Division Multiplexing. Optical cross-connects (OXCs) allow flexible rerouting of wavelength channels. It has been shown that 2-D free-space beam deflection by nematic liquid crystal gratings provide a good solution for the realization of optical switches in OXCs. Operating in the telecom 1.5 micrometers wavelength region they serve as an active holographic element. Liquid Crystal on Silicon (LCOS) combined with VLSI technologies allow the fabrication of large capacity, low cost and low consumption compact free-space switches. An N X N optical switch can be built by cascading two LCOS-based spatial light modulators (SLMs). The first part of the paper describes a circuit that provides the physical support as well as piloting circuitry for such SLMs. It is capable of piloting beams from a linear array of 8 incoming fibers towards a similar array of 8 outgoing fibers. The electrode command voltages are analog while the external interface as well as on-chip memory is digital. The chip has been implemented in a CMOS 0.5 (mu) process with 600,000 transistors while die size is 320 mm2 (80 mm2 active area).

  17. Aluminum Nitride-Silicon Carbide Alloy Crystals Grown on SiC Substrates by Sublimation

    SciTech Connect

    Gu, Z; Du, Li; Edgar, J H; Payzant, E Andrew; Walker, Larry R; Liu, R; Engelhard, M H

    2005-01-01

    AlN-SiC alloy crystals, with a thickness greater than 500μm, were grown on 4H- and 6H-SiC substrates from a mixture of AlN and SiC powders by the sublimation-recondensation method at 1860-1990 C. On-axis SiC substrates produced a rough surface covered with hexagonal grains, while 6H- and 4H- off-axis SiC substrates with different miscut angles (8 or 3.68 ) formed a relatively smooth surface with terraces and steps. The substrate misorientation ensured that the AlNSiC alloy crystals grew two dimensionally as identified by scanning electron microscopy (SEM). Xray diffraction (XRD) and transmission electron microscopy (TEM) confirmed that the AlN-SiC alloys had the wurtzite structure. Electron probe microanalysis (EPMA) and x-ray photoelectron spectroscopy (XPS) demonstrated that the resultant alloy crystals had non-stoichiometric ratios of Al:N and Si:C and a uniform composition throughout the alloy crystal from the interface to the surface. The composition ratio of Al:Si of the alloy crystals changed with the growth temperature, and differed from the original source composition, which was consistent with the results predicted by thermodynamic calculation of the solid-vapor distribution of each element. XPS detected the bonding between Si-C, Si-N, Si-O for the Si 2p spectra. The dislocation density decreased with the growth, which was lower than 10^6cm-2 at the alloy surface, more than two orders of magnitude lower compared to regions close to the crystal/substrate interface, as determined by TEM.

  18. Aluminum Nitride-Silicon Carbide Alloy Crystals Grown on SiC Substrates by Sublimation

    SciTech Connect

    Gu, Zheng; Du, L; Edgar, James H.; Payzant, Edward A.; Walker, L. R.; Liu, R.; Engelhard, Mark H.

    2005-12-20

    AlN-SiC alloy crystals, with a thickness greater than 500 m, were grown on 4H- and 6H-SiC substrates from a mixture of AlN and SiC powders by the sublimation-recondensation method at 1860-1990 C. On-axis SiC substrates produced a rough surface covered with hexagonal grains, while 6H- and 4H- off-axis SiC substrates with different miscut angles (8? or 3.68?) formed a relatively smooth surface with terraces and steps. The substrate misorientation ensured that the AlN-SiC alloy crystals grew two dimensionally as identified by scanning electron microscopy (SEM). X-ray diffraction (XRD) and transmission electron microscopy (TEM) confirmed that the AlN-SiC alloys had the wurtzite structure. Electron probe microanalysis (EPMA) and x-ray photoelectron spectroscopy (XPS) demonstrated that the resultant alloy crystals had non-stoichiometric ratios of Al:N and Si:C and a uniform composition throughout the alloy crystal from the interface to the surface. The composition ratio of Al:Si of the alloy crystals changed with the growth temperature, and differed from the original source composition, which was consistent with the results predicted by thermodynamic calculation of the solid-vapor distribution of each element. XPS detected the bonding between Si-C, Si-N, Si-O for the Si 2p spectra. The dislocation density decreased with the growth, which was lower than 106 cm-2 at the alloy surface, more than two orders of magnitude lower compared to regions close to the crystal/substrate interface, as determined by TEM.

  19. Sequential purification and crystal growth for the production of low cost silicon substrates. Annual report, 15 September 1979-14 September 1980

    SciTech Connect

    Liaw, M; D'Aragona, F S

    1980-01-01

    The objective of this program is to identify and develop low cost processing for fabricating large grain size polycrystalline silicon substrates. Metallurgical grade silicon (MG-Si) which is low cost and abundant for industrial usage was chosen as starting material. However, MG-Si cannot be used directly as substrates for solar cell fabrication for the following reasons: (1) it contains 1 to 2% metallic impurities, and (2) it is produced as irregular shapes with a fine grain structure. Various purification techniques have been reported. The techniques being studied under this program use direct methods for the purification of MG-Si. The process uses sequential steps of purification followed by crystal growth. The steps of sequential purification include: (1) leaching of MG-Si charge, (2) phase separation of non-soluble impurities from molten silicon, (3) reactive gas treatment of molten silicon, (4) liquid-liquid extraction (called slagging), and (5) impurity redistribution using ingot pulling. All the purification steps, with the exception of step (1), are performed in a consecutive manner using a crystal puller. The purified ingots will be produced in a desired ingot dimension and further recrystallization is not necessary. The theory and experimental results for each purification technique are presented. The relative effectiveness of the various steps are assessed and the most important step(s) are recommended. Finally the electrical characteristics of solar cells built on a thin epitaxial layer deposited on single pulled MG-Si substrates are discussed and compared to single crystal substrates. (WHK)

  20. Nanopattern-guided growth of single-crystal silicon on amorphous substrates and high-performance sub-100 nm thin-film transistors for three-dimensional integrated circuits

    NASA Astrophysics Data System (ADS)

    Gu, Jian

    This thesis explores how nanopatterns can be used to control the growth of single-crystal silicon on amorphous substrates at low temperature, with potential applications on flat panel liquid-crystal display and 3-dimensional (3D) integrated circuits. I first present excimer laser annealing of amorphous silicon (a-Si) nanostructures on thermally oxidized silicon wafer for controlled formation of single-crystal silicon islands. Preferential nucleation at pattern center is observed due to substrate enhanced edge heating. Single-grain silicon is obtained in a 50 nm x 100 nm rectangular pattern by super lateral growth (SLG). Narrow lines (such as 20-nm-wide) can serve as artificial heterogeneous nucleation sites during crystallization of large patterns, which could lead to the formation of single-crystal silicon islands in a controlled fashion. In addition to eximer laser annealing, NanoPAtterning and nickel-induced lateral C&barbelow;rystallization (NanoPAC) of a-Si lines is presented. Single-crystal silicon is achieved by NanoPAC. The line width of a-Si affects the grain structure of crystallized silicon lines significantly. Statistics show that single-crystal silicon is formed for all lines with width between 50 nm to 200 nm. Using in situ transmission electron microscopy (TEM), nickel-induced lateral crystallization (Ni-ILC) of a-Si inside a pattern is revealed; lithography-constrained single seeding (LISS) is proposed to explain the single-crystal formation. Intragrain line and two-dimensional defects are also studied. To test the electrical properties of NanoPAC silicon films, sub-100 nm thin-film transistors (TFTs) are fabricated using Patten-controlled crystallization of Ṯhin a-Si channel layer and H&barbelow;igh temperature (850°C) annealing, coined PaTH process. PaTH TFTs show excellent device performance over traditional solid phase crystallized (SPC) TFTs in terms of threshold voltage, threshold voltage roll-off, leakage current, subthreshold swing, on