Akachi, Toshiyuki; Shiina, Yasuyuki; Kawaguchi, Takumi; Kawagishi, Hirokazu; Morita, Tatsuya; Sugiyama, Kimio
2010-01-01
To evaluate the protective effects of fruit juices against D-galactosamine (GalN)-induced liver injury, lyophilized fruit juices (total 12 kinds) were fed to rats for 7 d, and then we evoked liver injury by injecting GalN. The juice of camu-camu (Myrciaria dubia) significantly suppressed GalN-induced liver injury when the magnitude of liver injury was assessed by plasma alanine aminotransferase and aspartate aminotransferase activities, although some other juices (acerola, dragon fruit, shekwasha, and star fruit) also tended to have suppressive effects. An active compound was isolated from camu-camu juice by solvent fractionation and silica gel column chromatography. The structure was determined to be 1-methylmalate. On the other hand, malate, 1,4-dimethylmalate, citrate, and tartrate had no significant effect on GalN-induced liver injury. It is suggested that 1-methylmalate might be a rather specific compound among organic acids and their derivatives in fruit juices in suppressing GalN-induced liver injury.
Pushpavalli, Ganesan; Veeramani, Chinnadurai; Pugalendi, Kodukkur Viswanathan
2008-01-01
D-galactosamine is a well-established hepatotoxicant that induces a diffuse type of liver injury closely resembling human viral hepatitis. D-galactosamine by its property of generating free radicals causes severe damage to the membrane and affects almost all organs of the human body. The leaves of Piper betle L., a commonly used masticatory in Asian countries, possess several biological properties. Our aim is to investigate the in vivo antioxidant potential of P. betle leaf-extract against oxidative stress induced by D-galactosamine intoxication in male albino Wistar rats. Toxicity was induced by an intraperitoneal injection of D-galactosamine, 400 mg/kg body weight (BW) for 21 days. Rats were treated with P. betle extract (200 mg/kg BW) via intragastric intubations. We assessed the activities of liver marker enzymes (aspartate amino-transferase, alanine aminotransferase, alkaline phosphatase, gamma glutamyl transpeptidase) and levels of thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides, superoxide dismutase, catalase, glutathione peroxidase, vitamin C, vitamin E, and reduced glutathione. The extract significantly improved the status of antioxidants and decreased TBARS, hydroperoxides, and liver marker enzymes when compared with the D-galactosamine treated group, demonstrating its hepatoprotective and antioxidant properties.
Yu, Lei; Zhao, Xue-Ke; Cheng, Ming-Liang; Yang, Guo-Zhen; Wang, Bi; Liu, Hua-Juan; Hu, Ya-Xin; Zhu, Li-Li; Zhang, Shuai; Xiao, Zi-Wen; Liu, Yong-Mei; Zhang, Bao-Fang; Mu, Mao
2017-05-02
Growing evidence has shown that gut microbiome is a key factor involved in liver health. Therefore, gut microbiota modulation with probiotic bacteria, such as Saccharomyces boulardii, constitutes a promising therapy for hepatosis. In this study, we aimed to investigate the protective effects of S. boulardii on D-Galactosamine-induced liver injury in mice. Liver function test and histopathological analysis both suggested that the liver injury can be effectively attenuated by S. boulardii administration. In the meantime, S. boulardii induced dramatic changes in the gut microbial composition. At the phylum level, we found that S. boulardii significantly increased in the relative abundance of Bacteroidetes, and decreased the relative abundance of Firmicutes and Proteobacteria, which may explain the hepatic protective effects of S. boulardii. Taken together, our results demonstrated that S. boulardii administration could change the gut microbiota in mice and alleviate acute liver failure, indicating a potential protective and therapeutic role of S. boulardii.
Li, Wenping; Shi, Jingshan; Papa, Fabrizio; Maggi, Filippo; Chen, Xiuping
2016-01-01
Isofuranodiene is a natural sesquiterpene rich occurring in Smyrnium olusatrum, a forgotten culinary herb which was marginalised after the domestication of the improved form of celery. Our recent data showed that isofuranodiene inhibited the proliferation and induced apoptosis in cancer cells. In this study, we investigated its protective effect on d-galactosamine/lipopolysacchride (GalN/LPS)-induced liver injury in SD rats. Oral administration of isofuranodiene (20 and 50 mg/kg) dramatically inhibited GalN/LPS-induced serum elevation of aspartate aminotransferase, alanine aminotransferase and malondialdehyde levels, and significantly ameliorated liver injury as evidenced by the histological improvement in H&E staining. Furthermore, isofuranodiene treatment significantly inhibited GalN/LPS-induced mRNA expression of IL-1β, IL-6 and inducible nitric oxide synthase in liver tissues. The results from this study showed that isofuranodiene protects GalN/LPS-induced liver injury in SD rats and suggested that it may be a potential functional food ingredient for the prevention and treatment of liver diseases.
Muntane, J; Rodriguez, F; Segado, O; Quintero, A; Lozano, J; Siendones, E; Pedraza, C; Delgado, M; O'Valle, F; Garcia, R; Montero, J; De la Mata, M; Mino, G
2000-01-01
BACKGROUND—Tumour necrosis factor α (TNF-α) and nitric oxide modulate damage in several experimental models of liver injury. We have previously shown that protection against D-galactosamine (D-GalN) induced liver injury by prostaglandin E1 (PGE1) was accompanied by an increase in TNF-α and nitrite/nitrate in serum. AIMS—The aim of the present study was to evaluate the role of TNF-α and nitric oxide during protection by PGE1 of liver damage induced by D-GalN. METHODS—Liver injury was induced in male Wistar rats by intraperitoneal injection of 1 g/kg of D-GalN. PGE1 was administered 30 minutes before D-GalN. Inducible nitric oxide synthase (iNOS) was inhibited by methylisothiourea (MT), and TNF-α concentration in serum was lowered by administration of anti-TNF-α antibodies. Liver injury was evaluated by alanine aminotransferase activity in serum, and histological examination and DNA fragmentation in liver. TNF-α and nitrite/nitrate concentrations were determined in serum. Expression of TNF-α and iNOS was also assessed in liver sections. RESULTS—PGE1 decreased liver injury and increased TNF-α and nitrite/nitrate concentrations in serum of rats treated with D-GalN. PGE1 protection was related to enhanced expression of TNF-α and iNOS in hepatocytes. Administration of anti-TNF-α antibodies or MT blocked the protection by PGE1 of liver injury induced by D-GalN. CONCLUSIONS—This study suggests that prior administration of PGE1 to D-GalN treated animals enhanced expression of TNF-α and iNOS in hepatocytes, and that this was causally related to protection by PGE1 against D-GalN induced liver injury. Keywords: tumour necrosis factor α; nitric oxide; prostaglandin E1; methylisothiourea; D-galactosamine; liver injury PMID:10986217
Pan, Chen-wei; Pan, Zhen-zhen; Hu, Jian-jian; Chen, Wei-lai; Zhou, Guang-yao; Lin, Wei; Jin, Ling-xiang; Xu, Chang-long
2016-01-05
Mangiferin, a glucosylxanthone from Mangifera indica, has been reported to have anti-inflammatory effects. However, the protective effects and mechanisms of mangiferin on liver injury remain unclear. This study aimed to determine the protective effects and mechanisms of mangiferin on lipopolysaccharide (LPS) and D-galactosamine (D-GalN)-induced acute liver injury. Mangiferin was given 1h after LPS and D-GalN treatment. The results showed that mangiferin inhibited the levels of serum ALT, AST, IL-1β, TNF-α, MCP-1, and RANTES, as well as hepatic malondialdehyde (MDA) and ROS levels. Moreover, mangiferin significantly inhibited IL-1β and TNF-α production in LPS-stimulated primary hepatocytes. Mangiferin was found to up-regulate the expression of Nrf2 and HO-1 in a dose-dependent manner. Furthermore, mangiferin inhibited LPS/d-GalN-induced hepatic NLRP3, ASC, caspase-1, IL-1β and TNF-α expression. In conclusion, mangiferin protected against LPS/GalN-induced liver injury by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Long; Duan, Chaoli; Zhao, Yan; Zhang, Xiaofang; Yin, Hongyan; Wang, Tianxi; Huang, Caoxin; Liu, Suhuan; Yang, Shuyu; Li, Xuejun
2017-10-01
Lipopolysaccharide/d-Galactosamine (LPS/d-Gal)-induced acute liver injury is characterized by significant inflammatory responses including TNF-α and interleukin-6 (IL-6) and is a widely applied experimental model for inflammation research. TNF-α is critical in the progression of LPS/d-Gal-induced liver injury. However, the role of IL-6 in this model is still unknown. In the present study, we aim to elucidate the involvement of IL-6 in the pathogenesis of acute liver injury induced by LPS/d-Gal in mice and its underlying mechanism. To induce acute liver injury, LPS (50μg/kg body weight) and d-Gal (400mg/kg body weight) were injected intraperitoneally in the C57BL/6 mice. The vehicle (saline) or a single dose of recombinant IL-6 (200μg/kg body weight) was administered 2h prior to LPS/d-Gal injection. Mice were sacrificed 2h and 6h after LPS/d-Gal injection. The results indicated that IL-6 treatment could protect mice from LPS/d-Gal-induced tissue damage, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) elevation, as well as hepatocyte apoptosis and inflammation. Furthermore, in vitro study showed that IL-6 treatment could significantly suppress LPS-triggered expression of proinflammatory cytokines and chemokines, TNF-α, RANTES and MCP-1 in macrophages while promoting the expression of M2 markers, such as Arg-1 and Mrc-1 in macrophages. Taken together, these findings revealed a novel and unexpected role of IL-6 in ameliorating LPS/d-Gal-induced acute liver injury via regulating inflammatory responses in hepatic macrophages. Copyright © 2017. Published by Elsevier B.V.
Zhou, Rui-Jun; Ye, Hua; Wang, Feng; Wang, Jun-Long; Xie, Mei-Lin
2017-11-04
Apigenin is a natural flavonoid compound widely distributed in a variety of vegetables, medicinal plants and health foods. This study aimed to examine the protective effect of apigenin against d-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced mouse liver injury and to investigate the potential biochemical mechanisms. The results showed that after oral administration of apigenin 100-200 mg/kg for 7 days, the levels of serum alanine aminotransferase and aspartate aminotransferase were decreased, and the severity of liver injury was alleviated. Importantly, apigenin pretreatment increased the levels of hepatic nuclear factor erythroid 2-related factor 2 (Nrf-2) and peroxisome proliferator-activated receptor γ (PPARγ) protein expressions as well as superoxide dismutase, catalase, glutathione S-transferase and glutathione reductase activities, decreased the levels of hepatic nuclear factor-κB (NF-κB) protein expression and tumor necrosis factor-α. These findings demonstrated that apigenin could prevent the D-GalN/LPS-induced liver injury in mice, and its mechanisms might be associated with the increments of Nrf-2-mediated antioxidative enzymes and modulation of PPARγ/NF-κB-mediated inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.
Acute Liver Injury Induces Nucleocytoplasmic Redistribution of Hepatic Methionine Metabolism Enzymes
Delgado, Miguel; Garrido, Francisco; Pérez-Miguelsanz, Juliana; Pacheco, María; Partearroyo, Teresa; Pérez-Sala, Dolores
2014-01-01
Abstract Aims: The discovery of methionine metabolism enzymes in the cell nucleus, together with their association with key nuclear processes, suggested a putative relationship between alterations in their subcellular distribution and disease. Results: Using the rat model of d-galactosamine intoxication, severe changes in hepatic steady-state mRNA levels were found; the largest decreases corresponded to enzymes exhibiting the highest expression in normal tissue. Cytoplasmic protein levels, activities, and metabolite concentrations suffered more moderate changes following a similar trend. Interestingly, galactosamine treatment induced hepatic nuclear accumulation of methionine adenosyltransferase (MAT) α1 and S-adenosylhomocysteine hydrolase tetramers, their active assemblies. In fact, galactosamine-treated livers showed enhanced nuclear MAT activity. Acetaminophen (APAP) intoxication mimicked most galactosamine effects on hepatic MATα1, including accumulation of nuclear tetramers. H35 cells that overexpress tagged-MATα1 reproduced the subcellular distribution observed in liver, and the changes induced by galactosamine and APAP that were also observed upon glutathione depletion by buthionine sulfoximine. The H35 nuclear accumulation of tagged-MATα1 induced by these agents correlated with decreased glutathione reduced form/glutathione oxidized form ratios and was prevented by N-acetylcysteine (NAC) and glutathione ethyl ester. However, the changes in epigenetic modifications associated with tagged-MATα1 nuclear accumulation were only prevented by NAC in galactosamine-treated cells. Innovation: Cytoplasmic and nuclear changes in proteins that regulate the methylation index follow opposite trends in acute liver injury, their nuclear accumulation showing potential as disease marker. Conclusion: Altogether these results demonstrate galactosamine- and APAP-induced nuclear accumulation of methionine metabolism enzymes as active oligomers and unveil the implication of redox-dependent mechanisms in the control of MATα1 subcellular distribution. Antioxid. Redox Signal. 20, 2541–2554. PMID:24124652
Shimoda, Hiroshi; Tanaka, Junji; Kikuchi, Mitsunori; Fukuda, Toshiyuji; Ito, Hideyuki; Hatano, Tsutomu; Yoshida, Takashi
2008-06-25
The polyphenol-rich fraction (WP, 45% polyphenol) prepared from the kernel pellicles of walnuts was assessed for its hepatoprotective effect in mice. A single oral administration of WP (200 mg/kg) significantly suppressed serum glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) elevation in liver injury induced by carbon tetrachloride (CCl 4), while it did not suppress d-galactosamine (GalN)-induced liver injury. In order to identify the active principles in WP, we examined individual constituents for the protective effect on cell damage induced by CCl 4 and d-GalN in primary cultured rat hepatocytes. WP was effective against both CCl 4- and d-GalN-induced hepatocyte damages. Among the constituents, only ellagitannins with a galloylated glucopyranose core, such as tellimagrandins I, II, and rugosin C, suppressed CCl 4-induced hepatocyte damage significantly. Most of the ellagitannins including tellimagrandin I and 2,3- O-hexahydroxydiphenoylglucose exhibited remarkable inhibitory effect against d-GalN-induced damage. Telliamgrandin I especially completely suppressed both CCl 4- and d-GalN-induced cell damage, and thus is likely the principal constituent for the hepatoprotective effect of WP.
Fang, Daiqiong; Shi, Ding; Lv, Longxian; Gu, Silan; Wu, Wenrui; Chen, Yanfei; Guo, Jing; Li, Ang; Hu, Xinjun; Guo, Feifei; Ye, Jianzhong; Li, Yating; Li, Lanjian
2017-08-18
The gut microbiota is altered in liver diseases, and several probiotics have been shown to reduce the degree of liver damage. We hypothesized that oral administration of specific Bifidobacterium strains isolated from healthy guts could attenuate liver injury. Five strains were tested in this study. Acute liver injury was induced by D-galactosamine after pretreating Sprague-Dawley rats with the Bifidobacterium strains, and liver function, liver and ileum histology, plasma cytokines, bacterial translocation and the gut microbiome were assessed. Two strains, Bifidobacterium pseudocatenulatum LI09 and Bifidobacterium catenulatum LI10, conferred liver protection, as well as alleviated the increase in plasma M-CSF, MIP-1α and MCP-1 and bacterial translocation. They also ameliorated ileal mucosal injury and gut flora dysbiosis, especially the enrichment of the opportunistic pathogen Parasutterella and the depletion of the SCFA-producing bacteria Anaerostipes, Coprococcus and Clostridium XI. Negative correlations were found between MIP-1α / MCP-1 and Odoribacter (LI09 group) and MIP-1α / M-CSF and Flavonifractor (LI10 group). Our results indicate that the liver protection effects might be mediated through gut microbiota modification, which thus affect the host immune profile. The desirable characteristics of these two strains may enable them to serve as potential probiotics for the prevention or adjuvant treatment of liver injury.
Lv, Long-Xian; Hu, Xin-Jun; Qian, Gui-Rong; Zhang, Hua; Lu, Hai-Feng; Zheng, Bei-Wen; Jiang, Li; Li, Lan-Juan
2014-06-01
This work investigated the effect of the intragastric administration of five lactic acid bacteria from healthy people on acute liver failure in rats. Sprague-Dawley rats were given intragastric supplements of Lactobacillus salivarius LI01, Lactobacillus salivarius LI02, Lactobacillus paracasei LI03, Lactobacillus plantarum LI04, or Pediococcus pentosaceus LI05 for 8 days. Acute liver injury was induced on the eighth day by intraperitoneal injection of 1.1 g/kg body weight D-galactosamine (D-GalN). After 24 h, samples were collected to determine the level of liver enzymes, liver function, histology of the terminal ileum and liver, serum levels of inflammatory cytokines, bacterial translocation, and composition of the gut microbiome. The results indicated that pretreatment with L. salivarius LI01 or P. pentosaceus LI05 significantly reduced elevated alanine aminotransferase and aspartate aminotransferase levels, prevented the increase in total bilirubin, reduced the histological abnormalities of both the liver and the terminal ileum, decreased bacterial translocation, increased the serum level of interleukin 10 and/or interferon-γ, and resulted in a cecal microbiome that differed from that of the liver injury control. Pretreatment with L. plantarum LI04 or L. salivarius LI02 demonstrated no significant effects during this process, and pretreatment with L. paracasei LI03 aggravated liver injury. To the best of our knowledge, the effects of the three species-L. paracasei, L. salivarius, and P. pentosaceus-on D-GalN-induced liver injury have not been previously studied. The excellent characteristics of L. salivarius LI01 and P. pentosaceus LI05 enable them to serve as potential probiotics in the prevention or treatment of acute liver failure.
Ravikumar, Vilwanathan; Shivashangari, Kanchi Subramanian; Devaki, Thiruvengadam
2005-10-03
The hepatoprotective activity of aerial parts of Tridax procumbens was investigated against d-Galactosamine/Lipopolysaccharide (d-GalN/LPS) induced hepatitis in rats. d-GalN/LPS (300 mg/kg body weight/30 microg/kg body weight)-induced hepatic damage was manifested by a significant increase in the activities of marker enzymes (aspartate transaminase, alanine transaminase, alkaline phosphatase, lactate dehydrogenase and gamma glutamyl transferase) and bilirubin level in serum and lipids both in serum and liver. Pretreatment of rats with a chloroform insoluble fraction from ethanolic extract of Tridax procumbens reversed these altered parameters to normal values. The biochemical observations were supplemented by histopathological examination of liver sections. Results of this study revealed that Tridax procumbens could afford a significant protection in the alleviation of d-GalN/LPS-induced hepatocellular injury.
Abdel-Salam, Bahaa K A; Sayed, Abd-Alla A A
2012-01-01
Activation of the pro-inflammatory and anti-inflammatory cytokine cascade, including tumour necrosis factor (TNF)-alpha and interleukin (IL)-4, is considered to play an important role in severe liver injury. Kupffer cells, resident macrophages of the liver, activated with lipopolysaccharide (LPS) release pro-inflammatory cytokine. D-Galactosamine (D-GalN), a hepatocyte-specific inhibitor of RNA synthesis, is known to sensitise animals to the lethal effects of LPS. In the present study we seek to reverse some altered parameters, immunological and histopathological, to normal values of rats pre-treated with garlic. Acute hepatic failure was induced in male albino rats by the intraperitoneal injection of 500 mg D-GalN and 50 μg LPS/kg body weight. Expression levels of TNF-α and IL-4 were detected by ELISA. Leukocytes proliferation was carried out by differential count. For histopathology, liver sections were stained with haematoxylin and eosin. Data were analysed by SPSS program version 13.0. The data showed significant increase in the numbers of granulocytes, but with significant decreases in lymphocyte and monocytes proliferation and the TNF-alpha and IL-4 levels in D-GalN/LPS-induced group. Garlic pre-treatment of liver-injured rats induced significant amelioration in the numbers of monocytes and lymphocytes, with significant increase in granulocytes numbers, TNF-α level and IL-4 level. Results of this study revealed that garlic could afford a significant protection in the alleviation of D-GalN/LPS-induced hepatocellular injury. Copyright © 2011 SEICAP. Published by Elsevier Espana. All rights reserved.
Ning, Chenqing; Gao, Xiaoguang; Wang, Changyuan; Huo, Xiaokui; Liu, Zhihao; Sun, Huijun; Yang, Xiaobo; Sun, Pengyuan; Ma, Xiaodong; Meng, Qiang; Liu, Kexin
2018-06-11
Acute liver injury (ALI) is a dramatic liver disease characterized by large areas of inflammation in the liver. This study aimed to investigate the protective effects of ginsenoside Rg1 (Rg1), a biologically active component in Panax ginseng, on lipopolysaccharide/d-galactosamine (LPS/D-GalN)-induced ALI in mice, and meanwhile explore the molecular mechanism in vivo and in vitro. Mice were pretreated with Rg1 for three days prior to LPS (40 μg/kg)/D-GalN (700 mg/kg) administration. The results showed that Rg1 improved the survival rate and reduced the liver to body weight ratios in mice. Rg1 also reduced the production of oxidative markers such as MDA and MPO induced by LPS/D-GalN. In addition, Rg1 significantly decreased the production of inflammatory cytokines including TNF-α, IL-6, IL-1β, Mip-2, Mcp-1, iNOS, and increased the activity of anti-inflammatory cytokine IL-10. Moreover, Rg1 inhibited the protein expression of TLR4 and its downstream genes including NF-κB and MAPKs, which are involved in inflammatory response. Rg1 dramatically reduced oxidative stress by regulating the expression of efflux transporters Mrp2 and various enzymes including GCLC, GCLM, HO-1 and NQO1. However, the changes in these genes and protein induced by Rg1 were abrogated by TLR4 antagonist TAK-242 in vitro. In conclusion, Rg1 had hepatoprotective effect on LPS/D-GalN-induced ALI in mice. The protection may be associated with the inhibition of TLR4. These findings suggest that Rg1 may be a promising agent for prevention against ALI. Copyright © 2018 Elsevier B.V. All rights reserved.
Liu, Xu-hua; Chen, Yu; Wang, Tai-ling; Lu, Jun; Zhang, Li-jie; Song, Chen-zhao; Zhang, Jing; Duan, Zhong-ping
2007-10-01
To establish a practical and reproducible animal model of human acute-on-chronic liver failure for further study of the pathophysiological mechanism of acute-on-chronic liver failure and for drug screening and evaluation in its treatment. Immunological hepatic fibrosis was induced by human serum albumin in Wistar rats. In rats with early-stage cirrhosis (fibrosis stage IV), D-galactosamine and lipopolysaccharide were administered. Mortality and survival time were recorded in 20 rats. Ten rats were sacrificed at 4, 8, and 12 hours. Liver function tests and plasma cytokine levels were measured after D-galactosamine/lipopolysaccharide administration and liver pathology was studied. Cell apoptosis was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. Most of the rats treated with human albumin developed cirrhosis and fibrosis, and 90% of them died from acute liver failure after administration of D-galactosamine/lipopolysaccharide, with a mean survival time of (16.1+/-3.7) hours. Liver histopathology showed massive or submassive necrosis of the regenerated nodules, while fibrosis septa were intact. Liver function tests were compatible with massive necrosis of hepatocytes. Plasma level of TNFalpha increased significantly, parallel with the degree of the hepatocytes apoptosis. Plasma IL-10 levels increased similarly as seen in patients with acute-on-chronic liver failure. We established an animal model of acute-on-chronic liver failure by treating rats with human serum albumin and later with D-galactosamine and lipopolysaccharide. TNFalpha-mediated liver cell apoptoses plays a very important role in the pathogenesis of acute liver failure.
Ben Ari, Ziv; Avlas, Orna; Pappo, Orit; Zilbermints, Veacheslav; Cheporko, Yelena; Bachmetov, Larissa; Zemel, Romy; Shainberg, Asher; Sharon, Eran; Grief, Franklin; Hochhauser, Edith
2012-01-01
Liver transplantation is the only therapy of proven benefit in fulminant hepatic failure (FHF). Lipopolysaccharide (LPS), D-galactosamine (GalN)-induced FHF is a well established model of liver injury in mice. Toll-Like Receptor 4 (TLR4) has been identified as a receptor for LPS. The aim of this study was to investigate the role of TLR4 in FHF induced by D-GalN/LPS administration in mice. Wild type (WT) and TLR4 deficient (TLR4ko) mice were studied in vivo in a fulminant model induced by GalN/LPS. Hepatic TLR4 expression, serum liver enzymes, hepatic and serum TNF-α and interleukin-1β levels were determined. Apoptotic cells were identified by immunohistochemistry for caspase-3. Nuclear factor-kappaβ (NF-κ β) and phosphorylated c-Jun hepatic expression were studied using Western blot analysis. All WT mice died within 24 hours after administration of GalN/LPS while all TLR4ko mice survived. Serum liver enzymes, interleukin-1β, TNF-α level, TLR4 mRNA expression, hepatic injury and hepatocyte apoptosis all significantly decreased in TLR4ko mice compared with WT mice. A significant decrease in hepatic c-Jun and IκB signaling pathway was noted in TLR4ko mice compared with WT mice. In conclusion, following induction of FHF, the inflammatory response and the liver injury in TLR4ko mice was significantly attenuated through decreased hepatic c-Jun and NF-κB expression and thus decreased TNF-α level. Down-regulation of TLR4 expression plays a pivotal role in GalN/LPS induced FHF. These findings might have important implications for the use of the anti TLR4 protein signaling as a potential target for therapeutic intervention in FHF. Copyright © 2012 S. Karger AG, Basel.
Koj, A.; Dubin, A.
1978-01-01
D-galactosamine (100 mg) was added to the reconstituted blood during 4h perfusion of livers isolated either from control rats or those injected with turpentine 20 h or 5 h earlier. This dose of galactosamine administered 30 min before [3H]lysine significantly inhibited the incorporation of the label into liver proteins, and even more into plasma proteins, but albumin and acute-phase reactants (fibrinogen, seromucoid fraction, Concanavalin A-adsorbed glycoproteins) were all similarly affected. When galactosamine was administered in vivo simultaneously with turpentine, and the liver was isolated 5 h later, trauma-induced fibrinogen synthesis was selectively inhibited. This can be explained either by a differential control of synthesis of various acute-phase reactants, or by augmentation of catabolism of fibrinogen in galactosamine-treated rats. Crossed immunoelectrophoresis of the full perfusate or Concanavalin A-adsorbed glycoproteins did not reveal any significant effect of galactosamine on the protein pattern obtained from control or turpentine-stimulated liver donors. Images Fig. 1 PMID:718802
Akashi, Iwao; Kagami, Keisuke; Hirano, Toshihiko; Oka, Kitaro
2009-04-01
The protective effects of coffee-derived compounds on lipopolysaccharide/D-galactosamine (LPS/D-GalN) induced acute liver injury in rats were investigated. Wistar rats were orally administered saline (control) or one of the test compounds (caffeine, chlorogenic acid, trigonelline, nicotinic acid or eight pyrazinoic acids) at a dose of 100 mg/kg, respectively. This was followed by intraperitoneal injection with LPS (100 mug/kg)/D-GalN (250 mg/kg) 1 h after administration of the test compounds. Blood samples were collected up to 12 h after LPS/D-GalN injection, followed by determination of plasma aspartate aminotransferase, alanine aminotransferase, tumour necrosis factor alpha (TNF-alpha) and interleukin 10 (IL-10) levels. Plasma aspartate aminotransferase and alanine aminotransferase levels were significantly increased after LPS/D-GalN-treatment, but were suppressed by pretreatment with caffeine (n = 5), nicotinic acid, non-substituted pyrazinoic acid or 5-methylpyrazinoic acid (n = 6, respectively) 12 h after LPS/D-GalN-treatment (P < 0.01, respectively). Moreover, the animals pretreated with these test compounds showed significantly higher survival rates (83-100%) compared with the control (23%). Only pretreatment with caffeine significantly suppressed the LPS/D-GalN induced elevation of plasma TNF-alpha levels 1 and 2 h after LPS/D-GalN-treatment (P < 0.01, respectively). Pretreatment with caffeine, nicotinic acid or non-substituted pyrazinoic acid activated the LPS/D-GalN induced elevation of plasma IL-10 levels at 1 and 2 h, although there were no statistically significant differences in IL-10 levels between control and nicotinic acid or non-substituted pyrazinoic acid treated rats. The results suggest that caffeine, nicotinic acid, non-substituted pyrazinoic acid and 5-methylpyrazinoic acid can protect against LPS/D-GalN induced acute liver injury, which may be mediated by the reduction of TNF-alpha production and/or increasing IL-10 production.
Ai, Guo; Huang, Zheng-Ming; Liu, Qing-Chuan; Han, Yan-Quan; Chen, Xi
2016-06-20
Water dropwort [Oenanthe javanica (O. javanica)] is an aquatic perennial herb cultivated in East Asian countries. It has been popularly used in traditional Chinese medicine which is beneficial for the treatment of many diseases, including jaundice and various types of chronic and acute hepatitis. In the present study, we investigated the hepatoprotective effect of total phenolics from O. javanica (TPOJ) against D-galactosamine (D-GalN) induced liver injury in mice. The hepatoprotective activity of TPOJ (125, 250 and 500mg/kg) was investigated on D-GalN (800mg/kg)-induced liver damages in mice. Blood and liver were collected for biochemical and microscopic analysis. RT-PCR was used to determine the changes in hepatic nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Protein levels of iNOS, COX-2, superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were determined by western blotting. In the animal studies, TPOJ could improve the survival of acute liver failure model significantly and prevente the D-GalN-induced elevation of the serum enzymatic markers and nonenzymatic markers levels significantly. Meanwhile, TPOJ-treatment decreased the malondialdehyde (MDA) level and elevated the content of glutathione (GSH) in the liver as compared to those in the D-GalN group. Hepatic activities and protein expressions of antioxidative enzymes, including SOD, GPx, and CAT were enhanced dose dependently with TPOJ. At the same time, application of TPOJ effectively suppressed the D-GalN-induced proinflammatory mRNA and protein expression of iNOS and COX-2. Subsequently, the serum levels of proinflammatory mediators, nitric oxide (NO) and prostaglandin E2 (PGE2) were reduced. Additionally, histological analyses also showed that TPOJ reduced the extent of liver lesions induced by D-GalN. Our investigation demonstrated the hepatoprotective activity of TPOJ and revealed that TPOJ attributed its significance in the traditional use for treating liver diseases. Copyright © 2016. Published by Elsevier Ireland Ltd.
Zhan, Y; Wang, Z; Yang, P; Wang, T; Xia, L; Zhou, M; Wang, Y; Wang, S; Hua, Z; Zhang, J
2014-01-09
D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5'-monophosphate (5'-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5'-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5'-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5'-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5'-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury.
Zhan, Y; Wang, Z; Yang, P; Wang, T; Xia, L; Zhou, M; Wang, Y; Wang, S; Hua, Z; Zhang, J
2014-01-01
D-galactosamine (GalN)/lipopolysaccharide (LPS)-induced lethality and acute liver failure is dependent on endogenously produced inflammatory cytokines. Adenosine has been proven to be a central role in the regulation of inflammatory response. It is not entirely clear that which adenosine action is actually crucial to limiting inflammatory tissue destruction. Here we showed that GalN/LPS challenge elevated hepatic adenosine and induced lethality in adenosine receptor-deficient mice with equal efficiency as wild-type mice. In GalN/LPS-treated mice, pretreatment with adenosine 5′-monophosphate (5′-AMP) significantly elevated hepatic adenosine level and reduced mortality through decreasing cytokine and chemokine production. In RAW264.7 cells, 5′-AMP treatment inhibited the production of inflammatory cytokines, which is not mediated through adenosine receptors. 5′-AMP failed to attenuate LPS-induced nuclear factor-κB (NF-κB) p65 nuclear translocation, but reduced LPS-induced recruitment of NF-κB p65 to inflammatory gene promoters and decreased LPS-induced enrichment of H3K4 dimethylation at the tumor necrosis factor-α (TNF-α) promoter, which was involved in 5′-AMP-induced elevation of cellular adenosine and a decline of methylation potential. In vitro biochemical analysis revealed that adenosine directly attenuated recruitment of NF-κB to the TNF-α and interleukin-6 promoters. Our findings demonstrate that 5′-AMP-inhibiting inflammatory response is not mediated by adenosine receptors and it may represent a potential protective agent for amelioration of LPS-induced liver injury. PMID:24407238
Evaluating the best time to intervene acute liver failure in rat models induced by d-galactosamine.
Éboli, Lígia Patrícia de Carvalho Batista; Netto, Alcides Augusto Salzedas; Azevedo, Ramiro Antero de; Lanzoni, Valéria Pereira; Paula, Tatiana Sugayama de; Goldenberg, Alberto; Gonzalez, Adriano Miziara
2016-12-01
To describe an animal model for acute liver failure by intraperitoneal d-galactosamine injections in rats and to define when is the best time to intervene through King's College and Clichy´s criteria evaluation. Sixty-one Wistar female rats were distributed into three groups: group 1 (11 rats received 1.4 g/kg of d-galactosamine intraperitoneally and were observed until they died); group 2 (44 rats received a dose of 1.4 g/kg of d-galactosamine and blood and histological samples were collected for analysis at 12 , 24, 48 , 72 and 120 hours after the injection); and the control group as well (6 rats) . Twelve hours after applying d-galactosamine, AST/ALT, bilirubin, factor V, PT and INR were already altered. The peak was reached at 48 hours. INR > 6.5 was found 12 hours after the injection and factor V < 30% after 24 hours. All the laboratory variables presented statistical differences, except urea (p = 0.758). There were statistical differences among all the histological variables analyzed. King's College and Clichy´s criteria were fulfilled 12 hours after the d-galactosamine injection and this time may represent the best time to intervene in this acute liver failure animal model.
Zong, L; Yu, Q H; Du, Y X; Deng, X M
2014-02-01
Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis.
Zong, L.; Yu, Q.H.; Du, Y.X.; Deng, X.M.
2014-01-01
Studies have shown that edaravone may prevent liver injury. This study aimed to investigate the effects of edaravone on the liver injury induced by D-galactosamine (GalN) and lipopolysaccharide (LPS) in female BALB/c mice. Edaravone was injected into mice 30 min before and 4 h after GalN/LPS injection. The survival rate was determined within the first 24 h. Animals were killed 8 h after GalN/LPS injection, and liver injury was biochemically and histologically assessed. Hepatocyte apoptosis was measured by TUNEL staining; proinflammatory cytokines [tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6)] in the liver were assayed by ELISA; expression of caspase-8 and caspase-3 proteins was detected by Western blot assay; and caspase-3 activity was also determined. Results showed that GalN/LPS induced marked elevations in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Edaravone significantly inhibited elevation of serum AST and ALT, accompanied by an improvement in histological findings. Edaravone lowered the levels of TNF-α and IL-6 and reduced the number of TUNEL-positive cells. In addition, 24 h after edaravone treatment, caspase-3 activity and mortality were reduced. Edaravone may effectively ameliorate GalN/LPS-induced liver injury in mice by reducing proinflammatory cytokines and inhibiting apoptosis. PMID:24554039
Cheng, Yu-Jung; Cheng, Shiu-Min; Teng, Yi-Hsien; Shyu, Woei-Cherng; Chen, Hsiu-Ling; Lee, Shin-Da
2014-01-01
Cordyceps sinensis (C. sinensis) has long been considered to be an herbal medicine and has been used in the treatment of various inflammatory diseases. The present study examined the cytoprotective properties of C. sinensis on D(+)-galactosamine (GalN)/lipopolysaccharide (LPS)-induced fulminant hepatic failure. Mice were randomly assigned into control, GalN/LPS, CS 20 mg and CS 40 mg groups (C. sinensis, oral gavage, five days/week, four weeks). After receiving saline or C. sinensis, mice were intraperitoneally given GalN (800 mg/kg)/LPS (10 μg/kg). The effects of C. sinensis on TNF-α, IL-10, AST, NO, SOD, and apoptoticrelated proteins after the onset of endotoxin intoxication were determined. Data demonstrated that GalN/LPS increased hepatocyte degeneration, circulating AST, TNF-α, IL-10, and hepatic apoptosis and caspase activity. C. sinensis pre-treatment reduced AST, TNF-α, and NO and increased IL-10 and SOD in GalN/LPS induced fulminant hepatic failure. C. sinensis attenuated the apoptosis of hepatocytes, as evidenced by the TUNEL and capase-3, 6 activity analyses. In summary, C. sinensis alleviates GalN/LPS-induced liver injury by modulating the cytokine response and inhibiting apoptosis.
Babu, Pappithi Ramesh; Bhuvaneswar, Cherukupalle; Sandeep, Gandham; Ramaiah, Chintha Venkata; Rajendra, Wudayagiri
2017-04-01
Ricinus communis (RC) is a traditional medicinal plant which has been used by Chenchu and Yerukula tribes for treating their liver ailments. The present work is aimed to explore the hepatoprotective efficacy of Ricinus communis against d-galactosamine (D-GalN) induced hepatitis rat model and its therapeutic potential compared with standard drug, silymarin (100mg/kg.bw). In vitro antioxidant activity of Methanolic extract of Ricinus communis leaves (MERCL) was assayed through DPPH and H 2 O 2 free radical scavenging activity. Qualitative and quantitative analysis of MERCL using HPLC, demonstrated that Rutin was found to be predominant bioactive compound in the extract. Hepatitis was induced by treating the rats with D-GalN at a single intraperitoneal dose of 800mg/kg.bw. Serum markers viz, Alanine aminotransferase (ALT), Aspartate aminotransferase (AST), Alkaline phosphatase (ALP) and Malondialdehyde (MDA) levels were significantly increased and the activity levels of antioxidant enzymes such as Superoxide dismutase (SOD),Catalase (CAT), Glutathione reductase (GR), Glutathione peroxidase (GPx), non-enzymatic antioxidant Glutathione (GSH) levels were decreased in the liver of hepatitis induced rats when compared to controls. Pre and post treatment with MERCL significantly altered the enzyme activities, GSH and MDA to normal levels. Histopathological observations also showed protective and curative effects of MERCL against D-GalN intoxication. These results demonstrated that MERCL significantly protected the liver from d-galactosamine induced hepatitis, improved the curative effect in the liver and hence, MERCL can be used as a potent hepatoprotective drug in future. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Li, Shan-Shan; Yang, Min; Chen, Yong-Ping; Tang, Xin-Yue; Zhang, Sheng-Guo; Ni, Shun-Lan; Yang, Nai-Bin; Lu, Ming-Qin
2018-05-28
Acute liver failure is a devastating clinical syndrome with extremely terrible inflammation reaction, which is still lack of effective treatment in clinic. Suppressor of Cytokine Signaling 1 protein is inducible intracellular negative regulator of Janus kinases (JAK)/signal transducers and activators of transcription (STAT) pathway that plays essential role in inhibiting excessive intracellular signaling cascade and preventing autoimmune reaction. In this paper, we want to explore whether dendritic cells (DCs) with overexpression of SOCS1 have a therapeutic effect on experimental acute liver failure. Bone marrow derived dendritic cells were transfected with lentivirus encoding SOCS1 and negative control lentivirus, thereafter collected for costimulatory molecules analysis, allogeneic Mixed Lymphocyte Reaction and Western blot test of JAK/STAT pathway. C57BL/6 mice were randomly separated into normal control and treatment groups which respectively received tail vein injection of modified DCs, negative control DCs and normal saline 12 h earlier than acute liver failure induction. Our results indicated that DCs with overexpression of SOCS1 exhibited like regulatory DCs (DCregs) with low level of costimulatory molecules and poor allostimulatory ability in vitro, which was supposed to correlate with block of JAK2/STAT1 signaling. In vivo tests, we found that infusion of modified DCs increased survival rate of acute liver failure mice and alleviate liver injury via inhibition of TLR4/HMGB1 pathway. We concluded that DCs transduced with SOCS1 gene exhibit as DCregs through negative regulation of JAK2/STAT1 pathway and ameliorated lipopolysaccharide/d-galactosamine induced acute liver failure via inhibition of TLR4 pathway. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ni, Hong-Min; McGill, Mitchell R; Chao, Xiaojuan; Woolbright, Benjamin L; Jaeschke, Hartmut; Ding, Wen-Xing
2016-10-01
How different cell death modes and cell survival pathways cross talk remains elusive. We determined the interrelation of apoptosis, necrosis, and autophagy in tumor necrosis factor (TNF)-α/actinomycin D (ActD) and lipopolysaccharide/D-galactosamine (GalN)-induced hepatotoxicity in vitro and in vivo. We found that TNF-α/ActD-induced apoptosis was completely blocked by a general caspase inhibitor ZVAD-fmk at 24 hours but hepatocytes still died by necrosis at 48 hours. Inhibition of caspases also protected mice against lipopolysaccharide/GalN-induced apoptosis and liver injury at the early time point, but this protection was diminished after prolonged treatment by switching apoptosis to necrosis. Inhibition of receptor-interacting protein kinase (RIP)1 by necrostatin 1 partially inhibited TNF-α/ZVAD-induced necrosis in primary hepatocytes. Pharmacologic inhibition of autophagy or genetic deletion of Atg5 in hepatocytes did not protect against TNF-α/ActD/ZVAD-induced necrosis. Moreover, pharmacologic inhibition of RIP1 or genetic deletion of RIP3 failed to protect and even exacerbated liver injury after mice were treated with lipopolysaccharide/GalN and a pan-caspase inhibitor. In conclusion, our results suggest that different cell death mode and cell survival pathways are closely integrated during TNF-α-induced liver injury when both caspases and NF-κB are blocked. Moreover, results from our study also raised concerns about the safety of currently ongoing clinical trials that use caspase inhibitors. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Kim, Sung Phil; Park, Sun Ok; Lee, Sang Jong; Nam, Seok Hyun; Friedman, Mendel
2013-11-20
Endotoxemia (sepsis, septic shock) is an inflammatory, virulent disease that results mainly from bacterial infection. The present study investigates the inhibitory effect of a bioprocessed polysaccharide (BPP) isolated from the edible Lentinus edodes liquid mycelial mushroom culture supplemented with black rice bran against murine endotoxemia induced by the Salmonella lipopolysaccharide and d-galactosamine (LPS/GalN). BPP was obtained after dialysis against water using a cellulose tube with a molecular weight cutoff of 10000. BPP eluted as a single peak on an HPLC chromatogram. Acid hydrolysis of BPP showed the presence of the following sugars: fucose, galactose, galactosamine, glucose, glucosamine, mannose, rhamnose, and xylose. Treatment of BPP with β-glucanase reduced its immunostimulating activity, suggesting that the polysaccharide has a β-glucan structure. Pretreatment of mice with BPP via oral or intraperitoneal (ip) administration for 2 weeks resulted in the suppression of LPS/GalN-induced catalase, superoxide dismutase (SOD), and transaminase (GOT/GPT) liver enzymes, amelioration of necrotic liver lesions, and reduction of tumor necrosis factor α (TNF-α) and nitrite serum levels as well as myeloperoxidase (MPO) activity, an index of necrotic injury. Immunostimulating macrophage activity was up to 5.4-fold greater than that observed with the culture without the rice bran. BPP also extended the lifespan of the toxemic mice. These positive results with inflammation biomarkers and lifespan studies suggest that the BPP can protect mice against LPS/GalN-induced liver, lung, and kidney injuries and inflammation by blocking oxidative stress and TNF-α production, thus increasing the survival of the toxic shock-induced mice. The polysaccharide has the potential to serve as a new functional food.
Liu, Huan; Zhang, Wei; Dong, Shichao; Song, Liang; Zhao, Shimin; Wu, Chunyan; Wang, Xue; Liu, Fang; Xie, Jiming; Wang, Jinling; Wang, Yuzhen
2015-12-24
Sea buckthorn (Hippophae rhamnoides L.) berries have been traditionally used to treat gastric disorders, cardiovascular problems, and liver injuries in oriental medicinal system. This study aimed to explore the protective effects and mechanisms of the polysaccharide extracts of Sea buckthorn (HRP) berries against lipopolysaccharide (LPS) and d-galactosamine hydrochloride (d-GalN)-induced acute liver failure in mice. HRP was isolated by hot-water extraction and characterized by HPLC and infrared spectrum analysis. The total carbohydrate, uronic acid and protein contents of HRP were measured by a spectrophotometric method. Mice were orally administrated with HRP (50, 100, 200mg/kg) once daily for 14 consecutive days prior to the challenge with LPS (50 μg/kg) and d-GalN (300 mg/kg). Animals of positive control group were intraperitoneally injected with dexamethasone (10mg/kg). Mice were sacrificed at 8h after LPS/d-GalN injection. Pretreatment with HRP significantly inhibited LPS/d-GalN-induced increases in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, which were accompanied by alleviated liver injuries and reduced production of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). HRP was also found to reduce malondialdehyde (MDA) content and to restore superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities. Furthermore, HRP supplementation dose-dependently inhibited the expression of Toll-like receptor 4 (TLR4), phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated c-Jun N-terminal kinase (p-JNK), and phosphorylated mitogen activated protein kinase 38 (p-p38 MAPK) in the liver of LPS/d-GalN challenged mice. Pretreatment with HRP also inhibited LPS/d-GalN-induced activation and translocation of nuclear factor-κB (NF-κB). This study indicates that pretreatment with HRP protects against LPS/d-GalN-induced liver injury in mice via suppressing the TLR4-NF-κB signaling pathway. Sea buckthorn may be a hopeful drug for prevention of acute live injury. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Ravikumar, Vilwanathan; Shivashangari, Kanchi Subramanian; Devaki, Thiruvengadam
2005-01-01
The present study was carried out to assess the effect of chloroform insoluble fraction of ethanolic extract of Tridax procumbens (TP) against D-Galactosamine/Lipopolysaccharide (D-GalN/LPS)-induced hepatitis in rats. Induction of rats with D-GalN/LPS (300 mg/kg body weight/30 microg/kg body weight) led to a marked increase in lipid peroxidation as measured by thiobarbituric acid reactive substances (TBARS) in liver. Further there was a decline in the activities of enzymic antioxidants such as superoxide dismutase, catalase, glutathione peroxidase, glutathione s-transferase and the levels of non-enzymic antioxidants namely reduced glutathione, vitamin C and vitamin E. These biochemical alterations were normalised upon pretreatment with TP extract. Thus, the above results suggest that TP (300 mg/kg body weight orally for 10 days) is very effective in allievating the D-GalN/LPS-induced oxidative stress suggesting its antioxidant property.
Wetmore, Barbara A; Brees, Dominique J; Singh, Reetu; Watkins, Paul B; Andersen, Melvin E; Loy, James; Thomas, Russell S
2010-06-01
Serum aminotransferases have been the clinical standard for evaluating liver injury for the past 50-60 years. These tissue enzymes lack specificity, also tracking injury to other tissues. New technologies assessing tissue-specific messenger RNA (mRNA) release into blood should provide greater specificity and permit indirect assessment of gene expression status of injured tissue. To evaluate the potential of circulating mRNAs as biomarkers of liver injury, rats were treated either with hepatotoxic doses of D-(+)-galactosamine (DGAL) or acetaminophen (APAP) or a myotoxic dose of bupivacaine HCl (BPVC). Plasma, serum, and liver samples were obtained from each rat. Serum alanine aminotransferase and aspartate aminotransferase were increased by all three compounds, whereas circulating liver-specific mRNAs were only increased by the hepatotoxicants. With APAP, liver-specific mRNAs were significantly increased in plasma at doses that had no effect on serum aminotransferases or liver histopathology. Characterization of the circulating mRNAs by sucrose density gradient centrifugation revealed that the liver-specific mRNAs were associated with both necrotic debris and microvesicles. DGAL treatment also induced a shift in the size of plasma microvesicles, consistent with active release of microvesicles following liver injury. Finally, gene expression microarray analysis of the plasma following DGAL and APAP treatment revealed chemical-specific profiles. The comparative analysis of circulating liver mRNAs with traditional serum transaminases and histopathology indicated that the circulating liver mRNAs were more specific and more sensitive biomarkers of liver injury. Further, the possibility of identifying chemical-specific transcriptional profiles from circulating mRNAs could open a range of possibilities for identifying the etiology of drug/chemical-induced liver injury.
Zheng, Ming-Hua; Lin, Hai-Long; Qiu, Li-Xin; Cui, Yao-Li; Sun, Qing-Feng; Chen, Yong-Ping
2009-01-01
Hepatocyte transplantation is an alternative to transplantation of the whole liver. Compared with xenogeneic hepatocytes, primary hepatocytes have some advantages, such as a more powerful function and a smaller frequency of rejection caused by the host. Cell microencapsulation prevents direct access of host cells to the graft but cannot impede transfer of transplant-derived peptides, which can cross the physical barrier. Sertoli cells are central to the immune privilege demonstrated in the testis, and their actions have been utilized to protect cell transplants. Co-microencapsulating Sertoli cells with HepG2 cells has proved to be a valuable strategy in hepatocyte transplantation. Thus mixed microcapsules of primary rat hepatocytes and primary Sertoli cells may improve metabolic function in a d-galactosamine and lipopolysaccharide-induced rat model of acute liver failure.
Park, Sun Hong; Baek, Seung-Il; Yun, Jieun; Lee, Seungmin; Yoon, Da Young; Jung, Jae-Kyung; Jung, Sang-Hun; Hwang, Bang Yeon; Hong, Jin Tae; Han, Sang-Bae; Kim, Youngsoo
2015-02-01
Mice lacking the IL-1R-associated kinase 4 (IRAK4) are completely resistant to LPS-induced endotoxic disorder or the TLR9 agonist CpG DNA plus d-galactosamine-induced acute liver injury (ALI), whereas wild-type strains succumb. However, translational drugs against sepsis or ALI remain elusive. Lonicerae flos extract is undergoing the clinical trial phase I in LPS-injected healthy human volunteers for sepsis treatment. In the current study, chlorogenic acid (CGA), a major anti-inflammatory constituent of lonicerae flos extract, rescued endotoxic mortality of LPS-intoxicated C57BL/6 mice, as well as ameliorated ALI of LPS/d-galactosamine-challenged C57BL/6 mice. As a mechanism, CGA inhibited various TLR agonist-, IL-1α-, or high-mobility group box-1-stimulated autophosphorylation (activation) of IRAK4 in peritoneal macrophages from C57BL/6 or C3H/HeJ mice via directly affecting the kinase activity of IRAK4, a proximal signal transducer in the MyD88-mediated innate immunity that enhances transcriptional activity of NF-κB or AP-1. CGA consequently attenuated protein or mRNA levels of NF-κB/AP-1 target genes encoding TNF-α, IL-1α, IL-6, and high-mobility group box-1 in vivo under endotoxemia or ALI. Finally, this study suggests IRAK4 as a molecular target of CGA in the treatment of innate immunity-related shock and organ dysfunction following insult of various TLR pathogens from bacteria and viruses. Copyright © 2015 by The American Association of Immunologists, Inc.
Seo, Min-Jong; Hong, Jeong-Min; Kim, Seok-Joo; Lee, Sun-Mee
2017-10-05
Acute liver failure (ALF) is a life-threatening syndrome resulting from massive inflammation and hepatocyte death. Necroptosis, a programmed cell death controlled by receptor-interacting protein kinase (RIP) 1 and RIP3, has been shown to play an important role in regulating inflammation via crosstalk between other intracellular signaling. The inflammasome is a major intracellular multiprotein that induces inflammatory responses by mediating immune cell infiltration, thus potentiating injury. Genipin, a major active compound of the gardenia fruit, exhibits anti-inflammatory, antioxidant, and anti-apoptotic properties. This study investigated the hepatoprotective mechanisms of genipin on d-galactosamine (GalN) and lipopolysaccharide (LPS)-induced ALF, particularly focusing on interaction between necroptosis and inflammasome. Mice were given an intraperitoneal injection of genipin (25, 50, and 100mg/kg) or necrostatin-1 (Nec-1, a necroptosis inhibitor; 1.8mg/kg) 1h prior to GalN (800mg/kg)/LPS (40μg/kg) injection and were killed 3h after GalN/LPS injection. Genipin improved the survival rate and attenuated increases in serum aminotransferase activities and inflammatory cytokines after GalN/LPS injection. Genipin reduced GalN/LPS-induced increases in RIP3, phosphorylated RIP1 and RIP3 protein expression, and RIP1/RIP3 necrosome complex, similar to the effects of Nec-1. GalN/LPS significantly increased serum levels of high-mobility group box 1 and interleukin (IL)-33, which were attenuated by genipin and Nec-1. Moreover, similar to Nec-1, genipin attenuated GalN/LPS-induced increases in the protein expression levels of NLRP3, ASC, and caspase-1, inflammasome components, and levels of liver and serum IL-1β. Taken together, our findings suggest that genipin ameliorates GalN/LPS-induced hepatocellular damage by suppressing necroptosis-mediated inflammasome signaling. Copyright © 2017 Elsevier B.V. All rights reserved.
Wu, Zhongping; Kong, Xiangliang; Zhang, Tong; Ye, Jin; Fang, Zhaoqin; Yang, Xuejun
2014-02-05
The anti-inflammatory effects of pseudoephedrine/ephedrine were investigated using the experimental model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (D-GalN)-sensitised male rats in order to elucidate effects other than sympathomimetic effects. Rats were intraperitoneally injected with D-GalN (400 mg/kg) and LPS (40 μg/kg) to induce acute liver failure. The treatment groups were then intraperitoneally administered pseudoephedrine/ephedrine at 0 h and 4 h after induction and the activation induced by treatment with pseudoephedrine and/or LPS on the primary Kupffer cells (KCs) was monitored. Compared with controls induced by GalN/LPS alone, pseudoephedrine dramatically reduced the infiltration of inflammatory cells and bile ductular hyperplasia and hepatic necrosis observed in liver sections. It inhibited both hepatocellular apoptosis and the expression of monocyte chemotactic protein-1. It lowered the production of tumour necrosis factor-α (TNF-α) in the beginning of acute liver failure induced by D-GalN/LPS. Correspondingly, levels of alanine aminotransferase (ALT), total bilirubin (TBIL) and malondialdehyde were attenuated. Ephedrine demonstrated all these identical protective effects as well. In addition, pseudoephedrine significantly suppressed the production of p-IκB-α, reducing the degradation of sequestered nuclear factor kappa B (NF-κB) in the cytoplasm, and inhibited the translocation of NF-κB/p65 to the nucleus, the transcription of TNF-α mRNA and the production of TNF-α in primary KCs. These results suggest that pseudoephedrine and ephedrine have a potent anti-inflammatory activity against D-GalN/LPS-induced acute liver failure in rats, and this comprehensive anti-inflammatory effect may result from the inhibition of TNF-α production. Copyright © 2013 Elsevier B.V. All rights reserved.
A key role for Pre-B cell colony-enhancing factor in experimental hepatitis.
Moschen, Alexander R; Gerner, Romana; Schroll, Andrea; Fritz, Teresa; Kaser, Arthur; Tilg, Herbert
2011-08-01
Pre-B cell colony-enhancing factor (PBEF), also known as nicotinamide phosphoribosyltransferase or visfatin, plays an important role in metabolic, inflammatory, and malignant diseases. Recent evidence suggests that blocking its enzymatic activity using a specific small-molecule inhibitor (FK866) might be beneficial in acute experimental inflammation. We investigated the role of PBEF in human liver disease and experimental hepatitis. PBEF serum levels and hepatic expression were determined in patients with chronic liver diseases. These studies were followed by in vivo experiments using concanavalin A (ConA) and D-galactosamine/lipopolysaccharide (LPS) models of experimental hepatitis. PBEF was either overexpressed by hydrodynamic perfusion or inhibited by FK866. In vivo findings were corroborated studying inflammatory responses of lentivirally PBEF-silenced or control FL83B mouse hepatocytes. Here, we demonstrate that PBEF serum levels were increased in patients with chronic liver diseases irrespective of disease stage and etiology. In particular, we observed enhanced PBEF expression in hepatocytes. Liver-targeted overexpression of PBEF rendered mice more susceptible to ConA- and D-galactosamine/LPS-induced hepatitis compared with control animals. In contrast, inhibition of PBEF using FK866 protected mice from ConA-induced liver damage and apoptosis. Administration of FK866 resulted in depletion of liver nicotinamide adenine dinucleotide+ levels and reduced proinflammatory cytokine expression. Additionally, FK866 protected mice in the D-galactosamine/LPS model of acute hepatitis. In vitro, PBEF-silenced mouse hepatocytes showed decreased responses after stimulation with LPS, lipoteichoic acid, and tumor necrosis factor α. In primary murine Kupffer cells, FK866 suppressed LPS-induced interleukin (IL)-6 production, whereas incubation with recombinant PBEF resulted in increased IL-6 release. Our data suggest that PBEF is of key importance in experimental hepatitis. Its specific inhibition might be considered a novel treatment option for inflammatory liver diseases. Copyright © 2011 American Association for the Study of Liver Diseases.
Cho, Young-Eun; Im, Eun-Ju; Moon, Pyong-Gon; Mezey, Esteban; Song, Byoung-Joon; Baek, Moon-Chang
2017-01-01
Drug- and alcohol-induced liver injury are a leading cause of liver failure and transplantation. Emerging evidence suggests that extracellular vesicles (EVs) are a source of biomarkers because they contain unique proteins reflecting the identity and tissue-specific origin of the EV proteins. This study aimed to determine whether potentially hepatotoxic agents, such as acetaminophen (APAP) and binge alcohol, can increase the amounts of circulating EVs and evaluate liver-specific EV proteins as potential biomarkers for liver injury. The circulating EVs, isolated from plasma of APAP-exposed, ethanol-fed mice, or alcoholic hepatitis patients versus normal control counterparts, were characterized by proteomics and biochemical methods. Liver specific EV proteins were analyzed by immunoblots and ELISA. The amounts of total and liver-specific proteins in circulating EVs from APAP-treated mice significantly increased in a dose- and time-dependent manner. Proteomic analysis of EVs from APAP-exposed mice revealed that the amounts of liver-specific and/or hepatotoxic proteins were increased compared to those of controls. Additionally, the increased protein amounts in EVs following APAP exposure returned to basal levels when mice were treated with N-acetylcysteine or glutathione. Similar results of increased amounts and liver-specific proteins in circulating EVs were also observed in mice exposed to hepatotoxic doses of thioacetamide or d-galactosamine but not by non-hepatotoxic penicillin or myotoxic bupivacaine. Additionally, binge ethanol exposure significantly elevated liver-specific proteins in circulating EVs from mice and alcoholics with alcoholic hepatitis, compared to control counterparts. These results indicate that circulating EVs in drug- and alcohol-mediated hepatic injury contain liver-specific proteins that could serve as specific biomarkers for hepatotoxicity. PMID:28225807
Kobayashi, Yoshinori; Mori, Masaaki; Naruto, Takuya; Kobayashi, Naoki; Sugai, Toshiyuki; Imagawa, Tomoyuki; Yokota, Shumpei
2004-12-01
In the process of apoptosis, it is known that the transition of cytochrome c from mitochondria into the cytosol occurs, and tumor necrosis factor (TNF)-alpha is one of the molecules responsible for this event. But in the state of hypercytokine induced by D-galactosamine (D-GaIN)/Lipopolysaccharide (LPS), the localization of cytochrome c is little known. Rats were administrated with D-GaIN(700 mg/kg)/LPS(200 microg/kg). Blood and tissue samples were collected and examined for levels of pro-inflammatory cytokines, the apoptosis of liver cells, and the localization of cytochrome c. Before administration of D-GaIN/LPS, cytochrome c was definitely localized in the mitochondria. At 2 h after simultaneous administration of D-GaIN/LPS, cytochrome c had accumulated in the cytosol following abrupt increases of plasma TNF-alpha. Massive cell destruction due to apoptosis proved by Terminal deoxynucleo-tidyl transferase-mediated dUTP nick end labeling staining was observed in liver tissue 4 h later and markedly increased levels of cytochrome c were detected in the plasma 12 h after D-GaIN/LPS administration. Liver injury induced by simultaneous administration of D-GaIN/LPS was closely associated with the production of TNF-alpha, and also with the dynamic movement of cytochrome c from the mitochondria into the cytosol, and then into the systemic circulation. The detection of plasma cytochrome c levels may be a useful clinical tool for the detection of apoptosis in vivo.
Bang, Renate; Sass, Gabriele; Kiemer, Alexandra K; Vollmar, Angelika M; Neuhuber, Winfried L; Tiegs, Gisa
2003-04-01
Previously, we have shown that primary afferent sensory neurons are necessary for disease activity in T cell-mediated immune hepatitis in mice. In the present study, we analyzed the possible role of substance P (SP), an important proinflammatory neuropeptide of these nerve fibers, in an in vivo mouse model of liver inflammation. Liver injury was induced by bacterial lipopolysaccharide (LPS) in D-galactosamine (GalN)-sensitized mice. Depletion of primary afferent nerve fibers by neonatal capsaicin treatment down-regulated circulating levels of the proinflammatory cytokines tumor necrosis factor-alpha (TNFalpha) and interferon-gamma (IFNgamma) and protected mice from GalN/LPS-induced liver injury. Likewise, pretreatment of mice with antagonists of the SP-specific neurokinin-1 receptor (NK-1R), i.e., (2S,3S)-cis-2-(diphenylmethyl)-N-((2-methoxyphenyl)-methyl)-1-azabicyclo(2.2.2.)-octan-3-amine (CP-96,345) and (2S,3S)3-([3,5-bis(trifluoromethyl)phenyl]methoxy)-2-phenylpiperidine (L-733,060), dose dependently protected mice from GalN/LPS-induced liver injury. The presence of the NK-1R in the murine liver was demonstrated by reverse transcription-polymerase chain reaction, sequence analysis, and immunocytochemistry. NK-1R blockade reduced inflammatory liver damage, i.e., edema formation, neutrophil infiltration, hepatocyte apoptosis, and necrosis. To get further insight into the mechanism by which receptor blockade attenuated GalN/LPS-induced liver damage, we analyzed plasma levels and intrahepatic expression of TNFalpha, IFNgamma, interleukin (IL)-6, and IL-10. NK-1R blockade clearly inhibited GalN/LPS-induced production of TNFalpha and IFNgamma, whereas synthesis of the hepatoprotective cytokines IL-6 and IL-10 was increased. NK-1 receptor antagonists might be potent drugs for treatment of inflammatory liver disease, most likely by inhibiting SP effects.
Kim, Jae Kwang; Lee, Ji Eun; Jung, Eun Hye; Jung, Ji Yun; Jung, Dae Hwa; Ku, Sae Kwang; Cho, Il Je; Kim, Sang Chan
2018-01-01
Hemistepsin A (HsA) is a sesquiterpene lactone isolated from Hemistepta lyrata (Bunge) Bunge. We investigated the anti-inflammatory effects of HsA and sought to determine its mechanisms of action in macrophages. HsA pretreatment inhibited nitric oxide production, and reduced the expression of iNOS and COX-2 in Toll-like receptor ligand-stimulated RAW 264.7 cells. Additionally, HsA decreased the secretion of proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated Kupffer cells as well as in RAW 264.7 cells. HsA inhibited phosphorylation of IKKα/β and degradation of IκBα, resulting in decreased nuclear translocation of nuclear factor-κB (NF-κB) and its transcriptional activity. Moreover, HsA phosphorylated nuclear factor erythroid 2-related factor 2 (Nrf2), increased expression levels of antioxidant genes, and attenuated LPS-stimulated H 2 O 2 production. Phosphorylation of p38 and c-Jun N-terminal kinase was required for HsA-mediated Nrf2 phosphorylation. In a D-galactosamine/LPS-induced liver injury model, HsA ameliorated D-galactosamine/LPS-induced hepatocyte degeneration and inflammatory cells infiltration. Moreover, immunohistochemical analyses using nitrotyrosine, 4-hydroxynonenal, and cleaved poly (ADP-ribose) polymerase antibodies revealed that HsA protected the liver from oxidative stress. Furthermore, HsA reduced the numbers of proinflammatory cytokine-positive cells in hepatic tissues. Thus, these results suggest HsA may be a promising natural product to manage inflammation-mediated tissue injuries through inhibition of NF-κB and activation of Nrf2. Copyright © 2017 Elsevier Ltd. All rights reserved.
Protection of a Ceramide Synthase 2 Null Mouse from Drug-induced Liver Injury
Park, Woo-Jae; Park, Joo-Won; Erez-Roman, Racheli; Kogot-Levin, Aviram; Bame, Jessica R.; Tirosh, Boaz; Saada, Ann; Merrill, Alfred H.; Pewzner-Jung, Yael; Futerman, Anthony H.
2013-01-01
Very long chain (C22-C24) ceramides are synthesized by ceramide synthase 2 (CerS2). A CerS2 null mouse displays hepatopathy because of depletion of C22-C24 ceramides, elevation of C16-ceramide, and/or elevation of sphinganine. Unexpectedly, CerS2 null mice were resistant to acetaminophen-induced hepatotoxicity. Although there were a number of biochemical changes in the liver, such as increased levels of glutathione and multiple drug-resistant protein 4, these effects are unlikely to account for the lack of acetaminophen toxicity. A number of other hepatotoxic agents, such as d-galactosamine, CCl4, and thioacetamide, were also ineffective in inducing liver damage. All of these drugs and chemicals require connexin (Cx) 32, a key gap junction protein, to induce hepatotoxicity. Cx32 was mislocalized to an intracellular location in hepatocytes from CerS2 null mice, which resulted in accelerated rates of its lysosomal degradation. This mislocalization resulted from the altered membrane properties of the CerS2 null mice, which was exemplified by the disruption of detergent-resistant membranes. The lack of acetaminophen toxicity and Cx32 mislocalization were reversed upon infection with recombinant adeno-associated virus expressing CerS2. We establish that Gap junction function is compromised upon altering the sphingolipid acyl chain length composition, which is of relevance for understanding the regulation of drug-induced liver injury. PMID:24019516
Lumeij, J T; Meidam, M; Wolfswinkel, J; Van der Hage, M H; Dorrestein, G M
1988-01-01
Changes in plasma variables as a result of liver damage induced by ethylene glycol (group A) or D-galactosamine (group B) and of muscle damage induced by doxycycline were compared. Plasma bile acid concentration was both a specific and a sensitive indicator of liver disease. Another specific, but less sensitive indicator of liver disease was 7-GT. Plasma AS AT activity was the most sensitive indicator of disease of the liver, but was not specific, since increased ASAT activities were also seen during muscle disease. ALAT activity was slightly more sensitive to liver damage than 7-GT, but was also not specific, being increased also after muscle damage. Plasma GLDH activity was increased only as a result of extensive liver necrosis. AP activity was of no value for detecting liver disease in the pigeon. CK activity was specific for muscle injury, though the activities of ALAT, ASAT and LD were also increased. Because of its long elimination half-life, increased ALAT activity persisted for 9 days after muscle damage, whereas CK activity returned to reference values within 3 days. LDH was a poor indicator of damage to liver and muscle, despite its relatively high tissue concentrations in both tissues. The rapid disappearance rate of LDH from plasma probably explains this observation.
Changing interdigestive migrating motor complex in rats under acute liver injury.
Liu, Mei; Zheng, Su-Jun; Xu, Weihong; Zhang, Jianying; Chen, Yu; Duan, Zhongping
2014-01-01
Gastrointestinal motility disorder is a major clinical manifestation of acute liver injury, and interdigestive migrating motor complex (MMC) is an important indicator. We investigated the changes and characteristics of MMC in rats with acute liver injury. Acute liver injury was created by d-galactosamine, and we recorded the interdigestive MMC using a multichannel physiological recorder and compared the indexes of interdigestive MMC. Compared with normal controls, antral MMC Phase I duration was significantly prolonged and MMC Phase III duration was significantly shortened in the rats with acute liver injury. The duodenal MMC cycle and MMC Phases I and IV duration were significantly prolonged and MMC Phase III duration was significantly shortened in the rats with acute liver injury. The jejunal MMC cycle and MMC Phases I and IV duration were significantly prolonged and MMC Phase III duration was significantly shortened in the rats with acute liver injury compared with normal controls. Compared with the normal controls, rats with acute liver injury had a significantly prolonged interdigestive MMC cycle, related mainly to longer MMC Phases I and IV, shortened MMC Phase III, and MMC Phase II characterized by increased migrating clustered contractions, which were probably major contributors to the gastrointestinal motility disorders.
Matsuda, Hisashi; Ninomiya, Kiyofumi; Morikawa, Toshio; Yasuda, Daisuke; Yamaguchi, Itadaki; Yoshikawa, Masayuki
2009-10-15
The 80% aqueous acetone extract from the fruit of Piper chaba (Piperaceae) was found to have hepatoprotective effects on D-galactosamine (D-GalN)/lipopolysaccharide-induced liver injury in mice. From the ethyl acetate-soluble fraction, three new amides, piperchabamides E, G, and H, 33 amides, and four aromatic constituents were isolated. Among the isolates, several amide constituents inhibited D-GalN/tumor necrosis factor-alpha (TNF-alpha)-induced death of hepatocytes, and the following structural requirements were suggested: (i) the amide moiety is essential for potent activity; and (ii) the 1,9-decadiene structure between the benzene ring and the amide moiety tended to enhance the activity. Moreover, a principal constituent, piperine, exhibited strong in vivo hepatoprotective effects at doses of 5 and 10 mg/kg, po and its mode of action was suggested to depend on the reduced sensitivity of hepatocytes to TNF-alpha.
GDF‑15 prevents LPS and D‑galactosamine‑induced inflammation and acute liver injury in mice.
Li, Min; Song, Kui; Huang, Xiaowen; Fu, Simao; Zeng, Qiyi
2018-06-27
Growth differentiation factor‑15 (GDF‑15) is a transforming growth factor (TGF)‑β superfamily member with a poorly characterized biological activity, speculated to be implicated in several diseases. The present study aimed to determine whether GDF‑15 participates in sepsis‑induced acute liver injury in mice. Lipopolysaccharide (LPS) and D‑galactosamine (D‑GalN) were administered to mice to induce acute liver injury. Survival of mice, histological changes in liver tissue, and levels of inflammatory biomarkers in serum and liver tissue were evaluated following treatment with GDF‑15. The underlying mechanism was investigated by western blotting, ELISA, flow cytometry, and reverse transcription‑quantitative polymerase chain reaction using Kupffer cells. The results demonstrated that GDF‑15 prevented LPS/D‑GalN‑induced death, increase in inflammatory cell infiltration and serum alanine aminotransferase and aspartate aminotransferase activities. In addition, GDF‑15 treatment reduced the production of hepatic malondialdehyde and myeloperoxidase, and attenuated the increase of interleukin (IL)‑6, tumor necrosis factor (TNF)‑α, and IL‑1β expression in serum and liver tissue, accompanied by inducible nitric oxide synthase (iNOS) inactivation in the liver. Similar changes in the expression of inflammatory cytokines, IL‑6, TNF‑α and IL‑1β, and iNOS activation were observed in the Kupffer cells. Further mechanistic experiments revealed that GDF‑15 effectively protected against LPS‑induced nuclear factor (NF)‑κB pathway activation by regulating TGFβ‑activated kinase 1 (TAK1) phosphorylation in Kupffer cells. In conclusion, GDF‑15 reduced the activation of pro‑inflammatory factors, and prevented LPS‑induced liver injury, most likely by disrupting TAK1 phosphorylation, and consequently inhibiting the activation of the NF‑κB pathway in the liver.
Busbee, Philip B.; Nagarkatti, Mitzi; Nagarkatti, Prakash S.
2015-01-01
Staphylococcal enterotoxin B (SEB) is a potent superantigen capable of inducing inflammation characterized by robust immune cell activation and proinflammatory cytokine release. Exposure to SEB can result in food poisoning as well as fatal conditions such as toxic shock syndrome. In the current study, we investigated the effect of natural indoles including indole-3-carbinol (I3C) and 3,3’-diindolylmethane (DIM) on SEB-mediated liver injury. Injection of SEB into D-galactosamine-sensitized female C57BL/6 mice resulted in liver injury as indicated by an increase in enzyme aspartate transaminase (AST) levels, induction of inflammatory cytokines, and massive infiltration of immune cells into the liver. Administration of I3C and DIM (40mg/kg), by intraperitonal injection, attenuated SEB-induced acute liver injury, as evidenced by decrease in AST levels, inflammatory cytokines and cellular infiltration in the liver. I3C and DIM triggered apoptosis in SEB-activated T cells primarily through activation of the intrinsic mitochondrial pathway. In addition, inhibitor studies involving caspases revealed that I3C and DIM-mediated apoptosis in these activated cells was dependent on caspase-2 but independent of caspase-8, 9 and 3. In addition, I3C and DIM caused a decrease in Bcl-2 expression. Both compounds also down-regulated miR-31, which directly targets caspase-2 and influences apoptosis in SEB-activated cells. Our data demonstrate for the first time that indoles can effectively suppress acute hepatic inflammation caused by SEB and that this may be mediated by decreased expression of miR-31 and consequent caspase-2-dependent apoptosis in T cells. PMID:25706292
[Prophylactic and therapeutic effect of oxymatrine on D-galactosamine-induced rat liver fibrosis].
Yang, Wenzhuo; Zeng, Minde; Fan, Zhuping; Mao, Yimin; Song, Yulin; Jia, Yitao; Lu, Lungen; Chen, Cheng Wei; Peng, Yan Shen; Zhu, Hong Yin
2002-06-01
To investigate the prophylactic and therapeutic effect of oxymatrine on experimental liver fibrosis and to reveal its mechanism. By establishing D-galactosamine-induced rat liver fibrosis model, we observed the effect of oxymatrine on serum and tissue biochemical indexes, content of liver hydroxyline, expression of TGF?1 mRNA and changes of tissue pathology. There was a decline of liver hydroxyline and serum AST and ALT in oxymatrine group compared to those of the D-GalN group. The hydroxyline content in oxymatrine pretreatment group was (0.50 0.11)mug/mg compared with (0.99 0.14)mug/mg in D-GalN group (t=8.366, P<0.01). The content in oxymatrine treatment group was (0.44 0.04)mug/mg compared with 0.70 0.06 in D-GalN group (t=9.839, P<0.01). The SOD activity was (149.81 15.28) NU/mg in oxymatrine pretreatment group and (95.22 16.33) NU/mg in the model group (t=7.309, P<0.01); (157.68 19.54) NU/mg in the treatment group compared with (119.88 14.94) NU/mg in the model group (t=4.348, P<0.01). MDA in the pretreatment group was (2.06 0.17) nmol/mg, lower than (4.57 0.37) nmol/mg in the model group (t=17.529, P<0.01). In the treatment group, it was (1.76 0.24)nmol/mg, lower than (3.10 0.17) nmol/mg in the model group (t=12.697, P<0.01). TGF?1 mRNA reduced in the pretreatment and treatment groups as compared with that in the model group (0.21 0.01 vs 0.50 0.01, t=48.665, P<0.01; 0.18 0.02 vs 0.38 0.01, t=22.464, P<0.01). Electron microscopy showed that oxymatrine group had milder hepatocyte degeneration and less fibrosis accumulation than did the model group. Microscopy revealed wide septa expansion from the portal area to the central venous, piecemeal and confluent necrosis and pseudo-nodular formation in part of the lobular in the model group. While in oxymatrine group these lesions were much improved. Oxymatrine shows prophylactic and therapeutic effect in D-galactosamine induced rat liver fibrosis. This is partly by protecting hepatocyte and suppressing fibrosis accumulation through anti-lipoperoxidation.
Kawano, Naoko; Egashira, Yukari; Sanada, Hiroo
2007-08-01
In the present study we investigated the effects of 11 kinds of edible seaweeds (6 brown and 5 red algae) which contain characteristic seaweed dietary fibers on the induction of D-GalN (D-galactosamine)-hepatopathy in rats (Exps. 1 and 2). Then, the efficacy of various components prepared from Gelidium sp., which was found to alleviate the hepatopathy in Exps. 1 and 2, was examined (Exp. 3). The rats were fed the diets containing various kinds of seaweeds (Exps. 1 and 2), or several components of Gelidium sp. such as total dietary fiber (TDF), soluble dietary fiber (SDF), insoluble dietary fiber (IDF) and dietary fiber-free components (DFFC) (Exp. 3), for 8 d. The rats in all experiments were injected with D-GalN (800 mg/kg body weight) intraperitoneally at the 7th day to induce liver injury and were sacrificed 24 h after the injection of D-GalN. The serum transaminase activities (ALT and AST) and lactate dehydrogenase (LDH) were determined to evaluate the levels of hepatopathy. In Exp. 3, the total GSH concentration in the liver, plasma and cecal contents and organic acid concentration in cecal contents were also evaluated. In Exps. 1 and 2, repressive effects against D-GalN-hepatopathy were shown by four seaweeds Laminaria sp., Gelidium sp., Sargassum fulvellum and Eisenia bicyclis. In Exp. 3, it was found that protective activity in Gelidium sp. against D-GalN-hepatopathy existed not only in the SDF but also in the DFFC fraction. The results in Exp. 3 also indicated that the total GSH but not organic acid concentration in the cecal contents were significantly correlated with serum AST activity, suggesting that the protective effect of Gelidium sp. on D-GalN-hepatopathy in rats is related to GSH metabolism in the intestine.
Koide, Naoki; Morikawa, Akiko; Odkhuu, Erdenezaya; Haque, Abedul; Badamtseren, Battuvshin; Naiki, Yoshikazu; Komatsu, Takayuki; Yoshida, Tomoaki; Yokochi, Takashi
2012-02-01
The LPS-mediated lethality of NC/Nga mice, having fewer NKT cells, was examined by using d-galactosamine (d-GalN)-sensitization. The NC/Nga mice were not killed by a simultaneous administration of d-GalN and LPS whereas all C57BL/6 (B6) control mice were killed. The injection of d-GalN and LPS failed to elevate the levels of serum alanine aminotransferase and caspase 3 in the liver tissues of NC/Nga mice. Further, the nitric oxide (NO) level of the d-GalN- and LPS-injected NC/Nga mice was much lower than those of the B6 mice. The expression of an inducible NO synthase (iNOS) was significantly reduced in the livers of NC/Nga mice. However, there was no significant difference in LPS-induced TNF-α production between B6 mice and NC/Nga mice. The NC/Nga mice had an impaired expression of IFN-γ protein and mRNA in response to d-GalN and LPS. The pretreatment with α-galactosylceramide (α-GalCer), which activates Vα14(+) NKT cells and induces the production of IFN-γ, rendered NC/Nga mice more susceptible to the LPS-mediated lethality. The livers of NC/Nga mice had fewer NKT cells compared to B6 mice. Taken together, it is suggested that the resistance of NC/Nga mice to the LPS-mediated lethality with d-GalN sensitization depended on the impaired IFN-γ production caused by fewer NKT cells and reduced NO production that followed.
Peng, Yuan; Chen, Qian; Yang, Tao; Tao, Yanyan; Lu, Xiong; Liu, Chenghai
2014-03-01
Cultured mycelium Cordyceps sinensis (CMCS) was widely used for a variety of diseases including liver injury, the current study aims to investigate the protective effects of CMCS on liver sinusoidal endothelial cells (LSECs) in acute injury liver and related action mechanisms. The mice were injected intraperitoneally with lipopolysaccharide (LPS) and D-galactosamine (D-GalN). 39 male BABL/c mice were randomly divided into four groups: normal control, model control, CMCS treatment and 1,10-phenanthroline treatment groups. The Serum liver function parameters including alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were assayed with the commercial kit. The inflammation and scaffold structure in liver were stained with hematoxylin and eosin and silver staining respectively. The LSECs and sub-endothelial basement membrane were observed with the scanning and transmission electronic microscope. The protein expressions of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in liver were analyzed with Western blotting. Expression of von Willebrand factor (vWF) was investigated with immunofluorescence staining. The lipid peroxidation indicators including antisuperoxideanion (ASAFR), hydroxyl free radical (·OH), superoxide dismutase (SOD), malondialdehyde and glutathione S-transferase (GST) were determined with kits, and matrix metalloproteinase-2 and 9 (MMP-2/9) activities in liver were analyzed with gelatin zymography and in situ fluorescent zymography respectively. The model mice had much higher serum levels of ALT and AST than the normal mice. Compared to that in the normal control, more severe liver inflammation and hepatocyte apoptosis, worse hepatic lipid peroxidation demonstrated by the increased ASAFR, ·OH and MDA, but decreased SOD and GST, increased MMP-2/9 activities and VCAM-1, ICAM-1 and vWF expressions, which revealed obvious LSEC injury and scaffold structure broken, were shown in the model control. Compared with the model group, CMCS and 1,10-phenanthroline significantly improved serum ALT/AST, attenuated hepatic inflammation and improved peroxidative injury in liver, decreased MMP-2/9 activities in liver tissue, improved integration of scaffold structure, and decreased protein expression of VCAM-1 and ICAM-1. CMCS could protect LSECs from injury and maintain the microvasculature integration in acute injured liver of mice induced by LPS/D-GalN. Its action mechanism was associated with the down-regulation of MMP-2/9 activities and inhibition of peroxidation in injured liver.
El-Agamy, Dina S; Makled, Mirhan N; Gamil, Nareman M
2014-06-01
Fulminant hepatic failure (FHF) is a life-threatening syndrome characterized by massive hepatic necrosis and high mortality. There is no effective therapy for the disease other than liver transplantation. This study aimed to investigate the effect of agmatine, inducible nitric oxide synthase (iNOS) inhibitor, on D-galactosamine and lipopolysaccharide (GalN/LPS)-induced FHF in mice and explore its possible mechanism(s). Male Swiss albino mice were injected with a single dose agmatine (14 mg/kg, IP) 8 h prior to challenge with a single intraperitoneal injection of both GalN (800 mg/kg) and LPS (50 μg/kg). Agmatine significantly attenuated all GalN/LPS-induced biochemical and pathological changes in liver. It prevented the increase of serum transaminases and alkaline phosphatase (ALP). In addition, agmatine markedly attenuated GalN/LPS-induced necrosis and inflammation. Agmatine significantly reduced oxidative stress and enhanced antioxidant enzymes. Importantly, agmatine decreased total nitric oxide (NO) and pro-inflammatory cytokine, tumor necrosis factor-alpha (TNF-α). These findings reveal that agmatine has hepatoprotective effects against GalN/LPS-induced FHF in mice that may be related to its ability to suppress oxidative stress, NO synthesis and TNF-α production. Therefore, agmatine may serve as a novel therapeutic strategy for hepatic inflammatory diseases.
Sobeh, Mansour; Mahmoud, Mona F; Hasan, Rehab A; Cheng, Haroan; El-Shazly, Assem M; Wink, Michael
2017-09-08
Natural products are considered as an important source for the discovery of new drugs to treat aging-related degenerative diseases and liver injury. The present study profiled the chemical constituents of a methanol extract from Senna singueana bark using HPLC-PDA-ESI-MS/MS and 36 secondary metabolites were identified. Proanthocyanidins dominated the extract. Monomers, dimers, trimers of (epi)catechin, (epi)gallocatechin, (epi)guibourtinidol, (ent)cassiaflavan, and (epi)afzelechin represented the major constituents. The extract demonstrated notable antioxidant activities in vitro: In DPPH (EC 50 of 20.8 µg/mL), FRAP (18.16 mM FeSO₄/mg extract) assays, and total phenolic content amounted 474 mg gallic acid equivalent (GAE)/g extract determined with the Folin-Ciocalteu method. Also, in an in vivo model, the extract increased the survival rate of Caenorhabditis elegans worms pretreated with the pro-oxidant juglone from 43 to 64%, decreased intracellular ROS inside the wild-type nematodes by 47.90%, and induced nuclear translocation of the transcription factor DAF-16 in the transgenic strain TJ356. Additionally, the extract showed a remarkable hepatoprotective activity against d-galactosamine (d-GalN) induced hepatic injury in rats. It significantly reduced elevated AST (aspartate aminotransferase), and total bilirubin. Moreover, the extract induced a strong cytoplasmic Bcl-2 expression indicating suppression of apoptosis. In conclusion, the bark extract of S. sengueana represents an interesting candidate for further research in antioxidants and liver protection.
Sobeh, Mansour; Mahmoud, Mona F; Abdelfattah, Mohamed A O; El-Beshbishy, Hesham A; El-Shazly, Assem M; Wink, Michael
2017-09-15
Liver diseases and diabetes are serious health disorders associated with oxidative stress and ageing. Some plant polyphenols can lower the risk of these diseases. We investigated the phytochemical profiling of a root extract from Ximenia americana var. caffra using HPLC-PDA-ESI-MS/MS. The antioxidant activities in vitro were investigated. The hepatoprotective activities were studied in rat models with d-galactosamine (d-GaIN)-induced hepatotoxicity and the antidiabetic activities in STZ-diabetic rats were also investigated. HPLC-PDA-ESI-MS/MS was used to identify plant phenolics. The antioxidant activities in vitro were determined using DPPH and FRAP assays. The in vivo hepatoprotective activities were determined for d-GaIN-induced hepatotoxicity in rats. We determined the liver markers alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyltransferase (GGT), liver peroxidation product malondialdehyde (MDA), glutathione content (GSH), albumin and total bilirubin concentration. The histopathological changes in rat liver were also studied. The antidiabetic activities were also investigated in STZ-diabetic rats and serum glucose, serum insulin hormone, and lipid peroxides were determined. The root extract is rich in tannins with 20 compounds including a series of stereoisomers of (epi)catechin, (epi)catechin-(epi)catechin, (epi)catechin-(epi)catechin-(epi)catechin, and their galloyl esters. Promising antioxidant potential was observed in vitro in DPPH assay with EC 50 of 6.5 µg extract / 26 µg raw material and in FRAP assay with 19.54 mM FeSO 4 compared with ascorbic acid (EC 50 of 2.92 µg/ml) and quercetin (FeSO 4 24.04 mM/mg), respectively. Significant reduction of serologic enzymatic markers and hepatic oxidative stress markers such as ALT, AST, MDA, GGT, and total bilirubin, as well as elevation of GSH and albumin were observed in rats with d-galactosamine-induced liver damage treated with the extract. These findings agree with a histopathological examination suggesting a hepatoprotective potential for the root extract. The root extract can mediate an antidiabetic effect by reducing elevated blood glucose and serum lipid peroxides levels and by increasing insulin in STZ-diabetic rats by -107, -31.1, +11.3%, respectively. The results of this study suggest that the tannin-rich extract from Ximenia americana var. caffra could be an interesting candidate for the treatment of several health disorders associated with oxidative stress such as hepatocellular injury and diabetes. Copyright © 2017. Published by Elsevier GmbH.
[Dynamic detection of duck hepatitis B virus cccDNA in serum of ducks with liver injury].
Zhao, Ke-kai; Wang, Qing; Miao, Xiao-hui; Xu, Wen-sheng
2010-09-21
To confirm whether DHBV cccDNA could be detected in serum of DHBV-infected ducks after liver injury. Twenty four ducks with persistent DHBV infection were divided into 4 groups with the following treatments: A, D-galactosamine (D-GalN, 2.2 g/kg) and lipopolysaccharide (LPS, 100 µg/kg); B, 10 mg/kg of carbon tetrachloride (CCl4) every 12 h twice following D-GalN and LPS; C, 15 mg/kg of CCl4 every 12 h twice following D-GalN and LPS; D, normal saline as normal control (NC). At 0 h, 24 h, 36 h and 48 h post-treatment, sera were collected from each duck for determination of serum DHBV load, DHBV cccDNA and alanine aminotransferase (ALT). And ducks were eventually sacrificed to obtain liver specimens for pathological assessment of liver lesions and determination of intrahepatic total DHBV DNA and DHBV cccDNA. (1) No obvious pathological change was observed in the liver of ducks from NC group while the indices of liver injury were significantly different between Groups A, B and C; (2) DHBV cccDNA was undetectable in the sera of ducks from NC and A group at all time points. In contrast, DHBV cccDNA, varying from 3.17 × 10(3) copies/ml to 1.72 × 10(4) copies/ml, was detected in the sera of 2 ducks from Group B and 3 ducks from Group C at 36 h post-treatment. The occurrence of DHBV cccDNA in serum was significantly correlated with the degree of liver injury while no significant association with serum ALT level and DHBV load as well as with the level of intrahepatic total DHBV DNA and DHBV cccDNA was observed. DHBV cccDNA may be detected in the serum when the liver of duck is seriously damaged. The incidence of DHBV cccDNA occurrence in the serum is significantly associated with the severity of liver injury.
Interleukin-23 mediates the pathogenesis of LPS/GalN-induced liver injury in mice.
Bao, Suxia; Zhao, Qiang; Zheng, Jianming; Li, Ning; Huang, Chong; Chen, Mingquan; Cheng, Qi; Zhu, Mengqi; Yu, Kangkang; Liu, Chenghai; Shi, Guangfeng
2017-05-01
Interleukin-23 (IL-23) is required for T helper 17 (Th17) cell responses and IL-17 production in hepatitis B virus infection. A previous study showed that the IL-23/IL-17 axis aggravates immune injury in patients with chronic hepatitis B virus infection. However, the role of IL-23 in acute liver injury remains unclear. The purpose of this study was to determine the role of the inflammatory cytokine IL-23 in lipopolysaccharide/d-galactosamine (LPS/GalN)-induced acute liver injury in mice. Serum IL-23 from patients with chronic hepatitis B virus (CHB), acute-on-chronic liver failure (ACLF) and healthy individuals who served as healthy controls (HCs) was measured by ELISA. An IL-23p19 neutralizing antibody or an IL-23p40 neutralizing antibody was administered intravenously at the time of challenge with LPS (10μg/kg) and GalN (400mg/kg) in C57BL/6 mice. Hepatic pathology and the expression of Th17-related cytokines, including IL-17 and TNF-α; neutrophil chemoattractants, including Cxcl1, Cxcl2, Cxcl9, and Cxcl10; and the stabilization factor Csf3 were assessed in liver tissue. Serum IL-23 was significantly upregulated in ACLF patients compared with CHB patients and HCs (P<0.05 for both). Serum IL-23 was significantly upregulated in the non-survival group compared with the survival group of ACLF patients, which was consistent with LPS/GalN-induced acute hepatic injury in mice (P<0.05 for both). Moreover, after treatment, serum IL-23 was downregulated in the survival group of ACLF patients (P<0.001). Compared with LPS/GalN mice, mice treated with either an IL-23p19 neutralizing antibody or an IL-23p40 neutralizing antibody showed less severe liver tissue histopathology and significant reductions in the expression of Th17-related inflammatory cytokine, including IL-17 and TNF-α; neutrophil chemoattractants, including Cxcl1, Cxcl2, Cxcl9, and Cxcl10; and stabilization factors Csf3 within the liver tissue compared with LPS/GalN mice (P<0.05 for all). High serum IL-23 was associated with mortality in ACLF patients and LPS/GalN-induced acute liver injury in mice. IL-23 neutralizing antibodies attenuated liver injury by reducing the expression of Th17-related inflammatory cytokines, neutrophil chemoattractants and stabilization factors within the liver tissue, which indicated that IL-23 likely functions upstream of Th17-related cytokine and chemokine expression to recruit inflammatory cells into the liver. Copyright © 2017 Elsevier B.V. All rights reserved.
Lv, Longxian; Yang, Jianzhuan; Lu, Haifeng; Li, Lanjuan
2015-01-01
Lipopolysaccharide (LPS) has essential role in the pathogenesis of D-galactosamine-sensitized animal models and alcoholic liver diseases of humans, by stimulating release of pro-inflammatory mediators that cause hepatic damage and intestinal barrier impairment. Oral pretreatment of probiotics has been shown to attenuate LPS-induced hepatic injury, but it is unclear whether the effect is direct or due to improvement in the intestinal barrier. The present study tested the hypothesis that pretreatment with probiotics enables the liver to withstand directly LPS-induced hepatic injury and inflammation. In a mouse model of LPS-induced hepatic injury, the levels of hepatic tumor necrosis factor-alpha (TNF-α) and serum alanine aminotransferase (ALT) of mice with depleted intestinal commensal bacteria were not significantly different from that of the control models. Pre-feeding mice for 10 days with Lactobacillus fermentum ZYL0401 (LF41), significantly alleviated LPS-induced hepatic TNF-α expression and liver damage. After LF41 pretreatment, mice had dramatically more L.fermentum-specific DNA in the ileum, significantly higher levels of ileal cyclooxygenase (COX)-2 and interleukin 10 (IL-10) and hepatic prostaglandin E2 (PGE2). However, hepatic COX-1, COX-2, and IL-10 protein levels were not changed after the pretreatment. There were also higher hepatic IL-10 protein levels after LPS challenge in LF41-pretreaed mice than in the control mice. Attenuation of hepatic TNF-α was mediated via the PGE2/E prostanoid 4 (EP4) pathway, and serum ALT levels were attenuated in an IL-10-dependent manner. A COX-2 blockade abolished the increase in hepatic PGE2 and IL-10 associated with LF41. In LF41-pretreated mice, a blockade of IL-10 caused COX-2-dependent promotion of hepatic PGE2, without affecting hepatic COX-2levels. In LF41-pretreated mice, COX2 prevented enhancing TNF-α expression in both hepatic mononuclear cells and the ileum, and averted TNF-α-mediated increase in intestinal permeability. Together, we demonstrated that LF41 pre-feeding enabled the liver to alleviate LPS-induced hepatic TNF-α expression and injury via a PGE2-EP4- and IL-10-dependent mechanism. PMID:25978374
Atwa, Ahmed; Hegazy, Rehab; Mohsen, Rania; Yassin, Neamat; Kenawy, Sanaa
2017-01-01
BACKGROUND: Renal dysfunction is very common in patients with advanced liver cirrhosis and portal hypertension. The development of renal failure in the absence of clinical, anatomical or pathological causes renal of failure is termed hepatorenal syndrome (HRS). AIM: The present study was constructed to investigate the possible protective effects of nebivolol (Nebi) against D-galactosamine (Gal)-induced HRS in rats. MATERIAL AND METHODS: Rats were treated with Nebi for ten successive days. On the 8th day of the experiment, they received a single dose of Gal. Serum levels of Cr, BUN, Na+ and K+ as well as AST, ALT, total bilirubin (TB), NH3 and endothelin-1 (ET-1) were determined following Gal administration. Moreover, renal and liver contents of MDA, GSH, F2-isoprostanes (F2-IPs), tumor necrosis factor-alpha (TNF-α), nuclear factor kappa-B (NF-κB), total nitric oxide (NO), in addition to activities of caspase-3 (Cas-3), heme oxygenase-1 (HO-1), inducible and endothelial NO synthase (iNOS and eNOS) enzymes were also assessed. Finally, histopathological examination was performed. RESULTS: Nebi attenuated Gal-induced renal and hepatic dysfunction. It also decreased the Gal-induced oxidative stress and inflammatory recruitment. CONCLUSION: Results demonstrated both nephroprotective and hepatoprotective effects of Nebi against HRS and suggested a role of its antioxidant, anti-inflammatory, anti-apoptotic and NO-releasing properties. PMID:29362613
Mir-24 regulates hepatocyte apoptosis via BIM during acute liver failure.
Feng, Zhiwen; Li, Zhi; Zhu, Deming; Ling, Wei; Zheng, Lei; Pu, Liyong; Kong, Lianbao
2017-01-01
Acuteliver failure (ALF) has a high mortality rate and is characterized by massive hepatocyte destruction. Although microRNAs (miRNAs) play an important role in manyliver diseases, the role of miRNAs in ALF development is unknown. In this study, the murine ALF model was induced by intraperitoneal injection of D-galactosamine/lipopolysaccharide (D-GalN/LPS). Compared with saline-treated mice, miR-24 was distinctly down-regulated post D-GalN/LPS challenge in vivo and D-galactosamine/tumor necrosis factor (D-GalN/TNF) challenge in vitro , which was confirmed by quantitative real-time polymerase chain reaction. Meanwhile, the mRNA and protein levels of the BH3-only-domain-containing protein BIM were upregulated after challenge both in vivo and in vitro . Previous studies have demonstrated that hepatocyte apoptosis is a distinguishing feature of D-GalN/LPS-associated liver failure. In this study, D-GalN/LPS-challenged mice showed higher alanine aminotransferase and aspartate aminotransferase levels, more severe liver damage, increased numbers of apoptotic hepatocytes and higher levels of caspase-3 compared with saline-treated mice. In D-GalN/TNF-treated BNLCL2 cells, miR-24 overexpression attenuated apoptosis.Furthermore, miR-24 overexpression reduced BIM mRNA and protein levels in vitro . Taken together, these findings demonstrate that miR-24 regulates hepatocyte apoptosis via BIM during ALF development, suggesting that miR-24 is a novel onco-miRNA that may provide potential therapeutic targets for ALF.
Li, Yangxi; Cao, Guoshuai; Zheng, Xiaodong; Wang, Jun; Wei, Haiming; Tian, Zhigang; Sun, Rui
2013-01-01
CD2-like receptor activating cytotoxic cells (CRACC) is known as a critical activating receptor of natural killer (NK) cells. We have previously reported that NK cells contribute to Poly I:C/D-galactosamine (D-GalN)-induced fulminant hepatitis. Since natural killer group 2, member D (NKG2D) is considered critical but not the only activating receptor for NK cells, we investigated the role of CRACC in this model. We found that CRACC was abundant on hepatic NK cells but with low expression levels on Kupffer cells under normal conditions. Expression of CRACC on NK cells and Kupffer cells was remarkably upregulated after poly I:C injection. Hepatic CRACC mRNA levels were also upregulated in Poly I:C/D-GalN-treated mice, and correlated positively with the serum alanine aminotransferase (ALT) levels. CRACC expression on Kupffer cells was specifically silenced by nano-particle encapsulated siRNA in vivo, which significantly reduced Poly I:C/D-GalN-induced liver injury. In co-culture experiments, it was further verified that silencing CRACC expression or blockade of CRACC activation by mAb reduced the production of interferon (IFN)-γ and tumor necrosis factor (TNF)-α. Collectively, our findings suggest that CRACC-CRACC interaction between NK cells and resident Kupffer cells contributes to Poly I:C/D-GalN-induced fulminant hepatitis. PMID:24098802
Leonis, Mike A; Toney-Earley, Kenya; Degen, Sandra J F; Waltz, Susan E
2002-11-01
The targeted deletion of the cytoplasmic domain of the Ron receptor tyrosine kinase (TK) in mice leads to exaggerated responses to injury in several murine models of inflammation as well as increased lethality in response to endotoxin (lipopolysaccharide [LPS]). Using a well-characterized model of LPS-induced acute liver failure (ALF) in galactosamine (GalN)-sensitized mice, we show that Ron TK(-/-) mice display marked protection compared with control Ron TK(+/+) mice. Whereas control mice have profound elevation of serum aminotransferase levels (a marker of hepatocyte injury) and hemorrhagic necrosis of the liver, in dramatic contrast, Ron TK(-/-) mice have mild elevation of aminotransferase levels and relatively normal liver histology. These findings are associated with a reduction in the number of liver cells undergoing apoptosis in Ron TK(-/-) mice. Paradoxically, treatment of Ron TK(-/-) mice with LPS/GalN leads to markedly elevated (3.5-fold) serum levels of tumor necrosis factor (TNF) alpha, a key inflammatory mediator in this liver injury model, as well as reduced amounts of interleukin (IL) 10 (a suppressor of TNF-alpha production) and interferon (IFN)-gamma (a TNF-alpha sensitizer). These results show that ablation of the TK activity of the Ron receptor leads to protection from the development of hepatocellular apoptosis in response to treatment with LPS/GalN, even in the presence of excessive levels of serum TNF-alpha. In conclusion, our studies show that the Ron receptor TK plays a critical role in modulating the response of the liver to endotoxin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Xinru
Glycyrrhetinic acid (GA), the main active ingredient of licorice, reportedly has anti-inflammatory and hepatoprotective properties, but its molecular mechanisms remain be elusive. In the present study, Balb/c mice were pretreated with GA (10, 30, or 100 mg/kg) 1 h before lipopolysaccharide (LPS)/D-galactosamine (D-GalN) administration. In other in vitro experiment, RAW264.7 macrophages were pretreated with GA before LPS exposure. The mortality, hepatic tissue histology, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed. Toll like receptor 4 (TLR4), interleukin-1 receptor-associated kinases (IRAKs), activation of mitogen-activated protein kinases (MAPKs) and NF-κB, and production of TNF-α were assessed by flow cytometry, westernmore » blotting, and enzyme-linked immunosorbent assay (ELISA), respectively. Our results showed that pretreatment with GA protected mice against LPS/D-GalN-induced fulminant hepatic failure (FHF), including a dose-dependent alleviation of mortality and ALT/AST elevation, ameliorating hepatic pathological damage, and decreasing TNF-α release. Moreover, GA inhibited LPS-induced activation of MAPKs and NF-κB in response to LPS, but the expression of TLR4 was not affected in vivo and in vitro. Notably, GA pretreatment in vivo suppressed IRAK-1 activity while inducing IRAK-M expression. Silencing of IRAK-M expression with siRNA blocked these beneficial effects of GA on the activation of MAPKs and NF-κB as well as TNF-α production in LPS-primed macrophages. Taken together, we conclude that GA could prevent LPS/D-GalN-induced FHF. The underlying mechanisms may be related to up-regulation of IRAK-M, which in turn caused deactivation of IRAK-1 and subsequent MAPKs and NF-κB, resulting in inhibiting TNF-α production. - Highlights: • Glycyrrhetinic acid protected from LPS/D-GalN-induced liver injury in mice. • Glycyrrhetinic acid inhibited LPS-induced TNF-α production in vivo and in vitro. • Glycyrrhetinic acid alleviated LPS-activated TLR4 signal pathway in vivo and in vitro. • Glycyrrhetinic acid upregulated the expression of IRAK-M in vivo and in vitro. • IRAK-M mediated the protective effect of Glycyrrhetinic acid on LPS-induced inflammation.« less
Tomar, Sunil; E. Zumbrun, Elizabeth; Nagarkatti, Mitzi
2015-01-01
Acute liver failure (ALF) is a potentially life-threatening disorder without any effective treatment strategies. d-Galactosamine (GalN)/lipopolysaccharide (LPS)–induced ALF is a widely used animal model to identify novel hepato-protective agents. In the present study, we investigated the potential of a cannabinoid receptor 2 (CB2) agonist, JWH-133 [(6aR,10aR)-3-(1,1-dimethylbutyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran], in the amelioration of GalN/LPS-induced ALF. JWH-133 treatment protected the mice from ALF-associated mortality, mitigated alanine transaminase and proinflammatory cytokines, suppressed histopathological and apoptotic liver damage, and reduced liver infiltration of mononuclear cells (MNCs). Furthermore, JWH-133 pretreatment of M1/M2-polarized macrophages significantly increased the secretion of anti-inflammatory cytokine interleukin-10 (IL-10) in M1 macrophages and potentiated the expression of M2 markers in M2-polarized macrophages. In vivo, JWH-133 treatment also suppressed ALF-triggered expression of M1 markers in liver MNCs, while increasing the expression of M2 markers such as Arg1 and IL-10. microRNA (miR) microarray analysis revealed that JWH-133 treatment altered the expression of only a few miRs in the liver MNCs. Gene ontology analysis of the targets of miRs suggested that Toll-like receptor (TLR) signaling was among the most significantly targeted cellular pathways. Among the altered miRs, miR-145 was found to be the most significantly decreased. This finding correlated with concurrent upregulated expression of its predicted target gene, interleukin-1 receptor–associated kinase 3, a negative regulator of TLR4 signaling. Together, these data are the first to demonstrate that CB2 activation attenuates GalN/LPS-induced ALF by inducing an M1 to M2 shift in macrophages and by regulating the expression of unique miRs that target key molecules involved in the TLR4 pathway. PMID:25749929
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woolbright, Benjamin L.; Antoine, Daniel J.; Jenkins, Rosalind E.
Cholestasis is a pathological common component of numerous liver diseases that results in hepatotoxicity, inflammation, and cirrhosis when untreated. While the predominant hypothesis in cholestatic liver injury remains hepatocyte apoptosis due to direct toxicity of hydrophobic bile acid exposure, recent work suggests that the injury occurs through inflammatory necrosis. In order to resolve this controversy, we used novel plasma biomarkers to assess the mechanisms of cell death during early cholestatic liver injury. C57Bl/6 mice underwent bile duct ligation (BDL) for 6–72 h, or sham operation. Another group of mice were given D-galactosamine and endotoxin as a positive control for apoptosismore » and inflammatory necrosis. Plasma levels of full length cytokeratin-18 (FL-K18), microRNA-122 (miR-122) and high mobility group box-1 protein (HMGB1) increased progressively after BDL with peak levels observed after 48 h. These results indicate extensive cell necrosis after BDL, which is supported by the time course of plasma alanine aminotransferase activities and histology. In contrast, plasma caspase-3 activity, cleaved caspase-3 protein and caspase-cleaved cytokeratin-18 fragments (cK18) were not elevated at any time during BDL suggesting the absence of apoptosis. In contrast, all plasma biomarkers of necrosis and apoptosis were elevated 6 h after Gal/End treatment. In addition, acetylated HMGB1, a marker for macrophage and monocyte activation, was increased as early as 12 h but mainly at 48–72 h. However, progressive neutrophil accumulation in the area of necrosis started at 6 h after BDL. In conclusion, these data indicate that early cholestatic liver injury in mice is an inflammatory event, and occurs through necrosis with little evidence for apoptosis. - Highlights: • The mechanism of cell death during cholestasis remains a controversial topic. • Plasma biomarkers offer new insight into cell death after bile duct ligation. • Cytokeratin-18, microRNA-122 and HMGB1 levels implicate necrosis. • Acetylated HMGB1 levels rise late after BDL confirming inflammation. • BDL-induced liver injury involves mainly inflammation and necrosis but no apoptosis.« less
Diao, Jianxin; Li, Haiye; Huang, Wei; Ma, Wenxiao; Dai, Huan; Liu, Yawei; Wang, Ming; Hua, He Yu; Ou, Jinying; Sun, Xiaomin; Sun, Xuegang; Yang, Yungao
2017-01-01
Background & Aims: San huang yin chi decoction(SHYCD) is derived from the yin chen hao decoction, a well-known and canonical Chinese medicine formula from the “Treatise on Febrile Diseases”. Over the past decade, SHYCD has been used to treat and prevent the liver cirrhosis and liver failure. In the present study, we investigated the effects of SHYCD for acute on chronic liver failure(ACLF) and explored its potential mechanism. an ACLF rat model, which induced by carbon tetrachloride (CCl4) combined with D-galactosamine (D-GalN) and lipopolysaccharide(LPS), was used and confirmed by B-ultrasound analysis. Rats were randomly divided into control group, model group, SHYCD-H group, SHYCD-M group, SHYCD-L group, AGNHW group. Compared with the ACLF model group, High, medium, and low doses of SHYCD reduced ALT, AST, TBIL, NH3, IL-1β, IL-6, and TNFα expression levels in the serum, Shorten PT and INR time,and increased Fbg content in the whole blood, increased survival rate of the rats, improved liver pathological changes. APE1 / Ref-1 was mainly expressed in the nucleus, but the nucleus and cytoplasm were co-expressed after hepatocyte injury. SHYCD significantly downregulated APE1/Ref-1 expression in the cytoplasm. Increased APE1/Ref-1, Bcl-2, reduced p53, caspase-3, Bax, and Cyt-c in the total protein. Base on the results, we conclused that High, medium, and low doses of SHYCD could be applied in prevention and treatment of ACLF, and dose-dependent. The possible mechanism is to promote the APE1 / Ref-1 from the cytoplasm to the nuclear transfer, regulation of p53 apoptosis signal pathway prevention and treatment of ACLF. PMID:29156683
Chen, Chung-Ming; Hwang, Jaulang; Chou, Hsiu-Chu; Shiah, Her-Shyong
2018-06-01
Prolonged hyperoxia exposure leads to inflammation and acute lung injury. Since hyperoxia activates nuclear factor kappa B (NF-κB) and proinflammatory mediators in lung fibroblasts and murine lungs, and proinflammatory cytokines upregulate Tn (N-acetyl-d-galactosamine-O-serine/threonine) expression in human gingival fibroblasts. We hypothesized connections exist between Tn expression and inflammation regulation. Thus, we immunized adult mice with Tn antigen to examine whether Tn vaccine can protect against hyperoxia-induced lung injury by inhibiting NF-κB activity and cytokine expression through the action of anti-Tn antibodies. Five-week-old female C57BL/6NCrlBltw mice were subcutaneously immunized with Tn antigen four times at biweekly intervals, and one additional immunization was performed at 1 week after the fourth immunization. Four days after the last immunization, mice were exposed to room air (RA) or hyperoxia (100% O 2 ) for up to 96 h. Four study groups were examined: carrier protein + RA (n = 6), Tn vaccine + RA (n = 6), carrier protein + O 2 (n = 6), and Tn vaccine + O 2 (n = 5). We observed that hyperoxia exposure reduced body weight, increased alveolar protein and cytokine (interleukin-6 and tumor necrosis factor-α) levels, increased mean linear intercept (MLI) values and lung injury scores, and increased lung NF-κB activity. By contrast, Tn immunization increased serum anti-Tn antibody titers and reduced the cytokine levels, MLI values, and lung injury scores. Furthermore, the alleviation of lung injury was accompanied by a reduction in NF-κB activity. Therefore, we proposed that Tn immunization attenuates hyperoxia-induced lung injury in adult mice by inhibiting the NF-κB activity. Copyright © 2018 Elsevier B.V. All rights reserved.
Okuyama, Tetsuya; Nakatake, Richi; Kaibori, Masaki; Okumura, Tadayoshi; Kon, Masanori; Nishizawa, Mikio
2018-01-30
Natural antisense transcripts (asRNAs) that do not encode proteins are transcribed from rat, mouse, and human genes, encoding inducible nitric oxide synthase (iNOS), which catalyzes the production of the inflammatory mediator nitric oxide (NO). In septic shock, NO is excessively produced in hepatocytes and macrophages. The iNOS asRNA interacts with and stabilizes iNOS mRNA. We found that single-stranded 'sense' oligonucleotides corresponding to the iNOS mRNA sequence reduced iNOS mRNA levels by interfering with the mRNA-asRNA interactions in rat hepatocytes. The iNOS sense oligonucleotides that were substituted with phosphorothioate bonds and locked nucleic acids efficiently decreased the levels of iNOS mRNA and iNOS protein. In this study, the gene expression patterns in the livers of two endotoxemia model rats with acute liver failure were compared. Next, we optimized the sequence and modification of the iNOS sense oligonucleotides in interleukin 1β-treated rat hepatocytes. When a sense oligonucleotide was simultaneously administered with d-galactosamine and bacterial lipopolysaccharide (LPS) to rats, their survival rate significantly increased compared to the rats administered d-galactosamine and LPS alone. In the livers of the sense oligonucleotide-administered rats, apoptosis in the hepatocytes markedly decreased. These results suggest that natural antisense transcript-targeted regulation technology using iNOS sense oligonucleotides may be used to treat human inflammatory diseases, such as sepsis and septic shock. Copyright © 2017 Elsevier Inc. All rights reserved.
Acute hepatotoxicity induced by hepatotoxins in Suncus murinus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, S.; Saito, H.; Yohro, T.
A comparative study was conducted to contrast the hepatotoxicity of several chemicals in the musk shrew (Suncus murinus) versus other common laboratory species (mouse or rat), and the following results were obtained from serum enzymes (SGOT and SGPT) and histopathological findings of liver specimens. (1) The sensitivity of Suncus liver to CCl/sub 4/ was different from that of mouse liver. (2) The sensitivity of Suncus liver to ..beta..-D-galactosamine was weaker than that of rat liver. (3) The sensitivity of Suncus liver to ethanol was stronger than that of mouse liver. After a single oral administration of ethanol (99.5% v/v, 0.1more » ml/50 g body weight), the gallbladder of Suncus became enlarged and dark blue in color. (4) A striking fatty degeneration was seen 24 h after a single ip administration of amethopterin at 50 mg/kg in Suncus liver.« less
Huo, Yazhen; Win, Sanda; Than, Tin Aung; Yin, Shutao; Ye, Min
2017-01-01
Abstract Aim: Antrodia Camphorate (AC) is a mushroom that is widely used in Asian countries to prevent and treat various diseases, including liver diseases. However, the active ingredients that contribute to the biological functions remain elusive. The purpose of the present study is to test the hepatoprotective effect of Antcin H, a major triterpenoid chemical isolated from AC, in murine models of acute liver injury. Results: We found that Antcin H pretreatment protected against liver injury in both acetaminophen (APAP) and galactosamine/tumor necrosis factor (TNF)α models. More importantly, Antcin H also offered a significant protection against acetaminophen-induced liver injury when it was given 1 h after acetaminophen. The protection was verified in primary mouse hepatocytes. Antcin H prevented sustained c-Jun-N-terminal kinase (JNK) activation in both models. We excluded an effect of Antcin H on acetaminophen metabolism and TNF receptor signaling and excluded a direct effect as a free radical scavenger or JNK inhibitor. Since the sustained JNK activation through its interaction with mitochondrial Sab, leading to increased mitochondrial reactive oxygen species (ROS), is pivotal in both models, we examined the effect of Antcin H on p-JNK binding to mitochondria and impairment of mitochondrial respiration. Antcin H inhibited the direct effect of p-JNK on isolated mitochondrial function and binding to isolated mitochondria. Innovation and Conclusion: Our study has identified Antcin H as a novel active ingredient that contributes to the hepatoprotective effect of AC, and Antcin H protects against liver injury through disruption of the binding of p-JNK to Sab, which interferes with the ROS-dependent self-sustaining activation of MAPK cascade. Antioxid. Redox Signal. 26, 207–220. PMID:27596680
2012-01-01
Background Our previous studies suggest silkworms can be used as model animals instead of mammals in pharmacologic studies to develop novel therapeutic medicines. We examined the usefulness of the silkworm larvae Bombyx mori as an animal model for evaluating tissue injury induced by various cytotoxic drugs. Drugs that induce hepatotoxic effects in mammals were injected into the silkworm hemocoel, and alanine aminotransferase (ALT) activity was measured in the hemolymph 1 day later. Results Injection of CCl4 into the hemocoel led to an increase in ALT activity. The increase in ALT activity was attenuated by pretreatment with N-acetyl-L-cysteine. Injection of benzoic acid derivatives, ferric sulfate, sodium valproate, tetracycline, amiodarone hydrochloride, methyldopa, ketoconazole, pemoline (Betanamin), N-nitroso-fenfluramine, and D-galactosamine also increased ALT activity. Conclusions These findings indicate that silkworms are useful for evaluating the effects of chemicals that induce tissue injury in mammals. PMID:23137391
Kuwahata, Masashi; Kuramoto, Yasuko; Tomoe, Yuka; Sugata, Emi; Segawa, Hiroko; Ito, Mikiko; Oka, Tatsuzo; Miyamoto, Ken-Ichi
2004-12-24
We previously demonstrated that the integration of albumin mRNA into functional polysomes was regulated by the supply of branched-chain amino acids (BCAA) in the liver of galactosamine-treated rats. To study the mechanism of this regulation, we investigated interaction between rat liver proteins and albumin transcripts. When albumin transcript was incubated with ribosome salt wash (RSW) extracts prepared from liver, a specific RNA-protein complex (p65) formed. Competition experiments showed that a pyrimidine-rich sequence in the coding region of albumin mRNA was required for the formation of p65. The level of p65 was increased in the RSW extracts prepared from liver of galactosamine-treated rats infused with a standard amino acid formula, compared with a BCAA-enriched amino acid formula. The protein in p65 appears to be polypyrimidine tract-binding protein (PTB), because the formation of p65 was reduced in the RSW extracts pre-incubated with anti-PTB antibody. In cell-free translation analysis, immunodepletion of PTB from rabbit reticulocyte lysate caused an increase in albumin translation. These results suggest that binding of PTB to albumin mRNA suppresses its translation. A supply of BCAA may interfere with this binding and improve the translation efficiency of albumin mRNA in injured liver.
Wu, Yi-Hang; Hu, Shao-Qing; Liu, Jun; Cao, Hong-Cui; Xu, Wei; Li, Yong-Jun; Li, Lan-Juan
2014-06-01
Apoptosis plays a role in the normal development of liver. However, overactivation thereof may lead to hepatocellular damage. The aim of this study was to assess D-galactosamine (D-GalN)/lipopolysaccharide (LPS)-induced hepatocyte apoptotic changes in mice and clarify the mechanisms involved in this process. DNA ladder detection was employed to determine the induction condition of hepatic apoptosis. An initial test indicated that typical hepatocyte apoptosis was observed at 6-10 h after the intraperitoneal injection of D-GalN (700 mg/kg) and LPS (10 µg/kg). Subsequently, we evaluated hepatocyte apoptosis at 8 h after administering D-GalN/LPS by histopathological analysis, terminal deoxynucleotidyl transferase-mediated dUTP nick end‑labeling (TUNEL) detection, flow cytometry and electron microscopy analysis. To clarify the apoptosis-related gene expression, the expression levels of tumor necrosis factor-α (TNF-α), transforming growth factor-β1 (TGF-β1), caspase-3, and Fas/Fas ligand (FasL) were determined by serum enzyme immunoassay, immunohistochemistry and western blot analysis. Strong apoptotic positive signals following D-GalN/LPS injection were observed from the results of the serum analysis, histopathological and immunohistochemical analyses, DNA ladder detection, TUNEL detection, flow cytometry and electron microscopy analysis. Additionally, apoptotic hepatocytes were mainly at the late stage of cell apoptosis. The expression of TNF-α, TGF-β1, caspase-3 and Fas/FasL was significantly increased. In conclusion, this study evaluated the D-GalN/LPS-induced hepatocyte apoptotic changes and clarified the apoptosis-related gene expression in mice. The hepatocyte apoptosis induced by D-GalN/LPS may be mainly regulated by the death receptor pathway. TGF-β signaling pathway may also play a vital role in this process of hepatocyte apoptosis.
Li, Guichao; Wang, Jiazhou; Hu, Weigang; Zhang, Zhen
2015-01-01
This study examined the status of radiation-induced liver injury in adjuvant or palliative gastric cancer radiation therapy (RT), identified risk factors of radiation-induced liver injury in gastric cancer RT, analysed the dose-volume effects of liver injury, and developed a liver dose limitation reference for gastric cancer RT. Data for 56 post-operative gastric cancer patients and 6 locoregional recurrent gastric cancer patients treated with three-dimensional conformal radiation therapy (3D-CRT) or intensity-modulated radiation therapy (IMRT) from Sep 2007 to Sep 2009 were analysed. Forty patients (65%) were administered concurrent chemotherapy. Pre- and post-radiation chemotherapy were given to 61 patients and 43 patients, respectively. The radiation dose was 45-50.4 Gy in 25-28 fractions. Clinical parameters, including gender, age, hepatic B virus status, concurrent chemotherapy, and the total number of chemotherapy cycles, were included in the analysis. Univariate analyses with a non-parametric rank test (Mann-Whitney test) and logistic regression test and a multivariate analysis using a logistic regression test were completed. We also analysed the correlation between RT and the changes in serum chemistry parameters [including total bilirubin, (TB), direct bilirubin (D-TB), alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and serum albumin (ALB)] after RT. The Child-Pugh grade progressed from grade A to grade B after radiotherapy in 10 patients. A total of 16 cases of classic radiation-induced liver disease (RILD) were observed, and 2 patients had both Child-Pugh grade progression and classic RILD. No cases of non-classic radiation liver injury occurred in the study population. Among the tested clinical parameters, the total number of chemotherapy cycles correlated with liver function injury. V35 and ALP levels were significant predictive factors for radiation liver injury. In 3D-CRT for gastric cancer patients, radiation-induced liver injury may occur and affect the overall treatment plan. The total number of chemotherapy cycles correlated with liver function injury, and V35 and ALP are significant predictive factors for radiation-induced liver injury. Our dose limitation reference for liver protection is feasible.
Feng, Yan; Yu, Ying-Hua; Wang, Shu-Ting; Ren, Jing; Camer, Danielle; Hua, Yu-Zhou; Zhang, Qian; Huang, Jie; Xue, Dan-Lu; Zhang, Xiao-Fei; Huang, Xu-Feng; Liu, Yi
2016-01-01
Oxidative stress and inflammation are implicated in the aging process and its related hepatic and renal function decline. Chlorogenic acid (CGA) is one of the most abundant polyphenol compounds in the human diet. Recently, CGA has shown in vivo and in vitro antioxidant properties. The current study investigates the effects of protective effects of chlorogenic acid (CGA) on D-galactose-induced liver and kidney injury. Hepatic and renal injuries were induced in a mouse model by subcutaneously injection of D-galactose (D-gal; 100 mg/kg) once a day for 8 consecutive weeks and orally administered simultaneously with CGA included in the food (200 mg/kg of diet). The liver and renal functions were examined. Histological analyses of liver and kidney were done by haematoxylin and eosin staining. The oxidative stress markers and pro-inflammatory cytokines in the liver and the kidney were measured. Results CGA significantly reduced the serum aminotransferase, serum creatinine (SCr) and blood urea nitrogen (BUN) levels in D-gal mice (p <0.05). CGA also restored superoxide dismutase, catalase, and malondialdehyde levels and decreased glutathione content in the liver and kidney in D-gal mice (p <0.05). Improvements in liver and kidney were also noted in histopathological studies. CGA reduced tumour necrosis factor-α (TNF-α) and interleukin-6 (IL-6) protein levels in the liver and kidney in D-gal mice (p <0.05). These findings suggest that CGA attenuates D-gal-induced chronic liver and kidney injury and that this protection may be due to its antioxidative and anti-inflammatory activities.
Wang, Xiao-Yu; Luo, Jian-Ping; Chen, Rui; Zha, Xue-Qiang; Wang, He
2014-09-01
Polysaccharides isolated from edible Dendrobium huoshanense have been shown to possess a hepatoprotection function for selenium- and carbon tetrachloride-induced liver injury. In this study, we investigated the preventive effects of daily supplementation with an homogeneous polysaccharide (DHP) purified from D. huoshanense on ethanol-induced subacute liver injury in mice and its potential mechanisms in liver protection by a proteomic approach. DHP was found to effectively depress the increased ratio of liver weight to body weight, reduce the elevated levels of serum aspartate aminotransferase, total cholesterol, total bilirubin and low density lipoprotein, and alleviate hepatic steatosis in mice with ethanol-induced subacute liver injury. Hepatic proteomics analysis performed by two-dimensional difference gel electrophoresis (2D-DIGE) coupled with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS) revealed that cystathionine beta-synthase (Cbs) and D-lactate dehydrogenase (Ldhd) were two key proteins regulated by daily DHP intervention, which may assist in correcting the abnormal hepatic methionine metabolism pathway and decreasing the level of hepatic methylglyoxal generated from disordered metabolic pathways caused by ethanol. Our data suggest that DHP can protect liver function from alcoholic injury with complicated molecular mechanisms involving regulation of Cbs and Ldhd.
Konoplia, N A; Prokopenko, L G; Uteshev, B S
2002-01-01
The introduction of gentamycine to Wistar rats leads to the toxic liver damage, suppresses humoral immune response to goat erythrocytes, and induces immunosuppressant properties in erythrocytes (caused by increased lipid peroxidation in their membranes and violated cell energy balance) Under these conditions, a combination of the laser or magneto-laser irradiation with the administration of phylloquinone of riboxin provides for a more effective correction of the immune reaction and antioxidant status as compared to the radiation treatment without drugs or with essential. Elimination of the gentamycine induced immunosuppressant properties of erythrocytes is explained by the ability of phylloquinone and essential to reduce the intensity of lipid peroxidation in the cell membranes and with the ability of riboxin to normalize the cell energy balance. An important factor of immunosuppression development in the case of a toxic liver damage caused by D-galactosamine it the interaction of thrombocytes and light erythrocytes with serum factors. The introduction of essential and riboxin favors this interaction and stimulates the development of immunosuppression in thrombocytes.
Pushpavalli, Ganesan; Veeramani, Chinnadurai; Pugalendi, Kodukkur Viswanathan
2009-01-01
Betle leaf chewing is an old traditional practice in India and other countries of East Asia. We have investigated the antioxidant and antihyperlipidaemic potential of an alcoholic leaf-extract of Piper betle against D-galactosamine (D-GalN; 400 mg/kg body weight, i.p. single dose) intoxication in male albino Wistar rats. Rats were treated with leaf-extract (200 mg/kg body weight) by intragastric intubations daily for 20 days. The animals were divided randomly into five groups of six animals each as control, control plus extract, D-GalN control, D-GalN-rats on treatment with extract or silymarin, a standard drug. We observed an increase in the plasma levels of thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides, and a decrease in vitamin C, vitamin E and reduced glutathione concentrations. Very low density lipoprotein cholesterol and low density lipoprotein cholesterol increased significantly while high density lipoprotein cholesterol decreased. Further, increase in the levels of total cholesterol, phospholipids, triglycerides, free fatty acids in the plasma and tissues of liver and kidney were observed in D-GalN-treated rats. Administration of P. betle leaf-extract prevented the increase or decrease of these parameters and brought towards normality. These results suggest that P. betle could afford a significant antioxidant and antihyperlipidaemic effect against D-GalN-intoxication.
Lee, Sang‐Bin; Kang, Jung‐Woo; Kim, So‐Jin; Ahn, Jongmin; Kim, Jinwoong
2016-01-01
Background and Purpose Fulminant hepatic failure (FHF) is a fatal clinical syndrome that results in excessive inflammation and hepatocyte death. Mitochondrial dysfunction is considered to be a possible mechanism of FHF. Afzelin, a flavonol glycoside found in Houttuynia cordata Thunberg, has anti‐inflammatory and antioxidant properties. The present study elucidated the cytoprotective mechanisms of afzelin against D‐galactosamine (GalN)/LPS induced FHF, particularly focusing on mitochondrial quality control and dynamics. Experimental Approach Mice were administered afzelin i.p. 1 h before receiving GalN (800 mg·kg−1)/LPS (40 μg·kg−1), and they were then killed 5 h after GalN/LPS treatment. Key Results Afzelin improved the survival rate and reduced the serum levels of alanine aminotransferase and pro‐inflammatory cytokines in GalN/LPS‐treated mice. Afzelin attenuated the mitochondrial damage, as indicated by diminished mitochondrial swelling and mitochondrial glutamate dehydrogenase activity in GalN/LPS‐treated mice. Afzelin enhanced mitochondrial biogenesis, as indicated by increased levels of PPAR‐γ coactivator 1α, nuclear respiratory factor 1 and mitochondrial transcription factor A. Afzelin also decreased the level of mitophagy‐related proteins, parkin and PTEN‐induced putative kinase 1. Furthermore, while GalN/LPS significantly increased the level of fission‐related protein, dynamin‐related protein 1, and decreased the level of fusion‐related protein, mitofusin 2; these effects were attenuated by afzelin. Conclusions and Implications Our findings demonstrated that afzelin protects against GalN/LPS‐induced liver injury by enhancing mitochondrial biogenesis, suppressing excessive mitophagy and balancing mitochondrial dynamics. PMID:27861739
Ren, Xiaomeng; Li, Xinzhi; Jia, Linna; Chen, Deheng; Hou, Hai; Rui, Liangyou; Zhao, Yujun; Chen, Zheng
2017-02-01
Potent and selective chemical probes are valuable tools for discovery of novel treatments for human diseases. NF-κB-inducing kinase (NIK) is a key trigger in the development of liver injury and fibrosis. Whether inhibition of NIK activity by chemical probes ameliorates liver inflammation and injury is largely unknown. In this study, a small-molecule inhibitor of NIK, B022, was found to be a potent and selective chemical probe for liver inflammation and injury. B022 inhibited the NIK signaling pathway, including NIK-induced p100-to-p52 processing and inflammatory gene expression, both in vitro and in vivo Furthermore, in vivo administration of B022 protected against not only NIK but also CCl 4 -induced liver inflammation and injury. Our data suggest that inhibition of NIK is a novel strategy for treatment of liver inflammation, oxidative stress, and injury.-Ren, X., Li, X., Jia, L., Chen, D., Hou, H., Rui, L., Zhao, Y., Chen, Z. A small-molecule inhibitor of NF-κB-inducing kinase (NIK) protects liver from toxin-induced inflammation, oxidative stress, and injury. © FASEB.
Resolvin D1 attenuates CCl4-induced acute liver injury involving up-regulation of HO-1 in mice.
Chen, Xiahong; Gong, Xia; Jiang, Rong; Wang, Bin; Kuang, Ge; Li, Ke; Wan, Jingyuan
2016-01-01
Acute hepatic failure involves in excessive oxidative stress and inflammatory responses, leading to a high mortality due to lacking effective therapy. Resolvin D1 (RvD1), an endogenous lipid mediator derived from polyunsaturated fatty acids, has been shown anti-inflammatory and anti-oxidative actions, however, whether RvD1 has protective effects on hepatic failure remains elusive. In this study, the roles and molecular mechanisms of RvD1 were explored in carbon tetrachloride (CCl4)-induced acute liver injury. Our results showed that RvD1 protected mice against CCl4-induced hepatic damage, as evaluated by reduced aminotransferase activities and malondialdehyde content, elevated glutathione and superoxide dismutase activities, and alleviated hepatic pathological damage. Moreover, RvD1 significantly attenuated serum tumor necrosis factor-α and interleukin-6 levels as well as hepatic myeloperoxidase activity, whereas enhanced serum IL-10 level in CCl4-administered mice. Further, RvD1 markedly up-regulated the expression and activity of heme oxygenase-1 (HO-1). However, inhibition of HO-1 activity reversed the protective effects of RvD1 on CCl4-induced liver injury. These results suggest that RvD1 could effectively prevent CCl4-induced liver injury by inhibition of oxidative stress and inflammation, and the underlying mechanism may be related to up-regulation of HO-1.
MAPK/AP-1-Targeted Anti-Inflammatory Activities of Xanthium strumarium.
Hossen, Muhammad Jahangir; Kim, Mi-Yeon; Cho, Jae Youl
2016-01-01
Xanthium strumarium L. (Asteraceae), a traditional Chinese medicine, is prescribed to treat arthritis, bronchitis, and rhinitis. Although the plant has been used for many years, the mechanism by which it ameliorates various inflammatory diseases is not yet fully understood. To explore the anti-inflammatory mechanism of methanol extracts of X. strumarium (Xs-ME) and its therapeutic potential, we used lipopolysaccharide (LPS)-stimulated murine macrophage-like RAW264.7 cells and human monocyte-like U937 cells as well as a LPS/D-galactosamine (GalN)-induced acute hepatitis mouse model. To find the target inflammatory pathway, we used holistic immunoblotting analysis, reporter gene assays, and mRNA analysis. Xs-ME significantly suppressed the up-regulation of both the activator protein (AP)-1-mediated luciferase activity and the production of LPS-induced proinflammatory cytokines, including interleukin (IL)-1[Formula: see text], IL-6, and tumor necrosis factor (TNF)-[Formula: see text]. Moreover, Xs-ME strongly inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) in LPS-stimulated RAW264.7 and U937 cells. Additionally, these results highlighted the hepatoprotective and curative effects of Xs-ME in a mouse model of LPS/D-GalN-induced acute liver injury, as assessed by elevated serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and histological damage. Therefore, our results strongly suggest that the ethnopharmacological roles of Xs-ME in hepatitis and other inflammatory diseases might result from its inhibitory activities on the inflammatory signaling of MAPK and AP-1.
Stuart, William D.; Kulkarni, Rishikesh M.; Gray, Jerilyn K.; Vasiliauskas, Juozas; Leonis, Mike A.; Waltz, Susan E.
2011-01-01
Previous studies demonstrated that targeted deletion of the Ron receptor tyrosine kinase (TK) domain in mice leads to marked hepatocyte protection in a well-characterized model of lipopolysaccharide (LPS)-induced acute liver failure in D-galactosamine (GalN)-sensitized mice. Hepatocyte protection in TK−/− mice was observed despite paradoxically elevated serum levels of tumor necrosis factor alpha (TNFα). To understand the role of Ron in the liver, purified populations of Kupffer cells and hepatocytes from wild-type (TK+/+) and TK−/− mice were studied. Utilizing quantitative RT-PCR, we demonstrated that Ron is expressed in these cell-types. Moreover, we also recapitulated the protected hepatocyte phenotype and exaggerated cytokine production observed in the TK−/− mice in vivo through the use of purified cultured cells ex vivo. We show that isolated TK−/− Kupffer cells produce increased levels of TNFα and select cytokines compared to TK+/+ cells following LPS stimulation. We also show that conditioned media from LPS-treated TK−/− Kupffer cells was more toxic to hepatocytes than control media, suggesting the exaggerated levels of cytokines produced from the TK−/− Kupffer cells are detrimental to wild type hepatocytes. In addition, we observed that TK−/− hepatocytes were more resistant to cell death compared to TK+/+ hepatocytes, suggesting that Ron functions in both the epithelial and inflammatory cell compartments to regulate acute liver injury. These findings were confirmed in vivo in mice with hepatocyte and macrophage cell-type-specific conditional Ron deletions. Mice with Ron loss selectively in hepatocytes exhibited less liver damage and increased survival compared to mice with Ron loss in macrophages. In conclusion, we have dissected cell-type-specific roles for Ron such that this receptor modulates cytokine production from Kupffer cells and inhibits hepatocyte survival in response to injury. PMID:21520175
Zuo, Ai-Ren; Yu, Yan-Ying; Shu, Qing-Long; Zheng, Li-Xiang; Wang, Xiao-Min; Peng, Shu-Hong; Xie, Yan-Fei; Cao, Shu-Wen
2014-06-01
Acute liver damage is primarily induced by one of several causes, among them viral exposure, alcohol consumption, and drug and immune system issues. Agents with the ability to inhibit tyrosinase and protect against DNA damage caused by reactive oxygen species (ROS) may be therapeutically useful for the prevention or treatment of ROS-related diseases. This investigation examined the hepatoprotective effects of phloretin and phloretin isonicotinyl hydrazone (PIH) on d-galactosamine (D-GalN)-induced acute liver damage in Kunming mice, as well as the possible mechanisms. The serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl transferase (γ-GT), alkaline phosphatase (ALP), and total bilirubin (TB) as well as the histopathological changes in mouse liver sections were determined. The antioxidant effects of phloretin, quercetin, and PIH on lipid peroxidation in rat liver mitochondria in vitro, 1,1-diphenyl-2-picrylhydrazyl (DPPH) or 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) free radical scavenging activity in vitro, and supercoiled pBR322 plasmid DNA were confirmed. The experiment also examined the antityrosinase activity, inhibition type, and inhibition constant of phloretin and PIH. Phloretin, quercetin, or PIH significantly prevented the increase in serum ALT, AST, γ-GT, ALP, and TB in acute liver damage induced by D-GalN, and produced a marked reduction in the histopathological hepatic lesions. Phloretin, quercetin, or PIH also exhibited antioxidant effects on lipid peroxidation in rat liver mitochondria in vitro, DPPH or ABTS free radical scavenging activity in vitro, and supercoiled pBR322 plasmid DNA. Phloretin, quercetin, or PIH also exhibited good antityrosinase activity. To the best of our knowledge, this was the first study of the hepatoprotective effects of phloretin and PIH on D-GalN-induced acute liver damage in Kunming mice as well as the possible mechanisms. This was also the first study of the lipid peroxidation inhibition activity of phloretin and PIH in liver mitochondria induced by the Fe(2+)/vitamin C (Vc) system in vitro, the protective effects on supercoiled pBR322 plasmid DNA, and the antityrosinase activity of phloretin and PIH. Copyright © 2014. Published by Elsevier B.V.
Haga, Hiroaki; Yan, Irene K.; Takahashi, Kenji; Matsuda, Akiko
2017-01-01
Abstract Stem cell‐based therapies have potential for treatment of liver injury by contributing to regenerative responses, through functional tissue replacement or paracrine effects. The release of extracellular vesicles (EV) from cells has been implicated in intercellular communication, and may contribute to beneficial paracrine effects of stem cell‐based therapies. Therapeutic effects of bone‐marrow derived mesenchymal stem cells (MSC) and vesicles released by these cells were examined in a lethal murine model of hepatic failure induced by d‐galactosamine/tumor necrosis factor‐α (TNF‐α). Systemically administered EV derived from MSC accumulated within the injured liver following systemic administration, reduced hepatic injury, and modulated cytokine expression. Moreover, survival was dramatically increased by EV derived from either murine or human MSC. Similar results were observed with the use of cryopreserved mMSC‐EV after 3 months. Y‐RNA‐1 was identified as a highly enriched noncoding RNA within hMSC‐EV compared to cells of origin. Moreover, siRNA mediated knockdown of Y‐RNA‐1 reduced the protective effects of MSC‐EV on TNF‐α/ActD‐mediated hepatocyte apoptosis in vitro. These data support a critical role for MSC‐derived EV in mediating reparative responses following hepatic injury, and provide compelling evidence to support the therapeutic use of MSC‐derived EV in fulminant hepatic failure. Stem Cells Translational Medicine 2017;6:1262–1272 PMID:28213967
Adawi, D; Molin, G; Jeppsson, B
1998-12-01
To study the effect of inhibiting nitric oxide production and the effects of arginine and lactobacilli administration in an acute liver injury (LI) model. Infectious complications caused by enteric bacteria are common in patients with liver diseases and those who have undergone liver surgery. Increased bacterial translocation has been proposed as one underlying mechanism. Lactobacilli constitute an integral part of the normal gastrointestinal microecology; they are involved in host metabolism and have many beneficial properties. Arginine has numerous roles in cellular metabolism and may be metabolized by lactobacilli in some cases. We have previously shown that rectal administration of Lactobacillus plantarum DSM 9843 (strain 299v), with and without arginine, in an acute LI model significantly reduces the extent of the LI and reduces bacterial translocation. To clarify the pathogenetic mechanisms, we studied the role of nitric oxide in the effects of L. plantarum and arginine in acute LI, as determined by bacterial translocation, ileal, cecal, and colonic nucleotides, RNA, and DNA. Male Sprague-Dawley rats were used. L. plantarum, 2% arginine, and/or N-nitro-L-arginine methyl ester (L-NAME), as appropriate, were administered rectally once daily for 8 days. Acute LI was induced on the eighth day by intraperitoneal injection of D-galactosamine (1.1 g/kg body weight), and samples were collected after 24 hours. Bacterial translocation was evaluated by culture of portal and arterial blood, mesenteric lymph nodes, and liver tissue. Liver enzymes and bilirubin were assayed in the serum. The bacterial load in the cecum and colon was determined. Ileal, cecal, and colonic mucosal nucleotides, RNA, and DNA were evaluated. The levels of liver enzymes and bilirubin were lower in liver-injured rats supplemented with arginine and Lactobacillus, and this effect was abolished by the addition of L-NAME. Inhibition of nitric oxide production (by L-NAME) increased bacterial translocation in many groups. L-NAME administration increased the cecal and colonic bacterial count and decreased the levels of mucosal nucleotides, RNA, and DNA. Inhibition of nitric oxide production modulated the effects of arginine and L. plantarum in this acute LI model. L-NAME potentiated the LI, as indicated by elevation of liver enzymes and bilirubin, and it also increased bacterial translocation and the cecal and colonic bacterial count. Increased bacterial translocation could be one of the mechanisms by which LI is potentiated.
Wang, Jia-Bo; Cui, He-Rong; Wang, Rui-Lin; Zhang, Cong-En; Niu, Ming; Bai, Zhao-Fang; Xu, Gen-Hua; Li, Peng-Yan; Jiang, Wen-Yan; Han, Jing-Jing; Ma, Xiao; Cai, Guang-Ming; Li, Rui-Sheng; Zhang, Li-Ping; Xiao, Xiao-He
2018-04-04
Multiple components of traditional Chinese medicine (TCM) formulae determine their treatment targets for multiple diseases as opposed to a particular disease. However, discovering the unexplored therapeutic potential of a TCM formula remains challenging and costly. Inspired by the drug repositioning methodology, we propose an integrated strategy to feasibly identify new therapeutic uses for a formula composed of six herbs, Liuweiwuling. First, we developed a comprehensive systems approach to enrich drug compound-liver disease networks to analyse the major predicted diseases of Liuweiwuling and discover its potential effect on liver failure. The underlying mechanisms were subsequently predicted to mainly attribute to a blockade of hepatocyte apoptosis via a synergistic combination of multiple effects. Next, a classical pharmacology experiment was designed to validate the effects of Liuweiwuling on different models of fulminant liver failure induced by D-galactosamine/lipopolysaccharide (GalN/LPS) or thioacetamide (TAA). The results indicated that pretreatment with Liuweiwuling restored liver function and reduced lethality induced by GalN/LPS or TAA in a dose-dependent manner, which was partially attributable to the abrogation of hepatocyte apoptosis by multiple synergistic effects. In summary, the integrated strategy discussed in this paper may provide a new approach for the more efficient discovery of new therapeutic uses for TCM formulae.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu Jinsheng; Purcell, Wendy M.
2006-10-15
The current study investigated liver spheroid culture as an in vitro model to evaluate the endpoints relevant to the status of energy metabolism and biotransformation after exposure to test toxicants. Mature rat liver spheroids were exposed to diclofenac, galactosamine, isoniazid, paracetamol, m-dinitrobenzene (m-DNB) and 3-nitroaniline (3-NA) for 24 h. Pyruvate uptake, galactose biotransformation, lactate release and glucose secretion were evaluated after exposure. The results showed that pyruvate uptake and lactate release by mature liver spheroids in culture were maintained at a relatively stable level. These endpoints, together with glucose secretion and galactose biotransformation, were related to and could reflect themore » status of energy metabolism and biotransformation in hepatocytes. After exposure, all of the test agents significantly reduced glucose secretion, which was shown to be the most sensitive endpoint of those evaluated. Diclofenac, isoniazid, paracetamol and galactosamine reduced lactate release (P < 0.01), but m-DNB increased lactate release (P < 0.01). Diclofenac, isoniazid and paracetamol also reduced pyruvate uptake (P < 0.01), while galactosamine had little discernible effect. Diclofenac, galactosamine, paracetamol and m-DNB also reduced galactose biotransformation (P < 0.01), by contrast, isoniazid did not. The metabolite of m-DNB, 3-NA, which served as a negative control, did not cause significant changes in lactate release, pyruvate uptake or galactose biotransformation. It is concluded that pyruvate uptake, galactose biotransformation, lactate release and glucose secretion can be used as endpoints for evaluating the status of energy metabolism and biotransformation after exposure to test agents using the liver spheroid model to pre-screen hepatotoxicity.« less
Choi, Myung-Joo; Zheng, Hong-Mei; Kim, Jae Min; Lee, Kye Wan; Park, Yu Hwa; Lee, Don Haeng
2016-01-01
Oxidative stress in liver injury is a major pathogenetic factor in the progression of liver damage. Centella asiatica (L.) Urban, known in the United States as Gotu kola, is widely used as a traditional herbal medicine in Chinese or Indian Pennywort. The efficacy of Centella asiatica is comprehensive and is used as an anti-inflammatory agent, for memory improvement, for its antitumor activity and for treatment of gastric ulcers. The present study investigated the protective effects of Centella asiatica on dimethylnitrosamine (DMN)-induced liver injury in rats. The rats in the treatment groups were treated with Centella asiatica at either 100 or 200 mg/kg in distilled water (D.W) or with silymarin (200 mg/kg in D.W) by oral administration for 5 days daily following intraperitoneal injections of 30 mg/kg DMN. Centella asiatica significantly decreased the relative liver weights in the DMN-induced liver injury group, compared with the control. The assessment of liver histology showed that Centella asiatica significantly alleviated mass periportal ± bridging necrosis, intralobular degeneration and focal necrosis, with fibrosis of liver tissues. Additionally, Centella asiatica significantly decreased the level of malondialdehyde, significantly increased the levels of antioxidant enzymes, including superoxide dismutase, glutathione peroxidase and catalase, and may have provided protection against the deleterious effects of reactive oxygen species. In addition, Centella asiatica significantly decreased inflammatory mediators, including interleukin (IL)-1β, IL-2, IL-6, IL-10, IL-12, tumor necrosis factor-α, interferon-γ and granulocyte/macrophage colony-stimulating factor. These results suggested that Centella asiatica had hepatoprotective effects through increasing the levels of antioxidant enzymes and reducing the levels of inflammatory mediators in rats with DMN-induced liver injury. Therefore, Centella asiatica may be useful in preventing liver damage. PMID:27748812
Ito, Nobuyuki; Imaida, Katsumi; de Camargo, Joao Lauro V.; Takahashi, Satoru; Asamoto, Makoto; Tsuda, Hiroyuki
1988-01-01
The effects of D‐galactosamine on induction of preneoplastic glutathione S‐transferase placental form positive liver foci were investigated in F344 rats pretreated with diethylnitrosamine (DEN) in an attempt to improve the predictive value of the medium‐term bioassay system developed in our laboratory. Two weeks after the initial single ip dose (200 mg/kg) of DEN, administration of test compounds was commenced simultaneously with an ip injection of D‐galactosamine at a dose of 300 mg/kg body wt. All rats were then subjected to two‐thirds partial hepatectomy (PH) at week 5 and sacrificed for assessment of lesion yield at week 8. Measurement and comparison of the numbers and areas of glutathione S‐transferase placental form positive (GST‐P+) foci per cm2 revealed a positive response to more carcinogens, including non‐hepatocarcinogens, than did the same bioassay system without injection of D‐galactosamine. Thus the results suggest that inclusion of this extra proliferative stimulus may improve the medium‐term detection of carcinogens and modifiers. PMID:3136108
McGreal, Steven R; Bhushan, Bharat; Walesky, Chad; McGill, Mitchell R; Lebofsky, Margitta; Kandel, Sylvie E; Winefield, Robert D; Jaeschke, Hartmut; Zachara, Natasha E; Zhang, Zhen; Tan, Ee Phie; Slawson, Chad; Apte, Udayan
2018-04-01
Overdose of acetaminophen (APAP) results in acute liver failure. We have investigated the role of a posttranslational modification of proteins called O-GlcNAcylation, where the O-GlcNAc transferase (OGT) adds and O-GlcNAcase (OGA) removes a single β-D-N-acetylglucosamine (O-GlcNAc) moiety, in the pathogenesis of APAP-induced liver injury. Hepatocyte-specific OGT knockout mice (OGT KO), which have reduced O-GlcNAcylation, and wild-type (WT) controls were treated with 300 mg/kg APAP and the development of injury was studied over a time course from 0 to 24 h. OGT KO mice developed significantly lower liver injury as compared with WT mice. Hepatic CYP2E1 activity and glutathione (GSH) depletion following APAP treatment were not different between WT and OGT KO mice. However, replenishment of GSH and induction of GSH biosynthesis genes were significantly faster in the OGT KO mice. Next, male C57BL/6 J mice were treated Thiamet-G (TMG), a specific inhibitor of OGA to induce O-GlcNAcylation, 1.5 h after APAP administration and the development of liver injury was studied over a time course of 0-24 h. TMG-treated mice exhibited significantly higher APAP-induced liver injury. Treatment with TMG did not affect hepatic CYP2E1 levels, GSH depletion, APAP-protein adducts, and APAP-induced mitochondrial damage. However, GSH replenishment and GSH biosynthesis genes were lower in TMG-treated mice after APAP overdose. Taken together, these data indicate that induction in cellular O-GlcNAcylation exacerbates APAP-induced liver injury via dysregulation of hepatic GSH replenishment response.
Zhang, Jinling; Zhu, Xuebin; Li, Yuhong; Zhu, Lingyan; Li, Shiming; Zheng, Guoying; Ren, Qi; Xiao, Yonghong; Feng, Fumin
2016-08-01
This study investigated the role of CpG island methylation of the CYP2E1 and CYP2D6 genes in liver injury induced by anti-TB drugs from an epigenetic perspective in a Chinese cohort. A 1:1 matched nested case-control study design was applied. Pulmonary tuberculosis (TB) patients, who underwent standard anti-TB therapy and developed liver injury were defined as cases, while those who did not develop liver injury were defined as control. The two groups were matched in terms of sex, treatment regimen, and age. In 114 pairs of cases, CpG island methylation levels of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA were found to be significantly correlated with the occurrence of anti-TB drug-induced liver injury (ADLI), with odds ratio (OR) values of 2.429 and 3.500, respectively (p < 0.01). Moreover, through multivariate logistic regression analysis, CpG island methylation of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA were found to be significantly correlated with the occurrence of ADLI, with adjusted OR values of 4.390 (95% confidence interval (CI): 1.982-9.724) and 9.193 (95% CI: 3.624-25.888), respectively (p < 0.001). These results suggest that aberrantly elevated methylation of CpG islands of the CYP2E1 and CYP2D6 genes in plasma cell-free DNA may increase the risk of ADLI in Chinese TB patients.
Choi, Myung-Joo; Zheng, Hong-Mei; Kim, Jae Min; Lee, Kye Wan; Park, Yu Hwa; Lee, Don Haeng
2016-11-01
Oxidative stress in liver injury is a major pathogenetic factor in the progression of liver damage. Centella asiatica (L.) Urban, known in the United States as Gotu kola, is widely used as a traditional herbal medicine in Chinese or Indian Pennywort. The efficacy of Centella asiatica is comprehensive and is used as an anti‑inflammatory agent, for memory improvement, for its antitumor activity and for treatment of gastric ulcers. The present study investigated the protective effects of Centella asiatica on dimethylnitrosamine (DMN)‑induced liver injury in rats. The rats in the treatment groups were treated with Centella asiatica at either 100 or 200 mg/kg in distilled water (D.W) or with silymarin (200 mg/kg in D.W) by oral administration for 5 days daily following intraperitoneal injections of 30 mg/kg DMN. Centella asiatica significantly decreased the relative liver weights in the DMN‑induced liver injury group, compared with the control. The assessment of liver histology showed that Centella asiatica significantly alleviated mass periportal ± bridging necrosis, intralobular degeneration and focal necrosis, with fibrosis of liver tissues. Additionally, Centella asiatica significantly decreased the level of malondialdehyde, significantly increased the levels of antioxidant enzymes, including superoxide dismutase, glutathione peroxidase and catalase, and may have provided protection against the deleterious effects of reactive oxygen species. In addition, Centella asiatica significantly decreased inflammatory mediators, including interleukin (IL)‑1β, IL‑2, IL‑6, IL‑10, IL‑12, tumor necrosis factor‑α, interferon‑γ and granulocyte/macrophage colony‑stimulating factor. These results suggested that Centella asiatica had hepatoprotective effects through increasing the levels of antioxidant enzymes and reducing the levels of inflammatory mediators in rats with DMN‑induced liver injury. Therefore, Centella asiatica may be useful in preventing liver damage.
Acute liver injury due to flavocoxid (Limbrel), a medical food for osteoarthritis: a case series.
Chalasani, Naga; Vuppalanchi, Raj; Navarro, Victor; Fontana, Robert; Bonkovsky, Herbert; Barnhart, Huiman; Kleiner, David E; Hoofnagle, Jay H
2012-06-19
Flavocoxid is a prescription medical food that is used to treat osteoarthritis. It is a proprietary blend of 2 flavonoids, baicalin and catechins, which are derived from the botanicals Scutellaria baicalensis and Acacia catechu, respectively. To describe characteristics of patients with acute liver injury suspected of being caused by flavocoxid. Case series. Drug-Induced Liver Injury Network Prospective Study ongoing at multiple academic medical centers since 2004. Four adults with liver injury. Clinical characteristics, liver biochemistry values, and outcomes. Among 877 patients enrolled in the prospective study, 4 had liver injury suspected to have been caused by flavocoxid. All were women; ages ranged from 57 to 68 years. All developed symptoms and signs of liver injury within 1 to 3 months after initiating flavocoxid. Liver injury was characterized by marked elevations in levels of alanine aminotransferase (mean peak, 1268 U/L; range, 741 to 1540 U/L), alkaline phosphatase (mean peak, 510 U/L; range, 286 to 770 U/L), and serum bilirubin (mean peak, 160.7 µmol/L [9.4 mg/dL]; range, 34.2 to 356 µmol/L [2.0 to 20.8 mg/dL]). Liver biochemistry values decreased to the normal range within 3 to 12 weeks after flavocoxid was stopped, and all patients recovered without experiencing acute liver failure or chronic liver injury. Causality was adjudicated as highly likely in 3 patients and as possible in 1 patient. The frequency and mechanism of liver injury could not be assessed. Flavocoxid can cause clinically significant liver injury, which seems to resolve within weeks after cessation.
[Comatose states: etiopathogenesis, experimental studies, treatment of hepatic coma].
Strekalova, O S; Uchaĭkin, V F; Ipatova, O M; Torkhovskaia, T I; Medvedeva, N V; Storozhakov, G I; Archakov, A I
2009-01-01
The review presents the modern concepts on biochemical mechanisms of processes, that result in comatose states (CS), with emphasis on the search of new therapeutic approaches. CS of various origin causes severe suppression of brain cells functioning and stable unconsciousness. Numerous reasons of various CS are classified into two main groups: primary brain damages (ischemia, tumor, trauma) and secondary damages originating from system injuries in the body (endocrine, toxic e. c.). The most often primary CS is the hypoxic-ischemic one, as result of corresponding encephalopathy. Its mechanism is the brain cells "energy crisis"--because of decreased blood supply or its deficiency by energy substrates or/and by oxygen. Among secondary CS the substantial place takes hepatic coma as a consequence of hepatic encephalopathy in severe liver diseases--cirrhosis, acute liver failure, sharp intoxication. Its main reason is associated with exess of ammonia entering the brain tissue (it accumulates in blood because of lack of its removing by damaged hepatocytes). Ammonia reacts with glutamate in brain astrocytes and the product of this reaction, glutamine, induced osmotic imbalance, that results in change of form and functions of these important brain cells. It induces, in turn, neurons functions damages, changes in neurotransmission and cerebral blood flow and all these may give rise CS. The most of CS studies are carried out in human. Experimental models ofhepatic CS are reproduced mainly in rats, the most often by surgery methods. Other models included administration of thioacetamide or D-galactosamine, sometimes in combination with lipopolysaccharide. In earlier studies ammonia administration together with liver damages by ligation or by CCl4 was used. The main principles of hepatic coma treatment include the care of encephalopathy, detoxification, and liver treatment. Elaboration of new nanodrugs with increased penetration into tissues and cells, in particular, on the base of phospholipid nanoparticles, may increase substantially the therapeuti efficiency. One of such drug is thought to be a new hepatoprotective preparation phosphogliv--nanoparticles of soy phosphatidylcholine with glycyrrhizic acid. It is supposed, that the further development of phospholipid nanoforms, with minimal particle sizes, may reveal the more action in CS treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Joydeep; Ghosh, Jyotirmoy; Roy, Anandita
Mangiferin, a xanthone glucoside, is well known to exhibit antioxidant, antiviral, antitumor, anti-inflammatory and gene-regulatory effects. In the present study, we isolated mangiferin from the bark of Mangifera indica and assessed its beneficial role in galactosamine (GAL) induced hepatic pathophysiology. GAL (400 mg/kg body weight) exposed hepatotoxic rats showed elevation in the activities of serum ALP, ALT, levels of triglycerides, total cholesterol, lipid-peroxidation and reduction in the levels of serum total proteins, albumin and cellular GSH. Besides, GAL exposure (5 mM) in hepatocytes induced apoptosis and necrosis, increased ROS and NO production. Signal transduction studies showed that GAL exposure significantlymore » increased the nuclear translocation of NFκB and elevated iNOS protein expression. The same exposure also elevated TNF-α, IFN-γ, IL-1β, IL-6, IL-12, IL-18 and decreased IL-10 mRNA expressions. Furthermore, GAL also decreased the protein expression of Nrf2, NADPH:quinine oxidoreductase-1, heme oxygenase-1 and GSTα. However, mangiferin administration in GAL intoxicated rats or coincubation of hepatocytes with mangiferin significantly altered all these GAL-induced adverse effects. In conclusion, the hepatoprotective role of mangiferin was due to induction of antioxidant defense via the Nrf2 pathway and reduction of inflammation via NFκB inhibition. Highlights: ►Galactosamine induces hepatocytes death via oxidative and nitrosative stress. ►Mangiferin exerts hepatoprotective effect/antioxidant defense via Nrf2 pathway. ►Mangiferin exerts anti-inflammatory responses by inhibiting NF-κB. ►Mangiferin suppresses galactosamine-induced repression of IL-10 mRNA.« less
Role of activin A in carbon tetrachloride-induced acute liver injury.
Wang, Dong-Hui; Wang, Yi-Nan; Ge, Jing-Yan; Liu, Hai-Yan; Zhang, Hong-Jun; Qi, Yan; Liu, Zhong-Hui; Cui, Xue-Ling
2013-06-28
To investigate the expression and role of activin A in a mouse model of acute chemical liver injury. Acute liver injury in C57BL/6 male mice was induced by intraperitoneal injection with carbon tetrachloride (CCl4) (0.5 mL/kg, body weight) dissolved in olive oil (1:19 v/v). Mice were sacrificed 1, 3, 5 and 7 d after the treatment. The levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum were examined and pathological changes of liver observed by hematoxylin and eosin staining to evaluate the liver injury. Activin A protein levels in serum and hepatic tissue homogenate of mice were detected by enzyme-linked immunosorbent assay, and the expression pattern of activin A protein in livers of mice was examined by immunohistochemistry. Activin type IIA receptor (ActRIIA) and Smad3 expressions in the liver were analyzed by real-time quantitative reverse transcription-polymerase chain reaction. In order to further investigate the role of activin A, we also utilized activin A blocking experiment by anti-activin A antibody (500 μg/kg, body weight) injection into mouse tail vein. In CCl4-treated mice, serum ALT and AST levels were significantly increased, compared with that in control mice (P < 0.01). Furthermore, the serious necrosis was observed around hepatic portal areas in CCl4-treated mice. Simultaneously, activin A levels in serum and hepatic tissue homogenate of mice treated with CCl4 for 1, 3 and 5 d increased significantly, compared with that in control mice (P < 0.01). Activin A protein expression in hepatocytes not within the necrotic area was also upregulated in mice following CCl4 treatment. Not only activin A, but also ActRIIA and activin signaling molecule Smad3 mRNA expressions in injury liver induced by CCl4 were significantly higher than that in control liver. In addition, levels of serum ALT and AST in CCl4-treated mice were significantly decreased by injection of anti-activin A antibody to block endogenous activin A action, compared with that in CCl4-treated mice by injection of immunoglobulin G instead of anti-activin A antibody (P < 0.01), and the severity of liver injury was also reduced remarkably. These data show that activin A is involved in CCl4-induced acute liver injury. Blocking activin A actions may be a therapeutic approach for acute liver injury.
Cai, Liangliang; Wan, Dongwei; Yi, Fanglian; Luan, Libiao
2017-08-25
In this study, purification, preliminary characterization and hepatoprotective effects of water-soluble polysaccharides from dandelion root (DRP) were investigated. Two polysaccharides, DRP1 and DRP2, were isolated from DRP. The two polysaccharides were α-type polysaccharides and didn't contain protein. DRP1, with a molecular weight of 5695 Da, was composed of glucose, galactose and arabinose, whereas DRP2, with molecular weight of 8882 Da, was composed of rhamnose, galacturonic acid, glucose, galactose and arabinose. The backbone of DRP1 was mainly composed of (1→6)-linked-α-d-Glc and (1→3,4)-linked-α-d-Glc. DRP2 was mainly composed of (1→)-linked-α-d-Ara and (1→)-linked-α-d-Glc. A proof-of-concept study was performed to assess the therapeutic potential of DRP1 and DRP2 in a mouse model that mimics acetaminophen (APAP) -induced liver injury (AILI) in humans. The present study shows DRP1 and DRP2 could protect the liver from APAP-induced hepatic injury by activating the Nrf2-Keap1 pathway. These conclusions demonstrate that the DRP1 and DRP2 might be suitable as functional foods and natural drugs in preventing APAP-induced liver injury.
Azathioprine and 6-Mercaptopurine-induced Liver Injury: Clinical Features and Outcomes.
Björnsson, Einar S; Gu, Jiezhun; Kleiner, David E; Chalasani, Naga; Hayashi, Paul H; Hoofnagle, Jay H
2017-01-01
The objective of the study was to define the clinical, biochemical, and histologic features of liver injury from thiopurines. Azathioprine (Aza) and 6-mercaptopurine (6-MP) can cause liver injury, but no large series exist. Clinical and laboratory data and 6-month outcomes of patients with thiopurine hepatotoxicity from the Drug-Induced Liver Injury Network Prospective Study were analyzed. Twenty-two patients were identified, 12 due to Aza and 10 due to 6-MP, with a median age of 55 years; the majority were female (68%). Inflammatory bowel disease was the indication in 55%, and the median thiopurine dose was 150 (range, 25 to 300) mg daily. The median latency to onset was 75 (range, 3 to 2584) days. Injury first arose after a dose escalation in 59% of patients, the median latency after dose increase being 44 (range, 3 to 254) days. At onset, the median alanine aminotransferase level was 210 U/L, alkaline phosphatase was 151 U/L, and bilirubin was 7.4 mg/dL (peak, 13.4 mg/dL). There were no major differences between Aza and 6-MP cases, but anicteric cases typically had nonspecific symptoms and a hepatocellular pattern of enzyme elevations, whereas icteric cases experienced cholestatic hepatitis with modest enzyme elevations in a mixed pattern. One patient with preexisting cirrhosis required liver transplantation; all others resolved clinically. One patient still had moderate alkaline phosphatase elevations 2 years after onset. Nearly three-quarters of patients with thiopurine-induced liver injury present with self-limited, cholestatic hepatitis, typically within 3 months of starting or a dose increase. The prognosis is favorable except in patients with preexisting cirrhosis.
Azathioprine and 6-Mercaptopurine Induced Liver Injury: Clinical Features and Outcomes
Björnsson, Einar S.; Gu, Jiezhun; Kleiner, David E.; Chalasani, Naga; Hayashi, Paul H.; Hoofnagle, Jay H.
2017-01-01
Goals To define the clinical, biochemical and histologic features of liver injury from thiopurines. Background Azathioprine (Aza) and 6-mercaptopurine (6-MP) can cause liver injury but no large series exist. Methods Clinical and laboratory data and 6-months outcomes were analyzed from patients with thiopurine hepatotoxicity from the Drug-Induced Liver Injury Network Prospective Study. Results 22 patients were identified, 12 due to Aza and 10 6-MP, with a median age of 55 years and the majority females (68%). Inflammatory bowel disease was the indication in 55%, and median thiopurine dose 150 (range 25–300) mg daily. The median latency to onset was 75 (range 3 to 2584) days. Injury first arose after a dose escalation in 59% of patients; the median latency after dose increase being 44 (range 3 to 254) days. At onset, the median alanine aminotransferase was 210 U/L, alkaline phosphatase 151 U/L and bilirubin 7.4 mg/dL (peak 13.4 mg/dL). There were no major differences between Aza and 6-MP cases, but anicteric cases typically had non-specific symptoms and a hepatocellular pattern of enzyme elevations, whereas icteric cases experienced a cholestatic hepatitis with modest enzyme elevations in a mixed pattern. One patient with pre-existing cirrhosis required liver transplantation, all others resolved clinically. One patient still had moderate alkaline phosphatase elevations 2 years after onset. Conclusions Nearly three-quarters of patients with thiopurine-induced liver injury present with self-limited, cholestatic hepatitis, typically within 3 months of starting or a dose increase. The prognosis is favorable except in patients with pre-existing cirrhosis. PMID:27648552
Glycoconjugate sugar residues in the chick embryo developing lung: a lectin histochemical study.
Gheri, G; Sgambati, E; Bryk, S G
2000-03-01
A lectin histochemical study was performed to investigate the distribution and changes of the oligosaccharidic component of the glycoconjugates in the lung of chick embryos, of 1-day-old chick, and of the adult animal. For this purpose, a battery of seven horseradish peroxidase-conjugated lectins (PNA, SBA, DBA, WGA, Con A, LTA, and UEA I) were employed. During the first phase of parabronchi and atria formation, D-galactose-(beta1-->3)-N-acetyl-D-galactosamine, beta-N-acetyl-D-galactosamine, D-glucosamine, alpha-D-mannose, and sialic acid, present at the level of the surface and of cytoplasmic granules of the lining epithelial cells, seem to play a role in regulating morphogenetic phenomena. In the subsequent phases, the parabronchial lumen and the atrial cavities were characterized by the presence of lectin-reactive material rich in terminal D-galactose-(beta1-->3)-N-acetyl-D-galactosamine, beta-N-acetyl-D-galactosamine, D-glucosamine and alpha-D-mannose. From day 18 onwards and immediately after hatching, the free border of the cells lining the air capillaries was characterized by the presence of beta-N-acetyl-D-galactosamine and alpha-D-mannose. The appearance of these sugar residues was concomitant with the beginning of respiratory activity. Copyright 2000 Wiley-Liss, Inc.
Ramírez-Farías, Carlett; Madrigal-Santillán, Eduardo; Gutiérrez-Salinas, José; Rodríguez-Sánchez, Nidia; Martínez-Cruz, Maricela; Valle-Jones, Ilse; Gramlich-Martínez, Ingrid; Hernández-Ceruelos, Alejandra; Morales-Gonzaléz, José A
2008-02-14
To investigate the effects of vitamins (A, C and E) on liver injury induced by ethanol administration during liver regeneration in rats. Male Wistar rats subjected to 70% partial hepatectomy were divided into five groups (groups 1-5). During the experiment, animals of Group 1 drank only water. The other four groups (2-5) drank 30 mL of ethanol/L of water. Group 3 additionally received vitamin A, those of group 4 vitamin C and those of group 5 received vitamin E. Subsequently serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin and bilirubin were measured colorimetrically. Lipid peroxidation (thiobarbituric-acid reactive substances, TBARS) both in plasma and liver was measured, as well as liver mass gain assessment and total DNA. Compared with sham group, serum AST and ALT increased significantly under ethanol treatment (43% and 93%, respectively, with P < 0.05). Vitamin C and vitamin E treatment attenuated the ethanol-induced increases in ALT and AST activity. Ethanol treatment also decreased serum albumin concentration compared to sham group (3.1 +/- 0.4 g/dL vs 4.5 +/- 0.2 g/dL; P < 0.05). During liver regeneration vitamins C and E significantly ameliorated liver injury for ethanol administration in hepatic lipid peroxidation (4.92 nmol/mg and 4.25 nmol/mg vs 14.78 nmol/mg, respectively, with P < 0.05). In association with hepatic injury, ethanol administration caused a significant increase in both hepatic and plasma lipid peroxidation. Vitamins (C and E) treatment attenuated hepatic and plasma lipid peroxidation. Vitamins C and E protect against liver injury and dysfunction, attenuate lipid peroxidation, and thus appear to be significantly more effective than vitamin A against ethanol-mediated toxic effects during liver regeneration.
Tilahun, Ashenafi Y.; Marietta, Eric V.; Wu, Tsung-Teh; Patel, Robin; David, Chella S.; Rajagopalan, Govindarajan
2011-01-01
Among the exotoxins produced by Staphylococcus aureus and Streptococcus pyogenes, the superantigens (SAgs) are the most potent T-cell activators known to date. SAgs are implicated in several serious diseases including toxic shock syndrome (TSS), Kawasaki disease, and sepsis. However, the immunopathogenesis of TSS and other diseases involving SAgs are still not completely understood. The commonly used conventional laboratory mouse strains do not respond robustly to SAgs in vivo. Therefore, they must be artificially rendered susceptible to TSS by using sensitizing agents such as d-galactosamine (d-galN), which skews the disease exclusively to the liver and, hence, is not representative of the disease in humans. SAg-induced TSS was characterized using transgenic mice expressing HLA class II molecules that are extremely susceptible to TSS without d-galN. HLA-DR3 transgenic mice recapitulated TSS in humans with extensive multiple-organ inflammation affecting the lung, liver, kidneys, heart, and small intestines. Heavy infiltration with T lymphocytes (both CD4+ and CD8+), neutrophils, and macrophages was noted. In particular, the pathologic changes in the small intestines were extensive and accompanied by significantly altered absorptive functions of the enterocytes. In contrast to massive liver failure alone in the d-galN sensitization model of TSS, findings of the present study suggest that gut dysfunction might be a key pathogenic event that leads to high morbidity and mortality in humans with TSS. PMID:21641398
Sun, Xue-Gang; Fu, Xiu-Qiong; Cai, Hong-Bing; Liu, Qiang; Li, Chun-Hua; Liu, Ya-Wei; Li, Ying-Jia; Liu, Zhi-Feng; Song, Yu-Hong; Lv, Zhi-Ping
2011-07-01
This study was designed to investigate mechanisms of the protective effects of Salvia miltiorrhiza polysaccharide (SMPS) against lipopolysaccharide (LPS)-induced immunological liver injury (ILI) in Bacille Calmette-Guérin (BCG)-primed mice. Two-dimensional difference gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis showed that three proteins are down-regulated and six proteins are up-regulated by SMPS. SMPS reduces the degree of liver injury by up-regulating the enzymes of the citric acid cycle, namely malate dehydrogenase (MDH) and 2-oxoglutarate dehydrogenase complex. LPS significantly increases nuclear factor kappa B (NF-κB) activation, inducible nitric oxide synthase (iNOS) expression and MDA level in BCG primed mice liver, whereas SMPS treatment protects against the immunological liver injury through inhibition of the NF-κB activation by up-regulation of PRDX6 and the subsequent attenuation of lipid peroxidation, iNOS expression and inflammation. Copyright © 2011 John Wiley & Sons, Ltd.
The role of CYP2A5 in liver injury and fibrosis: chemical-specific difference.
Hong, Feng; Si, Chuanping; Gao, Pengfei; Cederbaum, Arthur I; Xiong, Huabao; Lu, Yongke
2016-01-01
Liver injuries induced by carbon tetrachloride (CCL4) or thioacetamide (TAA) are dependent on cytochrome P450 2E1 (CYP2E1). CYP2A5 can be induced by TAA but not by CCL4. In this study, liver injury including fibrosis induced by CCL4 or TAA were investigated in wild-type (WT) mice and CYP2A5 knockout (cyp2a5 (-/-) ) mice as well as in CYP2E1 knockout (cyp2e1 (-/-) ) mice as a comparison. Acute and subchronic liver injuries including fibrosis were induced by CCL4 and TAA in WT mice but not in cyp2e1 (-/-) mice, confirming the indispensable role of CYP2E1 in CCL4 and TAA hepatotoxicity. WT mice and cyp2a5 (-/-) mice developed comparable acute liver injury induced by a single injection of CCL4 as well as subchronic liver injury including fibrosis induced by 1 month of repeated administration of CCL4, suggesting that CYP2A5 does not affect CCL4-induced liver injury and fibrosis. However, while 200 mg/kg TAA-induced acute liver injury was comparable in WT mice and cyp2a5 (-/-) mice, 75 and 100 mg/kg TAA-induced liver injury were more severe in cyp2a5 (-/-) mice than those found in WT mice. After multiple injections with 200 mg/kg TAA for 1 month, while subchronic liver injury as indicated by serum aminotransferases was comparable in WT mice and cyp2a5 (-/-) mice, liver fibrosis was more severe in cyp2a5 (-/-) mice than that found in WT mice. These results suggest that while both CCL4- and TAA-induced liver injuries and fibrosis are CYP2E1 dependent, under some conditions, CYP2A5 may protect against TAA-induced liver injury and fibrosis, but it does not affect CCL4 hepatotoxicity.
Prima, Victor; Wang, Alvin; Molina, Gabriel; Wang, Kevin K W; Svetlov, Stanislav I
2011-09-01
Lipopolysaccharide (LPS), a structural component of Gram-negative bacteria, is implicated in the pathogenesis of endotoxemia/sepsis and multi-organ injury, including liver damage. We have shown that argininosuccinate synthase (ASS), a hepatic enzyme of the urea cycle, accumulates in circulation within 1h after treatment with both LPS alone and hepatotoxic combination of LPS and D-Galactosamine. These findings indicate ASS as a sensitive biomarker of liver responses to bacterial endotoxin. Furthermore, we suggest that the ASS release represents a potential counteracting liver reaction to LPS, and demonstrates anti-LPS activity of recombinant ASS (rASS) in vitro and in rodent models of endotoxemia in vivo. rASS physically bound to LPS, as indicated by a gel shift assay, and suppressed Escherichia coli growth in cultures consistent with direct antimicrobial properties of ASS. rASS reduced LPS cytotoxicity, TNF-α production, and increased cell viability in cultured mouse macrophages, even when added one hour following LPS challenge. Intraperitoneal injection of rASS (5 mg/kg) after treatment with a high dose of LPS remarkably increased survival of rodents, with a concomitant decrease of sepsis markers TNF-α, C-reactive protein (CRP), and lactate dehydrogenase (LDH) levels in blood. These results suggest that the endogenous ASS constitutes a novel liver-derived component of the innate immune response to bacterial LPS, and that recombinant ASS could mitigate the lethal effects of bacterial endotoxins during sepsis. Copyright © 2011 Elsevier B.V. All rights reserved.
Yu, Tao; Rhee, Man Hee; Lee, Jongsung; Kim, Seung Hyung; Yang, Yanyan; Kim, Han Gyung; Kim, Yong; Kim, Chaekyun; Kwak, Yi-Seong; Kim, Jong-Hoon; Cho, Jae Youl
2016-01-01
Korean Red Ginseng (KRG) is an herbal medicine prescribed worldwide that is prepared from Panax ginseng C.A. Meyer (Araliaceae). Out of ginseng's various components, ginsenosides are regarded as the major ingredients, exhibiting anticancer and anti-inflammatory activities. Although recent studies have focused on understanding the anti-inflammatory activities of KRG, compounds that are major anti-inflammatory components, precisely how these can suppress various inflammatory processes has not been fully elucidated yet. In this study, we aimed to identify inhibitory saponins, to evaluate the in vivo efficacy of the saponins, and to understand the inhibitory mechanisms. To do this, we employed in vitro lipopolysaccharide-treated macrophages and in vivo inflammatory mouse conditions, such as collagen (type II)-induced arthritis (CIA), EtOH/HCl-induced gastritis, and lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-triggered hepatitis. Molecular mechanisms were also verified by real-time PCR, immunoblotting analysis, and reporter gene assays. Out of all the ginsenosides, ginsenoside Rc (G-Rc) showed the highest inhibitory activity against the expression of tumor necrosis factor (TNF)-[Formula: see text], interleukin (IL)-1[Formula: see text], and interferons (IFNs). Similarly, this compound attenuated inflammatory symptoms in CIA, EtOH/HCl-mediated gastritis, and LPS/D-galactosamine (D-GalN)-triggered hepatitis without altering toxicological parameters, and without inducing gastric irritation. These anti-inflammatory effects were accompanied by the suppression of TNF-[Formula: see text] and IL-6 production and the induction of anti-inflammatory cytokine IL-10 in mice with CIA. G-Rc also attenuated the increased levels of luciferase activity by IRF-3 and AP-1 but not NF-[Formula: see text]B. In support of this phenomenon, G-Rc reduced TBK1, IRF-3, and ATF2 phosphorylation in the joint and liver tissues of mice with hepatitis. Therefore, our results strongly suggest that G-Rc may be a major component of KRG with useful anti-inflammatory properties due to its suppression of IRF-3 and AP-1 pathways.
[The Correlation Between MicroRNAs in Serum and the Extent of Liver Injury].
Zuo, Yi-Nan; He, Xue-Ling; Shi, Xue-Ni; Wei, Shi-Hang; Yin, Hai-Lin
2017-05-01
To investigate the correlation between the absolute quantification of the microRNAs (miR-122, miR-451, miR-92a, miR-192) in serum during acute liver injury and the extent of liver injury on rat models of CCl 4 induced acute liver injury and mice models of acetaminophen (APAP) induced acute liver injury. Furthermore, to investigate the correlation between the absolute quantification of microRNAs in serum and the drug induced liver injury pathological scoring system (DILI-PSS). The acute liver injury model in rat by CCl 4 (1.5 mL/kg), and the acute liver injury model in mice by APAP (160 mg/kg) were established. The serum at different time points on both models were collected respectively. The absolute quantification of microRNAs in serum were detected by using MiRbay TM SV miRNA Assay kit. Meanwhile, the pathological sections of liver tissue of the mice at each time point were collected to analyze the correlation between microRNAs and the degree of liver injury. In CCl 4 -induced rat acute liver injury model and APAP induced mouse acute liver injury, miR-122 and miR-192 appeared to be rising significantly, which remained the highest level at 24 h after treatment, and declined to the normal level after 72 h. In CCl 4 -induced rat acute liver injury model, the change of miR-92a was fluctuated and had no apparent rules, miR-451 declined gradually, but not obviously. In mice acute liver injury model induced by APAP, miR-92a and miR-451 in the progress of liver injury declined gradually, reached the lowest point at 48 h, and then recovered. The result of correlation analysis indicated that miR-122 and miR-192 presented a good positive correlation with the DILI-PSS ( r =0.741 3, P <0.05; r =0.788 3, P <0.01). The absolute quantification of miR-122 and miR-192 in serum has the highest level in 24 h, then decrease in 72 h, in both drug-induced and chemical liver injury. In addition, both the two microRNAs have good correlation with DILI-PSS in APAP-induced liver injury models.
[Protective effects of five different types of Dendrobium on CCl4-induced liver injury in mice].
Wang, Kai; Sui, Dan-Juan; Wang, Chang-Suo; Yang, Li; Ouyang, Zhen; Chen, Nai-Fu; Han, Bang-Xing; Wei, Yuan
2017-05-01
This study aims to investigate the protective effect of Dendrobium huoshanense, D.officinale(Huoshan), D.officinale(Yunnan), D.moniliforme and D. henanense on CCl4-induced hepatic damage in mice. C57BL/6 mice were randomly divided into control group, model group, high-dose(7.5 g•kg⁻¹) and low-dose (1.25 g•kg⁻¹) groups of the five Dendrobium. Each group was intragastrically administered with drugs for 2 weeks. The control group was intraperitoneally injected with Olive oil solution, while the other groups were intraperitoneally given 0.5%CCl4combined with Olive oil solution 2 h later after the last administration. Subsequently, ALT and AST activities in serum, SOD activities and MDA contents in liver tissues were determined in all groups 16 h later after administration. The liver index was calculated, and hepatic histopathological examination was performed. The mRNA expressions of IL-1β, IL-6 and TNF-α were analyzed by Real-time PCR. Compared with the CCl4 model group, the activities of ALT and AST in serum decreased significantly in the five different Dendrobium groups. Meanwhile, in liver tissues, the levels of MDA reduced obviously, while the SOD activities markedly increased. Furthermore, liver tissue damage induced by CCl4 was ameliorated according to the histopathological examination. IL-1β, IL-6 and TNF-α mRNA expressions in D.huoshanense-treated liver tissues were significantly decreased. In conclusion, the five different Dendrobium groups showed hepatoprotective effects on CCl4-induced acute liver injury in mice. However, there were differences among Dendrobium of different types and origins. The protect effect of D.huoshanense is the most obvious, and the order of the protective effect of the other Dendrobium from high to low is D.officinale(Yunnan), D. officinale(Huoshan), D.henanense and D.moniliforme. The differences between the different types of Dendrobium might be related to their chemical components. Copyright© by the Chinese Pharmaceutical Association.
Herrero-Herrero, José-Ignacio; García-Aparicio, Judit
2010-12-01
Amoxicillin-clavulanate is the most common drug involved in drug-induced liver injury and the single most frequently prescribed product leading to hospitalization for drug-induced liver disease in Spain. The liver damage most frequently associated with amoxicillin-clavulanate is cholestasic type. The latency period between first intake and onset of symptoms is 3-4 weeks on average. A 76-year-old man developed fever, pruritus, and jaundice 3 weeks after having completed treatment with amoxicillin-clavulanate. Liver function tests showed cholestasic hepatitis (up to 50.75 mg/dL of total serum bilirubin level). The ultrasound-guided liver biopsy revealed severe canalicular cholestasis and portal and lobular eosinophilic infiltrates. Prednisone and ursodeoxycholic acid therapy were then prescribed. The patient became symptom-free with normal liver function tests. Amoxicillin-clavulanate can cause hepatocellular, cholestasic, or mixed liver injury. The presence of eosinophilic infiltrates in the liver biopsy and the clinical signs of hypersensitivity in some of the cholestasic cases suggest a pathophysiological immunoallergic mechanism. For this reason, corticosteroid treatment should be considered for patients with severe cholestasic liver injury.
The role of CYP2A5 in liver injury and fibrosis: chemical-specific difference
Hong, Feng; Si, Chuanping; Gao, Pengfei; Cederbaum, Arthur I.; Xiong, Huabao; Lu, Yongke
2015-01-01
Liver injuries induced by carbon tetrachloride (CCL4) or thioacetamide (TAA) are dependent on cytochrome P450 2E1 (CYP2E1). CYP2A5 can be induced by TAA but not by CCL4. In this study, liver injury including fibrosis induced by CCL4 or TAA were investigated in wild type (WT) mice and CYP2A5 knockout (cyp2a5−/−) mice as well as in CYP2E1 knockout (cyp2e1−/−) mice as a comparison. Acute and sub-chronic liver injuries including fibrosis were induced by CCL4 and TAA in WT mice but not in cyp2e1−/− mice, confirming the indispensable role of CYP2E1 in CCL4 and TAA hepatotoxicity. WT mice and cyp2a5−/− mice developed comparable acute liver injury induced by a single injection of CCL4 as well as sub-chronic liver injury including fibrosis induced by one month of repeated administration of CCL4, suggesting that CYP2A5 does not affect CCL4-induced liver injury and fibrosis. However, while 200 mg/kg TAA-induced acute liver injury was comparable in WT mice and cyp2a5−/− mice, 75 and 100 mg/kg TAA-induced liver injury were more severe in cyp2a5−/− mice than those found in WT mice. After multiple injections with 200 mg/kg TAA for one month, while sub-chronic liver injury as indicated by serum aminotransferases was comparable in WT mice and cyp2a5−/− mice, liver fibrosis was more severe in cyp2a5−/− mice than that found in WT mice. These results suggest that while both CCL4- and TAA-induced liver injuries and fibrosis are CYP2E1 dependent, under some conditions, CYP2A5 may protect against TAA-induced liver injury and fibrosis, but it doesn’t affect CCL4 hepatotoxicity. PMID:26363552
Acute liver injury due to flavocoxid (Limbrel®), a medical food for osteoarthritis: A case series
Chalasani, Naga; Vuppalanchi, Raj; Navarro, Victor; Fontana, Robert; Bonkovsky, Herbert; Barnhart, Huiman; Kleiner, David E.; Hoofnagle, Jay H.
2013-01-01
Background Flavocoxid is a medical food that is available with prescription for dietary management of osteoarthritis. It is a proprietary blend of two flavonoids, baicalin and catechins which are derived from botanicals Scutellaria baicalensis and Acacia catechu respectively. Objective To describe characteristics of patients with acute liver injury suspected due to flavocoxid. Design Case series Setting Prospective Study of the Drug Induced Liver Injury Network (DILIN) initiated at multiple academic medical centers in 2004. Patients 4 patients with liver injury suspected due to flavocoxid. Measurements Clinical characteristics, liver biochemistries, histology, and outcomes. Results Among 877 patients enrolled in the DILIN Prospective Study, 4 were attributed to flavocoxid. All 4 were women with a mean age of 61 years. The time to onset averaged 11.2 weeks (range 5–16) after initiating therapy with flavocoxid. Liver injury was characterized by marked elevations in alanine aminotransferase (mean peak ALT 1268 U/L, range 741 to 1540 U/L), with moderate elevations in alkaline phosphatase (mean peak 510 U/L, range 286 to 770 U/L) and serum bilirubin (mean peak 9.4 mg/dL, range 2.0 to 20.8 mg/dL). Liver biochemistries fell into the normal range within 3 to 12 weeks of stopping. The causality was adjudicated as highly likely in three and as possible in one patient. All recovered uneventfully with no evidence acute liver failure or chronic liver injury. Limitations The frequency or mechanism of liver injury caused by flavocoxid cannot be assessed. Conclusion Flavocoxid can cause significant liver injury which appears to resolve within weeks after its cessation. PMID:22711078
Gunathilaka, Mahesh Lakmal; Niriella, Madunil Anuk; Luke, Nathasha Vihangi; Piyarathna, Chathura Lakmal; Siriwardena, Rohan Chaminda; De Silva, Arjuna Priyadarshin; de Silva, Hithanadura Janaka
2017-07-03
Hydrocarbon-induced occupational liver injury is a well-known clinical entity among petroleum industry workers. There are many types of hydrocarbon exposure, with inhalation being the most common. Hydrocarbon-induced occupational liver injury is a rarely suspected and commonly missed etiological agent for liver injury. We report a case of a non-petroleum industry worker with chronic liver disease secondary to hydrocarbon-induced occupational liver injury caused by chronic low-grade hydrocarbon ingestion due to occupational malpractice. A 23-year-old Sri Lankan man who was a motor mechanic presented to our hospital with decompensated cirrhosis. He had been chronically exposed to gasoline via inadvertent ingestion due to occupational malpractice. He used to remove gasoline from carburetors by sucking and failed to practice mouth washing thereafter. On evaluation, he had histologically proven established cirrhosis. A comprehensive history and workup ruled out other nonoccupational etiologies for cirrhosis. The patient's long-term occupational gasoline exposure and clinical course led us to a diagnosis of hydrocarbon-induced occupational liver injury leading to decompensated cirrhosis. Hydrocarbon-induced occupational liver injury should be considered as a cause when evaluating a patient with liver injury with possible exposure in relevant occupations.
GGPPS deficiency aggravates CCl4-induced liver injury by inducing hepatocyte apoptosis.
Chen, Wei-Bo; Lai, Shan-Shan; Yu, De-Cai; Liu, Jia; Jiang, Shan; Zhao, Dan-Dan; Ding, Yi-Tao; Li, Chao-Jun; Xue, Bin
2015-04-28
GGPPS catalyses the expression of GGPP, a key protein in the mevalonate metabolic pathway. HMG-CoA reductase inhibitor statins can induce liver injury by inhibiting GGPP. However, the function of GGPPS in liver injury has not yet been revealed. In this study, we found that GGPPS increased in liver injury and that GGPPS deletion augmented liver injury and fibrosis. GGPPS inhibition induced hepatocyte apoptosis, inflammation and TGF-β1 secretion, which activated hepatic stellate cells. Our findings imply that GGPPS deletion induces hepatocyte apoptosis, which makes the liver vulnerable to hepatotoxicity. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
Kinoshita, S; Inoue, Y; Nakama, S; Ichiba, T; Aniya, Y
2007-11-01
The antioxidant and hepatoprotective actions of Terminalia catappa L. collected from Okinawa Island were evaluated in vitro and in vivo using leaves extract and isolated antioxidants. A water extract of the leaves of T. catappa showed a strong radical scavenging action for 1,1-diphenyl-2-picrylhydrazyl and superoxide (O(2)(.-)) anion. Chebulagic acid and corilagin were isolated as the active components from T. catappa. Both antioxidants showed a strong scavenging action for O(2)(.-) and peroxyl radicals and also inhibited reactive oxygen species production from leukocytes stimulated by phorbol-12-myristate acetate. Galactosamine (GalN, 600 mg/kg, s.c.,) and lipopolysaccharide (LPS, 0.5 microg/kg, i.p.)-induced hepatotoxicity of rats as seen by an elevation of serum alanine aminotransferase, aspartate aminotransferase and glutathione S-transferase (GST) activities was significantly reduced when the herb extract or corilagin was given intraperitoneally to rats prior to GalN/LPS treatment. Increase of free radical formation and lipid peroxidation in mitochondria caused by GalN/LPS treatment were also decreased by pretreatment with the herb/corilagin. In addition, apoptotic events such as DNA fragmentation and the increase in caspase-3 activity in the liver observed with GalN/LPS treatment were prevented by the pretreatment with the herb/corilagin. These results show that the extract of T. catappa and its antioxidant, corilagin are protective against GalN/LPS-induced liver injury through suppression of oxidative stress and apoptosis.
Jiang, Wenqian; Tan, Youwen; Cai, Mengjie; Zhao, Ting; Mao, Fei; Zhang, Xu; Xu, Wenrong; Yan, Zhixin; Qian, Hui; Yan, Yongmin
2018-01-01
Mesenchymal stem cells (MSCs) have been increasingly applied into clinical therapy. Exosomes are small (30-100 nm in diameter) membrane vesicles released by different cell types and possess the similar functions with their derived cells. Human umbilical cord MSC-derived exosomes (hucMSC-Ex) play important roles in liver repair. However, the effects and mechanisms of hucMSC-Ex on liver injury development remain elusive. Mouse models of acute and chronic liver injury and liver tumor were induced by carbon tetrachloride (CCl 4 ) injection, followed by administration of hucMSC-Ex via the tail vein. Alleviation of liver injury by hucMSC-Ex was determined. We further explored the production of oxidative stress and apoptosis in the development of liver injury and compared the antioxidant effects of hucMSC-Ex with frequently used hepatic protectant, bifendate (DDB) in liver injury. hucMSC-Ex alleviated CCl 4 -induced acute liver injury and liver fibrosis and restrained the growth of liver tumors. Decreased oxidative stress and apoptosis were found in hucMSC-Ex-treated mouse models and liver cells. Compared to bifendate (DDB) treatment, hucMSC-Ex presented more distinct antioxidant and hepatoprotective effects. hucMSC-Ex may suppress CCl 4 -induced liver injury development via antioxidant potentials and could be a more effective antioxidant than DDB in CCl 4 -induced liver tumor development.
Gao, Yuan; Cao, Zhijun; Yang, Xi; Abdelmegeed, Mohamed A; Sun, Jinchun; Chen, Si; Beger, Richard D; Davis, Kelly; Salminen, William F; Song, Byoung-Joon; Mendrick, Donna L; Yu, Li-Rong
2017-01-01
Overdose of acetaminophen (APAP) is a major cause of acute liver failure. This study was aimed to identify pathways related to hepatotoxicity and potential biomarkers of liver injury. Rats were treated with low (100 mg/kg) and high (1250 mg/kg) doses of APAP, and liver tissues at 6 and 24 h post-treatment were analyzed using a proteomic approach of 16O/18O labeling and 2D-LC-MS/MS. Molecular pathways evolved progressively from scattered and less significant perturbations to more focused and significant alterations in a dose- and time-dependent manner upon APAP treatment. Imbalanced expression of hemeoxygenase 1 (HMOX1) and biliverdin reductase A (BLVRA) was associated with hepatotoxicity. Protein abundance changes of a total of 31 proteins were uniquely correlated to liver damage, among which a dramatic increase of HMOX1 levels in plasma was observed. Liver injury-associated significant elevation of plasma HMOX1 was further validated in mice treated with APAP. This study unveiled molecular changes associated with APAP-induced liver toxicity at the pathway levels and identified HMOX1 as a potential plasma biomarker of liver injury. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Gao, Yuan; Cao, Zhijun; Yang, Xi; Abdelmegeed, Mohamed A.; Sun, Jinchun; Chen, Si; Beger, Richard D.; Davis, Kelly; Salminen, William F.; Song, Byoung-Joon; Mendrick, Donna L.; Yu, Li-Rong
2017-01-01
Purpose Overdose of acetaminophen (APAP) is a major cause of acute liver failure. This study was aimed to identify pathways related to hepatotoxicity and potential biomarkers of liver injury. Experimental design Rats were treated with low (100 mg/kg) and high (1250 mg/kg) doses of APAP, and liver tissues at 6 and 24 h post-treatment were analyzed using a proteomic approach of 16O/18O labeling and 2D-LC-MS/MS. Results Molecular pathways evolved progressively from scattered and less significant perturbations to more focused and significant alterations in a dose- and time-dependent manner upon APAP treatment. Imbalanced expression of hemeoxygenase 1 (HMOX1) and biliverdin reductase A (BLVRA) was associated with hepatotoxicity. Protein abundance changes of a total of 31 proteins were uniquely correlated to liver damage, among which a dramatic increase of HMOX1 levels in plasma was observed. Liver injury-associated significant elevation of plasma HMOX1 was further validated in mice treated with APAP. Conclusions and clinical relevance This study unveiled molecular changes associated with APAP-induced liver toxicity at the pathway levels and identified HMOX1 as a potential plasma biomarker of liver injury. PMID:27634590
Koide, Naoki; Morikawa, Akiko; Naiki, Yoshikazu; Tumurkhuu, Gantsetseg; Yoshida, Tomoaki; Ikeda, Hiroshi; Yokochi, Takashi
2009-02-01
The susceptibility of NC/Nga mice to tumor necrosis factor (TNF)-alpha was examined by using sensitization with d-galactosamine (d-GalN). Administration of TNF-alpha and d-GalN killed none of the NC/Nga mice, whereas it killed all of the BALB/c mice. Treatment with TNF-alpha and d-GalN caused few hepatic lesions in NC/Nga mice but massive hepatocellular apoptosis in BALB/c mice. Unlike BALB/c mice, there was no elevation in caspase 3 and 8 activities in the livers of NC/Nga mice receiving TNF-alpha and d-GalN. On the other hand, administration of anti-Fas antibody definitely killed both NC/Nga and BALB/c mice via activation of caspases 3 and 8. Treatment with TNF-alpha and d-GalN led to translocation of nuclear factor (NF)-kappaB in NC/Nga and BALB/c mice. However, NF-kappaB translocation was sustained in NC/Nga mice, although it disappeared in BALB/c mice 7 h after the treatment. NF-kappaB inhibitors activated caspases 3 and 8, and enhanced TNF-alpha-mediated lethality in NC/Nga. Taken together, the low susceptibility of NC/Nga mice to TNF-alpha-mediated lethality was suggested to be responsible for the sustained NF-kappaB activation.
Protection of Flos Lonicerae against acetaminophen-induced liver injury and its mechanism.
Jiang, Ping; Sheng, Yu-chen; Chen, Yu-hao; Ji, Li-li; Wang, Zheng-tao
2014-11-01
This study aims to observe the protective action of Flos Lonicerae (FL) aqueous extract against acetaminophen (AP)-induced liver injury and its mechanism. Results show that FL decreases AP-increased serum alanine/aspartate transaminases (ALT/AST) activity, as well as total bilirubin (TB) amount, in mice. Histological evaluation of the liver further confirms the protection of FL against AP-induced hepatotoxicity. TdT-mediated biotin-dUTP nick-end labeling (TUNEL) assay shows that FL reduces AP-increased apoptotic cells. Furthermore, AP-decreased liver glutamate-cysteine ligase (GCL) enzymatic activity and glutathione (GSH) amount are both reversed by FL because of the increased expression of the catalytic subunit of GCL (GCLC) protein. The amount of chlorogenic acid (CGA), caffeic acid, and luteolin, the main active compounds in FL, is detected by high-performance liquid chromatography (HPLC). In addition, cell viability assay demonstrates that polyphenols in FL, such as CGA, caffeic acid, as well as isochlorogenic acids A, B, and C, can reverse AP-induced cytotoxicity. In conclusion, FL can prevent AP-induced liver injury by inhibiting apoptosis. The cellular antioxidant enzyme GCL is also involved in such protection. Polyphenols may be the main active hepato-protective ingredients in FL. Copyright © 2014 Elsevier B.V. All rights reserved.
Ramírez-Farías, Carlett; Madrigal-Santillán, Eduardo; Gutiérrez-Salinas, José; Rodríguez-Sánchez, Nidia; Martínez-Cruz, Maricela; Valle-Jones, Ilse; Gramlich-Martínez, Ingrid; Hernández-Ceruelos, Alejandra; Morales-González, José A
2008-01-01
AIM: To investigate the effects of vitamins (A, C and E) on liver injury induced by ethanol administration during liver regeneration in rats. METHODS: Male Wistar rats subjected to 70% partial hepatectomy were divided into five groups (groups 1-5). During the experiment, animals of Group 1 drank only water. The other four groups (2-5) drank 30 mL of ethanol/L of water. Group 3 additionally received vitamin A, those of group 4 vitamin C and those of group 5 received vitamin E. Subsequently serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin and bilirubin were measured colorimetrically. Lipid peroxidation (thiobarbituric-acid reactive substances, TBARS) both in plasma and liver was measured, as well as liver mass gain assessment and total DNA. RESULTS: Compared with sham group, serum AST and ALT increased significantly under ethanol treatment (43% and 93%, respectively, with P < 0.05). Vitamin C and vitamin E treatment attenuated the ethanol-induced increases in ALT and AST activity. Ethanol treatment also decreased serum albumin concentration compared to sham group (3.1 ± 0.4 g/dL vs 4.5 ± 0.2 g/dL; P < 0.05). During liver regeneration vitamins C and E significantly ameliorated liver injury for ethanol administration in hepatic lipid peroxidation (4.92 nmol/mg and 4.25 nmol/mg vs 14.78 nmol/mg, respectively, with P < 0.05). In association with hepatic injury, ethanol administration caused a significant increase in both hepatic and plasma lipid peroxidation. Vitamins (C and E) treatment attenuated hepatic and plasma lipid peroxidation. CONCLUSION: Vitamins C and E protect against liver injury and dysfunction, attenuate lipid peroxidation, and thus appear to be significantly more effective than vitamin A against ethanol-mediated toxic effects during liver regeneration. PMID:18240347
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, C. David; Farhood, Anwar; Jaeschke, Hartmut, E-mail: hjaeschke@kumc.ed
2010-09-15
Acetaminophen (APAP) overdose can result in serious liver injury and potentially death. Toxicity is dependent on metabolism of APAP to a reactive metabolite initiating a cascade of intracellular events resulting in hepatocellular necrosis. This early injury triggers a sterile inflammatory response with formation of cytokines and innate immune cell infiltration in the liver. Recently, IL-1{beta} signaling has been implicated in the potentiation of APAP-induced liver injury. To test if IL-1{beta} formation through caspase-1 is critical for the pathophysiology, C57Bl/6 mice were treated with the pan-caspase inhibitor Z-VD-fmk to block the inflammasome-mediated maturation of IL-1{beta} during APAP overdose (300 mg/kg APAP).more » This intervention did not affect IL-1{beta} gene transcription but prevented the increase in IL-1{beta} plasma levels. However, APAP-induced liver injury and neutrophil infiltration were not affected. Similarly, liver injury and the hepatic neutrophilic inflammation were not attenuated in IL-1-receptor-1 deficient mice compared to wild-type animals. To evaluate the potential of IL-1{beta} to increase injury, mice were given pharmacological doses of IL-1{beta} after APAP overdose. Despite increased systemic activation of neutrophils and recruitment into the liver, there was no alteration in injury. We conclude that endogenous IL-1{beta} formation after APAP overdose is insufficient to activate and recruit neutrophils into the liver or cause liver injury. Even high pharmacological doses of IL-1{beta}, which induce hepatic neutrophil accumulation and activation, do not enhance APAP-induced liver injury. Thus, IL-1 signaling is irrelevant for APAP hepatotoxicity. The inflammatory cascade is a less important therapeutic target than intracellular signaling pathways to attenuate APAP-induced liver injury.« less
Zhu, Dunwan; Tao, Wei; Zhang, Hongling; Liu, Gan; Wang, Teng; Zhang, Linhua; Zeng, Xiaowei; Mei, Lin
2016-01-01
Polydopamine-based surface modification is a simple way to functionalize polymeric nanoparticle (NP) surfaces with ligands and/or additional polymeric layers. In this work, we developed DTX-loaded formulations using polydopamine-modified NPs synthesized using D-α-tocopherol polyethylene glycol 1000 succinate-poly(lactide) (pD-TPGS-PLA/NPs). To target liver cancer cells, galactosamine was conjugated on the prepared NPs (Gal-pD-TPGS-PLA/NPs) to enhance the delivery of DTX via ligand-mediated endocytosis. The size and morphology of pD-TPGS-PLA/NPs and Gal-pD-TPGS-PLA/NPs changed obviously compared with TPGS-PLA/NPs. In vitro studies showed that TPGS-PLA/NPs, pD-TPGS-PLA/NPs and Gal-pD-TPGS-PLA/NPs had similar release profiles of DTX. Both confocal laser scanning microscopy and flow cytometric results showed that coumarin 6-loaded Gal-pD-TPGS-PLA/NPs had the highest cellular uptake efficiency in liver cancer cell line HepG2. Moreover, DTX-loaded Gal-pD-TPGS-PLA/NPs inhibited the growth of HepG2 cells more potently than TPGS-PLA/NPs, pD-TPGS-PLA/NPs, and a clinically available DTX formulation (Taxotere®). The in vivo biodistribution experiments show that the Gal-pD-TPGS-PLA/NPs are specifically targeted to the tumor. Furthermore, the in vivo anti-tumor effects study showed that injecting DTX-loaded Gal-pD-TPGS-PLA/NPs reduced the tumor size most significantly on hepatoma-bearing nude mice. These results suggest that Gal-pD-TPGS-PLA/NPs prepared in the study specifically interacted with the hepatocellular carcinoma cells through ligand-receptor recognition and they may be used as a potentially eligible drug delivery system targeting liver cancers. Polydopamine-based surface modification is a simple way to functionalize polymeric nanoparticle surfaces with ligands and/or additional polymeric layers. In this work, we developed docetaxel (DTX)-loaded formulations using polydopamine-modified NPs synthesized from D-α-tocopherol polyethylene glycol 1000 succinate-poly(lactide) (pD-TPGS-PLA/NPs). To target liver cancer cells, galactosamine was conjugated on the prepared NPs (Gal-pD-TPGS-PLA/NPs) to enhance the delivery of DTX via ligand-mediated endocytosis. Both confocal laser scanning microscopy and flow cytometric results showed that coumarin 6-loaded Gal-pD-TPGS-PLA/NPs had the highest cellular uptake efficiency for liver cancer cell line HepG2. The in vivo biodistribution experiments show that the Gal-pD-TPGS-PLA/NPs are specifically targeted to the tumor. Furthermore, the in vivo anti-tumor effects study showed that injecting DTX-loaded Gal-pD-TPGS-PLA/NPs reduced the tumor size most significantly on hepatoma-bearing nude mice. These results suggest that Gal-pD-TPGS-PLA/NPs prepared in the study specifically interacted with the hepatocellular carcinoma cells through ligand-receptor recognition and they could be used as a potentially eligible drug delivery system targeting liver cancers. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Lu, Yongke; Leung, Tung Ming; Ward, Stephen C.
2012-01-01
Argininosuccinate synthase (ASS) is the rate-limiting enzyme in the urea cycle. Along with nitric oxide synthase (NOS)-2, ASS endows cells with the l-citrulline/nitric oxide (NO·) salvage pathway to continually supply l-arginine from l-citrulline for sustained NO· generation. Because of the relevant role of NOS in liver injury, we hypothesized that downregulation of ASS could decrease the availability of intracellular substrate for NO· synthesis by NOS-2 and, hence, decrease liver damage. Previous work demonstrated that pyrazole plus LPS caused significant liver injury involving NO· generation and formation of 3-nitrotyrosine protein adducts; thus, wild-type (WT) and Ass+/− mice (Ass−/− mice are lethal) were treated with pyrazole plus LPS, and markers of nitrosative stress, as well as liver injury, were analyzed. Partial ablation of Ass protected from pyrazole plus LPS-induced liver injury by decreasing nitrosative stress and hepatic and circulating TNFα. Moreover, apoptosis was prevented, since pyrazole plus LPS-treated Ass+/− mice showed decreased phosphorylation of JNK; increased MAPK phosphatase-1, which is known to deactivate JNK signaling; and lower cleaved caspase-3 than treated WT mice, and this was accompanied by less TdT-mediated dUTP nick end labeling-positive staining. Lastly, hepatic neutrophil accumulation was almost absent in pyrazole plus LPS-treated Ass+/− compared with WT mice. Partial Ass ablation prevents pyrazole plus LPS-mediated liver injury by reducing nitrosative stress, TNFα, apoptosis, and neutrophil infiltration. PMID:22052013
Tomar, S; Nagarkatti, M; Nagarkatti, P S
2015-01-01
Background and Purpose Acute liver failure (ALF) is a severe and potentially lethal clinical syndrome. 3,3′-Diindolylmethane (DIM) is a natural plant-derived compound with anti-cancer activities. Recently, DIM has also been shown to have anti-inflammatory properties. Here, we tested the hypothesis that DIM would suppress endotoxin-induced ALF. Experimental Approach We investigated the therapeutic potential of DIM in a mouse model of D-galactosamine/Lipopolysaccharide (GalN/LPS)-induced ALF. The efficacy of DIM treatment was assessed by survival, liver histopathology, serum levels of alanine transaminase, pro-inflammatory cytokines and number of activated liver macrophages. Effects of DIM on the expression of two miRNAs, 106a and 20b, and their predicted target gene were measured by qRT-PCR and Western blotting. Effects of DIM on the release of TNF-α from RAW264.7 macrophages transfected with mimics of these miRNAs and activated by LPS was assessed by elisa. Key Results DIM treatment protected mice from ALF symptoms and reduced the number of activated liver macrophages. DIM increased expression of miR-106a and miR-20b in liver mononuclear cells and decreased expression of their predicted target gene IL-1 receptor-associated kinase 4 (IRAK4), involved in signalling from Toll-like receptor 4 (TLR4). In vitro transfection of RAW264.7 cells using miRNA mimics of miR-106a and 20b decreased expression of IRAK4 and of TNF-α secretion, following LPS stimulation. Conclusions and Implications DIM attenuated GalN/LPS-induced ALF by regulating the expression of unique miRNAs that target key molecules in the TLR4 inflammatory pathway. DIM may represent a potential novel hepatoprotective agent. PMID:25521277
Involvement of TGF-β1/Smad3 Signaling in Carbon Tetrachloride-Induced Acute Liver Injury in Mice
Niu, Liman; Cui, Xueling; Qi, Yan; Xie, Dongxue; Wu, Qian; Chen, Xinxin; Ge, Jingyan; Liu, Zhonghui
2016-01-01
Transforming growth factor-beta1 (TGF-β1) is a major factor in pathogenesis of chronic hepatic injury. Carbon tetrachloride (CCl4) is a liver toxicant, and CCl4-induced liver injury in mouse is a classical animal model of chemical liver injury. However, it is still unclear whether TGF-β1 is involved in the process of CCl4-induced acute chemical liver injury. The present study aimed to evaluate the role of TGF-β1 and its signaling molecule Smad3 in the acute liver injury induce by CCl4. The results showed that CCl4 induced acute liver injury in mice effectively confirmed by H&E staining of liver tissues, and levels of not only liver injury markers serum ALT and AST, but also serum TGF-β1 were elevated significantly in CCl4-treated mice, compared with the control mice treated with olive oil. Our data further revealed that TGF-β1 levels in hepatic tissue homogenate increased significantly, and type II receptor of TGF-β (TβRII) and signaling molecules Smad2, 3, mRNA expressions and Smad3 and phospho-Smad3 protein levels also increased obviously in livers of CCl4-treated mice. To clarify the effect of the elevated TGF-β1/Smad3 signaling on CCl4-induced acute liver injury, Smad3 in mouse liver was overexpressed in vivo by tail vein injection of Smad3-expressing plasmids. Upon CCl4 treatment, Smad3-overexpressing mice showed more severe liver injury identified by H&E staining of liver tissues and higher serum ALT and AST levels. Simultaneously, we found that Smad3-overexpressing mice treated with CCl4 showed more macrophages and neutrophils infiltration in liver and inflammatory cytokines IL-1β and IL-6 levels increment in serum when compared with those in control mice treated with CCl4. Moreover, the results showed that the apoptosis of hepatocytes increased significantly, and apoptosis-associated proteins Bax, cytochrome C and the cleaved caspase 3 expressions were up-regulated in CCl4-treated Smad3-overexpressing mice as well. These results suggested that TGF-β1/Smad3 signaling was activated during CCl4-induced acute liver injury in mice, and Smad3 overexpression aggravated acute liver injury by promoting inflammatory cells infiltration, inflammatory cytokines release and hepatocytes apoptosis. In conclusion, the activation of TGF-β signaling contributes to the CCl4-induced acute liver injury. Thus, TGF-β1/Smad3 may serve as a potential target for acute liver injury therapy. PMID:27224286
Yang, Xiaohua; Qin, Lei; Liu, Jianxia; Tian, Liping; Qian, Haixin
2012-12-01
Hepatic ischemia-reperfusion (IR) injury occurs during liver resection and transplantation. Recent studies have shown that 17β-estradiol (E2) can protect the heart and liver against warm IR. The present study focused on the cytoprotective effects of E2 on cold IR injury to the liver. Sprague-Dawley male rats were randomly divided into three groups: sham, IR, and IR plus E2. The model of rat orthotopic liver transplantation was used. The rats in the IR plus E2 group were intraperitoneally injected with E2 (100 μg/kg/d) for 7 d before surgery. The sham and IR group received the same quantity of saline. The donor livers were then orthotopically transplanted into rats after cold ischemia preservation for 4 h at 4°C lactated Ringer's solution. After 6 h reperfusion, liver function, bile flow volume, hepatocyte apoptosis, and activation of Akt, glycogen synthase kinase-3β, and Bcl-2-associated death promoter were assessed. The survival rate of the rats was also investigated. The administration of E2 significantly prolonged the survival of liver grafts by improving liver function and decreasing hepatocyte apoptosis. Rats undergoing E2 demonstrated a greater level activation of Akt in the liver compared with the IR group. In addition, E2 also inhibited the activities of glycogen synthase kinase-3β, Bcl-2-associated death promoter, and caspase-3-induced by IR injury. E2 pretreatment attenuated the hepatocellular damage caused by hepatic cold IR injury through the Akt pathway. Estrogen therapy might be important in clinical settings associated with cold IR injury during liver transplantation. Copyright © 2012 Elsevier Inc. All rights reserved.
Neutrophil-cytokine interactions in a rat model of sulindac-induced idiosyncratic liver injury.
Zou, Wei; Roth, Robert A; Younis, Husam S; Malle, Ernst; Ganey, Patricia E
2011-12-18
Previous studies indicated that lipopolysaccharide (LPS) interacts with the nonsteroidal anti-inflammatory drug sulindac (SLD) to produce liver injury in rats. In the present study, the mechanism of SLD/LPS-induced liver injury was further investigated. Accumulation of polymorphonuclear neutrophils (PMNs) in the liver was greater in SLD/LPS-cotreated rats compared to those treated with SLD or LPS alone. In addition, PMN activation occurred specifically in livers of rats cotreated with SLD/LPS. The hypothesis that PMNs and proteases released from them play critical roles in the hepatotoxicity was tested. SLD/LPS-induced liver injury was attenuated by prior depletion of PMNs or by treatment with the PMN protease inhibitor, eglin C. Previous studies suggested that tumor necrosis factor-α (TNF) and the hemostatic system play critical roles in the pathogenesis of liver injury induced by SLD/LPS. TNF and plasminogen activator inhibitor-1 (PAI-1) can contribute to hepatotoxicity by affecting PMN activation and fibrin deposition. Therefore, the role of TNF and PAI-1 in PMN activation and fibrin deposition in the SLD/LPS-induced liver injury model was tested. Neutralization of TNF or inhibition of PAI-1 attenuated PMN activation. TNF had no effect on PAI-1 production or fibrin deposition. In contrast, PAI-1 contributed to fibrin deposition in livers of rats treated with SLD/LPS. In summary, PMNs, TNF and PAI-1 contribute to the liver injury induced by SLD/LPS cotreatment. TNF and PAI-1 independently contributed to PMN activation, which is critical to the pathogenesis of liver injury. Moreover, PAI-1 contributed to liver injury by promoting fibrin deposition. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Yang, Qiaoling; Yang, Fan; Tang, Xiaowen; Ding, Lili; Xu, Ying; Xiong, Yinhua; Wang, Zhengtao; Yang, Li
2015-04-16
Yin-Chen-Hao-Tang (YCHT), a commonly used as a traditional chinese medicine for liver disease. Several studies indicated that YCHT may improving hepatic triglyceride metabolism and anti-apoptotic response as well as decreasing oxidative stress .However, little is known about the role of YCHT in chlorpromazine (CPZ) -induced chlolestatic liver injury. Therefore, we aimed to facilitate the understanding of the pathogenesis of cholestatic liver injury and evaluate the effect of Yin-Chen-Hao-Tang (YCHT) on chlorpromazine (CPZ)-induced cholestatic liver injury in rats based on the change of bile acids (BAs) and free fatty acids (FFAs) alone with the biochemical indicators and histological examination. We conducted an experiment on CPZ-induced cholestatic liver injury in Wistar rats with and without YCHT for nine consecutive days. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB), total bilirubin (TBIL), total cholesterol (TC), triglycerides (TG), low density lipoprotein-cholesterol (LDL-C) were measured to evaluate the protective effect of YCHT against chlorpromazine (CPZ)-induced cholestatic liver injury. Histopathology of the liver tissue showed that pathological injuries were relieved after YCHT pretreatment. In addition, ultra-performance lipid chromatography coupled with quadrupole mass spectrometry (UPLC-MS) and gas chromatography coupled with mass spectrometry (GC-MS) was applied to determine the content of bile acids, free fatty acids, respectively. Obtained data showed that YCHT attenuated the effect of CPZ-induced cholestatic liver injury, which was manifested by the serum biochemical parameters and histopathology of the liver tissue. YCHT regulated the lipid levels as indicated by the reversed serum levels of TC, TG, and LDL-C. YCHT also regulated the disorder of BA and FFA metabolism by CPZ induction. Results indicated that YCHT exerted a protective effect on CPZ-induced cholestasis liver injury. The variance of BA and FFA concentrations can be used to evaluate the cholestatic liver injury caused by CPZ and the hepatoprotective effect of YCHT.
Cassiman, David; Libbrecht, Louis; Sinelli, Nicoletta; Desmet, Valeer; Denef, Carl; Roskams, Tania
2002-01-01
In the rat the hepatic branch of the nervus vagus stimulates proliferation of hepatocytes after partial hepatectomy and growth of bile duct epithelial cells after bile duct ligation. We studied the effect of hepatic vagotomy on the activation of the hepatic progenitor cell compartment in human and rat liver. The number of hepatic progenitor cells and atypical reactive ductular cells in transplanted (denervated) human livers with hepatitis was significantly lower than in innervated matched control livers and the number of oval cells in vagotomized rat livers with galactosamine hepatitis was significantly lower than in livers of sham-operated rats with galactosamine hepatitis. The expression of muscarinic acetylcholine receptors (M1-M5 receptor) was studied by immunohistochemistry and reverse transcriptase-polymerase chain reaction. In human liver, immunoreactivity for M3 receptor was observed in hepatic progenitor cells, atypical reactive ductules, intermediate hepatocyte-like cells, and bile duct epithelial cells. mRNA for the M1-M3 and the M5 receptor, but not the M4 receptor, was detected in human liver homogenates. In conclusion, the hepatic vagus branch stimulates activation of the hepatic progenitor cell compartment in diseased liver, most likely through binding of acetylcholine to the M3 receptor expressed on these cells. These findings may be of clinical importance for patients with a transplant liver. PMID:12163377
Xu, Jiesi; Xu, Yang; Li, Yuanyuan; Jadhav, Kavita; You, Min; Yin, Liya; Zhang, Yanqiao
2016-04-14
The liver is a major organ that controls hepatic and systemic homeostasis. Dysregulation of liver metabolism may cause liver injury. Previous studies have demonstrated that carboxylesterase 1 (CES1) regulates hepatic triglyceride metabolism and protects against liver steatosis. In the present study, we investigated whether CES1 played a role in the development of alcoholic liver disease (ALD) and methionine and choline-deficient (MCD) diet-induced liver injury. Both hepatocyte nuclear factor 4α (HNF4α) and CES1 were markedly reduced in patients with alcoholic steatohepatitis. Alcohol repressed both HNF4α and CES1 expression in primary hepatocytes. HNF4α regulated CES1 expression by directly binding to the proximal promoter of CES1. Global inactivation of CES1 aggravated alcohol- or MCD diet-induced liver inflammation and liver injury, likely as a result of increased production of acetaldehyde and reactive oxygen species and mitochondrial dysfunctions. Knockdown of hepatic CES1 exacerbated ethanol-induced steatohepatitis. These data indicate that CES1 plays a crucial role in protection against alcohol- or MCD diet-induced liver injury.
Acute liver injury induced by weight-loss herbal supplements.
Chen, Gary C; Ramanathan, Vivek S; Law, David; Funchain, Pauline; Chen, George C; French, Samuel; Shlopov, Boris; Eysselein, Viktor; Chung, David; Reicher, Sonya; Pham, Binh V
2010-11-27
We report three cases of patients with acute liver injury induced by weight-loss herbal supplements. One patient took Hydroxycut while the other two took Herbalife supplements. Liver biopsies for all patients demonstrated findings consistent with drug-induced acute liver injury. To our knowledge, we are the first institute to report acute liver injury from both of these two types of weight-loss herbal supplements together as a case series. The series emphasizes the importance of taking a cautious approach when consuming herbal supplements for the purpose of weight loss.
Acute liver injury induced by weight-loss herbal supplements
Chen, Gary C; Ramanathan, Vivek S; Law, David; Funchain, Pauline; Chen, George C; French, Samuel; Shlopov, Boris; Eysselein, Viktor; Chung, David; Reicher, Sonya; Pham, Binh V
2010-01-01
We report three cases of patients with acute liver injury induced by weight-loss herbal supplements. One patient took Hydroxycut while the other two took Herbalife supplements. Liver biopsies for all patients demonstrated findings consistent with drug-induced acute liver injury. To our knowledge, we are the first institute to report acute liver injury from both of these two types of weight-loss herbal supplements together as a case series. The series emphasizes the importance of taking a cautious approach when consuming herbal supplements for the purpose of weight loss. PMID:21173910
Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Da-Gang
The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl{sub 4})-induced acute liver injury. Mice were intraperitoneally injected with CCl{sub 4} (0.15 ml/kg). In CCl{sub 4} + OCA group, mice were orally with OCA (5 mg/kg) 48, 24 and 1 h before CCl{sub 4}. As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl{sub 4}-induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatmentmore » inhibited CCl{sub 4}-induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl{sub 4}-induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl{sub 4}-induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl{sub 4}-induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl{sub 4}-induced acute liver injury. These results suggest that OCA protects against CCl{sub 4}-induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. - Highlights: • OCA pretreatment activates hepatic FXR. • FXR activation protects against CCl{sub 4}-induced acute liver injury. • FXR activation inhibits hepatocyte apoptosis during CCl{sub 4}-induced liver injury. • FXR activation differentially regulates hepatic inflammatory genes. • Synthetic FXR agonists are effective antidotes for acute liver injury.« less
Rongngern, Pasinee; Chularojanamontri, Leena; Wongpraparut, Chanisada; Silpa-Archa, Narumol; Chotiyaputta, Watcharasak; Pongpaibul, Ananya; Charatcharoenwitthaya, Phunchai
2017-07-01
Liver biopsy, the gold standard for monitoring methotrexate-induced liver fibrosis in psoriasis patients, has potential morbidity and mortality. Transient elastography (TE) has been widely used as an alternative non-invasive method. Currently, psoriasis-specific data of TE comparing to Roenigk histopathology is lacking. This retrospective study assessed the diagnostic performance of TE in the detection of methotrexate-induced liver injury and liver fibrosis in Asian psoriasis patients. Risk factors that associated with liver injury by TE and histopathology were also determined. Psoriasis patients who had received methotrexate and undergone both TE and liver biopsy (gold standard) examinations between 2005 and 2016 were enrolled. Ten of 41 patients developed methotrexate-induced liver injury (Roenigk grade ≥3a) and two of them had significant liver fibrosis (Metavir fibrosis stage ≥2). Area under the receiver operating characteristic curve (AUROC = 0.78) indicated that TE was capable of identifying patients with and without liver injury. Using a cut-off TE value of 7.1 kilopascal (kPa), this ultrasound-based elastography yielded 50% sensitivity and 83.9% specificity for detecting methotrexate-induced liver injury and had 50% sensitivity and 76.9% specificity for identifying significant liver fibrosis. A total cumulative dosage of methotrexate, age, gender, metabolic syndrome, and metabolic components were not significantly associated with TE values ≥7.1 kPa and Roenigk grade ≥3a. Thus, using clinical context, laboratory information, and a cut-off TE value of 7.1, TE is an attractable non-invasive tool for identify psoriasis patients who have a low probability of methotrexate-induced liver injury and significant liver fibrosis. Liver biopsy can be reserved for selected patients.
Bahde, Ralf; Kapoor, Sorabh; Gupta, Sanjeev
2014-01-01
The rising prevalence of hepatic injury due to toxins, metabolites, viruses, etc., necessitates development of further mechanisms for protecting the liver and for treating acute or chronic liver diseases. To examine whether inhibition of inflammation directed by cyclo-oxygenase pathways, we performed animal studies with naproxen, which inhibits prostaglandin-endoperoxide synthases 1 and 2 and is in extensive clinical use. We administered carbon tetrachloride to induce acute liver injury and ligated the common bile duct to induce chronic liver injury in adult rats. These experimental manipulations produced abnormalities in liver tests, tissue necrosis, compensatory hepatocyte or biliary proliferation, and onset of fibrosis, particularly after bile duct ligation. After carbon tetrachloride-induced acute injury, naproxen decreased liver test abnormalities, tissue necrosis and compensatory hepatocellular proliferation. After bile duct ligation-induced chronic injury, naproxen decreased liver test abnormalities, tissue injury and compensatory biliary hyperplasia. Moreover, after bile duct ligation, naproxen-treated rats showed more periductular oval liver cells, which have been classified as hepatic progenitor cells. In naproxen-treated rats, we found greater expression in hepatic stellate cells and mononuclear cells of cytoprotective factors, such as vascular endothelial growth factor. The ability of naproxen to induce expression of vascular endothelial growth factor was verified in cell culture studies with CFSC-8B clone of rat hepatic stellate cells. Whereas assays for carbon tetrachloride toxicity using cultured primary hepatocytes established that naproxen was not directly cytoprotective, we found conditioned medium containing vascular endothelial growth factor from naproxen-treated CFSC-8B cells protected hepatocytes from carbon tetrachloride toxicity. Therefore, naproxen was capable of ameliorating toxic liver injury, which involved naproxen-induced release of physiological cytoprotective factors in nonparenchymal liver cells. Such drug-induced release of endogenous cytoprotectants will advance therapeutic development for hepatic injury. PMID:24220607
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshikawa, Yukitaka; Miyashita, Taishi; Higuchi, Satonori
Although estrogen receptor (ER)α agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia–reperfusion. The functional mechanisms of ERα have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ERα agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxicmore » compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ERα-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ERα in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs. -- Highlights: ► Liver injury induced by drugs or chemicals was investigated in mice. ► Liver injury was suppressed by pretreatment with tamoxifen in female mice. ► Mmd2, whose function was unknown, could be a candidate gene for liver protection. ► Tamoxifen up-regulated Mmd2 mRNA expression via ERα.« less
Han, W J; Shi, H B; Shi, H L; Song, J Y; Ren, F; Duan, Z P; Chen, Y
2016-10-20
Objective: To investigate the protective effect of augmenter of liver regeneration (ALR) against acute liver injury and related mechanisms. Methods: HL-7702 cells were divided into normal control group, carbon tetrachloride (CCl 4 )-induced acute liver injury group, ALR+CCl 4 intervention group, 3-methyladenine (3-MA)+CCl 4 intervention group, and ALR+3-MA+CCl 4 intervention group. The ALR+CCl 4 and ALR+3-MA+CCl 4 intervention groups were transfected with ALR plasmids at 8 hours before CCl 4 treatment. All groups except the normal control group were treated with CCl 4 , and 30 minutes later, the 3-MA+CCl 4 and ALR+3-MA+CCl 4 intervention groups were treated with 3-MA. The cells were collected at 24 hours after CCl 4 treatment. The HL-7702 cells and supernatant were collected to measure the levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) (IU/L). Western blot was used to measure the levels of ALR, cyclin D, cyclin E, proliferating cell nuclear antigen (PCNA), autophagy-related gene 7 (Atg7), and autophagy genes LC3, p62, and Beclin-1. Quantitative real-time PCR was used to measure the mRNA expression of ALR. A one-way analysis of variance was used for comparison of means between any two groups. Results: The ALR+CCl 4 intervention group had significant increases in the protein and mRNA expression of ALR compared with the acute liver injury group (both P < 0.05). The CCl 4 -induced acute liver injury group had significant increases in the protein and mRNA expression of ALR compared with the normal control group (both P < 0.05). Compared with the CCl 4 -induced acute liver injury group, the ALR+CCl 4 intervention group had significant reductions in ALT (0.73±0.17 IU/L vs 1.43±0.38 IU/L, P < 0.05) and AST (19.85±1.83 IU/L vs 56.73±6.25 IU/L, P < 0.05) in supernatant, significantly increased expression of cyclin D, cyclin E, PCNA, LC3, Atg7, and Beclin-1 in hepatocytes, and significantly reduced expression of p62, which suggested that ALR protected the liver against acute liver injury, promoted the regeneration of hepatocytes, and enhanced the autophagy of hepatocytes. The ALR+3-MA+CCl 4 intervention group had a significant reduction in the expression of regeneration-associated proteins compared with the ALR+CCl 4 intervention group, while there was no significant difference between the ALR+3-MA+CCl 4 intervention group and 3-MA+CCl 4 intervention group, which suggested that after the inhibition of autophagy, there were significant reductions in the regeneration of hepatocytes and liver regeneration promoted by ALR. Conclusion: ALR can promote the regeneration of hepatocytes in liver parenchyma, which is achieved by the regulation of autophagy.
Müller, Peter; Messmer, Marie; Bayer, Monika; Pfeilschifter, Josef M; Hintermann, Edith; Christen, Urs
2016-05-01
Non-alcoholic fatty liver disease (NAFLD) and its more severe development non-alcoholic steatohepatitis (NASH) are increasing worldwide. In particular NASH, which is characterized by an active hepatic inflammation, has often severe consequences including progressive fibrosis, cirrhosis, and eventually hepatocellular carcinoma (HCC). Here we investigated how metabolic liver injury is influencing the pathogenesis of autoimmune hepatitis (AIH). We used the CYP2D6 mouse model in which wild type C57BL/6 mice are infected with an Adenovirus expressing the major liver autoantigen cytochrome P450 2D6 (CYP2D6). Such mice display several features of human AIH, including interface hepatitis, formation of LKM-1 antibodies and CYP2D6-specific T cells, as well as hepatic fibrosis. NAFLD was induced with a high-fat diet (HFD). We found that pre-existing NAFLD potentiates the severity of AIH. Mice fed for 12 weeks with a HFD displayed increased cellular infiltration of the liver, enhanced hepatic fibrosis and elevated numbers of liver autoantigen-specific T cells. Our data suggest that a pre-existing metabolic liver injury constitutes an additional risk for the severity of an autoimmune condition of the liver, such as AIH. Copyright © 2016 Elsevier Ltd. All rights reserved.
Marine collagen peptides protect against early alcoholic liver injury in rats.
Lin, Bing; Zhang, Feng; Yu, Yongchao; Jiang, Qinghao; Zhang, Zhaofeng; Wang, Junbo; Li, Yong
2012-04-01
Marine collagen peptides (MCP) have been reported to exhibit antioxidative activity, which is the common property of numerous hepatoprotective agents. Previous studies have shown that MCP have biological functions including anti-hypertension, anti-ulcer, anti-skin ageing and extending the life span. However, its role in alcoholic liver injury remains unknown. The present study aimed to investigate the effects of MCP on early alcoholic liver injury in rats. Rats were administered with alcohol at a dose of 6 g/kg body weight intragastrically per d to induce early liver injury, which was then evaluated by serum markers and histopathological examination. Treatment with MCP could reverse the increased level of serum aminotransferase and reduce hepatic histological damage. In addition, MCP attenuated the alteration in serum superoxide dismutase and malondialdehyde levels. MCP also counteracted the increased levels of total cholesterol and TAG. However, no significant difference was observed in the contents of alcohol dehydrogenase both in liver and serum protein of rats. These findings suggest that MCP have a protective effect on early alcoholic liver injury in rats by their antioxidative activity and improving lipid metabolism.
Drug-induced liver injury due to antibiotics.
Björnsson, Einar S
Drug-induced liver injury (DILI) is an important differential diagnosis in patients with abnormal liver tests and normal hepatobiliary imaging. Of all known liver diseases, the diagnosis of DILI is probably one of the most difficult one to be established. In all major studies on DILI, antibiotics are the most common type of drugs that have been reported. The clinical phenotype of different types of antibiotics associated with liver injury is highly variable. Some widely used antibiotics such as amoxicillin-clavulanate have been shown to have a delayed onset on liver injury and recently cefazolin has been found to lead to liver injury 1-3 weeks after exposure of a single infusion. The other extreme is the nature of nitrofurantoin-induced liver injury, which can occur after a few years of treatment and lead to acute liver failure (ALF) or autoimmune-like reaction. Most patients with liver injury associated with use of antibiotics have a favorable prognosis. However, patients with jaundice have approximately 10% risk of death from liver failure and/or require liver transplantation. In rare instances, the hepatoxicity can lead to chronic injury and vanishing bile duct syndrome. Given, sometimes very severe consequences of the adverse liver reactions, it cannot be over emphasized that the indication for the different antibiotics should be evidence-based and symptoms and signs of liver injury from the drugs should lead to prompt cessation of therapy.
Hozumi, Hiroyasu; Tada, Rui; Murakami, Taisuke; Adachi, Yoshiyuki; Ohno, Naohito
2013-01-01
CD14 is a glycoprotein that recognizes gram-negative bacterial lipopolysaccharide (LPS) and exists in both membrane-bound and soluble forms. Infectious and/or inflammatory diseases induce CD14 expression, which may be involved in the pathology of endotoxin shock. We previously found that the expression of CD14 protein differs among the endotoxin shock models used, although the reasons for these differences are unclear. We hypothesized that the differences in CD14 expression might be due to liver injury, because the hepatic tissue produces CD14 protein. We investigated CD14 expression in the plasma and liver in the carrageenan (CAR)-primed and D-galN-primed mouse models of endotoxin shock. Our results showed that severe liver injury was not induced in CAR-primed endotoxin shock model mice. In this CAR-primed model, the higher mRNA and protein expression of CD14 was observed in the liver, especially in the interlobular bile duct in contrast to D-galN-primed-endotoxin shock model mice. Our findings indicated that the molecular mechanism(s) underlying septic shock in CAR-primed and D-galN-primed endotoxin shock models are quite different. Because CD14 expression is correlated with clinical observations, the CAR-primed endotoxin shock model might be useful for studying the functions of CD14 during septic shock in vivo. PMID:23308276
Funken, Dominik; Ishikawa-Ankerhold, Hellen; Uhl, Bernd; Lerchenberger, Maximilian; Rentsch, Markus; Mayr, Doris; Massberg, Steffen; Werner, Jens; Khandoga, Andrej
2017-11-01
CD4 + T cells recruited to the liver play a key role in the pathogenesis of ischemia/reperfusion (I/R) injury. The mechanism of their activation during alloantigen-independent I/R is not completely understood. We hypothesized that liver-resident dendritic cells (DCs) interact with CD4 + T cells in the postischemic liver and that modulation of DCs or T-cell-DC interactions attenuates liver inflammation. In mice, warm hepatic I/R (90/120-240 min) was induced. Tolerogenic DCs were generated in situ by pretreatment of animals with the vitamin D analog paricalcitol. A mAb-CD44 was used for blockade of CD4 + T-cell-DC interactions. As shown by 2-photon in vivo microscopy as well as confocal microscopy, CD4 + T cells were closely colocalized with DCs in the postischemic liver. Pretreatment with paricalcitol attenuated I/R-induced maturation of DCs (flow cytometry), CD4 + T-cell recruitment into the liver (intravital microscopy), and hepatocellular/microvascular damage (intravital microscopy, alanine aminotransferase/aspartate aminotransferase, histology). However, interruption of T-cell-DC interaction increased proinflammatory DC maturation and even enhanced tissue damage. Simultaneous treatment with an anti-CD44mAb completely abolished the beneficial effect of paricalcitol on T-cell migration and tissue injury. Our study demonstrates for the first time that hepatic DCs interact with CD4 + T cells in the postischemic liver in vivo ; modulation of DCs and/or generation of tolerogenic DCs attenuates intrahepatic CD4 + T-cell recruitment and reduces I/R injury; and interruption of CD44-dependent CD4 + T-cell-DC interactions enhances tissue injury by preventing the modulatory effect of hepatic DCs on T cells, especially type 1 T helper effector cells. Thus, hepatic DCs are strongly involved in the promotion of CD4 + T-cell-dependent postischemic liver inflammation.-Funken, D., Ishikawa-Ankerhold, H., Uhl, B., Lerchenberger, M., Rentsch, M., Mayr, D., Massberg, S., Werner, J., Khandoga, A. In situ targeting of dendritic cells sets tolerogenic environment and ameliorates CD4 + T-cell response in the postischemic liver. © FASEB.
Liver Injury from Herbal and Dietary Supplements
Navarro, Victor; Khan, Ikhlas; Björnsson, Einar; Seeff, Leonard B.; Serrano, Jose; Hoofnagle, Jay H.
2017-01-01
Herbal and dietary supplements (HDS) are used increasingly both in the United States and worldwide and HDS induced liver injury in the U.S. has increased proportionally. Current challenges in the diagnosis and management of HDS-induced liver injury were the focus of a 2-day research symposium sponsored by the American Association for the Study of Liver Disease and the National Institutes of Health. HDS-induced liver injury now accounts for 20% of cases of hepatotoxicity in the United States based on research data. The major implicated agents include anabolic steroids, green tea extract, and multi-ingredient nutritional supplements (MINS). Anabolic steroids marketed as bodybuilding supplements typically induce a prolonged cholestatic, but ultimately self-limiting liver injury that has a distinctive serum biochemical as well as histological phenotype. Green tea extract and many other products, in contrast, tend to cause an acute-hepatitis like injury. Currently, however, the majority of cases of HDS-associated liver injury are due to MINS, and the component responsible for the toxicity is usually unknown or can only be suspected. HDS-induced liver injury presents many clinical and research challenges, in diagnosis, identification of the responsible constituents, treatment and prevention. Also important are improvements in regulatory oversight of non-prescription products to guarantee their constituents and insure purity and safety. The confident identification of injurious ingredients within HDS will require strategic alignments among clinicians, chemists, and toxicologists. The ultimate goal should be to prohibit or more closely regulate potentially injurious ingredients and thus promote public safety. PMID:27677775
Ben Ya'acov, Ami; Meir, Hadar; Zolotaryova, Lydia; Ilan, Yaron; Shteyer, Eyal
2017-03-23
It has been shown that the proportion of natural killer T cells is markedly elevated during liver regeneration and their activation under different conditions can modulate this process. As natural killer T cells and liver injury are central in liver regeneration, elucidating their role is important. The aim of the current study is to explore the role of natural killer T cells in impaired liver regeneration. Concanvalin A was injected 4 days before partial hepatectomy to natural killer T cells- deficient mice or to anti CD1d1-treated mice. Ki-67 and proliferating cell nuclear antigen were used to measure hepatocytes proliferation. Expression of hepatic cyclin B1 and proliferating cell nuclear antigen were evaluated by Western Blot and liver injury was assessed by ALT and histology. Natural killer T cells- deficient or mice injected with anti CD1d antibodies exhibited reduced liver regeneration. These mice were considerably resistant to ConA-induced liver injury. In the absence of NKT cells hepatic proliferating cell nuclear antigen and cyclin B1 decreased in mice injected with Concanvalin A before partial hepatectomy. This was accompanied with reduced serum interleukin-6 levels. Natural killer T cells play an important role in liver regeneration, which is associated with cyclin B1 and interleukin-6.
Liver injury from herbal and dietary supplements.
Navarro, Victor J; Khan, Ikhlas; Björnsson, Einar; Seeff, Leonard B; Serrano, Jose; Hoofnagle, Jay H
2017-01-01
Herbal and dietary supplements (HDS) are used increasingly both in the United States and worldwide, and HDS-induced liver injury in the United States has increased proportionally. Current challenges in the diagnosis and management of HDS-induced liver injury were the focus of a 2-day research symposium sponsored by the American Association for the Study of Liver Disease and the National Institutes of Health. HDS-induced liver injury now accounts for 20% of cases of hepatotoxicity in the United States based on research data. The major implicated agents include anabolic steroids, green tea extract, and multi-ingredient nutritional supplements. Anabolic steroids marketed as bodybuilding supplements typically induce a prolonged cholestatic but ultimately self-limiting liver injury that has a distinctive serum biochemical as well as histological phenotype. Green tea extract and many other products, in contrast, tend to cause an acute hepatitis-like injury. Currently, however, the majority of cases of HDS-associated liver injury are due to multi-ingredient nutritional supplements, and the component responsible for the toxicity is usually unknown or can only be suspected. HDS-induced liver injury presents many clinical and research challenges in diagnosis, identification of the responsible constituents, treatment, and prevention. Also important are improvements in regulatory oversight of nonprescription products to guarantee their constituents and ensure purity and safety. The confident identification of injurious ingredients within HDS will require strategic alignments among clinicians, chemists, and toxicologists. The ultimate goal should be to prohibit or more closely regulate potentially injurious ingredients and thus promote public safety. (Hepatology 2017;65:363-373). © 2016 by the American Association for the Study of Liver Diseases.
Predictors of poor outcomes in patients with wild mushroom-induced acute liver injury.
Kim, Taerim; Lee, Danbi; Lee, Jae Ho; Lee, Yoon-Seon; Oh, Bum Jin; Lim, Kyoung Soo; Kim, Won Young
2017-02-21
To identify early predictive markers of poor outcomes in patients with acute liver injury from wild mushroom intoxication. This observational, retrospective record review involved adults aged ≥ 18 years admitted to emergency department with mushroom intoxication from January 2005 to December 2015. The diagnosis of mushroom intoxication was based on the following: (1) a positive history of recent wild mushroom intake (either raw or cooked); (2) the onset of gastrointestinal symptoms, such as watery diarrhea, vomiting, and/or abdominal pain, after ingestion; and (3) the exclusion of other possible causes of acute liver injury. Acute liver injury was defined by a > 5-fold elevation of liver enzymes or moderate coagulopathy [international normalized ratio (INR) > 2.0]. Clinical and laboratory findings were compared in survivors and non-survivors. Of 93 patients with mushroom intoxication, 23, 11 men (47.8%) and 12 women (52.2%), of median age 61 years, developed acute liver injury. The overall in-hospital mortality rate was 43.5% (10/23). Among the laboratory variables, mean serum alkaline phosphatase (73.38 ± 10.89 mg/dL vs 180.40 ± 65.39 mg/dL, P < 0.01), total bilirubin (2.312 ± 1.16 mg/dL vs 7.16 ± 2.94 mg/dL, P < 0.01) concentrations and indirect/direct bilirubin (2.45 ± 1.39 mg/dL vs 0.99 ± 0.45 mg/dL, P < 0.01) ratio as well as prothrombin time (1.88 ± 0.83 mg/dL vs 10.43 ± 4.81 mg/dL, P < 0.01), and activated partial thromboplastin time (aPTT; 32.48 ± 7.64 s vs 72.58 ± 41.29 s, P = 0.01), were significantly higher in non-survivors than in survivors. Logistic regression analysis showed that total bilirubin concentration (OR = 3.58, 95%CI: 1.25-10.22), indirect/direct bilirubin ratio (OR = 0.14, 95%CI: 0.02-0.94) and aPTT (OR = 1.30, 95%CI: 1.04-1.63) were significantly associated with mortality. All patients with total bilirubin > 5 mg/dL or aPTT > 50 s on day 3 died. Monitoring of bilirubin concentrations and aPTT may help in predicting clinical outcomes in patients with acute liver injury from wild mushroom intoxication.
Ren, Jun; Meng, Shanshan; Yan, Bingdi; Yu, Jinyan; Liu, Jing
2016-04-01
Protectin D1 (PD1) is a bioactive product generated from docosahexaenoic acid, which may exert anti-inflammatory effects in various inflammatory diseases. However, the underlying molecular mechanism of its anti‑inflammatory activity on concanavalin A (Con A)-induced hepatitis remains unknown. The aim of the present study was to investigate the protective effects of PD1 against Con A‑induced liver injury and the underlying mechanisms via intravenous injection of PD1 prior to Con A administration. C57BL/6 mice were randomly divided into four experimental groups as follows: Control group, Con A group (30 mg/kg), 20 µg/kg PD1 + Con A (30 mg/kg) group and 10 µg/kg PD1 + Con A (30 mg/kg) group. PD1 pretreatment was demonstrated to significantly inhibit elevated plasma aminotransferase levels, high mobility group box 1 and liver necrosis, which were observed in Con A‑induced hepatitis. Furthermore, compared with the Con A group, PD1 pretreatment prevented the production of pro‑inflammatory cytokines, including tumor necrosis factor‑α, interferon‑γ and interleukin‑2, ‑1β and ‑6. In addition, pretreatment with PD1 markedly downregulated cluster of differentiation (CD)4+, CD8+ and natural killer T (NKT) cell infiltration in the liver. PD1 pretreatment was observed to suppress the messenger RNA and protein expression levels of NLR family, pyrin domain containing 3 and Toll‑like receptor (TLR) 4 in liver tissue samples. Further data indicated that PD1 pretreatment inhibited the activation of the nuclear factor κ‑light‑chain‑enhancer of activated B cells (NF‑κB) signaling pathway and chemokine (C‑X3‑C motif) ligand 1 (CX3CL1)/chemokine (C-X3-C motif) receptor 1 (CX3CR1) axis by preventing phosphorylation of nuclear factor of κ light polypeptide gene enhancer in B-cells inhibitor, α and NF‑κB in Con A‑induced liver injury. Therefore, these results suggest that PD1 administration protects mice against Con A‑induced liver injury via inhibition of various inflammatory cytokines and, in part, by suppressing CD4+, CD8+ and NKT cell infiltration in the liver and the NF‑κB‑activated CX3CL1/CX3CR1 signaling pathway. The beneficial effect of PD1 may be associated with the inhibition of TLR4 expression and the downregulation of NF‑κB activation. In conclusion, PD1 appears to be a potential natural bioproduct, and provide a promising strategy, for the prevention of hepatic injury in patients with chronic or acute liver disease.
Role and mechanisms of autophagy in acetaminophen-induced liver injury.
Chao, Xiaojuan; Wang, Hua; Jaeschke, Hartmut; Ding, Wen-Xing
2018-04-23
Acetaminophen (APAP) overdose is the most frequent cause of acute liver failure in the USA and many other countries. Although the metabolism and pathogenesis of APAP has been extensively investigated for decades, the mechanisms by which APAP induces liver injury are incompletely known, which hampers the development of effective therapeutic approaches to tackle this important clinical problem. Autophagy is a highly conserved intracellular degradation pathway, which aims at recycling cellular components and damaged organelles in response to adverse environmental conditions and stresses as a survival mechanism. There is accumulating evidence indicating that autophagy is activated in response to APAP overdose in specific liver zone areas, and pharmacological activation of autophagy protects against APAP-induced liver injury. Increasing evidence also suggests that hepatic autophagy is impaired in nonalcoholic fatty livers (NAFLD), and NAFLD patients are more susceptible to APAP-induced liver injury. Here, we summarized the current progress on the role and mechanisms of autophagy in protecting against APAP-induced liver injury. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Sato, Kenji; Egashira, Yukari; Ono, Shin; Mochizuki, Satoshi; Shimmura, Yuki; Suzuki, Yoshio; Nagata, Megumi; Hashimoto, Kaori; Kiyono, Tamami; Park, Eun Young; Nakamura, Yasushi; Itabashi, Mariko; Sakata, Yuka; Furuta, Seigo; Sanada, Hiroo
2013-07-03
A hepatoprotective peptide, pyroglutamyl leucine (pyroGlu-Leu), was identified in wheat gluten hydrolysate through an in vivo activity-guided fractionation approach based on D-galactosamine-induced acute hepatitis in rats and fractionation of peptides with large-scale preparative ampholine-free isoelectric focusing. The active acidic fraction predominantly consisted of pyroglutamyl peptides and free pyroglutamic acid. Pyroglutamyl peptides were derivatized with phenyl isothiocyanate after removal of a pyroglutamyl residue by pyroglutamate aminopeptidase. The derivatives were purified by reversed-phase HPLC and subjected to sequence analysis. The active fraction contained pyroGlu-Ile, pyroGlu-Leu, pyroGlu-Gln, pyroGlu-Gln-Gln, and free pyroGlu. Ingestion of pyroGlu-Leu at 20 mg/kg body weight significantly decreased serum aspartate and alanine aminotransferases to approximately 30% and 20% of those values of the vehicle group, respectively, which were near the normal levels. Thirty minutes after ingestion of pyroGlu-Leu at 20 mg/kg, the concentration of pyroGlu-Leu in portal blood plasma increased to approximately 2 μM.
NOD2: a potential target for regulating liver injury.
Body-Malapel, Mathilde; Dharancy, Sébastien; Berrebi, Dominique; Louvet, Alexandre; Hugot, Jean-Pierre; Philpott, Dana J; Giovannini, Marco; Chareyre, Fabrice; Pages, Gilles; Gantier, Emilie; Girardin, Stephen E; Garcia, Irène; Hudault, Sylvie; Conti, Filoména; Sansonetti, Philippe J; Chamaillard, Mathias; Desreumaux, Pierre; Dubuquoy, Laurent; Mathurin, Philippe
2008-03-01
The recent discovery of bacterial receptors such as NOD2 that contribute to crosstalk between innate and adaptive immune systems in the digestive tract constitutes an important challenge in our understanding of liver injury mechanisms. The present study focuses on NOD2 functions during liver injury. NOD2, TNF-alpha and IFN-gamma mRNA were quantified using real-time PCR in liver samples from patients and mice with liver injury. We evaluated the susceptibility of concanavalin A (ConA) challenge in NOD2-deficient mice (Nod2-/-) compared to wild-type littermates. We tested the effect of muramyl dipeptide (MDP), the specific activator of NOD2, on ConA-induced liver injury in C57BL/6 mice. We studied the cellular distribution and the role of NOD2 in immune cells and hepatocytes. We demonstrated that NOD2, TNF-alpha and IFN-gamma were upregulated during liver injury in mice and humans. Nod2-/- mice were resistant to ConA-induced hepatitis compared to their wild-type littermates, through reduced IFN-gamma production by immune cells. Conversely, administration of MDP exacerbated ConA-induced liver injury. MDP was a strong inducer of IFN-gamma in freshly isolated human PBMC, splenocytes and hepatocytes. Our study supports the hypothesis that NOD2 contributes to liver injury via a regulatory mechanism affecting immune cells infiltrating the liver and hepatocytes. Taken together, our results indicate that NOD2 may represent a new therapeutic target in liver diseases.
Rigo, Federica; De Stefano, Nicola; Navarro-Tableros, Victor; David, Ezio; Rizza, Giorgia; Catalano, Giorgia; Gilbo, Nicholas; Maione, Francesca; Gonella, Federica; Roggio, Dorotea; Martini, Silvia; Patrono, Damiano; Salizzoni, Mauro; Camussi, Giovanni; Romagnoli, Renato
2018-05-01
The gold standard for organ preservation before transplantation is static cold storage, which is unable to fully protect suboptimal livers from ischemia/reperfusion injury. An emerging alternative is normothermic machine perfusion (NMP), which permits organ reconditioning. Here, we aimed to explore the feasibility of a pharmacological intervention on isolated rat livers by using a combination of NMP and human liver stem cells-derived extracellular vesicles (HLSC-EV). We established an ex vivo murine model of NMP capable to maintain liver function despite an ongoing hypoxic injury induced by hemodilution. Livers were perfused for 4 hours without (control group, n = 10) or with HLSC-EV (treated group, n = 9). Bile production was quantified; perfusate samples were collected hourly to measure metabolic (pH, pO2, pCO2) and cytolysis parameters (AST, alanine aminotransferase, lactate dehydrogenase). At the end of perfusion, we assessed HLSC-EV engraftment by immunofluorescence, tissue injury by histology, apoptosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay, tissue hypoxia-inducible factor 1-α, and transforming growth factor-beta 1 RNA expression by quantitative reverse transcription-polymerase chain reaction. During hypoxic NMP, livers were able to maintain homeostasis and produce bile. In the treated group, AST (P = 0.018) and lactate dehydrogenase (P = 0.032) levels were significantly lower than those of the control group at 3 hours of perfusion, and AST levels persisted lower at 4 hours (P = 0.003). By the end of NMP, HLSC-EV had been uptaken by hepatocytes, and EV treatment significantly reduced histological damage (P = 0.030), apoptosis (P = 0.049), and RNA overexpression of hypoxia-inducible factor 1-α (P < 0.0001) and transforming growth factor-beta 1 (P = 0.014). HLSC-EV treatment, even in a short-duration model, was feasible and effectively reduced liver injury during hypoxic NMP.
Dudea, Marina; Clichici, Simona; Olteanu, Diana Elena; Nagy, Andras; Cucoş, Maria; Dudea, Sorin
2015-01-01
The purpose of the study described here was to evaluate the usefulness of the elastographic strain ratio in the assessment of liver changes in an experimental animal setting and the hepatoprotective effects of chitosan. Ultrasonography and Strain Ratio calculation were performed before and after bile duct ligation (BDL) in three groups of Wistar albino rats (n = 10 animals per group): (i) rats subjected to bile duct ligation only; (ii) rats subjected to bile duct ligation and administered chitosan for 14 d; (iii) rats subjected to bile duct ligation and administered chitosan for 7 d. The results were compared with the laboratory data and pathologic findings. Strain ratios revealed an increase in liver stiffness after bile duct ligation (p < 0.05), except in the group with chitosan administered for 7 d, and agreed with laboratory and pathology data. In conclusion, strain ratio can be used as an experimental research instrument in the assessment of liver response to injury. To the best of our knowledge, this is the first study reporting on the usefulness of the sonoelastographic liver-to-kidney strain ratio in assessing the effects of experimentally induced liver lesions. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
[Protective effect of Tanreqing injection on acute hepatic injury induced by CCl4 in rats].
Lei, Yang; Zhou, Ai-Min; Guo, Tao; Tan, Ye; Tao, Yan-Yan; Liu, Cheng-Hai
2013-04-01
To observe the protective effect of Tanreqing injection(TRQ) on carbon tetrachloride-induced acute hepatic injury in rats. Rats were randomly divided into the normal group and the model group, and injected subcutaneously with 100% CCl4 5 mL x kg(-1) to establish the single CCl4 infection model, in order to observe the changes in rat liver injury after 3 h and 6 h. Subsequently, the multiple CCl4 infection liver injury model was reproduced by subcutaneously injecting 100% CCl4 (5 mL x kg(-1)), 50% CCl4 olive oil solution (2 mL x kg(-1)) and then 20% CCl4 olive oil solution (2 mL x kg(-1)). At 6 h after the first CCl4 injection, the rats were divided into six groups: the model group, the control group, the diammonium glycyrrhizinate-treated group, and TRQ high, middle and low dose groups. They were injected through caudal veins, while a normal control group was set up. Their weight and liver-body ratio were observed. Hepatic inflammation was observed with HE staining. Assay kits were adopted to detect ALT, AST, T. Bil, D. Bil, CHE, TBA, gamma-GT and Alb. According to the single injection model, serum AST and T. Bil of model rats were obviously increased at 6 h after single subcutaneous injection of CCl4, with disordered lobular structure in liver tissues, notable swollen liver cells and remarkable liver injury. According to the results of the multiple injection pharmacological experiment, compared with the normal group, the model group had higher serum ALT, AST, and gamma-GT activities (P < 0. 05), TBA and T. Bil contents (P < 0.05) and lower CHE activity (P < 0.05). HE staining showed disorganized lobular structure in liver tissues and notable ballooning degeneration in liver cells. Compared with the model group, TRQ high and middle dose groups and the diammonium glycyrrhizinate-treated group showed significant charges in serum liver function and inflammation in liver cells. Specifically, TRQ high and middle dose groups were superior to the diammonium glycyrrhizinate-treated group. Tanreqing injection has significant protective effect on CCl4-induced acute hepatic injury in rats.
Blockade of CCN4 attenuates CCl4-induced liver fibrosis.
Li, Xiaofei; Chen, Yongxin; Ye, Weiwei; Tao, Xingfei; Zhu, Jinhong; Wu, Shuang; Lou, Lianqing
2015-06-19
CCN4, also termed WNT-inducible signaling pathway protein-1 (WISP-1), has important roles in inflammation and tissue injury. This study aimed to investigate the effect of CCN4 inhibition using monoclonal anti-CCN4 antibody (CCN4mAb) on the liver injury and fibrosis in a mouse model of liver fibrosis. The mouse liver fibrosis model was induced by carbon tetrachloride (CCl4). Mice received vehicle (saline/olive oil) by subcutaneous injection, CCl4 by subcutaneous injection or CCl4 (subcutaneous) plus CCN4mAb by subcutaneous injection. The pro-inflammatory and pro-fibrotic factors were determined by Western blot. The biochemistry and histopathology, collagen deposition and nuclear factor (NF)-κB activity were also assessed. Chronic CCl4 treatment caused liver injury and collagen accumulation. The expression levels of CCN4, pro-inflammatory and pro-fibrotic mediators as well as the activity of NF-κB were markedly increased. Treatment with CCN4mAb significantly inhibited CCl4-induced CCN4 expression, leading to attenuated CCl4-induced liver injury and the inflammatory response. CCN4 blockade also significantly reduced the formation of collagen in the liver and the expression of α-smooth muscle actin and transforming growth factor β1. CCN4 inhibition by CCN4mAb in vivo significantly attenuated the CCl4-induced liver injury and the progression of liver fibrosis. CCN4 may represent a novel therapeutic target for liver injury and fibrosis.
Baig, Maria Tayyab; Ali, Gibran; Awan, Sana Javaid; Shehzad, Umara; Mehmood, Azra; Mohsin, Sadia; Khan, Shaheen N; Riazuddin, Sheikh
2017-10-01
Cellular therapies hold promise to alleviate liver diseases. This study explored the potential of allogenic serum isolated from rat with acute CCl 4 injury to differentiate adipose derived stem cells (ADSCs) towards hepatic lineage. Acute liver injury was induced by CCl 4 which caused significant increase in serum levels of VEGF, SDF1α and EGF. ADSCs were preconditioned with 3% serum isolated from normal and acute liver injury models. ADSCs showed enhanced expression of hepatic markers (AFP, albumin, CK8 and CK19). These differentiated ADSCs were transplanted intra-hepatically in CCl 4 -induced liver fibrosis model. After one month of transplantation, fibrosis and liver functions (alkaline phosphatase, ALAT and bilirubin) showed marked improvement in acute injury group. Elevated expression of hepatic (AFP, albumin, CK 18 and HNF4a) and pro survival markers (PCNA and VEGF) and improvement in liver architecture as deduced from results of alpha smooth muscle actin, Sirius red and Masson's trichome staining was observed.
Castroneves, Luciana A; Jugo, Rebecca H; Maynard, Michelle A; Lee, Jennifer S; Wassner, Ari J; Dorfman, David; Bronson, Roderick T; Ukomadu, Chinweike; Agoston, Agoston T; Ding, Lai; Luongo, Cristina; Guo, Cuicui; Song, Huaidong; Demchev, Valeriy; Lee, Nicholas Y; Feldman, Henry A; Vella, Kristen R; Peake, Roy W; Hartigan, Christina; Kellogg, Mark D; Desai, Anal; Salvatore, Domenico; Dentice, Monica; Huang, Stephen A
2014-10-01
Type 3 deiodinase (D3), the physiologic inactivator of thyroid hormones, is induced during tissue injury and regeneration. This has led to the hypotheses that D3 impacts injury tolerance by reducing local T3 signaling and contributes to the fall in serum triiodothyronine (T3) observed in up to 75% of sick patients (termed the low T3 syndrome). Here we show that a novel mutant mouse with hepatocyte-specific D3 deficiency has normal local responses to toxin-induced hepatonecrosis, including normal degrees of tissue necrosis and intact regeneration, but accelerated systemic recovery from illness-induced hypothyroxinemia and hypotriiodothyroninemia, demonstrating that peripheral D3 expression is a key modulator of the low T3 syndrome.
Castroneves, Luciana A.; Jugo, Rebecca H.; Maynard, Michelle A.; Lee, Jennifer S.; Wassner, Ari J.; Dorfman, David; Bronson, Roderick T.; Ukomadu, Chinweike; Agoston, Agoston T.; Ding, Lai; Luongo, Cristina; Guo, Cuicui; Song, Huaidong; Demchev, Valeriy; Lee, Nicholas Y.; Feldman, Henry A.; Vella, Kristen R.; Peake, Roy W.; Hartigan, Christina; Kellogg, Mark D.; Desai, Anal; Salvatore, Domenico; Dentice, Monica
2014-01-01
Type 3 deiodinase (D3), the physiologic inactivator of thyroid hormones, is induced during tissue injury and regeneration. This has led to the hypotheses that D3 impacts injury tolerance by reducing local T3 signaling and contributes to the fall in serum triiodothyronine (T3) observed in up to 75% of sick patients (termed the low T3 syndrome). Here we show that a novel mutant mouse with hepatocyte-specific D3 deficiency has normal local responses to toxin-induced hepatonecrosis, including normal degrees of tissue necrosis and intact regeneration, but accelerated systemic recovery from illness-induced hypothyroxinemia and hypotriiodothyroninemia, demonstrating that peripheral D3 expression is a key modulator of the low T3 syndrome. PMID:25004090
2016-01-04
2016 (wileyonlinelibrary.com) DOI 10.1002/jat.3278Systems toxicology of chemically induced liver and kidney injuries: histopathology-associated gene...injuries that classify 11 liver and eight kidney histopathology endpoints based on dose-dependent activation of the identified modules. We showed that...well as determine whether the injury module activation was specific to the tissue of origin (liver and kidney ). The generated modules provide a link
Teratani, Toshiaki; Tomita, Kengo; Suzuki, Takahiro; Furuhashi, Hirotaka; Irie, Rie; Hida, Shigeaki; Okada, Yoshikiyo; Kurihara, Chie; Ebinuma, Hirotoshi; Nakamoto, Nobuhiro; Saito, Hidetsugu; Hibi, Toshifumi; Miura, Soichiro; Hokari, Ryota; Kanai, Takanori
2017-10-01
Although obesity is a risk factor for acute liver failure, the pathogenic mechanisms are not yet fully understood. High cholesterol (HC) intake, which often underlies obesity, is suggested to play a role in the mechanism. We aimed to elucidate the effect of a HC diet on acetaminophen-induced acute liver injury, the most frequent cause of acute liver failure in the USA. C57BL/6 Toll-like receptor 9 (TLR9) knockout (Tlr9 -/- ) mice and their Tlr9 +/+ littermates were fed an HC diet for fourweeks and then treated with acetaminophen. Liver sinusoidal endothelial cells (LSECs) were isolated from the mice for in vivo and in vitro analyses. The HC diet exacerbated acetaminophen-induced acute liver injury in a TLR9/inflammasome pathway-dependent manner. LSECs played a major role in the cholesterol loading-induced exacerbation. The accumulation of free cholesterol in the endolysosomes in LSECs enhanced TLR9-mediated signaling, thereby exacerbating the pathology of acetaminophen-induced liver injury through the activation of the TLR9/inflammasome pathway. The accumulation of free cholesterol in LSEC endolysosomes induced a dysfunction of the Rab7 membrane trafficking recycling mechanism, thus disrupting the transport of TLR9 from late endosomes to the lysosomes. Consequently, the level of active TLR9 in the late endosomes increased, thereby enhancing TLR9 signaling in LSECs. HC intake exaggerated acetaminophen-induced acute liver injury via free cholesterol accumulation in LSECs, demonstrating a novel role of free cholesterol as a metabolic factor in TLR9 signal regulation and pathologies of acetaminophen-induced liver injury. Therapeutic approaches may target this pathway. Lay summary: High cholesterol intake exacerbated acetaminophen-induced acute liver injury via the accumulation of free cholesterol in the endolysosomes of liver sinusoidal endothelial cells. This accumulation enhanced Toll-like receptor 9 signaling via impairment of its membrane trafficking mechanism. Thus, free cholesterol accumulation, as an underlying metabolic factor, exacerbated the pathology of acetaminophen-induced liver injury through activation of the TLR9/inflammasome pathway. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Metushi, Imir G; Sanders, Corron; Lee, William M; Uetrecht, Jack
2014-03-01
Isoniazid (INH)-induced hepatotoxicity remains one of the most common causes of drug-induced idiosyncratic liver injury and liver failure. This form of liver injury is not believed to be immune-mediated because it is not usually associated with fever or rash, does not recur more rapidly on rechallenge, and previous studies have failed to identify anti-INH antibodies (Abs). In this study, we found Abs present in sera of 15 of 19 cases of INH-induced liver failure. Anti-INH Abs were present in 8 sera; 11 had anti-cytochrome P450 (CYP)2E1 Abs, 14 had Abs against CYP2E1 modified by INH, 14 had anti-CYP3A4 antibodies, and 10 had anti-CYP2C9 Abs. INH was found to form covalent adducts with CYP2E1, CYP3A4, and CYP2C9. None of these Abs were detected in sera from INH-treated controls without significant liver injury. The presence of a range of antidrug and autoAbs has been observed in other drug-induced liver injury that is presumed to be immune mediated. These data provide strong evidence that INH induces an immune response that causes INH-induced liver injury. © 2014 by the American Association for the Study of Liver Diseases.
Mitochondrial DNA Unwinding Enzyme Required for Liver Regeneration | Center for Cancer Research
The liver has an exceptional capacity to proliferate. This ability allows the liver to regenerate its mass after partial surgical removal or injury and is the key to successful partial liver transplants. Liver cells, called hepatocytes, are packed with mitochondria, and regulating mitochondrial DNA (mtDNA) copy number is crucial to mitochondrial function, including energy production, during proliferation. Yves Pommier, M.D., Ph.D., of CCR’s Developmental Therapeutics Branch, and his colleagues recently showed that the vertebrate mitochondrial topoisomerase, Top1mt, was critical in maintaining mitochondrial function in the heart after doxorubicin-induced damage. The group wondered whether Top1mt might play a similar role in liver regeneration.
Hyperoxygenated hydrogen-rich solution suppresses shock- and resuscitation-induced liver injury.
Dang, Yangjie; Liu, Ting; Mei, Xiaopeng; Meng, Xiangzhong; Gou, Xingchun; Deng, Bin; Xu, Hao; Xu, Lixian
2017-12-01
It is not known whether simultaneous delivery of hydrogen and oxygen can reduce injury caused by hemorrhagic shock and resuscitation (HSR). This study investigated the therapeutic potential of hyperoxygenated hydrogen-rich solution (HHOS), a combined hydrogen/oxygen carrier, in a rat model of HSR-induced liver injury. Rats (n = 60) were randomly divided into 5 groups (n = 6 per group at each time point). One group underwent sham operation, and the others were subjected to severe hemorrhagic shock and then treated with lactated Ringer's solution (LRS), hydrogen-rich solution, hyperoxygenated solution, or HHOS. At 2 and 6 h after resuscitation, blood samples (n = 6) were collected from the femoral artery and serum concentrations of alanine aminotransferase and aspartate aminotransferase (AST) were measured. Rats were then sacrificed, and histopathological changes in the liver were evaluated by quantifying the percentage of apoptotic cells by caspase-3 immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick-end labeling. Inflammation was assessed by assessing malondialdehyde content and tumor necrosis factor-α, and interleukin (IL)-6 expression. Compared to lactated Ringer's solution, hydrogen-rich solution, or hyperoxygenated solution groups, serum AST and alanine aminotransferase levels and IL-6, tumor necrosis factor-α, and malondialdehyde expression in liver tissue were decreased by HHOS treatment. The number of caspase-3- and terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells was decreased (P < 0.05) by HHOS treatment, 2 and 6 h after resuscitation. HHOS has protective effects against liver injury in a rat model of HSR. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kostadinova, Radina; Boess, Franziska; Applegate, Dawn
2013-04-01
Drug-induced liver injury (DILI) is the major cause for liver failure and post-marketing drug withdrawals. Due to species-specific differences in hepatocellular function, animal experiments to assess potential liabilities of drug candidates can predict hepatotoxicity in humans only to a certain extent. In addition to animal experimentation, primary hepatocytes from rat or human are widely used for pre-clinical safety assessment. However, as many toxic responses in vivo are mediated by a complex interplay among different cell types and often require chronic drug exposures, the predictive performance of hepatocytes is very limited. Here, we established and characterized human and rat in vitromore » three-dimensional (3D) liver co-culture systems containing primary parenchymal and non-parenchymal hepatic cells. Our data demonstrate that cells cultured on a 3D scaffold have a preserved composition of hepatocytes, stellate, Kupffer and endothelial cells and maintain liver function for up to 3 months, as measured by the production of albumin, fibrinogen, transferrin and urea. Additionally, 3D liver co-cultures maintain cytochrome P450 inducibility, form bile canaliculi-like structures and respond to inflammatory stimuli. Upon incubation with selected hepatotoxicants including drugs which have been shown to induce idiosyncratic toxicity, we demonstrated that this model better detected in vivo drug-induced toxicity, including species-specific drug effects, when compared to monolayer hepatocyte cultures. In conclusion, our results underline the importance of more complex and long lasting in vitro cell culture models that contain all liver cell types and allow repeated drug-treatments for detection of in vivo-relevant adverse drug effects. - Highlights: ► 3D liver co-cultures maintain liver specific functions for up to three months. ► Activities of Cytochrome P450s remain drug- inducible accross three months. ► 3D liver co-cultures recapitulate drug-induced liver toxicity observed in vivo. ► 3D liver co-cultures can detect species-specific drug toxicity observed in vivo. ► This in vitro model may improve assessment of human relevance of preclinical findings.« less
Obeticholic acid protects mice against lipopolysaccharide-induced liver injury and inflammation.
Xiong, Xi; Ren, Yuqian; Cui, Yun; Li, Rui; Wang, Chunxia; Zhang, Yucai
2017-12-01
Cholestasis, as a main manifestation, induces liver injury during sepsis. The farnesoid X receptor (FXR) plays an important role in regulating bile acid homeostasis. Whether FXR activation by its agonist obeticholic acid (OCA) is contributed to improve sepsis-induced liver injury remains unknown. The aim of the present study was to investigate the effect of OCA on lipopolysaccharide (LPS)-induced acute liver injury in mice. 8-week old male C57BL/6J mice were randomly divided into control group, LPS group, oral OCA group and LPS plus oral OCA (LPS + OCA) group. The serum and livers were collected for further analysis. Serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bile acid (TBA) and total bilirubin (TBIL) were measured at indicated time after LPS administration. Liver sections were stained with hematoxylin & eosin (H&E). Orally OCA pretreatment stimulated the expression of FXR and BSEP in livers and protected mice from LPS-induced hepatocyte apoptosis and inflammatory infiltration. Consistently, LPS-induced higher serum levels of ALT, AST, TBA and TBIL were significantly reversed by OCA administration. Meanwhile, the mRNA levels of interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α) and IL-6 were decreased in livers of mice in LPS + OCA group compared with LPS group. Further investigation indicated that the higher expression of ATF4 and LC3II/I were associated with the protective effect of OCA on LPS-induced liver injury. Orally OCA pretreatment protects mice from LPS-induced liver injury possibly contributed by improved bile acid homeostasis, decreased inflammatory factors and ATF4-mediated autophagy activity in hepatocytes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
A review of drug-induced liver injury databases.
Luo, Guangwen; Shen, Yiting; Yang, Lizhu; Lu, Aiping; Xiang, Zheng
2017-09-01
Drug-induced liver injuries have been a major focus of current research in drug development, and are also one of the major reasons for the failure and withdrawal of drugs in development. Drug-induced liver injuries have been systematically recorded in many public databases, which have become valuable resources in this field. In this study, we provide an overview of these databases, including the liver injury-specific databases LiverTox, LTKB, Open TG-GATEs, LTMap and Hepatox, and the general databases, T3DB, DrugBank, DITOP, DART, CTD and HSDB. The features and limitations of these databases are summarized and discussed in detail. Apart from their powerful functions, we believe that these databases can be improved in several ways: by providing the data about the molecular targets involved in liver toxicity, by incorporating information regarding liver injuries caused by drug interactions, and by regularly updating the data.
Shi, Hongbo; Han, Weijia; Shi, Honglin; Ren, Feng; Chen, Dexi; Chen, Yu; Duan, Zhongping
2017-01-01
Background Augmenter of liver regeneration (ALR) exerts strong hepatoprotective properties in various animal models of liver injury, but its protective mechanisms have not yet been explored. Autophagy is a recently recognized rudimentary cellular response to inflammation and injury. The aim of this study was to test the hypothesis that ALR may protect against acute liver injury through the autophagic pathway. Methods The level and role of ALR in liver injury were studied in a mouse model of acute liver injury induced by carbon tetrachloride (CCl4). The effect of ALR on autophagy was analyzed in vitro and in vivo. After autophagy was inhibited by 3-methyladenine (3-MA), apoptosis and proliferation were detected in the mouse model with acute liver injury. The ALR and autophagic levels were measured in patients with liver cirrhosis (LC) and acute liver failure (ALF), respectively. Results During the progression of acute liver injury, the ALR levels increased slightly in early stage and significantly decreased in late stage in mice Treatment with an ALR plasmid via tail vein injection protected mice against acute liver injury. The protective effect of ALR relied on the induction of autophagy, which was supported by the following evidence: (1) ALR overexpression directly induced autophagy flux in vitro and in vivo; and (2) ALR treatment suppressed apoptosis and promoted proliferation in mice exposed to CCl4, but the inhibition of autophagy reversed these effects. More importantly, the ALR levels decreased in patients with LC and ALF compared with normal controls. Conclusion We demonstrated that ALR ameliorated liver injury via an autophagic mechanism, which indicates a potential therapeutic application for liver injury. PMID:28061452
Herbal and Dietary Supplement Induced Liver Injury
de Boer, Ynto S.; Sherker, Averell H.
2016-01-01
Summary The increase in the use of herbal and dietary supplements (HDS) over the last decades has been accompanied with an increase in the reports of HDS associated hepatotoxicity. The spectrum of HDS induced liver injury is diverse and the outcome may vary from transient liver test elevations to fulminant hepatic failure resulting in death or requiring liver transplantation. There are no validated standardized tools to establish the diagnosis, but some HDS products do have a typical clinical signature that may help to identify HDS induced liver injury. PMID:27842768
Anno, Takatoshi; Kaneto, Hideaki; Shigemoto, Ryo; Kawasaki, Fumiko; Kawai, Yasuhiro; Urata, Noriyo; Kawamoto, Hirofumi; Kaku, Kohei; Okimoto, Niro
2018-01-01
Hypoglycemia is induced by many causes, especially over-dose of insulin or oral hypoglycemic agents in diabetic subjects. In such a case, hyperinsulinemic hypoglycemia is usually observed. On the other hand, it is important to classify secondary hypoglycemia and hypoinsulinemic hypoglycemia. Liver injury-induced hypoglycemia is one of the causes of hypoinsulinemic hypoglycemia but rarely observed in clinical practice. Herein, we experienced similar 2 cases of non-diabetic hypoinsulinemic hypoglycemia. Both of them were elderly subjects with low body weight. Furthermore, it is likely that hypoinsulinemic hypoglycemia in both subjects was triggered by severe liver injury, at least in part, due to possible limited liver glycogen store. In elderly subjects with low body weight and/or malnutrition, metabolism in the liver is reduced and glycogen accumulation is decreased. Such alteration brings out acute and marked liver injury, which finally leads to the onset of severe hypoglycemia. It is known that not only liver injury but also multiple organ failure could be induced due to extreme emaciation in subjects. It is likely that in elderly subjects with low body weight and/or malnutrition, multiple organ failure including liver failure could be induced due to the similar reason. Therefore, we should be very careful of such subjects in order to avoid the development of multiple organ failure which leads to life-threatening situations. In conclusion, we should keep in mind the possibility of hypoinsulinemic hypoglycemia when we examine severe liver injury, especially in elderly or starving subjects with low body weight and limited liver glycogen stores. It is important to classify secondary hypoglycemia and hypoinsulinemic hypoglycemia.Liver injury-induced hypoglycemia is one of the causes of hypoinsulinemic hypoglycemia but rarely observed in everyday clinical practice.Herein, we reported similar 2 cases of hypoinsulinemic hypoglycemia without diabetes presumably triggered by severe liver injury.In both cases, hypoglycemia was improved by glucose infusion, although their liver injury was not improved.We should keep in mind the possibility of hypoinsulinemic hypoglycemia when we examine severe liver injury, especially in elderly subjects with low body weight.
David, Stefan; Hamilton, James P
2011-01-01
Drug-induced liver injury (DILI) is common and nearly all classes of medications can cause liver disease. Most cases of DILI are benign, and improve after drug withdrawal. It is important to recognize and remove the offending agent as quickly as possible to prevent the progression to chronic liver disease and/or acute liver failure. There are no definite risk factors for DILI, but pre-existing liver disease and genetic susceptibility may predispose certain individuals. Although most patients have clinical symptoms that are identical to other liver diseases, some patients may present with symptoms of systemic hypersensitivity. Treatment of drug and herbal-induced liver injury consists of rapid drug discontinuation and supportive care targeted to alleviate unwanted symptoms. PMID:21874146
Fuzheng Huayu recipe alleviates hepatic fibrosis via inhibiting TNF-α induced hepatocyte apoptosis.
Tao, Yan-yan; Yan, Xiu-chuan; Zhou, Tao; Shen, Li; Liu, Zu-long; Liu, Cheng-hai
2014-11-18
What was the relationship of Fuzheng Huayu recipe (FZHY) inhibiting hepatocyte apoptosis and HSC activation at different stage of liver fibrosis? In order to answer this question, the study was carried out to dynamically observe FZHY's effect on hepatocyte apoptosis and HSC activation and further explored underling mechanism of FZHY against hepatocyte apoptosis. Mice were randomly divided into four groups: normal, model, FZHY, and N-acetylcystein (NAC) groups. Acute hepatic injury and liver fibrosis in mice were induced by CCl4. Three days before the first CCl4 injection, treatment with FZHY powder or NAC respectively was started. In vitro, primary hepatocytes were pretreated with FZHY medicated serum or Z-VAD-FMK and then incubated with ActD and TNF-α. Primary HSCs were treated with DNA from apoptotic hepatocytes incubated by Act D/TNF-α or FZHY medicated. Liver sections were analyzed for HE staining and immunohistochemical evaluation of apoptosis. Serum ALT and AST, Alb content and TNF-α expression in liver tissue were detected. Hyp content was assayed and collagen deposition was visualized. Expressions of α-SMA and type I collagen were analyzed by immunofluorescence and immunoblotting. Flow cytometry, immunofluorescence, and DNA ladder for hepatocyte apoptosis and immunoblotting for TNF-R1, Bcl-2 and Bax were also analyzed. Mice showed characteristic features of massive hepatocytes apoptosis in early stage of liver injury and developed severe hepatic fibrosis in later phase. FZHY treatment significantly alleviated acute liver injury and hepatocyte apoptosis, and inhibited liver fibrosis by decreasing α-SMA expression and hepatic Hyp content. In vitro, primary hepatocytes were induced by TNF-α and Act D. The anti-apoptotic effect of FZHY was generated by reducing TNFR1 expression and balancing the expressions of Bcl-2 and Bax. Meanwhile, the nuclear DNA from apoptotic hepatocytes stimulated HSC activation in a dose dependent manner, and the DNA from apoptotic hepatocytes treated with FZHY or Z-VAD-FMK reduced HSC activation and type I collagen expression. These findings suggested that FZHY suppressed hepatocyte apoptosis through regulating mediators in death receptor and mitochondrial pathways, and the effect of FZHY on hepatocyte apoptosis might play an important role in inhibiting liver fibrosis.
Cho, Young-Eun; Kim, Sang-Hyun; Lee, Byung-Heon; Baek, Moon-Chang
2017-01-01
This study was performed to evaluate whether microRNAs (miRNAs) in circulating exosomes may serve as biomarkers of drug-induced liver, kidney, or muscle-injury. Quantitative PCR analyses were performed to measure the amounts of liver-specific miRNAs (miR-122, miR-192, and miR-155), kidney-specific miR-146a, or muscle-specific miR-206 in plasma and exosomes from mice treated with liver, kidney or muscle toxicants. The levels of liver-specific miRNAs in circulating plasma and exosomes were elevated in acetaminophen-induced liver injury and returned to basal levels by treatment with antioxidant N-acetyl-cysteine. Circulating miR-146a and miR-206 were increased in cisplatin-induced nephrotoxicity and bupivacaine-induced myotoxicity, respectively. Taken together, these results indicate that circulating plasma and exosomal miRNAs can be used as potential biomarkers specific for drug-induced liver, kidney or muscle injury. PMID:28208010
Urinary proteomic profiling reveals diclofenac-induced renal injury and hepatic regeneration in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swelm, Rachel P.L. van; Laarakkers, Coby M.M.; Pertijs, Jeanne C.L.M.
Diclofenac (DF) is a widely used non-steroidal anti-inflammatory drug for the treatment of rheumatic disorders, but is often associated with liver injury. We applied urinary proteomic profiling using MALDI-TOF MS to identify biomarkers for DF-induced hepatotoxicity in mice. Female CH3/HeOUJIco mice were treated with 75 mg/kg bw DF by oral gavage and 24 h urine was collected. Proteins identified in urine of DF-treated mice included epidermal growth factor, transthyretin, kallikrein, clusterin, fatty acid binding protein 1 and urokinase, which are related to liver regeneration but also to kidney injury. Both organs showed enhanced levels of oxidative stress (TBARS, p
[Clinicopathologic features of drug-induced vanishing bile duct syndrome].
Ye, L H; Wang, C K; Zhang, H C; Liu, Z Q; Zheng, H W
2017-04-20
Vanishing bile duct syndrome (VBDS) manifests as progressive destruction and disappearance of the intrahepatic bile duct caused by various factors and cholestasis. VBDS associated with drug-induced liver injury (D-VBDS) is an important etiology of VBDS, and immune disorder or immune imbalance may be the main pathogenesis. According to its clinical symptoms, serological markers, and course of the disease, D-VBDS is classified into major form and minor form, and its clinical features are based on various pathomorphological findings. Its prognosis is associated various factors including regeneration of bile duct cells, number of bile duct injuries, level and range of bile duct injury, bile duct proliferation, and compensatory shunt of bile duct branches. This disease has various clinical outcomes; most patients have good prognosis after drug withdrawal, and some patients may experience cholestatic cirrhosis, liver failure, and even death. Due to the clinical manifestation and biochemical changes are similar to the primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC), it need to identify by clinical physician.
FXR: Big fish or small fry for drug-induced liver injury?
Ballet, François
2016-02-01
By integrating network analysis and molecular modeling, a "system pharmacology" approach identified FXR as a potential off-target protein mediating non-steroidal anti-inflammatory drugs (NSAID)-induced liver injury. In vitro assays showed that NSAID are potent FXR antagonists that inhibit FXR transcriptional activity. Given the role of FXR in bile acid homeostasis, liver inflammation and cell proliferation, the data suggest that FXR antagonism could mediate, at least in part, NSAID-induced liver injury. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Protective effects of C-phycocyanin on alcohol-induced acute liver injury in mice
NASA Astrophysics Data System (ADS)
Xia, Dong; Liu, Bing; Luan, Xiying; Sun, Junyan; Liu, Nana; Qin, Song; Du, Zhenning
2016-03-01
Excessive alcohol consumption leads to liver disease. Extensive evidence suggests that C-phycocyanin (C-PC), a chromophore phycocyanobilin derived from Spirulina platensis, exerts protective effects against chemical-induced organ damage. In this study, we investigated whether C-PC could protect against ethanol-induced acute liver injury. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), triglyceride (TG), total cholesterol (CHOL), low-density lipoprotein (LDL), liver homogenate malondialdehyde (MDA), superoxide dismutase (SOD) content were measured, and pathological examination of liver sections were examined. C-PC showed obvious inhibitory effects on serum ALT, AST, TG, CHOL, LDL and MDA, and SOD content significantly increased in the liver. The structure of hepatic lobules was clear, liver sinus returned to normal, and liver cell cords were arranged in neat rows. Cloudiness, swelling, inflammatory cell infiltration and spotty necrosis of liver cells were significantly reduced. Therefore, C-PC can significantly protect against ethanol-induced acute liver injury.
USDA-ARS?s Scientific Manuscript database
Despite many years of research, the molecular mechanisms underlying progression of alcoholic liver injury from simple steatosis through steatohepatitis and fibrosis remain in dispute. In the current study male Sprague-Dawley rats (350 g) were chronically fed a high unsaturated fat diet for 120 d usi...
Srivastava, R K; Sharma, S; Verma, S; Arora, B; Lal, H
2008-12-01
Isoniazid, rifampicin and pyrazinamide during short-course chemotherapy for tuberculosis can result in liver injury. The coexistence of tuberculosis and diabetes is common in patients who receive inadequate treatment. The risk of hepatotoxicity from many toxicants is increased in diabetic rats. Silymarin provides protection against liver injury caused by many hepatotoxicants, including antitubercular drugs (ATDs). In the wake of increased severity of ATD-induced hepatotoxicity in diabetes we report here the results of a study on the influence of diabetes on silymarin hepatoprotection in rats. Rats with diabetes induced via intraperitoneally injected streptozotocin (50 mg/kg), nondiabetic rats and insulin-treated diabetic rats received isoniazid (7.5 mg/kg/day), rifampicin (10 mg/kg/day) and pyrazinamide (35 mg/kg/day) orally (p.o.) with or without silymarin (100 mg/kg/day p.o.) treatment for 45 days. Compared to nondiabetic rats, liver function tests and histological changes of liver revealed exaggerated liver injury in diabetic rats caused by ATDs which was evident by 5- to 8-fold increases in serum levels of marker enzymes (aspartate and alanine aminotransferase, alkaline phosphatase and gamma-glutamyltranspeptidase) and 1- to 2-fold increases in bilirubin accompanied by a 2-fold decrease in total serum proteins, intense fatty and inflammatory infiltrations, necrosis and fibrosis. Coadministration of silymarin provided protection against ATD hepatotoxicity in all animals. However, insulin-treated diabetic animals showed greater silymarin-induced hepatoprotection against ATD-induced liver injury, which was characterized by near normal levels of marker enzymes, an increase in total proteins and normal hepatic structure. These results thus indicate that diabetes exaggerates ATD-induced liver injury and attenuates silymarin-induced hepatoprotection. However, insulin treatment for diabetes offers greater silymarin-induced hepatoprotection against ATD-induced liver injury. Copyright (c) 2008 Prous Science, S.A.U. or its licensors. All rights reserved.
Lauschke, Volker M; Hendriks, Delilah F G; Bell, Catherine C; Andersson, Tommy B; Ingelman-Sundberg, Magnus
2016-12-19
The liver is an organ with critical importance for drug treatment as the disposition and response to a given drug is often determined by its hepatic metabolism. Patient-specific factors can entail increased susceptibility to drug-induced liver injury, which constitutes a major risk for drug development programs causing attrition of promising drug candidates or costly withdrawals in postmarketing stages. Hitherto, mainly animal studies and 2D hepatocyte systems have been used for the examination of human drug metabolism and toxicity. Yet, these models are far from satisfactory due to extensive species differences and because hepatocytes in 2D cultures rapidly dedifferentiate resulting in the loss of their hepatic phenotype and functionality. With the increasing comprehension that 3D cell culture systems more accurately reflect in vivo physiology, in the recent decade more and more research has focused on the development and optimization of various 3D culture strategies in an attempt to preserve liver properties in vitro. In this contribution, we critically review these developments, which have resulted in an arsenal of different static and perfused 3D models. These systems include sandwich-cultured hepatocytes, spheroid culture platforms, and various microfluidic liver or multiorgan biochips. Importantly, in many of these models hepatocytes maintain their phenotype for prolonged times, which allows probing the potential of newly developed chemical entities to cause chronic hepatotoxicity. Moreover, some platforms permit the investigation of drug action in specific genetic backgrounds or diseased hepatocytes, thereby significantly expanding the repertoire of tools to detect drug-induced liver injuries. It is concluded that the development of 3D liver models has hitherto been fruitful and that systems are now at hand whose sensitivity and specificity in detecting hepatotoxicity are superior to those of classical 2D culture systems. For the future, we highlight the need to develop more integrated coculture model systems to emulate immunotoxicities that arise due to complex interactions between hepatocytes and immune cells.
Kang, Jung-Woo; Lee, Sun-Mee
2016-09-01
Resolution of inflammation is an active process involving a novel category of lipid factors known as specialized pro-resolving lipid mediators, which includes Resolvin D1 (RvD1). While accumulating evidence suggests that RvD1 counteracts proinflammatory signaling and promotes resolution, the specific cellular targets and mechanisms of action of RvD1 remain largely unknown. In the present study, we investigated the role and molecular mechanisms of RvD1 in ischemia/reperfusion (IR)-induced sterile liver inflammation. Male C57BL/6 mice underwent 70% hepatic ischemia for 60min, followed by reperfusion. RvD1 (5, 10, and 15μg/kg, i.p.) was administered to the mice 1h before ischemia and then immediately prior to reperfusion. RvD1 attenuated IR-induced hepatocellular damage and the proinflammatory response. In purified Kupffer cells (KCs) from mice exposed to IR, the levels of M1 marker genes (Nos2a and Cd40) increased, while those of M2 marker genes (Arg1, Cd206, and Mst1r) decreased, demonstrating a proinflammatory shift. RvD1 markedly attenuated these changes. Depletion of KCs by liposome clodronate abrogated the effects of RvD1 on proinflammatory mediators and macrophage polarization. In addition, RvD1 attenuated increases in myeloperoxidase activity and Cxcl1 and Cxcl2 mRNA expression. RvD1 markedly augmented the efferocytic activity of KCs, as indicated by increases in F4/80(+)Gr-1(+) cells in the liver. However, antagonist pretreatment or gene silencing of the RvD1 receptor, ALX/FPR2, abrogated the anti-inflammatory and pro-resolving actions of RvD1. These data indicate that RvD1 ameliorates IR-induced liver injury, and this protection is associated with enhancement of M2 polarization and efferocytosis via ALX/FPR2 activation. Copyright © 2016 Elsevier B.V. All rights reserved.
Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice
Mazagova, Magdalena; Wang, Lirui; Anfora, Andrew T.; Wissmueller, Max; Lesley, Scott A.; Miyamoto, Yukiko; Eckmann, Lars; Dhungana, Suraj; Pathmasiri, Wimal; Sumner, Susan; Westwater, Caroline; Brenner, David A.; Schnabl, Bernd
2015-01-01
Translocation of bacteria and their products across the intestinal barrier is common in patients with liver disease, and there is evidence that experimental liver fibrosis depends on bacterial translocation. The purpose of our study was to investigate liver fibrosis in conventional and germ-free (GF) C57BL/6 mice. Chronic liver injury was induced by administration of thioacetamide (TAA) in the drinking water for 21 wk or by repeated intraperitoneal injections of carbon tetrachloride (CCl4). Increased liver fibrosis was observed in GF mice compared with conventional mice. Hepatocytes showed more toxin-induced oxidative stress and cell death. This was accompanied by increased activation of hepatic stellate cells, but hepatic mediators of inflammation were not significantly different. Similarly, a genetic model using Myd88/Trif-deficient mice, which lack downstream innate immunity signaling, had more severe fibrosis than wild-type mice. Isolated Myd88/Trif-deficient hepatocytes were more susceptible to toxin-induced cell death in culture. In conclusion, the commensal microbiota prevents fibrosis upon chronic liver injury in mice. This is the first study describing a beneficial role of the commensal microbiota in maintaining liver homeostasis and preventing liver fibrosis.—Mazagova, M., Wang, L., Anfora, A. T., Wissmueller, M., Lesley, S. A., Miyamoto, Y., Eckmann, L., Dhungana, S., Pathmasiri, W., Sumner, S., Westwater, C., Brenner, D. A., Schnabl, B. Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice. PMID:25466902
Characterization of the First Molluscicidal Lipopolysaccharide from Moraxella osloensis
Tan, Li; Grewal, Parwinder S.
2003-01-01
Moraxella osloensis is a bacterium that is mutualistically associated with Phasmarhabditis hermaphrodita, a nematode that has potential for the biocontrol of mollusk pests, especially the slug Deroceras reticulatum. We discovered that purified M. osloensis lipopolysaccharide (LPS) possesses a lethal toxicity to D. reticulatum when administered by injection but no contact or oral toxicity to this slug. The toxicity of the LPS resides in the lipid A moiety. M. osloensis LPS was semiquantitated at 6 × 107 endotoxin units per mg. The LPS is a rough-type LPS with an estimated molecular weight of 5,300. Coinjection of galactosamine with the LPS increased the LPS's toxicity to the slug two- to four-fold. The galactosamine-induced sensitization of the slug to the LPS was reversed completely by uridine. PMID:12788774
Characterization of the first molluscicidal lipopolysaccharide from Moraxella osloensis.
Tan, Li; Grewal, Parwinder S
2003-06-01
Moraxella osloensis is a bacterium that is mutualistically associated with Phasmarhabditis hermaphrodita, a nematode that has potential for the biocontrol of mollusk pests, especially the slug Deroceras reticulatum. We discovered that purified M. osloensis lipopolysaccharide (LPS) possesses a lethal toxicity to D. reticulatum when administered by injection but no contact or oral toxicity to this slug. The toxicity of the LPS resides in the lipid A moiety. M. osloensis LPS was semiquantitated at 6 x 10(7) endotoxin units per mg. The LPS is a rough-type LPS with an estimated molecular weight of 5,300. Coinjection of galactosamine with the LPS increased the LPS's toxicity to the slug two- to four-fold. The galactosamine-induced sensitization of the slug to the LPS was reversed completely by uridine.
Polyenylphosphatidylcholine attenuates alcohol-induced fatty liver and hyperlipemia in rats.
Navder, K P; Baraona, E; Lieber, C S
1997-09-01
Chronic administration of a soybean-derived polyenylphosphatidylcholine (PPC) extract prevents the development of cirrhosis in alcohol-fed baboons. To assess whether this phospholipid also affects earlier changes induced by alcohol consumption (such as fatty liver and hyperlipemia), 28 male rat littermates were pair-fed liquid diets containing 36% of energy either as ethanol or as additional carbohydrate for 21 d, and killed 90 min after intragastric administration of the corresponding diets. Half of the rats were given PPC (3 g/l), whereas the other half received the same amount of linoleate (as safflower oil) and choline (as bitartrate salt). PPC did not affect diet or alcohol consumption [15.4 +/- 0.5 G/(kg.d)], but the ethanol-induced hepatomegaly and the hepatic accumulation of lipids (principally triglycerides and cholesterol esters) and proteins were about half those in rats not given PPC. The ethanol-induced postprandial hyperlipemia was lower with PPC than without, despite an enhanced fat absorption and no difference in the level of plasma free fatty acids. The attenuation of fatty liver and hyperlipemia was associated with correction of the ethanol-induced inhibition of mitochondrial oxidation of palmitoyl-1-carnitine and the depression of cytochrome oxidase activity, as well as the increases in activity of serum glutamate dehydrogenase and aminotransferases. Thus, PPC attenuates early manifestations of alcohol toxicity, at least in part, by improving mitochondrial injury. These beneficial effects of PPC at the initial stages of alcoholic liver injury may prevent or delay the progression to more advanced forms of alcoholic liver disease.
An Animal Model of Abacavir-Induced HLA-Mediated Liver Injury.
Song, Binbin; Aoki, Shigeki; Liu, Cong; Susukida, Takeshi; Ito, Kousei
2018-04-01
Genome-wide association studies indicate that several idiosyncratic adverse drug reactions are highly associated with specific human leukocyte antigen (HLA) alleles. For instance, abacavir, a human immunodeficiency virus reverse transcriptase inhibitor, induces multiorgan toxicity exclusively in patients carrying the HLA-B*57:01 allele. However, the underlying mechanism is unclear due to a lack of appropriate animal models. Previously, we developed HLA-B*57:01 transgenic mice and found that topical application of abacavir to the ears induced proliferation of CD8+ lymphocytes in local lymph nodes. Here, we attempted to reproduce abacavir-induced liver injury in these mice. However, oral administration of abacavir alone to HLA-B*57:01 transgenic mice did not increase levels of the liver injury marker alanine aminotransferase. Considering the importance of innate immune activation in mouse liver, we treated mice with CpG oligodeoxynucleotide, a toll-like receptor 9 agonist, plus abacavir. This resulted in a marked increase in alanine aminotransferase, pathological changes in liver, increased numbers of activated CD8+ T cells, and tissue infiltration by immune cells exclusively in HLA-B*57:01 transgenic mice. These results indicate that CpG oligodeoxynucleotide-induced inflammatory reactions and/or innate immune activation are necessary for abacavir-induced HLA-mediated liver injury characterized by infiltration of CD8+ T cells. Thus, we developed the first mouse model of HLA-mediated abacavir-induced idiosyncratic liver injury. Further investigation will show that the proposed HLA-mediated liver injury model can be applied to other combinations of drugs and HLA types, thereby improving drug development and contributing to the development of personalized medicine.
Sato, Atsushi; Nakashima, Hiroyuki; Nakashima, Masahiro; Ikarashi, Masami; Nishiyama, Kiyoshi; Kinoshita, Manabu; Seki, Shuhji
2014-01-01
We previously reported that F4/80(+) Kupffer cells are subclassified into CD68(+) Kupffer cells with phagocytic and ROS producing capacity, and CD11b(+) Kupffer cells with cytokine-producing capacity. Carbon tetrachloride (CCl4)-induced hepatic injury is a well-known chemical-induced hepatocyte injury. In the present study, we investigated the immunological role of Kupffer cells/macrophages in CCl4-induced hepatitis in mice. The immunohistochemical analysis of the liver and the flow cytometry of the liver mononuclear cells showed that clodronate liposome (c-lipo) treatment greatly decreased the spindle-shaped F4/80(+) or CD68(+) cells, while the oval-shaped F4/80+ CD11b(+) cells increased. Notably, severe hepatic injury induced by CCl4 was further aggravated by c-lipo-pretreatment. The population of CD11b(+) Kupffer cells/macrophages dramatically increased 24 hour (h) after CCl4 administration, especially in c-lipo-pretreated mice. The CD11b(+) Kupffer cells expressed intracellular TNF and surface Fas-ligand (FasL). Furthermore, anti-TNF Ab pretreatment (which decreased the FasL expression of CD11b(+) Kupffer cells), anti-FasL Ab pretreatment or gld/gld mice attenuated the liver injury induced by CCl4. CD1d-/- mouse and cell depletion experiments showed that NKT cells and NK cells were not involved in the hepatic injury. The adoptive transfer and cytotoxic assay against primary cultured hepatocytes confirmed the role of CD11b(+) Kupffer cells in CCl4-induced hepatitis. Interestingly, the serum MCP-1 level rapidly increased and peaked at six h after c-lipo pretreatment, suggesting that the MCP-1 produced by c-lipo-phagocytized CD68(+) Kupffer cells may recruit CD11b(+) macrophages from the periphery and bone marrow. The CD11b(+) Kupffer cells producing TNF and FasL thus play a pivotal role in CCl4-induced acute hepatic injury.
Jing, Jing; Teschke, Rolf
2018-03-28
Cases of suspected herb-induced liver injury (HILI) caused by herbal Traditional Chinese Medicines (TCMs) and of drug-induced liver injury (DILI) are commonly published in the scientific literature worldwide. As opposed to the multiplicity of botanical chemicals in herbal TCM products, which are often mixtures of several herbs, conventional Western drugs contain only a single synthetic chemical. It is therefore of interest to study how HILI by TCM and DILI compare with each other, and to what extent results from each liver injury type can be transferred to the other. China is among the few countries with a large population using synthetic Western drugs as well as herbal TCM. Therefore, China is well suited to studies of liver injury comparing drugs with TCM herbs. Despite some concordance, recent analyses of liver injury cases with verified causality, using the Roussel Uclaf Causality Assessment Method, revealed major differences in HILI caused by TCMs as compared to DILI with respect to the following features: HILI cases are less frequently observed as compared to DILI, have a smaller proportion of females and less unintentional rechallenge events, and present a higher rate of hepatocellular injury features. Since many results were obtained among Chinese residents who had access to and had used Western drugs and TCM herbs, such ethnic homogeneity supports the contention that the observed differences of HILI and DILI in the assessed population are well founded.
The effect of trans-ferulic acid and gamma-oryzanol on ethanol-induced liver injury in C57BL mouse.
Chotimarkorn, Chatchawan; Ushio, Hideki
2008-11-01
The effects of the oral administration of trans-ferulic acid and gamma-oryzanol (mixture of steryl ferulates) with ethanol (5.0 g per kg) for 30 days to c57BL mice on ethanol-induced liver injury were investigated. Preventions of ethanol-induced liver injury by trans-ferulic acid and gamma-oryzanol were reflected by markedly decreased serum activities of plasma aspartate aminotransferase, alanine aminotransferase and significant decreases in hepatic lipid hydroperoxide and TBARS levels. Furthermore, the trans-ferulic acid- and gamma-oryzanol-treated mice recovered ethanol-induced decrease in hepatic glutathione level together with enhancing superoxide dismutase activity. These results demonstrate that both trans-ferulic acid and gamma-oryzanol exert a protective action on liver injury induced by chronic ethanol ingestion.
Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation.
Zhang, Da-Gang; Zhang, Cheng; Wang, Jun-Xian; Wang, Bi-Wei; Wang, Hua; Zhang, Zhi-Hui; Chen, Yuan-Hua; Lu, Yan; Tao, Li; Wang, Jian-Qing; Chen, Xi; Xu, De-Xiang
2017-01-01
The farnesoid X receptor (FXR) is a ligand-activated transcription factor that plays important roles in regulating bile acid homeostasis. The aim of the present study was to investigate the effects of obeticholic acid (OCA), a novel synthetic FXR agonist, carbon tetrachloride (CCl 4 )-induced acute liver injury. Mice were intraperitoneally injected with CCl 4 (0.15ml/kg). In CCl 4 +OCA group, mice were orally with OCA (5mg/kg) 48, 24 and 1h before CCl 4 . As expected, hepatic FXR was activated by OCA. Interestingly, OCA pretreatment alleviated CCl 4 -induced elevation of serum ALT and hepatic necrosis. Moreover, OCA pretreatment inhibited CCl 4 -induced hepatocyte apoptosis. Additional experiment showed that OCA inhibits CCl 4 -induced hepatic chemokine gene Mcp-1, Mip-2 and Kc. Moreover, OCA inhibits CCl 4 -induced hepatic pro-inflammatory gene Tnf-α and Il-1β. By contrast, OCA pretreatment elevated hepatic anti-inflammatory gene Il-4. Further analysis showed that OCA pretreatment inhibited hepatic IκB phosphorylation and blocked nuclear translocation of NF-κB p65 and p50 subunits during CCl 4 -induced acute liver injury. In addition, OCA pretreatment inhibited hepatic Akt, ERK and p38 phosphorylation in CCl 4 -induced acute liver injury. These results suggest that OCA protects against CCl 4 -induced acute liver injury and inflammation. Synthetic FXR agonists may be effective antidotes for hepatic inflammation during acute liver injury. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Chiun-Lang; Yang, Po-Sheng; Tsao, Jeng-Ting; Jayakumar, Thanasekaran; Wang, Meng-Jiy; Sheu, Joen-Rong; Chou, Duen-Suey
2018-01-01
Oxygen free radicals have been implicated in the pathogenesis of toxic liver injury and are thought to be involved in cardiac dysfunction in the cirrhotic heart. Therefore, direct evidence for the electron spin resonance (ESR) detection of how D‑galactosamine (GalN), an established experimental hepatotoxic substance, induced free radicals formation in platelets and primary hepatocytes is presented in the present study. ESR results demonstrated that GalN induced hydroxyl radicals (OH•) in a resting human platelet suspension; however, radicals were not produced in a cell free Fenton reaction system. The GalN‑induced OH• formation was significantly inhibited by the cyclooxygenase (COX) inhibitor indomethasin, though it was not affected by the lipoxygenase (LOX) or cytochrome P450 inhibitors, AA861 and 1‑aminobenzotriazole (ABT), in platelets. In addition, the present study demonstrated that baicalein induced semiquinone free radicals in platelets, which were significantly reduced by the COX inhibitor without affecting the formed OH•. In the mouse primary hepatocytes, the formation of arachidonic acid (AA) induced carbon‑centered radicals that were concentration dependently enhanced by GalN. These radicals were inhibited by AA861, though not affected by indomethasin or ABT. In addition, GalN did not induce platelet aggregation prior to or following collagen pretreatment in human platelets. The results of the present study indicated that GalN and baicalein may induce OH• by COX and LOX in human platelets. GalN also potentiated AA induced carbon‑centered radicals in hepatocytes via cytochrome P450. The present study presented the role of free radicals in the pathophysiological association between platelets and hepatocytes.
Acetaminophen-induced acute liver injury in HCV transgenic mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uehara, Takeki; Kosyk, Oksana; Jeannot, Emmanuelle
2013-01-15
The exact etiology of clinical cases of acute liver failure is difficult to ascertain and it is likely that various co-morbidity factors play a role. For example, epidemiological evidence suggests that coexistent hepatitis C virus (HCV) infection increased the risk of acetaminophen-induced acute liver injury, and was associated with an increased risk of progression to acute liver failure. However, little is known about possible mechanisms of enhanced acetaminophen hepatotoxicity in HCV-infected subjects. In this study, we tested a hypothesis that HCV-Tg mice may be more susceptible to acetaminophen hepatotoxicity, and also evaluated the mechanisms of acetaminophen-induced liver damage in wildmore » type and HCV-Tg mice expressing core, E1 and E2 proteins. Male mice were treated with a single dose of acetaminophen (300 or 500 mg/kg in fed animals; or 200 mg/kg in fasted animals; i.g.) and liver and serum endpoints were evaluated at 4 and 24 h after dosing. Our results suggest that in fed mice, liver toxicity in HCV-Tg mice is not markedly exaggerated as compared to the wild-type mice. In fasted mice, greater liver injury was observed in HCV-Tg mice. In fed mice dosed with 300 mg/kg acetaminophen, we observed that liver mitochondria in HCV-Tg mice exhibited signs of dysfunction showing the potential mechanism for increased susceptibility. -- Highlights: ► Acetaminophen-induced liver injury is a significant clinical challenge. ► HCV-infected subjects may be at higher risk for acetaminophen-induced liver injury. ► We used HCV transgenics to test if liver injury due to acetaminophen is exacerbated.« less
Yao, You-Li; Han, Xin; Song, Jian; Zhang, Jing; Li, Ya-Mei; Lian, Li-Hua; Wu, Yan-Ling; Nan, Ji-Xing
2017-11-05
The aim of this study was to investigate the effects of acanthoic acid (AA) on the regulation of inflammatory response, lipid accumulation, and fibrosis via AMPK- IRAK4 signaling against chronic alcohol consumption in mice. Ethanol-induced liver injury was induced in male mice by Lieber-DeCarli diet for 28d. And mice in AA groups were gavaged with AA (20 or 40mg/kg) for 28d. AA treatment significantly decreased serum AST and TG, hepatic TG levels, serum ethanol and LPS levels compared with chronic ethanol administration. AA ameliorated histological changes, lipid droplets, hepatic fibrosis, and inflammation induced by ethanol. AA significantly increased the expressions of p-LKB1, p-AMPK, and SIRT1 caused by chronic ethanol administration, and attenuated the increasing protein expressions of IRAK1 and IRAK4.siRNA against AMPKα1 blocked AMPKα1 and increased IRAK4 protein expressions, compared with control-siRNA-transfected group, while AA treatment significantly decreased IRAK4 expressions compared with AMPKα1-siRNA-transfected group. AMPK-siRNA also blocked the decreased effect of AA on inflammatory factors. AA decreased over-expression of IRAK4 and inflammation under ethanol plus LPS challenge. AA recruited LKB1-AMPK phosphorylation and activated SIRT1 to regulate alcoholic liver injury, especially, inhibited IRAK1/4 signaling pathway to regulate lipid metabolism, hepatic fibrosis and inflammation caused by alcohol consumption. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Yuhua; Liu, Yanlong; Sidhu, Anju; Ma, Zhenhua; McClain, Craig
2012-01-01
Endotoxemia is a contributing cofactor to alcoholic liver disease (ALD), and alcohol-induced increased intestinal permeability is one of the mechanisms of endotoxin absorption. Probiotic bacteria have been shown to promote intestinal epithelial integrity and protect barrier function in inflammatory bowel disease (IBD) and in ALD. Although it is highly possible that some common molecules secreted by probiotics contribute to this action in IBD, the effect of probiotic culture supernatant has not yet been studied in ALD. We examined the effects of Lactobacillus rhamnosus GG culture supernatant (LGG-s) on the acute alcohol-induced intestinal integrity and liver injury in a mouse model. Mice on standard chow diet were supplemented with supernatant from LGG culture (109 colony-forming unit/mouse) for 5 days, and one dose of alcohol at 6 g/kg body wt was administered via gavage. Intestinal permeability was measured by FITC-FD-4 ex vivo. Alcohol-induced liver injury was examined by measuring the activity of alanine aminotransferase (ALT) in plasma, and liver steatosis was evaluated by triglyceride content and Oil Red O staining of the liver sections. LGG-s pretreatment restored alcohol-induced reduction in ileum mRNA levels of claudin-1, intestine trefoil factor (ITF), P-glycoprotein (P-gp), and cathelin-related antimicrobial peptide (CRAMP), which play important roles on intestinal barrier integrity. As a result, LGG-s pretreatment significantly inhibited the alcohol-induced intestinal permeability, endotoxemia and subsequently liver injury. Interestingly, LGG-s pretreatment increased ileum mRNA expression of hypoxia-inducible factor (HIF)-2α, an important transcription factor of ITF, P-gp, and CRAMP. These results suggest that LGG-s ameliorates the acute alcohol-induced liver injury by promoting HIF signaling, leading to the suppression of alcohol-induced increased intestinal permeability and endotoxemia. The use of bacteria-free LGG culture supernatant provides a novel strategy for prevention of acute alcohol-induced liver injury. PMID:22538402
Bupivacaine drug-induced liver injury: a case series and brief review of the literature.
Chintamaneni, Preethi; Stevenson, Heather L; Malik, Shahid M
2016-08-01
Bupivacaine is an established and efficacious anesthetic that has become increasingly popular in postoperative pain management. However, there is limited literature regarding the potential for bupivacaine-induced delayed liver toxicity. Describe cholestasis as a potential adverse reaction of bupivacaine infusion into a surgical wound. Retrospective review of patients' medical records. We report the cases of 3 patients with new onset of cholestatic injury after receiving bupivacaine infusion for postoperative herniorrhaphy pain management. All patients had negative serologic workups for other causes of liver injury. All patients achieved eventual resolution of their liver injury. Bupivacaine-induced liver injury should be on the differential of individuals presenting with jaundice and cholestasis within a month of infusion via a surgically placed catheter of this commonly used anesthetic. Copyright © 2016 Elsevier Inc. All rights reserved.
The role of vitamin D3 upregulated protein 1 in thioacetamide-induced mouse hepatotoxicity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Hyo-Jung; Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, Seoul; Lim, Jong-Hwan
2010-11-01
Thioacetamide (TA) is a commonly used drug that can trigger acute hepatic failure (AHF) through generation of oxidative stress. Vitamin D3 upregulated protein 1 (VDUP1) is an endogenous inhibitor of thioredoxin, a ubiquitous thiol oxidoreductase, that regulates cellular redox status. In this study, we investigated the role of VDUP1 in AHF using a TA-induced liver injury model. VDUP1 knockout (KO) and wild-type (WT) mice were subjected to a single intraperitoneal TA injection, and various parameters of hepatic injury were assessed. VDUP1 KO mice displayed a significantly higher survival rate, lower serum alanine aminotransferase and aspartate aminotransferase levels, and less hepaticmore » damage, compared to WT mice. In addition, induction of apoptosis was decreased in VDUP1 KO mice, with the alteration of caspase-3 and -9 activities, Bax-to-Bcl-2 expression ratios, and mitogen activated protein kinase (MAPK) signaling pathway. Importantly, analysis of TA bioactivation revealed lower plasma clearance of TA and covalent binding of [{sup 14}C]TA to liver macromolecules in VDUP1 KO mice. Furthermore, the level of oxidative stress was significantly less in VDUP1 KO mice than in their WT counterparts, as evident from lipid peroxidation assay. These results collectively indicate that VDUP1 deficiency protects against TA-induced acute liver injury via lower bioactivation of TA and antioxidant effects.« less
Guo, Qing; Zhang, Qian-Qian; Chen, Jia-Qing; Zhang, Wei; Qiu, Hong-Cong; Zhang, Zun-Jian; Liu, Bu-Ming; Xu, Feng-Guo
2017-07-01
Phyllanthus Urinaria L. (PUL) is a traditional Chinese medicine used to treat hepatic and renal disorders. However, the mechanism of its hepatoprotective action is not fully understood. In the present study, blood biochemical indexes and liver histopathological changes were used to estimate the extent of hepatic injury. GC/MS and LC/MS-based untargeted metabolomics were used in combination to characterize the potential biomarkers associated with the protective activity of PUL against CCl 4 -induced liver injury in rats. PUL treatment could reverse the increase in ALT, AST and ALP induced by CCl 4 and attenuate the pathological changes in rat liver. Significant changes in liver metabolic profiling were observed in PUL-treated group compared with liver injury model group. Seventeen biomarkers related to the hepatoprotective effects of PUL against CCl 4 -induced liver injury were screened out using nonparametric test and Pearson's correlation analysis (OPLS-DA). The results suggested that the potential hepatoprotective effects of PUL in attenuating CCl 4 -induced hepatotoxicity could be partially attributed to regulating L-carnitine, taurocholic acid, and amino acids metabolism, which may become promising targets for treatment of liver toxicity. In conclusion, this study provides new insights into the mechanism of the hepatoprotection of Phyllanthus Urinaria. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Alaca, Nuray; Özbeyli, Dilek; Uslu, Serap; Şahin, Hasan Hüseyin; Yiğittürk, Gürkan; Kurtel, Hızır; Öktem, Gülperi; Çağlayan Yeğen, Berrak
2017-11-01
Cholestasis, which results in hepatic cell death, fibrosis, cirrhosis, and eventually liver failure, is associated with oxidative stress. The aim of this study was to evaluate the effects of milk thistle (MT, Silybum marianum) and ursodeoxycholic acid (UDCA) or their combination on the activation of hepatic stem cells and on the severity of cholestasis liver injury in rats. Under anesthesia, bile ducts of female Sprague Dawley rats were ligated (BDL) or had sham operation. BDL rats were administered saline, UDCA (15 mg/kg/d), MT (600 mg/kg/d), or UDCA+MT by gavage for 10 days. On the 11th day, rats were sacrificed and blood and liver samples were obtained. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), hepatic malondialdehyde (MDA) levels, and myeloperoxidase (MPO) activity were measured. Hepatic injury, a-smooth muscle actin expression, and stem cell markers c-kit, c-Myc, Oct3/4, and SSEA-1 were histologically determined. Histological scores, serum ALT, and hepatic MDA levels were higher in BDL group than in the sham rats, while all treatments significantly reduced these levels. The reduction in ALT was significantly greater in UCDA+MT-treated group than in other treatment groups. c-Kit, c-Myc, Oct3/4, and SSEA-1 were increased in saline-treated BDL group with respect to sham-operated control group, and these markers were significantly reduced in all treatment groups. In addition to a modulatory effect on the stem cell-induced regenerative response of the liver, UDCA, MT, and their combination demonstrated similar anti-inflammatory and antiproliferative effects on cholestasis-induced hepatic injury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganai, Ajaz A., E-mail: ganaikashmir@gmail.com; Khan, Athar A., E-mail: atharbiotech@gmail.com; Malik, Zainul A., E-mail: mzabdin@rediffmail.com
2015-03-01
Genistein is an isoflavanoid abundantly found in soy. It has been found to play an important role in the prevention of various chronic diseases including cancer. In this study, we evaluated potential therapeutic properties of Genistein against D-Galactosamine (D-GalN) induced inflammation and hepatotoxicity in male Wistar rats. Fulminant hepatic failure (FHF) was induced in rats by intraperitoneal injection of D-GalN (700 mg/kgBW). Genistein (5 mg/kgBW/day) was given as pre-treatment for 30 days via intra-gastric route followed by D-GalN (700 mg/kgBW) injection. The hepatoprotective and curative effects of Genistein were evident from a significant decrease in the serum aspartate aminotransferase (AST)more » and alanine aminotransferase (ALT) levels as well as prevention of histological damage by pre-treatment of Genistein. Genistein pre-treatment significantly inhibited the increased protein levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), thereby reducing nitric oxide (NO) and prostaglandin-E2 (PGE) levels, respectively. In addition Genistein significantly suppressed the production of D-GalN-induced proinflammatory cytokines, including tumor necrosis factor-α (TNF-α) and interleukin (IL)-1β. These inhibitory effects were associated with the suppression of nuclear factor-kappa B (NF-ĸB) activation, IKKα/β and Mitogen activated protein kinase (MAPK) phosphorylation by Genistein in D-GalN-treated animals. In conclusion, our results suggest that Genistein may serve as a potential supplement in the prevention of hepatic and inflammatory diseases. Furthermore Genistein is able to maintain the redox potential and strengthens the antioxidant defense system of a cell. - Highlights: • First study to evaluate hepatoprotective effect of Genistein against D-GalN • Genistein prevents oxidative damage induced by D-GalN. • Genistein blunts iNOS, COX-2, NF-ĸB, IKKα/β and MAPK expression. • Genistein prevents D-GalN induced apoptosis and necrosis.« less
Wu, Hao; Qiu, Yong; Shu, Ziyang; Zhang, Xu; Li, Renpeng; Liu, Su; Chen, Longquan; Liu, Hong; Chen, Ning
2016-12-01
To explore hepatoprotective role and underlying mechanisms of Trillium tschonoskii Maxim (TTM), 36 rats were randomly divided into control, CCl 4 -induced liver injury model, and biphenyl dimethyl dicarboxylate (DDB) and low-, moderate-, and high-dose TTM treatment groups. After CCl 4 -induced model establishment, the rats from DDB and TTM groups were administrated with DDB at 0.2 g/kg per day and TTM at 0.1, 0.5, and 1.0 g/kg per day, while the rats from control and model groups were administrated with saline. After 5 days of treatments, all rats were sacrificed for determining serum ALT and AST levels and liver index, examining histopathological changes in liver through HE and TUNEL staining, and evaluating TNF-α and IL-6 mRNA expression by real-time PCR, and caspase-3, Bcl-2, and Bax expression by Western blot. Results indicated that CCl 4 could induce acute liver injury and abnormal liver function in rats with obvious hepatomegaly, increased liver index, high ALT and AST levels, up-regulated TNF-α and IL-6, and overexpressed Bax and caspase-3. However, DDB and TTM could execute protective role in CCl 4 -induced liver injury in rats through reducing ALT and AST levels, rescuing hepatomegaly, down-regulating inflammatory factors and inhibiting hepatocyte apoptosis in a dose-dependent manner. Therefore, TTM has obvious protective role in CCl 4 -induced liver injury of rats through inhibiting hepatocyte apoptosis.
Suda, Jo; Dara, Lily; Yang, Luoluo; Aghajan, Mariam; Song, Yong; Kaplowitz, Neil; Liu, Zhang-Xu
2016-10-15
Receptor-interacting protein kinase (RIPK)1 has an essential role in the signaling pathways triggered by death receptors through activation of NF-κB and regulation of caspase-dependent apoptosis and RIPK3/mixed lineage kinase domain-like protein (MLKL)-mediated necroptosis. We examined the effect of RIPK1 antisense knockdown on immune-mediated liver injury in C57BL/6 mice caused by α-galactosylceramide (αGalCer), a specific activator for invariant NKT cells. We found that knockdown of RIPK1 markedly exacerbated αGalCer-mediated liver injury and induced lethality. This was associated with increased hepatic inflammation and massive apoptotic death of hepatocytes, as indicated by TUNEL staining and caspase-3 activation. Pretreatment with zVAD.fmk, a pan-caspase inhibitor, or neutralizing Abs against TNF, almost completely protected against the exacerbated liver injury and lethality. Primary hepatocytes isolated from RIPK1-knockdown mice were sensitized to TNF-induced cell death that was completely inhibited by adding zVAD.fmk. The exacerbated liver injury was not due to impaired hepatic NF-κB activation in terms of IκBα phosphorylation and degradation in in vivo and in vitro studies. Lack of RIPK1 kinase activity by pretreatment with necrostatin-1, a RIPK1 kinase inhibitor, or in the RIPK1 kinase-dead knock-in (RIPK1 D138N ) mice did not exacerbate αGalCer-mediated liver injury. Furthermore, RIPK3-knockout and MLKL-knockout mice behaved similarly as wild-type control mice in response to αGalCer, with or without knockdown of RIPK1, excluding a switch to RIPK3/MLKL-mediated necroptosis. Our findings reveal a critical kinase-independent platform role for RIPK1 in protecting against TNF/caspase-dependent apoptosis of hepatocytes in immune-mediated liver injury. Copyright © 2016 by The American Association of Immunologists, Inc.
Li, San-Qiang; Wang, Dong-Mei; Shu, You-Ju; Wan, Xue-Dong; Xu, Zheng-Shun; Li, En-Zhong
2013-01-01
Whether proper heat shock preconditioning can reduce liver injury and accelerate liver repair after acute liver injury is worth study. So mice received heat shock preconditioning at 40°C for 10 minutes (min), 20 min or 30 min and recovered at room temperature for 8 hours (h) under normal feeding conditions. Then acute liver injury was induced in the heat shock-pretreated mice and unheated control mice by intraperitoneal (i.p.) injection of carbon tetrachloride (CCl4). Hematoxylin and eosin (H&E) staining, serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and the expression levels of heat shock protein 70 (HSP70), cytochrome P450 1A2 (CYP1A2) and proliferating cell nuclear antigen (PCNA) were detected in the unheated control mice and heat shock-pretreated mice after CCl4 administration. Our results showed that heat shock preconditioning at 40°C for 20 min remarkably improved the mice’s survival rate (P<0.05), lowered the levels of serum AST and ALT (P<0.05), induced HSP70 (P<0.01), CYP1A2 (P<0.01) and PCNA (P<0.05) expression, effectively reduced liver injury (P<0.05) and accelerated the liver repair (P<0.05) compared with heat shock preconditioning at 40°C for 10 min or 30 min in the mice after acute liver injury induced by CCl4 when compared with the control mice. Our results may be helpful in further investigation of heat shock pretreatment as a potential clinical approach to target liver injury PMID:24526809
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santra, Amal; Chowdhury, Abhijit; Ghatak, Subhadip
2007-04-15
Arsenicosis, caused by arsenic contamination of drinking water supplies, is a major public health problem in India and Bangladesh. Chronic liver disease, often with portal hypertension occurs in chronic arsenicosis, contributes to the morbidity and mortality. The early cellular events that initiate liver cell injury due to arsenicosis have not been studied. Our aim was to identify the possible mechanisms related to arsenic-induced liver injury in mice. Liver injury was induced in mice by arsenic treatment. The liver was used for mitochondrial oxidative stress, mitochondrial permeability transition (MPT). Evidence of apoptosis was sought by TUNEL test, caspase assay and histology.more » Pretreatment with N-acetyl-L-cysteine (NAC) was done to modulate hepatic GSH level. Arsenic treatment in mice caused liver injury associated with increased oxidative stress in liver mitochondria and alteration of MPT. Altered MPT facilitated cytochrome c release in the cytosol, activation of caspase 9 and caspase 3 activities and apoptotic cell death. Pretreatment of NAC to arsenic-treated mice abrogated all these alteration suggesting a glutathione (GSH)-dependent mechanism. Oxidative stress in mitochondria and inappropriate MPT are important in the pathogenesis of arsenic induced apoptotic liver cell injury. The phenomenon is GSH dependent and supplementation of NAC might have beneficial effects.« less
Methionine sulfoxide reductase A deficiency exacerbates acute liver injury induced by acetaminophen.
Singh, Mahendra Pratap; Kim, Ki Young; Kim, Hwa-Young
2017-02-26
Acetaminophen (APAP) overdose induces acute liver injury via enhanced oxidative stress and glutathione (GSH) depletion. Methionine sulfoxide reductase A (MsrA) acts as a reactive oxygen species scavenger by catalyzing the cyclic reduction of methionine-S-sulfoxide. Herein, we investigated the protective role of MsrA against APAP-induced liver damage using MsrA gene-deleted mice (MsrA -/- ). We found that MsrA -/- mice were more susceptible to APAP-induced acute liver injury than wild-type mice (MsrA +/+ ). The central lobule area of the MsrA -/- liver was more impaired with necrotic lesions. Serum alanine transaminase, aspartate transaminase, and lactate dehydrogenase levels were significantly higher in MsrA -/- than in MsrA +/+ mice after APAP challenge. Deletion of MsrA enhanced APAP-induced hepatic GSH depletion and oxidative stress, leading to increased susceptibility to APAP-induced liver injury in MsrA-deficient mice. APAP challenge increased Nrf2 activation more profoundly in MsrA -/- than in MsrA +/+ livers. Expression and nuclear accumulation of Nrf2 and its target gene expression were significantly elevated in MsrA -/- than in MsrA +/+ livers after APAP challenge. Taken together, our results demonstrate that MsrA protects the liver from APAP-induced toxicity. The data provided herein constitute the first in vivo evidence of the involvement of MsrA in hepatic function under APAP challenge. Copyright © 2017 Elsevier Inc. All rights reserved.
Yan, Bing; Cai, Xiujiang; Yao, Weifeng; Zhang, Li; Huang, Meiyan; Ding, Anwei
2012-05-01
To study the active ingredients in liver protection from Erzhi Wan (AIEP) on acute hepatic injury induced by carbon tetrachloride (CCl4) in mice. Sixty Kunming mice were randomly divided into six groups: the normal group, the model group, bifendate group (150 mg x kg(-1)), high AIEP group (19.8 g x kg(-1)), middle AIEP group (13.2 g x kg(-1)) and low AIEP group (6.6 g x kg(-1)). The treatment groups were orally administered once per day for 7 d separately, whereas the normal and model groups were orally administered with saline. Except normal rats, all the other rats were injected intraperitoneally CCl4 20 mL x kg(-1) once. The rats were sacrificed 16 h after CCl4 administration. Serum and liver samples were collected for analysis. The acute hepatic injury model was prepared by CCl4 injected intraperitoneally. Then, the therapeutic effects of AIEP on the model were evaluated by the activity determination of serum alanine aminotransferase and aspirate aminotransferase (ALT and AST), superoxide dismutase (SOD) and the content of malondialdehyde (MDA) in liver,and the hepatic pathohistological changes following the treatment. The activities of ALT and AST and the MDA content in liver was significantly increased and the activity of SOD was largely inhibited in the animals of modeling group. Following the treatment with AIEP, ALT and AST activities and MDA content were significantly reduced and SOD activity was obviously increased in the mice of treatment group. Furthermore, AIEP could ameliorate the hepatic pathological changes. AIEP have protective effects on acute hepatic injury induced by CCL4 in mice, and are the effect of the liver protecting active sites.
Murakami, Yusuke; Fukui, Ryutaro; Motoi, Yuji; Shibata, Takuma; Saitoh, Shin-Ichiroh; Sato, Ryota; Miyake, Kensuke
2017-03-07
Toll-like Receptor 9 (TLR9) is an innate immune receptor recognizing microbial DNA. TLR9 is also activated by self-derived DNA, such as mitochondrial DNA, in a variety of inflammatory diseases. We show here that TLR9 activation in vivo is controlled by an anti-TLR9 monoclonal Ab (mAb). A newly established mAb, named NaR9, clearly detects endogenous TLR9 expressed in primary immune cells. The mAb inhibited TLR9-dependent cytokine production in vitro by bone marrow-derived macrophages and conventional dendritic cells. Furthermore, NaR9 treatment rescued mice from fulminant hepatitis caused by administering the TLR9 ligand CpGB and D-(+)-galactosamine. The production of proinflammatory cytokines induced by CpGB and D-(+)-galactosamine was significantly impaired by the mAb. These results suggest that a mAb is a promising tool for therapeutic intervention in TLR9-dependent inflammatory diseases.
Wang, Zhiguo; Su, Bo; Fan, Sumei; Fei, Haixia; Zhao, Wei
2015-03-20
The long-term consumption of alcohol has been associated with multiple pathologies at all levels, such as alcoholism, chronic pancreatitis, malnutrition, alcoholic liver disease (ALD) and cancer. In the current study, we investigated the protective effect of oligomeric proanthocyanidins (OPC) against alcohol-induced liver steatosis and injury and the possible mechanisms using ethanol-induced chronic liver damage mouse models. The results showed that OPC significantly improved alcohol-induced dyslipidemia and alleviated liver steatosis by reducing levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), total triglyceride (TG), total cholesterol (TC), low-density cholesterol (LDL-c) and liver malondialdehyde (MDA), and increasing levels of serum high-density lipoprotein (HDL-c), liver superoxide dismutase (SOD). Further investigation indicated that OPC markedly decreased the expressions of lipid synthesis genes and inflammation genes such as sterol regulatory element-binding protein-1c (Srebp-1c), protein-2 (Srebp2), interleukin IL-1β, IL-6 and TNF-α. Furthermore, AML-12 cells line was used to investigate the possible mechanisms which indicated that OPC might alleviate liver steatosis and damage through AMP-activated protein kinase (AMPK) activation involving oxidative stress. In conclusion, our study demonstrated excellent protective effect of OPC against alcohol-induced liver steatosis and injury, which could a potential drug for the treatment of alcohol-induced liver injury in the future. Copyright © 2015 Elsevier Inc. All rights reserved.
Hepatotoxicity by Dietary Supplements: A Tabular Listing and Clinical Characteristics
García-Cortés, Miren; Robles-Díaz, Mercedes; Ortega-Alonso, Aida; Medina-Caliz, Inmaculada; Andrade, Raul J.
2016-01-01
Dietary supplements (DS) are extensively consumed worldwide despite unproven efficacy. The true incidence of DS-induced liver injury (DSILI) is unknown but is probably under-diagnosed due to the general belief of safety of these products. Reported cases of herbals and DS-induced liver injury are increasing worldwide. The aim of this manuscript is to report a tabular listing with a description of DS associated with hepatotoxicity as well as review the phenotype and severity of DSILI. Natural remedies related to hepatotoxicity can be divided into herbal product-induced liver injury and DS-induced liver injury. In this article, we describe different DS associated with liver injury, some of them manufactured DS containing several ingredients (Herbalife™ products, Hydroxycut™, LipoKinetix™, UCP-1 and OxyELITE™) while others have a single ingredient (green tea extract, linoleic acid, usnic acid, 1,3-Dimethylamylamine, vitamin A, Garcinia cambogia and ma huang). Additional DS containing some of the aforementioned ingredients implicated in liver injury are also covered. We have also included illicit androgenic anabolic steroids for bodybuilding in this work, as they are frequently sold under the denomination of DS despite being conventional drugs. PMID:27070596
Hepatotoxicity by Dietary Supplements: A Tabular Listing and Clinical Characteristics.
García-Cortés, Miren; Robles-Díaz, Mercedes; Ortega-Alonso, Aida; Medina-Caliz, Inmaculada; Andrade, Raul J
2016-04-09
Dietary supplements (DS) are extensively consumed worldwide despite unproven efficacy. The true incidence of DS-induced liver injury (DSILI) is unknown but is probably under-diagnosed due to the general belief of safety of these products. Reported cases of herbals and DS-induced liver injury are increasing worldwide. The aim of this manuscript is to report a tabular listing with a description of DS associated with hepatotoxicity as well as review the phenotype and severity of DSILI. Natural remedies related to hepatotoxicity can be divided into herbal product-induced liver injury and DS-induced liver injury. In this article, we describe different DS associated with liver injury, some of them manufactured DS containing several ingredients (Herbalife™ products, Hydroxycut™, LipoKinetix™, UCP-1 and OxyELITE™) while others have a single ingredient (green tea extract, linoleic acid, usnic acid, 1,3-Dimethylamylamine, vitamin A, Garcinia cambogia and ma huang). Additional DS containing some of the aforementioned ingredients implicated in liver injury are also covered. We have also included illicit androgenic anabolic steroids for bodybuilding in this work, as they are frequently sold under the denomination of DS despite being conventional drugs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Qi; Xu, Xi, E-mail: xuxi@njust.edu.cn; Yang,
Salecan, a water-soluble extracellular β-glucan produced by Agrobacterium sp. ZX09, has been reported to exhibit a wide range of biological effects. The aims of the present study were to investigate the protective effect of salecan against Concanavalin A (ConA)-induced hepatitis, a well-established animal model of immune-mediated liver injury, and to search for possible mechanisms. C57BL/6 mice were pretreated with salecan followed by ConA injection. Salecan treatment significantly reduced ConA-induced acute liver injury, and suppressed the expression and secretion of inflammatory cytokines including interferon (IFN)-γ, interleukin (IL)-6 and IL-1β in ConA-induced liver injury model. The high expression levels of chemokines andmore » adhesion molecules such as MIP-1α, MIP-1β, ICAM-1, MCP-1 and RANTES in the liver induced by ConA were also down-regulated after salecan treatment. Salecan inhibited the infiltration and activation of inflammatory cells, especially T cells, in the liver induced by ConA. Moreover, salecan reversed the metabolic profiles of ConA-treated mice towards the control group by partly recovering the metabolic perturbations induced by ConA. Our results suggest the preventive and therapeutic potential of salecan in immune-mediated hepatitis. - Highlights: • Salecan treatment significantly reduced ConA-induced liver injury. • Salecan suppressed the expression and secretion of inflammatory cytokines. • Salecan decreased the expression of chemokines and adhesion molecules in liver. • Salecan inhibited the infiltration and activation of T cells induced by ConA. • Salecan partly recovered the metabolic perturbations induced by ConA.« less
Xu, Shizan; Wu, Liwei; Zhang, Qinghui; Feng, Jiao; Li, Sainan; Li, Jingjing; Liu, Tong; Mo, Wenhui; Wang, Wenwen; Lu, Xiya; Yu, Qiang; Chen, Kan; Xia, Yujing; Lu, Jie; Xu, Ling; Zhou, Yingqun; Fan, Xiaoming; Guo, Chuanyong
2017-09-15
Propylene glycol alginate sodium sulfate (PSS), a sulfated polysaccharide possesses anti-inflammatory effects. Here, we investigated the effect of PSS on concanavalin A (Con A)-induced liver injury in mice and examined the underlying mechanisms. Balb/C mice were injected intravenously with Con A (25mg/kg) to generate a model of acute liver injury. PSS (25 or 50mg/kg) was injected intraperitoneally 1h before the Con A administration. The levels of serum liver enzymes, inflammatory cytokines, and other marker proteins were determined, and liver injury was assessed histopathologically 2, 8, and 24h after Con A injection. Pretreatment with PSS reduced the levels of serum liver enzymes, inflammatory cytokines such as tumor necrosis factor (TNF)-α and interleukin (IL)-1β, and attenuated histopathological damage in Con A-induced liver injury in mice. The effects of Con A were mediated by apoptosis and autophagy, as indicated by changes in protein and gene expression of related factors after Con A injection. PSS activated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) pathway and showed a protective function against apoptosis and autophagy. PSS ameliorated Con A-induced liver injury by downregulating inflammatory cytokines including TNF-α and IL-1β and regulating apoptosis and autophagy via the PI3K/Akt pathway. Copyright © 2017 Elsevier Inc. All rights reserved.
Jing, Jing; Teschke, Rolf
2017-01-01
Abstract Cases of suspected herb-induced liver injury (HILI) caused by herbal Traditional Chinese Medicines (TCMs) and of drug-induced liver injury (DILI) are commonly published in the scientific literature worldwide. As opposed to the multiplicity of botanical chemicals in herbal TCM products, which are often mixtures of several herbs, conventional Western drugs contain only a single synthetic chemical. It is therefore of interest to study how HILI by TCM and DILI compare with each other, and to what extent results from each liver injury type can be transferred to the other. China is among the few countries with a large population using synthetic Western drugs as well as herbal TCM. Therefore, China is well suited to studies of liver injury comparing drugs with TCM herbs. Despite some concordance, recent analyses of liver injury cases with verified causality, using the Roussel Uclaf Causality Assessment Method, revealed major differences in HILI caused by TCMs as compared to DILI with respect to the following features: HILI cases are less frequently observed as compared to DILI, have a smaller proportion of females and less unintentional rechallenge events, and present a higher rate of hepatocellular injury features. Since many results were obtained among Chinese residents who had access to and had used Western drugs and TCM herbs, such ethnic homogeneity supports the contention that the observed differences of HILI and DILI in the assessed population are well founded. PMID:29577033
Natural killer cells mediate severe liver injury in a murine model of halothane hepatitis.
Dugan, Christine M; Fullerton, Aaron M; Roth, Robert A; Ganey, Patricia E
2011-04-01
Severe halothane (HAL)-induced hepatotoxicity occurs in one in 6000-30,000 patients by an unknown mechanism. Female sex is a risk factor in humans and rodents. We tested the hypothesis that a sex difference in natural killer (NK) cell activity contributes to HAL-induced liver injury. HAL (15 mmol/kg, ip) treatment resulted in severe liver injury by 12 h in female, wild-type BALB/cJ mice, and the magnitude of liver injury varied with stage of the estrous cycle. Ovariectomized (OVX) mice developed only mild liver injury. Plasma interferon-gamma (IFN-γ) was elevated 10-fold in HAL-treated females compared with similarly treated male mice or with OVX female mice. IFN-γ knockout mice were resistant to severe HAL-induced liver injury. The deactivation of NK cells with anti-asialo GM1 treatment attenuated liver injury and the increase in plasma IFN-γ compared with immunoglobulin G-treated control mice. Mice with a mutated form of perforin, a protein involved in granule-mediated cytotoxicity, were protected from severe liver injury. Furthermore, HAL increased the activity of NK cells in vivo, as indicated by increased surface expression of CD69, an early activation marker. In response to HAL, NK cell receptor ligands on the surface of hepatocytes were expressed in a manner that can activate NK cells. These results confirm the sexual dimorphic hepatotoxic response to HAL in mice and suggest that IFN-γ and NK cells have essential roles in the development of severe HAL-induced hepatotoxicity.
Natural Killer Cells Mediate Severe Liver Injury in a Murine Model of Halothane Hepatitis
Dugan, Christine M.; Fullerton, Aaron M.; Roth, Robert A.; Ganey, Patricia E.
2011-01-01
Severe halothane (HAL)-induced hepatotoxicity occurs in one in 6000–30,000 patients by an unknown mechanism. Female sex is a risk factor in humans and rodents. We tested the hypothesis that a sex difference in natural killer (NK) cell activity contributes to HAL-induced liver injury. HAL (15 mmol/kg, ip) treatment resulted in severe liver injury by 12 h in female, wild-type BALB/cJ mice, and the magnitude of liver injury varied with stage of the estrous cycle. Ovariectomized (OVX) mice developed only mild liver injury. Plasma interferon-gamma (IFN-γ) was elevated 10-fold in HAL-treated females compared with similarly treated male mice or with OVX female mice. IFN-γ knockout mice were resistant to severe HAL-induced liver injury. The deactivation of NK cells with anti-asialo GM1 treatment attenuated liver injury and the increase in plasma IFN-γ compared with immunoglobulin G–treated control mice. Mice with a mutated form of perforin, a protein involved in granule-mediated cytotoxicity, were protected from severe liver injury. Furthermore, HAL increased the activity of NK cells in vivo, as indicated by increased surface expression of CD69, an early activation marker. In response to HAL, NK cell receptor ligands on the surface of hepatocytes were expressed in a manner that can activate NK cells. These results confirm the sexual dimorphic hepatotoxic response to HAL in mice and suggest that IFN-γ and NK cells have essential roles in the development of severe HAL-induced hepatotoxicity. PMID:21245496
Qu, Xiao-Yu; Tao, Li-Na; Zhang, Si-Xi; Sun, Jing-Meng; Niu, Jun-Qi; Ding, Yan-Hua; Song, Yan-Qing
2017-04-01
Dioscorea bulbifera L. (DB) is a traditional Chinese herb used in thyroid disease and cancer. However, the clinical use of DB remains a challenge due to its hepatotoxicity, which is caused, in part, by the presence of Diosbulbin B (DIOB), a toxin commonly found in DB extracts. As abnormal expression of hepatobiliary transporters plays an important role in drug-induced liver injury, we assessed the hepatotoxicity induced by DB and DIOB, and explored their impacts on hepatobiliary transporter expression levels. Following liquid chromatography-tandem mass analysis of the DIOB content of DB extract, male ICR mice were randomly orally administered DB or DIOB for 14days. Liver injury was assessed by histopathological and biochemical analysis of liver fuction. The levels of transporter protein and mRNA were determined by western blotting and real-time PCR. Liver function and histopathological analysis indicated that both DB and DIOB could induce liver injury in mice, and that DIOB might be the primary toxic compound in DB. Moreover, down-regulation of Mrp2 blocked the excretion of bilirubin, glutathione disulfide, and bile acids, leading to the accumulation of toxic substrates in the liver and a redox imbalance. We identified down-regulated expression of Mrp2 as potential factors linked to increased serum bilirubin levels and decreased levels of glutathione in the liver and increased liver injury severity. In summary, our study indicates that down-regulation of Mrp2 represents the primary mechanism of DB- and DIOB-induced hepatotoxicity, and provides insight into novel therapies that could be used to prevent DB- and DIOB-mediated liver injury. Copyright © 2017 Elsevier B.V. All rights reserved.
Shen, Yi; Feng, Zi-Ming; Jiang, Jian-Shuang; Yang, Ya-Nan; Zhang, Pei-Cheng
2013-12-27
Twelve new dibenzoyl derivatives sophodibenzoside A-L (1-12) and five new isoflavone glycosides (13-17) have been isolated from the roots of Sophora flavescens together with eight known compounds (18-25). Notably, the use of acetic acid-d4 was required to enable identification of the dibenzoyl glycoside structures. Compounds 1, 2, 13, 14, and 19 exhibited weak inhibition of the cytotoxic effect of d-galactosamine on the human hepatic cell line HL-7702.
Kim, Sou Hyun; Oh, Dal-Seok; Oh, Ji Youn; Son, Tae Gen; Yuk, Dong Yeon; Jung, Young-Suk
2016-04-01
Silymarin is a flavonoid extracted from the milk thistle Silybum marianum. It has been reported to prevent liver injuries induced by various chemicals or toxins. Our recent study suggested that silymarin induces hepatic synthesis of glutathione by increasing cysteine availability, which may consequently contribute to increased antioxidant capacity of the liver. In the present study, we investigated the effects of silymarin on acute liver injury induced by restraint stress. Silymarin (100 mg/kg) was orally administered to BALB/c mice every 12 h (3 times in total). After the last dose, mice were subjected to restraint stress for 6 h, and serum levels of aspartate and alanine aminotransferases, and hepatic levels of lipid peroxidation were determined. Hepatic levels of sulfur-containing metabolites such as methionine, S-adenosylmethionine, cysteine, and glutathione were also measured. The level of pro-inflammatory mediators in both liver and serum was determined. To study the mechanism of the effects of silymarin, we assessed Jun N-terminal kinase (JNK) activation and apoptotic signaling. Restraint stress induced severe oxidative stress and increased mRNA levels of pro-inflammatory mediators; both effects of restraint stress were significantly inhibited by silymarin. Moreover, administration of silymarin significantly prevented acute liver injury induced by restraint stress by blocking JNK activation and subsequently apoptotic signaling. In conclusion, these results suggest that the inhibition of restraint stress-induced liver injury by silymarin is due at least in part to its anti-oxidant activity and its ability to suppress the inflammatory response.
Shih, Shou-Chuan; Ho, Tsung-Chuan; Chen, Show-Li; Tsao, Yeou-Ping
2016-01-01
Fibrogenesis is induced by repeated injury to the liver and reactive regeneration and leads eventually to liver cirrhosis. Pigment epithelium derived factor (PEDF) has been shown to prevent liver fibrosis induced by carbon tetrachloride (CCl4). A 44 amino acid domain of PEDF (44-mer) was found to have a protective effect against various insults to several cell types. In this study, we investigated the capability of synthetic 44-mer to protect against liver injury in mice and in primary cultured hepatocytes. Acute liver injury, induced by CCl4, was evident from histological changes, such as cell necrosis, inflammation and apoptosis, and a concomitant reduction of glutathione (GSH) and GSH redox enzyme activities in the liver. Intraperitoneal injection of the 44-mer into CCl4-treated mice abolished the induction of AST and ALT and markedly reduced histological signs of liver injury. The 44-mer treatment can reduce hepatic oxidative stress as evident from lower levels of lipid hydroperoxide, and higher levels of GSH. CCl4 caused a reduction of Bcl-xL, PEDF and PPARγ, which was markedly restored by the 44-mer treatment. Consequently, the 44-mer suppressed liver fibrosis induced by repeated CCl4 injury. Furthermore, our observations in primary culture of rat hepatocytes showed that PEDF and the 44-mer protected primary rat hepatocytes against apoptosis induced by serum deprivation and TGF-β1. PEDF/44-mer induced cell protective STAT3 phosphorylation. Pharmacological STAT3 inhibition prevented the antiapoptotic action of PEDF/44-mer. Among several PEDF receptor candidates that may be responsible for hepatocyte protection, we demonstrated that PNPLA2 was essential for PEDF/44-mer-mediated STAT3 phosphorylation and antiapoptotic activity by using siRNA to selectively knockdown PNPLA2. In conclusion, the PEDF 44-mer protects hepatocytes from single and repeated CCl4 injury. This protective effect may stem from strengthening the counter oxidative stress capacity and induction of hepatoprotective factors. PMID:27384427
Kleiner, David E; Chalasani, Naga P; Lee, William M; Fontana, Robert J; Bonkovsky, Herbert L; Watkins, Paul B; Hayashi, Paul H; Davern, Timothy J; Navarro, Victor; Reddy, Rajender; Talwalkar, Jayant A; Stolz, Andrew; Gu, Jiezhun; Barnhart, Huiman; Hoofnagle, Jay H
2014-01-01
Drug-induced liver injury (DILI) is considered to be a diagnosis of exclusion. Liver biopsy may contribute to diagnostic accuracy, but the histological features of DILI and their relationship to biochemical parameters and outcomes are not well defined. We have classified the pathological pattern of liver injury and systematically evaluated histological changes in liver biopsies obtained from 249 patients with suspected DILI enrolled in the prospective, observational study conducted by the Drug Induced Liver Injury Network. Histological features were analyzed for their frequency within different clinical phenotypes of liver injury and to identify associations between clinical and laboratory findings and histological features. The most common histological patterns were acute (21%) and chronic hepatitis (14%), acute (9%) and chronic cholestasis (10%), and cholestatic hepatitis (29%). Liver histology from 128 patients presenting with hepatocellular injury had more severe inflammation, necrosis, and apoptosis and more frequently demonstrated lobular disarray, rosette formation, and hemorrhage than those with cholestasis. Conversely, histology of the 73 patients with cholestatic injury more often demonstrated bile plugs and duct paucity. Severe or fatal hepatic injury in 46 patients was associated with higher degrees of necrosis, fibrosis stage, microvesicular steatosis, and ductular reaction among other findings, whereas eosinophils and granulomas were found more often in those with milder injury. Conclusion: We describe an approach for evaluating liver histology in DILI and demonstrate numerous associations between pathological findings and clinical presentations that may serve as a foundation for future studies correlating DILI pathology with its causality and outcome. (Hepatology 2014;59:661–670) PMID:24037963
Ferulic acid prevents liver injury and increases the anti-tumor effect of diosbulbin B in vivo.
Wang, Jun-ming; Sheng, Yu-chen; Ji, Li-li; Wang, Zheng-tao
2014-06-01
The present study is designed to investigate the protection by ferulic acid against the hepatotoxicity induced by diosbulbin B and its possible mechanism, and further observe whether ferulic acid augments diosbulbin B-induced anti-tumor activity. The results show that ferulic acid decreases diosbulbin B-increased serum alanine transaminase/aspartate transaminase (ALT/AST) levels. Ferulic acid also decreases lipid peroxide (LPO) levels which are elevated in diosbulbin B-treated mice. Histological evaluation of the liver demonstrates hydropic degeneration in diosbulbin B-treated mice, while ferulic acid reverses this injury. Moreover, the activities of copper- and zinc-containing superoxide dismutase (CuZn-SOD) and catalase (CAT) are decreased in the livers of diosbulbin B-treated mice, while ferulic acid reverses these decreases. Further results demonstrate that the mRNA expressions of CuZn-SOD and CAT in diosbulbin B-treated mouse liver are significantly decreased, while ferulic acid prevents this decrease. In addition, ferulic acid also augments diosbulbin B-induced tumor growth inhibition compared with diosbulbin B alone. Taken together, the present study shows that ferulic acid prevents diosbulbin B-induced liver injury via ameliorating diosbulbin B-induced liver oxidative stress injury and augments diosbulbin B-induced anti-tumor activity.
Serum CXCL10, CXCL11, CXCL12, and CXCL14 chemokine patterns in patients with acute liver injury.
Chalin, Arnaud; Lefevre, Benjamin; Devisme, Christelle; Pronier, Charlotte; Carrière, Virginie; Thibault, Vincent; Amiot, Laurence; Samson, Michel
2018-06-04
The chemokines CXCL10 (interferon ϒ-inducible protein 10 [IP-10]), CXCL11 (Human interferon inducible T cell alpha chemokine [I-TAC]), CXCL12 (stromal cell derived factor 1 [SDF-1]), and CXCL14 (breast and kidney-expressed chemokine [BRAK]) are involved in cell recruitment, migration, activation, and homing in liver diseases and have been shown to be upregulated during acute liver injury in animal models. However, their expression in patients with acute liver injury is unknown. Here, we aimed to provide evidence of the presence of circulating CXCL10, CXCL11, CXCL12, and CXCL14 during human acute liver injury to propose new inflammation biomarkers for acute liver injury. We analyzed the serum concentration of the studied chemokines in healthy donors (n = 36) and patients (n = 163) with acute liver injuries of various etiologies. Serum CXCL10, CXCL11 and CXCL12 levels were elevated in all the studied groups except biliary diseases for CXCL11. CXCL14 was associated with only acute viral infection and vascular etiologies. The strongest correlation was found between the IFN-inducible studied chemokines (CXCL10 and CXCL11) in all patients and more specifically in the acute viral infection group. These data provide evidence for the presence of circulating CXCL10, CXCL11, CXCL12, and CXCL14 during acute liver injury and are consistent with data obtained in animal models. CXCL10, CXCL11 and CXCL12 were the most highly represented and CXCL14 the least represented chemokines. Differential expression patterns were obtained depending on acute liver injury etiology, suggesting the potential use of these chemokines as acute liver injury biomarkers. Copyright © 2018. Published by Elsevier Ltd.
Jia, Rui; Cao, Liping; Du, Jinliang; Xu, Pao; Jeney, Galina; Yin, Guojun
2013-03-01
Silymarin, a mixture of bioactive flavonolignans from the milk thistle (Silybum marianum), is traditionally used in herbal medicine to defend against various hepatotoxic agents. The aim of the present study was to evaluate the protective effect of silymarin against carbon tetrachloride (CCl4)-induced liver injury in fish. Common carp, with an average initial weight of 17.0 ± 1.1 g, were fed diet containing four doses of silymarin (0, 0.1, 0.5, and 1 g/kg diet) for 60 d. Fish were then given an intraperitoneal injection of CCl4 (30% in arachis oil) at a dose of 0.5 ml/kg body weight. At 72 h after CCl4 injection, blood and liver samples were collected for the analyses of serum biochemical parameters, liver index, peroxidation product, glutathione, and antioxidant enzyme activities. The results showed that administration of silymarin at 0.5 and 1 g/kg diet for 60 d prior to CCl4 intoxication significantly reduced the elevated activities of glutamate pyruvate transaminase, glutamate oxalate transaminase, lactate dehydrogenase (LDH), and increased the reduced levels of total protein and albumin in the serum. The reduced levels of liver index, superoxide dismutase, glutathione peroxidase, catalase, glutathione, and total antioxidant capacity were markedly increased, and malondialdehyde formation was significantly restrained in the liver. However, these parameters, except LDH, were not significantly changed in fish fed with silymarin at 0.1 g/kg diet. Based on the results, it can be concluded that silymarin has protective effect against CCl4-induced hepatotoxicity in fish. It is suggested that silymarin may be used as a hepatoprotective agent to prevent liver diseases in fish.
Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, C. David; Bajt, Mary Lynn; Sharpe, Matthew R.
2014-03-01
Following acetaminophen (APAP) overdose there is an inflammatory response triggered by the release of cellular contents from necrotic hepatocytes into the systemic circulation which initiates the recruitment of neutrophils into the liver. It has been demonstrated that neutrophils do not contribute to APAP-induced liver injury, but their role and the role of NADPH oxidase in injury resolution are controversial. C57BL/6 mice were subjected to APAP overdose and neutrophil activation status was determined during liver injury and liver regeneration. Additionally, human APAP overdose patients (ALT: > 800 U/L) had serial blood draws during the injury and recovery phases for the determinationmore » of neutrophil activation. Neutrophils in the peripheral blood of mice showed an increasing activation status (CD11b expression and ROS priming) during and after the peak of injury but returned to baseline levels prior to complete injury resolution. Hepatic sequestered neutrophils showed an increased and sustained CD11b expression, but no ROS priming was observed. Confirming that NADPH oxidase is not critical to injury resolution, gp91{sup phox}−/− mice following APAP overdose displayed no alteration in injury resolution. Peripheral blood from APAP overdose patients also showed increased neutrophil activation status after the peak of liver injury and remained elevated until discharge from the hospital. In mice and humans, markers of activation, like ROS priming, were increased and sustained well after active liver injury had subsided. The similar findings between surviving patients and mice indicate that neutrophil activation may be a critical event for host defense or injury resolution following APAP overdose, but not a contributing factor to APAP-induced injury. - Highlights: • Neutrophil (PMN) function increases during liver repair after acetaminophen overdose. • Liver repair after acetaminophen (APAP)-overdose is not dependent on NADPH oxidase. • Human PMNs do not appear to contribute to acetaminophen (APAP)-induced injury. • Human PMNs have enhanced activation during the resolution of liver injury after APAP.« less
Hepatoprotective effect of Bacoside-A, a major constituent of Bacopa monniera Linn.
Sumathi, T; Nongbri, A
2008-10-01
Bacoside-A (B-A) was evaluated for its hepatoprotective activity against d-GalN induced liver injury in rats. B-A is a major constituent isolated from the plant Bacopa monniera Linn. B-A (10mg/kg of body weight) was administered orally once daily for 21 days and then d-GalN (300 mg/kg of body weight) was injected on 21st day after final administration of B-A. B-A reduces the elevated levels of serum alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), gamma-glutamyl transferase (gamma-GT), lactate dehydrogenase (LDH), 5'nucleotidase (5'ND). In addition B-A also significantly restored towards normalization of the decreased levels of Vit-C, and Vit-E induced by d-GalN both in liver and plasma. These results suggest that B-A has hepatoprotective effect against d-GalN induced hepatotoxicity in rats.
A Novel Resolvin-Based Strategy for Limiting Acetaminophen Hepatotoxicity
Patel, Suraj J; Luther, Jay; Bohr, Stefan; Iracheta-Vellve, Arvin; Li, Matthew; King, Kevin R; Chung, Raymond T; Yarmush, Martin L
2016-01-01
Objectives: Acetaminophen (APAP)-induced hepatotoxicity is a major cause of morbidity and mortality. The current pharmacologic treatment for APAP hepatotoxicity, N-acetyl cysteine (NAC), targets the initial metabolite-driven injury but does not directly affect the host inflammatory response. Because of this, NAC is less effective if given at later stages in the disease course. Resolvins, a novel group of lipid mediators shown to attenuate host inflammation, may be a therapeutic intervention for APAP hepatotoxicity. Methods: The temporal patterns of liver injury and neutrophil activation were investigated in a murine model of APAP hepatotoxicity. In addition, the effect of neutrophil depletion and resolvin administration on the severity of liver injury induced by APAP was studied. In vitro studies to investigate the mechanism of resolvin effect on hepatocyte injury and neutrophil adhesion were performed. Results: We demonstrate that hepatic neutrophil activation occurs secondary to the initial liver injury induced directly by APAP. We also show that neutrophil depletion attenuates APAP-induced liver injury, and administration of resolvins hours after APAP challenge not only attenuates liver injury, but also extends the therapeutic window eightfold compared to NAC. Mechanistic in vitro analysis highlights resolvins' ability to inhibit neutrophil attachment to endothelial cells in the presence of the reactive metabolite of APAP. Conclusions: This study highlights the ability of resolvins to protect against APAP-induced liver injury and extend the therapeutic window compared to NAC. Although the mechanism for resolvin-mediated hepatoprotection is likely multifactorial, inhibition of neutrophil infiltration and activation appears to play an important role. PMID:26986653
Evaluation of the 13C-octanoate breath test as a surrogate marker of liver damage in animal models.
Shalev, Tamar; Aeed, Hussein; Sorin, Vladimir; Shahmurov, Mark; Didkovsky, Elena; Ilan, Yaron; Avni, Yona; Shirin, Haim
2010-06-01
Octanoate (also known as sodium octanoate), a medium-chain fatty acid metabolized in the liver, is a potential substrate for non-invasive breath testing of hepatic mitochondrial beta-oxidation. We evaluated the 13C-octanoate breath test (OBT) for assessing injury in acute hepatitis and two rat models of liver cirrhosis, first testing octanoate absorption (per os or intraperitoneally (i.p.)) in normal rats. We then induced acute hepatitis with thioacetamide (300 mg/kg/i.p., 24-h intervals). Liver injury end points were serum aminotransferase levels and 13C-OBT (24 and 48 h following initial injection). Thioacetamide (200 mg/kg/i.p., twice per week, 12 weeks) was used to induce liver cirrhosis. OBT and liver histological assessment were performed every 4 weeks. Bile duct ligation (BDL) was used to induce cholestatic liver injury. We completed breath tests with 13C-OBT and 13C-methacetin (MBID), liver biochemistry, and liver histology in BDL and sham-operated rats (baseline, 6, 14, 20 days post-BDL). Octanoate absorbs well by either route. Peak amplitudes and cumulative percentage dose recovered at 30 and 60 min (CPDR30/60), but not peak time, correlated with acute hepatitis. Fibrosis stage 3 at week 8 significantly correlated with each OBT parameter. Cholestatic liver injury (serum bilirubin, ALP, gamma-GT, liver histology) was associated with significant suppression of the maximal peak values and CPDR30/60, respectively (P<0.05),using MBID but not 13C-octanoate. OBT is sensitive for potentially evaluating liver function in rat models of acute hepatitis and thioacetamide-induced liver cirrhosis but not in cholestatic liver injury. The MBID test may be better for evaluation of cholestatic liver disease in this model.
Li, Ruidong; Wang, Yaxin; Zhao, Ende; Wu, Ke; Li, Wei; Shi, Liang; Wang, Di; Xie, Gengchen; Yin, Yuping; Deng, Meizhou; Zhang, Peng; Tao, Kaixiong
2016-01-01
Maresin 1 (MaR 1) was recently reported to have protective properties in several different animal models of acute inflammation by inhibiting inflammatory response. However, its function in acute liver injury is still unknown. To address this question, we induced liver injury in BALB/c mice with intraperitoneal injection of carbon tetrachloride with or without treatment of MaR 1. Our data showed that MaR 1 attenuated hepatic injury, oxidative stress, and lipid peroxidation induced by carbon tetrachloride, as evidenced by increased thiobarbituric acid reactive substances and reactive oxygen species levels were inhibited by treatment of MaR 1. Furthermore, MaR 1 increased activities of antioxidative mediators in carbon tetrachloride-treated mice liver. MaR 1 decreased indices of inflammatory mediators such as tumor necrosis factor-α, interleukin-6, interleukin-1β, monocyte chemotactic protein 1, myeloperoxidase, cyclooxygenase-2, and inducible nitric oxide synthase. Administration of MaR 1 inhibited activation of nuclear factor kappa B (NF-κb) and mitogen-activated protein kinases (MAPKs) in the liver of CCl4 treated mice. In conclusion, these results suggested the antioxidative, anti-inflammatory properties of MaR 1 in CCl4 induced liver injury. The possible mechanism is partly implicated in its abilities to inhibit ROS generation and activation of NF-κb and MAPK pathway. PMID:26881046
Teschke, Rolf; Wolff, Albrecht; Frenzel, Christian; Schwarzenboeck, Alexander; Schulze, Johannes; Eickhoff, Axel
2014-01-01
Causality assessment of suspected drug induced liver injury (DILI) and herb induced liver injury (HILI) is hampered by the lack of a standardized approach to be used by attending physicians and at various subsequent evaluating levels. The aim of this review was to analyze the suitability of the liver specific Council for International Organizations of Medical Sciences (CIOMS) scale as a standard tool for causality assessment in DILI and HILI cases. PubMed database was searched for the following terms: drug induced liver injury; herb induced liver injury; DILI causality assessment; and HILI causality assessment. The strength of the CIOMS lies in its potential as a standardized scale for DILI and HILI causality assessment. Other advantages include its liver specificity and its validation for hepatotoxicity with excellent sensitivity, specificity and predictive validity, based on cases with a positive reexposure test. This scale allows prospective collection of all relevant data required for a valid causality assessment. It does not require expert knowledge in hepatotoxicity and its results may subsequently be refined. Weaknesses of the CIOMS scale include the limited exclusion of alternative causes and qualitatively graded risk factors. In conclusion, CIOMS appears to be suitable as a standard scale for attending physicians, regulatory agencies, expert panels and other scientists to provide a standardized, reproducible causality assessment in suspected DILI and HILI cases, applicable primarily at all assessing levels involved. PMID:24653791
Villapol, Sonia; Kryndushkin, Dmitry; Balarezo, Maria G.; Campbell, Ashley M.; Saavedra, Juan M.; Shewmaker, Frank P.; Symes, Aviva J.
2016-01-01
Traumatic brain injury affects the whole body in addition to the direct impact on the brain. The systemic response to trauma is associated with the hepatic acute-phase response. To further characterize this response, we performed controlled cortical impact injury on male mice and determined the expression of serum amyloid A1 (SAA1), an apolipoprotein, induced at the early stages of the acute-phase response in liver and plasma. After cortical impact injury, induction of SAA1 was detectable in plasma at 6 hours post-injury and in liver at 1 day post-injury, followed by gradual diminution over time. In the liver, cortical impact injury increased neutrophil and macrophage infiltration, apoptosis, and expression of mRNA encoding the chemokines CXCL1 and CXCL10. An increase in angiotensin II AT1 receptor mRNA at 3 days post-injury was also observed. Administration of the AT1 receptor antagonist telmisartan 1 hour post-injury significantly decreased liver SAA1 levels and CXCL10 mRNA expression, but did not affect CXCL1 expression or the number of apoptotic cells or infiltrating leukocytes. To our knowledge, this is the first study to demonstrate that SAA1 is induced in the liver after traumatic brain injury and that telmisartan prevents this response. Elucidating the molecular pathogenesis of the liver after brain injury will assist in understanding the efficacy of therapeutic approaches to brain injury. PMID:26435412
Li, Xiaowei; Zhang, Fusheng; Wang, Dongqin; Li, Zhenyu; Qin, Xuemei; Du, Guanhua
2014-02-01
Carbon tetrachloride (CCl4) is commonly used as a model toxicant to induce chronic and acute liver injuries. In this study, metabolite profiling and gene expression analysis of liver tissues were performed by nuclear magnetic resonance and quantitative real-time polymerase chain reaction to understand the responses of acute liver injury system in rats to CCl4. Acute liver injury was successfully induced by CCl4 as revealed by histopathological results and significant increase in alanine aminotransferase and serum aspartate aminotransferase. We found that CCl4 caused a significant increase in lactate, succinate, citrate, dimethylgycine, choline and taurine. CCl4 also caused a decrease in some of the amino acids such as leucine/isoleucine, glutamine/glutathione and betaine. Gene function analysis revealed that 10 relevant enzyme genes exhibited changes in expressions in the acute liver injury model. In conclusion, the metabolic pathways, including tricarboxylic acid cycle, antioxidant defense systems, fatty acid β-oxidation, glycolysis and choline and mevalonate metabolisms were impaired in CCl4-treated rat livers. These findings provided an overview of the biochemical consequences of CCl4 exposure and comprehensive insights into the metabolic aspects of CCl4-induced hepatotoxicity in rats. These findings may also provide reference of the mechanisms of acute liver injury that could be used to study the changes in functional genes and metabolites. Copyright © 2013 Elsevier B.V. All rights reserved.
Liver Injury from Herbal, Dietary, and Weight Loss Supplements: a Review
Zheng, Elizabeth X.; Navarro, Victor J.
2015-01-01
Herbal and dietary supplement usage has increased steadily over the past several years in the United States. Among the non-bodybuilding herbal and dietary supplements, weight loss supplements were among the most common type of HDS implicated in liver injury. While drug induced liver injury is rare, its consequences are significant and on the rise. The purpose of this review is to highlight case reports of weight loss products such as Hydroxycut and OxyElite Pro as one form of HDS that have hepatotoxic potential and to characterize its clinical effects as well as pattern of liver injury. We also propose future strategies in the identification and study of potentially hepatotoxic compounds in an effort to outline a diagnostic approach for identifying any drug induced liver injury. PMID:26357638
Liver Injury from Herbal, Dietary, and Weight Loss Supplements: a Review.
Zheng, Elizabeth X; Navarro, Victor J
2015-06-28
Herbal and dietary supplement usage has increased steadily over the past several years in the United States. Among the non-bodybuilding herbal and dietary supplements, weight loss supplements were among the most common type of HDS implicated in liver injury. While drug induced liver injury is rare, its consequences are significant and on the rise. The purpose of this review is to highlight case reports of weight loss products such as Hydroxycut and OxyElite Pro as one form of HDS that have hepatotoxic potential and to characterize its clinical effects as well as pattern of liver injury. We also propose future strategies in the identification and study of potentially hepatotoxic compounds in an effort to outline a diagnostic approach for identifying any drug induced liver injury.
MicroRNA-mediated Th2 bias in methimazole-induced acute liver injury in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uematsu, Yasuaki, E-mail: yasuaki-uematsu@ds-pharm
MicroRNA (miRNA) is a class of small non-coding RNAs containing approximately 20 nucleotides that negatively regulate target gene expression. Little is known about the role of individual miRNAs and their targets in immune- and inflammation-related responses in drug-induced liver injury. In the present study, involvement of miRNAs in the T helper (Th) 2-type immune response was investigated using a methimazole (MTZ)-induced liver injury mouse model. Co-administration of L-buthionine-S,R-sulfoximine and MTZ induced acute hepatocellular necrosis and elevated plasma levels of alanine aminotransferase (ALT) from 4 h onward in female Balb/c mice. The hepatic mRNA expression of Th2 promotive factors was significantlymore » increased concomitantly with plasma ALT levels. In contrast, the hepatic mRNA expression of Th2 suppressive factors was significantly decreased during the early phase of liver injury. Comprehensive profiling of hepatic miRNA expression was analyzed before the onset of MTZ-induced liver injury. Using in silico prediction of miRNAs that possibly regulate Th2-related genes and subsequent quantification, we identified up-regulation of expression of miR-29b-1-5p and miR-449a-5p. Among targets of these miRNAs, down-regulation of Th2 suppressive transcription factors, such as SRY-related HMG-box 4 (SOX4) and lymphoid enhancer factor-1 (LEF1), were observed from the early phase of liver injury. In conclusion, negative regulation of the expression of SOX4 by miR-29b-1-5p and that of LEF1 by miR-449a-5p is suggested to play an important role in the development of Th2 bias in MTZ-induced liver injury. - Highlights: • Methimazole induced hepatic Th2 bias in the pathogenesis of liver injury in mice. • Rapid down-regulation of SOX4 and LEF1 may initiate and/or maintain hepatic Th2 bias. • Negative regulation of SOX4 by miR-29b-1-5p and LEF1 by miR-449a-5p was suggested.« less
Methionine sulfoxide reductase A deficiency exacerbates acute liver injury induced by acetaminophen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Mahendra Pratap; School of Bioengineering and Biosciences, Department of Zoology, Lovely Professional University, Phagwara, 144411, Punjab; Kim, Ki Young
Acetaminophen (APAP) overdose induces acute liver injury via enhanced oxidative stress and glutathione (GSH) depletion. Methionine sulfoxide reductase A (MsrA) acts as a reactive oxygen species scavenger by catalyzing the cyclic reduction of methionine-S-sulfoxide. Herein, we investigated the protective role of MsrA against APAP-induced liver damage using MsrA gene-deleted mice (MsrA{sup −/−}). We found that MsrA{sup −/−} mice were more susceptible to APAP-induced acute liver injury than wild-type mice (MsrA{sup +/+}). The central lobule area of the MsrA{sup −/−} liver was more impaired with necrotic lesions. Serum alanine transaminase, aspartate transaminase, and lactate dehydrogenase levels were significantly higher in MsrA{supmore » −/−} than in MsrA{sup +/+} mice after APAP challenge. Deletion of MsrA enhanced APAP-induced hepatic GSH depletion and oxidative stress, leading to increased susceptibility to APAP-induced liver injury in MsrA-deficient mice. APAP challenge increased Nrf2 activation more profoundly in MsrA{sup −/−} than in MsrA{sup +/+} livers. Expression and nuclear accumulation of Nrf2 and its target gene expression were significantly elevated in MsrA{sup −/−} than in MsrA{sup +/+} livers after APAP challenge. Taken together, our results demonstrate that MsrA protects the liver from APAP-induced toxicity. The data provided herein constitute the first in vivo evidence of the involvement of MsrA in hepatic function under APAP challenge. - Highlights: • MsrA deficiency increases APAP-induced liver damage. • MsrA deletion enhances APAP-induced hepatic GSH depletion and oxidative stress. • MsrA deficiency induces more profound activation of Nrf2 in response to APAP. • MsrA protects the liver from APAP-induced toxicity.« less
Gu, Qiaoli; Guan, Honggeng; Shi, Qin; Zhang, Yanyun; Yang, Huilin
2015-02-01
Curcumin is a phenolic product isolated from the rhizome of Curcuma longa and has protective effects on inflammatory diseases. Here we investigated the protective effect of curcumin in acute Propionibacterium acnes (P. acnes)-induced inflammatory liver injury. C57BL/6 mice were primed with P. acnes followed by LPS challenge to induce fulminant hepatitis. Curcumin or vehicle control was administered perorally by gavage once daily starting 2days before P. acnes priming. We found that curcumin significantly improved mouse mortality. Then, to investigate the underlying mechanisms of curcumin in this acute inflammatory liver injury model, we primed C57BL/6 mice with P. acnes only. We found that curcumin treatment attenuated P. acnes-induced liver injury as evidenced by decreased production of ALT. In addition, curcumin treatment reduced the production of proinflammatory cytokines such as TNF-α and IFN-γ, accompanied by reduced hepatocyte apoptosis. Furthermore, curcumin treatment significantly reduced HMGB1 cytoplasmic translocation and expression by down-regulating acetylation of lysine. Taken together, our results suggest that curcumin protects mice from P. acnes-induced liver injury through reduction of HMGB1 cytoplasmic translocation and expression. Copyright © 2014 Elsevier B.V. All rights reserved.
Xu, Lie-Qiang; Xie, You-Liang; Gui, Shu-Hua; Zhang, Xie; Mo, Zhi-Zhun; Sun, Chao-Yue; Li, Cai-Lan; Luo, Dan-Dan; Zhang, Zhen-Biao; Su, Zi-Ren; Xie, Jian-Hui
2016-11-09
Accumulating evidence has shown that chronic injection of d-galactose (d-gal) can mimic natural aging, with accompanying liver and brain injury. Oxidative stress and apoptosis play a vital role in the aging process. In this study, the antioxidant ability of polydatin (PD) was investigated using four established in vitro systems. An in vivo study was also conducted to investigate the possible protective effect of PD on d-gal-induced liver and brain damage. The results showed that PD had remarkable in vitro free radical scavenging activity on 2,2-diphenyl-1-picryl-hydrazyl (DPPH˙), 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) (ABTS + ˙) radical ions, and hydroxyl and superoxide anions. Results in vivo indicated that, in a group treated with d-gal plus PD, PD remarkably decreased the depression of body weight and organ indexes, reduced the levels of the serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and alleviated alterations in liver and brain histopathology. PD also significantly decreased the level of MDA and elevated SOD, GSH-Px, CAT activity and T-AOC levels in the liver and brain. In addition, the levels of inflammatory mediators, such as TNF-α, IL-1β and IL-6 in serum were markedly reduced after PD treatment. Western blotting results revealed that PD treatment noticeably attenuated the d-gal-induced elevation of Bcl-2/Bax ratio and caspase-3 protein expression in liver and brain. Overall, our findings indicate that PD treatment could effectively attenuate d-gal-induced liver and brain damage, and the mechanism might be associated with decreasing the oxidative stress, inflammation and apoptosis caused by d-gal. PD holds good potential for further development into a promising pharmaceutical candidate for the treatment of age-associated diseases.
Protective Effects of Lemon Juice on Alcohol-Induced Liver Injury in Mice
Zhang, Yu-Jie; Xu, Dong-Ping; Wang, Fang; Zhou, Yue; Zheng, Jie; Li, Ya; Zhang, Jiao-Jiao
2017-01-01
Chronic excessive alcohol consumption (more than 40–80 g/day for males and more than 20–40 g/day for females) could induce serious liver injury. In this study, effects of lemon juice on chronic alcohol-induced liver injury in mice were evaluated. The serum biochemical profiles and hepatic lipid peroxidation levels, triacylglycerol (TG) contents, antioxidant enzyme activities, and histopathological changes were examined for evaluating the hepatoprotective effects of lemon juice in mice. In addition, the in vitro antioxidant capacities of lemon juice were determined. The results showed that lemon juice significantly inhibited alcohol-induced increase of alanine transaminase (ALT), aspartate transaminase (AST), hepatic TG, and lipid peroxidation levels in a dose-dependent manner. Histopathological changes induced by alcohol were also remarkably improved by lemon juice treatment. These findings suggest that lemon juice has protective effects on alcohol-induced liver injury in mice. The protective effects might be related to the antioxidant capacity of lemon juice because lemon juice showed in vitro antioxidant capacity. PMID:28567423
Protective Effects of Lemon Juice on Alcohol-Induced Liver Injury in Mice.
Zhou, Tong; Zhang, Yu-Jie; Xu, Dong-Ping; Wang, Fang; Zhou, Yue; Zheng, Jie; Li, Ya; Zhang, Jiao-Jiao; Li, Hua-Bin
2017-01-01
Chronic excessive alcohol consumption (more than 40-80 g/day for males and more than 20-40 g/day for females) could induce serious liver injury. In this study, effects of lemon juice on chronic alcohol-induced liver injury in mice were evaluated. The serum biochemical profiles and hepatic lipid peroxidation levels, triacylglycerol (TG) contents, antioxidant enzyme activities, and histopathological changes were examined for evaluating the hepatoprotective effects of lemon juice in mice. In addition, the in vitro antioxidant capacities of lemon juice were determined. The results showed that lemon juice significantly inhibited alcohol-induced increase of alanine transaminase (ALT), aspartate transaminase (AST), hepatic TG, and lipid peroxidation levels in a dose-dependent manner. Histopathological changes induced by alcohol were also remarkably improved by lemon juice treatment. These findings suggest that lemon juice has protective effects on alcohol-induced liver injury in mice. The protective effects might be related to the antioxidant capacity of lemon juice because lemon juice showed in vitro antioxidant capacity.
Pontes, Henrique Budib Dorsa; Pontes, José Carlos Dorsa Vieira; de Azevedo Neto, Euler; Vendas, Giovanna Serra da Cruz; Miranda, João Victor Cunha; Dias, Letícia do Espírito Santos; Oliva, João Victor Durães Gomes; de Almeida, Murilo Henrique Martins; Chaves, Ian de Oliveira; Sampaio, Tricia Luna; dos Santos, Carlos Henrique Marques; Dourado, Doroty Mesquita
2018-01-01
Introduction Reperfusion injury leads to systemic morphological and functional pathological alterations. Some techniques are already estabilished to attenuate the damage induced by reperfusion. Ischemic preconditioning is one of the standard procedures. In the last 20 years, several experimental trials demonstrated that the ischemic postconditioning presents similar effectiveness. Recently experimental trials demonstrated that statins could be used as pharmacological preconditioning. Methods 41 Wistar rats (Rattus norvegicus albinus) were distributed in 5 groups: Ischemia and Reperfusion (A), Ischemic Postconditioning (B), Statin (C), Ischemic Postconditioning + Statins (D) and SHAM (E). After euthanasia, lungs, liver, kidneys and ileum were resected and submitted to histopathological analysis. Results The average of lung parenchymal injury was A=3.6, B=1.6, C=1.2, D=1.2, E=1 (P=0.0029). The average of liver parenchymal injury was A=3, B=1.5, C=1.2, D=1.2, E = 0 (P<0.0001). The average of renal parenchymal injury was A=4, B=2.44, C=1.22, D=1.11, E=1 (P<0.0001). The average of intestinal parenchymal injury was A=2, B=0.66, C=0, D=0, E=0 (P=0.0006). The results were submitted to statistics applying Kruskal-Wallis test, estabilishing level of significance P<0.05. Conclusion Groups submitted to ischemic postconditioning, to pre-treatment with statins and both methods associated demonstrated less remote reperfusion injuries, compared to the group submitted to ischemia and reperfusion without protection. PMID:29617505
Williams, Jessica A.; Ni, Hong-Min; Ding, Yifeng
2015-01-01
Alcoholic liver disease claims two million lives per year. We previously reported that autophagy protected against alcohol-induced liver injury and steatosis by removing damaged mitochondria. However, the mechanisms for removal of these mitochondria are unknown. Parkin is an evolutionarily conserved E3 ligase that is recruited to damaged mitochondria to initiate ubiquitination of mitochondrial outer membrane proteins and subsequent mitochondrial degradation by mitophagy. In addition to its role in mitophagy, Parkin has been shown to have other roles in maintaining mitochondrial function. We investigated whether Parkin protected against alcohol-induced liver injury and steatosis using wild-type (WT) and Parkin knockout (KO) mice treated with alcohol by the acute-binge and Gao-binge (chronic plus acute-binge) models. We found that Parkin protected against liver injury in both alcohol models, likely because of Parkin's role in maintaining a population of healthy mitochondria. Alcohol caused greater mitochondrial damage and oxidative stress in Parkin KO livers compared with WT livers. After alcohol treatment, Parkin KO mice had severely swollen and damaged mitochondria that lacked cristae, which were not seen in WT mice. Furthermore, Parkin KO mice had decreased mitophagy, β-oxidation, mitochondrial respiration, and cytochrome c oxidase activity after acute alcohol treatment compared with WT mice. Interestingly, liver mitochondria seemed able to adapt to alcohol treatment, but Parkin KO mouse liver mitochondria had less capacity to adapt to Gao-binge treatment compared with WT mouse liver mitochondria. Overall, our findings indicate that Parkin is an important mediator of protection against alcohol-induced mitochondrial damage, steatosis, and liver injury. PMID:26159696
Yin, Xinru; Gong, Xia; Zhang, Li; Jiang, Rong; Kuang, Ge; Wang, Bin; Chen, Xinyu; Wan, Jingyuan
2017-04-01
Glycyrrhetinic acid (GA), the main active ingredient of licorice, reportedly has anti-inflammatory and hepatoprotective properties, but its molecular mechanisms remain be elusive. In the present study, Balb/c mice were pretreated with GA (10, 30, or 100mg/kg) 1h before lipopolysaccharide (LPS)/d-galactosamine (D-GalN) administration. In other in vitro experiment, RAW264.7 macrophages were pretreated with GA before LPS exposure. The mortality, hepatic tissue histology, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed. Toll like receptor 4 (TLR4), interleukin-1 receptor-associated kinases (IRAKs), activation of mitogen-activated protein kinases (MAPKs) and NF-κB, and production of TNF-α were assessed by flow cytometry, western blotting, and enzyme-linked immunosorbent assay (ELISA), respectively. Our results showed that pretreatment with GA protected mice against LPS/D-GalN-induced fulminant hepatic failure (FHF), including a dose-dependent alleviation of mortality and ALT/AST elevation, ameliorating hepatic pathological damage, and decreasing TNF-α release. Moreover, GA inhibited LPS-induced activation of MAPKs and NF-κB in response to LPS, but the expression of TLR4 was not affected in vivo and in vitro. Notably, GA pretreatment in vivo suppressed IRAK-1 activity while inducing IRAK-M expression. Silencing of IRAK-M expression with siRNA blocked these beneficial effects of GA on the activation of MAPKs and NF-κB as well as TNF-α production in LPS-primed macrophages. Taken together, we conclude that GA could prevent LPS/D-GalN-induced FHF. The underlying mechanisms may be related to up-regulation of IRAK-M, which in turn caused deactivation of IRAK-1 and subsequent MAPKs and NF-κB, resulting in inhibiting TNF-α production. Copyright © 2017 Elsevier Inc. All rights reserved.
Yokoyama, Satoshi; Hiramoto, Keiichi; Koyama, Mayu; Ooi, Kazuya
2016-09-01
Alcohol is frequently used to induce chronic liver injury in laboratory animals. Alcohol causes oxidative stress in the liver and increases the expression of inflammatory mediators that cause hepatocellular damage. However, during chronic liver injury, it is unclear if/how these liver-derived factors affect distal tissues, such as the skin. The purpose of this study was to evaluate skin barrier function during chronic liver injury. Hairless mice were administered 5% or 10% ethanol for 8 weeks, and damages to the liver and skin were assessed using histological and protein-analysis methods, as well as by detecting inflammatory mediators in the plasma. After alcohol administration, the plasma concentration of the aspartate and alanine aminotransferases increased, while albumin levels decreased. In mice with alcohol-induced liver injury, transepidermal water loss was significantly increased, and skin hydration decreased concurrent with ceramide and type I collagen degradation. The plasma concentrations of [Formula: see text]/[Formula: see text] and tumor necrosis factor-alpha (TNF-α) were significantly increased in mice with induced liver injury. TNF receptor (TNFR) 2 expression was upregulated in the skin of alcohol-administered mice, while TNFR1 levels remained constant. Interestingly, the impairment of skin barrier function in mice administered with 10% ethanol was ameliorated by administering an anti-TNF-α antibody. We propose a novel mechanism whereby plasma TNF-α, via TNFR2 alone or with TNFR1, plays an important role in skin barrier function during chronic liver disease in these mouse models.
Cui, Ruibing; Li, Rong; Guo, Xiaolan; Jia, Xiaoqing; Yan, Ming
2018-06-01
Previously we have demonstrated that stromal interacting molecule-1 (STIM1) was involved in ethanol induced liver injury. However, the exact pathogenic mechanism of STIM1 in alcoholic liver disease (ALD) is still unknown. We constructed plasmid vectors encoding short-hairpin RNA against STIM1 to investigate its role in ALD in the rat liver cell line BRL and in Sprague-Dawley rats. The results showed that STIM1 targeted sh-RNA (Sh-STIM1) significantly ameliorated ethanol-induced BRL cells injury and liver injury in rats with 20 weeks-induced alcoholic liver disease. Inhibition of STIM1 also reduced intracellular calcium ion concentration, reactive oxygen species (ROS) production, lipid peroxidation, NF-kappa B activation and TNF-α production under ethanol exposure. STIM1 may play an important role in the pathogenesis of alcoholic liver disease. Silencing STIM1 may be effective in preventing alcoholic liver disease. Copyright © 2018 Elsevier B.V. All rights reserved.
Liang, Yong-Hong; Tang, Chao-Ling; Lu, Shi-Yin; Cheng, Bang; Wu, Fang; Chen, Zhao-Ni; Song, Fangming; Ruan, Jun-Xiang; Zhang, Hong-Ye; Song, Hui; Zheng, Hua; Su, Zhi-Heng
2016-09-10
Corydalis saxicola Bunting (CS), a traditional Chinese folk medicine, has been effectively used for treating liver disease in Zhuang nationality in South China. However, the exact hepatoprotective mechanism of CS was still looking forward to further elucidation by far. In present work, metabonomic study of biochemical changes in the serum of carbon tetrachloride (CCl4)-induced acute liver injury rats after CS treatment were performed using proton nuclear magnetic resonance ((1)H-NMR) analysis. Metabolic profiling by means of principal components analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) indicated that the metabolic perturbation caused by CCl4 was reduced by CS treatment. A total of 9 metabolites including isoleucine (1), lactate (2), alanine (3), glutamine (4), acetone (5), succinate (6), phosphocholine (7), d-glucose (8) and glycerol (9) were considered as potential biomarkers involved in the development of CCl4-induced acute liver injury. According to pathway analysis by metabolites identified and correlation network construction by Pearson's correlation coefficency matrix, alanine, aspartate and glutamate metabolism and glycerolipid metabolism were recognized as the most influenced metabolic pathways associated with CCl4 injury. As a result, notably, deviations of metabolites 1, 3, 4, 7 and 9 in the process of CCl4-induced acute liver injury were improved by CS treatment, which suggested that CS mediated synergistically abnormalities of the metabolic pathways, composed of alanine, aspartate and glutamate metabolism and glycerolipid metabolism. In this study, it was the first report to investigate the hepatoprotective effect of the CS based on metabonomics strategy, which may be a potentially powerful tool to interpret the action mechanism of traditional Chinese folk medicines. Copyright © 2016 Elsevier B.V. All rights reserved.
Lee, Hwa-Young; Kim, Seung-Wook; Lee, Geum-Hwa; Choi, Min-Kyung; Jung, Han-Wool; Kim, Young-Jun; Kwon, Ho-Jeong; Chae, Han-Jung
2016-08-26
Curcumin, a major active component of turmeric, has previously been reported to alleviate liver damage. Here, we investigated the mechanism by which turmeric and curcumin protect the liver against carbon tetrachloride (CCl4)-induced injury in rats. We hypothesized that turmeric extract and curcumin protect the liver from CCl4-induced liver injury by reducing oxidative stress, inhibiting lipid peroxidation, and increasing glutathione peroxidase activation. Chronic hepatic stress was induced by a single intraperitoneal injection of CCl4 (0.1 ml/kg body weight) into rats. Turmeric extracts and curcumin were administered once a day for 4 weeks at three dose levels (100, 200, and 300 mg/kg/day). We performed ALT and AST also measured of total lipid, triglyceride, cholesterol levels, and lipid peroxidation. We found that turmeric extract and curcumin significantly protect against liver injury by decreasing the activities of serum aspartate aminotransferase and alanine aminotransferase and by improving the hepatic glutathione content, leading to a reduced level of lipid peroxidase. Our data suggest that turmeric extract and curcumin protect the liver from chronic CCl4-induced injury in rats by suppressing hepatic oxidative stress. Therefore, turmeric extract and curcumin are potential therapeutic antioxidant agents for the treatment of hepatic disease.
Liver injury from herbals and dietary supplements in the U.S. Drug-Induced Liver Injury Network.
Navarro, Victor J; Barnhart, Huiman; Bonkovsky, Herbert L; Davern, Timothy; Fontana, Robert J; Grant, Lafaine; Reddy, K Rajender; Seeff, Leonard B; Serrano, Jose; Sherker, Averell H; Stolz, Andrew; Talwalkar, Jayant; Vega, Maricruz; Vuppalanchi, Raj
2014-10-01
The Drug-Induced Liver Injury Network (DILIN) studies hepatotoxicity caused by conventional medications as well as herbals and dietary supplements (HDS). To characterize hepatotoxicity and its outcomes from HDS versus medications, patients with hepatotoxicity attributed to medications or HDS were enrolled prospectively between 2004 and 2013. The study took place among eight U.S. referral centers that are part of the DILIN. Consecutive patients with liver injury referred to a DILIN center were eligible. The final sample comprised 130 (15.5%) of all subjects enrolled (839) who were judged to have experienced liver injury caused by HDS. Hepatotoxicity caused by HDS was evaluated by expert opinion. Demographic and clinical characteristics and outcome assessments, including death and liver transplantation (LT), were ascertained. Cases were stratified and compared according to the type of agent implicated in liver injury; 45 had injury caused by bodybuilding HDS, 85 by nonbodybuilding HDS, and 709 by medications. Liver injury caused by HDS increased from 7% to 20% (P < 0.001) during the study period. Bodybuilding HDS caused prolonged jaundice (median, 91 days) in young men, but did not result in any fatalities or LT. The remaining HDS cases presented as hepatocellular injury, predominantly in middle-aged women, and, more frequently, led to death or transplantation, compared to injury from medications (13% vs. 3%; P < 0.05). The proportion of liver injury cases attributed to HDS in DILIN has increased significantly. Liver injury from nonbodybuilding HDS is more severe than from bodybuilding HDS or medications, as evidenced by differences in unfavorable outcomes (death and transplantation). (Hepatology 2014;60:1399-1408). © 2014 by the American Association for the Study of Liver Diseases.
Liver injury from Herbals and Dietary Supplements in the US Drug Induced Liver Injury Network
Navarro, Victor J.; Barnhart, Huiman; Bonkovsky, Herbert L.; Davern, Timothy; Fontana, Robert J.; Grant, Lafaine; Reddy, K. Rajender; Seeff, Leonard B.; Serrano, Jose; Sherker, Averell H.; Stolz, Andrew; Talwalkar, Jayant; Vega, Maricruz; Vuppalanchi, Raj
2014-01-01
Background The Drug-Induced Liver Injury Network (DILIN) studies hepatotoxicity due to conventional medications as well as herbals and dietary supplements (HDS). Rationale To characterize hepatotoxicity and its outcomes from HDS versus medications, patients with hepatotoxicity attributed to medications or HDS were enrolled prospectively between 2004 and 2013. The study took place among eight US referral centers that are part of the DILIN. Consecutive patients with liver injury referred to a DILIN center were eligible. The final sample comprised 130 (15.5%) of all subjects enrolled (839) who were judged to have experienced liver injury due to HDS. Hepatotoxicity due to HDS was evaluated by expert opinion. Demographic and clinical characteristics and outcome assessments including death and liver transplantation were ascertained. Cases were stratified and compared according to the type of agent implicated in liver injury; 45 had injury due to bodybuilding HDS, 85 due to non-bodybuilding HDS, and 709 due to medications. Main Results Liver injury due to HDS increased from 7% to 20% (p < 0.001) during the study period. Bodybuilding HDS caused prolonged jaundice (median 91 days) in young men but did not result in any fatalities or liver transplantation. The remaining HDS cases presented as hepatocellular injury, predominantly in middle-aged women and more frequently led to death or transplantation compared to injury from medications (13% vs. 3%, p < 0.05). Conclusions The proportion of liver injury cases attributed to HDS in DILIN has increased significantly. Liver injury from non-bodybuilding HDS is more severe than from bodybuilding HDS or medications, as evidenced by differences in unfavorable outcomes; death and transplantation. PMID:25043597
Lambert, Jason C.; Zhou, Zhanxiang; Wang, Lipeng; Song, Zhenyuan; McClain, Craig J.; Kang, Y. James
2004-01-01
Intestinal-derived endotoxins are importantly involved in alcohol-induced liver injury. Disruption of intestinal barrier function and endotoxemia are common features associated with liver inflammation and injury due to acute ethanol exposure. Zinc has been shown to inhibit acute alcohol-induced liver injury. This study was designed to determine the inhibitory effect of zinc on alcohol-induced endotoxemia and whether the inhibition is mediated by metallothionein (MT) or is independent of MT. MT knockout (MT-KO) mice were administered three oral doses of zinc sulfate (2.5 mg zinc ion/kg body weight) every 12 hours before being administered a single dose of ethanol (6 g/kg body weight) by gavage. Ethanol administration caused liver injury as determined by increased serum transaminases, parenchymal fat accumulation, necrotic foci, and an elevation of tumor necrosis factor (TNF-α). Increased plasma endotoxin levels were detected in ethanol-treated animals whose small intestinal structural integrity was compromised as determined by microscopic examination. Zinc supplementation significantly inhibited acute ethanol-induced liver injury and suppressed hepatic TNF-α production in association with decreased circulating endotoxin levels and a significant protection of small intestine structure. As expected, MT levels remained undetectable in the MT-KO mice under the zinc treatment. These results thus demonstrate that zinc preservation of intestinal structural integrity is associated with suppression of endotoxemia and liver injury induced by acute exposure to ethanol and the zinc protection is independent of MT. PMID:15161632
Su, Song; Liu, Jiang; He, Kai; Zhang, Mengyu; Feng, Chunhong; Peng, Fangyi; Li, Bo; Xia, Xianming
2016-04-01
Hepatic injury provoked by cold storage is a major problem affecting liver transplantation, as exposure to cold induces apoptosis in hepatic tissues. Long noncoding RNAs (lncRNAs) are increasingly understood to regulate apoptosis, but the contribution of lncRNAs to cold-induced liver injury remains unknown. Using RNA-seq, we determined the differential lncRNA expression profile in mouse livers after cold storage and found that expression of the lncRNA TUG1 was significantly down-regulated. Overexpression of TUG1 attenuated cold-induced apoptosis in mouse hepatocytes and liver sinusoidal endothelial cells LSECs, in part by blocking mitochondrial apoptosis and endoplasmic reticulum (ER) stress pathways. Moreover, TUG1 attenuated apoptosis, inflammation, and oxidative stress in vivo in livers subjected to cold storage. Overexpression of TUG1 also improved hepatocyte function and prolonged hepatic graft survival rates in mice. These results suggest that the lncRNA TUG1 exerts a protective effect against cold-induced liver damage by inhibiting apoptosis in mice, and suggests a potential role for TUG1 as a target for the prevention of cold-induced liver damage in liver transplantation. RNA-seq data are available from GEO using accession number GSE76609. © 2016 Federation of European Biochemical Societies.
Ferulic acid prevents liver injury and increases the anti-tumor effect of diosbulbin B in vivo *
Wang, Jun-ming; Sheng, Yu-chen; Ji, Li-li; Wang, Zheng-tao
2014-01-01
The present study is designed to investigate the protection by ferulic acid against the hepatotoxicity induced by diosbulbin B and its possible mechanism, and further observe whether ferulic acid augments diosbulbin B-induced anti-tumor activity. The results show that ferulic acid decreases diosbulbin B-increased serum alanine transaminase/aspartate transaminase (ALT/AST) levels. Ferulic acid also decreases lipid peroxide (LPO) levels which are elevated in diosbulbin B-treated mice. Histological evaluation of the liver demonstrates hydropic degeneration in diosbulbin B-treated mice, while ferulic acid reverses this injury. Moreover, the activities of copper- and zinc-containing superoxide dismutase (CuZn-SOD) and catalase (CAT) are decreased in the livers of diosbulbin B-treated mice, while ferulic acid reverses these decreases. Further results demonstrate that the mRNA expressions of CuZn-SOD and CAT in diosbulbin B-treated mouse liver are significantly decreased, while ferulic acid prevents this decrease. In addition, ferulic acid also augments diosbulbin B-induced tumor growth inhibition compared with diosbulbin B alone. Taken together, the present study shows that ferulic acid prevents diosbulbin B-induced liver injury via ameliorating diosbulbin B-induced liver oxidative stress injury and augments diosbulbin B-induced anti-tumor activity. PMID:24903991
Elattar, Samah; Estaphan, Suzanne; Mohamed, Enas A; Elzainy, Ahmed; Naguib, Mary
2017-10-01
There is an accumulating evidence suggesting an immunomodulatory role of 1α,25(OH) 2 D3. Altered 1α,25(OH) 2 D3 level may play a role in the development of T2DM and contribute to the pathogenesis of liver diseases. Our study was designed to study and compare the effect of metformin and 1α,25(OH) 2 D3 supplementation on liver injury in type 2 diabetic rat. Sixty male Albino rats were divided into 5 groups; group 1: control rats. the remaining rats were fed high fat diet for 2 weeks and injected with streptozotocin (35mg/kg BW, i.p.) to induce T2DM and were divided into: group 2: untreated diabetic rats, group 3: diabetic rats treated by metformin (100mg/kgBW/d, orally), group 4: diabetic rats supplemented by 1α,25(OH) 2 D3 (0.5μg/kg BW, i.p.) 3 times weekly and group 5: supplemented by both 1α,25(OH) 2 D3 and metformin. Eight weeks later, serum glucose and insulin levels were measured, HOMA IR was calculated, lipid profile, Ca2+, ALT and AST were estimated. Liver specimens were taken to investigate PPAR-α (regulator of lipid metabolism), NF-κB p65, caspase 3 and PCNA (proliferating cell nuclear antigen) and for histological examination. The liver enzymes were elevated in the diabetic rats and the histological results revealed an injurious effect of diabetes on the liver. 1α,25(OH) 2 D3, metformin and both drugs treatment significantly improved liver enzymes as compared to the untreated rats. The improvement was associated with a significant improvement in the glycemic control, lipid profile and serum Ca2+ with a significant reduction in NF-κB p65 and caspase 3 and increased PPAR-α, and PCNA expression as compared to the untreated group. 1α,25(OH) 2 D3 induced a slightly better effect as compared to metformin. Both agents together had a synergistic action and almost completely protected the liver. Histological results confirmed the biochemical findings. Our results showed a protective effect of 1α,25(OH) 2 D3 and metformin on liver in diabetic rats as indicated by an improvement of the level of the liver enzymes, decreased apoptosis and increased proliferation and this was confirmed histologically, with modulating NFkB and PPAR-α. Both agents together had a synergistic effect. Copyright © 2016 Elsevier Ltd. All rights reserved.
Villapol, Sonia; Kryndushkin, Dmitry; Balarezo, Maria G; Campbell, Ashley M; Saavedra, Juan M; Shewmaker, Frank P; Symes, Aviva J
2015-10-01
Traumatic brain injury affects the whole body in addition to the direct impact on the brain. The systemic response to trauma is associated with the hepatic acute-phase response. To further characterize this response, we performed controlled cortical impact injury on male mice and determined the expression of serum amyloid A1 (SAA1), an apolipoprotein, induced at the early stages of the acute-phase response in liver and plasma. After cortical impact injury, induction of SAA1 was detectable in plasma at 6 hours post-injury and in liver at 1 day post-injury, followed by gradual diminution over time. In the liver, cortical impact injury increased neutrophil and macrophage infiltration, apoptosis, and expression of mRNA encoding the chemokines CXCL1 and CXCL10. An increase in angiotensin II AT1 receptor mRNA at 3 days post-injury was also observed. Administration of the AT1 receptor antagonist telmisartan 1 hour post-injury significantly decreased liver SAA1 levels and CXCL10 mRNA expression, but did not affect CXCL1 expression or the number of apoptotic cells or infiltrating leukocytes. To our knowledge, this is the first study to demonstrate that SAA1 is induced in the liver after traumatic brain injury and that telmisartan prevents this response. Elucidating the molecular pathogenesis of the liver after brain injury will assist in understanding the efficacy of therapeutic approaches to brain injury. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Vinpocetine protects liver against ischemia-reperfusion injury.
Zaki, Hala Fahmy; Abdelsalam, Rania Mohsen
2013-12-01
Hepatic ischemia-reperfusion (IR) injury is a clinical problem that leads to cellular damage and organ dysfunction mediated mainly via production of reactive oxygen species and inflammatory cytokines. Vinpocetine has long been used in cerebrovascular disorders. This study aimed to explore the protective effect of vinpocetine in IR injury to the liver. Ischemia was induced in rats by clamping the common hepatic artery and portal vein for 30 min followed by 30 min of reperfusion. Serum transaminases and liver lactate dehydrogenase (LDH) activities, liver inflammatory cytokines, oxidative stress biomarkers, and liver histopathology were assessed. IR resulted in marked histopathology changes in liver tissues coupled with elevations in serum transaminases and liver LDH activities. IR also increased the production of liver lipid peroxides, nitric oxide, and inflammatory cytokines interleukin-1β and interleukin-6, in parallel with a reduction in reduced glutathione and interleukin-10 in the liver. Pretreatment with vinpocetine protected against liver IR-induced injury, in a dose-dependent manner, as evidenced by the attenuation of oxidative stress as well as inflammatory and liver injury biomarkers. The effects of vinpocetine were comparable with that of curcumin, a natural antioxidant, and could be attributed to its antioxidant and anti-inflammatory properties.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-27
... Research Manufacturers of America to discuss and debate issues regarding drug-induced liver injury (DILI... of both basic science and clinical experts, and selecting for specific debate and discussion issues...
Li, Ailin; Li, Jing; Bao, Yuhua; Yuan, Dingshan; Huang, Zhongwei
2016-01-01
Dysregulation of inflammatory cytokines and liver injury are associated with the pathogenesis of sepsis. Xuebijing injection, a Chinese herbal medicine, has been used in the treatment of sepsis and can contribute to the improvement of patients' health. However, the underlying molecular mechanisms are not yet clearly illuminated. In the present study, a septic rat model with liver injury was established by the cecal ligation and puncture (CLP) method. Histological alterations to the liver, activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), levels of inflammatory cytokine secretion and the expression of suppressors of cytokine signaling 1 (SOCS-1) in the CLP model rats with and without Xuebijing treatment were determined. The results showed that Xuebijing injection ameliorated the pathological changes in liver tissues caused by sepsis, and reduced the sepsis-induced elevation in serum ALT and AST levels. Furthermore, Xuebijing injection markedly downregulated the expression of tumor necrosis factor α and interleukin (IL)-6, and upregulated the expression of IL-10. More importantly, SOCS1 expression levels at the protein and mRNA levels were further increased by Xuebijing. These findings demonstrate that Xuebijing injection can significantly alleviate liver injury in CLP-induced septic rats via the regulation of inflammatory cytokine secretion and the promotion of SOCS1 expression. The protective effects of Xuebijing injection suggest its therapeutic potential in the treatment of CLP-induced liver injury. PMID:27602076
Zhang, Gui-li; Zeng, Tao; Wang, Qing-shan; Zhao, Xiu-lan; Song, Fu-yong; Xie, Ke-qin
2010-03-01
To observe and compare the protective effect of garlic oil against carbon tetrachloride (CCL)-induced acute liver injury. The experiments include 4 preventive groups and 2 therapeutic groups. In every preventive and therapeutic group, the mice were randomized into 6 groups with 15 each, including one negative control group, one solvent control group, one CCl4 model group and 3 garlic oil groups (25, 50, and 100 mg/kg body weight). Before given a single gavage of CCl4 (80 mg/kg), the mice were pretreated with garlic oil by gavage in preventive group 1 (30 days, once daily), preventive group 2 (5 days, once daily), preventive group 3 (ahead of 2 h, once), preventive group 4 (immediately, once) or the vehicle (corn oil, 10 ml/kg) in solvent control group. In therapeutic groups, the mice were gavaged garlic oil 2 h (once, in therapeutic 1) or for 5 days (once daily, in therapeutic 2) after administration CCl. After 24 h of the last administration, blood was collected and centrifuged at 2500 r/min at 4 degrees C for 10 min, and serum was removed to measure ALT and AST activities. The liver was dissected, weighed to calculate the liver coefficient (relative liver weight). At the same time, the liver samples were studied by histological examinations. Compared with negative group, the liver coefficient and the activities of ALT and AST in serum of model group were increased remarkably (P < 0.01). Compared with CCl model group, the liver coefficient and the activities of ALT and AST in serum were decreased significantly (P < 0.01) by garlic oil dose-dependently in each preventive group. Simultaneously, histological assessment showed that garlic oil effectively alleviated hepatocyte injuries induced by CCl4. Comparing the preventive effects of garlic oil in every group, it was better in preventive group 3 than others. However, all indexes and histological examinations in therapeutic group 1 did not show the difference with those of CCl4 model group. In therapeutic group 2, all indexes recovered after 5 d of CCl4 administration. Garlic oil can prevent acute liver injury induced by CCl4 and the effect is better in ahead of 2 h group than others.
Bell, Catherine C; Hendriks, Delilah F G; Moro, Sabrina M L; Ellis, Ewa; Walsh, Joanne; Renblom, Anna; Fredriksson Puigvert, Lisa; Dankers, Anita C A; Jacobs, Frank; Snoeys, Jan; Sison-Young, Rowena L; Jenkins, Rosalind E; Nordling, Åsa; Mkrtchian, Souren; Park, B Kevin; Kitteringham, Neil R; Goldring, Christopher E P; Lauschke, Volker M; Ingelman-Sundberg, Magnus
2016-05-04
Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability. Furthermore, PHH spheroids remained phenotypically stable and retained morphology, viability, and hepatocyte-specific functions for culture periods of at least 5 weeks. We show that under chronic exposure, the sensitivity of the hepatocytes drastically increased and toxicity of a set of hepatotoxins was detected at clinically relevant concentrations. An interesting example was the chronic toxicity of fialuridine for which hepatotoxicity was mimicked after repeated-dosing in the PHH spheroid model, not possible to detect using previous in vitro systems. Additionally, we provide proof-of-principle that PHH spheroids can reflect liver pathologies such as cholestasis, steatosis and viral hepatitis. Combined, our results demonstrate that the PHH spheroid system presented here constitutes a versatile and promising in vitro system to study liver function, liver diseases, drug targets and long-term DILI.
Bell, Catherine C.; Hendriks, Delilah F. G.; Moro, Sabrina M. L.; Ellis, Ewa; Walsh, Joanne; Renblom, Anna; Fredriksson Puigvert, Lisa; Dankers, Anita C. A.; Jacobs, Frank; Snoeys, Jan; Sison-Young, Rowena L.; Jenkins, Rosalind E.; Nordling, Åsa; Mkrtchian, Souren; Park, B. Kevin; Kitteringham, Neil R.; Goldring, Christopher E. P.; Lauschke, Volker M.; Ingelman-Sundberg, Magnus
2016-01-01
Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability. Furthermore, PHH spheroids remained phenotypically stable and retained morphology, viability, and hepatocyte-specific functions for culture periods of at least 5 weeks. We show that under chronic exposure, the sensitivity of the hepatocytes drastically increased and toxicity of a set of hepatotoxins was detected at clinically relevant concentrations. An interesting example was the chronic toxicity of fialuridine for which hepatotoxicity was mimicked after repeated-dosing in the PHH spheroid model, not possible to detect using previous in vitro systems. Additionally, we provide proof-of-principle that PHH spheroids can reflect liver pathologies such as cholestasis, steatosis and viral hepatitis. Combined, our results demonstrate that the PHH spheroid system presented here constitutes a versatile and promising in vitro system to study liver function, liver diseases, drug targets and long-term DILI. PMID:27143246
Guo, Yao Xue; Xu, Xue Fei; Zhang, Qi Zhi; Li, Chun; Deng, Ye; Jiang, Pei; He, Lei Yan; Peng, Wen Xing
2015-01-01
Co-treatment of isoniazid (INH) and rifampicin (RFP) is well known for clinically apparent liver injury. However, the mechanism of INH/RFP-induced liver injury is controversial. Emerging evidence shows links between inhibition of bile acids transporters and drug-induced liver injury (DILI). The present study investigates whether sodium taurocholate cotransporting polypeptide (NTCP/Ntcp; SLC10A1) and bile salt export pump (BSEP/Bsep; ABCB11) are involved in the anti-tuberculosis medicines induced liver injury. ICR female mice were intragastrically treated with INH (50 or 100 mg/kg), RFP (100 or 200 mg/kg), or the combination of INH/RFP (50 + 100 mg/kg or 100 + 200 mg/kg) for 14 consecutive days. Liver histopathological examination, serum biochemical and liver malondialdehyde tests were evaluated. Apparent histopathological alterations and hepatic oxidative stress showed in INH (100 mg/kg), RFP (200 mg/kg) and their combination group. The hepatoxic effect was also indicated by increased serum biomarkers, such as aspartate transaminase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), direct bilirubin (DBil), total bilirubin (TBil) and total bile acids (TBA). Both doses of INH/RFP administration significantly down-regulated the expression of Ntcp and Bsep in liver. Furthermore, the combination of INH and RFP displayed stronger effect on the expression of Ntcp compared with the corresponding dose of INH or RFP alone. In conclusion, down-regulated expression of hepatic Ntcp and Bsep might play an important role in the development of INH and RFP induced liver injury.
Effects of Melatonin on Liver Injuries and Diseases
Zhang, Jiao-Jiao; Meng, Xiao; Li, Ya; Zhou, Yue; Xu, Dong-Ping; Li, Sha; Li, Hua-Bin
2017-01-01
Liver injuries and diseases are serious health problems worldwide. Various factors, such as chemical pollutants, drugs, and alcohol, could induce liver injuries. Liver diseases involve a wide range of liver pathologies, including hepatic steatosis, fatty liver, hepatitis, fibrosis, cirrhosis, and hepatocarcinoma. Despite all the studies performed up to now, therapy choices for liver injuries and diseases are very few. Therefore, the search for a new treatment that could safely and effectively block or reverse liver injuries and diseases remains a priority. Melatonin is a well-known natural antioxidant, and has many bioactivities. There are numerous studies investigating the effects of melatonin on liver injuries and diseases, and melatonin could regulate various molecular pathways, such as inflammation, proliferation, apoptosis, metastasis, and autophagy in different pathophysiological situations. Melatonin could be used for preventing and treating liver injuries and diseases. Herein, we conduct a review summarizing the potential roles of melatonin in liver injuries and diseases, paying special attention to the mechanisms of action. PMID:28333073
Ischemia-reperfusion injury in rat fatty liver: role of nutritional status.
Caraceni, P; Nardo, B; Domenicali, M; Turi, P; Vici, M; Simoncini, M; De Maria, N; Trevisani, F; Van Thiel, D H; Derenzini, M; Cavallari, A; Bernardi, M
1999-04-01
Fatty livers are more sensitive to the deleterious effects of ischemia-reperfusion than normal livers. Nutritional status greatly modulates this injury in normal livers, but its role in the specific setting of fatty liver is unknown. This study aimed to determine the effect of nutritional status on warm ischemia-reperfusion injury in rat fatty livers. Fed and fasted rats with normal or fatty liver induced by a choline deficient diet underwent 1 hour of lobar ischemia and reperfusion. Rat survival was determined for 7 days. Serum transaminases, liver histology and cell ultrastructure were assessed before and after ischemia, and at 30 minutes, 2 hours, 8 hours, and 24 hours after reperfusion. Survival was also determined in fatty fasted rats supplemented with glucose before surgery. The preischemic hepatic glycogen was measured in all groups. Whereas survival was similar in fasted and fed rats with normal liver (90% vs. 100%), fasting dramatically reduced survival in rats with fatty liver (14% vs. 64%, P <.01). Accordingly, fasting and fatty degeneration had a synergistic effect in exacerbating liver injury. Mitochondrial damage was a predominant feature of ultrastructural hepatocyte injury in fasted fatty livers. Glucose supplementation partially prevented the fasting-induced depletion of glycogen and improved the 7-day rat survival to 45%. These data indicate that rat fatty livers exposed to normothermic ischemia-reperfusion injury are much more sensitive to fasting than histologically normal livers. Because glucose supplementation improves both the hepatic glycogen stores and the rat survival, a nutritional repletion procedure may be part of a treatment strategy aimed to prevent ischemia-reperfusion injury in fatty livers.
Potential mechanisms of hepatitis B virus induced liver injury
Suhail, Mohd; Abdel-Hafiz, Hany; Ali, Ashraf; Fatima, Kaneez; Damanhouri, Ghazi A; Azhar, Esam; Chaudhary, Adeel GA; Qadri, Ishtiaq
2014-01-01
Chronic active hepatitis (CAH) is acknowledged as an imperative risk factor for the development of liver injury and hepatocellular carcinoma. The histological end points of CAH are chronic inflammation, fibrosis and cirrhosis which are coupled with increased DNA synthesis in cirrhotic vs healthy normal livers. The potential mechanism involved in CAH includes a combination of processes leading to liver cell necrosis, inflammation and cytokine production and liver scaring (fibrosis). The severity of liver damage is regulated by Hepatitis B virus genotypes and viral components. The viral and cellular factors that contribute to liver injury are discussed in this article. Liver injury caused by the viral infection affects many cellular processes such as cell signaling, apoptosis, transcription, DNA repair which in turn induce radical effects on cell survival, growth, transformation and maintenance. The consequence of such perturbations is resulted in the alteration of bile secretion, gluconeogenesis, glycolysis, detoxification and metabolism of carbohydrates, proteins, fat and balance of nutrients. The identification and elucidation of the molecular pathways perturbed by the viral proteins are important in order to design effective strategy to minimize and/or restore the hepatocytes injury. PMID:25253946
Atypical onset of bicalutamide-induced liver injury.
Yun, Gee Young; Kim, Seok Hyun; Kim, Seok Won; Joo, Jong Seok; Kim, Ju Seok; Lee, Eaum Seok; Lee, Byung Seok; Kang, Sun Hyoung; Moon, Hee Seok; Sung, Jae Kyu; Lee, Heon Young; Kim, Kyung Hee
2016-04-21
Anti-androgen therapy is the leading treatment for advanced prostate cancer and is commonly used for neoadjuvant or adjuvant treatment. Bicalutamide is a non-steroidal anti-androgen, used during the initiation of androgen deprivation therapy along with a luteinizing hormone-releasing hormone agonist to reduce the symptoms of tumor-related flares in patients with advanced prostate cancer. As side effects, bicalutamide can cause fatigue, gynecomastia, and decreased libido through competitive androgen receptor blockade. Additionally, although not as common, drug-induced liver injury has also been reported. Herein, we report a case of hepatotoxicity secondary to bicalutamide use. Typically, bicalutamide-induced hepatotoxicity develops after a few days; however, in this case, hepatic injury occurred 5 mo after treatment initiation. Based on this rare case of delayed liver injury, we recommend careful monitoring of liver function throughout bicalutamide treatment for prostate cancer.
Williams, Jessica A; Ni, Hong-Min; Ding, Yifeng; Ding, Wen-Xing
2015-09-01
Alcoholic liver disease claims two million lives per year. We previously reported that autophagy protected against alcohol-induced liver injury and steatosis by removing damaged mitochondria. However, the mechanisms for removal of these mitochondria are unknown. Parkin is an evolutionarily conserved E3 ligase that is recruited to damaged mitochondria to initiate ubiquitination of mitochondrial outer membrane proteins and subsequent mitochondrial degradation by mitophagy. In addition to its role in mitophagy, Parkin has been shown to have other roles in maintaining mitochondrial function. We investigated whether Parkin protected against alcohol-induced liver injury and steatosis using wild-type (WT) and Parkin knockout (KO) mice treated with alcohol by the acute-binge and Gao-binge (chronic plus acute-binge) models. We found that Parkin protected against liver injury in both alcohol models, likely because of Parkin's role in maintaining a population of healthy mitochondria. Alcohol caused greater mitochondrial damage and oxidative stress in Parkin KO livers compared with WT livers. After alcohol treatment, Parkin KO mice had severely swollen and damaged mitochondria that lacked cristae, which were not seen in WT mice. Furthermore, Parkin KO mice had decreased mitophagy, β-oxidation, mitochondrial respiration, and cytochrome c oxidase activity after acute alcohol treatment compared with WT mice. Interestingly, liver mitochondria seemed able to adapt to alcohol treatment, but Parkin KO mouse liver mitochondria had less capacity to adapt to Gao-binge treatment compared with WT mouse liver mitochondria. Overall, our findings indicate that Parkin is an important mediator of protection against alcohol-induced mitochondrial damage, steatosis, and liver injury. Copyright © 2015 the American Physiological Society.
Chen, Lung-Che; Hu, Li-Hong; Yin, Mei-Chin
2017-06-01
Protective effects of boswellic acid (BA) against acetaminophen (APAP)-induced hepatotoxicity in Balb/ cA mice were examined. BA, at 0.05 or 0.1%, was supplied for 4 weeks. Acute liver injury was induced by APAP treatment. Results showed that BA intake increased hepatic BA bioavailability. APAP treatment decreased glutathione (GSH) level, increased reactive oxygen species (ROS) and oxidized glutathione (GSSG) production; and lowered activity and protein expression of glutathione reductase (GR) and heme oxygenase (HO)-1 in liver. BA intake at both doses alleviated subsequent APAP-induced oxidative stress by retaining GSH content, decreasing ROS and GSSG formations, reserving activity and expression of GR and HO-1 in liver, and lowering hepatic cytochrome P450 2E1 activity and expression. APAP treatment enhanced hepatic levels of interleukin-6, tumor necrosis factor-alpha and monocyte chemoattractant protein-1. BA pre-intake diminished APAP-induced release of those inflammatory cytokines and chemokines. APAP up-regulated hepatic protein expression of toll-like receptor (TLR)-3, TLR-4, MyD88, nuclear factor kappa B (NF-κB) p50, NF-κB p65 and JNK. BA pre-intake at both doses suppressed the expression of NF-κB p65 and p-JNK, and only at 0.1% down-regulated hepatic TLR-3, TLR-4 and MyD88 expression. APAP led to obvious foci of inflammatory cell infiltration in liver, determined by H&E stain. BA intake at both doses attenuated hepatic inflammatory infiltration. These findings support that boswellic acid is a potent hepato-protective agent. © Author(s) 2017. This article is published with open access by China Medical University.
Choi, Youngshim; Abdelmegeed, Mohamed A; Song, Byoung-Joon
2018-05-01
Indole-3-carbinol (I3C), found in Brassica family vegetables, exhibits antioxidant, anti-inflammatory, and anti-cancerous properties. Here, we aimed to evaluate the preventive effects of I3C against ethanol (EtOH)-induced liver injury and study the protective mechanism(s) by using the well-established chronic-plus-binge alcohol exposure model. The preventive effects of I3C were evaluated by conducting various histological, biochemical, and real-time PCR analyses in mouse liver, adipose tissue, and colon, since functional alterations of adipose tissue and intestine can also participate in promoting EtOH-induced liver damage. Daily treatment with I3C alleviated EtOH-induced liver injury and hepatocyte apoptosis, but not steatosis, by attenuating elevated oxidative stress, as evidenced by the decreased levels of hepatic lipid peroxidation, hydrogen peroxide, CYP2E1, NADPH-oxidase, and protein acetylation with maintenance of mitochondrial complex I, II, and III protein levels and activities. I3C also restored the hepatic antioxidant capacity by preventing EtOH-induced suppression of glutathione contents and mitochondrial aldehyde dehydrogenase-2 activity. I3C preventive effects were also achieved by attenuating the increased levels of hepatic proinflammatory cytokines, including IL1β, and neutrophil infiltration. I3C also attenuated EtOH-induced gut leakiness with decreased serum endotoxin levels through preventing EtOH-induced oxidative stress, apoptosis of enterocytes, and alteration of tight junction protein claudin-1. Furthermore, I3C alleviated adipose tissue inflammation and decreased free fatty acid release. Collectively, I3C prevented EtOH-induced liver injury via attenuating the damaging effect of ethanol on the gut-liver-adipose tissue axis. Therefore, I3C may also have a high potential for translational research in treating or preventing other types of hepatic injury associated with oxidative stress and inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.
S, Latha; Chaudhary, Sheetal; R S, Ray
2017-11-01
Oxidative stress and hepatic inflammatory response is primarily implicated in the pathogenesis of LPS induced acute liver injury. Stevioside, a diterpenoidal glycoside isolated from the Stevia rebaudiana leaves, exerts potent anti-oxidant, anti-inflammatory and immunomodulatory activities. The present study was aimed to investigate the hepatoprotective effect of hydroalcoholic extract of Stevia rebaudiana leaves (STE EXT) and its major phytochemical constituent, stevioside (STE) in LPS induced acute liver injury. The hepatoprotective activity of STE EXT (500mg/kg p.o) and STE (250mg/kg p.o) was investigated in lipopolysaccharide (LPS 5mg/kg i.p.) induced acute liver injury in male wistar rats. Our results revealed that both STE EXT and STE treatment ameliorated LPS induced hepatic oxidative stress, evident from altered levels of reduced SOD, Catalase, GSH, MDA, NO. Histopathological observations revealed that both STE EXT and STE attenuated LPS induced structural changes and hepatocellular apoptosis providing additional evidence for its hepatoprotective effect. Further, STE EXT and STE significantly restored the elevated serum and tissue levels of AST and ALT in LPS treated rats. Furthermore, both STE EXT and STE rescued hepatocellular dysfunctions to normal by altering the level of proinflammatory cytokines such as TNF-α, IL-1β and IL-6 exhibiting its anti-inflammatory potential. In conclusion, both STE EXT and STE demonstrated excellent hepatoprotective effects against endotoxemia induced acute liver injury possibly through suppression of hepatic inflammatory response and oxidative stress, attributing to its medicinal importance in treating various liver ailments. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Hsu, Jun-Te; Le, Puo-Hsien; Lin, Chun-Jung; Chen, Tsung-Hsing; Kuo, Chia-Jung; Chiang, Kun-Chun; Yeh, Ta-Sen
2017-05-01
Although melatonin attenuates the increases in inflammatory mediators and reduces organ injury during trauma-hemorrhage, the mechanisms remain unclear. This study explored whether melatonin prevents liver injury after trauma-hemorrhage through the p38 mitogen-activated protein kinase (MAPK)-dependent, inducible nitrite oxide (iNOS)/hypoxia-inducible factor (HIF)-1α pathway. After a 5-cm midline laparotomy, male rats underwent hemorrhagic shock (mean blood pressure ~40 mmHg for 90 min) followed by fluid resuscitation. At the onset of resuscitation, rats were treated with vehicle, melatonin (2 mg/kg), melatonin plus p38 MAPK inhibitor SB203580 (2 mg/kg), or melatonin plus the melatonin receptor antagonist luzindole (2.5 mg/kg). At 2 h after trauma-hemorrhage, histopathology score of liver injury, liver tissue myeloperoxidase activity, malondialdehyde, adenosine triphosphate, serum alanine aminotransferase, and asparate aminotransferase levels were significantly increased compared with sham-operated control. Trauma-hemorrhage resulted in a significant decrease in the p38 MAPK activation compared with that in the sham-treated animals. Administration of melatonin after trauma-hemorrhage normalized liver p38 MAPK phosphorylation and iNOS and HIF-1α expression and attenuated cleaved caspase 3 and receptor interacting protein kinase-1 levels. Coadministration of SB203580 or luzindole abolished the melatonin-mediated attenuation of the trauma-hemorrhage-induced increase of iNOS/HIF-1α protein expression and liver injury markers. Taken together, our results suggest that melatonin prevents trauma-hemorrhage-induced liver injury in rats, at least in part, through melatonin receptor-related, p38 MAPK-dependent iNOS/HIF-1α pathway. NEW & NOTEWORTHY Trauma-hemorrhage resulted in a significant decrease in liver p38 MAPK activation and increase in nitrite oxide synthase (iNOS) and hypoxia-inducible factor (HIF)-1α expression. Administration of melatonin after trauma-hemorrhage normalized liver p38 MAPK phosphorylation and iNOS and HIF-1α expression, which was abolished by coadministration of SB203580 or luzindole. Melatonin prevents trauma-hemorrhage-induced liver injury in rats via the melatonin receptor-related, p38 MAPK-dependent iNOS/HIF-1α pathway. Copyright © 2017 the American Physiological Society.
Liu, Jie; Zhang, Qing-Yu; Yu, Li-Ming; Liu, Bin; Li, Ming-Yi; Zhu, Run-Zhi
2015-05-14
To investigate the hepatoprotective effects of phycocyanobilin (PCB) in reducing hepatic injury and accelerating hepatocyte proliferation following carbon tetrachloride (CCl4) treatment. C57BL/6 mice were orally administered PCB 100 mg/kg for 4 d after CCl4 injection, and then the serum and liver tissue of the mice were collected at days 1, 2, 3, 5 and 7 after CCl4 treatment. A series of evaluations were performed to identify the curative effects on liver injury and recovery. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin and superoxide dismutase (SOD) were detected to indirectly assess the anti-inflammatory effects of PCB. Meanwhile, we detected the expressions of hepatocyte growth factor, transforming growth factor alpha (TGF-α), TGF-β, tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), the factors which are associated with inflammation and liver regeneration. The protein expressions of proliferating cell nuclear antigen (PCNA), TNF-α and cytochrome C were detected by western blot. Furthermore, the survival rates were analyzed of mice which were administered a lethal dose of CCl4 (2.6 mg/kg) with or without PCB. In our research, PCB showed a strongly anti-inflammatory effect on CCl4-induced liver injury in mice. The ALT was significantly decreased after CCl4 treatment from day 1 (P < 0.01) and the AST was significantly decreased from day 2 (P < 0.001). Both albumin and liver SOD were increased from day 2 (P < 0.001 and P < 0.01), but serum SOD levels did not show a significant increase (P > 0.05). PCB protected the structure of liver from the injury by CCl4. TUNEL assay showed that PCB dramatically reduced the number of apoptotic cells after CCl4 treatment compared to the control (101.0 ± 25.4 vs 25.7 ± 6.4, P < 0.01). The result of western blotting showed that PCB could increase PCNA expression, decrease TNF-α and cytochrome C expression. Furthermore, data shows that PCB could improve the survival rate of acute liver failure (ALF) mice which were injected with a lethal dose of CCl4 (60.0% vs 20.0%). Our study indicated that PCB could be an ideal candidate for reversing acute liver injury or ALF.
Liu, Jie; Zhang, Qing-Yu; Yu, Li-Ming; Liu, Bin; Li, Ming-Yi; Zhu, Run-Zhi
2015-01-01
AIM: To investigate the hepatoprotective effects of phycocyanobilin (PCB) in reducing hepatic injury and accelerating hepatocyte proliferation following carbon tetrachloride (CCl4) treatment. METHODS: C57BL/6 mice were orally administered PCB 100 mg/kg for 4 d after CCl4 injection, and then the serum and liver tissue of the mice were collected at days 1, 2, 3, 5 and 7 after CCl4 treatment. A series of evaluations were performed to identify the curative effects on liver injury and recovery. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin and superoxide dismutase (SOD) were detected to indirectly assess the anti-inflammatory effects of PCB. Meanwhile, we detected the expressions of hepatocyte growth factor, transforming growth factor alpha (TGF-α), TGF-β, tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), the factors which are associated with inflammation and liver regeneration. The protein expressions of proliferating cell nuclear antigen (PCNA), TNF-α and cytochrome C were detected by western blot. Furthermore, the survival rates were analyzed of mice which were administered a lethal dose of CCl4 (2.6 mg/kg) with or without PCB. RESULTS: In our research, PCB showed a strongly anti-inflammatory effect on CCl4-induced liver injury in mice. The ALT was significantly decreased after CCl4 treatment from day 1 (P < 0.01) and the AST was significantly decreased from day 2 (P < 0.001). Both albumin and liver SOD were increased from day 2 (P < 0.001 and P < 0.01), but serum SOD levels did not show a significant increase (P > 0.05). PCB protected the structure of liver from the injury by CCl4. TUNEL assay showed that PCB dramatically reduced the number of apoptotic cells after CCl4 treatment compared to the control (101.0 ± 25.4 vs 25.7 ± 6.4, P < 0.01). The result of western blotting showed that PCB could increase PCNA expression, decrease TNF-α and cytochrome C expression. Furthermore, data shows that PCB could improve the survival rate of acute liver failure (ALF) mice which were injected with a lethal dose of CCl4 (60.0% vs 20.0%). CONCLUSION: Our study indicated that PCB could be an ideal candidate for reversing acute liver injury or ALF. PMID:25987768
Complement component 5 promotes lethal thrombosis
Mizuno, Tomohiro; Yoshioka, Kengo; Mizuno, Masashi; Shimizu, Mie; Nagano, Fumihiko; Okuda, Tomoyuki; Tsuboi, Naotake; Maruyama, Shoichi; Nagamatsu, Tadashi; Imai, Masaki
2017-01-01
Extracellular histones promote platelet aggregation and thrombosis; this is followed by induction of coagulation disorder, which results in exhaustion of coagulation factors. Complement component 5 (C5) is known to be associated with platelet aggregation and coagulation system activation. To date, the pathological mechanism underlying liver injury has remained unclear. Here, we investigated whether C5 promotes liver injury associated with histone-induced lethal thrombosis. C5-sufficient and C5-deficient mice received single tail vein injections of purified, unfractionated histones obtained from calf thymus (45–75 μg/g). Subsequently, the mice were monitored for survival for up to 72 h. Based on the survival data, the 45 μg/g dose was used for analysis of blood cell count, liver function, blood coagulation ability, and promotion of platelet aggregation and platelet/leukocyte aggregate (PLA) production by extracellular histones. C5-deficient mice were protected from lethal thrombosis and had milder thrombocytopenia, consumptive coagulopathy, and liver injury with embolism and lower PLA production than C5-sufficient mice. These results indicate that C5 is associated with coagulation disorders, PLA production, and embolism-induced liver injury. In conclusion, C5 promotes liver injury associated with histone-induced lethal thrombosis. PMID:28205538
Zou, Yan; Xiong, Ji-Bin; Ma, Ke; Wang, Ai-Zhong; Qian, Ke-Jian
2017-10-01
Oxidative stress is a leading cause to liver injury. Rac2 is a Ras-associated guanosine triphosphatase, an important molecule modulating a large number of cells and involved in the regulation of reactive oxygen species (ROS). For the study described here, we supposed that Rac2 knockout protects mice against CCl 4 -induced acute liver injury. We found that Rac2 expressed highly in CCl 4 -induced liver tissues. CCl 4 -treated Rac2 knockout (Rac2-/-) mice had reduced CD24 levels and steatosis. In addition, CCl 4 -induced high expression of pro-inflammatory cytokines and chemokine were reversed by Rac2 deficiency compared to CCl 4 -treated wild type (WT) mice. We also found that fibrosis-related signals of MMP-9, MMP-2 and TGF-β1 were also down-regulated in Rac2 knockout mice induced by CCl 4 . Significantly, oxidative stress induced by CCl 4 was also suppressed owing to the lack of Rac2, evidenced by enhanced superoxide dismutase (SOD) activity, and reduced malondialdehyde (MDA) levels, superoxide radical, H 2 O 2 , xanthine oxidase (XO), xanthine dehydrogenase (XDH) and XO/XDH ratio. Moreover, c-Jun N-terminal protein kinase mitogen-activated protein kinases (JNK MAPK) was activated by CCl 4 , which was reversed in the liver of Rac2-/- mice through western blot and immunohistochemical analysis. In vitro, endotoxin (LPS) was treated to hepatocytes isolated from WT mice and Rac2-/- mice. The data further confirmed the role of Rac2 deficiency suppressed pro-inflammatory cytokines and chemokine, as well as fibrosis-related signals. Of note, production of ROS induced by LPS was reduced in Rac2-/- cells, accompanied with enhanced SOD1, SOD2 and reduced XO and phosphorylated-JNK expressions. Our results indicated that Rac2 played an essential role in acute liver injury induced by CCl 4 , providing the compelling information of the effects of Rac2 on liver injury, and revealing a novel regulatory mechanism for acute liver injury. Copyright © 2017. Published by Elsevier Masson SAS.
Amoxicillin–Clavulanate-Induced Liver Injury
Ghabril, Marwan; Rockey, Don C.; Gu, Jiezhun; Barnhart, Huiman X.; Fontana, Robert J.; Kleiner, David E.; Bonkovsky, Herbert L.
2016-01-01
Background and Aims Amoxicillin–clavulanate (AC) is the most frequent cause of idiosyncratic drug-induced injury (DILI) in the US DILI Network (DILIN) registry. Here, we examined a large cohort of AC-DILI cases and compared features of AC-DILI to those of other drugs. Methods Subjects with suspected DILI were enrolled prospectively, and cases were adjudicated as previously described. Clinical variables and outcomes of patients with AC-DILI were compared to the overall DILIN cohort and to DILI caused by other antimicrobials. Results One hundred and seventeen subjects with AC-DILI were identified from the cohort (n = 1038) representing 11 % of all cases and 24 % of those due to antimicrobial agents (n = 479). Those with AC-DILI were older (60 vs. 48 years, P < 0.001). AC-DILI was more frequent in men than women (62 vs. 39 %) compared to the overall cohort (40 vs. 60 %, P < 0.001). The mean time to symptom onset was 31 days. The Tb, ALT, and ALP were 7 mg/dL, 478, and 325 U/L at onset. Nearly all liver biopsies showed prominent cholestatic features. Resolution of AC-DILI, defined by return of Tb to <2.5 mg/dL, occurred on average 55 days after the peak value. Three female subjects required liver transplantation, and none died due to DILI. Conclusion AC-DILI causes a moderately severe, mixed hepatocellular–cholestatic injury, particularly in older men, unlike DILI in general, which predominates in women. Although often protracted, eventual apparent recovery is typical, particularly for men and usually in women, but three women required liver transplantation. PMID:27003146
Amoxicillin-Clavulanate-Induced Liver Injury.
deLemos, Andrew S; Ghabril, Marwan; Rockey, Don C; Gu, Jiezhun; Barnhart, Huiman X; Fontana, Robert J; Kleiner, David E; Bonkovsky, Herbert L
2016-08-01
Amoxicillin-clavulanate (AC) is the most frequent cause of idiosyncratic drug-induced injury (DILI) in the US DILI Network (DILIN) registry. Here, we examined a large cohort of AC-DILI cases and compared features of AC-DILI to those of other drugs. Subjects with suspected DILI were enrolled prospectively, and cases were adjudicated as previously described. Clinical variables and outcomes of patients with AC-DILI were compared to the overall DILIN cohort and to DILI caused by other antimicrobials. One hundred and seventeen subjects with AC-DILI were identified from the cohort (n = 1038) representing 11 % of all cases and 24 % of those due to antimicrobial agents (n = 479). Those with AC-DILI were older (60 vs. 48 years, P < 0.001). AC-DILI was more frequent in men than women (62 vs. 39 %) compared to the overall cohort (40 vs. 60 %, P < 0.001). The mean time to symptom onset was 31 days. The Tb, ALT, and ALP were 7 mg/dL, 478, and 325 U/L at onset. Nearly all liver biopsies showed prominent cholestatic features. Resolution of AC-DILI, defined by return of Tb to <2.5 mg/dL, occurred on average 55 days after the peak value. Three female subjects required liver transplantation, and none died due to DILI. AC-DILI causes a moderately severe, mixed hepatocellular-cholestatic injury, particularly in older men, unlike DILI in general, which predominates in women. Although often protracted, eventual apparent recovery is typical, particularly for men and usually in women, but three women required liver transplantation.
Liver damage, proliferation, and progenitor cell markers in experimental necrotizing enterocolitis.
Miyake, Hiromu; Li, Bo; Lee, Carol; Koike, Yuhki; Chen, Yong; Seo, Shogo; Pierro, Agostino
2018-05-01
Necrotizing enterocolitis (NEC) is a disease known to cause injury to multiple organs including the liver. Liver regeneration is essential for the recovery after NEC-induced liver injury. Our aim was to investigate hepatic proliferation and progenitor cell marker expression in experimental NEC. Following ethical approval (#32238), NEC was induced in mice by hypoxia, gavage feeding of hyperosmolar formula, and lipopolysaccharide. Breastfed pups were used as control. We analyzed serum ALT level, liver inflammatory cytokines, liver proliferation markers, and progenitor cell marker expression. Comparison was made between NEC and controls. Serum ALT level was higher in NEC (p<0.05). The mRNA expression of inflammatory cytokines in the liver was also higher in NEC (IL6: p<0.05, TNF-α: p<0.01). Conversely, mRNA expression of proliferation markers in the liver was lower in NEC (Ki67; p<0.01, PCNA: p<0.01). LGR5 expression was also significantly decreased in NEC as demonstrated by mRNA (p<0.05) and protein (p<0.01) levels. Inflammatory injury was present in the liver during experimental NEC. Proliferation and LGR5 expression were impaired in the NEC liver. Modulation of progenitor cell expressing LGR5 may result in stimulation of liver regeneration in NEC-induced liver injury and improved clinical outcome. Level IV. Copyright © 2018. Published by Elsevier Inc.
Xu, Guangyu; Han, Xiao; Yuan, Guangxin; An, Liping; Du, Peige
2017-01-01
Liver injury is a common pathological basis of various liver diseases, and long-term liver injury is often an important initiation factor leading to liver fibrosis and even liver cirrhosis and hepatocellular carcinoma (HCC). It has been reported that deproteinized extract of calf blood (DECB) can inhibit the replication of hepatitis B virus and confers a protective effect on the liver after traumatic liver injury. However, few studies on the regulatory factors and mechanisms of DECB have been reported. In this current study, an acute mouse liver injury model was established with carbon tetrachloride (CCl4). The differentially expressed genes and related cell signal transduction pathways were screened using mRNA expression microarray. STEM software V1.3.6 was used for clustering gene functions, and the DAVID and KEGG databases were applied for the analysis. A total of 1355 differentially expressed genes were selected, among which nine were validated by RT-qPCR. The results showed that the Fas, IL1b, Pik3r1, Pik3r5, Traf2, Traf2, Csf2rb2, Map3k14, Pik3cd and Ppp3cc genes were involved in the regulation of DECB in an acute mouse liver injury model. Targets of the protective effects of DECB and its related mechanisms were found in mice with acute liver injury induced by carbon tetrachloride, which may provide an important theoretical basis for further DECB research.
Peixoto, E; Atorrasagasti, C; Aquino, JB; Militello, R; Bayo, J; Fiore, E; Piccioni, F; Salvatierra, E; Alaniz, L; García, MG; Bataller, R; Corrales, F; Gidekel, M; Podhajcer, O; Colombo, MI; Mazzolini, G
2015-01-01
Secreted protein, acidic and rich in cysteine (SPARC) is involved in many biological process including liver fibrogenesis, but its role in acute liver damage is unknown. To examine the role of SPARC in acute liver injury, we used SPARC knock-out (SPARC−/−) mice. Two models of acute liver damage were used: concanavalin A (Con A) and the agonistic anti-CD95 antibody Jo2. SPARC expression levels were analyzed in liver samples from patients with acute-on-chronic alcoholic hepatitis (AH). SPARC expression is increased on acute-on-chronic AH patients. Knockdown of SPARC decreased hepatic damage in the two models of liver injury. SPARC−/− mice showed a marked reduction in Con A-induced necroinflammation. Infiltration by CD4+ T cells, expression of tumor necrosis factor-α and interleukin-6 and apoptosis were attenuated in SPARC−/− mice. Sinusoidal endothelial cell monolayer was preserved and was less activated in Con A-treated SPARC−/− mice. SPARC knockdown reduced Con A-induced autophagy of cultured human microvascular endothelial cells (HMEC-1). Hepatic transcriptome analysis revealed several gene networks that may have a role in the attenuated liver damaged found in Con A-treated SPARC−/− mice. SPARC has a significant role in the development of Con A-induced severe liver injury. These results suggest that SPARC could represent a therapeutic target in acute liver injury. PMID:25410742
Zhao, Panfeng; Piao, Xiangshu; Pan, Long; Zeng, Zhikai; Li, Qingyun; Xu, Xiao; Wang, Hongliang
2017-06-01
Reactive oxygen species (ROS) have been shown to have a role in inflammation. We investigated whether Forsythia suspensa extract (FSE) could exert its antioxidant potential against lipopolysaccharide (LPS)-induced inflammatory liver injury in rats. Rats were orally fed FSE once daily for 7 consecutive days prior to LPS (Escherichia coli, serotype O55:B5) injection. LPS treatment caused liver dysfunction as evidenced by massive histopathological changes and increased serum alanine aminotransferase and aspartate aminotransferase activities which were ameliorated by FSE pretreatment. FSE attenuated LPS-induced depletion of cytosolic nuclear factor-erythroid 2-related factor 2 (Nrf2) and suppression of Nrf2 nuclear translocation in liver, and the generation of ROS and malondialdehyde in serum and liver. FSE increased the Nrf2-mediated induction of heme oxygenase-1 in liver, as well as superoxide dismutase and glutathione peroxidase activities in serum and liver. Importantly, FSE attenuated LPS-induced nuclear factor-кB (NF-кB) nuclear translocation in liver, and subsequently decreased tumor necrosis factor-α, interleukin (IL)-1β and IL-6 levels in serum and liver, which were associated with FSE-induced activation of Nrf2 in liver. These results indicate that the protective mechanisms of FSE may be involved in the attenuation of oxidative stress and the inhibition of the NF-кB-mediated inflammatory response by modulating the Nrf2-mediated antioxidant response against LPS-induced inflammatory liver injury. © 2016 Japanese Society of Animal Science.
Devarbhavi, Harshad; Andrade, Raúl J
2014-05-01
Antimicrobial agents including antituberculosis (anti-TB) agents are the most common cause of idiosyncratic drug-induced liver injury (DILI) and drug-induced liver failure across the world. Better molecular and genetic biomarkers are acutely needed to help identify those at risk of liver injury particularly for those needing antituberculosis therapy. Some antibiotics such as amoxicillin-clavulanate and isoniazid consistently top the lists of agents in retrospective and prospective DILI databases. Central nervous system agents, particularly antiepileptics, account for the second most common class of agents implicated in DILI registries. Hepatotoxicity from older antiepileptics such as carbamazepine, phenytoin, and phenobarbital are often associated with hypersensitivity features, whereas newer antiepileptic drugs have a more favorable safety profile. Antidepressants and nonsteroidal anti-inflammatory drugs carry very low risk of significant liver injury, but their prolific use make them important causes of DILI. Early diagnosis and withdrawal of the offending agent remain the mainstays of minimizing hepatotoxicity. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Rosen, Hugo R; Biggins, Scott W; Niki, Toshiro; Gralla, Jane; Hillman, Holly; Hirashima, Mitsuomi; Schilsky, Michael; Lee, William M
2016-04-01
Fewer than 50% of patients with acute liver failure (ALF) recover spontaneously, and ALF has high mortality without liver transplantation. Kupffer cells have been reported to mediate liver inflammation during drug-induced injury. Galectin-9 is produced by Kupffer cells and has diverse roles in regulating immunity. We investigated whether plasma levels of galectin-9 are associated with outcomes of patients with ALF. We analyzed plasma samples (collected at time of hospital admission) and clinical data from 149 patients included in the Acute Liver Failure Study Group from July 2006 through November 2010 (110 had acetaminophen-induced hepatotoxicity and 39 had nonacetaminophen drug-induced liver injury). We compared data with those from all patients enrolled in the study (from July 1, 2006 through October 30, 2013), and from healthy individuals of similar ages with no evidence of liver disease (control subjects). Plasma levels of galectin-9 were measured using a polyclonal antibody and colorimetric assay. Patients with ALF had statistically higher plasma levels of galectin-9 than control subjects, but levels did not differ significantly between patients with acetaminophen-induced liver injury and drug-induced liver injury. A level of galectin-9 above 690 pg/mL was associated with a statistically significant increase in risk for mortality or liver transplantation caused by ALF. Competing risk analyses associated level of galectin-9 with transplant-free survival, independently of Model For End-Stage Liver Disease score or systemic inflammatory response syndrome. A one-time measurement of plasma galectin-9 level can be used to assign patients with ALF to high-, intermediate-, and low-risk groups. The combination of galectin-9 level and Model For End-Stage Liver Disease score was more closely associated with patient outcome than either value alone. These data might be used to determine patient prognoses and prioritize patients for liver transplantation. ClinicalTrials.gov ID NCT00518440. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
Baicalin Attenuates IL-17-Mediated Acetaminophen-Induced Liver Injury in a Mouse Model
Liao, Chia-Chih; Day, Yuan-Ji; Lee, Hung-Chen; Liou, Jiin-Tarng; Chou, An-Hsun; Liu, Fu-Chao
2016-01-01
Background IL-17 has been shown to be involved in liver inflammatory disorders in both mice and humans. Baicalin (BA), a major compound extracted from traditional herb medicine (Scutellariae radix), has potent hepatoprotective properties. Previous study showed that BA inhibits IL-17-mediated lymphocyte adhesion and downregulates joint inflammation. The aim of this study is to investigate the role of IL-17 in the hepatoprotective effects of BA in an acetaminophen (APAP)-induced liver injury mouse model. Methods Eight weeks male C57BL/6 (B6) mice were used for this study. Mice received intraperitoneal hepatotoxic injection of APAP (300 mg/kg) and after 30 min of injection, the mice were treated with BA at a concentration of 30 mg/kg. After 16 h of treatment, mice were killed. Blood samples and liver tissues were harvested for analysis of liver injury parameters. Results APAP overdose significantly increased the serum alanine transferase (ALT) levels, hepatic activities of myeloperoxidase (MPO), expression of cytokines (TNF-α, IL-6, and IL-17), and malondialdehyde (MDA) activity when compared with the control animals. BA treatment after APAP administration significantly attenuated the elevation of these parameters in APAP-induced liver injury mice. Furthermore, BA treatment could also decrease hepatic IL-17-producing γδT cells recruitment, which was induced after APAP overdose. Conclusion Our data suggested that baicalin treatment could effectively decrease APAP-induced liver injury in part through attenuation of hepatic IL-17 expression. These results indicate that baicalin is a potential hepatoprotective agent. PMID:27855209
Lim, Roxanne; Conner, Kim; Karnsakul, Wikrom
2014-01-01
Drug-induced hepatotoxicity most commonly manifests as an acute hepatitis syndrome and remains the leading cause of drug-induced death/mortality and the primary reason for withdrawal of drugs from the pharmaceutical market. We report a case of acute liver injury in a 12-year-old Hispanic boy, who received a series of five antibiotics (amoxicillin, ceftriaxone, vancomycin, ampicillin/sulbactam, and clindamycin) for cervical lymphadenitis/retropharyngeal cellulitis. Histopathology of the liver biopsy specimen revealed acute cholestatic hepatitis. All known causes of acute liver injury were appropriately excluded and (only) drug-induced liver injury was left as a cause of his cholestasis. Liver-specific causality assessment scales such as Council for the International Organization of Medical Sciences/Roussel Uclaf Causality Assessment Method scoring system (CIOMS/RUCAM), Maria and Victorino scale, and Digestive Disease Week-Japan were applied to seek the most likely offending drug. Although clindamycin is the most likely cause by clinical diagnosis, none of causality assessment scales aid in the diagnosis. PMID:25506455
Donepudi, Ajay C.; Ferrell, Jessica M.; Boehme, Shannon; Choi, Hueng‐Sik
2017-01-01
Alcoholic fatty liver disease (AFLD) is a major risk factor for cirrhosis‐associated liver diseases. Studies demonstrate that alcohol increases serum bile acids in humans and rodents. AFLD has been linked to cholestasis, although the physiologic relevance of increased bile acids in AFLD and the underlying mechanism of increasing the bile acid pool by alcohol feeding are still unclear. In this study, we used mouse models either deficient of or overexpressing cholesterol 7α‐hydroxylase (Cyp7a1), the rate‐limiting and key regulatory enzyme in bile acid synthesis, to study the effect of alcohol drinking in liver metabolism and inflammation. Mice were challenged with chronic ethanol feeding (10 days) plus a binge dose of alcohol by oral gavage (5 g/kg body weight). Alcohol feeding reduced bile acid synthesis gene expression but increased the bile acid pool size, hepatic triglycerides and cholesterol, and inflammation and injury in wild‐type mice and aggravated liver inflammation and injury in Cyp7a1‐deficient mice. Interestingly, alcohol‐induced hepatic inflammation and injury were ameliorated in Cyp7a1 transgenic mice. Conclusion: Alcohol feeding alters hepatic bile acid and cholesterol metabolism to cause liver inflammation and injury, while maintenance of bile acid and cholesterol homeostasis protect against alcohol‐induced hepatic inflammation and injury. Our findings indicate that CYP7A1 plays a key role in protection against alcohol‐induced steatohepatitis. (Hepatology Communications 2018;2:99–112) PMID:29404516
Edaravone prevents lung injury induced by hepatic ischemia-reperfusion.
Uchiyama, Munehito; Tojo, Kentaro; Yazawa, Takuya; Ota, Shuhei; Goto, Takahisa; Kurahashi, Kiyoyasu
2015-04-01
Lung injury is a major clinical concern after hepatic ischemia-reperfusion (I/R), due to the production of reactive oxygen species in the reperfused liver. We investigated the efficacy of edaravone, a potent free-radical scavenger, for attenuating lung injury after hepatic I/R. Adult male Sprague-Dawley rats were assigned to sham + normal saline (NS), I/R + NS, or I/R + edaravone group. Rats in the I/R groups were subjected to 90 min of partial hepatic I/R. Five minutes before reperfusion, 3 mg/kg edaravone was administered to the I/R + edaravone group. After 6 h of reperfusion, we evaluated lung histopathology and wet-to-dry ratio. We also measured malondialdehyde (MDA), an indicator of oxidative stress, in the liver and the lung, as well as cytokine messenger RNA expressions in the reperfused liver and plasma cytokine concentrations. Histopathology revealed lung damages after 6 h reperfusion of partial ischemic liver. Moreover, a significant increase in lung wet-to-dry ratio was observed. MDA concentration increased in the reperfused liver, but not in the lungs. Edaravone administration attenuated the lung injury and the increase of MDA in the reperfused liver. Edaravone also suppressed the reperfusion-induced increase of interleukin-6 messenger RNA expressions in the liver and plasma interleukin-6 concentrations. Edaravone administration before reperfusion of the ischemic liver attenuates oxidative stress in the reperfused liver and the subsequent lung injury. Edaravone may be beneficial for preventing lung injury induced by hepatic I/R. Copyright © 2015 Elsevier Inc. All rights reserved.
Feng, Ruibing; Wang, Yang; Liu, Conghui; Yan, Chunyan; Zhang, Hang; Su, Huanxing; Kang, Jing X; Shang, Chang-Zhen; Wan, Jian-Bo
2018-04-18
Acetaminophen (APAP) overdose-induced hepatotoxicity is the most commonly cause of drug-induced liver failure characterized by oxidative stress, mitochondrial dysfunction, and cell damage. Therapeutic efficacy of omega-3 polyunsaturated fatty acids (n-3 PUFA) in several models of liver disease is well documented. However, the impacts of n-3 PUFA on APAP hepatotoxicity are not adequately addressed. In this study, the fat-1 transgenic mice that synthesize endogenous n-3 PUFA and wild type (WT) littermates were injected intraperitoneally with APAP at the dose of 400 mg/kg to induce liver injury, and euthanized at 0 h, 2 h, 4 h and 6 h post APAP injection for sampling. APAP overdose caused severe liver injury in WT mice as indicated by serum parameters, histopathological changes and hepatocyte apoptosis, which were remarkably ameliorated in fat-1 mice. These protective effects of n-3 PUFA were associated with regulation of the prolonged JNK activation via inhibition of apoptosis signal-regulating kinase 1 (ASK1)/mitogen-activated protein kinase kinase 4 (MKK4) pathway. Additionally, the augment of endogenous n-3 PUFA reduced nuclear factor kappa B (NF-κB) - mediated inflammation response induced by APAP treatment in the liver. These findings indicate that n-3 PUFA has potent protective effects against APAP-induced acute liver injury, suggesting that n-3 dietary supplement with n-3 PUFA may be a potential therapeutic strategy for the treatment of hepatotoxicity induced by APAP overdose. Copyright © 2018 Elsevier Inc. All rights reserved.
Neutrophils alleviate fibrosis in the CCl4-induced mouse chronic liver injury model.
Saijou, Eiko; Enomoto, Yutaka; Matsuda, Michitaka; Yuet-Yin Kok, Cindy; Akira, Shizuo; Tanaka, Minoru; Miyajima, Atsushi
2018-06-01
Tribbles pseudokinase 1 ( Trib1 ) is a negative regulator of CCAAT/enhancer binding protein α (C/EBPα) and is known to induce granulopoiesis while suppressing monocyte differentiation. Loss of Trib1 was previously shown to increase the neutrophil population in the spleen but lead to M2-like macrophage reduction. Because M2 macrophages are anti-inflammatory and promote tissue repair by producing fibrogenic factors, we investigated liver fibrosis in Trib1 -deficient mice. Interestingly, loss of Trib1 suppressed fibrosis in the CCl 4 -induced chronic liver injury model. Trib1 knockout increased neutrophils but had a minimal effect on the macrophage population in the liver. Hepatic expressions of neutrophil matrix metalloproteinases ( Mmp ) 8 and Mmp9 were increased, but the production of fibrogenic factors, including transforming growth factor β1, was not affected by loss of Trib1 . These results suggest that neutrophils are responsible for the suppression of fibrosis in Trib1 -deficient liver. Consistently, transplantation of Trib1 -deficient bone marrow cells into wild-type mice alleviated CCl 4 -induced fibrosis. Furthermore, expression of chemokine (C-X-C motif) ligand 1 ( Cxcl1 ) by adeno-associated viral vector in the normal liver recruited neutrophils and suppressed CCl 4 -induced fibrosis; infusion of wild-type neutrophils in CCl 4 -treated mice also ameliorated fibrosis. Using recombinant adeno-associated virus-mediated expression of Mmp8 and Mmp9 alleviated liver fibrosis. Finally, neutrophil depletion by infusion of Ly6G antibody significantly enhanced CCl 4 -induced fibrosis. Conclusion : While neutrophils are well known to exacerbate acute liver injury, our results demonstrate a beneficial role of neutrophils in chronic liver injury by promoting fibrolysis. ( Hepatology Communications 2018;2:703-717).
Neutrophils alleviate fibrosis in the CCl4‐induced mouse chronic liver injury model
Saijou, Eiko; Enomoto, Yutaka; Matsuda, Michitaka; Yuet‐Yin Kok, Cindy; Akira, Shizuo; Tanaka, Minoru
2018-01-01
Tribbles pseudokinase 1 (Trib1) is a negative regulator of CCAAT/enhancer binding protein α (C/EBPα) and is known to induce granulopoiesis while suppressing monocyte differentiation. Loss of Trib1 was previously shown to increase the neutrophil population in the spleen but lead to M2‐like macrophage reduction. Because M2 macrophages are anti‐inflammatory and promote tissue repair by producing fibrogenic factors, we investigated liver fibrosis in Trib1‐deficient mice. Interestingly, loss of Trib1 suppressed fibrosis in the CCl4‐induced chronic liver injury model. Trib1 knockout increased neutrophils but had a minimal effect on the macrophage population in the liver. Hepatic expressions of neutrophil matrix metalloproteinases (Mmp)8 and Mmp9 were increased, but the production of fibrogenic factors, including transforming growth factor β1, was not affected by loss of Trib1. These results suggest that neutrophils are responsible for the suppression of fibrosis in Trib1‐deficient liver. Consistently, transplantation of Trib1‐deficient bone marrow cells into wild‐type mice alleviated CCl4‐induced fibrosis. Furthermore, expression of chemokine (C‐X‐C motif) ligand 1 (Cxcl1) by adeno‐associated viral vector in the normal liver recruited neutrophils and suppressed CCl4‐induced fibrosis; infusion of wild‐type neutrophils in CCl4‐treated mice also ameliorated fibrosis. Using recombinant adeno‐associated virus‐mediated expression of Mmp8 and Mmp9 alleviated liver fibrosis. Finally, neutrophil depletion by infusion of Ly6G antibody significantly enhanced CCl4‐induced fibrosis. Conclusion: While neutrophils are well known to exacerbate acute liver injury, our results demonstrate a beneficial role of neutrophils in chronic liver injury by promoting fibrolysis. (Hepatology Communications 2018;2:703‐717) PMID:29881822
Li, Wenfeng; Lu, Yalong
2018-02-01
The dried fruit of Sophora japonica L. is a traditional Chinese herb tea rich in sophoricoside that is an isoflavone glycoside. The aim of current study was to investigate the hepatic protective effect of sophoricoside in high fructose (HF) diet fed mice. Healthy male mice were fed 30% fructose water and treated 80 and 160 mg/kg·bw sophoricoside continuously for 8 wk. Our data showed that administration of sophoricoside at 80 and 160 mg/kg·bw observably decreased the body weight and liver weight in HF-fed mice. It was found that the treatment of sophoricoside decreased the hepatic cholesterol and triglyceride levels, and serum low-density lipoprotein-cholesterol and apolipoprotein-B levels, and elevated the serum high-density lipoprotein-cholesterol and apolipoprotein-A1 levels. Moreover, the administration of sophoricoside decreased the HF-caused elevations of hepatic malonaldehyde, interleukin-1 and tumor necrosis factor-α levels, while increased the HF-induced decreases of hepatic superoxide dismutase and glutathione peroxidase activities. Meanwhile, serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase activities were reduced by treatment of sophoricoside in HF-fed mice. Histopathology of hematoxylin and eosin (H&E) and oil red O staining of liver tissues also confirmed the beneficial effects of sophoricoside against liver injury induced by HF-diet in mice. These findings indicated that sophoricoside may be a novel natural isoflavone for alleviating HF-induced liver injury. Fruit of Sophora japonica L. is a traditional herb tea and it recently becomes popular in China. Sophoricoside is an isoflavone glycoside (Genistein-4'-O-β-d-glucopyranoside) isolated from S. japonical L, and it possessed differential effects on the body health. The ingestion of sophoricoside or sophora fruit tea may be a novel strategy to prevent non-alcoholic fatty liver disease. © 2018 Institute of Food Technologists®.
Zhuang, Zhuonan; Lian, Peilong; Wu, Xiaojuan; Shi, Baoxu; Zhuang, Maoyou; Zhou, Ruiling; Zhao, Rui; Zhao, Zhen; Guo, Sen; Ji, Zhipeng; Xu, Kesen
2016-01-01
Aim of this study is to protect donor liver against ischemia-reperfusion injury by abating Cytochrome C induced apoptosome on rat model. A total of 25 clean SD inbred male rats were used in this research. The rats in ischemia-reperfusion injury group (I/R group, n=5) were under liver transplantation operation; rats in dichloroacetate diisopropylamine group (DADA group, n=5) were treated DADA before liver transplantation; control group (Ctrl group, n=5); other 10 rats were used to offer donor livers. In DADA therapy group, Cytochrome C expression in donor hepatocellular cytoplasm was detected lower than that in I/R group. And the Cytochrome C induced apoptosome was also decreased in according to the lower expressions of Apaf-1 and Caspase3. Low level of cleaved PARP expression revealed less apoptosis in liver tissue. The morphology of donor liver mitochondria in DADA group was observed to be slightly edema but less than I/R group after operation 12 h. The liver function indexes of ALT and AST in serum were tested, and the results in DADA group showed it is significantly lower than I/R group after operation 12 h. The inflammation indexes of IL-6 and TNF-α expressions in DADA group were significantly lower than that in I/R group after operation 24 h. The dichloroacetate diisopropylamine treatment could protect the hepatocellular mitochondria in case of the spillage of Cytochrome C induced apoptosome, and protect the liver against ischemia-reperfusion injury. Thus, it may be a method to promote the recovery of donor liver function after transplantation.
Addante, Annalisa; Roncero, Cesáreo; Almalé, Laura; Lazcanoiturburu, Nerea; García-Álvaro, María; Fernández, Margarita; Sanz, Julián; Hammad, Seddik; Nwosu, Zeribe C; Lee, Se-Jin; Fabregat, Isabel; Dooley, Steven; Ten Dijke, Peter; Herrera, Blanca; Sánchez, Aránzazu
2018-05-11
Bone morphogenetic protein 9 (BMP9) interferes with liver regeneration upon acute injury, while promoting fibrosis upon carbon tetrachloride-induced chronic injury. We have now addressed the role of BMP9 in 3,5 diethoxicarbonyl-1,4 dihydrocollidine (DDC)-induced cholestatic liver injury, a model of liver regeneration mediated by hepatic progenitor cell (known as oval cell), exemplified as ductular reaction and oval cell expansion. WT and BMP9KO mice were submitted to DDC diet. Livers were examined for liver injury, fibrosis, inflammation and oval cell expansion by serum biochemistry, histology, RT-qPCR and western blot. BMP9 signalling and effects in oval cells were studied in vitro using western blot and transcriptional assays, plus functional assays of DNA synthesis, cell viability and apoptosis. Crosslinking assays and short hairpin RNA approaches were used to identify the receptors mediating BMP9 effects. Deletion of BMP9 reduces liver damage and fibrosis, but enhances inflammation upon DDC feeding. Molecularly, absence of BMP9 results in overactivation of PI3K/AKT, ERK-MAPKs and c-Met signalling pathways, which together with an enhanced ductular reaction and oval cell expansion evidence an improved regenerative response and decreased damage in response to DDC feeding. Importantly, BMP9 directly targets oval cells, it activates SMAD1,5,8, decreases cell growth and promotes apoptosis, effects that are mediated by Activin Receptor-Like Kinase 2 (ALK2) type I receptor. We identify BMP9 as a negative regulator of oval cell expansion in cholestatic injury, its deletion enhancing liver regeneration. Likewise, our work further supports BMP9 as an attractive therapeutic target for chronic liver diseases. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mosedale, Merrie; Wu, Hong; Kurtz, C. Lisa
A large number of antibiotics are known to cause drug-induced liver injury in the clinic; however, interpreting clinical risk is not straightforward owing to a lack of predictivity of the toxicity by standard preclinical species and a poor understanding of the mechanisms of toxicity. An example is PF-04287881, a novel ketolide antibiotic that caused elevations in liver function tests in Phase I clinical studies. In this study, a mouse diversity panel (MDP), comprised of 34 genetically diverse, inbred mouse strains, was utilized to model the toxicity observed with PF-04287881 treatment and investigate potential mechanisms that may mediate the liver response.more » Significant elevations in serum alanine aminotransferase (ALT) levels in PF-04287881-treated animals relative to vehicle-treated controls were observed in the majority (88%) of strains tested following a seven day exposure. The average fold elevation in ALT varied by genetic background and correlated with microscopic findings of hepatocellular hypertrophy, hepatocellular single cell necrosis, and Kupffer cell vacuolation (confirmed as phospholipidosis) in the liver. Global liver mRNA expression was evaluated in a subset of four strains to identify transcript and pathway differences that distinguish susceptible mice from resistant mice in the context of PF-04287881 treatment. The protein ubiquitination pathway was highly enriched among genes associated with PF-04287881-induced hepatocellular necrosis. Expression changes associated with PF-04287881-induced phospholipidosis included genes involved in drug transport, phospholipid metabolism, and lysosomal function. The findings suggest that perturbations in genes involved in protein degradation leading to accumulation of oxidized proteins may mediate the liver injury induced by this drug. - Highlights: • Identified susceptible and resistant mouse strains to liver injury induced by a CAD • Liver injury characterized by single cell necrosis, and phospholipidosis • Decreased gene expression associated with protein ubiquitination in sensitive mice • Altered protein ubiquitination may cause oxidized protein accumulation in the liver.« less
Shinohara, Mie; Ybanez, Maria D.; Win, Sanda; Than, Tin Aung; Jain, Shilpa; Gaarde, William A.; Han, Derick; Kaplowitz, Neil
2010-01-01
Previously we demonstrated that c-Jun N-terminal kinase (JNK) plays a central role in acetaminophen (APAP)-induced liver injury. In the current work, we examined other possible signaling pathways that may also contribute to APAP hepatotoxicity. APAP treatment to mice caused glycogen synthase kinase-3β (GSK-3β) activation and translocation to mitochondria during the initial phase of APAP-induced liver injury (∼1 h). The silencing of GSK-3β, but not Akt-2 (protein kinase B) or glycogen synthase kinase-3α (GSK-3α), using antisense significantly protected mice from APAP-induced liver injury. The silencing of GSK-3β affected several key pathways important in conferring protection against APAP-induced liver injury. APAP treatment was observed to promote the loss of glutamate cysteine ligase (GCL, rate-limiting enzyme in GSH synthesis) in liver. The silencing of GSK-3β decreased the loss of hepatic GCL, and promoted greater GSH recovery in liver following APAP treatment. Silencing JNK1 and -2 also prevented the loss of GCL. APAP treatment also resulted in GSK-3β translocation to mitochondria and the degradation of myeloid cell leukemia sequence 1 (Mcl-1) in mitochondrial membranes in liver. The silencing of GSK-3β reduced Mcl-1 degradation caused by APAP treatment. The silencing of GSK-3β also resulted in an inhibition of the early phase (0–2 h), and blunted the late phase (after 4 h) of JNK activation and translocation to mitochondria in liver following APAP treatment. Taken together our results suggest that activation of GSK-3β is a key mediator of the initial phase of APAP-induced liver injury through modulating GCL and Mcl-1 degradation, as well as JNK activation in liver. PMID:20061376
Stutchfield, Benjamin M.; Antoine, Daniel J.; Mackinnon, Alison C.; Gow, Deborah J.; Bain, Calum C.; Hawley, Catherine A.; Hughes, Michael J.; Francis, Benjamin; Wojtacha, Davina; Man, Tak Y.; Dear, James W.; Devey, Luke R.; Mowat, Alan M.; Pollard, Jeffrey W.; Park, B. Kevin; Jenkins, Stephen J.; Simpson, Kenneth J.; Hume, David A.; Wigmore, Stephen J.; Forbes, Stuart J.
2015-01-01
Background & Aims Liver regeneration requires functional liver macrophages, which provide an immune barrier that is compromised after liver injury. The numbers of liver macrophages are controlled by macrophage colony-stimulating factor (CSF1). We examined the prognostic significance of the serum level of CSF1 in patients with acute liver injury and studied its effects in mice. Methods We measured levels of CSF1 in serum samples collected from 55 patients who underwent partial hepatectomy at the Royal Infirmary Edinburgh between December 2012 and October 2013, as well as from 78 patients with acetaminophen-induced acute liver failure admitted to the Royal Infirmary Edinburgh or the University of Kansas Medical Centre. We studied the effects of increased levels of CSF1 in uninjured mice that express wild-type CSF1 receptor or a constitutive or inducible CSF1-receptor reporter, as well as in chemokine receptor 2 (Ccr2)-/- mice; we performed fate-tracing experiments using bone marrow chimeras. We administered CSF1-Fc (fragment, crystallizable) to mice after partial hepatectomy and acetaminophen intoxication, and measured regenerative parameters and innate immunity by clearance of fluorescent microbeads and bacterial particles. Results Serum levels of CSF1 increased in patients undergoing liver surgery in proportion to the extent of liver resected. In patients with acetaminophen-induced acute liver failure, a low serum level of CSF1 was associated with increased mortality. In mice, administration of CSF1-Fc promoted hepatic macrophage accumulation via proliferation of resident macrophages and recruitment of monocytes. CSF1-Fc also promoted transdifferentiation of infiltrating monocytes into cells with a hepatic macrophage phenotype. CSF1-Fc increased innate immunity in mice after partial hepatectomy or acetaminophen-induced injury, with resident hepatic macrophage as the main effector cells. Conclusions Serum CSF1 appears to be a prognostic marker for patients with acute liver injury. CSF1 might be developed as a therapeutic agent to restore innate immune function after liver injury. PMID:26344055
Byun, Jae-Hyuk; Kim, Jun; Choung, Se-Young
2018-03-01
The liver is an essential organ for the detoxification of exogenous xenobiotics, drugs and toxic substances. The incidence rate of non-alcoholic liver injury increases due to dietary habit change and drug use increase. Our previous study demonstrated that Ecklonia stolonifera (ES) formulation has hepatoprotective effect against alcohol-induced liver injury in rat and tacrine-induced hepatotoxicity in HepG2 cells. This present study was designated to elucidate hepatoprotective effects of ES formulation against carbon tetrachloride (CCl 4 )-induced liver injury in Sprague Dawley rat. Sixty rats were randomly divided into six groups. The rats were treated orally with ES formulation and silymarin (served as positive control, only 100 mg/kg/day) at a dose of 50, 100, or 200 mg/kg/day for 21 days. Seven days after treatment, liver injury was induced by intraperitoneal injection of CCl 4 (1.5 ml/kg, twice a week for 14 days). The administration of CCl 4 exhibited significant elevation of hepatic enzymes (like AST and ALT), and decrease of antioxidant related enzymes (superoxide dismutase, glutathione peroxidase and catalase) and glutathione. Then, it leaded to DNA damages (8-oxo-2'-deoxyguanosine) and lipid peroxidation (malondialdehyde). Administration of ES formulation inhibited imbalance of above factors compared to CCl 4 induced rat in a dose dependent manner. Real time PCR analysis indicates that CYP2E1 was upregulated in CCl 4 induced rat. However, increased gene expression was compromised by ES formulation treatment. These findings suggests that ES formulation could protect hepatotoxicity caused by CCl 4 via two pathways: elevation of antioxidant enzymes and normalization of CYP2E1 enzyme.
Gut microbiota mediates diurnal variation of acetaminophen induced acute liver injury in mice.
Gong, Shenhai; Lan, Tian; Zeng, Liyan; Luo, Haihua; Yang, Xiaoyu; Li, Na; Chen, Xiaojiao; Liu, Zhanguo; Li, Rui; Win, Sanda; Liu, Shuwen; Zhou, Hongwei; Schnabl, Bernd; Jiang, Yong; Kaplowitz, Neil; Chen, Peng
2018-07-01
Acetaminophen (APAP) induced hepatotoxicity is a leading cause of acute liver failure worldwide. It is well established that the liver damage induced by acetaminophen exhibits diurnal variation. However, the detailed mechanism for the hepatotoxic variation is not clear. Herein, we aimed to determine the relative contributions of gut microbiota in modulating the diurnal variation of hepatotoxicity induced by APAP. Male Balb/C mice were treated with or without antibiotics and a single dose of orally administered APAP (300 mg/kg) at ZT0 (when the light is on-start of resting period) and ZT12 (when the light is off-start of active period). In agreement with previous findings, hepatic injury was markedly enhanced at ZT12 compared with ZT0. Interestingly, upon antibiotic treatment, ZT12 displayed a protective effect against APAP hepatotoxicity similar to ZT0. Moreover, mice that received the cecal content from ZT12 showed more severe liver damage than mice that received the cecal content from ZT0. 16S sequencing data revealed significant differences in the cecal content between ZT0 and ZT12 in the compositional level. Furthermore, metabolomic analysis showed that the gut microbial metabolites were also different between ZT0 and ZT12. Specifically, the level of 1-phenyl-1,2-propanedione (PPD) was significantly higher at ZT12 than ZT0. Treatment with PPD alone did not cause obvious liver damage. However, PPD synergistically enhanced APAP-induced hepatic injury in vivo and in vitro. Finally, we found Saccharomyces cerevisiae, which could reduce intestinal PPD levels, was able to markedly alleviate APAP-induced liver damage at ZT12. The gut microbial metabolite PPD was responsible, at least in part, for the diurnal variation of hepatotoxicity induced by APAP by decreasing glutathione levels. Acetaminophen (APAP) induced acute liver failure because of over dose is a leading public health problem. APAP-induced liver injury exhibits diurnal variation, specifically APAP causes more severe liver damage when taken at night compared with in the morning. Herein, we showed that gut microbial metabolite, 1-phenyl-1,2-propanedione is involved in the rhythmic hepatotoxicity induced by APAP, by depleting hepatic glutathione (an important antioxidant) levels. Our data suggest gut microbiota may be a potential target for reducing APAP-induced acute liver injury. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Dietary Fisetin Supplementation Protects Against Alcohol-Induced Liver Injury in Mice.
Sun, Qian; Zhang, Wenliang; Zhong, Wei; Sun, Xinguo; Zhou, Zhanxiang
2016-10-01
Overproduction of reactive oxygen species is associated with the development of alcoholic liver disease (ALD). Plant polyphenols have been used as dietary interventions for multiple diseases including ALD. The objective of this study was to determine whether dietary supplementation with fisetin, a novel flavonoid, exerts beneficial effect on alcohol-induced liver injury. C57BL/6J mice were pair-fed with the Lieber-DeCarli control or ethanol (EtOH) diet for 4 weeks with or without fisetin supplementation at 10 mg/kg/d. Alcohol feeding induced lipid accumulation in the liver and increased plasma alanine aminotransferase and aspartate aminotransferase activities, which were attenuated by fisetin supplementation. The EtOH concentrations in the plasma and liver were significantly elevated by alcohol exposure but were reduced by fisetin supplementation. Although fisetin did not affect the protein expression of alcohol metabolism enzymes, the aldehyde dehydrogenase activities were significantly increased by fisetin compared to the alcohol alone group. In addition, fisetin supplementation remarkably reduced hepatic NADPH oxidase 4 levels along with decreased plasma hydrogen peroxide and hepatic superoxide and 4-hydroxynonenal levels after alcohol exposure. Alcohol-induced apoptosis and up-regulation of Fas and cleaved caspase-3 in the liver were prevented by fisetin. Moreover, fisetin supplementation attenuated alcohol-induced hepatic steatosis through increasing plasma adiponectin levels and hepatic protein levels of p-AMPK, ACOX1, CYP4A, and MTTP. This study demonstrated that the protective effect of fisetin on ALD is achieved by accelerating EtOH clearance and inhibition of oxidative stress. The data suggest that fisetin has a therapeutical potential for treating ALD. Copyright © 2016 by the Research Society on Alcoholism.
Dietary fisetin supplementation protects against alcohol-induced liver injury in mice
Sun, Qian; Zhang, Wenliang; Zhong, Wei; Sun, Xinguo; Zhou, Zhanxiang
2016-01-01
Background Overproduction of reactive oxygen species (ROS) is associated with the development of alcoholic liver disease (ALD). Plant polyphenols have been used as dietary inverventions for multiple diseases including ALD. The objective of the present study was to determine whether dietary supplementation with fisetin, a novel flavonoid, exerts beneficial effect on alcohol-induced liver injury. Methods C57BL/6J mice were pair-fed with the Lieber-DeCarli control or ethanol diet for four weeks with or without fisetin supplementation at 10 mg/kg/d. Results Alcohol feeding induced lipid accumulation in the liver and increased plasma ALT and AST activities, which were attenuated by fisetin suplementation. The ethanol concentrations in the plasma and liver were significantly elevated by alcohol exposure but were reduced by fisetin suplementation. Although fisetin did not affect the protein expression of alcohol metabolism enzymes, the aldehyde dehydrogenase activities were significantly increased by fisetin compared to the alcohol alone group. In addition, fisetin suplementation remarkably reduced hepatic NADPH oxidase 4 (NOX4) levels along with decreased plasma hydrogen peroxide and hepatic superoxide and 4-hydroxynonenal (4HNE) levels after alcohol exposure. Alcohol-induced apoptosis and upregulation of Fas and cleaved caspase-3 in the liver were prevented by fisetin. Moreover, fisetin suplementation attenuated alcohol-induced hepatic streatosis through increasing plasma adiponectin levels and hepatic protein levels of p-AMPK, ACOX1, CYP4A, and MTTP. Conclusion The present study demonstrated that the protective effect of fisetin on ALD is achieved by accelerating ethanol clearance and inhibition of oxidative stress. The data suggest that fisetin has a therapeutical potential for treating ALD. PMID:27575873
Metabonomics study on Polygonum multiflorum induced liver toxicity in rats by GC-MS
Zhang, Yuan; Wang, Nannan; Zhang, Meiling; Diao, Tingting; Tang, Jingyue; Dai, Mingzhu; Chen, Suhong; Lin, Guanyang
2015-01-01
Polygonum multiflorum, a traditional Chinese medicinal herb, is widely used in liver and liver nourishing. Recent years, drug regulatory departments reported that Polygonum multiflorum caused serious adverse reaction in clinic, especially liver injury. In this study, we detected the changes in rat serum and liver tissue metabolites through gas chromatography-mass spectrometry (GC-MS). Mass spectrometry, partial least squares-discriminate analysis (PLS-DA) and other diversified techniques were used to analyze the differences among their metabolites. Compared to the control group, the serum concentrations of L-threonine and serine in water extraction groups increased. The serum concentrations of 9,12-octadecadienoic acid, hexadecanoic acid, oleic acid, D-glucose and octadecanoic acid in alcohol extraction groups increased, while lactic acid decreased to a great extent. For liver tissue, compared to the control group, the concentrations of myo-inositol, oleic acid and cholesterol in water extraction groups increased, while those of hexadecanoic acid, octadecanoic acid, ribitol and butanedioic acid decreased to a great extent. The concentrations of myo-inositol, phosphoric acid, uridine, oleic acid, cholesterol and butanoic acid in alcohol extraction groups increased to a great extent, while those of hexadecanoic acid, octadecanoic acid, ribitol and butanedioic acid decreased. The results indicate that Polygonum multiflorum induces the metabolic disorders of energy metabolism, amino acid and lipid metabolism. What’s more, liver injury of alcohol extraction group was more serious than group of water extraction. PMID:26379894
Fang, Wendy C; Adler, Nikki R; Graudins, Linda V; Goldblatt, Caitlin; Goh, Michelle S Y; Roberts, Stuart K; Trubiano, Jason A; Aung, Ar Kar
2018-05-01
Drug-induced liver injury (DILI) can be associated with certain cutaneous adverse drug reaction (cADR). To demonstrate the prevalence of DILI in patients with cADRs. Severity and patterns of liver injury, risk factors, causal medications and outcomes are also examined. A retrospective cohort study of patients with cADRs was conducted across two hospitals in Australia. Patients were identified through cross-linkage of multiple databases. One hundred and four patients with cADRs were identified. Of these, 33 (31.7%) had liver injury, representing 50% of patients with drug reaction with eosinophilia and systemic symptoms, and 30.2% of patients with Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN). Most cases of liver injury (69.7%) were of a cholestatic/mixed pattern with severe disease in 18.2%. No significant risk factors for development of liver injury were noted, but peripheral lymphocytosis may represent a risk in patients with SJS (odds ratio, OR = 6.0, 95% confidence interval, CI: 1.8-19.7, P = 0.003). Antimicrobials were the most common class to be implicated in DILI. The median length of inpatient stay was longer in patients with liver injury compared to those without (19 vs 11 days, P = 0.002). The mortality rate in those with liver injury was 15.2% and 9.9% in those without. No patients required liver transplantation. DILI commonly occurs in patients with cADRs and is associated with longer inpatient stay. Patients with SJS/TEN and peripheral lymphocytosis appear to be at higher risk for developing associated liver injury. © 2018 Royal Australasian College of Physicians.
Hou, Yanpeng; Yang, Huai'an; Cui, Zeshi; Tai, Xuhui; Chu, Yanling; Guo, Xing
2017-09-01
Obstructive sleep apnea that characterized by chronic intermittent hypoxia (CIH) has been reported to associate with chronic liver injury. Tauroursodeoxycholic acid (TUDCA) exerts liver-protective effects in various liver diseases. The purpose of this study was to test the hypothesis that TUDCA could protect liver against CIH injury. C57BL/6 mice were subjected to intermittent hypoxia for eight weeks and applied with TUDCA by intraperitoneal injection. The effect of TUDCA on liver histological changes, liver function, oxidative stress, inflammatory response, hepatocyte apoptosis and endoplasmic reticulum (ER) stress were investigated. The results showed that administration of TUDCA attenuated liver pathological changes, reduced serum alanine aminotransferase and aspartate aminotransferase level, suppressed reactive oxygen species activity, decreased tumor necrosis factor-α and interleukin-1β level and inhibited hepatocyte apoptosis induced by CIH. TUDCA also inhibited CIH-induced ER stress in liver as evidenced by decreased expression of ER chaperone 78 kDa glucose-related protein, unfolded protein response transducers and ER proapoptotic proteins. Altogether, the present study described a liver-protective effect of TUDCA in CIH mice model, and this effect seems at least partly through the inhibition of ER stress.
Energy determinants GAPDH and NDPK act as genetic modifiers for hepatocyte inclusion formation
Weerasinghe, Sujith V.W.; Singla, Amika; Leonard, Jessica M.; Hanada, Shinichiro; Andrews, Philip C.; Lok, Anna S.; Omary, M. Bishr
2011-01-01
Genetic factors impact liver injury susceptibility and disease progression. Prominent histological features of some chronic human liver diseases are hepatocyte ballooning and Mallory-Denk bodies. In mice, these features are induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) in a strain-dependent manner, with the C57BL and C3H strains showing high and low susceptibility, respectively. To identify modifiers of DDC-induced liver injury, we compared C57BL and C3H mice using proteomic, biochemical, and cell biological tools. DDC elevated reactive oxygen species (ROS) and oxidative stress enzymes preferentially in C57BL livers and isolated hepatocytes. C57BL livers and hepatocytes also manifested significant down-regulation, aggregation, and nuclear translocation of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). GAPDH knockdown depleted bioenergetic and antioxidant enzymes and elevated hepatocyte ROS, whereas GAPDH overexpression decreased hepatocyte ROS. On the other hand, C3H livers had higher expression and activity of the energy-generating nucleoside-diphosphate kinase (NDPK), and knockdown of hepatocyte NDPK augmented DDC-induced ROS formation. Consistent with these findings, cirrhotic, but not normal, human livers contained GAPDH aggregates and NDPK complexes. We propose that GAPDH and NDPK are genetic modifiers of murine DDC-induced liver injury and potentially human liver disease. PMID:22006949
Ravan, Alireza Pouyandeh; Bahmani, Mahdi; Ghasemi Basir, Hamid Reza; Salehi, Iraj; Oshaghi, Ebrahim Abbasi
2017-09-26
This study was carried out to evaluate the antioxidant and hepatoprotective effects of Vaccinium arctostaphylos (V.a) methanolic extract on carbon tetrachloride (CCl4)-induced acute liver injury in Wistar rats. Total phenolic and total flavonoid contents as well as antioxidant activity of V.a were determined. Extracts of V.a at doses of 200 and 400 mg/kg were administered by oral gavage to rats once per day for 7 days and then were given an intraperitoneal injection of 1 mL/kg CCl4 (1:1 in olive oil) for 3 consecutive days. Serum biochemical markers of liver injury, oxidative markers, as well as hydroxyproline (HP) content and histopathology of liver were evaluated. The obtained results showed that V.a had strong antioxidant activity. Treatment of rats with V.a blocked the CCl4-induced elevation of serum markers of liver function and enhanced albumin and total protein levels. The level of hepatic HP content was also reduced by the administration of V.a treatment. Histological examination of the liver section revealed that V.a prevented the occurrence of pathological changes in CCl4-treated rats. These findings suggested that V.a may be useful in the treatment and prevention of hepatic injury induced by CCl4.
Salvianolic acid B protects hepatocytes from H2O2 injury by stabilizing the lysosomal membrane.
Yan, Xiao-Feng; Zhao, Pei; Ma, Dong-Yan; Jiang, Yi-Lu; Luo, Jiao-Jiao; Liu, Liu; Wang, Xiao-Ling
2017-08-07
To investigate the capability of salvianolic acid B (Sal B) to protect hepatocytes from hydrogen peroxide (H 2 O 2 )/carbon tetrachloride (CCl 4 )-induced lysosomal membrane permeabilization. Cell Counting Kit-8 assay was used to measure cell viability. Apoptosis and death were assayed through flow cytometry. BrdU incorporation was used to detect cell proliferation. Serum alanine aminotransferase activity and liver malondialdehyde (MDA) content were measured. Liver histopathological changes were evaluated using hematoxylin-eosin staining. Lysosomal membrane permeability was detected with LysoTracker Green-labeled probes and acridine orange staining. The levels of protein carbonyl content (PCC), cathepsins (Cat)B/D, and lysosome-associated membrane protein 1 (LAMP1) were evaluated through western blotting. Cytosol CatB activity analysis was performed with chemiluminescence detection. The mRNA level of LAMP1 was evaluated through quantitative real-time polymerase chain reaction. Results indicated that H 2 O 2 induced cell injury/death. Sal B attenuated H 2 O 2 -induced cell apoptosis and death, restored the inhibition of proliferation, decreased the amount of PCC, and stabilized the lysosome membrane by increasing the LAMP1 protein level and antagonizing CatB/D leakage into the cytosol. CCl 4 also triggered hepatocyte death. Furthermore, Sal B effectively rescued hepatocytes by increasing LAMP1 expression and by reducing lysosomal enzyme translocation to the cytosol. Sal B protected mouse embryonic hepatocytes from H 2 O 2 /CCl 4 -induced injury/death by stabilizing the lysosomal membrane.
Salidroside mediates apoptosis and autophagy inhibition in concanavalin A-induced liver injury
Feng, Jiao; Niu, Peiqin; Chen, Kan; Wu, Liwei; Liu, Tong; Xu, Shizan; Li, Jingjing; Li, Sainan; Wang, Wenwen; Lu, Xiya; Yu, Qiang; Liu, Ning; Xu, Ling; Wang, Fan; Dai, Weiqi; Xia, Yujing; Fan, Xiaoming; Guo, Chuanyong
2018-01-01
Salidroside (Sal) is a glycoside extract from Rhodiola rosea L. with anti-inflammatory, antioxidant, anticancer and cardioprotective properties. The present study explored the protective effects and the possible mechanisms of Sal on concanavalin A (ConA)-induced liver injury in mice. Balb/C mice were divided into five groups: Normal control (injected with normal saline), ConA (25 mg/kg), Sal (10 mg/kg) +ConA, Sal (20 mg/kg) + ConA (Sal injected 2 h prior to ConA injection) and Sal (20 mg/kg) only. The serum levels of liver enzymes, pro-inflammatory cytokines, and apoptosis- and autophagy-associated marker proteins were determined at 2, 8 and 24 h after ConA injection. LY294002 was further used to verify whether the phosphoinositide 3-kinase (PI3K)/Akt pathway was activated. Primary hepatocytes were isolated to verify the effect of Sal in vitro. The results indicated that Sal was a safe agent to reduce pathological damage and serum liver enzymes in ConA-induced liver injury. Sal suppressed inflammatory reactions in serum and liver tissues, and activated the PI3K/Akt signaling pathway to inhibit apoptosis and autophagy in vivo and in vitro, which could be reversed by LY294002. In conclusion, Sal attenuated ConA-induced liver injury by modulating PI3K/Akt pathway-mediated apoptosis and autophagy in mice.
[Protective effect of purple sweet potato flavonoids on CCL4-induced acute liver injury in mice].
Ye, Shuya; Li, Xiangrong; Shao, Yingying
2013-11-01
To investigate the protective effect of purple sweet potato flavonoids (PSPF) on CCl4-induced acute liver injury in mice. Sixty mice were randomly divided into six groups (n=10 in each): blank group, model group, PSPF groups (400 mg*kg(-1), 200 mg*kg-1 and 100 mg*kg(-1)) and positive control group (DDB 150 mg*kg(-1)). Acute liver injury was induced by administration of peanut oil with 0.1% CCl4 (10 mg*kg(-1)) in mice. The viscera index, serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH) were measured, and the activities of superoxide dismutase (SOD) and the contents of malondialdehyde (MDA) in hepatic tissues were also measured. The pathological changes of liver were observed with microscopy. PSPF significantly decreased serum ALT, AST and LDH levels (P<0.05 or P<0.01) and MDA content in hepatic tissues (P<0.01), increased the activities of SOD (P<0.01). Purple sweet potato total flavonoids can prevent CCl4-induced acute liver injury in mice, which may be related to inhibition of lipid peroxidation and reduction of oxygen free radicals.
Kawai, Miho; Harada, Naoaki; Takeyama, Hiromitsu; Okajima, Kenji
2010-06-01
Neutrophil elastase (NE) decreases the endothelial production of prostacyclin (PGI(2)) through the inhibition of endothelial nitric oxide synthase (NOS) activation and thereby contributes to the development of ischemia/reperfusion (I/R)-induced liver injury. We previously demonstrated that calcitonin gene-related peptide (CGRP) released from sensory neurons increases the insulin-like growth factor- I (IGF-I) production and thereby reduces I/R-induced liver injury. Because PGI(2) is capable of stimulating sensory neurons, we hypothesized that NE contributes to the development of I/R-induced liver injury by decreasing IGF-I production. In the present study, we examined this hypothesis in rats subjected to hepatic I/R. Ischemia/reperfusion-induced decreases of hepatic tissue levels of CGRP and IGF-I were prevented significantly by NE inhibitors, sivelestat, and L-658, 758, and these effects of NE inhibitors were reversed completely by the nonselective cyclooxygenase inhibitor indomethacin (IM) and the nonselective NOS inhibitor L-NAME but not by the selective inducible NOS inhibitor 1400W. I/R-induced increases of hepatic tissue levels of caspase-3, myeloperoxidase and the number of apoptotic cells were inhibited by NE inhibitors, and these effects of NE inhibitors were reversed by IM and L-NAME but not by 1400W. Administration of iloprost, a stable PGI(2) analog, produced effects similar to those induced by NE inhibitors. Taken together, these observations strongly suggest that NE may play a critical role in the development of I/R-induced liver injury by decreasing the IGF-I production through the inhibition of sensory neuron stimulation, which may lead to an increase of neutrophil accumulation and hepatic apoptosis through activation of caspase-3 in rats.
El-Beshbishy, Hesham A; Mohamadin, Ahmed M; Nagy, Ayman A; Abdel-Naim, Ashraf B
2010-03-01
Liver injury was induced in female rats using tamoxifen (TAM). Grape seeds (Vitis vinifera) extract (GSE), black seed (Nigella sativa) extract (NSE), curcumin (CUR) or silymarin (SYL) were orally administered to TAM-intoxicated rats. Liver histopathology of TAM-intoxicated:rats showed pathological changes. TAM-intoxication elicited declines in liver antioxidant enzymes levels (glutathione peroxidase, glutathione reductase, superoxide dismutase and catalase), reduced glutathione (GSH) and GSH/GSSG ratio plus the hepatic elevations in lipid peroxides, oxidized glutathione (GSSG), tumor necrosis factor-alpha (TNF-alpha) and serum liver enzymes; alanine transaminase, aspartate transaminase, alkaline phosphatase, lactate dehydrogenase and gamma glutamyl transferase levels. Oral intake of NSE, GSE, CUR or SYL to TAM-intoxicated rats, attenuated histopathological changes and corrected all parameters mentioned above. Improvements were prominent in case of NSE (similarly SYL) > CUR > GSE. Data indicated that NSE, GSE or CUR act as free radicals scavengers and protect TAM-induced liver injury in rats.
A study on effects of glutathione s-transferase from silkworm on CCL4-induced mouse liver injury.
Yan, Hui; Gui, Zhongzheng; Wang, Bochu
2011-01-01
To assess the hepatoprotective activity of Glutathione S-transferase(GSTsw), extracted and purified from silkworm, in experimental acute mice liver injury and explore mechanisms. Mice were divided into five groups: control group, carbon tetrachloride (CCl4) group, and three treatment groups that received CCl4 and GSTsw at doses of 0.083 mg•g(-1), 0.0415 mg•g(-1) and 0.0207 mg•g(-1) for 3 days. ALT in serum, GST, SOD and T-AOC in liver tissue homogenate, and changes in liver pathology in the five groups were studied. CCl4 administration led to pathological and biochemical evidence of liver injury as compared to untreated controls. GSTsw administration led to significant protection against CCl4-induced changes in liver pathology. It was also associatedwith significantly lower serum ALT levels, higher GST-SOD and T-AOC level in live tissue homogenate. Thus, GSTsw showed protective activity against CCl4-induced hepatotoxicity in mice.
Ibrahim, Samar H; Hirsova, Petra; Gores, Gregory J
2018-01-01
A subset of patients with non-alcoholic fatty liver disease develop an inflammatory condition, termed nonalcoholic steatohepatitis (NASH). NASH is characterised by hepatocellular injury, innate immune cell-mediated inflammation and progressive liver fibrosis. The mechanisms whereby hepatic inflammation occurs in NASH remain incompletely understood, but appear to be linked to the proinflammatory microenvironment created by toxic lipid-induced hepatocyte injury, termed lipotoxicity. In this review, we discuss the signalling pathways induced by sublethal hepatocyte lipid overload that contribute to the pathogenesis of NASH. Furthermore, we will review the role of proinflammatory, proangiogenic and profibrotic hepatocyte-derived extracellular vesicles as disease biomarkers and pathogenic mediators during lipotoxicity. We also review the potential therapeutic strategies to block the feed-forward loop between sublethal hepatocyte injury and liver inflammation. PMID:29367207
Ciliary neurotrophic factor analogue aggravates CCl4-induced acute hepatic injury in rats.
Cui, Ming-Xia; Jiang, Jun-Feng; Min, Guang-Ning; Han, Wei; Wu, Yong-Jie
2017-05-01
Ciliary neurotrophic factor (CNTF) and CNTF analogs were reported to have hepatoprotective effect and ameliorate hepatic steatosis in db/db or high-fat-diet-fed mice. Because hepatic steatosis and injury are also commonly induced by hepatotoxin, the aim of the present study is to clarify whether CNTF could alleviate hepatic steatosis and injury induced by carbon tetrachloride (CCl 4 ). Unexpectedly, when combined with CCl 4 , CNTF aggravated hepatic steatosis and liver injury. The mechanism is associated with effects of CNTF that inhibited lipoprotein secretion and drastically impaired the ability of lipoproteins to act as transport vehicles for lipids from the liver to the circulation. While injected after CCl 4 cessation, CNTF could improve liver function. These data suggest that CNTF could be a potential hepatoprotective agent against CCl 4 -induced hepatic injury after the cessation of CCl 4 exposure. However, it is forbidden to combine recombinant mutant of human CNTF treatment with CCl 4 .
Baicalein Reduces Liver Injury Induced by Myocardial Ischemia and Reperfusion.
Lai, Chang-Chi; Huang, Po-Hsun; Yang, An-Han; Chiang, Shu-Chiung; Tang, Chia-Yu; Tseng, Kuo-Wei; Huang, Cheng-Hsiung
2016-01-01
Baicalein is a component of the root of Scutellaria baicalensis Georgi, which has traditionally been used to treat liver disease in China. In the present study, we investigated baicalein' ability to reduce the liver injury induced by myocardial ischemia and reperfusion (I/R). Myocardial I/R was induced in this experiment by a 40[Formula: see text]min occlusion of the left anterior descending coronary artery and a 3[Formula: see text]h reperfusion in rats. The induced myocardial I/R significantly increased the serum levels of aspartate transaminase (AST) and alanine transaminase (ALT), indicating the presence of liver injury. Hepatic apoptosis was significantly increased. The serum levels of tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]), interleukin-1[Formula: see text] (IL-1[Formula: see text]), and interleukin-6 (IL-6) were significantly elevated, as was the TNF-[Formula: see text] level in the liver. Intravenous pretreatment with baicalein (3, 10, or 30[Formula: see text]mg/kg) 10[Formula: see text]min before myocardial I/R significantly reduced the serum level increase of AST and ALT, apoptosis in the liver, and the elevation of TNF-[Formula: see text], IL-1[Formula: see text], and IL-6 levels. Moreover, baicalein increased Bcl-2 and decreased Bax in the liver. Phosphorylation of the prosurvival kinases, including Akt and extracellular signal-regulated kinases 1 and 2 (ERK1/2), was also increased. In conclusion, we found that baicalein can reduce the liver injury induced by myocardial I/R. The underlying mechanisms are likely related to the inhibition of the extrinsic and intrinsic apoptotic pathways, possibly via the inhibition of TNF-[Formula: see text] production, the modulation of Bcl-2 and Bax, and the activation of Akt and ERK1/2. Our findings may provide a rationale for the application of baicalein or traditional Chinese medicine containing large amounts of baicalein to prevent liver injury in acute myocardial infarction and cardiac surgery.
Shen, Shi-Qiang; Zhang, Yuan; Xiang, Jin-Jian; Xiong, Cheng-Long
2007-01-01
AIM: To investigate the hypothesis that the protective effects of curcumin in hepatic warm ischemia/reperfusion (I/R) injury are associated with increasing heat shock protein 70 (Hsp70) expression and antioxidant enzyme activity. METHODS: Sixty Sprague-Dawley male rats were randomly divided into sham, I/R, C + I/R groups. The model of reduced-size liver warm ischemia and reperfusion was used. Curcumin (50 mg/kg) was administered by injection through a branch of superior mesenteric vein at 30 min before ischemia in C + I/R group. Five rats were used to investigate the survival during 1 wk after operation in each group. Blood samples and liver tissues were obtained in the remaining animals after 3, 12, and 24 h of reperfusion to assess serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver tissue NO2- + NO3-, malondialdehyde (MDA) content, superoxide dismutase (SOD), catalase (CAT), nitricoxide synthase (NOS) and myeloperoxidase (MPO) activity, Hsp70 expression and apoptosis ratio. RESULTS: Compared with I/R group, curcumin pretreatment group showed less ischemia/reperfusion-induced injury. CAT and SOD activity and Hsp70 expression increased significantly. A higher rate of apoptosis was observed in I/R group than in C + I/R group, and a significant increase of MDA, NO2- + NO3- and MPO level in liver tissues and serum transaminase concentration was also observed in I/R group compared to C + I/R group. Curcumin also decreased the activity of inducible NO synthase (iNOS) in liver after reperfusion, but had no effect on the level of endothelial NO synthase (eNOS) after reperfusion in liver. The 7 d survival rate was significantly higher in C + I/R group than in I/R group. CONCLUSION: Curcumin has protective effects against hepatic I/R injury. Its mechanism might be related to the overexpression of Hsp70 and antioxidant enzymes. PMID:17461496
Kuang, Ye; Han, Xiaoyun; Xu, Mu; Wang, Yue; Zhao, Yuxiang; Yang, Qing
2018-05-31
Chemical injury is partly due to free radical lipid peroxidation, which can induce oxidative stress and produce a large number of reactive oxygen species (ROS). Oxaloacetic acid is an important intermediary in the tricarboxylic acid cycle (TCA cycle) and participates in metabolism and energy production. In our study, we found that oxaloacetate (OA) effectively alleviated liver injury which was induced by hydrogen peroxide (H₂O₂) in vitro and carbon tetrachloride (CCl₄) in vivo. OA scavenged ROS, prevented oxidative damage and maintained the normal structure of mitochondria. We further confirmed that OA increased adenosine triphosphate (ATP) by promoting the TCA production cycle and oxidative phosphorylation (OXPHOS). Finally, OA inhibited the mitogen-activated protein kinase (MAPK) and apoptotic pathways by suppressing tumor necrosis factor-α (TNF-α). Our findings reveal a mechanism for OA ameliorating chemical liver injury and suggest a possible implementation for preventing the chemical liver injury.
Role of liver fatty acid binding protein in hepatocellular injury: effect of CrPic treatment.
Fan, Weijiang; Chen, Kun; Zheng, Guoqiang; Wang, Wenhang; Teng, Anguo; Liu, Anjun; Ming, Dongfeng; Yan, Peng
2013-07-01
This study was designed to investigate the molecular mechanisms of chromium picolinate (CrPic, Fig. 1) hepatoprotective activity from alloxan-induced hepatic injury. Diabetes is induced by alloxan-treatment concurrently with the hepatic injury in mice. In this study, we investigate the protective effect of CrPic treatment in hepatic injury and the signal role of liver fatty acid binding protein in early hepatocellular injury diagnostics. In this study, alanine aminotransferase (ALT; EC 2.6.1.2) and aspartate aminotransferase (AST; EC 2.6.1.1) levels in the alloxan group were higher 71% and 50%, respectively, than those of the control group (ALT: 14.51±0.74; AST: 22.60±0.69). The AST and ALT levels in CrPic group were of minimal difference compared to the control groups. Here, CrPic exhibited amelioration alloxan induced oxidative stress in mouse livers. A significant increase in liver fatty acid-binding protein (L-FABP) was observed, which indicates increased fatty acid utilization in liver tissue [1]. In this study, the mRNA levels of L-FABP increased in both the control (1.1 fold) and CrPic (0.78 fold) groups compared the alloxan group. These findings suggest that hepatic injury may be prevented by CrPic, and is a potential target for use in the treatment of early hepatic injury. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tryndyak, Volodymyr P.; Latendresse, John R.; Montgomery, Beverly
MicroRNAs (miRNAs) are a class of small, conserved, tissue-specific regulatory non-coding RNAs that modulate a variety of biological processes and play a fundamental role in the pathogenesis of major human diseases, including nonalcoholic fatty liver disease (NAFLD). However, the association between inter-individual differences in susceptibility to NAFLD and altered miRNA expression is largely unknown. In view of this, the goals of the present study were (i) to determine whether or not individual differences in the extent of NAFLD-induced liver injury are associated with altered miRNA expression, and (ii) assess if circulating blood miRNAs may be used as potential biomarkers formore » the noninvasive evaluation of the severity of NAFLD. A panel of seven genetically diverse strains of inbred male mice (A/J, C57BL/6J, C3H/HeJ, 129S/SvImJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ) were fed a choline- and folate-deficient (CFD) diet for 12 weeks. This diet induced liver injury in all mouse strains; however, the extent of NAFLD-associated pathomorphological changes in the livers was strain-specific, with A/J, C57BL/6J, and C3H/HeJ mice being the least sensitive and WSB/EiJ mice being the most sensitive. The morphological changes in the livers were accompanied by differences in the levels of hepatic and plasma miRNAs. The levels of circulating miR-34a, miR-122, miR-181a, miR-192, and miR-200b miRNAs were significantly correlated with a severity of NAFLD-specific liver pathomorphological features, with the strongest correlation occurring with miR-34a. These observations suggest that the plasma levels of miRNAs may be used as biomarkers for noninvasive monitoring the extent of NAFLD-associated liver injury and susceptibility to NAFLD. -- Highlights: ► Choline- and folate-deficiency induces a strain-specific fatty liver injury in mice. ► The extent of liver pathology was accompanied by the changes in microRNA expression. ► The levels of circulating microRNAs mirror the magnitude of fatty liver injury. ► Plasma microRNAs may be sensitive noninvasive indicators of the fatty liver injury.« less
Dimethylthiourea ameliorates carbon tetrachloride-induced acute liver injury in ovariectomized mice.
Mitazaki, Satoru; Kotajima, Natsumi; Matsuda, Sakiko; Ida, Naruki; Iide, Mina; Honma, Shigeyoshi; Suto, Miwako; Kato, Naho; Kuroda, Naohito; Hiraiwa, Kouichi; Yoshida, Makoto; Abe, Sumiko
2018-08-01
In order to clarify hepato-protective actions of estrogen, we examined the progress of carbon tetrachloride (CCl 4 )-induced acute liver injury (ALI) in sham and ovariectomized (ovx) mice and the effects of dimethylthiourea (DMTU), a hydroxyl radical scavenger, and meloxicam (Melo), a selective cox-2 inhibitor, on the development of CCl 4 -induced ALI. Female C57BL/6 J mice weighing 15-20 g were performed sham or ovx operation at 8 weeks of age. Blood and liver samples were collected 15 and 24 h after CCl 4 administration. Sham and ovx mice were given DMTU, Melo or saline intraperitoneally 30 min before CCl 4 or corn oil administration. ALT levels in ovx mice were significantly increased compared to those in sham mice. DMTU reduced ALT levels in ovx mice to the same levels as those in sham mice after CCl 4 injection. CCl 4 upregulated TNF-α, IL-6, cox-2 and iNOS expression in ovx mice compared to the levels in sham mice. DMTU significantly reduced cox-2 and iNOS expression levels upregulated by CCl 4 in ovx mice. However, pretreatment with Melo had no effects on ALT levels and the gene expression levels of TNF-α, IL-6 and HO-1 in either sham or ovx mice, indicating that cox-2 may not participate in increase of CCl 4 -induced ALI caused by estrogen deficiency. Ovariectomy accelerated the development of CCl 4 -induced acute liver injury, and DMTU reduced liver injury. These results suggest that estrogen may act as an antioxidant in the development CCl 4 -induced acute liver injury. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Hepatoprotective activity of Psidium guajava Linn. leaf extract.
Roy, Chanchal K; Kamath, Jagadish V; Asad, Mohammed
2006-04-01
The study was designed to evaluate the hepatoprotective activity of P. guajava in acute experimental liver injury induced by carbon tetrachloride, paracetamol or thioacetamide and chronic liver damage induced by carbon tetrachloride. The effects observed were compared with a known hepatoprotective agent, silymarin. In the acute liver damage induced by different hepatotoxins, P. guajava leaf extracts (250 and 500mg/kg, po) significantly reduced the elevated serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and bilirubin. The higher dose of the extract (500 mg/kg, po) prevented the increase in liver weight when compared to hepatoxin treated control, while the lower dose was ineffective except in the paracetamol induced liver damage. In the chronic liver injury induced by carbon tetrachloride, the higher dose (500 mg/kg, po) of P. guajava leaf extract was found to be more effective than the lower dose (250 mg/kg, po). Histological examination of the liver tissues supported the hepatoprotection. It is concluded that the aqueous extract of leaves of guava plant possesses good hepatoprotective activity.
Niriella, Madunil Anuk; Kumarasena, Ravindu Sujeewa; Dassanayake, Anuradha Supun; Pathirana, Aloka; de Silva Hewavisenthi, Janaki; de Silva, Hithanadura Janaka
2016-12-21
Cefuroxime very rarely causes drug-induced liver injury. We present a case of a patient with paradoxical worsening of jaundice caused by cefuroxime-induced cholestasis following therapeutic endoscopic retrograde cholangiopancreatography for a distal common bile duct stone. A 51-year-old, previously healthy Sri Lankan man presented to our hospital with obstructive jaundice caused by a distal common bile duct stone. Endoscopic retrograde cholangiopancreatography with stone extraction, common bile duct clearance, and stenting failed to improve the cholestasis, with paradoxical worsening of his jaundice. A liver biopsy revealed features of drug-induced intrahepatic cholestasis. Although his case was complicated by an episode of cholangitis, the patient made a complete recovery in 4 months with supportive treatment and withdrawal of the offending drug. This case highlights a very rare drug-induced liver injury caused by cefuroxime as well as our approach to treating a patient with paradoxical worsening of jaundice after therapeutic endoscopic retrograde cholangiopancreatography.
You, Yan; Li, Wan-Zhen; Zhang, Sulin; Hu, Bin; Li, Yue-Xuan; Li, Hai-Dong; Tang, Huan-Huan; Li, Qian-Wen; Guan, Yun-Yun; Liu, Li-Xin; Bao, Wei-Lian; Shen, Xiaoyan
2018-07-01
Alcoholic liver disease (ALD) is a major cause of morbidity and mortality worldwide. However, the cellular defense mechanisms underlying ALD are not well understood. Recent studies highlighted the involvement of chaperone-mediated autophagy (CMA) in regulating hepatic lipid metabolism. Sorting nexin (SNX)-10 has a regulatory function in endolysosomal trafficking and stabilisation. Here, we investigated the roles of SNX10 in CMA activation and in the pathogenesis of alcohol-induced liver injury and steatosis. Snx10 knockout (Snx10 KO) mice and their wild-type (WT) littermates fed either the Lieber-DeCarli liquid alcohol diet or a control liquid diet, and primary cultured WT and Snx10 KO hepatocytes stimulated with ethanol, were used as in vivo and in vitro ALD models, respectively. Activation of CMA, liver injury parameters, inflammatory cytokines, oxidative stress and lipid metabolism were measured. Compared with WT littermates, Snx10 KO mice exhibited a significant amelioration in ethanol-induced liver injury and hepatic steatosis. Both in vivo and in vitro studies showed that SNX10 deficiency upregulated lysosome-associated membrane protein type 2A (LAMP-2A) expression and CMA activation, which could be reversed by SNX10 overexpression in vitro. LAMP-2A interference confirmed that the upregulation of Nrf2 and AMPK signalling pathways induced by SNX10 deficiency relied on CMA activation. Pull-down assays revealed an interaction between SNX10 and cathepsin A (CTSA), a key enzyme involved in LAMP-2A degradation. Deficiency in SNX10 inhibited CTSA maturation and increased the stability of LAMP-2A, resulting in an increase in CMA activity. SNX10 controls CMA activity by mediating CTSA maturation, and, thus, has an essential role in alcohol-induced liver injury and steatosis. Our results provide evidence for SNX10 as a potential promising therapeutic target for preventing or ameliorating liver injury in ALD. Alcoholic liver disease is a major cause of morbidity and mortality worldwide. Recent studies highlight the involvement of chaperone-mediated autophagy (CMA) in regulating hepatic lipid metabolism. Our study reveals that deficiency of sorting nexin (SNX) 10 increases the stability of LAMP-2A by inhibiting cathepsin A maturation, resulting in the increase of CMA activity and, thus, alleviates alcohol-induced liver injury and steatosis. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Usuda, Haruki; Miura, Nobuhiko; Fukuishi, Nobuyuki; Nonogaki, Tsunemasa; Onosaka, Satomi
2017-01-01
The aim of this study was to determine whether calcium potentiates acute carbon tetrachloride (CCl4) -induced toxicity. Elevated calcium levels were induced in mice by pre-treatment with cholecalciferol (vitamin D3; V.D3), a compound that has previously been shown to induce hypercalcemia in human and animal models. As seen previously, mice injected with CCl4 exhibited increased plasma levels of alanine aminotransferase, aspartate aminotransferase, and creatinine; transient body weight loss; and increased lipid peroxidation along with decreased total antioxidant power, glutathione, ATP, and NADPH. Pre-treatment of these animals with V.D3 caused further elevation of the values of these liver functional markers without altering kidney functional markers; continued weight loss; a lower lethal threshold dose of CCl4; and enhanced effects on lipid peroxidation and total antioxidant power. In contrast, exposure to V.D3 alone had no effect on plasma markers of liver or kidney damage or on total antioxidant power or lipid peroxidation. The potentiating effect of V.D3 was positively correlated with elevation of hepatic calcium levels. Furthermore, direct injection of CaCl2 also enhanced CCl4-induced hepatic injury. Since CaCl2 induced hypercalcemia transiently (within 3 h of injection), our results suggest that calcium enhances the CCl4-induced hepatotoxicity at an early stage via potentiation of oxidative stress. PMID:28448545
Acute Toxicity of Amorphous Silica Nanoparticles in Intravenously Exposed ICR Mice
Wang, Wen; Jin, Minghua; Du, Zhongjun; Li, Yanbo; Duan, Junchao; Yu, Yongbo; Sun, Zhiwei
2013-01-01
This study aimed to evaluate the acute toxicity of intravenously administrated amorphous silica nanoparticles (SNPs) in mice. The lethal dose, 50 (LD50), of intravenously administrated SNPs was calculated in mice using Dixon's up-and-down method (262.45±33.78 mg/kg). The acute toxicity was evaluated at 14 d after intravenous injection of SNPs at 29.5, 103.5 and 177.5 mg/kg in mice. A silicon content analysis using ICP-OES found that SNPs mainly distributed in the resident macrophages of the liver (10.24%ID/g), spleen (34.78%ID/g) and lung (1.96%ID/g). TEM imaging showed only a small amount in the hepatocytes of the liver and in the capillary endothelial cells of the lung and kidney. The levels of serum LDH, AST and ALT were all elevated in the SNP treated groups. A histological examination showed lymphocytic infiltration, granuloma formation, and hydropic degeneration in liver hepatocytes; megakaryocyte hyperplasia in the spleen; and pneumonemia and pulmonary interstitial thickening in the lung of the SNP treated groups. A CD68 immunohistochemistry stain indicated SNPs induced macrophage proliferation in the liver and spleen. The results suggest injuries induced by the SNPs in the liver, spleen and lungs. Mononuclear phagocytic cells played an important role in the injury process. PMID:23593469
[Trends in drug-induced liver injury based on reports of adverse reactions to PMDA in Japan].
Sudo, Chie; Maekawa, Keiko; Segawa, Katsunori; Hanatani, Tadaaki; Sai, Kimie; Saito, Yoshiro
2012-01-01
Reports on drug-related adverse reactions from manufacturing/distributing pharmaceutical companies or medical institutions/pharmacies are regulated under the Pharmaceutical Affairs Law of Japan, and this system is important for post-marketing safety measures. Although association between the medicine and the adverse event has not been clearly evaluated, and an incidence may be redundantly reported, this information would be useful to roughly grasp the current status of drug-related adverse reactions. In the present study, we analyzed the incidence of drug-induced liver injury by screening the open-source data publicized by the homepage of Pharmaceutical and Medical Devices Agency from 2005 to 2011 fiscal years. Major drug-classes suspected to cause general drug-induced liver injury were antineoplastics, anti-inflammatory agents/common cold drugs, chemotherapeutics including antituberculous drugs, antidiabetics, antiulcers and antiepileptics. In addition, reported cases for fulminant hepatitis were also summarized. We found that antituberculous isoniazid and antineoplastic tegafur-uracil were the top two suspected drugs. These results might deepen understanding of current situations for the drug-induced liver injury in Japan.
Vismodegib Suppresses TRAIL-mediated Liver Injury in a Mouse Model of Nonalcoholic Steatohepatitis
Hirsova, Petra; Ibrahim, Samar H.; Bronk, Steven F.; Yagita, Hideo; Gores, Gregory J.
2013-01-01
Hedgehog signaling pathway activation has been implicated in the pathogenesis of NASH. Despite this concept, hedgehog pathway inhibitors have not been explored. Thus, we examined the effect of vismodegib, a hedgehog signaling pathway inhibitor, in a diet-induced model of NASH. C57BL/6 mice were placed on 3-month chow or FFC (high saturated fats, fructose, and cholesterol) diet. One week prior to sacrifice, mice were treated with vismodegib or vehicle. Mice fed the FFC diet developed significant steatosis, which was unchanged by vismodegib therapy. In contrast, vismodegib significantly attenuated FFC-induced liver injury as manifested by reduced serum ALT and hepatic TUNEL-positive cells. In line with the decreased apoptosis, vismodegib prevented FFC-induced strong upregulation of death receptor DR5 and its ligand TRAIL. In addition, FFC-fed mice, but not chow-fed animals, underwent significant liver injury and apoptosis following treatment with a DR5 agonist; however, this injury was prevented by pre-treatment with vismodegib. Consistent with a reduction in liver injury, vismodegib normalized FFC-induced markers of inflammation including mRNA for TNF-α, IL-1β, IL-6, monocyte chemotactic protein-1 and a variety of macrophage markers. Furthermore, vismodegib in FFC-fed mice abrogated indices of hepatic fibrogenesis. In conclusion, inhibition of hedgehog signaling with vismodegib appears to reduce TRAIL-mediated liver injury in a nutrient excess model of NASH, thereby attenuating hepatic inflammation and fibrosis. We speculate that hedgehog signaling inhibition may be salutary in human NASH. PMID:23894677
Rochon, James; Protiva, Petr; Seeff, Leonard B.; Fontana, Robert J.; Liangpunsakul, Suthat; Watkins, Paul B.; Davern, Timothy; McHutchison, John G.
2013-01-01
The Roussel Uclaf Causality Assessment Method (RUCAM) was developed to quantify the strength of association between a liver injury and the medication implicated as causing the injury. However, its reliability in a research setting has never been fully explored. The aim of this study was to determine test-retest and interrater reliabilities of RUCAM in retrospectively-identified cases of drug induced liver injury. The Drug-Induced Liver Injury Network is enrolling well-defined cases of hepatotoxicity caused by isoniazid, phenytoin, clavulanate/amoxicillin, or valproate occurring since 1994. Each case was adjudicated by three reviewers working independently; after an interval of at least 5 months, cases were readjudicated by the same reviewers. A total of 40 drug-induced liver injury cases were enrolled including individuals treated with isoniazid (nine), phenytoin (five), clavulanate/amoxicillin (15), and valproate (11). Mean ± standard deviation age at protocol-defined onset was 44.8 ± 19.5 years; patients were 68% female and 78% Caucasian. Cases were classified as hepatocellular (44%), mixed (28%), or cholestatic (28%). Test-retest differences ranged from −7 to +8 with complete agreement in only 26% of cases. On average, the maximum absolute difference among the three reviewers was 3.1 on the first adjudication and 2.7 on the second, although much of this variability could be attributed to differences between the enrolling investigator and the external reviewers. The test-retest reliability by the same assessors was 0.54 (upper 95% confidence limit = 0.77); the interrater reliability was 0.45 (upper 95% confidence limit = 0.58). Categorizing the RUCAM to a five-category scale improved these reliabilities but only marginally. Conclusion The mediocre reliability of the RUCAM is problematic for future studies of drug-induced liver injury. Alternative methods, including modifying the RUCAM, developing drug-specific instruments, or causality assessment based on expert opinion, may be more appropriate. PMID:18798340
Protective effects of L-carnosine on CCl4 -induced hepatic injury in rats.
Alsheblak, Mehyar Mohammad; Elsherbiny, Nehal M; El-Karef, Amro; El-Shishtawy, Mamdouh M
2016-03-01
The present study was undertaken to investigate the possible protective effect of L-carnosine (CAR), an endogenous dipeptide of alanine and histidine, on carbon tetrachloride (CCl4)-induced hepatic injury. Liver injury was induced in male Sprague-Dawley rats by intraperitoneal (i.p.) injections of CCl4, twice weekly for six weeks. CAR was administered to rats daily, at dose of 250 mg/kg, i.p. At the end of six weeks, blood and liver tissue specimens were collected. Results show that CAR treatment attenuated the hepatic morphological changes, necroinflammation and fibrosis induced by CCl4, as indicated by hepatic histopathology scoring. In addition, CAR treatment significantly reduced the CCl4-induced elevation of liver-injury parameters in serum. CAR treatment also combatted oxidative stress; possibly by restoring hepatic nuclear factor erythroid 2-related factor 2 (Nrf-2) levels. Moreover, CAR treatment prevented the activation of hepatic stellate cells (HSCs), as indicated by reduced α-smooth muscle actin (α-SMA) expression in the liver, and decreased hepatic inflammation as demonstrated by a reduction in hepatic tumor necrosis factor-α (TNF-α) and restoration of interleukin-10 (IL-10) levels. In conclusion, CCl4-induced hepatic injury was alleviated by CAR treatment. The results suggest that these beneficial, protective effects are due, at least in part, to its anti-oxidant, anti-inflammatory and anti-fibrotic activities.
Zou, Yuan; Zhu, Lei; Wang, Hui-Fang; Dai, Mu-Gen
2014-01-01
Abstract Liver steatosis is characterized by lipid dysregulation and fat accumulation in the liver and can lead to oxidative stress in liver. Since proanthocyanidins are present in plant-based foods and have powerful antioxidant properties, we investigated whether proanthocyanidins can prevent oxidative stress and subsequent liver injury. Carbon tetrachloride (CCl4) treatment can cause steatosis in rats that models both alcoholic and non-alcoholic fatty liver disease in humans. We pre-treated rats by oral administration of proanthocyanidins extracted from grape seeds 7 days prior to intragastrically administering CCl4. Proanthocyanidin treatment continued for an additional 2 weeks, after which time liver and serum were harvested, and mediators of liver injury, oxidative stress, and histological features were evaluated. CCl4-treated rats exhibited significant increases in the following parameters as compared to non-treated rats: fat droplets in the liver, liver injury (ALT, AST), and DNA damage (8-OHdG). Additionally, CCl4 treatment decreased antioxidant enzymes SOD, GSH, GPX, and CAT in the liver due to their rapid depletion after battling against oxidative stress. Compared to CCl4-treated rats, treatment with proanthocyanidins effectively suppressed lipid accumulation, liver injury, DNA damage, as well as restored antioxidant enzyme levels. Further investigation revealed that proanthocyanidins treatment also inhibited expression of CYP2E1 in liver, which prevented the initial step of generating free radicals from CCl4. The data presented here show that treatment with orally administered proanthocyanidins prevented liver injury in the CCl4-induced steatosis model, likely through exerting antioxidant actions to suppress oxidative stress and inhibiting the free radical–generating CYP2E1 enzyme. PMID:24712752
Dai, Ning; Zou, Yuan; Zhu, Lei; Wang, Hui-Fang; Dai, Mu-Gen
2014-06-01
Liver steatosis is characterized by lipid dysregulation and fat accumulation in the liver and can lead to oxidative stress in liver. Since proanthocyanidins are present in plant-based foods and have powerful antioxidant properties, we investigated whether proanthocyanidins can prevent oxidative stress and subsequent liver injury. Carbon tetrachloride (CCl4) treatment can cause steatosis in rats that models both alcoholic and non-alcoholic fatty liver disease in humans. We pre-treated rats by oral administration of proanthocyanidins extracted from grape seeds 7 days prior to intragastrically administering CCl4. Proanthocyanidin treatment continued for an additional 2 weeks, after which time liver and serum were harvested, and mediators of liver injury, oxidative stress, and histological features were evaluated. CCl4-treated rats exhibited significant increases in the following parameters as compared to non-treated rats: fat droplets in the liver, liver injury (ALT, AST), and DNA damage (8-OHdG). Additionally, CCl4 treatment decreased antioxidant enzymes SOD, GSH, GPX, and CAT in the liver due to their rapid depletion after battling against oxidative stress. Compared to CCl4-treated rats, treatment with proanthocyanidins effectively suppressed lipid accumulation, liver injury, DNA damage, as well as restored antioxidant enzyme levels. Further investigation revealed that proanthocyanidins treatment also inhibited expression of CYP2E1 in liver, which prevented the initial step of generating free radicals from CCl4. The data presented here show that treatment with orally administered proanthocyanidins prevented liver injury in the CCl4-induced steatosis model, likely through exerting antioxidant actions to suppress oxidative stress and inhibiting the free radical-generating CYP2E1 enzyme.
Hepatoprotective effects of setarud against carbon tetrachloride-induced liver injury in rats.
Khorshid, Hamid Reza Khorram; Azonov, Jahan A; Novitsky, Yury A; Farzamfar, Bardia; Shahhosseiny, Mohammad Hassan
2008-01-01
To assess the hepatoprotective activity of a new herbal drug "setarud" in experimental liver fibrosis, 48 male Wistar rats were divided into four groups: controls, carbon tetrachloride (CCl4) group, and two treatment groups that received CCl4 and setarud at doses of 0.02 or 0.04 g/Kg/day for 30 days. Body weight gain, biochemical liver tests, bile flow rate and composition, and changes in liver morphology in the four groups were studied. CCl4 administration led to morphological and biochemical evidence of liver injury as compared to untreated controls. Setarud administration led to significant protection against CCl4-induced changes in body weight gain, liver morphology, bile flow and concentration. It was also associated with significantly lower serum liver enzyme levels (p<0.01), higher serum albumin level, and reduced increase in narcotic-induced sleeping time. Thus, setarud showed protective activity against CCl4-induced hepatotoxicity in rats. Further studies of its efficacy in liver disease are warranted.
Triterpenoids of Ganoderma theaecolum and their hepatoprotective activities.
Liu, Li-Ying; Chen, Hui; Liu, Chao; Wang, Hong-Qing; Kang, Jie; Li, Yan; Chen, Ruo-Yun
2014-10-01
Five new lanostane triterpenoids, ganoderic acid XL1 (1), ganoderic acid XL2 (2), 20-hydroxy-ganoderic acid AM1 (3), ganoderenic acid AM1 (4) and ganoderesin C (5), together with five known triterpenoids (6-10) were isolated from the fruiting bodies of Ganoderma theaecolum. Chemical structures were elucidated on the basis of spectroscopic evidence, including 1D, 2D NMR, mass spectrometric data and circular dichroism spectra. Compounds 1, 4, 5, 8, 9 and 10 (10 μM) exhibited hepatoprotective activities against DL-galactosamine-induced cell damage in HL-7702 cells. Copyright © 2014 Elsevier B.V. All rights reserved.
Hepatoprotective standardized EtOH-water extract from the seeds of Fraxinus rhynchophylla Hance.
Guo, Sen; Guo, Tiantian; Cheng, Ni; Liu, Qingchao; Zhang, Yunting; Bai, Lu; Zhang, Li; Cao, Wei; Ho, Chi-Tang; Bai, Naisheng
2017-04-01
Fraxinus rhynchophylla Hance (Oleaceae), its stem barks are known as Cortex fraxini ( qín pí) listed in Chinese Pharmacopoeia. Phytochemical study has indicated that methanol extracts from Qinpi has protective effect on acute liver injury. The present study investigates the hepatoprotective activity of EtOH-water extract from the seeds of F. rhynchophylla Hance against carbon tetrachloride-induced liver injury in mice. The EtOH-water extract significantly alleviated liver damage as indicated by the decreased levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), the malondialdehyde (MDA) content, and increased the levels of superoxide dismutase (SOD), glutathione (GSH) and glutathione peroxidase (GSH-Px), and reduced the pathological tissue injury induced by CCl 4 . Quantitative analysis of seven major constituents ( 1-7 ) in EtOH-water extract (EWE) was developed by high performance liquid chromatography-diode-array detector (HPLC-DAD). The current research indicates that the EWE from the seeds of F. rhynchophylla Hance decreased liver index, inhibited the increase of serum aminotransferase induced by CCl 4 , and decreased hepatic MDA content, SOD and GSH-Px activities. These results suggested that the pretreatment with EWE protected mice against CCl 4 -induced liver injuries. Based on the results, the EtOH-water extract from the seeds of F. rhynchophylla Hance is efficacious for prevention and treatment of CCl 4 -induced hepatic injury in mice. Secoiridoid and tyrosol glucosides might be the active ingredients responsible for the biological and pharmacological activities of hepatoprotection.
Abdel-Gaber, Seham A; Ibrahim, Mohamed A; Amin, Entesar F; Ibrahim, Salwa A; Mohammed, Rehab K; Abdelrahman, Aly M
2015-08-01
Ischemia-reperfusion (IR) injury represents an important pathological process of liver injury during major hepatic surgery. The role of cyclooxygenase (COX) enzymes in the pathogenesis of ischemia-reperfusion (IR)-induced liver injury is not clear. This study investigated the effect of a selective COX-2 inhibitor, celecoxib, versus non-selective, indomethacin, on hepatic IR injury in rats. Hepatic IR was induced in adult male rats. The animals were divided into 4 groups: normal control (sham group), IR non-treated group; IR-indomethacin-treated group; and IR-celecoxib-treated group. Liver injury was evaluated by serum alanine aminotransferase (ALT) and a histopathological examination of liver tissues. Hepatic tissue content of oxidative stress parameters glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase, malondialdehyde (MDA), nitric oxide (NO) and the inflammatory marker, tumor necrosis factor-alpha, (TNF-α) were measured. Moreover, the immunohistochemical detection of endothelial NO synthase (eNOS), inducible NO synthase (iNOS), and caspase-3 in the hepatic tissue was performed. Celecoxib, but not indomethacin, significantly attenuated hepatic IR injury as evidenced by reduction in serum ALT as well as by improvement in the histopathological scoring. Such effect was associated with attenuation in oxidative stress and TNF-α, along with modulation of immunohistochemical expression of eNOS, iNOS and caspase-3 in the hepatic tissue. The present study concluded that selective COX-2 inhibition (but not non-selective), is hepatoprotective against liver IR injury; indicating a differential role of COX-1 versus COX-2. Modulation of iNOS, eNOS and caspase-3 might participate in the protective effect of selective COX-2-inhibitors. Copyright © 2015 Elsevier Inc. All rights reserved.
Oleanolic acid alters bile acid metabolism and produces cholestatic liver injury in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jie, E-mail: JLiu@kumc.edu; Zunyi Medical College, Zunyi 563003; Lu, Yuan-Fu
2013-11-01
Oleanolic acid (OA) is a triterpenoids that exists widely in plants. OA is effective in protecting against hepatotoxicants. Whereas a low dose of OA is hepatoprotective, higher doses and longer-term use of OA produce liver injury. This study characterized OA-induced liver injury in mice. Adult C57BL/6 mice were given OA at doses of 0, 22.5, 45, 90, and 135 mg/kg, s.c., daily for 5 days, and liver injury was observed at doses of 90 mg/kg and above, as evidenced by increases in serum activities of alanine aminotransferase and alkaline phosphatase, increases in serum total bilirubin, as well as by livermore » histopathology. OA-induced cholestatic liver injury was further evidenced by marked increases of both unconjugated and conjugated bile acids (BAs) in serum. Gene and protein expression analysis suggested that livers of OA-treated mice had adaptive responses to prevent BA accumulation by suppressing BA biosynthetic enzyme genes (Cyp7a1, 8b1, 27a1, and 7b1); lowering BA uptake transporters (Ntcp and Oatp1b2); and increasing a BA efflux transporter (Ostβ). OA increased the expression of Nrf2 and its target gene, Nqo1, but decreased the expression of AhR, CAR and PPARα along with their target genes, Cyp1a2, Cyp2b10 and Cyp4a10. OA had minimal effects on PXR and Cyp3a11. Taken together, the present study characterized OA-induced liver injury, which is associated with altered BA homeostasis, and alerts its toxicity potential. - Highlights: • Oleanolic acid at higher doses and long-term use may produce liver injury. • Oleanolic acid increased serum ALT, ALP, bilirubin and bile acid concentrations. • OA produced feathery degeneration, inflammation and cell death in the liver. • OA altered bile acid homeostasis, affecting bile acid synthesis and transport.« less
Tryndyak, Volodymyr; de Conti, Aline; Kobets, Tetyana; Kutanzi, Kristy; Koturbash, Igor; Han, Tao; Fuscoe, James C.; Latendresse, John R.; Melnyk, Stepan; Shymonyak, Svitlana; Collins, Leonard; Ross, Sharon A.; Rusyn, Ivan; Beland, Frederick A.; Pogribny, Igor P.
2012-01-01
Nonalcoholic fatty liver disease (NAFLD) is a major health problem and a leading cause of chronic liver disease in the United States and developed countries. In humans, genetic factors greatly influence individual susceptibility to NAFLD. The goals of this study were to compare the magnitude of interindividual differences in the severity of liver injury induced by methyl-donor deficiency among individual inbred strains of mice and to investigate the underlying mechanisms associated with the variability. Feeding mice a choline- and folate-deficient diet for 12 wk caused liver injury similar to NAFLD. The magnitude of liver injury varied among the strains, with the order of sensitivity being A/J ≈ C57BL/6J ≈ C3H/HeJ < 129S1/SvImJ ≈ CAST/EiJ < PWK/PhJ < WSB/EiJ. The interstrain variability in severity of NAFLD liver damage was associated with dysregulation of genes involved in lipid metabolism, primarily with a down-regulation of the peroxisome proliferator receptor α (PPARα)-regulated lipid catabolic pathway genes. Markers of oxidative stress and oxidative stress-induced DNA damage were also elevated in the livers but were not correlated with severity of liver damage. These findings suggest that the PPARα-regulated metabolism network is one of the key mechanisms determining interstrain susceptibility and severity of NAFLD in mice.—Tryndyak, V., de Conti, A., Kobets, T., Kutanzi, K., Koturbash, I., Han, T., Fuscoe, J. C., Latendresse, J. R., Melnyk, S., Shymonyak, S., Collins, L., Ross, S. A., Rusyn, I., Beland, F. A., Pogribny, I. P. Interstrain differences in the severity of liver injury induced by a choline- and folate-deficient diet in mice are associated with dysregulation of genes involved in lipid metabolism. PMID:22872676
Ruddell, Richard G; Knight, Belinda; Tirnitz-Parker, Janina E E; Akhurst, Barbara; Summerville, Lesa; Subramaniam, V Nathan; Olynyk, John K; Ramm, Grant A
2009-01-01
Lymphotoxin-beta (LTbeta) is a proinflammatory cytokine and a member of the tumor necrosis factor (TNF) superfamily known for its role in mediating lymph node development and homeostasis. Our recent studies suggest a role for LTbeta in mediating the pathogenesis of human chronic liver disease. We hypothesize that LTbeta co-ordinates the wound healing response in liver injury via direct effects on hepatic stellate cells. This study used the choline-deficient, ethionine-supplemented (CDE) dietary model of chronic liver injury, which induces inflammation, liver progenitor cell proliferation, and portal fibrosis, to assess (1) the cellular expression of LTbeta, and (2) the role of LTbeta receptor (LTbetaR) in mediating wound healing, in LTbetaR(-/-) versus wild-type mice. In addition, primary isolates of hepatic stellate cells were treated with LTbetaR-ligands LTbeta and LTbeta-related inducible ligand competing for glycoprotein D binding to herpesvirus entry mediator on T cells (LIGHT), and mediators of hepatic stellate cell function and fibrogenesis were assessed. LTbeta was localized to progenitor cells immediately adjacent to activated hepatic stellate cells in the periportal region of the liver in wild-type mice fed the CDE diet. LTbetaR(-/-) mice fed the CDE diet showed significantly reduced fibrosis and a dysregulated immune response. LTbetaR was demonstrated on isolated hepatic stellate cells, which when stimulated by LTbeta and LIGHT, activated the nuclear factor kappa B (NF-kappaB) signaling pathway. Neither LTbeta nor LIGHT had any effect on alpha-smooth muscle actin, tissue inhibitor of metalloproteinase 1, transforming growth factor beta, or procollagen alpha(1)(I) expression; however, leukocyte recruitment-associated factors intercellular adhesion molecule 1 and regulated upon activation T cells expressed and secreted (RANTES) were markedly up-regulated. RANTES caused the chemotaxis of a liver progenitor cell line expressing CCR5. This study suggests that LTbetaR on hepatic stellate cells may be involved in paracrine signaling with nearby LTbeta-expressing liver progenitor cells mediating recruitment of progenitor cells, hepatic stellate cells, and leukocytes required for wound healing and regeneration during chronic liver injury.
Bonkovsky, Herbert L; Kleiner, David E; Gu, Jiezhun; Odin, Joseph A; Russo, Mark W; Navarro, Victor M; Fontana, Robert J; Ghabril, Marwan S; Barnhart, Huiman; Hoofnagle, Jay H
2017-04-01
Bile duct loss during the course of drug-induced liver injury is uncommon, but can be an indication of vanishing bile duct syndrome (VBDS). In this work, we assess the frequency, causes, clinical features, and outcomes of cases of drug-induced liver injury with histologically proven bile duct loss. All cases of drug-induced liver injury enrolled into a prospective database over a 10-year period that had undergone liver biopsies (n = 363) were scored for the presence of bile duct loss and assessed for clinical and laboratory features, causes, and outcomes. Twenty-six of the 363 patients (7%) with drug-, herbal-, or dietary-supplement-associated liver injury had bile duct loss on liver biopsy, which was moderate to severe (<50% of portal areas with bile ducts) in 14 and mild (50%-75%) in 12. The presenting clinical features of the 26 cases varied, but the most common clinical pattern was a severe cholestatic hepatitis. The implicated agents included amoxicillin/clavulanate (n = 3), temozolomide (n = 3), various herbal products (n = 3), azithromycin (n = 2), and 15 other medications or dietary supplements. Compared to those without, those with bile duct loss were more likely to develop chronic liver injury (94% vs. 47%), which was usually cholestatic and sometimes severe. Five patients died and 2 others underwent liver transplantation for progressive cholestasis despite treatment with corticosteroids and ursodiol. The most predictive factor of poor outcome was the degree of bile duct loss on liver biopsy. Bile duct loss during acute cholestatic hepatitis is an ominous early indicator of possible VBDS, for which at present there are no known means of prevention or therapy. (Hepatology 2017;65:1267-1277). © 2016 by the American Association for the Study of Liver Diseases.
Staphylococcal enterotoxins bind H-2Db molecules on macrophages
NASA Technical Reports Server (NTRS)
Beharka, A. A.; Iandolo, J. J.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)
1995-01-01
We screened a panel of monoclonal antibodies against selected macrophage cell surface molecules for their ability to inhibit enterotoxin binding to major histocompatibility complex class II-negative C2D (H-2b) macrophages. Two monoclonal antibodies, HB36 and TIB126, that are specific for the alpha 2 domain of major histocompatibility complex class I, blocked staphylococcal enterotoxins A and B (SEA and SEB, respectively) binding to C2D macrophages in a specific and concentration-dependent manner. Inhibitory activities were haplotype-specific in that SEA and SEB binding to H-2k or H-2d macrophages was not inhibited by either monoclonal antibody. HB36, but not TIB126, inhibited enterotoxin-induced secretion of cytokines by H-2b macrophages. Lastly, passive protection of D-galactosamine-sensitized C2D mice by injection with HB36 antibody prevented SEB-induced death. Therefore, SEA and SEB binding to the alpha 2 domain of the H-2Db molecule induces biological activity and has physiological consequences.
Sato, Koichi; Watanabe, Yuji; Horiuchi, Atsushi; Yukumi, Shungo; Doi, Takashi; Yoshida, Motohira; Yamamoto, Yuji; Maehara, Tsunehiro; Naohara, Takashi; Kawachi, Kanji
2008-07-01
We have developed a novel tumor-ablation device for liver tumors utilizing heat energy induced by magnesium ferrite (MgFe(2)O(4)) particles under an alternating magnetic field (AMF) produced by electric currents. This novel device can repeatedly heat liver tumors at lower temperature than usual heating devices, such as radiofrequency ablation therapy, with slight infliction of pain. This study assesses its heating effect on rat liver tumors as local therapy. The small needle was manufactured from MgFe(2)O(4) particles by sintering at 1100 degrees C. After a MgFe(2)O(4) needle was inserted into liver tumors comprising of dRLh-84 cells, the tumors were heated for 30 min under an AMF. We examined cellular activity by using nicotinamide adenine dinucleotide (NADH) diaphorase staining and terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP nick-end labeling (TUNEL) staining, and evaluated the effect of suppressing tumor growth by sequentially comparing the tumor diameter with that of the control group. The mean temperature of the heated tumors was 60.2 +/- 1.8 degrees C. The tumor cells were constricted, and chromatin of nuclei had shrunk immediately after heating. The heat-injury area that contained the tumors was negative for NADH diaphorase activity. After 3 days, the tumor cells in the heat-injury area became positive for TUNEL staining, which detects cell death. At 7 days, the mean tumor diameters were significantly smaller in the heating group than in the control group (6.15 +/- 0.47 mm vs 16.89 +/- 2.69 mm; P < 0.05). This device, utilizing heat energy induced by ferromagnetic metal under an AMF, appears useful as local thermotherapy for human liver cancer.
Salomone, Federico; Li Volti, Giovanni; Vitaglione, Paola; Morisco, Filomena; Fogliano, Vincenzo; Zappalà, Agata; Palmigiano, Angelo; Garozzo, Domenico; Caporaso, Nicola; D'Argenio, Giuseppe; Galvano, Fabio
2014-06-01
Coffee consumption is inversely related to the degree of liver injury in patients with nonalcoholic fatty liver disease (NAFLD). Molecular mediators contributing to coffee's beneficial effects in NAFLD remain to be elucidated. In this study, we administrated decaffeinated espresso coffee or vehicle to rats fed an high-fat diet (HFD) for 12 weeks and examined the effects of coffee on liver injury by using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) proteomic analysis combined with mass spectrometry. Rats fed an HFD and water developed panacinar steatosis, lobular inflammation, and mild fibrosis, whereas rats fed an HFD and coffee exhibited only mild steatosis. Coffee consumption increased liver expression of the endoplasmic reticulum chaperones glucose-related protein 78 and protein disulfide-isomerase A3; similarly, coffee drinking enhanced the expression of the mitochondrial chaperones heat stress protein 70 and DJ-1. Furthermore, in agreement with reduced hepatic levels of 8-isoprostanes and 8-hydroxy-2'-deoxyguanosine, proteomic analysis showed that coffee consumption induces the expression of master regulators of redox status (i.e., peroxiredoxin 1, glutathione S-transferase α2, and D-dopachrome tautomerase). Last, proteomics revealed an association of coffee intake with decreased expression of electron transfer flavoprotein subunit α, a component of the mitochondrial respiratory chain, involved in de novo lipogenesis. In this study, we were able to identify by proteomic analysis the stress proteins mediating the antioxidant effects of coffee; moreover, we establish for the first time the contribution of specific coffee-induced endoplasmic reticulum and mitochondrial chaperones ensuring correct protein folding and degradation in the liver. Copyright © 2014 Mosby, Inc. All rights reserved.
Xie, Jun; Liu, Jie; Chen, Tu-Ming; Lan, Qing; Zhang, Qing-Yu; Liu, Bin; Dai, Dong; Zhang, Wei-Dong; Hu, Li-Ping; Zhu, Run-Zhi
2015-05-14
To assess the effects of dihydromyricetin (DHM) as a hepatoprotective candidate in reducing hepatic injury and accelerating hepatocyte proliferation after carbon tetrachloride (CCl4) treatment. C57 BL/6 mice were used in this study. Mice were orally administered with DHM (150 mg/kg) for 4 d after CCl4 treatment. Serum and liver tissue samples were collected on days 1, 2, 3, 5 and 7 after CCl4 treatment. The anti-inflammatory effect of DHM was assessed directly by hepatic histology detection and indirectly by serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), albumin, and superoxide dismutase (SOD). Inflammatory cytokines, such as interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α), were detected using ELISA kits. Proliferating cell nuclear antigen (PCNA) staining was used to evaluate the role of DHM in promoting hepatocyte proliferation. Hepatocyte apoptosis was measured by TUNEL assay. Furthermore, apoptosis proteins Caspases-3, 6, 8, and 9 were detected by Western blot. SP600125 were used to confirm whether DHM regulated liver regeneration through JNK/TNF-α pathways. DHM showed a strong anti-inflammatory effect on CCl4-induced liver injury in mice. DHM could significantly decrease serum ALT, AST, IL-1β, IL-6 and TNF-α and increase serum albumin, SOD and liver SOD compared to the control group after CCl4 treatment (P < 0.05). PCNA results indicated that DHM could significantly increase the number of PCNA positive cells compared to the control (348.9 ± 56.0 vs 107.1 ± 31.4, P < 0.01). TUNEL assay showed that DHM dramatically reduced the number of apoptotic cells after CCl4 treatment compared to the control (365.4 ± 99.4 vs 90.5 ± 13.8, P < 0.01). Caspase activity detection showed that DHM could reduce the activities of Caspases- 8, 3, 6 and 9 compared to the control (P < 0.05). The results of Western blot showed that DHM increased the expression of JNK and decreased TNF-α expression. However, DHM could not affect TNF-α expression after SP600125 treatment. Furthermore, DHM could significantly improve the survival rate of acute liver failure (ALF) mice (73.3% vs 20.0%, P < 0.0001), and SP600125 could inhibit the effect of DHM. These findings demonstrate that DHM alleviates CCl4-induced liver injury, suggesting that DHM is a promising candidate for reversing liver injury and ALF.
Drug-induced liver injury: Do we know everything?
Alempijevic, Tamara; Zec, Simon; Milosavljevic, Tomica
2017-01-01
Interest in drug-induced liver injury (DILI) has dramatically increased over the past decade, and it has become a hot topic for clinicians, academics, pharmaceutical companies and regulatory bodies. By investigating the current state of the art, the latest scientific findings, controversies, and guidelines, this review will attempt to answer the question: Do we know everything? Since the first descriptions of hepatotoxicity over 70 years ago, more than 1000 drugs have been identified to date, however, much of our knowledge of diagnostic and pathophysiologic principles remains unchanged. Clinically ranging from asymptomatic transaminitis and acute or chronic hepatitis, to acute liver failure, DILI remains a leading causes of emergent liver transplant. The consumption of unregulated herbal and dietary supplements has introduced new challenges in epidemiological assessment and clinician management. As such, numerous registries have been created, including the United States Drug-Induced Liver Injury Network, to further our understanding of all aspects of DILI. The launch of LiverTox and other online hepatotoxicity resources has increased our awareness of DILI. In 2013, the first guidelines for the diagnosis and management of DILI, were offered by the Practice Parameters Committee of the American College of Gastroenterology, and along with the identification of risk factors and predictors of injury, novel mechanisms of injury, refined causality assessment tools, and targeted treatment options have come to define the current state of the art, however, gaps in our knowledge still undoubtedly remain. PMID:28443154
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, C. David; McGill, Mitchell R.; Lebofsky, Margitta
2014-02-01
Acetaminophen (APAP) overdose causes severe and occasionally fatal liver injury. Numerous drugs that attenuate APAP toxicity have been described. However these compounds frequently protect by cytochrome P450 inhibition, thereby preventing the initiating step of toxicity. We have previously shown that pretreatment with allopurinol can effectively protect against APAP toxicity, but the mechanism remains unclear. In the current study, C3HeB/FeJ mice were administered allopurinol 18 h or 1 h prior to an APAP overdose. Administration of allopurinol 18 h prior to APAP overdose resulted in an 88% reduction in liver injury (serum ALT) 6 h after APAP; however, 1 h pretreatmentmore » offered no protection. APAP-cysteine adducts and glutathione depletion kinetics were similar with or without allopurinol pretreatment. The phosphorylation and mitochondrial translocation of c-jun-N-terminal-kinase (JNK) have been implicated in the progression of APAP toxicity. In our study we showed equivalent early JNK activation (2 h) however late JNK activation (6 h) was attenuated in allopurinol treated mice, which suggests that later JNK activation is more critical for the toxicity. Additional mice were administered oxypurinol (primary metabolite of allopurinol) 18 h or 1 h pre-APAP, but neither treatment protected. This finding implicated an aldehyde oxidase (AO)-mediated metabolism of allopurinol, so mice were treated with hydralazine to inhibit AO prior to allopurinol/APAP administration, which eliminated the protective effects of allopurinol. We evaluated potential targets of AO-mediated preconditioning and found increased hepatic metallothionein 18 h post-allopurinol. These data show metabolism of allopurinol occurring independent of P450 isoenzymes preconditions the liver and renders the animal less susceptible to an APAP overdose. - Highlights: • 18 h allopurinol pretreatment protects against acetaminophen-induced liver injury. • 1 h allopurinol pretreatment does not protect from APAP-induced injury. • 18 h or 1 h oxypurinol pretreatment does not alter APAP-induced injury. • Inhibiting aldehyde oxidase eliminates protection from 18 h allopurinol pretreatment. • 18 h allopurinol induces metallothionein which protects the liver against APAP injury.« less
A Case Report of Supplement-Induced Hepatitis in an Active Duty Service Member.
Brazeau, Michael J; Castaneda, Joni L; Huitron, Sonny S; Wang, James
2015-07-01
The incidence of drug-induced hepatic injury has been increasing as a result of more widespread use of workout supplements containing anabolic steroids to increase muscle mass. Synthetic androgenic steroids are shown to cause cholestatic liver injury, but the exact mechanism of injury is not completely understood. We present a case of a healthy, young, active duty Army male soldier who developed pruritis and jaundice shortly after starting to take a body-building supplement containing anabolic steroids, and was subsequently found to have significant biopsy proven drug-induced liver injury. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.
Shoda, Lisl Km; Battista, Christina; Siler, Scott Q; Pisetsky, David S; Watkins, Paul B; Howell, Brett A
2017-01-01
Drug-induced liver injury (DILI) remains an adverse event of significant concern for drug development and marketed drugs, and the field would benefit from better tools to identify liver liabilities early in development and/or to mitigate potential DILI risk in otherwise promising drugs. DILIsym software takes a quantitative systems toxicology approach to represent DILI in pre-clinical species and in humans for the mechanistic investigation of liver toxicity. In addition to multiple intrinsic mechanisms of hepatocyte toxicity (ie, oxidative stress, bile acid accumulation, mitochondrial dysfunction), DILIsym includes the interaction between hepatocytes and cells of the innate immune response in the amplification of liver injury and in liver regeneration. The representation of innate immune responses, detailed here, consolidates much of the available data on the innate immune response in DILI within a single framework and affords the opportunity to systematically investigate the contribution of the innate response to DILI.
Makled, Mirhan N; El-Awady, Mohammed S; Abdelaziz, Rania R; Atwan, Nadia; Guns, Emma T; Gameil, Nariman M; Shehab El-Din, Ahmed B; Ammar, Elsayed M
2016-04-01
Acute liver injury secondary to sepsis is a major challenge in intensive care unit. This study was designed to investigate potential protective effects of pomegranate against sepsis-induced acute liver injury in rats and possible underlying mechanisms. Pomegranate was orally given (800mg/kg/day) for two weeks before sepsis induction by cecal ligation and puncture (CLP). Pomegranate improved survival and attenuated liver inflammatory response, likely related to downregulation of mRNA expression of toll like recptor-4, reduced nuclear translocation and DNA binding activity of proinflammatory transcription factor NF-κB subunit p65, decreased mRNA and protein expression of tumor necrosis factor-alpha and reduction in myeloperoxidase activity and mRNA expression. Pomegranate also decreased CLP-induced oxidative stress as reflected by decreased malondialdehyde content, and increased reduced glutathione level and superoxide dismutase activity. These results confirm the antiinflammatory and antioxidant effects of pomegranate in CLP-induced acute liver injury mediated through inhibiting TLR4/NF-κB pathway, lipid peroxidation and neutrophil infiltration. Copyright © 2016 Elsevier B.V. All rights reserved.
Huang, Jing; Li, Sheng-Li; Zhao, Hong-Wei; Pan, Li-Hua; Sun, Hao-Qiao; Luo, Jian-Ping
2013-02-01
To study the protective effects of polysaccharides from Dendrobium huoshanense (DHP) against CCl4-induced liver injury in mice. Eighty male Kunming mice were randomly divided into normal control group, model control group, dextran control group, starch control group, hydrolyzate control group, three different dose of DPH groups consisting of high-dosage group, middle-dosage group and low-dosage group (200, 100, 50 mg x kg(-1)). Each group contained ten mice. The mice were treated with DHP via intragastric administration for 15 days before treatment of 50% CCl4 in olive oil for consecutive two days. Both alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in serum and superoxide dismutase (SOD) activities and malondialdehyde (MDA) contents in liver tissues were determined in all groups. Immunohistochemistry was used to detect the expression of TNF-alpha in hepatic tissue. Hepatic histopathological examination was observed. DHP effectively decreased the activities of ALT and AST in serum and the contents of hepatic MDA, and restored hepatic SOD activities in acute liver injury mice. Liver tissue damage induced by CCl4 was ameliorated in mice with DHP administration through histopathology examination. Furthermore, the expression of TNF-alpha was greatly decreased in groups treated with polysaccharides. DHP has a significantly hepatoprotective effect on CCl4-induced acute liver injury in mice. Protective effect of DHP on the liver may be related to its function of scavenging free radicals and inhibiting lipid peroxidation and TNF-alpha expression.
Zhong, Wei; Li, Qiong; Xie, Guoxiang; Sun, Xiuhua; Tan, Xiaobing; Sun, Xinguo; Jia, Wei
2013-01-01
Endotoxemia is a causal factor in the development of alcoholic liver injury. The present study aimed at determining the interactions of ethanol with different fat sources at the gut-liver axis. Male Sprague-Dawley rats were pair fed control or ethanol liquid diet for 8 wk. The liquid diets were based on a modified Lieber-DeCarli formula, with 30% total calories derived from corn oil (rich in polyunsaturated fatty acids). To test the effects of saturated fats, corn oil in the ethanol diet was replaced by either cocoa butter (CB, rich in long-chain saturated fatty acids) or medium-chain triglycerides (MCT, exclusively medium-chain saturated fatty acids). Ethanol feeding increased hepatic lipid accumulation and inflammatory cell infiltration and perturbed hepatic and serum metabolite profiles. Ethanol feeding with CB or MCT alleviated ethanol-induced liver injury and attenuated ethanol-induced metabolic perturbation. Both CB and MCT also normalized ethanol-induced hepatic macrophage activation, cytokine expression, and neutrophil infiltration. Ethanol feeding elevated serum endotoxin level, which was normalized by MCT but not CB. In accordance, ethanol-induced downregulations of intestinal occludin and zonula occludens-1 were normalized by MCT but not CB. However, CB normalized ethanol-increased hepatic endotoxin level in association with upregulation of an endotoxin detoxifying enzyme, argininosuccinate synthase 1 (ASS1). Knockdown ASS1 in H4IIEC3 cells resulted in impaired endotoxin clearance and upregulated cytokine expression. These data demonstrate that the protection of saturated fats against alcohol-induced liver injury occur via different actions at the gut-liver axis and are chain length dependent. PMID:24113767
Amiodarone-Induced Liver Injury and Cirrhosis
Kappus, Matthew; Lagoo, Anand S.; Brady, Carla W.
2015-01-01
We present a case report of an 80-year-old woman with volume overload thought initially to be secondary to heart failure, but determined to be amiodarone-induced acute and chronic liver injury leading to submassive necrosis and bridging fibrosis consistent with early cirrhosis. Her histopathology was uniquely absent of steatosis and phospholipidosis, which are commonly seen in AIC. PMID:26157932
Amiodarone-Induced Liver Injury and Cirrhosis.
Buggey, Jonathan; Kappus, Matthew; Lagoo, Anand S; Brady, Carla W
2015-01-01
We present a case report of an 80-year-old woman with volume overload thought initially to be secondary to heart failure, but determined to be amiodarone-induced acute and chronic liver injury leading to submassive necrosis and bridging fibrosis consistent with early cirrhosis. Her histopathology was uniquely absent of steatosis and phospholipidosis, which are commonly seen in AIC.
Rabe, Tiffany M; Yokoo, Takeshi; Meyer, Jeffrey; Kernstine, Kemp H; Wang, David; Khatri, Gaurav
2016-01-01
Post-radiation therapy evaluation of distal esophageal cancers with positron emission tomography/computed tomography can be problematic. Differentiation of recurrent neoplasm from postradiation changes is difficult in areas of fluorodeoxyglucose avidity in adjacent, incidentally irradiated organs. Few studies have described the magnetic resonance imaging appearance of radiation-induced hepatic injury. We report a case of focal radiation-induced liver injury with a new focus of fluorodeoxyglucose uptake on posttreatment positron emission tomography as well as masslike enhancement and signal abnormality on magnetic resonance imaging, thus mimicking new liver metastasis. Correlation with radiation planning images suggested the correct diagnosis, which was confirmed on follow-up imaging.
Yu, Qiong; Jiang, Li-Long; Luo, Na; Fan, Ya-Xi; Ma, Jiang; Li, Ping; Li, Hui-Jun
2017-06-01
Polygoni Multiflori Radix (PMR) has been commonly used as a tonic in China for centuries. However, PMR-associated hepatotoxicity is becoming a safety issue. In our previous in vivo study, an interaction between stilbenes and anthraquinones has been discovered and a hypothesis is proposed that the interaction between stilbene glucoside-enriching fraction and emodin may contribute to the side effects of PMR. To further support our previous in vivo results in rats, the present in vitro study was designed to evaluate the effects of 2, 3, 5, 4'-tetrahydroxystilbene-2-O-β-D-glucopyranoside (TSG) on the cellular absorption and human liver microsome metabolism of emodin. The obtained results indicated that the absorption of emodin in Caco-2 cells was enhanced and the metabolism of emodin in human liver microsomes was inhibited after TSG treatment. The effects of the transport inhibitors on the cellular emodin accumulation were also examined. Western blot assay suggested that the depressed metabolism of emodin could be attributed to the down-regulation of UDP-glucuronosyltransferases (UGTs) 1A8, 1A10, and 2B7. These findings definitively demonstrated the existence of interaction between TSG and emodin, which provide a basis for a better understanding of the underlying mechanism for PMR-induced liver injury. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fullerton, Aaron M., E-mail: fuller22@msu.edu; Roth, Robert A., E-mail: rothr@msu.edu; Ganey, Patricia E., E-mail: ganey@msu.edu
Inflammation plays a major role in immune-mediated liver injury, and exposure to environmental pollutants such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been reported to alter the inflammatory response as well as affect immune cell activity. In this study, we tested the hypothesis that TCDD pretreatment exacerbates hepatotoxicity in a murine model of immune-mediated liver injury induced by concanavalin A (Con A) administration. Mice were pretreated with 30 μg/kg TCDD or vehicle control on day zero and then given either Con A or saline intravenously on day four. Mice treated with TCDD did not develop liver injury; however, TCDD pretreatment increased liver injurymore » resulting from moderate doses of Con A (4–10 mg/kg). TCDD-pretreated mice had altered plasma concentrations of inflammatory cytokines, including interferon gamma (IFNγ), and TCDD/Con A-induced hepatotoxicity was attenuated in IFNγ knockout mice. At various times after treatment, intrahepatic immune cells were isolated, and expression of cell activation markers as well as cytolytic proteins was determined. TCDD pretreatment increased the proportion of activated natural killer T (NKT) cells and the percent of cells expressing Fas ligand (FasL) after Con A administration. In addition FasL knockout mice and mice treated with CD18 antiserum were both protected from TCDD/Con A-induced hepatotoxicity, suggesting a requirement for direct cell–cell interaction between effector immune cells and parenchymal cell targets in the development of liver injury from TCDD/Con A treatment. In summary, exposure to TCDD increased NKT cell activation and exacerbated immune-mediated liver injury induced by Con A through a mechanism involving IFNγ and FasL expression. -- Highlights: ► TCDD pretreatment sensitizes mice to Con A-induced hepatotoxicity. ► TCDD pretreatment increased concentration of IFNγ in plasma after Con A. ► Con A-induced activation of NKT cells was increased by TCDD pretreatment. ► FasL-positive NKT cells increased with TCDD pretreatment versus Con A alone. ► IFNγ and FasL are critical to the development of liver injury from TCDD/Con A.« less
Synthesis of Toll-like receptor 4 in Kupffer cells and its role in alcohol-induced liver disease.
Zuo, Guoqing; Gong, Jianping; Liu, Chang'an; Wu, Chuanxin; Li, Shengwei; Dai, Lili
2003-02-01
To observe the synthesis of Toll-like receptor (TLR) 4 protein and its mRNA expression in Kupffer cells (KCs) and evaluate the role of TLR 4 in liver injury to rats through alcohol-induced liver disease. Twenty-eight Wistar rats were divided into two groups: ethanol-fed (group E) and control (group C). Group E rats were given ethanol at a dose of 5 - 12 g x kg(-1) x d(-1), while group C received dextrose. Animals from both groups were killed at 4 and 8 weeks. The KCs were isolated and synthesis of TLR 4 protein was determined by laser scanning confocal microscopy. TLR 4 mRNA expression in KCs was determined by reverse transcription polymerase chain reaction (RT-PCR) analysis. The levels of endotoxin, tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in plasma were determined. Changes in liver pathology were observed. Laser scanning confocal microscopy showed that the intensity of fluorescence of TLR 4 protein in group E was stronger than group C. Ethanol administration led to a significant increase in TLR 4 mRNA expression in group E compared with group C (P < 0.05). The concentrations of plasma endotoxin, TNF-alpha and IL-6 were higher in group E than in group C (P < 0.05). Liver sections from rats in group E demonstrated marked pathological changes. Ethanol administration can lead to the synthesis of TLR 4 protein and its gene expression in KCs, indicating that TLR 4 may play a major role in the development of alcohol-induced liver injury.
Yang, Li-Juan; Wan, Rong; Shen, Jia-Qing; Shen, Jie; Wang, Xing-Peng
2013-08-01
Remote organ failure occurs in cases of acute pancreatitis (AP); however, the reports on AP induced by pancreatic duct obstruction are rare. In this study we determined the effect of L-cysteine on pancreaticobiliary inflammation and remote organ damage in rats after pancreaticobiliary duct ligation (PBDL). AP was induced by PBDL in rats with 5/0 silk. Sixty rats were randomly divided into 4 groups. Groups A and B were sham-operated groups that received injections of saline or L-cysteine (10 mg/kg) intraperitoneally (15 rats in each group). Groups C and D were PBDL groups that received injections of saline or L-cysteine (10 mg/kg) intraperitoneally (15 rats in each group). The tissue samples of the pancreas and remote organs such as the lung, liver, intestine and kidney were subsequently examined for pathological changes under a light microscope. The samples were also stored for the determination of malondialdehyde and glutathione levels. Blood urea nitrogen (BUN), plasma amylase, ALT and AST levels were determined spectrophotometrically using an automated analyzer. Also, we evaluated the effect of L-cysteine on remote organ injury in rats with AP induced by retrograde infusion of 3.5% sodium taurocholate (NaTc) into the bile-pancreatic duct. Varying degrees of injury in the pancreas, lung, liver, intestine and kidney were observed in the rats 24 hours after PBDL. The severity of injury to the lung, liver and intestine was attenuated, while injury status was not changed significantly in the pancreas and kidney after L-cysteine treatment. Oxidative stress was also affected by L-cysteine in PBDL-treated rats. The concentration of tissue malondialdehyde decreased in the pancreas and remote organs of PBDL and L-cysteine administrated rats, and the concentration of glutathione increased more significantly than that of the model control group. However, L-cysteine administration reduced the severity of injury in remote organs but not in the pancreas in rats with NaTc-induced AP. L-cysteine treatment attenuated multiple organ damage at an early stage of AP in rats and modulated the oxidant/antioxidant imbalance.
Kok, Beverley; Lester, Erica L W; Lee, William M; Hanje, A James; Stravitz, R Todd; Girgis, Safwat; Patel, Vaishali; Peck, Joshua R; Esber, Christopher; Karvellas, Constantine J
2018-06-01
Tumor necrosis factor-α antagonists (anti-TNF-α) have been associated with drug-induced liver injury. However, cases of anti-TNF-α-associated acute liver failure have only been rarely reported. To identify cases of anti-TNF-α-associated acute liver failure and evaluate patterns of liver injury and common characteristics to the cases. The United States Acute Liver Failure Study Group database was searched from 1998 to 2014. Four subjects were identified. A PubMed search for articles that reported anti-TNF-α-associated acute liver failure identified five additional cases. The majority of individuals affected were female (eight of nine cases). Age of individual ranged from 20 to 53 years. The most common anti-TNF-α agent associated with acute liver failure was infliximab (n = 8). The latency between initial drug exposure and acute liver failure ranged from 3 days to over a year. Of the nine cases, six required emergency LT. Liver biopsy was obtained in seven cases with a preponderance toward cholestatic-hepatitic features; none showed clear autoimmune features. Anti-TNF-α-associated acute liver failure displays somewhat different characteristics compared with anti-TNF-α-induced drug-induced liver injury. Infliximab was implicated in the majority of cases. Cholestatic-hepatitic features were frequently found on pre-transplant and explant histology.
Marked Direct Hyperbilirubinemia due to Ceftriaxone in an Adult with Sickle Cell Disease
Khurram, Daniyeh; Shamban, Leonid; Kornas, Robert; Paul, Maryann
2015-01-01
Drugs are a significant cause of liver injury. Drug-induced liver injury (DILI) can cause acute hepatitis, cholestasis, or a mixed pattern. Ceftriaxone is a commonly used antibiotic and has been associated with reversible biliary sludge, pseudolithiasis, and cholestasis. A 32-year-old male with sickle cell disease was admitted to the hospital for acute sickle cell crisis. On the second day of hospitalization, he developed cough and rhonchi with chest X-ray revealing right middle lobe infiltrates. Ceftriaxone and azithromycin were initiated. Subsequently, he developed conjugated hyperbilirubinemia and mild transaminitis. His total bilirubin trended upwards from 3.3 mg/dL on admission to 17 mg/dL. It was predominantly conjugated bilirubin, with preadmission bilirubin levels of 3-4 mg/dL. His transaminases were mildly elevated as well compared to previous levels. Extensive workup for bilirubin elevation was unremarkable. Ceftriaxone was switched to levofloxacin and the hyperbilirubinemia improved. On ambulatory follow-up, his bilirubin remained below 4 mg/dL. Ceftriaxone may be associated with marked direct hyperbilirubinemia particularly in sickle cell patients with chronic liver chemistry abnormalities. In the case of elevated bilirubin with concomitant ceftriaxone use, elimination of the offending agent should be considered. PMID:26101675
Tumor induced hepatic myeloid derived suppressor cells can cause moderate liver damage.
Eggert, Tobias; Medina-Echeverz, José; Kapanadze, Tamar; Kruhlak, Michael J; Korangy, Firouzeh; Greten, Tim F
2014-01-01
Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC) not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL), while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU) treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage.
Yamamoto, Toshiyuki; Ito, Ryotaro; Brooks, Jenna M.; Guzman-Lepe, Jorge; Galambos, Csaba; Fong, Jason V.; Deutsch, Melvin; Quader, Mubina A.; Yamanouchi, Kosho; Kabarriti, Rafi; Mehta, Keyur; Soto-Gutierrez, Alejandro; Roy-Chowdhury, Jayanta; Locker, Joseph; Abe, Michio; Enke, Charles A.; Baranowska-Kortylewicz, Janina; Solberg, Timothy D.; Guha, Chandan; Fox, Ira J.
2014-01-01
Background Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Since the characteristic venocclusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic venocclusive disease. Methods We performed a dose escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results At doses ≥40Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevated alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses where radiation-induced liver disease was mild or non-existent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions The cynomolgus monkey, as the first animal model of human venocclusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury. PMID:24315566
Tumor Induced Hepatic Myeloid Derived Suppressor Cells Can Cause Moderate Liver Damage
Eggert, Tobias; Medina-Echeverz, José; Kapanadze, Tamar; Kruhlak, Michael J.; Korangy, Firouzeh; Greten, Tim F.
2014-01-01
Subcutaneous tumors induce the accumulation of myeloid derived suppressor cells (MDSC) not only in blood and spleens, but also in livers of these animals. Unexpectedly, we observed a moderate increase in serum transaminases in mice with EL4 subcutaneous tumors, which prompted us to study the relationship of hepatic MDSC accumulation and liver injury. MDSC were the predominant immune cell population expanding in livers of all subcutaneous tumor models investigated (RIL175, B16, EL4, CT26 and BNL), while liver injury was only observed in EL4 and B16 tumor-bearing mice. Elimination of hepatic MDSC in EL4 tumor-bearing mice using low dose 5-fluorouracil (5-FU) treatment reversed transaminase elevation and adoptive transfer of hepatic MDSC from B16 tumor-bearing mice caused transaminase elevation indicating a direct MDSC mediated effect. Surprisingly, hepatic MDSC from B16 tumor-bearing mice partially lost their damage-inducing potency when transferred into mice bearing non damage-inducing RIL175 tumors. Furthermore, MDSC expansion and MDSC-mediated liver injury further increased with growing tumor burden and was associated with different cytokines including GM-CSF, VEGF, interleukin-6, CCL2 and KC, depending on the tumor model used. In contrast to previous findings, which have implicated MDSC only in protection from T cell-mediated hepatitis, we show that tumor-induced hepatic MDSC themselves can cause moderate liver damage. PMID:25401795
Morota, Saori; Chen, Li; Matsuyama, Nagahisa; Suzuki, Yoshiaki; Nakajima, Satoshi; Tanoue, Tadashi; Omi, Akibumi; Shibasaki, Futoshi; Shimazu, Motohide; Ikeda, Yukio; Uchino, Hiroyuki; Elmér, Eskil
2011-01-01
Abstract The mitochondrial permeability transition (mPT) is considered to be a major cause of cell death under a variety of pathophysiological conditions of the central nervous system (CNS) and other organs. Pharmacological inhibition or genetic knockout of the matrix protein cyclophilin D (CypD) prevents mPT and cell degeneration in several models of brain injury. If these findings in animal models are translatable to human disease, pharmacological inhibition of mPT offers a promising therapeutic target. The objective of this study was to validate the presence of a CypD-sensitive mPT in adult human brain and liver mitochondria. In order to perform functional characterization of human mitochondria, fresh tissue samples were obtained during hemorrhage or tumor surgery and mitochondria were rapidly isolated. Mitochondrial calcium retention capacity, a quantitative assay for mPT, was significantly increased by the CypD inhibitor cyclosporin A in both human brain and liver mitochondria, whereas thiol-reactive compounds and oxidants sensitized mitochondria to calcium-induced mPT. Brain mitochondria underwent swelling upon calcium overload, which was reversible upon calcium removal. To further explore mPT of human mitochondria, liver mitochondria were demonstrated to exhibit several classical features of the mPT phenomenon, such as calcium-induced loss of membrane potential and respiratory coupling, as well as release of the pro-apoptotic protein cytochrome c. We concluded that adult viable human brain and liver mitochondria possess an active CypD-sensitive mPT. Our findings support the rationale of CypD and mPT inhibition as pharmacological targets in acute and chronic neurodegeneration. PMID:21121808
Anabolic steroid-induced cardiomyopathy underlying acute liver failure in a young bodybuilder.
Bispo, Miguel; Valente, Ana; Maldonado, Rosário; Palma, Rui; Glória, Helena; Nóbrega, João; Alexandrino, Paula
2009-06-21
Heart failure may lead to subclinical circulatory disturbances and remain an unrecognized cause of ischemic liver injury. We present the case of a previously healthy 40-year-old bodybuilder, referred to our Intensive-Care Unit of Hepatology for treatment of severe acute liver failure, with the suspicion of toxic hepatitis associated with anabolic steroid abuse. Despite the absence of symptoms and signs of congestive heart failure at admission, an anabolic steroid-induced dilated cardiomyopathy with a large thrombus in both ventricles was found to be the underlying cause of the liver injury. Treatment for the initially unrecognized heart failure rapidly restored liver function to normal. To our knowledge, this is the first reported case of severe acute liver failure due to an unrecognized anabolic steroid-induced cardiomyopathy. Awareness of this unique presentation will allow for prompt treatment of this potentially fatal cause of liver failure.
Chao, Xiaojuan; Wang, Shaogui; Zhao, Katrina; Li, Yuan; Williams, Jessica A; Li, Tiangang; Chavan, Hemantkumar; Krishnamurthy, Partha; He, Xi C; Li, Linheng; Ballabio, Andrea; Ni, Hong-Min; Ding, Wen-Xing
2018-05-18
Defects in lysosome function and autophagy contribute to pathogenesis of alcoholic liver disease. We investigated the mechanisms by which alcohol consumption affects these processes, evaluating the functions transcription factor EB (TFEB), which regulates lysosomal biogenesis. We performed studies with GFP-LC3 mice, mice with liver-specific deletion of transcription factor EB (TFEB), mice with disruption of the transcription factor E3 gene (TFE3-knockout mice), mice with disruption of the Tefb and Tfe3 genes (TFEB, TFE3 double-knockout mice), and Tfeb flox/flox albumin cre-negative mice (controls). TFEB was overexpressed from adenoviral vectors or knocked down with small interfering RNAs in mouse livers. Mice were placed on diets of chronic ethanol feeding plus an acute binge to induce liver damage (ethanol diet); some mice were also given injections of torin1, an inhibitor of the kinase activity of the mechanistic target of rapamycin (mTOR). Liver tissues were collected and analyzed by immunohistochemistry, immunoblots, and quantitative real-time PCR to monitor lysosome biogenesis. We analyzed levels of TFEB in liver tissues from patients with alcoholic hepatitis and from healthy donors (controls) by immunohistochemistry. Liver tissues from mice on the ethanol diet had lower levels of total and nuclear TFEB, compared with control mice, and hepatocytes had reduced lysosome biogenesis and autophagy. Hepatocytes from mice on the ethanol diet had increased translocation of mTOR into lysosomes, resulting increased mTOR activation. Administration of torin1 increased liver levels of TFEB and reduced steatosis and liver injury induced by ethanol. Mice that overexpressed TFEB in liver developed less-severe ethanol-induced liver injury and had increased lysosomal biogenesis and mitochondrial bioenergetics compared to mice carrying a control vector. Mice with knockdown of TFEB, as well as TFEB, TFE3 double-knockout mice, developed more severe liver injury in response to the ethanol diet than control mice. Liver tissues from patients with alcohol-induced hepatitis had lower nuclear levels of TFEB than control tissues CONCLUSIONS: We found chronic ethanol feeding plus an acute binge to reduce hepatic expression of the transcription factor TFEB, which is required for lysosomal biogenesis and autophagy. Strategies to block mTOR activity or increase levels of TFEB might be developed to protect liver from ethanol-induced damage. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
Wang, Sufan; Wan, Ting; Ye, Mingtong; Qiu, Yun; Pei, Lei; Jiang, Rui; Pang, Nengzhi; Huang, Yuanling; Liang, Baoxia; Ling, Wenhua; Lin, Xiaojun; Zhang, Zhenfeng; Yang, Lili
2018-07-01
Nicotinamide riboside (NR) is a nicotinamide adenine dinucleotide (NAD + ) precursor which is present in foods such as milk and beer. It was reported that NR can prevent obesity, increase longevity, and promote liver regeneration. However, whether NR can prevent ethanol-induced liver injuries is not known. This study aimed to explore the effect of NR on ethanol induced liver injuries and the underlying mechanisms. We fed C57BL/6 J mice with Lieber-DeCarli ethanol liquid diet with or without 400 mg/kg·bw NR for 16 days. Liver injuries and SirT1-PGC-1α-mitochondrial function were analyzed. In in vitro experiments, HepG2 cells (CYP2E1 over-expressing cells) were incubated with ethanol ± 0.5 mmol/L NR. Lipid accumulation and mitochondrial function were compared. SirT1 knockdown in HepG2 cells were further applied to confirm the role of SirT1 in the protection of NR on lipid accumulation. We found that ethanol significantly decreased the expression and activity of hepatic SirT1 and induced abnormal expression of enzymes of lipid metabolism in mice. Both in vivo and in vitro experiments showed that NR activated SirT1 through increasing NAD + levels, decreased oxidative stress, increased deacetylation of PGC-1α and mitochondrial function. In SirT1 knockdown HepG2 cells, NR lost its ability in enhancing mitochondrial function, and its protection against lipid accumulation induced by ethanol. NR can protect against ethanol induced liver injuries via replenishing NAD + , reducing oxidative stress, and activating SirT1-PGC-1α-mitochondrial biosynthesis. Our data indicate that SirT1 plays an important role in the protection of NR against lipid accumulation and mitochondrial dysfunctions induced by ethanol. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Wang, Yongqing; Aoki, Hiroaki; Yang, Jing; Peng, Kesong; Liu, Runping; Li, Xiaojiaoyang; Qiang, Xiaoyan; Sun, Lixin; Gurley, Emily C; Lai, Guanhua; Zhang, Luyong; Liang, Guang; Nagahashi, Masayuki; Takabe, Kazuaki; Pandak, William M; Hylemon, Phillip B.; Zhou, Huiping
2017-01-01
Bile duct obstruction is a potent stimulus for cholangiocyte proliferation, especially for large cholangiocytes. Our previous studies reported that conjugated bile acids (CBAs) activate the AKT and ERK1/2 signaling pathways via the sphingosine 1-phosphate receptor 2 (S1PR2) in hepatocytes and cholangiocarcinoma cells. It also has been reported that taurocholate (TCA) promotes large cholangiocyte proliferation and protects cholangiocytes from bile duct ligation (BDL)-induced apoptosis. However, the role of S1PR2 in bile acid-mediated cholangiocyte proliferation and cholestatic liver injury has not been elucidated. Here we report that S1PR2 is the predominant S1PR expressed in cholangiocytes. Both TCA- and S1P-induced activation of ERK1/2 and AKT were inhibited by JTE-013, a specific antagonist of S1PR2, in cholangiocytes. In addition, TCA- and S1P-induced cell proliferation and migration were inhibited by JTE-013 and a specific shRNA of S1PR2 as well as chemical inhibitors of ERK1/2 and AKT in mouse cholangiocytes. In BDL mice, the expression of S1PR2 was upregulated in whole liver and cholangiocytes. S1PR2 deficiency significantly reduced BDL-induced cholangiocyte proliferation and cholestatic injury as indicated by significant reduction of inflammation and liver fibrosis in S1PR2−/− mice. Treatment of BDL mice with JTE-013 significantly reduced total bile acid levels in the serum and cholestatic liver injury. This study suggests that the CBA-induced activation of S1PR2-mediated signaling pathways plays a critical role in obstructive cholestasis and may represent a novel therapeutic target for cholestatic liver diseases. PMID:28120434
Bonkovsky, Herbert L.; Kleiner, David E.; Gu, Jiezhun; Odin, Joseph A.; Russo, Mark W.; Navarro, Victor M.; Fontana, Robert J.; Ghabril, Marwan S.; Barnhart, Huiman; Hoofnagle, Jay H.
2016-01-01
Bile duct loss during the course of drug induced liver injury is uncommon but can be an indication of vanishing bile duct syndrome. In this work we assess the frequency, causes, clinical features and outcomes of cases of drug induced liver injury with histologically proven bile duct loss. All cases of drug induced liver injury enrolled into a prospective database over a ten year period that had undergone liver biopsies (n=363) were scored for the presence of bile duct loss and assessed for clinical and laboratory features, causes and outcomes. 26 of the 363 patients (7%) with drug, herbal or dietary supplement associated liver injury had bile duct loss on liver biopsy which was moderate to severe (<50% of portal areas with bile ducts) in 14 and mild (50–75%) in 12. The presenting clinical features of the 26 cases varied, but the most common clinical pattern was a severe cholestatic hepatitis. The implicated agents included amoxicillin/clavulanate (n=3), temozolomide (n=3), various herbal products (n=3), azithromycin (n=2) and 15 other medications or dietary supplements. Compared to those without, those with bile duct loss were more likely to develop chronic liver injury (94% vs 47%), which was usually cholestatic and sometimes severe. Five patients died and two others underwent liver transplantation for progressive cholestasis despite treatment with corticosteroids and ursodiol. The most predictive factor of poor outcome was the degree of bile duct loss on liver biopsy. Conclusions Bile duct loss during acute cholestatic hepatitis is an ominous early indicator of possible vanishing bile duct syndrome, for which at present there are no known means of prevention or therapy. PMID:27981596
Qin, Shizhen; Zhou, Yong; Gray, Li; Kusebauch, Ulrike; McEvoy, Laurence; Antoine, Daniel J; Hampson, Lucy; Park, Kevin B; Campbell, David; Caballero, Juan; Glusman, Gustavo; Yan, Xiaowei; Kim, Taek-Kyun; Yuan, Yue; Wang, Kai; Rowen, Lee; Moritz, Robert L; Omenn, Gilbert S; Pirmohamed, Munir; Hood, Leroy
2016-10-07
Organ-enriched blood proteins, those produced primarily in one organ and secreted or exported to the blood, potentially afford a powerful and specific approach to assessing diseases in their cognate organs. We demonstrate that quantification of organ-enriched proteins in the blood offers a new strategy to find biomarkers for diagnosis and assessment of drug-induced liver injury (and presumably the assessment of other liver diseases). We used selected reaction monitoring (SRM) mass spectrometry to quantify 81 liver-enriched proteins plus three aminotransferases (ALT1, AST1, and AST2) in plasma of C57BL/6J and NOD/ShiLtJ mice exposed to acetaminophen or carbon tetrachloride. Plasma concentrations of 49 liver-enriched proteins were perturbed significantly in response to liver injury induced by one or both toxins. We validated four of these toxin-responsive proteins (ALDOB, ASS1, BHMT, and GLUD1) by Western blotting. By both assays, these four proteins constitute liver injury markers superior to currently employed markers such as ALT and AST. A similar approach was also successful in human serum where we had analyzed 66 liver-enriched proteins in acetaminophen overdose patients. Of these, 23 proteins were elevated in patients; 15 of 23 overlapped with the concentration-increased proteins in the mouse study. A combination of 5 human proteins, AGXT, ALDOB, CRP, FBP1, and MMP9, provides the best diagnostic performance to distinguish acetaminophen overdose patients from controls (sensitivity: 0.85, specificity: 0.84, accuracy: 85%). These five blood proteins are candidates for detecting acetaminophen-induced liver injury using next-generation diagnostic devices (e.g, microfluidic ELISA assays).
A Liver-centric Multiscale Modeling Framework for Xenobiotics
We describe a multi-scale framework for modeling acetaminophen-induced liver toxicity. Acetaminophen is a widely used analgesic. Overdose of acetaminophen can result in liver injury via its biotransformation into toxic product, which further induce massive necrosis. Our study foc...
Prakash, Thazha P; Graham, Mark J; Yu, Jinghua; Carty, Rick; Low, Audrey; Chappell, Alfred; Schmidt, Karsten; Zhao, Chenguang; Aghajan, Mariam; Murray, Heather F; Riney, Stan; Booten, Sheri L; Murray, Susan F; Gaus, Hans; Crosby, Jeff; Lima, Walt F; Guo, Shuling; Monia, Brett P; Swayze, Eric E; Seth, Punit P
2014-07-01
Triantennary N-acetyl galactosamine (GalNAc, GN3: ), a high-affinity ligand for the hepatocyte-specific asialoglycoprotein receptor (ASGPR), enhances the potency of second-generation gapmer antisense oligonucleotides (ASOs) 6-10-fold in mouse liver. When combined with next-generation ASO designs comprised of short S-cEt (S-2'-O-Et-2',4'-bridged nucleic acid) gapmer ASOs, ∼ 60-fold enhancement in potency relative to the parent MOE (2'-O-methoxyethyl RNA) ASO was observed. GN3: -conjugated ASOs showed high affinity for mouse ASGPR, which results in enhanced ASO delivery to hepatocytes versus non-parenchymal cells. After internalization into cells, the GN3: -ASO conjugate is metabolized to liberate the parent ASO in the liver. No metabolism of the GN3: -ASO conjugate was detected in plasma suggesting that GN3: acts as a hepatocyte targeting prodrug that is detached from the ASO by metabolism after internalization into the liver. GalNAc conjugation also enhanced potency and duration of the effect of two ASOs targeting human apolipoprotein C-III and human transthyretin (TTR) in transgenic mice. The unconjugated ASOs are currently in late stage clinical trials for the treatment of familial chylomicronemia and TTR-mediated polyneuropathy. The ability to translate these observations in humans offers the potential to improve therapeutic index, reduce cost of therapy and support a monthly dosing schedule for therapeutic suppression of gene expression in the liver using ASOs. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
King, Adrienne L.; Swain, Telisha M.; Mao, Zhengkuan; Udoh, Uduak S.; Oliva, Claudia R.; Betancourt, Angela M.; Griguer, Corrine E.; Crowe, David R.; Lesort, Mathieu
2013-01-01
Chronic ethanol consumption increases sensitivity of the mitochondrial permeability transition (MPT) pore induction in liver. Ca2+ promotes MPT pore opening, and genetic ablation of cyclophilin D (CypD) increases the Ca2+ threshold for the MPT. We used wild-type (WT) and CypD-null (CypD−/−) mice fed a control or an ethanol-containing diet to investigate the role of the MPT in ethanol-mediated liver injury. Ca2+-mediated induction of the MPT and mitochondrial respiration were measured in isolated liver mitochondria. Steatosis was present in WT and CypD−/− mice fed ethanol and accompanied by increased terminal deoxynucleotidyl transferase dUTP-mediated nick-end label-positive nuclei. Autophagy was increased in ethanol-fed WT mice compared with ethanol-fed CypD−/− mice, as reflected by an increase in the ratio of microtubule protein 1 light chain 3B II to microtubule protein 1 light chain 3B I. Higher levels of p62 were measured in CypD−/− than WT mice. Ethanol decreased mitochondrial respiratory control ratios and select complex activities in WT and CypD−/− mice. Ethanol also increased CypD protein in liver of WT mice. Mitochondria from control- and ethanol-fed WT mice were more sensitive to Ca2+-mediated MPT pore induction than mitochondria from their CypD−/− counterparts. Mitochondria from ethanol-fed CypD−/− mice were also more sensitive to Ca2+-induced swelling than mitochondria from control-fed CypD−/− mice but were less sensitive than mitochondria from ethanol-fed WT mice. In summary, CypD deficiency was associated with impaired autophagy and did not prevent ethanol-mediated steatosis. Furthermore, increased MPT sensitivity was observed in mitochondria from ethanol-fed WT and CypD−/− mice. We conclude that chronic ethanol consumption likely lowers the threshold for CypD-regulated and -independent characteristics of the ethanol-mediated MPT pore in liver mitochondria. PMID:24356880
Li, Jianmei; He, Xiwei; Yang, Yang; Li, Mei; Xu, Chenke; Yu, Rong
2018-07-01
This study aims to assess the effects and the mechanisms of silica nanoparticles (SiNPs) on hepatotoxicity in both normal and metabolic syndrome mouse models induced by fructose. Here, we found that SiNPs exposure lead to improved insulin resistance in metabolic syndrome mice, but markedly worsened hepatic ballooning, inflammation infiltration, and fibrosis. Moreover, SiNPs exposure aggravated liver injury in metabolic syndrome mice by causing serious DNA damage. Following SiNPs exposure, liver superoxide dismutase and catalase activities in metabolic syndrome mice were stimulated, which is accompanied by significantly increased malondialdehyde and 8-hydroxy-2-deoxyguanosine levels as compared to normal mice. Scanning electron microscope (SEM) revealed that SiNPs were more readily deposited in the liver mitochondria of metabolic syndrome mice, resulting in more severe mitochondrial injury as compared to normal mice. We speculated that SiNPs-induced mitochondrial injury might be the cause of hepatic oxidative stress, which further lead to a series of liver lesions as observed in mice following SiNPs exposure. Based on these results, it is likely that SiNPs will increase the risk and severity of liver disease in individuals with metabolic syndrome. Therefore, SiNPs should be used cautiously in food additives and clinical settings. Copyright © 2018 Elsevier B.V. All rights reserved.
Gurusamy, K; Kokilavani, R; Arumugasamy, K; Sowmia, C
2009-01-01
Protective effect of ethanolic extract of polyherbalformulation (PHF) of three medicinalplants was studied on carbon tetrachloride induced liver damage in rats. Treatment with 250mg I kg b.w. of ethanolic extract of PHF protected rats against carbon tetrachloride liver injury by significantly lowering 5’NT, GGF, GDH and SDH and bilirubin levels compared to control group of rats. Normalising the effect of these parameters indicates strong hepatoprotective property of the PHF extract. PMID:22557313
Iracheta-Vellve, Arvin; Petrasek, Jan; Gyogyosi, Benedek; Bala, Shashi; Csak, Timea; Kodys, Karen; Szabo, Gyongyi
2017-07-01
Inflammation and impaired hepatocyte regeneration contribute to liver failure in alcoholic hepatitis (AH). Interleukin (IL)-1 is a key inflammatory cytokine in the pathobiology of AH. The role of IL-1 in liver regeneration in the recovery phase of alcohol-induced liver injury is unknown. In this study, we tested IL-1 receptor antagonist to block IL-1 signalling in a mouse model of acute-on-chronic liver injury on liver inflammation and hepatocyte regeneration in AH. We observed that inhibition of IL-1 signalling decreased liver inflammation and neutrophil infiltration, and resulted in enhanced regeneration of hepatocytes and increased rate of recovery from liver injury in AH. Our novel findings suggest that IL-1 drives sustained liver inflammation and impaired hepatocyte regeneration even after cessation of ethanol exposure. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, C. David; Koerner, Michael R., E-mail: mkoern2@illinois.edu; Lampe, Jed N.
The mechanisms of acetaminophen (APAP)-mediated hepatic oncotic necrosis have been extensively characterized. However, it was recently demonstrated that fed CD-1 mice have a transient caspase activation which initiates apoptosis. To evaluate these findings in more detail, outbred (Swiss Webster, SW) and inbred (C57BL/6) mice were treated with APAP with or without pan-caspase inhibitor and compared to the apoptosis model of galactosamine (GalN)/endotoxin (ET). Fasted or fed APAP-treated C57BL/6 mice showed no evidence of caspase-3 processing or activity. Interestingly, a minor, temporary increase in caspase-3 processing and activity (150% above baseline) was observed after APAP treatment only in fed SW mice.more » The degree of caspase-3 activation in SW mice after APAP was minor compared to that observed in GalN/ET-treated mice (1600% above baseline). The pancaspase inhibitor attenuated caspase activation and resulted in increased APAP-induced injury (plasma ALT, necrosis scoring). The caspase inhibitor did not affect apoptosis because regardless of treatment only < 0.5% of hepatocytes showed consistent apoptotic morphology after APAP. In contrast, > 20% apoptotic cells were observed in GalN/ET-treated mice. Presence of the caspase inhibitor altered hepatic glutathione levels in SW mice, which could explain the exacerbation of injury. Additionally, the infiltration of hepatic neutrophils was not altered by the fed state of either mouse strain. Conclusion: Minor caspase-3 activation without apoptotic cell death can be observed only in fed mice of some outbred strains. These findings suggest that although the severity of APAP-induced liver injury varies between fed and fasted animals, the mechanism of cell death does not fundamentally change. -- Highlights: Black-Right-Pointing-Pointer During acetaminophen overdose caspase-3 can be activated in fed mice of certain outbred strains. Black-Right-Pointing-Pointer Hepatic ATP levels are not the determining factor for caspase activity. Black-Right-Pointing-Pointer Caspase-3 activity does not result in increased hepatocellular apoptotic cell death. Black-Right-Pointing-Pointer Neutrophil recruitment during acetaminophen occurs independently of nutritional status. Black-Right-Pointing-Pointer Fed or fasted state does not alter the mechanisms of acetaminophen-induced cell death.« less
Yang, Daqian; Jiang, Huijie; Lu, Jingjing; Lv, Yueying; Baiyun, Ruiqi; Li, Siyu; Liu, Biying; Lv, Zhanjun; Zhang, Zhigang
2018-06-01
Lead, a pervasive environmental hazard worldwide, causes a wide range of physiological and biochemical destruction, including metabolic dysfunction. Grape seed proanthocyanidin extract (GSPE) is a natural production with potential metabolic regulation in liver. This study was performed to investigate the protective role of GSPE against lead-induced metabolic dysfunction in liver and elucidate the potential molecular mechanism of this event. Wistar rats received GSPE (200 mg/kg) daily with or without lead acetate (PbA, 0.5 g/L) exposure for 56 d. According to biochemical and histopathologic analysis, GSPE attenuated lead-induced metabolic dysfunction, oxidative stress, and liver dysfunction. Liver gene expression profiling was assessed by RNA sequencing and validated by qRT-PCR. Expression of some genes in peroxisome proliferator-activated receptor alpha (PPARα) signaling pathway was significantly suppressed in PbA group and revived in PbA + GSPE group, which was manifested by Gene Ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis and validated by western blot analysis. This study supports that dietary GSPE ameliorates lead-induced fatty acids metabolic disturbance in rat liver associated with PPARα signaling pathway, and suggests that dietary GSPE may be a protector against lead-induced metabolic dysfunction and liver injury, providing a novel therapy to protect liver against lead exposure. Copyright © 2018 Elsevier Ltd. All rights reserved.
Zhan, Xi; Zhang, Zhiqing; Huang, Hanfei; Zhang, Yujun; Zeng, Zhong
2018-06-01
To investigate the effect of heme oxygenase-1 (HO-1) on the ischemic reperfusion injury (IRI) of bile duct in rat models after liver transplantation. 320 SD rats were equally and randomly divided into 5 groups, which were group A receiving injection of 3×10 8 /pfu/ml adenovirus (adv), group B with donor receiving Adv-HO-1 and recipient receiving Adv-HO-1-siRNA, group C with donor and recipient both receiving Adv-HO-1, group D with donor receiving Adv-HO-1-siRNA and recipient receiving Adv-HO-1, and group E with donor and recipient both receiving Adv-HO-1-siRNA at 24h before liver transplantation. Donor liver was stored in UW liquid at 4°C followed by measuring HO-1 level by western blot before transplantation. On d1, d3, d7 and d14, serum and liver was isolated for analysis of liver function, inflammatory cell infiltration by H&E staining, ultrastructure of liver by transmission electron microscopy as well as the expression of HO-1, Bsep, Mrp2 and Ntcp by western blot. Compared with group D and E, group B and C displayed improved liver function as demonstrated by lower level of ALT, AST, LDH, TBIL, ALP and GGT, increased secretion of TBA and PL as well as expression of transporter proteins (Bsep, Mrp2 and Ntcp), reduced inflammatory cells infiltration and liver injury. Our study demonstrated that overexpression of HO-1 in donor liver can ameliorate the damage to bile duct and liver, and improved liver function, suggesting HO-1 might be a new therapeutic target in the treatment of IRI after liver transplantation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Zhang, Fuyang; Zhao, Shihao; Yan, Wenjun; Xia, Yunlong; Chen, Xiyao; Wang, Wei; Zhang, Jinglong; Gao, Chao; Peng, Cheng; Yan, Feng; Zhao, Huishou; Lian, Kun; Lee, Yan; Zhang, Ling; Lau, Wayne Bond; Ma, Xinliang; Tao, Ling
2016-11-01
The Western meat-rich diet is both high in protein and fat. Although the hazardous effect of a high fat diet (HFD) upon liver structure and function is well recognized, whether the co-presence of high protein intake contributes to, or protects against, HF-induced hepatic injury remains unclear. Increased intake of branched chain amino acids (BCAA, essential amino acids compromising 20% of total protein intake) reduces body weight. However, elevated circulating BCAA is associated with non-alcoholic fatty liver disease and injury. The mechanisms responsible for this quandary remain unknown; the role of BCAA in HF-induced liver injury is unclear. Utilizing HFD or HFD+BCAA models, we demonstrated BCAA supplementation attenuated HFD-induced weight gain, decreased fat mass, activated mammalian target of rapamycin (mTOR), inhibited hepatic lipogenic enzymes, and reduced hepatic triglyceride content. However, BCAA caused significant hepatic damage in HFD mice, evidenced by exacerbated hepatic oxidative stress, increased hepatic apoptosis, and elevated circulation hepatic enzymes. Compared to solely HFD-fed animals, plasma levels of free fatty acids (FFA) in the HFD+BCAA group are significantly further increased, due largely to AMPKα2-mediated adipocyte lipolysis. Lipolysis inhibition normalized plasma FFA levels, and improved insulin sensitivity. Surprisingly, blocking lipolysis failed to abolish BCAA-induced liver injury. Mechanistically, hepatic mTOR activation by BCAA inhibited lipid-induced hepatic autophagy, increased hepatic apoptosis, blocked hepatic FFA/triglyceride conversion, and increased hepatocyte susceptibility to FFA-mediated lipotoxicity. These data demonstrated that BCAA reduces HFD-induced body weight, at the expense of abnormal lipolysis and hyperlipidemia, causing hepatic lipotoxicity. Furthermore, BCAA directly exacerbate hepatic lipotoxicity by reducing lipogenesis and inhibiting autophagy in the hepatocyte. Copyright © 2016. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Ruibing; Yan, Lihui; Luo, Zheng
2015-08-15
Extracellular Ca{sup 2+} influx has been suggested to play a role in ethanol-induced hepatocyte apoptosis and necrosis. Previous studies indicated that store-operated Ca{sup 2+} entry (SOCE) was involved in liver injury induced by ethanol in HepG2 cells. However, the mechanisms underlying liver injury caused by SOCE remain unclear. We aimed to investigate the effects and mechanism of SOCE inhibition on liver injury induced by ethanol in BRL cells and Sprague–Dawley rats. Our data demonstrated that ethanol (0–400 mM) dose-dependently increased hepatocyte injury and 100 mM ethanol significantly upregulated the mRNA and protein expression of SOC for at least 72 hmore » in BRL cells. Blockade of SOCE by pharmacological inhibitors and sh-RNA knockdown of STIM1 and Orai1 attenuated intracellular Ca{sup 2+} overload, restored the mitochondrial membrane potential (MMP), decreased cytochrome C release and inhibited ethanol-induced apoptosis. STIM1 and Orai1 expression was greater in ethanol-treated than control rats, and the SOCE inhibitor corosolic acid ameliorated the histopathological findings and alanine transaminase and aspartate transaminase activity as well as decreased cytochrome C release and inhibited alcohol-induced cell apoptosis. These findings suggest that SOCE blockade could alleviate alcohol-induced hepatotoxicity via inhibiting apoptosis. SOCE might be a useful therapeutic target in alcoholic liver diseases. - Highlights: • Blockade of SOCE alleviated overload of Ca{sup 2+} and hepatotoxicity after ethanol application. • Blockade of SOCE inhibited mitochondrial apoptosis after ethanol application. • SOCE might be a useful therapeutic target in alcoholic liver diseases.« less
Goldring, Christopher; Antoine, Daniel J; Bonner, Frank; Crozier, Jonathan; Denning, Chris; Fontana, Robert J; Hanley, Neil A; Hay, David C; Ingelman-Sundberg, Magnus; Juhila, Satu; Kitteringham, Neil; Silva-Lima, Beatriz; Norris, Alan; Pridgeon, Chris; Ross, James A; Young, Rowena Sison; Tagle, Danilo; Tornesi, Belen; van de Water, Bob; Weaver, Richard J; Zhang, Fang; Park, B Kevin
2017-02-01
Current preclinical drug testing does not predict some forms of adverse drug reactions in humans. Efforts at improving predictability of drug-induced tissue injury in humans include using stem cell technology to generate human cells for screening for adverse effects of drugs in humans. The advent of induced pluripotent stem cells means that it may ultimately be possible to develop personalized toxicology to determine interindividual susceptibility to adverse drug reactions. However, the complexity of idiosyncratic drug-induced liver injury means that no current single-cell model, whether of primary liver tissue origin, from liver cell lines, or derived from stem cells, adequately emulates what is believed to occur during human drug-induced liver injury. Nevertheless, a single-cell model of a human hepatocyte which emulates key features of a hepatocyte is likely to be valuable in assessing potential chemical risk; furthermore, understanding how to generate a relevant hepatocyte will also be critical to efforts to build complex multicellular models of the liver. Currently, hepatocyte-like cells differentiated from stem cells still fall short of recapitulating the full mature hepatocellular phenotype. Therefore, we convened a number of experts from the areas of preclinical and clinical hepatotoxicity and safety assessment, from industry, academia, and regulatory bodies, to specifically explore the application of stem cells in hepatotoxicity safety assessment and to make recommendations for the way forward. In this short review, we particularly discuss the importance of benchmarking stem cell-derived hepatocyte-like cells to their terminally differentiated human counterparts using defined phenotyping, to make sure the cells are relevant and comparable between labs, and outline why this process is essential before the cells are introduced into chemical safety assessment. (Hepatology 2017;65:710-721). © 2016 by the American Association for the Study of Liver Diseases.
Role of miRNA and its potential as a novel diagnostic biomarker in drug-induced liver injury.
Sanjay, Sukumaran; Girish, Chandrashekaran
2017-04-01
MicroRNAs (miRNA or miR) are the most abundant and stable class of small RNA. Unlike the typical RNA molecules present in the cell, they do not encode proteins but can control translation. and Hhence, they are found to play a major role in the regulation of cellular processes. miRNAs have been shown to differentially regulate various genes, and the expression levels of some miRNAs changes several fold in liver and serum, during drug- induced toxicity. This review summarises some of the latest findings about the biological functions of miRNA and its potential use as diagnostic biomarkers in drug- induced liver injury. The information presented in this article is taken from published literature, both original work and reviews on mechanisms of drug- induced liver injury, miRNA in liver pathophysiology, and studies exploring the use of miRNA as biomarker in drug- induced liver injury. Literature search was done using search engines:- PUBMED, Google scholar, and relevant journal sites. Recent research provides insight into the ability of miRNA to regulate various pathways in diseased and nondiseased states of liver. They also lay a foundation for development of diagnostic tests utilizing the potential of miRNAs that can not only be used for early detection of DILI but also to differentiate between different types of DILI. More studies on biological functions of miRNA and standardisation of protocol between research laboratories can lead to further advancement in this field. Considering the therapeutic and diagnostic potential of miRNA, the major challenge would be to integrate these findings to clinical settings where it can be used for the treatment of cases with DILI.
Shen, Zhenyu; Wang, Yu; Su, Zhenhui; Kou, Ruirui; Xie, Keqin; Song, Fuyong
2018-02-25
Acetaminophen (APAP) overdose can cause severe liver failure even death. Nearly half of drug-induced liver injury is attributed to APAP in the US and many European countries. Oxidative stress has been validated as a critical event involved in APAP-induced liver failure. p62/SQSTM1, a selective autophagy adaptor protein, is reported to regulate Nrf2-ARE antioxidant pathway in response to oxidative stress. However, the exact role of p62-keap1-Nrf2 antioxidant pathway in APAP-induced hepatotoxicity remains unknown. In the present study, the dose-response and time-course model in C57/BL6 mice were established by intraperitoneal injection of APAP. The results of serum alanine/aspartate aminotransferases (ALT/AST) and histological examination demonstrated that APAP overdose resulted in the severe liver injury. In the meantime, the levels of p62, phospho-p62 and nuclear Nrf2 were significantly increased by APAP in mice liver, suggesting an activation of p62-keap1-Nrf2 pathway. In addition, the expression of GSTA1 mRNA was increased in a dose-dependent manner, while the mRNA levels of HO-1 and GCLC were decreased with the increase of APAP dose. Our further investigation found that expression of HO-1 and GCLC peaked at 3 h∼6 h, and then were decreased gradually. Taken together, these results indicated that p62-keap1-Nrf2 antioxidant pathway was primarily activated in the early stage of APAP hepatotoxicity, which might play a protective role in the process of APAP-induced acute liver injury. Copyright © 2018 Elsevier B.V. All rights reserved.
Joshi, Nikita; Kopec, Anna K; Towery, Keara; Williams, Kurt J; Luyendyk, James P
2014-06-01
Hepatic fibrin deposition has been shown to inhibit hepatocellular injury in mice exposed to the bile duct toxicant α-naphthylisothiocyanate (ANIT). Degradation of fibrin clots by fibrinolysis controls the duration and extent of tissue fibrin deposition. Thus, we sought to determine the effect of treatment with the antifibrinolytic drug tranexamic acid (TA) and plasminogen activator inhibitor-1 (PAI-1) deficiency on ANIT-induced liver injury and fibrosis in mice. Plasmin-dependent lysis of fibrin clots was impaired in plasma from mice treated with TA (1200 mg/kg i.p., administered twice daily). Prophylactic TA administration reduced hepatic inflammation and hepatocellular necrosis in mice fed a diet containing 0.025% ANIT for 2 weeks. Hepatic type 1 collagen mRNA expression and deposition increased markedly in livers of mice fed ANIT diet for 4 weeks. To determine whether TA treatment could inhibit this progression of liver fibrosis, mice were fed ANIT diet for 4 weeks and treated with TA for the last 2 weeks. Interestingly, TA treatment largely prevented increased deposition of type 1 collagen in livers of mice fed ANIT diet for 4 weeks. In contrast, biliary hyperplasia/inflammation and liver fibrosis were significantly increased in PAI-1(-/-) mice fed ANIT diet for 4 weeks. Overall, the results indicate that fibrinolytic activity contributes to ANIT diet-induced liver injury and fibrosis in mice. In addition, these proof-of-principle studies suggest the possibility that therapeutic intervention with an antifibrinolytic drug could form a novel strategy to prevent or reduce liver injury and fibrosis in patients with liver disease.
Nonacetaminophen Drug-Induced Acute Liver Failure.
Thomas, Arul M; Lewis, James H
2018-05-01
Acute liver failure of all causes is diagnosed in between 2000 and 2500 patients annually in the United States. Drug-induced acute liver failure is the leading cause of acute liver failure, accounting for more than 50% of cases. Nonacetaminophen drug injury represents 11% of all cases in the latest registry from the US Acute Liver Failure Study Group. Although rare, acute liver failure is clinically dramatic when it occurs, and requires a multidisciplinary approach to management. In contrast with acetaminophen-induced acute liver failure, non-acetaminophen-induced acute liver failure has a more ominous prognosis with a lower liver transplant-free survival. Copyright © 2018 Elsevier Inc. All rights reserved.
A synthetic biology-based device prevents liver injury in mice.
Bai, Peng; Ye, Haifeng; Xie, Mingqi; Saxena, Pratik; Zulewski, Henryk; Charpin-El Hamri, Ghislaine; Djonov, Valentin; Fussenegger, Martin
2016-07-01
The liver performs a panoply of complex activities coordinating metabolic, immunologic and detoxification processes. Despite the liver's robustness and unique self-regeneration capacity, viral infection, autoimmune disorders, fatty liver disease, alcohol abuse and drug-induced hepatotoxicity contribute to the increasing prevalence of liver failure. Liver injuries impair the clearance of bile acids from the hepatic portal vein which leads to their spill over into the peripheral circulation where they activate the G-protein-coupled bile acid receptor TGR5 to initiate a variety of hepatoprotective processes. By functionally linking activation of ectopically expressed TGR5 to an artificial promoter controlling transcription of the hepatocyte growth factor (HGF), we created a closed-loop synthetic signalling network that coordinated liver injury-associated serum bile acid levels to expression of HGF in a self-sufficient, reversible and dose-dependent manner. After implantation of genetically engineered human cells inside auto-vascularizing, immunoprotective and clinically validated alginate-poly-(L-lysine)-alginate beads into mice, the liver-protection device detected pathologic serum bile acid levels and produced therapeutic HGF levels that protected the animals from acute drug-induced liver failure. Genetically engineered cells containing theranostic gene circuits that dynamically interface with host metabolism may provide novel opportunities for preventive, acute and chronic healthcare. Liver diseases leading to organ failure may go unnoticed as they do not trigger any symptoms or significant discomfort. We have designed a synthetic gene circuit that senses excessive bile acid levels associated with liver injuries and automatically produces a therapeutic protein in response. When integrated into mammalian cells and implanted into mice, the circuit detects the onset of liver injuries and coordinates the production of a protein pharmaceutical which prevents liver damage. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Blood Pyrrole-Protein Adducts--A Biomarker of Pyrrolizidine Alkaloid-Induced Liver Injury in Humans.
Ruan, Jianqing; Gao, Hong; Li, Na; Xue, Junyi; Chen, Jie; Ke, Changqiang; Ye, Yang; Fu, Peter Pi-Cheng; Zheng, Jiang; Wang, Jiyao; Lin, Ge
2015-01-01
Pyrrolizidine alkaloids (PAs) induce liver injury (PA-ILI) and is very likely to contribute significantly to drug-induced liver injury (DILI). In this study we used a newly developed ultra-high performance liquid chromatography-triple quadrupole-mass spectrometry (UHPLC-MS)-based method to detect and quantitate blood pyrrole-protein adducts in DILI patients. Among the 46 suspected DILI patients, 15 were identified as PA-ILI by the identification of PA-containing herbs exposed. Blood pyrrole-protein adducts were detected in all PA-ILI patients (100%). These results confirm that PA-ILI is one of the major causes of DILI and that blood pyrrole-protein adducts quantitated by the newly developed UHPLC-MS method can serve as a specific biomarker of PA-ILI.
Chronic intermittent hypoxia and acetaminophen induce synergistic liver injury in mice.
Savransky, Vladimir; Reinke, Christian; Jun, Jonathan; Bevans-Fonti, Shannon; Nanayakkara, Ashika; Li, Jianguo; Myers, Allen C; Torbenson, Michael S; Polotsky, Vsevolod Y
2009-02-01
Obstructive sleep apnoea (OSA) leads to chronic intermittent hypoxia (CIH) during sleep. Obstructive sleep apnoea has been associated with liver injury. Acetaminophen (APAP; known as paracetamol outside the USA) is one of the most commonly used drugs which has known hepatotoxicity. The goal of the present study was to examine whether CIH increases liver injury, hepatic oxidative stress and inflammation induced by chronic APAP treatment. Adult C57BL/6J mice were exposed to CIH or intermittent air (IA) for 4 weeks. Mice in both groups were treated with intraperitoneal injections of either APAP (200 mg kg(-1)) or normal saline daily. A combination of CIH and APAP caused liver injury, with marked increases in serum alanine aminotransferase, aspartate aminotransferase (AST), gamma-glutamyl transferase and total bilirubin levels, whereas CIH alone induced only elevation in serum AST levels. Acetaminophen alone did not affect serum levels of liver enzymes. Histopathology revealed hepatic necrosis and increased apoptosis in mice exposed to CIH and APAP, whereas the liver remained intact in all other groups. Mice exposed to CIH and APAP exhibited decreased hepatic glutathione in conjunction with a fivefold increase in nitrotyrosine levels, suggesting formation of toxic peroxynitrite in hepatocytes. Acetaminophen or CIH alone had no effect on either glutathione or nitrotyrosine. A combination of CIH and APAP caused marked increases in pro-inflammatory chemokines, monocyte chemoattractant protein-1 and macrophage inflammatory protein-2, which were not observed in mice exposed to CIH or APAP alone. We conclude that CIH and chronic APAP treatment lead to synergistic liver injury, which may have clinical implications for patients with OSA.
Chronic Intermittent Hypoxia and Acetaminophen Induce Synergistic Liver Injury
Savransky, Vladimir; Reinke, Christian; Jun, Jonathan; Bevans-Fonti, Shannon; Nanayakkara, Ashika; Li, Jianguo; Myers, Allen C.; Torbenson, Michael S.; Polotsky, Vsevolod Y.
2010-01-01
Obstructive sleep apnea (OSA) leads to chronic intermittent hypoxia (CIH) during sleep. OSA has been associated with liver injury. Acetaminophen (APAP) is one of the most commonly used drugs, which has known hepatotoxicity. The goal of the present study was to examine whether CIH increases liver injury, hepatic oxidative stress and inflammation induced by chronic APAP treatment. C57BL/6J mice were exposed to CIH or intermittent air (IA) for 4 weeks. Mice in both groups were treated with intraperitoneal injections of either APAP (200 mg/kg) or normal saline daily. A combination of CIH and APAP caused liver injury with marked increases in serum alanine aminotransferase, aspartate aminotransferase (AST), gamma glutamyl transferase and total bilirubin levels, whereas CIH alone induced only elevation in serum AST levels. APAP alone did not affect serum levels of liver enzymes. Histopathology revealed hepatic necrosis and increased apoptosis in mice exposed to CIH and APAP, whereas the liver remained intact in all other groups. Mice exposed to CIH and APAP exhibited decreased hepatic glutathione in conjunction with a five-fold increase in nitrotyrosine levels, suggesting formation of toxic peroxynitrite in hepatocytes. APAP or CIH alone had no effect on either glutathione or nitrotyrosine. A combination of CIH and APAP caused marked increases in pro-inflammatory chemokines, monocyte chemoattractant protein-1 and macrophage inflammatory protein-2, which were not observed in mice exposed to CIH or APAP alone. We conclude that CIH and chronic APAP treatment lead to synergistic liver injury, which may have clinical implications for patients with OSA. PMID:19028810
Müller-Redetzky, Holger C; Will, Daniel; Hellwig, Katharina; Kummer, Wolfgang; Tschernig, Thomas; Pfeil, Uwe; Paddenberg, Renate; Menger, Michael D; Kershaw, Olivia; Gruber, Achim D; Weissmann, Norbert; Hippenstiel, Stefan; Suttorp, Norbert; Witzenrath, Martin
2014-04-14
Ventilator-induced lung injury (VILI) contributes to morbidity and mortality in acute respiratory distress syndrome (ARDS). Particularly pre-injured lungs are susceptible to VILI despite protective ventilation. In a previous study, the endogenous peptide adrenomedullin (AM) protected murine lungs from VILI. We hypothesized that mechanical ventilation (MV) contributes to lung injury and sepsis in pneumonia, and that AM may reduce lung injury and multiple organ failure in ventilated mice with pneumococcal pneumonia. We analyzed in mice the impact of MV in established pneumonia on lung injury, inflammation, bacterial burden, hemodynamics and extrapulmonary organ injury, and assessed the therapeutic potential of AM by starting treatment at intubation. In pneumococcal pneumonia, MV increased lung permeability, and worsened lung mechanics and oxygenation failure. MV dramatically increased lung and blood cytokines but not lung leukocyte counts in pneumonia. MV induced systemic leukocytopenia and liver, gut and kidney injury in mice with pneumonia. Lung and blood bacterial burden was not affected by MV pneumonia and MV increased lung AM expression, whereas receptor activity modifying protein (RAMP) 1-3 expression was increased in pneumonia and reduced by MV. Infusion of AM protected against MV-induced lung injury (66% reduction of pulmonary permeability p < 0.01; prevention of pulmonary restriction) and against VILI-induced liver and gut injury in pneumonia (91% reduction of AST levels p < 0.05, 96% reduction of alanine aminotransaminase (ALT) levels p < 0.05, abrogation of histopathological changes and parenchymal apoptosis in liver and gut). MV paved the way for the progression of pneumonia towards ARDS and sepsis by aggravating lung injury and systemic hyperinflammation leading to liver, kidney and gut injury. AM may be a promising therapeutic option to protect against development of lung injury, sepsis and extrapulmonary organ injury in mechanically ventilated individuals with severe pneumonia.
Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration
Pu, Wenjuan; Zhang, Hui; Huang, Xiuzhen; Tian, Xueying; He, Lingjuan; Wang, Yue; Zhang, Libo; Liu, Qiaozhen; Li, Yan; Li, Yi; Zhao, Huan; Liu, Kuo; Lu, Jie; Zhou, Yingqun; Huang, Pengyu; Nie, Yu; Yan, Yan; Hui, Lijian; Lui, Kathy O.; Zhou, Bin
2016-01-01
Hepatocytes are functionally heterogeneous and are divided into two distinct populations based on their metabolic zonation: the periportal and pericentral hepatocytes. During liver injury and regeneration, the cellular dynamics of these two distinct populations remain largely elusive. Here we show that major facilitator super family domain containing 2a (Mfsd2a), previously known to maintain blood–brain barrier function, is a periportal zonation marker. By genetic lineage tracing of Mfsd2a+ periportal hepatocytes, we show that Mfsd2a+ population decreases during liver homeostasis. Nevertheless, liver regeneration induced by partial hepatectomy significantly stimulates expansion of the Mfsd2a+ periportal hepatocytes. Similarly, during chronic liver injury, the Mfsd2a+ hepatocyte population expands and completely replaces the pericentral hepatocyte population throughout the whole liver. After injury recovery, the adult liver re-establishes the metabolic zonation by reprogramming the Mfsd2a+-derived hepatocytes into pericentral hepatocytes. The evidence of entire zonation replacement during injury increases our understanding of liver biology and disease. PMID:27857132
Forsyth, Christopher B; Farhadi, Ashkan; Jakate, Shriram M; Tang, Yueming; Shaikh, Maliha; Keshavarzian, Ali
2009-03-01
Because only 30% of alcoholics develop alcoholic liver disease (ALD), a factor other than heavy alcohol consumption must be involved in the development of alcohol-induced liver injury. Animal and human studies suggest that bacterial products, such as endotoxins, are the second key co-factors, and oxidant-mediated gut leakiness is one of the sources of endotoxemia. Probiotics have been used to prevent and treat diseases associated with gut-derived bacterial products and disorders associated with gut leakiness. Indeed, "probiotic"Lactobacillus rhamnosus has been successfully used to treat alcohol-induced liver injury in rats. However, the mechanism of action involved in the potential beneficial effects of L. rhamnosus in alcohol liver injury is not known. We hypothesized that probiotics could preserve normal barrier function in an animal model of ALD by preventing alcohol-induced oxidative stress and thus prevent the development of hyperpermeability and subsequent alcoholic steatohepatitis (ASH). Male Sprague-Dawley rats were gavaged with alcohol twice daily (8 gm/kg) for 10 weeks. In addition, alcoholic rats were also treated with once daily gavage of either 2.5 x 10(7) live L. rhamnosus Gorbach-Goldin (LGG) or vehicle (V). Intestinal permeability (baseline and at 10 weeks) was determined using a sugar bolus and GC analysis of urinary sugars. Intestinal and liver tissues were analyzed for markers of oxidative stress and inflammation. In addition, livers were assessed histologically for severity of ASH and total fat (steatosis). Alcohol+LGG (ALC+LGG)-fed rats had significantly (P< or =.05) less severe ASH than ALC+V-fed rats. L. rhamnosus Gorbach-Goldin also reduced alcohol-induced gut leakiness and significantly blunted alcohol-induced oxidative stress and inflammation in both intestine and the liver. L. rhamnosus Gorbach-Goldin probiotic gavage significantly ameliorated ASH in rats. This improvement was associated with reduced markers of intestinal and liver oxidative stress and inflammation and preserved gut barrier function. Our study provides a scientific rationale to test probiotics for treatment and/or prevention of alcoholic liver disease in man.
Saidi, Saber Abdelkader; Ncir, Marwa; Chaaben, Rim; Jamoussi, Kamel; van Pelt, Jos; Elfeki, Abdelfattah
2017-10-01
Intestinal ischemia-reperfusion (IIR) not only leads to severe intestine damage but also induced subsequent destruction of remote organs. We investigated the protective effect of Pistascia lentiscus L. (Anacardiaceae) oil on IIR. Wistar rats were divided into three groups: sham, intestinal IR and P. lentiscus pretreatment (n = 18 each). In the pretreatment group, oil was administered 1 h before induction of warm ischemia. IIR led to severe liver damage manifested as a significant (p < .05) increase of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. Pistacia lentiscus oil decreased the visible intestinal damage, as well as a significant decrease in serum AST and ALT levels. In addition, Pistacia lentiscus reduce liver injury, as evidenced by the decrease in liver tissue myeloperoxidase activity and lipoperoxidation (MDA) level. Pistascia lentiscus attenuates liver injury induced by IIR, attributable to the antioxidant and anti-inflammatory effect.
Yamazaki, Yuichi; Moore, Rick; Negishi, Masahiko
2014-01-01
The liver is endowed with the ability to regenerate hepatocytes in response to injury. When this regeneration ability is impaired during liver injury, oval cells, which are considered to be postnatal hepatic progenitors, proliferate and differentiate into hepatocytes. Here we have demonstrated that 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) activates the nuclear receptor constitutive active/androstane receptor (CAR), resulting in proliferation of oval cells in mouse liver. Activation of CAR by DDC was shown by hepatic nuclear CAR accumulation and cytochrome P450 (CYP)2B10 mRNA induction after feeding a 0.1% DDC-containing diet to Car +/+ mice. After being fed the DDC diet, Car +/+, but not Car−/− mice, developed severe liver injury and an A6 antibody-stained ductular reaction in an area around the portal tract. Oval cell proliferation was confirmed by laser capture microdissection and real-time PCR; mRNAs for the two oval cell markers epithelial cell adhesion molecule and TROP2 were specifically induced in the periportal region of DDC diet-fed Car +/+, but not Car−/− mice. Although rates of both hepatocyte growth and death were initially enhanced only in DDC diet-fed Car +/+ mice, growth was attenuated when oval cells proliferated, whereas death continued unabated. DDC-induced liver injury, which differs from other CAR activators such as phenobarbital, occurred in the periportal region where cells developed hypertrophy, accumulated porphyrin crystals and inflammation developed, all in association with the proliferation of oval cells. Thus, CAR provides an excellent experimental model for further investigations into its roles in liver regeneration, as well as the development of diseases such as hepatocellular carcinoma. PMID:21826054
Yamazaki, Yuichi; Moore, Rick; Negishi, Masahiko
2011-11-01
The liver is endowed with the ability to regenerate hepatocytes in response to injury. When this regeneration ability is impaired during liver injury, oval cells, which are considered to be postnatal hepatic progenitors, proliferate and differentiate into hepatocytes. Here we have demonstrated that 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) activates the nuclear receptor constitutive active/androstane receptor (CAR), resulting in proliferation of oval cells in mouse liver. Activation of CAR by DDC was shown by hepatic nuclear CAR accumulation and cytochrome P450 (CYP)2B10 mRNA induction after feeding a 0.1% DDC-containing diet to Car(+/+) mice. After being fed the DDC diet, Car(+/+), but not Car(-/-) mice, developed severe liver injury and an A6 antibody-stained ductular reaction in an area around the portal tract. Oval cell proliferation was confirmed by laser capture microdissection and real-time PCR; mRNAs for the two oval cell markers epithelial cell adhesion molecule and TROP2 were specifically induced in the periportal region of DDC diet-fed Car(+/+), but not Car(-/-) mice. Although rates of both hepatocyte growth and death were initially enhanced only in DDC diet-fed Car(+/+) mice, growth was attenuated when oval cells proliferated, whereas death continued unabated. DDC-induced liver injury, which differs from other CAR activators such as phenobarbital, occurred in the periportal region where cells developed hypertrophy, accumulated porphyrin crystals and inflammation developed, all in association with the proliferation of oval cells. Thus, CAR provides an excellent experimental model for further investigations into its roles in liver regeneration, as well as the development of diseases such as hepatocellular carcinoma.
Wu, Fang; Zheng, Hua; Yang, Zheng-Teng; Cheng, Bang; Wu, Jin-Xia; Liu, Xu-Wen; Tang, Chao-Ling; Lu, Shi-Yin; Chen, Zhao-Ni; Song, Fang-Ming; Ruan, Jun-Xiang; Zhang, Hong-Ye; Liang, Yong-Hong; Song, Hui; Su, Zhi-Heng
2017-06-05
Chronic liver injury has been shown to cause liver fibrosis due to the sustained pathophysiological wound healing response of the liver, and eventually progresses to cirrhosis. The total alkaloids of Corydalis saxicola Bunting (TACS), a collection of important bioactive ingredients derived from the traditional Chinese folk medicine Corydalis saxicola Bunting (CS), have been reported to have protective effects on the liver. However, the underlying molecular mechanisms need further elucidation. In this study, the urinary metabonomics and the biochemical changes in rats with carbon tetrachloride (CCl 4 )-induced chronic liver injury due to treatment TACS or administration of the positive control drug-bifendate were studied via proton nuclear magnetic resonance ( 1 H NMR) analysis. Partial least squares-discriminate analysis (PLS-DA) suggested that metabolic perturbation caused by CCl 4 damage was recovered with TACS and bifendate treatment. A total of seven metabolites including 2-oxoglutarate, citrate, dimethylamine, taurine, phenylacetylglycine, creatinine and hippurate were considered as potential biomarkers involved in the development of CCl 4 -induced chronic liver injury. According to pathway analysis using identified metabolites and correlation network construction, the tricarboxylic acid (TCA) cycle, gut microbiota metabolism and taurine and hypotaurine metabolism were recognized as the most affected metabolic pathways associated with CCl 4 chronic hepatotoxicity. Notably, the changes in 2-oxoglutarate, citrate, taurine and hippurate during the process of CCl 4 -induced chronic liver injury were significantly restored by TACS treatment, which suggested that TACS synergistically mediated the regulation of multiple metabolic pathways including the TCA cycle, gut microbiota metabolism and taurine and hypotaurine metabolism. This study could bring valuable insight to evaluating the efficacy of TACS intervention therapy, help deepen the understanding of the hepatoprotective mechanisms of TACS and enable optimal diagnosis of chronic liver injury. Copyright © 2017 Elsevier B.V. All rights reserved.
Pang, Chun; Sheng, Yu-chen; Jiang, Ping; Wei, Hai; Ji, Li-li
2015-01-01
Chlorogenic acid (CGA), a polyphenolic compound, is abundant in fruits, dietary vegetables, and some medicinal herbs. This study investigated the prevention of CGA against acetaminophen (AP)-induced hepatotoxicity and its engaged mechanisms. CGA reversed the decreased cell viability induced by AP in L-02 cells in vitro. In addition, CGA reduced the AP-induced increased serum levels of alanine/aspartate aminotransferase (ALT/AST) in vivo. The effect of CGA on cytochrome P450 (CYP) enzymatic (CYP2E1, CYP1A2, and CYP3A4) activities showed that CGA caused very little inhibition on CYP2E1 and CYP1A2 enzymatic activities, but not CYP3A4. The measurement of liver malondialdehyde (MDA), reactive oxygen species (ROS), and glutathione (GSH) levels showed that CGA prevented AP-induced liver oxidative stress injury. Further, CGA increased the AP-induced decreased mRNA expression of peroxiredoxin (Prx) 1, 2, 3, 5, 6, epoxide hydrolase (Ephx) 2, and polymerase (RNA) II (DNA directed) polypeptide K (Polr2k), and nuclear factor erythroid-2-related factor 2 (Nrf2). In summary, CGA ameliorates the AP-induced liver injury probably by slightly inhibiting CYP2E1 and CYP1A2 enzymatic properties. In addition, cellular important antioxidant signals such as Prx1, 2, 3, 5, 6, Ephx2, Polr2k, and Nrf2 also contributed to the protection of CGA against AP-induced oxidative stress injury. PMID:26160718
Ma, Benting; Zhu, Junjie; Tan, Juan; Mao, Yulei; Tang, Lingyun; Shen, Chunling; Zhang, Hongxing; Kuang, Ying; Fei, Jian; Yang, Xiao; Wang, Zhugang
2017-01-01
Hepatocarcinogenesis is a complex process that includes pronounced necroinflammation, unregulated hepatocyte damage, subsequent extensive fibrosis, and carcinogenesis. GPR110 was an adhesion G protein-coupled receptor. Analysis of the expression pattern of Gpr110 in mice displayed that Gpr110 was expressed highly in liver, implicating the tissue compartments where Gpr110 could execute its functions, the role of Gpr110 in the physiological and pathological state of liver remains unclear. Based on a Gpr110 knockout mouse model, we evaluated the role of Gpr110 in hepatocarcinogenesis by using a carbon tetrachloride (CCl4)-induced liver injury and fibrosis model, as well as diethylnitrosamine (DEN) plus CCl4-induced liver cancer model. In this study, we found subdued chronic liver injury, reduced compensatory proliferation, lower liver fibrosis, but enhanced inflammation occurred in Gpr110-/- mice during CCl4 challenge. In addition, Gpr110-/- mice were resistant to liver tumorigenesis induced by DEN plus CCl4 injection. Molecular mechanisms underlying these differences correlated with augmented activation of the IL-6/STAT3 pathway, which exerted hepatoprotective effects during liver damage, fibrosis, and oncogenesis in Gpr110-/- mice. Furthermore, pharmacological inhibition of the activation of the IL-6/STAT3 pathway enhanced hepatic fibrosis and promoted DEN plus CCl4-induced carcinogenesis in Gpr110-/- mice. In summary, absence of Gpr110 decelerates liver fibrosis/cirrhosis progressing into tumorigenesis, due to strengthening activation of the IL-6/STAT3 pathway, leading to a weaker liver injury and fibrosis microenvironment. It is indicated that targeting Gpr110 and activating the IL-6/STAT3 pathway may be considered to be preventive methods for some cirrhosis transition. PMID:28401002
Chronic intermittent hypoxia predisposes to liver injury.
Savransky, Vladimir; Nanayakkara, Ashika; Vivero, Angelica; Li, Jianguo; Bevans, Shannon; Smith, Philip L; Torbenson, Michael S; Polotsky, Vsevolod Y
2007-04-01
Obstructive sleep apnea (OSA) is characterized by chronic intermittent hypoxia (CIH). OSA is associated with nonalcoholic steatohepatitis (NASH) in obese subjects. The aim of this study was to investigate the effects of CIH on the liver in the absence of obesity. Lean C57BL/6J mice (n = 15) on a regular chow diet were exposed to CIH for 12 weeks and compared with pair-fed mice exposed to intermittent air (IA, n = 15). CIH caused liver injury with an increase in serum ALT (224 +/- 39 U/l versus 118 +/- 22 U/l in the IA group, P < 0.05), whereas AST and alkaline phosphatase were unchanged. CIH also induced hyperglycemia, a decrease in fasting serum insulin levels, and mild elevation of fasting serum total cholesterol and triglycerides (TG). Liver TG content was unchanged, whereas cholesterol content was decreased. Histology showed swelling of hepatocytes, no evidence of hepatic steatosis, and marked accumulation of glycogen in hepatocytes. CIH led to lipid peroxidation of liver tissue with a malondialdehyde (MDA)/free fatty acids (FFA) ratio of 0.54 +/- 0.07 mmol/mol versus 0.30 +/- 0.01 mmol/mol in control animals (P < 0.01), and increased levels of active nuclear factor kappaB (NF-kappaB) in the nuclear fraction of hepatocytes, suggesting that CIH induced oxidative stress in the liver. Finally, CIH greatly exacerbated acetaminophen-induced liver toxicity, causing fulminant hepatocellular injury. In the absence of obesity, CIH leads to mild liver injury via oxidative stress and excessive glycogen accumulation in hepatocytes and sensitizes the liver to a second insult, whereas NASH does not develop.
He, Ping; Wu, Yafeng; Shun, Jianchao; Liang, Yaodong; Cheng, Mingliang
2017-01-01
Alcoholic liver injury leads to serious complication including death. The potential role of baicalin at the transcription level in mice model of alcohol injury is not known yet. In this study, we examined the effect of baicalin against chronic plus binge ethanol model in mice and understanding the mechanism of protection. Liver function, histology, steatosis, inflammation, NF-κB activity, oxidative stress sources, nuclear translocation of NRF2 transcription factor, and cell death were assessed. Treatment with baicalin ameliorated ethanol-induced oxidative stress, inflammation, and cell death. Baicalin attenuated ethanol-induced proinflammatory molecules such as TNF-α, IL-1β, MIP-2, and MCP-1 and reversed redox-sensitive transcription factor NF-κB activation. Baicalin also modulated Kupffer cell activation in vitro. Baicalin inhibited ethanol-induced expression of reactive oxygen species (ROS) generating enzymes NOX2, p67phox, xanthine oxidase, and iNOS in addition to CYP2E1 activities. Baicalin also enhanced ethanol-induced NRF2 nuclear translocation and increased downstream target gene HO-1 as antioxidant defense. Finally, baicalin reduced significant apoptotic and necrotic cell death. Our study suggests that baicalin ameliorates chronic plus binge ethanol-induced liver injury involving molecular crosstalk of multiple pathways at the transcriptional level and through upregulation of antioxidant defense mechanism. PMID:28951767
Ko, Kwang Suk; Tomasi, Maria Lauda; Iglesias-Ara, Ainhoa; French, Barbara A; French, Samuel W; Ramani, Komal; Lozano, Juan José; Oh, Pilsoo; He, Lina; Stiles, Bangyan L; Li, Tony W H; Yang, Heping; Martínez-Chantar, M Luz; Mato, José M; Lu, Shelly C
2010-12-01
Prohibitin 1 (PHB1) is a highly conserved, ubiquitously expressed protein that participates in diverse processes including mitochondrial chaperone, growth and apoptosis. The role of PHB1 in vivo is unclear and whether it is a tumor suppressor is controversial. Mice lacking methionine adenosyltransferase 1A (MAT1A) have reduced PHB1 expression, impaired mitochondrial function, and spontaneously develop hepatocellular carcinoma (HCC). To see if reduced PHB1 expression contributes to the Mat1a knockout (KO) phenotype, we generated liver-specific Phb1 KO mice. Expression was determined at the messenger RNA and protein levels. PHB1 expression in cells was varied by small interfering RNA or overexpression. At 3 weeks, KO mice exhibit biochemical and histologic liver injury. Immunohistochemistry revealed apoptosis, proliferation, oxidative stress, fibrosis, bile duct epithelial metaplasia, hepatocyte dysplasia, and increased staining for stem cell and preneoplastic markers. Mitochondria are swollen and many have no discernible cristae. Differential gene expression revealed that genes associated with proliferation, malignant transformation, and liver fibrosis are highly up-regulated. From 20 weeks on, KO mice have multiple liver nodules and from 35 to 46 weeks, 38% have multifocal HCC. PHB1 protein levels were higher in normal human hepatocytes compared to human HCC cell lines Huh-7 and HepG2. Knockdown of PHB1 in murine nontransformed AML12 cells (normal mouse hepatocyte cell line) raised cyclin D1 expression, increased E2F transcription factor binding to cyclin D1 promoter, and proliferation. The opposite occurred with PHB1 overexpression. Knockdown or overexpression of PHB1 in Huh-7 cells did not affect proliferation significantly or sensitize cells to sorafenib-induced apoptosis. Hepatocyte-specific PHB1 deficiency results in marked liver injury, oxidative stress, and fibrosis with development of HCC by 8 months. These results support PHB1 as a tumor suppressor in hepatocytes. Copyright © 2010 American Association for the Study of Liver Diseases.
Wu, Xin; Zeng, Jun; Hu, Jinsong; Liao, Qiong; Zhou, Rong; Zhang, Ping; Chen, Zuohong
2013-01-01
The Lingzhi or Reishi mushroom Ganoderma lucidum is a well-known traditional medicinal mushroom that has been shown to have obvious hepatoprotective effects. The aim of this study was to evaluate the hepatoprotective effects of G. lucidum aqueous extracts (GLEs) on liver injury induced by α-amanitin (α-AMA) in mice and to analyze the possible hepatoprotective mechanisms related to radical scavenging activity. Mice were treated with α-AMA prepared from Amanita exitialis and then administrated with GLE after the α-AMA injection. The hepatoprotective activity of the GLE was compared with the reference drug silibinin (SIL). α-AMA induced a significant elevation in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and provoked a significant reduction of superoxide dismutase (SOD) and catalase (CAT) activities and a significant increment of malondialdehyde (MDA) content in liver homogenate. Treatment with GLE or SIL significantly decreased serum ALT and AST levels, significantly increased SOD and CAT activities, and decreased MDA content in liver compared with the α-AMA control group. The histopathological examination of liver sections was consistent with that of biochemical parameters. The results demonstrated that GLE induces hepatoprotective effects on acute liver injury induced by α-AMA; these protective effects may be related in part to the antioxidant properties of GLE.
Diao, Yong; Zhao, Xiao-Feng; Lin, Jun-Sheng; Wang, Qi-Zhao; Xu, Rui-An
2011-01-07
To investigate the effect of transgenic expression of kallistatin (Kal) on carbon tetrachloride (CCl(4))-induced liver injury by intramuscular (im) electrotransfer of a Kal-encoding plasmid formulated with poly-L-glutamate (PLG). The pKal plasmid encoding Kal gene was formulated with PLG and electrotransferred into mice skeletal muscle before the administration of CCl4. The expression level of Kal was measured. The serum biomarker levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), malonyldialdehyde (MDA), and tumor necrosis factor (TNF)-α were monitored. The extent of CCl4-induced liver injury was analyzed histopathologically. The transgene of Kal was sufficiently expressed after an im injection of plasmid formulated with PLG followed by electroporation. In the Kal gene-transferred mice, protection against CCl4-induced liver injury was reflected by significantly decreased serum ALT, AST, MDA and TNF-α levels compared to those in control mice (P<0.01 to 0.05 in a dose-dependent manner). Histological observations also revealed that hepatocyte necrosis, hemorrhage, vacuolar change and hydropic degeneration were apparent in mice after CCl4 administration. In contrast, the damage was markedly attenuated in the Kal gene-transferred mice. The expression of hepatic fibrogenesis marker transforming growth factor-β1 was also reduced in the pKal transferred mice. Intramuscular electrotransfer of plasmid pKal which was formulated with PLG significantly alleviated the CCl4-induced oxidative stress and inflammatory response, and reduced the liver damage in a mouse model.
Apocynum venetum Attenuates Acetaminophen-Induced Liver Injury in Mice.
Xie, Wenyan; Chen, Chen; Jiang, Zhihui; Wang, Jian; Melzig, Matthias F; Zhang, Xiaoying
2015-01-01
Apocynum venetum L. (A. venetum) has long been used in oriental folk medicine for the treatment of some liver diseases; however, the underlying mechanisms remain to be fully elucidated. Acetaminophen (APAP) is a widely used analgesic drug that can cause acute liver injury in overdose situations. In this study, we investigated the potential protective effect of A. venetum leaf extract (ALE) against APAP-induced hepatotoxicity. Mice were intragastrically administered with ALE once daily for 3 consecutive days prior to receiving a single intraperitoneal injection of APAP. The APAP group showed severe liver injury characterized by the noticeable fluctuations in the following parameters: serum aminotransferases; hepatic malondialdehyde (MDA), 3-nitrotyrosine (3-NT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione (GSH). These liver damages induced by APAP were significantly attenuated by ALE pretreatments. A collective analysis of histopathological examination, DNA laddering and western blot for caspase-3 and cytochrome c indicated that the ALE is also capable of preventing APAP-induced hepatocyte death. Hyperoside, isoquercitrin and their derivatives have been identified as the major components of ALE using HPLC-MS/MS. Taken together, the A. venetum possesses hepatoprotective effects partially due to its anti-oxidant action.
El Rahi, Cynthia; Thompson-Moore, Nathaniel; Mejia, Patricia; De Hoyos, Patricio
2015-06-01
In the absence of adequate premarketing efficacy and safety evaluations, adverse events from over-the-counter supplements are emerging as a public health concern. Specifically, bodybuilding products are being identified as a frequent cause of drug-induced liver injury. We present a case of a 20-year-old Hispanic male who presented with acute nausea and vomiting accompanied by severe right upper quadrant abdominal pain, shivering, and shortness of breath. Laboratory data pointed to mixed cholestatic and hepatocellular damage, and after exclusion of known alternate etiologies, the patient was diagnosed with acute drug-induced liver injury secondary to the use of "Friction," a bodybuilding supplement. Treatment with N-acetylcysteine (NAC) 20% oral solution was initiated empirically at a dose of 4000 mg [DOSAGE ERROR CORRECTED] (70 mg/kg) every 4 hours and was continued once the diagnosis was made. Within 48 hours of admission to our hospital, the patient began to show clinical resolution of right abdominal pain and tolerance to oral diet associated with a significant decline toward normal in his liver function tests and coagulopathy. The WHO-UMC causality assessment system suggested a "certain causality" between exposure to the supplement and the acute liver injury. In the event of suspected drug-induced liver injury, treatment with NAC should be considered given its favorable risk-benefit profile. © 2015 Pharmacotherapy Publications, Inc.
A Nonhuman Primate Model of Human Radiation-Induced Venocclusive Liver Disease and Hepatocyte Injury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yannam, Govardhana Rao; Han, Bing; Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi
Background: Human liver has an unusual sensitivity to radiation that limits its use in cancer therapy or in preconditioning for hepatocyte transplantation. Because the characteristic veno-occlusive lesions of radiation-induced liver disease do not occur in rodents, there has been no experimental model to investigate the limits of safe radiation therapy or explore the pathogenesis of hepatic veno-occlusive disease. Methods and Materials: We performed a dose-escalation study in a primate, the cynomolgus monkey, using hypofractionated stereotactic body radiotherapy in 13 animals. Results: At doses ≥40 Gy, animals developed a systemic syndrome resembling human radiation-induced liver disease, consisting of decreased albumin, elevatedmore » alkaline phosphatase, loss of appetite, ascites, and normal bilirubin. Higher radiation doses were lethal, causing severe disease that required euthanasia approximately 10 weeks after radiation. Even at lower doses in which radiation-induced liver disease was mild or nonexistent, latent and significant injury to hepatocytes was demonstrated by asialoglycoprotein-mediated functional imaging. These monkeys developed hepatic failure with encephalopathy when they received parenteral nutrition containing high concentrations of glucose. Histologically, livers showed central obstruction via an unusual intimal swelling that progressed to central fibrosis. Conclusions: The cynomolgus monkey, as the first animal model of human veno-occlusive radiation-induced liver disease, provides a resource for characterizing the early changes and pathogenesis of venocclusion, for establishing nonlethal therapeutic dosages, and for examining experimental therapies to minimize radiation injury.« less
Fenofibrate Does Not Affect Burn-Induced Hepatic Endoplasmic Reticulum Stress
Hiyama, Yaeko; Marshall, Alexandra H.; Kraft, Robert; Arno, Anna; Jeschke, Marc G.
2013-01-01
Background Burn injury causes major metabolic derangements such as hypermetabolism, hyperlipidemia, and insulin resistance and is associated with liver damage, hepatomegaly, and hepatic endoplasmic reticulum (ER) stress. Although the physiological consequences of such derangements have been delineated, the underlying molecular mechanisms remain unknown. Previously, it was shown that fenofibrate improves patient outcome by attenuating post-burn stress responses. Methods Fenofibrate, a peroxisome proliferator-activated receptor (PPAR)-α agonist, regulates liver lipid metabolism and has been used to treat hypertriglyceridemia and hypercholesterolemia for many years. The aim of the present study is to determine the effects of fenofibrate on burn-induced hepatic morphologic and metabolic changes. We randomized rats to sham, burn injury, and burn injury plus fenofibrate. Animals were sacrificed and livers were assessed at 24 or 48 hours post-burn. Results Burn injury decreased albumin and increased alanine transaminase (p = 0.1 vs. sham), indicating liver injury. Fenofibrate administration did not restore albumin or decrease alanine transaminase. In addition, ER stress was significantly increased after burn injury both with and without fenofibrate (p < 0.05 vs. sham). Burn injury increased fatty acid metabolism gene expression (p < 0.05 vs. sham), downstream of PPARα. Fenofibrate treatment increased fatty acid metabolism further, which reduced post-burn hepatic steatosis (burn vs. sham p < 0.05, burn+fenofibrate vs. sham not significant). Conclusions Fenofibrate did not alleviate thermal injury induced hepatic ER stress and dysfunction but reduced hepatic steatosis by modulating hepatic genes related to fat metabolism. PMID:23866789
Martin-Murphy, Brittany V; Holt, Michael P; Ju, Cynthia
2010-02-15
The idiosyncratic nature, severity and poor diagnosis of drug-induced liver injury (DILI) make these reactions a major safety issue during drug development, as well as the most common cause for the withdrawal of drugs from the pharmaceutical market. Elucidation of the underlying mechanism(s) is necessary for identifying predisposing factors and developing strategies in the treatment and prevention of DILI. Acetaminophen (APAP) is a widely used over the counter therapeutic that is known to be effective and safe at therapeutic doses. However, in overdose situations fatal and non-fatal hepatic necrosis can result. Evidence suggests that the chemically reactive metabolite of the drug initiates hepatocyte damage and that inflammatory innate immune responses also occur within the liver, leading to the exacerbation and progression of tissue injury. Here we investigate whether following APAP-induced liver injury (AILI) damaged hepatocytes release "danger" signals or damage associated molecular pattern (DAMP) molecules, which induce pro-inflammatory activation of hepatic macrophages, further contributing to the progression of liver injury. Our study demonstrated a clear activation of Kupffer cells following early exposure to APAP (1h). Activation of a murine macrophage cell line, RAW cells, was also observed following treatment with liver perfusate from APAP-treated mice, or with culture supernatant of APAP-challenged hepatocytes. Moreover, in these media, the DAMP molecules, heat-shock protein-70 (HSP-70) and high mobility group box-1 (HMGB1) were detected. Overall, these findings reveal that DAMP molecules released from damaged and necrotic hepatocytes may serve as a crucial link between the initial hepatocyte damage and the activation of innate immune cells following APAP-exposure, and that DAMPs may represent a potential therapeutic target for AILI. Published by Elsevier Ireland Ltd.
1952-02-15
been found to lead to a fairly reproducible degree of liver 1 injury with only minor extrahepatic manifestations (16). Following this...16. Brauer, B..W. , and M0 A. Root, The Effect of Carbon Tetra- chloride- induced Liver Injury Upon the Acetycholine Hydrolyzing Activity of Blood...Experimental Liver Injury in Dogs. Proc. Soc. Exp. Biol. Med. 63, 540 (1946). 18. Westphals U. , P. Gedigk, undF. Meyer, Ueber eine
Han, Junyan; Gao, Cheng; Yang, Shaobin; Wang, Jun; Tan, Dehong
2014-06-01
This study investigates the protective effect of betanin against liver injury induced by carbon tetrachloride (CCl4) in common carp (Cyprinus carpio L.). The fish were treated with 1, 2, and 4 % betanin in fodder throughout the experiment. After 20 days of treatment, the fish were intraperitoneally injected with 20 % (v/v in peanut oil) CCl4 at a volume of 0.5 mL/kg body weight. The fish were killed 3 days after CCl4 intoxication, and then, histological and biochemical assays were performed. Results showed that CCl4-induced liver CYP2E1 activity, oxidative stress, and injury, as indicated by the depleted glycogen storage, increased serum aspartate aminotransferase (AST)/alanine aminotransferase (ALT) activities and liver histological damage. Compared with the CCl4 control group, the betanin-treated groups exhibited reduced CYP2E1 activity, decreased malondialdehyde level, increased liver antioxidative capacity (increased glutathione level and superoxide dismutase and catalase activities), increased liver glycogen storage, and reduced serum AST/ALT activities, with significant differences in the 2 and 4 % groups (p < 0.05). Histological assay further confirmed the protective effect of betanin. In conclusion, betanin attenuates CCl4-induced liver damage in common carp. Moreover, the inhibition of CYP2E1 activity and oxidative stress may have significant roles in the protective effect of betanin.
Role of the inflammasome in acetaminophen-induced liver injury and acute liver failure.
Woolbright, Benjamin L; Jaeschke, Hartmut
2017-04-01
Drug-induced acute liver failure carries a high morbidity and mortality rate. Acetaminophen overdose is the number one cause of acute liver failure and remains a major problem in Western medicine. Administration of N-acetyl cysteine is an effective antidote when given before the initial rise in toxicity; however, many patients present to the hospital after this stage occurs. As such, treatments which can alleviate late-stage acetaminophen-induced acute liver failure are imperative. While the initial mechanisms of toxicity are well described, a debate has recently occurred in the literature over whether there is a second phase of injury, mediated by inflammatory processes. Critical to this potential inflammatory process is the activation of caspase-1 and interleukin-1β by a molecular complex known as the inflammasome. Several different stimuli for the formation of multiple different inflammasome complexes have been identified. Formation of the NACHT, leucine-rich repeat (LRR) and pyrin (PYD) domains-containing protein 3 (Nalp3) inflammasome in particular, has directly been attributed to late-stage acetaminophen toxicity. In this review, we will discuss the mechanisms of acetaminophen-induced liver injury in mice and man with a particular focus on the role of inflammation and the inflammasome. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Barone, Sharon L.; Xu, Jie; Steinbergs, Nora; Schuster, Rebecca; Lentsch, Alex B.; Amlal, Hassane; Wang, Jiang; Casero, Robert A.; Soleimani, Manoocher
2012-01-01
Activation of spermine/spermidine-N1-acetyltransferase (SSAT) leads to DNA damage and growth arrest in mammalian cells, and its ablation reduces the severity of ischemic and endotoxic injuries. Here we have examined the role of SSAT in the pathogenesis of toxic liver injury caused by carbon tetrachloride (CCl4). The expression and activity of SSAT increase in the liver subsequent to CCl4 administration. Furthermore, the early liver injury after CCl4 treatment was significantly attenuated in hepatocyte-specific SSAT knockout mice (Hep-SSAT-Cko) compared with wild-type (WT) mice as determined by the reduced serum alanine aminotransferase levels, decreased hepatic lipid peroxidation, and less severe liver damage. Cytochrome P450 2e1 levels remained comparable in both genotypes, suggesting that SSAT deficiency does not affect the metabolism of CCl4. Hepatocyte-specific deficiency of SSAT also modulated the induction of cytokines involved in inflammation and repair as well as leukocyte infiltration. In addition, Noxa and activated caspase 3 levels were elevated in the livers of WT compared with Hep-SSAT-Cko mice. Interestingly, the onset of cell proliferation was significantly more robust in the WT compared with Hep-SSAT Cko mice. The inhibition of polyamine oxidases protected the animals against CCl4-induced liver injury. Our studies suggest that while the abrogation of polyamine back conversion or inhibition of polyamine oxidation attenuate the early injury, they may delay the onset of hepatic regeneration. PMID:22723264
Zahedi, Kamyar; Barone, Sharon L; Xu, Jie; Steinbergs, Nora; Schuster, Rebecca; Lentsch, Alex B; Amlal, Hassane; Wang, Jiang; Casero, Robert A; Soleimani, Manoocher
2012-09-01
Activation of spermine/spermidine-N(1)-acetyltransferase (SSAT) leads to DNA damage and growth arrest in mammalian cells, and its ablation reduces the severity of ischemic and endotoxic injuries. Here we have examined the role of SSAT in the pathogenesis of toxic liver injury caused by carbon tetrachloride (CCl(4)). The expression and activity of SSAT increase in the liver subsequent to CCl(4) administration. Furthermore, the early liver injury after CCl(4) treatment was significantly attenuated in hepatocyte-specific SSAT knockout mice (Hep-SSAT-Cko) compared with wild-type (WT) mice as determined by the reduced serum alanine aminotransferase levels, decreased hepatic lipid peroxidation, and less severe liver damage. Cytochrome P450 2e1 levels remained comparable in both genotypes, suggesting that SSAT deficiency does not affect the metabolism of CCl(4). Hepatocyte-specific deficiency of SSAT also modulated the induction of cytokines involved in inflammation and repair as well as leukocyte infiltration. In addition, Noxa and activated caspase 3 levels were elevated in the livers of WT compared with Hep-SSAT-Cko mice. Interestingly, the onset of cell proliferation was significantly more robust in the WT compared with Hep-SSAT Cko mice. The inhibition of polyamine oxidases protected the animals against CCl(4)-induced liver injury. Our studies suggest that while the abrogation of polyamine back conversion or inhibition of polyamine oxidation attenuate the early injury, they may delay the onset of hepatic regeneration.
Weaver, Richard J; Betts, Catherine; Blomme, Eric A G; Gerets, Helga H J; Gjervig Jensen, Klaus; Hewitt, Philip G; Juhila, Satu; Labbe, Gilles; Liguori, Michael J; Mesens, Natalie; Ogese, Monday O; Persson, Mikael; Snoeys, Jan; Stevens, James L; Walker, Tracy; Park, B Kevin
2017-07-01
The liver is an important target for drug-induced toxicities. Early detection of hepatotoxic drugs requires use of well-characterized test systems, yet current knowledge, gaps and limitations of tests employed remains an important issue for drug development. Areas Covered: The current state of the science, understanding and application of test systems in use for the detection of drug-induced cytotoxicity, mitochondrial toxicity, cholestasis and inflammation is summarized. The test systems highlighted herein cover mostly in vitro and some in vivo models and endpoint measurements used in the assessment of small molecule toxic liabilities. Opportunities for research efforts in areas necessitating the development of specific tests and improved mechanistic understanding are highlighted. Expert Opinion: Use of in vitro test systems for safety optimization will remain a core activity in drug discovery. Substantial inroads have been made with a number of assays established for human Drug-induced Liver Injury. There nevertheless remain significant gaps with a need for improved in vitro tools and novel tests to address specific mechanisms of human Drug-Induced Liver Injury. Progress in these areas will necessitate not only models fit for application, but also mechanistic understanding of how chemical insult on the liver occurs in order to identify translational and quantifiable readouts for decision-making.
Histochemical study of lymphocystis disease in skin of gilthead seabream, Sparus aurata L.
Sarasquete, C; González de Canales, M L; Arellano, J; Pérez-Prieto, S; García-Rosado, E; Borrego, J J
1998-01-01
A battery of horseradish peroxidase-conjugated lectins (Con A, WGA and DBA), as well as conventional histochemical techniques (PAS, saponification, Alcian Blue pH 0.1, 1, 2.5, chlorhydric hydrolisis, sialidase, Bromophenol blue, Tioglycollate reduction and Ferric-ferricyanide-FeIII) were used to study the content and distribution of carbohydrates, proteins and glycoconjugate sugar residues on the skin and on the lymphocystis-infected cells of gilthead seabream, Sparus aurata. Variable amounts of glycoproteins containing sialic acid, N-acetyl-D-glucosamine, N-acetyl-D-galactosamine, mannose and/or glucose residues were observed in the cuticle and mucous cells of the corporal skin, tails and fins. Germinative and epithelial cells of the epidermis contained glycogen, proteins, carboxylated groups, as well as glycoproteins with mannose and/or glucose and N-acetyl-D-galactosamine residues. Hyaline capsule of the mature lymphocystis-infected cells was strongly stained with PAS, Alcian Blue (pH 0.5 and 2.5) and weakly positive with Alcian Blue (pH 1). Con A reacted with the granular cytoplasm, specially around hyaline capsule, and with the basophilic intracytoplasmic inclusions developed in mature lymphocystis-infected cells of Sparus aurata skin. These sugar residues (mannose and/or glucose), as well as N-acetyl-D-glucosamine and/or sialic acid and N-acetyl-D-galactosamine were not detected in the hyaline capsule of the lymphocystis disease.
Jiao, Shu-Fan; Sun, Kai; Chen, Xiao-Jing; Zhao, Xue; Cai, Ning; Liu, Yan-Jun; Xu, Long-Mei; Kong, Xian-Ming; Wei, Li-Xin
2014-01-08
Patients with colorectal cancer (CRC) often develop liver metastases, in which case surgery is considered the only potentially curative treatment option. However, liver surgery is associated with a risk of ischemia-reperfusion (IR) injury, which is thought to promote the growth of colorectal liver metastases. The influence of IR-induced tumor necrosis factor alpha (TNF-α) elevation in the process still is unknown. To investigate the role of TNF-α in the growth of pre-existing micrometastases in the liver following IR, we used a mouse model of colorectal liver metastases. In this model, mice received IR treatment seven days after intrasplenic injections of colorectal CT26 cells. Prior to IR treatment, either TNF-α blocker Enbrel or low-dose TNF-α, which could inhibit IR-induced TNF-α elevation, was administered by intraperitoneal injection. Hepatic IR treatment significantly promoted CT26 tumor growth in the liver, but either Enbrel or low-dose TNF-α pretreatment reversed this trend. Further studies showed that the CT26 + IR group prominently increased the levels of ALT and AST, liver necrosis, inflammatory infiltration and the expressions of hepatic IL-6, MMP9 and E-selectin compared to those of CT26 group. Inhibition of TNF-α elevation remarkably attenuated the increases of these liver inflammatory damage indicators and tumor-promoting factors. These findings suggested that inhibition of TNF-α elevation delayed the IR-enhanced outgrowth of colorectal liver metastases by reducing IR-induced inflammatory damage and the formation of tumor-promoting microenvironments. Both Enbrel and low-dose TNF-α represented the potential therapeutic approaches for the protection of colorectal liver metastatic patients against IR injury-induced growth of liver micrometastases foci.
2014-01-01
Background Patients with colorectal cancer (CRC) often develop liver metastases, in which case surgery is considered the only potentially curative treatment option. However, liver surgery is associated with a risk of ischemia-reperfusion (IR) injury, which is thought to promote the growth of colorectal liver metastases. The influence of IR-induced tumor necrosis factor alpha (TNF-α) elevation in the process still is unknown. To investigate the role of TNF-α in the growth of pre-existing micrometastases in the liver following IR, we used a mouse model of colorectal liver metastases. In this model, mice received IR treatment seven days after intrasplenic injections of colorectal CT26 cells. Prior to IR treatment, either TNF-α blocker Enbrel or low-dose TNF-α, which could inhibit IR-induced TNF-α elevation, was administered by intraperitoneal injection. Results Hepatic IR treatment significantly promoted CT26 tumor growth in the liver, but either Enbrel or low-dose TNF-α pretreatment reversed this trend. Further studies showed that the CT26 + IR group prominently increased the levels of ALT and AST, liver necrosis, inflammatory infiltration and the expressions of hepatic IL-6, MMP9 and E-selectin compared to those of CT26 group. Inhibition of TNF-α elevation remarkably attenuated the increases of these liver inflammatory damage indicators and tumor-promoting factors. Conclusion These findings suggested that inhibition of TNF-α elevation delayed the IR-enhanced outgrowth of colorectal liver metastases by reducing IR-induced inflammatory damage and the formation of tumor-promoting microenvironments. Both Enbrel and low-dose TNF-α represented the potential therapeutic approaches for the protection of colorectal liver metastatic patients against IR injury-induced growth of liver micrometastases foci. PMID:24397824
Dara, Lily; Liu, Zhang-Xu; Kaplowitz, Neil
2015-01-01
In the past decade our understanding of idiosyncratic drug induced liver injury (IDILI) and the contribution of genetic susceptibility and the adaptive immune system to the pathogenesis of this disease process has grown tremendously. One of the characteristics of IDILI is that it occurs rarely and only in a subset of individuals with a presumed susceptibility to the drug. Despite a clear association between single nucleotide polymorphisms in human leukocyte antigen (HLA) genes and certain drugs that cause IDILI, not all individuals with susceptible HLA genotypes develop clinically significant liver injury when exposed to drugs. The adaptation hypothesis has been put forth as an explanation for why only a small percentage of susceptible individuals develop overt IDILI and severe injury, while the majority with susceptible genotypes develop only mild abnormalities that resolve spontaneously upon continuation of the drug. This spontaneous resolution is referred to as clinical adaptation. Failure to adapt or defective adaptation leads to clinically significant liver injury. In this review we explore the immuno-tolerant microenvironment of the liver and the mechanisms of clinical adaptation in IDILI with a focus on the role of immune-tolerance and cellular adaptive responses. PMID:26484420
Drug-induced liver injury caused by iodine-131
Kim, Chei Won; Park, Ji Sun; Oh, Se Hwan; Park, Jae-Hyung; Shim, Hyun-Ik; Yoon, Jae Woong; Park, Jin Seok; Hong, Seong Bin; Kim, Jun Mi; Le, Trong Binh; Lee, Jin Woo
2016-01-01
Iodine-131 is a radioisotope that is routinely used for the treatment of differentiated thyroid cancer after total or near-total thyroidectomy. However, there is some evidence that iodine-131 can induce liver injury . Here we report a rare case of drug-induced liver injury (DILI) caused by iodine-131 in a patient with regional lymph node metastasis after total thyroidectomy. A 47-year-old woman was admitted with elevated liver enzymes and symptoms of general weakness and nausea. Ten weeks earlier she had undergone a total thyroidectomy for papillary thyroid carcinoma and had subsequently been prescribed levothyroxine to reduce the level of thyroid-stimulating hormone. Eight weeks after surgery she underwent iodine-131 ablative therapy at a dose of 100 millicuries, and subsequently presented with acute hepatitis after 10 days. To rule out all possible causative factors, abdominal ultrasonography, endoscopic ultrasonography (on the biliary tree and gall bladder), and a liver biopsy were performed. DILI caused by iodine-131 was suspected. Oral prednisolone was started at 30 mg/day, to which the patient responded well. PMID:27209646
Drug-induced liver injury caused by iodine-131.
Kim, Chei Won; Park, Ji Sun; Oh, Se Hwan; Park, Jae-Hyung; Shim, Hyun-Ik; Yoon, Jae Woong; Park, Jin Seok; Hong, Seong Bin; Kim, Jun Mi; Le, Trong Binh; Lee, Jin Woo
2016-06-01
Iodine-131 is a radioisotope that is routinely used for the treatment of differentiated thyroid cancer after total or near-total thyroidectomy. However, there is some evidence that iodine-131 can induce liver injury . Here we report a rare case of drug-induced liver injury (DILI) caused by iodine-131 in a patient with regional lymph node metastasis after total thyroidectomy. A 47-year-old woman was admitted with elevated liver enzymes and symptoms of general weakness and nausea. Ten weeks earlier she had undergone a total thyroidectomy for papillary thyroid carcinoma and had subsequently been prescribed levothyroxine to reduce the level of thyroid-stimulating hormone. Eight weeks after surgery she underwent iodine-131 ablative therapy at a dose of 100 millicuries, and subsequently presented with acute hepatitis after 10 days. To rule out all possible causative factors, abdominal ultrasonography, endoscopic ultrasonography (on the biliary tree and gall bladder), and a liver biopsy were performed. DILI caused by iodine-131 was suspected. Oral prednisolone was started at 30 mg/day, to which the patient responded well.
Qiu, Peiyu; Sun, Jiachen; Man, Shuli; Yang, He; Ma, Long; Yu, Peng; Gao, Wenyuan
2017-03-08
N-Nitrosodiethylamine (DEN) exists as a food additive in cheddar cheese, processed meats, beer, water, and so forth. It is a potent hepatocarcinogen in animals and humans. Curcumin as a natural dietary compound decreased DEN-induced hepatocarcinogenesis in this research. According to the histopathological examination of liver tissues and biomarker detection in serum and livers, it was demonstrated that curcumin attenuated DEN-induced hepatocarcinogenesis through parts of regulating the oxidant stress enzymes (T-SOD and CAT), liver function (ALT and AST) and LDHA, AFP level, and COX-2/PGE2 pathway. Furthermore, curcumin attenuated metabolic disorders via increasing concentration of glucose and fructose, and decreasing levels of glycine and proline, and mRNA expression of GLUT1, PKM and FASN. Docking study indicated that curcumin presented strong affinity with key metabolism enzymes such as GLUT1, PKM, FASN and LDHA. There were a number of amino acid residues involved in curcumin-targeting enzymes of hydrogen bonds and hydrophobic interactions. All in all, curcumin exhibited a potent liver protective agent inhibiting chemically induced liver injury through suppressing liver cellular metabolism in the prospective application.
Xu, Tubing; Wang, Xiaojun; Chen, Geng; He, Yu; Bie, Ping
2013-10-01
To investigate the efficacy of autologous bone marrow stem cell (BMSC) transplantation in the treatment of hepatic injury in ex vivo liver resection and liver autotransplantation (ELRLA). Rat hepatic fibrosis was induced by intraperitoneal injection of 50% CCl4-olive oil solution at a dose of 2 mL/kg twice weekly for 4 wk. ELRLA was performed 3 d post the last injection of CCl4. Six rats in each group were killed 12, 24, 48, 72, and 168 h after the operation. Hepatocyte apoptosis was determined by TUNEL assay. The expression of Bcl-2, Bax, transforming growth factor (TGF) β1, TGFβ1 receptor1/2, and phosphorylated p38 MAPK were determined by Western blot. Autologous BMSC transplantation significantly inhibited the increase of alanine aminotransferease and aspartate aminotransferase at 12, 24, and 48 h post operation and attenuated ELRLA-induced hepatocyte apoptosis. In BMSC-treated rats, the expression of Bcl-2 was significantly upregulated, whereas there were no obvious changes in Bax level. The expression of TGFβ1 was significantly upregulated in the rat liver after the surgery. Autologous BMSC transplantation significantly downregulated the TGFβ1 levels at 48, 72, and 168 h post surgery. However, autologous BMSC transplantation showed little effect on the levels of TGFβ receptor 1/2 at all the time points observed. Furthermore, autologous BMSC transplantation significantly inhibited the activation of p38 MAPK. Autologous BMSC transplantation may reduce ELRLA-induced liver injury and improve survival rates in hepatic fibrosis rats. Autologous BMSC transplantation may be useful to improve the outcome of patients who undergo ELRLA. Copyright © 2013 Elsevier Inc. All rights reserved.
Choi, Jun Hyeon; Park, Sun Hong; Jung, Jae-Kyung; Cho, Won-Jea; Ahn, Byeongwoo; Yun, Cheong-Yong; Choi, Yong Pyo; Yeo, Jong Hun; Lee, Heesoon; Hong, Jin Tae; Han, Sang-Bae; Kim, Youngsoo
2017-01-01
Targeting myeloid differentiation protein 2 (MD-2) or Toll-like receptor 4 (TLR4) with small molecule inhibitor rescues the systemic inflammatory response syndrome (SIRS) in sepsis due to infection with Gram-negative bacteria but not other microbes. Herein, we provided IκB kinase β (IKKβ) in innate immune process as a molecular target of caffeic acid cyclohexylamide (CGA-JK3) in the treatment of polymicrobial TLR agonists-induced lethal inflammation. CGA-JK3 ameliorated E. coli lipopolysaccharide (LPS, MD-2/TLR4 agonist)-induced endotoxic shock, cecal ligation and puncture (CLP)-challenged septic shock or LPS plus D-galactosamine (GalN)-induced acute liver failure (ALF) in C57BL/6J mice. As a molecular basis, CGA-JK3 inhibited IKKβ-catalyzed kinase activity in a competitive mechanism with respect to ATP, displaced fluorescent ATP probe from the complex with IKKβ, and docked at the ATP-binding active site on the crystal structure of human IKKβ. Furthermore, CGA-JK3 inhibited IKKβ-catalyzed IκB phosphorylation, which is an axis leading to IκB degradation in the activating pathway of nuclear factor-κB (NF-κB), in macrophages stimulated with TLR (1/2, 2/6, 4, 5, 7, 9) agonists from Gram-positive/negative bacteria and viruses. CGA-JK3 consequently interrupted IKKβ-inducible NF-κB activation and NF-κB-regulated expression of TNF-α, IL-1α or HMGB-1 gene, thereby improving TLRs-associated redundant inflammatory responses in endotoxemia, polymicrobial sepsis and ALF. PMID:28145460
Drug-Induced Liver Injury Associated with Complementary and Alternative Medicines
Takahashi, Koji; Kanda, Tatsuo; Yasui, Shin; Haga, Yuki; Kumagai, Junichiro; Sasaki, Reina; Wu, Shuang; Nakamoto, Shingo; Nakamura, Masato; Arai, Makoto; Yokosuka, Osamu
2016-01-01
A 24-year-old man was admitted due to acute hepatitis with unknown etiology. After his condition and laboratory data gradually improved with conservative therapy, he was discharged 1 month later. Two months after his discharge, however, liver dysfunction reappeared. After his mother accidentally revealed that he took complementary and alternative medicine, discontinuation of the therapy caused his condition to improve. Finally, he was diagnosed with a recurrent drug-induced liver injury associated with Japanese complementary and alternative medicine. It is important to take the medical history in detail and consider complementary and alternative medicine as a cause of liver disease. PMID:28100990
Dara, Lily; Hewett, Jennifer; Lim, Joseph Kartaik
2008-01-01
Dietary supplements represent an increasingly common source of drug-induced liver injury. Hydroxycut is a popular weight loss supplement which has previously been linked to hepatotoxicity, although the individual chemical components underlying liver injury remain poorly understood. We report two cases of acute hepatitis in the setting of Hydroxycut exposure and describe possible mechanisms of liver injury. We also comprehensively review and summarize the existing literature on commonly used weight loss supplements, and their individual components which have demonstrated potential for liver toxicity. An increased effort to screen for and educate patients and physicians about supplement-associated hepatotoxicity is warranted. PMID:19058338
Yan, Jia-Yin; Ai, Guo; Zhang, Xiao-Jian; Xu, Hai-Jiang; Huang, Zheng-Ming
2015-08-22
The decoction of the flowers of Abelmoschus manihot (L.) Medic was traditionally used for the treatment of jaundice and various types of chronic and acute hepatitis in Anhui and Jiangsu Provinces of China for hundreds of years. Phytochemical studies have indicated that total flavonoids extracted from flowers of A. manihot (L.) Medic (TFA) were the major constituents of the flowers. Our previous studies have investigated the hepatoprotective effects of the TFA against carbon tetrachloride (CCl4) induced hepatocyte damage in vitro and liver injury in vivo. This study aimed to investigate the protective effects and mechanisms of TFA on α-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury in rats. The hepatoprotective activities of TFA (125, 250 and 500mg/kg) were investigated on ANIT-induced cholestatic liver injury in rats. The serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) were used as indices of hepatic cell damage and measured. Meanwhile, the serum levels of alkaline phosphatase (ALP), gamma-glutamyltransferase (GGT), total bilirubin (TBIL), direct bilirubin (DBIL), and total bile acid (TBA) were used as indices of biliary cell damage and cholestasis and evaluated. Hepatic malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), glutathione transferase (GST), tumor necrosis factor-α (TNF-α) and nitric oxide (NO) were measured in the liver homogenates. The bile flow in 4h was estimated and the histopathology of the liver tissue was evaluated. Furthermore, the expression of transporters, bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2), and Na(+)-taurocholate cotransporting polypeptide (NTCP) were studied by western blot and reverse transcription-quantitative real-time polymerase chain reaction (RT-PCR) to elucidate the protective mechanisms of TFA against ANIT-induced cholestasis. The oral administration of TFA to ANIT-treated rats could reduce the increases in serum levels of ALT, AST, LDH, ALP, GGT, TBIL, DBIL and TBA. Decreased bile flow by ANIT was restored with TFA treatment. Concurrent administration of TFA reduced the severity of polymorphonuclear neutrophil infiltration and other histological damages, which were consistent with the serological tests. Hepatic MDA and GSH contents in liver tissue were reduced, while SOD and GST activities, which had been suppressed by ANIT, were elevated in the groups pretreated with TFA. With TFA intervention, levels of TNF-α and NO in liver were decreased. Additionally, TFA was found to increase the expression of liver BSEP, MRP2, and NTCP in both protein and mRNA levels in ANIT-induced liver injury with cholestasis. TFA exerted protective effects against ANIT-induced liver injury. The possible mechanisms could be related to anti-oxidative damage, anti-inflammation and regulating the expression of hepatic transporters. It layed the foundation for the further research on the mechanisms of cholestasis as well as the therapeutic effects of A. manihot (L.) Medic for the treatment of jaundice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Sun, Peng; Lu, Yue-Xin; Cheng, Daqing; Zhang, Kuo; Zheng, Jilin; Liu, Yupeng; Wang, Xiaozhan; Yuan, Yu-Feng; Tang, Yi-Da
2018-05-09
Sterile inflammation is an essential factor causing hepatic ischemia/reperfusion (I/R) injury. As a critical regulator of inflammation, the role of monocyte chemoattractant protein-induced protein 1 (MCPIP1) in hepatic I/R injury remains undetermined. In this study, we discovered that MCPIP1 downregulation was associated with hepatic I/R injury in liver transplant patients and a mouse model. Hepatocyte-specific Mcpip1 gene knockout (HKO) and transgenic (HTG) mice demonstrated that MCPIP1 functions to ameliorate liver damage, reduce inflammation, prevent cell death, and promote regeneration. A mechanistic study revealed that MCPIP1 interacted with and maintained hypoxia-inducible factor 1α (HIF-1α) expression by deubiquitinating HIF-1α. Notably, HIF-1α inhibitor reversed the protective effect of MCPIP1, while HIF-1α activator compensated for the detrimental effect of MCPIP1 deficiency. Thus, we identified the MCPIP1-HIF-1α axis as a critical pathway that may be a good target for intervention in hepatic I/R injury. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.
Herbal hepatotoxicity: suspected cases assessed for alternative causes.
Teschke, Rolf; Schulze, Johannes; Schwarzenboeck, Alexander; Eickhoff, Axel; Frenzel, Christian
2013-09-01
Alternative explanations are common in suspected drug-induced liver injury (DILI) and account for up to 47.1% of analyzed cases. This raised the question of whether a similar frequency may prevail in cases of assumed herb-induced liver injury (HILI). We searched the Medline database for the following terms: herbs, herbal drugs, herbal dietary supplements, hepatotoxic herbs, herbal hepatotoxicity, and herb-induced liver injury. Additional terms specifically addressed single herbs and herbal products: black cohosh, Greater Celandine, green tea, Herbalife products, Hydroxycut, kava, and Pelargonium sidoides. We retrieved 23 published case series and regulatory assessments related to hepatotoxicity by herbs and herbal dietary supplements with alternative causes. The 23 publications comprised 573 cases of initially suspected HILI; alternative causes were evident in 278/573 cases (48.5%). Among them were hepatitis by various viruses (9.7%), autoimmune diseases (10.4%), nonalcoholic and alcoholic liver diseases (5.4%), liver injury by comedication (DILI and other HILI) (43.9%), and liver involvement in infectious diseases (4.7%). Biliary and pancreatic diseases were frequent alternative diagnoses (11.5%), raising therapeutic problems if specific treatment is withheld; pre-existing liver diseases including cirrhosis (9.7%) were additional confounding variables. Other diagnoses were rare, but possibly relevant for the individual patient. In 573 cases of initially assumed HILI, 48.5% showed alternative causes unrelated to the initially incriminated herb, herbal drug, or herbal dietary supplement, calling for thorough clinical evaluations and appropriate causality assessments in future cases of suspected HILI.
Kirpich, Irina A; Petrosino, Joseph; Ajami, Nadim; Feng, Wenke; Wang, Yuhua; Liu, Yanlong; Beier, Juliane I; Barve, Shirish S; Yin, Xinmin; Wei, Xiaoli; Zhang, Xiang; McClain, Craig J
2016-04-01
Alcoholic liver disease (ALD) ranks among major causes of morbidity and mortality. Diet and crosstalk between the gut and liver are important determinants of ALD. We evaluated the effects of different types of dietary fat and ethanol on the gut microbiota composition and metabolic activity and the effect of these changes on liver injury in ALD. Compared with ethanol and a saturated fat diet (medium chain triglycerides enriched), an unsaturated fat diet (corn oil enriched) exacerbated ethanol-induced endotoxemia, liver steatosis, and injury. Major alterations in gut microbiota, including a reduction in Bacteroidetes and an increase in Proteobacteria and Actinobacteria, were seen in animals fed an unsaturated fat diet and ethanol but not a saturated fat diet and ethanol. Compared with a saturated fat diet and ethanol, an unsaturated fat diet and ethanol caused major fecal metabolomic changes. Moreover, a decrease in certain fecal amino acids was noted in both alcohol-fed groups. These data support an important role of dietary lipids in ALD pathogenesis and provide insight into mechanisms of ALD development. A diet enriched in unsaturated fats enhanced alcohol-induced liver injury and caused major fecal metagenomic and metabolomic changes that may play an etiologic role in observed liver injury. Dietary lipids can potentially serve as inexpensive interventions for the prevention and treatment of ALD. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Hasegawa, Tadashi; Ito, Yoshiya; Wijeweera, Jayanthika; Liu, Jie; Malle, Ernst; Farhood, Anwar; McCuskey, Robert S.; Jaeschke, Hartmut
2016-01-01
Steatosis is a major risk factor for complications after liver surgery. Since neutrophil cytotoxicity is critical for ischemia-reperfusion injury in normal livers, the aim of the present study was to evaluate whether an exaggerated inflammatory response could cause the increased injury in steatotic livers. In C57Bl/6 mice, 60 min of warm hepatic ischemia triggered a gradual increase in hepatic neutrophil accumulation during reperfusion with peak levels of 100-fold over baseline at 12 h of reperfusion. Neutrophil extravasation and a specific neutrophil-induced oxidant stress (immunostaining for hypochlorous acid-modified epitopes) started at 6 h of reperfusion and peaked at 12–24 h. Ob/ob mice, which had a severe macrovesicular steatosis, suffered significantly higher injury (alanine transaminase activity: 18,000 ± 2,100 U/l; 65% necrosis) compared with lean littermates (alanine transaminase activity: 4,900 ± 720 U/l; 24% necrosis) at 6 h of reperfusion. However, 62% fewer neutrophils accumulated in steatotic livers. This correlated with an attenuated increase in mRNA levels of several proinflammatory genes in ob/ob mice during reperfusion. In contrast, sham-operated ob/ob mice had a 50% reduction in liver blood flow and 35% fewer functional sinusoids compared with lean littermates. These deficiencies in liver blood flow and the microcirculation were further aggravated only in ob/ob mice during reperfusion. The attenuated inflammatory response and reduced neutrophil-induced oxidant stress observed in steatotic livers during reperfusion cannot be responsible for the dramatically increased injury in ob/ob mice. In contrast, the aggravated injury appears to be mediated by ischemic necrosis due to massive impairment of blood and oxygen supply in the steatotic livers. PMID:17307725
Hurt, Ryan T; Zakaria, El Rasheid; Matheson, Paul J; Cobb, Mahoney E; Parker, John R; Garrison, R Neal
2009-04-01
Crystalloid fluid resuscitation after hemorrhagic shock (HS) that restores/maintains central hemodynamics often culminates in multi-system organ failure and death due to persistent/progressive splanchnic hypoperfusion and end-organ damage. Adjunctive direct peritoneal resuscitation (DPR) using peritoneal dialysis solution reverses HS-induced splanchnic hypoperfusion and improves survival. We examined HS-mediated hepatic perfusion (galactose clearance), tissue injury (histopathology), and dysfunction (liver enzymes). Anesthetized rats were randomly assigned (n = 8/group): (1) sham (no HS); (2) HS (40% mean arterial pressure for 60 min) plus conventional i.v. fluid resuscitation (CR; shed blood + 2 volumes saline); (3) HS + CR + 30 mL intraperitoneal (IP) DPR; or (4) HS + CR + 30 mL IP saline. Hemodynamics and hepatic blood flow were measured for 2 h after CR completion. In duplicate animals, liver and splanchnic tissues were harvested for histopathology (blinded, graded), hepatocellular function (liver enzymes), and tissue edema (wet-dry ratio). Group 2 decreased liver blood flow, caused liver injuries (focal to submassive necrosis, zones 2 and 3) and tissue edema, and elevated liver enzymes (alanine aminotransferase (ALT), 149 +/- 28 microg/mL and aspartate aminotransferase (AST), 234 +/- 24 microg/mL; p < 0.05) compared to group 1 (73 +/- 9 and 119 +/- 10 microg/mL, respectively). Minimal/no injuries were observed in group 3; enzymes were normalized (ALT 89 +/- 9 microg/mL and AST 150 +/- 17 microg/mL), and tissue edema was similar to sham. CR from HS restored and maintained central hemodynamics but did not restore or maintain liver perfusion and was associated with significant hepatocellular injury and dysfunction. DPR added to conventional resuscitation (blood and crystalloid) restored and maintained liver perfusion, prevented hepatocellular injury and edema, and preserved liver function.
Drug-induced liver injury: present and future
Suk, Ki Tae
2012-01-01
Liver injury due to prescription and nonprescription medications is a growing medical, scientific, and public health problem. Worldwide, the estimated annual incidence rate of drug-induced liver injury (DILI) is 13.9-24.0 per 100,000 inhabitants. DILI is one of the leading causes of acute liver failure in the US. In Korea, the annual extrapolated incidence of cases hospitalized at university hospital is 12/100,000 persons/year. Most cases of DILI are the result of idiosyncratic metabolic responses or unexpected reactions to medication. There is marked geographic variation in relevant agents; antibiotics, anticonvulsants, and psychotropic drugs are the most common offending agents in the West, whereas in Asia, 'herbs' and 'health foods or dietary supplements' are more common. Different medical circumstances also cause discrepancy in definition and classification of DILI between West and Asia. In the concern of causality assessment, the application of the Roussel Uclaf Causality Assessment Method (RUCAM) scale frequently undercounts the cases caused by 'herbs' due to a lack of previous information and incompatible time criteria. Therefore, a more objective and reproducible tool that could be used for the diagnosis of DILI caused by 'herbs' is needed in Asia. In addition, a reporting system similar to the Drug-Induced Liver Injury Network (DILIN) in the US should be established as soon as possible in Asia. PMID:23091804
Potential Role of the Gut/Liver/Lung Axis in Alcohol-Induced Tissue Pathology
Massey, Veronica L.; Beier, Juliane I.; Ritzenthaler, Jeffrey D.; Roman, Jesse; Arteel, Gavin E.
2015-01-01
Both Alcoholic Liver Disease (ALD) and alcohol-related susceptibility to acute lung injury are estimated to account for the highest morbidity and mortality related to chronic alcohol abuse and, thus, represent a focus of intense investigation. In general, alcohol-induced derangements to both organs are considered to be independent and are often evaluated separately. However, the liver and lung share many general responses to damage, and specific responses to alcohol exposure. For example, both organs possess resident macrophages that play key roles in mediating the immune/inflammatory response. Additionally, alcohol-induced damage to both organs appears to involve oxidative stress that favors tissue injury. Another mechanism that appears to be shared between the organs is that inflammatory injury to both organs is enhanced by alcohol exposure. Lastly, altered extracellular matrix (ECM) deposition appears to be a key step in disease progression in both organs. Indeed, recent studies suggest that early subtle changes in the ECM may predispose the target organ to an inflammatory insult. The purpose of this chapter is to review the parallel mechanisms of liver and lung injury in response to alcohol consumption. This chapter will also explore the potential that these mechanisms are interdependent, as part of a gut-liver-lung axis. PMID:26437442
Wang, Junming; Miao, Mingsan; Zhang, Yueyue; Liu, Ruixin; Li, Xaobing; Cui, Ying; Qu, Lingbo
2015-06-01
Quercetin (Que) is one of main compounds in Lysimachia christinae Hance (Christina loosestrife), and has both medicinal and nutritional value. Glycosides from Tripterygium wilfordii Hook.f. (léi gōng téng [the thunder duke vine]; TG) have diverse and broad bioactivities but with a high incidence of liver injury. Our previous study reported on the hepatoprotective properties of an ethanol extract from L. christinae against TG-induced liver injury in mice. This research is designed to observe, for the first time, the possible protective properties of the compound Que against TG-induced liver injury, and the underlying mechanisms that are involved in oxidative stress and anti-inflammation. The results indicated that TG caused excessive elevation in serum levels of alanine/aspartate transaminase (ALT/AST), alkaline phosphatase (ALP), gamma glutamyl transferase (γ-GT), and pro-inflammatory cytokine tumor necrosis factor-alpha (TNF-α), as well as hepatic lipid peroxidation (all P < 0.01). On the other hand, following TG exposure, we observed significantly reduced levels of biomarkers, including hepatic glutathione (GSH), glutathione-S-transferase (GST), glutathione peroxidase (GPx), and the anti-inflammatory cytokine interleukin (IL)-10, as well as the enzyme activity and mRNA expression of copper- and zinc-containing superoxide dismutase (CuZn-SOD) and catalase (CAT) (all P < 0.01). Nevertheless, all of these alterations were reversed by the pre-administration of Que or the drug bifendate (positive control) for 7 consecutive days. Therefore, this study suggests that Que ameliorates TG-induced acute liver injury, probably through its ability to reduce oxidative stress and its anti-inflammatory properties.
Effects of Beverages on Alcohol Metabolism: Potential Health Benefits and Harmful Impacts
Wang, Fang; Zhang, Yu-Jie; Zhou, Yue; Li, Ya; Zhou, Tong; Zheng, Jie; Zhang, Jiao-Jiao; Li, Sha; Xu, Dong-Ping; Li, Hua-Bin
2016-01-01
Nonalcoholic beverages are usually consumed accompanying alcoholic drinks, and their effects on alcohol metabolism are unclear in vivo. In this study, the effects of 20 nonalcoholic beverages on alcohol metabolism and liver injury caused by alcohol were evaluated in mice. Kunming mice were orally fed with alcohol (52%, v/v) and beverages. The concentrations of ethanol and acetaldehyde in blood as well as the activities of alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) in liver were assessed to indicate alcohol metabolism. The levels of aspartate aminotransferase (AST) and alanine transaminase (ALT) in serum as well as the levels of malonaldehyde (MDA) and superoxide dismutase (SOD) in liver were measured to reflect the alcohol-induced liver injury. The results showed that the treatment of soda water, green tea and honey chrysanthemum tea could accelerate ethanol metabolism and prevent liver injuries caused by alcohol when companied with excessive alcohol drinking. They might be potential dietary supplements for the alleviation of harmful effects from excessive alcohol consumption. On the contrary, some beverages such as fresh orange juice and red bull are not advised to drink when companied with alcohol consumption due to their adverse effects on ethanol induced liver injury. PMID:27005619
Xiao, Juan; Zhang, Ruifen; Zhou, Qiuyun; Liu, Lei; Huang, Fei; Deng, Yuanyuan; Ma, Yongxuan; Wei, Zhencheng; Tang, Xiaojun; Zhang, Mingwei
2017-11-08
Liver injury is the most common consequence of alcohol abuse, which is promoted by the inflammatory response triggered by gut-derived endotoxins produced as a consequence of intestinal microbiota dysbiosis and barrier dysfunction. The aim of this study was to investigate whether modulation of intestinal microbiota and barrier function, and liver inflammation contributes to the hepatoprotective effect of lychee pulp phenolic extract (LPPE) in alcohol-fed mice. Mice were treated with an ethanol-containing liquid diet alone or in combination with LPPE for 8 weeks. LPPE supplementation alleviated ethanol-induced liver injury and downregulated key markers of inflammation. Moreover, LPPE supplementation reversed the ethanol-induced alteration of intestinal microbiota composition and increased the expression of intestinal tight junction proteins, mucus protecting proteins, and antimicrobial proteins. Furthermore, in addition to decreasing serum endotoxin level, LPPE supplementation suppressed CD14 and toll-like receptor 4 expression, and repressed the activation of nuclear factor-κB p65 in the liver. These data suggest that intestinal microbiota dysbiosis, intestinal barrier dysfunction, and liver inflammation are improved by LPPE, and therefore, the intake of LPPE or Litchi pulp may be an effective strategy to alleviate the susceptibility to alcohol-induced hepatic diseases.
Yılmaz, Ahmet; Elbey, Bilal; Yazgan, Ümit Can; Dönder, Ahmet; Arslan, Necmi; Arslan, Serkan; Alabalık, Ulaş; Aslanhan, Hamza
2016-01-01
Background. The aim of the study was to analyse the effect of caffeic acid phenethyl ester (CAPE) on fluoxetine-induced hepatotoxicity in rats. Materials and Methods. Group I served as control. Group II received CAPE intraperitoneally. Group III received fluoxetine per orally. Group IV received fluoxetine and CAPE. The total antioxidant capacity (TAC), total oxidant status (TOS), oxidative stress index (OSI), and liver enzymes including paraoxonase-1 (PON-1), aspartate transaminase, and alanine transaminase levels were measured. Liver tissues were processed histopathologically for evaluation of liver injury and to validate the serum enzyme levels. Results. An increase in TOS and OSI and a decrease in TAC and PON-1 levels in serum and liver tissues of Group III were observed compared to Groups I and II. After treatment with CAPE, the level of TOS and OSI decreased while TAC and PON-1 increased in serum and liver in Group IV. Histopathological examination of the liver revealed hepatic injury after fluoxetine treatment and reduction of injury with CAPE treatment. Conclusion. Our results suggested that CAPE treatment provided protection against fluoxetine toxicity. Following CAPE treatment with fluoxetine-induced hepatotoxicity, TOS and OSI levels decreased, whereas PON-1 and TAC increased in the serum and liver.
Jiang, Na; Xin, Wenyu; Wang, Tian; Zhang, Leiming; Fan, Huaying; Du, Yuan; Li, Chong; Fu, Fenghua
2011-11-15
To investigate the effect and underlying mechanism of aescin on acute liver injury induced by endotoxin, liver injury was established by injecting lipopolysaccharide (LPS) in mice. Animals were assigned to seven groups: the control group and groups treated with LPS (40 mg/kg), aescin (3.6 mg/kg), LPS plus dexamethasone (4 mg/kg) and LPS plus aescin (0.9, 1.8 or 3.6 mg/kg). Hepatic histopathological changes were examined under a light microscope. Activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum were determined. Levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), nitric oxide (NO) and antioxidative parameters in liver homogenate were measured. Glucocorticoid receptor (GR), 11 beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and 11 beta-hydroxysteroid dehydrogenase type 2 (11β-HSD2) expressions in liver were determined by western blotting. Treatment with escin could inhibit immigration of inflammatory cells, alleviate the degree of necrosis, and decrease serum ALT and AST activities. Aescin also down-regulated levels of inflammation mediators (TNF-α, IL-1β and NO) and 11β-HSD2 expression in liver, up-regulated GR expression, enhanced endogenous antioxidative capacity, but have no obvious effect on 11β-HSD1 expression in liver. The findings suggest aescin has protective effects on endotoxin-induced liver injury, and the underlying mechanisms were associated with its anti-inflammatory effects, up-regulating GR expression, down-regulating 11β-HSD2 experssion, and antixoidation. Copyright © 2011 Elsevier GmbH. All rights reserved.
Chaudhry, Kamaljit K.; Shukla, Pradeep K.; Mir, Hina; Manda, Bhargavi; Gangwar, Ruchika; Yadav, Nikki; McMullen, Megan; Nagy, Laura E.; Rao, RadhaKrishna
2015-01-01
Previous in vitro studies showed that glutamine (Gln) prevents acetaldehyde-induced disruption of tight junctions and adherens junctions in Caco-2 cell monolayers and human colonic mucosa. In the present study, we evaluated the effect of Gln supplementation on ethanol-induced gut barrier dysfunction and liver injury in mice in vivo. Ethanol feeding caused a significant increase in inulin permeability in distal colon. Elevated permeability was associated with a redistribution of tight junction and adherens junction proteins and depletion of detergent-insoluble fractions of these proteins, suggesting that ethanol disrupts apical junctional complexes in colonic epithelium and increases paracellular permeability. Ethanol-induced increase in colonic mucosal permeability and disruption of junctional complexes were most severe in mice fed Gln-free diet. Gln supplementation attenuated ethanol-induced mucosal permeability and disruption of tight junctions and adherens junctions in a dose-dependent manner, indicating the potential role of glutamine in nutritional intervention to alcoholic tissue injury. Gln supplementation dose-dependently elevated reduced-protein thiols in colon without affecting the level of oxidized-protein thiols. Ethanol feeding depleted reduced protein thiols and elevated oxidized protein thiols. Ethanol-induced protein thiol oxidation was most severe in mice fed Gln-free diet and absent in mice fed Gln-supplemented diet, suggesting that antioxidant effect is one of the likely mechanisms involved in Gln-mediated amelioration of ethanol-induced gut barrier dysfunction. Ethanol feeding elevated plasma transaminase and liver triglyceride, which was accompanied by histopathologic lesions in the liver; ethanol-induced liver damage was attenuated by Gln supplementation. These results indicate that Gln supplementation ameliorates alcohol-induced gut and liver injury. PMID:26365579
Kataoka, Hiroshi; Yang, Ke; Rock, Kenneth L.
2014-01-01
Necrotic cell death in vivo induces a robust neutrophilic inflammatory response and the resulting inflammation can cause further tissue damage and disease. Dying cells induce this inflammation by releasing pro-inflammatory intracellular components, one of which is uric acid. Cells contain high levels of intracellular uric acid, which is produced when purines are oxidized by the enzyme xanthine oxidase. Here we test whether a non-nucleoside xanthine oxidase inhibitor, Febuxostat (FBX), can reduce intracellular uric acid levels and inhibit cell death-induced inflammation in two different murine tissue injury models; acid-induced acute lung injury and acetaminophen liver injury. Infiltration of inflammatory cells induced by acid injection into lungs or peritoneal administration of acetaminophen was evaluated by quantification with flow cytometry and tissue myeloperoxidase activity in the presence or absence of FBX treatment. Uric acid levels in serum and tissue were measured before giving the stimuli and during inflammation. The impact of FBX treatment on the peritoneal inflammation caused by the microbial stimulus, zymosan, was also analyzed to see whether FBX had a broad anti-inflammatory effect. We found that FBX reduced uric acid levels in acid-injured lung tissue and inhibited acute pulmonary inflammation triggered by lung injury. Similarly, FBX reduced uric acid levels in the liver and inhibited inflammation in response to acetaminophen-induced hepatic injury. In contrast, FBX did not reduce inflammation to zymosan, and therefore is not acting as a general anti-inflammatory agent. These results point to the potential of using agents like FBX to treat cell death-induced inflammation. PMID:25449036
Hepatoprotective activity of twelve novel 7'-hydroxy lignan glucosides from Arctii Fructus.
Yang, Ya-Nan; Huang, Xiao-Ying; Feng, Zi-Ming; Jiang, Jian-Shuang; Zhang, Pei-Cheng
2014-09-17
Twelve novel 7'-hydroxy lignan glucosides (1-12), including two benzofuran-type neolignans, two 8-O-4' neolignans, two dibenzylbutyrolactone lignans, and six tetrahydrofuranoid lignans, together with six known lignan glucosides (13-18), were isolated from the fruit of Arctium lappa L. (Asteraceae), commonly known as Arctii Fructus. Their structures were elucidated using spectroscopy (1D and 2D NMR, MS, IR, ORD, and UV) and on the basis of chemical evidence. The absolute configurations of compounds 1-12 were confirmed using rotating frame nuclear overhauser effect spectroscopy (ROESY), the circular dichroic (CD) exciton chirality method, and Rh2(OCOCF3)4-induced CD spectrum analysis. All of the isolated compounds were tested for hepatoprotective effects against D-galactosamine-induced cytotoxicity in HL-7702 hepatic cells. Compounds 1, 2, 7-12, and 17 showed significantly stronger hepatoprotective activity than the positive control bicyclol at a concentration of 1 × 10(-5) M.
Lee, Dong Hun; Kim, Dae Hwan; Hwang, Chul Ju; Song, Sukgil; Han, Sang Bae; Kim, Youngsoo; Yoo, Hwan Soo; Jung, Young Suk; Kim, Soo Hyun; Yoon, Do Young; Hong, Jin Tae
2015-05-01
Alcohol abuse and alcoholism lead to alcoholic liver disease (ALD), which is a major type of chronic liver disease worldwide. Interleukin-32 (IL-32) is a novel cytokine involved in inflammation and cancer development. However, the role of IL-32 in chronic liver disease has not been reported. In the present paper, we tested the effect of IL-32γ on ethanol-induced liver injury in IL-32γ-overexpressing transgenic mice (IL-32γ mice) after chronic ethanol feeding. Male C57BL/6 and IL-32γ mice (10-12 weeks old) were fed on a Lieber-DeCarli diet containing 6.6% ethanol for 6 weeks. IL-32γ-transfected HepG2 and Huh7 cells, as well as primary hepatocytes from IL-32γ mice, were treated with or without ethanol. The hepatic steatosis and damage induced by ethanol administration were attenuated in IL-32γ mice. Ethanol-induced cytochrome P450 2E1 expression and hydrogen peroxide levels were decreased in the livers of IL-32γ mice, primary hepatocytes from IL-32γ mice and IL-32γ-overexpressing human hepatic cells. The ethanol-induced expression levels of cyclo-oxygenase-2 (COX-2) and IL-6 were reduced in the livers of IL-32γ mice. Because nuclear transcription factor κB (NF-κB) is a key redox transcription factor of inflammatory responses, we examined NF-κB activity. Ethanol-induced NF-κB activities were significantly lower in the livers of IL-32γ mice than in wild-type (WT) mice. Furthermore, reduced infiltration of natural killer cells, cytotoxic T-cells and macrophages in the liver after ethanol administration was observed in IL-32γ mice. These data suggest that IL-32γ prevents ethanol-induced hepatic injury via the inhibition of oxidative damage and inflammatory responses.
Involvement of catalase in the protective benefits of metformin in mice with oxidative liver injury.
Dai, Jie; Liu, Mingwei; Ai, Qing; Lin, Ling; Wu, Kunwei; Deng, Xinyu; Jing, Yuping; Jia, Mengying; Wan, Jingyuan; Zhang, Li
2014-06-05
Metformin is a commonly used anti-diabetic drug with AMP-activated protein kinase (AMPK)-dependent hypoglycemic activities. Recent studies have revealed its anti-inflammatory and anti-oxidative properties. In the present study, the anti-oxidative potential of metformin and its potential mechanisms were investigated in a mouse model with carbon tetrachloride (CCl₂)-induced severe oxidative liver injury. Our results showed that treatment with metformin significantly attenuated CCl₂-induced elevation of serum aminotransferases and hepatic histological abnormalities. The alleviated liver injury was associated with decreased hepatic contents of oxidized glutathione (GSSG) and malondialdehyde (MDA). In addition, metformin treatment dose-dependently enhanced the activities of catalase (CAT) and decreased CCl₄-induced elevation of hepatic H₂O₂ levels, but it had no obvious effects on the protein level of CAT. We also found that metformin increased the level of phosphorylated AMP-activated protein kinase (AMPK), but treatment with AMPK activator AICAR had no obvious effects on CAT activity. A molecular docking analysis indicated that metformin might interact with CAT via hydrogen bonds. These data suggested that metformin effectively alleviated CCl₄-induced oxidative liver injury in mice and these hepatoprotective effects might be associated with CAT. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Young C.; Yim, Hye K.; Jung, Young S.
2007-08-15
Injury to liver, resulting in loss of its normal physiological/biochemical functions, may adversely affect a secondary organ. We examined the response of the liver and kidney to chemical substances that require metabolic activation for their toxicities in mice with a preceding liver injury. Carbon tetrachloride treatment 24 h prior to a challenging dose of carbon tetrachloride or acetaminophen decreased the resulting hepatotoxicity both in male and female mice as determined by histopathological examination and increases in serum enzyme activities. In contrast, the renal toxicity of the challenging toxicants was elevated markedly in male, but not in female mice. Partial hepatectomymore » also induced similar changes in the hepatotoxicity and nephrotoxicity of a challenging toxicant, suggesting that the contrasting response of male liver and kidney was associated with the reduction of the hepatic metabolizing capacity. Carbon tetrachloride pretreatment or partial hepatectomy decreased the hepatic xenobiotic-metabolizing enzyme activities in both sexes but elevated the renal p-nitrophenol hydroxylase, p-nitroanisole O-demethylase and aminopyrine N-demethylase activities significantly only in male mice. Increases in Cyp2e1 and Cyp2b expression were also evident in male kidney. Castration of males or testosterone administration to females diminished the sex-related differences in the renal response to an acute liver injury. The results indicate that reduction of the hepatic metabolizing capacity induced by liver injury may render secondary target organs susceptible to chemical substances activated in these organs. This effect may be sex-specific. It is also suggested that an integrated approach should be taken for proper assessment of chemical hazards.« less
Wang, Weidong; Wang, Shijie; Liu, Jinping; Cai, Enbo; Zhu, Hongyan; He, Zhongmei; Gao, Yugang; Li, Pingya; Zhao, Yan
2018-06-01
The oxidative stress and inflammatory response play an important role in carbon tetracholoride (CCl 4 )-induced acute liver injury. In this work, sesquiterpenoids from the root of Panax Ginseng (SPG) were prepared, and then the hepatoprotective effects of SPG against CCl 4 -induced acute liver injury were investigated and the underlying mechanism was explored in mice. All mice were divided into four groups: the control, CCl 4 and SPG (2.5 and 10 mg/kg, dissolved in soybean oil, i.g.) groups. All mice were given continuous administration for 7 days, and injected with CCl 4 (0.1 mL/10 g body weight 0.2% CCl 4 solution in soybean oil, i.p.) 1 h after the end of the administration except the control group. Mice were sacrificed 24 h post-CCl 4 injection. The results indicated that SPG significantly reduced the increasement of serum AST and ALT levels induced by CCl 4 -treatment. And the histopathological analysis revealed that SPG treated mice had normal liver architecture and no necrosis. The decreased activities of SOD, GSH and CAT, and increased MDA level were inhibited by SPG treatment. At the same time, the levels of TNF-α, IL-1β and IL-6 were significantly decreased by SPG treatment. SPG treatment also reduced the heptic protein expressions of NF-κB p65, COX-2, MAPK p38, ERK and JNK in the liver. These fingdings demonstrated that SPG exhibited strong hepatoprective effect on the CCl 4 -induced acute liver injury, which was related to anti-oxidantive and anti-inflammatory capabilities; and the anti-inflammatory effect of SPG might mediated by the NF-κB and MAPKs signaling pathways. Taken together, SPG might be a potential material for drug and functional food development against chemical hepatic injury. Copyright © 2018. Published by Elsevier Masson SAS.
Geng, Wei; Lo, Chung-Mau; Ng, Kevin T.P.; Ling, Chang-Chun; Qi, Xiang; Li, Chang-Xian; Zhai, Yuan; Liu, Xiao-Bing; Ma, Yuen-Yuen; Man, Kwan
2015-01-01
Tumor recurrence remains an obstacle after liver surgery, especially in living donor liver transplantation (LDLT) for patients with hepatocellular carcinoma (HCC). The acute-phase liver graft injury might potentially induce poor response to chemotherapy in recurrent HCC after liver transplantation. We here intended to explore the mechanism and to identify a therapeutic target to overcome such chemoresistance. The associations among graft injury, overexpression of IP10 and multidrug resistant genes were investigated in a rat liver transplantation model, and further validated in clinical cohort. The role of IP10 on HCC cell proliferation and tumor growth under chemotherapy was studied both in vitro and in vivo. The underlying mechanism was revealed by detecting the activation of endoplasmic reticulum (ER) stress signaling pathways. Moreover, the effect of IP10 neutralizing antibody sensitizing cisplatin treatment was further explored. In rat liver transplantation model, significant up-regulation of IP10 associated with multidrug resistant genes was found in small-for-size liver graft. Clinically, high expression of circulating IP10 was significant correlated with tumor recurrence in HCC patients underwent LDLT. Overexpression of IP10 promoted HCC cell proliferation and tumor growth under cisplatin treatment by activation of ATF6/Grp78 signaling. IP10 neutralizing antibody sensitized cisplatin treatment in nude mice. The overexpression of IP10, which induced by liver graft injury, may lead to cisplatin resistance via ATF6/Grp78 ER stress signaling pathway. IP10 neutralizing antibody could be a potential adjuvant therapy to sensitize cisplatin treatment. PMID:26336986
Genomic Indicators in the blood predict drug-induced liver injury
Hepatotoxicity and other forms of liver injury stemming from exposure to toxicants and idiosyncratic drug reactions are major concerns during the drug discovery process. Animal model systems have been utilized in an attempt to extrapolate the risk of harmful agents to humans and...
Bessone, Fernando; Lucena, M I; Roma, Marcelo G; Stephens, Camilla; Medina-Cáliz, Inmaculada; Frider, Bernardo; Tsariktsian, Guillermo; Hernández, Nelia; Bruguera, Miquel; Gualano, Gisela; Fassio, Eduardo; Montero, Joaquín; Reggiardo, María V; Ferretti, Sebastián; Colombato, Luis; Tanno, Federico; Ferrer, Jaime; Zeno, Lelio; Tanno, Hugo; Andrade, Raúl J
2016-02-01
Cyproterone acetate (CPA), an anti-androgenic drug for prostate cancer, has been associated with drug-induced liver injury (DILI). We aim to expand the knowledge on the spectrum of phenotypes and outcomes of CPA-induced DILI. Twenty-two males (70 ± 8 years; range 54-83) developing liver damage as a result of CPA therapy (dose: 150 ± 50 mg/day; range 50-200) were included. Severity index and causality by RUCAM were assessed. From 1993 to 2013, 22 patients were retrieved. Latency was 163 ± 97 days. Most patients were symptomatic, showing hepatocellular injury (91%) and jaundice. Liver tests at onset were: ALT 18 ± 13 × ULN, ALP 0.7 ± 0.7 × ULN and total serum bilirubin 14 ± 10 mg/dl. International normalized ratio values higher than 1.5 were observed in 14 (66%) patients. Severity was mild in 1 case (4%), moderate in 7 (32%), severe in 11 (50%) and fatal in 3 (14%). Five patients developed ascitis, and four encephalopathy. One patient had a liver injury that resembled autoimmune hepatitis. Eleven (50%) were hospitalized. Nineteen patients recovered after CPA withdrawal, although three required steroid therapy (two of them had high ANA titres). Liver biopsy was performed in seven patients (two hepatocellular collapse, one submassive necrosis, two cholestatic hepatitis, one cirrhosis with iron overload and one autoimmune hepatitis). RUCAM category was 'highly probable' in 19 (86%), 'probable' in 1 (4%), and 'possible' in 2 (9%). CPA-induced liver injury is severe and can be fatal, and may occasionally resemble autoimmune DILI. The benefit/risk ratio of this drug should be thoroughly assessed in each patient. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Tong, Hoi Y.; Díaz, Carmen; Collantes, Elena; Medrano, Nicolás; Borobia, Alberto M.; Jara, Paloma; Ramírez, Elena
2015-01-01
Background. Methylphenidate (MPH) is widely used in treating children with attention-deficit-hyperactivity disorder. Hepatotoxicity is a rare phenomenon; only few cases are described with no liver failure. Case. We report on the case of a 12-year-old boy who received MPH for attention-deficit-hyperactivity disorder. Two months later the patient presented with signs and symptoms of hepatitis and MPH was discontinued, showing progressive worsening and developing liver failure and a liver transplantation was required. Other causes of liver failure were ruled out and the liver biopsy was suggestive of drug toxicity. Discussion. One rare adverse reaction of MPH is hepatotoxicity. The review of the literature shows few cases of liver injury attributed to MPH; all of them recovered after withdrawing the treatment. The probable mechanism of liver injury was MPH direct toxicity to hepatocytes. In order to establish the diagnosis of MPH-induced liver injury, we used CIOMS/RUCAM scale that led to an assessment of “possible” relationship. This report provides the first published case of acute MPH-induced liver failure with successful hepatic transplantation. Conclusions. It is important to know that hepatotoxicity can occur in patients with MPH treatment and monitoring the liver's function is highly recommended. PMID:25688317
Xie, Qing; Guo, Fang-Fang; Zhou, Wen
2012-01-01
Oxidative stress has been recognized as a critical pathogenetic mechanism for the initiation and the progression of hepatic injury in a variety of liver disorders. Antioxidants, including many natural compounds or extracts, have been used to cope with liver disorders. The present study was designed to investigate the hepatoprotective effects of cassia seed ethanol extract (CSE) in carbon tetrachloride (CCl(4))-induced liver injury in mice. The animals were pre-treated with different doses of CSE (0.5, 1.0, 2.0 g/kg body weight) or distilled water for 5 days, then were injected intraperitoneally with CCl(4) (0.1% in corn oil, v/v, 20 ml/kg body weight), and sacrificed at 16 hours after CCl(4) exposure. The serum aminotransferase activities, histopathological changes, hepatic and mitochondrial antioxidant indexes, and cytochrome P450 2E1 (CYP2E1) activities were examined. Consistent with previous studies, acute CCl(4) administration caused great lesion to the liver, shown by the elevation of the serum aminotransferase activities, mitochondria membrane permeability transition (MPT), and the ballooning degeneration of hepatocytes. However, these adverse effects were all significantly inhibited by CSE pretreatment. CCl(4)-induced decrease of the CYP2E1 activity was dose-dependently inhibited by CSE pretreatment. Furthermore, CSE dramatically decreased the hepatic and mitochondrial malondialdehyde (MDA) levels, increased the hepatic and mitochondrial glutathione (GSH) levels, and restored the activities of superoxide dismutase (SOD), glutathione reductase (GR), and glutathione S-transferase (GST). These results suggested that CSE could protect mice against CCl(4)-induced liver injury via enhancement of the antioxidant capacity.
No significant impact of Foxf1 siRNA treatment in acute and chronic CCl4 liver injury.
Abshagen, Kerstin; Rotberg, Tobias; Genz, Berit; Vollmar, Brigitte
2017-08-01
Chronic liver injury of any etiology is the main trigger of fibrogenic responses and thought to be mediated by hepatic stellate cells. Herein, activating transcription factors like forkhead box f1 are described to stimulate pro-fibrogenic genes in hepatic stellate cells. By using a liver-specific siRNA delivery system (DBTC), we evaluated whether forkhead box f1 siRNA treatment exhibit beneficial effects in murine models of acute and chronic CCl 4 -induced liver injury. Systemic administration of DBTC-forkhead box f1 siRNA in mice was only sufficient to silence forkhead box f1 in acute CCl 4 model, but was not able to attenuate liver injury as measured by liver enzymes and necrotic liver cell area. Therapeutic treatment of mice with DBTC-forkhead box f1 siRNA upon chronic CCl 4 exposition failed to inhibit forkhead box f1 expression and hence lacked to diminish hepatic stellate cells activation or fibrosis development. As a conclusion, DBTC-forkhead box f1 siRNA reduced forkhead box f1 expression in a model of acute but not chronic toxic liver injury and showed no positive effects in either of these mice models. Impact statement As liver fibrosis is a worldwide health problem, antifibrotic therapeutic strategies are urgently needed. Therefore, further developments of new technologies including validation in different experimental models of liver disease are essential. Since activation of hepatic stellate cells is a key event upon liver injury, the activating transcription factor forkhead box f1 (Foxf1) represents a potential target gene. Previously, we evaluated Foxf1 silencing by a liver-specific siRNA delivery system (DBTC), exerting beneficial effects in cholestasis. The present study was designed to confirm the therapeutic potential of Foxf1 siRNA in models of acute and chronic CCl 4 -induced liver injury. DBTC-Foxf1 siRNA was only sufficient to silence Foxf1 in acute CCl 4 model and did not ameliorate liver injury or fibrogenesis. This underlines the significance of the experimental model used. Each model displays specific characteristics in the pathogenic nature, time course and severity of fibrosis and the optimal time point for starting a therapy.
Curcumin Protects Against Intestinal Origin Endotoxemia in Rat Liver Cirrhosis by Targeting PCSK9.
Cai, Yu; Lu, Di; Zou, Yanting; Zhou, Chaohui; Liu, Hongchun; Tu, Chuantao; Li, Feng; Liu, Lili; Zhang, Shuncai
2017-03-01
Intestinal origin endotoxemia always occurs in severe liver injury. The aim of the current study was to test antiendotoxemia effect of curcumin on tetrachloride (CCl 4 )-induced liver cirrhosis rats, and to elucidate the underlying molecular mechanism. Rat cirrhosis models were constructed with CCl 4 subcutaneous injections with curcumin (200 mg/kg/d) administered via gavages for 12 wk until the rats were sacrificed. We found that the administration of curcumin improved the physiological condition pertaining to activity index and temperature, and ameliorated the liver injury in CCl 4 -induced cirrhosis rats. Enzyme-linked immunosorbent assay (ELISA) and real-time quantitative polymerase chain reaction (qRT-PCR) showed that curcumin could reduce c-reaction protein levels and inflammatory cytokine (TNF-α, IL-1β, IL-6, and CINC-1/IL-8) concentrations in peripheral serum and liver tissue. Furthermore, curcumin treatment decreased lipopolysaccharide (LPS) levels in peripheral vein, but not in portal vein. As low-density lipoprotein receptor (LDLR) is the important receptor on the surface of hepatocyte during LPS detoxification process, we used qRT-PCR, western blot, and immunohistochemistry (IHC), finding that curcumin significantly increased LDLR protein levels, but not gene levels in the liver tissues. We also tested proprotein convertase subtilisin/kexin type 9 (PCSK9), one negative regulator of LDLR, by qRT-PCR, western blot, and IHC. The results showed that PCSK9 significantly decreased both gene and protein levels in the rat liver tissues of curcumin treatment. Thus, we concluded that curcumin could function to protect against intestinal origin endotoxemia by inhibiting PCSK9 to promote LDLR expression, thereby enhancing LPS detoxification as one pathogen lipid through LDLR in the liver. © 2017 Institute of Food Technologists®.
Ekong, Udeme; Zeng, Shan; Dun, Hao; Feirt, Nikki; Guo, Jiancheng; Ippagunta, Nikalesh; Guarrera, James V; Lu, Yan; Weinberg, Alan; Qu, Wu; Ramasamy, Ravichandran; Schmidt, Ann Marie; Emond, Jean C
2006-04-01
Severe injury to the liver, such as that induced by toxic doses of acetaminophen, triggers a cascade of events leading to hepatocyte death. It is hypothesized that activation of the receptor for advanced glycation end products (RAGE) might contribute to acetaminophen-induced liver toxicity by virtue of its ability to generate reactive oxygen species, at least in part via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and thereby activate downstream signaling pathways leading to cellular injury. A model was employed in which toxic doses of acetaminophen (1125 mg/kg) were administered to C57BL/6 mice. To block RAGE, mice received murine soluble (s) RAGE, the extracellular ligand binding domain of the receptor that acts as a decoy to interrupt ligand-RAGE signaling. Animals treated with sRAGE displayed increased survival compared with vehicle treatment, and markedly decreased hepatic necrosis. Consistent with an important role for RAGE-triggered oxidant stress in acetaminophen-induced injury, a significant reduction of nitrotyrosine protein adducts was observed in hepatic tissue in sRAGE-treated versus vehicle-treated mice receiving acetaminophen, in parallel with significantly increased levels of glutathione. In addition, pro-regenerative cytokines tumor necrosis factor-alpha and interleukin-6 were increased in sRAGE-treated versus vehicle-treated mice. These findings implicate RAGE-dependent mechanisms in acetaminophen-induced liver damage and suggest that blockade of this pathway may impart beneficial effects in toxin-induced liver injury.
Narita, Masato; Hatano, Etsuro; Tamaki, Nobuyuki; Yamanaka, Kenya; Yanagida, Atsuko; Nagata, Hiromitsu; Asechi, Hiroyuki; Takada, Yasutsugu; Ikai, Iwao; Uemoto, Shinji
2009-06-01
Sinusoidal obstruction syndrome (SOS) is drug-induced liver injury that occurs in patients who receive hematopoietic cell transplantation and oxaliplatin-contained chemotherapy. The aim of study was to investigate the pharmacological treatment of SOS using a traditional Japanese medicine, Dai-kenchu-to (DKT). Male Sprague-Dawley rats were treated with monocrotaline (MCT) to induce SOS. The rats were divided into three groups: control, MCT and MCT+DKT groups. In the MCT+DKT group, DKT was gavaged at 12 h after MCT treatment and given every 12 h until the end of the protocol. The rats of MCT group were treated with water instead of DKT. At 48 h after MCT treatment, blood and liver samples were collected. In the MCT+DKT group, the macroscopic and histological findings revealed liver congestion, sinusoidal alteration and the destruction of sinusoidal lining, which were comparable with those of the MCT group. However, the area of hepatic necrosis and serum AST levels significantly decreased in the MCT+DKT group compared with those of the MCT group. Treatment with DKT resulted in the reduction of neutrophil accumulation, myeloperoxidase activity and the expression of cytokine-induced neutrophil chemoattractant (CINC) and intracellular adhesion molecule-1 (ICAM-1) mRNA in the liver compared with those of the MCT group. Treatment with processed ginger, one of the ingredients in DKT, resulted in similar effects to those shown by DKT. Dai-kenchu-to attenuates MCT-induced liver injury by preventing neutrophil-induced liver injury through blockage of upregulation of CINC and ICAM-1 mRNA level.
Tan, Xiaobing; Xie, Guoxiang; Sun, Xiuhua; Li, Qiong; Zhong, Wei; Qiao, Peter; Sun, Xinguo; Jia, Wei; Zhou, Zhanxiang
2013-01-01
High fat diet (HFD) is closely linked to a variety of health issues including fatty liver. Exposure to perfluorooctanoic acid (PFOA), a synthetic perfluorinated carboxylic acid, also causes liver injury. The present study investigated the possible interactions between high fat diet and PFOA in induction of liver injury. Mice were pair-fed a high-fat diet (HFD) or low fat control with or without PFOA administration at 5 mg/kg/day for 3 weeks. Exposure to PFOA alone caused elevated plasma alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels and increased liver weight along with reduced body weight and adipose tissue mass. HFD alone did not cause liver damage, but exaggerated PFOA-induced hepatotoxicity as indicated by higher plasma ALT and AST levels, and more severe pathological changes including hepatocyte hypertrophy, lipid droplet accumulation and necrosis as well as inflammatory cell infiltration. These additive effects of HFD on PFOA-induced hepatotoxicity correlated with metabolic disturbance in liver and blood as well as up-regulation of hepatic proinflammatory cytokine genes. Metabolomic analysis demonstrated that both serum and hepatic metabolite profiles of PFOA, HFD, or HFD-PFOA group were clearly differentiated from that of controls. PFOA affected more hepatic metabolites than HFD, but HFD showed positive interaction with PFOA on fatty acid metabolites including long chain fatty acids and acylcarnitines. Taken together, dietary high fat potentiates PFOA-induced hepatic lipid accumulation, inflammation and necrotic cell death by disturbing hepatic metabolism and inducing inflammation. This study demonstrated, for the first time, that HFD increases the risk of PFOA in induction of hepatotoxicity.
2014-01-01
Background The nuclear protein high-mobility group box 1 (HMGB1) is a key trigger for the inflammatory reaction during liver ischemia reperfusion injury (IRI). Hydrogen treatment was recently associated with down-regulation of the expression of HMGB1 and pro-inflammatory cytokines during sepsis and myocardial IRI, but it is not known whether hydrogen has an effect on HMGB1 in liver IRI. Methods A rat model of 60 minutes 70% partial liver ischemia reperfusion injury was used. Hydrogen enriched saline (2.5, 5 or 10 ml/kg) was injected intraperitoneally 10 minutes before hepatic reperfusion. Liver injury was assessed by serum alanine aminotransferase (ALT) enzyme levels and histological changes. We also measured malondialdehyde (MDA), hydroxynonenal (HNE) and 8-hydroxy-guanosine (8-OH-G) levels as markers of the peroxidation injury induced by reactive oxygen species (ROS). In addition, pro-inflammatory cytokines including TNF-α and IL-6, and high mobility group box B1 protein (HMGB1) were measured as markers of post ischemia-reperfusion inflammation. Results Hydrogen enriched saline treatment significantly attenuated the severity of liver injury induced by ischemia-reperfusion. The treatment group showed reduced serum ALT activity and markers of lipid peroxidation and post ischemia reperfusion histological changes were reduced. Hydrogen enriched saline treatment inhibited HMGB1 expression and release, reflecting a reduced local and systemic inflammatory response to hepatic ischemia reperfusion. Conclusion These results suggest that, in our model, hydrogen enriched saline treatment is protective against liver ischemia-reperfusion injury. This effect may be mediated by both the anti-oxidative and anti-inflammatory effects of the solution. PMID:24410860
Reversible surgical model of biliary inflammation and obstructive jaundice in mice.
Kirkland, Jacob G; Godfrey, Cody B; Garrett, Ryan; Kakar, Sanjay; Yeh, Benjamin M; Corvera, Carlos U
2010-12-01
Common bile duct (CBD) ligation is used in animal models to induce biliary inflammation, fibrosis, and cholestatic liver injury, but results in a high early postoperative mortality rate, probably from traumatic pancreatitis. We modified the CBD ligation model in mice by placing a small metal clip across the lower end of the CBD. To reverse biliary obstruction, a suture was incorporated within the clip during its placement. The suture and clip were removed on postoperative d 5 or 10 for biliary decompression. After 5 d of biliary obstruction, the gallbladder showed an 8-fold increase in wall thickness and a 17-fold increase in tissue myeloperoxidase activity. Markedly elevated serum levels of alkaline phosphatase and bilirubin indicated injury to the biliary epithelium and hepatocytes. Early postoperative (d 0-2) survival was 100% and later (d 3-5) survival was 85% (n=54 mice). We successfully reversed biliary obstruction in 20 mice (37%). Overall survival after reversal was 70%. In surviving mice, biliary decompression was complete, inflammation was reduced, and jaundice resolved. Histologic features confirmed reduced epithelial damage, edema, and neutrophil infiltration. Our technique minimized postoperative death, maintained an effective inflammatory response, and was easily reversible without requiring repeat laparotomy. This reversible model can be used to further define molecular mechanisms of biliary inflammation, fibrosis, and liver injury in genetically altered mice. Copyright © 2010. Published by Elsevier Inc.
Direct peritoneal resuscitation improves obesity-induced hepatic dysfunction after trauma.
Matheson, Paul J; Franklin, Glen A; Hurt, Ryan T; Downard, Cynthia D; Smith, Jason W; Garrison, Richard N
2012-04-01
The metabolic syndrome and associated fatty liver disease are thought to contribute to poor outcomes in trauma patients. Experimentally, obesity compromises liver blood flow. We sought to correlate the effect of obesity, injury severity, and liver dysfunction with trauma outcomes. We hypothesized that obesity-related liver dysfunction could be mitigated with the novel technique of adjunctive direct peritoneal resuscitation (DPR). This study has clinical and experimental arms. The clinical study was a case-controlled retrospective analysis of ICU trauma patients (n = 72 obese, n = 187 nonobese). The experimental study was a hemorrhagic shock model in obese rats to assess the effect of DPR on liver blood flow, liver function, and inflammatory mediators. In trauma patients, univariate and multivariate analyses demonstrated increasing mortality (p < 0.05), septic complications (p < 0.05), liver dysfunction (p < 0.001), and renal impairment (p < 0.05) with increasing body mass index and injury severity score. Obesity in rats impairs liver blood flow, liver function, renal function, and inflammation (interleukin [IL]-1β, IL-6, high mobility group protein B1[HMGB-1]). The addition of DPR to shock resuscitation restores liver blood flow, improves organ function, and reverses the systemic proinflammatory response. Our clinical review substantiates that obesity worsens trauma outcomes regardless of injury severity. Obesity-related liver and renal dysfunction is aggravated by injury severity. In an obese rat model of resuscitated hemorrhagic shock, the addition of DPR abrogates trauma-induced liver, renal, and inflammatory responses. We conclude that the addition of DPR to the clinical resuscitation regimen will benefit the obese trauma patient. Published by Elsevier Inc.
Lin, Chih-Wen; Zhang, Hao; Li, Min; Xiong, Xiwen; Chen, Xi; Chen, Xiaoyun; Dong, Xiaocheng C; Yin, Xiao-Ming
2013-05-01
Pharmacological approaches can potentially improve fatty liver condition in alcoholic and non-alcoholic fatty liver diseases. The salutary effects of reducing lipid synthesis or promoting lipid oxidation have been well reported, but the benefits of increasing lipid degradation have yet to be well explored. Macroautophagy is a cellular degradation process that can remove subcellular organelles including lipid droplets. We thus investigated whether pharmacological modulation of macroautophagy could be an effective approach to alleviate fatty liver condition and liver injury. C57BL/6 mice were given ethanol via intraperitoneal injection (acute) or by a 4-week oral feeding regime (chronic), or high fat diet for 12 weeks. An autophagy enhancer, carbamazepine or rapamycin, or an autophagy inhibitor, chloroquine, was given before sacrifice. Activation of autophagy, level of hepatic steatosis, and blood levels of triglycerides, liver enzyme, glucose and insulin were measured. In both acute and chronic ethanol condition, macroautophagy was activated. Carbamazepine, as well as rapamycin, enhanced ethanol-induced macroautophagy in hepatocytes in vitro and in vivo. Hepatic steatosis and liver injury were exacerbated by chloroquine, but alleviated by carbamazepine. The protective effects of carbamazepine and rapamycin in reducing steatosis and in improving insulin sensitivity were also demonstrated in high fat diet-induced non-alcoholic fatty liver condition. These findings indicate that pharmacological modulation of macroautophagy in the liver can be an effective strategy for reducing fatty liver condition and liver injury. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Alessandrino, F; Tirumani, S H; Krajewski, K M; Shinagare, A B; Jagannathan, J P; Ramaiya, N H; Di Salvo, D N
2017-07-01
The purpose of this review is to familiarise radiologists with the spectrum of hepatic toxicity seen in the oncology setting, in view of the different systemic therapies used in cancer patients. Drug-induced liver injury can manifest in various forms, and anti-neoplastic agents are associated with different types of hepatotoxicity. Although chemotherapy-induced liver injury can present as hepatitis, steatosis, sinusoidal obstruction syndrome, and chronic parenchymal damages, molecular targeted therapy-associated liver toxicity ranges from mild liver function test elevation to fulminant life-threatening acute liver failure. The recent arrival of immune checkpoint inhibitors in oncology has introduced a new range of immune-related adverse events, with differing mechanisms of liver toxicity and varied imaging presentation of liver injury. High-dose chemotherapy regimens for haematopoietic stem cell transplantation are associated with sinusoidal obstruction syndrome. Management of hepatic toxicity depends on the clinical scenario, the drug in use, and the severity of the findings. In this article, we will (1) present the most common types of oncological drugs associated with hepatic toxicity and associated liver injuries; (2) illustrate imaging findings of hepatic toxicities and the possible differential diagnosis; and (3) provide a guide for management of these conditions. Copyright © 2017 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Procarbazine-induced hepatotoxicity: case report and review of the literature.
Fesler, Mark J; Becker-Koepke, Stephanie; Di Bisceglie, Adrian M; Petruska, Paul J
2010-05-01
Procarbazine hydrochloride is an oral alkylating agent primarily used as a component of chemotherapy regimens for Hodgkin's lymphoma, as well as in regimens for primary central nervous system lymphoma and high-grade gliomas. Although the prescribing information for procarbazine lists hepatic dysfunction as a potential adverse reaction, we found only one published report with a probable link between procarbazine and liver injury. We describe a 65-year-old man who developed liver injury due to procarbazine during salvage chemotherapy for non-Hodgkin's lymphoma. The patient had no preexisting liver disease, his lymphoma was without hepatic involvement, and no liver injury developed after initial chemotherapy with R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone). Due to relapse of his non-Hodgkin's lymphoma, salvage chemotherapy with C-MOPP-R (cyclophosphamide, vincristine, procarbazine, prednisone, and rituximab) was administered, and the patient developed fever and aminotransferase level elevation during the second cycle. After discontinuation of all drug therapy, exclusion of other potential etiologies, and resolution of hepatic injury, the patient was rechallenged with procarbazine and again experienced fever with aminotransferase level elevation. His aminotransferase levels promptly returned to normal after discontinuation of procarbazine, and he experienced no further evidence of liver disease. Use of validated scoring systems of drug-induced liver injury indicated a definitive association between the patient's hepatic injury and procarbazine. Based on our experience with this patient, periodic assessment of hepatic function, as suggested in the package insert, is recommended in patients receiving procarbazine.
Accurate Prediction of Drug-Induced Liver Injury Using Stem Cell-Derived Populations
Szkolnicka, Dagmara; Farnworth, Sarah L.; Lucendo-Villarin, Baltasar; Storck, Christopher; Zhou, Wenli; Iredale, John P.; Flint, Oliver
2014-01-01
Despite major progress in the knowledge and management of human liver injury, there are millions of people suffering from chronic liver disease. Currently, the only cure for end-stage liver disease is orthotopic liver transplantation; however, this approach is severely limited by organ donation. Alternative approaches to restoring liver function have therefore been pursued, including the use of somatic and stem cell populations. Although such approaches are essential in developing scalable treatments, there is also an imperative to develop predictive human systems that more effectively study and/or prevent the onset of liver disease and decompensated organ function. We used a renewable human stem cell resource, from defined genetic backgrounds, and drove them through developmental intermediates to yield highly active, drug-inducible, and predictive human hepatocyte populations. Most importantly, stem cell-derived hepatocytes displayed equivalence to primary adult hepatocytes, following incubation with known hepatotoxins. In summary, we have developed a serum-free, scalable, and shippable cell-based model that faithfully predicts the potential for human liver injury. Such a resource has direct application in human modeling and, in the future, could play an important role in developing renewable cell-based therapies. PMID:24375539
Praveen, T K; Dharmaraj, S; Bajaj, Jitendra; Dhanabal, S P; Manimaran, S; Nanjan, M J; Razdan, Rema
2009-06-01
The present study was aimed at assessing the hepatoprotective activity of 1:1:1 petroleum ether, diethyl ether, and methanol (PDM) extract of Scoparia dulcis L. against carbon tetrachloride-induced acute liver injury in mice. The PDM extract (50, 200, and 800 mg/kg, p.o.) and standard, silymarin (100 mg/kg, p.o) were tested for their antihepatotoxic activity against CCl4-induced acute liver injury in mice. The hepatoprotective activity was evaluated by measuring aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and total proteins in serum, glycogen, lipid peroxides, superoxide dismutase, and glutathione reductase levels in liver homogenate and by histopathological analysis of the liver tissue. In addition, the extract was also evaluated for its in vitro antioxidant activity using 1, 1-Diphenyl-2-picrylhydrazyl scavenging assay. The extract at the dose of 800 mg/kg, p.o., significantly prevented CCl4-induced changes in the serum and liver biochemistry (P < 0.05) and changes in liver histopathology. The above results are comparable to standard, silymarin (100 mg/kg, p.o.). In the in vitro 1, 1-diphenyl-2-picrylhydrazyl scavenging assay, the extract showed good free radical scavenging potential (IC 50 38.9 +/- 1.0 mug/ml). The results of the study indicate that the PDM extract of Scoparia dulcis L. possesses potential hepatoprotective activity, which may be attributed to its free radical scavenging potential, due to the terpenoid constituents.
Çetin, Hasan; Nazıroğlu, Mustafa; Çelik, Ömer; Yüksel, Murat; Pastacı, Nural; Özkaya, Mehmet Okan
2014-12-01
The present study determined the effects of mobile phone (900 and 1800 MHz)-induced electromagnetic radiation (EMR) exposure on oxidative stress in the brain and liver as well as the element levels in growing rats from pregnancy to 6 weeks of age. Thirty-two rats and their offspring were equally divided into three different groups: the control, 900 MHz, and 1800 MHz groups. The 900 MHz and 1800 MHz groups were exposed to EMR for 60 min/d during pregnancy and neonatal development. At the 4th, 5th, and 6th weeks of the experiment, brain samples were obtained. Brain and liver glutathione peroxidase activities, as well as liver vitamin A and β-carotene concentrations decreased in the EMR groups, although brain iron, vitamin A, and β-carotene concentrations increased in the EMR groups. In the 6th week, selenium concentrations in the brain decreased in the EMR groups. There were no statistically significant differences in glutathione, vitamin E, chromium, copper, magnesium, manganese, and zinc concentrations between the three groups. EMR-induced oxidative stress in the brain and liver was reduced during the development of offspring. Mobile phone-induced EMR could be considered as a cause of oxidative brain and liver injury in growing rats.
Wang, Haina; Fang, Zhong-Ze; Meng, Ran; Cao, Yun-Feng; Tanaka, Naoki; Krausz, Kristopher W; Gonzalez, Frank J
2017-07-01
Alpha-naphthyl isothiocyanate (ANIT) is a common hepatotoxicant experimentally used to reproduce the pathologies of drug-induced liver injury in humans, but the mechanism of its toxicity remains unclear. To determine the metabolic alterations following ANIT exposure, metabolomic analyses was performed by use of liquid chromatography-mass spectrometry. Partial least squares discriminant analysis (PLS-DA) of liver, serum, bile, ileum, and cecum of vehicle- and ANIT-treated mice revealed significant alterations of individual bile acids, including increased tauroursodeoxycholic acid, taurohydrodeoxycholic acid, taurochenodeoxycholic acid, and taurodeoxycholic acid, and decreased ω-, β- and tauro-α/β- murideoxycholic acid, cholic acid, and taurocholic acid in the ANIT-treated groups. In accordance with these changes, ANIT treatment altered the expression of mRNAs encoded by genes responsible for the metabolism and transport of bile acids and cholesterol. Pre-treatment of glycyrrhizin (GL) and glycyrrhetinic acid (GA) prevented ANIT-induced liver damage and reversed the alteration of bile acid metabolites and Cyp7a1, Npc1l1, Mttp, and Acat2 mRNAs encoding bile acid transport and metabolism proteins. These results suggested that GL/GA could prevent drug-induced liver injury and ensuing disruption of bile acid metabolism in humans. Published by Elsevier B.V.
Factors affecting drug-induced liver injury: antithyroid drugs as instances
Niknahad, Hossein; Jamshidzadeh, Akram; Abdoli, Narges
2014-01-01
Methimazole and propylthiouracil have been used in the management of hyperthyroidism for more than half a century. However, hepatotoxicity is one of the most deleterious side effects associated with these medications. The mechanism(s) of hepatic injury induced by antithyroid agents is not fully recognized yet. Furthermore, there are no specific tools for predicting the occurrence of hepatotoxicity induced by these drugs. The purpose of this article is to give an overview on possible susceptibility factors in liver injury induced by antithyroid agents. Age, gender, metabolism characteristics, alcohol consumption, underlying diseases, immunologic mechanisms, and drug interactions are involved in enhancing antithyroid drugs-induced hepatic damage. An outline on the clinically used treatments for antithyroid drugs-induced hepatotoxicity and the potential therapeutic strategies found to be effective against this complication are also discussed. PMID:25320726
A murine model of type 2 autoimmune hepatitis: Xenoimmunization with human antigens.
Lapierre, Pascal; Djilali-Saiah, Idriss; Vitozzi, Susana; Alvarez, Fernando
2004-04-01
Autoimmune hepatitis (AIH) is characterized by an immune-mediated injury of the hepatic parenchyma of unknown pathogenesis. Type 2 AIH is identified by the presence of anti-liver-kidney microsomes type 1 (anti-LKM1) and anti-liver cytosol type 1 (anti-LC1) autoantibodies. The current study shows that a murine model of AIH can be generated by DNA immunization against type 2 AIH self-antigens (P450 2D6 and formiminotransferase-cyclodeaminase). A pCMV plasmid containing the N-terminal region of mouse CTLA-4 and the antigenic region of human CYP2D6 (672-1,377 bp) and human formiminotransferase cyclodeaminase (FTCD; 1,232-1,668 bp) was used for DNA immunization of C57BL/6 female mice. Immunized mice showed elevated levels of alanine aminotransferase (ALT), with peaks at 4 and 7 months postinjection. Periportal, portal, and intralobular liver inflammatory infiltrates were observed at histology. Mainly CD4+ lymphocytes, but also CD8+ and B lymphocytes, were found in the liver. Cytotoxic-specific T cells were found in both the liver and spleen of these animals. Mice developed anti-LKM1 and anti-LC1 antibodies of immunoglobulin G2 (IgG2) subclass, against specific mouse autoantigens. The ALT levels correlated with both the presence of anti-LKM1/anti-LC1 antibodies and the presence of liver necroinflammation. In conclusion, in mice, DNA immunization against human autoantigens breaks tolerance and induces an autoimmune liver disease. Molecular mimicry between foreign and self-antigens explains the liver injury. This model of AIH resembles human type 2 AIH and will be helpful for the study of its pathogenesis.
Hong, Il-Hwa; Lewis, Kyle; Iakova, Polina; Jin, Jingling; Sullivan, Emily; Jawanmardi, Nicole; Timchenko, Lubov; Timchenko, Nikolai
2014-01-10
The aged liver is more sensitive to the drug treatments and has a high probability of developing liver disorders such as fibrosis, cirrhosis, and cancer. Here we present mechanisms underlying age-associated severe liver injury and acceleration of liver proliferation after CCl4 treatments. We have examined liver response to CCl4 treatments using old WT mice and young C/EBPα-S193D knockin mice, which express an aged-like isoform of C/EBPα. Both animal models have altered chromatin structure as well as increased liver injury and proliferation after acute CCl4 treatments. We found that these age-related changes are associated with the repression of key regulators of liver biology: C/EBPα, Farnesoid X Receptor (FXR) and telomere reverse transcriptase (TERT). In quiescent livers of old WT and young S193D mice, the inhibition of TERT is mediated by HDAC1-C/EBPα complexes. After CCl4 treatments, TERT, C/EBPα and FXR are repressed by different mechanisms. These mechanisms include the increase of a dominant negative isoform, C/EBPβ-LIP, and subsequent repression of C/EBPα, FXR, and TERT promoters. C/EBPβ-LIP also disrupts Rb-E2F1 complexes in C/EBPα-S193D mice after CCl4 treatments. To examine if these alterations are involved in drug-mediated liver diseases, we performed chronic treatments of mice with CCl4. We found that C/EBPα-S193D mice developed fibrosis much more rapidly than WT mice. Thus, our data show that the age-associated alterations of C/EBP proteins create favorable conditions for the increased liver proliferation after CCl4 treatments and for development of drug-mediated liver diseases.
Hong, Il-Hwa; Lewis, Kyle; Iakova, Polina; Jin, Jingling; Sullivan, Emily; Jawanmardi, Nicole; Timchenko, Lubov; Timchenko, Nikolai
2014-01-01
The aged liver is more sensitive to the drug treatments and has a high probability of developing liver disorders such as fibrosis, cirrhosis, and cancer. Here we present mechanisms underlying age-associated severe liver injury and acceleration of liver proliferation after CCl4 treatments. We have examined liver response to CCl4 treatments using old WT mice and young C/EBPα-S193D knockin mice, which express an aged-like isoform of C/EBPα. Both animal models have altered chromatin structure as well as increased liver injury and proliferation after acute CCl4 treatments. We found that these age-related changes are associated with the repression of key regulators of liver biology: C/EBPα, Farnesoid X Receptor (FXR) and telomere reverse transcriptase (TERT). In quiescent livers of old WT and young S193D mice, the inhibition of TERT is mediated by HDAC1-C/EBPα complexes. After CCl4 treatments, TERT, C/EBPα and FXR are repressed by different mechanisms. These mechanisms include the increase of a dominant negative isoform, C/EBPβ-LIP, and subsequent repression of C/EBPα, FXR, and TERT promoters. C/EBPβ-LIP also disrupts Rb-E2F1 complexes in C/EBPα-S193D mice after CCl4 treatments. To examine if these alterations are involved in drug-mediated liver diseases, we performed chronic treatments of mice with CCl4. We found that C/EBPα-S193D mice developed fibrosis much more rapidly than WT mice. Thus, our data show that the age-associated alterations of C/EBP proteins create favorable conditions for the increased liver proliferation after CCl4 treatments and for development of drug-mediated liver diseases. PMID:24273171
Ji, De-Gang; Zhang, Yan; Yao, Song-Mei; Zhai, Xu-Jie; Zhang, Li-Rong; Zhang, Yao-Zhong; Li, Hui
2018-06-01
Caveolin-1 (Cav-1), as a membrane protein involved in the formation of caveolae, binds steroid receptors and endothelial nitric oxide synthase, limiting its translocation and activation. In the present study, we investigated the role of Cav-1 in the progression of hepatic fibrosis induced by carbon tetrachloride (CCl 4 ) in murine animals. Therefore, the wild type (WT) and Cav-1-knockout (Cav-1 -/- ) mice were used in our study and subjected to CCl 4 . The results indicated that CCl 4 induced the decrease of Cav-1 expression in liver tissue samples. And Cav-1 -/- intensified CCl 4 -triggered hepatic injury, evidenced by the stronger hepatic histological alterations, serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels and liver terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells. CCl 4 led to oxidative stress, supported by the reduced superoxide dismutase (SOD) activity and glutathione (GSH) levels, as well as enhanced malondialdehyde (MDA) and O 2 - levels in liver samples. And the process was intensified by Cav-1 -/- . Additionally, CCl 4 -caused hepatic inflammation was aggregated by Cav-1 -/- via further increasing the secretion of pro-inflammatory cytokines. Moreover, CCl 4 -caused fibrosis was strengthened by Cav-1 -/- , which was evidenced by the up-regulation of α-smooth muscle actin (α-SMA), collagen alpha 1 type 1 (Col1A1), lysyl oxidase (Lox) and transforming growth factor-β1 (TGF-β1) in liver tissues. Similar results were observed in TGF-β1-stimulated hepatic stellate cells (HSCs) and LX-2 cells without Cav-1 expressions that in vitro, suppressing Cav-1 further accelerated TGF-β1-induced oxidative stress, inflammation and fibrosis development. In conclusion, our results indicated that Cav-1 played an important role in CCl 4 -induced hepatic injury, which may be used as potential therapeutic target for hepatic fibrosis treatment. Copyright © 2018. Published by Elsevier Masson SAS.
Lin, K J; Chen, J C; Tsauer, W; Lin, C C; Lin, J G; Tsai, C C
2001-12-01
To study the prophylactic effects of four Chinese traditional prescriptions against experimental liver injury. Liver toxins, alpha-naphthylisothiocyanate (ANIT), and carbon tetrachloride (CCl4) were used to induce acute liver injury. Simo Yin(SMY), Guizhi Fuling Wan (GFW), Xieqing Wan (XQW), and Sini San (SNS) were fed (500 mg/kg, in saline, po) to the rats before toxin administration. All the animals were killed 48 h after toxin insulted. Serum index of liver function and hepatic lipid peroxidation (LPO) were estimated. Histopathological observation was conducted simultaneously. The rats treated with ANIT exhibited elevations of serum total bilirubin (TBI), alkaline phosphatase (ALP), glutamate-oxalate- transaminase (GOT), glutamate-pyruvate-transaminase (GPT), as well as cholestasis and parenchyma necrosis. In rats, challenged with ANIT, receiving the pre-treatment of prescriptions of SMY, XQW, and SNS, the biochemical and morphological parameters of liver injury were significantly reduced. The increased LPO level in liver tissue, associated with the provoked serum GOT and GPT levels were the salient features observed in CCl4-insulting rats. Pre-treatment of four prescriptions showed a remarkable protective effect, and also was effective in counteracting the free radical toxicity by bringing about a significant decrease in peroxidative level. These recipes ameliorate liver damage induced by both ANIT and CCl4 despite the differences in their mechanisms of injury. Therefore they may be able to exert hepatoprotective effects through more than one mechanism of action because they contained a mixture of anti-hepatotoxic ingredients with mutual reinforcement and assistance.
Propylthiouracil-Induced Acute Liver Failure: Role of Liver Transplantation
Carrion, Andres F.; Czul, Frank; Arosemena, Leopoldo R.; Selvaggi, Gennaro; Garcia, Monica T.; Tekin, Akin; Tzakis, Andreas G.; Martin, Paul; Ghanta, Ravi K.
2010-01-01
Propylthiouracil- (PTU-) induced hepatotoxicity is rare but potentially lethal with a spectrum of liver injury ranging from asymptomatic elevation of transaminases to fulminant hepatic failure and death. We describe two cases of acute hepatic failure due to PTU that required liver transplantation. Differences in the clinical presentation, histological characteristics, and posttransplant management are described as well as alternative therapeutic options. Frequent monitoring for PTU-induced hepatic dysfunction is strongly advised because timely discontinuation of this drug and implementation of noninvasive therapeutic interventions may prevent progression to liver failure or even death. PMID:21234410
Drug-Induced Liver Injury Associated with Noni (Morinda citrifolia) Juice and Phenobarbital.
Mrzljak, Anna; Kosuta, Iva; Skrtic, Anita; Kanizaj, Tajana Filipec; Vrhovac, Radovan
2013-01-01
Noni (Morinda citrifolia) juice is a popular herbal dietary supplement globally used for preventive or therapeutic purposes in a variety of ailments, claiming to exhibit hepatoprotective properties as well. Herein we present the case of a 38-year-old woman who developed acute liver injury associated with noni juice consumption on a long-term (9 months) anticonvulsant therapy. Clinical presentation and liver biopsy were consistent with severe, predominantly hepatocellular type of injury. Both agents were stopped and corticosteroids were initiated. Five months later the patient had fully recovered. Although in the literature the hepatotoxicity of noni juice remains speculative, sporadic but emerging cases of noni juice-associated liver injury address the need to clarify and investigate potential harmful effects associated with this supplement.
Hu, Congli; Yang, Junqing; He, Qin; Luo, Ying; Chen, Zhihao; Yang, Lu; Yi, Honggang; Li, Huan; Xia, Hui; Ran, Dongzhi; Yang, Yang; Zhang, Jiahua; Li, Yuke; Wang, Hong
2018-05-07
Aluminum (Al) is a trivalent cation that can accumulate in animal organs, especially in the liver. We previously demonstrated that Al-overload could induce liver morphologic aberrations and dysfunction. However, the molecular mechanism underlying liver injury caused by Al-overload still remains unknown. In the present study, we investigated the relationship between leukotrienes receptors and the PI3K/AKT/mTOR pathway in Al-induced liver injury in vivo and in vitro. We demonstrated that Al-overload significantly increased the protein expression levels of CysLTR1, PI3K, AKT, mTOR, and p62, while significantly decreasing the LC3BII protein levels in rat liver; thus, suggesting that the autophagy process was inhibited in Al-overloaded rat liver. In addition, MK-571, an inhibitor of CysLTR1, effectively protected the human hepatocyte L02 cells against injury caused by Al exposure. Moreover, CysLTR1 blockage could significantly down-regulate the PI3K/AKT/mTOR pathway and activate autophagy. The effect of MK-571 on cell viability was abolished by the treatment with the autophagy inhibitor (wortmannin) but not with the autophagy agonist (rapamycin). Taken together, our results indicated that the blockage of the leukotriene receptor of CysLTR1 promotes autophagy and further reduces hepatocyte death through the PI3K/AKT/mTOR pathway inhibition. CysLTR1 thus could represent a potential target for the new drug development for chronic noninfective liver injury.
Nieuwenhuijs, Vincent B; De Bruijn, Menno T; Padbury, Robert T A; Barritt, Gregory J
2006-06-01
Liver resection and liver transplantation have been successful in the treatment of liver tumors and end-stage liver disease. This success has led to an expansion in the pool of patients potentially treatable by liver surgery and, in the case of transplantation, to a shortage of liver donors. At present, there are significant numbers of potential candidates for liver resection and liver donation who have fatty livers, are aged, or have livers damaged by chemotherapy. All of these are at high risk for ischemic reperfusion (IR) injury. The aims of this review are to assess current knowledge of the clinical effectiveness of ischemic preconditioning and intermittent ischemia in reducing IR damage in liver surgery; to evaluate the use of bile flow as a sensitive indicator of IR liver damage; and to analyze the molecular mechanisms, especially intracellular Ca2+, involved in IR injury and ischemic preconditioning. It is concluded that bile flow is a sensitive indicator of IR injury. Together with reactive oxygen species (ROS) and other extracellular and intracellular signaling molecules, intracellular Ca2+ in hepatocytes plays a key role in the normal regulation of bile flow and in IR-induced injury and cell death. Ischemic preconditioning is an effective strategy to reduce IR injury but there is considerable scope for improvement, especially in patients with fatty and aged livers. The development of effective new strategies to reduce IR injury will depend on improved understanding of the molecular mechanisms involved, especially by gaining a better perspective of the relative importance of the various intrahepatocyte signaling pathways involved.
Wang, Ran; Qi, Xingshun; Yoshida, Eric M; Méndez-Sánchez, Nahum; Teschke, Rolf; Sun, Mingyu; Liu, Xu; Su, Chunping; Deng, Jiao; Deng, Han; Hou, Feifei; Guo, Xiaozhong
2018-04-01
Traditional Chinese medicine (TCM) is becoming increasingly popular and related adverse events are often ignored or underestimated. This systematic review aimed to evaluate the clinical characteristics and outcomes of TCM-induced liver injury (TCM-ILI) and to estimate the proportion of TCM-ILI in all drug-induced liver injuries (DILI). China National Knowledge Infrastructure, Wanfang, VIP, PubMed, and Embase databases were searched. Demographic, clinical, and survival data were extracted and pooled. Factors associated with worse outcomes were calculated. For the proportion meta-analyses, the data were pooled by using a random-effects model. Overall, 21,027 articles were retrieved, of which 625 were finally included. There was a predominance of female and older patients. The proportion of liver transplantation was 2.18% (7/321). The mortality was 4.67% (15/321). Male, higher aspartate aminotransferase and direct bilirubin, and lower albumin were significantly associated with an increased risk of death/liver transplantation in TCM-ILI patients. The proportion of TCM-ILI in all DILI was 25.71%. The proportion was gradually increased with year. Our work summarises current knowledge regarding clinical presentation, disease course, and prognosis of TCM-ILI. TCM can result in hepatotoxicity, even death or necessitate life-saving liver transplantation. Governmental regulation of TCM products should be strictly established.
Protective Role of Grape Seed Proanthocyanidins Against Ccl4 Induced Acute Liver Injury in Mice.
Zou, Jinfa; Qi, Fengjie; Ye, Liping; Yao, Suyan
2016-03-17
We investigated the effect of grape seed proanthocyanidins (GSPs) on carbon tetrachloride (CCl4)-induced acute liver injury. Sixty SPF KM mice were randomly divided into 6 groups: the control group, CCl4-model group, bifendate group (DDB group), and low-, moderate-, and high-dose GSP groups. The following parameters were measured: serum levels of alanine aminotransferase (ALT); aspartate aminotransferase (AST); tumor necrosis factor (TNF)-α; interleukin-6 (IL-6); high-mobility group box (HMGB)-1; body weight; liver, spleen, and thymus indexes; superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity; HMGB1 mRNA; malondialdehyde (MDA) content; hepatocyte proliferation; and changes in liver histology. Compared to the CCl4-model group, decreases in liver index and increases in thymus index significantly increased SOD and GSH-Px activities and reduced MDA content, and higher hepatocyte proliferative activity was found in all GSP dose groups and the DDB group (all P<0.001). Compared with the CCl4-model group, serum TNF-α and IL-6 levels and HMGB 1 mRNA and protein expressions decreased significantly in the high GSP dose group (all P<0.05). Our results provide strong evidence that administration of GSPs might confer significant protection against CCl4-induced acute liver injury in mice.
Peng, Wen-Huang; Chen, Yi-Wen; Lee, Meng-Shiou; Chang, Wen-Te; Tsai, Jen-Chieh; Lin, Ying-Chih; Lin, Ming-Kuem
2016-12-07
Cuscuta seeds and whole plant have been used to nourish the liver and kidney. This study was aimed to investigate the hepatoprotective activity of the ethanol extract of Cuscuta campestris Yunck. whole plant (CC EtOH ). The hepatoprotective effect of CC EtOH (20, 100 and 500 mg/kg) was evaluated on carbon tetrachloride (CCl₄)-induced chronic liver injury. Serum alanine aminotransferase, aspartate aminotransferase, triglyceride and cholesterol were measured and the fibrosis was histologically examined. CC EtOH exhibited a significant inhibition of the increase of serum alanine aminotransferase, aspartate aminotransferase, triglyceride and cholesterol. Histological analyses showed that fibrosis of liver induced by CCl₄ were significantly reduced by CC EtOH . In addition, 20, 100 and 500 mg/kg of the extract decreased the level of malondialdehyde (MDA) and enhanced the activities of anti-oxidative enzymes including superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GRd) in the liver. We demonstrate that the hepatoprotective mechanisms of CC EtOH were likely to be associated to the decrease in MDA level by increasing the activities of antioxidant enzymes such as SOD, GPx and GRd. In addition, our findings provide evidence that C. campestris Yunck. whole plant possesses a hepatoprotective activity to ameliorate chronic liver injury.
Peng, Wen-Huang; Chen, Yi-Wen; Lee, Meng-Shiou; Chang, Wen-Te; Tsai, Jen-Chieh; Lin, Ying-Chih; Lin, Ming-Kuem
2016-01-01
Cuscuta seeds and whole plant have been used to nourish the liver and kidney. This study was aimed to investigate the hepatoprotective activity of the ethanol extract of Cuscuta campestris Yunck. whole plant (CCEtOH). The hepatoprotective effect of CCEtOH (20, 100 and 500 mg/kg) was evaluated on carbon tetrachloride (CCl4)-induced chronic liver injury. Serum alanine aminotransferase, aspartate aminotransferase, triglyceride and cholesterol were measured and the fibrosis was histologically examined. CCEtOH exhibited a significant inhibition of the increase of serum alanine aminotransferase, aspartate aminotransferase, triglyceride and cholesterol. Histological analyses showed that fibrosis of liver induced by CCl4 were significantly reduced by CCEtOH. In addition, 20, 100 and 500 mg/kg of the extract decreased the level of malondialdehyde (MDA) and enhanced the activities of anti-oxidative enzymes including superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GRd) in the liver. We demonstrate that the hepatoprotective mechanisms of CCEtOH were likely to be associated to the decrease in MDA level by increasing the activities of antioxidant enzymes such as SOD, GPx and GRd. In addition, our findings provide evidence that C. campestris Yunck. whole plant possesses a hepatoprotective activity to ameliorate chronic liver injury. PMID:27941627
Development, Prevention, and Treatment of Alcohol-Induced Organ Injury: The Role of Nutrition
Barve, Shirish; Chen, Shao-Yu; Kirpich, Irina; Watson, Walter H.; McClain, Craig
2017-01-01
Alcohol and nutrition have the potential to interact at multiple levels. For example, heavy alcohol consumption can interfere with normal nutrition, resulting in overall malnutrition or in deficiencies of important micronutrients, such as zinc, by reducing their absorption or increasing their loss. Interactions between alcohol consumption and nutrition also can affect epigenetic regulation of gene expression by influencing multiple regulatory mechanisms, including methylation and acetylation of histone proteins and DNA. These effects may contribute to alcohol-related organ or tissue injury. The impact of alcohol–nutrition interactions has been assessed for several organs and tissues, including the intestine, where heavy alcohol use can increase intestinal permeability, and the liver, where the degree of malnutrition can be associated with the severity of liver injury and liver disease. Alcohol–nutrition interactions also play a role in alcohol-related lung injury, brain injury, and immune dysfunction. Therefore, treatment involving nutrient supplementation (e.g., with zinc or S-adenosylmethionine) may help prevent or attenuate some types of alcohol-induced organ damage. PMID:28988580
El-Beshbishy, Hesham A; Tork, Ola M; El-Bab, Mohamed F; Autifi, Mohamed A
2011-04-01
Green tea polyphenols (GTP) is considered to have protective effects against several diseases. The hepatotoxicity of azathioprine (AZA) has been reported and was found to be associated with oxidative damage. This study was conducted to evaluate the role of GTP to protect against AZA-induced liver injury in rats. AZA was administered i.p. in a single dose (50mgkg(-1)) to adult male rats. AZA-intoxicated rats were orally administered GTP (either 100mgkg(-1)day(-1) or 300mgkg(-1)day(-1), for 21 consecutive days, started 7 days prior AZA injection). AZA administration to rats resulted in significant elevation of serum transaminases (sALT and sAST), alkaline phosphatase (sALP), depletion of hepatic reduced glutathione (GSH), catalase (CAT) and glutathione peroxidase (GPx), accumulation of oxidized glutathione (GSSG), elevation of lipid peroxides (LPO) expressed as malondialdehyde (MDA), reduction of the hepatic total antioxidant activity (TAA), decrease serum total proteins and elevation of liver protein carbonyl content. Significant rises in liver tumor necrosis factor-alpha (TNF-α) and caspase-3 levels were noticed in AZA-intoxicated rats. Treatment of the AZA-intoxicated rats with GTP significantly prevented the elevations of sALT, sAST and sALP, inhibited depletion of hepatic GSH, GPx, CAT and GSSG and inhibited MDA accumulation. Furthermore, GTP had normalized serum total proteins and hepatic TAA, CAT, TNF-α and caspase-3 levels of AZA-intoxicated rats. In addition, GTP prevented the AZA-induced apoptosis and liver injury as indicated by the liver histopathological analysis. The linear regression analysis showed significant correlation in either AZA-GTP100 or AZA-GTP300 groups between TNF-α and each of serum ALT, AST, ALP and total proteins and liver TAA, GPX, CAT, GSH, GSSG, MDA and caspase-3 levels. However, liver TNF-α produced non-significant correlation with the serum total proteins in both AZA-GTP100 and AZA-GTP300 groups. In conclusion, our data indicate that GTP protects against AZA-induced liver injury in rats through antioxidant, anti-inflammatory and antiapoptotic mechanisms. However, further merit investigations are needed to verify these results and to assess the efficacy of GTP therapy to counteract the liver injury and oxidative stress status. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Raschi, Emanuel; De Ponti, Fabrizio
2015-01-01
Drug-induced liver injury (DILI) and herb-induced liver injury is a hot topic for clinicians, academia, drug companies and regulators, as shown by the steadily increasing number of publications in the past 15 years. This review will first provide clues for clinicians to suspect idiosyncratic (unpredictable) DILI and succeed in diagnosis. Causality assessment remains challenging and requires careful medical history as well as awareness of multifaceted aspects, especially for herbs. Drug discontinuation and therapy reconciliation remain the mainstay in patent’s management to minimize occurrence of acute liver failure. The second section will address novel agents associated with liver injury in 2014 (referred to as “signals”), especially in terms of clinical, research and drug development implications. Insights will be provided into recent trends by highlighting the contribution of different post-marketing data, especially registries and spontaneous reporting systems. This literature scrutiny suggests: (1) the importance of post-marketing databases as tools of clinical evidence to detect signals of DILI risk; and (2) the need for joining efforts in improving predictivity of pre-clinical assays, continuing post-marketing surveillance and design ad hoc post-authorization safety studies. In this context, ongoing European/United States research consortia and novel pharmaco-epidemiological tools (e.g., specialist prescription event monitoring) will support innovation in this field. Direct oral anticoagulants and herbal/dietary supplements appear as key research priorities. PMID:26167249
Raschi, Emanuel; De Ponti, Fabrizio
2015-07-08
Drug-induced liver injury (DILI) and herb-induced liver injury is a hot topic for clinicians, academia, drug companies and regulators, as shown by the steadily increasing number of publications in the past 15 years. This review will first provide clues for clinicians to suspect idiosyncratic (unpredictable) DILI and succeed in diagnosis. Causality assessment remains challenging and requires careful medical history as well as awareness of multifaceted aspects, especially for herbs. Drug discontinuation and therapy reconciliation remain the mainstay in patent's management to minimize occurrence of acute liver failure. The second section will address novel agents associated with liver injury in 2014 (referred to as "signals"), especially in terms of clinical, research and drug development implications. Insights will be provided into recent trends by highlighting the contribution of different post-marketing data, especially registries and spontaneous reporting systems. This literature scrutiny suggests: (1) the importance of post-marketing databases as tools of clinical evidence to detect signals of DILI risk; and (2) the need for joining efforts in improving predictivity of pre-clinical assays, continuing post-marketing surveillance and design ad hoc post-authorization safety studies. In this context, ongoing European/United States research consortia and novel pharmaco-epidemiological tools (e.g., specialist prescription event monitoring) will support innovation in this field. Direct oral anticoagulants and herbal/dietary supplements appear as key research priorities.
Chester, Karishma; Paliwal, Sarvesh; Khan, Washim; Ahmad, Sayeed
2017-01-01
Solanum nigrum L., is traditionally used for the management of the various liver disorders. Investigating the effect of polarity based fractionation of S. nigrum for its hepatoprotective effect on Hep G2 cells in vitro to provide base of its activity by quantifying in steroidal glycosides responsible for hepatoprotective potential. A new UPLC-ESI-MS/MS method following a high performance thin layer chromatography (HPTLC) has been developed and validated for quantification of steroidal glycosides and aglycone (solasonine, solamargine, and solasodine, respectively). The in vitro antioxidant potential, total phenolics, and flavonoid content were also determined in different fractions. The newly developed UPLC-ESI-MS/MS and HPTLC methods were linear (r2 ≥ 0.99), precise, accurate, and showing recovery more than 97%. The n-butanol enriched fraction of S. nigrum berries was found to be the most potent hepatoprotective fraction against all other fractions as it showed significantly (p < 0.01) better in vitro anti-oxidant potential than other fractions. Quantification by both methods revealed that, content of steroidal glycosides and aglycones are more than 20% in n-butanol fraction as compared to other fractions. The screened steroidal glycoside n-butanol enriched fraction underwent bioefficacy studies against D-galactosamine and H2O2 induced toxicity in HepG2 cell line showing significant (p < 0.05) liver protection. However, developed method can be used for the quality control analysis with respect to targeted metabolites and it can be explored for the pharmacokinetic and pharmacodynamic analysis in future. PMID:28729835
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Qiang; Chen, Xin-li; Wang, Chang-yuan
2015-03-15
Intrahepatic cholestasis is a clinical syndrome with systemic and intrahepatic accumulation of excessive toxic bile acids that ultimately cause hepatobiliary injury. Appropriate regulation of bile acids in hepatocytes is critically important for protection against liver injury. In the present study, we characterized the protective effect of alisol B 23-acetate (AB23A), a natural triterpenoid, on alpha-naphthylisothiocyanate (ANIT)-induced liver injury and intrahepatic cholestasis in mice and further elucidated the mechanisms in vivo and in vitro. AB23A treatment dose-dependently protected against liver injury induced by ANIT through reducing hepatic uptake and increasing efflux of bile acid via down-regulation of hepatic uptake transporters (Ntcp)more » and up-regulation of efflux transporter (Bsep, Mrp2 and Mdr2) expression. Furthermore, AB23A reduced bile acid synthesis through repressing Cyp7a1 and Cyp8b1, increased bile acid conjugation through inducing Bal, Baat and bile acid metabolism through an induction in gene expression of Sult2a1. We further demonstrate the involvement of farnesoid X receptor (FXR) in the hepatoprotective effect of AB23A. The changes in transporters and enzymes, as well as ameliorative liver histology in AB23A-treated mice were abrogated by FXR antagonist guggulsterone in vivo. In vitro evidences also directly demonstrated the effect of AB23A on FXR activation in a dose-dependent manner using luciferase reporter assay in HepG2 cells. In conclusion, AB23A produces protective effect against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes. - Highlights: • AB23A has at least three roles in protection against ANIT-induced liver injury. • AB23A decreases Ntcp, and increases Bsep, Mrp2 and Mdr2 expression. • AB23A represses Cyp7a1 and Cyp8b1 through inducing Shp and Fgf15 expression. • AB23A increases bile acid metabolism through inducing Sult2a1 expression. • FXR activation is involved in the hepatoprotective effect of AB23A.« less
Dietary fructose augments ethanol-induced liver pathology.
Thomes, Paul G; Benbow, Jennifer H; Brandon-Warner, Elizabeth; Thompson, Kyle J; Jacobs, Carl; Donohue, Terrence M; Schrum, Laura W
2017-05-01
Certain dietary components when combined with alcohol exacerbate alcohol-induced liver injury (ALI). Here, we tested whether fructose, a major ingredient of the western diet, enhances the severity of ALI. We fed mice ethanol for 8 weeks in the following Lieber-DeCarli diets: (a) Regular (contains olive oil); (b) corn oil (contains corn oil); (c) fructose (contains fructose and olive oil) and (d) corn+fructose (contains fructose and corn oil). We compared indices of metabolic function and liver pathology among the different groups. Mice fed fructose-free and fructose-containing ethanol diets exhibited similar levels of blood alcohol, blood glucose and signs of disrupted hepatic insulin signaling. However, only mice given fructose-ethanol diets showed lower insulin levels than their respective controls. Compared with their respective pair-fed controls, all ethanol-fed mice exhibited elevated levels of serum ALT; the inflammatory cytokines TNF-α, MCP-1 and MIP-2; hepatic lipid peroxides and triglycerides. All the latter parameters were significantly higher in mice given fructose-ethanol diets than those fed fructose-free ethanol diets. Mice given fructose-free or fructose-containing ethanol diets each had higher levels of hepatic lipogenic enzymes than controls. However, the level of the lipogenic enzyme fatty acid synthase (FAS) was significantly higher in livers of mice given fructose control and fructose-ethanol diets than in all other groups. Our findings indicate that dietary fructose exacerbates ethanol-induced steatosis, oxidant stress, inflammation and liver injury, irrespective of the dietary fat source, to suggest that inclusion of fructose in or along with alcoholic beverages increases the risk of more severe ALI in heavy drinkers. Copyright © 2017 Elsevier Inc. All rights reserved.
Inhibitory effect of gallic acid on CCl4-mediated liver fibrosis in mice.
Wang, Jing; Tang, Long; White, James; Fang, Jing
2014-05-01
The aim of this study was to investigate the effect of gallic acid (GA) on liver fibrosis induced by carbon tetrachloride (CCl4). Male BALB/c mice were randomly divided into four groups: normal control group (group A), CCl4-induced liver injury control group (group B), and CCl4 induction with GA of low dose (5 mg/kg) and high dose (15 mg/kg) treatment group (group C and group D). GA was intra-gastric given for mice once a day after 2 weeks of CCl4 induction. Animals were killed at the eighth week. Degrees of fibrosis and collagen percentage were measured. Hyaluronic acid (HA), type IV collagen (cIV), malondialdehyde (MDA), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl transferase (γ-GT) were determined. Expression of matrix metalloproteinases-2 (MMP-2) and tissue inhibitor of matrix metalloproteinases-1 (TIMP-1) mRNA levels were examined by RT-PCR. Western blotting was carried out to evaluate the changes of MMP-2 protein. HE and VG stainings showed GA in a dose-dependent manner improved significantly the fibrosis condition in CCl4-injured mice (P < 0.05 or P < 0.01). Also, the concentrations of HA, cIV, and MDA, as well as the serum levels of ALT, AST, and γ-GT were markedly reduced by GA (P < 0.05 or P < 0.01), and decreases in MMP-2, TIMP-1 mRNA, and MMP-2 protein were observed as well (P < 0.05 or P < 0.01). GA could exert protective effect on liver injury and reduce liver fibrosis induced by CCl4 in mice, which might be through the inhibition of hepatic stellate cell activity.
IL-6-Mediated Activation of Stat3α Prevents Trauma/Hemorrhagic Shock-Induced Liver Inflammation
Moran, Ana; Thacker, Stephen A.; Arikan, Ayse Akcan; Mastrangelo, Mary-Ann A.; Wu, Yong; Yu, Bi; Tweardy, David J.
2011-01-01
Trauma complicated by hemorrhagic shock (T/HS) is the leading cause of morbidity and mortality in the United States for individuals under the age of 44 years. Initial survivors are susceptible to developing multiple organ failure (MOF), which is thought to be caused, at least in part, by excessive or maladaptive activation of inflammatory pathways. We previously demonstrated in rodents that T/HS results in liver injury that can be prevented by IL-6 administration at the start of resuscitation; however, the contribution of the severity of HS to the extent of liver injury, whether or not resuscitation is required, and the mechanism(s) for the IL-6 protective effect have not been reported. In the experiments described here, we demonstrated that the extent of liver inflammation induced by T/HS depends on the duration of hypotension and requires resuscitation. We established that IL-6 administration at the start of resuscitation is capable of completely reversing liver inflammation and is associated with increased Stat3 activation. Global assessment of the livers showed that the main effect of IL-6 was to normalize the T/HS-induced inflammation transcriptome. Pharmacological inhibition of Stat3 activity within the liver blocked the ability of IL-6 to prevent liver inflammation and to normalize the T/HS-induced liver inflammation transcriptome. Genetic deletion of a Stat3β, a naturally occurring, dominant-negative isoform of the Stat3, attenuated T/HS-induced liver inflammation, confirming a role for Stat3, especially Stat3α, in preventing T/HS-mediated liver inflammation. Thus, T/HS-induced liver inflammation depends on the duration of hypotension and requires resuscitation; IL-6 administration at the start of resuscitation reverses T/HS-induced liver inflammation, through activation of Stat3α, which normalized the T/HS-induced liver inflammation transcriptome. PMID:21738667
A mouse model of severe halothane hepatitis based on human risk factors.
Dugan, Christine M; MacDonald, Allen E; Roth, Robert A; Ganey, Patricia E
2010-05-01
Halothane (2-bromo-2-chloro-1,1,1-trifluoro-ethane) is an inhaled anesthetic that induces severe, idiosyncratic liver injury, i.e., "halothane hepatitis," in approximately 1 in 20,000 human patients. We used known human risk factors (female sex, adult age, and genetics) as well as probable risk factors (fasting and inflammatory stress) to develop a murine model with characteristics of human halothane hepatitis. Female and male BALB/cJ mice treated with halothane developed dose-dependent liver injury within 24 h; however, the liver injury was severe only in females. Livers had extensive centrilobular necrosis, inflammatory cell infiltrate, and steatosis. Fasting rendered mice more sensitive to halothane hepatotoxicity, and 8-week-old female mice were more sensitive than males of the same age or than younger (4-week-old) females. C57BL/6 mice were insensitive to halothane, suggesting a strong genetic predisposition. In halothane-treated females, plasma concentration of tumor necrosis factor-alpha was greater than in males, and neutrophils were recruited to liver more rapidly and to a greater extent. Anti-CD18 serum attenuated halothane-induced liver injury in female mice, suggesting that neutrophil migration, activation, or both are required for injury. Coexposure of halothane-treated male mice to lipopolysaccharide to induce modest inflammatory stress converted their mild hepatotoxic response to a pronounced, female-like response. This is the first animal model of an idiosyncratic adverse drug reaction that is based on human risk factors and produces reproducible, severe hepatitis from halothane exposure with lesions characteristic of human halothane hepatitis. Moreover, these results suggest that a more robust innate immune response underlies the predisposition of female mice to halothane hepatitis.
Wang, Yun; Xiong, Xuanxuan; Guo, Hao; Wu, Mingbo; Li, Xiangcheng; Hu, Yuanchao; Xie, Guangwei; Shen, Jian; Tian, Qingzhong
2014-12-01
There is growing evidence indicating that autophagy plays a protective role in liver ischemia/reperfusion (IR) injury. Heme oxygenase-1 (HO-1) can also prevent liver IR injury by limiting inflammation and inducing an anti-apoptotic response. Autophagy also plays a crucial role in liver IR injury. The aim of the present study was to investigate the role of HO-1 in liver IR injury and the association between HO-1, autophagy and apoptotic pathways. IR simulation was performed using buffalo rat liver (BRL) cells, and HO-1 activity was either induced by hemin (HIR group) or inhibited by zinc protoporphyrin (ZnPP) (ZIR group). In the HIR and ZIR group, the expression of HO-1 and autophagy-related genes [light chain 3-Ⅱ (LC3-Ⅱ)] was assessed by RT-qPCR and the protein expression of caspases, autophagy-related genes and genes associated with apoptotic pathways (Bax) was detected by western blot anlaysis. The results of RT-PCR revealed the genetically decreased expression of HO-1 and autophagy-related genes in the ZIR group. Similar results were obtained by western blot analysis and immunofluorescence. An ultrastructural analysis revealed a lower number of autophagosomes in the ZIR group; in the HIR group, the number of autophagosomes was increased. The expression of Bax and cytosolic cytochrome c was increased, while that of Bcl-2 was decreased following treatment of the cells with ZnPP prior to IR simulation; the oppostie occurred in the HIR group. Cleaved caspase-3, caspase-9 and poly(ADP-ribose) polymerase (PARP) protein were activated in the IR and ZIR groups. The disruption of mitochondrial membrane potential was also observed in the ZIR group. In general, the downregulation of HO-1 reduced autophagy and activated the mitochondrial apoptotic pathway.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan Xinjuan; Dai Yujie; Li Xing
2011-08-01
Chronic arsenic exposure induces oxidative damage to liver leading to liver fibrosis. We aimed to define the effect of grape seed extract (GSE), an antioxidant dietary supplement, on arsenic-induced liver injury. First, Male Sprague-Dawley rats were exposed to a low level of arsenic in drinking water (30 ppm) with or without GSE (100 mg/kg, every other day by oral gavage) for 12 months and the effect of GSE on arsenic-induced hepatotoxicity was examined. The results from this study revealed that GSE co-treatment significantly attenuated arsenic-induced low antioxidant defense, oxidative damage, proinflammatory cytokines and fibrogenic genes. Moreover, GSE reduced arsenic-stimulated Smad2/3more » phosphorylation and protein levels of NADPH oxidase subunits (Nox2, Nox4 and p47phox). Next, we explored the molecular mechanisms underlying GSE inhibition of arsenic toxicity using cultured rat hepatic stellate cells (HSCs). From the in vitro study, we found that GSE dose-dependently reduced arsenic-stimulated ROS production and NADPH oxidase activities. Both NADPH oxidases flavoprotein inhibitor DPI and Nox4 siRNA blocked arsenic-induced ROS production, whereas Nox4 overexpression suppressed the inhibitory effects of GSE on arsenic-induced ROS production and NADPH oxidase activities, as well as expression of TGF-{beta}1, type I procollagen (Coll-I) and {alpha}-smooth muscle actin ({alpha}-SMA) mRNA. We also observed that GSE dose-dependently inhibited TGF-{beta}1-induced transactivation of the TGF-{beta}-induced smad response element p3TP-Lux, and that forced expression of Smad3 attenuated the inhibitory effects of GSE on TGF-{beta}1-induced mRNA expression of Coll-I and {alpha}-SMA. Collectively, GSE could be a potential dietary therapeutic agent for arsenic-induced liver injury through suppression of NADPH oxidase and TGF-{beta}/Smad activation. - Research Highlights: > GSE attenuated arsenic-induced low antioxidant defense, oxidative damage, proinflammatory cytokines and fibrogenic genes. > GSE reduced arsenic-mediated Smad2/3 phosphorylation and NADPH oxidase subunits (Nox2, Nox4 and p47phox). > Beneficial effects of GSE on As-induced liver injury was via inhibition of NADPH oxidase and TGF-{beta}/Smad activation.« less
ACE2 Therapy Using Adeno-associated Viral Vector Inhibits Liver Fibrosis in Mice
Mak, Kai Y; Chin, Ruth; Cunningham, Sharon C; Habib, Miriam R; Torresi, Joseph; Sharland, Alexandra F; Alexander, Ian E; Angus, Peter W; Herath, Chandana B
2015-01-01
Angiotensin converting enzyme 2 (ACE2) which breaks down profibrotic peptide angiotensin II to antifibrotic peptide angiotensin-(1–7) is a potential therapeutic target in liver fibrosis. We therefore investigated the long-term therapeutic effect of recombinant ACE2 using a liver-specific adeno-associated viral genome 2 serotype 8 vector (rAAV2/8-ACE2) with a liver-specific promoter in three murine models of chronic liver disease, including carbon tetrachloride-induced toxic injury, bile duct ligation-induced cholestatic injury, and methionine- and choline-deficient diet-induced steatotic injury. A single injection of rAAV2/8-ACE2 was administered after liver disease has established. Hepatic fibrosis, gene and protein expression, and the mechanisms that rAAV2/8-ACE2 therapy associated reduction in liver fibrosis were analyzed. Compared with control group, rAAV2/8-ACE2 therapy produced rapid and sustained upregulation of hepatic ACE2, resulting in a profound reduction in fibrosis and profibrotic markers in all diseased models. These changes were accompanied by reduction in hepatic angiotensin II levels with concomitant increases in hepatic angiotensin-(1–7) levels, resulting in significant reductions of NADPH oxidase assembly, oxidative stress and ERK1/2 and p38 phosphorylation. Moreover, rAAV2/8-ACE2 therapy normalized increased intrahepatic vascular tone in fibrotic livers. We conclude that rAAV2/8-ACE2 is an effective liver-targeted, long-term therapy for liver fibrosis and its complications without producing unwanted systemic effects. PMID:25997428
Mechanisms of bile acid mediated inflammation in the liver.
Li, Man; Cai, Shi-Ying; Boyer, James L
2017-08-01
Bile acids are synthesized in the liver and are the major component in bile. Impaired bile flow leads to cholestasis that is characterized by elevated levels of bile acid in the liver and serum, followed by hepatocyte and biliary injury. Although the causes of cholestasis have been extensively studied, the molecular mechanisms as to how bile acids initiate liver injury remain controversial. In this chapter, we summarize recent advances in the pathogenesis of bile acid induced liver injury. These include bile acid signaling pathways in hepatocytes as well as the response of cholangiocytes and innate immune cells in the liver in both patients with cholestasis and cholestatic animal models. We focus on how bile acids trigger the production of molecular mediators of neutrophil recruitment and the role of the inflammatory response in this pathological process. These advances point to a number of novel targets where drugs might be judged to be effective therapies for cholestatic liver injury. Copyright © 2017 Elsevier Ltd. All rights reserved.
Growth Arrest-Specific Protein 6 is Hepatoprotective Against Ischemia/Reperfusion Injury
Llacuna, Laura; Bárcena, Cristina; Bellido-Martín, Lola; Fernández, Laura; Stefanovic, Milica; Marí, Montserrat; García-Ruiz, Carmen; Fernández-Checa, José C.; de Frutos, Pablo García; Morales, Albert
2010-01-01
Growth arrest-specific gene 6 (GAS6) promotes growth and cell survival during tissue repair and development in different organs, including the liver. However, the specific role of GAS6 in liver ischemia/reperfusion (I/R) injury has not been previously addressed. Here, we report an early increase in serum GAS6 levels following I/R exposure. Moreover, unlike wild type mice, Gas6-/- mice were highly sensitive to partial hepatic I/R, with 90% of mice dying within 12 hours of reperfusion due to massive hepatocellular injury. I/R induced early hepatic AKT phosphorylation in wild type but not in Gas6-/- mice, without significant changes in JNK phosphorylation or nuclear NF-κB translocation, whereas hepatic IL-1β and TNF mRNA levels were higher in Gas6-/- mice compared to wild type mice. In line with the in vivo data, in vitro studies indicated that GAS6 induced AKT phosphorylation in primary mouse hepatocytes protecting them from hypoxia-induced cell death, while GAS6 diminished lipopolysaccharide (LPS)-induced cytokine expression (IL-1β and TNF) in murine macrophages. Finally, in vivo recombinant GAS6 treatment not only rescued GAS6 knockout mice from I/R-induced severe liver damage, but also attenuated hepatic damage in wild type mice following I/R. In conclusion, our data uncover GAS6 as a new player in liver I/R injury, emerging as a potential therapeutic target to reduce post-ischemic hepatic damage. PMID:20730776
Elgebaly, Hassan A; Mosa, Nermeen M; Allach, Mariam; El-Massry, Khaled F; El-Ghorab, Ahmed H; Al Hroob, Amir M; Mahmoud, Ayman M
2018-02-01
Olive oil and leaf extract have several health benefits; however, their beneficial effect against fluoxetine-induced liver injury has not been investigated. The present study aimed to scrutinize the impact of fluoxetine on the liver of rats and to evaluate the protective effects of olive oil and leaf extract. Rats received fluoxetine orally at dose of 10 mg/kg body weight for 7 consecutive days. The fluoxetine-induced rats were concurrently treated with olive oil or leaf extract. At the end of the experiment, blood and liver samples were collected for analysis. Fluoxetine administration significantly increased circulating ALT, AST, ALP and the pro-inflammatory cytokines TNF-α and IL-1β levels in rats. Histological analysis showed several alterations, such as inflammatory cells infiltration, hepatocyte vacuolation and dilated sinusoids in the liver of fluoxetine-induced rats. Concurrent supplementation of olive oil and olive leaf extract significantly reduced circulating liver function marker enzymes and pro-inflammatory cytokines, and prevented fluoxetine-induced histological alterations. Both olive oil and leaf extract significantly decreased liver lipid peroxidation and nitric oxide, and ameliorated liver glutathione, superoxide dismutase, catalase and glutathione peroxidase. In addition, olive oil and leaf extract prevented fluoxetine-induced apoptosis in the liver of rats as evidenced by decreased expression of Bax and caspase-3, and up-regulated expression of Bcl-2. In conclusion, olive oil and leaf extract protect against fluoxetine-induced liver injury in rats through attenuation of oxidative stress, inflammation and apoptosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Llacuna, Laura; Fernández, Anna; Montfort, Claudia Von; Matías, Núria; Martínez, Laura; Caballero, Francisco; Rimola, Antoni; Elena, Montserrat; Morales, Albert; Fernández-Checa, José C; García-Ruiz, Carmen
2011-05-01
Liver steatosis enhances ischemia/reperfusion (I/R) injury and is considered a primary factor in graft failure after liver transplantation. Although previous reports have shown a role for qualitative steatosis (macrovesicular vs. microvesicular) in hepatic I/R injury, no studies have compared side by side the specific contribution of individual lipids accumulating in fatty liver to I/R damage. We used nutritional and genetic models of micro and macrovesicular fatty livers exhibiting specific lipid profiles to assess their susceptibility to normothermic I/R injury. Unlike choline-deficient (CD) diet-fed mice, characterized by predominant liver triglycerides/free fatty acids (TG/FFA) accumulation, mice fed a cholesterol-enriched (HC) diet, which exhibited enhanced hepatic cholesterol loading in mitochondria, were highly sensitive to I/R-induced liver injury. In vivo two-photon confocal imaging revealed enhanced mitochondrial depolarization and generation of reactive oxygen species following hepatic I/R in HC-fed but not in CD-fed mice, consistent with decreased mitochondrial GSH (mGSH) observed in HC-fed mice. Moreover, ob/ob mice, characterized by increased hepatic TG, FFA, and cholesterol levels, were as sensitive to I/R-mediated liver injury as mice fed the HC diet. Livers from ob/ob mice displayed increased StAR expression and mitochondrial cholesterol accumulation, resulting in mGSH depletion. Interestingly, atorvastatin therapy or squalene synthase inhibition in vivo attenuated StAR overexpression, mitochondrial cholesterol loading, and mGSH depletion, protecting ob/ob mice from I/R-mediated liver injury. Cholesterol accumulation, particularly in mitochondria, sensitizes to hepatic I/R injury, and thus represents a novel target to prevent the enhanced damage of steatotic livers to I/R-mediated damage. Copyright © 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Preventive effects of the deleted form of hepatocyte growth factor against various liver injuries.
Masunaga, H; Fujise, N; Shiota, A; Ogawa, H; Sato, Y; Imai, E; Yasuda, H; Higashio, K
1998-01-26
The effects of a naturally occurring deleted form of hepatocyte growth factor (HGF) on hepatic disorder were studied in various models of hepatic failure. The pretreatment of rats and mice with the deleted form of HGF prevented the liver injuries and coagulopathy induced by endotoxin, dimethylnitrosamine and acetaminophen and reduced the mortality due to hepatic dysfunction induced by these hepatotoxins. The concurrent administration of the deleted form of HGF also prevented the liver injury and hepatic fibrosis in mice treated with alpha-naphthylisothiocyanate and in rats treated with dimethylnitrosamine. Moreover, the deleted form of HGF normalized the results of the bromosulphalein-clearance test and ameliorated jaundice in rats with periportal cholangiolitic hepatopathy induced by alpha-naphthylisothiocyanate. The deleted form of HGF also reversed the coagulopathy in rats with hepatic disorder induced by dimethylnitrosamine or by 70% resection of cirrhotic liver (induced by carbon tetrachloride). In Long Evans cinnamon rats receiving vehicle, 20 out of 21 animals died within 4 days after the onset of jaundice. After infusion of the deleted form of HGF for 4 days, 7 out of 20 Long-Evans cinnamon rats survived. These results indicate that the deleted form of HGF could have therapeutic potency in patients with severe hepatic failure.
Zebrafish as model organisms for studying drug-induced liver injury
Vliegenthart, A D Bastiaan; Tucker, Carl S; Del Pozo, Jorge; Dear, James W
2014-01-01
Drug-induced liver injury (DILI) is a major challenge in clinical medicine and drug development. New models are needed for predicting which potential therapeutic compounds will cause DILI in humans, and new markers and mediators of DILI still need to be identified. This review highlights the strengths and weaknesses of using zebrafish as a high-throughput in vivo model for studying DILI. Although the zebrafish liver architecture is different from that of the mammalian liver, the main physiological processes remain similar. Zebrafish metabolize drugs using similar pathways to those in humans; they possess a wide range of cytochrome P450 enzymes that enable metabolic reactions including hydroxylation, conjugation, oxidation, demethylation and de-ethylation. Following exposure to a range of hepatotoxic drugs, the zebrafish liver develops histological patterns of injury comparable to those of mammalian liver, and biomarkers for liver injury can be quantified in the zebrafish circulation. The zebrafish immune system is similar to that of mammals, but the zebrafish inflammatory response to DILI is not yet defined. In order to quantify DILI in zebrafish, a wide variety of methods can be used, including visual assessment, quantification of serum enzymes and experimental serum biomarkers and scoring of histopathology. With further development, the zebrafish may be a model that complements rodents and may have value for the discovery of new disease pathways and translational biomarkers. PMID:24773296
Somabhai, Chaudhari Archana; Raghuvanshi, Ruma; Nareshkumar, G.
2016-01-01
Aims To assess protective efficacy of genetically modified Escherichia coli Nissle 1917 (EcN) on metabolic effects induced by chronic consumption of dietary fructose. Materials and Methods EcN was genetically modified with fructose dehydrogenase (fdh) gene for conversion of fructose to 5-keto-D-fructose and mannitol-2-dehydrogenase (mtlK) gene for conversion to mannitol, a prebiotic. Charles foster rats weighing 150–200 g were fed with 20% fructose in drinking water for two months. Probiotic treatment of EcN (pqq), EcN (pqq-glf-mtlK), EcN (pqq-fdh) was given once per week 109 cells for two months. Furthermore, blood and liver parameters for oxidative stress, dyslipidemia and hyperglycemia were estimated. Fecal samples were collected to determine the production of short chain fatty acids and pyrroloquinoline quinone (PQQ) production. Results EcN (pqq-glf-mtlK), EcN (pqq-fdh) transformants were confirmed by restriction digestion and functionality was checked by PQQ estimation and HPLC analysis. There was significant increase in body weight, serum glucose, liver injury markers, lipid profile in serum and liver, and decrease in antioxidant enzyme activity in high-fructose-fed rats. However the rats treated with EcN (pqq-glf-mtlK) and EcN (pqq-fdh) showed significant reduction in lipid peroxidation along with increase in serum and hepatic antioxidant enzyme activities. Restoration of liver injury marker enzymes was also seen. Increase in short chain fatty acids (SCFA) demonstrated the prebiotic effects of mannitol and gluconic acid. Conclusions Our study demonstrated the effectiveness of probiotic EcN producing PQQ and fructose metabolizing enzymes against the fructose induced hepatic steatosis suggesting that its potential for use in treating fructose induced metabolic syndrome. PMID:27760187
Improvement of Liver Cell Therapy in Rats by Dietary Stearic Acid
Goradel, Nasser Hashemi; Eghbal, Mohammad Ali; Darabi, Masoud; Roshangar, Leila; Asadi, Maryam; Zarghami, Nosratollah; Nouri, Mohammad
2016-01-01
Background: Stearic acid is known as a potent anti-inflammatory lipid. This fatty acid has profound and diverse effects on liver metabolism. The aim of this study was to investigate the effect of stearic acid on markers of hepatocyte transplantation in rats with acetaminophen (APAP)-induced liver damage. Methods: Wistar rats were randomly assigned to 10-day treatment. Stearic acid was administered to the rats with APAP-induced liver damage. The isolated liver cells were infused intraperitoneally into rats. Blood samples were obtained to evaluate the changes in the serum liver enzymes, including activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) and the level of serum albumin. To assess the engraftment of infused hepatocytes, rats were euthanized, and the liver DNA was used for PCR using sex-determining region Y (SRY) primers. Results: The levels of AST, ALT and ALP in the serum of rats with APAP-induced liver injury were significantly increased and returned to the levels in control group by day six. The APAP-induced decrease in albumin was significantly improved in rats through cell therapy, when compared with that in the APAP-alone treated rats. SRY PCR analysis showed the presence of the transplanted cells in the liver of transplanted rats. Conclusion: Stearic acid-rich diet in combination with cell therapy accelerates the recovering of hepatic dysfunction in a rat model of liver injury. PMID:27090202
Shrestha, Nirajan; Chand, Lokendra; Han, Myung Kwan; Lee, Seung Ok; Kim, Chan Young; Jeong, Yeon Jun
2016-07-01
Glutamine, traditionally a non-essential amino acid, now has been considered as essential in serious illness and injury. It is a major precursor for glutathione synthesis. However, the anti-fibrotic effect of glutamine and its molecular mechanism in experimental liver fibrosis have not been explored. In the present study we aimed to examine the potential role of glutamine in carbon tetrachloride (CCl4) induced liver fibrosis and TGF-β1 mediated epithelial mesenchymal transition (EMT) and apoptosis in mouse hepatocytes. Liver fibrosis was induced by intraperitoneal injection of CCl4 three times a week for 10 weeks. Glutamine treatment effectively attenuated liver injury and oxidative stress. Collagen content was significantly decreased in liver sections of glutamine treated mice compared to CCl4 model mice. Furthermore, glutamine decreased expression level of α-SMA and TGF-β in liver tissue. Our in vitro study showed that TGF-β1 treatment in hepatocytes resulted in loss of E-cadherin and increased expression of mesenchymal markers and EMT related transcription factor. In addition, TGF-β1 increased the expression of apoptotic markers. However, glutamine interestingly suppressed TGF-β1 mediated EMT and apoptosis. In conclusion, our results suggest that glutamine ameliorates CCl4 induced liver fibrosis and suppresses TGF-β1 induced EMT progression and apoptosis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Herbal Hepatotoxicity: Clinical Characteristics and Listing Compilation
Frenzel, Christian; Teschke, Rolf
2016-01-01
Herb induced liver injury (HILI) and drug induced liver injury (DILI) share the common characteristic of chemical compounds as their causative agents, which were either produced by the plant or synthetic processes. Both, natural and synthetic chemicals are foreign products to the body and need metabolic degradation to be eliminated. During this process, hepatotoxic metabolites may be generated causing liver injury in susceptible patients. There is uncertainty, whether risk factors such as high lipophilicity or high daily and cumulative doses play a pathogenetic role for HILI, as these are under discussion for DILI. It is also often unclear, whether a HILI case has an idiosyncratic or an intrinsic background. Treatment with herbs of Western medicine or traditional Chinese medicine (TCM) rarely causes elevated liver tests (LT). However, HILI can develop to acute liver failure requiring liver transplantation in single cases. HILI is a diagnosis of exclusion, because clinical features of HILI are not specific as they are also found in many other liver diseases unrelated to herbal use. In strikingly increased liver tests signifying severe liver injury, herbal use has to be stopped. To establish HILI as the cause of liver damage, RUCAM (Roussel Uclaf Causality Assessment Method) is a useful tool. Diagnostic problems may emerge when alternative causes were not carefully excluded and the correct therapy is withheld. Future strategies should focus on RUCAM based causality assessment in suspected HILI cases and more regulatory efforts to provide all herbal medicines and herbal dietary supplements used as medicine with strict regulatory surveillance, considering them as herbal drugs and ascertaining an appropriate risk benefit balance. PMID:27128912
TWEAK induces liver progenitor cell proliferation
Jakubowski, Aniela; Ambrose, Christine; Parr, Michael; Lincecum, John M.; Wang, Monica Z.; Zheng, Timothy S.; Browning, Beth; Michaelson, Jennifer S.; Baestcher, Manfred; Wang, Bruce; Bissell, D. Montgomery; Burkly, Linda C.
2005-01-01
Progenitor (“oval”) cell expansion accompanies many forms of liver injury, including alcohol toxicity and submassive parenchymal necrosis as well as experimental injury models featuring blocked hepatocyte replication. Oval cells can potentially become either hepatocytes or biliary epithelial cells and may be critical to liver regeneration, particularly when hepatocyte replication is impaired. The regulation of oval cell proliferation is incompletely understood. Herein we present evidence that a TNF family member called TWEAK (TNF-like weak inducer of apoptosis) stimulates oval cell proliferation in mouse liver through its receptor Fn14. TWEAK has no effect on mature hepatocytes and thus appears to be selective for oval cells. Transgenic mice overexpressing TWEAK in hepatocytes exhibit periportal oval cell hyperplasia. A similar phenotype was obtained in adult wild-type mice, but not Fn14-null mice, by administering TWEAK-expressing adenovirus. Oval cell expansion induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) was significantly reduced in Fn14-null mice as well as in adult wild-type mice with a blocking anti-TWEAK mAb. Importantly, TWEAK stimulated the proliferation of an oval cell culture model. Finally, we show increased Fn14 expression in chronic hepatitis C and other human liver diseases relative to its expression in normal liver, which suggests a role for the TWEAK/Fn14 pathway in human liver injury. We conclude that TWEAK has a selective mitogenic effect for liver oval cells that distinguishes it from other previously described growth factors. PMID:16110324
NASA Astrophysics Data System (ADS)
Thorling, Camilla A.; Liu, Xin; Burczynski, Frank J.; Fletcher, Linda M.; Gobe, Glenda C.; Roberts, Michael S.
2011-11-01
Ischemia-reperfusion (I/R) injury is a common occurrence in liver surgery. In orthotopic transplantation, the donor liver is exposed to periods of ischemia and when oxygenated blood is reintroduced to the liver, oxidative stress may develop and lead to graft failure. The aim of this project was to investigate whether noninvasive multiphoton and fluorescence lifetime imaging microscopy, without external markers, were useful in detecting early liver damage caused by I/R injury. Localized hepatic ischemia was induced in rats for 1 h followed by 4 h reperfusion. Multiphoton and fluorescence lifetime imaging microscopy was conducted prior to ischemia and up to 4 h of reperfusion and compared to morphological and biochemical assessment of liver damage. Liver function was significantly impaired at 2 and 4 h of reperfusion. Multiphoton microscopy detected liver damage at 1 h of reperfusion, manifested by vacuolated cells and heterogeneous spread of damage over the liver. The damage was mainly localized in the midzonal region of the liver acinus. In addition, fluorescence lifetime imaging showed a decrease in cellular metabolic activity. Multiphoton and fluorescence lifetime imaging microscopy detected evidence of early I/R injury both structurally and functionally. This provides a simple noninvasive technique useful for following progressive liver injury without external markers.
Lu, Na; Li, Xingmei; Yu, Jiayao; Li, Yi; Wang, Chao; Zhang, Lili; Wang, Tian; Zhong, Xiang
2018-01-01
N 6 -methyladenosine (m 6 A) regulates gene expression and affects cellular metabolism. In this study, we checked whether the regulation of lipid metabolism by curcumin is associated with m 6 A RNA methylation. We investigated the effects of dietary curcumin supplementation on lipopolysaccharide (LPS)-induced liver injury and lipid metabolism disorder, and on m 6 A RNA methylation in weaned piglets. A total of 24 Duroc × Large White × Landrace piglets were randomly assigned to control, LPS, and CurL (LPS challenge and 200 mg/kg dietary curcumin) groups (n = 8/group). The results showed that curcumin reduced the increase in relative liver weight as well as the concentrations of aspartate aminotransferase and lactate dehydrogenase induced by LPS injection in the plasma and liver of weaning piglets (p < 0.05). The amounts of total cholesterol and triacylglycerols were decreased by curcumin compared to that by the LPS injection (p < 0.05). Additionally, curcumin reduced the expression of Bcl-2 and Bax mRNA, whereas it increased the p53 mRNA level in the liver (p < 0.05). Curcumin inhibited the enhancement of SREBP-1c and SCD-1 mRNA levels induced by LPS in the liver. Notably, dietary curcumin affected the expression of METTL3, METTL14, ALKBH5, FTO, and YTHDF2 mRNA, and increased the abundance of m 6 A in the liver of piglets. In conclusion, the protective effect of curcumin in LPS-induced liver injury and hepatic lipid metabolism disruption might be due to the increase in m 6 A RNA methylation. Our study provides mechanistic insights into the effect of curcumin in protecting against hepatic injury during inflammation and metabolic diseases. © 2018 AOCS.