Science.gov

Sample records for d1 receptor-dependent 3hgaba

  1. Single exposure to cocaine impairs aspartate uptake in the pre-frontal cortex via dopamine D1-receptor dependent mechanisms.

    PubMed

    Sathler, Matheus Figueiredo; Stutz, Bernardo; Martins, Robertta Silva; Dos Santos Pereira, Maurício; Pecinalli, Ney Roner; Santos, Luis E; Taveira-da-Silva, Rosilane; Lowe, Jennifer; de Freitas, Isis Grigorio; de Melo Reis, Ricardo Augusto; Manhães, Alex C; Kubrusly, Regina C C

    2016-08-01

    Dopamine and glutamate play critical roles in the reinforcing effects of cocaine. We demonstrated that a single intraperitoneal administration of cocaine induces a significant decrease in [(3)H]-d-aspartate uptake in the pre-frontal cortex (PFC). This decrease is associated with elevated dopamine levels, and requires dopamine D1-receptor signaling (D1R) and adenylyl cyclase activation. The effect was observed within 10min of cocaine administration and lasted for up to 30min. This rapid response is related to D1R-mediated cAMP-mediated activation of PKA and phosphorylation of the excitatory amino acid transporters EAAT1, EAAT2 and EAAT3. We also demonstrated that cocaine exposure increases extracellular d-aspartate, l-glutamate and d-serine in the PFC. Our data suggest that cocaine activates dopamine D1 receptor signaling and PKA pathway to regulate EAATs function and extracellular EAA level in the PFC.

  2. Single exposure to cocaine impairs aspartate uptake in the pre-frontal cortex via dopamine D1-receptor dependent mechanisms.

    PubMed

    Sathler, Matheus Figueiredo; Stutz, Bernardo; Martins, Robertta Silva; Dos Santos Pereira, Maurício; Pecinalli, Ney Roner; Santos, Luis E; Taveira-da-Silva, Rosilane; Lowe, Jennifer; de Freitas, Isis Grigorio; de Melo Reis, Ricardo Augusto; Manhães, Alex C; Kubrusly, Regina C C

    2016-08-01

    Dopamine and glutamate play critical roles in the reinforcing effects of cocaine. We demonstrated that a single intraperitoneal administration of cocaine induces a significant decrease in [(3)H]-d-aspartate uptake in the pre-frontal cortex (PFC). This decrease is associated with elevated dopamine levels, and requires dopamine D1-receptor signaling (D1R) and adenylyl cyclase activation. The effect was observed within 10min of cocaine administration and lasted for up to 30min. This rapid response is related to D1R-mediated cAMP-mediated activation of PKA and phosphorylation of the excitatory amino acid transporters EAAT1, EAAT2 and EAAT3. We also demonstrated that cocaine exposure increases extracellular d-aspartate, l-glutamate and d-serine in the PFC. Our data suggest that cocaine activates dopamine D1 receptor signaling and PKA pathway to regulate EAATs function and extracellular EAA level in the PFC. PMID:27208619

  3. Adolescent nicotine-induced dendrite remodeling in the nucleus accumbens is rapid, persistent, and D1-dopamine receptor dependent.

    PubMed

    Ehlinger, D G; Bergstrom, H C; Burke, J C; Fernandez, G M; McDonald, C G; Smith, R F

    2016-01-01

    Chronic nicotine exposure during adolescence induces dendritic remodeling of medium spiny neurons (MSNs) in the nucleus accumbens (NAcc) shell. While nicotine-induced dendritic remodeling has frequently been described as persistent, the trajectory of dendrite remodeling is unknown. Specifically, no study to date has characterized the structural plasticity of dendrites in the NAcc immediately following chronic nicotine, leaving open the possibility that dendrite remodeling emerges gradually over time. Further, the neuropharmacological mechanisms through which nicotine induces dendrite remodeling are not well understood. To address these questions, rats were co-administered chronic nicotine (0.5 mg/kg) and the D1-dopamine receptor (D1DR) antagonist SCH-23390 (0.05 mg/kg) subcutaneously every other day during adolescence. Brains were then processed for Golgi-Cox staining either 1 day or 21 days following drug exposure and dendrites from MSNs in the NAcc shell digitally reconstructed in 3D. Spine density was also measured at both time points. Our morphometric results show (1) the formation of new dendritic branches and spines 1 day following nicotine exposure, (2) new dendritic branches, but not spine density, remains relatively stable for at least 21 days, (3) the co-administration of SCH-23390 completely blocked nicotine-induced dendritic remodeling of MSNs at both early and late time points, suggesting the formation of new dendritic branches in response to nicotine is D1DR-dependent, and (4) SCH-23390 failed to block nicotine-induced increases in spine density. Overall this study provides new insight into how nicotine influences the normal trajectory of adolescent brain development and demonstrates a persistent form of nicotine-induced neuroplasticity in the NAcc shell that develops rapidly and is D1DR dependent.

  4. Histamine H(3) receptor-mediated inhibition of depolarization-induced, dopamine D(1) receptor-dependent release of [(3)H]-gamma-aminobutryic acid from rat striatal slices.

    PubMed

    Arias-Montaño, J A; Floran, B; Garcia, M; Aceves, J; Young, J M

    2001-05-01

    1. A study was made of the regulation of [(3)H]-gamma-aminobutyric acid ([(3)H]-GABA) release from slices of rat striatum by endogenous dopamine and exogenous histamine and a histamine H(3)-agonist. Depolarization-induced release of [(3)H]-GABA was Ca(2+)-dependent and was increased in the presence of the dopamine D(2) receptor family antagonist, sulpiride (10 microM). The sulpiride-potentiated release of [(3)H]-GABA was strongly inhibited by the dopamine D(1) receptor family antagonist, SCH 23390 (1 microM). Neither antagonist altered basal release. 2. The 15 mM K(+)-induced release of [(3)H]-GABA in the presence of sulpiride was inhibited by 100 microM histamine (mean inhibition 78+/-3%) and by the histamine H(3) receptor-selective agonist, immepip, 1 microM (mean inhibition 81+/-5%). The IC(50) values for histamine and immepip were 1.3+/-0.2 microM and 16+/-2 nM, respectively. The inhibitory effects of histamine and immepip were reversed by the H(3) receptor antagonist, thioperamide, 1 microM. 3. The inhibition of 15 mM K(+)-induced [(3)H]-GABA release by immepip was reversed by the H(3) receptor antagonist, clobenpropit, K(d) 0.11+/-0.04 nM. Clobenpropit alone had no effect on basal or stimulated release of [(3)H]-GABA. 4. Elevated K(+) caused little release of [(3)H]-GABA from striatal slices from reserpinized rats, unless the D(1) partial agonist, R(+)-SKF 38393, 1 microM, was also present. The stimulated release in the presence of SKF 38393 was reduced by 1 microM immepip to the level obtained in the absence of SKF 38393. 5. These observations demonstrate that histamine H(3) receptor activation strongly inhibits the dopamine D(1) receptor-dependent release of [(3)H]-GABA from rat striatum; primarily through an interaction at the terminals of GABA neurones.

  5. Dopamine D1/D5, But not D2/D3, Receptor Dependency of Synaptic Plasticity at Hippocampal Mossy Fiber Synapses that Is Enabled by Patterned Afferent Stimulation, or Spatial Learning

    PubMed Central

    Hagena, Hardy; Manahan-Vaughan, Denise

    2016-01-01

    Although the mossy fiber (MF) synapses of the hippocampal CA3 region display quite distinct properties in terms of the molecular mechanisms that underlie synaptic plasticity, they nonetheless exhibit persistent (>24 h) synaptic plasticity that is akin to that observed at the Schaffer collateral (SCH)-CA1 and perforant path (PP)-dentate gyrus (DG) synapses of freely behaving rats. In addition, they also respond to novel spatial learning with very enduring forms of long-term potentiation (LTP) and long-term depression (LTD). These latter forms of synaptic plasticity are directly related to the learning behavior: novel exploration of generalized changes in space facilitates the expression of LTP at MF-CA3 synapses, whereas exploration of novel configurations of large environmental features facilitates the expression of LTD. In the absence of spatial novelty, synaptic plasticity is not expressed. Motivation is a potent determinant of whether learning about the spatial experience effectively occurs and the neuromodulator dopamine (DA) plays a key role in motivation-based learning. Prior research on the regulation by DA receptors of long-term synaptic plasticity in CA1 and DG synapses in vivo suggests that whereas D2/D3 receptors may modulate a general predisposition toward expressing plasticity, D1/D5 receptors may directly regulate the direction of change in synaptic strength that occurs during learning. Although the CA3 region is believed to play a pivotal role in many forms of learning, the role of dopamine receptors in persistent (>24 h) forms of synaptic plasticity at MF-CA3 synapses is unknown. Here, we report that whereas pharmacological antagonism of D2/D3 receptors had no impact on LTP or LTD, antagonism of D1/D5 receptors significantly impaired LTP and LTD that were induced by solely by means of patterned afferent stimulation, or LTP/LTD that are typically enhanced by the conjunction of afferent stimulation and novel spatial learning. These data indicate an

  6. Receptor-Dependent Coronavirus Infection of Dendritic Cells

    PubMed Central

    Turner, Brian C.; Hemmila, Erin M.; Beauchemin, Nicole; Holmes, Kathryn V.

    2004-01-01

    In several mammalian species, including humans, coronavirus infection can modulate the host immune response. We show a potential role of dendritic cells (DC) in murine coronavirus-induced immune modulation and pathogenesis by demonstrating that the JAW SII DC line and primary DC from BALB/c mice and p/p mice with reduced expression of the murine coronavirus receptor, murine CEACAM1a, are susceptible to murine coronavirus infection by a receptor-dependent pathway. PMID:15113927

  7. PSD-95 Uncouples Dopamine-Glutamate Interaction in the D1/PSD-95/NMDA Receptor Complex

    PubMed Central

    Zhang, Jingping; Xu, Tai-Xiang; Hallett, Penelope J.; Watanabe, Masahiko; Grant, Seth G. N.; Isacson, Ole; Yao, Wei-Dong

    2008-01-01

    Classical dopaminergic signaling paradigms and emerging studies on direct physical interactions between the D1 dopamine (DA) receptor and the N-Methyl-D-Aspartate (NMDA) glutamate receptor predict a reciprocally facilitating, positive feedback loop. This loop, if not controlled, may cause concomitant overactivation of both D1 and NMDA receptors, triggering neurotoxicity. Endogenous protective mechanisms must exist. Here we show that PSD-95, a prototypical structural and signaling scaffold in the postsynaptic density, inhibits D1-NMDA receptor association and uncouples NMDA receptor-dependent enhancement of D1 signaling. This uncoupling is achieved, at least in part, via a disinhibition mechanism by which PSD-95 abolishes NMDA receptor-dependent inhibition of D1 internalization. Knockdown of PSD-95 immobilizes D1 receptors on the cell surface and escalates NMDA receptor-dependent D1 cAMP signaling in neurons. Thus, in addition to its role in receptor stabilization and synaptic plasticity, PSD-95 acts as a brake on the D1-NMDA receptor complex and dampens the interaction between them. PMID:19261890

  8. Spacelab D-1 mission

    NASA Technical Reports Server (NTRS)

    Dunbar, Bonnie J.

    1990-01-01

    The Spacelab D-1 (Deutchland Eins) Mission is discussed from the points of view of safety, materials handling, and toxic materials; the laboratory and equipment used; and some of the different philosophies utilized on this flight. How to enhance scientific return at the same time as being safe was examined.

  9. Expression of NMDA receptor-dependent LTP in the hippocampus: bridging the divide

    PubMed Central

    2013-01-01

    A consensus has famously yet to emerge on the locus and mechanisms underlying the expression of the canonical NMDA receptor-dependent form of LTP. An objective assessment of the evidence leads us to conclude that both presynaptic and postsynaptic expression mechanisms contribute to this type of synaptic plasticity. PMID:23339575

  10. A key role for diacylglycerol lipase-alpha in metabotropic glutamate receptor-dependent endocannabinoid mobilization.

    PubMed

    Jung, Kwang-Mook; Astarita, Giuseppe; Zhu, Chenggang; Wallace, Matthew; Mackie, Ken; Piomelli, Daniele

    2007-09-01

    Activation of group I metabotropic glutamate (mGlu) receptors recruits the endocannabinoid system to produce both short- and long-term changes in synaptic strength in many regions of the brain. Although there is evidence that the endocannabinoid 2-arachidonoylglycerol (2-AG) mediates this process, the molecular mechanism underlying 2-AG mobilization remains unclear. In the present study, we used a combination of genetic and targeted lipidomic approaches to investigate the role of the postsynaptic membrane-associated lipase, diacylglycerol lipase type-alpha (DGL-alpha), in mGlu receptor-dependent 2-AG mobilization. DGL-alpha overexpression in mouse neuroblastoma Neuro-2a cells increased baseline 2-AG levels. This effect was accompanied by enhanced utilization of the 2-AG precursor 1-stearoyl,2-arachidonoyl-sn-glycerol and increased accumulation of the 2-AG breakdown product arachidonic acid. A similar, albeit less marked response was observed with other unsaturated and polyunsaturated monoacylglycerols, 1,2-diacylglycerols, and fatty acids. Silencing of DGL-alpha by RNA interference elicited lipidomic changes opposite those of DGL-alpha overexpression and abolished group I mGlu receptor-dependent 2-AG mobilization. Coimmunoprecipitation and site-directed mutagenesis experiments revealed that DGL-alpha interacts, via a PPxxF domain, with the coiled-coil (CC)-Homer proteins Homer-1b and Homer-2, two components of the molecular scaffold that enables group I mGlu signaling. DGL-alpha mutants that do not bind Homer maintained their ability to generate 2-AG in intact cells but failed to associate with the plasma membrane. The findings indicate that DGL-alpha mediates group I mGlu receptor-induced 2-AG mobilization. They further suggest that the interaction of CC-Homer with DGL-alpha is necessary for appropriate function of this lipase.

  11. IL12-mediated sensitizing of T-cell receptor-dependent and -independent tumor cell killing.

    PubMed

    Braun, Matthias; Ress, Marie L; Yoo, Young-Eun; Scholz, Claus J; Eyrich, Matthias; Schlegel, Paul G; Wölfl, Matthias

    2016-07-01

    Interleukin 12 (IL12) is a key inflammatory cytokine critically influencing Th1/Tc1-T-cell responses at the time of initial antigen encounter. Therefore, it may be exploited for cancer immunotherapy. Here, we investigated how IL12, and other inflammatory cytokines, shape effector functions of human T-cells. Using a defined culture system, we followed the gradual differentiation and function of antigen-specific CD8(+) T cells from their initial activation as naïve T cells through their expansion phase as early memory cells to full differentiation as clonally expanded effector T cells. The addition of IL12 8 days after the initial priming event initiated two mechanistically separate events: First, IL12 sensitized the T-cell receptor (TCR) for antigen-specific activation, leading to an approximately 10-fold increase in peptide sensitivity and, in consequence, enhanced tumor cell killing. Secondly, IL12 enabled TCR/HLA-independent activation and cytotoxicity: this "non-specific" effect was mediated by the NK cell receptor DNAM1 (CD226) and dependent on ligand expression of the target cells. This IL12 regulated, DNAM1-mediated killing is dependent on src-kinases as well as on PTPRC (CD45) activity. Thus, besides enhancing TCR-mediated activation, we here identified for the first time a second IL12 mediated mechanism leading to activation of a receptor-dependent killing pathway via DNAM1. PMID:27622043

  12. 5-Hydroxytryptamine type 7 receptor neuroprotection against NMDA-induced excitotoxicity is PDGFβ receptor dependent.

    PubMed

    Vasefi, Maryam S; Kruk, Jeff S; Heikkila, John J; Beazely, Michael A

    2013-04-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the hippocampus. Long-term (2-24 h) activation of 5-HT7 receptors regulates growth factor receptor expression, including the expression of platelet-derived growth factor (PDGF) β receptors. Direct activation of PDGFβ receptors in primary hippocampal and cortical neurons inhibits NMDA receptor activity and attenuates NMDA receptor-induced neurotoxicity. Our objective was to investigate whether the 5-HT7 receptor-induced increase in PDGFβ receptor expression would be similarly neuroprotective. We demonstrate that 5-HT7 receptor agonist treatment in primary hippocampal neurons also increases the expression of phospholipase C (PLC) γ, a downstream effector of PDGFβ receptors associated with the inhibition of NMDA receptor activity. To determine if the up-regulation of PDGFβ receptors is neuroprotective, primary hippocampal neurons were incubated with the 5-HT7 receptor agonist, LP 12, for 24 h. Indeed, LP 12 treatment prevented NMDA-induced neurotoxicity and this effect was dependent on PDGFβ receptor kinase activity. Treatment of primary neurons with LP 12 also differentially altered NMDA receptor subunit expression, reducing the expression of NR1 and NR2B, but not NR2A. These findings demonstrate the potential for providing growth factor receptor-dependent neuroprotective effects using small-molecule ligands of G protein-coupled receptors.

  13. Phagocytosis of aggregated lipoprotein by macrophages: Low density lipoprotein receptor-dependent foam-cell formation

    SciTech Connect

    Suits, A.G.; Chait, A.; Aviram, M.; Heinecke, J.W. )

    1989-04-01

    Low density lipoprotein (LDL) modified by incubation with phospholipase C (PLC-LDL) aggregates in solution and is rapidly taken up and degraded by human and mouse macrophages, producing foam cells in vitro. Human, mouse, and rabbit macrophages degraded {sup 125}I-labeled PLC-LDL ({sup 125}I-PLC-LDL) more rapidly than native {sup 125}I-labeled LDL ({sup 125}I-LDL), while nonphagocytic cells such as human fibroblasts and bovine aortic endothelial cells degraded {sup 125}I-PLC-LDL more slowly than {sup 125}I-LDL. This suggested the mechanism for internalization of PLC-LDL was phagocytosis. When examined by electron microscopy, mouse peritoneal macrophages appeared to be phagocytosing PLC-LDL. The uptake and degradation of {sup 125}I-PLC-LDL by human macrophages was inhibited >80% by the monoclonal antibody C7 (IgG2b) produced by hybridoma C7, which blocks the ligand binding domain of the LDL receptor. Similarly, methylation of {sup 125}I-LDL ({sup 125}I-MeLDL) prior to treatment with phospholipase C decreased its subsequent uptake and degradation by human macrophages by >90%. The uptake and degradation of phospholipase C-modified {sup 125}I-MeLDL by macrophages could be restored by incubation of the methylated lipoprotein with apoprotein E, a ligand recognized by the LDL receptor. These results indicate that macrophages internalize PLC-LDL by LDL receptor-dependent phagocytosis.

  14. NMDA receptor-dependent LTD is required for consolidation but not acquisition of fear memory.

    PubMed

    Liu, Xing; Gu, Qin-Hua; Duan, Kaizheng; Li, Zheng

    2014-06-25

    NMDA receptor-dependent long-term depression (NMDAR-LTD) is a form of synaptic plasticity leading to long-lasting decreases in synaptic strength. NMDAR-LTD is essential for spatial and working memory, but its role in hippocampus-dependent fear memory has yet to be determined. Induction of NMDAR-LTD requires the activation of caspase-3 by cytochrome c. Cytochrome c normally resides in mitochondria and during NMDAR-LTD is released from mitochondria, a process promoted by Bax (Bcl-2-associated X protein). Bax induces cell death in apoptosis, but it plays a nonapoptotic role in NMDAR-LTD. Here, we investigated the role of NMDAR-LTD in fear memory in CA1-specific Bax knock-out mice. In hippocampal slices from these knock-out mice, while long-term potentiation of synaptic transmission, basal synaptic transmission, and paired-pulse ratio are intact, LTD in both young and fear-conditioned adult mice is obliterated. Interestingly, in CA1-specific Bax knock-out mice, long-term contextual fear memory is impaired, but the acquisition of fear memory and innate fear are normal. Moreover, these conditional Bax knock-out mice exhibit less behavioral despair. These findings indicate that NMDAR-LTD is required for consolidation, but not the acquisition of fear memory. Our study also shows that Bax plays an important role in depressive behavior.

  15. β-caryophyllene ameliorates cisplatin-induced nephrotoxicity in a cannabinoid 2 receptor-dependent manner

    PubMed Central

    Horváth, Béla; Mukhopadhyay, Partha; Kechrid, Malek; Patel, Vivek; Tanashian, Galin; Wink, David A.; Gertsch, Jürg; Pacher, Pál

    2012-01-01

    (E)-β-caryophyllene (BCP) is a natural sequiterpene found in many essential oils of spice (best known for contributing to the spiciness of black pepper) and food plants with recognized anti-inflammatory properties. Recently it was shown that BCP is a natural agonist of endogenous cannabinoid 2 (CB2) receptors, which are expressed in immune cells and mediate anti-inflammatory effects. In this study we aimed to test the effects of BCP in a clinically relevant murine model of nephropathy (induced by the widely used antineoplastic drug cisplatin) in which the tubular injury is largely dependent on inflammation and oxidative/nitrative stress. β-caryophyllene dose-dependently ameliorated cisplatin-induced kidney dysfunction, morphological damage, and renal inflammatory response (chemokines MCP-1 and MIP-2, cytokines TNF-α and IL-1β, adhesion molecule ICAM-1, and neutrophil and macrophage infiltration). It also markedly mitigated oxidative/nitrative stress (NOX-2, NOX-4 expression, 4-HNE and 3-NT content) and cell death. The protective effects of BCP against biochemical and histological markers of nephropathy were absent in CB2 knockout mice. Thus, BCP may be an excellent therapeutic agent to prevent cisplatin-induced nephrotoxicity through a CB2 receptor dependent pathway. Given the excellent safety profile of BCP in humans it has tremendous therapeutic potential in multitude of diseases associated with inflammation and oxidative stress. PMID:22326488

  16. Cyclin D1 functions in cell migration.

    PubMed

    Li, Zhiping; Wang, Chenguang; Prendergast, George C; Pestell, Richard G

    2006-11-01

    Cell migration is essential for developmental morphogenesis, tissue repair, and tumor metastasis. A recent study reveals that cyclin D1 acts to promote cell migration by inhibiting Rho/ROCK signaling and expression of thrombospondin-1 (TSP-1), an extracellular matrix protein that regulates cell migration in many settings including cancer. Given the frequent overexpression of cyclin D1 in cancer cells, due to its upregulation by Ras, Rho, Src, and other genes that drive malignant development, the new findings suggest that cyclin D1 may have a central role in mediating invasion and metastasis of cancer cells by controlling Rho/ROCK signaling and matrix deposition of TSP-1.

  17. The flavonoid baicalein promotes NMDA receptor-dependent long-term potentiation and enhances memory

    PubMed Central

    Wang, Wei; Wang, Fang; Yang, Yuan-Jian; Hu, Zhuang-Li; Long, Li-Hong; Fu, Hui; Xie, Na; Chen, Jian-Guo

    2011-01-01

    BACKGROUND AND PURPOSE There is growing interest in the physiological functions of flavonoids, especially in their effects on cognitive function and on neurodegenerative diseases. The aim of the current investigation was to evaluate the role of the flavonoid baicalein in long-term potentiation (LTP) in the hippocampal CA1 region and cognitive behavioural performance. EXPERIMENTAL APPROACH Effects of baicalein on LTP in rat hippocampal slices were investigated by electrophysiological methods. Phosphorylation of Akt (at Ser473), the extracellular signal-regulated kinase (ERK1/2) and the transcription factor cAMP response element-binding protein (CREB) (at Ser133) were analysed by Western blot. Fear conditioning was used to determine whether baicalein could improve learning and memory in rats. KEY RESULTS Baicalein enhanced the N-methyl-d-aspartate glutamate receptor-dependent LTP in a bell-shaped concentration-dependent manner. Addition of the lipoxygenase metabolites 12(S)-HETE and 12(S)-HPETE did not reverse these effects of baicalein. Baicalein treatment enhanced phosphorylation of Akt during induction of LTP with the same bell-shaped dose–response curve. LTP potentiation induced by baicalein was blocked by inhibitors of phosphoinositide 3-kinase. CREB phosphorylation was also increased in the CA1 region of baicalein-treated slices. Baicalein-treated rats performed significantly better than controls in a hippocampus-dependent contextual fear conditioning task. Furthermore, baicalein treatment selectively increased the phosphorylation of Akt and CREB in the CA1 region of hippocampus, but not in the prefrontal cortex, after fear conditioning training. CONCLUSIONS AND IMPLICATIONS Our results demonstrate that the flavonoid baicalein can facilitate memory, and therefore it might be useful in the treatment of patients with memory disorders. PMID:21133890

  18. 42 CFR 52d.1 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL CANCER INSTITUTE CLINICAL CANCER EDUCATION PROGRAM § 52d.1 Applicability. The regulations in this part apply to grants under the Clinical Cancer Education Program authorized by section 404(a)(4) of the Public Health Service Act,...

  19. 42 CFR 52d.1 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL CANCER INSTITUTE CLINICAL CANCER EDUCATION PROGRAM § 52d.1 Applicability. The regulations in this part apply to grants under the Clinical Cancer Education Program authorized by section 404(a)(4) of the Public Health Service Act,...

  20. 42 CFR 52d.1 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL CANCER INSTITUTE CLINICAL CANCER EDUCATION PROGRAM § 52d.1 Applicability. The regulations in this part apply to grants under the Clinical Cancer Education Program authorized by section 404(a)(4) of the Public Health Service Act,...

  1. 42 CFR 52d.1 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL CANCER INSTITUTE CLINICAL CANCER EDUCATION PROGRAM § 52d.1 Applicability. The regulations in this part apply to grants under the Clinical Cancer Education Program authorized by section 404(a)(4) of the Public Health Service Act,...

  2. 42 CFR 52d.1 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL CANCER INSTITUTE CLINICAL CANCER EDUCATION PROGRAM § 52d.1 Applicability. The regulations in this part apply to grants under the Clinical Cancer Education Program authorized by section 404(a)(4) of the Public Health Service Act,...

  3. Early emergence of three dopamine D1 receptor subtypes in vertebrates. Molecular phylogenetic, pharmacological, and functional criteria defining D1A, D1B, and D1C receptors in European eel Anguilla anguilla.

    PubMed

    Cardinaud, B; Sugamori, K S; Coudouel, S; Vincent, J D; Niznik, H B; Vernier, P

    1997-01-31

    The existence of dopamine D1C and D1D receptors in Xenopus and chicken, respectively, challenged the established duality (D1A and D1B) of the dopamine D1 receptor class in vertebrates. To ascertain the molecular diversity of this gene family in early diverging vertebrates, we isolated four receptor-encoding sequences from the European eel Anguilla anguilla. Molecular phylogeny assigned two receptor sequences (D1A1 and D1A2) to the D1A subtype, and a third receptor to the D1B subtype. Additional sequence was orthologous to the Xenopus D1C receptor and to several other previously unclassified fish D1-like receptors. When expressed in COS-7 cells, eel D1A and D1B receptors display affinity profiles for dopaminergic ligands similar to those of other known vertebrate homologues. The D1C receptor exhibits pharmacological characteristics virtually identical to its Xenopus homologue. Functionally, while all eel D1 receptors stimulate adenylate cyclase, the eel D1B receptor exhibits greater constitutive activity than either D1A or D1C receptors. Semiquantitative reverse transcription-polymerase chain reaction reveals the differential distribution of D1A1, D1A2, D1B, and D1C receptor mRNA within the hypothalamic-pituitary axis of the eel brain. Taken together, these data suggest that the D1A, D1B, and D1C receptors arose prior to the evolutionary divergence of fish and tetrapods and exhibit molecular, pharmacological, and functional attributes that unambiguously allow for their classification as distinct D1 receptor subtypes in the vertebrate phylum. PMID:9006917

  4. Coherence structure of D1 scattering

    NASA Astrophysics Data System (ADS)

    Stenflo, Jan Olof

    2015-10-01

    The extensive literature on the physics of polarized scattering may give the impression that we have a solid theoretical foundation for the interpretation of spectro-polarimetric data. This theoretical framework has however not been sufficiently tested by experiments under controlled conditions. While the solar atmosphere may be viewed as a physics laboratory, the observed solar polarization depends on too many environmental factors that are beyond our control. The existence of a symmetric polarization peak at the center of the solar Na D1 line has remained an enigma for two decades, in spite of persistent efforts to explain it with available quantum theory. A decade ago a laboratory experiment was set up to determine whether this was a problem for solar physics or quantum physics. The experiment revealed a rich polarization structure of D1 scattering, although available quantum theory predicted null results. It has now finally been possible to formulate a well-defined and self-consistent extension of the theory of quantum scattering that can reproduce in great quantitative detail the main polarization structures that were found in the laboratory experiment. Here we give a brief overview of the new physical ingredients that were missing before. The extended theory reveals that multi-level atomic systems have a far richer coherence structure than previously believed.

  5. Retrieval-induced NMDA receptor-dependent Arc expression in two models of cocaine-cue memory.

    PubMed

    Alaghband, Yasaman; O'Dell, Steven J; Azarnia, Siavash; Khalaj, Anna J; Guzowski, John F; Marshall, John F

    2014-12-01

    The association of environmental cues with drugs of abuse results in persistent drug-cue memories. These memories contribute significantly to relapse among addicts. While conditioned place preference (CPP) is a well-established paradigm frequently used to examine the modulation of drug-cue memories, very few studies have used the non-preference-based model conditioned activity (CA) for this purpose. Here, we used both experimental approaches to investigate the neural substrates of cocaine-cue memories. First, we directly compared, in a consistent setting, the involvement of cortical and subcortical brain regions in cocaine-cue memory retrieval by quantifying activity-regulated cytoskeletal-associated (Arc) protein expression in both the CPP and CA models. Second, because NMDA receptor activation is required for Arc expression, we investigated the NMDA receptor dependency of memory persistence using the CA model. In both the CPP and CA models, drug-paired animals showed significant increases in Arc immunoreactivity in regions of the frontal cortex and amygdala compared to unpaired controls. Additionally, administration of a NMDA receptor antagonist (MK-801 or memantine) immediately after cocaine-CA memory reactivation impaired the subsequent conditioned locomotion associated with the cocaine-paired environment. The enhanced Arc expression evident in a subset of corticolimbic regions after retrieval of a cocaine-context memory, observed in both the CPP and CA paradigms, likely signifies that these regions: (i) are activated during retrieval of these memories irrespective of preference-based decisions, and (ii) undergo neuroplasticity in order to update information about cues previously associated with cocaine. This study also establishes the involvement of NMDA receptors in maintaining memories established using the CA model, a characteristic previously demonstrated using CPP. Overall, these results demonstrate the utility of the CA model for studies of cocaine

  6. Treatment with bisphenol A and methoxychlor results in the growth of human breast cancer cells and alteration of the expression of cell cycle-related genes, cyclin D1 and p21, via an estrogen receptor-dependent signaling pathway.

    PubMed

    Lee, Hye-Rim; Hwang, Kyung-A; Park, Min-Ah; Yi, Bo-Rim; Jeung, Eui-Bae; Choi, Kyung-Chul

    2012-05-01

    Various endocrine disrupting chemicals (EDCs) are exogenous compounds found in the environment and have the potential to interfere with the endocrine system and hormonal regulation. Among EDCs, bisphenol A (BPA) and 1,1,1-trichloro-2,2-bis(4-methoxyphenol)-ethane [methoxychlor (MXC)] have estrogenic activity resulting in a variety of dysfunctions in the E2-mediated response by binding to estrogen receptors (ERs), causing human health problems such as abnormal reproduction and carcinogenesis. In this study, we investigated the effects of BPA and MXC on cell proliferation facilitated by ER signaling in human breast cancer cells. MCF-7 cells are known to be ERα-positive and to be a highly E2-responsive cancer cell line; these cells are, therefore, a useful in vitro model for detecting estrogenic activity in response to EDCs. We evaluated cancer cell proliferation following BPA and MXC treatment using an MTT assay. We analyzed alterations in the expression of genes associated with the cell cycle in MCF-7 cells by semi-quantitative reverse-transcription PCR following treatment with BPA or MXC compared to EtOH. To determine whether BPA and MXC stimulate cancer cell growth though ER signaling, we co-treated the cells with agonists (propyl pyrazoletriol, PPT; and diarylpropionitrile, DPN) or an antagonist (ICI 182,780) of ER signaling and reduced ERα gene expression via siRNA in MCF-7 cells before treatment with EDCs. These studies confirmed the carcinogenicity of EDCs in vitro. As a result, BPA and MXC induced the cancer cell proliferation by the upregulation of genes that promote the cell cycle and the downregulation of anti-proliferative genes, especially ones affecting the G1/S transition via ERα signaling. These collective results confirm the carcinogenicity of these EDCs in vitro. Further studies are required to determine whether EDCs promote carcinogenesis in vivo.

  7. Cyclin D1 Determines Mitochondrial Function In Vivo†

    PubMed Central

    Sakamaki, Toshiyuki; Casimiro, Mathew C.; Ju, Xiaoming; Quong, Andrew A.; Katiyar, Sanjay; Liu, Manran; Jiao, Xuanmao; Li, Anping; Zhang, Xueping; Lu, Yinan; Wang, Chenguang; Byers, Stephen; Nicholson, Robert; Link, Todd; Shemluck, Melvin; Yang, Jianguo; Fricke, Stanley T.; Novikoff, Phyllis M.; Papanikolaou, Alexandros; Arnold, Andrew; Albanese, Christopher; Pestell, Richard

    2006-01-01

    The cyclin D1 gene encodes a regulatory subunit of the holoenzyme that phosphorylates and inactivates the pRb tumor suppressor to promote nuclear DNA synthesis. cyclin D1 is overexpressed in human breast cancers and is sufficient for the development of murine mammary tumors. Herein, cyclin D1 is shown to perform a novel function, inhibiting mitochondrial function and size. Mitochondrial activity was enhanced by genetic deletion or antisense or small interfering RNA to cyclin D1. Global gene expression profiling and functional analysis of mammary epithelial cell-targeted cyclin D1 antisense transgenics demonstrated that cyclin D1 inhibits mitochondrial activity and aerobic glycolysis in vivo. Reciprocal regulation of these genes was observed in cyclin D1-induced mammary tumors. Cyclin D1 thus integrates nuclear DNA synthesis and mitochondrial function. PMID:16809779

  8. Medial prefrontal D1 dopamine neurons control food intake.

    PubMed

    Land, Benjamin B; Narayanan, Nandakumar S; Liu, Rong-Jian; Gianessi, Carol A; Brayton, Catherine E; Grimaldi, David M; Sarhan, Maysa; Guarnieri, Douglas J; Deisseroth, Karl; Aghajanian, George K; DiLeone, Ralph J

    2014-02-01

    Although the prefrontal cortex influences motivated behavior, its role in food intake remains unclear. Here, we demonstrate a role for D1-type dopamine receptor-expressing neurons in the medial prefrontal cortex (mPFC) in the regulation of feeding. Food intake increases activity in D1 neurons of the mPFC in mice, and optogenetic photostimulation of D1 neurons increases feeding. Conversely, inhibition of D1 neurons decreases intake. Stimulation-based mapping of prefrontal D1 neuron projections implicates the medial basolateral amygdala (mBLA) as a downstream target of these afferents. mBLA neurons activated by prefrontal D1 stimulation are CaMKII positive and closely juxtaposed to prefrontal D1 axon terminals. Finally, photostimulating these axons in the mBLA is sufficient to increase feeding, recapitulating the effects of mPFC D1 stimulation. These data describe a new circuit for top-down control of food intake.

  9. 26 CFR 25.2522(d)-1 - Additional cross references.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 14 2012-04-01 2012-04-01 false Additional cross references. 25.2522(d)-1 Section 25.2522(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) ESTATE AND GIFT TAXES GIFT TAX; GIFTS MADE AFTER DECEMBER 31, 1954 Deductions § 25.2522(d)-1...

  10. 26 CFR 31.3231(d)-1 - Service.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 15 2010-04-01 2010-04-01 false Service. 31.3231(d)-1 Section 31.3231(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) EMPLOYMENT TAXES AND... Retirement Tax Act (Chapter 22, Internal Revenue Code of 1954) General Provisions § 31.3231(d)-1 Service....

  11. 26 CFR 1.509(d)-1 - Definition of support

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 7 2010-04-01 2010-04-01 true Definition of support 1.509(d)-1 Section 1.509(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Private Foundations § 1.509(d)-1 Definition of support For purposes...

  12. Epidermal growth factor receptor-dependent stimulation of amphiregulin expression in androgen-stimulated human prostate cancer cells.

    PubMed Central

    Sehgal, I; Bailey, J; Hitzemann, K; Pittelkow, M R; Maihle, N J

    1994-01-01

    Amphiregulin is a heparin-binding epidermal growth factor (EGF)-related peptide that binds to the EGF receptor (EGF-R) with high affinity. In this study, we report a role for amphiregulin in androgen-stimulated regulation of prostate cancer cell growth. Androgen is known to enhance EGF-R expression in the androgen-sensitive LNCaP human prostate carcinoma cell line, and it has been suggested that androgenic stimuli may regulate proliferation, in part, through autocrine mechanisms involving the EGF-R. In this study, we demonstrate that LNCaP cells express amphiregulin mRNA and peptide and that this expression is elevated by androgenic stimulation. We also show that ligand-dependent EGF-R stimulation induces amphiregulin expression and that androgenic effects on amphiregulin synthesis are mediated through this EGF-R pathway. Parallel studies using the estrogen-responsive breast carcinoma cell line, MCF-7, suggest that regulation of amphiregulin by estrogen may also be mediated via an EGF-R pathway. In addition, heparin treatment of LNCaP cells inhibits androgen-stimulated cell growth further suggesting that amphiregulin can mediate androgen-stimulated LNCaP proliferation. Together, these results implicate an androgen-regulated autocrine loop composed of amphiregulin and its receptor in prostate cancer cell growth and suggest that the mechanism of steroid hormone regulation of amphiregulin synthesis may occur through androgen upregulation of the EGF-R and subsequent receptor-dependent pathways. Images PMID:8049525

  13. T cells induce extended class II MHC compartments in dendritic cells in a Toll-like receptor-dependent manner.

    PubMed

    Boes, Marianne; Bertho, Nicolas; Cerny, Jan; Op den Brouw, Marjolein; Kirchhausen, Tomas; Ploegh, Hidde

    2003-10-15

    Interaction of Ag-loaded dendritic cells with Ag-specific CD4 T cells induces the formation of long tubular class II MHC-positive compartments that polarize toward the T cell. We show involvement of a Toll-like receptor-mediated signal in this unusual form of intracellular class II MHC trafficking. First, wild-type dendritic cells loaded with LPS-free Ag failed to show formation of class II-positive tubules upon Ag-specific T cell engagement, but did so upon supplementation of the Ag with low concentrations of LPS. Second, Ag-loaded myeloid differentiation factor 88 -deficient dendritic cells failed to form these tubules upon interaction with T cells, regardless of the presence of LPS. Finally, inclusion of a cell-permeable peptide that blocks TNFR-associated factor 6 function, downstream of myeloid differentiation factor 88, blocked T cell-dependent tubulation. A Toll-like receptor-dependent signal is thus required to allow Ag-loaded dendritic cells to respond to T cell contact by formation of extended endosomal compartments. This activation does not result in massive translocation of class II MHC molecules to the cell surface.

  14. Nucleic acid sequences encoding D1 and D1/D2 domains of human coxsackievirus and adenovirus receptor (CAR)

    DOEpatents

    Freimuth, Paul I.

    2010-04-06

    The invention provides recombinant human CAR (coxsackievirus and adenovirus receptor) polypeptides which bind adenovirus. Specifically, polypeptides corresponding to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2 are provided. In another aspect, the invention provides nucleic acid sequences encoding these domains and expression vectors for producing the domains and bacterial cells containing such vectors. The invention also includes an isolated fusion protein comprised of the D1 polypeptide fused to a polypeptide which facilitates folding of D1 when expressed in bacteria. The functional D1 domain finds application in a therapeutic method for treating a patient infected with a CAR D1-binding virus, and also in a method for identifying an antiviral compound which interferes with viral attachment. The invention also provides a method for specifically targeting a cell for infection by a virus which binds to D1.

  15. 26 CFR 25.2522(d)-1 - Additional cross references.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 14 2010-04-01 2010-04-01 false Additional cross references. 25.2522(d)-1 Section 25.2522(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) ESTATE AND GIFT TAXES GIFT TAX; GIFTS MADE AFTER DECEMBER 31, 1954 Deductions § 25.2522(d)-1 Additional cross references. (a) See section 14 of the...

  16. 26 CFR 25.2522(d)-1 - Additional cross references.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 14 2011-04-01 2010-04-01 true Additional cross references. 25.2522(d)-1 Section 25.2522(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) ESTATE AND GIFT TAXES GIFT TAX; GIFTS MADE AFTER DECEMBER 31, 1954 Deductions § 25.2522(d)-1 Additional cross references. (a) See section 14 of the...

  17. Opioid Receptor-Dependent Sex Differences in Synaptic Plasticity in the Hippocampal Mossy Fiber Pathway of the Adult Rat

    PubMed Central

    Harte-Hargrove, Lauren C.; Varga-Wesson, Ada; Duffy, Aine M.; Milner, Teresa A.

    2015-01-01

    The mossy fiber (MF) pathway is critical to hippocampal function and influenced by gonadal hormones. Physiological data are limited, so we asked whether basal transmission and long-term potentiation (LTP) differed in slices of adult male and female rats. The results showed small sex differences in basal transmission but striking sex differences in opioid receptor sensitivity and LTP. When slices were made from females on proestrous morning, when serum levels of 17β-estradiol peak, the nonspecific opioid receptor antagonist naloxone (1 μm) enhanced MF transmission but there was no effect in males, suggesting preferential opioid receptor-dependent inhibition in females when 17β-estradiol levels are elevated. The μ-opioid receptor (MOR) antagonist Cys2,Tyr3,Orn5,Pen7-amide (CTOP; 300 nm) had a similar effect but the δ-opioid receptor (DOR) antagonist naltrindole (NTI; 1 μm) did not, implicating MORs in female MF transmission. The GABAB receptor antagonist saclofen (200 μm) occluded effects of CTOP but the GABAA receptor antagonist bicuculline (10 μm) did not. For LTP, a low-frequency (LF) protocol was used because higher frequencies elicited hyperexcitability in females. Proestrous females exhibited LF-LTP but males did not, suggesting a lower threshold for synaptic plasticity when 17β-estradiol is elevated. NTI blocked LF-LTP in proestrous females, but CTOP did not. Electron microscopy revealed more DOR-labeled spines of pyramidal cells in proestrous females than males. Therefore, we suggest that increased postsynaptic DORs mediate LF-LTP in proestrous females. The results show strong MOR regulation of MF transmission only in females and identify a novel DOR-dependent form of MF LTP specific to proestrus. PMID:25632146

  18. Protein Kinase D1-Dependent Phosphorylation of Dopamine D1 Receptor Regulates Cocaine-Induced Behavioral Responses

    PubMed Central

    Wang, Ning; Su, Ping; Zhang, Ying; Lu, Jie; Xing, Baoming; Kang, Kai; Li, Wenqi; Wang, Yun

    2014-01-01

    The dopamine (DA) D1 receptor (D1R) is critically involved in reward and drug addiction. Phosphorylation-mediated desensitization or internalization of D1R has been extensively investigated. However, the potential for upregulation of D1R function through phosphorylation remains to be determined. Here we report that acute cocaine exposure induces protein kinase D1 (PKD1) activation in the rat striatum, and knockdown of PKD1 in the rat dorsal striatum attenuates cocaine-induced locomotor hyperactivity. Moreover, PKD1-mediated phosphorylation of serine 421 (S421) of D1R promotes surface localization of D1R and enhances downstream extracellular signal-regulated kinase signaling in D1R-transfected HEK 293 cells. Importantly, injection of the peptide Tat-S421, an engineered Tat fusion-peptide targeting S421 (Tat-S421), into the rat dorsal striatum inhibits cocaine-induced locomotor hyperactivity and injection of Tat-S421 into the rat hippocampus or the shell of the nucleus accumbens (NAc) also inhibits cocaine-induced conditioned place preference (CPP). However, injection of Tat-S421 into the rat NAc shell does not establish CPP by itself and injection of Tat-S421 into the hippocampus does not influence spatial learning and memory. Thus, targeting S421 of D1R represents a promising strategy for the development of pharmacotherapeutic treatments for drug addiction and other disorders that result from DA imbalances. PMID:24362306

  19. Cyclin D1 expression is regulated by the retinoblastoma protein.

    PubMed Central

    Müller, H; Lukas, J; Schneider, A; Warthoe, P; Bartek, J; Eilers, M; Strauss, M

    1994-01-01

    The product of the retinoblastoma susceptibility gene, pRb, acts as a tumor suppressor and loss of its function is involved in the development of various types of cancer. DNA tumor viruses are supposed to disturb the normal regulation of the cell cycle by inactivating pRb. However, a direct function of pRb in regulation of the cell cycle has hitherto not been shown. We demonstrate here that the cell cycle-dependent expression of one of the G1-phase cyclins, cyclin D1, is dependent on the presence of a functional Rb protein. Rb-deficient tumor cell lines as well as cells expressing viral oncoproteins (large tumor antigen of simian virus 40, early region 1A of adenovirus, early region 7 of papillomavirus) have low or barely detectable levels of cyclin D1. Expression of cyclin D1, but not of cyclins A and E, is induced by transfection of the Rb gene into Rb-deficient tumor cells. Cotransfection of a reporter gene under the control of the D1 promoter, together with the Rb gene, into Rb-deficient cell lines demonstrates stimulation of the D1 promoter by Rb, which parallels the stimulation of endogenous cyclin D1 gene expression. Our finding that pRb stimulates expression of a key component of cell cycle control, cyclin D1, suggests the existence of a regulatory loop between pRb and cyclin D1 and extends existing models of tumor suppressor function. Images PMID:8159685

  20. 26 CFR 25.2522(d)-1 - Additional cross references.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 14 2014-04-01 2013-04-01 true Additional cross references. 25.2522(d)-1 Section 25.2522(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED..., 1972 (Pub. L. 92-526, 86 Stat. 1048). (e) For treatment of the Board for International Broadcasting...

  1. 26 CFR 25.2522(d)-1 - Additional cross references.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 14 2013-04-01 2013-04-01 false Additional cross references. 25.2522(d)-1 Section 25.2522(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED..., 1972 (Pub. L. 92-526, 86 Stat. 1048). (e) For treatment of the Board for International Broadcasting...

  2. 26 CFR 25.2523(d)-1 - Joint interests.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 14 2012-04-01 2012-04-01 false Joint interests. 25.2523(d)-1 Section 25.2523(d... TAXES GIFT TAX; GIFTS MADE AFTER DECEMBER 31, 1954 Deductions § 25.2523(d)-1 Joint interests. Section 2523(d) provides that if a property interest is transferred to the donee spouse as sole joint...

  3. 26 CFR 25.2523(d)-1 - Joint interests.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 14 2014-04-01 2013-04-01 true Joint interests. 25.2523(d)-1 Section 25.2523(d... TAXES GIFT TAX; GIFTS MADE AFTER DECEMBER 31, 1954 Deductions § 25.2523(d)-1 Joint interests. Section 2523(d) provides that if a property interest is transferred to the donee spouse as sole joint...

  4. 26 CFR 25.2523(d)-1 - Joint interests.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 14 2011-04-01 2010-04-01 true Joint interests. 25.2523(d)-1 Section 25.2523(d... TAXES GIFT TAX; GIFTS MADE AFTER DECEMBER 31, 1954 Deductions § 25.2523(d)-1 Joint interests. Section 2523(d) provides that if a property interest is transferred to the donee spouse as sole joint...

  5. 26 CFR 25.2523(d)-1 - Joint interests.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 14 2013-04-01 2013-04-01 false Joint interests. 25.2523(d)-1 Section 25.2523(d... TAXES GIFT TAX; GIFTS MADE AFTER DECEMBER 31, 1954 Deductions § 25.2523(d)-1 Joint interests. Section 2523(d) provides that if a property interest is transferred to the donee spouse as sole joint...

  6. 26 CFR 25.2523(d)-1 - Joint interests.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 14 2010-04-01 2010-04-01 false Joint interests. 25.2523(d)-1 Section 25.2523(d... TAXES GIFT TAX; GIFTS MADE AFTER DECEMBER 31, 1954 Deductions § 25.2523(d)-1 Joint interests. Section 2523(d) provides that if a property interest is transferred to the donee spouse as sole joint...

  7. Interaction of environmental contaminants with zebrafish organic anion transporting polypeptide, Oatp1d1 (Slco1d1)

    SciTech Connect

    Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko

    2014-10-01

    Polyspecific transporters from the organic anion transporting polypeptide (OATP/Oatp) superfamily mediate the uptake of a wide range of compounds. In zebrafish, Oatp1d1 transports conjugated steroid hormones and cortisol. It is predominantly expressed in the liver, brain and testes. In this study we have characterized the transport of xenobiotics by the zebrafish Oatp1d1 transporter. We developed a novel assay for assessing Oatp1d1 interactors using the fluorescent probe Lucifer yellow and transient transfection in HEK293 cells. Our data showed that numerous environmental contaminants interact with zebrafish Oatp1d1. Oatp1d1 mediated the transport of diclofenac with very high affinity, followed by high affinity towards perfluorooctanesulfonic acid (PFOS), nonylphenol, gemfibrozil and 17α-ethinylestradiol; moderate affinity towards carbaryl, diazinon and caffeine; and low affinity towards metolachlor. Importantly, many environmental chemicals acted as strong inhibitors of Oatp1d1. A strong inhibition of Oatp1d1 transport activity was found by perfluorooctanoic acid (PFOA), chlorpyrifos-methyl, estrone (E1) and 17β-estradiol (E2), followed by moderate to low inhibition by diethyl phthalate, bisphenol A, 7-acetyl-1,1,3,4,4,6-hexamethyl-1,2,3,4 tetrahydronapthalene and clofibrate. In this study we identified Oatp1d1 as a first Solute Carrier (SLC) transporter involved in the transport of a wide range of xenobiotics in fish. Considering that Oatps in zebrafish have not been characterized before, our work on zebrafish Oatp1d1 offers important new insights on the understanding of uptake processes of environmental contaminants, and contributes to the better characterization of zebrafish as a model species. - Highlights: • We optimized a novel assay for determination of Oatp1d1 interactors • Oatp1d1 is the first SLC characterized fish xenobiotic transporter • PFOS, nonylphenol, diclofenac, EE2, caffeine are high affinity Oatp1d1substrates • PFOA, chlorpyrifos

  8. D1/D5 dopamine receptors modulate spatial memory formation.

    PubMed

    da Silva, Weber C N; Köhler, Cristiano C; Radiske, Andressa; Cammarota, Martín

    2012-02-01

    We investigated the effect of the intra-CA1 administration of the D1/D5 receptor antagonist SCH23390 and the D1/D5 receptor agonist SKF38393 on spatial memory in the water maze. When given immediately, but not 3h after training, SCH23390 hindered long-term spatial memory formation without affecting non-spatial memory or the normal functionality of the hippocampus. On the contrary, post-training infusion of SKF38393 enhanced retention and facilitated the spontaneous recovery of the original spatial preference after reversal learning. Our findings demonstrate that hippocampal D1/D5 receptors play an essential role in spatial memory processing.

  9. Resolvin D1 and aspirin-triggered resolvin D1 regulate histamine-stimulated conjunctival goblet cell secretion.

    PubMed

    Li, D; Hodges, R R; Jiao, J; Carozza, R B; Shatos, M A; Chiang, N; Serhan, C N; Dartt, D A

    2013-11-01

    Resolution of inflammation is an active process mediated by pro-resolution lipid mediators. As resolvin (Rv) D1 is produced in the cornea, pro-resolution mediators could be effective in regulating inflammatory responses to histamine in allergic conjunctivitis. Two key mediators of resolution are the D-series resolvins RvD1 or aspirin-triggered RvD1 (AT-RvD1). We used cultured conjunctival goblet cells to determine whether histamine actions can be terminated during allergic responses. We found cross-talk between two types of G protein-coupled receptors (GPRs), as RvD1 interacts with its receptor GPR32 to block histamine-stimulated H1 receptor increases in intracellular [Ca(2+)] ([Ca(2+)]i) preventing H1 receptor-mediated responses. In human and rat conjunctival goblet cells, RvD1 and AT-RvD1 each block histamine-stimulated secretion by preventing its increase in [Ca(2+)]i and activation of extracellular regulated-protein kinase (ERK)1/2. We suggest that D-series resolvins regulate histamine responses in the eye and offer new treatment approaches for allergic conjunctivitis or other histamine-dependent pathologies.

  10. F5D-1 on ramp with flight technicians

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The big block letters 'TEST' on the upper fuselage of this Douglas F5D-1 Skylancer (Bu. No. 139208/NASA tail number 212) denoted the craft as a test plane which was one of the fleet stabled at NASA Flight Research Center from 1961 to 1963 (redesignated the Dryden Flight Research Center in 1976). The calibration hangar, with the door partially open, is shown in the background while nearby the flight technicians are preparing the airplane for another research flight. In 1963 the F5D-1, NASA 212, was transferred to Ames Research Center, Mountain View, California, where it was flown on miscellaneous research projects including supersonic-transport landing studies. The F5D-1 was used to collect data on sink rates and approach characteristics. This particular F5D-1 was retired after several years, and in December 1975, it was loaned to Victor Valley College.

  11. Dopamine D1 signaling organizes network dynamics underlying working memory

    PubMed Central

    Roffman, Joshua L.; Tanner, Alexandra S.; Eryilmaz, Hamdi; Rodriguez-Thompson, Anais; Silverstein, Noah J.; Ho, New Fei; Nitenson, Adam Z.; Chonde, Daniel B.; Greve, Douglas N.; Abi-Dargham, Anissa; Buckner, Randy L.; Manoach, Dara S.; Rosen, Bruce R.; Hooker, Jacob M.; Catana, Ciprian

    2016-01-01

    Local prefrontal dopamine signaling supports working memory by tuning pyramidal neurons to task-relevant stimuli. Enabled by simultaneous positron emission tomography–magnetic resonance imaging (PET-MRI), we determined whether neuromodulatory effects of dopamine scale to the level of cortical networks and coordinate their interplay during working memory. Among network territories, mean cortical D1 receptor densities differed substantially but were strongly interrelated, suggesting cross-network regulation. Indeed, mean cortical D1 density predicted working memory–emergent decoupling of the frontoparietal and default networks, which respectively manage task-related and internal stimuli. In contrast, striatal D1 predicted opposing effects within these two networks but no between-network effects. These findings specifically link cortical dopamine signaling to network crosstalk that redirects cognitive resources to working memory, echoing neuromodulatory effects of D1 signaling on the level of cortical microcircuits. PMID:27386561

  12. Underground storage tank 291-D1U1: Closure plan

    SciTech Connect

    Mancieri, S.; Giuntoli, N.

    1993-09-01

    The 291-D1U1 tank system was installed in 1983 on the north side of Building 291. It supplies diesel fuel to the Building 291 emergency generator and air compressor. The emergency generator and air compressor are located southwest and southeast, respectively, of the tank (see Appendix B, Figure 2). The tank system consists of a single-walled, 2,000- gallon, fiberglass tank and a fuel pump system, fill pipe, vent pipe, electrical conduit, and fuel supply and return piping. The area to be excavated is paved with asphalt and concrete. It is not known whether a concrete anchor pad is associated with this tank. Additionally, this closure plan assumes that the diesel tank is below the fill pad. The emergency generator and air compressor for Building 291 and its associated UST, 291-D1U1, are currently in use. The generator and air compressor will be supplied by a temporary above-ground fuel tank prior to the removal of 291-D1U1. An above-ground fuel tank will be installed as a permanent replacement for 291-D1U1. The system was registered with the State Water Resources Control Board on June 27, 1984, as 291-41D and has subsequently been renamed 291-D1U1. Figure 1 (see Appendix B) shows the location of the 291-D1U1 tank system in relation to the Lawrence Livermore National Laboratory (LLNL). Figure 2 (see Appendix B) shows the 291-D1U1 tank system in relation to Building 291. Figure 3 (see Appendix B) shows a plan view of the 291-D1U1 tank system.

  13. Complementation of growth factor receptor-dependent mitogenic signaling by a truncated type I phosphatidylinositol 4-phosphate 5-kinase.

    PubMed

    Davis, J N; Rock, C O; Cheng, M; Watson, J B; Ashmun, R A; Kirk, H; Kay, R J; Roussel, M F

    1997-12-01

    Substitution of phenylalanine for tyrosine at codon 809 (Y809F) of the human colony-stimulating factor 1 (CSF-1) receptor (CSF-1R) impairs ligand-stimulated tyrosine kinase activity, prevents induction of c-MYC and cyclin D1 genes, and blocks CSF-1-dependent progression through the G1 phase of the cell cycle. We devised an unbiased genetic screen to isolate genes that restore the ability of CSF-1 to stimulate growth in cells that express mutant CSF-1R (Y809F). This screen led us to identify a truncated form of the murine type Ibeta phosphatidylinositol 4-phosphate 5-kinase (mPIP5K-Ibeta). This truncated protein lacks residues 1 to 238 of mPIP5K-Ibeta and is catalytically inactive. When we transfected cells expressing CSF-1R (Y809F) with mPIP5K-Ibeta (delta1-238), CSF-1-dependent induction of c-MYC and cyclin D1 was restored and ligand-dependent cell proliferation was sustained. CSF-1 normally triggers the rapid disappearance of CSF-1R (Y809F) from the cell surface; however, transfection of cells with mPIP5K-Ibeta (delta1-238) stabilized CSF-1R (Y809F) expression on the cell surface, resulting in elevated levels of ligand-activated CSF-1R (Y809F). These results suggest a role for PIP5K-Ibeta in receptor endocytosis and that the truncated enzyme compensated for a mitogenically defective CSF-1R by interfering with this process.

  14. Evidence against dopamine D1/D2 receptor heteromers

    PubMed Central

    Frederick, Aliya L.; Yano, Hideaki; Trifilieff, Pierre; Vishwasrao, Harshad D.; Biezonski, Dominik; Mészáros, József; Sibley, David R.; Kellendonk, Christoph; Sonntag, Kai C.; Graham, Devon L.; Colbran, Roger J.; Stanwood, Gregg D.; Javitch, Jonathan A.

    2014-01-01

    Hetero-oligomers of G-protein-coupled receptors have become the subject of intense investigation because their purported potential to manifest signaling and pharmacological properties that differ from the component receptors makes them highly attractive for the development of more selective pharmacological treatments. In particular, dopamine D1 and D2 receptors have been proposed to form hetero-oligomers that couple to Gαq proteins, and SKF83959 has been proposed to act as a biased agonist that selectively engages these receptor complexes to activate Gαq and thus phospholipase C. D1/D2 heteromers have been proposed as relevant to the pathophysiology and treatment of depression and schizophrenia. We used in vitro bioluminescence resonance energy transfer (BRET), ex vivo analyses of receptor localization and proximity in brain slices, and behavioral assays in mice to characterize signaling from these putative dimers/oligomers. We were unable to detect Gαq or Gα11 protein coupling to homomers or heteromers of D1 or D2 receptors using a variety of biosensors. SKF83959-induced locomotor and grooming behaviors were eliminated in D1 receptor knockout mice, verifying a key role for D1-like receptor activation. In contrast, SKF83959-induced motor responses were intact in D2 receptor and Gαq knockout mice, as well as in knock-in mice expressing a mutant Ala286-CaMKIIα, that cannot autophosphorylate to become active. Moreover, we found that in the shell of the nucleus accumbens, even in neurons in which D1 and D2 receptor promoters are both active, the receptor proteins are segregated and do not form complexes. These data are not compatible with SKF83959 signaling through Gαq or through a D1–D2 heteromer and challenge the existence of such a signaling complex in the adult animals that we used for our studies. PMID:25560761

  15. Loss of inhibition by formate in newly constructed photosystem II D1 mutants, D1-R257E and D1-R257M, of Chlamydomonas reinhardtii.

    PubMed

    Xiong, J; Minagawa, J; Crofts, A; Govindjee

    1998-07-20

    Formate is known to cause significant inhibition in the electron and proton transfers in photosystem II (PSII); this inhibition is uniquely reversed by bicarbonate. It has been suggested that bicarbonate functions by providing ligands to the non-heme iron and by facilitating protonation of the secondary plastoquinone QB. Numerous lines of evidence indicate an intimate relationship of bicarbonate and formate binding of PSII. To investigate the potential amino acid binding environment of bicarbonate/formate in the QB niche, arginine 257 of the PSII D1 polypeptide in the unicellular green alga Chlamydomonas reinhardtii was mutated into a glutamate (D1-R257E) and a methionine (DQ-R257M). The two mutants share the following characteristics. (1) Both have a drastically reduced sensitivity to formate. (2) A larger fraction of QA- persists after flash illumination, which indicates an altered equilibrium constant of the reaction QA-QB<-->QA QB-, in the direction of [QA-], or a larger fraction of non-QB centers. However, there appears to be no significant difference in the rate of electron transfer from QA- to QB. (3) The overall rate of oxygen evolution is significantly reduced, most likely due to changes in the equilibrium constant on the electron acceptor side of PSII or due to a larger fraction in non-QB centers. Additional effects on the donor side cannot yet be excluded. (4) The binding affinity for the herbicide DCMU is unaltered. (5) The mutants grow photosynthetically, but at a decreased (approximately 70% of the wild type) level. (6) The Fo level was elevated (approximately 40-50%) which could be due to a decrease in the excitation energy transfer from the antenna to the PSII reaction center, and/or to an increased level of [QA-] in the dark. (7) A decreased (approximately 10%) ratio of F685 (mainly from CP43) and F695 (mainly from CP47) to F715 (mainly from PSI) emission bands at 77 K suggests a change in the antenna complex. Taken together these results lead to

  16. Geoscience for Alaska's D-1 Lands: A preliminary report

    USGS Publications Warehouse

    Schmidt, Jeanine M.; Gamble, B.M.; Labay, K.A.

    2007-01-01

    Purpose of This Report This interim report follows from the June 2006 recommendations to Congress by the BLM concerning disposition of the d-1 lands. That report recommended lifting of a significant number of d-1 PLOs, through the ongoing land management process within the BLM (e.g. resource management planning areas), or through Congressional action. The strategic actions outlined in this document refer only to Federal lands under US Bureau of Land Management (BLM) jurisdiction that 1) are affected by temporary withdrawals from mineral entry and mineral leasing by PLOs made pursuant to the Section 17(d)(1) of the ANCSA; 2) have been identified by the BLM as candidates for possible lifting of these PLOs and restrictions (U.S. Bureau of Land Management, 2006); and 3) lie outside of current Federal parks, preserves, monuments, refuges, reserves, wilderness areas and military installations that are closed to mineral entry, because within those areas the potential lifting of the d-1 restrictions has no practical effect. The resulting lands discussed here comprise approximately 121,000 km2 (29.9 million acres) of Alaska (Table 1) that, pending final resolution of Native and State land claims, will or may remain under Federal (BLM) control, and could be opened to mineral entry. For the purposes of this report, only these 29.9 million acres will hereafter be referred to as 'd-1' lands. This report gives a brief overview of the spatial distribution and physiographic setting, mineral occurrences, and mineral resource potential of the d-1lands. It outlines further geoscience information which could be compiled, collected, and evaluated in order to make a more accurate and comprehensive examination of the potential for undiscovered, locatable mineral resources on these Federal lands. This information is intended to provide guidance to USGS program managers and Federal land managers on matters of future exploration, access needs, and consequences of land status changes.

  17. D1/5 modulation of synaptic NMDA receptor currents

    PubMed Central

    Varela, Juan A.; Hirsch, Silke J.; Chapman, David; Leverich, Leah S.; Greene, Robert W.

    2009-01-01

    Converging evidence suggests that salience-associated modulation of behavior is mediated by the release of monoamines and that monoaminergic activation of D1/5 receptors is required for normal hippocampal-dependent learning and memory. However, it is not understood how D1/5 modulation of hippocampal circuits can affect salience-associated learning and memory. We have observed in CA1 pyramidal neurons that D1/5 receptor activation elicits a bi-directional long-term plasticity of NMDA receptor-mediated synaptic currents with the polarity of plasticity determined by NMDA receptor, NR2A/B subunit composition. This plasticity results in a decrease in the NR2A/NR2B ratio of subunit composition. Synaptic responses mediated by NMDA receptors that include NR2B subunits are potentiated by D1/5 receptor activation, while responses mediated by NMDA receptors that include NR2A subunits are depressed. Furthermore, these bidirectional, subunit-specific effects are mediated by distinctive intracellular signaling mechanisms. As there is a predominance of NMDA receptors composed of NR2A subunits observed in entorhinal-CA1 inputs and a predominance of NMDA receptors composed of NR2B subunits in CA3-CA1 synapses, potentiation of synaptic NMDA currents predominates in the proximal CA3-CA1 synapses, while depression of synaptic NMDA currents predominates in the distal entorhinal-CA1 synapses. Finally, all of these effects are reproduced by the release of endogenous monoamines through activation of D1/5 receptors. Thus, endogenous D1/5 activation can, 1) decrease the NR2A/B ratio of NMDAR subunit composition at glutamatergic synapses, a rejuvenation to a composition similar to developmentally immature synapses, and, 2) in CA1, bias NMDA receptor responsiveness towards the more highly processed tri-synaptic CA3-CA1 circuit and away from the direct entorhinal-CA1 input. PMID:19279248

  18. In vivo electrophysiological effects of methylphenidate in the prefrontal cortex: involvement of dopamine D1 and alpha 2 adrenergic receptors.

    PubMed

    Gronier, Benjamin

    2011-02-01

    Attention deficit hyperactivity disorder (ADHD) is the most commonly diagnosed psychiatric disorder in children. Psychostimulants such as methylphenidate (MPH) are used as first line treatment. The prefrontal cortex (PFC) has a proven role in the expression of ADHD. Previous studies from our laboratory have demonstrated that MPH activates the firing activity of medial PFC neurones in anaesthetised rats. The aim of the present study was to determine the respective contribution and location of the different types of catecholamine receptors in mediating these excitatory effects and to compare these effects with those induced by other selective dopamine or noradrenaline uptake blockers. Single unit activity of presumed pyramidal PFC neurones was recorded in rats anaesthetised with urethane. The activation of firing elicited by an iv administration of MPH (1 or 3mg/kg) was partially reduced or prevented by the selective D1 receptor antagonist SCH 23390 administered systemically (0.5mg/kg, iv), or locally by passive diffusion through the recording electrode. On the other hand, administration of the alpha 2 receptor antagonist yohimbine (1mg/kg, iv) significantly potentiated the excitatory effect of MPH and activated PFC neurones previously treated with a low inactive dose of MPH (0.3mg/kg, iv). Local administration of MPH (1mM through the recording electrode) significantly increased the firing of PFC neurones in a D1 receptor-dependent manner. In addition, the response of PFC neurones to MPH, administered at a low dose (0.3mg/kg, iv), is greatly potentiated by dopamine (1mM), but not by noradrenaline (1mM), diffusing passively through the recording electrode, and this effect is reversed by D1 receptor blockade. Finally, the selective dopamine uptake inhibitor GBR 12909 (6 mg/kg, iv) and desipramine (6 mg/kg, iv) only activate a subset of PFC neurones. These results demonstrate the involvement of cortical dopamine D1 and noradrenergic alpha 2 receptors in the in vivo

  19. D-1A nose fairing separation fitting load test

    NASA Technical Reports Server (NTRS)

    Vanvleet, J. O.

    1976-01-01

    Structural testing of the D-1A Centaur nose fairing was completed to determine the loads imposed during flight on the latch bolts of the fairing separation system. This testing was conducted to supplement and/or verify the analytic techniques used in calculating bolt loads for the D-1A, and to gain insight into the general structural behavior of separation latch systems. It was shown that the assumed bolt load magnification due to prying action of the latch fittings on the bolt does occur, but is strongly dependent on fairing shell stiffness.

  20. In adult female hamsters hypothyroidism stimulates D1 receptor-mediated breathing without altering D1 receptor expression.

    PubMed

    Schlenker, Evelyn H; Del Rio, Rodrigo; Schultz, Harold D

    2015-11-01

    Hypothyroidism affects cardiopulmonary regulation and function of dopaminergic receptors. Here we evaluated effects of 5 months of hypothyroidism on dopamine D1 receptor modulation of breathing in female hamsters using a D1 receptor antagonist SCH 23390. Euthyroid hamsters (EH) served as controls. Results indicated that hypothyroid female hamsters (HH) exhibited decreased body weights and minute ventilation (VE) following hypoxia due to decreased frequency of breathing (F). Moreover, SCH 23390 administration in HH increased VE by increasing tidal volume during exposure to air, hypoxia and following hypoxia. Relative to vehicle, SCH 23390 treatment decreased body temperature and hypoxic VE responsiveness in both groups. In EH, SCH 23390 decreased F in air, hypoxia and post hypoxia, and VE during hypoxia trended to decrease (P=0.053). Finally, expression of D1 receptor protein was not different between the two groups in any region evaluated. Thus, hypothyroidism in older female hamsters affected D1 receptor modulation of ventilation differently relative to euthyroid animals, but not expression of D1 receptors.

  1. PACSIN 2 represses cellular migration through direct association with cyclin D1 but not its alternate splice form cyclin D1b

    PubMed Central

    Zhou, Jie; Li, Zhiping; Jiao, Xuanmao; Li, Wayne W; Plomann, Markus; Xu, Zhishun; Lisanti, Michael P

    2011-01-01

    Cyclin D1 overexpression is a common feature of many human malignancies. Genomic deletion analysis has demonstrated a key role for cyclin D1 in cellular proliferation, angiogenesis and cellular migration. To investigate the mechanisms contributing to cyclin D1 functions, we purified cyclin D1a-associated complexes by affinity chromatography and identified the PACSIN 2 (protein kinase C and casein kinase substrate in neurons 2) protein by mass spectrometry. The PACSIN 2, but not the related PACSIN 1 and 3, directly bound wild-type cyclin D1 (cyclin D1a) at the carboxyl terminus and failed to bind cyclin D1b, the alternative splicing variant of cyclin D1. PACSIN 2 knockdown induced cellular migration and reduced cell spreading in LNCaP cells expressing cyclin D1a. In cyclin D1−/− mouse embryonic fibroblasts (MEFs), cyclin D1a, but not cyclin D1b, reduced the cell spreading to a polarized morphology. siPACSIN 2 had no effect on cellular migration of cyclin D1−/− MEFs. Cyclin D1a restored the migratory ability of cyclin D1−/− MEFs, which was further enhanced by knocking down PACSIN 2 with siRNA. The cyclin D1-associated protein, PACSIN 2, regulates cell spreading and migration, which are dependent on cyclin D1 expression. PMID:21200149

  2. Leptin Induces a Novel Form of NMDA Receptor-Dependent LTP at Hippocampal Temporoammonic-CA1 Synapses(1,2,3).

    PubMed

    Luo, Xiao; McGregor, Gemma; Irving, Andrew J; Harvey, Jenni

    2015-01-01

    It is well documented that the hormone leptin regulates many central functions and that hippocampal CA1 pyramidal neurons are a key target for leptin action. Indeed, leptin modulates excitatory synaptic transmission and synaptic plasticity at the Schaffer-collateral input to CA1 neurons. However the impact of leptin on the direct temporoammonic (TA) input to CA1 neurons is not known. Here we show that leptin evokes a long-lasting increase [long-term potentiation (LTP)] in excitatory synaptic transmission at TA-CA1 synapses in rat juvenile hippocampus. Leptin-induced LTP was NMDA receptor-dependent and specifically involved the activation of GluN2B subunits. The signaling pathways underlying leptin-induced LTP involve the activation of phosphoinositide 3-kinase, but were independent of the ERK signaling cascade. Moreover, insertion of GluA2-lacking AMPA receptors was required for leptin-induced LTP as prior application of philanthotoxin prevented the effects of leptin. In addition, synaptic-induced LTP occluded the persistent increase in synaptic efficacy induced by leptin. In conclusion, these data indicate that leptin induces a novel form of NMDA receptor-dependent LTP at juvenile TA-CA1 synapses, which has important implications for the role of leptin in modulating hippocampal synaptic function in health and disease. PMID:26464986

  3. Locomotor sensitization to ethanol impairs NMDA receptor-dependent synaptic plasticity in the nucleus accumbens and increases ethanol self-administration

    PubMed Central

    Abrahao, K.P.; Ariwodola, O.J.; Butler, T.R.; Rau, A.R.; Skelly, M.J.; Carter, E.; Alexander, N.P.; McCool, B.A.; Souza-Formigoni, M.L.O.; Weiner, J.L.

    2013-01-01

    Although alcoholism is a worldwide problem resulting in millions of deaths, only a small percentage of alcohol users become addicted. Notably, the specific neural substrates responsible for individual differences in vulnerability to alcohol addiction are not known. In these studies, we used rodent models to study behavioral and synaptic correlates related to individual differences in the development of ethanol locomotor sensitization, a form of drug-dependent behavioral plasticity associated with addiction vulnerability. Male Swiss mice were treated daily with saline or 1.8 g/kg ethanol for 21 days. Locomotor activity tests were performed once a week for 15 min immediately after saline or ethanol injections. After at least eleven days of withdrawal, cohorts of saline and ethanol-treated mice were used to characterize the relationships between locomotor sensitization, ethanol drinking, and glutamatergic synaptic transmission in the nucleus accumbens. Ethanol-treated mice that expressed locomotor behavioral sensitization to ethanol drank significantly more ethanol than saline-treated subjects and ethanol-treated animals resilient to this form of behavioral plasticity. Moreover, ethanolsensitized mice also had reduced accumbal NMDA receptor function and expression, as well as deficits in NMDA receptor-dependent long term depression in the nucleus accumbens core after a protracted withdrawal. These findings suggest that disruption of accumbal core NMDA receptor-dependent plasticity may represent a synaptic correlate associated with ethanol-induced locomotor sensitization and increased propensity to consume ethanol. PMID:23486954

  4. The role of dopamine D1 receptor transmission in effort-related choice behavior: Effects of D1 agonists.

    PubMed

    Yohn, Samantha E; Santerre, Jessica L; Nunes, Eric J; Kozak, Rouba; Podurgiel, Samantha J; Correa, Mercè; Salamone, John D

    2015-08-01

    Mesolimbic dopamine (DA), particularly in the nucleus accumbens, is a critical component of the brain circuitry involved in behavioral activation and effort-related processes. Although much is known about the characteristics of DA D2 receptor antagonism on effort-related choice behavior, less is known about the effects of D1 antagonism, and agonist/antagonist interactions. The highly selective D1 antagonist ecopipam was studied for its effects on effort-related choice behavior using the concurrent fixed ratio (FR) 5/chow feeding choice and T-maze barrier choice procedures. In rats tested on the FR5/chow feeding choice task, ecopipam shifted choice behavior, decreasing lever pressing for preferred high carbohydrate pellets but increasing consumption of lab chow. Also, ecopipam decreased selection of the high effort option (i.e., climbing the barrier to obtain a larger reward) in rats tested on the T-maze task, but did not disrupt arm preference or discrimination when no barrier was present. The D1 agonists SKF38393, SKF81297 and A77636 were assessed for their ability to reverse the effects of ecopipam, and in each case the D1 agonist significantly attenuated the effects of ecopipam, typically with an inverted-u shaped dose/response curve. SKF81297 also was able to reverse the effects of the catecholamine depleting agent tetrabenazine on T-maze performance. In summary, the present results implicate DA D1 receptors in the regulation of behavioral activation and effort-related functions, and demonstrate the utility of using tests of effort-related choice behavior for assessing the effects of D1 agonists.

  5. The role of dopamine D1 receptor transmission in effort-related choice behavior: Effects of D1 agonists.

    PubMed

    Yohn, Samantha E; Santerre, Jessica L; Nunes, Eric J; Kozak, Rouba; Podurgiel, Samantha J; Correa, Mercè; Salamone, John D

    2015-08-01

    Mesolimbic dopamine (DA), particularly in the nucleus accumbens, is a critical component of the brain circuitry involved in behavioral activation and effort-related processes. Although much is known about the characteristics of DA D2 receptor antagonism on effort-related choice behavior, less is known about the effects of D1 antagonism, and agonist/antagonist interactions. The highly selective D1 antagonist ecopipam was studied for its effects on effort-related choice behavior using the concurrent fixed ratio (FR) 5/chow feeding choice and T-maze barrier choice procedures. In rats tested on the FR5/chow feeding choice task, ecopipam shifted choice behavior, decreasing lever pressing for preferred high carbohydrate pellets but increasing consumption of lab chow. Also, ecopipam decreased selection of the high effort option (i.e., climbing the barrier to obtain a larger reward) in rats tested on the T-maze task, but did not disrupt arm preference or discrimination when no barrier was present. The D1 agonists SKF38393, SKF81297 and A77636 were assessed for their ability to reverse the effects of ecopipam, and in each case the D1 agonist significantly attenuated the effects of ecopipam, typically with an inverted-u shaped dose/response curve. SKF81297 also was able to reverse the effects of the catecholamine depleting agent tetrabenazine on T-maze performance. In summary, the present results implicate DA D1 receptors in the regulation of behavioral activation and effort-related functions, and demonstrate the utility of using tests of effort-related choice behavior for assessing the effects of D1 agonists. PMID:26022661

  6. Underground storage tank 511-D1U1 closure plan

    SciTech Connect

    Mancieri, S.; Giuntoli, N.

    1993-09-01

    This document contains the closure plan for diesel fuel underground storage tank 511-D1U1 and appendices containing supplemental information such as staff training certification and task summaries. Precision tank test data, a site health and safety plan, and material safety data sheets are also included.

  7. Prefrontal D1 dopamine signaling is required for temporal control.

    PubMed

    Narayanan, Nandakumar S; Land, Benjamin B; Solder, John E; Deisseroth, Karl; DiLeone, Ralph J

    2012-12-11

    Temporal control, or how organisms guide movements in time to achieve behavioral goals, depends on dopamine signaling. The medial prefrontal cortex controls many goal-directed behaviors and receives dopaminergic input primarily from the midbrain ventral tegmental area. However, this system has never been linked with temporal control. Here, we test the hypothesis that dopaminergic projections from the ventral tegmental area to the prefrontal cortex influence temporal control. Rodents were trained to perform a fixed-interval timing task with an interval of 20 s. We report several results: first, that decreasing dopaminergic neurotransmission using virally mediated RNA interference of tyrosine hydroxylase impaired temporal control, and second that pharmacological disruption of prefrontal D1 dopamine receptors, but not D2 dopamine receptors, impaired temporal control. We then used optogenetics to specifically and selectively manipulate prefrontal neurons expressing D1 dopamine receptors during fixed-interval timing performance. Selective inhibition of D1-expressing prefrontal neurons impaired fixed-interval timing, whereas stimulation made animals more efficient during task performance. These data provide evidence that ventral tegmental dopaminergic projections to the prefrontal cortex influence temporal control via D1 receptors. The results identify a critical circuit for temporal control of behavior that could serve as a target for the treatment of dopaminergic diseases.

  8. Cyclin D1 expression and HHV8 in Kaposi sarcoma.

    PubMed Central

    Kennedy, M M; Biddolph, S; Lucas, S B; Howells, D D; Picton, S; McGee, J O; Silva, I; Uhlmann, V; Luttich, K; O'Leary, J J

    1999-01-01

    BACKGROUND: Human herpesvirus 8 (HHV8) appears to be the agent responsible for Kaposi sarcoma. The mechanism remains undetermined but may involve cell cycle regulating genes including D type cyclins which are pivotal in cell cycle progression. Recent HHV8 genetic analysis has revealed the presence of a v-cyclin which is homologous to D type cyclins. AIMS: First, to assess whether there is an independent relation between endogenous cyclin D1 expression in Kaposi sarcoma and HHV8 status; second to determine whether v-cyclin mRNA expression varies with Kaposi sarcoma stage. METHODS: Cyclin D1 immunohistochemistry was performed on 17 paraffin embedded Kaposi sarcoma samples from 16 patients. HHV8 status was assessed in 15 of these using nested polymerase chain reaction (PCR) to ORF 26 and the newly described technique of TaqMan PCR. An additional 10 fresh Kaposi sarcoma samples (early and nodular) were examined for HHV8 v-cyclin RNA. RESULTS: One case, which did not contain amplifiable HHV8, showed strong cyclin D1 staining. The remaining cases were negative or weakly staining; v-cyclin transcript load was higher in early Kaposi sarcoma. CONCLUSIONS: While endogenous cyclin D1 expression is independent of HHV8 status, v-cyclin transcription is higher in early lesions, supporting the "viral hit" hypothesis. Images PMID:10645225

  9. 17 CFR 270.35d-1 - Investment company names.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Investment company names. 270... (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.35d-1 Investment company names. (a... words “United States” or “U.S. government.” (2) Names suggesting investment in certain investments...

  10. 17 CFR 270.12d1-2 - Exemptions for investment companies relying on section 12(d)(1)(G) of the Act.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... companies relying on section 12(d)(1)(G) of the Act. 270.12d1-2 Section 270.12d1-2 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.12d1-2 Exemptions for investment companies relying on section 12(d)(1)(G) of the Act....

  11. Underground storage tank 431-D1U1, Closure Plan

    SciTech Connect

    Mancieri, S.

    1993-09-01

    This document contains information about the decommissioning of Tank 431-D1U1. This tank was installed in 1965 for diesel fuel storage. This tank will remain in active usage until closure procedures begin. Soils and ground water around the tank will be sampled to check for leakage. Appendices include; proof of proper training for workers, health and safety briefing record, task hazard analysis summary, and emergency plans.

  12. Redesign of Glenn Research Center D1 Flywheel Module

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.; Wagner, Robert C.; Duffy, Kirsten P.; Hervol, David S.; Storozuk, Ronald J.; Dever, Timothy P.; Anzalone, Salvatore M.; Trudell, Jeffrey J.; Konno, Kevin E.; Kenny, Andrew

    2002-01-01

    Glenn Research Center has completed the redesign of the D1 flywheel module. The redesign includes a new rotor with a composite rim, motor/generator, touchdown bearings, sensors, and a magnetic actuator. The purpose of the relatively low cost module upgrade is to enable it to continuously operate throughout its speed range of 0 to 60,000 RPM. The module will be used as part of a combined attitude control and bus regulation experiment.

  13. PGE2 released by primary sensory neurons modulates Toll-like receptor 4 activities through an EP4 receptor-dependent process.

    PubMed

    Tse, Kai-Hei; Chow, Kevin B S; Wise, Helen

    2016-04-15

    Exogenous prostaglandin E2 (PGE2) displays mixed regulatory properties with regard to inflammatory gene expression in dorsal root ganglion (DRG) cells. We show here that endogenously-produced nanomolar concentrations of PGE2, such as that generated in response to Toll-like receptor 4 (TLR4) stimulation, inhibits both cyclooxygenase-2 (COX-2) and tumour necrosis factor alpha (TNFα) mRNA expression in DRG cells in an EP4 receptor-dependent manner. DRG neurons appear to be the major source of PGE2 in the DRG and likely serve as both an autocrine and paracrine system for limiting over-activation of both DRG neurons and glial cells in response to TLR4 stimulation. PMID:27049555

  14. Cannabinoid transmission in the prelimbic cortex bidirectionally controls opiate reward and aversion signaling through dissociable kappa versus μ-opiate receptor dependent mechanisms.

    PubMed

    Ahmad, Tasha; Lauzon, Nicole M; de Jaeger, Xavier; Laviolette, Steven R

    2013-09-25

    Cannabinoid, dopamine (DA), and opiate receptor pathways play integrative roles in emotional learning, associative memory, and sensory perception. Modulation of cannabinoid CB1 receptor transmission within the medial prefrontal cortex (mPFC) regulates the emotional valence of both rewarding and aversive experiences. Furthermore, CB1 receptor substrates functionally interact with opiate-related motivational processing circuits, particularly in the context of reward-related learning and memory. Considerable evidence demonstrates functional interactions between CB1 and DA signaling pathways during the processing of motivationally salient information. However, the role of mPFC CB1 receptor transmission in the modulation of behavioral opiate-reward processing is not currently known. Using an unbiased conditioned place preference paradigm with rats, we examined the role of intra-mPFC CB1 transmission during opiate reward learning. We report that activation or inhibition of CB1 transmission within the prelimbic cortical (PLC) division of the mPFC bidirectionally regulates the motivational valence of opiates; whereas CB1 activation switched morphine reward signaling into an aversive stimulus, blockade of CB1 transmission potentiated the rewarding properties of normally sub-reward threshold conditioning doses of morphine. Both of these effects were dependent upon DA transmission as systemic blockade of DAergic transmission prevented CB1-dependent modulation of morphine reward and aversion behaviors. We further report that CB1-mediated intra-PLC opiate motivational signaling is mediated through a μ-opiate receptor-dependent reward pathway, or a κ-opiate receptor-dependent aversion pathway, directly within the ventral tegmental area. Our results provide evidence for a novel CB1-mediated motivational valence switching mechanism within the PLC, controlling dissociable subcortical reward and aversion pathways. PMID:24068830

  15. Evaluation of D-1 tape and cassette characteristics: Moisture content of Sony and Ampex D-1 tapes when delivered

    NASA Astrophysics Data System (ADS)

    Ashton, Gary

    Commercial D-1 cassette tapes and their associated recorders were designed to operate in broadcast studios and record in accordance with the International Radio Consultative Committee (CCIR) 607 digital video standards. The D-1 recorder resulted in the Society of Motion Picture and Television Engineers (SMPTE) standards 224 to 228 and is the first digital video recorder to be standardized for the broadcast industry. The D-1 cassette and associated media are currently marketed for broadcast use. The recorder was redesigned for data applications and is in the early stages of being evaluated. The digital data formats used are specified in MIL-STD-2179 and the American National Standards Institute (ANSI) X3.175-190 standard. In early 1990, the National Media Laboratory (NML) was asked to study the effects of time, temperature, and relative humidity on commercial D-1 cassettes. The environmental range to be studied was the one selected for the Advanced Tactical Air Reconnaissance System (ATARS) program. Several discussions between NML personnel, ATARS representatives, recorder contractors, and other interested parties were held to decide upon the experimental plan to be implemented. Review meetings were held periodically during the course of the experiment. The experiments were designed to determine the dimensional stability of the media and cassette since this is one of the major limiting factors of helical recorders when the media or recorders are subjected to non-broadcasting environments. Measurements were also made to characterize each sample of cassettes to give preliminary information on which purchase specifications could be developed. The actual tests performed on the cassettes and media before and after aging fall into the general categories listed.

  16. Molecular characterization of zebrafish Oatp1d1 (Slco1d1), a novel organic anion-transporting polypeptide.

    PubMed

    Popovic, Marta; Zaja, Roko; Fent, Karl; Smital, Tvrtko

    2013-11-22

    The organic anion-transporting polypeptide (OATP/Oatp) superfamily includes a group of polyspecific transporters that mediate transport of large amphipathic, mostly anionic molecules across cell membranes of eukaryotes. OATPs/Oatps are involved in the disposition and elimination of numerous physiological and foreign compounds. However, in non-mammalian species, the functional properties of Oatps remain unknown. We aimed to elucidate the role of Oatp1d1 in zebrafish to gain insights into the functional and structural evolution of the OATP1/Oatp1 superfamily. We show that diversification of the OATP1/Oatp1 family occurs after the emergence of jawed fish and that the OATP1A/Oatp1a and OATP1B/Oatp1b subfamilies appeared at the root of tetrapods. The Oatp1d subfamily emerged in teleosts and is absent in tetrapods. The zebrafish Oatp1d1 is similar to mammalian OATP1A/Oatp1a and OATP1B/Oatp1b members, with the main physiological role in transport and balance of steroid hormones. Oatp1d1 activity is dependent upon pH gradient, which could indicate bicarbonate exchange as a mode of transport. Our analysis of evolutionary conservation and structural properties revealed that (i) His-79 in intracellular loop 3 is conserved within OATP1/Oatp1 family and is crucial for the transport activity; (ii) N-glycosylation impacts membrane targeting and is conserved within the OATP1/Oatp1 family with Asn-122, Asn-133, Asn-499, and Asn-512 residues involved; (iii) the evolutionarily conserved cholesterol recognition interaction amino acid consensus motif is important for membrane localization; and (iv) Oatp1d1 is present in dimeric and possibly oligomeric form in the cell membrane. In conclusion, we describe the first detailed characterization of a new Oatp transporter in zebrafish, offering important insights into the functional evolution of the OATP1/Oatp1 family and the physiological role of Oatp1d1.

  17. Sphere-plate Casimir interaction in (D + 1)-dimensional spacetime

    NASA Astrophysics Data System (ADS)

    Teo, L. P.

    2014-04-01

    In this paper, we derive the formula for the Casimir interaction energy between a sphere and a plate in (D + 1)-dimensional Minkowski spacetime. It is assumed that the scalar field satisfies the Dirichlet or Neumann boundary conditions on the sphere and the plate. As in the D = 3 case, the formula is of TGTG type. One of our main contributions is deriving the translation matrices which express the change of bases between plane waves and spherical waves for general D. Using orthogonality of Gegenbauer polynomials, it turns out that the final TGTG formula for the Casimir interaction energy can be simplified to one that is similar to the D = 3 case. To illustrate the application of the formula, both large separation and small separation asymptotic behaviors of the Casimir interaction energy are computed. The large separation leading term is proportional to L-D+1 if the sphere is imposed with Dirichlet boundary condition, and to L-D-1 if the sphere is imposed with Neumann boundary condition, where L is distance from the center of the sphere to the plane. For the small separation asymptotic behavior, it is shown that the leading term is equal to the one obtained using proximity force approximation. The next-to-leading order term is also computed using perturbation method. It is shown that when the space dimension D is larger than 5, the next-to-leading order has sign opposite to the leading order term. Moreover, the ratio of the next-to-leading order term to the leading order term is linear in D, indicating a larger correction at higher dimensions.

  18. Titan 3E/Centaur D-1T Systems Summary

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A systems and operational summary of the Titan 3E/Centaur D-1T program is presented which describes vehicle assembly facilities, launch facilities, and management responsibilities, and also provides detailed information on the following separate systems: (1) mechanical systems, including structural components, insulation, propulsion units, reaction control, thrust vector control, hydraulic systems, and pneumatic equipment; (2) astrionics systems, such as instrumentation and telemetry, navigation and guidance, C-Band tracking system, and range safety command system; (3) digital computer unit software; (4) flight control systems; (5) electrical/electronic systems; and (6) ground support equipment, including checkout equipment.

  19. 17 CFR 270.12d1-3 - Exemptions for investment companies relying on section 12(d)(1)(F) of the Act.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Exemption from sales charge limits. A registered investment company (“acquiring fund”) that relies on... company (“acquired fund”) may offer or sell any security it issues through a principal underwriter or... companies relying on section 12(d)(1)(F) of the Act. 270.12d1-3 Section 270.12d1-3 Commodity and...

  20. Haplotype variation of Glu-D1 locus and the origin of Glu-D1d allele conferring superior end-use qualities in common wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In common wheat (Triticum aestivum, AABBDD), the Glu-D1 locus possesses multiple alleles, with Glu-D1a (coding for 1Dx2 and 1Dy12 subunits) and Glu-D1d (encoding 1Dx5 and 1Dy10 subunits) being intensively used in the genetic improvement of end-use qualities. Here, we studied the molecular variatio...

  1. Caffeine stimulates locomotor activity in the mammalian spinal cord via adenosine A1 receptor-dopamine D1 receptor interaction and PKA-dependent mechanisms.

    PubMed

    Acevedo, JeanMarie; Santana-Almansa, Alexandra; Matos-Vergara, Nikol; Marrero-Cordero, Luis René; Cabezas-Bou, Ernesto; Díaz-Ríos, Manuel

    2016-02-01

    Caffeine is a potent psychostimulant that can have significant and widely variable effects on the activity of multiple neuronal pathways. The most pronounced caffeine-induced behavioral effect seen in rodents is to increase locomotor activity which has been linked to a dose-dependent inhibition of A1 and A(2A) receptors. The effects of caffeine at the level of the lumbar spinal central pattern generator (CPG) network for hindlimb locomotion are lacking. We assessed the effects of caffeine to the locomotor function of the spinal CPG network via extracellular ventral root recordings using the isolated neonatal mouse spinal cord preparation. Addition of caffeine and of an A1 receptor antagonist significantly decreased the cycle period accelerating the ongoing locomotor rhythm, while decreasing burst duration reversibly in most preparations suggesting the role of A1 receptors as the primary target of caffeine. Caffeine and an A1 receptor antagonist failed to stimulate ongoing locomotor activity in the absence of dopamine or in the presence of a D1 receptor antagonist supporting A1/D1 receptor-dependent mechanism of action. The use of caffeine or an A1 receptor blocker failed to stimulate an ongoing locomotor rhythm in the presence of a blocker of the cAMP-dependent protein kinase (PKA) supporting the need of this intracellular pathway for the modulatory effects of caffeine to occur. These results support a stimulant effect of caffeine on the lumbar spinal network controlling hindlimb locomotion through the inhibition of A1 receptors and subsequent activation of D1 receptors via a PKA-dependent intracellular mechanism.

  2. 16 CFR Appendix D1 to Part 305 - Water Heaters-Gas

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 1 2013-01-01 2013-01-01 false Water Heaters-Gas D1 Appendix D1 to Part 305... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED UNDER THE ENERGY POLICY AND CONSERVATION ACT (âAPPLIANCE LABELING RULEâ) Pt. 305, App. D1 Appendix D1...

  3. Casimir interaction between spheres in ( D + 1)-dimensional Minkowski spacetime

    NASA Astrophysics Data System (ADS)

    Teo, L. P.

    2014-05-01

    We consider the Casimir interaction between two spheres in ( D + 1)-dimensional Minkowski spacetime due to the vacuum fluctuations of scalar fields. We consider combinations of Dirichlet and Neumann boundary conditions. The TGTG formula of the Casimir interaction energy is derived. The computations of the T matrices of the two spheres are straightforward. To compute the two G matrices, known as translation matrices, which relate the hyper-spherical waves in two spherical coordinate frames differ by a translation, we generalize the operator approach employed in [39]. The result is expressed in terms of an integral over Gegenbauer polynomials. In contrast to the D=3 case, we do not re-express the integral in terms of 3 j-symbols and hyper-spherical waves, which in principle, can be done but does not simplify the formula. Using our expression for the Casimir interaction energy, we derive the large separation and small separation asymptotic expansions of the Casimir interaction energy. In the large separation regime, we find that the Casimir interaction energy is of order L -2 D+3, L -2 D+1 and L -2 D-1 respectively for Dirichlet-Dirichlet, Dirichlet-Neumann and Neumann-Neumann boundary conditions, where L is the center-to-center distance of the two spheres. In the small separation regime, we confirm that the leading term of the Casimir interaction agrees with the proximity force approximation, which is of order , where d is the distance between the two spheres. Another main result of this work is the analytic computations of the next-to-leading order term in the small separation asymptotic expansion. This term is computed using careful order analysis as well as perturbation method. In the case the radius of one of the sphere goes to infinity, we find that the results agree with the one we derive for sphere-plate configuration. When D=3, we also recover previously known results. We find that when D is large, the ratio of the next-to-leading order term to the leading

  4. Role of the D1-D2 Linker of Human VCP/p97 in the Asymmetry and ATPase Activity of the D1-domain

    PubMed Central

    Tang, Wai Kwan; Xia, Di

    2016-01-01

    Human AAA+ protein p97 consists of an N-domain and two tandem ATPase domains D1 and D2, which are connected by the N-D1 and the D1-D2 linkers. Inclusion of the D1-D2 linker, a 22-amino acid peptide, at the end of p97 N-D1 truncate has been shown to activate ATP hydrolysis of its D1-domain, although the mechanism of activation remains unclear. Here, we identify the N-terminal half of this linker, highly conserved from human to fungi, is essential for the ATPase activation. By analyzing available crystal structures, we observed that the D1-D2 linker is capable of inducing asymmetry in subunit association into a p97 hexamer. This observation is reinforced by two new crystal structures, determined in the present work. The effect of D1-D2 linker on the ATPase activity of the D1-domain is correlated to the side-chain conformation of residue R359, a trans-acting arginine-finger residue essential for ATP hydrolysis of the D1-domain. The activation in D1-domain ATPase activity by breaking perfect six-fold symmetry implies functional importance of asymmetric association of p97 subunits, the extent of which can be determined quantitatively by the metric Asymmetric Index. PMID:26818443

  5. Purification and characterization of chitinase from Paenibacillus sp. D1.

    PubMed

    Singh, Anil Kumar; Chhatpar, Hari S

    2011-05-01

    A 56.56-kDa extracellular chitinase from Paenibacillus sp. D1 was purified to 52.3-fold by ion exchange chromatography using SP Sepharose. Maximum enzyme activity was recorded at pH 5.0 and 50 °C. MALDI-LC-MS/MS analysis identified the purified enzyme as chitinase with 60% similarity to chitinase Chi55 of Paenibacillus ehimensis. The activation energy (E (a)) for chitin hydrolysis and temperature quotient (Q (10)) at optimum temperature was found to be 19.14 kJ/mol and 1.25, respectively. Determination of kinetic constants k (m), V (max), k (cat), and k (cat)/k (m) and thermodynamic parameters ΔH*, ΔS*, ΔG*, ΔG*(E-S), and ΔG*(E-T) revealed high affinity of the enzyme for chitin. The enzyme exhibited higher stability in presence of commonly used protectant fungicides Captan, Carbendazim, and Mancozeb compared to control as reflected from the t (1/2) values suggesting its applicability in integrated pest management for control of soil-borne fungal phytopathogens. The order of stability of chitinase in presence of fungicides at 80 °C as revealed from t (1/2) values and thermodynamic parameters E (a(d)) (activation energy for irreversible deactivation), ΔH*, ΔG*, and ΔS* was: Captan > Carbendazim > Mancozeb > control. The present study is the first report on thermodynamic and kinetic characterization of chitinase from Paenibacillus sp. D1.

  6. Sphere-plate Casimir interaction in (D + 1)-dimensional spacetime

    SciTech Connect

    Teo, L. P.

    2014-04-15

    In this paper, we derive the formula for the Casimir interaction energy between a sphere and a plate in (D + 1)-dimensional Minkowski spacetime. It is assumed that the scalar field satisfies the Dirichlet or Neumann boundary conditions on the sphere and the plate. As in the D = 3 case, the formula is of TGTG type. One of our main contributions is deriving the translation matrices which express the change of bases between plane waves and spherical waves for general D. Using orthogonality of Gegenbauer polynomials, it turns out that the final TGTG formula for the Casimir interaction energy can be simplified to one that is similar to the D = 3 case. To illustrate the application of the formula, both large separation and small separation asymptotic behaviors of the Casimir interaction energy are computed. The large separation leading term is proportional to L{sup −D+1} if the sphere is imposed with Dirichlet boundary condition, and to L{sup −D−1} if the sphere is imposed with Neumann boundary condition, where L is distance from the center of the sphere to the plane. For the small separation asymptotic behavior, it is shown that the leading term is equal to the one obtained using proximity force approximation. The next-to-leading order term is also computed using perturbation method. It is shown that when the space dimension D is larger than 5, the next-to-leading order has sign opposite to the leading order term. Moreover, the ratio of the next-to-leading order term to the leading order term is linear in D, indicating a larger correction at higher dimensions.

  7. A systematic investigation of the protein kinases involved in NMDA receptor-dependent LTD: evidence for a role of GSK-3 but not other serine/threonine kinases

    PubMed Central

    Peineau, Stéphane; Nicolas, Céline S; Bortolotto, Zuner A; Bhat, Ratan V; Ryves, W Jonathan; Harwood, Adrian J; Dournaud, Pascal; Fitzjohn, Stephen M; Collingridge, Graham L

    2009-01-01

    Background The signalling mechanisms involved in the induction of N-methyl-D-aspartate (NMDA) receptor-dependent long-term depression (LTD) in the hippocampus are poorly understood. Numerous studies have presented evidence both for and against a variety of second messengers systems being involved in LTD induction. Here we provide the first systematic investigation of the involvement of serine/threonine (ser/thr) protein kinases in NMDAR-LTD, using whole-cell recordings from CA1 pyramidal neurons. Results Using a panel of 23 inhibitors individually loaded into the recorded neurons, we can discount the involvement of at least 57 kinases, including PKA, PKC, CaMKII, p38 MAPK and DYRK1A. However, we have been able to confirm a role for the ser/thr protein kinase, glycogen synthase kinase 3 (GSK-3). Conclusion The present study is the first to investigate the role of 58 ser/thr protein kinases in LTD in the same study. Of these 58 protein kinases, we have found evidence for the involvement of only one, GSK-3, in LTD. PMID:19583853

  8. Control of βAR- and N-methyl-D-aspartate (NMDA) Receptor-Dependent cAMP Dynamics in Hippocampal Neurons.

    PubMed

    Chay, Andrew; Zamparo, Ilaria; Koschinski, Andreas; Zaccolo, Manuela; Blackwell, Kim T

    2016-02-01

    Norepinephrine, a neuromodulator that activates β-adrenergic receptors (βARs), facilitates learning and memory as well as the induction of synaptic plasticity in the hippocampus. Several forms of long-term potentiation (LTP) at the Schaffer collateral CA1 synapse require stimulation of both βARs and N-methyl-D-aspartate receptors (NMDARs). To understand the mechanisms mediating the interactions between βAR and NMDAR signaling pathways, we combined FRET imaging of cAMP in hippocampal neuron cultures with spatial mechanistic modeling of signaling pathways in the CA1 pyramidal neuron. Previous work implied that cAMP is synergistically produced in the presence of the βAR agonist isoproterenol and intracellular calcium. In contrast, we show that when application of isoproterenol precedes application of NMDA by several minutes, as is typical of βAR-facilitated LTP experiments, the average amplitude of the cAMP response to NMDA is attenuated compared with the response to NMDA alone. Models simulations suggest that, although the negative feedback loop formed by cAMP, cAMP-dependent protein kinase (PKA), and type 4 phosphodiesterase may be involved in attenuating the cAMP response to NMDA, it is insufficient to explain the range of experimental observations. Instead, attenuation of the cAMP response requires mechanisms upstream of adenylyl cyclase. Our model demonstrates that Gs-to-Gi switching due to PKA phosphorylation of βARs as well as Gi inhibition of type 1 adenylyl cyclase may underlie the experimental observations. This suggests that signaling by β-adrenergic receptors depends on temporal pattern of stimulation, and that switching may represent a novel mechanism for recruiting kinases involved in synaptic plasticity and memory.

  9. Control of βAR- and N-methyl-D-aspartate (NMDA) Receptor-Dependent cAMP Dynamics in Hippocampal Neurons

    PubMed Central

    Chay, Andrew; Zamparo, Ilaria; Koschinski, Andreas; Zaccolo, Manuela; Blackwell, Kim T.

    2016-01-01

    Norepinephrine, a neuromodulator that activates β-adrenergic receptors (βARs), facilitates learning and memory as well as the induction of synaptic plasticity in the hippocampus. Several forms of long-term potentiation (LTP) at the Schaffer collateral CA1 synapse require stimulation of both βARs and N-methyl-D-aspartate receptors (NMDARs). To understand the mechanisms mediating the interactions between βAR and NMDAR signaling pathways, we combined FRET imaging of cAMP in hippocampal neuron cultures with spatial mechanistic modeling of signaling pathways in the CA1 pyramidal neuron. Previous work implied that cAMP is synergistically produced in the presence of the βAR agonist isoproterenol and intracellular calcium. In contrast, we show that when application of isoproterenol precedes application of NMDA by several minutes, as is typical of βAR-facilitated LTP experiments, the average amplitude of the cAMP response to NMDA is attenuated compared with the response to NMDA alone. Models simulations suggest that, although the negative feedback loop formed by cAMP, cAMP-dependent protein kinase (PKA), and type 4 phosphodiesterase may be involved in attenuating the cAMP response to NMDA, it is insufficient to explain the range of experimental observations. Instead, attenuation of the cAMP response requires mechanisms upstream of adenylyl cyclase. Our model demonstrates that Gs-to-Gi switching due to PKA phosphorylation of βARs as well as Gi inhibition of type 1 adenylyl cyclase may underlie the experimental observations. This suggests that signaling by β-adrenergic receptors depends on temporal pattern of stimulation, and that switching may represent a novel mechanism for recruiting kinases involved in synaptic plasticity and memory. PMID:26901880

  10. Ethanol withdrawal is required to produce persisting N-methyl-D-aspartate receptor-dependent hippocampal cytotoxicity during chronic intermittent ethanol exposure

    PubMed Central

    Reynolds, Anna R.; Berry, B. Jennifer N.; Sharrett-Field, Lynda; Prendergast, Mark A.

    2015-01-01

    Chronic intermittent ethanol consumption is associated with neurodegeneration and cognitive deficits in preclinical laboratory animals and in the clinical population. While previous work suggests a role for neuroadaptations in the N-methyl-D-aspartate (NMDA) receptor in the development of ethanol dependence and manifestation of withdrawal, the relative roles of ethanol exposure and ethanol withdrawal in producing these effects have not been fully characterized. To examine underlying cytotoxic mechanisms associated with CIE exposure, organotypic hippocampal slices were exposed to 1–3 cycles of ethanol (50 mM) in cell culture medium for 5 days, followed by 24-hours of ethanol withdrawal in which a portion of slices were exposed to competitive NMDA receptor antagonist (2R)-amino-5-phosphonovaleric acid (APV; 40 µM). Cytotoxicity was assessed using immunohistochemical labeling of neuron specific nuclear protein (NeuN; Fox-3), a marker of mature neurons, and thionine (2%) staining of Nissl bodies. Multiple cycles of CIE produced neurotoxicity, as reflected in persisting losses of neuron NeuN immunoreactivity and thionine staining in each of the primary cell layers of the hippocampal formation. Hippocampi aged in vitro were significantly more sensitive to the toxic effects of multiple CIEs than were non-aged hippocampi. This effect was not demonstrated in slices exposed to continuous ethanol, in the absence of withdrawal, or to a single exposure/withdrawal regimen. Exposure to APV significantly attenuated the cytotoxicity observed in the primary cell layers of the hippocampus. The present findings suggest that ethanol withdrawal is required to produce NMDA receptor-dependent hippocampal cytotoxicity, particularly in the aging hippocampus in vitro. PMID:25746220

  11. Osmotic Edema Rapidly Increases Neuronal Excitability Through Activation of NMDA Receptor-Dependent Slow Inward Currents in Juvenile and Adult Hippocampus

    PubMed Central

    Lauderdale, Kelli; Murphy, Thomas; Tung, Tina; Davila, David; Binder, Devin K.

    2015-01-01

    Cellular edema (cell swelling) is a principal component of numerous brain disorders including ischemia, cortical spreading depression, hyponatremia, and epilepsy. Cellular edema increases seizure-like activity in vitro and in vivo, largely through nonsynaptic mechanisms attributable to reduction of the extracellular space. However, the types of excitability changes occurring in individual neurons during the acute phase of cell volume increase remain unclear. Using whole-cell patch clamp techniques, we report that one of the first effects of osmotic edema on excitability of CA1 pyramidal cells is the generation of slow inward currents (SICs), which initiate after approximately 1 min. Frequency of SICs increased as osmolarity decreased in a dose-dependent manner. Imaging of real-time volume changes in astrocytes revealed that neuronal SICs occurred while astrocytes were still in the process of swelling. SICs evoked by cell swelling were mainly nonsynaptic in origin and NMDA receptor-dependent. To better understand the relationship between SICs and changes in neuronal excitability, recordings were performed in increasingly physiological conditions. In the absence of any added pharmacological reagents or imposed voltage clamp, osmotic edema induced excitatory postsynaptic potentials and burst firing over the same timecourse as SICs. Like SICs, action potentials were blocked by NMDAR antagonists. Effects were more pronounced in adult (8–20 weeks old) compared with juvenile (P15–P21) mice. Together, our results indicate that cell swelling triggered by reduced osmolarity rapidly increases neuronal excitability through activation of NMDA receptors. Our findings have important implications for understanding nonsynaptic mechanisms of epilepsy in relation to cell swelling and reduction of the extracellular space. PMID:26489684

  12. Control of βAR- and N-methyl-D-aspartate (NMDA) Receptor-Dependent cAMP Dynamics in Hippocampal Neurons.

    PubMed

    Chay, Andrew; Zamparo, Ilaria; Koschinski, Andreas; Zaccolo, Manuela; Blackwell, Kim T

    2016-02-01

    Norepinephrine, a neuromodulator that activates β-adrenergic receptors (βARs), facilitates learning and memory as well as the induction of synaptic plasticity in the hippocampus. Several forms of long-term potentiation (LTP) at the Schaffer collateral CA1 synapse require stimulation of both βARs and N-methyl-D-aspartate receptors (NMDARs). To understand the mechanisms mediating the interactions between βAR and NMDAR signaling pathways, we combined FRET imaging of cAMP in hippocampal neuron cultures with spatial mechanistic modeling of signaling pathways in the CA1 pyramidal neuron. Previous work implied that cAMP is synergistically produced in the presence of the βAR agonist isoproterenol and intracellular calcium. In contrast, we show that when application of isoproterenol precedes application of NMDA by several minutes, as is typical of βAR-facilitated LTP experiments, the average amplitude of the cAMP response to NMDA is attenuated compared with the response to NMDA alone. Models simulations suggest that, although the negative feedback loop formed by cAMP, cAMP-dependent protein kinase (PKA), and type 4 phosphodiesterase may be involved in attenuating the cAMP response to NMDA, it is insufficient to explain the range of experimental observations. Instead, attenuation of the cAMP response requires mechanisms upstream of adenylyl cyclase. Our model demonstrates that Gs-to-Gi switching due to PKA phosphorylation of βARs as well as Gi inhibition of type 1 adenylyl cyclase may underlie the experimental observations. This suggests that signaling by β-adrenergic receptors depends on temporal pattern of stimulation, and that switching may represent a novel mechanism for recruiting kinases involved in synaptic plasticity and memory. PMID:26901880

  13. Natural Variants of Photosystem II Subunit D1 Tune Photochemical Fitness to Solar Intensity*

    PubMed Central

    Vinyard, David J.; Gimpel, Javier; Ananyev, Gennady M.; Cornejo, Mario A.; Golden, Susan S.; Mayfield, Stephen P.; Dismukes, G. Charles

    2013-01-01

    Photosystem II (PSII) is composed of six core polypeptides that make up the minimal unit capable of performing the primary photochemistry of light-driven charge separation and water oxidation in all oxygenic phototrophs. The D1 subunit of this complex contains most of the ligating amino acid residues for the Mn4CaO5 core of the water-oxidizing complex (WOC). Most cyanobacteria have 3–5 copies of the psbA gene coding for at least two isoforms of D1, whereas algae and plants have only one isoform. Synechococcus elongatus PCC 7942 contains two D1 isoforms; D1:1 is expressed under low light conditions, and D1:2 is up-regulated in high light or stress conditions. Using a heterologous psbA expression system in the green alga Chlamydomonas reinhardtii, we have measured growth rate, WOC cycle efficiency, and O2 yield as a function of D1:1, D1:2, or the native algal D1 isoform. D1:1-PSII cells outcompete D1:2-PSII cells and accumulate more biomass in light-limiting conditions. However, D1:2-PSII cells easily outcompete D1:1-PSII cells at high light intensities. The native C. reinhardtii-PSII WOC cycles less efficiently at all light intensities and produces less O2 than either cyanobacterial D1 isoform. D1:2-PSII makes more O2 per saturating flash than D1:1-PSII, but it exhibits lower WOC cycling efficiency at low light intensities due to a 40% faster charge recombination rate in the S3 state. These functional advantages of D1:1-PSII and D1:2-PSII at low and high light regimes, respectively, can be explained by differences in predicted redox potentials of PSII electron acceptors that control kinetic performance. PMID:23271739

  14. Kinase-independent role of cyclin D1 in chromosomal instability and mammary tumorigenesis.

    PubMed

    Casimiro, Mathew C; Di Sante, Gabriele; Crosariol, Marco; Loro, Emanuele; Dampier, William; Ertel, Adam; Yu, Zuoren; Saria, Elizabeth A; Papanikolaou, Alexandros; Li, Zhiping; Wang, Chenguang; Addya, Sankar; Lisanti, Michael P; Fortina, Paolo; Cardiff, Robert D; Tozeren, Aydin; Knudsen, Erik S; Arnold, Andrew; Pestell, Richard G

    2015-04-20

    Cyclin D1 is an important molecular driver of human breast cancer but better understanding of its oncogenic mechanisms is needed, especially to enhance efforts in targeted therapeutics. Currently, pharmaceutical initiatives to inhibit cyclin D1 are focused on the catalytic component since the transforming capacity is thought to reside in the cyclin D1/CDK activity. We initiated the following study to directly test the oncogenic potential of catalytically inactive cyclin D1 in an in vivo mouse model that is relevant to breast cancer. Herein, transduction of cyclin D1(-/-) mouse embryonic fibroblasts (MEFs) with the kinase dead KE mutant of cyclin D1 led to aneuploidy, abnormalities in mitotic spindle formation, autosome amplification, and chromosomal instability (CIN) by gene expression profiling. Acute transgenic expression of either cyclin D1(WT) or cyclin D1(KE) in the mammary gland was sufficient to induce a high CIN score within 7 days. Sustained expression of cyclin D1(KE) induced mammary adenocarcinoma with similar kinetics to that of the wild-type cyclin D1. ChIP-Seq studies demonstrated recruitment of cyclin D1(WT) and cyclin D1(KE) to the genes governing CIN. We conclude that the CDK-activating function of cyclin D1 is not necessary to induce either chromosomal instability or mammary tumorigenesis. PMID:25940700

  15. Amphetamine elevates phosphorylation of eukaryotic initiation factor 2α (eIF2α) in the rat forebrain via activating dopamine D1 and D2 receptors.

    PubMed

    Xue, Bing; Fitzgerald, Cole A; Jin, Dao-Zhong; Mao, Li-Min; Wang, John Q

    2016-09-01

    Psychostimulants have an impact on protein synthesis, although underlying molecular mechanisms are unclear. Eukaryotic initiation factor 2α-subunit (eIF2α) is a key player in initiation of protein translation and is regulated by phosphorylation. While this factor is sensitive to changing synaptic input and is critical for synaptic plasticity, its sensitivity to stimulants is poorly understood. Here we systematically characterized responses of eIF2α to a systemic administration of the stimulant amphetamine (AMPH) in dopamine responsive regions of adult rat brains. Intraperitoneal injection of AMPH at 5mg/kg increased eIF2α phosphorylation at serine 51 in the striatum. This increase was transient. In the medial prefrontal cortex (mPFC), AMPH induced a relatively delayed phosphorylation of the factor. Pretreatment with a dopamine D1 receptor antagonist SCH23390 blocked the AMPH-stimulated eIF2α phosphorylation in both the striatum and mPFC. Similarly, a dopamine D2 receptor antagonist eticlopride reduced the effect of AMPH in the two regions. Two antagonists alone did not alter basal eIF2α phosphorylation. AMPH and two antagonists did not change the amount of total eIF2α proteins in both regions. These results demonstrate the sensitivity of eIF2α to stimulant exposure. AMPH possesses the ability to stimulate eIF2α phosphorylation in striatal and mPFC neurons in vivo in a D1 and D2 receptor-dependent manner. PMID:27338925

  16. 26 CFR 1.45D-1 - New markets tax credit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 1 2011-04-01 2009-04-01 true New markets tax credit. 1.45D-1 Section 1.45D-1... Computing Credit for Investment in Certain Depreciable Property § 1.45D-1 New markets tax credit. (a) Table... of new markets tax credit (B) Recapture event (ii) CDE reporting requirements to Secretary...

  17. 26 CFR 1.45D-1 - New markets tax credit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 1 2010-04-01 2010-04-01 true New markets tax credit. 1.45D-1 Section 1.45D-1... Computing Credit for Investment in Certain Depreciable Property § 1.45D-1 New markets tax credit. (a) Table... of new markets tax credit (B) Recapture event (ii) CDE reporting requirements to Secretary...

  18. 26 CFR 1.415(d)-1 - Cost-of-living adjustments.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 5 2012-04-01 2011-04-01 true Cost-of-living adjustments. 1.415(d)-1 Section 1.415(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Pension, Profit-Sharing, Stock Bonus Plans, Etc. § 1.415(d)-1...

  19. 17 CFR 240.12d1-1 - Registration effective as to class or series.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... class or series. 240.12d1-1 Section 240.12d1-1 Commodity and Securities Exchanges SECURITIES AND... Registration § 240.12d1-1 Registration effective as to class or series. (a) An application filed pursuant to... of additional shares or amounts. (d) If a class of security is issuable in two or more series...

  20. 17 CFR 240.12d1-1 - Registration effective as to class or series.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... class or series. 240.12d1-1 Section 240.12d1-1 Commodity and Securities Exchanges SECURITIES AND... Registration § 240.12d1-1 Registration effective as to class or series. (a) An application filed pursuant to... of additional shares or amounts. (d) If a class of security is issuable in two or more series...

  1. 26 CFR 1.1033(d)-1 - Destruction or disposition of livestock because of disease.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of disease. 1.1033(d)-1 Section 1.1033(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF... § 1.1033(d)-1 Destruction or disposition of livestock because of disease. (a) The destruction... account of, disease, or the sale or exchange, in such a year, of livestock because of disease, shall...

  2. 26 CFR 1.1033(d)-1 - Destruction or disposition of livestock because of disease.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... of disease. 1.1033(d)-1 Section 1.1033(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF... § 1.1033(d)-1 Destruction or disposition of livestock because of disease. (a) The destruction... account of, disease, or the sale or exchange, in such a year, of livestock because of disease, shall...

  3. 26 CFR 1.1033(d)-1 - Destruction or disposition of livestock because of disease.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... of disease. 1.1033(d)-1 Section 1.1033(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF... § 1.1033(d)-1 Destruction or disposition of livestock because of disease. (a) The destruction... account of, disease, or the sale or exchange, in such a year, of livestock because of disease, shall...

  4. 26 CFR 1.1033(d)-1 - Destruction or disposition of livestock because of disease.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of disease. 1.1033(d)-1 Section 1.1033(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF... § 1.1033(d)-1 Destruction or disposition of livestock because of disease. (a) The destruction... account of, disease, or the sale or exchange, in such a year, of livestock because of disease, shall...

  5. 26 CFR 1.6050D-1 - Information returns relating to energy grants and financing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 13 2010-04-01 2010-04-01 false Information returns relating to energy grants and financing. 1.6050D-1 Section 1.6050D-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Information Returns § 1.6050D-1 Information returns relating to energy grants...

  6. 26 CFR 1.167(d)-1 - Agreement as to useful life and rates of depreciation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... depreciation. 1.167(d)-1 Section 1.167(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... and Corporations § 1.167(d)-1 Agreement as to useful life and rates of depreciation. After August 16... respect to the estimated useful life, method and rate of depreciation and treatment of salvage of...

  7. ATM is required for rapid degradation of cyclin D1 in response to {gamma}-irradiation

    SciTech Connect

    Choo, Dong Wan; Baek, Hye Jung; Motoyama, Noboru; Cho, Kwan Ho; Kim, Hye Sun; Kim, Sang Soo

    2009-01-23

    The cellular response to DNA damage induced by {gamma}-irradiation activates cell-cycle arrest to permit DNA repair and to prevent replication. Cyclin D1 is the key molecule for transition between the G1 and S phases of the cell-cycle, and amplification or overexpression of cyclin D1 plays pivotal roles in the development of several human cancers. To study the regulation of cyclin D1 in the DNA-damaged condition, we analyzed the proteolytic regulation of cyclin D1 expression upon {gamma}-irradiation. Upon {gamma}-irradiation, a rapid reduction in cyclin D1 levels was observed prior to p53 stabilization, indicating that the stability of cyclin D1 is controlled in a p53-independent manner. Further analysis revealed that irradiation facilitated ubiquitination of cyclin D1 and that a proteasome inhibitor blocked cyclin D1 degradation under the same conditions. Interestingly, after mutation of threonine residue 286 of cyclin D1, which is reported to be the GSK-3{beta} phosphorylation site, the mutant protein showed resistance to irradiation-induced proteolysis although inhibitors of GSK-3{beta} failed to prevent cyclin D1 degradation. Rather, ATM inhibition markedly prevented cyclin D1 degradation induced by {gamma}-irradiation. Our data indicate that communication between ATM and cyclin D1 may be required for maintenance of genomic integrity achieved by rapid arrest of the cell-cycle, and that disruption of this crosstalk may increase susceptibility to cancer.

  8. Agonist-induced desensitization of dopamine D1 receptor-stimulated adenylyl cyclase activity is temporally and biochemically separated from D1 receptor internalization.

    PubMed Central

    Ng, G Y; Trogadis, J; Stevens, J; Bouvier, M; O'Dowd, B F; George, S R

    1995-01-01

    The regulation of the dopamine D1 receptor was investigated by using c-myc epitope-tagged D1 receptors expressed in Sf9 (fall armyworm ovary) cells. Treatment of D1 receptors with 10 microM dopamine for 15 min led to a loss of the dopamine-detected high-affinity state of the receptor accompanying a 40% reduction in the ability of the receptor to mediate maximal dopamine stimulation of adenylyl cyclase activity. After 60 min of agonist exposure, 45 min after the occurrence of desensitization, 28% of the cell surface receptors were internalized into an intracellular light vesicular membrane fraction as determined by radioligand binding and supported by photoaffinity labeling, immunocytochemical staining, and immunoblot analysis. Pretreatment of cells with concanavalin A or sucrose completely blocked agonist-induced D1 receptor internalization without preventing agonist-induced desensitization, indicating a biochemical separation of these processes. Collectively, these findings indicate that the desensitization of D1 receptor-coupled adenylyl cyclase activity and D1 receptor internalization are temporarily and biochemically distinct mechanisms regulating D1 receptor function following agonist activation. Images Fig. 2 Fig. 3 PMID:7479745

  9. Methoxychlor and triclosan stimulates ovarian cancer growth by regulating cell cycle- and apoptosis-related genes via an estrogen receptor-dependent pathway.

    PubMed

    Kim, Joo-Young; Yi, Bo-Rim; Go, Ryeo-Eun; Hwang, Kyung-A; Nam, Ki-Hoan; Choi, Kyung-Chul

    2014-05-01

    Methoxychlor and triclosan are emergent or suspected endocrine-disrupting chemicals (EDCs). Methoxychlor [MXC; 1,1,1-trichlor-2,2-bis (4-methoxyphenyl) ethane] is an organochlorine pesticide that has been primarily used since dichlorodiphenyltrichloroethane (DDT) was banned. In addition, triclosan (TCS) is used as a common component of soaps, deodorants, toothpastes, and other hygiene products at concentrations up to 0.3%. In the present study, the potential impact of MXC and TCS on ovarian cancer cell growth and underlying mechanism(s) was examined following their treatments in BG-1 ovarian cancer cells. As results, MXC and TCS induced BG-1 cell growth via regulating cyclin D1, p21 and Bax genes related with cell cycle and apoptosis. A methylthiazolyldiphenyl-tetrazolium bromide (MTT) assay confirmed that the proliferation of BG-1 ovarian cancer cells was stimulated by MXC (10(-6), 10(-7), 10(-8), and 10(-9)M) or TCS (10(-6), 10(-7), 10(-8), and 10(-9)M). Treatment of BG-1 cells with MXC or TCS resulted in the upregulation of cyclin D1 and downregulation of p21 and Bax transcriptions. In addition, the protein level of cyclin D1 was increased by MXC or TCS while p21 and Bax protein levels appeared to be reduced in these cells. Furthermore, MXC- or TCS-induced alterations of these genes were reversed in the presence of ICI 182,780 (10(-7)M), suggesting that the changes in these gene expressions may be regulated by an ER-dependent signaling pathway. In conclusion, the results of our investigation indicate that two potential EDCs, MXC and TCS, may stimulate ovarian cancer growth by regulating cell cycle- and apoptosis-related genes via an ER-dependent pathway.

  10. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum).

    PubMed

    Zikhali, Meluleki; Wingen, Luzie U; Griffiths, Simon

    2016-01-01

    Earliness per se (Eps) genes account for the variation in flowering time when vernalization and photoperiod requirements are satisfied. Genomics and bioinformatics approaches were used to describe allelic variation for 40 Triticum aestivum genes predicted, by synteny with Brachypodium distachyon, to be in the 1DL Eps region. Re-sequencing 1DL genes revealed that varieties carrying early heading alleles at this locus, Spark and Cadenza, carry a subtelomeric deletion including several genes. The equivalent region in Rialto and Avalon is intact. A bimodal distribution in the segregating Spark X Rialto single seed descent (SSD) populations enabled the 1DL QTL to be defined as a discrete Mendelian factor, which we named Eps-D1. Near isogenic lines (NILs) and NIL derived key recombinants between markers flanking Eps-D1 suggest that the 1DL deletion contains the gene(s) underlying Eps-D1. The deletion spans the equivalent of the Triticum monoccocum Eps-A (m) 1 locus, and hence includes MODIFIER OF TRANSCRIPTION 1 (MOT1) and FTSH PROTEASE 4 (FTSH4), the candidates for Eps-A (m) 1. The deletion also contains T. aestivum EARLY FLOWERING 3-D1 (TaELF3-D1) a homologue of the Arabidopsis thaliana circadian clock gene EARLY FLOWERING 3. Eps-D1 is possibly a homologue of Eps-B1 on chromosome 1BL. NILs carrying the Eps-D1 deletion have significantly reduced total TaELF3 expression and altered TaGIGANTEA (TaGI) expression compared with wild type. Altered TaGI expression is consistent with an ELF3 mutant, hence we propose TaELF3-D1 as the more likely candidate for Eps-D1. This is the first direct fine mapping of Eps effect in bread wheat.

  11. Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum)

    PubMed Central

    Zikhali, Meluleki; Wingen, Luzie U.; Griffiths, Simon

    2016-01-01

    Earliness per se (Eps) genes account for the variation in flowering time when vernalization and photoperiod requirements are satisfied. Genomics and bioinformatics approaches were used to describe allelic variation for 40 Triticum aestivum genes predicted, by synteny with Brachypodium distachyon, to be in the 1DL Eps region. Re-sequencing 1DL genes revealed that varieties carrying early heading alleles at this locus, Spark and Cadenza, carry a subtelomeric deletion including several genes. The equivalent region in Rialto and Avalon is intact. A bimodal distribution in the segregating Spark X Rialto single seed descent (SSD) populations enabled the 1DL QTL to be defined as a discrete Mendelian factor, which we named Eps-D1. Near isogenic lines (NILs) and NIL derived key recombinants between markers flanking Eps-D1 suggest that the 1DL deletion contains the gene(s) underlying Eps-D1. The deletion spans the equivalent of the Triticum monoccocum Eps-A m 1 locus, and hence includes MODIFIER OF TRANSCRIPTION 1 (MOT1) and FTSH PROTEASE 4 (FTSH4), the candidates for Eps-A m 1. The deletion also contains T. aestivum EARLY FLOWERING 3-D1 (TaELF3-D1) a homologue of the Arabidopsis thaliana circadian clock gene EARLY FLOWERING 3. Eps-D1 is possibly a homologue of Eps-B1 on chromosome 1BL. NILs carrying the Eps-D1 deletion have significantly reduced total TaELF3 expression and altered TaGIGANTEA (TaGI) expression compared with wild type. Altered TaGI expression is consistent with an ELF3 mutant, hence we propose TaELF3-D1 as the more likely candidate for Eps-D1. This is the first direct fine mapping of Eps effect in bread wheat. PMID:26476691

  12. Effects of D1 receptor knockout on fear and reward learning.

    PubMed

    Abraham, Antony D; Neve, Kim A; Lattal, K Matthew

    2016-09-01

    Dopamine signaling is involved in a variety of neurobiological processes that contribute to learning and memory. D1-like dopamine receptors (including D1 and D5 receptors) are thought to be involved in memory and reward processes, but pharmacological approaches have been limited in their ability to distinguish between D1 and D5 receptors. Here, we examine the effects of a specific knockout of D1 receptors in associative learning tasks involving aversive (shock) or appetitive (cocaine) unconditioned stimuli. We find that D1 knockout mice show similar levels of cued and contextual fear conditioning to WT controls following conditioning protocols involving one, two, or four shocks. D1 knockout mice show increased generalization of fear conditioning and extinction across contexts, revealed as increased freezing to a novel context following conditioning and decreased freezing to an extinguished cue during a contextual renewal test. Further, D1 knockout mice show mild enhancements in extinction following an injection of SKF81297, a D1/D5 receptor agonist, suggesting a role for D5 receptors in extinction enhancements induced by nonspecific pharmacological agonists. Finally, although D1 knockout mice show decreased locomotion induced by cocaine, they are able to form a cocaine-induced conditioned place preference. We discuss these findings in terms of the role of dopamine D1 receptors in general learning and memory processes. PMID:27423521

  13. 17(R)-resolvin D1 ameliorates bleomycin-induced pulmonary fibrosis in mice.

    PubMed

    Yatomi, Masakiyo; Hisada, Takeshi; Ishizuka, Tamotsu; Koga, Yasuhiko; Ono, Akihiro; Kamide, Yosuke; Seki, Kaori; Aoki-Saito, Haruka; Tsurumaki, Hiroaki; Sunaga, Noriaki; Kaira, Kyoichi; Dobashi, Kunio; Yamada, Masanobu; Okajima, Fumikazu

    2015-12-01

    Idiopathic pulmonary fibrosis (IPF) is a destructive inflammatory disease with limited therapeutic options. Inflammation plays an integral role in the development of pulmonary fibrosis. Unresolved inflammatory responses can lead to substantial tissue injury, chronic inflammation, and fibrosis. The resolvins are a family of endogenous ω-3 fatty acid derived-lipid mediators of inflammation resolution. Resolvin D1 (RvD1) displays potent anti-inflammatory, pro-resolving activity, without causing immunosuppression. Its epimer, 17(R)-resolvin D1 (17(R)-RvD1), exhibits equivalent functionality to RvD1. In addition, 17(R)-RvD1 is resistant to rapid inactivation by eicosanoid oxidoreductases. In the present study, we tested the hypothesis that 17(R)-RvD1 can provide a therapeutic benefit in IPF by reducing inflammation and pulmonary fibrosis, while leaving the normal immune response intact. Mice were exposed to bleomycin (BLM) via micro-osmotic pump to induce pulmonary fibrosis, and were then treated with 17(R)-RvD1 or vehicle by intraperitoneal injection. Administration of 17(R)-RvD1 from the start of BLM treatment attenuated neutrophil alveolar infiltration, lung collagen content, and Interleukin-1β (IL-1β), transforming growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), and type I collagen mRNA expression, along with subsequent reduction in histologically detectable fibrosis. The 17(R)-RvD1-induced infiltration of inflammatory cells was inhibited by an antagonist of lipoxin A4 receptor/formyl peptide receptor 2 (ALX/FPR2). The administration of 17(R)-RvD1 at the later fibrotic stage also improved the lung failure. These results suggest that 17(R)-RvD1 attenuates pulmonary fibrosis by promoting the resolution of neutrophilic inflammation and also provides pulmonary restoration. These data highlight the therapeutic potential of 17(R)-RvD1 in the management of this intractable disease. PMID:26660549

  14. Resolvin D1 prevents smoking-induced emphysema and promotes lung tissue regeneration

    PubMed Central

    Kim, Kang-Hyun; Park, Tai Sun; Kim, You-Sun; Lee, Jae Seung; Oh, Yeon-Mok; Lee, Sang-Do; Lee, Sei Won

    2016-01-01

    Purpose Emphysema is an irreversible disease that is characterized by destruction of lung tissue as a result of inflammation caused by smoking. Resolvin D1 (RvD1), derived from docosahexaenoic acid, is a novel lipid that resolves inflammation. The present study tested whether RvD1 prevents smoking-induced emphysema and promotes lung tissue regeneration. Materials and methods C57BL/6 mice, 8 weeks of age, were randomly divided into four groups: control, RvD1 only, smoking only, and smoking with RvD1 administration. Four different protocols were used to induce emphysema and administer RvD1: mice were exposed to smoking for 4 weeks with poly(I:C) or to smoking only for 24 weeks, and RvD1 was injected within the smoking exposure period to prevent regeneration or after completion of smoking exposure to assess regeneration. The mean linear intercept and inflammation scores were measured in the lung tissue, and inflammatory cells and cytokines were measured in the bronchoalveolar lavage fluid. Results Measurements of mean linear intercept showed that RvD1 significantly attenuated smoking-induced lung destruction in all emphysema models. RvD1 also reduced smoking-induced inflammatory cell infiltration, which causes the structural derangements observed in emphysema. In the 4-week prevention model, RvD1 reduced the smoking-induced increase in eosinophils and interleukin-6 in the bronchoalveolar lavage fluid. In the 24-week prevention model, RvD1 also reduced the increased neutrophils and total cell counts induced by smoking. Conclusion RvD1 attenuated smoking-induced emphysema in vivo by reducing inflammation and promoting tissue regeneration. This result suggests that RvD1 may be useful in the prevention and treatment of emphysema. PMID:27313451

  15. Cocaine Disrupts Histamine H3 Receptor Modulation of Dopamine D1 Receptor Signaling: σ1-D1-H3 Receptor Complexes as Key Targets for Reducing Cocaine's Effects

    PubMed Central

    Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Hoffmann, Hanne M.; Fuentes, Silvia; Rosell-Vilar, Santi; Gasperini, Paola; Rodríguez-Ruiz, Mar; Medrano, Mireia; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ferré, Sergi; Ortiz, Jordi; Canela, Enric

    2014-01-01

    The general effects of cocaine are not well understood at the molecular level. What is known is that the dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine's blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits β-arrestin, increases p-ERK 1/2 levels, and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine. PMID:24599455

  16. Dopamine D(1) receptor deletion strongly reduces neurotoxic effects of methamphetamine.

    PubMed

    Ares-Santos, S; Granado, N; Oliva, I; O'Shea, E; Martin, E D; Colado, M I; Moratalla, R

    2012-02-01

    Methamphetamine (METH) is a potent, highly addictive psychostimulant consumed worldwide. In humans and experimental animals, repeated exposure to this drug induces persistent neurodegenerative changes. Damage occurs primarily to dopaminergic neurons, accompanied by gliosis. The toxic effects of METH involve excessive dopamine (DA) release, thus DA receptors are highly likely to play a role in this process. To define the role of D(1) receptors in the neurotoxic effects of METH we used D(1) receptor knock-out mice (D(1)R(-/-)) and their WT littermates. Inactivation of D(1)R prevented METH-induced dopamine fibre loss and hyperthermia, and increases in gliosis and pro-inflammatory molecules such as iNOS in the striatum. In addition, D(1)R inactivation prevented METH-induced loss of dopaminergic neurons in the substantia nigra. To explore the relationship between hyperthermia and neurotoxicity, METH was given at high ambient temperature (29 °C). In this condition, D(1)R(-/-) mice developed hyperthermia following drug delivery and the neuroprotection provided by D(1)R inactivation at 23 °C was no longer observed. However, reserpine, which empties vesicular dopamine stores, blocked hyperthermia and strongly potentiated dopamine toxicity in D(1)R(-/-) mice, suggesting that the protection afforded by D(1)R inactivation is due to both hypothermia and higher stored vesicular dopamine. Moreover, electrical stimulation evoked higher DA overflow in D(1)R(-/-) mice as demonstrated by fast scan cyclic voltammetry despite their lower basal DA content, suggesting higher vesicular DA content in D(1)R(-/-) than in WT mice. Altogether, these results indicate that the D(1)R plays a significant role in METH-induced neurotoxicity by mediating drug-induced hyperthermia and increasing the releasable cytosolic DA pool.

  17. Desensitization, phosphorylation and palmitoylation of the human dopamine D1 receptor.

    PubMed

    Ng, G Y; Mouillac, B; George, S R; Caron, M; Dennis, M; Bouvier, M; O'Dowd, B F

    1994-03-15

    The regulation and post-translational modifications of the human dopamine D1 receptor were studied in the baculovirus-eukaryotic cell expression system. Baculovirus constructs containing either the DNA encoding the dopamine D1 receptor or a DNA encoding a c-myc epitope tagged dopamine D1 receptor (c-myc-dopamine D1 receptor) were used to infect Spodoptera frugiperda (Sf9) insect cells. Expressed dopamine D1 and c-myc-dopamine D1 receptors bound agonists and antagonists with affinities and a rank order of potency characteristic of a classical dopamine D1 receptor pharmacological profile. In membrane preparations from cells expressing c-myc-dopamine D1 receptor, the photoaffinity label [125I](3-methyl-2-[4'-azidophenyl]-2,3,5-tetrahydro-2H-3-benzazepine) ([125I]MAB) bound specifically upon photolysis. A major broad band of approximately 48 kDa was detected. This species was identified in immunoblots by the monoclonal antibody raised against the c-myc epitope of c-myc-dopamine D1 receptor was isolated by immunoprecipitation from whole cells and was shown to be post-translationally modified by phosphorylation and palmitoylation. Exposure of cells expressing c-myc-dopamine D1 receptor to dopamine for 15 min resulted in a reduction in the maximal dopamine stimulated adenylyl cyclase activity, which was accompanied by an increased phosphorylation of the receptor and a rapid redistribution of surface c-myc-dopamine D1 receptor as detected by in situ immunofluorescence. Dopamine exposure also resulted in an increased level of incorporation of [3H]palmitic acid into the receptor. Thus, we provide the first evidence that the human dopamine D1 receptor undergoes agonist-dependent desensitization, phosphorylation and palmitoylation.

  18. Dopamine D1 Receptor Signaling: Does GαQ–Phospholipase C Actually Play a Role?

    PubMed Central

    Lee, Sang-Min; Yang, Yang

    2014-01-01

    Despite numerous studies showing therapeutic potential, no central dopamine D1 receptor ligand has ever been approved, because of potential limitations, such as hypotension, seizures, and tolerance. Functional selectivity has been widely recognized as providing a potential mechanism to develop novel therapeutics from existing targets, and a highly biased, functionally selective D1 ligand might overcome some of the past limitations. SKF-83959 [6-chloro-3-methyl-1-(m-tolyl)-2,3,4,5-tetrahydro-1H-benzo[d]azepine-7,8-diol] is reported to be a highly biased D1 ligand, having full agonism at D1-mediated activation of phospholipase C (PLC) signaling (via GαQ) and antagonism at D1-mediated adenylate cyclase signaling (via GαOLF/S). For this reason, numerous studies have used this compound to elucidate the physiologic role of D1-PLC signaling, including a novel molecular mechanism (GαQ-PLC activation via D1-D2 heterodimers). There is, however, contradictory literature that suggests that SKF-83959 is actually a partial agonist at both D1-mediated adenylate cyclase and β-arrestin recruitment. Moreover, the D1-mediated PLC stimulation has also been questioned. This Minireview examines 30 years of relevant literature and proposes that the data strongly favor alternate hypotheses: first, that SKF-83959 is a typical D1 partial agonist; and second, that the reported activation of PLC by SKF-83959 and related benzazepines likely is due to off-target effects, not actions at D1 receptors. If these hypotheses are supported by future studies, it would suggest that caution should be used regarding the role of PLC and downstream pathways in D1 signaling. PMID:25052835

  19. Overexpression of PRL7D1 in Leydig Cells Causes Male Reproductive Dysfunction in Mice.

    PubMed

    Liu, Yaping; Su, Xingyu; Hao, Jie; Chen, Maoxin; Liu, Weijia; Liao, Xiaogang; Li, Gang

    2016-01-01

    Prolactin family 7, subfamily d, member 1 (PRL7D1) is found in mouse placenta. Our recent work showed that PRL7D1 is also present in mouse testis Leydig cells, and the expression of PRL7D1 in the testis exhibits an age-related increase. In the present study, we generated transgenic mice with Leydig cell-specific PRL7D1 overexpression to explore its function during male reproduction. Prl7d1 male mice exhibited subfertility as reflected by reduced sperm counts and litter sizes. The testes from Prl7d1 transgenic mice appeared histologically normal, but the frequency of apoptotic germ cells was increased. Prl7d1 transgenic mice also had lower testosterone concentrations than wild-type mice. Mechanistic studies revealed that Prl7d1 transgenic mice have defects in the testicular expression of steroidogenic acute regulatory protein (STAR) and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase cluster (HSD3B). Further studies revealed that PRL7D1 overexpression affected the expression of transferrin (TF) in Sertoli cells. These results suggest that PRL7D1 overexpression could lead to increased germ cell apoptosis and exert an inhibitory effect on testosterone production in Leydig cells by reducing the expression of certain steroidogenic-related genes. In addition, PRL7D1 appears to have important roles in the function of Sertoli cells, which, in turn, affects male fertility. We conclude that the expression level of PRL7D1 is associated with the reproductive function of male mice. PMID:26771609

  20. Hypoallergenic derivatives of Fel d 1 obtained by rational reassembly for allergy vaccination and tolerance induction

    PubMed Central

    Curin, M.; Weber, M.; Thalhamer, T.; Swoboda, I.; Focke-Tejkl, M.; Blatt, K.; Valent, P.; Marth, K.; Garmatiuk, T.; Grönlund, H.; Thalhamer, J.; Spitzauer, S.; Valenta, R.

    2015-01-01

    Summary Background and objective The major cat allergen Fel d 1 represents one of the most important respiratory allergens. Aim of this study was to engineer recombinant Fel d 1 derivatives with reduced IgE reactivity and preserved T cell epitopes for vaccination and tolerance induction. Methods Seven recombinant mosaic proteins were generated by reassembly of non-IgE-reactive peptides of Fel d 1 which contained the sequence elements for induction of allergen-specific blocking IgG antibodies and T cell epitopes. Mosaic proteins were expressed in Escherichia coli using codon-optimized synthetic genes and compared with Fel d 1 regarding structural fold by circular dichroism, IgE-binding capacity, activation of allergic patients’ basophils and ability to induce allergen-specific blocking IgG antibodies upon immunization. Results Although each of the mosaic proteins had lost the alpha-helical fold typical for Fel d 1, a strong reduction in IgE reactivity as well as allergenic activity in basophil activation assays was only obtained for three constructs, two reassembled fragments (Fel d 1 MB, Fel d 1 MC) and a fusion of the latter two (Fel d 1 MF) in which the cysteines of Fel d 1 MC were replaced by serines. Immunization of rabbits with Fel d 1 MB, MC and MF induced high levels of IgG antibodies that inhibited IgE reactivity of cat-allergic patients to Fel d 1 in a comparable manner as IgG induced with the wild-type allergen. Conclusions We report the development of hypoallergenic reassembled Fel d 1 proteins suitable for vaccination and tolerance induction in cat-allergic patients. PMID:24552249

  1. Overexpression of PRL7D1 in Leydig Cells Causes Male Reproductive Dysfunction in Mice.

    PubMed

    Liu, Yaping; Su, Xingyu; Hao, Jie; Chen, Maoxin; Liu, Weijia; Liao, Xiaogang; Li, Gang

    2016-01-13

    Prolactin family 7, subfamily d, member 1 (PRL7D1) is found in mouse placenta. Our recent work showed that PRL7D1 is also present in mouse testis Leydig cells, and the expression of PRL7D1 in the testis exhibits an age-related increase. In the present study, we generated transgenic mice with Leydig cell-specific PRL7D1 overexpression to explore its function during male reproduction. Prl7d1 male mice exhibited subfertility as reflected by reduced sperm counts and litter sizes. The testes from Prl7d1 transgenic mice appeared histologically normal, but the frequency of apoptotic germ cells was increased. Prl7d1 transgenic mice also had lower testosterone concentrations than wild-type mice. Mechanistic studies revealed that Prl7d1 transgenic mice have defects in the testicular expression of steroidogenic acute regulatory protein (STAR) and hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase cluster (HSD3B). Further studies revealed that PRL7D1 overexpression affected the expression of transferrin (TF) in Sertoli cells. These results suggest that PRL7D1 overexpression could lead to increased germ cell apoptosis and exert an inhibitory effect on testosterone production in Leydig cells by reducing the expression of certain steroidogenic-related genes. In addition, PRL7D1 appears to have important roles in the function of Sertoli cells, which, in turn, affects male fertility. We conclude that the expression level of PRL7D1 is associated with the reproductive function of male mice.

  2. Cooperation between Dmp1 Loss and Cyclin D1 Overexpression in Breast Cancer

    PubMed Central

    Zhu, Sinan; Mott, Ryan T.; Fry, Elizabeth A.; Taneja, Pankaj; Kulik, George; Sui, Guangchao; Inoue, Kazushi

    2014-01-01

    Cyclin D1 is a component of the core cell-cycle machinery and is frequently overexpressed in breast cancer. It physically interacts with the tumor suppressor Dmp1 that attenuates the oncogenic signals from Ras and HER2 by inducing Arf/p53-dependent cell-cycle arrest. Currently, the biological significance of Dmp1–cyclin D1 interplay in breast cancer has not been determined. Here, we show that cyclin D1 bound to Dmp1 to activate both Arf and Ink4a promoters and, consequently, induced apoptosis or G2/M cell-cycle delay in normal cells to protect them from neoplastic transformation. The cyclin D1–induced Ink4a/Arf gene expression was dependent on Dmp1 because the induction was not detected in Dmp1-deficient or DMP1-depleted cells. Arf/Ink4a expression was increased in pre-malignant mammary glands from Dmp1+/+;MMTV-cyclin D1 and Dmp1+/+;MMTV-D1T286A mice but significantly down-regulated in those from Dmp1-deficient mice. Selective Dmp1 deletion was found in 21% of the MMTV-D1 and D1T286A mammary carcinomas, and the Dmp1 heterozygous status significantly accelerated mouse mammary tumorigenesis with reduced apoptosis and increased metastasis. Overall, our study reveals a pivotal role of combined Dmp1 loss and cyclin D1 overexpression in breast cancer. PMID:23938323

  3. Proresolving and cartilage-protective actions of resolvin D1 in inflammatory arthritis

    PubMed Central

    Norling, Lucy V.; Headland, Sarah E.; Dalli, Jesmond; Arnardottir, Hildur H.; Haworth, Oliver; Jones, Hefin R.; Irimia, Daniel; Serhan, Charles N.; Perretti, Mauro

    2016-01-01

    Rheumatoid arthritis (RA) is a debilitating disease characterized by persistent accumulation of leukocytes within the articular cavity and synovial tissue. Metabololipidomic profiling of arthritic joints from omega-3 supplemented mice identified elevated levels of specialized proresolving lipid mediators (SPM) including resolvin D1 (RvD1). Profiling of human RA synovial fluid revealed physiological levels of RvD1, which — once applied to human neutrophils — attenuated chemotaxis. These results prompted analyses of the antiarthritic properties of RvD1 in a model of murine inflammatory arthritis. The stable epimer 17R-RvD1 (100 ng/day) significantly attenuated arthritis severity, cachexia, hind-paw edema, and paw leukocyte infiltration and shortened the remission interval. Metabololipidomic profiling in arthritic joints revealed 17R-RvD1 significantly reduced PGE2 biosynthesis, while increasing levels of protective SPM. Molecular analyses indicated that 17R-RvD1 enhanced expression of genes associated with cartilage matrix synthesis, and direct intraarticular treatment induced chondroprotection. Joint protective actions of 17R-RvD1 were abolished in RvD1 receptor–deficient mice termed ALX/fpr2/3−/−. These investigations open new therapeutic avenues for inflammatory joint diseases, providing mechanistic substance for the benefits of omega-3 supplementation in RA. PMID:27158677

  4. Calcineurin Regulates Cyclin D1 Accumulation in Growth-stimulated Fibroblasts

    PubMed Central

    Kahl, Christina R.; Means, Anthony R.

    2004-01-01

    Calcium (Ca2+) and calmodulin (CaM) are required for progression of mammalian cells from quiescence into S phase. In multiple cell types, cyclosporin A causes a G1 cell cycle arrest, implicating the serine/threonine phosphatase calcineurin as one Ca2+/CaM-dependent enzyme required for G1 transit. Here, we show, in diploid human fibroblasts, that cyclosporin A arrested cells in G1 before cyclin D/cdk4 complex activation and retinoblastoma hyperphosphorylation. This arrest occurred in early G1 with low levels of cyclin D1 protein. Because cyclin D1 mRNA was induced normally in the cyclosporin A-treated cells, we analyzed the half-life of cyclin D1 in the presence of cyclosporin A and found no difference from control cells. However, cyclosporin A treatment dramatically reduced cyclin D1 protein synthesis. Although these pharmacological experiments suggested that calcineurin regulates cyclin D1 synthesis, we evaluated the effects of overexpression of activated calcineurin on cyclin D1 synthesis. In contrast to the reduction of cyclin D1 with cyclosporin A, ectopic expression of calcium/calmodulin-independent calcineurin promoted synthesis of cyclin D1 during G1 progression. Therefore, calcineurin is a Ca2+/CaM-dependent target that regulates cyclin D1 accumulation in G1. PMID:14767060

  5. Phenotypical characterization of the rat striatal neurons expressing the D1 dopamine receptor gene.

    PubMed Central

    Le Moine, C; Normand, E; Bloch, B

    1991-01-01

    In situ hybridization experiments were performed in rat brain sections from normal and 6-hydroxydopamine-treated rats in order to map and identify the neurons expressing the D1 receptor gene in the striatum and the substantia nigra. Procedures of combined in situ hybridization, allowing the simultaneous detection of two mRNAs in the same section or in adjacent sections, were used to characterize the phenotypes of the neurons expressing the D1 receptor gene. D1 receptor mRNA was found in neurons all over the caudate-putamen, the accumbens nucleus, and the olfactory tubercle but not in the substantia nigra. In the caudate-putamen and accumbens nucleus, most of the neurons containing D1 receptor mRNA were characterized as medium-sized substance P neurons and distinct from those containing D2 receptor mRNA. Nevertheless, 15-20% of the substance P neurons did not contain D1 receptor mRNA. The neurons containing preproenkephalin A mRNA did not contain D1 receptor mRNA but contained D2 receptor mRNA. A small number of cholinergic and somatostatinergic neurons exhibited a weak reaction for D1 receptor mRNA. These results demonstrate that dopamine acts on efferent striatal neurons through expression of distinct receptors--namely, D1 and D2 in separate cell populations (substance P and preproenkephalin A neurons, respectively)--and can also act on nonprojecting neurons through D1 receptor expression. Images PMID:1827915

  6. Proresolving and cartilage-protective actions of resolvin D1 in inflammatory arthritis

    PubMed Central

    Norling, Lucy V.; Headland, Sarah E.; Arnardottir, Hildur H.; Haworth, Oliver; Jones, Hefin R.; Serhan, Charles N.

    2016-01-01

    Rheumatoid arthritis (RA) is a debilitating disease characterized by persistent accumulation of leukocytes within the articular cavity and synovial tissue. Metabololipidomic profiling of arthritic joints from omega-3 supplemented mice identified elevated levels of specialized proresolving lipid mediators (SPM) including resolvin D1 (RvD1). Profiling of human RA synovial fluid revealed physiological levels of RvD1, which — once applied to human neutrophils — attenuated chemotaxis. These results prompted analyses of the antiarthritic properties of RvD1 in a model of murine inflammatory arthritis. The stable epimer 17R-RvD1 (100 ng/day) significantly attenuated arthritis severity, cachexia, hind-paw edema, and paw leukocyte infiltration and shortened the remission interval. Metabololipidomic profiling in arthritic joints revealed 17R-RvD1 significantly reduced PGE2 biosynthesis, while increasing levels of protective SPM. Molecular analyses indicated that 17R-RvD1 enhanced expression of genes associated with cartilage matrix synthesis, and direct intraarticular treatment induced chondroprotection. Joint protective actions of 17R-RvD1 were abolished in RvD1 receptor–deficient mice termed ALX/fpr2/3–/–. These investigations open new therapeutic avenues for inflammatory joint diseases, providing mechanistic substance for the benefits of omega-3 supplementation in RA. PMID:27158677

  7. Expression and therapeutic targeting of dopamine receptor-1 (D1R) in breast cancer.

    PubMed

    Borcherding, D C; Tong, W; Hugo, E R; Barnard, D F; Fox, S; LaSance, K; Shaughnessy, E; Ben-Jonathan, N

    2016-06-16

    Patients with advanced breast cancer often fail to respond to treatment, creating a need to develop novel biomarkers and effective therapeutics. Dopamine (DA) is a catecholamine that binds to five G protein-coupled receptors. We discovered expression of DA type-1 receptors (D1Rs) in breast cancer, thereby identifying these receptors as novel therapeutic targets in this disease. Strong to moderate immunoreactive D1R expression was found in 30% of 751 primary breast carcinomas, and was associated with larger tumors, higher tumor grades, node metastasis and shorter patient survival. DA and D1R agonists, signaling through the cGMP/protein kinase G (PKG) pathway, suppressed cell viability, inhibited invasion and induced apoptosis in multiple breast cancer cell lines. Fenoldopam, a peripheral D1R agonist that does not penetrate the brain, dramatically suppressed tumor growth in two mouse models with D1R-expressing xenografts by increasing both necrosis and apoptosis. D1R-expressing primary tumors and metastases in mice were detected by fluorescence imaging. In conclusion, D1R overexpression is associated with advanced breast cancer and poor prognosis. Activation of the D1R/cGMP/PKG pathway induces apoptosis in vitro and causes tumor shrinkage in vivo. Fenoldopam, which is FDA (Food and Drug Administration) approved to treat renal hypertension, could be repurposed as a novel therapeutic agent for patients with D1R-expressing tumors.

  8. Exercise increases TBC1D1 phosphorylation in human skeletal muscle

    PubMed Central

    Jessen, Niels; An, Ding; Lihn, Aina S.; Nygren, Jonas; Hirshman, Michael F.; Thorell, Anders

    2011-01-01

    Exercise and weight loss are cornerstones in the treatment and prevention of type 2 diabetes, and both interventions function to increase insulin sensitivity and glucose uptake into skeletal muscle. Studies in rodents demonstrate that the underlying mechanism for glucose uptake in muscle involves site-specific phosphorylation of the Rab-GTPase-activating proteins AS160 (TBC1D4) and TBC1D1. Multiple kinases, including Akt and AMPK, phosphorylate TBC1D1 and AS160 on distinct residues, regulating their activity and allowing for GLUT4 translocation. In contrast to extensive rodent-based studies, the regulation of AS160 and TBC1D1 in human skeletal muscle is not well understood. In this study, we determined the effects of dietary intervention and a single bout of exercise on TBC1D1 and AS160 site-specific phosphorylation in human skeletal muscle. Ten obese (BMI 33.4 ± 2.4, M-value 4.3 ± 0.5) subjects were studied at baseline and after a 2-wk dietary intervention. Muscle biopsies were obtained from the subjects in the resting (basal) state and immediately following a 30-min exercise bout (70% V̇o2 max). Muscle lysates were analyzed for AMPK activity and Akt phosphorylation and for TBC1D1 and AS160 phosphorylation on known or putative AMPK and Akt sites as follows: AS160 Ser711 (AMPK), TBC1D1 Ser231 (AMPK), TBC1D1 Ser660 (AMPK), TBC1D1 Ser700 (AMPK), and TBC1D1 Thr590 (Akt). The diet intervention that consisted of a major shift in the macronutrient composition resulted in a 4.2 ± 0.4 kg weight loss (P < 0.001) and a significant increase in insulin sensitivity (M value 5.6 ± 0.6), but surprisingly, there was no effect on expression or phosphorylation of any of the muscle-signaling proteins. Exercise increased muscle AMPKα2 activity but did not increase Akt phosphorylation. Exercise increased phosphorylation on AS160 Ser711, TBC1D1 Ser231, and TBC1D1 Ser660 but had no effect on TBC1D1 Ser700. Exercise did not increase TBC1D1 Thr590 phosphorylation or TBC1D1/AS160 PAS

  9. Inhibition of the Dopamine D1 Receptor Signaling by PSD-95*◆

    PubMed Central

    Zhang, Jingping; Vinuela, Angel; Neely, Mark H.; Hallett, Penelope J.; Grant, Seth G. N.; Miller, Gregory M.; Isacson, Ole; Caron, Marc G.; Yao, Wei-Dong

    2008-01-01

    Dopamine D1 receptors play an important role in movement, reward, and learning and are implicated in a number of neurological and psychiatric disorders. These receptors are concentrated in dendritic spines of neurons, including the spine head and the postsynaptic density. D1 within spines is thought to modulate the local channels and receptors to control the excitability and synaptic properties of spines. The molecular mechanisms mediating D1 trafficking, anchorage, and function in spines remain elusive. Here we show that the synaptic scaffolding protein PSD-95 thought to play a role in stabilizing gluta-mate receptors in the postsynaptic density, interacts with D1 and regulates its trafficking and function. Interestingly, the D1-PSD-95 interaction does not require the well characterized domains of PSD-95 but is mediated by the carboxyl-terminal tail of D1 and the NH2terminus of PSD-95, a region that is recognized only recently to participate in protein-protein interaction. Co-expression of PSD-95 with D1 in mammalian cells inhibits the D1-mediated cAMP accumulation without altering the total expression level or the agonist binding properties of the receptor. The diminished D1 signaling is mediated by reduced D1 expression at the cell surface as a consequence of an enhanced constitutive, dynamin-dependent endocytosis. In addition, genetically engineered mice lacking PSD-95 show a heightened behavioral response to either a D1 agonist or the psychostimulant amphetamine. These studies demonstrate a role for a glutamatergic scaffold in dopamine receptor signaling and trafficking and identify a new potential target for the modulation of abnormal dopaminergic function. PMID:17369255

  10. Association of MyoD1a and MyoD1b gene polymorphisms and meat quality traits in rainbow trout.

    PubMed

    Chen, W X; Ma, Y; Liu, K H

    2015-08-07

    In this study, we identified myogenic regulatory factors (MRFs) and analyzed the correlation between MRFs and meat quality in rainbow trout. The MyoD1a and MyoD1b genes were cloned from rainbow trout using a homology cloning method. Introns 1 and 2 in the MyoD1a and MyoD1b genes were cloned and submitted to GenBank (accession Nos. FJ623462 and FJ793566). Polymorphisms of MyoD1a and MyoD1b genes were analyzed using single-strand conformation polymorphism and sequencing, respectively. Two single nucleotide polymorphisms were detected in the MyoD1 gene, located at 129G→A in exon 1 and 37 G→A in exon 2. The 37 G→A mutation in exon 2 induced the R185K amino acid change in the polypeptide chain. Seven single nucleotide polymorphisms in the MyoD2 gene were detected, including 218T→C, 224T→C, 242A→C, 246T→A, 248T→C, 305T→C, and 329C→T. The 246T→A mutation in exon 1 induced the R83K change in the polypeptide chain. In the S3 fragment, meat quality traits of genotypes AA and AB significantly differed from those of genotype BB (P < 0.05). In the S5 fragment, meat quality traits of the genotypes AA and AC were significantly different from the genotypes BB and BC (P < 0.05). These results indicate that the MyoD1a and MyoD1b genes have an important influence on meat quality or were linked to the major genes in these strains. These genes can be used to control muscle fiber traits in rainbow trout, and the mutations in the S3 and S5 fragments can be used as molecular markers for selecting rainbow trout with better meat quality traits.

  11. Dissociable hippocampal and amygdalar D1-like receptor contribution to discriminated Pavlovian conditioned approach learning.

    PubMed

    Andrzejewski, Matthew E; Ryals, Curtis

    2016-02-15

    Pavlovian conditioning is an elementary form of reward-related behavioral adaptation. The mesolimbic dopamine system is widely considered to mediate critical aspects of reward-related learning. For example, initial acquisition of positively-reinforced operant behavior requires dopamine (DA) D1 receptor (D1R) activation in the basolateral amygdala (BLA), central nucleus of the amygdala (CeA), and the ventral subiculum (vSUB). However, the role of D1R activation in these areas on appetitive, non-drug-related, Pavlovian learning is not currently known. In separate experiments, microinfusions of the D1-like receptor antagonist SCH-23390 (3.0 nmol/0.5 μL per side) into the amygdala and subiculum preceded discriminated Pavlovian conditioned approach (dPCA) training sessions. D1-like antagonism in all three structures impaired the acquisition of discriminated approach, but had no effect on performance after conditioning was asymptotic. Moreover, dissociable effects of D1-like antagonism in the three structures on components of discriminated responding were obtained. Lastly, the lack of latent inhibition in drug-treated groups may elucidate the role of D1-like in reward-related Pavlovian conditioning. The present data suggest a role for the D1 receptors in the amygdala and hippocampus in learning the significance of conditional stimuli, but not in the expression of conditional responses.

  12. 26 CFR 1.642(d)-1 - Net operating loss deduction.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 8 2010-04-01 2010-04-01 false Net operating loss deduction. 1.642(d)-1 Section... TAX (CONTINUED) INCOME TAXES Estates, Trusts, and Beneficiaries § 1.642(d)-1 Net operating loss deduction. The net operating loss deduction allowed by section 172 is available to estates and...

  13. 26 CFR 1.430(d)-1 - Determination of target normal cost and funding target.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 5 2014-04-01 2014-04-01 false Determination of target normal cost and funding target. 1.430(d)-1 Section 1.430(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... Determination of target normal cost and funding target. (a) In general—(1) Overview. This section sets...

  14. 26 CFR 1.430(d)-1 - Determination of target normal cost and funding target.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 5 2012-04-01 2011-04-01 true Determination of target normal cost and funding target. 1.430(d)-1 Section 1.430(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... Determination of target normal cost and funding target. (a) In general—(1) Overview. This section sets...

  15. 16 CFR Appendix D1 to Part 305 - Water Heaters-Gas

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Water Heaters-Gas D1 Appendix D1 to Part 305... Part 305—Water Heaters—Gas Range Information CAPACITY FIRST HOUR RATING Range of Estimated Annual Operating Costs (Dollars/Year) Natural Gas ($/year) Low High Propane ($/year) Low High Less than...

  16. 16 CFR Appendix D1 to Part 305 - Water Heaters-Gas

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Gas D1 Appendix D1 to Part 305... Part 305—Water Heaters—Gas Range Information CAPACITY FIRST HOUR RATING Range of Estimated Annual Operating Costs (Dollars/Year) Natural Gas ($/year) Low High Propane ($/year) Low High Less than...

  17. 26 CFR 48.4222(d)-1 - Registration in the case of certain other exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... procedure set forth in § 48.4222 (a)-1 also applies in the following cases: (a) Tax-free sales on or after... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Registration in the case of certain other exemptions. 48.4222(d)-1 Section 48.4222(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF...

  18. New cis-regulatory elements in the Rht-D1b locus region of wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fifteen gene-containing BACs with accumulated length of 1.82-Mb from the Rht-D1b locus region weresequenced and compared in detail with the orthologous regions of rice, sorghum, and maize. Our results show that Rht-D1b represents a conserved genomic region as implied by high gene sequence identity...

  19. 26 CFR 1.669(d)-1A - Total taxes deemed distributed.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 8 2014-04-01 2014-04-01 false Total taxes deemed distributed. 1.669(d)-1A...) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Treatment of Excess Distributions of Trusts Applicable to Taxable Years Beginning Before January 1, 1969 § 1.669(d)-1A Total taxes deemed distributed. (a) If...

  20. 26 CFR 1.1033(d)-1 - Destruction or disposition of livestock because of disease.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of disease. 1.1033(d)-1 Section 1.1033(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF... Destruction or disposition of livestock because of disease. (a) The destruction occurring in a taxable year to which the Internal Revenue Code of 1954 applies, of livestock by, or on account of, disease, or the...

  1. 26 CFR 48.4216(d)-1 - Sales of installment accounts.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 16 2010-04-01 2010-04-01 true Sales of installment accounts. 48.4216(d)-1... Manufacturers Taxes § 48.4216(d)-1 Sales of installment accounts. (a) In general. Except as provided in paragraph (d) of this section, in case of a sale or other disposition by a manufacturer, producer,...

  2. 26 CFR 48.4216(d)-1 - Sales of installment accounts.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 16 2012-04-01 2012-04-01 false Sales of installment accounts. 48.4216(d)-1... Manufacturers Taxes § 48.4216(d)-1 Sales of installment accounts. (a) In general. Except as provided in paragraph (d) of this section, in case of a sale or other disposition by a manufacturer, producer,...

  3. 26 CFR 48.4216(d)-1 - Sales of installment accounts.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 16 2011-04-01 2011-04-01 false Sales of installment accounts. 48.4216(d)-1... Manufacturers Taxes § 48.4216(d)-1 Sales of installment accounts. (a) In general. Except as provided in paragraph (d) of this section, in case of a sale or other disposition by a manufacturer, producer,...

  4. 26 CFR 48.4216(d)-1 - Sales of installment accounts.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 16 2013-04-01 2013-04-01 false Sales of installment accounts. 48.4216(d)-1... Manufacturers Taxes § 48.4216(d)-1 Sales of installment accounts. (a) In general. Except as provided in paragraph (d) of this section, in case of a sale or other disposition by a manufacturer, producer,...

  5. Resolvin D1 Polarizes Primary Human Macrophages toward a Proresolution Phenotype through GPR32.

    PubMed

    Schmid, Mattia; Gemperle, Claudio; Rimann, Nicole; Hersberger, Martin

    2016-04-15

    Resolvin D1 (RvD1) was shown to be a potent anti-inflammatory and proresolution lipid mediator in several animal models of inflammation, but its mechanism of action in humans is not clear. We show that the RvD1 receptor GPR32 is present on resting, proinflammatory M(LPS) and alternatively activated primary human M(IL-4) macrophages, whereas TGF-β and IL-6 reduce its membrane expression. Accordingly, stimulation of resting primary human macrophages with 10 nM RvD1 for 48 h maximally reduced the secretion of the proinflammatory cytokines IL-1β and IL-8; abolished chemotaxis to several chemoattractants like chemerin, fMLF, and MCP-1; and doubled the phagocytic activity of these macrophages toward microbial particles. In contrast, these functional changes were not accompanied by surface expression of markers specific for alternatively activated M(IL-4) macrophages. Similar proresolution effects of RvD1 were observed when proinflammatory M(LPS) macrophages were treated with RvD1. In addition, we show that these RvD1-mediated effects are GPR32 dependent because reduction of GPR32 expression by small interfering RNA, TGF-β, and IL-6 treatment ablated these proresolution effects in primary human macrophages. Taken together, our results indicate that in humans RvD1 triggers GPR32 to polarize and repolarize macrophages toward a proresolution phenotype, supporting the role of this mediator in the resolution of inflammation in humans.

  6. Functional selectivity of dopamine D1 receptor agonists in regulating the fate of internalized receptors *

    PubMed Central

    Ryman-Rasmussen, Jessica P.; Griffith, Adam; Oloff, Scott; Vaidehi, Nagarajan; Brown, Justin T.; Goddard, William A.; Mailman, Richard B.

    2007-01-01

    Recently, we demonstrated that D1 agonists can cause functionally selective effects when the endpoints of receptor internalization and adenylate cyclase activation are compared. The present study was designed to probe the phenomenon of functional selectivity at the D1 receptor further by testing the hypothesis that structurally dissimilar agonists with efficacies at these endpoints that equal or exceed those of dopamine would differ in ability to influence receptor fate after internalization, a functional endpoint largely unexplored for the D1 receptor. We selected two novel agonists of therapeutic interest that meet these criteria (the isochroman A-77636, and the isoquinoline dinapsoline), and compared the fates of the D1 receptor after internalization in response to these two compounds with that of dopamine. We found that dopamine caused the receptor to be rapidly recycled to the cell surface within 1 h of removal. Conversely, A-77636 caused the receptor to be retained intracellularly up to 48 h after agonist removal. Most surprisingly, the D1 receptor recovered to the cell surface 48 h after removal of dinapsoline. Taken together, these data indicate that these agonists target the D1 receptor to different intracellular trafficking pathways, demonstrating that the phenomenon of functional selectivity at the D1 receptor is operative for cellular events that are temporally downstream of immediate receptor activation. We hypothesize that these differential effects result from interactions of the synthetic ligands with aspects of the D1 receptor that are distal from the ligand binding domain. PMID:17067639

  7. 17 CFR 270.12d1-1 - Exemptions for investments in money market funds.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... money market funds. 270.12d1-1 Section 270.12d1-1 Commodity and Securities Exchanges SECURITIES AND... Exemptions for investments in money market funds. (a) Exemptions for acquisition of money market fund shares... issued by a money market fund; and (2) A money market fund, any principal underwriter thereof, and...

  8. 17 CFR 270.12d1-1 - Exemptions for investments in money market funds.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... money market funds. 270.12d1-1 Section 270.12d1-1 Commodity and Securities Exchanges SECURITIES AND... Exemptions for investments in money market funds. (a) Exemptions for acquisition of money market fund shares... issued by a money market fund; and (2) A money market fund, any principal underwriter thereof, and...

  9. 17 CFR 270.12d1-1 - Exemptions for investments in money market funds.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... money market funds. 270.12d1-1 Section 270.12d1-1 Commodity and Securities Exchanges SECURITIES AND... Exemptions for investments in money market funds. (a) Exemptions for acquisition of money market fund shares... issued by a money market fund; and (2) A money market fund, any principal underwriter thereof, and...

  10. 17 CFR 270.12d1-1 - Exemptions for investments in money market funds.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... money market funds. 270.12d1-1 Section 270.12d1-1 Commodity and Securities Exchanges SECURITIES AND... Exemptions for investments in money market funds. (a) Exemptions for acquisition of money market fund shares... issued by a money market fund; and (2) A money market fund, any principal underwriter thereof, and...

  11. 17 CFR 270.12d1-1 - Exemptions for investments in money market funds.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... money market funds. 270.12d1-1 Section 270.12d1-1 Commodity and Securities Exchanges SECURITIES AND... Exemptions for investments in money market funds. (a) Exemptions for acquisition of money market fund shares... issued by a money market fund; and (2) A money market fund, any principal underwriter thereof, and...

  12. 16 CFR Appendix D1 to Part 305 - Water Heaters-Gas

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Water Heaters-Gas D1 Appendix D1 to Part 305... DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER PRODUCTS REQUIRED... Part 305—Water Heaters—Gas Range Information CAPACITY FIRST HOUR RATING Range of Estimated...

  13. 17 CFR 270.30d-1 - Filing of copies of reports to shareholders.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Filing of copies of reports to shareholders. 270.30d-1 Section 270.30d-1 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION... shareholders. A registered management investment company, other than a small business investment...

  14. 42 CFR 51d.1 - To what does this subpart apply?

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false To what does this subpart apply? 51d.1 Section 51d.1 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS MENTAL HEALTH... communities created by mental health or substance abuse emergencies, as authorized under section 501(m) of...

  15. 42 CFR 51d.1 - To what does this subpart apply?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false To what does this subpart apply? 51d.1 Section 51d.1 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS MENTAL HEALTH... communities created by mental health or substance abuse emergencies, as authorized under section 501(m) of...

  16. 42 CFR 51d.1 - To what does this subpart apply?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false To what does this subpart apply? 51d.1 Section 51d.1 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS MENTAL HEALTH... communities created by mental health or substance abuse emergencies, as authorized under section 501(m) of...

  17. 42 CFR 51d.1 - To what does this subpart apply?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false To what does this subpart apply? 51d.1 Section 51d.1 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS MENTAL HEALTH... communities created by mental health or substance abuse emergencies, as authorized under section 501(m) of...

  18. 42 CFR 51d.1 - To what does this subpart apply?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false To what does this subpart apply? 51d.1 Section 51d.1 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS MENTAL HEALTH... communities created by mental health or substance abuse emergencies, as authorized under section 501(m) of...

  19. Inhibition of testicular embryonal carcinoma cell tumorigenicity by peroxisome proliferator-activated receptor-β/δ- and retinoic acid receptor-dependent mechanisms.

    PubMed

    Yao, Pei-Li; Chen, Li Ping; Dobrzański, Tomasz P; Phillips, Dylan A; Zhu, Bokai; Kang, Boo-Hyon; Gonzalez, Frank J; Peters, Jeffrey M

    2015-11-01

    Peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) has important physiological functions in control of cell growth, lipid and glucose homeostasis, differentiation and inflammation. To investigate the role of PPARβ/δ in cancer, stable human testicular embryonal carcinoma cell lines were developed that constitutively express PPARβ/δ. Expression of PPARβ/δ caused enhanced activation of the receptor, and this significantly decreased proliferation, migration, invasion, anchorage-independent growth, and also reduced tumor mass and volume of ectopic xenografts derived from NT2/D1 cells compared to controls. The changes observed in xenografts were associated with decreased PPARβ/δ-dependent expression of proliferating cell nuclear antigen and octamer-binding transcription factor-3/4, suggesting suppressed tumor proliferation and induction of differentiation. Inhibition of migration and invasion was mediated by PPARβ/δ competing with formation of the retinoic acid receptor (RAR)/retinoid X receptor (RXR) complex, resulting in attenuation of RARα-dependent matrix metalloproteinase-2 expression and activity. These results demonstrate that PPARβ/δ mediates attenuation of human testicular embryonal carcinoma cell progression through a novel RAR-dependent mechanism and suggest that activation of PPARβ/δ inhibits RAR/RXR dimerization and represents a new therapeutic strategy.

  20. TBC1D1 reduces palmitate oxidation by inhibiting β-HAD activity in skeletal muscle.

    PubMed

    Maher, A C; McFarlan, J; Lally, J; Snook, L A; Bonen, A

    2014-11-01

    In skeletal muscle the Rab-GTPase-activating protein TBC1D1 has been implicated in the regulation of fatty acid oxidation by an unknown mechanism. We determined whether TBC1D1 altered fatty acid utilization via changes in protein-mediated fatty acid transport and/or selected enzymes regulating mitochondrial fatty acid oxidation. We also determined the effects of TBC1D1 on glucose transport and oxidation. Electrotransfection of mouse soleus muscles with TBC1D1 cDNA increased TBC1D1 protein after 2 wk (P<0.05), without altering its paralog AS160. TBC1D1 overexpression decreased basal palmitate oxidation (-22%) while blunting 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR)-stimulated palmitate oxidation (-18%). There was a tendency to increase fatty acid esterification (+10 nmol·g(-1)·60 min(-1), P=0.07), which reflected the reduction in fatty acid oxidation (-12 nmol·g(-1)·60 min(-1)). Concomitantly, basal (+21%) and AICAR-stimulated glucose oxidation (+8%) were increased in TBC1D1-transfected muscles relative to their respective controls (P<0.05), independent of changes in GLUT4 and glucose transport. The reductions in TBC1D1-mediated fatty acid oxidation could not be attributed to changes in the transporter FAT/CD36, muscle mitochondrial content, CPT1 expression or the expression and phosphorylation of AS160, acetyl-CoA carboxylase, or AMPK. However, TBC1D1 overexpression reduced β-HAD enzyme activity (-18%, P<0.05). In conclusion, TBC1D1-mediated reduction of muscle fatty acid oxidation appears to occur via inhibition of β-HAD activity.

  1. NMR resonance assignments of the major apple allergen Mal d 1.

    PubMed

    Ahammer, Linda; Grutsch, Sarina; Tollinger, Martin

    2016-10-01

    The major apple allergen Mal d 1 is the predominant cause of apple (Malus domestica) allergies in large parts of Europe and Northern America. Allergic reactions against this 17.5 kDa protein are the consequence of initial sensitization to the structurally homologous major allergen from birch pollen, Bet v 1. Consumption of apples can subsequently provoke immunologic cross-reactivity of Bet v 1-specific antibodies with Mal d 1 and trigger severe oral allergic syndroms, affecting more than 70 % of all individuals that are sensitized to birch pollen. While the accumulated immunological data suggest that Mal d 1 has a three-dimensional fold that is similar to Bet v 1, experimental structural data for this protein are not available to date. In a first step towards structural characterization of Mal d 1, backbone and side chain (1)H, (13)C and (15)N chemical shifts of the isoform Mal d 1.0101 were assigned. The NMR-chemical shift data show that this protein is composed of seven β-strands and three α-helices, which is in accordance with the reported secondary structure of the major birch pollen allergen, indicating that Mal d 1 and Bet v 1 indeed have similar three-dimensional folds. The next stage in the characterization of Mal d 1 will be to utilize these resonance assignments in solving the solution structure of this protein. PMID:27165578

  2. Dimerization of Plant Defensin NaD1 Enhances Its Antifungal Activity*

    PubMed Central

    Lay, Fung T.; Mills, Grant D.; Poon, Ivan K. H.; Cowieson, Nathan P.; Kirby, Nigel; Baxter, Amy A.; van der Weerden, Nicole L.; Dogovski, Con; Perugini, Matthew A.; Anderson, Marilyn A.; Kvansakul, Marc; Hulett, Mark D.

    2012-01-01

    The plant defensin, NaD1, from the flowers of Nicotiana alata, is a member of a family of cationic peptides that displays growth inhibitory activity against several filamentous fungi, including Fusarium oxysporum. The antifungal activity of NaD1 has been attributed to its ability to permeabilize membranes; however, the molecular basis of this function remains poorly defined. In this study, we have solved the structure of NaD1 from two crystal forms to high resolution (1.4 and 1.58 Å, respectively), both of which contain NaD1 in a dimeric configuration. Using protein cross-linking experiments as well as small angle x-ray scattering analysis and analytical ultracentrifugation, we show that NaD1 forms dimers in solution. The structural studies identified Lys4 as critical in formation of the NaD1 dimer. This was confirmed by site-directed mutagenesis of Lys4 that resulted in substantially reduced dimer formation. Significantly, the reduced ability of the Lys4 mutant to dimerize correlated with diminished antifungal activity. These data demonstrate the importance of dimerization in NaD1 function and have implications for the use of defensins in agribiotechnology applications such as enhancing plant crop protection against fungal pathogens. PMID:22511788

  3. Structure and Catalytic Mechanism of Human Steroid 5-Reductase (AKR1D1)

    SciTech Connect

    Costanzo, L.; Drury, J; Christianson, D; Penning, T

    2009-01-01

    Human steroid 5{beta}-reductase (aldo-keto reductase (AKR) 1D1) catalyzes reduction of {Delta}{sup 4}-ene double bonds in steroid hormones and bile acid precursors. We have reported the structures of an AKR1D1-NADP{sup +} binary complex, and AKR1D1-NADP{sup +}-cortisone, AKR1D1-NADP{sup +}-progesterone and AKR1D1-NADP{sup +}-testosterone ternary complexes at high resolutions. Recently, structures of AKR1D1-NADP{sup +}-5{beta}-dihydroprogesterone complexes showed that the product is bound unproductively. Two quite different mechanisms of steroid double bond reduction have since been proposed. However, site-directed mutagenesis supports only one mechanism. In this mechanism, the 4-pro-R hydride is transferred from the re-face of the nicotinamide ring to C5 of the steroid substrate. E120, a unique substitution in the AKR catalytic tetrad, permits a deeper penetration of the steroid substrate into the active site to promote optimal reactant positioning. It participates with Y58 to create a 'superacidic' oxyanion hole for polarization of the C3 ketone. A role for K87 in the proton relay proposed using the AKR1D1-NADP{sup +}-5{beta}-dihydroprogesterone structure is not supported.

  4. Cytoplasmic sequestration of cyclin D1 associated with cell cycle withdrawal of neuroblastoma cells

    SciTech Connect

    Sumrejkanchanakij, Piyamas; Eto, Kazuhiro; Ikeda, Masa-Aki . E-mail: mikeda.emb@tmd.ac.jp

    2006-02-03

    The regulation of D-type cyclin-dependent kinase activity is critical for neuronal differentiation and apoptosis. We recently showed that cyclin D1 is sequestered in the cytoplasm and that its nuclear localization induces apoptosis in postmitotic primary neurons. Here, we further investigated the role of the subcellular localization of cyclin D1 in cell cycle withdrawal during the differentiation of N1E-115 neuroblastoma cells. We show that cyclin D1 became predominantly cytoplasmic after differentiation. Targeting cyclin D1 expression to the nucleus induced phosphorylation of Rb and cdk2 kinase activity. Furthermore, cyclin D1 nuclear localization promoted differentiated N1E-115 cells to reenter the cell cycle, a process that was inhibited by p16{sup INK4a}, a specific inhibitor of D-type cyclin activity. These results indicate that cytoplasmic sequestration of cyclin D1 plays a role in neuronal cell cycle withdrawal, and suggests that the abrogation of machinery involved in monitoring aberrant nuclear cyclin D1 activity contributes to neuronal tumorigenesis.

  5. Gastrin and D1 dopamine receptor interact to induce natriuresis and diuresis.

    PubMed

    Chen, Yue; Asico, Laureano D; Zheng, Shuo; Villar, Van Anthony M; He, Duofen; Zhou, Lin; Zeng, Chunyu; Jose, Pedro A

    2013-11-01

    Oral NaCl produces a greater natriuresis and diuresis than the intravenous infusion of the same amount of NaCl. Gastrin is the major gastrointestinal hormone taken up by renal proximal tubule (RPT) cells. We hypothesized that renal gastrin and dopamine receptors interact to synergistically increase sodium excretion, an impaired interaction of which may be involved in the pathogenesis of hypertension. In Wistar-Kyoto rats, infusion of gastrin induced natriuresis and diuresis, which was abrogated in the presence of a gastrin (cholecystokinin B receptor [CCKBR]; CI-988) or a D1-like receptor antagonist (SCH23390). Similarly, the natriuretic and diuretic effects of fenoldopam, a D1-like receptor agonist, were blocked by SCH23390, as well as by CI-988. However, the natriuretic effects of gastrin and fenoldopam were not observed in spontaneously hypertensive rats. The gastrin/D1-like receptor interaction was also confirmed in RPT cells. In RPT cells from Wistar-Kyoto but not spontaneously hypertensive rats, stimulation of either D1-like receptor or gastrin receptor inhibited Na(+)-K(+)-ATPase activity, an effect that was blocked in the presence of SCH23390 or CI-988. In RPT cells from Wistar-Kyoto and spontaneously hypertensive rats, CCKBR and D1 receptor coimmunoprecipitated, which was increased after stimulation of either D1 receptor or CCKBR in RPT cells from Wistar-Kyoto rats; stimulation of one receptor increased the RPT cell membrane expression of the other receptor, effects that were not observed in spontaneously hypertensive rats. These data suggest that there is a synergism between CCKBR and D1-like receptors to increase sodium excretion. An aberrant interaction between the renal CCK BR and D1-like receptors (eg, D1 receptor) may play a role in the pathogenesis of hypertension.

  6. Resolvin D1 binds human phagocytes with evidence for proresolving receptors

    PubMed Central

    Krishnamoorthy, Sriram; Recchiuti, Antonio; Chiang, Nan; Yacoubian, Stephanie; Lee, Chih-Hao; Yang, Rong; Petasis, Nicos A.; Serhan, Charles N.

    2010-01-01

    Endogenous mechanisms that act in the resolution of acute inflammation are essential for host defense and the return to homeostasis. Resolvin D1 (RvD1), biosynthesized during resolution, displays potent and stereoselective anti-inflammatory actions, such as limiting neutrophil infiltration and proresolving actions. Here, we demonstrate that RvD1 actions on human polymorphonuclear leukocytes (PMNs) are pertussis toxin sensitive, decrease actin polymerization, and block LTB4-regulated adhesion molecules (β2 integrins). Synthetic [3H]-RvD1 was prepared, which revealed specific RvD1 recognition sites on human leukocytes. Screening systems to identify receptors for RvD1 gave two candidates—ALX, a lipoxin A4 receptor, and GPR32, an orphan—that were confirmed using a β-arrestin-based ligand receptor system. Nuclear receptors including retinoid X receptor-α and peroxisome proliferator-activated receptor-α, -δ, -γ were not activated by either resolvin E1 or RvD1 at bioactive nanomolar concentrations. RvD1 enhanced macrophage phagocytosis of zymosan and apoptotic PMNs, which increased with overexpression of human ALX and GPR32 and decreased with selective knockdown of these G-protein-coupled receptors. Also, ALX and GPR32 surface expression in human monocytes was up-regulated by zymosan and granulocyte-monocyte–colony-stimulating factor. These results indicate that RvD1 specifically interacts with both ALX and GPR32 on phagocytes and suggest that each plays a role in resolving acute inflammation. PMID:20080636

  7. Dopamine D1 receptor and protein kinase C isoforms in spontaneously hypertensive rats.

    PubMed

    Yao, L P; Li, X X; Yu, P Y; Xu, J; Asico, L D; Jose, P A

    1998-12-01

    -Dopamine, via D1-like receptors, stimulates the activity of both protein kinase A (PKA) and protein kinase C (PKC), which results in inhibition of renal sodium transport. Since D1-like receptors differentially regulate sodium transport in normotensive and hypertensive rats, they may also differentially regulate PKC expression in these rat strains. Thus, 2 different D1-like agonists (fenoldopam or SKF 38393) were infused into the renal artery of anesthetized normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) (n=5 to 6/drug/strain). Ten or 60 minutes after starting the D1-like agonist infusion, both the infused kidney and the noninfused kidney that served as control were prepared for analysis. The D1-like agonists produced a greater diuresis and natriuresis and inhibited Na+,K+-ATPase activity in proximal tubule (PT) and medullary thick ascending limb (mTAL) to a greater extent in WKY (Delta20+/-1%) than in SHR (Delta7+/-1%, P<0.001). D1-like agonists had no effect on PKC-alpha or PKC-lambda expression in either membrane or cytosol but increased PKC-theta expression in PT in both WKY and SHR at 10 minutes but not at 60 minutes. However, membranous PKC-delta expression in PT and mTAL decreased in WKY but increased in SHR with either 10 or 60 minutes of D1-like agonist infusion. D1-like agonists also decreased membranous PKC-zeta expression in PT and mTAL in WKY but increased it in PT but not in mTAL in SHR. We conclude that there is differential regulation of PKC isoform expression by D1-like agonists that inhibits membranous PKC-delta and PKC-zeta in WKY but stimulates them in SHR; this effect in SHR is similar to the stimulatory effect of norepinephrine and angiotensin II and may be a mechanism for their differential effects on sodium transport.

  8. Cyclin D1 represses gluconeogenesis via inhibition of the transcriptional coactivator PGC1α.

    PubMed

    Bhalla, Kavita; Liu, Wan-Ju; Thompson, Keyata; Anders, Lars; Devarakonda, Srikripa; Dewi, Ruby; Buckley, Stephanie; Hwang, Bor-Jang; Polster, Brian; Dorsey, Susan G; Sun, Yezhou; Sicinski, Piotr; Girnun, Geoffrey D

    2014-10-01

    Hepatic gluconeogenesis is crucial to maintain normal blood glucose during periods of nutrient deprivation. Gluconeogenesis is controlled at multiple levels by a variety of signal transduction and transcriptional pathways. However, dysregulation of these pathways leads to hyperglycemia and type 2 diabetes. While the effects of various signaling pathways on gluconeogenesis are well established, the downstream signaling events repressing gluconeogenic gene expression are not as well understood. The cell-cycle regulator cyclin D1 is expressed in the liver, despite the liver being a quiescent tissue. The most well-studied function of cyclin D1 is activation of cyclin-dependent kinase 4 (CDK4), promoting progression of the cell cycle. We show here a novel role for cyclin D1 as a regulator of gluconeogenic and oxidative phosphorylation (OxPhos) gene expression. In mice, fasting decreases liver cyclin D1 expression, while refeeding induces cyclin D1 expression. Inhibition of CDK4 enhances the gluconeogenic gene expression, whereas cyclin D1-mediated activation of CDK4 represses the gluconeogenic gene-expression program in vitro and in vivo. Importantly, we show that cyclin D1 represses gluconeogenesis and OxPhos in part via inhibition of peroxisome proliferator-activated receptor γ coactivator-1α (PGC1α) activity in a CDK4-dependent manner. Indeed, we demonstrate that PGC1α is novel cyclin D1/CDK4 substrate. These studies reveal a novel role for cyclin D1 on metabolism via PGC1α and reveal a potential link between cell-cycle regulation and metabolic control of glucose homeostasis.

  9. Synthesis and herbicidal evaluation of novel benzothiazole derivatives as potential inhibitors of D1 protease.

    PubMed

    Huang, Tonghui; Sun, Jie; An, Lin; Zhang, Lixian; Han, Cuiping

    2016-04-01

    D1 protease is a C-terminal processing protease that has been predicted to be an ideal herbicidal target. Three novel series of benzothiazole derivatives were synthesized and evaluated for their herbicidal activities against Brassica napus (rape) and Echinochloa crusgalli (barnyard grass). The preliminary bioassay indicated that most of the synthesized compounds possess promising D1 protease inhibitory activities and considerable herbicidal activities. Molecular docking was performed to position representative compounds into the active site of D1 protease to determine a probable binding model. PMID:26905829

  10. Allele frequency distributions of D1S80 in the Polish population.

    PubMed

    Ciesielka, M; Kozioł, P; Krajka, A

    1996-08-15

    The polymorphism of the D1S80 locus has been analyzed in a population sample of 208 unrelated individuals in the Southeast Poland and 103 mother/child pairs. PCR amplified alleles were separated by a vertical discontinuous polyacrylamide gel electrophoresis system. Nineteen different alleles and 52 phenotypes could be distinguished. The alleles 18 (f = 0.267) and 24 (f = 0.300) were most common in Poland. D1S80 genotype frequencies of Poland population do not deviate from Hardy-Weinberg equilibrium. All mother/child pairs shared at least one D1S80 allele.

  11. Treatment of BG-1 Ovarian Cancer Cells Expressing Estrogen Receptors with Lambda-cyhalothrin and Cypermethrin Caused a Partial Estrogenicity Via an Estrogen Receptor-dependent Pathway

    PubMed Central

    Kim, Cho-Won; Go, Ryeo-Eun

    2015-01-01

    Synthetic pyrethroids (SPs) are the most common pesticides which are recently used for indoor pest control. The widespread use of SPs has resulted in the increased exposure to wild animals and humans. Recently, some SPs are suspected as endocrine disrupting chemicals (EDCs) and have been assessed for their potential estrogenicity by adopting various analyzing assays. In this study, we examined the estrogenic effects of lambda-cyhalothrin (LC) and cypermethrin (CP), the most commonly used pesticides in Korea, using BG-1 ovarian cancer cells expressing estrogen receptors (ERs). To evaluate the estrogenic activities of two SPs, LC and CP, we employed MTT assay and reverse-transcription polymerase chain reaction (RT-PCR) in LC or CP treated BG-1 ovarian cancer cells. In MTT assay, LC (10−6 M) and CP (10−5 M) significantly induced the growth of BG-1 cancer cells. LC or CP-induced cell growth was antagonized by addition of ICI 182,720 (10−8 M), an ER antagonist, suggesting that this effect appears to be mediated by an ER-dependent manner. Moreover, RT-PCR results showed that transcriptional level of cyclin D1, a cell cycle-regulating gene, was significantly up-regulated by LC and CP, while these effects were reversed by co-treatment of ICI 182,780. However, p21, a cyclin D-ckd-4 inhibitor gene, was not altered by LC or CP. Moreover, ERα expression was not significantly changed by LC and CP, while downregulated by E2. Finally, in xenografted mouse model transplanted with human BG-1 ovarian cancer cells, E2 significantly increased the tumor volume compare to a negative control, but LC did not. Taken together, these results suggest that LC and CP may possess estrogenic potentials by stimulating the growth of BG-1 ovarian cancer cells via partially ER signaling pathway associated with cell cycle as did E2, but this estrogenic effect was not found in in vivo mouse model. PMID:26877835

  12. Diverse functions for the semaphorin receptor PlexinD1 in development and disease

    PubMed Central

    Gay, Carl M.; Zygmunt, Tomasz; Torres-Vázquez, Jesús

    2010-01-01

    SUMMARY Plexins are a family of single pass transmembrane proteins that serve as cell surface receptors for Semaphorins during the embryonic development of animals. Semaphorin-Plexin signaling is critical for many cellular aspects of organogenesis, including cell migration, proliferation and survival. Until recently, little was known about the function of PlexinD1, the sole member of the vertebrate-specific PlexinD (PlxnD1) subfamily. Here we review novel findings about PlxnD1’s roles in the development of the cardiovascular, nervous and immune systems and salivary gland branching morphogenesis and discuss new insights concerning the molecular mechanisms of PlxnD1 activity. PMID:20880496

  13. The new powder diffractometer D1B of the Institut Laue Langevin

    NASA Astrophysics Data System (ADS)

    Puente Orench, I.; Clergeau, J. F.; Martínez, S.; Olmos, M.; Fabelo, O.; Campo, J.

    2014-11-01

    D1B is a medium resolution high flux powder diffractometer located at the Institut Laue Langevin, ILL. D1B a suitable instrument for studying a large variety of polycrystalline materials. D1B runs since 1998 as a CRG (collaborating research group) instrument, being exploited by the CNRS (Centre National de la Recherche Scientifique, France) and CSIC (Consejo Superior de Investigaciones Cientificas, Spain). In 2008 the Spanish CRG started an updating program which included a new detector and a radial oscillating collimator (ROC). The detector, which has a sensitive height of 100mm, covers an angular range of 128°. Its 1280 gold wires provide a neutron detection point every 0.1°. The ROC is made of 198 gadolinium- based absorbing collimation blades, regular placed every 0.67°. Here the present characteristics of D1B are reviewed and the different experimental performances will be presented.

  14. Mechanisms for Antagonistic Regulation of AMPA and NMDA-D1 Receptor Complexes at Postsynaptic Sites

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Scheler, Gabriele

    2004-01-01

    From the analysis of these pathways we conclude that postsynaptic processes that regulate synaptic transmission undergo significant cross-talk with respect to glutamatergic and neuromodulatory (dopamine) signals. The main hypothesis is that of a compensatory regulation, a competitive switch between the induction of increased AMPA conductance by CaMKII-dependent phosphorylation and reduced expression of PP2A, and increased D1 receptor sensitivity and expression by increased PKA, PP2A and decreased PP-1/calcineurin expression. Both types of plasticity are induced by NMDA receptor activation and increased internal calcium, they require different internal conditions to become expressed. Specifically we propose that AMPA regulation and D1 regulation are inversely coupled;The net result may be a bifurcation of synaptic state into predominantly AMPA or NMDA-D1 synapses. This could have functional consequences: stable connections for AMPA and conditional gating for NMDA-D1 synapses.

  15. Origin of the Scaling Constant "d" = 1.7 in Item Response Theory.

    ERIC Educational Resources Information Center

    Camilli, Gregory

    1994-01-01

    Describes the scaling constant "d" = 1.702, used in Item Response Theory, which minimizes the maximum difference between the normal and logistic distribution functions. Recapitulates the theoretical and numerical derivation of "d" given by D. Haley (1952). (SLD)

  16. Lack of self-administration of cocaine in dopamine D1 receptor knock-out mice.

    PubMed

    Caine, S Barak; Thomsen, Morgane; Gabriel, Kara I; Berkowitz, Jill S; Gold, Lisa H; Koob, George F; Tonegawa, Susumu; Zhang, Jianhua; Xu, Ming

    2007-11-28

    Evidence suggests a critical role for dopamine in the reinforcing effects of cocaine in rats and primates. However, self-administration has been less often studied in the mouse species, and, to date, "knock-out" of individual dopamine-related genes in mice has not been reported to reduce the reinforcing effects of cocaine. We studied the dopamine D1 receptor and cocaine self-administration in mice using a combination of gene-targeted mutation and pharmacological tools. Two cohorts with varied breeding and experimental histories were tested, and, in both cohorts, there was a significant decrease in the number of D1 receptor knock-out mice that met criteria for acquisition of cocaine self-administration (2 of 23) relative to wild-type mice (27 of 32). After extinction of responding with saline self-administration, dose-response studies showed that cocaine reliably and dose dependently maintained responding greater than saline in all wild-type mice but in none of the D1 receptor knock-out mice. The D1-like agonist SKF 82958 (2,3,4,5,-tetrahydro-6-chloro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine hydrobromide) and the D2-like agonist quinelorane both functioned as positive reinforcers in wild-type mice but not in D1 receptor mutant mice, whereas food and intravenous injections of the opioid agonist remifentanil functioned as positive reinforcers in both genotypes. Finally, pretreatment with the D1-like antagonist SCH 23390 [R-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7-01] produced surmountable antagonism of the reinforcing effects of cocaine in the commonly used strain C57BL/6J. We conclude that D1 receptor knock-out mice do not reliably self-administer cocaine and that the D1 receptor is critical for the reinforcing effects of cocaine and other dopamine agonists, but not food or opioids, in mice.

  17. Hyperactivation of D1 and A2A receptors contributes to cognitive dysfunction in Huntington's disease.

    PubMed

    Tyebji, Shiraz; Saavedra, Ana; Canas, Paula M; Pliassova, Anna; Delgado-García, José M; Alberch, Jordi; Cunha, Rodrigo A; Gruart, Agnès; Pérez-Navarro, Esther

    2015-02-01

    Stimulation of dopamine D1 receptor (D1R) and adenosine A2A receptor (A2AR) increases cAMP-dependent protein kinase (PKA) activity in the brain. In Huntington's disease, by essentially unknown mechanisms, PKA activity is increased in the hippocampus of mouse models and patients and contributes to hippocampal-dependent cognitive impairment in R6 mice. Here, we show for the first time that D1R and A2AR density and functional efficiency are increased in hippocampal nerve terminals from R6/1 mice, which accounts for increased cAMP levels and PKA signaling. In contrast, PKA signaling was not altered in the hippocampus of Hdh(Q7/Q111) mice, a full-length HD model. In line with these findings, chronic (but not acute) combined treatment with D1R plus A2AR antagonists (SCH23390 and SCH58261, respectively) normalizes PKA activity in the hippocampus, facilitates long-term potentiation in behaving R6/1 mice, and ameliorates cognitive dysfunction. By contrast, chronic treatment with either D1R or A2AR antagonist alone does not modify PKA activity or improve cognitive dysfunction in R6/1 mice. Hyperactivation of both D1R and A2AR occurs in HD striatum and chronic treatment with D1R plus A2AR antagonists normalizes striatal PKA activity but it does not affect motor dysfunction in R6/1 mice. In conclusion, we show that parallel alterations in dopaminergic and adenosinergic signaling in the hippocampus contribute to increase PKA activity, which in turn selectively participates in hippocampal-dependent learning and memory deficits in HD. In addition, our results point to the chronic inhibition of both D1R and A2AR as a novel therapeutic strategy to manage early cognitive impairment in this neurodegenerative disease. PMID:25449908

  18. Expression of Cyclin D1 and P16 in Esophageal Squamous Cell Carcinoma

    PubMed Central

    Dey, Biswajit; Raphael, Vandana; Khonglah, Yookarin; GiriLynrah, Kyrshanlang

    2015-01-01

    BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the lethal cancers with a high incidence rate in Asia. Many genes including cyclin D1 and p16 play important role in its carcinogenesis. We aimed to analyze the expressions of cyclin D1 and p16 with the various clinicopathological characteristics of ESCC. METHODS We examined 30 biopsy samples of ESCC for cyclin D1 and p16 protein expressions using immunohistochemistry. Immunointensity was classified as no immunostaining (-), weakly immunostaining (+), weak immunostaining (++) and strongly positive immunostaining (+++). RESULTS Out of the 30 cases, positive expression of cyclin D1 was detected in 26 cases (86.7%). The percentage of tumors with invasion to the adventitia (88.2%), lymph node metastasis (87.5%), and tumors which were poorly differentiated (92.9%) were higher in cyclin D1 positive tumors than in the cyclin D1 negative tumors. However no significant association was found between cyclin D1 expression and the different clinicopathological parameters.There were 22 cases of ESCC (73.3 %) which showed negativity for p16. The percentage of tumors with invasion to the adventitia (82.4%) and poorly differentiated tumors (92.9%) were higher in the p16 negative tumors than in the p16 positive tumors. There was significant association between the histological grade and p16 expression (p=0.012). However, there were no significant association with regard to site, size and lymph node status of the tumors and p16 expression. CONCLUSION The study shows that alterations of cyclin D1 and p16 play an important role in ESCC. Loss of p16 expression was associated with poor differentiation. PMID:26609350

  19. NR1D1 ameliorates Mycobacterium tuberculosis clearance through regulation of autophagy

    PubMed Central

    Chandra, Vemika; Bhagyaraj, Ella; Nanduri, Ravikanth; Ahuja, Nancy; Gupta, Pawan

    2015-01-01

    NR1D1 (nuclear receptor subfamily 1, group D, member 1), an adopted orphan nuclear receptor, is widely known to orchestrate the expression of genes involved in various biological processes such as adipogenesis, skeletal muscle differentiation, and lipid and glucose metabolism. Emerging evidence suggests that various members of the nuclear receptor superfamily perform a decisive role in the modulation of autophagy. Recently, NR1D1 has been implicated in augmenting the antimycobacterial properties of macrophages and providing protection against Mycobacterium tuberculosis infection by downregulating the expression of the IL10 gene in human macrophages. This antiinfective property of NR1D1 suggests the need for an improved understanding of its role in other host-associated antimycobacterial pathways. The results presented here demonstrate that in human macrophages either ectopic expression of NR1D1 or treatment with its agonist, GSK4112, enhanced the number of acidic vacuoles as well as the level of MAP1LC3-II, a signature molecule for determination of autophagy progression, in a concentration- and time-dependent manner. Conversely, a decrease in NR1D1 in knockdown cells resulted in the reduced expression of lysosomal-associated membrane protein 1, LAMP1, commensurate with a decrease in the level of transcription factor EB, TFEB. This is indicative of that NR1D1 may have a regulatory role in lysosome biogenesis. NR1D1 being a repressor, its positive regulation on LAMP1 and TFEB is suggestive of an indirect byzantine mechanism of action. Its role in the modulation of autophagy and lysosome biogenesis together with its ability to repress IL10 gene expression supports the theory that NR1D1 has a pivotal antimycobacterial function in human macrophages. PMID:26390081

  20. Dopamine D1 Receptors Regulate the Light Dependent Development of Retinal Synaptic Responses

    PubMed Central

    He, Quanhua; Xu, Hong-ping; Wang, Ping; Tian, Ning

    2013-01-01

    Retinal synaptic connections and function are developmentally regulated. Retinal synaptic activity plays critical roles in the development of retinal synaptic circuitry. Dopamine receptors have been thought to play important roles in the activity-dependent synaptic plasticity in central nervous system. The primary goal of this study is to determine whether dopamine D1 receptor regulates the activity-dependent development of retinal light responsiveness. Accordingly, we recorded electroretinogram from wild type mice and mice with genetic deletion of D1 dopamine receptor (D1−/− mice) raised under cyclic light conditions and constant darkness. Our results demonstrated that D1−/− mice have reduced amplitudes of all three major components of electroretinogram in adulthood. When the relative strength of the responses is considered, the D1−/− mice have selective reduction of the amplitudes of a-wave and oscillatory potentials evoked by low-intermediate intensities of lights. During postnatal development, D1−/− mice have increased amplitude of b-wave at the time of eye-opening but reduced developmental increase of the amplitude of b-wave after eye opening. Light deprivation from birth significantly reduced the amplitudes of b-wave and oscillatory potentials, increased the outer retinal light response gain and altered the light response kinetics of both a- and b-waves of wild type mice. In D1−/− mice, the effect of dark rearing on the amplitude of oscillatory potentials was diminished and dark rearing induced effects on the response gain of outer retina and the kinetics of a-wave were reversed. These results demonstrated roles of dopamine D1 receptor in the activity-dependent functional development of mouse retina. PMID:24260267

  1. Biochemical characterizations reveal different properties between CDK4/cyclin D1 and CDK2/cyclin A.

    PubMed

    Kim, Dong-Myung; Yang, Kyungmi; Yang, Beom-Seok

    2003-10-31

    CDK2 and CDK4 known promoter of cell cycling catalyze phosphorylation of RB protein. Enzyme specificity between two CDKs that work at a different cell cycle phase is not clearly understood. In order to define kinase properties of CDK2 and CDK4 in complex with cycline A or cycline D1 in relation to their respective role in cell cycling regulation, we examined enzymatic properties of both CDK4/cycline D1 and CDK2/cycline A in vitro. Association constant, Km for ATP in CDK4/cyclin D1 was found as 418 microM, a value unusually high whereas CDK2/cyclin A was 23 microM, a value close to most of other regulatory protein kinases. Turnover value for both CDK4/cyclin D1 and CDK2/cyclin A were estimated as 3.4 and 3.9 min(-1) respectively. Kinetic efficiency estimation indicates far over one order magnitude less efficiency for CDK4/cyclin D1 than the value of CDK2/cycline A (9.3 pM(-1) min(-1) and 170 pM(-1) min(-1) respectively). In addition, inhibition of cellular CDK4 caused increase of cellular levels of ATP, even though inhibition of CDK2 did not change it noticeably. These data suggest cellular CDK4/cyclin D1 activity is tightly associated with cellular ATP concentration. Also, analysis of phosphorylated serine/threonine sites on RB catalyzed by CDK4/cyclin D1 and CDK2/cyclin A showed significant differences in their preference of phosphorylation sites in RB C-terminal domain. Since RB is known to regulate various cellular proteins by binding and this binding is controlled by its phosphorylation, these data shown here clearly indicate significant difference in their biochemical properties between CDK4/cyclin D1 and CDK2/cyclin A affecting regulation of cellular RB function. PMID:14646596

  2. Resolvin D1 and E1 promote resolution of inflammation in microglial cells in vitro.

    PubMed

    Rey, C; Nadjar, A; Buaud, B; Vaysse, C; Aubert, A; Pallet, V; Layé, S; Joffre, C

    2016-07-01

    Sustained inflammation in the brain together with microglia activation can lead to neuronal damage. Hence limiting brain inflammation and activation of microglia is a real therapeutic strategy for inflammatory disease. Resolvin D1 (RvD1) and resolvin E1 (RvE1) derived from n-3 long chain polyunsaturated fatty acids are promising therapeutic compounds since they actively turn off the systemic inflammatory response. We thus evaluated the anti-inflammatory activities of RvD1 and RvE1 in microglia cells in vitro. BV2 cells were pre-incubated with RvD1 or RvE1 before lipopolysaccharide (LPS) treatment. RvD1 and RvE1 both decreased LPS-induced proinflammatory cytokines (TNF-α, IL-6 and IL-1β) gene expression, suggesting their proresolutive activity in microglia. However, the mechanisms involved are distinct as RvE1 regulates NFκB signaling pathway and RvD1 regulates miRNAs expression. Overall, our findings support that pro-resolving lipids are involved in the resolution of brain inflammation and can be considered as promising therapeutic agents for brain inflammation. PMID:26718448

  3. A novel IgE-binding epitope of cat major allergen, Fel d 1.

    PubMed

    Tasaniyananda, Natt; Tungtrongchitr, Anchalee; Seesuay, Watee; Sakolvaree, Yuwaporn; Indrawattana, Nitaya; Chaicumpa, Wanpen; Sookrung, Nitat

    2016-02-12

    Information on the antigenic repertoire, especially the IgE-binding epitopes of an allergen is important for understanding the allergen induced immune response and cross-reactivity, as well as for generating the hypoallergenic variants for specific component resolved immunotherapy/diagnosis (CRIT and CRD). Data on the IgE-binding epitopes of cat allergens are scarce. In this study, a novel IgE-binding epitope of the cat major allergen, Fel d 1, was identified. Mouse monoclonal antibody (MAb) specific to the Fel d 1 was produced. Computerized intermolecular docking was used for determining the residues of the Fel d 1 bound by the specific MAb. The presumptive surface exposed residues of the Fel d 1 intrigued by the MAb are located on the chain 1. They are: L34 and T37 (helix 1); T39 (between helices 1 and 2); P40, E42 and E45 (helix 2); R61, K64, N65 and D68 (helix 3); and E73 and K76 (helix 4). The MAb competed efficiently with the cat allergic patients' serum IgE for Fel d 1 binding in the competitive IgE binding assay, indicating allergenicity of the MAb epitope. The newly identified allergenic epitope of the Fel d 1 is useful in a design of the CRIT and CRD for cat allergy. PMID:26797272

  4. Effect of postharvest storage on the expression of the apple allergen Mal d 1.

    PubMed

    Sancho, Ana I; Foxall, Robert; Browne, Tom; Dey, Rickmer; Zuidmeer, Laurian; Marzban, Gorji; Waldron, Keith W; van Ree, Ronald; Hoffmann-Sommergruber, Karin; Laimer, Margit; Mills, E N Clare

    2006-08-01

    Consumption of fresh apples can cause allergy in susceptible individuals. A competitive enzyme-linked immunosorbent assay (ELISA) has been developed to determine Mal d 1 levels in apple pulp using a monoclonal antibody (BIP-1). The ELISA was able to rank ten cultivars according to their Mal d 1 content (between 3.8 and 72.5 mug/g pulp). For the first time, it has been demonstrated that growing conditions and postharvest storage, using three different treatments over a 5 month period in 2 consecutive years, increase Mal d 1 expression at a translational and transcriptional level (3.5- and 8.5-fold under controlled atmosphere storage). Expression of three major Mal d 1 isoforms was observed by real-time polymerase chain reaction over the 5 month storage period, and Mal d 1.02 was the most highly expressed isoform. In conclusion, Mal d 1 gene expression was significantly increased during modified atmosphere storage. Individuals suffering from birch pollen-apple allergy syndrome might experience fewer problems consuming freshly picked apples.

  5. A novel IgE-binding epitope of cat major allergen, Fel d 1.

    PubMed

    Tasaniyananda, Natt; Tungtrongchitr, Anchalee; Seesuay, Watee; Sakolvaree, Yuwaporn; Indrawattana, Nitaya; Chaicumpa, Wanpen; Sookrung, Nitat

    2016-02-12

    Information on the antigenic repertoire, especially the IgE-binding epitopes of an allergen is important for understanding the allergen induced immune response and cross-reactivity, as well as for generating the hypoallergenic variants for specific component resolved immunotherapy/diagnosis (CRIT and CRD). Data on the IgE-binding epitopes of cat allergens are scarce. In this study, a novel IgE-binding epitope of the cat major allergen, Fel d 1, was identified. Mouse monoclonal antibody (MAb) specific to the Fel d 1 was produced. Computerized intermolecular docking was used for determining the residues of the Fel d 1 bound by the specific MAb. The presumptive surface exposed residues of the Fel d 1 intrigued by the MAb are located on the chain 1. They are: L34 and T37 (helix 1); T39 (between helices 1 and 2); P40, E42 and E45 (helix 2); R61, K64, N65 and D68 (helix 3); and E73 and K76 (helix 4). The MAb competed efficiently with the cat allergic patients' serum IgE for Fel d 1 binding in the competitive IgE binding assay, indicating allergenicity of the MAb epitope. The newly identified allergenic epitope of the Fel d 1 is useful in a design of the CRIT and CRD for cat allergy.

  6. Positive Regulation of Neocortical Synapse Formation by the Plexin-D1 Receptor

    PubMed Central

    Levitt, P.

    2015-01-01

    Synapse formation is a critical process during neural development and is coordinated by multiple signals. Several lines of evidence implicate the Plexin-D1 receptor in synaptogenesis. Studies have shown that Plexin-D1 signaling is involved in synaptic specificity and synapse formation in spinal cord and striatum. Expression of Plexin-D1 and its principal neural ligand, Sema3E, by neocortical neurons is temporally and spatially regulated, reaching the highest level at the time of synaptogenesis in mice. In this study, we examined the function of Plexin-D1 in synapse formation by primary neocortical neurons in vitro. A novel, automated image analysis method was developed to quantitate synapse formation under baseline conditions and with manipulation of Plexin-D1 levels. shRNA and overexpression manipulations caused opposite changes, with reduction resulting in less synapse formation, an effect distinct from that reported in the striatum. The data indicate that Plexin-D1 operates in a cell context-specific fashion, mediating different synaptogenic outcomes depending upon neuron type. PMID:25976775

  7. Stage-specific requirement for cyclin D1 in glial progenitor cells of the cerebral cortex.

    PubMed

    Nobs, Lionel; Baranek, Constanze; Nestel, Sigrun; Kulik, Akos; Kapfhammer, Josef; Nitsch, Cordula; Atanasoski, Suzana

    2014-05-01

    Despite the vast abundance of glial progenitor cells in the mouse brain parenchyma, little is known about the molecular mechanisms driving their proliferation in the adult. Here we unravel a critical role of the G1 cell cycle regulator cyclin D1 in controlling cell division of glial cells in the cortical grey matter. We detect cyclin D1 expression in Olig2-immunopositive (Olig2+) oligodendrocyte progenitor cells, as well as in Iba1+ microglia and S100β+ astrocytes in cortices of 3-month-old mice. Analysis of cyclin D1-deficient mice reveals a cell and stage-specific molecular control of cell cycle progression in the various glial lineages. While proliferation of fast dividing Olig2+ cells at early postnatal stages becomes gradually dependent on cyclin D1, this particular G1 regulator is strictly required for the slow divisions of Olig2+/NG2+ oligodendrocyte progenitors in the adult cerebral cortex. Further, we find that the population of mature oligodendrocytes is markedly reduced in the absence of cyclin D1, leading to a significant decrease in the number of myelinated axons in both the prefrontal cortex and the corpus callosum of 8-month-old mutant mice. In contrast, the pool of Iba1+ cells is diminished already at postnatal day 3 in the absence of cyclin D1, while the number of S100β+ astrocytes remains unchanged in the mutant.

  8. Collagen Accumulation in Osteosarcoma Cells lacking GLT25D1 Collagen Galactosyltransferase.

    PubMed

    Baumann, Stephan; Hennet, Thierry

    2016-08-26

    Collagen is post-translationally modified by prolyl and lysyl hydroxylation and subsequently by glycosylation of hydroxylysine. Despite the widespread occurrence of the glycan structure Glc(α1-2)Gal linked to hydroxylysine in animals, the functional significance of collagen glycosylation remains elusive. To address the role of glycosylation in collagen expression, folding, and secretion, we used the CRISPR/Cas9 system to inactivate the collagen galactosyltransferase GLT25D1 and GLT25D2 genes in osteosarcoma cells. Loss of GLT25D1 led to increased expression and intracellular accumulation of collagen type I, whereas loss of GLT25D2 had no effect on collagen secretion. Inactivation of the GLT25D1 gene resulted in a compensatory induction of GLT25D2 expression. Loss of GLT25D1 decreased collagen glycosylation by up to 60% but did not alter collagen folding and thermal stability. Whereas cells harboring individually inactivated GLT25D1 and GLT25D2 genes could be recovered and maintained in culture, cell clones with simultaneously inactive GLT25D1 and GLT25D2 genes could be not grown and studied, suggesting that a complete loss of collagen glycosylation impairs osteosarcoma cell proliferation and viability. PMID:27402836

  9. Attenuation of sucrose reinforcement in dopamine D1 receptor deficient mice.

    PubMed

    El-Ghundi, Mufida; O'Dowd, Brian F; Erclik, Mary; George, Susan R

    2003-02-01

    Dopaminergic systems are thought to mediate the rewarding and reinforcing effects of palatable food. However, the relative contribution of different dopamine receptor subtypes is not clear. We used dopamine D1 receptor deficient mice (D1 -/-) and their wild-type and heterozygous littermates to study the role of the D1 receptor in palatable food reinforced behaviour using operant responding and free access paradigms. Non-deprived mice were trained to press a lever for sucrose pellets under three schedules of reinforcement including fixed ratios (FR-1 and FR-4) and a progressive ratio (PR). Responding on one lever was reinforced by the delivery of a sucrose pellet or solution while responding on a second lever had no programmed consequences. Initially, D1 mutant mice took longer to learn to discriminate between the two levers and had significantly lower operant responding for sucrose pellets and solution than wild-type and heterozygous mice under all schedules of reinforcement. Food deprivation enhanced responding on the active lever in all mice although it remained significantly lower in D1 -/- mice than in control mice. Following extinction of sucrose reinforcement and reversal of the levers, D1 -/- mice showed deficits in extinguishing and reversing previously learned responses. Home cage intake and preference of sucrose pellets and solutions when given under free-choice access paradigms were similar among the groups. These results suggest that the dopamine D1 receptor plays a role in the motivation to work for reward (palatable food) but not in reward perception and is critical in learning new but relevant information and discontinuing previously learned responses.

  10. A qRT-PCR assay for the expression of all Mal d 1 isoallergen genes

    PubMed Central

    2013-01-01

    Background A considerable number of individuals suffer from oral allergy syndrome (OAS) to apple, resulting in the avoidance of apple consumption. Apple cultivars differ greatly in their allergenic properties, but knowledge of the causes for such differences is incomplete. Mal d 1 is considered the major apple allergen. For Mal d 1, a wide range of isoallergens and variants exist, and they are encoded by a large gene family. To identify the specific proteins/genes that are potentially involved in the allergy, we developed a PCR assay to monitor the expression of each individual Mal d 1 gene. Gene-specific primer pairs were designed for the exploitation of sequence differences among Mal d 1 genes. The specificity of these primers was validated using both in silico and in vitro techniques. Subsequently, this assay was applied to the peel and flesh of fruits from the two cultivars ‘Florina’ and ‘Gala’. Results We successfully developed gene-specific primer pairs for each of the 31 Mal d 1 genes and incorporated them into a qRT-PCR assay. The results from the application of the assay showed that 11 genes were not expressed in fruit. In addition, differential expression was observed among the Mal d 1 genes that were expressed in the fruit. Moreover, the expression levels were tissue and cultivar dependent. Conclusion The assay developed in this study facilitated the first characterisation of the expression levels of all known Mal d 1 genes in a gene-specific manner. Using this assay on different fruit tissues and cultivars, we obtained knowledge concerning gene relevance in allergenicity. This study provides new perspectives for research on both plant breeding and immunotherapy. PMID:23522122

  11. Cyclin D1-CDK4 Controls Glucose Metabolism Independently of Cell Cycle Progression

    PubMed Central

    Lee, Yoonjin; Dominy, John E.; Choi, Yoon Jong; Jurczak, Michael; Tolliday, Nicola; Camporez, Joao Paulo; Chim, Helen; Lim, Ji-Hong; Ruan, Hai-Bin; Yang, Xiaoyong; Vazquez, Francisca; Sicinski, Piotr; Shulman, Gerald I.; Puigserver, Pere

    2014-01-01

    Insulin constitutes a major evolutionarily conserved hormonal axis for maintaining glucose homeostasis1-3; dysregulation of this axis causes diabetes2,4. PGC-1α links insulin signaling to the expression of glucose and lipid metabolic genes5-7. GCN5 acetylates PGC-1α and suppresses its transcriptional activity, whereas SIRT1 deacetylates and activates PGC-1α8,9. Although insulin is a mitogenic signal in proliferative cells10,11, whether components of the cell cycle machinery contribute to insulin’s metabolic action is poorly understood. Herein, we report that insulin activates cyclin D1-CDK4, which, in turn, increases GCN5 acetyltransferase activity and suppresses hepatic glucose production independently of cell cycle progression. Through a cell-based high throughput chemical screen, we identified a CDK4 inhibitor that potently decreases PGC-1α acetylation. Insulin/GSK3β signaling induces cyclin D1 protein stability via sequestering cyclin D1 in the nucleus. In parallel, dietary amino acids increase hepatic cyclin D1 mRNA transcripts. Activated cyclin D1-CDK4 kinase phosphorylates and activates GCN5, which then acetylates and inhibits PGC-1α activity on gluconeogenic genes. Loss of hepatic cyclin D1 results in increased gluconeogenesis and hyperglycemia. In diabetic models, cyclin D1-CDK4 is chronically elevated and refractory to fasting/feeding transitions; nevertheless further activation of this kinase normalizes glycemia. Our findings show that insulin uses components of the cell cycle machinery in post-mitotic cells to control glucose homeostasis independently of cell division. PMID:24870244

  12. Identification of a D1 dopamine receptor, not linked to adenylate cyclase, on lactotroph cells.

    PubMed Central

    Schoors, D. F.; Vauquelin, G. P.; De Vos, H.; Smets, G.; Velkeniers, B.; Vanhaelst, L.; Dupont, A. G.

    1991-01-01

    1. We studied the lactotroph cells of the rat by both in vivo and in vitro pharmacological techniques for the presence of D1-receptors. Both approaches revealed the presence of D2-receptor, stimulated by quinpirole (resulting in an inhibition of prolactin secretion) and blocked by domperidone. 2. Administration of fenoldopam, the most selective D1-receptor agonist currently available, resulted in a dose-dependent decrease of prolactin secretion in vivo (after pretreatment with alpha-methyl-p-tyrosine) and in vitro (cultured pituitary cells). This increase was dose-dependently blocked by the selective D1-receptor antagonist, SCH 23390, and although the effect of fenoldopam was less than that obtained by D2-receptor stimulation, these data suggest that a D1-receptor also controls prolactin secretion. 3. In order to detect the location of these dopamine receptors, autoradiographic studies were performed by use of [3H]-SCH 23390 and [3H]-spiperone as markers for D1- and D2-receptors, respectively. Specific binding sites for [3H]-SCH 23390 were demonstrated. Fenoldopam dose-dependently reduced [3H]-SCH 23390 binding, but had no effect on [3H]-spiperone binding. Immunocytochemical labelling of prolactin cells after incubation with [3H]-SCH 23390 revealed that the granulae and hence, D1 binding sites were present on the lactotroph cells. 4. Radioligand binding studies performed on membranes from anterior pituitary cells revealed the presence of the D2-receptor (54 fmol mg-1 protein) with a Kd of 0.58 nM for [3H]-spiperone, but failed to detect D1-receptors. 5. Finally, we studied the effect of dopamine and of fenoldopam on the adenosine 3':5'-cyclic monophosphate (cyclic AMP) content of anterior pituitary cells.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 4 Figure 5 PMID:1833020

  13. Resolvin D1 Dampens Pulmonary Inflammation and Promotes Clearance of Nontypeable Haemophilus influenzae.

    PubMed

    Croasdell, Amanda; Lacy, Shannon H; Thatcher, Thomas H; Sime, Patricia J; Phipps, Richard P

    2016-03-15

    Nontypeable Haemophilus influenzae (NTHi) is a Gram-negative, opportunistic pathogen that frequently causes ear infections, bronchitis, pneumonia, and exacerbations in patients with underlying inflammatory diseases, such as chronic obstructive pulmonary disease. In mice, NTHi is rapidly cleared, but a strong inflammatory response persists, underscoring the concept that NTHi induces dysregulation of normal inflammatory responses and causes a failure to resolve. Lipid-derived specialized proresolving mediators (SPMs) play a critical role in the active resolution of inflammation by both suppressing proinflammatory actions and promoting resolution pathways. Importantly, SPMs lack the immunosuppressive properties of classical anti-inflammatory therapies. On the basis of these characteristics, we hypothesized that aspirin-triggered resolvin D1 (AT-RvD1) would dampen NTHi-induced inflammation while still enhancing bacterial clearance. C57BL/6 mice were treated with AT-RvD1 and infected with live NTHi. AT-RvD1-treated mice had lower total cell counts and neutrophils in bronchoalveolar lavage fluid, and had earlier influx of macrophages. In addition, AT-RvD1-treated mice showed changes in temporal regulation of inflammatory cytokines and enzymes, with decreased KC at 6 h and decreased IL-6, TNF-α, and cyclooxygenase-2 expression at 24 h post infection. Despite reduced inflammation, AT-RvD1-treated mice had reduced NTHi bacterial load, mediated by enhanced clearance by macrophages and a skewing toward an M2 phenotype. Finally, AT-RvD1 protected NTHi-infected mice from weight loss, hypothermia, hypoxemia, and respiratory compromise. This research highlights the beneficial role of SPMs in pulmonary bacterial infections and provides the groundwork for further investigation into SPMs as alternatives to immunosuppressive therapies like steroids.

  14. BRCA1-IRIS regulates cyclin D1 expression in breast cancer cells

    SciTech Connect

    Nakuci, Enkeleda; Mahner, Sven; DiRenzo, James; ElShamy, Wael M. . E-mail: wael_elshamy@dfci.harvard.edu

    2006-10-01

    The regulator of cell cycle progression, cyclin D1, is up-regulated in breast cancer cells; its expression is, in part, dependent on ER{alpha} signaling. However, many ER{alpha}-negative tumors and tumor cell lines (e.g., SKBR3) also show over-expression of cyclin D1. This suggests that, in addition to ER{alpha} signaling, cyclin D1 expression is under the control of other signaling pathways; these pathways may even be over-expressed in the ER{alpha}-negative cells. We previously noticed that both ER{alpha}-positive and -negative cell lines over-express BRCA1-IRIS mRNA and protein. Furthermore, the level of over-expression of BRCA1-IRIS in ER{alpha}-negative cell lines even exceeded its over-expression level in ER{alpha}-positive cell lines. In this study, we show that: (1) BRCA1-IRIS forms complex with two of the nuclear receptor co-activators, namely, SRC1 and SRC3 (AIB1) in an ER{alpha}-independent manner. (2) BRCA1-IRIS alone, or in connection with co-activators, is recruited to the cyclin D1 promoter through its binding to c-Jun/AP1 complex; this binding activates the cyclin D1 expression. (3) Over-expression of BRCA1-IRIS in breast cells over-activates JNK/c-Jun; this leads to the induction of cyclin D1 expression and cellular proliferation. (4) BRCA1-IRIS activation of JNK/c-Jun/AP1 appears to account for this, because in cells that were depleted from BRCA1-IRIS, JNK remained inactive. However, depletion of SRC1 or SRC3 instead reduced c-Jun expression. Our data suggest that this novel signaling pathway links BRCA1-IRIS to cellular proliferation through c-Jun/AP1 nuclear pathway; finally, this culminates in the increased expression of the cyclin D1 gene.

  15. Striatal dopamine modulates song spectral but not temporal features through D1 receptors

    PubMed Central

    Leblois, Arthur; Perkel, David J

    2012-01-01

    The activity of midbrain dopaminergic neurons and their projection to the basal ganglia (BG) are thought to play a critical role in the acquisition of motor skills through reinforcement learning, as well as in the expression of learned motor behaviors. The precise role of BG dopamine in mediating and modulating motor performance and learning, however, remains unclear. In songbirds, a specialized portion of the BG is responsible for song learning and plasticity. Previously we found that dopamine acts on D1 receptors in Area X to modulate the BG output signal and thereby trigger changes in song variability. Here, we investigate the effect of D1 receptor blockade in the BG on song behavior in the zebra finch. We report that this manipulation abolishes social context-dependent changes in variability not only in harmonic stacks, but also in other types of syllables. However, song timing seems not to be modulated by this BG dopamine signal. Indeed, injections of a D1 antagonist in the BG altered neither song duration, nor the change of song duration with social context. Finally, D1 receptor activation in the BG was not necessary for the modulation of other features of song such as the number of introductory notes or motif repetitions. Together, our results suggest that activation of D1 receptors in the BG is necessary for the modulation of fine acoustic features of song with social context while it is not involved in the regulation of song timing and structure at a larger time scale. PMID:22594943

  16. Differentiation-inducing factor-1 suppresses gene expression of cyclin D1 in tumor cells

    SciTech Connect

    Yasmin, Tania; Takahashi-Yanaga, Fumi . E-mail: yanaga@clipharm.med.kyushu-u.ac.jp; Mori, Jun; Miwa, Yoshikazu; Hirata, Masato; Watanabe, Yutaka; Morimoto, Sachio; Sasaguri, Toshiyuki

    2005-12-16

    To determine the mechanism by which differentiation-inducing factor-1 (DIF-1), a morphogen of Dictyostelium discoideum, inhibits tumor cell proliferation, we examined the effect of DIF-1 on the gene expression of cyclin D1. DIF-1 strongly reduced the expression of cyclin D1 mRNA and correspondingly decreased the amount of {beta}-catenin in HeLa cells and squamous cell carcinoma cells. DIF-1 activated glycogen synthase kinase-3{beta} (GSK-3{beta}) and inhibition of GSK-3{beta} attenuated the DIF-1-induced {beta}-catenin degradation, indicating the involvement of GSK-3{beta} in this effect. Moreover, DIF-1 reduced the activities of T-cell factor (TCF)/lymphoid enhancer factor (LEF) reporter plasmid and a reporter gene driven by the human cyclin D1 promoter. Eliminating the TCF/LEF consensus site from the cyclin D1 promoter diminished the effect of DIF-1. These results suggest that DIF-1 inhibits Wnt/{beta}-catenin signaling, resulting in the suppression of cyclin D1 promoter activity.

  17. Export of cytochrome P450 105D1 to the periplasmic space of Escherichia coli.

    PubMed

    Kaderbhai, M A; Ugochukwu, C C; Kelly, S L; Lamb, D C

    2001-05-01

    CYP105D1, a cytochrome P450 from Streptomyces griseus, was appended at its amino terminus to the secretory signal of Escherichia coli alkaline phosphatase and placed under the transcriptional control of the native phoA promoter. Heterologous expression in E. coli phosphate-limited medium resulted in abundant synthesis of recombinant CYP105D1 that was translocated across the bacterial inner membrane and processed to yield authentic, heme-incorporated P450 within the periplasmic space. Cell extract and whole-cell activity studies showed that the periplasmically located CYP105D1 competently catalyzed NADH-dependent oxidation of the xenobiotic compounds benzo[a]pyrene and erythromycin, further revealing the presence in the E. coli periplasm of endogenous functional redox partners. This system offers substantial advantages for the application of P450 enzymes to whole-cell biotransformation strategies, where the ability of cells to take up substrates or discard products may be limited.

  18. Reappraising striatal D1- and D2-neurons in reward and aversion.

    PubMed

    Soares-Cunha, Carina; Coimbra, Barbara; Sousa, Nuno; Rodrigues, Ana J

    2016-09-01

    The striatum has been involved in complex behaviors such as motor control, learning, decision-making, reward and aversion. The striatum is mainly composed of medium spiny neurons (MSNs), typically divided into those expressing dopamine receptor D1, forming the so-called direct pathway, and those expressing D2 receptor (indirect pathway). For decades it has been proposed that these two populations exhibit opposing control over motor output, and recently, the same dichotomy has been proposed for valenced behaviors. Whereas D1-MSNs mediate reinforcement and reward, D2-MSNs have been associated with punishment and aversion. In this review we will discuss pharmacological, genetic and optogenetic studies that indicate that there is still controversy to what concerns the role of striatal D1- and D2-MSNs in this type of behaviors, highlighting the need to reconsider the early view that they mediate solely opposing aspects of valenced behaviour. PMID:27235078

  19. Posttraining D1 receptor blockade impairs odor conditioning in neonatal rats.

    PubMed

    Weldon, D A; Travis, M L; Kennedy, D A

    1991-06-01

    Rat pups that were exposed to a novel anise odor paired with tactile stimulation (stroking the skin with a paint brush) received injections of either saline or the dopamine D1 receptor antagonist (+/-)-SKF 83566 (0.1 mg/kg) before conditioning or immediately after conditioning. Animals that received the drug either before or after training showed less approach to the conditioned odor during the testing period 24 hr later than did animals that received the vehicle. Posttraining administration of the D2 receptor antagonist spiperone (0.1 mg/kg) did not affect subsequent approach to the conditioned odor, suggesting a selective effect of D1 receptor blockade. The impairment in learning by the administration of (+/-)-SKF 83566 before conditioning was reversed by the injection of the dopamine receptor agonist apomorphine (0.1 mg/kg) immediately after conditioning. Posttraining D1 receptor activation appears necessary for normal odor conditioning in rat pups. PMID:1863365

  20. Overlapping Intracellular and Differential Synaptic Distributions of Dopamine D1 and Glutamate NMDA Receptors in Rat Nucleus Accumbens

    PubMed Central

    Hara, Yuko; Pickel, Virginia M.

    2008-01-01

    The dopamine D1 receptor (D1R) in the nucleus accumbens (Acb) shell is highly implicated in psychostimulant-evoked locomotor activity and reward, whereas the D1R in the Acb core is more crucial for appetitive instrumental learning. These behavioral effects depend in part on interactions involving glutamatergic NMDA receptors, whose essential NR1 subunit has physical associations with the D1R. To determine the relevant sites for D1R activation and interactions involving NMDA receptors, we examined the electron microscopic immunolabeling of D1R and NR1 C-terminal peptides in rat Acb shell and core. In each Acb subdivision, the D1Rs were located principally on extrasynaptic plasma membranes of dendritic shafts and spines and more rarely associated with cytoplasmic endomembranes. Many D1R-labeled somata and dendrites also contained NR1 immunoreactivity. In comparison with D1R, NR1 immunoreactivity was more often seen in the cytoplasm and near asymmetric synapses on somatodendritic profiles. In these profiles, notable overlapping distributions of D1R and NR1 occurred near endomembranes. The exclusively D1R or D1R and NR1 containing dendrites were most prevalent in the Acb shell, but also present in the Acb core. In each region, NR1 was also detected in axon terminals without D1R, which formed excitatory-type synapses with D1R-labeled dendrites. These results provide ultrastructural evidence that D1Rs in the Acb have subcellular distributions supporting, 1) intracellular co-trafficking with NR1, and 2) modulation of the postsynaptic excitability in spiny neurons affected by presynaptic NMDA receptor activation. The region-specific differences in receptor distributions suggest a major, but not exclusive, involvement of Acb D1R in reward-related processing. PMID:16228995

  1. Suberoylanilide hydroxamic acid (SAHA) inhibits EGF-induced cell transformation via reduction of cyclin D1 mRNA stability

    SciTech Connect

    Zhang, Jingjie; Ouyang, Weiming; Li, Jingxia; Zhang, Dongyun; Yu, Yonghui; Wang, York; Li, Xuejun; Huang, Chuanshu

    2012-09-01

    Suberoylanilide hydroxamic acid (SAHA) inhibiting cancer cell growth has been associated with its downregulation of cyclin D1 protein expression at transcription level or translation level. Here, we have demonstrated that SAHA inhibited EGF-induced Cl41 cell transformation via the decrease of cyclin D1 mRNA stability and induction of G0/G1 growth arrest. We found that SAHA treatment resulted in the dramatic inhibition of EGF-induced cell transformation, cyclin D1 protein expression and induction of G0/G1 growth arrest. Further studies showed that SAHA downregulation of cyclin D1 was only observed with endogenous cyclin D1, but not with reconstitutionally expressed cyclin D1 in the same cells, excluding the possibility of SAHA regulating cyclin D1 at level of protein degradation. Moreover, SAHA inhibited EGF-induced cyclin d1 mRNA level, whereas it did not show any inhibitory effect on cyclin D1 promoter-driven luciferase reporter activity under the same experimental conditions, suggesting that SAHA may decrease cyclin D1 mRNA stability. This notion was supported by the results that treatment of cells with SAHA decreased the half-life of cyclin D1 mRNA from 6.95 h to 2.57 h. Consistent with downregulation of cyclin D1 mRNA stability, SAHA treatment also attenuated HuR expression, which has been well-characterized as a positive regulator of cyclin D1 mRNA stability. Thus, our study identifies a novel mechanism responsible for SAHA inhibiting cell transformation via decreasing cyclin D1 mRNA stability and induction of G0/G1 growth arrest in Cl41 cells. -- Highlights: ► SAHA inhibits cell transformation in Cl41 cells. ► SAHA suppresses Cyclin D1 protein expression. ► SAHA decreases cyclin D1 mRNA stability.

  2. Glutaraldehyde-Modified Recombinant Fel d 1: A Hypoallergen With Negligible Biological Activity But Retained Immunogenicity

    PubMed Central

    Versteeg, Serge A.; Bulder, Ingrid; Himly, Martin; van Capel, Toni M.; van den Hout, R.; Koppelman, Stef J.; de Jong, Esther C.; Ferreira, Fatima

    2011-01-01

    Background Recombinant allergens are under investigation for replacing allergen extracts in immunotherapy. Site-directed mutagenesis has been suggested as a strategy to develop hypoallergenic molecules that will reduce the risk of side effects. For decades, chemically modified allergen extracts have been used for the same reason. Aim To evaluate whether glutaraldehyde modification is a good strategy to produce hypoallergenic recombinant allergens with retained immunogenicity. Methods Fel d 1 was cloned as a single construct linking both chains of the molecule and expressed in Escherichia coli and Pichia pastoris. After physicochemical purification, recombinant Fel d 1 (rFel d 1) was chemically modified using glutaraldehyde. The effect of modification on immune reactivity was evaluated using radioallergosorbent test, CAP-inhibition, competitive radioimmunoassay, enzyme-linked immunosorbent assay, basophil histamine release, and T-cell proliferation assays. Both natural Fel d 1 and recombinant unmodified Fel d 1 were used as controls. Results rFel d 1 demonstrated similar IgE binding and biological activity as its natural counterpart. Upon modification, IgE-binding potency decreased to >1000-fold, which was translated into a >106-fold reduction in the biological activity assessed by basophil histamine release. In contrast, the modified recombinant did not show a decreased but even a moderately increased capacity (1.5-fold) to stimulate proliferation of T cells (P < 0.01). Finally, it induced specific IgG antibodies in rabbits that recognized the unmodified allergen. Conclusions Chemical modification is a practical and highly effective approach for achieving hypoallergenicity of recombinant allergens with retained immunogenicity. PMID:23268458

  3. Characterization of a new rice glutelin gene GluD-1 expressed in the starchy endosperm

    PubMed Central

    Kawakatsu, Taiji; Yamamoto, Masayuki P.; Hirose, Sakiko; Yano, Masahiro; Takaiwa, Fumio

    2008-01-01

    A new glutelin gene, designated GluD-1, has been discovered by comparing the seed storage proteins from 48 japonica and indica rice cultivars on SDS-PAGE gels. Evidence that GluD-1 is a member of the glutelin family was provided by Western blots using anti-glutelin antiserum and by mapping the gene to the chromosomal glutelin gene cluster. The limited GluD-1 size polymorphism among the rice varieties is due to amino acid substitutions rather than to post-transcriptional modification. GluD-1 is maximally expressed in the starchy endosperm starting at 5 d after flowering (DAF) and increasing through 30 DAF, a major difference from the other glutelins which are primarily expressed in the subaleurone from 10–16 DAF. Only about 0.2 kb of the GluD-1 promoter was sufficient to confer inner starchy endosperm-specific expression. The 0.2 kb truncated GluD-1 promoter contains a bifactorial endosperm box consisting of a truncated GCN4 motif (TGA(G/C)TCA) and AAAG Prolamin box (P box), and ACGT and AACA motifs as cis-regulatory elements. Gel retardation assays and trans-activation experiments indicated that the truncated GCN4 and P box are specifically recognized by RISBZ1 b-ZIP and RPBF Dof activators in vitro, respectively, and are synergistically transactivated, indicating that combinatorial interactions of these motifs are involved in essential endosperm-specific regulation. Furthermore, deviation from the cognate GCN4 motif alters tissue-specific expression in the inner starchy endosperm to include other endosperm tissues. PMID:18980953

  4. Evolutionary dynamics of HBV-D1 genotype epidemic in Turkey.

    PubMed

    Ciccozzi, Massimo; Ciccaglione, Anna Rita; Lo Presti, Alessandra; Equestre, Michele; Cella, Eleonora; Ebranati, Erika; Gabanelli, Elena; Villano, Umbertina; Bruni, Roberto; Yalcinkaya, Tulay; Tanzi, Elisabetta; Zehender, Gianguglielmo

    2014-01-01

    Hepatitis B virus (HBV), is the leading cause of liver diseases infecting an estimated 240 million persons worldwide. The HBV prevalence rates are variables between different countries, with an high level of endemicity in the south-eastern part of Europe. Seven main HBV-D subgenotypes have been described until now (D1-D7). Turkey, seems to have played an important role in the penetration of HBV-D1 in the Mediterranean area. The importance of Turkey in the European epidemiology of HBV is also suggested by the observation that the highest spread of HBV infection in the Continent are reported in Turkey with Romania, Bulgaria, Greece, Albania and some southern regions of Italy. In this paper the molecular epidemiology and the epidemiological history of HBV-D in Turkey was studied, by characterizing 34 new Turkish isolates and performing a phylogeographic reconstruction. By using a phylodynamic and phylogeographic Bayesian approach, the analysis suggested that HBV-D1 originated in Turkey about in the early 1940s. The large prevalence of D1 in comparison to the other subgenotypes in Turkey confirms the importance of this Country as epidemiological reservoir of HBV-D1 dispersion. The phylogeny suggests that after each initial introduction of the virus in a specific population, separate transmission clusters have been evolving along independent phylogenetic lineages. Better characterization and continuous monitoring of such groups are going to be crucial to understand in detail the epidemiology of HBV-D1 subgenotype in Turkey and to assess the efficacy of prevention, vaccination and therapy in controlling the epidemic.

  5. Stereoselective synthesis of protectin D1: A potent anti-inflammatory and proresolving lipid mediator

    PubMed Central

    Aursnes, M.; Tungen, J. E.; Vik, A.; Dalli, J.; Hansen, T. V.

    2014-01-01

    A convergent stereoselective synthesis of the potent anti-inflammatory, proresolving and neuroprotective lipid mediator protectin D1 (2) has been achieved in 15% yield over eight steps. The key features were a stereocontrolled Evans-aldol reaction with Nagao’s chiral auxiliary and a highly selective Lindlar reduction of internal alkyne 23, allowing the sensitive conjugated E,E,Z-triene to be introduced late in the preparation of 2. The UV and LC/MS-MS data of synthetic protectin D1 (2) matched those obtained from endogenously produced material PMID:24253202

  6. Alternative splicing variants of human Fbx4 disturb cyclin D1 proteolysis in human cancer

    SciTech Connect

    Chu, Xiufeng; Zhang, Ting; Wang, Jie; Li, Meng; Zhang, Xiaolei; Tu, Jing; Sun, Shiqin; Chen, Xiangmei; Lu, Fengmin

    2014-04-25

    Highlights: • The expression of Fbx4 was significantly lower in HCC tissues. • Novel splicing variants of Fbx4 were identified. • These novel variants are much more abundant in human cancer tissues and cells. • The novel Fbx4 isoforms could promote cell proliferation and migration in vitro. • These isoforms showed less capability for cyclin D1 binding and degradation. - Abstract: Fbx4 is a specific substrate recognition component of SCF ubiquitin ligases that catalyzes the ubiquitination and subsequent degradation of cyclin D1 and Trx1. Two isoforms of human Fbx4 protein, the full length Fbx4α and the C-terminal truncated Fbx4β have been identified, but their functions remain elusive. In this study, we demonstrated that the mRNA level of Fbx4 was significantly lower in hepatocellular carcinoma tissues than that in the corresponding non-tumor tissues. More importantly, we identified three novel splicing variants of Fbx4: Fbx4γ (missing 168–245nt of exon1), Fbx4δ (missing exon6) and a N-terminal reading frame shift variant (missing exon2). Using cloning sequencing and RT-PCR, we demonstrated these novel splice variants are much more abundant in human cancer tissues and cell lines than that in normal tissues. When expressed in Sk-Hep1 and NIH3T3 cell lines, Fbx4β, Fbx4γ and Fbx4δ could promote cell proliferation and migration in vitro. Concordantly, these isoforms could disrupt cyclin D1 degradation and therefore increase cyclin D1 expression. Moreover, unlike the full-length isoform Fbx4α that mainly exists in cytoplasm, Fbx4β, Fbx4γ, and Fbx4δ locate in both cytoplasm and nucleus. Since cyclin D1 degradation takes place in cytoplasm, the nuclear distribution of these Fbx4 isoforms may not be involved in the down-regulation of cytoplasmic cyclin D1. These results define the impact of alternative splicing on Fbx4 function, and suggest that the attenuated cyclin D1 degradation by these novel Fbx4 isoforms provides a new insight for aberrant

  7. Selective D-1 dopamine receptor agonist effects in hyperkinetic extrapyramidal disorders.

    PubMed Central

    Braun, A; Mouradian, M M; Mohr, E; Fabbrini, G; Chase, T N

    1989-01-01

    The motor and cognitive effects of a selective D-1 dopamine receptor agonist, SKF 39393, were assessed in patients with Huntington's disease, Gilles de la Tourette's syndrome, tardive dyskinesia, and torsion dystonia, using a double-blind placebo-controlled design. Over daily doses ranging from 3.2 to 32 mg/kg and treatment intervals extending from one to seven weeks, no consistent changes could be discerned. The contribution of D-1 receptor mediated mechanisms to the pathophysiology of hyperkinetic extrapyramidal disorders remains uncertain. PMID:2567345

  8. Adolescent Maturation of Dopamine D1 and D2 Receptor Function and Interactions in Rodents.

    PubMed

    Dwyer, Jennifer B; Leslie, Frances M

    2016-01-01

    Adolescence is a developmental period characterized by heightened vulnerability to illicit drug use and the onset of neuropsychiatric disorders. These clinical phenomena likely share common neurobiological substrates, as mesocorticolimbic dopamine systems actively mature during this period. Whereas prior studies have examined age-dependent changes in dopamine receptor binding, there have been fewer functional analyses. The aim of the present study was therefore to determine whether the functional consequences of D1 and D2-like activation are age-dependent. Adolescent and adult rats were given direct D1 and D2 agonists, alone and in combination. Locomotor and stereotypic behaviors were measured, and brains were collected for analysis of mRNA expression for the immediate early genes (IEGs), cfos and arc. Adolescents showed enhanced D2-like receptor control of locomotor and repetitive behaviors, which transitioned to dominant D1-like mechanisms in adulthood. When low doses of agonists were co-administered, adults showed supra-additive behavioral responses to D1/D2 combinations, whereas adolescents did not, which may suggest age differences in D1/D2 synergy. D1/D2-stimulated IEG expression was particularly prominent in the bed nucleus of the stria terminalis (BNST). Given the BNST's function as an integrator of corticostriatal, hippocampal, and stress-related circuitry, and the importance of neural network dynamics in producing behavior, an exploratory functional network analysis of regional IEG expression was performed. This data-driven analysis demonstrated similar developmental trajectories as those described in humans and suggested that dopaminergic drugs alter forebrain coordinated gene expression age dependently. D1/D2 recruitment of stress nuclei into functional networks was associated with low behavioral output in adolescents. Network analysis presents a novel tool to assess pharmacological action, and highlights critical developmental changes in functional

  9. Adolescent Maturation of Dopamine D1 and D2 Receptor Function and Interactions in Rodents

    PubMed Central

    Dwyer, Jennifer B.; Leslie, Frances M.

    2016-01-01

    Adolescence is a developmental period characterized by heightened vulnerability to illicit drug use and the onset of neuropsychiatric disorders. These clinical phenomena likely share common neurobiological substrates, as mesocorticolimbic dopamine systems actively mature during this period. Whereas prior studies have examined age-dependent changes in dopamine receptor binding, there have been fewer functional analyses. The aim of the present study was therefore to determine whether the functional consequences of D1 and D2-like activation are age-dependent. Adolescent and adult rats were given direct D1 and D2 agonists, alone and in combination. Locomotor and stereotypic behaviors were measured, and brains were collected for analysis of mRNA expression for the immediate early genes (IEGs), cfos and arc. Adolescents showed enhanced D2-like receptor control of locomotor and repetitive behaviors, which transitioned to dominant D1-like mechanisms in adulthood. When low doses of agonists were co-administered, adults showed supra-additive behavioral responses to D1/D2 combinations, whereas adolescents did not, which may suggest age differences in D1/D2 synergy. D1/D2-stimulated IEG expression was particularly prominent in the bed nucleus of the stria terminalis (BNST). Given the BNST’s function as an integrator of corticostriatal, hippocampal, and stress-related circuitry, and the importance of neural network dynamics in producing behavior, an exploratory functional network analysis of regional IEG expression was performed. This data-driven analysis demonstrated similar developmental trajectories as those described in humans and suggested that dopaminergic drugs alter forebrain coordinated gene expression age dependently. D1/D2 recruitment of stress nuclei into functional networks was associated with low behavioral output in adolescents. Network analysis presents a novel tool to assess pharmacological action, and highlights critical developmental changes in functional

  10. Silymarin induces cyclin D1 proteasomal degradation via its phosphorylation of threonine-286 in human colorectal cancer cells.

    PubMed

    Eo, Hyun Ji; Park, Gwang Hun; Song, Hun Min; Lee, Jin Wook; Kim, Mi Kyoung; Lee, Man Hyo; Lee, Jeong Rak; Koo, Jin Suk; Jeong, Jin Boo

    2015-01-01

    Silymarin from milk thistle (Silybum marianum) plant has been reported to show anti-cancer, anti-inflammatory, antioxidant and hepatoprotective effects. For anti-cancer activity, silymarin is known to regulate cell cycle progression through cyclin D1 downregulation. However, the mechanism of silymarin-mediated cyclin D1 downregulation still remains unanswered. The current study was performed to elucidate the molecular mechanism of cyclin D1 downregulation by silymarin in human colorectal cancer cells. The treatment of silymarin suppressed the cell proliferation in HCT116 and SW480 cells and decreased cellular accumulation of exogenously-induced cyclin D1 protein. However, silymarin did not change the level of cyclin D1 mRNA. Inhibition of proteasomal degradation by MG132 attenuated silymarin-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in the cells treated with silymarin. In addition, silymarin increased phosphorylation of cyclin D1 at threonine-286 and a point mutation of threonine-286 to alanine attenuated silymarin-mediated cyclin D1 downregulation. Inhibition of NF-κB by a selective inhibitor, BAY 11-7082 suppressed cyclin D1 phosphorylation and downregulation by silymarin. From these results, we suggest that silymarin-mediated cyclin D1 downregulation may result from proteasomal degradation through its threonine-286 phosphorylation via NF-κB activation. The current study provides new mechanistic link between silymarin, cyclin D1 downregulation and cell growth in human colorectal cancer cells. PMID:25479723

  11. 26 CFR 1.168(d)-1 - Applicable conventions-half-year and mid-quarter conventions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Applicable conventions-half-year and mid-quarter conventions. 1.168(d)-1 Section 1.168(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Itemized Deductions for Individuals and Corporations § 1.168(d)-1...

  12. Silymarin induces cyclin D1 proteasomal degradation via its phosphorylation of threonine-286 in human colorectal cancer cells.

    PubMed

    Eo, Hyun Ji; Park, Gwang Hun; Song, Hun Min; Lee, Jin Wook; Kim, Mi Kyoung; Lee, Man Hyo; Lee, Jeong Rak; Koo, Jin Suk; Jeong, Jin Boo

    2015-01-01

    Silymarin from milk thistle (Silybum marianum) plant has been reported to show anti-cancer, anti-inflammatory, antioxidant and hepatoprotective effects. For anti-cancer activity, silymarin is known to regulate cell cycle progression through cyclin D1 downregulation. However, the mechanism of silymarin-mediated cyclin D1 downregulation still remains unanswered. The current study was performed to elucidate the molecular mechanism of cyclin D1 downregulation by silymarin in human colorectal cancer cells. The treatment of silymarin suppressed the cell proliferation in HCT116 and SW480 cells and decreased cellular accumulation of exogenously-induced cyclin D1 protein. However, silymarin did not change the level of cyclin D1 mRNA. Inhibition of proteasomal degradation by MG132 attenuated silymarin-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in the cells treated with silymarin. In addition, silymarin increased phosphorylation of cyclin D1 at threonine-286 and a point mutation of threonine-286 to alanine attenuated silymarin-mediated cyclin D1 downregulation. Inhibition of NF-κB by a selective inhibitor, BAY 11-7082 suppressed cyclin D1 phosphorylation and downregulation by silymarin. From these results, we suggest that silymarin-mediated cyclin D1 downregulation may result from proteasomal degradation through its threonine-286 phosphorylation via NF-κB activation. The current study provides new mechanistic link between silymarin, cyclin D1 downregulation and cell growth in human colorectal cancer cells.

  13. 17 CFR 270.17d-1 - Applications regarding joint enterprises or arrangements and certain profit-sharing plans.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... enterprises or arrangements and certain profit-sharing plans. 270.17d-1 Section 270.17d-1 Commodity and... ACT OF 1940 § 270.17d-1 Applications regarding joint enterprises or arrangements and certain profit... effect any transaction in connection with, any joint enterprise or other joint arrangement or...

  14. 17 CFR 270.17d-1 - Applications regarding joint enterprises or arrangements and certain profit-sharing plans.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... enterprises or arrangements and certain profit-sharing plans. 270.17d-1 Section 270.17d-1 Commodity and... ACT OF 1940 § 270.17d-1 Applications regarding joint enterprises or arrangements and certain profit... effect any transaction in connection with, any joint enterprise or other joint arrangement or...

  15. 17 CFR 270.17d-1 - Applications regarding joint enterprises or arrangements and certain profit-sharing plans.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... enterprises or arrangements and certain profit-sharing plans. 270.17d-1 Section 270.17d-1 Commodity and... ACT OF 1940 § 270.17d-1 Applications regarding joint enterprises or arrangements and certain profit... effect any transaction in connection with, any joint enterprise or other joint arrangement or...

  16. 17 CFR 270.17d-1 - Applications regarding joint enterprises or arrangements and certain profit-sharing plans.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... enterprises or arrangements and certain profit-sharing plans. 270.17d-1 Section 270.17d-1 Commodity and... ACT OF 1940 § 270.17d-1 Applications regarding joint enterprises or arrangements and certain profit... effect any transaction in connection with, any joint enterprise or other joint arrangement or...

  17. Enhanced skin carcinogenesis and lack of thymus hyperplasia in transgenic mice expressing human cyclin D1b (CCND1b)

    PubMed Central

    Rojas, Paola; Benavides, Fernando; Blando, Jorge; Perez, Carlos; Cardenas, Kim; Richie, Ellen; Knudsen, Erik S.; Johnson, David G.; Senderowicz, Adrian M.; Rodriguez-Puebla, Marcelo L.; Conti, Claudio J.

    2009-01-01

    Cyclin D1b is an alternative transcript of the cyclin D1 gene (CCND1) expressed in human tumors. Its abundance is regulated by a single base pair polymorphism at the exon 4/intron 4 boundary (nucleotide 870). Epidemiological studies have shown a correlation between the presence of the G870A allele (that favors the splicing for cyclin D1b) with increased risk and less favorable outcome in several forms of cancer. More recently, it has been shown that, unlike cyclin D1a, the alternative transcript D1b by itself has the capacity to transform fibroblasts in vitro. In order to study the oncogenic potential of cyclin D1b, we developed transgenic mice expressing human cyclin D1b under the control of the bovine K5 promoter (K5D1b mice). Seven founders were obtained and none of them presented any significant phenotype or developed spontaneous tumors. Interestingly, K5D1b mice do not develop the fatal thymic hyperplasia, which is characteristic of the cyclin D1a transgenic mice (K5D1a). Susceptibility to skin carcinogenesis was tested in K5D1b mice using two-stage carcinogenesis protocols. In two independent experiments, K5D1b mice developed higher papilloma multiplicity as compared with wild-type littermates. However, when K5D1b mice were crossed with cyclin D1KO mice, the expression of cyclin D1b was unable to rescue the carcinogenesis-resistant phenotype of the cyclin D1 KO mice. To further explore the role of cyclin D1b in mouse models of carcinogenesis we carried out in silico analysis and in vitro experiments to evaluate the existence of a mouse homologous of the human cyclin D1b transcript. We were unable to find any evidence of an alternatively spliced transcript in mouse Ccnd1. These results show that human cyclin D1b has different biological functions than cyclin D1a and confirm its oncogenic properties. PMID:18942117

  18. PvD1 defensin, a plant antimicrobial peptide with inhibitory activity against Leishmania amazonensis.

    PubMed

    do Nascimento, Viviane V; Mello, Érica de O; Carvalho, Laís P; de Melo, Edésio J T; Carvalho, André de O; Fernandes, Katia V S; Gomes, Valdirene M

    2015-01-01

    Plant defensins are small cysteine-rich peptides and exhibit antimicrobial activity against a variety of both plant and human pathogens. Despite the broad inhibitory activity that plant defensins exhibit against different micro-organisms, little is known about their activity against protozoa. In a previous study, we isolated a plant defensin named PvD1 from Phaseolus vulgaris (cv. Pérola) seeds, which was seen to be deleterious against different yeast cells and filamentous fungi. It exerted its effects by causing an increase in the endogenous production of ROS (reactive oxygen species) and NO (nitric oxide), plasma membrane permeabilization and the inhibition of medium acidification. In the present study, we investigated whether PvD1 could act against the protozoan Leishmania amazonensis. Our results show that, besides inhibiting the proliferation of L. amazonensis promastigotes, the PvD1 defensin was able to cause cytoplasmic fragmentation, formation of multiple cytoplasmic vacuoles and membrane permeabilization in the cells of this organism. Furthermore, we show, for the first time, that PvD1 defensin was located within the L. amazonensis cells, suggesting the existence of a possible intracellular target. PMID:26285803

  19. In Hamsters the D1 Receptor Antagonist SCH 23390 Depresses Ventilation during Hypoxia

    PubMed Central

    Schlenker, Evelyn H.

    2008-01-01

    During exposure of animals to hypoxia, brain and blood dopamine levels increase stimulating dopaminergic receptors which influence the integrated ventilatory response to low oxygen. The purpose of the present study is to test the hypothesis, that in conscious hamsters, systemic antagonism of D1 receptors would depress their breathing in air and in response to hypoxic and hypercapnic challenges. Nine male hamsters were treated with saline or 0.25 mg/kg SCH-23390 (SCH), a D1 receptor antagonist that crosses the blood-brain barrier. Ventilation was determined using the barometric method and oxygen consumption and CO2 production were evaluated utilizing the flow-through method. During exposure to air, SCH decreased frequency of breathing. During exposure to hypoxia (10% oxygen in nitrogen), relative to saline, SCH-treated hamsters decreased minute ventilation by decreasing tidal volume and oxygen consumption but not CO2 production. During exposure to hypercapnia (5% CO2 in 95% O2) frequency of breathing was decreased with SCH, but there was no significant effect on minute ventilation. Relative to saline treatment body temperature was lower in SCH treated hamsters by 0.6 degrees Celsius. These results demonstrate that in hamsters D1 receptors can modulate control of ventilation in air and during hypoxia and hypercapnic exposures. Whether D1 receptors located centrally or on carotid bodies modulate these effects is not clear from this study. PMID:18036574

  20. Cocaine Seeking and Taking: Role of Hippocampal Dopamine D1-like Receptors

    PubMed Central

    Xie, Xiaohu; Wells, Audrey M.; Fuchs, Rita A.

    2015-01-01

    Despite the well-documented involvement of dopamine D1-like receptor stimulation in cocaine-induced goal-directed behaviors, little is known about the specific contribution of D1-like receptor populations in the dorsal hippocampus (DH) to drug context-induced cocaine-seeking or drug-reinforced instrumental behaviors. To investigate this question, rats were trained to lever press for un-signaled cocaine infusions in a distinct context followed by extinction training in a different context. Cocaine-seeking behavior (non-reinforced lever responding) was then assessed in the previously cocaine-paired and extinction contexts. SCH23390-induced D1-like receptor antagonism in the DH, but not the overlying trunk region of the somatosensory cortex, dose-dependently inhibited drug context-induced cocaine-seeking behavior, without altering cocaine-reinforced instrumental responding, cocaine intake, food-reinforced instrumental responding, or general motor activity, relative to vehicle treatment. These findings suggest that D1-like receptor stimulation in the DH is critical for the incentive motivational effects and/or memory of cocaine-paired contextual stimuli that contribute to drug-seeking behavior. PMID:24655895

  1. Geologic map of the McCarthy D-1 Quadrangle, Alaska

    USGS Publications Warehouse

    Richter, D.H.; Ratte, J.C.; Leeman, W.P.; Menzies, Martin

    2000-01-01

    Data set describes a 20-million-year-old shield volcano in the Wrangell volcanic field of north-central Alaska. These digital files were used to create the 1:63,360-scale geologic map of the McCarthy D-1 quadrangle.

  2. 26 CFR 1.367(d)-1T - Transfers of intangible property to foreign corporations (temporary).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... intangible property for a principal purpose of avoiding the effect of section 367(d) if the property is... 26 Internal Revenue 4 2013-04-01 2013-04-01 false Transfers of intangible property to foreign... § 1.367(d)-1T Transfers of intangible property to foreign corporations (temporary). (a) Purpose...

  3. 26 CFR 1.367(d)-1T - Transfers of intangible property to foreign corporations (temporary).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... intangible property for a principal purpose of avoiding the effect of section 367(d) if the property is... 26 Internal Revenue 4 2014-04-01 2014-04-01 false Transfers of intangible property to foreign... § 1.367(d)-1T Transfers of intangible property to foreign corporations (temporary). (a) Purpose...

  4. 26 CFR 1.367(d)-1T - Transfers of intangible property to foreign corporations (temporary).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... intangible property for a principal purpose of avoiding the effect of section 367(d) if the property is... 26 Internal Revenue 4 2012-04-01 2012-04-01 false Transfers of intangible property to foreign... § 1.367(d)-1T Transfers of intangible property to foreign corporations (temporary). (a) Purpose...

  5. 26 CFR 301.6323(d)-1 - 45-day period for making disbursements.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 18 2014-04-01 2014-04-01 false 45-day period for making disbursements. 301....6323(d)-1 45-day period for making disbursements. (a) In general. Even though a notice of a lien... made before the 46th day after the date of tax lien filing, or if earlier, before the person making...

  6. 26 CFR 301.6323(d)-1 - 45-day period for making disbursements.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 18 2012-04-01 2012-04-01 false 45-day period for making disbursements. 301....6323(d)-1 45-day period for making disbursements. (a) In general. Even though a notice of a lien... made before the 46th day after the date of tax lien filing, or if earlier, before the person making...

  7. In dystrophic hamsters losartan affects control of ventilation and dopamine D1 receptor density.

    PubMed

    Schlenker, Evelyn H

    2010-08-31

    The BIO 14.6 hamster (DV), an animal model of limb-girdle muscular dystrophy, has elevated angiotensin AT1 receptors that may affect ventilation. Moreover, AT1 receptors may modulate expression of dopamine D1 receptors. We investigated if chronic treatment of BIO 14.6 hamsters (DL) with losartan, an AT1 receptor blocker, affects D1 receptor density in the striatum and nucleus tractus solitarius (NTS) and normalizes ventilation during exposure to air, hypoxia, following hypoxia, and hypercapnia, Ventilation was evaluated using plethysmography. Compared to the golden Syrian hamsters (GS), DV hamsters exhibited lower hypercapnic and hypoxic responsiveness and ventilation during hypercapnic exposure. Relative to GS, DL hamsters increased breathing frequency in air and maintained ventilation during hypercapnia. Post-hypoxic minute ventilation decline occurred in DV but not in DL or GS hamsters. DL hamsters exhibited higher D1 receptor density in the striatum and NTS relative to DV hamsters. Thus, in dystrophic hamsters chronic losartan treatment stimulated frequency of breathing and increased the density of D1 receptors.

  8. Microgravity and the organisms. Results of the spacelab mission D1

    NASA Astrophysics Data System (ADS)

    Volkmann, D.

    During the Spacelab mission D1 different organisms were investigated at the unicellular and multicellular level respectively. Microgravity affects growth and development of the organisms in a different manner, some processes are enhanced, others are inhibited. On the other hand, there are a lot of parameters, e.g. circadian rhythm or cell and organ polarity, which seem to be exclusively under genetical control.

  9. Effects of dopamine D1 modulation of the anterior cingulate cortex in a fear conditioning procedure

    PubMed Central

    Pezze, M.A.; Marshall, H.J.; Domonkos, A.; Cassaday, H.J.

    2016-01-01

    The anterior cingulate cortex (AC) component of the medial prefrontal cortex (mPFC) has been implicated in attention and working memory as measured by trace conditioning. Since dopamine (DA) is a key modulator of mPFC function, the present study evaluated the role of DA receptor agents in rat AC, using trace fear conditioning. A conditioned stimulus (CS, noise) was followed by an unconditioned stimulus (US, shock) with or without a 10 s trace interval interposed between these events in a between-subjects design. Conditioned suppression of drinking was assessed in response to presentation of the CS or an experimental background stimulus (flashing lights, previously presented for the duration of the conditioning session). The selective D1 agonist SKF81297 (0.05 μg/side) or D1 antagonist SCH23390 (0.5 μg/side) was administered by intra-cerebral microinfusion directly into AC. It was predicted that either of these manipulations should be sufficient to impair trace (but not delay) conditioning. Counter to expectation, there was no effect of DA D1 modulation on trace conditioning as measured by suppression to the noise CS. However, rats infused with SKF81297 acquired stronger conditioned suppression to the experimental background stimulus than those infused with SCH23390 or saline. Thus, the DA D1 agonist SKF81297 increased conditioned suppression to the contextual background light stimulus but was otherwise without effect on fear conditioning. PMID:26343307

  10. Cocaine seeking and taking: role of hippocampal dopamine D1-like receptors.

    PubMed

    Xie, Xiaohu; Wells, Audrey M; Fuchs, Rita A

    2014-09-01

    Despite the well-documented involvement of dopamine D1-like receptor stimulation in cocaine-induced goal-directed behaviours, little is known about the specific contribution of D1-like receptor populations in the dorsal hippocampus (DH) to drug context-induced cocaine-seeking or drug-reinforced instrumental behaviours. To investigate this question, rats were trained to lever press for un-signalled cocaine infusions in a distinct context followed by extinction training in a different context. Cocaine-seeking behaviour (non-reinforced lever responding) was then assessed in the previously cocaine-paired and extinction contexts. SCH23390-induced D1-like receptor antagonism in the DH, but not the overlying trunk region of the somatosensory cortex, dose-dependently inhibited drug context-induced cocaine-seeking behaviour, without altering cocaine-reinforced instrumental responding, cocaine intake, food-reinforced instrumental responding, or general motor activity, relative to vehicle treatment. These findings suggest that D1-like receptor stimulation in the DH is critical for the incentive motivational effects and/or memory of cocaine-paired contextual stimuli that contribute to drug-seeking behaviour.

  11. PvD1 defensin, a plant antimicrobial peptide with inhibitory activity against Leishmania amazonensis

    PubMed Central

    do Nascimento, Viviane V.; Mello, Érica de O.; Carvalho, Laís P.; de Melo, Edésio J.T.; Carvalho, André de O.; Fernandes, Katia V.S.; Gomes, Valdirene M.

    2015-01-01

    Plant defensins are small cysteine-rich peptides and exhibit antimicrobial activity against a variety of both plant and human pathogens. Despite the broad inhibitory activity that plant defensins exhibit against different micro-organisms, little is known about their activity against protozoa. In a previous study, we isolated a plant defensin named PvD1 from Phaseolus vulgaris (cv. Pérola) seeds, which was seen to be deleterious against different yeast cells and filamentous fungi. It exerted its effects by causing an increase in the endogenous production of ROS (reactive oxygen species) and NO (nitric oxide), plasma membrane permeabilization and the inhibition of medium acidification. In the present study, we investigated whether PvD1 could act against the protozoan Leishmania amazonensis. Our results show that, besides inhibiting the proliferation of L. amazonensis promastigotes, the PvD1 defensin was able to cause cytoplasmic fragmentation, formation of multiple cytoplasmic vacuoles and membrane permeabilization in the cells of this organism. Furthermore, we show, for the first time, that PvD1 defensin was located within the L. amazonensis cells, suggesting the existence of a possible intracellular target. PMID:26285803

  12. Neuronal phagocytosis by inflammatory macrophages in ALS spinal cord: inhibition of inflammation by resolvin D1

    PubMed Central

    Liu, Guanghao; Fiala, Milan; Mizwicki, Mathew T; Sayre, James; Magpantay, Larry; Siani, Avi; Mahanian, Michelle; Chattopadhyay, Madhuri; Cava, Antonio La; Wiedau-Pazos, Martina

    2012-01-01

    Although the cause of neuronal degeneration in amyotrophic lateral sclerosis (ALS) remains hypothetical, there is evidence of spinal cord infiltration by macrophages and T cells. In post-mortem ALS spinal cords, 19.8 ± 4.8 % motor neurons, including caspase-negative and caspase-positive neurons, were ingested by IL-6- and TNF-α-positive macrophages. In ALS macrophages, in vitro aggregated superoxide dismutase-1 (SOD-1) stimulated in ALS macrophages expression of inflammatory cytokines, including IL-1β, IL-6, and TNF-α, through activation of cyclooxygenase-2 (COX-2) and caspase-1. The lipid mediator resolvin D1 (RvD1) inhibited IL-6 and TNF-α production in ALS macrophages with 1,100 times greater potency than its parent molecule docosahexaenoic acid. ALS peripheral blood mononuclear cells (PBMCs) showed increased transcription of inflammatory cytokines and chemokines at baseline and after stimulation by aggregated wild-type SOD-1, and these cytokines were down regulated by RvD1. Thus the neurons are impacted by macrophages expressing inflammatory cytokines. RvD1 strongly inhibits in macrophages and PBMCs cytokine transcription but does not inhibit their production in PBMCs. Resolvins offer a new approach to ALS inflammation suppressing. PMID:22787561

  13. Transgenic expression of cyclin D1 in thymic epithelial precursors promotes epithelial and T cell development.

    PubMed

    Klug, D B; Crouch, E; Carter, C; Coghlan, L; Conti, C J; Richie, E R

    2000-02-15

    We previously reported that precursors within the keratin (K) 8+5+ thymic epithelial cell (TEC) subset generate the major cortical K8+5- TEC population in a process dependent on T lineage commitment. This report demonstrates that expression of a cyclin D1 transgene in K8+5+ TECs expands this subset and promotes TEC and thymocyte development. Cyclin D1 transgene expression is not sufficient to induce TEC differentiation in the absence of T lineage-committed thymocytes because TECs from both hCD3epsilon transgenic and hCD3epsilon/cyclin D1 double transgenic mice remain blocked at the K8+5+ maturation stage. However, enforced cyclin D1 expression does expand the developmental window during which K8+5+ cells can differentiate in response to normal hemopoietic precursors. Thus, enhancement of thymic function may be achieved by manipulating the growth and/or survival of TEC precursors within the K8+5+ subset.

  14. 26 CFR 1.665(d)-1 - Taxes imposed on the trust.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ....665(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Treatment of Excess Distributions of Trusts Applicable to Taxable Years Beginning... Distributions to A 10,000 Capital gain deduction 5,000 Personal exemption 100 17,100 Taxable income 12,900...

  15. Lefty inhibits in vitro decidualization by regulating P57 and cyclin D1 expressions.

    PubMed

    Li, Hong; Li, Hui; Bai, Liang; Yu, Hua

    2014-12-01

    Endometrial decidualization is highly important for successful construction and maintenance of embryo implantation and pregnancy. Lefty gene at different menstrual cycle phases has different expressions, indicating its regulatory significance. To study the mechanism of Lefty in decidualization, human endometrial stromal cells (hESCs) were cultured and induced with medroxyprogesterone acetate (MPA) and 8-bromoadenosine-cAMP (8-Br-cAMP) in vitro as a research model. Our results showed that Lefty1 overexpression inhibited MPA- and 8-Br-cAMP-induced hESC decidualization and significantly reduced the secretion of prolactin (PRL) and insulin-like growth factor-binding protein 1 (IGFBP-1). With the inhibition of Lefty1 expression, hESC decidualization induced by MPA and 8-Br-cAMP became more remarkable, and the secretions of PRL and IGFBP-1 were higher too. Further tests indicated that during the process of decidualization, P57 expression increased, whereas cyclin D1 expression decreased. Although Lefty1 overexpression did not significantly change the expressions of P57 and cyclin D1, inhibition of Lefty1 expression resulted in more evident changes in P57 and cyclin D1 expressions. Meanwhile, cell cycle examination showed that Lefty1 overexpression reduced the cell cycle arrest at G1/S phase in the in vitro hESC decidualization model. Therefore, Lefty1 could regulate the cell cycle via modulating the expressions of P57 and cyclin D1 and then inhibit the decidualization in vitro. PMID:25339094

  16. Isolation and characterization of the human homeobox gene HOX D1.

    PubMed

    Appukuttan, B; Sood, R; Ott, S; Makalowska, I; Patel, R J; Wang, X; Robbins, C M; Brownstein, M J; Stout, J T

    2000-01-01

    Homeobox genes, first identified in Drosophila, encode transcription factors that regulate embryonic development along the anteroposterior axis of an organism. Vertebrate homeobox genes are described on the basis of their homology to the genes found within the Drosophila Antennapedia and Bithorax homeotic gene complexes. Mammals possess four paralogous homeobox (HOX) gene clusters, HOX A, HOX B, HOX C and HOX D, each located on different chromosomes, consisting of 9 to 11 genes arranged in tandem. We report the characterization of the human HOX D1 gene. This gene consists of two exons, encoding a 328 amino acid protein, separated by an intron of 354 bp. The human HOX D1 protein is one amino acid longer (328 amino acids) than the mouse protein (327 amino acids) and is 82% identical to the mouse HOX D1 homolog. The DNA binding homeodomain region of the human protein exhibits a 97% and 80% identity between mouse Hoxd1 and Drosophila labial homeodomains, respectively. The exon/intron and intron/exon splice junctions are conserved in position between human and mouse genes. Determination of the human HOX D1 gene structure permits the use of PCR based analysis of this gene for the assessment of mutations, for diseases that link to the HOXD cluster (such as Duanes Retraction Syndrome (DRS)), or polymorphisms associated with human variation. Molecular characterization of the HOXD1 gene may also permit analysis of the functional role of this gene in human neurogenisis.

  17. 17 CFR 240.12d1-3 - Requirements as to certification.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Requirements as to... § 240.12d1-3 Requirements as to certification. (a) Certification that a security has been approved by an... shall be manually signed by the appropriate exchange authority. (Sec. 12, 48 Stat. 892, as amended; 15...

  18. 17 CFR 240.12d1-3 - Requirements as to certification.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Requirements as to... § 240.12d1-3 Requirements as to certification. (a) Certification that a security has been approved by an... shall be manually signed by the appropriate exchange authority. (Sec. 12, 48 Stat. 892, as amended; 15...

  19. 17 CFR 240.12d1-3 - Requirements as to certification.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Requirements as to... § 240.12d1-3 Requirements as to certification. (a) Certification that a security has been approved by an... shall be manually signed by the appropriate exchange authority. (Sec. 12, 48 Stat. 892, as amended; 15...

  20. 17 CFR 240.12d1-3 - Requirements as to certification.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Requirements as to... § 240.12d1-3 Requirements as to certification. (a) Certification that a security has been approved by an... shall be manually signed by the appropriate exchange authority. (Sec. 12, 48 Stat. 892, as amended; 15...

  1. 17 CFR 240.12d1-3 - Requirements as to certification.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Requirements as to... § 240.12d1-3 Requirements as to certification. (a) Certification that a security has been approved by an... shall be manually signed by the appropriate exchange authority. (Sec. 12, 48 Stat. 892, as amended; 15...

  2. 26 CFR 7.57(d)-1 - Election with respect to straight line recovery of intangibles.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE TAX REFORM ACT OF 1976 § 7.57(d)-1 Election with respect to straight line recovery of intangibles. (a) Purpose... Tax Reform Act of 1976. Under this election taxpayers may use cost depletion to compute straight...

  3. 11 CFR 102.3 - Termination of registration (2 U.S.C. 433(d)(1)).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 11 Federal Elections 1 2011-01-01 2011-01-01 false Termination of registration (2 U.S.C. 433(d)(1... CFR 102.4(c), only a committee which will no longer receive any contributions or make any... federal office. (2) An authorized committee of a qualified Member, as defined at 11 CFR 113.1(f),...

  4. 11 CFR 102.3 - Termination of registration (2 U.S.C. 433(d)(1)).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 11 Federal Elections 1 2012-01-01 2012-01-01 false Termination of registration (2 U.S.C. 433(d)(1... CFR 102.4(c), only a committee which will no longer receive any contributions or make any... federal office. (2) An authorized committee of a qualified Member, as defined at 11 CFR 113.1(f),...

  5. 11 CFR 102.3 - Termination of registration (2 U.S.C. 433(d)(1)).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 11 Federal Elections 1 2010-01-01 2010-01-01 false Termination of registration (2 U.S.C. 433(d)(1... CFR 102.4(c), only a committee which will no longer receive any contributions or make any... federal office. (2) An authorized committee of a qualified Member, as defined at 11 CFR 113.1(f),...

  6. 11 CFR 102.3 - Termination of registration (2 U.S.C. 433(d)(1)).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 11 Federal Elections 1 2014-01-01 2014-01-01 false Termination of registration (2 U.S.C. 433(d)(1... CFR 102.4(c), only a committee which will no longer receive any contributions or make any... federal office. (2) An authorized committee of a qualified Member, as defined at 11 CFR 113.1(f),...

  7. 11 CFR 102.3 - Termination of registration (2 U.S.C. 433(d)(1)).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 11 Federal Elections 1 2013-01-01 2012-01-01 true Termination of registration (2 U.S.C. 433(d)(1... CFR 102.4(c), only a committee which will no longer receive any contributions or make any... federal office. (2) An authorized committee of a qualified Member, as defined at 11 CFR 113.1(f),...

  8. 17 CFR 240.13d-1 - Filing of Schedules 13D and 13G.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... functional equivalent of any of the institutions listed in § 240.13d-1 (b)(1)(ii)(A) through (I), so long as... responsible for the timely filing of such statement and any amendments thereto, and for the completeness and... the completeness or accuracy of the information concerning the other persons making the filing,...

  9. D 1 , 2 (RN) versus C (RN) local minimizer and a Hopf-type maximum principle

    NASA Astrophysics Data System (ADS)

    Carl, Siegfried; Costa, David G.; Tehrani, Hossein

    2016-08-01

    We consider functionals of the form Φ (u) =1/2∫RN | ∇u|2 -∫RN b (x) G (u) on D 1 , 2 (RN), N ≥ 3, whose critical points are the weak solutions of a corresponding elliptic equation in the whole RN. We present a Brezis-Nirenberg type result and a Hopf-type maximum principle in the context of the space D 1 , 2 (RN). More precisely, we prove that a local minimizer of Φ in the topology of the subspace V must be a local minimizer of Φ in the D 1 , 2 (RN)-topology, where V is given by V : = { v ∈D 1 , 2 (RN) : v ∈ C (RN)withsupx∈RN ⁡ (1 + | x| N - 2) | v (x) | < ∞ }. It is well-known that the Brezis-Nirenberg result has been proved a strong tool in the study of multiple solutions for elliptic boundary value problems in bounded domains. We believe that the result obtained in this paper may play a similar role for elliptic problems in RN.

  10. Epigenetically altered miR-193b targets cyclin D1 in prostate cancer

    PubMed Central

    Kaukoniemi, Kirsi M; Rauhala, Hanna E; Scaravilli, Mauro; Latonen, Leena; Annala, Matti; Vessella, Robert L; Nykter, Matti; Tammela, Teuvo L J; Visakorpi, Tapio

    2015-01-01

    Micro-RNAs (miRNA) are important regulators of gene expression and often differentially expressed in cancer and other diseases. We have previously shown that miR-193b is hypermethylated in prostate cancer (PC) and suppresses cell growth. It has been suggested that miR-193b targets cyclin D1 in several malignancies. Here, our aim was to determine if miR-193b targets cyclin D1 in prostate cancer. Our data show that miR-193b is commonly methylated in PC samples compared to benign prostate hyperplasia. We found reduced miR-193b expression (P < 0.05) in stage pT3 tumors compared to pT2 tumors in a cohort of prostatectomy specimens. In 22Rv1 PC cells with low endogenous miR-193b expression, the overexpression of miR-193b reduced CCND1mRNA levels and cyclin D1 protein levels. In addition, the exogenous expression of miR-193b decreased the phosphorylation level of RB, a target of the cyclin D1-CDK4/6 pathway. Moreover, according to a reporter assay, miR-193b targeted the 3’UTR of CCND1 in PC cells and the CCND1 activity was rescued by expressing CCND1 lacking its 3’UTR. Immunohistochemical analysis of cyclin D1 showed that castration-resistant prostate cancers have significantly (P = 0.0237) higher expression of cyclin D1 compared to hormone-naïve cases. Furthermore, the PC cell lines 22Rv1 and VCaP, which express low levels of miR-193b and high levels of CCND1, showed significant growth retardation when treated with a CDK4/6 inhibitor. In contrast, the inhibitor had no effect on the growth of PC-3 and DU145 cells with high miR-193b and low CCND1 expression. Taken together, our data demonstrate that miR-193b targets cyclin D1 in prostate cancer. PMID:26129688

  11. Bcl-2 induces cyclin D1 promoter activity in human breast epithelial cells independent of cell anchorage.

    PubMed

    Lin, H M; Lee, Y J; Li, G; Pestell, R G; Kim, H R

    2001-01-01

    Cyclin D1 expression is co-regulated by growth factor and cell adhesion signaling. Cell adhesion to the extracellular matrix activates focal adhesion kinase (FAK), which is essential for cyclin D1 expression. Upon the loss of cell adhesion, cyclin D1 expression is downregulated, followed by apoptosis in normal epithelial cells. Since bcl-2 prevents apoptosis induced by the loss of cell adhesion, we hypothesized that bcl-2 induces survival signaling complementary to cell adhesion-mediated gene regulation. In the present study, we investigated the role of bcl-2 on FAK activity and cyclin D1 expression. We found that bcl-2 overexpression induces cyclin D1 expression in human breast epithelial cell line MCF10A independent of cell anchorage. Increased cyclin D1 expression in stable bcl-2 transfectants is not related to bcl-2-increased G1 duration, but results from cyclin D1 promoter activation. Transient transfection studies confirmed anchorage-independent bcl-2 induction of cyclin D1 promoter activity in human breast epithelial cell lines (MCF10A, BT549, and MCF-7). We provide evidence that bcl-2 induction of cyclin D1 expression involves constitutive activation of focal adhesion kinase, regardless of cell adhesion. The present study suggests a potential oncogenic activity for bcl-2 through cyclin D1 induction, and provides an insight into the distinct proliferation-independent pathway leading to increased cyclin D1 expression in breast cancer.

  12. Dopamine D1 receptor modulation of calcium channel currents in horizontal cells of mouse retina.

    PubMed

    Liu, Xue; Grove, James C R; Hirano, Arlene A; Brecha, Nicholas C; Barnes, Steven

    2016-08-01

    Horizontal cells form the first laterally interacting network of inhibitory interneurons in the retina. Dopamine released onto horizontal cells under photic and circadian control modulates horizontal cell function. Using isolated, identified horizontal cells from a connexin-57-iCre × ROSA26-tdTomato transgenic mouse line, we investigated dopaminergic modulation of calcium channel currents (ICa) with whole cell patch-clamp techniques. Dopamine (10 μM) blocked 27% of steady-state ICa, an action blunted to 9% in the presence of the L-type Ca channel blocker verapamil (50 μM). The dopamine type 1 receptor (D1R) agonist SKF38393 (20 μM) inhibited ICa by 24%. The D1R antagonist SCH23390 (20 μM) reduced dopamine and SKF38393 inhibition. Dopamine slowed ICa activation, blocking ICa by 38% early in a voltage step. Enhanced early inhibition of ICa was eliminated by applying voltage prepulses to +120 mV for 100 ms, increasing ICa by 31% and 11% for early and steady-state currents, respectively. Voltage-dependent facilitation of ICa and block of dopamine inhibition after preincubation with a Gβγ-blocking peptide suggested involvement of Gβγ proteins in the D1R-mediated modulation. When the G protein activator guanosine 5'-O-(3-thiotriphosphate) (GTPγS) was added intracellularly, ICa was smaller and showed the same slowed kinetics seen during D1R activation. With GTPγS in the pipette, additional block of ICa by dopamine was only 6%. Strong depolarizing voltage prepulses restored the GTPγS-reduced early ICa amplitude by 36% and steady-state ICa amplitude by 3%. These results suggest that dopaminergic inhibition of ICa via D1Rs is primarily mediated through the action of Gβγ proteins in horizontal cells. PMID:27193322

  13. Resolvin D1 and Resolvin D2 Govern Local Inflammatory Tone in Obese Fat1

    PubMed Central

    Clària, Joan; Dalli, Jesmond; Yacoubian, Stephanie; Gao, Fei; Serhan, Charles N.

    2012-01-01

    The unprecedented rise in the prevalence of obesity and obesity-related disorders is causally linked to a chronic state of low-grade inflammation in adipose tissue. Timely resolution of inflammation and return of this tissue to homeostasis are key to reducing obesity-induced metabolic dysfunctions. Here, with inflamed adipose, we investigated the biosynthesis, conversion and actions of Resolvin (Rv) D1 and RvD2, potent anti-inflammatory and pro-resolving lipid mediators (LM), and their ability to regulate monocyte interactions with adipocytes. LM-metabololipidomics identified RvD1 and RvD2 from endogenous sources in human and mouse adipose tissues. We also identified pro-resolving receptors (i.e. ALX/FPR2, ChemR23 and GPR32) in these tissues. Compared to lean tissue, obese adipose showed a deficit of these endogenous anti-inflammatory signals. With inflamed obese adipose tissue, RvD1 and RvD2 each rescued impaired expression and secretion of adiponectin in a time- and concentration-dependent manner while decreasing pro-inflammatory adipokine production including leptin, TNFα, IL-6 and IL-1β. RvD1 and RvD2 each reduced MCP-1 and leukotriene B4-stimulated monocyte adhesion to adipocytes and their transadipose migration. Adipose tissue rapidly converted both resolvins to novel oxo-resolvins. RvD2 was enzymatically converted to 7-oxo-RvD2 as its major metabolic route that retained adipose-directed RvD2 actions. These results indicate, in adipose, D-series resolvins (RvD1 and RvD2) are potent pro-resolving mediators that counteract both local adipokine production and monocyte accumulation in obesity-induced adipose inflammation. PMID:22844113

  14. Elevated dopamine in the medial prefrontal cortex suppresses cocaine seeking via D1 receptor overstimulation.

    PubMed

    Devoto, Paola; Fattore, Liana; Antinori, Silvia; Saba, Pierluigi; Frau, Roberto; Fratta, Walter; Gessa, Gian Luigi

    2016-01-01

    Previous investigations indicate that the dopamine-β-hydroxylase (DBH) inhibitors disulfiram and nepicastat suppress cocaine-primed reinstatement of cocaine self-administration behaviour. Moreover, both inhibitors increase dopamine release in the rat medial prefrontal cortex (mPFC) and markedly potentiate cocaine-induced dopamine release in this region. This study was aimed to clarify if the suppressant effect of DBH inhibitors on cocaine reinstatement was mediated by the high extracellular dopamine in the rat mPFC leading to a supra-maximal stimulation of D1 receptors in the dorsal division of mPFC, an area critical for reinstatement of cocaine-seeking behaviour. In line with previous microdialysis studies in drug-naïve animals, both DBH inhibitors potentiated cocaine-induced dopamine release in the mPFC, in the same animals in which they also suppressed reinstatement of cocaine seeking. Similar to the DBH inhibitors, L-DOPA potentiated cocaine-induced dopamine release in the mPFC and suppressed cocaine-induced reinstatement of cocaine-seeking behaviour. The bilateral microinfusion of the D1 receptor antagonist SCH 23390 into the dorsal mPFC not only prevented cocaine-induced reinstatement of cocaine seeking but also reverted both disulfiram- and L-DOPA-induced suppression of reinstatement. Moreover, the bilateral microinfusion of the D1 receptor agonist chloro-APB (SKF 82958) into the dorsal mPFC markedly attenuated cocaine-induced reinstatement of cocaine seeking. These results suggest that stimulation of D1 receptors in the dorsal mPFC plays a crucial role in cocaine-induced reinstatement of cocaine seeking, whereas the suppressant effect of DBH inhibitors and L-DOPA on drug-induced reinstatement is mediated by a supra-maximal stimulation of D1 receptors leading to their inactivation. PMID:25135633

  15. Antisense inhibition of cyclin D1 expression is equivalent to flavopiridol for radiosensitization of zebrafish embryos

    SciTech Connect

    McAleer, Mary Frances; Duffy, Kevin T.; Davidson, William R.; Kari, Gabor; Dicker, Adam P.; Rodeck, Ulrich; Wickstrom, Eric . E-mail: eric@tesla.jci.tju.edu

    2006-10-01

    Purpose: Flavopiridol, a small molecule pan-cyclin inhibitor, has been shown to enhance Radiation response of tumor cells both in vitro and in vivo. The clinical utility of flavopiridol, however, is limited by toxicity, previously attributed to pleiotropic inhibitory effects on several targets affecting multiple signal transduction pathways. Here we used zebrafish embryos to investigate radiosensitizing effects of flavopiridol in normal tissues. Methods and Materials: Zebrafish embryos at the 1- to 4-cell stage were treated with 500 nM flavopiridol or injected with 0.5 pmol antisense hydroxylprolyl-phosphono nucleic acid oligomers to reduce cyclin D1 expression, then subjected to ionizing radiation (IR) or no radiation. Results: Flavopiridol-treated embryos demonstrated a twofold increase in mortality after exposure to 40 Gy by 96 hpf and developed distinct radiation-induced defects in midline development (designated as the 'curly up' phenotype) at higher rates when compared with embryos receiving IR only. Cyclin D1-deficient embryos had virtually identical IR sensitivity profiles when compared with embryos treated with flavopiridol. This was particularly evident for the IR-induced curly up phenotype, which was greatly exacerbated by both flavopriridol and cyclin D1 downregulation. Conclusions: Treatment of zebrafish embryos with flavopiridol enhanced radiation sensitivity of zebrafish embryos to a degree that was very similar to that associated with downregulation of cyclin D1 expression. These results are consistent with the hypothesis that inhibition of cyclin D1 is sufficient to account for the radiosensitizing action of flavopiridol in the zebrafish embryo vertebrate model.

  16. Elevated dopamine in the medial prefrontal cortex suppresses cocaine seeking via D1 receptor overstimulation.

    PubMed

    Devoto, Paola; Fattore, Liana; Antinori, Silvia; Saba, Pierluigi; Frau, Roberto; Fratta, Walter; Gessa, Gian Luigi

    2016-01-01

    Previous investigations indicate that the dopamine-β-hydroxylase (DBH) inhibitors disulfiram and nepicastat suppress cocaine-primed reinstatement of cocaine self-administration behaviour. Moreover, both inhibitors increase dopamine release in the rat medial prefrontal cortex (mPFC) and markedly potentiate cocaine-induced dopamine release in this region. This study was aimed to clarify if the suppressant effect of DBH inhibitors on cocaine reinstatement was mediated by the high extracellular dopamine in the rat mPFC leading to a supra-maximal stimulation of D1 receptors in the dorsal division of mPFC, an area critical for reinstatement of cocaine-seeking behaviour. In line with previous microdialysis studies in drug-naïve animals, both DBH inhibitors potentiated cocaine-induced dopamine release in the mPFC, in the same animals in which they also suppressed reinstatement of cocaine seeking. Similar to the DBH inhibitors, L-DOPA potentiated cocaine-induced dopamine release in the mPFC and suppressed cocaine-induced reinstatement of cocaine-seeking behaviour. The bilateral microinfusion of the D1 receptor antagonist SCH 23390 into the dorsal mPFC not only prevented cocaine-induced reinstatement of cocaine seeking but also reverted both disulfiram- and L-DOPA-induced suppression of reinstatement. Moreover, the bilateral microinfusion of the D1 receptor agonist chloro-APB (SKF 82958) into the dorsal mPFC markedly attenuated cocaine-induced reinstatement of cocaine seeking. These results suggest that stimulation of D1 receptors in the dorsal mPFC plays a crucial role in cocaine-induced reinstatement of cocaine seeking, whereas the suppressant effect of DBH inhibitors and L-DOPA on drug-induced reinstatement is mediated by a supra-maximal stimulation of D1 receptors leading to their inactivation.

  17. The D1-D2 region of the large subunit ribosomal DNA as barcode for ciliates.

    PubMed

    Stoeck, T; Przybos, E; Dunthorn, M

    2014-05-01

    Ciliates are a major evolutionary lineage within the alveolates, which are distributed in nearly all habitats on our planet and are an essential component for ecosystem function, processes and stability. Accurate identification of these unicellular eukaryotes through, for example, microscopy or mating type reactions is reserved to few specialists. To satisfy the demand for a DNA barcode for ciliates, which meets the standard criteria for DNA barcodes defined by the Consortium for the Barcode of Life (CBOL), we here evaluated the D1-D2 region of the ribosomal DNA large subunit (LSU-rDNA). Primer universality for the phylum Ciliophora was tested in silico with available database sequences as well as in the laboratory with 73 ciliate species, which represented nine of 12 ciliate classes. Primers tested in this study were successful for all tested classes. To test the ability of the D1-D2 region to resolve conspecific and congeneric sequence divergence, 63 Paramecium strains were sampled from 24 mating species. The average conspecific D1-D2 variation was 0.18%, whereas congeneric sequence divergence averaged 4.83%. In pairwise genetic distance analyses, we identified a D1-D2 sequence divergence of <0.6% as an ideal threshold to discriminate Paramecium species. Using this definition, only 3.8% of all conspecific and 3.9% of all congeneric sequence comparisons had the potential of false assignments. Neighbour-joining analyses inferred monophyly for all taxa but for two Paramecium octaurelia strains. Here, we present a protocol for easy DNA amplification of single cells and voucher deposition. In conclusion, the presented data pinpoint the D1-D2 region as an excellent candidate for an official CBOL barcode for ciliated protists.

  18. Sex differences in effects of dopamine D1 receptors on social withdrawal

    PubMed Central

    Campi, Katharine L.; Greenberg, Gian D.; Kapoor, Amita; Ziegler, Toni E.; Trainor, Brian C.

    2013-01-01

    Dopamine signaling in the nucleus accumbens (NAc) plays a critical role in the regulation of motivational states. Recent studies in male rodents show that social defeat stress increases the activity of ventral tegmental dopamine neurons projecting to the NAc, and that this increased activity is necessary for stress-induced social withdrawal. Domestic female mice are not similarly aggressive, which has hindered complementary studies in females. Using the monogamous California mouse (Peromyscus californicus), we found that social defeat increased total dopamine, DOPAC, and HVA content in the NAc in both males and females. These results are generally consistent with previous studies in Mus, and suggest defeat stress also increases NAc dopamine signaling in females. However, these results do not explain our previous observations that defeat stress induces social withdrawal in female but not male California mice. Pharmacological manipulations provided more insights. When 500 ng of the D1 agonist SKF38393 was infused in the NAc shell of females that were naïve to defeat, social interaction behavior was reduced. This same dose of SKF38393 had no effect in males, suggesting that D1 receptor activation is sufficient to induce social withdrawal in females but not males. Intra-accumbens infusion of the D1 antagonist SCH23390 increased social approach behavior in females exposed to defeat but not in females naïve to defeat. This result suggests that D1 receptors are necessary for defeat-induced social withdrawal. Overall, our results suggest that sex differences in molecular pathways that are regulated by D1 receptors contribute to sex differences in social withdrawal behavior. PMID:24120838

  19. Chronic Cocaine Dampens Dopamine Signaling during Cocaine Intoxication and Unbalances D1 over D2 Receptor Signaling

    PubMed Central

    Park, Kicheon; Pan, Yingtian

    2013-01-01

    Dopamine increases triggered by cocaine and consequent stimulation of dopamine receptors (including D1 and D2) are associated with its rewarding effects. However, while facilitation of D1 receptor (D1R) signaling enhances the rewarding effects of cocaine, facilitation of D2R signaling decreases it, which indicates that for cocaine to be rewarding it must result in a predominance of D1R over D2R signaling. Moreover, the transition to compulsive cocaine intake might result from an imbalance between D1R and D2R signaling. To test the hypothesis that chronic cocaine use unbalances D1R over D2R signaling during cocaine intoxication, we used microprobe optical imaging to compare dynamic changes in intracellular calcium ([Ca2+]i, marker of neuronal activation) to acute cocaine in striatal D1R-EGFP and D2R-EGFP-expressing neurons between control and chronically treated mice. Chronic cocaine attenuated responses to acute cocaine in D1R (blunting Ca2+ increases by 67 ± 16%) and D2R (blunting Ca2+ decrease by 72 ± 17%) neurons in most D1R and D2R neurons (∼75%). However, the dynamics of this attenuation during cocaine intoxication was longer lasting for D2R than for D1R. Thus, whereas control mice showed a fast but short-lasting predominance of D1R over D2R signaling (peaking at ∼8 min) during acute cocaine intoxication, in chronically treated mice D1R predominance was sustained for >30 min (throughout the measurement period). Thus, chronic cocaine use dramatically reduced cocaine-induced DA signaling, shifting the balance between D1R and D2R signaling during intoxication to a predominance of D1R (stimulatory) over D2R (inhibitory) signaling, which might facilitate compulsive intake in addiction. PMID:24089490

  20. Deletion of the Rab GAP Tbc1d1 modifies glucose, lipid, and energy homeostasis in mice.

    PubMed

    Hargett, Stefan R; Walker, Natalie N; Hussain, Syed S; Hoehn, Kyle L; Keller, Susanna R

    2015-08-01

    Tbc1d1 is a Rab GTPase-activating protein (GAP) implicated in regulating intracellular retention and cell surface localization of the glucose transporter GLUT4 and thus glucose uptake in a phosphorylation-dependent manner. Tbc1d1 is most abundant in skeletal muscle but is expressed at varying levels among different skeletal muscles. Previous studies with male Tbc1d1-deficient (Tbc1d1(-/-)) mice on standard and high-fat diets established a role for Tbc1d1 in glucose, lipid, and energy homeostasis. Here we describe similar, but also additional abnormalities in male and female Tbc1d1(-/-) mice. We corroborate that Tbc1d1 loss leads to skeletal muscle-specific and skeletal muscle type-dependent abnormalities in GLUT4 expression and glucose uptake in female and male mice. Using subcellular fractionation, we show that Tbc1d1 controls basal intracellular GLUT4 retention in large skeletal muscles. However, cell surface labeling of extensor digitorum longus muscle indicates that Tbc1d1 does not regulate basal GLUT4 cell surface exposure as previously suggested. Consistent with earlier observations, female and male Tbc1d1(-/-) mice demonstrate increased energy expenditure and skeletal muscle fatty acid oxidation. Interestingly, we observe sex-dependent differences in in vivo phenotypes. Female, but not male, Tbc1d1(-/-) mice have decreased body weight and impaired glucose and insulin tolerance, but only male Tbc1d1(-/-) mice show increased lipid clearance after oil gavage. We surmise that similar changes at the tissue level cause differences in whole-body metabolism between male and female Tbc1d1(-/-) mice and between male Tbc1d1(-/-) mice in different studies due to variations in body composition and nutrient handling.

  1. Deletion of the Rab GAP Tbc1d1 modifies glucose, lipid, and energy homeostasis in mice.

    PubMed

    Hargett, Stefan R; Walker, Natalie N; Hussain, Syed S; Hoehn, Kyle L; Keller, Susanna R

    2015-08-01

    Tbc1d1 is a Rab GTPase-activating protein (GAP) implicated in regulating intracellular retention and cell surface localization of the glucose transporter GLUT4 and thus glucose uptake in a phosphorylation-dependent manner. Tbc1d1 is most abundant in skeletal muscle but is expressed at varying levels among different skeletal muscles. Previous studies with male Tbc1d1-deficient (Tbc1d1(-/-)) mice on standard and high-fat diets established a role for Tbc1d1 in glucose, lipid, and energy homeostasis. Here we describe similar, but also additional abnormalities in male and female Tbc1d1(-/-) mice. We corroborate that Tbc1d1 loss leads to skeletal muscle-specific and skeletal muscle type-dependent abnormalities in GLUT4 expression and glucose uptake in female and male mice. Using subcellular fractionation, we show that Tbc1d1 controls basal intracellular GLUT4 retention in large skeletal muscles. However, cell surface labeling of extensor digitorum longus muscle indicates that Tbc1d1 does not regulate basal GLUT4 cell surface exposure as previously suggested. Consistent with earlier observations, female and male Tbc1d1(-/-) mice demonstrate increased energy expenditure and skeletal muscle fatty acid oxidation. Interestingly, we observe sex-dependent differences in in vivo phenotypes. Female, but not male, Tbc1d1(-/-) mice have decreased body weight and impaired glucose and insulin tolerance, but only male Tbc1d1(-/-) mice show increased lipid clearance after oil gavage. We surmise that similar changes at the tissue level cause differences in whole-body metabolism between male and female Tbc1d1(-/-) mice and between male Tbc1d1(-/-) mice in different studies due to variations in body composition and nutrient handling. PMID:26015432

  2. 2D 1H and 3D 1H-15N NMR of zinc-rubredoxins: contributions of the beta-sheet to thermostability.

    PubMed Central

    Richie, K. A.; Teng, Q.; Elkin, C. J.; Kurtz, D. M.

    1996-01-01

    Based on 2D 1H-1H and 2D and 3D 1H-15N NMR spectroscopies, complete 1H NMR assignments are reported for zinc-containing Clostridium pasteurianum rubredoxin (Cp ZnRd). Complete 1H NMR assignments are also reported for a mutated Cp ZnRd, in which residues near the N-terminus, namely, Met 1, Lys 2, and Pro 15, have been changed to their counterparts, (-), Ala and Glu, respectively, in rubredoxin from the hyperthermophilic archaeon, Pyrococcus furiosus (Pf Rd). The secondary structure of both wild-type and mutated Cp ZnRds, as determined by NMR methods, is essentially the same. However, the NMR data indicate an extension of the three-stranded beta-sheet in the mutated Cp ZnRd to include the N-terminal Ala residue and Glu 15, as occurs in Pf Rd. The mutated Cp Rd also shows more intense NOE cross peaks, indicating stronger interactions between the strands of the beta-sheet and, in fact, throughout the mutated Rd. However, these stronger interactions do not lead to any significant increase in thermostability, and both the mutated and wild-type Cp Rds are much less thermostable than Pf Rd. These correlations strongly suggest that, contrary to a previous proposal [Blake PR et al., 1992, Protein Sci 1:1508-1521], the thermostabilization mechanism of Pf Rd is not dominated by a unique set of hydrogen bonds or electrostatic interactions involving the N-terminal strand of the beta-sheet. The NMR results also suggest that an overall tighter protein structure does not necessarily lead to increased thermostability. PMID:8732760

  3. The Mammalian Orthologs of Drosophila Lgd, CC2D1A and CC2D1B, Function in the Endocytic Pathway, but Their Individual Loss of Function Does Not Affect Notch Signalling

    PubMed Central

    Drusenheimer, Nadja; Migdal, Bernhard; Jäckel, Sandra; Tveriakhina, Lena; Scheider, Kristina; Schulz, Katharina; Gröper, Jieny; Köhrer, Karl; Klein, Thomas

    2015-01-01

    CC2D1A and CC2D1B belong to the evolutionary conserved Lgd protein family with members in all multi-cellular animals. Several functions such as centrosomal cleavage, involvement in signalling pathways, immune response and synapse maturation have been described for CC2D1A. Moreover, the Drosophila melanogaster ortholog Lgd was shown to be involved in the endosomal trafficking of the Notch receptor and other transmembrane receptors and physically interacts with the ESCRT-III component Shrub/CHMP4. To determine if this function is conserved in mammals we generated and characterized Cc2d1a and Cc2d1b conditional knockout mice. While Cc2d1b deficient mice displayed no obvious phenotype, we found that Cc2d1a deficient mice as well as conditional mutants that lack CC2D1A only in the nervous system die shortly after birth due to respiratory distress. This finding confirms the suspicion that the breathing defect is caused by the central nervous system. However, an involvement in centrosomal function could not be confirmed in Cc2d1a deficient MEF cells. To analyse an influence on Notch signalling, we generated intestine specific Cc2d1a mutant mice. These mice did not display any alterations in goblet cell number, proliferating cell number or expression of the Notch reporter Hes1-emGFP, suggesting that CC2D1A is not required for Notch signalling. However, our EM analysis revealed that the average size of endosomes of Cc2d1a mutant cells, but not Cc2d1b mutant cells, is increased, indicating a defect in endosomal morphogenesis. We could show that CC2D1A and its interaction partner CHMP4B are localised on endosomes in MEF cells, when the activity of the endosomal protein VPS4 is reduced. This indicates that CC2D1A cycles between the cytosol and the endosomal membrane. Additionally, in rescue experiments in D. melanogaster, CC2D1A and CC2D1B were able to functionally replace Lgd. Altogether our data suggest a functional conservation of the Lgd protein family in the ESCRT

  4. Resolvin D1 and resolvin D2 govern local inflammatory tone in obese fat.

    PubMed

    Clària, Joan; Dalli, Jesmond; Yacoubian, Stephanie; Gao, Fei; Serhan, Charles N

    2012-09-01

    The unprecedented increase in the prevalence of obesity and obesity-related disorders is causally linked to a chronic state of low-grade inflammation in adipose tissue. Timely resolution of inflammation and return of this tissue to homeostasis are key to reducing obesity-induced metabolic dysfunctions. In this study, with inflamed adipose, we investigated the biosynthesis, conversion, and actions of Resolvins D1 (RvD1, 7S,8R,17S-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid) and D2 (RvD2, 7S,16R,17S-trihydroxy-4Z,8E,10Z,12E,14E,19Z-docosahexaenoic acid), potent anti-inflammatory and proresolving lipid mediators (LMs), and their ability to regulate monocyte interactions with adipocytes. Lipid mediator-metabololipidomics identified RvD1 and RvD2 from endogenous sources in human and mouse adipose tissues. We also identified proresolving receptors (i.e., ALX/FPR2, ChemR23, and GPR32) in these tissues. Compared with lean tissue, obese adipose showed a deficit of these endogenous anti-inflammatory signals. With inflamed obese adipose tissue, RvD1 and RvD2 each rescued impaired expression and secretion of adiponectin in a time- and concentration-dependent manner as well as decreasing proinflammatory adipokine production including leptin, TNF-α, IL-6, and IL-1β. RvD1 and RvD2 each reduced MCP-1 and leukotriene B₄-stimulated monocyte adhesion to adipocytes and their transadipose migration. Adipose tissue rapidly converted both resolvins (Rvs) to novel oxo-Rvs. RvD2 was enzymatically converted to 7-oxo-RvD2 as its major metabolic route that retained adipose-directed RvD2 actions. These results indicate, in adipose, D-series Rvs (RvD1 and RvD2) are potent proresolving mediators that counteract both local adipokine production and monocyte accumulation in obesity-induced adipose inflammation.

  5. Genetic reconstruction of dopamine D1 receptor signaling in the nucleus accumbens facilitates natural and drug reward responses.

    PubMed

    Gore, Bryan B; Zweifel, Larry S

    2013-05-15

    The dopamine D1 receptor (D1R) facilitates reward acquisition and its alteration leads to profound learning deficits. However, its minimal functional circuit requirement is unknown. Using conditional reconstruction of functional D1R signaling in D1R knock-out mice, we define distinct requirements of D1R in subregions of the nucleus accumbens (NAc) for specific dimensions of reward. We demonstrate that D1R expression in the core region of the NAc (NAc(Core)), but not the shell (NAc(Shell)), enhances selectively a unique form of pavlovian conditioned approach and mediates D1R-dependent cocaine sensitization. However, D1R expression in either the NAc(Core) or the NAc(Shell) improves instrumental responding for reward. In contrast, neither NAc(Core) nor NAc(Shell) D1R is sufficient to promote motivation to work for reward in a progressive ratio task or for motor learning. These results highlight dissociated circuit requirements of D1R for dopamine-dependent behaviors. PMID:23678109

  6. Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity.

    PubMed

    Centonze, Diego; Grande, Cristina; Saulle, Emilia; Martin, Ana B; Gubellini, Paolo; Pavón, Nancy; Pisani, Antonio; Bernardi, Giorgio; Moratalla, Rosario; Calabresi, Paolo

    2003-09-17

    Stimulation of dopamine (DA) receptors in the striatum is essential for voluntary motor activity and for the generation of plasticity at corticostriatal synapses. In the present study, mice lacking DA D1 receptors have been used to investigate the involvement of the D1-like class (D1 and D5) of DA receptors in locomotion and corticostriatal long-term depression (LTD) and long-term potentiation (LTP). Our results suggest that D1 and D5 receptors exert distinct actions on both activity-dependent synaptic plasticity and spontaneous motor activity. Accordingly, the ablation of D1 receptors disrupted corticostriatal LTP, whereas pharmacological blockade of D5 receptors prevented LTD. On the other side, genetic ablation of D1 receptors increased locomotor activity, whereas the D1/D5 receptor antagonist SCH 23390 decreased motor activity in both control mice and mice lacking D1 receptors. Endogenous DA stimulated D1 and D5 receptors in distinct subtypes of striatal neurons to induce, respectively, LTP and LTD. In control mice, in fact, LTP was blocked by inhibiting the D1-protein kinase A pathway in the recorded spiny neuron, whereas the striatal nitric oxide-producing interneuron was presumably the neuronal subtype stimulated by D5 receptors during the induction phase of LTD. Understanding the role of DA receptors in striatal function is essential to gain insights into the neural bases of critical brain functions and of dramatic pathological conditions such as Parkinson's disease, schizophrenia, and drug addiction.

  7. Post-transcriptional regulation of dopamine D1 receptor expression in caudate-putamen of cocaine-sensitized mice.

    PubMed

    Tobón, Krishna E; Catuzzi, Jennifer E; Cote, Samantha R; Sonaike, Adenike; Kuzhikandathil, Eldo V

    2015-07-01

    The dopamine D1 receptor is centrally involved in mediating the effects of cocaine and is essential for cocaine-induced locomotor sensitization. Changes in D1 receptor expression have been reported in various models of cocaine addiction; however, the mechanisms that mediate these changes in D1 receptor expression are not well understood. Using preadolescent drd1a-EGFP mice and a binge cocaine treatment protocol we demonstrate that the D1 receptor is post-transcriptionally regulated in the caudate-putamen of cocaine-sensitized animal. While cocaine-sensitized mice express high levels of steady-state D1 receptor mRNA, the expression of D1 receptor protein is not elevated. We determined that the post-transcriptional regulation of D1 receptor mRNA is rapidly attenuated and D1 receptor protein levels increase within 30 min when the sensitized mice are challenged with cocaine. The rapid increase in D1 receptor protein levels requires de novo protein synthesis and correlates with the cocaine-induced hyperlocomotor activity in the cocaine-sensitized mice. The increase in D1 receptor protein levels in the caudate-putamen inversely correlated with the levels of microRNA 142-3p and 382, both of which regulate D1 receptor protein expression. The levels of these two microRNAs decreased significantly within 5 min of cocaine challenge in sensitized mice. The results provide novel insights into the previously unknown rapid kinetics of D1 receptor protein expression which occurs in a time scale that is comparable to the expression of immediate early genes. Furthermore, the results suggest a potential novel role for inherently labile microRNAs in regulating the rapid expression of D1 receptor protein in cocaine-sensitized animals. PMID:25900179

  8. Dopamine D1 and corticotrophin-releasing hormone type-2α receptors assemble into functionally interacting complexes in living cells

    PubMed Central

    Fuenzalida, J; Galaz, P; Araya, K A; Slater, P G; Blanco, E H; Campusano, J M; Ciruela, F; Gysling, K

    2014-01-01

    Background and Purpose Dopamine and corticotrophin-releasing hormone (CRH; also known as corticotrophin-releasing factor) are key neurotransmitters in the interaction between stress and addiction. Repeated treatment with cocaine potentiates glutamatergic transmission in the rat basolateral amygdala/cortex pathway through a synergistic action of D1-like dopamine receptors and CRH type-2α receptors (CRF2α receptors). We hypothesized that this observed synergism could be instrumented by heteromers containing the dopamine D1 receptor and CRF2α receptor. Experimental Approach D1/CRF2α receptor heteromerization was demonstrated in HEK293T cells using co-immunoprecipitation, BRET and FRET assays, and by using the heteromer mobilization strategy. The ability of D1 receptors to signal through calcium, when singly expressed or co-expressed with CRF2α receptors, was evaluated by the calcium mobilization assay. Key Results D1/CRF2α receptor heteromers were observed in HEK293T cells. When singly expressed, D1 receptors were mostly located at the cell surface whereas CRF2α receptors accumulated intracellularly. Interestingly, co-expression of both receptors promoted D1 receptor intracellular and CRF2α receptor cell surface targeting. The heteromerization of D1/CRF2α receptors maintained the signalling through cAMP of both receptors but switched D1 receptor signalling properties, as the heteromeric D1 receptor was able to mobilize intracellular calcium upon stimulation with a D1 receptor agonist. Conclusions and Implications D1 and CRF2α receptors are capable of heterodimerization in living cells. D1/CRF2α receptor heteromerization might account, at least in part, for the complex physiological interactions established between dopamine and CRH in normal and pathological conditions such as addiction, representing a new potential pharmacological target. PMID:25073922

  9. Functional selectivity of allosteric interactions within G protein-coupled receptor oligomers: the dopamine D1-D3 receptor heterotetramer.

    PubMed

    Guitart, Xavier; Navarro, Gemma; Moreno, Estefania; Yano, Hideaki; Cai, Ning-Sheng; Sánchez-Soto, Marta; Kumar-Barodia, Sandeep; Naidu, Yamini T; Mallol, Josefa; Cortés, Antoni; Lluís, Carme; Canela, Enric I; Casadó, Vicent; McCormick, Peter J; Ferré, Sergi

    2014-10-01

    The dopamine D1 receptor-D3 receptor (D1R-D3R) heteromer is being considered as a potential therapeutic target for neuropsychiatric disorders. Previous studies suggested that this heteromer could be involved in the ability of D3R agonists to potentiate locomotor activation induced by D1R agonists. It has also been postulated that its overexpression plays a role in L-dopa-induced dyskinesia and in drug addiction. However, little is known about its biochemical properties. By combining bioluminescence resonance energy transfer, bimolecular complementation techniques, and cell-signaling experiments in transfected cells, evidence was obtained for a tetrameric stoichiometry of the D1R-D3R heteromer, constituted by two interacting D1R and D3R homodimers coupled to Gs and Gi proteins, respectively. Coactivation of both receptors led to the canonical negative interaction at the level of adenylyl cyclase signaling, to a strong recruitment of β-arrestin-1, and to a positive cross talk of D1R and D3R agonists at the level of mitogen-activated protein kinase (MAPK) signaling. Furthermore, D1R or D3R antagonists counteracted β-arrestin-1 recruitment and MAPK activation induced by D3R and D1R agonists, respectively (cross-antagonism). Positive cross talk and cross-antagonism at the MAPK level were counteracted by specific synthetic peptides with amino acid sequences corresponding to D1R transmembrane (TM) domains TM5 and TM6, which also selectively modified the quaternary structure of the D1R-D3R heteromer, as demonstrated by complementation of hemiproteins of yellow fluorescence protein fused to D1R and D3R. These results demonstrate functional selectivity of allosteric modulations within the D1R-D3R heteromer, which can be involved with the reported behavioral synergism of D1R and D3R agonists.

  10. The prognostic significance and value of cyclin D1, CDK4 and p16 in human breast cancer

    PubMed Central

    2013-01-01

    Introduction Loss of the retinoblastoma protein tumor suppressor gene (RB) coding for a nuclear phosphoprotein that regulates the cell cycle is found in many human cancers and probably leads to disruption of the p16-cyclin D1-CDK4/6-RB pathway. Cyclin D1 is known to activate CDK4, which then phosphorylates the RB protein, leading to cell cycle progression. p16 inhibits CDK4, keeping RB hypophosphorylated and preventing cell cycle progression. The significance of these three markers, cyclin D1, CDK4 and p16, for breast cancer and carcinogenesis is nevertheless still controversial. Methods The material consisted of 102 formalin-fixed human breast cancer samples, in which cyclin D1, CDK4 and p16 expression was evaluated immunohistochemically. The amounts of cyclin D1 mRNA present were analyzed by quantitative real time PCR. Results High cyclin D1 expression statistically significantly correlated with lower tumor grade, estrogen and progesterone receptor positivity and lower proliferation activity in breast tumors and increased breast cancer-specific survival and overall survival. Tumors with high cyclin D1 protein had 1.8 times higher expression of cyclin D1 mRNA. CDK4 expression did not correlate with cyclin D1 expression or the survival data. p16 expression was associated with Human Epidermal Growth Factor Receptor 2 (HER2) negativity and increased breast cancer-specific survival and disease-free survival. No statistical correlations between cyclin D1, CDK4 and p16 were found. Conclusions Cyclin D1 was associated with a good breast cancer prognosis but functioned independently of CDK4. High cyclin D1 expression may be partially due to increased CCND1 transcription. p16 correlated with a better prognosis and may function without CDK4. In conclusion, it appears that cyclin D1, CDK4 and p16 function independently in human breast cancer. PMID:23336272

  11. Post-transcriptional regulation of dopamine D1 receptor expression in caudate-putamen of cocaine-sensitized mice

    PubMed Central

    Tobón, Krishna E.; Catuzzi, Jennifer E.; Cote, Samantha R.; Sonaike, Adenike; Kuzhikandathil, Eldo V.

    2015-01-01

    The dopamine D1 receptor is centrally involved in mediating the effects of cocaine and is essential for cocaine-induced locomotor sensitization. Changes in D1 receptor expression has been reported in various models of cocaine addiction; however, the mechanisms that mediate these changes in D1 receptor expression are not well understood. Using preadolescent drd1a-EGFP mice and a binge cocaine treatment protocol we demonstrate that the D1 receptor is post-transcriptionally regulated in the caudate-putamen of cocaine-sensitized animal. While cocaine-sensitized mice express high levels of steady state D1 receptor mRNA, the expression of D1 receptor protein is not elevated. We determined that the post-transcriptional regulation of D1 receptor mRNA is rapidly attenuated and D1 receptor protein levels increase within thirty minutes when the sensitized mice are challenged with cocaine. The rapid increase in D1 receptor protein levels requires de novo protein synthesis and correlates with the cocaine-induced hyperlocomotor activity in the cocaine-sensitized mice. The increase in D1 receptor protein levels in the caudate-putamen inversely correlated to the levels of microRNA 142-3p and 382, both of which regulate D1 receptor protein expression. The levels of these two microRNAs decreased significantly within five minutes of cocaine challenge in sensitized mice. The results provide novel insights into the previously unknown rapid kinetics of D1 receptor protein expression which occurs in a time scale that is comparable to the expression of immediate early genes. Furthermore, the results suggests a potential novel role for inherently labile microRNAs in regulating the rapid expression of D1 receptor protein in cocaine-sensitized animals. PMID:25900179

  12. O(D-1) production in ozone photolysis near 310 nm

    NASA Technical Reports Server (NTRS)

    Lin, C.; Demore, W. B.

    1973-01-01

    Relative quantum yields of O(D-1)production, phi, in ozone photolysis from 275 nm to 334 nm were determined in the gas phase at 233 K. The O(D-1) was monitored by means of its reaction with isobutane to form isobutyl alcohol. The light source was a high pressure mercury lamp combined with a monochromator, with a bandwidth of 1.6 nm. The results show a constant phi below 300 nm, which is taken as unity on the basis of previous work. There is a very sharp fall-off in phi which is centered at 308 nm. At 313 nm phi is not greater than 0.1.

  13. Production of large 41K Bose-Einstein condensates using D1 gray molasses

    NASA Astrophysics Data System (ADS)

    Chen, Hao-Ze; Yao, Xing-Can; Wu, Yu-Ping; Liu, Xiang-Pei; Wang, Xiao-Qiong; Wang, Yu-Xuan; Chen, Yu-Ao; Pan, Jian-Wei

    2016-09-01

    We use D1 gray molasses to achieve Bose-Einstein condensation of a large number of 41K atoms in an optical dipole trap. By combining a specific configuration of a compressed magneto-optical trap with D1 gray molasses, we obtain a cold sample of 2.4 ×109 atoms with a temperature as low as 42 μ K . After magnetically transferring the atoms into the final glass cell, we perform a two-stage evaporative cooling. A condensate with up to 1.2 ×106 atoms in the lowest Zeeman state |F =1 , mF=1 > is achieved in the optical dipole trap. Furthermore, we observe two narrow Feshbach resonances in the lowest hyperfine channel, which are in good agreement with theoretical predictions.

  14. Synergistic cooperation of Sall4 and Cyclin D1 in transcriptional repression

    SciTech Connect

    Boehm, Johann; Kaiser, Frank J.; Borozdin, Wiktor; Depping, Reinhard; Kohlhase, Juergen . E-mail: jkohlhase@humangenetik-freiburg.de

    2007-05-11

    Loss of function mutations in SALL4 cause Okihiro syndrome, an autosomal dominant disorder characterised by radial ray malformations associated with Duane anomaly. In zebrafish and mouse Sall4 interacts with TBX5 during limb and heart development and plays a crucial role for embryonic stem (ES) cell pluripotency. Here we report the nuclear interaction of murine Sall4 with Cyclin D1, one of the main regulators of G{sub 1} to S phase transition in cell cycle, verified by yeast two-hybrid assay, co-immunoprecipitation and intracellular co-localisation. Furthermore, using luciferase reporter gene assays we demonstrate that Sall4 operates as a transcriptional repressor located to heterochromatin and that this activity is modulated by Cyclin D1.

  15. Striatal dopamine D1 receptor is essential for contextual fear conditioning.

    PubMed

    Ikegami, Masaru; Uemura, Takeshi; Kishioka, Ayumi; Sakimura, Kenji; Mishina, Masayoshi

    2014-02-05

    Fear memory is critical for animals to trigger behavioural adaptive responses to potentially threatening stimuli, while too much or inappropriate fear may cause psychiatric problems. Numerous studies have shown that the amygdala, hippocampus and medial prefrontal cortex play important roles in Pavlovian fear conditioning. Recently, we showed that striatal neurons are required for the formation of the auditory fear memory when the unconditioned stimulus is weak. Here, we found that selective ablation of striatal neurons strongly diminished contextual fear conditioning irrespective of the intensity of footshock. Furthermore, contextual fear conditioning was strongly reduced in striatum-specific dopamine D1 receptor knockout mice. On the other hand, striatum-specific dopamine D2 receptor knockout mice showed freezing responses comparable to those of control mice. These results suggest that striatal D1 receptor is essential for contextual fear conditioning.

  16. Towards the D1 protein application for the development of sensors specific for herbicides

    SciTech Connect

    Piletskaya, E.; Piletsky, S.; Lavrik, N.; Masuchi, Y.; Karube, I.

    1998-12-01

    One of the most widespread groups of pesticides are the triazine herbicides. These substances inhibit photosynthesis by blocking electron transport in plant chloroplasts. The possibility of the chloroplast D1 protein application for determination of the herbicide concentration in solution was investigated. Potentiometry and cyclic voltammetry have been selected to monitor specific interaction between the D1 protein and herbicide. It was found that membranes with well-defined structure, like Langmuir-Blongett film are more suitable for sensitive sensor construction than cross-linked membranes. After addition of atrazine, the current through these multilayers appeared to increase 5 fold. The effect was found to be fast and irreversible. It has been proposed that the toxic action of herbicides on chloroplasts, traditionally interpreted by inhibition of electron flow along the chloroplast membrane, may also be the result of the thylakoid membrane depolarization.

  17. Microsatellite-based fine mapping of the Van der Woude syndrome locus to an interval of 4.1 cM between D1S245 and D1S414

    SciTech Connect

    Sander, A.; Schmelzle, R.; Murray, J.C.; Scherpbier-Heddema, T.; Buetow, K.H.; Weissenbach, J.; Ludwig, K.; Zingg, M.

    1995-01-01

    Van der Woude syndrome (VWS) is an autosomal dominant craniofacial disorder characterized by lip pits, clefting of the primary or secondary palate, and hypodontia. The gene has been localized, by RFLP-based linkage studies, to region 1q32-41 between D1S65-REN and D1S65-TGFB2. In this study we report the linkage analysis of 15 VWS families, using 18 microsatellite markers. Multipoint linkage analysis places the gene, with significant odds of 2,344:1, in a 4.1-cM interval flanked by D1S245 and D1S414. Two-point linkage analysis demonstrates close linkage of VWS with D1S205 (lod score [Z] = 24.41 at {theta} = .00) and with D1S491 (Z = 21.23 at {theta} = .00). The results revise the previous assignment of the VWS locus and show in an integrated map of the region 1q32-42 that the VWS gene resides more distally than previously suggested. When information about heterozygosity of the closely linked marker D1S491 in the affected members of the VWS family with a microdeletion is taken into account, the VWS critical region can be further narrowed, to the 3.6-cM interval between D1S491 and D1S414. 38 refs., 3 figs., 2 tabs.

  18. 26 CFR 1.337(d)-1 - Transitional loss limitation rule.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) of this section, it may apply § 1.1502-20T (as contained in the CFR edition revised as of April 1... only if not pursuant to a binding contract described in § 1.337(d)-1T(e)(2) (as contained in the CFR... recognition of built-in gain on the disposition of assets. Example 6. Creeping acquisition. P owns 60...

  19. CREB activity in dopamine D1 receptor expressing neurons regulates cocaine-induced behavioral effects

    PubMed Central

    Bilbao, Ainhoa; Rieker, Claus; Cannella, Nazzareno; Parlato, Rosanna; Golda, Slawomir; Piechota, Marcin; Korostynski, Michal; Engblom, David; Przewlocki, Ryszard; Schütz, Günther; Spanagel, Rainer; Parkitna, Jan R.

    2014-01-01

    It is suggested that striatal cAMP responsive element binding protein (CREB) regulates sensitivity to psychostimulants. To test the cell-specificity of this hypothesis we examined the effects of a dominant-negative CREB protein variant expressed in dopamine receptor D1 (D1R) neurons on cocaine-induced behaviors. A transgenic mouse strain was generated by pronuclear injection of a BAC-derived transgene harboring the A-CREB sequence under the control of the D1R gene promoter. Compared to wild-type, drug-naïve mutants showed moderate alterations in gene expression, especially a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2. The behavioral responses to cocaine were elevated in mutant mice. Locomotor activity after acute treatment, psychomotor sensitization after intermittent drug injections and the conditioned locomotion after saline treatment were increased compared to wild-type littermates. Transgenic mice had significantly higher cocaine conditioned place preference, displayed normal extinction of the conditioned preference, but showed an augmented cocaine-seeking response following priming-induced reinstatement. This enhanced cocaine-seeking response was associated with increased levels of activity-regulated transcripts and prodynorphin. The primary reinforcing effects of cocaine were not altered in the mutant mice as they did not differ from wild-type in cocaine self-administration under a fixed ratio schedule at the training dose. Collectively, our data indicate that expression of a dominant-negative CREB variant exclusively in neurons expressing D1R is sufficient to recapitulate the previously reported behavioral phenotypes associated with virally expressed dominant-negative CREB. PMID:24966820

  20. CREB activity in dopamine D1 receptor expressing neurons regulates cocaine-induced behavioral effects.

    PubMed

    Bilbao, Ainhoa; Rieker, Claus; Cannella, Nazzareno; Parlato, Rosanna; Golda, Slawomir; Piechota, Marcin; Korostynski, Michal; Engblom, David; Przewlocki, Ryszard; Schütz, Günther; Spanagel, Rainer; Parkitna, Jan R

    2014-01-01

    It is suggested that striatal cAMP responsive element binding protein (CREB) regulates sensitivity to psychostimulants. To test the cell-specificity of this hypothesis we examined the effects of a dominant-negative CREB protein variant expressed in dopamine receptor D1 (D1R) neurons on cocaine-induced behaviors. A transgenic mouse strain was generated by pronuclear injection of a BAC-derived transgene harboring the A-CREB sequence under the control of the D1R gene promoter. Compared to wild-type, drug-naïve mutants showed moderate alterations in gene expression, especially a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2. The behavioral responses to cocaine were elevated in mutant mice. Locomotor activity after acute treatment, psychomotor sensitization after intermittent drug injections and the conditioned locomotion after saline treatment were increased compared to wild-type littermates. Transgenic mice had significantly higher cocaine conditioned place preference, displayed normal extinction of the conditioned preference, but showed an augmented cocaine-seeking response following priming-induced reinstatement. This enhanced cocaine-seeking response was associated with increased levels of activity-regulated transcripts and prodynorphin. The primary reinforcing effects of cocaine were not altered in the mutant mice as they did not differ from wild-type in cocaine self-administration under a fixed ratio schedule at the training dose. Collectively, our data indicate that expression of a dominant-negative CREB variant exclusively in neurons expressing D1R is sufficient to recapitulate the previously reported behavioral phenotypes associated with virally expressed dominant-negative CREB. PMID:24966820

  1. Placental estrogen suppresses cyclin D1 expression in the nonhuman primate fetal adrenal cortex.

    PubMed

    Dumitrescu, Adina; Aberdeen, Graham W; Pepe, Gerald J; Albrecht, Eugene D

    2014-12-01

    We have previously shown that estrogen selectively suppresses growth of the fetal zone of the baboon fetal adrenal cortex, which produces the C19-steroid precursors, eg, dehydroepiandrosterone sulfate, which are aromatized to estrogen within the placenta. In the present study, we determined whether fetal adrenal expression of cell cycle regulators are altered by estrogen and thus provide a mechanism by which estrogen regulates fetal adrenocortical development. Cyclin D1 mRNA levels in the whole fetal adrenal were increased 50% (P < .05), and the number of cells in the fetal adrenal definitive zone expressing cyclin D1 protein was increased 2.5-fold (P < .05), whereas the total number of cells in the fetal zone and fetal serum dehydroepiandrosterone sulfate levels were elevated 2-fold (P < .05) near term in baboons in which fetal serum estradiol levels were decreased by 95% (P < .05) after maternal administration of the aromatase inhibitor letrozole and restored to normal by concomitant administration of letrozole plus estradiol throughout second half of gestation. However, fetal adrenocortical expression of cyclin D2, the cyclin-dependent kinase (Cdk)-2, Cdk4, and Cdk6, and Cdk regulatory proteins p27(Kip1) and p57(Kip2) were not changed by letrozole or letrozole plus estradiol administration. We suggest that estrogen controls the growth of the fetal zone of the fetal adrenal by down-regulating cyclin D1 expression and thus proliferation of progenitor cells within the definitive zone that migrate to the fetal zone. We propose that estrogen restrains growth and function of the fetal zone via cyclin D1 to maintain estrogen levels in a physiological range during primate pregnancy.

  2. Single exposure of dopamine D1 antagonist prevents and D2 antagonist attenuates methylphenidate effect

    PubMed Central

    Claussen, Catherine M; Witte, Lindsey J; Dafny, Nachum

    2015-01-01

    Methylphenidate (MPD) is a readily prescribed drug for the treatment of attention deficit hyperactivity disorder (ADHD) and moreover is used illicitly by youths for its cognitive-enhancing effects and recreation. MPD exposure in rodents elicits increased locomotor activity. Repetitive MPD exposure leads to further augmentation of their locomotor activity. This behavioral response is referred to as behavioral sensitization. Behavioral sensitization is used as an experimental marker for a drug’s ability to elicit dependence. There is evidence that dopamine (DA) is a key player in the acute and chronic MPD effect; however, the role of DA in the effects elicited by MPD is still debated. The objective of this study was to investigate the role of D1 and/or D2 DA receptors in the acute and chronic effect of MPD on locomotor activity. The study lasted for 12 consecutive days. Seven groups of male Sprague Dawley® rats were used. A single D1 or D2 antagonist was given before and after acute and chronic MPD administration. Single injection of D1 DA antagonist was able to significantly attenuate the locomotor activity when given prior to the initial MPD exposure and after repetitive MPD exposure, while the D2 DA antagonist partially attenuated the locomotor activity only when given before the second MPD exposure. The results show the role, at least in part, of the D1 DA receptor in the mechanism of behavioral sensitization, whereas the D2 DA receptor only partially modulates the response to acute and chronic MPD. PMID:27186140

  3. Inhibition of Adult Rat Retinal Ganglion Cells by D1-type Dopamine Receptor Activation

    PubMed Central

    Hayashida, Yuki; Rodríguez, Carolina Varela; Ogata, Genki; Partida, Gloria J.; Oi, Hanako; Stradleigh, Tyler W.; Lee, Sherwin C.; Colado, Anselmo Felipe; Ishida, Andrew T.

    2011-01-01

    The spike output of neural pathways can be regulated by modulating output neuron excitability and/or their synaptic inputs. Dopaminergic interneurons synapse onto cells that route signals to mammalian retinal ganglion cells, but it is unknown whether dopamine can activate receptors in these ganglion cells and, if it does, how this affects their excitability. Here, we show D1a-receptor-like immunoreactivity in ganglion cells identified in adult rats by retrogradely transported dextran, and that dopamine, D1-type receptor agonists, and cAMP analogs inhibit spiking in ganglion cells dissociated from adult rats. These ligands curtailed repetitive spiking during constant current injections, and reduced the number and rate of rise of spikes elicited by fluctuating current injections without significantly altering the timing of the remaining spikes. Consistent with mediation by D1-type receptors, SCH-23390 reversed the effects of dopamine on spikes. Contrary to a recent report, spike inhibition by dopamine was not precluded by blocking Ih. Consistent with the reduced rate of spike rise, dopamine reduced voltage-gated Na+ current (INa) amplitude and tetrodotoxin, at doses that reduced INa as moderately as dopamine, also inhibited spiking. These results provide the first direct evidence that D1-type dopamine receptor activation can alter mammalian retinal ganglion cell excitability, and demonstrate that dopamine can modulate spikes in these cells by a mechanism different from the pre- and postsynaptic means proposed by previous studies. To our knowledge, our results also provide the first evidence that dopamine receptor activation can reduce excitability without altering the temporal precision of spike firing. PMID:19940196

  4. Positron tomography of a radiobrominated analog of SCH 23390: A selective dopamine D1 receptor antagonist

    SciTech Connect

    De Jesus, O.T.; Woolverton, W.L.; Van Moffaert, G.J.C.; Goldberg, L.I.; Dinerstein, R.J.; Yasillo, N.J.; Ortega, C.; Cooper, M.D.; Friedman, A.M.

    1985-05-01

    Alterations in the central dopaminergic system have been hypothesized to underlie several neuropsychiatric disorders. Dopamine (DA) receptors in the CNS have been classified into two classes based on whether linkage to the enzyme adenylate cyclase exists, the D1 receptors, or not, D2 receptors. To date, studies on cerebral DA system by positron tomography (PET) have utilized the butyrophenones which are predominantly D2 antagonists. We have prepared Br-75 or Br-76 labelled 8-bromo analog of SCH 23390, (BrSCH), a highly selective antagonist for DA D1 receptors and have measured its distribution in the intact monkey brain by PET and by postmortem section of the mouse brain. An anesthesized 8.5 kg male rhesus monkey was given, i.v., ca. 2 mCi BrSCH on two occasions and scanned with The University of Chicago PETT VI system. Results revealed that the drug localized specifically in the basal ganglia. In a similar experiment in the same monkey given Br-76-bromospiroperidol (BrSP), a predominantly D2 antagonist, high uptake in the basal ganglia was also observed but the time course for specific localization of BrSCH was much faster than that of BrSP. These results provide evidence the D1 receptors, like D2 receptors, are localized in the caudate nucleus (CN) although BrSCH, compared to BrSP, appear to localize more in the posterior aspect of the CN. In conclusion, BrSCH should be a useful imaging agent to study dopamine D1 receptors in the CNS.

  5. 26 CFR 1.337(d)-1 - Transitional loss limitation rule.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) of this section, it may apply § 1.1502-20T (as contained in the CFR edition revised as of April 1... only if not pursuant to a binding contract described in § 1.337(d)-1T(e)(2) (as contained in the CFR... recognition of built-in gain on the disposition of assets. Example 6. Creeping acquisition. P owns 60...

  6. 26 CFR 1.337(d)-1 - Transitional loss limitation rule.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) of this section, it may apply § 1.1502-20T (as contained in the CFR edition revised as of April 1... only if not pursuant to a binding contract described in § 1.337(d)-1T(e)(2) (as contained in the CFR... recognition of built-in gain on the disposition of assets. Example 6. Creeping acquisition. P owns 60...

  7. 26 CFR 1.337(d)-1 - Transitional loss limitation rule.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) of this section, it may apply § 1.1502-20T (as contained in the CFR edition revised as of April 1... only if not pursuant to a binding contract described in § 1.337(d)-1T(e)(2) (as contained in the CFR... recognition of built-in gain on the disposition of assets. Example 6. Creeping acquisition. P owns 60...

  8. Semaphorin 4A enhances lung fibrosis through activation of Akt via PlexinD1 receptor.

    PubMed

    Peng, Hai-Ying; Gao, Wei; Chong, Fa-Rong; Liu, Hong-Yan; Zhang, J I

    2015-12-01

    Semaphorin 4A plays a regulatory role in immune function and angiogenesis. However, its specific involvement in controlling lung fibrosis, a process that is closely related to angiogenesis and inflammation is still poorly understood. In the present study, we show that treatment of Sema4A on normal lung fibroblasts induces expression of proteins that contribute to a contractile phenotype, including alpha-smooth muscle actin (alpha-SMA), ezrin, moesin, and paxillin. We confirm that Sema4A enhances the ability of lung fibroblasts to contract collagen gel. Sema4A treatment led to resistance to apoptosis in normal lung fibroblasts. Relative to normal lung fibroblasts, fibroblasts cultured from scars of patients with the fibrotic disease Systemic Sclerosis (SSc) showed elevated Sema4A secretion, enhanced alpha-SMA, ezrin, moesin, and paxillin expression, and high ability to induce collagen gel contraction. Using neutralizing antibody against Sema4A receptor, PlexinD1, we found that endogenous Sema4A signalling in SSc fibroblast was through PlexinD1 receptor. We then identified the signalling mechanism through which Sema4A-PlexinD1 promotes the ability of normal fibroblasts to contract a collagen gel matrix. Western blot analysis showed that Sema4A activated the Akt pathway in lung fibroblasts, and the specific inhibitor of Akt pathway, Akt inhibitor III, blocked the ability of Sema4A to promote the ability of lung fibroblasts to contract a collagen gel matrix. Thus, blocking Sema4APlexinD1- Akt cascades might be beneficial in reducing pulmonary fibrosis.

  9. Working memory span capacity improved by a D2 but not D1 receptor family agonist.

    PubMed

    Tarantino, Isadore S; Sharp, Richard F; Geyer, Mark A; Meves, Jessica M; Young, Jared W

    2011-06-01

    Patients with schizophrenia exhibit poor working memory (WM). Although several subcomponents of WM can be measured, evidence suggests the primary subcomponent affected in schizophrenia is span capacity (WMC). Indeed, the NIMH-funded MATRICS initiative recommended assaying the WMC when assessing the efficacy of a putative therapeutic for FDA approval. Although dopamine D1 receptor agonists improve delay-dependent memory in animals, evidence for improvements in WMC due to dopamine D1 receptor activation is limited. In contrast, the dopamine D2-family agonist bromocriptine improves WMC in humans. The radial arm maze (RAM) can be used to assess WMC, although complications due to ceiling effects or strategy confounds have limited its use. We describe a 12-arm RAM protocol designed to assess whether the dopamine D1-family agonist SKF 38393 (0, 1, 3, and 10 mg/kg) or bromocriptine (0, 1, 3, and 10 mg/kg) could improve WMC in C57BL/6N mice (n=12) in cross-over designs. WMC increased and strategy usage decreased with training. The dopamine D1 agonist SKF 38393 had no effect on WMC or long-term memory. Bromocriptine decreased WMC errors, without affecting long-term memory, consistent with human studies. These data confirm that WMC can be measured in mice and reveal drug effects that are consistent with reported effects in humans. Future research is warranted to identify the subtype of the D2-family of receptors responsible for the observed improvement in WMC. Finally, this RAM procedure may prove useful in developing animal models of deficient WMC to further assess putative treatments for the cognitive deficits in schizophrenia. PMID:21232557

  10. Placental Estrogen Suppresses Cyclin D1 Expression in the Nonhuman Primate Fetal Adrenal Cortex*

    PubMed Central

    Dumitrescu, Adina; Aberdeen, Graham W.; Pepe, Gerald J.

    2014-01-01

    We have previously shown that estrogen selectively suppresses growth of the fetal zone of the baboon fetal adrenal cortex, which produces the C19-steroid precursors, eg, dehydroepiandrosterone sulfate, which are aromatized to estrogen within the placenta. In the present study, we determined whether fetal adrenal expression of cell cycle regulators are altered by estrogen and thus provide a mechanism by which estrogen regulates fetal adrenocortical development. Cyclin D1 mRNA levels in the whole fetal adrenal were increased 50% (P < .05), and the number of cells in the fetal adrenal definitive zone expressing cyclin D1 protein was increased 2.5-fold (P < .05), whereas the total number of cells in the fetal zone and fetal serum dehydroepiandrosterone sulfate levels were elevated 2-fold (P < .05) near term in baboons in which fetal serum estradiol levels were decreased by 95% (P < .05) after maternal administration of the aromatase inhibitor letrozole and restored to normal by concomitant administration of letrozole plus estradiol throughout second half of gestation. However, fetal adrenocortical expression of cyclin D2, the cyclin-dependent kinase (Cdk)-2, Cdk4, and Cdk6, and Cdk regulatory proteins p27Kip1 and p57Kip2 were not changed by letrozole or letrozole plus estradiol administration. We suggest that estrogen controls the growth of the fetal zone of the fetal adrenal by down-regulating cyclin D1 expression and thus proliferation of progenitor cells within the definitive zone that migrate to the fetal zone. We propose that estrogen restrains growth and function of the fetal zone via cyclin D1 to maintain estrogen levels in a physiological range during primate pregnancy. PMID:25247468

  11. Radiative Transfer Modeling of the Enigmatic Scattering Polarization in the Solar Na I D1 Line

    NASA Astrophysics Data System (ADS)

    Belluzzi, Luca; Trujillo Bueno, Javier; Landi Degl'Innocenti, Egidio

    2015-12-01

    The modeling of the peculiar scattering polarization signals observed in some diagnostically important solar resonance lines requires the consideration of the detailed spectral structure of the incident radiation field as well as the possibility of ground level polarization, along with the atom's hyperfine structure and quantum interference between hyperfine F-levels pertaining either to the same fine structure J-level, or to different J-levels of the same term. Here we present a theoretical and numerical approach suitable for solving this complex non-LTE radiative transfer problem. This approach is based on the density-matrix metalevel theory (where each level is viewed as a continuous distribution of sublevels) and on accurate formal solvers of the transfer equations and efficient iterative methods. We show an application to the D-lines of Na i, with emphasis on the enigmatic D1 line, pointing out the observable signatures of the various physical mechanisms considered. We demonstrate that the linear polarization observed in the core of the D1 line may be explained by the effect that one gets when the detailed spectral structure of the anisotropic radiation responsible for the optical pumping is taken into account. This physical ingredient is capable of introducing significant scattering polarization in the core of the Na i D1 line without the need for ground-level polarization.

  12. Age Dependent Switching Role of Cyclin D1 in Breast Cancer

    PubMed Central

    Rinaldi, Carmela; Malara, Natalia Maria; D’Angelo, Rosalia; Sidoti, Antonina; Leotta, Attilio; Lio, Santo; Caparello, Basilio; Ruggeri, Alessia; Mollace, Vincenzo; Amato, Aldo

    2012-01-01

    Background: Cyclin D1 gene (CCND1) plays pivotal roles in the development of several human cancers, including breast cancer, functioning as an oncogene. The aim of this study was to better understand the molecular dynamics of ductal carcinomas with regard to proliferation and the ageing process. Methods: 130 cases of ductal breast cancer in postmenopausal women, aged 52–96 in 3 age classes were selected. Tumoral tissues preserved in formaldehyde solution and subsequently embedded in paraffin were subjected to analysis Fluorescence in situ Hybridization (FISH), Reverse Transcription-Polymerase Chain Reaction (RT- PCR) and immuno-histochemical tests. The molecular variables studied were estimated in relation to the patients’ age. Results: The results obtained suggest that the increment of the levels of cyclin D1 in intra-ductal breast tumors in older woman that we have examined is significantly associated with a lower proliferation rate. Conclusion: Cyclin D1, which characterizes tumor in young women as molecular director involved in strengthening tumoral proliferation mechanisms, may be seen as a potential blocking molecular switch in corresponding tumours in old women. PMID:22231956

  13. Drosulfakinin activates CCKLR-17D1 and promotes larval locomotion and escape response in Drosophila

    PubMed Central

    Chen, Xu; Peterson, Jonathan; Nachman, Ronald J.; Ganetzky, Barry

    2012-01-01

    Neuropeptides are ubiquitous in both mammals and invertebrates and play essential roles in regulation and modulation of many developmental and physiological processes through activation of G-protein-coupled-receptors (GPCRs). However, the mechanisms by which many of the neuropeptides regulate specific neural function and behaviors remain undefined. Here we investigate the functions of Drosulfakinin (DSK), the Drosophila homolog of vertebrate neuropeptide cholecystokinin (CCK), which is the most abundant neuropeptide in the central nervous system. We provide biochemical evidence that sulfated DSK-1 and DSK-2 activate the CCKLR-17D1 receptor in a cell culture assay. We further examine the role of DSK and CCKLR-17D1 in the regulation of larval locomotion, both in a semi-intact larval preparation and in intact larvae under intense light exposure. Our results suggest that DSK/CCKLR-17D1 signaling promote larval body wall muscle contraction and is necessary for mediating locomotor behavior in stress-induced escape response. PMID:22885328

  14. Molecular hijacking of siroheme for the synthesis of heme and d1 heme

    PubMed Central

    Bali, Shilpa; Lawrence, Andrew D.; Lobo, Susana A.; Saraiva, Lígia M.; Golding, Bernard T.; Palmer, David J.; Howard, Mark J.; Ferguson, Stuart J.; Warren, Martin J.

    2011-01-01

    Modified tetrapyrroles such as chlorophyll, heme, siroheme, vitamin B12, coenzyme F430, and heme d1 underpin a wide range of essential biological functions in all domains of life, and it is therefore surprising that the syntheses of many of these life pigments remain poorly understood. It is known that the construction of the central molecular framework of modified tetrapyrroles is mediated via a common, core pathway. Herein a further branch of the modified tetrapyrrole biosynthesis pathway is described in denitrifying and sulfate-reducing bacteria as well as the Archaea. This process entails the hijacking of siroheme, the prosthetic group of sulfite and nitrite reductase, and its processing into heme and d1 heme. The initial step in these transformations involves the decarboxylation of siroheme to give didecarboxysiroheme. For d1 heme synthesis this intermediate has to undergo the replacement of two propionate side chains with oxygen functionalities and the introduction of a double bond into a further peripheral side chain. For heme synthesis didecarboxysiroheme is converted into Fe-coproporphyrin by oxidative loss of two acetic acid side chains. Fe-coproporphyrin is then transformed into heme by the oxidative decarboxylation of two propionate side chains. The mechanisms of these reactions are discussed and the evolutionary significance of another role for siroheme is examined. PMID:21969545

  15. Cyclin D1 and Ki-67 expression correlates to tumor staging in tongue squamous cell carcinoma

    PubMed Central

    de Carli, Marina-Lara; Sperandio, Felipe-Fornias; Hanemann, João-Adolfo-Costa; Pereira, Alessandro-Antônio-Costa

    2015-01-01

    Background The immunohistochemical expression of Cyclin D1 and Ki-67 were analyzed in tongue squamous cell carcinomas (SCC), relating them to the clinical and morphological exhibition of these tumors. Material and Methods Twenty-nine patients fulfilled the inclusion criteria; clinical data included gender, age, ethnicity and use of licit drugs such as alcohol and tobacco. The TNM staging and histopathological differentiation grading was assessed for each case. In addition, T1 patients were gathered with T2 patients; and T3 patients were gathered with T4 patients to assemble two distinct groups: (T1/T2) and (T3/T4). Results The mean follow-up time was 24 months and 30% of the patients died as a consequence of the disease, while 23.3% lived with the disease and 46.7% lived lesion-free. T1 and T2 tumors showed statistically lesser Ki-67 and Cyclin D1 staining when compared to T3 and T4 tumors. Conclusions Ki-67 and Cyclin D1 pose as auxiliary tools when determining the progression of tongue SCC at the time of diagnosis. Key words:Carcinoma, squamous cell, cyclin D, immunohistochemistry, Ki-67 antigen, prognosis. PMID:26449430

  16. The Secreted Enzyme PM20D1 Regulates Lipidated Amino Acid Uncouplers of Mitochondria.

    PubMed

    Long, Jonathan Z; Svensson, Katrin J; Bateman, Leslie A; Lin, Hua; Kamenecka, Theodore; Lokurkar, Isha A; Lou, Jesse; Rao, Rajesh R; Chang, Mi Ra; Jedrychowski, Mark P; Paulo, Joao A; Gygi, Steven P; Griffin, Patrick R; Nomura, Daniel K; Spiegelman, Bruce M

    2016-07-14

    Brown and beige adipocytes are specialized cells that express uncoupling protein 1 (UCP1) and dissipate chemical energy as heat. These cells likely possess alternative UCP1-independent thermogenic mechanisms. Here, we identify a secreted enzyme, peptidase M20 domain containing 1 (PM20D1), that is enriched in UCP1(+) versus UCP1(-) adipocytes. We demonstrate that PM20D1 is a bidirectional enzyme in vitro, catalyzing both the condensation of fatty acids and amino acids to generate N-acyl amino acids and also the reverse hydrolytic reaction. N-acyl amino acids directly bind mitochondria and function as endogenous uncouplers of UCP1-independent respiration. Mice with increased circulating PM20D1 have augmented respiration and increased N-acyl amino acids in blood. Lastly, administration of N-acyl amino acids to mice improves glucose homeostasis and increases energy expenditure. These data identify an enzymatic node and a family of metabolites that regulate energy homeostasis. This pathway might be useful for treating obesity and associated disorders. PMID:27374330

  17. Immunohistochemical evaluation of chemically induced rhabdomyosarcomas in rats: diagnostic utility of MyoD1.

    PubMed

    Newsholme, S J; Zimmerman, D M

    1997-01-01

    Monoclonal antibodies (mAbs) to selected muscle proteins were assessed as potential immunohistochemical markers to assist in the definitive diagnosis of poorly differentiated soft tissue sarcomas in rats. A series of 7 rat rhabdomyosarcomas (RMS) induced with nickel subsulfide were studied by light microscopy and were evaluated for immunoreactivity to desmin, vimentin, fast (type II isoform) skeletal myosin, alpha-actin (smooth muscle isoform), or MyoD1 (myogenic regulatory protein) mAbs using an avidin-biotin-chromogen technique. Consecutive RMS slices were fixed in 10% neutral buffered formalin (the fixative routinely used in carcinogenicity bioassays) for periods of 3 days or 2 mo prior to paraffin embedding to determine the effect of fixation time on immunoreactivity. Desmin and vimentin mAbs bound to many cells of all tumors, but fixation for 2 mo resulted in irretrievable loss of desmin and vimentin binding. Fast myosin and alpha-actin mAbs bound to many cells in 1 RMS but to < 1% of the cells in the remainder. MyoD1 mAb bound to tumor cell nuclei in 5/7 RMS with no loss of staining in tissue fixed for 2 mo. Results indicate that MyoD1 immunostaining, in contrast to desmin, maintains its sensitivity following prolonged formalin fixation and may be of value to distinguish RMS from other soft tissue sarcomas in the rat.

  18. The D1 family dopamine receptor, DopR, potentiates hind leg grooming behavior in Drosophila

    PubMed Central

    Pitmon, E.; Stephens, G.; Parkhurst, S. J.; Wolf, F. W.; Kehne, G.; Taylor, M.

    2016-01-01

    Drosophila groom away debris and pathogens from the body using their legs in a stereotyped sequence of innate motor behaviors. Here, we investigated one aspect of the grooming repertoire by characterizing the D1 family dopamine receptor, DopR. Removal of DopR results in decreased hind leg grooming, as substantiated by quantitation of dye remaining on mutant and RNAi animals vs. controls and direct scoring of behavioral events. These data are also supported by pharmacological results that D1 receptor agonists fail to potentiate grooming behaviors in headless DopR flies. DopR protein is broadly expressed in the neuropil of the thoracic ganglion and overlaps with TH‐positive dopaminergic neurons. Broad neuronal expression of dopamine receptor in mutant animals restored normal grooming behaviors. These data provide evidence for the role of DopR in potentiating hind leg grooming behaviors in the thoracic ganglion of adult Drosophila. This is a remarkable juxtaposition to the considerable role of D1 family dopamine receptors in rodent grooming, and future investigations of evolutionary relationships of circuitry may be warranted. PMID:26749475

  19. Striatal D1 and D2 signaling differentially predict learning from positive and negative outcomes.

    PubMed

    Cox, Sylvia M L; Frank, Michael J; Larcher, Kevin; Fellows, Lesley K; Clark, Crystal A; Leyton, Marco; Dagher, Alain

    2015-04-01

    The extent to which we learn from positive and negative outcomes of decisions is modulated by the neurotransmitter dopamine. Dopamine neurons burst fire in response to unexpected rewards and pause following negative outcomes. This dual signaling mechanism is hypothesized to drive both approach and avoidance behavior. Here we test a prediction deriving from a computational reinforcement learning model, in which approach is mediated via activation of the direct cortico-striatal pathway due to striatal D1 receptor stimulation, while avoidance occurs via disinhibition of indirect pathway striatal neurons secondary to a reduction of D2 receptor stimulation. Using positron emission tomography with two separate radioligands, we demonstrate that individual differences in human approach and avoidance learning are predicted by variability in striatal D1 and D2 receptor binding, respectively. Moreover, transient dopamine precursor depletion improved learning from negative outcomes. These findings support a bidirectional modulatory role for striatal dopamine in reward and avoidance learning via segregated D1 and D2 cortico-striatal pathways.

  20. Prefrontal D1 dopamine signaling is necessary for temporal expectation during reaction time performance.

    PubMed

    Parker, K L; Alberico, S L; Miller, A D; Narayanan, N S

    2013-01-01

    Responses during a simple reaction time task are influenced by temporal expectation, or the ability to anticipate when a stimulus occurs in time. Here, we test the hypothesis that prefrontal D1 dopamine signaling is necessary for temporal expectation during simple reaction time task performance. We depleted dopamine projections to the medial prefrontal circuits by infusing 6-hydroxidopamine, a selective neurotoxin, into the ventral tegmental area (VTA) of rats, and studied their performance on a simple reaction time task with two delays. VTA dopamine depletion did not change movements or learning of the reaction time task. However, VTA dopamine-depleted animals did not develop delay-dependent speeding of reaction times, suggesting that mesocortical dopamine signaling is required for temporal expectation. Next, we manipulated dopamine signaling within the medial prefrontal cortex using local pharmacology. We found that SCH23390, a D1-type dopamine receptor antagonist, specifically attenuated delay-dependent speeding, while sulpiride, a D2-type receptor antagonist, did not. These data suggest that prefrontal D1 dopamine signaling is necessary for temporal expectation during performance of a simple reaction time task. Our findings provide insight into temporal processing of the prefrontal cortex, and how dopamine signaling influences prefrontal circuits that guide goal-directed behavior. PMID:24120554

  1. A tandem segmental duplication (TSD) in the green revolution gene Rht-D1b region underlies plant height variation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Semi-dwarfing genes Rht-B1b (Rht1) and Rht-D1b (Rht2), known as the “Green revolution” genes, have made a significant contribution to wheat production worldwide. Rht-D1c (Rht10) carried by Chinese wheat line Aibian 1 is an allele at the Rht-D1 locus. It has the strongest effect among all dwarfing...

  2. Alternate cyclin D1 mRNA splicing modulates p27KIP1 binding and cell migration.

    PubMed

    Li, Zhiping; Wang, Chenguang; Jiao, Xuanmao; Katiyar, Sanjay; Casimiro, Mathew C; Prendergast, George C; Powell, Michael J; Pestell, Richard G

    2008-03-14

    Cyclin D1 is an important cell cycle regulator, but in cancer its overexpression also increases cellular migration mediated by p27 KIP1 stabilization and RhoA inhibition. Recently, a common polymorphism at the exon 4-intron 4 boundary of the human cyclin D1 gene within a splice donor region was associated with an altered risk of developing cancer. Altered RNA splicing caused by this polymorphism gives rise to a variant cyclin D1 isoform termed cyclin D1b, which has the same N terminus as the canonical cyclin D1a isoform but a distinct C terminus. In this study we show that these different isoforms have unique properties with regard to the cellular migration function of cyclin D1. Although they displayed little difference in transcriptional co-repression assays on idealized reporter genes, microarray cDNA expression analysis revealed differential regulation of genes, including those that influence cellular migration. Additionally, whereas cyclin D1a stabilized p27 KIP1 and inhibited RhoA-induced ROCK kinase activity, promoting cellular migration, cyclin D1b failed to stabilize p27 KIP1 or inhibit ROCK kinase activity and had no effect on migration. Our findings argue that alternate splicing is an important determinant of the function of cyclin D1 in cellular migration.

  3. Cyclin D1 blocks the anti-proliferative function of RUNX3 by interfering with RUNX3-p300 interaction

    SciTech Connect

    Iwatani, Kazunori; Fujimoto, Tetsuhiro; Ito, Takaaki

    2010-09-24

    Research highlights: {yields} Cyclin D1 interacts with RUNX3 and inhibits the interaction and collaboration of RUNX3 with coactivator p300. {yields} Cyclin D1 blocks the ability of RUNX3 to induce the expression of cdk inhibitor p21. {yields} Cyclin D1 releases cancer cells from the inhibition of proliferation induced by RUNX3. -- Abstract: Transcriptional function of cyclin D1, whose deregulation is frequently observed in human cancers, has been suggested to contribute to cancer formation. In the present study, we show that cyclin D1 protein inhibits RUNX3 activity by directly binding to it and interfering with its interaction with p300 interaction in lung cancer cells. Cyclin D1 inhibits p300-dependent RUNX3 acetylation and negatively regulates cyclin-dependent kinase (cdk) inhibitor p21 expression. These transcriptional effects of cyclin D1 do not require cdk4/6 kinase activation. We propose that cyclin D1 provides a transcriptional switch that allows the tumor suppressor activity of RUNX3 to be repressed in cancer cells. Since RUNX3 plays tumor suppressive roles in a wide range of cancers, a non-canonical cyclin D1 function may be critical for neoplastic transformation of the epithelial cells in which RUNX3 regulates proliferation.

  4. Effect of allelic variations at the Glu-D1, Glu-A3, Glu-B3 and Pinb-D1 loci on flour characteristics and bread loaf volume

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Doubled haploid wheat lines developed from a cross between Keumkang, a hard white winter wheat, and Olgeuru, soft red winter wheat were used to determine the effects of allelic variation in Glu-D1, Glu-A3, Glu-B3 and Pinb-D1 loci on physiochemical properties of flour and bread loaf volume. Variation...

  5. Behavioral synergism between D(1) and D(2) dopamine receptors in mice does not depend on gap junctions.

    PubMed

    Nolan, Eileen B; Harrison, Laura M; Lahoste, Gerald J; Ruskin, David N

    2007-05-01

    Activation of the D(1) and D(2) classes of dopamine receptor in the striatum synergistically promotes motor stereotypy. The mechanism of D(1)/D(2) receptor interaction remains unclear. To investigate the involvement of electrical synaptic transmission in this phenomenon, genetic inactivation of the neuronal gap junction (GJ) protein connexin 36 and pharmacological blockade of GJs were utilized. Stereotyped motor behavior was quantified after selective activation of D(1) receptors, D(2) receptors, or both receptors. These patterns of activation were produced by injection of the agonist apomorphine (3.0 mg/kg) 30 min after either the D(2) antagonist eticlopride (0.3 mg/kg), the D(1) antagonist SCH 23390 (0.1 mg/kg) or vehicle, respectively. Mixed background C57/BL6-129SvEv mice homozygous or heterozygous for the connexin 36 "knockout" allele displayed potent synergistic interaction between D(1) and D(2) receptor activation, and did not differ significantly from wild-type mice on any measure. All genotypes demonstrated long-lasting stereotypic sniffing, chewing, and/or licking after simultaneous activation of D(1) and D(2) receptors, effects that were absent following selective D(1) or D(2) activation. Swiss-Webster mice treated with the GJ blockers carbenoxolone (35 mg/kg), octanol (350 mg/kg) or mefloquine (50 mg/kg) also demonstrated the normal synergistic interaction between D(1) and D(2) receptors, although these drugs did block the grooming stimulated by selective D(1) receptor activation, independently of D(2) receptors. While D(1) receptor-stimulated grooming depends on GJs composed of connexins or possibly pannexins, the synergistic interaction of D(1) and D(2) receptors in control of stereotypy does not involve GJs.

  6. Invertebrate Specific D1-like Dopamine Receptor in Control of Salivary Glands in the Black-Legged Tick Ixodes scapularis

    PubMed Central

    Šimo, Ladislav; Koči, Juraj; Kim, Donghun; Park, Yoonseong

    2014-01-01

    The control of tick salivary secretion, which plays a crucial role in compromising the host immune system, involves complex neural mechanisms. Dopamine is known to be the most potent activator of salivary secretion, as a paracrine/autocrine factor. We describe the invertebrate specific D1-like dopamine receptor (InvD1L), which is highly expressed in tick salivary glands. The InvD1L phylogenic clade was found only in invertebrates, suggesting that this receptor was lost in the vertebrates during evolution. InvD1L expressed in CHO-K1 cells was activated by dopamine with a median effective dose (EC50) of 1.34 μM. Immunohistochemistry using the antibody raised against InvD1L revealed two different types of immunoreactivities: basally located axon terminals that are colocalized with myoinhibitory peptide (MIP) and SIFamide neuropeptides, and longer axon-like processes that are positive only for the InvD1L antibody and extended to the apical parts of the acini. Both structures were closely associated with the myoepithelial cell, as visualized by beta-tubulin antibody, lining the acinar lumen in a web-like fashion. Subcellular localizations of InvD1L in the salivary gland suggest that InvD1L modulates the neuronal activities including MIP/SIFamide varicosities, and leads the contraction of myoepithelial cells and/or of the acinar valve to control the efflux of the luminal content. Combining the previously described D1 receptor with its putative function for activating an influx of fluid through the epithelial cells of acini, we propose that complex control of the tick salivary glands is mediated through two different dopamine receptors, D1 and InvD1L, for different downstream responses of the acinar cells. PMID:24307522

  7. Invertebrate specific D1-like dopamine receptor in control of salivary glands in the black-legged tick Ixodes scapularis.

    PubMed

    Šimo, Ladislav; Koči, Juraj; Kim, Donghun; Park, Yoonseong

    2014-06-15

    The control of tick salivary secretion, which plays a crucial role in compromising the host immune system, involves complex neural mechanisms. Dopamine is known to be the most potent activator of salivary secretion, as a paracrine/autocrine factor. We describe the invertebrate-specific D1-like dopamine receptor (InvD1L), which is highly expressed in tick salivary glands. The InvD1L phylogenic clade was found only in invertebrates, suggesting that this receptor was lost in vertebrates during evolution. InvD1L expressed in Chinese hamster ovary (CHO)-K1 cells was activated by dopamine with a median effective dose (EC50 ) of 1.34 μM. Immunohistochemistry using the antibody raised against InvD1L revealed two different types of immunoreactivities: basally located axon terminals that are colocalized with myoinhibitory peptide (MIP) and SIFamide neuropeptides, and longer axon-like processes that are positive only for the InvD1L antibody and extended to the apical parts of the acini. Both structures were closely associated with the myoepithelial cell, as visualized by beta-tubulin antibody, lining the acinar lumen in a web-like fashion. Subcellular localizations of InvD1L in the salivary gland suggest that InvD1L modulates the neuronal activities including MIP/SIFamide varicosities, and leads the contraction of myoepithelial cells and/or of the acinar valve to control the efflux of the luminal content. Combining the previously described D1 receptor with its putative function for activating an influx of fluid through the epithelial cells of acini, we propose that complex control of the tick salivary glands is mediated through two different dopamine receptors, D1 and InvD1L, for different downstream responses of the acinar cells.

  8. Detection of cyclin D1 mRNA by hybridization sensitive NIC-oligonucleotide probe.

    PubMed

    Kovaliov, Marina; Segal, Meirav; Kafri, Pinhas; Yavin, Eylon; Shav-Tal, Yaron; Fischer, Bilha

    2014-05-01

    A large group of fluorescent hybridization probes, includes intercalating dyes for example thiazole orange (TO). Usually TO is coupled to nucleic acids post-synthetically which severely limits its use. Here, we have developed a phosphoramidite monomer, 10, and prepared a 2'-OMe-RNA probe, labeled with 5-(trans-N-hexen-1-yl-)-TO-2'-deoxy-uridine nucleoside, dU(TO), (Nucleoside bearing an Inter-Calating moiety, NIC), for selective mRNA detection. We investigated a series of 15-mer 2'-OMe-RNA probes, targeting the cyclin D1 mRNA, containing one or several dU(TO) at various positions. dU(TO)-2'-OMe-RNA exhibited up to 7-fold enhancement of TO emission intensity upon hybridization with the complementary RNA versus that of the oligomer alone. This NIC-probe was applied for the specific detection of a very small amount of a breast cancer marker, cyclin D1 mRNA, in total RNA extract from cancerous cells (250 ng/μl). Furthermore, this NIC-probe was found to be superior to our related NIF (Nucleoside with Intrinsic Fluorescence)-probe which could detect cyclin D1 mRNA target only at high concentrations (1840 ng/μl). Additionally, dU(T) can be used as a monomer in solid-phase oligonucleotide synthesis, thus avoiding the need for post-synthetic modification of oligonucleotide probes. Hence, we propose dU(TO) oligonucleotides, as hybridization probes for the detection of specific RNA in homogeneous solutions and for the diagnosis of breast cancer.

  9. Supersymmetric configurations in the rotating D1-D5 system andpp-waves

    NASA Astrophysics Data System (ADS)

    Maoz, Liat

    Two families of supersymmetric configurations are considered. One is the 1/4 supersymmetric D1--D5 system with angular momentum, and the other is a family of pp-waves of type IIB string theory with some supersymmetry. In the first part of the thesis some configurations of the D1--D5 system are examined which give conical singularities in AdS 3 as their near horizon limit. It is shown that they can be made non-singular by adding angular momentum to the brane system. The smooth asymptotically flat solutions constructed this way are used to obtain global AdS 3 as the near horizon geometry. Using the relation of the D1--D5 system to the oscillating string, a large family of supergravity solutions is constructed which describe BPS excitations on AdS3 x S 3 with angular momentum on S3. These solutions take into account the full back reaction on the metric, and can be viewed as Kaluza-Klein monopole "supertubes", which are completely non-singular geometries. The different chiral primaries of the dual CFT are identified with these different supergravity solutions. This part is adapted from the papers [1], [2]. In its second part, a general class of supersymmetric pp-wave solutions of type IIB string theory is constructed, such that the superstring worldsheet action in light cone gauge is that of an interacting massive field theory. It is shown that when the light cone Lagrangian has (2.2) supersymmetry, one can find backgrounds that lead to arbitrary superpotentials on the worldsheet. Both flat and curved transverse spaces are considered. In particular, the background giving rise to the N = 2 sine Gordon theory on the worldsheet is analyzed. Massive mirror symmetry relates it to the deformed CP1 model (or sausage model) which seems to elude a purely supergravity target space interpretation. These are results which appeared in the paper [3].

  10. Assessment and improvement of the 2D/1D method stability in DeCART

    SciTech Connect

    Stimpson, S.; Young, M.; Collins, B.; Kelley, B.; Downar, T.

    2013-07-01

    As part of ongoing work with Consortium for Advanced Simulation of Light Water Reactors (CASL), the 2D/1D code, DeCART, has demonstrated some of the advantages of the 2D/1D method with respect to realistic, full-core analysis, particularly over explicit 3D transport methods, which generally have higher memory and computation requirements. The 2D/1D method performs 2D-radial transport sweeps coupled with ID-axial diffusion calculations to provide a full 3D simulation. DeCART employs the 2D method of characteristics for the radial sweeps and ID one-node nodal diffusion for the axial sweeps, coupling the two methods with transverse leakages to ensure a more consistent representation of the transport equation. It has been observed that refinement of the axial plane thickness leads to instabilities in the calculation scheme. This work assesses the sources of these instabilities and the approaches to improve them, especially with respect to negative scattering cross sections and the tightness of the 2D-radial/ID-axial coupling schemes. Fourier analyses show that the existing iteration scheme is not unconditionally stable, suggesting a tighter coupling scheme is required. For this reason 3D-CMFD has been implemented, among other developments, to ensure more stable calculation. A matrix of test cases has been used to assess the convergence, with the primary parameter being the axial plane thickness, which has been refined down to 1 cm. These cases demonstrate the issues observed and how the modification improve the stability. However, it is apparent that more work is necessary to ensure unconditional stability. (authors)

  11. Fluid physics under microgravity - Status report after the German Spacelab D1-mission

    NASA Astrophysics Data System (ADS)

    Langbein, Dieter

    1988-02-01

    Fluid physics research under microgravity conditions is reviewed, focusing on the experiments on the German Spacelab Mission D1. Topics include fluid handling and sloshing, stability and oscillations of fluid interfaces, solid/liquid attraction, thermal and solutal Marangoni convection, and Marangoni convection in liquid zones. Experiments dealing with liquid columns, the transition from steady to oscillatory and turbulent Marangoni flows, and the migration of drops and bubbles are also examined. Also, transparent model experiments with organic liquids, the separation of monotectic metallic alloys, convective phenomena arising at solidifications fronts, and the propagation of chemical waves are considered.

  12. Hair on non-extremal D1-D5 bound states

    NASA Astrophysics Data System (ADS)

    Roy, Pratik; Srivastava, Yogesh K.; Virmani, Amitabh

    2016-09-01

    We consider a truncation of type IIB supergravity on four-torus where in addition to the Ramond-Ramond 2-form field, the Ramond-Ramond axion ( w) and the NS-NS 2-form field ( B) are also retained. In the ( w, B) sector we construct a linearised perturbation carrying only left moving momentum on two-charge non-extremal D1-D5 geometries of Jejjala, Madden, Ross and Titchener. The perturbation is found to be smooth everywhere and normalisable. It is constructed by matching to leading order solutions of the perturbation equations in the inner and outer regions of the geometry.

  13. Eutypenoids A–C: Novel Pimarane Diterpenoids from the Arctic Fungus Eutypella sp. D-1

    PubMed Central

    Zhang, Liu-Qiang; Chen, Xiao-Chong; Chen, Zhao-Qiang; Wang, Gui-Min; Zhu, Shi-Guo; Yang, Yi-Fu; Chen, Kai-Xian; Liu, Xiao-Yu; Li, Yi-Ming

    2016-01-01

    Eutypenoids A–C (1–3), pimarane diterpenoid alkaloid and two ring A rearranged pimarane diterpenoids, were isolated from the culture of Eutypella sp. D-1 obtained from high-latitude soil of the Arctic. Their structures, including absolute configurations, were authenticated on the basis of the mass spectroscopy (MS), nuclear magnetic resonance (NMR), X-ray crystallography, and electronic circular dichroism (ECD) analysis. The immunosuppressive effects of eutypenoids A–C (1–3) were studied using a ConA-induced splenocyte proliferation model, which suggested that 2 exhibited potent immunosuppressive activities. PMID:26959036

  14. A semiclassical formulation of the chiral magnetic effect and chiral anomaly in even d + 1 dimensions

    NASA Astrophysics Data System (ADS)

    Dayi, Ömer F.; Elbistan, Mahmut

    2016-05-01

    In terms of the matrix valued Berry gauge field strength for the Weyl Hamiltonian in any even space-time dimensions a symplectic form whose elements are matrices in spin indices is introduced. Definition of the volume form is modified appropriately. A simple method of finding the path integral measure and the chiral current in the presence of external electromagnetic fields is presented. It is shown that within this new approach the chiral magnetic effect as well as the chiral anomaly in even d + 1 dimensions are accomplished straightforwardly.

  15. 26 CFR 1.514(d)-1 - Basis of debt-financed property acquired in corporate liquidation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 7 2010-04-01 2010-04-01 true Basis of debt-financed property acquired in corporate liquidation. 1.514(d)-1 Section 1.514(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Taxation of...

  16. 15 CFR 770.3 - Interpretations related to exports of technology and software to destinations in Country Group D:1.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... technology described in § 740.13(b) of the EAR; and software updates described in § 740.13(c) of the EAR. (c... technology and software to destinations in Country Group D:1. 770.3 Section 770.3 Commerce and Foreign Trade... technology and software to destinations in Country Group D:1. (a) Introduction. This section is intended...

  17. 15 CFR 770.3 - Interpretations related to exports of technology and software to destinations in Country Group D:1.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... technology described in § 740.13(b) of the EAR; and software updates described in § 740.13(c) of the EAR. (c... technology and software to destinations in Country Group D:1. 770.3 Section 770.3 Commerce and Foreign Trade... technology and software to destinations in Country Group D:1. (a) Introduction. This section is intended...

  18. 15 CFR 770.3 - Interpretations related to exports of technology and software to destinations in Country Group D:1.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... technology described in § 740.13(b) of the EAR; and software updates described in § 740.13(c) of the EAR. (c... technology and software to destinations in Country Group D:1. 770.3 Section 770.3 Commerce and Foreign Trade... technology and software to destinations in Country Group D:1. (a) Introduction. This section is intended...

  19. 15 CFR 770.3 - Interpretations related to exports of technology and software to destinations in Country Group D:1.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... technology described in § 740.13(b) of the EAR; and software updates described in § 740.13(c) of the EAR. (c... technology and software to destinations in Country Group D:1. 770.3 Section 770.3 Commerce and Foreign Trade... technology and software to destinations in Country Group D:1. (a) Introduction. This section is intended...

  20. 15 CFR 770.3 - Interpretations related to exports of technology and software to destinations in Country Group D:1.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... technology described in § 740.13(b) of the EAR; and software updates described in § 740.13(c) of the EAR. (c... technology and software to destinations in Country Group D:1. 770.3 Section 770.3 Commerce and Foreign Trade... technology and software to destinations in Country Group D:1. (a) Introduction. This section is intended...

  1. Disruption of dopamine D1 receptor phosphorylation at serine 421 attenuates cocaine-induced behaviors in mice.

    PubMed

    Zhang, Ying; Wang, Ning; Su, Ping; Lu, Jie; Wang, Yun

    2014-12-01

    Dopamine D1 receptors (D1Rs) play a key role in cocaine addiction, and multiple protein kinases such as GRKs, PKA, and PKC are involved in their phosphorylation. Recently, we reported that protein kinase D1 phosphorylates the D1R at S421 and promotes its membrane localization. Moreover, this phosphorylation of S421 is required for cocaineinduced behaviors in rats. In the present study, we generated transgenic mice over-expressing S421A-D1R in the forebrain. These transgenic mice showed reduced phospho-D1R (S421) and its membrane localization, and reduced downstream ERK1/2 activation in the striatum. Importantly, acute and chronic cocaine-induced locomotor hyperactivity and conditioned place preference were significantly attenuated in these mice. These findings provide in vivo evidence for the critical role of S421 phosphorylation of the D1R in its membrane localization and in cocaine-induced behaviors. Thus, S421 on the D1R represents a potential pharmacotherapeutic target for cocaine addiction and other drug-abuse disorders. PMID:25304015

  2. 26 CFR 1.168(d)-1 - Applicable conventions-half-year and mid-quarter conventions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 2 2013-04-01 2013-04-01 false Applicable conventions-half-year and mid-quarter conventions. 1.168(d)-1 Section 1.168(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... depreciation deduction for C's 1991 taxable year. For 1992, Z's depreciation deduction for the...

  3. 26 CFR 1.168(d)-1 - Applicable conventions-half-year and mid-quarter conventions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 2 2012-04-01 2012-04-01 false Applicable conventions-half-year and mid-quarter conventions. 1.168(d)-1 Section 1.168(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... depreciation deduction for C's 1991 taxable year. For 1992, Z's depreciation deduction for the...

  4. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury

    SciTech Connect

    Chen, Jiao; Shetty, Sreerama; Zhang, Ping; Gao, Rong; Hu, Yuxin; Wang, Shuxia; Li, Zhenyu; Fu, Jian

    2014-06-01

    The presence of endotoxin in blood can lead to acute kidney injury (AKI) and septic shock. Resolvins, the endogenous lipid mediators derived from docosahexaenoic acid, have been reported to exhibit potent anti-inflammatory action. Using a mouse model of lipopolysaccharide (LPS)-induced AKI, we investigated the effects of aspirin-triggered resolvin D1 (AT-RvD1) on inflammatory kidney injury. Administration of AT-RvD1 1 h after LPS challenge protected the mice from kidney injury as indicated by the measurements of blood urea nitrogen, serum creatinine, and morphological alterations associated with tubular damage. The protective effects were evidenced by decreased neutrophil infiltration in the kidney indicating reduction in inflammation. AT-RvD1 treatment restored kidney cell junction protein claudin-4 expression, which was otherwise reduced after LPS challenge. AT-RvD1 treatment inhibited endotoxin-induced NF-κB activation and suppressed LPS-induced ICAM-1 and VCAM-1 expression in the kidney. Moreover, AT-RvD1 treatment markedly decreased LPS-induced IL-6 level in the kidney and blocked IL-6-mediated signaling including STAT3 and ERK phosphorylation. Our findings demonstrate that AT-RvD1 is a potent anti-inflammatory mediator in LPS-induced kidney injury, and AT-RvD1 has therapeutic potential against AKI during endotoxemia.

  5. Coordinated regulation of differentiation and proliferation of embryonic cardiomyocytes by a jumonji (Jarid2)-cyclin D1 pathway.

    PubMed

    Nakajima, Kuniko; Inagawa, Masayo; Uchida, Chiharu; Okada, Kumiko; Tane, Shoji; Kojima, Mizuyo; Kubota, Misae; Noda, Masatsugu; Ogawa, Satoko; Shirato, Haruki; Sato, Michio; Suzuki-Migishima, Rika; Hino, Toshiaki; Satoh, Yukio; Kitagawa, Masatoshi; Takeuchi, Takashi

    2011-05-01

    In general, cell proliferation and differentiation show an inverse relationship, and are regulated in a coordinated manner during development. Embryonic cardiomyocytes must support embryonic life by functional differentiation such as beating, and proliferate actively to increase the size of the heart. Therefore, progression of both proliferation and differentiation is indispensable. It remains unknown whether proliferation and differentiation are related in these embryonic cardiomyocytes. We focused on abnormal phenotypes, such as hyperproliferation, inhibition of differentiation and enhanced expression of cyclin D1 in cardiomyocytes of mice with mutant jumonji (Jmj, Jarid2), which encodes the repressor of cyclin D1. Analysis of Jmj/cyclin D1 double mutant mice showed that Jmj was required for normal differentiation and normal expression of GATA4 protein through cyclin D1. Analysis of transgenic mice revealed that enhanced expression of cyclin D1 decreased GATA4 protein expression and inhibited the differentiation of cardiomyocytes in a CDK4/6-dependent manner, and that exogenous expression of GATA4 rescued the abnormal differentiation. Finally, CDK4 phosphorylated GATA4 directly, which promoted the degradation of GATA4 in cultured cells. These results suggest that CDK4 activated by cyclin D1 inhibits differentiation of cardiomyocytes by degradation of GATA4, and that initiation of Jmj expression unleashes the inhibition by repression of cyclin D1 expression and allows progression of differentiation, as well as repression of proliferation. Thus, a Jmj-cyclin D1 pathway coordinately regulates proliferation and differentiation of cardiomyocytes.

  6. Analogues of doxanthrine reveal differences between the dopamine D1 receptor binding properties of chromanoisoquinolines and hexahydrobenzo[a]phenanthridines

    PubMed Central

    Cueva, Juan Pablo; Chemel, Benjamin R.; Juncosa, Jose I.; Lill, Markus A.; Watts, Val J.; Nichols, David E.

    2012-01-01

    Efforts to develop selective agonists for dopamine D1-like receptors led to the discovery of dihydrexidine and doxanthrine, two bioisosteric β-phenyldopamine-type full agonist ligands that display selectivity and potency at D1-like receptors. We report herein an improved methodology for the synthesis of substituted chromanoisoquinolines (doxanthrine derivatives) and the evaluation of several new compounds for their ability to bind to D1- and D2-like receptors. Identical pendant phenyl ring substitutions on the dihydrexidine and doxanthrine templates surprisingly led to different effects on D1-like receptor binding, suggesting important differences between the interactions of these ligands with the D1 receptor. We propose, based on the biological results and molecular modeling studies, that slight conformational differences between the tetralin and chroman-based compounds lead to a shift in the location of the pendant ring substituents within the receptor. PMID:22204903

  7. Analogues of doxanthrine reveal differences between the dopamine D 1 receptor binding properties of chromanoisoquinolines and hexahydrobenzo[a]phenanthridines

    USGS Publications Warehouse

    Cueva, J.P.; Chemel, B.R.; Juncosa, J.I.; Lill, M.A.; Watts, V.J.; Nichols, D.E.

    2012-01-01

    Efforts to develop selective agonists for dopamine D 1-like receptors led to the discovery of dihydrexidine and doxanthrine, two bioisosteric ??-phenyldopamine-type full agonist ligands that display selectivity and potency at D 1-like receptors. We report herein an improved methodology for the synthesis of substituted chromanoisoquinolines (doxanthrine derivatives) and the evaluation of several new compounds for their ability to bind to D 1- and D 2-like receptors. Identical pendant phenyl ring substitutions on the dihydrexidine and doxanthrine templates surprisingly led to different effects on D 1-like receptor binding, suggesting important differences between the interactions of these ligands with the D 1 receptor. We propose, based on the biological results and molecular modeling studies, that slight conformational differences between the tetralin and chroman-based compounds lead to a shift in the location of the pendant ring substituents within the receptor. ?? 2011 Elsevier Ltd. All rights reserved.

  8. Prognostic and clinicopathological significance of Cacna2d1 expression in epithelial ovarian cancers: a retrospective study

    PubMed Central

    Yu, Dandan; Holm, Ruth; Goscinski, Mariusz Adam; Trope, Claes G; Nesland, Jahn M; Suo, Zhenhe

    2016-01-01

    Ovarian cancer is the most lethal gynecologic malignancy, in which cancer stem cells (CSC) have been reported to be the driving force of relapse and therapy-resistance. It is therefore important to explore CSC markers in ovarian cancer. This project aimed to explore the correlation between the expression of potential CSC maker Cacna2d1 and clinicopathological parameters in 238 epithelial ovarian cancer (EOC) samples. Immunohistochemically, positive Cacna2d1 expression was observed in 83.6% (199/238) of the EOC tumors, among which 107 tumors (44.9%) were highly positive and 92 (38.7%) tumors were weakly positive for the Cacna2d1 protein expression. Among the 158 serous carcinomas, the Cacna2d1 positivity was 148 (93.7%), in which 88 (55.7%) were highly positive, and 60 (38.0%) were weakly positive for the Cacna2d1 protein expression. Most strikingly, the Cacna2d1 was specifically expressed in the infiltration front areas of the EOC tumors. Statistical analyses showed that positive expression of Cacna2d1 was significantly associated with advanced FIGO stage (P<0.001), histological subtype (P=0.017) and tumor differentiation (P=0.015). Positive Cacna2d1 protein expression was significantly associated with poor overall survival (OS) and shorter progression free survival (PFS) in both total EOCs and serous carcinomas, although multivariate analyses did not reach statistical significance. In summary, our results suggest Cacna2d1 protein may play a crucial role in promoting aggressive EOC behavior and progression, and Cacna2d1 may serve as a novel predictive prognostic marker and a potential target for therapeutic intervention in EOCs. PMID:27725913

  9. Resolvin D1 Attenuates Poly(I:C)-Induced Inflammatory Signaling in Human Airway Epithelial Cells via TAK1

    PubMed Central

    Hsiao, Hsi-Min; Thatcher, Thomas H.; Levy, Elizabeth P.; Fulton, Robert A.; Owens, Kristina M.; Phipps, Richard P.; Sime, Patricia J.

    2014-01-01

    The respiratory epithelium are lung sentinel cells and are the first to contact inhaled inflammatory insults including air pollutants, smoke and microorganisms. To avoid damaging exuberant or chronic inflammation, the inflammatory process must be tightly controlled and terminated once the insult is mitigated. Inflammation-resolution is now known to be an active process involving a new genus of lipid mediators called “specialized pro-resolving lipid mediators” (SPMs) that includes resolvin D1 (RvD1). We and others have reported that RvD1 counteracts pro-inflammatory signaling and promotes resolution. A knowledge gap is that the specific cellular targets and mechanisms of action for RvD1 remain largely unknown. Here, we identified the mechanism whereby RvD1 disrupts inflammatory mediator production induced by the viral mimic poly(I:C) in primary human lung epithelial cells. RvD1 strongly suppressed the viral mimic poly(I:C)-induced IL-6 and IL-8 production and pro-inflammatory signaling involving MAP kinases and NF-κB. Most importantly, we found that RvD1 inhibited the phosphorylation of TAK1, a key upstream regulatory kinase common to both the MAP kinase and NF-κB pathways, by inhibiting the formation of a poly(I:C)-induced signaling complex composed of TAK1, TAB1 and TRAF6. We confirmed that ALX/FPR2 and GPR32, two RvD1 receptors, were expressed on hSAEC. Furthermore, blocking these receptors abrogated the inhibitory action of RvD1. Herein, we present the idea that RvD1 has the potential to be used as an anti-inflammatory and pro-resolving agent, possibly in the context of exuberant host responses to damaging respirable agents such as viruses. PMID:25320283

  10. A cyclin D1/cyclin-dependent kinase 4 binding site within the C domain of the retinoblastoma protein.

    PubMed

    Pan, W; Cox, S; Hoess, R H; Grafström, R H

    2001-04-01

    Phosphorylation of the retinoblastoma protein (Rb) by the cyclin D1/cyclin-dependent kinase (cdk) 4 complex (cdk4/D1) is a key regulatory step for maintaining the orderly progression of the cell cycle. The B domain of Rb contains a site that recognizes and binds the LXCXE motif found in D-type cyclins. This interaction is important for phosphorylation of Rb by cdk4/D1, although in vitro the Rb C domain alone is efficiently phosphorylated by cdk4/D1. A mutation in the C domain of Rb, L901Q, has been identified that completely abolishes cdk4/D1 phosphorylation of the isolated C domain. By contrast, the L901Q mutation has no effect on phosphorylation by either cyclin E/cdk2 or cyclin B/cdk1, suggesting that the interaction between L901Q and cdk4/D1 is specific. Introduction of the L901Q mutation into Rb containing the A, B, and C domains results in phosphorylation becoming predominantly dependent on the LXCXE binding region. However, when the LXCXE binding region of Rb is mutated, phosphorylation becomes dependent on the L901 site within the C domain. The L901 binding site can supplant the LXCXE binding site for the cdk4/D1-dependent phosphorylation of S780 and S795 but not S807/S811. Despite the limited homology between C domains of Rb, p107, and p130, the L901 site is conserved and introduction of the L925Q mutation into the isolated C domain of p107 also inhibits phosphorylation by cdk4/D1. These data support a model for cdk4/D1 recognizing two independent binding sites in Rb and suggests a conservation of this C domain binding motif for cyclin D1/cdk4 kinase among the Rb family of proteins. PMID:11306463

  11. Superdescendants of the D1D5 CFT and their dual 3-charge geometries

    NASA Astrophysics Data System (ADS)

    Giusto, Stefano; Russo, Rodolfo

    2014-03-01

    We describe how to obtain the gravity duals of semiclassical states in the D1-D5 CFT that are superdescendants of a class of RR ground states. On the gravity side, the configurations we construct are regular and asymptotically reproduce the 3-charge D1-D5-P black hole compactified on S 1 × T 4. The geometries depend trivially on the T 4 directions but non-trivially on the remaining 6D space. In the decoupling limit, they reduce to asymptotically AdS3 × S 3 × T 4 spaces that are dual to CFT states obtained by acting with (exponentials of) the operators of the superconformal algebra. As explicit examples, we generalise the solution first constructed in arXiv:1306.1745 and discuss another class of states that have a more complicated dual geometry. By using the free orbifold description of the CFT we calculate the average values for momentum and the angular momenta of these configurations. Finally we compare the CFT results with those obtained in the bulk from the asymptotically M 1,4 × S 1 × T 4 region.

  12. Differential roles of cyclin D1 and D3 in pancreatic ductal adenocarcinoma

    PubMed Central

    2010-01-01

    Background The cyclin D1 (CCND1) and cyclin D3 (CCND3) are frequently co-overexpressed in pancreatic ductal adenocarcinoma (PDAC). Here we examine their differential roles in PDAC. Results CCND1 and CCND3 expression were selectively suppressed by shRNA in PDAC cell lines with expression levels of equal CCND1 and CCND3 (BxPC3), enhanced CCND1 (HPAC) or enhanced CCND3 (PANC1). Suppression of cell proliferation was greater with CCND3 than CCND1 downregulation. CCND3 suppression led to a reduced level of phosphorylated retinoblastoma protein (Ser795p-Rb/p110) and resulted in decreased levels of cyclin A mRNA and protein. A global gene expression analysis identified deregulated genes in D1- or D3-cyclin siRNA-treated PANC1 cells. The downregulated gene targets in CCND3 suppressed cells were significantly enriched in cell cycle associated processes (p < 0.005). In contrast, focal adhesion/actin cytoskeleton, MAPK and NF B signaling appeared to characterize the target genes and their interacting proteins in CCND1 suppressed PANC1 cells. Conclusions Our results suggest that CCND3 is the primary driver of the cell cycle, in cooperation with CCND1 that integrates extracellular mitogenic signaling. We also present evidence that CCND1 plays a role in tumor cell migration. The results provide novel insights for common and differential targets of CCND1 and CCND3 overexpression during pancreatic duct cell carcinogenesis. PMID:20113529

  13. Dataset of differentially expressed genes from SOX9 over-expressing NT2/D1 cells.

    PubMed

    Ludbrook, Louisa; Alankarage, Dimuthu; Bagheri-Fam, Stefan; Harley, Vincent

    2016-12-01

    The data presents the genes that are differentially up-regulated or down-regulated in response to SOX9 in a human Sertoli-like cell line, NT2/D1. The dataset includes genes that may be implicated in gonad development and are further explored in our associated article, "SOX9 Regulates Expression of the Male Fertility Gene Ets Variant Factor 5 (ETV5) during Mammalian Sex Development" (D. lankarage, R. Lavery, T. Svingen, S. Kelly, L.M. Ludbrook, S. Bagheri-Fam, et al., 2016) [1]. The necessity of SOX9 for male sex development is evident in instances where SOX9 is lost, as in 46, XY DSD where patients are sex reversed or in mouse knock-out models, where mice lacking Sox9 are sex reversed. Despite the crucial nature of this transcriptional activator, downstream target genes of SOX9 remain largely undiscovered. Here, we have utilized NT2/D1 cells to transiently over-express SOX9 and performed microarray analysis of the RNA. Microarray data are available in the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-3378. PMID:27656672

  14. Contact sensitizers decrease 33D1 expression on mature Langerhans cells.

    PubMed

    Herouet, C; Cottin, M; Galanaud, P; Leclaire, J; Rousset, F

    1999-01-01

    Langerhans cells play a critical role in allergic contact hypersensitivity. In vivo, these cells capture xenobiotics that penetrate the skin and transport them through the lymphatic vessels into regional lymph nodes for presentation to T cells. During this migration step, Langerhans cells become mature dendritic cells according to their phenotype and their high immunostimulatory capacity. In vitro, when isolated from the skin and cultured for 3 days, Langerhans cells undergo similar phenotypic and functional maturation. In this study, the capacity of sensitizers, irritants and neutral chemicals to modulate the surface marker expression and morphology of pure mature murine Langerhans cells in vitro was examined. Contact with 4 sensitizers (2,4-dinitrobenzenesulfate, 4-ethoxymethylene-2-phenyl-2-oxazolin-5-one, p-phenylenediamine, mercaptobenzo-thiazole) resulted in a rapid, specific, marked fall in 33D1 expression, a murine specific dendritic cell marker. No effect was observed with 2 neutral chemicals (sodium chloride, methyl nicotinate) or 2 irritants (dimethyl sulfoxide, benzalkonium chloride). Nevertheless, sodium lauryl sulfate, a very irritant detergent, altered morphology and down-regulated all membrane markers. These preliminary data suggest that in vitro modulation of 33D1 expression by strong sensitizers may be an approach to the development of an in vitro model for the identification of chemicals that have the potential to cause skin sensitization and to distinguish them as far as possible from irritants.

  15. Affinity of neuroleptics for D1 receptor of human brain striatum.

    PubMed Central

    Kanba, S; Suzuki, E; Nomura, S; Nakaki, T; Yagi, G; Asai, M; Richelson, E

    1994-01-01

    We determined the inhibition-dissociation constant (Ki) of a number of neuroleptics for D1 receptors of normal human brain tissue using [3H]SCH23390 [R-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3[benzazepine-7- ol]. SCH23390 had the highest affinity with a Ki of 0.76 nM. Among clinically used drugs, propericiazine showed the highest affinity with a Ki of 10 nM. When neuroleptics were classified according to chemical structures, the Ki values were as follows. Phenothiazines ranged from 10 nM to 250 nM. Butyrophenones ranged from 45 nM to 250 nM. Thioxanthenes ranged from 12 nM to 340 nM. Orthopramines were more than 10,000 nM. The Ki values for the binding site of this study were significantly correlated with those reported in studies using animal brain. The possible relationship between D1 receptors and negative symptoms is discussed. PMID:7918347

  16. Role of HDL in cholesteryl ester metabolism of lipopolysaccharide-activated P388D1 macrophages.

    PubMed

    Uda, Sabrina; Spolitu, Stefano; Angius, Fabrizio; Collu, Maria; Accossu, Simonetta; Banni, Sebastiano; Murru, Elisabetta; Sanna, Francesca; Batetta, Barbara

    2013-11-01

    Infections share with atherosclerosis similar lipid alterations, with accumulation of cholesteryl esters (CEs) in activated macrophages and concomitant decrease of cholesterol-HDL (C-HDL). Yet the precise role of HDL during microbial infection has not been fully elucidated. Activation of P388D1 by lipopolysaccharide (LPS) triggered an increase of CEs and neutral lipid contents, along with a remarkable enhancement in 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate-HDL uptake. Similar results were found in human monocyte-derived macrophages and monocytes cocultured with phytohemagglutinin-activated lymphocytes. Inhibition of cholesterol esterification with Sandoz-58035 resulted in 80% suppression of CE biosynthesis in P388D1. However, only a 35% decrease of CE content, together with increased scavenger receptor class B member 1 (SR-B1) protein expression, was found after 72 h and thereafter up to 16 passages of continuous ACAT suppression. Chronic inhibition blunted the effect of LPS treatment on cholesterol metabolism, increased the ratio of free cholesterol/CE content and enhanced interleukin 6 secretion. These results imply that, besides de novo biosynthesis and acquisition by LDL, HDL contributes probably through SR-B1 to the increased CE content in macrophages, partly explaining the low levels of C-HDL during their activation. Our data suggest that in those conditions where more CEs are required, HDL rather than removing, may supply CEs to the cells. PMID:23956443

  17. Identification and characterization of major cat allergen Fel d 1 mimotopes on filamentous phage carriers.

    PubMed

    Luzar, Jernej; Molek, Peter; Šilar, Mira; Korošec, Peter; Košnik, Mitja; Štrukelj, Borut; Lunder, Mojca

    2016-03-01

    Cat allergy is one of the most prevalent allergies worldwide and can lead to the development of rhinitis and asthma. Thus far, only allergen extracts from natural sources have been used for allergen-specific immunotherapy. However, extracts and whole allergens in immunotherapy present an anaphylaxis risk. Identification of allergen epitopes or mimotopes has an important role in development of safe and effective allergen-specific immunotherapy. Moreover, with a suitable immunogenic carrier, the absence of sufficient immune response elicited by short peptides could be surmounted. In this study, we identified five structural mimotopes of the major cat allergen Fel d 1 by immunoscreening with random peptide phage libraries. The mimotopes were computationally mapped to the allergen surface, and their IgE reactivity was confirmed using sera from cat-allergic patients. Importantly, the mimotopes showed no basophil activation of the corresponding cat-allergic patients, which makes them good candidates for the development of hypoallergenic vaccine. As bacteriophage particles are becoming increasingly recognized as immunogenic carriers, we constructed bacteriophage particles displaying multiple copies of each selected mimotope on major phage coat protein. These constructed phages elicited T cell-mediated immune response, which was predominated by the type 1 T cell response. Mimotopes alone contributed to the type 1 T cell response by promoting IL-2 production. Fel d 1 mimotopes, as well as their filamentous phage immunogenic carriers, represent promising candidates in the development of hypoallergenic vaccine against cat allergy.

  18. The Protein Elicitor PevD1 Enhances Resistance to Pathogens and Promotes Growth in Arabidopsis

    PubMed Central

    Liu, Mengjie; Khan, Najeeb Ullah; Wang, Ningbo; Yang, Xiufen; Qiu, Dewen

    2016-01-01

    The protein elicitor PevD1, isolated from Verticillium dahlia, could enhance resistance to TMV in tobacco and Verticillium wilt in cotton. Here, the pevd1 gene was over-expressed in wild type (WT) Arabidopsis, and its biological functions were investigated. Our results showed that the transgenic lines were more resistant to Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 than the WT line was. In transgenic plants, both the germination time and bolting time required were significantly shorter and fresh weights and plant heights were significantly higher than those in the WT line. A transcriptomics study using digital gene expression profiling (DGE) was performed in transgenic and WT Arabidopsis. One hundred and thirty-six differentially expressed genes were identified. In transgenic Arabidopsis, three critical regulators of JA biosynthesis were up-regulated and JA levels were slightly increased. Three important repressors of the ABA-responsive pathway were up-regulated, indicating that ABA signal transduction may be suppressed. One CML and two WRKY TFs involved in Ca2+-responsive pathways were up-regulated, indicating that this pathway may have been triggered. In conclusion, we show that PevD1 is involved in regulating several plant endogenous signal transduction pathways and regulatory networks to enhance resistance and promote growth and development in Arabidopsis. PMID:27489497

  19. Identification and characterization of major cat allergen Fel d 1 mimotopes on filamentous phage carriers.

    PubMed

    Luzar, Jernej; Molek, Peter; Šilar, Mira; Korošec, Peter; Košnik, Mitja; Štrukelj, Borut; Lunder, Mojca

    2016-03-01

    Cat allergy is one of the most prevalent allergies worldwide and can lead to the development of rhinitis and asthma. Thus far, only allergen extracts from natural sources have been used for allergen-specific immunotherapy. However, extracts and whole allergens in immunotherapy present an anaphylaxis risk. Identification of allergen epitopes or mimotopes has an important role in development of safe and effective allergen-specific immunotherapy. Moreover, with a suitable immunogenic carrier, the absence of sufficient immune response elicited by short peptides could be surmounted. In this study, we identified five structural mimotopes of the major cat allergen Fel d 1 by immunoscreening with random peptide phage libraries. The mimotopes were computationally mapped to the allergen surface, and their IgE reactivity was confirmed using sera from cat-allergic patients. Importantly, the mimotopes showed no basophil activation of the corresponding cat-allergic patients, which makes them good candidates for the development of hypoallergenic vaccine. As bacteriophage particles are becoming increasingly recognized as immunogenic carriers, we constructed bacteriophage particles displaying multiple copies of each selected mimotope on major phage coat protein. These constructed phages elicited T cell-mediated immune response, which was predominated by the type 1 T cell response. Mimotopes alone contributed to the type 1 T cell response by promoting IL-2 production. Fel d 1 mimotopes, as well as their filamentous phage immunogenic carriers, represent promising candidates in the development of hypoallergenic vaccine against cat allergy. PMID:26908079

  20. Fiscal year 1996 laboratory scale studies of cesium elution in tank 8D-1

    SciTech Connect

    Russell, R.L.; Patello, G.K.; Sills, J.A.

    1996-09-01

    This report details work performed as part of the West Valley Support Project (WVSP) by Pacific Northwest National Laboratory (PNNL). This work is intended to support residual waste removal during high-level waste (HLW) tank stabilization activities to be performed by the West valley Demonstration Project (WVDP). The HLW originated from a now inactive commercial nuclear fuel-reprocessing plant at West Valley, New York. It is stored in a carbon-steel tank designated 8D-2. Cesium-loaded zeolite was generated by a supernatant decontamination process involving ion exchange. The exchange columns and the spent zeolite are stored in a carbon-steel tank designated 8D-1. During the vitrification phase of the WVDP waste remediation, and estimated 95 percent of the zeolite will be transferred from tank 8D-1 to tank 8D- 2. The remaining cesium-loaded zeolite will require treatment to remove the highly radioactive cesium. This report summarizes the findings of laboratory experiments. The primary objectives of these experiments were: to refine the optimum process conditions for use of oxalic acid to elute cesium from zeolite; minimize iron dissolution during cesium elution; investigation of the effect of neutralization on cesium elution; determination of effects of zeolite particle size on cesium elution; and determine if aluminum can be used as an indicator for cesium in solution.

  1. The Protein Elicitor PevD1 Enhances Resistance to Pathogens and Promotes Growth in Arabidopsis.

    PubMed

    Liu, Mengjie; Khan, Najeeb Ullah; Wang, Ningbo; Yang, Xiufen; Qiu, Dewen

    2016-01-01

    The protein elicitor PevD1, isolated from Verticillium dahlia, could enhance resistance to TMV in tobacco and Verticillium wilt in cotton. Here, the pevd1 gene was over-expressed in wild type (WT) Arabidopsis, and its biological functions were investigated. Our results showed that the transgenic lines were more resistant to Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000 than the WT line was. In transgenic plants, both the germination time and bolting time required were significantly shorter and fresh weights and plant heights were significantly higher than those in the WT line. A transcriptomics study using digital gene expression profiling (DGE) was performed in transgenic and WT Arabidopsis. One hundred and thirty-six differentially expressed genes were identified. In transgenic Arabidopsis, three critical regulators of JA biosynthesis were up-regulated and JA levels were slightly increased. Three important repressors of the ABA-responsive pathway were up-regulated, indicating that ABA signal transduction may be suppressed. One CML and two WRKY TFs involved in Ca(2+)-responsive pathways were up-regulated, indicating that this pathway may have been triggered. In conclusion, we show that PevD1 is involved in regulating several plant endogenous signal transduction pathways and regulatory networks to enhance resistance and promote growth and development in Arabidopsis. PMID:27489497

  2. Characterization of cytoplasmic cyclin D1 as a marker of invasiveness in cancer

    PubMed Central

    Santacana, Maria; Fernández-Hernández, Rita; Gatius, Sònia; Pedraza, Neus; Pallarés, Judit; Cemeli, Tània; Valls, Joan; Tarres, Marc; Ferrezuelo, Francisco; Dolcet, Xavier; Matias-Guiu, Xavier; Garí, Eloi

    2016-01-01

    Cyclin D1 (Ccnd1) is a proto-oncogen amplified in many different cancers and nuclear accumulation of Ccnd1 is a characteristic of tumor cells. Ccnd1 activates the transcription of a large set of genes involved in cell cycle progress and proliferation. However, Ccnd1 also targets cytoplasmic proteins involved in the regulation of cell migration and invasion. In this work, we have analyzed by immunohistochemistry the localization of Ccnd1 in endometrial, breast, prostate and colon carcinomas with different types of invasion. The number of cells displaying membranous or cytoplasmic Ccnd1 was significantly higher in peripheral cells than in inner cells in both collective and pushing invasion patterns of endometrial carcinoma, and in collective invasion pattern of colon carcinoma. Also, the cytoplasmic localization of Ccnd1 was higher when tumors infiltrated as single cells, budding or small clusters of cells. To evaluate cytoplasmic function of cyclin D1, we have built a variant (Ccnd1-CAAX) that remains attached to the cell membrane therefore sequestering this cyclin in the cytoplasm. Tumor cells harboring Ccnd1-CAAX showed high levels of invasiveness and metastatic potential compared to those containing the wild type allele of Ccnd1. However, Ccnd1-CAAX expression did not alter proliferative rates of tumor cells. We hypothesize that the role of Ccnd1 in the cytoplasm is mainly associated with the invasive capability of tumor cells. Moreover, we propose that subcellular localization of Ccnd1 is an interesting guideline to measure cancer outcome. PMID:27105504

  3. PlexinD1 Is a Novel Transcriptional Target and Effector of Notch Signaling in Cancer Cells

    PubMed Central

    Rehman, Michael; Capparuccia, Lorena

    2016-01-01

    The secreted semaphorin Sema3E controls cell migration and invasiveness in cancer cells. Sema3E-receptor, PlexinD1, is frequently upregulated in melanoma, breast, colon, ovarian and prostate cancers; however, the mechanisms underlying PlexinD1 upregulation and the downstream events elicited in tumor cells are still unclear. Here we show that the canonical RBPjk-dependent Notch signaling cascade controls PlexinD1 expression in primary endothelial and cancer cells. Transcriptional activation was studied by quantitative PCR and promoter activity reporter assays. We found that Notch ligands and constitutively activated intracellular forms of Notch receptors upregulated PlexinD1 expression; conversely RNAi-based knock-down, or pharmacological inhibition of Notch signaling by gamma-secretase inhibitors, downregulated PlexinD1 levels. Notably, both Notch1 and Notch3 expression positively correlates with PlexinD1 levels in prostate cancer, as well as in other tumor types. In prostate cancer cells, Sema3E-PlexinD1 axis was previously reported to regulate migration; however, implicated mechanisms were not elucidated. Here we show that in these cells PlexinD1 activity induces the expression of the transcription factor Slug, downregulates E-cadherin levels and enhances cell migration. Moreover, our mechanistic data identify PlexinD1 as a pivotal mediator of this signaling axis downstream of Notch in prostate cancer cells. In fact, on one hand, PlexinD1 is required to mediate cell migration and E-cadherin regulation elicited by Notch. On the other hand, PlexinD1 upregulation is sufficient to induce prostate cancer cell migration and metastatic potential in mice, leading to functional rescue in the absence of Notch. In sum, our work identifies PlexinD1 as a novel transcriptional target induced by Notch signaling, and reveals its role promoting prostate cancer cell migration and downregulating E-cadherin levels in Slug-dependent manner. Collectively, these findings suggest that

  4. CyclinD1 protein plays different roles in modulating chemoresponses in MCF7 and MDA-MB231 cells

    PubMed Central

    Sun, Yuan; Luo, Dianzhong; Liao, D. Joshua

    2012-01-01

    Background: CyclinD1 is an essential sensor and activator of cell cycle initiation and progression; overexpression of cyclinD1 is linked to various human cancers, including breast cancer. The elevated cyclinD1 in some types of cancers is believed to be associated with tumor progression and response to systemic treatments. Aims: In this study, we anticipate to address the questions in human breast cancer; the function of cyclinD1 in mediating chemoresponses; and the signaling pathway cooperating with cyclinD1 to interfere with the drug functions. Materials and Methods: Using the cell clones, concurrent ectopic expression of the wild-type or K112E-mutated human cyclinD1 protein in the MCF7 and MDA-MB231 (MB231) breast cancer cells to study the function of cyclinD1 in responses to the chemotherapeutic treatments. Three drugs, cisplatin (CDDP), 5-fluorouracil (5-FU), and Gemzar were used in this study; the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, cell cycle and cell death analysis, clonogenic survival assay, acridine orange (AO)/ethidium bromide (EB) staining, and Western blot assay were conducted to evaluate the drugs’ effects in the cell clones. Results: The cell clones expressing the D1 protein in MCF7 and MB231 cells result in distinct effects on the responses to chemotherapeutic treatments. Particularly with Gemzar, ectopic expression of cyclinD1 protein in MCF7 cells results in a potentiated effect, which is CDK4 kinase activity dependent, whereas in MB231 cells, an opposite effect was observed. Moreover, our results suggested that the distinct chemosensitivities among those cell clones were not resulted from accelerated cell cycle, cell proliferation driven by the cyclinD1CDK4/6-Rb-E2F signaling chain, rather, they were results of the cell cycle-independent functions led by cyclinD1 alone or in complex with CDK4. Conclusions: Our results suggest that the functions of cyclinD1 protein in modulating chemoresponses in the MCF7

  5. Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1

    PubMed Central

    Anderson, Marilyn A.

    2014-01-01

    The plant defensin NaD1, from Nicotiana alata, has potent antifungal activity against a range of filamentous fungi including the two important cotton pathogens, Fusarium oxysporum f. sp. vasinfectum (Fov) and Verticillium dahliae. Transgenic cotton plants expressing NaD1 were produced and plants from three events were selected for further characterization. Homozygous plants were assessed in greenhouse bioassays for resistance to Fov. One line (D1) was selected for field trial testing over three growing seasons in soils naturally infested with Fov and over two seasons in soils naturally infested with V. dahliae. In the field trials with Fov-infested soil, line D1 had 2–3-times the survival rate, a higher tolerance to Fov (higher disease rank), and a 2–4-fold increase in lint yield compared to the non-transgenic Coker control. When transgenic line D1 was planted in V. dahliae-infested soil, plants had a higher tolerance to Verticillium wilt and up to a 2-fold increase in lint yield compared to the non-transgenic Coker control. Line D1 did not exhibit any detrimental agronomic features compared to the parent Coker control when plants were grown in non-diseased soil. This study demonstrated that the expression of NaD1 in transgenic cotton plants can provide substantial resistance to two economically important fungal pathogens. PMID:24502957

  6. UGT74D1 Catalyzes the Glucosylation of 2-Oxindole-3-Acetic Acid in the Auxin Metabolic Pathway in Arabidopsis

    PubMed Central

    Tanaka, Keita; Hayashi, Ken-ichiro; Natsume, Masahiro; Kamiya, Yuji; Sakakibara, Hitoshi; Kawaide, Hiroshi; Kasahara, Hiroyuki

    2014-01-01

    IAA is a naturally occurring auxin that plays a crucial role in the regulation of plant growth and development. The endogenous concentration of IAA is spatiotemporally regulated by biosynthesis, transport and its inactivation in plants. Previous studies have shown that the metabolism of IAA to 2-oxindole-3-acetic acid (OxIAA) and OxIAA-glucoside (OxIAA-Glc) may play an important role in IAA homeostasis, but the genes involved in this metabolic pathway are still unknown. In this study, we show that UGT74D1 catalyzes the glucosylation of OxIAA in Arabidopsis. By screening yeasts transformed with Arabidopsis UDP-glycosyltransferase (UGT) genes, we found that OxIAA-Glc accumulates in the culture media of yeasts expressing UGT74D1 in the presence of OxIAA. Further, we showed that UGT74D1 expressed in Escherichia coli converts OxIAA to OxIAA-Glc. The endogenous concentration of OxIAA-Glc decreased by 85% while that of OxIAA increased 2.5-fold in ugt74d1-deficient mutants, indicating the major role of UGT74D1 in OxIAA metabolism. Moreover, the induction of UGT74D1 markedly increased the level of OxIAA-Glc and loss of root gravitropism. These results indicate that UGT74D1 catalyzes a committed step in the OxIAA-dependent IAA metabolic pathway in Arabidopsis. PMID:24285754

  7. Effects of aspirin-triggered resolvin D1 on peripheral blood mononuclear cells from patients with Chagas' heart disease.

    PubMed

    Ogata, Haline; Teixeira, Maxelle Martins; Sousa, Rodrigo Cunha de; Silva, Marcos Vinícius da; Correia, Dalmo; Rodrigues Junior, Virmondes; Levy, Bruce David; Rogério, Alexandre de Paula

    2016-04-15

    Chagas disease is caused by Trypanosoma cruzi (T. cruzi). In some patients with Chagas disease, symptoms progress to chronic chagasic cardiomyopathy. Endogenously, inflammation is resolved in the presence of lipid mediators such as aspirin-triggered RvD1 (AT-RvD1) which has anti-inflammatory and pro-resolution effects. Here, we demonstrated, for the first time, the effects of AT-RvD1 on T. cruzi antigen-stimulated peripheral blood mononuclear cells (PBMCs) from patients with Chagas heart disease. The levels of IFN-γ, TNF-α, IL-10, and IL-13 increased in PBMCs from cardiac-form Chagas patients in stage B1 (patients with fewer heart abnormalities) stimulated with T. cruzi antigen compared to those in non-stimulated PBMCs. AT-RvD1 reduced the IFN-γ concentrations in PBMCs from patients with Chagas disease stimulated with T. cruzi antigen compared to stimulated with T. cruzi antigen cells. AT-RvD1 treatment resulted in no observable changes in TNF-α, IL-10, and IL-13 levels. AT-RvD1 significantly decreased the percentage of necrotic cells and caused a significant reduction in the proliferation rate of T. cruzi antigen-stimulated PBMCs from patients with Chagas disease. These findings demonstrate that AT-RvD1 modulates the immune response in Chagas disease patients and might have potential to be used as an alternative approach for slowing the development of further heart damage.

  8. Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1.

    PubMed

    Gaspar, Yolanda M; McKenna, James A; McGinness, Bruce S; Hinch, Jillian; Poon, Simon; Connelly, Angela A; Anderson, Marilyn A; Heath, Robyn L

    2014-04-01

    The plant defensin NaD1, from Nicotiana alata, has potent antifungal activity against a range of filamentous fungi including the two important cotton pathogens, Fusarium oxysporum f. sp. vasinfectum (Fov) and Verticillium dahliae. Transgenic cotton plants expressing NaD1 were produced and plants from three events were selected for further characterization. Homozygous plants were assessed in greenhouse bioassays for resistance to Fov. One line (D1) was selected for field trial testing over three growing seasons in soils naturally infested with Fov and over two seasons in soils naturally infested with V. dahliae. In the field trials with Fov-infested soil, line D1 had 2-3-times the survival rate, a higher tolerance to Fov (higher disease rank), and a 2-4-fold increase in lint yield compared to the non-transgenic Coker control. When transgenic line D1 was planted in V. dahliae-infested soil, plants had a higher tolerance to Verticillium wilt and up to a 2-fold increase in lint yield compared to the non-transgenic Coker control. Line D1 did not exhibit any detrimental agronomic features compared to the parent Coker control when plants were grown in non-diseased soil. This study demonstrated that the expression of NaD1 in transgenic cotton plants can provide substantial resistance to two economically important fungal pathogens.

  9. Competitive Nuclear Export of Cyclin D1 and Hic-5 Regulates Anchorage Dependence of Cell Growth and Survival

    PubMed Central

    Mori, Kazunori; Hirao, Etsuko; Toya, Yosuke; Oshima, Yukiko; Ishikawa, Fumihiro; Nose, Kiyoshi

    2009-01-01

    Anchorage dependence of cell growth and survival is a critical trait that distinguishes nontransformed cells from transformed cells. We demonstrate that anchorage dependence is determined by anchorage-dependent nuclear retention of cyclin D1, which is regulated by the focal adhesion protein, Hic-5, whose CRM1-dependent nuclear export counteracts that of cyclin D1. An adaptor protein, PINCH, interacts with cyclin D1 and Hic-5 and potentially serves as an interface for the competition between cyclin D1 and Hic-5 for CRM1. In nonadherent cells, the nuclear export of Hic-5, which is redox-sensitive, was interrupted due to elevated production of reactive oxygen species, and cyclin D1 was exported from the nucleus. When an Hic-5 mutant that was continuously exported in a reactive oxygen species-insensitive manner was introduced into the cells, cyclin D1 was retained in the nucleus under nonadherent conditions, and a significant population of cells escaped from growth arrest or apoptosis. Interestingly, activated ras achieved predominant cyclin D1 nuclear localization and thus, growth in nonadherent cells. We report a failsafe system for anchorage dependence of cell growth and survival. PMID:18946086

  10. A jumonji (Jarid2) protein complex represses cyclin D1 expression by methylation of histone H3-K9.

    PubMed

    Shirato, Haruki; Ogawa, Satoko; Nakajima, Kuniko; Inagawa, Masayo; Kojima, Mizuyo; Tachibana, Makoto; Shinkai, Yoichi; Takeuchi, Takashi

    2009-01-01

    Covalent modifications of histone tails have critical roles in regulating gene expression. Previously, we identified the jumonji (jmj, Jarid2) gene, the jmjC domain, and a Jmj family. Recently, many Jmj family proteins have been shown to be histone demethylases, and jmjC is the catalytic domain. However, Jmj does not have histone demethylase activity because the jmjC domain lacks conserved residues for binding to cofactors. Independently of these studies, we previously showed that Jmj binds to the cyclin D1 promoter and represses the transcription of cyclin D1. Here, we show the mechanisms by which Jmj represses the transcription of cyclin D1. We found that a protein complex of Jmj had histone methyltransferase activity toward histone H3 lysine 9 (H3-K9). We also found that Jmj bound to the H3-K9 methyltransferases G9a and GLP. Expression of Jmj recruited G9a and GLP to the cyclin D1 promoter and increased H3-K9 methylation. Inactivation of both G9a and GLP, but not of only G9a, inhibited the methylation of H3-K9 in the cyclin D1 promoter and repression of cyclin D1 expression by Jmj. These results suggest that Jmj methylates H3-K9 and represses cyclin D1 expression through G9a and GLP, and that Jmj family proteins can regulate gene expression by not only histone demethylation but also other histone modification.

  11. Pharmacological and biochemical characterization of the D-1 dopamine receptor mediating acetylcholine release in rabbit retina

    SciTech Connect

    Hensler, J.G.; Cotterell, D.J.; Dubocovich, M.L.

    1987-12-01

    Superfusion with dopamine (0.1 microM-10 mM) evokes calcium-dependent (/sup 3/H)acetylcholine release from rabbit retina labeled in vitro with (/sup 3/H)choline. This effect is antagonized by the D-1 dopamine receptor antagonist SCH 23390. Activation or blockade of D-2 dopamine, alpha-2 or beta receptors did not stimulate or attenuate the release of (/sup 3/H)acetylcholine from rabbit retina. Dopamine receptor agonists evoke the release of (/sup 3/H)acetylcholine with the following order of potency: apomorphine less than or equal to SKF(R)82526 < SKF 85174 < SKF(R)38393 less than or equal to pergolide less than or equal to dopamine (EC50 = 4.5 microM) < SKF(S)82526 less than or equal to SKF(S)38393. Dopamine receptor antagonists inhibited the dopamine-evoked release of (/sup 3/H)acetylcholine: SCH 23390 (IC50 = 1 nM) < (+)-butaclamol less than or equal to cis-flupenthixol < fluphenazine < perphenazine < trans-flupenthixol < R-sulpiride. The potencies of dopamine receptor agonists and antagonists at the dopamine receptor mediating (/sup 3/H)acetylcholine release is characteristic of the D-1 dopamine receptor. These potencies were correlated with the potencies of dopamine receptor agonists and antagonists at the D-1 dopamine receptor in rabbit retina as labeled by (/sup 3/H)SCH 23390, or as determined by adenylate cyclase activity. (/sup 3/H)SCH 23390 binding in rabbit retinal membranes was stable, saturable and reversible. Scatchard analysis of (/sup 3/H)SCH 23390 saturation data revealed a single high affinity binding site (Kd = 0.175 +/- 0.002 nM) with a maximum binding of 482 +/- 12 fmol/mg of protein. The potencies of dopamine receptor agonists to stimulate (/sup 3/H)acetylcholine release were correlated with their potencies to stimulate adenylate cyclase (r = 0.784, P less than .05, n = 7) and with their affinities at (/sup 3/H)SCH 23390 binding sites (r = 0.755, P < .05, n = 8).

  12. Semaphorin 3E–Plexin-D1 signaling regulates VEGF function in developmental angiogenesis via a feedback mechanism

    PubMed Central

    Kim, Jiha; Oh, Won-Jong; Gaiano, Nicholas; Yoshida, Yutaka; Gu, Chenghua

    2011-01-01

    Blood vessel networks are typically formed by angiogenesis, a process in which new vessels form by sprouting of endothelial cells from pre-existing vessels. This process is initiated by vascular endothelial growth factor (VEGF)-mediated tip cell selection and subsequent angiogenic sprouting. Surprisingly, we found that VEGF directly controls the expression of Plexin-D1, the receptor for the traditional repulsive axon guidance cue, semaphorin 3E (Sema3E). Sema3E–Plexin-D1 signaling then negatively regulates the activity of the VEGF-induced Delta-like 4 (Dll4)–Notch signaling pathway, which controls the cell fate decision between tip and stalk cells. Using the mouse retina as a model system, we show that Plexin-D1 is selectively expressed in endothelial cells at the front of actively sprouting blood vessels and its expression is tightly controlled by VEGF secreted by surrounding tissues. Therefore, although the Sema3E secreted by retinal neurons is evenly distributed throughout the retina, Sema3E–Plexin-D1 signaling is spatially controlled by VEGF through its regulation of Plexin-D1. Moreover, we show that gain and loss of function of Sema3E and Plexin-D1 disrupts normal Dll4 expression, Notch activity, and tip/stalk cell distribution in the retinal vasculature. Finally, the retinal vasculature of mice lacking sema3E or plexin-D1 has an uneven growing front, a less-branched vascular network, and abnormal distribution of dll4-positive cells. Lowering Notch activity in the mutant mice can reverse this defect, solidifying the observation that Dll4–Notch signaling is regulated by Sema3E–Plexin-D1 and is required for its function in vivo. Together, these data reveal a novel role of Sema3E–Plexin-D1 function in modulating angiogenesis via a VEGF-induced feedback mechanism. PMID:21724832

  13. Attenuation of Aβ{sub 25–35}-induced parallel autophagic and apoptotic cell death by gypenoside XVII through the estrogen receptor-dependent activation of Nrf2/ARE pathways

    SciTech Connect

    Meng, Xiangbao; Wang, Min; Sun, Guibo; Ye, Jingxue; Zhou, Yanhui; Dong, Xi; Wang, Tingting; Lu, Shan; Sun, Xiaobo

    2014-08-15

    Amyloid-beta (Aβ) has a pivotal function in the pathogenesis of Alzheimer's disease. To investigate Aβ neurotoxicity, we used an in vitro model that involves Aβ{sub 25–35}-induced cell death in the nerve growth factor-induced differentiation of PC12 cells. Aβ{sub 25–35} (20 μM) treatment for 24 h caused apoptotic cell death, as evidenced by significant cell viability reduction, LDH release, phosphatidylserine externalization, mitochondrial membrane potential disruption, cytochrome c release, caspase-3 activation, PARP cleavage, and DNA fragmentation in PC12 cells. Aβ{sub 25–35} treatment led to autophagic cell death, as evidenced by augmented GFP-LC3 puncta, conversion of LC3-I to LC3-II, and increased LC3-II/LC3-I ratio. Aβ{sub 25–35} treatment induced oxidative stress, as evidenced by intracellular ROS accumulation and increased production of mitochondrial superoxide, malondialdehyde, protein carbonyl, and 8-OHdG. Phytoestrogens have been proved to be protective against Aβ-induced neurotoxicity and regarded as relatively safe targets for AD drug development. Gypenoside XVII (GP-17) is a novel phytoestrogen isolated from Gynostemma pentaphyllum or Panax notoginseng. Pretreatment with GP-17 (10 μM) for 12 h increased estrogen response element reporter activity, activated PI3K/Akt pathways, inhibited GSK-3β, induced Nrf2 nuclear translocation, augmented antioxidant responsive element enhancer activity, upregulated heme oxygenase 1 (HO-1) expression and activity, and provided protective effects against Aβ{sub 25–35}-induced neurotoxicity, including oxidative stress, apoptosis, and autophagic cell death. In conclusion, GP-17 conferred protection against Aβ{sub 25–35}-induced neurotoxicity through estrogen receptor-dependent activation of PI3K/Akt pathways, inactivation of GSK-3β and activation of Nrf2/ARE/HO-1 pathways. This finding might provide novel insights into understanding the mechanism for neuroprotective effects of phytoestrogens or

  14. The First Alcohol Drink Triggers mTORC1-Dependent Synaptic Plasticity in Nucleus Accumbens Dopamine D1 Receptor Neurons.

    PubMed

    Beckley, Jacob T; Laguesse, Sophie; Phamluong, Khanhky; Morisot, Nadege; Wegner, Scott A; Ron, Dorit

    2016-01-20

    Early binge-like alcohol drinking may promote the development of hazardous intake. However, the enduring cellular alterations following the first experience with alcohol consumption are not fully understood. We found that the first binge-drinking alcohol session produced enduring enhancement of excitatory synaptic transmission onto dopamine D1 receptor-expressing neurons (D1+ neurons) in the nucleus accumbens (NAc) shell but not the core in mice, which required D1 receptors (D1Rs) and mechanistic target of rapamycin complex 1 (mTORC1). Furthermore, inhibition of mTORC1 activity during the first alcohol drinking session reduced alcohol consumption and preference of a subsequent drinking session. mTORC1 is critically involved in RNA-to-protein translation, and we found that the first alcohol session rapidly activated mTORC1 in NAc shell D1+ neurons and increased synaptic expression of the AMPAR subunit GluA1 and the scaffolding protein Homer. Finally, D1R stimulation alone was sufficient to activate mTORC1 in the NAc to promote mTORC1-dependent translation of the synaptic proteins GluA1 and Homer. Together, our results indicate that the first alcohol drinking session induces synaptic plasticity in NAc D1+ neurons via enhanced mTORC1-dependent translation of proteins involved in excitatory synaptic transmission that in turn drives the reinforcement learning associated with the first alcohol experience. Thus, the alcohol-dependent D1R/mTORC1-mediated increase in synaptic function in the NAc may reflect a neural imprint of alcohol's reinforcing properties, which could promote subsequent alcohol intake. Significance statement: Consuming alcohol for the first time is a learning event that drives further drinking. Here, we identified a mechanism that may underlie the reinforcing learning associated with the initial alcohol experience. We show that the first alcohol experience induces a persistent enhancement of excitatory synaptic transmission on NAc shell D1+ neurons

  15. The First Alcohol Drink Triggers mTORC1-Dependent Synaptic Plasticity in Nucleus Accumbens Dopamine D1 Receptor Neurons.

    PubMed

    Beckley, Jacob T; Laguesse, Sophie; Phamluong, Khanhky; Morisot, Nadege; Wegner, Scott A; Ron, Dorit

    2016-01-20

    Early binge-like alcohol drinking may promote the development of hazardous intake. However, the enduring cellular alterations following the first experience with alcohol consumption are not fully understood. We found that the first binge-drinking alcohol session produced enduring enhancement of excitatory synaptic transmission onto dopamine D1 receptor-expressing neurons (D1+ neurons) in the nucleus accumbens (NAc) shell but not the core in mice, which required D1 receptors (D1Rs) and mechanistic target of rapamycin complex 1 (mTORC1). Furthermore, inhibition of mTORC1 activity during the first alcohol drinking session reduced alcohol consumption and preference of a subsequent drinking session. mTORC1 is critically involved in RNA-to-protein translation, and we found that the first alcohol session rapidly activated mTORC1 in NAc shell D1+ neurons and increased synaptic expression of the AMPAR subunit GluA1 and the scaffolding protein Homer. Finally, D1R stimulation alone was sufficient to activate mTORC1 in the NAc to promote mTORC1-dependent translation of the synaptic proteins GluA1 and Homer. Together, our results indicate that the first alcohol drinking session induces synaptic plasticity in NAc D1+ neurons via enhanced mTORC1-dependent translation of proteins involved in excitatory synaptic transmission that in turn drives the reinforcement learning associated with the first alcohol experience. Thus, the alcohol-dependent D1R/mTORC1-mediated increase in synaptic function in the NAc may reflect a neural imprint of alcohol's reinforcing properties, which could promote subsequent alcohol intake. Significance statement: Consuming alcohol for the first time is a learning event that drives further drinking. Here, we identified a mechanism that may underlie the reinforcing learning associated with the initial alcohol experience. We show that the first alcohol experience induces a persistent enhancement of excitatory synaptic transmission on NAc shell D1+ neurons

  16. The First Alcohol Drink Triggers mTORC1-Dependent Synaptic Plasticity in Nucleus Accumbens Dopamine D1 Receptor Neurons

    PubMed Central

    Beckley, Jacob T.; Laguesse, Sophie; Phamluong, Khanhky; Morisot, Nadege; Wegner, Scott A.

    2016-01-01

    Early binge-like alcohol drinking may promote the development of hazardous intake. However, the enduring cellular alterations following the first experience with alcohol consumption are not fully understood. We found that the first binge-drinking alcohol session produced enduring enhancement of excitatory synaptic transmission onto dopamine D1 receptor-expressing neurons (D1+ neurons) in the nucleus accumbens (NAc) shell but not the core in mice, which required D1 receptors (D1Rs) and mechanistic target of rapamycin complex 1 (mTORC1). Furthermore, inhibition of mTORC1 activity during the first alcohol drinking session reduced alcohol consumption and preference of a subsequent drinking session. mTORC1 is critically involved in RNA-to-protein translation, and we found that the first alcohol session rapidly activated mTORC1 in NAc shell D1+ neurons and increased synaptic expression of the AMPAR subunit GluA1 and the scaffolding protein Homer. Finally, D1R stimulation alone was sufficient to activate mTORC1 in the NAc to promote mTORC1-dependent translation of the synaptic proteins GluA1 and Homer. Together, our results indicate that the first alcohol drinking session induces synaptic plasticity in NAc D1+ neurons via enhanced mTORC1-dependent translation of proteins involved in excitatory synaptic transmission that in turn drives the reinforcement learning associated with the first alcohol experience. Thus, the alcohol-dependent D1R/mTORC1-mediated increase in synaptic function in the NAc may reflect a neural imprint of alcohol's reinforcing properties, which could promote subsequent alcohol intake. SIGNIFICANCE STATEMENT Consuming alcohol for the first time is a learning event that drives further drinking. Here, we identified a mechanism that may underlie the reinforcing learning associated with the initial alcohol experience. We show that the first alcohol experience induces a persistent enhancement of excitatory synaptic transmission on NAc shell D1+ neurons

  17. The tight junction protein ZO-2 blocks cell cycle progression and inhibits cyclin D1 expression.

    PubMed

    Gonzalez-Mariscal, Lorenza; Tapia, Rocio; Huerta, Miriam; Lopez-Bayghen, Esther

    2009-05-01

    ZO-2 is an adaptor protein of the tight junction that belongs to the MAGUK protein family. ZO-2 is a dual localization protein that in sparse cultures is present at the cell borders and the nuclei, whereas in confluent cultures it is concentrated at the cell boundaries. Here we have studied whether ZO-2 is able to regulate the expression of cyclin D1 (CD1) and cell proliferation. We have demonstrated that ZO-2 negatively regulates CD1 transcription by interacting with c-Myc at an E box present in CD1 promoter. We have further found that ZO-2 transfection into epithelial MDCK cells triggers a diminished expression of CD1 protein and decreases the rate of cell proliferation in a wound-healing assay.

  18. Smooth non-extremal D1-D5-P solutions as charged gravitational instantons

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Bidisha; Rocha, Jorge V.; Virmani, Amitabh

    2016-08-01

    We present an alternative and more direct construction of the non-super-symmetric D1-D5-P supergravity solutions found by Jejjala, Madden, Ross and Titchener. We show that these solutions — with all three charges and both rotations turned on — can be viewed as a charged version of the Myers-Perry instanton. We present an inverse scattering construction of the Myers-Perry instanton metric in Euclidean five-dimensional gravity. The angular momentum bounds in this construction turn out to be precisely the ones necessary for the smooth microstate geometries. We add charges on the Myers-Perry instanton using appropriate SO(4, 4) hidden symmetry transformations. The full construc-tion can be viewed as an extension and simplification of a previous work by Katsimpouri, Kleinschmidt and Virmani.

  19. Electron affinities of d1 transition metal chloride clusters and onset of super halogen behavior

    NASA Astrophysics Data System (ADS)

    Behera, Swayamprabha; Joseph, Jorly; Jena, Purusottam

    2011-03-01

    Geometry, electronic structure, and electron affinity of d1 transition metal chloride clusters (MCl n , M = Sc,Y, La; n = 1--5) have been calculated using density functional theory. Chlorine atoms are chemically bound in all cases except for MCl 5 . The electron affinities of MCl n (n = 1--3) are small and increase only marginally as a function of n until the valence of the metal atom is consumed. Beyond this, they rise sharply and reach a value of 5.96, 6.03 and 5.90 eV for ScCl 4 , YCl 4 and LaCl 4 , respectively and remain high for n = 5. MCl n , (n = 4,5) clusters, therefore, behave as superhalogens. Results are compared with available experimental data

  20. Electron affinities of d1 transition metal chloride clusters and onset of super halogen behavior

    NASA Astrophysics Data System (ADS)

    Joseph, Jorly; Behera, Swayamprabha; Jena, Purusottam

    2010-09-01

    Geometry, electronic structure, and electron affinity of d1 transition metal chloride clusters (MCl n, M = Sc, Y, La; n = 1-5) have been calculated using density functional theory. Chlorine atoms are chemically bound in all cases except for MCl 5. The electron affinities of MCl n ( n = 1-3) are small and increase only marginally as a function of n until the valence of the metal atom is consumed. Beyond this, they rise sharply and reach a value of 5.96, 6.03 and 5.90 eV for ScCl 4, YCl 4 and LaCl 4, respectively and remain high for n = 5. MCl n, ( n = 4,5) clusters, therefore, behave as superhalogens. Results are compared with available experimental data.

  1. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    SciTech Connect

    Xie, Gary; Dalin, Eileen; Tice, Hope; Chertkov, Olga; Land, Miriam L

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  2. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    SciTech Connect

    Rhee, Mun Su; Moritz, Brelan E.; Xie, Gary; Glavina Del Rio, Tijana; Dalin, Eileen; Tice, Hope; Bruce, David; Goodwin, Lynne A.; Chertkov, Olga; Brettin, Thomas S; Han, Cliff; Detter, J. Chris; Pitluck, Sam; Land, Miriam L; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, Keelnathan T.

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  3. Hyper sensitive protein detection by Tandem-HTRF reveals Cyclin D1 dynamics in adult mouse

    PubMed Central

    Zampieri, Alexandre; Champagne, Julien; Auzemery, Baptiste; Fuentes, Ivanna; Maurel, Benjamin; Bienvenu, Frédéric

    2015-01-01

    We present here a novel method for the semi-quantitative detection of low abundance proteins in solution that is both fast and simple. It is based on Homogenous Time Resolved Förster Resonance Energy Transfer (HTRF), between a lanthanide labeled donor antibody and a d2 or XL665 labeled acceptor antibody that are both raised against different epitopes of the same target. This novel approach we termed “Tandem-HTRF”, can specifically reveal rare polypeptides from only a few microliters of cellular lysate within one hour in a 384-well plate format. Using this sensitive approach, we observed surprisingly that the core cell cycle regulator Cyclin D1 is sustained in fully developed adult organs and harbors an unexpected expression pattern affected by environmental challenge. Thus our method, Tandem-HTRF offers a promising way to investigate subtle variations in the dynamics of sparse proteins from limited biological material. PMID:26503526

  4. The effect of cell passage number on osteogenic and adipogenic characteristics of D1 cells.

    PubMed

    Kwist, K; Bridges, W C; Burg, K J L

    2016-08-01

    Cell line passage number is an important consideration when designing an experiment. At higher passages, it is generally understood that cell health begins to decline and, when this occurs, the result can be variable data. However, there are no specific guidelines regarding optimal passage range, and this information is dependent on cell type. To explore these variabilities, low passage D1 cells were thawed (passage 3) and passaged serially until a much higher number (passage 34). Samples were taken every five passages and analyzed for alkaline phosphatase and triglyceride; also, the gene expression of both adipogenic and osteogenic markers was tested. The results indicate that the growth rate of these cells did slow down after passage 30. However, expression of the osteogenic characteristics seemed to cycle, with the highest levels seen at passage 4 and 24. The adipocyte expression levels remained the same throughout the study.

  5. Protein Kinase D1 Signaling in Angiogenic Gene Expression and VEGF-Mediated Angiogenesis

    PubMed Central

    Ren, Bin

    2016-01-01

    Protein kinase D 1 (PKD-1) is a signaling kinase important in fundamental cell functions including migration, proliferation, and differentiation. PKD-1 is also a key regulator of gene expression and angiogenesis that is essential for cardiovascular development and tumor progression. Further understanding molecular aspects of PKD-1 signaling in the regulation of angiogenesis may have translational implications in obesity, cardiovascular disease, and cancer. The author will summarize and provide the insights into molecular mechanisms by which PKD-1 regulates transcriptional expression of angiogenic genes, focusing on the transcriptional regulation of CD36 by PKD-1-FoxO1 signaling axis along with the potential implications of this axis in arterial differentiation and morphogenesis. He will also discuss a new concept of dynamic balance between proangiogenic and antiangiogenic signaling in determining angiogenic switch, and stress how PKD-1 signaling regulates VEGF signaling-mediated angiogenesis. PMID:27200349

  6. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    PubMed Central

    Rhee, Mun Su; Moritz, Brélan E.; Xie, Gary; Glavina del Rio, T.; Dalin, E.; Tice, H.; Bruce, D.; Goodwin, L.; Chertkov, O.; Brettin, T.; Han, C.; Detter, C.; Pitluck, S.; Land, Miriam L.; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed. PMID:22675583

  7. Protein kinase D1 drives pancreatic acinar cell reprogramming and progression to intraepithelial neoplasia

    NASA Astrophysics Data System (ADS)

    Liou, Geou-Yarh; Döppler, Heike; Braun, Ursula B.; Panayiotou, Richard; Scotti Buzhardt, Michele; Radisky, Derek C.; Crawford, Howard C.; Fields, Alan P.; Murray, Nicole R.; Wang, Q. Jane; Leitges, Michael; Storz, Peter

    2015-02-01

    The transdifferentiation of pancreatic acinar cells to a ductal phenotype (acinar-to-ductal metaplasia, ADM) occurs after injury or inflammation of the pancreas and is a reversible process. However, in the presence of activating Kras mutations or persistent epidermal growth factor receptor (EGF-R) signalling, cells that underwent ADM can progress to pancreatic intraepithelial neoplasia (PanIN) and eventually pancreatic cancer. In transgenic animal models, ADM and PanINs are initiated by high-affinity ligands for EGF-R or activating Kras mutations, but the underlying signalling mechanisms are not well understood. Here, using a conditional knockout approach, we show that protein kinase D1 (PKD1) is sufficient to drive the reprogramming process to a ductal phenotype and progression to PanINs. Moreover, using 3D explant culture of primary pancreatic acinar cells, we show that PKD1 acts downstream of TGFα and Kras, to mediate formation of ductal structures through activation of the Notch pathway.

  8. Analysis of ocular torsion data from Space Labs D-1 and SL-1

    NASA Technical Reports Server (NTRS)

    Oman, C. M.

    1990-01-01

    A series of preflight, inflight, and postflight vestibular experiments were conducted on Spacelab missions SL-1 and D-1. Two portions of the investigation, the 'sled' and 'dome' functional objectives, involved recording the torsional motion of human subject's eyes. In the SL-1 sled and dome experiments, preflight and postflight ocular torsion was recorded on 35 mm film using a Nikon motor driven camera (2.6 frames/sec). The film was to be analyzed by measuring the motion of contact lens landmarks using a Hermes senior film scanner. However, an inflight failure of the dome experiment camera flash unit led the crew to utilize the Spacelab video camera as an alternative contingency method for imaging the eye in this FO. A suitable method for analysis of the video data was developed. Results of the analysis are presented.

  9. Protein kinase D1 (PKD1) influences androgen receptor (AR) function in prostate cancer cells

    SciTech Connect

    Mak, Paul; Jaggi, Meena; Chauhan, Subhash C.; Balaji, K.C.

    2008-09-05

    Protein kinase D1 (PKD1), founding member of PKD protein family, is down-regulated in advanced prostate cancer (PCa). We demonstrate that PKD1 and androgen receptor (AR) are present as a protein complex in PCa cells. PKD1 is associated with a transcriptional complex which contains AR and promoter sequence of the Prostate Specific Antigen (PSA) gene. Ectopic expression of wild type PKD1 and the kinase dead mutant PKD1 (K628W) attenuated the ligand-dependent transcriptional activation of AR in prostate cancer cells and yeast cells indicating that PKD1 can affect AR transcription activity, whereas knocking down PKD1 enhanced the ligand-dependent transcriptional activation of AR. Co-expression of kinase dead mutant with AR significantly inhibited androgen-mediated cell proliferation in both LNCaP and DU145 PC cells. Our data demonstrate for the first time that PKD1 can influence AR function in PCa cells.

  10. Mutation scan of the D1 dopamine receptor gene in 22 cases of bipolar I disorder

    SciTech Connect

    Shah, M.; Coon, H.; Holik, J.; Hoff, M.

    1995-04-24

    In a previous study we found suggestive evidence of linkage between manic-depressive illness (MDI) in eight multiplex pedigrees and D5S62, a DNA marker mapping to the telomeric region of 5q. As the D1 dopamine receptor gene (DRDI) maps to this region and as alterations in dopaminergic neurotransmission have been indirectly implicated in the pathogenesis of MDI, we directly searched for mutations in the coding region of the DRDI gene in 22 unrelated cases of bipolar I (BPI) disorder derived from multiplex families. Using single strand conformation polymorphism (SSCP) analysis, we did not observe any abnormal SSCP variants in the BPI cases that differed from controls. 30 refs., 1 fig.

  11. Enhanced antifungal and insect α-amylase inhibitory activities of Alpha-TvD1, a peptide variant of Tephrosia villosa defensin (TvD1) generated through in vitro mutagenesis.

    PubMed

    Vijayan, S; Imani, J; Tanneeru, K; Guruprasad, L; Kogel, K H; Kirti, P B

    2012-02-01

    TvD1 is a small, cationic, and highly stable defensin from the weedy legume, Tephrosia villosa with demonstrated in vitro antifungal activity. We show here peptide modifications in TvD1 that lead to enhanced antifungal activities. Three peptide variants, S32R, D37R, and Alpha-TvD1 (-G-M-T-R-T-) with variations in and around the β2-β3 loop region that imposes the two β-strands, β2 and β3 were generated through in vitro mutagenesis. Alpha-TvD1 exhibited enhanced antifungal activity against the fungal pathogens, Fusarium culmorum and Fusarium oxysporum with respective IC(50) values of 2.5 μM and 3.0 μM, when compared to S32R (<5.0 μM and >5.0 μM), D37R (5.5 μM and 4.5 μM), and the wild type TvD1 (6.5 μM). Because of the enhanced antifungal activity, this variant peptide was characterized further. Growth of F. culmorum in the presence of Alpha-TvD1 showed deformities in hyphal walls and nuclear damage. With respect to the plant pathogenic bacterium, Pseudomonas syringae pv. tomato strain DC3000, both Alpha-TvD1 and the wild type TvD1 showed comparable antibacterial activity. Both wild type TvD1 and Alpha-TvD1 displayed inhibitory activity against the α-amylase of the mealworm beetle, Tenebrio molitor (TMA) with the latter showing enhanced activity. The human salivary as well as barley α-amylase activities were not inhibited even at concentrations of up to 50 μM, which has been predicted to be due to differences in the pocket size and the size of the interacting loops. Present study shows that the variant Alpha-TvD1 exhibits enhanced antifungal as well as insect α-amylase inhibitory activity. PMID:22244814

  12. Mouse Model of Cat Allergic Rhinitis and Intranasal Liposome-Adjuvanted Refined Fel d 1 Vaccine.

    PubMed

    Tasaniyananda, Natt; Chaisri, Urai; Tungtrongchitr, Anchalee; Chaicumpa, Wanpen; Sookrung, Nitat

    2016-01-01

    Cats (Felis domesticus) are rich source of airborne allergens that prevailed in the environment and sensitized a number of people to allergy. In this study, a mouse model of allergic rhinitis caused by the cat allergens was developed for the first time and the model was used for testing therapeutic efficacy of a novel intranasal liposome-entrapped vaccines made of native Fel d 1 (major cat allergen) in comparison with the vaccine made of crude cat hair extract (cCE). BALB/c mice were sensitized with cCE mixed with alum intraperitoneally and intranasally. The allergic mice were treated with eight doses of either liposome (L)-entrapped native Fel d 1 (L-nFD1), L-cCE), or placebo on every alternate day. Vaccine efficacy evaluation was performed one day after provoking the treated mice with aerosolic cCE. All allergenized mice developed histological features of allergic rhinitis with rises of serum specific-IgE and Th2 cytokine gene expression. Serum IgE and intranasal mucus production of allergic mice reduced significantly after vaccination in comparison with the placebo mice. The vaccines also caused a shift of the Th2 response (reduction of Th2 cytokine expressions) towards the non-pathogenic responses: Th1 (down-regulation of the Th1 suppressive cytokine gene, IL-35) and Treg (up-regulation of IL-10 and TGF-β). In conclusions, a mouse model of allergic rhinitis to cat allergens was successfully developed. The intranasal, liposome-adjuvanted vaccines, especially the refined single allergen formulation, assuaged the allergic manifestations in the modeled mice. The prototype vaccine is worthwhile testing further for clinical use in the pet allergic patients. PMID:26954254

  13. Disruption of nucleocytoplasmic trafficking of cyclin D1 and topoisomerase II by sanguinarine

    PubMed Central

    Holy, Jon; Lamont, Genelle; Perkins, Edward

    2006-01-01

    Background The quaternary isoquinoline alkaloid sanguinarine is receiving increasing attention as a potential chemotherapeutic agent in the treatment of cancer. Previous studies have shown that this DNA-binding phytochemical can arrest a number of different types of transformed cells in G0/G1, and upregulate the CKIs p21 and p27 while downregulating multiple cyclins and CDKs. To more closely examine the responses of some of these cell cycle regulatory molecules to sanguinarine, we used immunocytochemical methods to visualize cyclin D1 and topoisomerase II behavior in MCF-7 breast cancer cells. Results 5 – 10 μM sanguinarine effectively inhibits MCF-7 proliferation after a single application of drug. This growth inhibition is accompanied by a striking relocalization of cyclin D1 and topoisomerase II from the nucleus to the cytoplasm, and this effect persists for at least three days after drug addition. DNA synthesis is transiently inhibited by sanguinarine, but cells recover their ability to synthesize DNA within 24 hours. Taking advantage of the fluorescence characteristics of sanguinarine to follow its uptake and distribution suggests that these effects arise from a window of activity of a few hours immediately after drug addition, when sanguinarine is concentrated in the nucleus. These effects occur in morphologically healthy-looking cells, and thus do not simply represent part of an apoptotic response. Conclusion It appears that sub-apoptotic concentrations of sanguinarine can suppress breast cancer cell proliferation for extended lengths of time, and that this effect results from a relatively brief period of activity when the drug is concentrated in the nucleus. Sanguinarine transiently inhibits DNA synthesis, but a novel mechanism of action appears to involve disrupting the trafficking of a number of molecules involved in cell cycle regulation and progression. The ability of sub-apoptotic concentrations of sanguinarine to inhibit cell growth may be a useful

  14. Mouse Model of Cat Allergic Rhinitis and Intranasal Liposome-Adjuvanted Refined Fel d 1 Vaccine

    PubMed Central

    Tasaniyananda, Natt; Chaisri, Urai; Tungtrongchitr, Anchalee; Chaicumpa, Wanpen; Sookrung, Nitat

    2016-01-01

    Cats (Felis domesticus) are rich source of airborne allergens that prevailed in the environment and sensitized a number of people to allergy. In this study, a mouse model of allergic rhinitis caused by the cat allergens was developed for the first time and the model was used for testing therapeutic efficacy of a novel intranasal liposome-entrapped vaccines made of native Fel d 1 (major cat allergen) in comparison with the vaccine made of crude cat hair extract (cCE). BALB/c mice were sensitized with cCE mixed with alum intraperitoneally and intranasally. The allergic mice were treated with eight doses of either liposome (L)-entrapped native Fel d 1 (L-nFD1), L-cCE), or placebo on every alternate day. Vaccine efficacy evaluation was performed one day after provoking the treated mice with aerosolic cCE. All allergenized mice developed histological features of allergic rhinitis with rises of serum specific-IgE and Th2 cytokine gene expression. Serum IgE and intranasal mucus production of allergic mice reduced significantly after vaccination in comparison with the placebo mice. The vaccines also caused a shift of the Th2 response (reduction of Th2 cytokine expressions) towards the non-pathogenic responses: Th1 (down-regulation of the Th1 suppressive cytokine gene, IL-35) and Treg (up-regulation of IL-10 and TGF-β). In conclusions, a mouse model of allergic rhinitis to cat allergens was successfully developed. The intranasal, liposome-adjuvanted vaccines, especially the refined single allergen formulation, assuaged the allergic manifestations in the modeled mice. The prototype vaccine is worthwhile testing further for clinical use in the pet allergic patients. PMID:26954254

  15. Mouse Model of Cat Allergic Rhinitis and Intranasal Liposome-Adjuvanted Refined Fel d 1 Vaccine.

    PubMed

    Tasaniyananda, Natt; Chaisri, Urai; Tungtrongchitr, Anchalee; Chaicumpa, Wanpen; Sookrung, Nitat

    2016-01-01

    Cats (Felis domesticus) are rich source of airborne allergens that prevailed in the environment and sensitized a number of people to allergy. In this study, a mouse model of allergic rhinitis caused by the cat allergens was developed for the first time and the model was used for testing therapeutic efficacy of a novel intranasal liposome-entrapped vaccines made of native Fel d 1 (major cat allergen) in comparison with the vaccine made of crude cat hair extract (cCE). BALB/c mice were sensitized with cCE mixed with alum intraperitoneally and intranasally. The allergic mice were treated with eight doses of either liposome (L)-entrapped native Fel d 1 (L-nFD1), L-cCE), or placebo on every alternate day. Vaccine efficacy evaluation was performed one day after provoking the treated mice with aerosolic cCE. All allergenized mice developed histological features of allergic rhinitis with rises of serum specific-IgE and Th2 cytokine gene expression. Serum IgE and intranasal mucus production of allergic mice reduced significantly after vaccination in comparison with the placebo mice. The vaccines also caused a shift of the Th2 response (reduction of Th2 cytokine expressions) towards the non-pathogenic responses: Th1 (down-regulation of the Th1 suppressive cytokine gene, IL-35) and Treg (up-regulation of IL-10 and TGF-β). In conclusions, a mouse model of allergic rhinitis to cat allergens was successfully developed. The intranasal, liposome-adjuvanted vaccines, especially the refined single allergen formulation, assuaged the allergic manifestations in the modeled mice. The prototype vaccine is worthwhile testing further for clinical use in the pet allergic patients.

  16. Differential involvement of dopamine D1 receptors in morphine- and lithium-conditioned saccharin avoidance.

    PubMed

    Fenu, Sandro; Rivas, Emilia; Di Chiara, Gaetano

    2009-01-01

    Conditioned saccharin avoidance (CSA) can be produced when either lithium chloride (LiCl) or a reinforcing drug, such as morphine, is administered following exposure to the taste of saccharin. In this study we investigated the involvement of dopamine (DA) transmission in the acquisition of morphine and LiCl-CSA. CSA was evaluated in a two-bottle choice paradigm with two conditioning pairings between saccharin and morphine or LiCl as unconditioned stimulus (US). Morphine hydrochloride (7.5 mg/kg s.c.) or LiCl (40 mg/kg i.p.), administered 45 and 120' respectively after saccharin-drinking session, induced strong CSA. The DA D(1) receptor antagonist, SCH 39166 (0.1 mg/kg s.c.), impaired morphine-CSA if administered 15' and, to a lesser extent, 30' but not 45' before the drug (i.e immediately after saccharin drinking). In contrast SCH 39166 reduced LiCl-CSA when administered 45' before the drug and even more so when administered 105' before LiCl i.e. immediately after saccharin drinking. Therefore SCH 39166 impaired morphine-CSA when given shortly before the drug, while it impaired LiCl-CSA when given shortly after saccharin. Raclopride, a specific antagonist of D(2) receptors, failed to affect LiCl- and morphine-CSA. These results are consistent with the idea that DA, acting on D(1) receptors, plays a differential role in morphine- and LiCl-CSA. In LiCl-CSA DA is necessary for the processing (consolidation) of the short-term memory trace of the saccharin taste to be associated with the lithium-induced aversive state, while in morphine CSA contributes to mediate the appetitive properties of the drug.

  17. Comparison of the enantiomers of (+/-)-doxanthrine, a high efficacy full dopamine D(1) receptor agonist, and a reversal of enantioselectivity at D(1) versus alpha(2C) adrenergic receptors.

    PubMed

    Przybyla, Julie A; Cueva, Juan P; Chemel, Benjamin R; Hsu, K Joseph; Riese, David J; McCorvy, John D; Chester, Julia A; Nichols, David E; Watts, Val J

    2009-02-01

    Parkinson's disease is a neurodegenerative condition involving the death of dopaminergic neurons in the substantia nigra. Dopamine D(1) receptor agonists are potential alternative treatments to current therapies that employ L-DOPA, a dopamine precursor. We evaluated the pharmacological profiles of the enantiomers of a novel dopamine D(1) receptor full agonist, doxanthrine (DOX) at D(1) and alpha(2C) adrenergic receptors. (+)-DOX displayed greater potency and intrinsic activity than (-)-DOX in porcine striatal tissue and in a heterologous D(1) receptor expression system. Studies in MCF7 cells, which express an endogenous human dopamine D(1)-like receptor, revealed that (-)-DOX was a weak partial agonist/antagonist that reduced the functional activity of (+)-DOX and dopamine. (-)-DOX had 10-fold greater potency than (+)-DOX at alpha(2C) adrenergic receptors, with an EC50 value of 4 nM. These findings demonstrate a reversed stereoselectivity for the enantiomers of DOX at D(1) and alpha(2C) receptors and have implications for the therapeutic utility of doxanthrine.

  18. The Calcium Goes Meow: Effects of Ions and Glycosylation on Fel d 1, the Major Cat Allergen

    PubMed Central

    Pol-Fachin, Laércio; Verli, Hugo

    2015-01-01

    The major cat allergen, Fel d 1, is a structurally complex protein with two N-glycosylation sites that may be filled by different glycoforms. In addition, the protein contains three putative Ca2+ binding sites. Since the impact of these Fel d 1 structure modifications on the protein dynamics, physiology and pathology are not well established, the present work employed computational biology techniques to tackle these issues. While conformational effects brought upon by glycosylation were identified, potentially involved in cavity volume regulation, our results indicate that only the central Ca2+ ion remains coordinated to Fel d 1 in biological solutions, impairing its proposed role in modulating phospholipase A2 activity. As these results increase our understanding of Fel d 1 structural biology, they may offer new support for understanding its physiological role and impact into cat-promoted allergy. PMID:26134118

  19. On the Preparation and Determination of Configurational Stability of Chiral Thio- and Bromo[D1]methyllithiums

    PubMed Central

    2012-01-01

    Thio- and bromo[D1]methyllithiums (ee 99%) were generated from the respective stannanes by tin–lithium exchange at temperatures ranging from 0 to −95 °C. Thio[D1]methyllithiums 6 were found to be microscopically configurationally labile on the time scale of the thiophosphate-α-mercaptophosphonate rearrangement even at −95 °C. Thio[D1]methyllithiums 13a and 13b underwent a thia-[2,3]-Wittig rearrangement down to −95 °C and 13b only down to −50 °C. The former were microscopically configurationally stable below −95 °C, and the latter racemized completely at −50 °C. Chiral bromo[D1]methyllithiums are chemically unstable at −78 °C but microscopically configurationally stable at the time scale of their addition to benzaldehyde and acetophenone. PMID:23106613

  20. Cyclin D1 cooperates with p21 to regulate TGFβ-mediated breast cancer cell migration and tumor local invasion

    PubMed Central

    2013-01-01

    Introduction Deregulation of the cell cycle machinery is often found in human cancers. Modulations in the cell cycle regulator function and expression result not only in proliferative advantages, but also lead to tumor progression and invasiveness of the cancer. In particular, cyclin D1 and p21 are often over-expressed in human cancers, correlating with high tumor grade, poor prognosis and increased metastasis. This prompted us to investigate the role of the cyclin D1/p21 signaling axis downstream of transforming growth factor beta (TGFβ) in breast cancer progression. Methods Cyclins mRNA and protein expressions were assessed by quantitative real-time PCR and Western blot in triple negative breast cancer cell lines. Co-localization and interaction between cyclin D1 and p21 were performed by immunocytochemistry and co-immunoprecipitation, respectively. Cell migration was assessed by wound healing and quantitative time-lapse imaging assays. In addition, the effects of cyclin D1 on cellular structure and actin organization were examined by staining with F-actin marker phalloidin and mesenchymal intermediate filament vimentin. Finally, a mammary fat pad xenograft mouse model was used to assess mammary tumor growth and local invasion. Results We found TGFβ to specifically up-regulate the expression of cyclin D1 in triple negative breast cancer cells. Induction of cyclin D1 is also required for TGFβ-mediated cell migration. Suppression of cyclin D1 expression not only resulted in a rounded and epithelial-like phenotype, but also prevented TGFβ-induced vimentin and F-actin co-localization at the cell edge as well as invadopodia formation. Furthermore, TGFβ promoted the nuclear co-localization and physical interaction between cyclin D1 and p21. The co-expression of cyclin D1 and p21 proteins are required for the initial steps of tumor development, as double knockdown of these two molecules prevented primary tumor formation in a Xenograft mouse model. Moreover, the in

  1. Selective repression of the oncogene cyclin D1 by the tumor suppressor miR-206 in cancers.

    PubMed

    Elliman, S J; Howley, B V; Mehta, D S; Fearnhead, H O; Kemp, D M; Barkley, L R

    2014-01-01

    MicroRNAs (miRNAs) are deregulated in cancer and have been shown to exhibit both oncogenic and tumor suppressive functions. Although the functional effects of several miRNAs have been elucidated, those of many remain to be discovered. In silico analysis identified microRNA-206 (miR-206) binding sites in the 3'-untranslated regions (3'-UTR) of both the mouse and human CCND1 gene. Cyclin D1 is a recognized oncogene involved in direct phosphorylation of the retinoblastoma (Rb) protein and promoting cell cycle transition from G1 to S. miR-206 specifically binds to the CCND1 3'-UTR and mediates reduction of both cyclin D1 protein and mRNA. Expression of miR-206 induced a G1 arrest and a decrease in cell proliferation in breast cancer cells. Ectopic expression of miRNA-resistant cyclin D1 was able to reverse the miR-206-induced decrease in cell proliferation. Therefore, we identified miR-206 as an activator of cell cycle arrest resulting in a decrease in cell proliferation that is dependent on the inhibition of cyclin D1. Interestingly, prostatic cancer (PCa) cells express low levels of miR-206 resulting in deregulated cyclin D1 expression compared with non-transformed primary prostatic epithelial cells (PrEC). Finally, we demonstrate that cyclin D1 is regulated by miR-206 in PrEC but not in PCa cells and this is due to the absence of a CCND1 3'-UTR in these cells. This suggests that miR-206-based anti-cyclin D1 targeted therapy would be beneficial in cancers where cyclin D1 is overexpressed and contains a 3'-UTR. PMID:25111862

  2. Expression and cellular localization of the transcription factor NeuroD1 in the developing and adult rat pineal gland.

    PubMed

    Castro, Analía E; Benitez, Sergio G; Farias Altamirano, Luz E; Savastano, Luis E; Patterson, Sean I; Muñoz, Estela M

    2015-05-01

    Circadian rhythms govern many aspects of mammalian physiology. The daily pattern of melatonin synthesis and secretion is one of the classic examples of circadian oscillations. It is mediated by a class of neuroendocrine cells known as pinealocytes which are not yet fully defined. An established method to evaluate functional and cytological characters is through the expression of lineage-specific transcriptional regulators. NeuroD1 is a basic helix-loop-helix transcription factor involved in the specification and maintenance of both endocrine and neuronal phenotypes. We have previously described developmental and adult regulation of NeuroD1 mRNA in the rodent pineal gland. However, the transcript levels were not influenced by the elimination of sympathetic input, suggesting that any rhythmicity of NeuroD1 might be found downstream of transcription. Here, we describe NeuroD1 protein expression and cellular localization in the rat pineal gland during development and the daily cycle. In embryonic and perinatal stages, protein expression follows the mRNA pattern and is predominantly nuclear. Thereafter, NeuroD1 is mostly found in pinealocyte nuclei in the early part of the night and in cytoplasm during the day, a rhythm maintained into adulthood. Additionally, nocturnal nuclear NeuroD1 levels are reduced after sympathetic disruption, an effect mimicked by the in vivo administration of α- and β-adrenoceptor blockers. NeuroD1 phosphorylation at two sites, Ser(274) and Ser(336) , associates with nuclear localization in pinealocytes. These data suggest that NeuroD1 influences pineal phenotype both during development and adulthood, in an autonomic and phosphorylation-dependent manner.

  3. Striatal D1- and D2-type dopamine receptors are linked to motor response inhibition in human subjects.

    PubMed

    Robertson, Chelsea L; Ishibashi, Kenji; Mandelkern, Mark A; Brown, Amira K; Ghahremani, Dara G; Sabb, Fred; Bilder, Robert; Cannon, Tyrone; Borg, Jacqueline; London, Edythe D

    2015-04-15

    Motor response inhibition is mediated by neural circuits involving dopaminergic transmission; however, the relative contributions of dopaminergic signaling via D1- and D2-type receptors are unclear. Although evidence supports dissociable contributions of D1- and D2-type receptors to response inhibition in rats and associations of D2-type receptors to response inhibition in humans, the relationship between D1-type receptors and response inhibition has not been evaluated in humans. Here, we tested whether individual differences in striatal D1- and D2-type receptors are related to response inhibition in human subjects, possibly in opposing ways. Thirty-one volunteers participated. Response inhibition was indexed by stop-signal reaction time on the stop-signal task and commission errors on the continuous performance task, and tested for association with striatal D1- and D2-type receptor availability [binding potential referred to nondisplaceable uptake (BPND)], measured using positron emission tomography with [(11)C]NNC-112 and [(18)F]fallypride, respectively. Stop-signal reaction time was negatively correlated with D1- and D2-type BPND in whole striatum, with significant relationships involving the dorsal striatum, but not the ventral striatum, and no significant correlations involving the continuous performance task. The results indicate that dopamine D1- and D2-type receptors are associated with response inhibition, and identify the dorsal striatum as an important locus of dopaminergic control in stopping. Moreover, the similar contribution of both receptor subtypes suggests the importance of a relative balance between phasic and tonic dopaminergic activity subserved by D1- and D2-type receptors, respectively, in support of response inhibition. The results also suggest that the stop-signal task and the continuous performance task use different neurochemical mechanisms subserving motor response inhibition. PMID:25878272

  4. In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in cocaine reward.

    PubMed

    Calipari, Erin S; Bagot, Rosemary C; Purushothaman, Immanuel; Davidson, Thomas J; Yorgason, Jordan T; Peña, Catherine J; Walker, Deena M; Pirpinias, Stephen T; Guise, Kevin G; Ramakrishnan, Charu; Deisseroth, Karl; Nestler, Eric J

    2016-03-01

    The reinforcing and rewarding properties of cocaine are attributed to its ability to increase dopaminergic transmission in nucleus accumbens (NAc). This action reinforces drug taking and seeking and leads to potent and long-lasting associations between the rewarding effects of the drug and the cues associated with its availability. The inability to extinguish these associations is a key factor contributing to relapse. Dopamine produces these effects by controlling the activity of two subpopulations of NAc medium spiny neurons (MSNs) that are defined by their predominant expression of either dopamine D1 or D2 receptors. Previous work has demonstrated that optogenetically stimulating D1 MSNs promotes reward, whereas stimulating D2 MSNs produces aversion. However, we still lack a clear understanding of how the endogenous activity of these cell types is affected by cocaine and encodes information that drives drug-associated behaviors. Using fiber photometry calcium imaging we define D1 MSNs as the specific population of cells in NAc that encodes information about drug associations and elucidate the temporal profile with which D1 activity is increased to drive drug seeking in response to contextual cues. Chronic cocaine exposure dysregulates these D1 signals to both prevent extinction and facilitate reinstatement of drug seeking to drive relapse. Directly manipulating these D1 signals using designer receptors exclusively activated by designer drugs prevents contextual associations. Together, these data elucidate the responses of D1- and D2-type MSNs in NAc to acute cocaine and during the formation of context-reward associations and define how prior cocaine exposure selectively dysregulates D1 signaling to drive relapse. PMID:26831103

  5. Enhanced Resolution of Hyperoxic Acute Lung Injury as a result of Aspirin Triggered Resolvin D1 Treatment.

    PubMed

    Cox, Ruan; Phillips, Oluwakemi; Fukumoto, Jutaro; Fukumoto, Itsuko; Parthasarathy, Prasanna Tamarapu; Arias, Stephen; Cho, Young; Lockey, Richard F; Kolliputi, Narasaiah

    2015-09-01

    Acute lung injury (ALI), which presents as acute respiratory failure, is a major clinical problem that requires aggressive care, and patients who require prolonged oxygen exposure are at risk of developing this disease. Although molecular determinants of ALI have been reported, the molecules involved in disease catabasis associated with oxygen toxicity have not been well studied. It has been reported that lung mucosa is rich in omega-3 fatty acid dicosahexanoic acid (DHA), which has antiinflammatory properties. Aspirin-triggered resolvin D1 (AT-RvD1) is a potent proresolution metabolite of DHA that can curb the inflammatory effects in various acute injuries, yet the effect of AT-RvD1 on hyperoxic acute lung injury (HALI) or in the oxygen toxicity setting in general has not been investigated. The effects of AT-RvD1 on HALI were determined for the first time in 8- to 10-week-old C57BL/6 mice that were exposed to hyperoxia (≥95% O2) for 48 hours. Mice were given AT-RvD1 (100 ng) in saline or a saline vehicle for 24 hours in normoxic (≈21% O2) conditions after hyperoxia. Lung tissue and bronchoalveolar lavage (BAL) fluid were collected for analysis associated with proinflammatory signaling and lung inflammation. AT-RvD1 treatment resulted in reduced oxidative stress, increased glutathione production, and significantly decreased tissue inflammation. AT-RvD1 treatment also significantly reduced the lung wet/dry ratio, protein in BAL fluid, and decreased apoptotic and NF-κB signaling. These results show that AT-RvD1 curbs oxygen-induced lung edema, permeability, inflammation, and apoptosis and is thus an effective therapy for prolonged hyperoxia exposure in this murine model. PMID:25647402

  6. Correlation between cyclin D1 expression and standard clinicopathological variables in invasive breast cancer in Eastern India

    PubMed Central

    Sarkar, Santanu; Kanoi, Aditya; Bain, Jayanta; Gayen, Rajarshi; Das, Kashi Nath

    2015-01-01

    Introduction: Breast cancer is the leading oncogenic threat in South-East Asian women showing an inexplicable biological aggressiveness. High expression of cyclin D1, a key molecule in breast cancer pathogenesis, has been shown by previous studies in the Western world to be associated with favorable tumoral characteristics. Apart from determining the correlation between cyclin D1 expression and standard clinicopathological variables in invasive breast cancer in Eastern India, questions that we aimed to answer through this study included: Is there a significant regional difference in expression patterns of this protein? And if yes, can it possibly account for the epidemiological differences in breast cancer occurrence and biological behavior? Finally, is testing for overexpression of this protein in regions with limited resources beneficial? Materials and Methods: The present study was carried out on 110 previously untreated, female patients with primary breast carcinoma. Cyclin D1 expression was determined by immunohistochemistry using specific anti-cyclin D1 monoclonal antibodies. Results: Overexpression of cyclin Dl was found in 78 of 110 cases (70.9%). High expression of cyclin D1 showed a significant negative correlation with tumor size (P = 0.023) and tumor grade (P = 0.045). Estrogen receptor and progesterone receptor positive cases showed a significantly positive correlation with cyclin D1 overexpression (P = 0.026 and 0.046, respectively). Interestingly, cyclin D1 positivity showed a strong correlation with the type of surgical procedure performed (P = 0.002). Conclusion: Cyclin D1 overexpression in breast cancer is associated with less aggressive tumoral characteristics. Furthermore, its potential epidemiological role and utility as a prognostic marker have been discussed. PMID:26981504

  7. An overview of Dutch participation in the Spacelab D1 mission and the Columbus Space Station Project

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Articles and a few short descriptions of recent developments in the field of space travel are discussed. Information on research and technology in space to facilitate contact between these two fields is provided. A description is given of the successful Spacelab D-1 flight and the standard instrument package. The Netherlands experiments in the D-1 mission, the next Spacelab flights, and the Columbus program are discussed.

  8. In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in cocaine reward.

    PubMed

    Calipari, Erin S; Bagot, Rosemary C; Purushothaman, Immanuel; Davidson, Thomas J; Yorgason, Jordan T; Peña, Catherine J; Walker, Deena M; Pirpinias, Stephen T; Guise, Kevin G; Ramakrishnan, Charu; Deisseroth, Karl; Nestler, Eric J

    2016-03-01

    The reinforcing and rewarding properties of cocaine are attributed to its ability to increase dopaminergic transmission in nucleus accumbens (NAc). This action reinforces drug taking and seeking and leads to potent and long-lasting associations between the rewarding effects of the drug and the cues associated with its availability. The inability to extinguish these associations is a key factor contributing to relapse. Dopamine produces these effects by controlling the activity of two subpopulations of NAc medium spiny neurons (MSNs) that are defined by their predominant expression of either dopamine D1 or D2 receptors. Previous work has demonstrated that optogenetically stimulating D1 MSNs promotes reward, whereas stimulating D2 MSNs produces aversion. However, we still lack a clear understanding of how the endogenous activity of these cell types is affected by cocaine and encodes information that drives drug-associated behaviors. Using fiber photometry calcium imaging we define D1 MSNs as the specific population of cells in NAc that encodes information about drug associations and elucidate the temporal profile with which D1 activity is increased to drive drug seeking in response to contextual cues. Chronic cocaine exposure dysregulates these D1 signals to both prevent extinction and facilitate reinstatement of drug seeking to drive relapse. Directly manipulating these D1 signals using designer receptors exclusively activated by designer drugs prevents contextual associations. Together, these data elucidate the responses of D1- and D2-type MSNs in NAc to acute cocaine and during the formation of context-reward associations and define how prior cocaine exposure selectively dysregulates D1 signaling to drive relapse.

  9. SOX11 expression is highly specific for mantle cell lymphoma and identifies the cyclin D1-negative subtype

    PubMed Central

    Mozos, Ana; Royo, Cristina; Hartmann, Elena; De Jong, Daphne; Baró, Cristina; Valera, Alexandra; Fu, Kai; Weisenburger, Dennis D.; Delabie, Jan; Chuang, Shih-Sung; Jaffe, Elaine S.; Ruiz-Marcellan, Carmen; Dave, Sandeep; Rimsza, Lisa; Braziel, Rita; Gascoyne, Randy D.; Solé, Francisco; López-Guillermo, Armando; Colomer, Dolors; Staudt, Louis M.; Rosenwald, Andreas; Ott, German; Jares, Pedro; Campo, Elias

    2009-01-01

    Background Cyclin D1-negative mantle cell lymphoma is difficult to distinguish from other small B-cell lymphomas. The clinical and pathological characteristics of patients with this form of lymphoma have not been well defined. Overexpression of the transcription factor SOX11 has been observed in conventional mantle cell lymphoma. The aim of this study was to determine whether this gene is expressed in cyclin D1-negative mantle cell lymphoma and whether its detection may be useful to identify these tumors. Design and Methods The microarray database of 238 mature B-cell neoplasms was re-examined. SOX11 protein expression was investigated immunohistochemically in 12 cases of cyclin D1-negative mantle cell lymphoma, 54 cases of conventional mantle cell lymphoma, and 209 additional lymphoid neoplasms. Results SOX11 mRNA was highly expressed in conventional and cyclin D1-negative mantle cell lymphoma and in 33% of the cases of Burkitt’s lymphoma but not in any other mature lymphoid neoplasm. SOX11 nuclear protein was detected in 50 cases (93%) of conventional mantle cell lymphoma and also in the 12 cyclin D1-negative cases of mantle cell lymphoma, the six cases of lymphoblastic lymphomas, in two of eight cases of Burkitt’s lymphoma, and in two of three T-prolymphocytic leukemias but was negative in the remaining lymphoid neoplasms. Cyclin D2 and D3 mRNA levels were significantly higher in cyclin D1-negative mantle cell lymphoma than in conventional mantle cell lymphoma but the protein expression was not discriminative. The clinico-pathological features and outcomes of the patients with cyclin D1-negative mantle cell lymphoma identified by SOX11 expression were similar to those of patients with conventional mantle cell lymphoma. Conclusions SOX11 mRNA and nuclear protein expression is a highly specific marker for both cyclin D1-positive and negative mantle cell lymphoma. PMID:19880778

  10. Enhanced Resolution of Hyperoxic Acute Lung Injury as a result of Aspirin Triggered Resolvin D1 Treatment

    PubMed Central

    Cox, Ruan; Phillips, Oluwakemi; Fukumoto, Jutaro; Fukumoto, Itsuko; Parthasarathy, Prasanna Tamarapu; Arias, Stephen; Cho, Young; Lockey, Richard F.

    2015-01-01

    Acute lung injury (ALI), which presents as acute respiratory failure, is a major clinical problem that requires aggressive care, and patients who require prolonged oxygen exposure are at risk of developing this disease. Although molecular determinants of ALI have been reported, the molecules involved in disease catabasis associated with oxygen toxicity have not been well studied. It has been reported that lung mucosa is rich in omega-3 fatty acid dicosahexanoic acid (DHA), which has antiinflammatory properties. Aspirin-triggered resolvin D1 (AT-RvD1) is a potent proresolution metabolite of DHA that can curb the inflammatory effects in various acute injuries, yet the effect of AT-RvD1 on hyperoxic acute lung injury (HALI) or in the oxygen toxicity setting in general has not been investigated. The effects of AT-RvD1 on HALI were determined for the first time in 8- to 10-week-old C57BL/6 mice that were exposed to hyperoxia (≥95% O2) for 48 hours. Mice were given AT-RvD1 (100 ng) in saline or a saline vehicle for 24 hours in normoxic (≈21% O2) conditions after hyperoxia. Lung tissue and bronchoalveolar lavage (BAL) fluid were collected for analysis associated with proinflammatory signaling and lung inflammation. AT-RvD1 treatment resulted in reduced oxidative stress, increased glutathione production, and significantly decreased tissue inflammation. AT-RvD1 treatment also significantly reduced the lung wet/dry ratio, protein in BAL fluid, and decreased apoptotic and NF-κB signaling. These results show that AT-RvD1 curbs oxygen-induced lung edema, permeability, inflammation, and apoptosis and is thus an effective therapy for prolonged hyperoxia exposure in this murine model. PMID:25647402

  11. In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in cocaine reward

    PubMed Central

    Calipari, Erin S.; Bagot, Rosemary C.; Purushothaman, Immanuel; Davidson, Thomas J.; Yorgason, Jordan T.; Peña, Catherine J.; Walker, Deena M.; Pirpinias, Stephen T.; Guise, Kevin G.; Ramakrishnan, Charu; Deisseroth, Karl; Nestler, Eric J.

    2016-01-01

    The reinforcing and rewarding properties of cocaine are attributed to its ability to increase dopaminergic transmission in nucleus accumbens (NAc). This action reinforces drug taking and seeking and leads to potent and long-lasting associations between the rewarding effects of the drug and the cues associated with its availability. The inability to extinguish these associations is a key factor contributing to relapse. Dopamine produces these effects by controlling the activity of two subpopulations of NAc medium spiny neurons (MSNs) that are defined by their predominant expression of either dopamine D1 or D2 receptors. Previous work has demonstrated that optogenetically stimulating D1 MSNs promotes reward, whereas stimulating D2 MSNs produces aversion. However, we still lack a clear understanding of how the endogenous activity of these cell types is affected by cocaine and encodes information that drives drug-associated behaviors. Using fiber photometry calcium imaging we define D1 MSNs as the specific population of cells in NAc that encodes information about drug associations and elucidate the temporal profile with which D1 activity is increased to drive drug seeking in response to contextual cues. Chronic cocaine exposure dysregulates these D1 signals to both prevent extinction and facilitate reinstatement of drug seeking to drive relapse. Directly manipulating these D1 signals using designer receptors exclusively activated by designer drugs prevents contextual associations. Together, these data elucidate the responses of D1- and D2-type MSNs in NAc to acute cocaine and during the formation of context–reward associations and define how prior cocaine exposure selectively dysregulates D1 signaling to drive relapse. PMID:26831103

  12. F5D-1 on ramp with Neil Armstrong preparing to fly a Dyna-Soar simulation

    NASA Technical Reports Server (NTRS)

    1962-01-01

    The Douglas F5D-1 Skylancer being pre-flighted by the pilot while the crew chief prepares to pull the wheel chocks on the 'hot gun' ramp at Edwards Air Force Base, California. The aircraft was one of two prototype F5D-1s obtained by NASA Flight Research Center in 1961. The F5D-1 Skylancer (Bu. No. 142350) had a red and white paint pattern with a NASA identification number of 213 which later became NASA 708. The Douglas F5D-1 Skylancer was built by the Navy as an all-weather fighter interceptor that never made the jump to production. Four test aircraft were developed with the same basic airframe as the Douglas F4D Skyray. With increasing modifications the four aircraft were re-designated F5D-1s before their first flights. Future Astronaut Neil Armstrong was one of the NASA research pilots assigned to support duties for the Dyna-Soar program. In addition to working at the Boeing facility in Washington state, Armstrong also tested the Dyna-Soar launch abort profile using this F5D-1, which had a similar wing shape to the Dyna-Soar. The aircraft arrived at the Flight Research Center on June 15, 1961. After the Dyna-Soar program was cancelled in December 1963, this F5D-1 continued to be used, serving as a flying simulator for the M2-F2 and as a chase plane for lifting-body flights (providing the lifting-body pilot with an extra set of eyes to assist in emergencies and avert potential crashes) This F5D-1 left the Flight Research Center (later designated the Dryden Flight Research Center) on May 19, 1970, and was donated to the Neil A. Armstrong Museum in Wapakoneta, Ohio.

  13. Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections.

    PubMed

    Kupchik, Yonatan M; Brown, Robyn M; Heinsbroek, Jasper A; Lobo, Mary Kay; Schwartz, Danielle J; Kalivas, Peter W

    2015-09-01

    It is widely accepted that D1 dopamine receptor-expressing striatal neurons convey their information directly to the output nuclei of the basal ganglia, whereas D2-expressing neurons do so indirectly via pallidal neurons. Combining optogenetics and electrophysiology, we found that this architecture does not apply to mouse nucleus accumbens projections to the ventral pallidum. Thus, current thinking attributing D1 and D2 selectivity to accumbens projections akin to dorsal striatal pathways needs to be reconsidered.

  14. CC2D1A Regulates Human Intellectual and Social Function as well as NF-κB Signaling Homeostasis

    PubMed Central

    Manzini, M. Chiara; Xiong, Lan; Shaheen, Ranad; Tambunan, Dimira E.; Di Costanzo, Stefania; Mitisalis, Vanessa; Tischfield, David J.; Cinquino, Antonella; Ghaziuddin, Mohammed; Christian, Mehtab; Jiang, Qin; Laurent, Sandra; Nanjiani, Zohair A.; Rasheed, Saima; Hill, R. Sean; Lizarraga, Sofia B.; Gleason, Danielle; Sabbagh, Diya; Salih, Mustafa A.; Alkuraya, Fowzan S.; Walsh, Christopher A.

    2015-01-01

    SUMMARY Autism spectrum disorder (ASD) and intellectual disability (ID) are often comorbid, but the extent to which they share common genetic causes remains controversial. Here, we present two autosomal-recessive “founder” mutations in the CC2D1A gene causing fully penetrant cognitive phenotypes, including mild-to-severe ID, ASD, as well as seizures, suggesting shared developmental mechanisms. CC2D1A regulates multiple intracellular signaling pathways, and we found its strongest effect to be on the transcription factor nuclear factor κB (NF-κB). Cc2d1a gain and loss of function both increase activation of NF-κB, revealing a critical role of Cc2d1a in homeostatic control of intra-cellular signaling. Cc2d1a knockdown in neurons reduces dendritic complexity and increases NF-κB activity, and the effects of Cc2d1a depletion can be rescued by inhibiting NF-κB activity. Homeostatic regulation of neuronal signaling pathways provides a mechanism whereby common founder mutations could manifest diverse symptoms in different patients. PMID:25066123

  15. Tumor suppressor SMAR1 mediates cyclin D1 repression by recruitment of the SIN3/histone deacetylase 1 complex.

    PubMed

    Rampalli, Shravanti; Pavithra, L; Bhatt, Altaf; Kundu, Tapas K; Chattopadhyay, Samit

    2005-10-01

    Matrix attachment region binding proteins have been shown to play an important role in gene regulation by altering chromatin in a stage- and tissue-specific manner. Our previous studies report that SMAR1, a matrix-associated protein, regresses B16-F1-induced tumors in mice. Here we show SMAR1 targets the cyclin D1 promoter, a gene product whose dysregulation is attributed to breast malignancies. Our studies reveal that SMAR1 represses cyclin D1 gene expression, which can be reversed by small interfering RNA specific to SMAR1. We demonstrate that SMAR1 interacts with histone deacetylation complex 1, SIN3, and pocket retinoblastomas to form a multiprotein repressor complex. This interaction is mediated by the SMAR1(160-350) domain. Our data suggest SMAR1 recruits a repressor complex to the cyclin D1 promoter that results in deacetylation of chromatin at that locus, which spreads to a distance of at least the 5 kb studied upstream of the cyclin D1 promoter. Interestingly, we find that the high induction of cyclin D1 in breast cancer cell lines can be correlated to the decreased levels of SMAR1 in these lines. Our results establish the molecular mechanism exhibited by SMAR1 to regulate cyclin D1 by modification of chromatin. PMID:16166625

  16. Activity of D1/2 Receptor Expressing Neurons in the Nucleus Accumbens Regulates Running, Locomotion, and Food Intake.

    PubMed

    Zhu, Xianglong; Ottenheimer, David; DiLeone, Ralph J

    2016-01-01

    While weight gain is clearly promoted by excessive energy intake and reduced expenditure, the underlying neural mechanisms of energy balance remain unclear. The nucleus accumbens (NAc) is one brain region that has received attention for its role in the regulation of energy balance; its D1 and D2 receptor containing neurons have distinct functions in regulating reward behavior and require further examination. The goal of the present study is to investigate how activation and inhibition of D1 and D2 neurons in the NAc influences behaviors related to energy intake and expenditure. Specific manipulation of D1 vs. D2 neurons was done in both low expenditure and high expenditure (wheel running) conditions to assess behavioral effects in these different states. Direct control of neural activity was achieved using a designer receptors exclusively activated by designer drugs (DREADD) strategy. Activation of NAc D1 neurons increased food intake, wheel running and locomotor activity. In contrast, activation of D2 neurons in the NAc reduced running and locomotion while D2 neuron inhibition had opposite effects. These results highlight the importance of considering both intake and expenditure in the analysis of D1 and D2 neuronal manipulations. Moreover, the behavioral outcomes from NAc D1 neuronal manipulations depend upon the activity state of the animals (wheel running vs. non-running). The data support and complement the hypothesis of specific NAc dopamine pathways facilitating energy expenditure and suggest a potential strategy for human weight control. PMID:27147989

  17. Protocatechualdehyde possesses anti-cancer activity through downregulating cyclin D1 and HDAC2 in human colorectal cancer cells

    SciTech Connect

    Jeong, Jin Boo; Lee, Seong-Ho

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Protocatechualdehyde (PCA) suppressed cell proliferation and induced apoptosis in human colorectal cancer cells. Black-Right-Pointing-Pointer PCA enhanced transcriptional downregulation of cyclin D1 gene. Black-Right-Pointing-Pointer PCA suppressed HDAC2 expression and activity. Black-Right-Pointing-Pointer These findings suggest that anti-cancer activity of PCA may be mediated by reducing HDAC2-derived cyclin D1 expression. -- Abstract: Protocatechualdehyde (PCA) is a naturally occurring polyphenol found in barley, green cavendish bananas, and grapevine leaves. Although a few studies reported growth-inhibitory activity of PCA in breast and leukemia cancer cells, the underlying mechanisms are still poorly understood. Thus, we performed in vitro study to investigate if treatment of PCA affects cell proliferation and apoptosis in human colorectal cancer cells and define potential mechanisms by which PCA mediates growth arrest and apoptosis of cancer cells. Exposure of PCA to human colorectal cancer cells (HCT116 and SW480 cells) suppressed cell growth and induced apoptosis in dose-dependent manner. PCA decreased cyclin D1 expression in protein and mRNA level and suppressed luciferase activity of cyclin D1 promoter, indicating transcriptional downregulation of cyclin D1 gene by PCA. We also observed that PCA treatment attenuated enzyme activity of histone deacetylase (HDAC) and reduced expression of HDAC2, but not HDAC1. These findings suggest that cell growth inhibition and apoptosis by PCA may be a result of HDAC2-mediated cyclin D1 suppression.

  18. A novel MyD-1 (SIRP-1alpha) signaling pathway that inhibits LPS-induced TNFalpha production by monocytes.

    PubMed

    Smith, Rosemary E; Patel, Vanshree; Seatter, Sandra D; Deehan, Maureen R; Brown, Marion H; Brooke, Gareth P; Goodridge, Helen S; Howard, Christopher J; Rigley, Kevin P; Harnett, William; Harnett, Margaret M

    2003-10-01

    MyD-1 (CD172) is a member of the family of signal regulatory phosphatase (SIRP) binding proteins, which is expressed on human CD14+ monocytes and dendritic cells. We now show a novel role for MyD-1 in the regulation of the innate immune system by pathogen products such as lipopolysaccharide (LPS), purified protein derivative (PPD), and Zymosan. Specifically, we demonstrate that ligation of MyD-1 on peripheral blood mononuclear cells (PBMCs) inhibits tumor necrosis factor alpha (TNFalpha) secretion but has no effect on other cytokines induced in response to each of these products. In an attempt to understand the molecular mechanisms underlying this surprisingly selective effect we investigated signal transduction pathways coupled to MyD-1. Ligation of the SIRP was found to recruit the tyrosine phosphatase SHP-2 and promote sequential activation of phosphatidylinositol (PI) 3-kinase, phospholipase D, and sphingosine kinase. Inhibition of LPS-induced TNFalpha secretion by MyD-1 appears to be mediated by this pathway, as the PI 3-kinase inhibitor wortmannin restores normal LPS-driven TNFalpha secretion. MyD-1-coupling to this PI 3-kinase-dependent signaling pathway may therefore present a novel target for the development of therapeutic strategies for combating TNFalpha production and consequent inflammatory disease. PMID:12805067

  19. Activity of D1/2 Receptor Expressing Neurons in the Nucleus Accumbens Regulates Running, Locomotion, and Food Intake

    PubMed Central

    Zhu, Xianglong; Ottenheimer, David; DiLeone, Ralph J.

    2016-01-01

    While weight gain is clearly promoted by excessive energy intake and reduced expenditure, the underlying neural mechanisms of energy balance remain unclear. The nucleus accumbens (NAc) is one brain region that has received attention for its role in the regulation of energy balance; its D1 and D2 receptor containing neurons have distinct functions in regulating reward behavior and require further examination. The goal of the present study is to investigate how activation and inhibition of D1 and D2 neurons in the NAc influences behaviors related to energy intake and expenditure. Specific manipulation of D1 vs. D2 neurons was done in both low expenditure and high expenditure (wheel running) conditions to assess behavioral effects in these different states. Direct control of neural activity was achieved using a designer receptors exclusively activated by designer drugs (DREADD) strategy. Activation of NAc D1 neurons increased food intake, wheel running and locomotor activity. In contrast, activation of D2 neurons in the NAc reduced running and locomotion while D2 neuron inhibition had opposite effects. These results highlight the importance of considering both intake and expenditure in the analysis of D1 and D2 neuronal manipulations. Moreover, the behavioral outcomes from NAc D1 neuronal manipulations depend upon the activity state of the animals (wheel running vs. non-running). The data support and complement the hypothesis of specific NAc dopamine pathways facilitating energy expenditure and suggest a potential strategy for human weight control. PMID:27147989

  20. Effects of Chronic REM Sleep Restriction on D1 Receptor and Related Signal Pathways in Rat Prefrontal Cortex

    PubMed Central

    Han, Yan; Wen, Xiaosa; Rong, Fei; Chen, Xinmin; Ouyang, Ruying; Wu, Shuai; Nian, Hua; Ma, Wenling

    2015-01-01

    The prefrontal cortex (PFC) mediates cognitive function that is sensitive to disruption by sleep loss, and molecular mechanisms regulating neural dysfunction induced by chronic sleep restriction (CSR), particularly in the PFC, have yet to be completely understood. The aim of the present study was to investigate the effect of chronic REM sleep restriction (REM-CSR) on the D1 receptor (D1R) and key molecules in D1R' signal pathways in PFC. We employed the modified multiple platform method to create the REM-CSR rat model. The ultrastructure of PFC was observed by electron microscopy. HPLC was performed to measure the DA level in PFC. The expressions of genes and proteins of related molecules were assayed by real-time PCR and Western blot, respectively. The general state and morphology of PFC in rats were changed by CSR, and DA level and the expression of D1R in PFC were markedly decreased (P < 0.01, P < 0.05); the expression of phosphor-PKAcα was significantly lowered in CSR rats (P < 0.05). The present results suggested that the alteration of neuropathology and D1R expression in PFC may be associated with CSR induced cognitive dysfunction, and the PKA pathway of D1R may play an important role in the impairment of advanced neural function. PMID:25793215

  1. New, tritium-release assay for 25-hydroxyvitamin D-1. cap alpha. -hydroxylase

    SciTech Connect

    Brown, A.J.; Perlman, K.; DeLuca, H.F.

    1986-05-01

    A new, rapid assay for 25-hydroxyvitamin D (25-OH-D)-1..cap alpha..-hydroxylase has been developed using 25-OH-(1..cap alpha..-/sup 3/H)D/sub 3/ as substrate. This compound was prepared by reduction of 1-oxo-25-hydroxycyclovitamin D/sub 3/ with (/sup 3/H)NaBH/sub 4/, separation of the 1..cap alpha..- and 1..beta..-hydroxy products by HPLC, subsequent treatments with methylsulfonylchloride and lithium aluminum hydride, cycloreversion, and saponification. The 1..cap alpha..- and 1..beta..-tritiated substrates were tested in the solubilized and reconstituted chick 1..cap alpha..-hydroxylase system. After incubation, the reaction mixture was passed through a reversed phase silica cartridge to separate (/sup 3/H)H/sub 2/O from the labeled substrate. The cartridges were then washed with methanol to elute all vitamin D metabolites, and the amount of 1,25-(OH)/sub 2/(/sup 3/H)D/sub 3/ was measured by HPLC. In addition, identical reaction mixtures using 25-OH-(26,27-/sup 3/H)D/sub 3/ as substrate were extracted and analyzed by HPLC for 1,25-(OH)/sub 2/(/sup 3/H)D/sub 3/. Reactions with 25-OH-(1..cap alpha..-/sup 3/H)D/sub 3/ produced (/sup 3/H)H/sub 2/O comparable to the amount of 1,25-(OH)/sub 2/(26,27-/sup 3/H)D/sub 3/ and negligible (/sup 3/H) in 1,25-(OH)/sub 2/D/sub 3/. Conversely, reactions with 25-OH-(1..beta..-/sup 3/H)D/sub 3/ produced negligible (/sup 3/H)H/sub 2/O but produced 1,25-(OH)/sub 2/(/sup 3/H)D/sub 3/ comparable to that from reactions with 25-OH-(26,27-/sup 3/H)D/sub 3/. The results indicate that 1..cap alpha..-hydroxylation specifically displaces the 1..cap alpha..-hydrogen of 25-OH-D/sub 3/ and that the release of the 1..cap alpha..-/sup 3/H provides an accurate measure of vitamin D 1..cap alpha..-hydroxylation.

  2. Isotope shift measurements on the D1 line in francium isotopes at TRIUMF

    NASA Astrophysics Data System (ADS)

    Collister, R.; Tandecki, M.; Gwinner, G.; Behr, J. A.; Pearson, M. R.; Gomez, E.; Aubin, S.; Zhang, J.; Orozco, L. A.

    2013-05-01

    Francium is the heaviest alkali and has no stable isotopes. The longest-lived among them, with half-lives from seconds to a few minutes, are now available in the new Francium Trapping Facility at TRIUMF, Canada, for future weak interaction studies. We present isotope shift measurements on the 7S1 / 2 --> 7P1 / 2 (D 1) transition on three isotopes, 206, 207 and 213 in a magneto-optical trap. The shifts are measured using a c.w. Ti:sapphire laser locked to a stabilized cavity at the mid-point between two hyperfine transitions of the reference isotope 209Fr. Scanning tunable microwave sidebands locate transitions in the other isotopes. In combination with the D 2 isotope shifts, analysis can provide a separation of the field shift, due to a changing nuclear charge radius, and specific mass shift, due to changing electron correlations, in these isotopes. Work supported by NSERC and NRC from Canada, NSF and DOE from USA, CONYACT from Mexico.

  3. Role of cyclin D1 amplification and expression in vulvar carcinomas.

    PubMed

    Choschzick, Matthias; Hess, Stephan; Tennstedt, Pierre; Holst, Frederik; Bohlken, Hiltila; Gieseking, Frederike; Mahner, Sven; Woelber, Linn; Simon, Ronald; Sauter, Guido

    2012-09-01

    Cyclin D1 (CCND1) belongs to the family of D-type cyclins involved in cell cycle progression, transcriptional regulation, and cell migration. CCND1 was found to be amplified and overexpressed in a variety of cancers, including some vulvar carcinoma cell lines. To determine the relationship of CCND1 copy number changes and CCND1 protein expression with clinicopathologic features and prognosis, 183 vulvar carcinomas were analyzed on a tissue microarray. Amplification was observed in 32 (22.4%) vulvar cancer specimens and was statistically related to the presence of regional lymph node metastases (P < .001). Detectable CCND1 expression was found in 139 (83.2%) of vulvar carcinomas, and 76 (45.5%) exhibited a moderate or strong expression. Increased levels of CCND1 expression were significantly related to higher patient age (P = .013), positive pN category (P = .004), and negative human papillomavirus status (P < .001). Basaloid as well as verrucous, warty-type, and mixed vulvar carcinomas showed lower CCND1 expression levels than keratinizing or nonkeratinizing tumors (P < .001 and P = .032, respectively). Elevated CCND1 expression levels and amplification of the CCND1 gene were closely connected in the present analysis (P < .001). Patient prognosis was independent from CCND1 amplification status and expression level (P = .57 each). In conclusion, CCND1 is amplified and overexpressed in a substantial proportion of vulvar carcinomas and associated with the occurrence of locoregional lymph node metastases, especially in human papillomavirus-negative tumors.

  4. Xylanase Production by Bacillus circulans D1 Using Maltose as Carbon Source

    NASA Astrophysics Data System (ADS)

    Bocchini, D. A.; Gomes, E.; da Silva, R.

    Bacillus circulans D1 is a good producer of extracellular thermostable xylanase. Xylanase production in different carbon sources was evaluated and the enzyme synthesis was induced by various carbon sources. It was found that d-maltose is the best inducer of the enzyme synthesis (7.05 U/mg dry biomass at 48 h), while d-glucose and d-arabinose lead to the production of basal levels of xylanase. The crude enzyme solution is free of cellulases, even when the microorganism was cultivated in a medium with d-cellobiose. When oat spelt xylan was supplemented with d-glucose, the repressive effect of this sugar on xylanase production was observed at 24 h, only when used at 5.0 g/L, leading to a reduction of 60% on the enzyme production. On the other hand, when the xylan medium was supplemented with d-xylose (3.0 or 5.0 g/L), this effect was more evident (80 and 90% of reduction on the enzyme production, respectively). Unlike that observed in the xylan medium, glucose repressed xylanase production in the maltose medium, leading to a reduction of 55% on the enzyme production at 24 h of cultivation. Xylose, at 1.0 g/L, induced xylanase production on the maltose medium. On this medium, the repressive effect of xylose, at 3.0 or 5.0 g/L, was less expressive when compared to its effect on the xylan medium.

  5. Cyclin D1, a novel molecular marker of minimal residual disease, in metastatic neuroblastoma.

    PubMed

    Cheung, Irene Y; Feng, Yi; Vickers, Andrew; Gerald, William; Cheung, Nai-Kong V

    2007-04-01

    Accurate monitoring of minimal residual disease (MRD) is critical for the management of metastatic neuroblastoma (NB). We evaluated cyclin D1 (CCND1), a cell-cycle control gene, as a novel MRD marker of NB. Using quantitative reverse transcriptase-polymerase chain reaction, we studied CCND1 expression in 133 solid tumors of different histological types, including 39 NB tumors, and examined its potential clinical utility as an early response marker in the bone marrows before and after treatment of 118 stage 4 patients enrolled after induction chemotherapy in an immunotherapy protocol. Based on 40 normal marrow and peripheral blood samples, a CCND1 transcript value greater than the mean + 2 SD was defined as positive. Sensitivity of this assay was one NB cell in 10(6) normal mononuclear cells. CCND1 transcript levels were high in NB, breast cancer, and Ewing family tumors. Among the NB patients evaluated, early (2.5 months from protocol entry) marrow response was strongly associated with both progression-free (P=0.0001) and overall survival (P=0.0006). CCND1 response remained predictive of survival among a subset of 66 patients who had no histological evidence of marrow disease before immunotherapy. We conclude that CCND1 has potential clinical utility as a novel molecular marker of MRD in the bone marrow of patients with metastatic NB.

  6. Cyclin D1 down-regulation is essential for DBC2's tumor suppressor function

    SciTech Connect

    Yoshihara, Takashi; Collado, Denise; Hamaguchi, Masaaki . E-mail: hamaguchi@fordham.edu

    2007-07-13

    The expression of tumor suppressor gene DBC2 causes certain breast cancer cells to stop growing [M. Hamaguchi, J.L. Meth, C. Von Klitzing, W. Wei, D. Esposito, L. Rodgers, T. Walsh, P. Welcsh, M.C. King, M.H. Wigler, DBC2, a candidate for a tumor suppressor gene involved in breast cancer, Proc. Natl. Acad. Sci. USA 99 (2002) 13647-13652]. Recently, DBC2 was found to participate in diverse cellular functions such as protein transport, cytoskeleton regulation, apoptosis, and cell cycle control [V. Siripurapu, J.L. Meth, N. Kobayashi, M. Hamaguchi, DBC2 significantly influences cell cycle, apoptosis, cytoskeleton, and membrane trafficking pathways. J. Mol. Biol. 346 (2005) 83-89]. Its tumor suppression mechanism, however, remains unclear. In this paper, we demonstrate that DBC2 suppresses breast cancer proliferation through down-regulation of Cyclin D1 (CCND1). Additionally, the constitutional overexpression of CCND1 prevented the negative impact of DBC2 expression on their growth. Under a CCND1 promoter, the expression of CCNE1 exhibited the same protective effect. Our results indicate that the down-regulation of CCND1 is an essential step for DBC2's growth suppression of cancer cells. We believe that this discovery contributes to a better understanding of DBC2's tumor suppressor function.

  7. Dynamics of H Atom Production from Photodissociation of Acetic Acid-d(1).

    PubMed

    Park, Sung Man; Kwon, Chan Ho; Kim, Hong Lae

    2015-09-10

    Detailed dissociation dynamics of H(D) from acetic acid-d1 (CH3COOD) has been investigated upon electronic excitation to the (1)(n,π*), S1 state at 205 nm by measuring laser-induced fluorescence spectra of the fragment H(D) atoms. In addition, quantum yields for the H(D) atom dissociation channels, CH3COO + D and CH2COOD + H, were measured, which are 0.07 ± 0.03 and 0.17 ± 0.03, respectively. From the Doppler broadened spectra, the center-of-mass translational energy releases into products were obtained. To determine the detailed dissociation dynamics, two-dimensional potential energy surfaces along the reaction coordinate including the coordinate directly coupled to the dissociation coordinate were examined by employing quantum chemical calculations. For the CH3COO + D channel, the coupled coordinate is the dihedral angle of D against the COO plane. The dissociation of D(H) from acetic acid should take place along the triplet surface via surface crossing from the initially excited S1 state. Along the triplet surface, an exit channel barrier exists, which originates from the structural difference between the T1 and the product asymptotes, especially the dihedral angle of D against the COO plane. The observed translational energy releases were successfully estimated by the barrier impulsive model based upon the calculated two-dimensional potential energy surfaces at the B3LYP/cc-pVDZ level of theory. PMID:26294176

  8. Massless conformal fields, AdS(d + 1)/CFTd higher spin algebras and their deformations

    NASA Astrophysics Data System (ADS)

    Fernando, Sudarshan; Günaydin, Murat

    2016-03-01

    We extend our earlier work on the minimal unitary representation of SO (d , 2) and its deformations for d = 4 , 5 and 6 to arbitrary dimensions d. We show that there is a one-to-one correspondence between the minrep of SO (d , 2) and its deformations and massless conformal fields in Minkowskian spacetimes in d dimensions. The minrep describes a massless conformal scalar field, and its deformations describe massless conformal fields of higher spin. The generators of Joseph ideal vanish identically as operators for the quasiconformal realization of the minrep, and its enveloping algebra yields directly the standard bosonic AdS (d + 1) /CFTd higher spin algebra. For deformed minreps the generators of certain deformations of Joseph ideal vanish as operators and their enveloping algebras lead to deformations of the standard bosonic higher spin algebra. In odd dimensions there is a unique deformation of the higher spin algebra corresponding to the spinor singleton. In even dimensions one finds infinitely many deformations of the higher spin algebra labelled by the eigenvalues of Casimir operator of the little group SO (d - 2) for massless representations.

  9. Phospholipase D1 facilitates second-phase myoblast fusion and skeletal muscle regeneration.

    PubMed

    Teng, Shuzhi; Stegner, David; Chen, Qin; Hongu, Tsunaki; Hasegawa, Hiroshi; Chen, Li; Kanaho, Yasunori; Nieswandt, Bernhard; Frohman, Michael A; Huang, Ping

    2015-02-01

    Myoblast differentiation and fusion is a well-orchestrated multistep process that is essential for skeletal muscle development and regeneration. Phospholipase D1 (PLD1) has been implicated in the initiation of myoblast differentiation in vitro. However, whether PLD1 plays additional roles in myoblast fusion and exerts a function in myogenesis in vivo remains unknown. Here we show that PLD1 expression is up-regulated in myogenic cells during muscle regeneration after cardiotoxin injury and that genetic ablation of PLD1 results in delayed myofiber regeneration. Myoblasts derived from PLD1-null mice or treated with PLD1-specific inhibitor are unable to form mature myotubes, indicating defects in second-phase myoblast fusion. Concomitantly, the PLD1 product phosphatidic acid is transiently detected on the plasma membrane of differentiating myocytes, and its production is inhibited by PLD1 knockdown. Exogenous lysophosphatidylcholine, a key membrane lipid for fusion pore formation, partially rescues fusion defect resulting from PLD1 inhibition. Thus these studies demonstrate a role for PLD1 in myoblast fusion during myogenesis in which PLD1 facilitates the fusion of mononuclear myocytes with nascent myotubes. PMID:25428992

  10. Stimulatory effect of ethanol on libertellenone H biosynthesis by Arctic fungus Eutypella sp. D-1.

    PubMed

    Shen, Chu; Xu, Ning; Gao, Yanyun; Sun, Xiaoyue; Yin, Ying; Cai, Menghao; Zhou, Xiangshan; Zhang, Yuanxing

    2016-02-01

    Libertellenone H (1) was a promising antitumor diterpenoid isolated from Arctic fungus Eutypella sp. D-1, however, its production was very limited. In this study, we investigated the effects of ethanol on cell growth and libertellenone H production. The mycelium in ethanol-feeding cultures was fragmented and dispersed, and the titer of libertellenone H was remarkably increased to 4.88 mg l(-1) in an optimal feeding manner, which was 16.4-fold higher than the control group. To provide an insight into the cell response to ethanol, genes critical to the libertellenone H biosynthesis were successfully cloned and their transcription levels were determined. The results suggested that the gene transcription levels of 3-hydroxy-3-methyl glutaric acyl coenzyme A reductase and geranylgeranyl diphosphate synthase were up-regulated by ethanol stimulation. The results from this study were helpful for further understanding of the ethanol function on diterpenes biosynthesis as well as developing more effective strategies for over-production of these desired secondary metabolites.

  11. D1 Receptor Activation in the Mushroom Bodies Rescues Sleep Loss Induced Learning Impairments in Drosophila

    PubMed Central

    Seugnet, Laurent; Suzuki, Yasuko; Vine, Lucy; Gottschalk, Laura; Shaw, Paul J

    2008-01-01

    Background Extended wakefulness disrupts acquisition of short term memories in mammals. However, the underlying molecular mechanisms triggered by extended waking and restored by sleep are unknown. Moreover, the neuronal circuits that depend on sleep for optimal learning remain unidentified. Results Learning was evaluated using Aversive Phototaxic Suppression (APS). In this task, flies learn to avoid light that is paired with an aversive stimulus (quinine /humidity). We demonstrate extensive homology in sleep deprivation induced learning impairment between flies and humans. Both 6 h and 12 h of sleep deprivation are sufficient to impair learning in Canton-S (Cs) flies. Moreover, learning is impaired at the end of the normal waking-day in direct correlation with time spent awake. Mechanistic studies indicate that this task requires intact mushroom bodies (MBs) and requires the Dopamine D1-like receptor (dDA1). Importantly, sleep deprivation induced learning impairments could be rescued by targeted gene expression of the dDA1 receptor to the MBs. Conclusion These data provide direct evidence that extended wakefulness disrupts learning in Drosophila. These results demonstrate that it is possible to prevent the effects of sleep deprivation by targeting a single neuronal structure and identify cellular and molecular targets adversely affected by extended waking in a genetically tractable model organism. PMID:18674913

  12. A Deconstruction Lattice Description of the D1/D5 Brane World-Volume Gauge Theory

    DOE PAGES

    Giedt, Joel

    2011-01-01

    I genermore » alize the deconstruction lattice formulation of Endres and Kaplan to two-dimensional super-QCD with eight supercharges, denoted by (4,4), and bifundamental matter. I specialize to a particularly interesting (4,4) gauge theory, with gauge group U ( N c ) × U ( N f ) , and U ( N f ) being weakly gauged. It describes the infrared limit of the D1/D5 brane system, which has been studied extensively as an example of the AdS 3 /CFT 2 correspondence. The construction here preserves two supercharges exactly and has a lattice structure quite similar to that which has previously appeared in the deconstruction approach, that is, site, link, and diagonal fields with both the Bose and Fermi statistics. I remark on possible applications of the lattice theory that would test the AdS 3 /CFT 2 correspondence, particularly one that would exploit the recent worldsheet instanton analysis of Chen and Tong.« less

  13. Aggregation of LoD 1 building models as an optimization problem

    NASA Astrophysics Data System (ADS)

    Guercke, R.; Götzelmann, T.; Brenner, C.; Sester, M.

    3D city models offered by digital map providers typically consist of several thousands or even millions of individual buildings. Those buildings are usually generated in an automated fashion from high resolution cadastral and remote sensing data and can be very detailed. However, not in every application such a high degree of detail is desirable. One way to remove complexity is to aggregate individual buildings, simplify the ground plan and assign an appropriate average building height. This task is computationally complex because it includes the combinatorial optimization problem of determining which subset of the original set of buildings should best be aggregated to meet the demands of an application. In this article, we introduce approaches to express different aspects of the aggregation of LoD 1 building models in the form of Mixed Integer Programming (MIP) problems. The advantage of this approach is that for linear (and some quadratic) MIP problems, sophisticated software exists to find exact solutions (global optima) with reasonable effort. We also propose two different heuristic approaches based on the region growing strategy and evaluate their potential for optimization by comparing their performance to a MIP-based approach.

  14. Cytoplasmic cyclin D1 regulates cell invasion and metastasis through the phosphorylation of paxillin

    PubMed Central

    Fusté, Noel P.; Fernández-Hernández, Rita; Cemeli, Tània; Mirantes, Cristina; Pedraza, Neus; Rafel, Marta; Torres-Rosell, Jordi; Colomina, Neus; Ferrezuelo, Francisco; Dolcet, Xavier; Garí, Eloi

    2016-01-01

    Cyclin D1 (Ccnd1) together with its binding partner Cdk4 act as a transcriptional regulator to control cell proliferation and migration, and abnormal Ccnd1·Cdk4 expression promotes tumour growth and metastasis. While different nuclear Ccnd1·Cdk4 targets participating in cell proliferation and tissue development have been identified, little is known about how Ccnd1·Cdk4 controls cell adherence and invasion. Here, we show that the focal adhesion component paxillin is a cytoplasmic substrate of Ccnd1·Cdk4. This complex phosphorylates a fraction of paxillin specifically associated to the cell membrane, and promotes Rac1 activation, thereby triggering membrane ruffling and cell invasion in both normal fibroblasts and tumour cells. Our results demonstrate that localization of Ccnd1·Cdk4 to the cytoplasm does not simply act to restrain cell proliferation, but constitutes a functionally relevant mechanism operating under normal and pathological conditions to control cell adhesion, migration and metastasis through activation of a Ccnd1·Cdk4-paxillin-Rac1 axis. PMID:27181366

  15. 1D-1D Coulomb drag in a 6 Million Mobility Bi-layer Heterostructure

    NASA Astrophysics Data System (ADS)

    Bilodeau, Simon; Laroche, Dominique; Xia, Jian-Sheng; Lilly, Mike; Reno, John; Pfeiffer, Loren; West, Ken; Gervais, Guillaume

    We report Coulomb drag measurements in vertically-coupled quantum wires. The wires are fabricated in GaAs/AlGaAs bilayer heterostructures grown from two different MBE chambers: one at Sandia National Laboratories (1.2M mobility), and the other at Princeton University (6M mobility). The previously observed positive and negative drag signals are seen in both types of devices, demonstrating the robustness of the result. However, attempts to determine the temperature dependence of the drag signal in the 1D regime proved challenging in the higher mobility heterostructure (Princeton), in part because of difficulties in aligning the wires within the same transverse subband configuration. Nevertheless, this work, performed at the Microkelvin laboratory of the University of Florida, is an important proof-of-concept for future investigations of the temperature dependence of the 1D-1D drag signal down to a few mK. Such an experiment could confirm the Luttinger charge density wave interlocking predicted to occur in the wires. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL8500.

  16. Phospholipase D1 facilitates second-phase myoblast fusion and skeletal muscle regeneration.

    PubMed

    Teng, Shuzhi; Stegner, David; Chen, Qin; Hongu, Tsunaki; Hasegawa, Hiroshi; Chen, Li; Kanaho, Yasunori; Nieswandt, Bernhard; Frohman, Michael A; Huang, Ping

    2015-02-01

    Myoblast differentiation and fusion is a well-orchestrated multistep process that is essential for skeletal muscle development and regeneration. Phospholipase D1 (PLD1) has been implicated in the initiation of myoblast differentiation in vitro. However, whether PLD1 plays additional roles in myoblast fusion and exerts a function in myogenesis in vivo remains unknown. Here we show that PLD1 expression is up-regulated in myogenic cells during muscle regeneration after cardiotoxin injury and that genetic ablation of PLD1 results in delayed myofiber regeneration. Myoblasts derived from PLD1-null mice or treated with PLD1-specific inhibitor are unable to form mature myotubes, indicating defects in second-phase myoblast fusion. Concomitantly, the PLD1 product phosphatidic acid is transiently detected on the plasma membrane of differentiating myocytes, and its production is inhibited by PLD1 knockdown. Exogenous lysophosphatidylcholine, a key membrane lipid for fusion pore formation, partially rescues fusion defect resulting from PLD1 inhibition. Thus these studies demonstrate a role for PLD1 in myoblast fusion during myogenesis in which PLD1 facilitates the fusion of mononuclear myocytes with nascent myotubes.

  17. Bosonization, cocycles, and the D1-D5 CFT on the covering surface

    NASA Astrophysics Data System (ADS)

    Burrington, Benjamin A.; Peet, Amanda W.; Zadeh, Ida G.

    2016-01-01

    We consider the D1-D5 CFT near the orbifold point, specifically the computation of correlators involving twist sector fields using covering surface techniques. As is well known, certain twists introduce spin fields on the cover. Here we consider the bosonization of fermions to facilitate computations involving the spin fields. We find a set of cocycle operators that satisfy constraints coming from various S U (2 ) symmetries, including the S U (2 )L×S U (2 )R R-symmetry. Using these cocycles, we consider the correlator of four spin fields on the cover, and show that it is invariant under all of the S U (2 ) symmetries of the theory. We consider the mutual locality of operators, and compute several three-point functions. These computations lead us to a notion of radial ordering on the cover that is inherited from the original computation before lifting. Further, we note that summing over orbifold images sets certain branch-cut ambiguous correlators to zero.

  18. Non-supersymmetric D1/D5, F/NS5 and closed string tachyon condensation

    NASA Astrophysics Data System (ADS)

    Lu, J. X.; Roy, Shibaji; Wang, Zhao-Long; Wu, Rong-Jun

    2009-09-01

    We construct the intersecting non-supersymmetric (non-susy) D1/D5 solution of type IIB string theory. While, as usual, the solution is charged under an electric two-form and an electric six-form gauge field, it also contains a non-susy chargeless (non-BPS) D0-brane. The S-dual of this solution is the non-susy F/NS5 solution. We show how these solutions nicely interpolate between the corresponding black (or non-extremal) solutions and the Kaluza-Klein (KK) "bubble of nothing" (BON) by continuously changing some parameters characterizing the solutions from one set of values to another. We show, by a time symmetric general bubble initial data analysis, that the final bubbles in these cases are static and stable and the interpolations can be physically interpreted as closed string tachyon condensation. As special cases, we recover the transition of two charge black F-string to BON, considered by Horowitz, and also the transition from AdS 3 black hole to global AdS 3.

  19. Phospholipase D1 decreases type I collagen levels in hepatic stellate cells via induction of autophagy.

    PubMed

    Seo, H-Y; Jang, B-K; Jung, Y-A; Lee, E-J; Kim, H-S; Jeon, J-H; Kim, J-G; Lee, I-K; Kim, M-K; Park, K-G

    2014-06-20

    Hepatic stellate cells (HSCs) are major players in liver fibrogenesis. Accumulating evidence shows that suppression of autophagy plays an important role in the development and progression of liver disease. Phospholipase D1 (PLD1), which catalyzes the hydrolysis of phosphatidylcholine to yield phosphatidic acid (PA) and choline, was recently shown to modulate autophagy. However, little is known about the effects of PLD1 on the production of type I collagen that characterizes liver fibrosis. Here, we examined whether PLD1 regulates type I collagen levels in HSCs through induction of autophagy. Adenovirus-mediated overexpression of PLD-1 (Ad-PLD1) reduced type I collagen levels in the activated human HSC lines, hTERT and LX2. Overexpression of PLD1 in HSCs led to induction of autophagy as demonstrated by increased LC3-II conversion and formation of LC3 puncta, and decreased p62 abundance. Moreover, inhibiting the induction of autophagy by treating cells with bafilomycin or a small interfering (si)RNA for ATG7 rescued Ad-PLD1-induced suppression of type I collagen accumulation in HSCs. The effects of PLD on type I collagen levels were not related to TGF-β/Smad signaling. Furthermore, treatment of cells with PA induced autophagy and inhibited type I collagen accumulation. The present study indicates that PLD1 plays a role in regulating type I collagen accumulation through induction of autophagy. PMID:24802400

  20. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation.

    PubMed

    Chen, Zhi-Dong; Xu, Liang; Tang, Kan-Kai; Gong, Fang-Xiao; Liu, Jing-Quan; Ni, Yin; Jiang, Ling-Zhi; Hong, Jun; Han, Fang; Li, Qian; Yang, Xiang-Hong; Sun, Ren-Hua; Mo, Shi-Jing

    2016-09-10

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβ phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury.

  1. Amino acid residue 247 in canine sulphotransferase SULT1D1: a new determinant of substrate selectivity.

    PubMed Central

    Tsoi, Carrie; Widersten, Mikael; Morgenstern, Ralf; Swedmark, Stellan

    2004-01-01

    The SULT (sulphotransferase) family plays a critical role in the detoxification and activation of endogenous and exogenous compounds as well as in the regulation of steroid hormone actions and neurotransmitter functions. The structure-activity relationships of the human SULTs have been investigated with focus on the amino acid 146 in hSULT1A3 and its impact on dopamine/PNP (p-nitrophenol) specificity. In the present study, we have generated canine SULT1D1 (cSULT1D1) variants with mutations at amino acid residues in the substrate-binding pocket [A146E (Ala-146-->Glu), A146D, A146Q, I86D or D247L]. These mutation sites were chosen with regard to their possible contribution to the marked dopamine/PNP preference of cSULT1D1. After characterization, we found that the overall sulphation efficiencies for the cSULT1D1 A146 and the I86 mutants were strongly decreased for both substrates compared with wild-type cSULT1D1 but the substrate preference was unchanged. In contrast, the D247L mutant was found to be more than 21-fold better at sulphating PNP (120-fold decrease in K(m) value) but 54-fold less efficient in sulphating dopamine (8-fold increase in K(m) value) and the preference was switched from dopamine to PNP, indicating the importance of this amino acid in the dopamine/PNP preference in cSULT1D1. Our results show that Asp-247 has a pronounced effect on the substrate specificity of cSULT1D1 and thus we have identified a previously unrecognized contributor to active-site selectivity. PMID:14614767

  2. Cyclin D1 is dispensable for G1 control in retinoblastoma gene-deficient cells independently of cdk4 activity.

    PubMed Central

    Lukas, J; Bartkova, J; Rohde, M; Strauss, M; Bartek, J

    1995-01-01

    To elucidate the regulator-versus-target relationship in the cyclin D1/cdk4/retinoblastoma protein (pRB) pathway, we examined fibroblasts from RB-1 gene-deficient and RB-1 wild-type littermate mouse embryos (ME) and in human tumor cell lines that differed in the status of the RB-1 gene. The RB+/+ and RB-/- ME fibroblasts expressed similar protein levels of D-type cyclins, cdk4, and cdk6, showed analogous spectra and abundance of cellular proteins complexed with cdk4 and/or cyclins D1 and D2, and exhibited comparable associated kinase activities. Of the two human cell lines established from the same sarcoma biopsy, the RB-positive SKUT1B cells contained cdk4 that was mainly associated with D-type cyclins, contrary to a predominant cdk4-p16INK4 complex in the RB-deficient SKUT1A cells. Antibody-mediated neutralization of cyclin D1 arrested the RB-positive ME and SKUT1B cells in G1, whereas this cyclin appeared dispensable in the RB-deficient ME and SKUT1A cells. Lack of requirement for cyclin D1 therefore correlated with absence of functional pRB, regardless of whether active cyclin D1/cdk4 holoenzyme was present in the cells under study. Consistent with a potential role of cyclin D/cdk4 in phosphorylation of pRB, monoclonal anti-cyclin D1 antibodies supporting the associated kinase activity failed to significantly affect proliferation of RB-positive cells, whereas the antibody DCS-6, unable to coprecipitate cdk4, efficiently inhibited G1 progression and prevented pRB phosphorylation in vivo. These data provide evidence for an upstream control function of cyclin D1/cdk4, and a downstream role for pRB, in the order of events regulating transition through late G1 phase of the mammalian cell division cycle. PMID:7739541

  3. The expression status of TRX, AR, and cyclin D1 correlates with clinicopathological characteristics and ER status in breast cancer

    PubMed Central

    Huang, Weisun; Nie, Weiwei; Zhang, Wenwen; Wang, Yanru; Zhu, Aiyu; Guan, Xiaoxiang

    2016-01-01

    Background The ER signaling pathway plays a critical role in breast cancer. ER signaling pathway-related proteins, such as TRX, AR, and cyclin D1, may have an important function in breast cancer. However, the ways that they influence breast cancer development and progression are still unclear. Patients and methods A total of 101 Chinese female patients diagnosed with invasive ductal breast adenocarcinoma were retrospectively enrolled in the study. The expression levels of TRX, AR, and cyclin D1 were detected by immunohistochemistry and analyzed via correlation with clinicopathological characteristics and the expression status of ER, PR, and HER2. Results The expression status of TRX, AR, and cyclin D1 was not associated with the patient’s age, menopausal status, tumor size, or histological differentiation (P>0.05), but was positively correlated with ER and PR (P<0.001, respectively). Most (66/76, 86.8) TRX-positive patients were also HER2-positive (P=0.003). Of AR- or cyclin D1-positive patients, most had relatively earlier I–II tumor stage (P=0.005 and P=0.047, respectively) and no metastatic lymph node involvement (P=0.008 and P=0.005, respectively). Conclusion TRX was found to be positively correlated with ER and PR expression, whereas it was negatively correlated with HER2 expression. In addition, we found that the positive expression of AR and cyclin D1 was correlated with lower TNM stage and fewer metastatic lymph nodes, and it was more common in ER-positive breast cancer than in the basal-like subtype. This may indicate that AR and cyclin D1 are good predictive and prognostic factors and closely interact with ER signaling pathway. Further studies will be necessary to investigate the response and clinical outcomes of treatment targeting TRX, AR, and cyclin D1. PMID:27499632

  4. The roles of CC2D1A and HTR1A gene expressions in autism spectrum disorders.

    PubMed

    Sener, Elif Funda; Cıkılı Uytun, Merve; Korkmaz Bayramov, Keziban; Zararsiz, Gokmen; Oztop, Didem Behice; Canatan, Halit; Ozkul, Yusuf

    2016-06-01

    Classical autism belongs to a group of heterogeneous disorders known as autism spectrum disorders (ASD). Autism is defined as a neurodevelopmental disorder, characterized by repetitive stereotypic behaviors or restricted interests, social withdrawal, and communication deficits. Numerous susceptibility genes and chromosomal abnormalities have been reported in association with autism but the etiology of this disorder is unknown in many cases. CC2D1A gene has been linked to mental retardation (MR) in a family with a large deletion before. Intellectual disability (ID) is a common feature of autistic cases. Therefore we aimed to investigate the expressions of CC2D1A and HTR1A genes with the diagnosis of autism in Turkey. Forty-four autistic patients (35 boys, 9 girls) and 27 controls were enrolled and obtained whole blood samples to isolate RNA samples from each participant. CC2D1A and HTR1A gene expressions were assessed by quantitative Real-Time PCR (qRT-PCR) in Genome and Stem Cell Center, Erciyes University. Both expressions of CC2D1A and HTR1A genes studied on ASD cases and controls were significantly different (p < 0.001). The expression of HTR1A was undetectable in the ASD samples. Comparison of ID and CC2D1A gene expression was also found statistically significant (p = 0.028). CC2D1A gene expression may be used as a candidate gene for ASD cases with ID. Further studies are needed to investigate the potential roles of these CC2D1A and HTR1A genes in their related pathways in ASD.

  5. Synergistic effects of AKAP95, Cyclin D1, Cyclin E1, and Cx43 in the development of rectal cancer

    PubMed Central

    Qi, Fengjie; Yuan, Yangyang; Zhi, Xuehong; Huang, Qian; Chen, Yuexin; Zhuang, Wenxin; Zhang, Dengcheng; Teng, Bogang; Kong, Xiangyu; Zhang, Yongxing

    2015-01-01

    Objective: To explore the expression of A-kinase anchor protein 95 (AKAP95), Cyclin D1, Cyclin E1, and Connexin43 (Cx43) in rectal cancer tissues and assess the associations between each of the proteins and pathological parameters, as well as their inter-relationships. Methods: AKAP95, Cyclin D1, Cyclin E1, and Cx43 protein expression rates were evaluated by immunohistochemistry in 50 rectal cancer specimens and 16 pericarcinoma tissues. Results: The positive rates of AKAP95, Cyclin E1, and Cyclin D1 proteins were 54.00 vs. 18.75%, 62.00 vs. 6.25%, and 72.00 vs. 31.25% in rectal cancer specimens and pericarcinoma tissues, respectively, representing statistically significant differences (P < 0.05). The positive rate of Cx43 protein expression in rectal cancer tissues was 44.00% and 62.50% in pericarcinoma tissues, and the difference between them was not significant (P > 0.05). No significant associations were found between protein expression of AKAP95, Cyclin E1, Cyclin D1, and Cx43, and the degree of differentiation, histological type, and lymph node metastasis of rectal cancer (P > 0.05). However, significant correlations were obtained between the expression rates of AKAP95 and Cyclin E1, Cyclin E1 and Cyclin D1, Cyclin E1 and Cx43 protein, and Cyclin D1 and Cx43, respectively (P < 0.05). Conclusion: AKAP95, Cyclin E1, and Cyclin D1 protein expression rates were significantly higher in rectal cancer tissues compared with pericarcinoma samples, suggesting an association between these proteins and the development and progression of rectal cancer. In addition, the significant correlations between the proteins (AKAP95 and Cyclin E1, Cyclin E1 and Cyclin D1, Cyclin E1 and Cx43 protein, and Cyclin D1 and Cx43) indicate the possible synergistic effects of these factors in the development and progression of rectal cancer. PMID:25973052

  6. Dopamine D1 and D3 receptors mediate reconsolidation of cocaine memories in mouse models of drug self-administration

    PubMed Central

    Yan, Yijin; Newman, Amy Hauck; Xu, Ming

    2014-01-01

    Memories of drug experience and drug-associated environmental cues can elicit drug-seeking and taking behaviors in humans. Disruption of reconsolidation of drug memories dampens previous memories and therefore may provide a useful way to treat drug abuse. We and others previously demonstrated that dopamine D1 and D3 receptors play differential roles in acquiring cocaine-induced behaviors. Moreover, D3 receptors contribute to the reconsolidation of cocaine-induced conditioned place preference. In the present study, we examined effects of manipulating D1 or D3 receptors on reconsolidation of cocaine memories in mouse models of drug self-administration. We found that pharmacological blockade of D1 receptors or a genetic mutation of the D3 receptor gene attenuated reconsolidation that lasted for at least 1 week after the memory retrieval. In contrast, with no memory retrieval, pharmacological antagonism of D1 receptors or the D3 receptor gene mutation did not significantly affect reconsolidation of cocaine memories. Pharmacological blockade of D3 receptors also attenuated reconsolidation in wild-type mice that lasted for at least 1 week after the memory retrieval. These results suggest that D1 and D3 receptors and related signaling mechanisms play key roles in reconsolidation of cocaine memories in mice, and that these receptors may serve as novel targets for the treatment of cocaine abuse in humans. PMID:25149631

  7. D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines.

    PubMed Central

    Smiley, J F; Levey, A I; Ciliax, B J; Goldman-Rakic, P S

    1994-01-01

    Antibodies to the D1 dopamine receptor were used to localize this protein in several areas of human and monkey cerebral cortex with light and electron microscopy. In addition to cell body labeling in monkeys, all areas of humans and monkeys had a neuropil label with a laminar distribution predicted by previous D1 receptor autoradiography studies. Using electron microscopy, this neuropil label was seen in numerous dendritic spines, in dendritic shafts, and in occasional axon terminals. While labeled spines were common, they represented only a subset of all cortical spines. Serial sectioning through labeled spines showed that the diaminobenzidine reaction product was usually not at postsynaptic densities but instead was displaced to the side of the large asymmetric (presumed glutamatergic) synapse. Furthermore, most labeled spines did not receive synapses with dopaminergic features, suggesting that many D1 receptors are at extrasynaptic sites, possibly receiving dopamine via diffusion in the neuropil. Similarly, double labeling failed to reveal D1 labeling at synapses of tyrosine hydroxylase immunoreactive axons. Localization to numerous dendritic spines suggests that a primary role of D1 receptors is modulation of glutamatergic input to cortical pyramidal cells. Images PMID:7911245

  8. Plant Defensins NaD1 and NaD2 Induce Different Stress Response Pathways in Fungi.

    PubMed

    Dracatos, Peter M; Payne, Jennifer; Di Pietro, Antonio; Anderson, Marilyn A; Plummer, Kim M

    2016-09-03

    Nicotiana alata defensins 1 and 2 (NaD1 and NaD2) are plant defensins from the ornamental tobacco that have antifungal activity against a variety of fungal pathogens. Some plant defensins interact with fungal cell wall O-glycosylated proteins. Therefore, we investigated if this was the case for NaD1 and NaD2, by assessing the sensitivity of the three Aspergillus nidulans (An) O-mannosyltransferase (pmt) knockout (KO) mutants (An∆pmtA, An∆pmtB, and An∆pmtC). An∆pmtA was resistant to both defensins, while An∆pmtC was resistant to NaD2 only, suggesting NaD1 and NaD2 are unlikely to have a general interaction with O-linked side chains. Further evidence of this difference in the antifungal mechanism was provided by the dissimilarity of the NaD1 and NaD2 sensitivities of the Fusarium oxysporum f. sp. lycopersici (Fol) signalling knockout mutants from the cell wall integrity (CWI) and high osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathways. HOG pathway mutants were sensitive to both NaD1 and NaD2, while CWI pathway mutants only displayed sensitivity to NaD2.

  9. Human pluripotent embryonal carcinoma NTERA2 cl.D1 cells maintain their typical morphology in an angiomyogenic medium

    PubMed Central

    Simões, Pedro D; Ramos, Teresa

    2007-01-01

    Background Pluripotent embryonal carcinomas are good potential models, to study, "in vitro," the mechanisms that control differentiation during embryogenesis. The NTERA2cl.D1 (NT2/D1) cell line is a well known system of ectodermal differentiation. Retinoic acid (RA) induces a dorsal pattern of differentiation (essentially neurons) and bone morphogenetic protein (BMP) or hexamethylenebisacetamide (HMBA) induces a more ventral (epidermal) pattern of differentiation. However, whether these human cells could give rise to mesoderm derivatives as their counterpart in mouse remained elusive. We analyzed the morphological characteristics and transcriptional activation of genes pertinent in cardiac muscle and endothelium differentiation, during the growth of NT2/D1 cells in an inductive angiomyogenic medium with or without Bone Morphogenetic Protein 2 (BMP2). Results Our experiments showed that NT2/D1 maintains their typical actin organization in angiomyogenic medium. Although the beta myosin heavy chain gene was never detected, all the other 15 genes analyzed maintained their expression throughout the time course of the experiment. Among them were early and late cardiac, endothelial, neuronal and teratocarcinoma genes. Conclusion Our results suggest that despite the NT2/D1 cells natural tendency to differentiate into neuroectodermal lineages, they can activate genes of mesodermal lineages. Therefore, we believe that these pluripotent cells might still be a good model to study biological development of mesodermal derivatives, provided the right culture conditions are met. PMID:17442106

  10. Dopamine D1 and D3 receptors mediate reconsolidation of cocaine memories in mouse models of drug self-administration.

    PubMed

    Yan, Y; Newman, A H; Xu, M

    2014-10-10

    Memories of drug experience and drug-associated environmental cues can elicit drug-seeking and taking behaviors in humans. Disruption of reconsolidation of drug memories dampens previous memories and therefore may provide a useful way to treat drug abuse. We and others previously demonstrated that dopamine D1 and D3 receptors play differential roles in acquiring cocaine-induced behaviors. Moreover, D3 receptors contribute to the reconsolidation of cocaine-induced conditioned place preference. In the present study, we examined effects of manipulating D1 or D3 receptors on reconsolidation of cocaine memories in mouse models of drug self-administration. We found that pharmacological blockade of D1 receptors or a genetic mutation of the D3 receptor gene attenuated reconsolidation that lasted for at least 1week after the memory retrieval. In contrast, with no memory retrieval, pharmacological antagonism of D1 receptors or the D3 receptor gene mutation did not significantly affect reconsolidation of cocaine memories. Pharmacological blockade of D3 receptors also attenuated reconsolidation in wild-type mice that lasted for at least 1week after the memory retrieval. These results suggest that D1 and D3 receptors and related signaling mechanisms play key roles in reconsolidation of cocaine memories in mice, and that these receptors may serve as novel targets for the treatment of cocaine abuse in humans. PMID:25149631

  11. Localization of the human 64kD autoantigen D1 to myofibrils in a subset of extraocular muscle fibers

    NASA Technical Reports Server (NTRS)

    Conley, C. A.; Fowler, V. M.

    1999-01-01

    PURPOSE. To evaluate the tissue-specific expression pattern of the 64kD human autoantigen D1, a tropomodulin-related protein that may be involved in thyroid-associated ophthalmopathy. METHODS. Recombinant 64kD human autoantigen D1 was generated in a bacterial expression system and used to immunize rabbits. Specific antibodies were affinity-purified and used for Western blots on normal and hyperthyroid rat and rabbit tissue, and immunofluorescence localization on cryosections of rat tissue. RESULTS. Anti-64kD human autoantigen D1 antibodies recognize specifically a approximately 70kD polypeptide in western blots of extraocular muscle, sternothyroid muscle, and smooth muscle. Immunofluorescence staining demonstrates that the 64kD human autoantigen D1 localizes to myofibrils in slow fibers from rat extraocular and sternothyroid muscle. The level of this protein is not altered in extraocular muscles from hyperthyroid rabbits. CONCLUSIONS. The 64kD human autoantigen D1 is expressed in slow fibers of extraocular and sternothyroid muscles as a component of myofibrils, and is not upregulated in conditions of hyperthyroidism.

  12. Structure-based design of novel Chlamydomonas reinhardtii D1-D2 photosynthetic proteins for herbicide monitoring

    PubMed Central

    Rea, Giuseppina; Polticelli, Fabio; Antonacci, Amina; Scognamiglio, Viviana; Katiyar, Prashant; Kulkarni, Sudhir A; Johanningmeier, Udo; Giardi, Maria Teresa

    2009-01-01

    The D1-D2 heterodimer in the reaction center core of phototrophs binds the redox plastoquinone cofactors, QA and QB, the terminal acceptors of the photosynthetic electron transfer chain in the photosystem II (PSII). This complex is the target of the herbicide atrazine, an environmental pollutant competitive inhibitor of QB binding, and consequently it represents an excellent biomediator to develop biosensors for pollutant monitoring in ecosystems. In this context, we have undertaken a study of the Chlamydomonas reinhardtii D1-D2 proteins aimed at designing site directed mutants with increased affinity for atrazine. The three-dimensional structure of the D1 and D2 proteins from C. reinhardtii has been homology modeled using the crystal structure of the highly homologous Thermosynechococcus elongatus proteins as templates. Mutants of D1 and D2 were then generated in silico and the atrazine binding affinity of the mutant proteins has been calculated to predict mutations able to increase PSII affinity for atrazine. The computational approach has been validated through comparison with available experimental data and production and characterization of one of the predicted mutants. The latter analyses indicated an increase of one order of magnitude of the mutant sensitivity and affinity for atrazine as compared to the control strain. Finally, D1-D2 heterodimer mutants were designed and selected which, according to our model, increase atrazine binding affinity by up to 20 kcal/mol, representing useful starting points for the development of high affinity biosensors for atrazine. PMID:19693932

  13. D1-dependent 4 Hz oscillations and ramping activity in rodent medial frontal cortex during interval timing.

    PubMed

    Parker, Krystal L; Chen, Kuan-Hua; Kingyon, Johnathan R; Cavanagh, James F; Narayanan, Nandakumar S

    2014-12-10

    Organizing behavior in time is a fundamental process that is highly conserved across species. Here we study the neural basis of timing processes. First, we found that rodents had a burst of stimulus-triggered 4 Hz oscillations in the medial frontal cortex (MFC) during interval timing tasks. Second, rodents with focally disrupted MFC D1 dopamine receptor (D1DR) signaling had impaired interval timing performance and weaker stimulus-triggered oscillations. Prior work has demonstrated that MFC neurons ramp during interval timing, suggesting that they underlie temporal integration. We found that MFC D1DR blockade strongly attenuated ramping activity of MFC neurons that correlated with behavior. These macro- and micro-level phenomena were linked, as we observed that MFC neurons with strong ramping activity tended to be coherent with stimulus-triggered 4 Hz oscillations, and this relationship was diminished with MFC D1DR blockade. These data provide evidence demonstrating how D1DR signaling controls the temporal organization of mammalian behavior. PMID:25505330

  14. Focus on cat allergen (Fel d 1): immunological and aerodynamic characteristics, modality of airway sensitization and avoidance strategies.

    PubMed

    Liccardi, Gennaro; D'Amato, Gennaro; Russo, Maria; Canonica, Giorgio Walter; D'Amato, Luciana; De Martino, Mariano; Passalacqua, Giovanni

    2003-09-01

    The increasing frequency of pet ownership (especially cats) in many industrialized countries has raised the level of exposure to the allergens produced by these animals. Moreover, it is likely that modern energy-saving systems and the wide use of upholstered furniture has resulted in closer contact between cats (and their allergens) and humans. Many different methods have been developed to quantify the main cat allergen (Fel d 1) in settled dust and in ambient air. The threshold levels of cat allergen inducing sensitization or triggering respiratory symptoms in sensitized patients have been calculated in settled dust, but airborne amounts of Fel d 1 probably represent a more reliable index of allergen exposure. Noticeably, the amount of Fel d 1 may be relatively high also in confined environments where cats have never been kept. It has been demonstrated that clothes of cat owners are the main source for dispersal of allergens in cat-free environments. This fact may be of relevance, because recent studies have shown that allergic sensitization to cats is more likely to develop in children exposed to moderate levels of this allergen than in children exposed to high amounts of Fel d 1. The ubiquity of cat allergen may justify the common observation that allergen avoidance is often insufficient to reduce the risk of developing allergic sensitization and/or symptom exacerbation in highly susceptible patients. Further efforts are needed to improve the efficacy of Fel d 1 avoidance strategies to try to reduce the risk of allergic sensitization to this allergen.

  15. Dopamine D1 receptor stimulation modulates the formation and retrieval of novel object recognition memory: Role of the prelimbic cortex

    PubMed Central

    Pezze, Marie A.; Marshall, Hayley J.; Fone, Kevin C.F.; Cassaday, Helen J.

    2015-01-01

    Previous studies have shown that dopamine D1 receptor antagonists impair novel object recognition memory but the effects of dopamine D1 receptor stimulation remain to be determined. This study investigated the effects of the selective dopamine D1 receptor agonist SKF81297 on acquisition and retrieval in the novel object recognition task in male Wistar rats. SKF81297 (0.4 and 0.8 mg/kg s.c.) given 15 min before the sampling phase impaired novel object recognition evaluated 10 min or 24 h later. The same treatments also reduced novel object recognition memory tested 24 h after the sampling phase and when given 15 min before the choice session. These data indicate that D1 receptor stimulation modulates both the encoding and retrieval of object recognition memory. Microinfusion of SKF81297 (0.025 or 0.05 μg/side) into the prelimbic sub-region of the medial prefrontal cortex (mPFC) in this case 10 min before the sampling phase also impaired novel object recognition memory, suggesting that the mPFC is one important site mediating the effects of D1 receptor stimulation on visual recognition memory. PMID:26277743

  16. First D1-like receptor PET imaging of the rat and primate kidney: implications for human disease monitoring

    PubMed Central

    Granda, Michael L.; Schroeder, Frederick A.; Borra, Ronald H. J.; Schauer, Nathan; Aisaborhale, Ehimen; Guimaraes, Alexander R.

    2014-01-01

    The intrarenal dopamine system is important for signaling and natriuresis, and significant dysfunction is associated with hypertension and kidney disease in ex vivo studies. Dopamine receptors also modulate and are modulated by the renin-angiotensin-aldosterone system. Here, we show the first in vivo measurement of D1-like receptors in the renal cortex of Sprague-Dawley rat and Papio anubis baboon using [11C]NNC 112, a positron emission tomography radioligand for D1-like receptors. In addition, we show a D1-like binding potential response to angiotensin II blockade in rats using losartan. Demonstration of self-saturable binding in the rat as well as specific and saturable binding in Papio anubis validate the use of [11C]NNC 112 in the first in vivo measurement of renal dopamine D1-like receptors. Furthermore, [11C]NNC 112 is a radioligand tool already validated for use in probing human central nervous system (CNS) D1-like receptors. Our work demonstrates specific and saturable non-CNS binding in higher animals and the ability to quantify physiological response to drug treatment and provides a clear path to extend use of [11C]NNC 112 to study renal dopamine in humans. PMID:24808534

  17. Hippocampal and prefrontal dopamine D1/5 receptor involvement in the memory-enhancing effect of reboxetine.

    PubMed

    De Bundel, Dimitri; Femenía, Teresa; DuPont, Caitlin M; Konradsson-Geuken, Åsasa; Feltmann, Kritin; Schilström, Björn; Lindskog, Maria

    2013-10-01

    Dopamine modulates cognitive functions through regulation of synaptic transmission and plasticity in the hippocampus and prefrontal cortex (PFC). Thus, dopamine dysfunction in depression may be particularly relevant for the cognitive symptoms. The norepinephrine transporter inhibitor reboxetine facilitates memory processing in both healthy volunteers and in depressed patients and increases dopamine release in both the hippocampus and PFC. We investigated the potential involvement of the hippocampal and PFC dopamine D1/5 receptors in the cognitive effects of reboxetine using the object recognition test in rats. Infusion of the D1/5 antagonist SCH23390 into the dorsal hippocampus or medial PFC prior to the exploration of the objects impaired memory. Conversely, infusion of the D1/5 agonist SKF81297 into the dorsal hippocampus or medial PFC facilitated memory. Reboxetine similarly facilitated recognition memory in healthy rats and the D1/5 antagonist SCH23390 reversed this effect when infused into the dorsal PFC, but not when infused into the hippocampus. Moreover, systemic reboxetine increased the levels of the NMDA subunit GluN2A in the PFC but not in the hippocampus. Finally, we demonstrate that a single dose of reboxetine does not affect immobility in the forced swim test but improves recognition memory in the Flinders sensitive line (FSL) rat model for depression. The present data in rats are in line with effects of reboxetine on memory formation in healthy volunteers and depressed patients and indicate the involvement of PFC dopamine D1/5 receptors.

  18. Tylophorine Analog DCB-3503 Inhibited Cyclin D1 Translation through Allosteric Regulation of Heat Shock Cognate Protein 70

    PubMed Central

    Wang, Ying; Lam, Wing; Chen, Shao-Ru; Guan, Fu-Lan; Dutchman, Ginger E.; Francis, Samson; Baker, David C.; Cheng, Yung-Chi

    2016-01-01

    Tylophorine analog DCB-3503 is a potential anticancer and immunosuppressive agent that suppresses the translation of cellular regulatory proteins, including cyclin D1, at the elongation step. However, the molecular mechanism underlying this phenomenon remains unknown. This study demonstrates that DCB-3503 preferentially binds to heat shock cognate protein 70 (HSC70), which is a determinant for cyclin D1 translation by binding to the 3′-untranslated region (3′ UTR) of its mRNA. DCB-3503 allosterically regulates the ATPase and chaperone activities of HSC70 by promoting ATP hydrolysis in the presence of specific RNA binding motifs (AUUUA) of cyclin D1 mRNA. The suppression of cyclin D1 translation by DCB-3503 is not solely caused by perturbation of the homeostasis of microRNAs, although the microRNA processing complex is dissociated with DCB-3503 treatment. This study highlights a novel regulatory mechanism of protein translation with AUUUA motifs in the 3′ UTR of mRNA by HSC70, and its activity can be allosterically modulated by DCB-3503. DCB-3503 may be used to treat malignancies, such as hepatocellular carcinoma or breast cancer with elevated expression of cyclin D1. PMID:27596272

  19. Plant Defensins NaD1 and NaD2 Induce Different Stress Response Pathways in Fungi

    PubMed Central

    Dracatos, Peter M.; Payne, Jennifer; Di Pietro, Antonio; Anderson, Marilyn A.; Plummer, Kim M.

    2016-01-01

    Nicotiana alata defensins 1 and 2 (NaD1 and NaD2) are plant defensins from the ornamental tobacco that have antifungal activity against a variety of fungal pathogens. Some plant defensins interact with fungal cell wall O-glycosylated proteins. Therefore, we investigated if this was the case for NaD1 and NaD2, by assessing the sensitivity of the three Aspergillus nidulans (An) O-mannosyltransferase (pmt) knockout (KO) mutants (An∆pmtA, An∆pmtB, and An∆pmtC). An∆pmtA was resistant to both defensins, while An∆pmtC was resistant to NaD2 only, suggesting NaD1 and NaD2 are unlikely to have a general interaction with O-linked side chains. Further evidence of this difference in the antifungal mechanism was provided by the dissimilarity of the NaD1 and NaD2 sensitivities of the Fusarium oxysporum f. sp. lycopersici (Fol) signalling knockout mutants from the cell wall integrity (CWI) and high osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathways. HOG pathway mutants were sensitive to both NaD1 and NaD2, while CWI pathway mutants only displayed sensitivity to NaD2. PMID:27598152

  20. Tylophorine Analog DCB-3503 Inhibited Cyclin D1 Translation through Allosteric Regulation of Heat Shock Cognate Protein 70.

    PubMed

    Wang, Ying; Lam, Wing; Chen, Shao-Ru; Guan, Fu-Lan; Dutchman, Ginger E; Francis, Samson; Baker, David C; Cheng, Yung-Chi

    2016-01-01

    Tylophorine analog DCB-3503 is a potential anticancer and immunosuppressive agent that suppresses the translation of cellular regulatory proteins, including cyclin D1, at the elongation step. However, the molecular mechanism underlying this phenomenon remains unknown. This study demonstrates that DCB-3503 preferentially binds to heat shock cognate protein 70 (HSC70), which is a determinant for cyclin D1 translation by binding to the 3'-untranslated region (3' UTR) of its mRNA. DCB-3503 allosterically regulates the ATPase and chaperone activities of HSC70 by promoting ATP hydrolysis in the presence of specific RNA binding motifs (AUUUA) of cyclin D1 mRNA. The suppression of cyclin D1 translation by DCB-3503 is not solely caused by perturbation of the homeostasis of microRNAs, although the microRNA processing complex is dissociated with DCB-3503 treatment. This study highlights a novel regulatory mechanism of protein translation with AUUUA motifs in the 3' UTR of mRNA by HSC70, and its activity can be allosterically modulated by DCB-3503. DCB-3503 may be used to treat malignancies, such as hepatocellular carcinoma or breast cancer with elevated expression of cyclin D1. PMID:27596272

  1. Plant Defensins NaD1 and NaD2 Induce Different Stress Response Pathways in Fungi.

    PubMed

    Dracatos, Peter M; Payne, Jennifer; Di Pietro, Antonio; Anderson, Marilyn A; Plummer, Kim M

    2016-01-01

    Nicotiana alata defensins 1 and 2 (NaD1 and NaD2) are plant defensins from the ornamental tobacco that have antifungal activity against a variety of fungal pathogens. Some plant defensins interact with fungal cell wall O-glycosylated proteins. Therefore, we investigated if this was the case for NaD1 and NaD2, by assessing the sensitivity of the three Aspergillus nidulans (An) O-mannosyltransferase (pmt) knockout (KO) mutants (An∆pmtA, An∆pmtB, and An∆pmtC). An∆pmtA was resistant to both defensins, while An∆pmtC was resistant to NaD2 only, suggesting NaD1 and NaD2 are unlikely to have a general interaction with O-linked side chains. Further evidence of this difference in the antifungal mechanism was provided by the dissimilarity of the NaD1 and NaD2 sensitivities of the Fusarium oxysporum f. sp. lycopersici (Fol) signalling knockout mutants from the cell wall integrity (CWI) and high osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathways. HOG pathway mutants were sensitive to both NaD1 and NaD2, while CWI pathway mutants only displayed sensitivity to NaD2. PMID:27598152

  2. Neonatal exposure to the D1 agonist SKF38393 inhibits pair bonding in the adult prairie vole.

    PubMed

    Hostetler, Caroline M; Harkey, Shanna L; Krzywosinski, Tarin B; Aragona, Brandon J; Bales, Karen L

    2011-10-01

    The monogamous prairie vole displays developmental sensitivity to early pharmacological manipulation in a number of species-typical social behaviors. The long-term consequences of altering the neonatal dopamine system are not well characterized. This study examined whether early manipulation of the dopamine system, a known mediator of adult prairie vole social behavior, during neonatal development would affect adult aggressive and attachment behaviors. Eight-day-old pups were given a single treatment with either 1 mg/kg of SKF38393 (D1 agonist), quinpirole (D2 agonist), SCH23390 (D1 antagonist), eticlopride (D2 antagonist), or saline vehicle. As adults, animals received tests for intrasexual aggression and partner preference. Activation of D1-like receptors in pups impaired partner preference formation, but had no effect on aggression. Other neonatal treatments had no effect on their behavior as adults. To determine whether D1 activation in pups induced changes in dopamine receptor expression, we performed autoradiography on striatal tissue from a second cohort of saline-treated and SKF38393-treated animals. Although sex differences were observed, we found no treatment differences in D1 or D2 receptor binding in any striatal subregion. This study shows that exposure to a single early pharmacological alteration of dopamine receptor activity may have long-term effects on the social behavior of prairie voles. PMID:21918384

  3. Phospholipase D1 increases Bcl-2 expression during neuronal differentiation of rat neural stem cells.

    PubMed

    Park, Shin-Young; Ma, Weina; Yoon, Sung Nyo; Kang, Min Jeong; Han, Joong-Soo

    2015-01-01

    We studied the possible role of phospholipase D1 (PLD1) in the neuronal differentiation, including neurite formation of neural stem cells. PLD1 protein and PLD activity increased during neuronal differentiation. Bcl-2 also increased. Downregulation of PLD1 by transfection with PLD1 siRNA or a dominant-negative form of PLD1 (DN-PLD1) inhibited both neurite outgrowth and Bcl-2 expression. PLD activity was dramatically reduced by a PLCγ (phospholipase Cγ) inhibitor (U73122), a Ca(2+)chelator (BAPTA-AM), and a PKCα (protein kinase Cα) inhibitor (RO320432). Furthermore, treatment with arachidonic acid (AA) which is generated by the action of PLA2 (phospholipase A2) on phosphatidic acid (a PLD1 product), increased the phosphorylation of p38 MAPK and CREB, as well as Bcl-2 expression, indicating that PLA2 is involved in the differentiation process resulting from PLD1 activation. PGE2 (prostaglandin E2), a cyclooxygenase product of AA, also increased during neuronal differentiation. Moreover, treatment with PGE2 increased the phosphorylation of p38 MAPK and CREB, as well as Bcl-2 expression, and this effect was inhibited by a PKA inhibitor (Rp-cAMP). As expected, inhibition of p38 MAPK resulted in loss of CREB activity, and when CREB activity was blocked with CREB siRNA, Bcl-2 production also decreased. We also showed that the EP4 receptor was required for the PKA/p38MAPK/CREB/Bcl-2 pathway. Taken together, these observations indicate that PLD1 is activated by PLCγ/PKCα signaling and stimulate Bcl-2 expression through PLA2/Cox2/EP4/PKA/p38MAPK/CREB during neuronal differentiation of rat neural stem cells.

  4. Gone in a Blaze of Glory: the Demise of Comet C/2015 D1 (SOHO)

    NASA Astrophysics Data System (ADS)

    Hui, Man-To; Ye, Quan-Zhi; Manning Knight, Matthew; Battams, Karl; Clark, David

    2015-11-01

    We present studies of C/2015 D1 (SOHO), the first sunskirting comet ever seen from ground stations over the past half century. The Solar and Heliospheric Observatory (SOHO) witnessed its peculiar light curve with a huge dip followed by a flareup around perihelion: the dip was likely caused by sublimation of olivines, directly evidenced by a coincident temporary disappearance of the tail. The flareup likely reflects a disintegration event, which we suggest was triggered by intense thermal stress established within the nucleus interior. Photometric data reveal an increasingly dusty coma, indicative of volatile depletion. A catastrophic mass loss rate of ~105 kg s-1 around perihelion was seen. Ground-based Xingming Observatory spotted the post-perihelion debris cloud. Our morphological simulations of post-perihelion images find newly released dust grains of size a >~ 15 μm in radius, however, a temporal increase in amin was also witnessed, possibly due to swift dispersions of smaller grains swept away by radiation forces without replenishment. Together with the fading profile of the light curve, a power law dust size distribution with index γ = 3.2 ± 0.1 is derived. We detected no active remaining cometary nuclei over ~0.1 km in radius in post-perihelion images acquired at Lowell Observatory. Applying radial non-gravitational parameter, A1 = (1.209 ± 0.118) × 10-6 AU day-2, from an isothermal water-ice sublimation model to the SOHO astrometry significantly reduces residuals and sinusoidal trends in the orbit determination. The nucleus mass ~108--109 kg, and the radius ~50--150 m (bulk density ρd = 0.4 g cm-3 assumed) before the disintegration are deduced from the photometric data; consistent results were determined from the non-gravitational effects.

  5. Gone in a Blaze of Glory: The Demise of Comet C/2015 D1 (SOHO)

    NASA Astrophysics Data System (ADS)

    Hui, Man-To; Ye, Quan-Zhi; Knight, Matthew; Battams, Karl; Clark, David

    2015-11-01

    We present studies of C/2015 D1 (SOHO), the first sunskirting comet ever seen from ground stations over the past half century. The Solar and Heliospheric Observatory (SOHO) witnessed its peculiar light curve with a huge dip followed by a flare-up around perihelion: the dip was likely caused by sublimation of olivines, directly evidenced by a coincident temporary disappearance of the tail. The flare-up likely reflects a disintegration event, which we suggest was triggered by intense thermal stress established within the nucleus interior. Photometric data reveal an increasingly dusty coma, indicative of volatile depletion. A catastrophic mass-loss rate of ∼105 kg s‑1 around perihelion was seen. Ground-based Xingming Observatory spotted the post-perihelion debris cloud. Our morphological simulations of post-perihelion images find newly released dust grains of size a ≳ 10 μm in radius however, a temporal increase in amin was also witnessed, possibly owing to swift dispersions of smaller grains swept away by radiation forces without replenishment. Together with the fading profile of the light curve, a power-law dust size distribution with index γ = 3.2 ± 0.1 is derived. We detected no active remaining cometary nuclei over ∼0.1 km in radius in post-perihelion images acquired at Lowell Observatory. Applying a radial nongravitational parameter, {{A}}1=≤ft(1.209+/- 0.118\\right)× {10}-6 AU day‑2, from an isothermal water–ice sublimation model to the SOHO astrometry significantly reduces residuals and sinusoidal trends in the orbit determination. The nucleus mass ∼108–109 kg and the radius ∼50–150 m (bulk density ρd = 0.4 g cm‑3 assumed) before the disintegration are deduced from the photometric data; consistent results were determined from the nongravitational effects.

  6. The protein kinase D1 COOH terminus: marker or regulator of enzyme activity?

    PubMed

    Qiu, Weihua; Zhang, Fan; Steinberg, Susan F

    2014-10-01

    Protein kinase D1 (PKD1) is a Ser/Thr kinase implicated in a wide variety of cellular responses. PKD1 activation is generally attributed to a PKC-dependent pathway that leads to phosphorylation of the activation loop at Ser(744)/Ser(748). This modification increases catalytic activity, including that toward an autophosphorylation site (Ser(916)) in a postsynaptic density-95/disks large/zonula occludens-1 (PDZ)-binding motif at the extreme COOH terminus. However, there is growing evidence that PKD1 activation can also result from a PKC-independent autocatalytic reaction at Ser(744)/Ser(748) and that certain stimuli increase in PKD1 phosphorylation at Ser(744)/S(748) without an increase in autophosphorylation at Ser(916). This study exposes a mechanism that results in a discrepancy between PKD1 COOH-terminal autocatalytic activity and activity toward other substrates. We show that PKD1 constructs harboring COOH-terminal epitope tags display high levels of in vitro activation loop autocatalytic activity and activity toward syntide-2 (a peptide substrate), but no Ser(916) autocatalytic activity. Cell-based studies show that the COOH-terminal tag, adjacent to PKD1's PDZ1-binding motif, does not grossly influence PKD1 partitioning between soluble and particulate fractions in resting cells or PKD1 translocation to the particulate fraction following treatment with PMA. However, a COOH-terminal tag that confers a high level of activation loop autocatalytic activity decreases the PKC requirement for agonist-dependent PKD1 activation in cells. The recognition that COOH-terminal tags alter PKD1's pharmacological profile is important from a technical standpoint. The altered dynamics and activation mechanisms for COOH-terminal-tagged PKD1 enzymes also could model the signaling properties of localized pools of enzyme anchored through the COOH terminus to PDZ domain-containing scaffolding proteins.

  7. Cloning of a functional 25-hydroxyvitamin D-1α-hydroxylase in zebrafish (Danio rerio)

    PubMed Central

    Chun, Rene F.; Blatter, Elizabeth; Elliott, Stephanie; Fitz-Gibbon, Sorel; Rieger, Sandra; Sagasti, Alvaro; Adams, John S.; Hewison, Martin

    2015-01-01

    Activation of precursor 25-hydroxyvitamin D3 (25D) to hormonal 1,25-dihydroxyvitamin D3 (1,25D) is a pivotal step in vitamin D physiology, catalyzed by the enzyme 25-hydroxyvitamin D-1α-hydroxylase (1α-hydroxylase). To establish new models for assessing the physiological importance of the 1α-hydroxylase-25D-axis, we used Danio rerio (zebrafish) to characterize expression and biological activity of the gene for 1α-hydroxylase (cyp27b1). Treatment of day 5 zebrafish larvae with inactive 25D (5-150 nM) or active 1,25D (0.1-10 nM) induced dose responsive expression (15-95 fold) of the vitamin D-target gene cyp24a1 relative to larvae treated with vehicle, suggesting the presence of Cyp27b1 activity. A full-length zebrafish cyp27b1 cDNA was then generated using RACE and RT-PCR methods. Sequencing of the resulting clone revealed an open reading frame encoding a protein of 505 amino acids with 54% identity to human CYP27B1. Transfection of a cyp27b1 expression vector into HKC-8, a human kidney proximal tubular epithelial cell line, enhanced intracrine metabolism of 25D to 1,25D resulting in greater than 2-fold induction of CYP24A1 mRNA expression and a 25-fold increase in 1,25D production compared to empty vector. These data indicate that we have cloned a functional zebrafish CYP27B1, representing a phylogenetically distant branch from mammals of this key enzyme in vitamin D metabolism. Further analysis of cyp27b1 expression and activity in zebrafish may provide new perspectives on the biological importance of 25D metabolism. PMID:25290078

  8. Integrated Power and Attitude Control System Demonstrated With Flywheels G2 and D1

    NASA Technical Reports Server (NTRS)

    Jansen, Ralph H.

    2005-01-01

    On September 14, 2004, NASA Glenn Research Center's Flywheel Development Team experimentally demonstrated a full-power, high-speed, two-flywheel system, simultaneously regulating a power bus and providing a commanded output torque. Operation- and power-mode transitions were demonstrated up to 2000 W in charge and 1100 W in discharge, while the output torque was simultaneously regulated between plus or minus 0.8 N-m. The G2 and D1 flywheels--magnetically levitated carbon-fiber wheels with permanent magnet motors--were used for the experiment. The units were mounted on an air bearing table in Glenn's High Energy Flywheel Facility. The operational speed range for these tests was between 20,000 and 60,000 rpm. The bus voltage was regulated at 125 V during charge and discharge, and charge-discharge and discharge-charge transitions were demonstrated by changing the amount of power that the power supply provided between 300 and 0 W. In a satellite system, this would be the equivalent of changing the amount of energy that the solar array provides to the spacecraft. In addition to regulating the bus voltage, we simultaneously controlled the net torque produced by the two flywheel modules. Both modules were mounted on an air table that was restrained by a load cell. The load cell measured the force on the table, and the torque produced by the two flywheels on the table could be calculated from that measurement. This method was used to measure the torque produced by the modules, yielding net torques from -0.8 to 0.8 N-m. This was the first Glenn demonstration of the Integrated Power and Attitude Control System (IPACS) at high power levels and speeds.

  9. Molecular characterization, expression profile, and polymorphism of goose dopamine D1 receptor gene.

    PubMed

    Wang, Cui; Liu, Yi; Wang, Huiying; Wu, Huali; Gong, Shaoming; He, Daqian

    2014-05-01

    Dopamine D1 receptor (DRD1) is one of the dopamine receptors with seven transmembrane domains that are coupled to the G protein. In the present study, we cloned the full coding region of DRD1 gene by the reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends from the goose hypothalamus tissues. Results showed that the goose DRD1 cDNA (GenBank: KF156790) contained a 1,356 bp open reading frame encoding a protein 452 amino acid with a molecular weight of 50.52 kDa and a isoelectric point of 6.96. Bioinformatics analysis indicated that the deduced amino acid sequence was 71-98% identical to the DRD1 protein of other species, contained seven transmembrane domains and four N-glycosylation sites. A phylogenetic tree analysis revealed that the deduced goose DRD1 protein had a close genetic relationship and evolutional distance with that of duck, chicken, and zebra finch. The semi-quantitative RT-PCR analysis displayed goose DRD1 gene was widely expressed in all detected tissues, including heart, lung, liver, spleen, kidney, breast muscle, duodenum, sebum, pituitary, hypothalamus, ovary and oviduct. Eighteen single nucleotide polymorphisms were indentified in 3,169 bp length of this gene. For G90A mutation, the genotyping analysis of PCR-TspRI-RFLP showed the allele G was in dominance in all detected goose breeds, and the allele frequencies of this polymorphism were significantly different between Chinese goose breeds and foreign breeds (P<0.01). These findings will help us understand the functions of the DRD1 gene and the molecular breeding in geese.

  10. Stability and accuracy of 3D neutron transport simulations using the 2D/1D method in MPACT

    DOE PAGES

    Collins, Benjamin; Stimpson, Shane; Kelley, Blake W.; Young, Mitchell T. H.; Kochunas, Brendan; Graham, Aaron; Larsen, Edward W.; Downar, Thomas; Godfrey, Andrew

    2016-08-25

    We derived a consistent “2D/1D” neutron transport method from the 3D Boltzmann transport equation, to calculate fuel-pin-resolved neutron fluxes for realistic full-core Pressurized Water Reactor (PWR) problems. The 2D/1D method employs the Method of Characteristics to discretize the radial variables and a lower order transport solution to discretize the axial variable. Our paper describes the theory of the 2D/1D method and its implementation in the MPACT code, which has become the whole-core deterministic neutron transport solver for the Consortium for Advanced Simulations of Light Water Reactors (CASL) core simulator VERA-CS. We also performed several applications on both leadership-class and industry-classmore » computing clusters. Results are presented for whole-core solutions of the Watts Bar Nuclear Power Station Unit 1 and compared to both continuous-energy Monte Carlo results and plant data.« less

  11. Expression of the MyoD1 muscle determination gene defines differentiation capability but not tumorigenicity of human rhabdomyosarcomas.

    PubMed Central

    Hiti, A L; Bogenmann, E; Gonzales, F; Jones, P A

    1989-01-01

    Several human rhabdomyosarcoma cell lines, cultured primary tumor explants, and biopsies of tumor and normal skeletal muscle tissue expressed a 2.0-kilobase transcript that hybridized to the mouse muscle determination gene MyoD1. This transcript was found in tumor cell lines and primary explants that developed multinucleated myotubes but was absent in Wilms' tumors or cell lines and primary explants that developed multinucleated myotubes but was absent in Wilms' tumors or cell lines derived from other mesenchymal tumor cell types. Expression of the human homolog of MyoD1 therefore can define a tumor as a rhabdomyosarcoma. Transfection of the mouse MyoD1 gene into the human rhabdomyosarcoma cell line RD increased the ability of the tumor cells to differentiate into multinucleated myotubes and enhanced myosin heavy-chain gene expression but did not decrease tumorigenicity in nude mice. Images PMID:2601695

  12. Behavior of loci D1S1656 and D12S391 in a sample from Maracaibo, Venezuela.

    PubMed

    Bernal, Lennie Pineda; Rodríguez-Larralde, Alvaro; Lareu, María V; Carracedo, Angel; Borjas-Fajardo, Lisbeth

    2003-01-01

    Two recently reported short tandem repeat polymorphisms characterized by PCR, D1S1656 and D12S391, were investigated in a sample from Maracaibo, an admixed population of Venezuela, in order to evaluate their application in forensic and population genetics studies. The unbiased heterozygosities were 0.9011 and 0.8444 for locus D1S1656 and D12S391, respectively. The joint discrimination power and joint probability of exclusion were 0.99972 and 0.93287. When allele frequencies of locus D1S1656 from Maracaibo were compared with eight other populations, our group clustered with the European or European-derived samples, mainly from Spain. In the comparison of locus D12S391 with 16 populations, Maracaibo clustered with 3 Asian samples. The high heterozygosity and discrimination power make these two loci important candidates to be considered for STR packages for forensic and population genetic purposes.

  13. Essential role of D1R in the regulation of mTOR complex1 signaling induced by cocaine.

    PubMed

    Sutton, Laurie P; Caron, Marc G

    2015-12-01

    The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that is involved in neuronal adaptions that underlie cocaine-induced sensitization and reward. mTOR exists in two functionally distinct multi-component complexes known as mTORC1 and mTORC2. In this study, we show that increased mTORC1 activity induced by cocaine is mediated by the dopamine D1 receptor (D1R). Specifically, cocaine treatment increased the phosphorylation on residues Thr2446 and Ser2481 but not on Ser2448 in the nucleus accumbens (NAc) and that this increase in phosphorylated mTOR levels was also apparent when complexed with its binding partner Raptor. Furthermore, the increase in phosphorylated mTOR levels, as well as phosphorylated 4E-BP1 and S6K, downstream targets of mTORC1 were blocked with SCH23390 treatment. Similar results were also observed in the dopamine-transporter knockout mice as the increase in phosphorylated mTOR Thr2446 and Ser2481 was blocked by SCH23390 but not with raclopride. To further validate D1R role in mTORC1 signaling, decrease in phosphorylated mTOR levels were observed in D1R knockout mice, whereas administration of SKF81297 elevated phosphorylated mTOR in the NAc. Lastly deletion of mTOR or Raptor in D1R expressing neurons reduced cocaine-induced locomotor activity. Together, our data supports a mechanism whereby mTORC1 signaling is activated by cocaine administration through the stimulation of D1R.

  14. Combined effect of cyclin D3 expression and abrogation of cyclin D1 prevent mouse skin tumor development

    PubMed Central

    Wang, Xian; Sistrunk, Christopher; Miliani de Marval, Paula L; Kim, Yongbaek

    2012-01-01

    We have previously demonstrated that ras-mediated skin tumorigenesis depends on signaling pathways that act preferentially through cyclin D1 and D2. Interestingly, the expression of cyclin D3 inhibits skin tumor development, an observation that conflicts with the oncogenic role of D-type cyclins in the mouse epidermis. Here, we show that simultaneous up and downregulation of particular members of the D-type cyclin family is a valuable approach to reduce skin tumorigenesis. We developed the K5D3/cyclin D1−/− compound mouse, which overexpresses cyclin D3 but lacks expression of cyclin D1 in the skin. Similar to K5D3 transgenic mice, keratinocytes from K5D3/cyclin D1−/− compound mice show a significant reduction of cyclin D2 levels. Therefore, this model allows us to determine the effect of cyclin D3 expression when combined with reduced or absent expression of the remaining two members of the D-type cyclin family in mouse epidermis. Our data show that induced expression of cyclin D3 compensates for the reduced level of cyclin D1 and D2, resulting in normal keratinocyte proliferation. However, simultaneous ablation of cyclin D1 and downregulation of cyclin D2 via cyclin D3 expression resulted in a robust reduction in ras-mediated skin tumorigenesis. We conclude that modulation of the levels of particular members of the D-type cyclin family could be useful to inhibit tumor development and, in particular, ras-mediated tumorigenesis. PMID:22214766

  15. Prediction of drug-induced catalepsy based on dopamine D1, D2, and muscarinic acetylcholine receptor occupancies.

    PubMed

    Haraguchi, K; Ito, K; Kotaki, H; Sawada, Y; Iga, T

    1997-06-01

    It is known that catalepsy serves as an experimental animal model of parkinsonism. In this study, the relationship between in vivo dopamine D1 and D2 receptor occupancies and catalepsy was investigated to predict the intensity of catalepsy induced by drugs that bind to D1 and D2 receptors nonselectively. 3H-SCH23390 and 3H-raclopride were used for the labeling of D1 and D2 receptors, respectively. The ternary complex model consisting of agonist or antagonist, receptor, and transducer was developed, and the dynamic parameters were determined. After coadministration of SCH23390 and nemonapride, catalepsy was stronger than sum of the values predicted by single administration of each drug, and it was intensified synergistically. This finding suggested the existence of interaction between D1 and D2 receptors, and the necessity for constructing the model including this interaction. To examine the validity of this model, catalepsy and in vivo dopamine receptor occupancy were measured after administration of drugs that induce or have a possibility to induce parkinsonism (haloperidol, flunarizine, manidipine, oxatomide, hydroxyzine, meclizine, and homochlorcycilzine). All of the tested drugs blocked both dopamine D1 and D2 receptors. Intensity of catalepsy was predicted with this dynamic model and was compared with the observed values. In contrast with haloperidol, flunarizine, manidipine, and oxatomide (which induced catalepsy), hydroxyzine, meclizine, and homochlorcyclizine failed to induce catalepsy. Intensities of catalepsy predicted with this dynamic model considering the interaction between D1 and D2 receptors overestimated the observed values, suggesting that these drugs have catalepsy-reducing properties as well. Because muscarinic acetylcholine (mACh) receptor antagonists inhibit the induction of catalepsy, the anticholinergic activities of the drugs were investigated. After SCH23390, nemonapride and scopolamine were administered simultaneously; catalepsy and in

  16. Characterization of the hyperline of D1/D0 conical intersections between the maleic acid and fumaric acid anion radicals

    NASA Astrophysics Data System (ADS)

    Takahashi, Ohgi; Sumita, Masato

    2004-10-01

    The cation and anion radicals of symmetrical 1,2-disubstituted ethylenes are expected to have a symmetry-allowed conical intersection (CI) between the ground doublet state (D0) and the lowest excited doublet state (D1) near a 90°-twisted geometry. By the complete active space self-consistent field method, we characterized the hyperline formed by D1/D0 CIs between the anion radicals of maleic acid (cis) and fumaric acid (trans). An implication of the results for the known one-way cis→trans photoisomerization of the maleic acid anion radical and other related ion radicals is presented.

  17. 26 CFR 1.163(d)-1 - Time and manner for making elections under the Omnibus Budget Reconciliation Act of 1993 and the...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Omnibus Budget Reconciliation Act of 1993 and the Jobs and Growth Tax Relief Reconciliation Act of 2003. 1.163(d)-1 Section 1.163(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.163(d)-1 Time and manner for making elections under the Omnibus Budget Reconciliation Act...

  18. 26 CFR 1.163(d)-1 - Time and manner for making elections under the Omnibus Budget Reconciliation Act of 1993 and the...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Omnibus Budget Reconciliation Act of 1993 and the Jobs and Growth Tax Relief Reconciliation Act of 2003. 1.163(d)-1 Section 1.163(d)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY... Corporations § 1.163(d)-1 Time and manner for making elections under the Omnibus Budget Reconciliation Act...

  19. 26 CFR 301.6231(d)-1 - Time for determining profits interest of partners for purposes of sections 6223(b) and 6231(a)(11).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., see § 301.6231(d)-1T contained in 26 CFR part 1, revised April 1, 2001. ... partners for purposes of sections 6223(b) and 6231(a)(11). 301.6231(d)-1 Section 301.6231(d)-1 Internal... partners for purposes of sections 6223(b) and 6231(a)(11). (a) Partner owns interest at close of year....

  20. Genetics of vitamin D 1alpha-hydroxylase deficiency in 17 families.

    PubMed Central

    Wang, J T; Lin, C J; Burridge, S M; Fu, G K; Labuda, M; Portale, A A; Miller, W L

    1998-01-01

    Vitamin D-dependent rickets type I (VDDR-I), also known as pseudo-vitamin D-deficiency rickets, appears to result from deficiency of renal vitamin D 1alpha-hydroxylase activity. Prior work has shown that the affected gene lies on 12q13.3. We recently cloned the cDNA and gene for this enzyme, mitochondrial P450c1alpha, and we and others have found mutations in its gene in a few patients. To determine whether all patients with VDDR-I have mutations in P450c1alpha, we have analyzed the P450c1alpha gene in 19 individuals from 17 families representing various ethnic groups. The whole gene was PCR amplified and subjected to direct sequencing; candidate mutations were confirmed by repeat PCR of the relevant exon from genomic DNA from the patients and their parents. Microsatellite haplotyping with the markers D12S90, D12S305, and D12S104 was also done in all families. All patients had P450c1alpha mutations on both alleles. In the French Canadian population, among whom VDDR-I is common, 9 of 10 alleles bore the haplotype 4-7-1 and carried the mutation 958DeltaG. This haplotype and mutation were also seen in two other families and are easily identified because the mutation ablates a TaiI/MaeII site. Six families of widely divergent ethnic backgrounds carried a 7-bp duplication in association with four different microsatellite haplotypes, indicating a mutational hot spot. We found 14 different mutations, including 7 amino acid replacement mutations. When these missense mutations were analyzed by expressing the mutant enzyme in mouse Leydig MA-10 cells and assaying 1alpha-hydroxylase activity, none retained detectable 1alpha-hydroxylase activity. These studies show that most if not all patients with VDDR-I have severe mutations in P450c1alpha, and hence the disease should be referred to as "1alpha-hydroxylase deficiency." PMID:9837822

  1. Neuroprotectin D1 Attenuates Laser-induced Choroidal Neovascularization in Mouse

    PubMed Central

    Sheets, Kristopher G.; Zhou, Yongdong; Ertel, Monica K.; Knott, Eric J.; Regan, Cornelius E.; Elison, Jasmine R.; Gordon, William C.; Gjorstrup, Per

    2010-01-01

    Purpose To examine the effects of neuroprotectin D1 (NPD1), a stereospecific derivative of docosahexaenoic acid, on choroidal neovascularization (CNV) in a laser-induced mouse model. Specifically, this was assessed by clinically grading laser-induced lesions, measuring leakage area, and volumetrically quantifying vascular endothelial cell proliferation. Methods C57Bl/6 mice were treated with vehicle control or NPD1, and choroidal neovascularization was induced by laser rupture of Bruch's membrane; treatment was administered throughout the first week of recovery. One and two weeks after CNV induction, fundus fluorescein angiography was performed. Angiograms were clinically graded to assess leakage severity, while leakage area was measured by image analysis of angiograms. Proliferation of vascular endothelial cells was evaluated volumetrically by three-dimensional laser confocal immunofluorescent microscopy of cytoskeletal, nuclear, and endothelial cell markers. Results At seven days after CNV induction, NPD1-treated mice had 60% fewer clinically relevant lesions than controls, dropping to 80% fewer by 14 days. NPD1 mice exhibited 25% smaller leakage area than controls at 7 days and 44% smaller area at 14 days. Volumetric immunofluorescence revealed 46% less vascular endothelial cell volume in 7-day NPD1-treated mice than in 7-day controls, and by 14 days NPD1 treatment was 68% lower than controls. Furthermore, comparison of 7- and 14-day volumes of NPD1-treated mice revealed a 50% reduction at 14 days. Conclusions NPD1 significantly inhibits choroidal neovascularization. There are at least two possible mechanisms that could explain the neuroprotective action of NPD1. Ultimately, nuclear factor-κB could be inhibited with a reduction in cyclooxygenase-2 (COX-2) to reduce vascular endothelial growth factor (VEGF) expression, and/or activation of the resolution phase of the inflammatory response/survival pathways could be upregulated. Moreover, NPD1 continues to be

  2. Association of cyclin D1 genotype with breast cancer risk and survival.

    PubMed

    Shu, Xiao Ou; Moore, Derek B; Cai, Qiuyin; Cheng, Jiarong; Wen, Wanqing; Pierce, Larry; Cai, Hui; Gao, Yu-Tang; Zheng, Wei

    2005-01-01

    Cyclin D1 (CCND1) is a key cell cycle regulatory protein that governs cell cycle progression from the G(1) to S phase. A common polymorphism (A870G) in exon 4 of the CCND1 gene produces an alternate transcript (transcript-b) that preferentially encodes a protein with enhanced cell transformation activity and possible prolonged half-life. We evaluated the association of CCND1 A870G polymorphism with breast cancer risk and survival in 1,130 breast cancer cases and 1,196 controls who participated in the Shanghai Breast Cancer Study. Approximately 81% of cases and 79% of controls carried the A allele at A870G of the CCND1 gene [odds ratio, 1.1; 95% confidence interval (95% CI), 0.9-1.4]. As lightly stronger but nonsignificant association was found for the A allele among younger women (odds ratio, 1.3; 95% CI, 0.9-1.8). However, this polymorphism seems to modify the effect of hormonal exposures on postmenopausal breast cancer, as the positive associations of postmenopausal breast cancer with body mass index (Pfor interaction = 0.02) and waist-to-hip ratios (P for interaction < 0.03; all Ps are two sided) were only observed among women who carry the A allele at A870G of the CCND1 gene. Following up with this cohort of patients for an average of 4.84 years, we found that the CCND1 A870G polymorphism was inversely associated with overall and disease-free survival, particularly among women with late stage or estrogen/progesterone receptor-negative breast cancer. The adjusted hazard ratios for disease-free survival associated with GA and AA genotypes were 0.94 (95% CI, 0.49-1.82) and 0.41 (95% CI, 0.19-0.91) for tumor-node-metastasis stage III to IV breast cancer, and 0.35 (95% CI, 0.15-0.80) and 0.32 (95% CI, 0.13-0.79) for estrogen/progesterone receptor-negative breast cancer. This study suggests that CCND1 A870G polymorphism may modify the postmenopausal breast cancer risk associated with hormonal exposure and predict survival after breast cancer diagnosis. PMID:15668481

  3. Rab GAPs AS160 and Tbc1d1 play nonredundant roles in the regulation of glucose and energy homeostasis in mice.

    PubMed

    Hargett, Stefan R; Walker, Natalie N; Keller, Susanna R

    2016-02-15

    The related Rab GTPase-activating proteins (Rab GAPs) AS160 and Tbc1d1 regulate the trafficking of the glucose transporter GLUT4 that controls glucose uptake in muscle and fat cells and glucose homeostasis. AS160- and Tbc1d1-deficient mice exhibit different adipocyte- and skeletal muscle-specific defects in glucose uptake, GLUT4 expression and trafficking, and glucose homeostasis. A recent study analyzed male mice with simultaneous deletion of AS160 and Tbc1d1 (AS160(-/-)/Tbc1d1(-/-) mice). Herein, we describe abnormalities in male and female AS160(-/-)/Tbc1d1(-/-) mice on another strain background. We confirm the earlier observation that GLUT4 expression and glucose uptake defects of single-knockout mice join in AS160(-/-)/Tbc1d1(-/-) mice to affect all skeletal muscle and adipose tissues. In large mixed fiber-type skeletal muscles, changes in relative basal GLUT4 plasma membrane association in AS160(-/-) and Tbc1d1(-/-) mice also combine in AS160(-/-)/Tbc1d1(-/-) mice. However, we found different glucose uptake abnormalities in isolated skeletal muscles and adipocytes than reported previously, resulting in different interpretations of how AS160 and Tbc1d1 regulate GLUT4 translocation to the cell surface. In support of a larger role for AS160 in glucose homeostasis, in contrast with the previous study, we find similarly impaired glucose and insulin tolerance in AS160(-/-)/Tbc1d1(-/-) and AS160(-/-) mice. However, in vivo glucose uptake abnormalities in AS160(-/-)/Tbc1d1(-/-) skeletal muscles differ from those observed previously in AS160(-/-) mice, indicating additional defects due to Tbc1d1 deletion. Similar to AS160- and Tbc1d1-deficient mice, AS160(-/-)/Tbc1d1(-/-) mice show sex-specific abnormalities in glucose and energy homeostasis. In conclusion, our study supports nonredundant functions for AS160 and Tbc1d1. PMID:26625902

  4. Rab GAPs AS160 and Tbc1d1 play nonredundant roles in the regulation of glucose and energy homeostasis in mice.

    PubMed

    Hargett, Stefan R; Walker, Natalie N; Keller, Susanna R

    2016-02-15

    The related Rab GTPase-activating proteins (Rab GAPs) AS160 and Tbc1d1 regulate the trafficking of the glucose transporter GLUT4 that controls glucose uptake in muscle and fat cells and glucose homeostasis. AS160- and Tbc1d1-deficient mice exhibit different adipocyte- and skeletal muscle-specific defects in glucose uptake, GLUT4 expression and trafficking, and glucose homeostasis. A recent study analyzed male mice with simultaneous deletion of AS160 and Tbc1d1 (AS160(-/-)/Tbc1d1(-/-) mice). Herein, we describe abnormalities in male and female AS160(-/-)/Tbc1d1(-/-) mice on another strain background. We confirm the earlier observation that GLUT4 expression and glucose uptake defects of single-knockout mice join in AS160(-/-)/Tbc1d1(-/-) mice to affect all skeletal muscle and adipose tissues. In large mixed fiber-type skeletal muscles, changes in relative basal GLUT4 plasma membrane association in AS160(-/-) and Tbc1d1(-/-) mice also combine in AS160(-/-)/Tbc1d1(-/-) mice. However, we found different glucose uptake abnormalities in isolated skeletal muscles and adipocytes than reported previously, resulting in different interpretations of how AS160 and Tbc1d1 regulate GLUT4 translocation to the cell surface. In support of a larger role for AS160 in glucose homeostasis, in contrast with the previous study, we find similarly impaired glucose and insulin tolerance in AS160(-/-)/Tbc1d1(-/-) and AS160(-/-) mice. However, in vivo glucose uptake abnormalities in AS160(-/-)/Tbc1d1(-/-) skeletal muscles differ from those observed previously in AS160(-/-) mice, indicating additional defects due to Tbc1d1 deletion. Similar to AS160- and Tbc1d1-deficient mice, AS160(-/-)/Tbc1d1(-/-) mice show sex-specific abnormalities in glucose and energy homeostasis. In conclusion, our study supports nonredundant functions for AS160 and Tbc1d1.

  5. Effects of dopamine D1-like and D2-like antagonists on cocaine discrimination in muscarinic receptor knockout mice.

    PubMed

    Thomsen, Morgane; Caine, Simon Barak

    2016-04-01

    Muscarinic and dopamine brain systems interact intimately, and muscarinic receptor ligands, like dopamine ligands, can modulate the reinforcing and discriminative stimulus (S(D)) effects of cocaine. To enlighten the dopamine/muscarinic interactions as they pertain to the S(D) effects of cocaine, we evaluated whether muscarinic M1, M2 or M4 receptors are necessary for dopamine D1 and/or D2 antagonist mediated modulation of the S(D) effects of cocaine. Knockout mice lacking M1, M2, or M4 receptors, as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline in a food-reinforced drug discrimination procedure. Effects of pretreatments with the dopamine D1 antagonist SCH 23390 and the dopamine D2 antagonist eticlopride were evaluated. In intact mice, both SCH 23390 and eticlopride attenuated the cocaine discriminative stimulus effect, as expected. SCH 23390 similarly attenuated the cocaine discriminative stimulus effect in M1 knockout mice, but not in mice lacking M2 or M4 receptors. The effects of eticlopride were comparable in each knockout strain. These findings demonstrate differences in the way that D1 and D2 antagonists modulate the S(D) effects of cocaine, D1 modulation being at least partially dependent upon activity at the inhibitory M2/M4 muscarinic subtypes, while D2 modulation appeared independent of these systems. PMID:26874213

  6. D1 Dopamine Receptor-Mediated LTP at GABA Synapses Encodes Motivation to Self-Administer Cocaine in Rats

    PubMed Central

    Krawczyk, Michal; Mason, Xenos; DeBacker, Julian; Sharma, Robyn; Normandeau, Catherine P.; Hawken, Emily R.; Di Prospero, Cynthia; Chiang, Cindy; Martinez, Audrey; Jones, Andrea A.; Doudnikoff, Évelyne; Caille, Stephanie; Bézard, Erwan; Georges, François; Dumont, Éric C.

    2014-01-01

    Enhanced motivation to take drugs is a central characteristic of addiction, yet the neural underpinning of this maladaptive behavior is still largely unknown. Here, we report a D1-like dopamine receptor (DRD1)-mediated long-term potentiation of GABAA-IPSCs (D1-LTPGABA) in the oval bed nucleus of the stria terminalis that was positively correlated with motivation to self-administer cocaine in rats. Likewise, in vivo intra-oval bed nucleus of the stria terminalis DRD1 pharmacological blockade reduced lever pressing for cocaine more effectively in rats showing enhanced motivation toward cocaine. D1-LTPGABA resulted from enhanced function and expression of G-protein-independent DRD1 coupled to c-Src tyrosine kinases and required local release of neurotensin. There was no D1-LTPGABA in rats that self-administered sucrose, in those with limited cocaine self-administration experience, or in those that received cocaine passively (yoked). Therefore, our study reveals a novel neurophysiological mechanism contributing to individual motivation to self-administer cocaine, a critical psychobiological element of compulsive drug use and addiction. PMID:23864683

  7. 17 CFR 240.19d-1 - Notices by self-regulatory organizations of final disciplinary actions, denials, bars, or...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... required in the statement supporting the organization's determination required by section 6(d) (1) or (2... action in which a national securities exchange imposes a fine not exceeding $1000 or suspends floor... imposed consists of a fine not exceeding $2500 and the sanctioned person has not sought an...

  8. 17 CFR 270.7d-1 - Specification of conditions and arrangements for Canadian management investment companies...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.7d-1 Specification of conditions and... management investment company organized under the laws of Canada or any province thereof may obtain an order... company, or its directors, officers or employees, the Charter or By Laws shall state that the applicant...

  9. 17 CFR 270.7d-1 - Specification of conditions and arrangements for Canadian management investment companies...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.7d-1 Specification of conditions and... management investment company organized under the laws of Canada or any province thereof may obtain an order... company, or its directors, officers or employees, the Charter or By Laws shall state that the applicant...

  10. 17 CFR 270.7d-1 - Specification of conditions and arrangements for Canadian management investment companies...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.7d-1 Specification of conditions and... management investment company organized under the laws of Canada or any province thereof may obtain an order... company, or its directors, officers or employees, the Charter or By Laws shall state that the applicant...

  11. 17 CFR 270.7d-1 - Specification of conditions and arrangements for Canadian management investment companies...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.7d-1 Specification of conditions and... management investment company organized under the laws of Canada or any province thereof may obtain an order... company, or its directors, officers or employees, the Charter or By Laws shall state that the applicant...

  12. Effects of ventral pallidal D1 dopamine receptor activation on memory consolidation in morris water maze test.

    PubMed

    Péczely, László; Ollmann, Tamás; László, Kristóf; Kovács, Anita; Gálosi, Rita; Szabó, Adám; Karádi, Zoltán; Lénárd, László

    2014-11-01

    In the present experiments, in adult male Wistar rats, the effect of microinjection of the D1 dopamine receptor agonist SKF38393 into the ventral pallidum on memory consolidation, as well as on resistance of the resulting memory trace against extinction were investigated in Morris water maze test. SKF38393 was applied in three doses (0.1, 1.0 or 5.0μg in 0.4μl physiological saline, respectively). To clarify whether the effect of the agonist was specific, in a separate group of animals, the D1 dopamine receptor antagonist SCH23390 (5.0μg in 0.4μl physiological saline) was administered 15min prior to 1.0μg agonist treatment. In another group of animals, the same dose of antagonist was applied by itself. The two lower doses (0.1 and 1.0μg) of the agonist accelerated memory consolidation relative to controls and increased the stability of the consolidated memory trace against extinction. Antagonist pretreatment eliminated the effects of the agonist, thus confirming that the effect was selectively specific to D1 dopamine receptors. Our findings indicate that the ventral pallidal D1 dopamine receptors are intimately involved in the control of the consolidation processes of spatial memory.

  13. Inhibition of Human Steroid 5-Reductase (AKR1D1) by Finasteride and Structure of the Enzyme-Inhibitor Complex

    SciTech Connect

    Drury, J.; Di Costanzo, L; Penning, T; Christianson, D

    2009-01-01

    The {Delta}{sup 4}-3-ketosteroid functionality is present in nearly all steroid hormones apart from estrogens. The first step in functionalization of the A-ring is mediated in humans by steroid 5{alpha}- or 5{beta}-reductase. Finasteride is a mechanism-based inactivator of 5{alpha}-reductase type 2 with subnanomolar affinity and is widely used as a therapeutic for the treatment of benign prostatic hyperplasia. It is also used for androgen deprivation in hormone-dependent prostate carcinoma, and it has been examined as a chemopreventive agent in prostate cancer. The effect of finasteride on steroid 5{beta}-reductase (AKR1D1) has not been previously reported. We show that finasteride competitively inhibits AKR1D1 with low micromolar affinity but does not act as a mechanism-based inactivator. The structure of the AKR1D1 {center_dot} NADP{sup +} {center_dot} finasteride complex determined at 1.7 {angstrom} resolution shows that it is not possible for NADPH to reduce the {Delta}{sup 1-2}-ene of finasteride because the cofactor and steroid are not proximal to each other. The C3-ketone of finasteride accepts hydrogen bonds from the catalytic residues Tyr-58 and Glu-120 in the active site of AKR1D1, providing an explanation for the competitive inhibition observed. This is the first reported structure of finasteride bound to an enzyme involved in steroid hormone metabolism.

  14. 26 CFR 1.410(d)-1 - Election by church to have participation, vesting, funding, etc. provisions apply.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 5 2010-04-01 2010-04-01 false Election by church to have participation...-Sharing, Stock Bonus Plans, Etc. § 1.410(d)-1 Election by church to have participation, vesting, funding... are section 410 (relating to minimum participation standards), section 411 (relating to...

  15. Spinal D1-like dopamine receptors modulate NMDA receptor-induced hyperexcitability and NR1 subunit phosphorylation at serine 889.

    PubMed

    Aira, Zigor; Barrenetxea, Teresa; Buesa, Itsaso; Martínez, Endika; Azkue, Jon Jatsu

    2016-04-01

    Activation of the N-methyl-d-aspartate receptor (NMDAR) in dorsal horn neurons is recognized as a fundamental mechanism of central sensitization and pathologic pain. This study assessed the influence of dopaminergic, D1-like receptor-mediated input to the spinal dorsal horn on NMDAR function. Spinal superfusion with selective NMDAR agonist cis-ACPD significantly increased C-fiber-evoked field potentials in rats subjected to spinal nerve ligation (SNL), but not in sham-operated rats. Simultaneous application of D1LR antagonist SCH 23390 dramatically reduced hyperexcitability induced by cis-ACPD. Furthermore, cis-ACPD-induced hyperexcitability seen in nerve-ligated rats could be mimicked in unin-jured rats during stimulation of D1LRs by agonist SKF 38393 at subthreshold concentration. Phosphorylation of NMDAR subunit NR1 at serine 889 at postsynaptic sites was found to be increased in dorsal horn neurons 90 min after SNL, as assessed by increased co-localization with postsynaptic marker PSD-95. Increased NR1 phosphorylation was attenuated in the presence of SCH 23390 in the spinal superfusate. The present results support that D1LRs regulate most basic determinants of NMDAR function in dorsal horn neurons, suggesting a potential mechanism whereby dopaminergic input to the dorsal horn can modulate central sensitization and pathologic pain.

  16. High resolution spectroscopy of the Cs2 D 1Sigma u + -X 1Sigma g + transition and hyperfine structure

    NASA Astrophysics Data System (ADS)

    Kobayashi, Tooru; Usui, Takashi; Kumauchi, Takahiro; Baba, Masaaki; Ishikawa, Kiyoshi; Katô, Hajime

    1993-02-01

    The Doppler-free high resolution laser spectroscopy of Cs2 D 1Σu+-X 1Σg+ transition is extended up to v'=65. By comparing the spectral linewidth and the time-resolved fluorescence intensity, the line broadening observed for transitions to the D 1Σu+(v'=63,J'≤70) levels is identified as the lifetime broadening originating from the predissociation. Line splittings are observed for the D 1Σu+(v'=46,J'≥95)-X 1Σg+(v`= 1,J`) transitions and are identified as the hyperfine splitting due to a magnetic dipole interaction between nuclear spin and electron. The hyperfine splitting is attributed to mixing of the (2) 3Πu state, whose wave function changes from Hund's case (a) to case (b) at large J. The dependence of the electric dipole transition moment on the internuclear distance for the D 1Σu+-X 1Σg+ transition is determined by comparing the observed and calculated line intensities of the dispersed fluorescence.

  17. 26 CFR 31.3302(d)-1 - Definitions and special rules relating to limit on total credits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 15 2010-04-01 2010-04-01 false Definitions and special rules relating to limit... Code of 1954) § 31.3302(d)-1 Definitions and special rules relating to limit on total credits. (a) Rate... respect to which the reduction in total credits is imposed shall be made in accordance with...

  18. 76 FR 37167 - Determination Under Subsection 402(d)(1) of the Trade Act of 1974, as Amended Continuation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    .... Hillary Rodham Clinton, Secretary of State. BILLING CODE 4710-23-P ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF STATE Determination Under Subsection 402(d)(1) of the Trade Act of 1974, as Amended Continuation of Waiver...

  19. Cyclin D1b splice variant promotes αvβ3-mediated adhesion and invasive migration of breast cancer cells.

    PubMed

    Wu, Feng-Hua; Luo, Li-Qiong; Liu, Yi; Zhan, Qiu-Xiao; Luo, Chao; Luo, Jing; Zhang, Gui-Mei; Feng, Zuo-Hua

    2014-12-01

    Cyclin D1b, a splice variant of the cell cycle regulator cyclin D1, holds oncogenic functions in human cancer. However, the mechanisms underlying cyclin D1b function remain poorly understood. Here we introduced wild-type cyclin D1a or cyclin D1b variant into non-metastatic MCF-7 cells. Our results show that ectopic expression of cyclin D1b promotes invasiveness of the cancer cells in a cyclin D1a independent manner. Specifically, cyclin D1b is found to modulate the expression of αvβ3, which characterizes the metastatic phenotype, and enhance tumor cell invasive potential in cooperating with HoxD3. Notably, cyclin D1b promotes αvβ3-mediated adhesion and invasive migration, which are associated with invasive potential of breast cancer cells. Further exploration indicates that cyclin D1b makes breast cancer cells more sensitive to toll-like receptor 4 ligand released from damaged tumor cells. These findings reveal a role of cyclin D1b as a possible mediator of αvβ3 transcription to promote tumor metastasis.

  20. Cyclin D1b splice variant promotes αvβ3-mediated adhesion and invasive migration of breast cancer cells.

    PubMed

    Wu, Feng-Hua; Luo, Li-Qiong; Liu, Yi; Zhan, Qiu-Xiao; Luo, Chao; Luo, Jing; Zhang, Gui-Mei; Feng, Zuo-Hua

    2014-12-01

    Cyclin D1b, a splice variant of the cell cycle regulator cyclin D1, holds oncogenic functions in human cancer. However, the mechanisms underlying cyclin D1b function remain poorly understood. Here we introduced wild-type cyclin D1a or cyclin D1b variant into non-metastatic MCF-7 cells. Our results show that ectopic expression of cyclin D1b promotes invasiveness of the cancer cells in a cyclin D1a independent manner. Specifically, cyclin D1b is found to modulate the expression of αvβ3, which characterizes the metastatic phenotype, and enhance tumor cell invasive potential in cooperating with HoxD3. Notably, cyclin D1b promotes αvβ3-mediated adhesion and invasive migration, which are associated with invasive potential of breast cancer cells. Further exploration indicates that cyclin D1b makes breast cancer cells more sensitive to toll-like receptor 4 ligand released from damaged tumor cells. These findings reveal a role of cyclin D1b as a possible mediator of αvβ3 transcription to promote tumor metastasis. PMID:25193465

  1. Opposing effects of dopamine D1- and D2-like agonists on intracranial self-stimulation in male rats.

    PubMed

    Lazenka, Matthew F; Legakis, Luke P; Negus, S Stevens

    2016-06-01

    Dopamine acts through dopamine Type I receptors (comprising D1 and D5 subtypes) and dopamine Type II receptors (comprising D2, D3, and D4 subtypes). Intracranial self-stimulation (ICSS) is 1 experimental procedure that can be used to evaluate abuse-related effects of drugs targeting dopamine receptors. This study evaluated effects of dopamine receptor ligands on ICSS in rats using experimental procedures that have been used previously to examine abused indirect dopamine agonists such as cocaine and amphetamine. Male Sprague-Dawley rats responded under a fixed-ratio 1 schedule for electrical stimulation of the medial forebrain bundle, and frequency of stimulation varied from 56-158 Hz in 0.05 log increments during each experimental session. Drug potency and time course were determined for the D1 ligands A77636, SKF82958, SKF38393, fenoldopam, and SCH39166 and the D2/3 ligands sumanirole, apomorphine, quinpirole, PD128907, pramipexole, aripiprazole, eticlopride, and PG01037. The high-efficacy D1 agonists A77636 and SKF82958 produced dose-dependent, time-dependent, and abuse-related facilitation of ICSS. Lower efficacy D1 ligands and all D2/3 ligands failed to facilitate ICSS at any dose or pretreatment time. A mixture of SKF82958 and quinpirole produced a mixture of effects produced by each drug alone. Quinpirole also failed to facilitate ICSS after regimens of repeated treatment with either quinpirole or cocaine. These studies provide more evidence for divergent effects of dopamine D1- and D2-family agonists on ICSS procedure in rats and suggest that ICSS may be a useful complement to other approaches for preclinical abuse potential assessment, in part because of the reproducibility of results. (PsycINFO Database Record PMID:26987070

  2. Mutations of Photosystem II D1 Protein That Empower Efficient Phenotypes of Chlamydomonas reinhardtii under Extreme Environment in Space

    PubMed Central

    Lambreva, Maya D.; Antonacci, Amina; Pastorelli, Sandro; Bertalan, Ivo; Johanningmeier, Udo; Mattoo, Autar K.

    2013-01-01

    Space missions have enabled testing how microorganisms, animals and plants respond to extra-terrestrial, complex and hazardous environment in space. Photosynthetic organisms are thought to be relatively more prone to microgravity, weak magnetic field and cosmic radiation because oxygenic photosynthesis is intimately associated with capture and conversion of light energy into chemical energy, a process that has adapted to relatively less complex and contained environment on Earth. To study the direct effect of the space environment on the fundamental process of photosynthesis, we sent into low Earth orbit space engineered and mutated strains of the unicellular green alga, Chlamydomonas reinhardtii, which has been widely used as a model of photosynthetic organisms. The algal mutants contained specific amino acid substitutions in the functionally important regions of the pivotal Photosystem II (PSII) reaction centre D1 protein near the QB binding pocket and in the environment surrounding Tyr-161 (YZ) electron acceptor of the oxygen-evolving complex. Using real-time measurements of PSII photochemistry, here we show that during the space flight while the control strain and two D1 mutants (A250L and V160A) were inefficient in carrying out PSII activity, two other D1 mutants, I163N and A251C, performed efficient photosynthesis, and actively re-grew upon return to Earth. Mimicking the neutron irradiation component of cosmic rays on Earth yielded similar results. Experiments with I163N and A251C D1 mutants performed on ground showed that they are better able to modulate PSII excitation pressure and have higher capacity to reoxidize the QA− state of the primary electron acceptor. These results highlight the contribution of D1 conformation in relation to photosynthesis and oxygen production in space. PMID:23691201

  3. Matrine promotes G0/G1 arrest and down-regulates cyclin D1 expression in human rhabdomyosarcoma cells.

    PubMed

    Guo, L; Xue, T Y; Xu, W; Gao, J Z

    2013-09-01

    Matrine has a broad-spectrum of anti-cancer effects and is efficient in the inhibition of proliferation of hepatoma cells, leukemia cells and neuroblastoma cell. However, its efficacy and tentative mechanisms in rhabdomyosarcoma have not been addressed before. This study aimed to investigate the effects of Matrine on cell cycle and expression of cyclin D1 in human rhabdomyosarcoma cells (RD cell line). RD cell line was treated with different concentrations (0, 0.5, 1.0, and 1.5 mg/mL) of Matrine, and cell proliferation and cell cycle were evaluated using, respectively, MTT assay and flow cytometry. The effect of Matrine on cyclin D1 mRNA levels was measured by RT-PCR. There was a dose-dependent inhibition of proliferation in the matrine-treated group (inhibition of proliferation rate in control cells 12.70 ± 0.35%; Matrine-treated cells [0.5, 1.0, and 1.5 mg/mL]: 31.16 ± 0.11%, 42.96 ± 0.9%, and 57.26 ± 0.8%). The G0 / G1 ratio in study groups were, respectively, 58.44 ± 3.57%, 64.79 ± 2.03%, 69.97 ± 2.89% and 75.03 ± 1.23%.Cyclin D1 mRNA levels progressively diminished (control group ratio of cyclin D1 / β-actin: 0.59 ± 0.06; Matrine: 0.35 ± 0.05, 0.27 ± 0.02 and 0.04 ± 0.03). All aforementioned changes were significant (P<0.05). In conclusion, Matrine markedly suppresses cell proliferation in RD cells by decreasing expression of cyclin D1 mRNA and blocking the cell cycle at the G0 / G1 stage.

  4. PET studies of binding competition between endogenous dopamine and the D1 radiotracer [11C]NNC 756.

    PubMed

    Abi-Dargham, A; Simpson, N; Kegeles, L; Parsey, R; Hwang, D R; Anjilvel, S; Zea-Ponce, Y; Lombardo, I; Van Heertum, R; Mann, J J; Foged, C; Halldin, C; Laruelle, M

    1999-05-01

    NNC 756 ((+)-8-chloro-5-(2,3-dihydrobenzofuran-7-yl)-7-hydroxy-3-methyl-2,3,4,5- tetrahydro-1H-3-benzazepine) is a new high affinity dopamine (DA) D1 receptor antagonist. Labeled with C-11, it has been used as a PET radiotracer to visualize D1 receptors both in striatal and extrastriatal areas, such as the prefrontal cortex. The goal of this study was to evaluate several methods for derivation of D1 receptor binding potential (BP) with [11C]NNC 756 in baboons, and to use these methods to assess the vulnerability of [11C]NNC 756 binding to competition by endogenous DA. A three-compartment model provided a good fit to PET data acquired following a single bolus injection. BP values obtained with this analysis were in good agreement with values derived from in vitro studies. BP values measured following injection of the potent DA releaser amphetamine (1 mg/kg, n=2) were similar to values measured under control conditions. Kinetic parameters derived from single bolus experiments were used to design a bolus plus continuous infusion administration protocol aimed at achieving a state of sustained binding equilibrium. Injection of amphetamine during sustained equilibrium did not affect [11C]NNC 756 binding. Similar results were observed with another D1 radiotracer, [11C]SCH 23390. Doses of amphetamine used in this study are known to reduce by 20-40% the binding potential of several D2 receptors radiotracers. Therefore, the absence of displacement of [11C]NNC 756 by an endogenous DA surge may indicate important differences between D1 and D2 receptors in vivo, such as differences in proportion of high affinity states not occupied by DA at baseline. These findings may also imply that a simple binding competition model is inadequate to account for the effects of manipulation of endogenous DA levels on the in vivo binding of radiolabeled antagonists.