Science.gov

Sample records for d1 receptor-mediated nmda

  1. Dopamine promotes NMDA receptor hypofunction in the retina through D1 receptor-mediated Csk activation, Src inhibition and decrease of GluN2B phosphorylation

    PubMed Central

    Socodato, Renato; Santiago, Felipe N.; Portugal, Camila C.; Domith, Ivan; Encarnação, Thaísa G.; Loiola, Erick C.; Ventura, Ana L. M.; Cossenza, Marcelo; Relvas, João B.; Castro, Newton G.; Paes-de-Carvalho, Roberto

    2017-01-01

    Dopamine and glutamate are critical neurotransmitters involved in light-induced synaptic activity in the retina. In brain neurons, dopamine D1 receptors (D1Rs) and the cytosolic protein tyrosine kinase Src can, independently, modulate the behavior of NMDA-type glutamate receptors (NMDARs). Here we studied the interplay between D1Rs, Src and NMDARs in retinal neurons. We reveal that dopamine-mediated D1R stimulation provoked NMDAR hypofunction in retinal neurons by attenuating NMDA-gated currents, by preventing NMDA-elicited calcium mobilization and by decreasing the phosphorylation of NMDAR subunit GluN2B. This dopamine effect was dependent on upregulation of the canonical D1R/adenylyl cyclase/cAMP/PKA pathway, of PKA-induced activation of C-terminal Src kinase (Csk) and of Src inhibition. Accordingly, knocking down Csk or overexpressing a Csk phosphoresistant Src mutant abrogated the dopamine-induced NMDAR hypofunction. Overall, the interplay between dopamine and NMDAR hypofunction, through the D1R/Csk/Src/GluN2B pathway, might impact on light-regulated synaptic activity in retinal neurons. PMID:28098256

  2. NMDA Receptors Mediate Synaptic Competition in Culture

    PubMed Central

    She, Kevin; Craig, Ann Marie

    2011-01-01

    Background Activity through NMDA type glutamate receptors sculpts connectivity in the developing nervous system. This topic is typically studied in the visual system in vivo, where activity of inputs can be differentially regulated, but in which individual synapses are difficult to visualize and mechanisms governing synaptic competition can be difficult to ascertain. Here, we develop a model of NMDA-receptor dependent synaptic competition in dissociated cultured hippocampal neurons. Methodology/Principal Findings GluN1 -/- (KO) mouse hippocampal neurons lacking the essential NMDA receptor subunit were cultured alone or cultured in defined ratios with wild type (WT) neurons. The absence of functional NMDA receptors did not alter neuron survival. Synapse development was assessed by immunofluorescence for postsynaptic PSD-95 family scaffold and apposed presynaptic vesicular glutamate transporter VGlut1. Synapse density was specifically enhanced onto minority wild type neurons co-cultured with a majority of GluN1 -/- neighbour neurons, both relative to the GluN1 -/- neighbours and relative to sister pure wild type cultures. This form of synaptic competition was dependent on NMDA receptor activity and not conferred by the mere physical presence of GluN1. In contrast to these results in 10% WT and 90% KO co-cultures, synapse density did not differ by genotype in 50% WT and 50% KO co-cultures or in 90% WT and 10% KO co-cultures. Conclusions/Significance The enhanced synaptic density onto NMDA receptor-competent neurons in minority coculture with GluN1 -/- neurons represents a cell culture paradigm for studying synaptic competition. Mechanisms involved may include a retrograde ‘reward’ signal generated by WT neurons, although in this paradigm there was no ‘punishment’ signal against GluN1 -/- neurons. Cell culture assays involving such defined circuits may help uncover the rules and mechanisms of activity-dependent synaptic competition in the developing nervous

  3. Synaptic NMDA Receptors Mediate Hypoxic Excitotoxic Death

    PubMed Central

    Wroge, Christine M.; Hogins, Joshua; Eisenman, Larry; Mennerick, Steven

    2012-01-01

    Excessive NMDA receptor activation and excitotoxicity underlies pathology in many neuropsychiatric and neurological disorders, including hypoxia/ischemia. Thus, the development of effective therapeutics for these disorders demands a complete understanding of NMDA receptor (NMDAR) activation during excitotoxic insults. The extrasynaptic NMDAR hypothesis posits that synaptic NMDARs are neurotrophic/neuroprotective and extrasynaptic NMDARs are neurotoxic. In part, the extrasynaptic hypothesis is built on observed selectivity for extrasynaptic receptors of a neuroprotective use-dependent NMDAR channel blocker, memantine. In rat hippocampal neurons we found that a neuroprotective concentration of memantine shows little selectivity for extrasynaptic NMDARs when all receptors are tonically activated by exogenous glutamate. This led us to test the extrasynaptic NMDAR hypothesis using metabolic challenge, where the source of excitotoxic glutamate buildup may be largely synaptic. Three independent approaches suggest strongly that synaptic receptors participate prominently in hypoxic excitotoxicity. First, block of glutamate transporters with a non-substrate antagonist exacerbated rather than prevented damage, consistent with a primarily synaptic source of glutamate. Second, selective, preblock of synaptic NMDARs with a slowly reversible, use-dependent antagonist protected nearly fully against prolonged hypoxic insult. Third, glutamate pyruvate transaminase (GPT), which degrades ambient but not synaptic glutamate, did not protect against hypoxia but protected against exogenous glutamate damage. Together, these results suggest that synaptic NMDARs can mediate excitotoxicity, particularly when the glutamate source is synaptic and when synaptic receptor contributions are rigorously defined. Moreover, the results suggest that in some situations therapeutically targeting extrasynaptic receptors may be inappropriate. PMID:22573696

  4. D1/5 modulation of synaptic NMDA receptor currents

    PubMed Central

    Varela, Juan A.; Hirsch, Silke J.; Chapman, David; Leverich, Leah S.; Greene, Robert W.

    2009-01-01

    Converging evidence suggests that salience-associated modulation of behavior is mediated by the release of monoamines and that monoaminergic activation of D1/5 receptors is required for normal hippocampal-dependent learning and memory. However, it is not understood how D1/5 modulation of hippocampal circuits can affect salience-associated learning and memory. We have observed in CA1 pyramidal neurons that D1/5 receptor activation elicits a bi-directional long-term plasticity of NMDA receptor-mediated synaptic currents with the polarity of plasticity determined by NMDA receptor, NR2A/B subunit composition. This plasticity results in a decrease in the NR2A/NR2B ratio of subunit composition. Synaptic responses mediated by NMDA receptors that include NR2B subunits are potentiated by D1/5 receptor activation, while responses mediated by NMDA receptors that include NR2A subunits are depressed. Furthermore, these bidirectional, subunit-specific effects are mediated by distinctive intracellular signaling mechanisms. As there is a predominance of NMDA receptors composed of NR2A subunits observed in entorhinal-CA1 inputs and a predominance of NMDA receptors composed of NR2B subunits in CA3-CA1 synapses, potentiation of synaptic NMDA currents predominates in the proximal CA3-CA1 synapses, while depression of synaptic NMDA currents predominates in the distal entorhinal-CA1 synapses. Finally, all of these effects are reproduced by the release of endogenous monoamines through activation of D1/5 receptors. Thus, endogenous D1/5 activation can, 1) decrease the NR2A/B ratio of NMDAR subunit composition at glutamatergic synapses, a rejuvenation to a composition similar to developmentally immature synapses, and, 2) in CA1, bias NMDA receptor responsiveness towards the more highly processed tri-synaptic CA3-CA1 circuit and away from the direct entorhinal-CA1 input. PMID:19279248

  5. Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia.

    PubMed

    Farré, Daniel; Muñoz, Ana; Moreno, Estefanía; Reyes-Resina, Irene; Canet-Pons, Júlia; Dopeso-Reyes, Iria G; Rico, Alberto J; Lluís, Carme; Mallol, Josefa; Navarro, Gemma; Canela, Enric I; Cortés, Antonio; Labandeira-García, José L; Casadó, Vicent; Lanciego, José L; Franco, Rafael

    2015-12-01

    Radioligand binding assays to rat striatal dopamine D1 receptors showed that brain lateralization of the dopaminergic system were not due to changes in expression but in agonist affinity. D1 receptor-mediated striatal imbalance resulted from a significantly higher agonist affinity in the left striatum. D1 receptors heteromerize with dopamine D3 receptors, which are considered therapeutic targets for dyskinesia in parkinsonian patients. Expression of both D3 and D1-D3 receptor heteromers were increased in samples from 6-hydroxy-dopamine-hemilesioned rats rendered dyskinetic by treatment with 3, 4-dihydroxyphenyl-L-alanine (L-DOPA). Similar findings were obtained using striatal samples from primates. Radioligand binding studies in the presence of a D3 agonist led in dyskinetic, but not in lesioned or L-DOPA-treated rats, to a higher dopamine sensitivity. Upon D3-receptor activation, the affinity of agonists for binding to the right striatal D1 receptor increased. Excess dopamine coming from L-DOPA medication likely activates D3 receptors thus making right and left striatal D1 receptors equally responsive to dopamine. These results show that dyskinesia occurs concurrently with a right/left striatal balance in D1 receptor-mediated neurotransmission.

  6. Dual effects of anandamide on NMDA receptor-mediated responses and neurotransmission.

    PubMed

    Hampson, A J; Bornheim, L M; Scanziani, M; Yost, C S; Gray, A T; Hansen, B M; Leonoudakis, D J; Bickler, P E

    1998-02-01

    Anandamide is an endogenous ligand of cannabinoid receptors that induces pharmacological responses in animals similar to those of cannabinoids such as delta9-tetrahydrocannabinol (THC). Typical pharmacological effects of cannabinoids include disruption of pain, memory formation, and motor coordination, systems that all depend on NMDA receptor mediated neurotransmission. We investigated whether anandamide can influence NMDA receptor activity by examining NMDA-induced calcium flux (deltaCa2+NMDA) in rat brain slices. The presence of anandamide reduced deltaCa2+NMDA and the inhibition was disrupted by cannabinoid receptor antagonist, pertussis toxin treatment, and agatoxin (a calcium channel inhibitor). Whereas these treatments prevented anandamide inhibiting deltaCa2+NMDA, they also revealed another, underlying mechanism by which anandamide influences deltaCa2+NMDA. In the presence of cannabinoid receptor antagonist, anandamide potentiated deltaCa2+NMDA in cortical, cerebellar, and hippocampal slices. Anandamide (but not THC) also augmented NMDA-stimulated currents in Xenopus oocytes expressing cloned NMDA receptors, suggesting a capacity to directly modulate NMDA receptor activity. In a similar manner, anandamide enhanced neurotransmission across NMDA receptor-dependent synapses in hippocampus in a manner that was not mimicked by THC and was unaffected by cannabinoid receptor antagonist. These data demonstrate that anandamide can modulate NMDA receptor activity in addition to its role as a cannabinoid receptor ligand.

  7. Food restriction increases NMDA receptor-mediated calcium-calmodulin kinase II and NMDA receptor/extracellular signal-regulated kinase 1/2-mediated cyclic amp response element-binding protein phosphorylation in nucleus accumbens upon D-1 dopamine receptor stimulation in rats.

    PubMed

    Haberny, S L; Carr, K D

    2005-01-01

    Biological drive states exert homeostatic control in part by increasing the reinforcing effects of environmental incentive stimuli. An apparent by-product of this adaptive response is the enhanced acquisition of drug self-administration behavior in food-restricted (FR) animals. While previous research has demonstrated increased central sensitivity to rewarding effects of abused drugs and direct dopamine (DA) receptor agonists in FR subjects, the underlying neurobiology is not well understood. Recently, it was demonstrated that intracerebroventricular (i.c.v.) injection of the D-1 DA receptor agonist, SKF-82958 produces a stronger activation of striatal extracellular signal-regulated kinase (ERK) 1/2 and cyclic AMP response element-binding protein (CREB) in FR relative to ad libitum (AL) fed rats. The main purpose of the present study was to characterize the involvement and mechanisms of interaction between NMDA receptor function and the augmented cellular responses to D-1 DA receptor stimulation in nucleus accumbens (NAc) of FR rats. In experiment 1, Western immunoblotting was used to demonstrate that i.c.v. injection of SKF-82958 (20 microg) produces greater phosphorylation of the NMDA NR1 subunit and calcium-calmodulin kinase II (CaMK II) in NAc of FR as compared with AL rats. In experiment 2, pretreatment of subjects with the NMDA antagonist, MK-801 (1.0 mg/kg, i.p.) decreased SKF-82958-induced activation of CaMK II, ERK1/2 and CREB, and reversed the augmenting effect of FR on activation of all three proteins. In experiment 3, pretreatment with the mitogen-activated protein kinase/ERK kinase inhibitor SL-327 (60 mg/kg, i.p.) suppressed SKF-82958- induced activation of ERK1/2 and reversed the augmenting effect of FR on CREB activation. These results point to specific neuroadaptations in the NAc of FR rats whereby D-1 DA receptor stimulation leads to increased NMDA NR1 subunit phosphorylation and consequent increases in NMDA receptor-dependent CaMK II and ERK1

  8. Chronic intermittent ethanol exposure enhances NMDA-receptor-mediated synaptic responses and NMDA receptor expression in hippocampal CA1 region.

    PubMed

    Nelson, T E; Ur, C L; Gruol, D L

    2005-06-28

    In previous studies, we found that chronic intermittent ethanol (CIE) treatment-a model of ethanol consumption in which animals are exposed to and withdrawn from intoxicating levels of ethanol on a daily basis-produces neuroadaptive changes in hippocampal area CA1 excitatory synaptic transmission and plasticity. Synaptic responses mediated by N-methyl-D-aspartate (NMDA) receptors are known to be sensitive to ethanol and could play an important role in the neuroadaptive changes induced by CIE treatment. To address this issue, we compared electrophysiological recordings of pharmacologically isolated NMDA-receptor-mediated field excitatory postsynaptic potentials (fEPSPs) in the CA1 region of hippocampal slices prepared from control rats and rats exposed to 2 weeks of CIE treatment administered by vapor inhalation. We found that fEPSPs induced by NMDA receptor activation were unaltered in slices prepared shortly after cessation of CIE treatment (i.e., < or = 1 day of withdrawal from CIE). However, following 7 days of withdrawal from CIE treatment, NMDA-receptor-mediated fEPSPs were augmented relative to age-matched controls. Western blot analysis of NMDA receptor subunit expression showed that, at 7 days of withdrawal, the level of protein for NR2A and NR2B subunits was elevated in the CA1 region of hippocampal slices from CIE-treated animals compared with slices from age-matched controls. These results are consistent with an involvement of NMDA-receptor-mediated synaptic responses in the neuroadaptive effects of CIE on hippocampal physiology and suggest that such changes may contribute to ethanol-induced changes in processes dependent on NMDA-receptor-mediated synaptic responses such as learning and memory, neural development, hyperexcitability and seizures, and neurotoxicity.

  9. Ethanol inhibits epileptiform activity and NMDA receptor-mediated synaptic transmission in rat amygdaloid slices

    SciTech Connect

    Gean, P.W. )

    1992-02-26

    The effect of ethanol on the epileptiform activity induced by Mg{sup ++}-free solution was studied in rat amygdalar slices using intracellular recording techniques. The spontaneous and evoked epileptiform discharges consisting of an initial burst followed by afterdischarges were observed 20-30 min after switching to Mg{sup ++}-free medium. Superfusion with ethanol reversibly reduced the duration of spontaneous and evoked bursting discharges in a concentration-dependent manner. Synaptic response mediated by N-methyl-D-aspartate (NMDA) receptor activation was isolated by application of a solution containing the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and either in Mg{sup ++}-free solution or in the presence of 50 {mu}M bicuculline. Application of ethanol reversibly suppressed the duration of NMDA receptor-mediated synaptic response. These results suggest that intoxicating concentrations of ethanol possess anticonvulsant activity through blocking the NMDA receptor-mediated synaptic excitation.

  10. NMDA receptor blockade attenuates locomotion elicited by intrastriatal dopamine D1-receptor stimulation.

    PubMed

    Kreipke, Christian W; Walker, Paul D

    2004-07-01

    Previous behavioral studies suggest that the striatum mediates a hyperactive response to systemic NMDA receptor antagonism in combination with systemic D1 receptor stimulation. However, many experiments conducted at the cellular level suggest that inhibition of NMDA receptors should block D1 receptor-mediated locomotor activity. Therefore, we investigated the consequences of NMDA receptor blockade on the ability of striatal D1 receptors to elicit locomotor activity using systemic and intrastriatal injections of the NMDA antagonist MK-801 combined with intrastriatal injections of the D1 full agonist SKF 82958. Following drug treatment locomotor activity was measured via computerized activity monitors designed to quantify multiple parameters of rodent open-field behavior. Both systemic (0.1 mg/kg) and intrastriatal (1.0 microg) MK-801 pretreatments completely blocked locomotor and stereotypic activity elicited by 10 microg of SKF 82958 directly infused into the striatum. Further, increased activity triggered by intrastriatal SKF 82958 was attenuated by a posttreatment with intrastriatal infusion of 1 microg MK-801. These data suggest that D1-stimulated locomotor behaviors controlled by the striatum require functional NMDA channels.

  11. Voltage-dependent inhibition of recombinant NMDA receptor-mediated currents by 5-hydroxytryptamine

    PubMed Central

    Kloda, Anna; Adams, David J

    2005-01-01

    The effect of 5-HT and related indolealkylamines on heteromeric recombinant NMDA receptors expressed in Xenopus oocytes was investigated using the two-electrode voltage-clamp recording technique. In the absence of external Mg2+ ions, 5-HT inhibited NMDA receptor-mediated currents in a concentration-dependent manner. The inhibitory effect of 5-HT was independent of the NR1a and NR2 subunit combination. The inhibition of glutamate-evoked currents by 5-HT was use- and voltage-dependent. The voltage sensitivity of inhibition for NR1a+NR2 subunit combinations by 5-HT was similar, exhibiting an e-fold change per ∼20 mV, indicating that 5-HT binds to a site deep within the membrane electric field. The inhibition of the open NMDA receptor by external Mg2+ and 5-HT was not additive, suggesting competition between Mg2+ and 5-HT for a binding site in the NMDA receptor channel. The concentration-dependence curves for 5-HT and 5-methoxytryptamine (5-MeOT) inhibition of NMDA receptor-mediated currents are shifted to the right in the presence of external Mg2+. The related indolealkylamines inhibited glutamate-evoked currents with the following order of inhibitory potency: 5-MeOT=5-methyltryptamine>tryptamine>7-methyltryptamine>5-HT≫tryptophan=melatonin. Taken together, these data suggest that 5-HT and related compounds can attenuate glutamate-mediated excitatory synaptic responses and may provide a basis for drug treatment of excitoxic neurodegeneration. PMID:15655527

  12. S-nitrosylated SHP-2 contributes to NMDA receptor-mediated excitotoxicity in acute ischemic stroke

    PubMed Central

    Shi, Zhong-Qing; Sunico, Carmen R.; McKercher, Scott R.; Cui, Jiankun; Feng, Gen-Sheng; Nakamura, Tomohiro; Lipton, Stuart A.

    2013-01-01

    Overproduction of nitric oxide (NO) can cause neuronal damage, contributing to the pathogenesis of several neurodegenerative diseases and stroke (i.e., focal cerebral ischemia). NO can mediate neurotoxic effects at least in part via protein S-nitrosylation, a reaction that covalently attaches NO to a cysteine thiol (or thiolate anion) to form an S-nitrosothiol. Recently, the tyrosine phosphatase Src homology region 2-containing protein tyrosine phosphatase-2 (SHP-2) and its downstream pathways have emerged as important mediators of cell survival. Here we report that in neurons and brain tissue NO can S-nitrosylate SHP-2 at its active site cysteine, forming S-nitrosylated SHP-2 (SNO–SHP-2). We found that NMDA exposure in vitro and transient focal cerebral ischemia in vivo resulted in increased levels of SNO–SHP-2. S-Nitrosylation of SHP-2 inhibited its phosphatase activity, blocking downstream activation of the neuroprotective physiological ERK1/2 pathway, thus increasing susceptibility to NMDA receptor-mediated excitotoxicity. These findings suggest that formation of SNO–SHP-2 represents a key chemical reaction contributing to excitotoxic damage in stroke and potentially other neurological disorders. PMID:23382182

  13. Enhancement of postsynaptic GABAA and extrasynaptic NMDA receptor-mediated responses in the barrel cortex of Mecp2-null mice.

    PubMed

    Lo, Fu-Sun; Blue, Mary E; Erzurumlu, Reha S

    2016-03-01

    Rett syndrome (RTT) is a neurodevelopmental disorder that results from mutations in the X-linked gene for methyl-CpG-binding protein 2 (MECP2). The underlying cellular mechanism for the sensory deficits in patients with RTT is largely unknown. This study used the Bird mouse model of RTT to investigate sensory thalamocortical synaptic transmission in the barrel cortex of Mecp2-null mice. Electrophysiological results showed an excitation/inhibition imbalance, biased toward inhibition, due to an increase in efficacy of postsynaptic GABAA receptors rather than alterations in inhibitory network and presynaptic release properties. Enhanced inhibition impaired the transmission of tonic sensory signals from the thalamus to the somatosensory cortex. Previous morphological studies showed an upregulation of NMDA receptors in the neocortex of both RTT patients and Mecp2-null mice at early ages [Blue ME, Naidu S, Johnston MV. Ann Neurol 45: 541-545, 1999; Blue ME, Kaufmann WE, Bressler J, Eyring C, O'Driscoll C, Naidu S, Johnston MV. Anat Rec (Hoboken) 294: 1624-1634, 2011]. Although AMPA and NMDA receptor-mediated excitatory synaptic transmission was not altered in the barrel cortex of Mecp2-null mice, extrasynaptic NMDA receptor-mediated responses increased markedly. These responses were blocked by memantine, suggesting that extrasynaptic NMDA receptors play an important role in the pathogenesis of RTT. The results suggest that enhancement of postsynaptic GABAA and extrasynaptic NMDA receptor-mediated responses may underlie impaired somatosensation and that pharmacological blockade of extrasynaptic NMDA receptors may have therapeutic value for RTT.

  14. Enhancement of postsynaptic GABAA and extrasynaptic NMDA receptor-mediated responses in the barrel cortex of Mecp2-null mice

    PubMed Central

    Lo, Fu-Sun; Blue, Mary E.

    2015-01-01

    Rett syndrome (RTT) is a neurodevelopmental disorder that results from mutations in the X-linked gene for methyl-CpG-binding protein 2 (MECP2). The underlying cellular mechanism for the sensory deficits in patients with RTT is largely unknown. This study used the Bird mouse model of RTT to investigate sensory thalamocortical synaptic transmission in the barrel cortex of Mecp2-null mice. Electrophysiological results showed an excitation/inhibition imbalance, biased toward inhibition, due to an increase in efficacy of postsynaptic GABAA receptors rather than alterations in inhibitory network and presynaptic release properties. Enhanced inhibition impaired the transmission of tonic sensory signals from the thalamus to the somatosensory cortex. Previous morphological studies showed an upregulation of NMDA receptors in the neocortex of both RTT patients and Mecp2-null mice at early ages [Blue ME, Naidu S, Johnston MV. Ann Neurol 45: 541–545, 1999; Blue ME, Kaufmann WE, Bressler J, Eyring C, O'Driscoll C, Naidu S, Johnston MV. Anat Rec (Hoboken) 294: 1624–1634, 2011]. Although AMPA and NMDA receptor-mediated excitatory synaptic transmission was not altered in the barrel cortex of Mecp2-null mice, extrasynaptic NMDA receptor-mediated responses increased markedly. These responses were blocked by memantine, suggesting that extrasynaptic NMDA receptors play an important role in the pathogenesis of RTT. The results suggest that enhancement of postsynaptic GABAA and extrasynaptic NMDA receptor-mediated responses may underlie impaired somatosensation and that pharmacological blockade of extrasynaptic NMDA receptors may have therapeutic value for RTT. PMID:26683074

  15. LSD and DOB: interaction with 5-HT2A receptors to inhibit NMDA receptor-mediated transmission in the rat prefrontal cortex.

    PubMed

    Arvanov, V L; Liang, X; Russo, A; Wang, R Y

    1999-09-01

    Both the phenethylamine hallucinogen (-)-1-2, 5-dimethoxy-4-bromophenyl-2-aminopropane (DOB), a selective serotonin 5-HT2A,2C receptor agonist, and the indoleamine hallucinogen D-lysergic acid diethylamide (LSD, which binds to 5-HT1A, 1B, 1D, 1E, 1F, 2A, 2C, 5, 6, 7, dopamine D1 and D2, and alpha1 and alpha2 adrenergic receptors), but not their non-hallucinogenic congeners, inhibited N-methyl-D-aspartate (NMDA)-induced inward current and NMDA receptor-mediated synaptic responses evoked by electrical stimulation of the forceps minor in pyramidal cells of the prefrontal cortical slices. The inhibitory effect of hallucinogens was mimicked by 5-HT in the presence of selective 5-HT1A and 5-HT3 receptor antagonists. The inhibitory action of DOB, LSD and 5-HT on the NMDA transmission was blocked by the 5-HT2A receptor antagonists R-(+)-alpha-(2, 3-dimethoxyphenil)-1-[4-fluorophenylethyl]-4-piperidineme thanol (M100907) and ketanserin. However, at low concentrations, when both LSD and DOB by themselves only partially depressed the NMDA response, they blocked the inhibitory effect of 5-HT, suggesting a partial agonist action. Whereas N-(4-aminobutyl)-5-chloro-2-naphthalenesulphonamide (W-7, a calmodulin antagonist) and N-[2-[[[3-(4'-chlorophenyl)- 2-propenyl]methylamino]methyl]phenyl]-N-(2-hydroxyethyl)-4'-methoxy-b enzenesulphonamide phosphate (KN-93, a Ca2+/CaM-KII inhibitor), but not the negative control 2-[N-4'methoxybenzenesulphonyl]amino-N-(4'-chlorophenyl)-2-propeny l-N -methylbenzylamine phosphate (KN-92), blocked the inhibitory action of LSD and DOB, the selective protein kinase C inhibitor chelerythrine was without any effect. We conclude that phenethylamine and indoleamine hallucinogens may exert their hallucinogenic effect by interacting with 5-HT2A receptors via a Ca2+/CaM-KII-dependent signal transduction pathway as partial agonists and modulating the NMDA receptors-mediated sensory, perceptual, affective and cognitive processes.

  16. Cannabinoid Receptor Activation Modifies NMDA Receptor Mediated Release of Intracellular Calcium: Implications for Endocannabinoid Control of Hippocampal Neural Plasticity

    PubMed Central

    Hampson, Robert E.; Miller, Frances; Palchik, Guillermo; Deadwyler, Sam A.

    2011-01-01

    Chronic activation or inhibition of cannabinoid receptors (CB1) leads to continuous suppression of neuronal plasticity in hippocampus and other brain regions, suggesting that endocannabinoids may have a functional role in synaptic processes that produce state-dependent transient modulation of hippocampal cell activity. In support of this, it has previously been shown in vitro that cannabinoid CB1 receptors modulate second messenger systems in hippocampal neurons that can modulate intracellular ion channels, including channels which release calcium from intracellular stores. Here we demonstrate in hippocampal slices a similar endocannabinoid action on excitatory glutamatergic synapses via modulation of NMDA-receptor mediated intracellular calcium levels in confocal imaged neurons. Calcium entry through glutamatergic NMDA-mediated ion channels increases intracellular calcium concentrations via modulation of release from ryanodine-sensitive channels in endoplasmic reticulum. The studies reported here show that NMDA-elicited increases in Calcium Green fluorescence are enhanced by CB1 receptor antagonists (i.e. rimonabant), and inhibited by CB1 agonists (i.e. WIN 55,212-2). Suppression of endocannabinoid breakdown by either reuptake inhibition (AM404) or fatty-acid amide hydrolase inhibition (URB597) produced suppression of NMDA elicited calcium increases comparable to WIN 55,212-2, while enhancement of calcium release provoked by endocannabinoid receptor antagonists (Rimonabant) was shown to depend on the blockade of CB1 receptor mediated de-phosphorylation of Ryanodine receptors. Such CB1 receptor modulation of NMDA elicited increases in intracellular calcium may account for the respective disruption and enhancement by CB1 agents of trial-specific hippocampal neuron ensemble firing patterns during performance of a short-term memory task, reported previously from this laboratory. PMID:21288475

  17. Pharmacological and biochemical characterization of the D-1 dopamine receptor mediating acetylcholine release in rabbit retina

    SciTech Connect

    Hensler, J.G.; Cotterell, D.J.; Dubocovich, M.L.

    1987-12-01

    Superfusion with dopamine (0.1 microM-10 mM) evokes calcium-dependent (/sup 3/H)acetylcholine release from rabbit retina labeled in vitro with (/sup 3/H)choline. This effect is antagonized by the D-1 dopamine receptor antagonist SCH 23390. Activation or blockade of D-2 dopamine, alpha-2 or beta receptors did not stimulate or attenuate the release of (/sup 3/H)acetylcholine from rabbit retina. Dopamine receptor agonists evoke the release of (/sup 3/H)acetylcholine with the following order of potency: apomorphine less than or equal to SKF(R)82526 < SKF 85174 < SKF(R)38393 less than or equal to pergolide less than or equal to dopamine (EC50 = 4.5 microM) < SKF(S)82526 less than or equal to SKF(S)38393. Dopamine receptor antagonists inhibited the dopamine-evoked release of (/sup 3/H)acetylcholine: SCH 23390 (IC50 = 1 nM) < (+)-butaclamol less than or equal to cis-flupenthixol < fluphenazine < perphenazine < trans-flupenthixol < R-sulpiride. The potencies of dopamine receptor agonists and antagonists at the dopamine receptor mediating (/sup 3/H)acetylcholine release is characteristic of the D-1 dopamine receptor. These potencies were correlated with the potencies of dopamine receptor agonists and antagonists at the D-1 dopamine receptor in rabbit retina as labeled by (/sup 3/H)SCH 23390, or as determined by adenylate cyclase activity. (/sup 3/H)SCH 23390 binding in rabbit retinal membranes was stable, saturable and reversible. Scatchard analysis of (/sup 3/H)SCH 23390 saturation data revealed a single high affinity binding site (Kd = 0.175 +/- 0.002 nM) with a maximum binding of 482 +/- 12 fmol/mg of protein. The potencies of dopamine receptor agonists to stimulate (/sup 3/H)acetylcholine release were correlated with their potencies to stimulate adenylate cyclase (r = 0.784, P less than .05, n = 7) and with their affinities at (/sup 3/H)SCH 23390 binding sites (r = 0.755, P < .05, n = 8).

  18. Homocysteine-NMDA receptor mediated activation of extracellular-signal regulated kinase leads to neuronal cell death

    PubMed Central

    Poddar, Ranjana; Paul, Surojit

    2009-01-01

    Hyper-homocysteinemia is an independent risk factor for stroke and neurological abnormalities. However the underlying cellular mechanisms by which elevated homocysteine can promote neuronal death is not clear. In the present study we have examined the role of NMDA receptor mediated activation of the extracellular-signal regulated mitogen activated protein (ERK MAP) kinase pathway in homocysteine-dependent neurotoxicity. The study demonstrates that in neurons L-homocysteine-induced cell death is mediated through activation of NMDA receptors. The study also shows that homocysteine-dependent NMDA receptor stimulation and resultant Ca2+ influx leads to rapid and sustained phosphorylation of ERK MAP kinase. Inhibition of ERK phosphorylation attenuates homocysteine mediated neuronal cell death thereby demonstrating that activation of ERK MAP kinase signaling pathway is an intermediate step that couples homocysteine mediated NMDA receptor stimulation to neuronal death. The findings also show that cAMP response-element binding protein (CREB), a pro-survival transcription factor and a downstream target of ERK, is only transiently activated following homocysteine exposure. The sustained activation of ERK but a transient activation of CREB together suggest that exposure to homocysteine initiates a feedback loop that shuts off CREB signaling without affecting ERK phosphorylation and thereby facilitates homocysteine mediated neurotoxicity. PMID:19508427

  19. Reboxetine enhances the olanzapine-induced antipsychotic-like effect, cortical dopamine outflow and NMDA receptor-mediated transmission.

    PubMed

    Marcus, Monica M; Jardemark, Kent; Malmerfelt, Anna; Björkholm, Carl; Svensson, Torgny H

    2010-08-01

    Preclinical data have shown that addition of the selective norepinephrine transporter (NET) inhibitor reboxetine increases the antipsychotic-like effect of the D(2/3) antagonist raclopride and, in parallel, enhances cortical dopamine output. Subsequent clinical results suggested that adding reboxetine to stable treatments with various antipsychotic drugs (APDs) may improve positive, negative and depressive symptoms in schizophrenia. In this study, we investigated in rats the effects of adding reboxetine to the second-generation APD olanzapine on: (i) antipsychotic efficacy, using the conditioned avoidance response (CAR) test, (ii) extrapyramidal side effect (EPS) liability, using a catalepsy test, (iii) dopamine efflux in the medial prefrontal cortex and the nucleus accumbens, using in vivo microdialysis in freely moving animals and (iv) cortical N-methyl-D-aspartate (NMDA) receptor-mediated transmission, using intracellular electrophysiological recording in vitro. Reboxetine (6 mg/kg) enhanced the suppression of CAR induced by a suboptimal dose (1.25 mg/kg), but not an optimal (2.5 mg/kg) dose of olanzapine without any concomitant catalepsy. Addition of reboxetine to the low dose of olanzapine also markedly increased cortical dopamine outflow and facilitated prefrontal NMDA receptor-mediated transmission. Our data suggest that adjunctive treatment with a NET inhibitor may enhance the therapeutic effect of low-dose olanzapine in schizophrenia without increasing EPS liability and add an antidepressant action, thus in principle allowing for a dose reduction of olanzapine with a concomitant reduction of dose-related side effects, such as EPS and weight gain.

  20. The balance of NMDA- and AMPA/kainate receptor-mediated activity in normal adult goldfish and during optic nerve regeneration.

    PubMed

    Taylor, Andrew L; Rodger, Jennifer; Stirling, R Victoria; Beazley, Lyn D; Dunlop, Sarah A

    2005-10-01

    Retinotectal topography is established during development and relies on the sequential recruitment of glutamate receptors within postsynaptic tectal cells. NMDA receptors underpin plastic changes at early stages when retinal ganglion cell (RGC) terminal arbors are widespread and topography is coarse; AMPA/kainate receptors mediate fast secure neurotransmission characteristic of mature circuits once topography is refined. Here, we have examined the relative contributions of these receptors to visually evoked activity in normal adult goldfish, in which retinotectal topography is constantly adjusted to compensate for the continual neurogenesis and the addition of new RGC arbors. Furthermore, we examined animals at two stages of optic nerve regeneration. In the first, RGC arbors are widespread and receptive fields large resulting in coarse topography; in the second, RGC arbors are pruned to reduce receptive fields leading to refined topography. Antagonists were applied to the tectum during multiunit recording of postsynaptic responses. Normal goldfish have low levels of NMDA receptor-mediated activity and high levels of AMPA/kainate. When coarse topography has been restored, NMDA receptor-mediated activity is increased and that of AMPA/kainate decreased. Once topography has been refined, the balance of NMDA and AMPA/kainate receptor-mediated activity returns to normal. The data suggest that glutamatergic neurotransmission in normal adult goldfish is dual with NMDA receptors fine-tuning topography and AMPA receptors allowing stable synaptic function. Furthermore, the normal operation of both receptors allows a response to injury in which the balance can be transiently reversed to restore topography and vision.

  1. Reboxetine Enhances the Olanzapine-Induced Antipsychotic-Like Effect, Cortical Dopamine Outflow and NMDA Receptor-Mediated Transmission

    PubMed Central

    Marcus, Monica M; Jardemark, Kent; Malmerfelt, Anna; Björkholm, Carl; Svensson, Torgny H

    2010-01-01

    Preclinical data have shown that addition of the selective norepinephrine transporter (NET) inhibitor reboxetine increases the antipsychotic-like effect of the D2/3 antagonist raclopride and, in parallel, enhances cortical dopamine output. Subsequent clinical results suggested that adding reboxetine to stable treatments with various antipsychotic drugs (APDs) may improve positive, negative and depressive symptoms in schizophrenia. In this study, we investigated in rats the effects of adding reboxetine to the second-generation APD olanzapine on: (i) antipsychotic efficacy, using the conditioned avoidance response (CAR) test, (ii) extrapyramidal side effect (EPS) liability, using a catalepsy test, (iii) dopamine efflux in the medial prefrontal cortex and the nucleus accumbens, using in vivo microdialysis in freely moving animals and (iv) cortical N-methyl--aspartate (NMDA) receptor-mediated transmission, using intracellular electrophysiological recording in vitro. Reboxetine (6 mg/kg) enhanced the suppression of CAR induced by a suboptimal dose (1.25 mg/kg), but not an optimal (2.5 mg/kg) dose of olanzapine without any concomitant catalepsy. Addition of reboxetine to the low dose of olanzapine also markedly increased cortical dopamine outflow and facilitated prefrontal NMDA receptor-mediated transmission. Our data suggest that adjunctive treatment with a NET inhibitor may enhance the therapeutic effect of low-dose olanzapine in schizophrenia without increasing EPS liability and add an antidepressant action, thus in principle allowing for a dose reduction of olanzapine with a concomitant reduction of dose-related side effects, such as EPS and weight gain. PMID:20463659

  2. In adult female hamsters hypothyroidism stimulates D1 receptor-mediated breathing without altering D1 receptor expression.

    PubMed

    Schlenker, Evelyn H; Del Rio, Rodrigo; Schultz, Harold D

    2015-11-01

    Hypothyroidism affects cardiopulmonary regulation and function of dopaminergic receptors. Here we evaluated effects of 5 months of hypothyroidism on dopamine D1 receptor modulation of breathing in female hamsters using a D1 receptor antagonist SCH 23390. Euthyroid hamsters (EH) served as controls. Results indicated that hypothyroid female hamsters (HH) exhibited decreased body weights and minute ventilation (VE) following hypoxia due to decreased frequency of breathing (F). Moreover, SCH 23390 administration in HH increased VE by increasing tidal volume during exposure to air, hypoxia and following hypoxia. Relative to vehicle, SCH 23390 treatment decreased body temperature and hypoxic VE responsiveness in both groups. In EH, SCH 23390 decreased F in air, hypoxia and post hypoxia, and VE during hypoxia trended to decrease (P=0.053). Finally, expression of D1 receptor protein was not different between the two groups in any region evaluated. Thus, hypothyroidism in older female hamsters affected D1 receptor modulation of ventilation differently relative to euthyroid animals, but not expression of D1 receptors.

  3. In Adult Female Hamsters Hypothyroidism Stimulates D1 Receptor-mediated Breathing without altering D1 Receptor Expression

    PubMed Central

    Schlenker, Evelyn H.; Rio, Rodrigo Del; Schultz, Harold D.

    2015-01-01

    Hypothyroidism affects cardiopulmonary regulation and function of dopaminergic receptors. Here we evaluated effects of 5 months of hypothyroidism on dopamine D1 receptor modulation of breathing in female hamsters using a D1 receptor antagonist SCH23390. Euthyroid hamsters (EH) served as controls. Results indicated that hypothyroid female hamsters (HH) exhibited decreased body weights and minute ventilation (VE) following hypoxia due to decreased frequency of breathing (F). Moreover, SCH 23390 administration in HH increased VE by increasing tidal volume during exposure to air, hypoxia and following hypoxia. Relative to vehicle, SCH 23390 treatment decreased body temperature and hypoxic VE responsiveness in both groups. In EH, SCH 23390 decreased F in air, hypoxia and post hypoxia, and VE during hypoxia trended to decrease (P=0.053). Finally, expression of D1 receptor protein was not different between the two groups in any region evaluated. Thus, hypothyroidism in older female hamsters affected D1 receptor modulation of ventilation differently relative to euthyroid animals, but not expression of D1 receptors. PMID:26232642

  4. Both NMDA and non-NMDA receptors mediate glutamate stimulation induced cofilin rod formation in cultured hippocampal neurons.

    PubMed

    Chen, Ben; Jiang, Min; Zhou, Mi; Chen, Lulan; Liu, Xu; Wang, Xin; Wang, Yun

    2012-11-27

    Cofilin is the major actin-depolymerizing factor in the CNS for the regulation of actin dynamics. Neurodegenerative stimuli can induce the formation of cofilin rod, a pathological structure composed of cofilin and actin. The formation of cofilin rod was found to disrupt synapse function and cause neurite loss. The aim of the present study is to study the whole process of cofilin rod formation pattern in cultured hippocampal neurons under excitotoxic stimulation and to explore its underlying pharmacological mechanism. By using live cell imaging of neurons overexpressing EGFP-tagged wild type cofilin, we found a two-phase pattern of rod formation induced by glutamate stimulation. The early phase of rod formation occurred shortly after stimulation (∼0.5h) but quickly dissolved within 2h. The second phase happened within a much longer time window, 8h after stimulation. Immunostaining of endogenous cofilin in neurons also confirmed this glutamate stimulation induced two-phase rod formation pattern. The first phase was co-related with intracellular calcium concentration and pH increase while the second phase was not. These two phases of cofilin rod formation induced by glutamate stimulation was antagonized by both non-NMDA and NMDA receptor antagonist DNQX and AP5, respectively. Our results for the first time demonstrate the dynamic cofilin rod formation pattern under stress stimulation in detail by time lapse imaging. These findings reveal a novel time course of excitotoxicity induced neuronal damage and indicate a potential target of neuropathy treatment of neurodegenerative diseases. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Tissue plasminogen activator inhibits NMDA-receptor-mediated increases in calcium levels in cultured hippocampal neurons

    PubMed Central

    Robinson, Samuel D.; Lee, Tet Woo; Christie, David L.; Birch, Nigel P.

    2015-01-01

    NMDA receptors (NMDARs) play a critical role in neurotransmission, acting as essential mediators of many forms of synaptic plasticity, and also modulating aspects of development, synaptic transmission and cell death. NMDAR-induced responses are dependent on a range of factors including subunit composition and receptor location. Tissue-type plasminogen activator (tPA) is a serine protease that has been reported to interact with NMDARs and modulate NMDAR activity. In this study we report that tPA inhibits NMDAR-mediated changes in intracellular calcium levels in cultures of primary hippocampal neurons stimulated by low (5 μM) but not high (50 μM) concentrations of NMDA. tPA also inhibited changes in calcium levels stimulated by presynaptic release of glutamate following treatment with bicucculine/4-aminopyridine (4-AP). Inhibition was dependent on the proteolytic activity of tPA but was unaffected by α2-antiplasmin, an inhibitor of the tPA substrate plasmin, and receptor-associated protein (RAP), a pan-ligand blocker of the low-density lipoprotein receptor, two proteins previously reported to modulate NMDAR activity. These findings suggest that tPA can modulate changes in intracellular calcium levels in a subset of NMDARs expressed in cultured embryonic hippocampal neurons through a mechanism that involves the proteolytic activity of tPA and synaptic NMDARs. PMID:26500501

  6. Plasticity of NMDA receptor-mediated excitatory postsynaptic currents at perforant path inputs to dendrite-targeting interneurons.

    PubMed

    Harney, Sarah C; Anwyl, Roger

    2012-08-15

    Synaptic plasticity of NMDA receptors (NMDARs) has been recently described in a number of brain regions and we have previously characterised LTP and LTD of glutamatergic NMDA receptor-mediated EPSCs (NMDAR-EPSCs) in granule cells of dentate gyrus. The functional significance of NMDAR plasticity at perforant path synapses on hippocampal network activity depends on whether this is a common feature of perforant path synapses on all postsynaptic target cells or if this plasticity occurs only at synapses on principal cells. We recorded NMDAR-EPSCs at medial perforant path synapses on interneurons in dentate gyrus which had significantly slower decay kinetics compared to those recorded in granule cells. NMDAR pharmacology in interneurons was consistent with expression of both GluN2B- and GluN2D-containing receptors. In contrast to previously described high frequency stimulation-induced bidirectional plasticity of NMDAR-EPSCs in granule cells, only LTD of NMDAR-EPSCs was induced in interneurons in our standard experimental conditions. In interneurons, LTD of NMDAR-EPSCs was associated with a loss of sensitivity to a GluN2D-selective antagonist and was inhibited by the actin stabilising agent, jasplakinolide. While LTP of NMDAR-EPSCs can be readily induced in granule cells, this form of plasticity was only observed in interneurons when extracellular calcium was increased above physiological concentrations during HFS or when PKC was directly activated by phorbol ester, suggesting that opposing forms of plasticity at inputs to interneurons and principal cells may act to regulate granule cell dendritic integration and processing.

  7. NMDA receptor mediates chronic visceral pain induced by neonatal noxious somatic stimulation.

    PubMed

    Miranda, Adrian; Mickle, Aaron; Bruckert, Mitchell; Kannampalli, Pradeep; Banerjee, Banani; Sengupta, Jyoti N

    2014-12-05

    NMDA receptors (NMDAR) are important in the development and maintenance of central sensitization. Our objective was to investigate the role of spinal neurons and NMDAR in the maintenance of chronic visceral pain. Neonatal rats were injected with acidic saline adjusted to pH 4.0 in the gastrocnemius muscle every other day for 12 days. In adult rats, NR1 and NR2B subunits were examined in the lumbo-sacral (LS) spinal cord. A baseline, visceromotor response (VMR) to graded colorectal distension (CRD) was recorded before and after administration of the NMDA antagonist, CGS-19755. Extracellular recordings were performed from CRD-sensitive LS spinal neurons and pelvic nerve afferents (PNA) before and after CGS-19755. Rats that received pH 4.0 saline injections demonstrated a significant increase in the expression NR2B subunits and VMR response to CRD>20 mmHg. CGS-19755 (i.v. or i.t.) had no effect in naïve rats, but significantly decreased the response to CRD in pH 4.0 saline injected rats. CGS-19755 had no effect on the spontaneous firing of SL-A, but decreased that of SL-S. Similarly, CGS-19755 attenuates the responses of SL-S neurons to CRD, but had no effect on SL-A neurons or on the response characteristics of PNA fibers. Neonatal noxious somatic stimulation results in chronic visceral hyperalgesia and sensitizes a specific subpopulation of CRD-sensitive spinal neurons. The sensitization of these SL-S spinal neurons is attenuated by the NMDAR antagonist. The results of this study suggest that spinal NMDARs play an important role in the development of hyperalgesia early in life. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. NMDA receptor mediates chronic visceral pain induced by neonatal noxious somatic stimulation

    PubMed Central

    Miranda, Adrian; Mickle, Aaron; Bruckert, Mitchell; Kannampalli, Pradeep; Banerjee, Banani; Sengupta, Jyoti N.

    2014-01-01

    NMDA receptors (NMDAR) are important in the development and maintenance of central sensitization. Our objective was to investigate the role of spinal neurons and NMDAR in the maintenance of chronic visceral pain. Neonatal rats were injected with acidic saline adjusted to pH4.0 in the gastrocnemius muscle every other day for 12 days. In adult rats, NR1 and NR2B subunits were examined in the lumbo-sacral (LS) spinal cord. A baseline, visceromotor response (VMR) to graded colorectal distension (CRD) was recorded before and after administration of the NMDA antagonist, CGS-19755. Extracellular recordings were performed from CRD-sensitive LS spinal neurons and pelvic nerve afferents (PNA) before and after CGS-19755. Rats that received pH 4.0 saline injections demonstrated a significant increase in the expression NR2B subunits and VMR response to CRD >20mmHg. CGS-19755 (i.v. or i.t.) had no effect in naïve rats, but significantly decreased the response to CRD in pH4.0 saline injected rats. CGS-19755 had no effect on the spontaneous firing of SL-A, but decreased that of SL-S. Similarly, CGS-19755 attenuates the responses of SL-S neurons to CRD, but had no effect on SL-A neurons or on the response characteristics of PNA fibers. Neonatal noxious somatic stimulation results in chronic visceral hyperalgesia and sensitizes a specific subpopulation of CRD-sensitive spinal neurons. The sensitization of these SL-S spinal neurons is attenuated by the NMDAR antagonist. The results of this study suggest that spinal NMDARs play an important role in the development of hyperalgesia early in life. PMID:25281204

  9. NMDA receptor-mediated excitotoxicity depends on the coactivation of synaptic and extrasynaptic receptors.

    PubMed

    Zhou, X; Hollern, D; Liao, J; Andrechek, E; Wang, H

    2013-03-28

    N-methyl-D-aspartate receptors (NMDAR) overactivation is linked to neurodegeneration. The current prevailing theory suggests that synaptic and extrasynaptic NMDAR (syn- and ex-NMDAR) impose counteracting effects on cell fate, and neuronal cell death is mainly mediated by the activation of ex-NMDAR. However, several lines of evidence implicate the limitation of this theory. Here, we demonstrate that activation of NMDAR bi-directionally regulated cell fate through stimulating pro-survival or pro-death signaling. While low-dose NMDA preferentially activated syn-NMDAR and stimulated the extracellular signal-regulated kinase ½-cAMP responsive element-binding protein-brain-derived neurotrophic factor pro-survival signaling, higher doses progressively activated increasing amount of ex-NMDAR along with syn-NMDAR and triggered cell death program. Interestingly, the activation of syn- or ex-NMDAR alone did not cause measurable cell death. Consistently, activation of syn- or ex-NMDAR alone stimulated pro-survival but not pro-death signaling. Next, we found that memantine, which was previously identified as an ex-NMDAR blocker, inhibited intracellular signaling mediated by syn- or ex-NMDAR. Simultaneous blockade of syn- and ex-NMDAR by memantine dose-dependently attenuated NMDAR-mediated death. Moreover, long- but not short-term treatment with high-dose NMDA or oxygen-glucose deprivation triggered cell death and suppressed pro-survival signaling. These data implicate that activation of syn- or ex-NMDAR alone is not neurotoxic. The degree of excitotoxicity depends on the magnitude and duration of syn- and ex-NMDAR coactivation. Finally, genome-wide examination demonstrated that the activation of syn- and ex-NMDAR lead to significant overlapping rather than counteracting transcriptional responses.

  10. Loss of dopamine D1 receptors and diminished D1/5 receptor-mediated ERK phosphorylation in the periaqueductal gray after spinal cord lesion

    PubMed Central

    Voulalas, Pamela J.; Ji, Yadong; Jiang, Li; Asgar, Jamila; Ro, Jin Y.; Masri, Radi

    2016-01-01

    Neuropathic pain resulting from spinal cord injury is often accompanied by maladaptive plasticity of the central nervous system, including the opioid receptor-rich periaqueductal gray (PAG). Evidence suggests that sensory signaling via the PAG is robustly modulated by dopamine D1- and D2-like receptors, but the effect of damage to the spinal cord on D1 and D2 receptor protein expression and function in the PAG has not been examined. Here we show that 21 days after a T10 or C6 spinothalamic tract lesion, both mice and rats display a remarkable decline in the expression of D1 receptors in the PAG, revealed by western blot analysis. These changes were associated with a significant reduction in hindpaw withdrawal thresholds in lesioned animals compared to sham-operated controls. We investigated the consequences of diminished D1 receptor levels by quantifying D1-like receptor-mediated phosphorylation of ERK1,2 and CREB, events that have been observed in numerous brain structures. In naïve animals, western blot analysis revealed that ERK1,2, but not CREB phosphorylation was significantly increased in the PAG by the D1-like agonist SKF 81297. Using immunohistochemistry, we found that SKF 81297 increased ERK1,2 phosphorylation in the PAG of sham animals. However, in lesioned animals, basal pERK1,2 levels were elevated and did not significantly increase after exposure to SKF 81297. Our findings provide support for the hypothesis that molecular adaptions resulting in a decrease in D1 receptor expression and signaling in the PAG are a consequence of SCL. PMID:27932310

  11. Mechanisms for Antagonistic Regulation of AMPA and NMDA-D1 Receptor Complexes at Postsynaptic Sites

    NASA Technical Reports Server (NTRS)

    Schumann, Johann; Scheler, Gabriele

    2004-01-01

    From the analysis of these pathways we conclude that postsynaptic processes that regulate synaptic transmission undergo significant cross-talk with respect to glutamatergic and neuromodulatory (dopamine) signals. The main hypothesis is that of a compensatory regulation, a competitive switch between the induction of increased AMPA conductance by CaMKII-dependent phosphorylation and reduced expression of PP2A, and increased D1 receptor sensitivity and expression by increased PKA, PP2A and decreased PP-1/calcineurin expression. Both types of plasticity are induced by NMDA receptor activation and increased internal calcium, they require different internal conditions to become expressed. Specifically we propose that AMPA regulation and D1 regulation are inversely coupled;The net result may be a bifurcation of synaptic state into predominantly AMPA or NMDA-D1 synapses. This could have functional consequences: stable connections for AMPA and conditional gating for NMDA-D1 synapses.

  12. Peripheral NMDA Receptors Mediate Antidromic Nerve Stimulation-Induced Tactile Hypersensitivity in the Rat

    PubMed Central

    Jang, Jun Ho; Nam, Taick Sang; Jun, Jaebeom; Jung, Se Jung; Kim, Dong-Wook; Leem, Joong Woo

    2015-01-01

    We investigated the role of peripheral NMDA receptors (NMDARs) in antidromic nerve stimulation-induced tactile hypersensitivity outside the skin area innervated by stimulated nerve. Tetanic electrical stimulation (ES) of the decentralized L5 spinal nerve, which induced enlargement of plasma extravasation, resulted in tactile hypersensitivity in the L4 plantar dermatome of the hind-paw. When intraplantar (i.pl.) injection was administered into the L4 dermatome before ES, NMDAR and group-I metabotropic Glu receptor (mGluR) antagonists and group-II mGluR agonist but not AMPA/kainate receptor antagonist prevented ES-induced hypersensitivity. I.pl. injection of PKA or PKC inhibitors also prevented ES-induced hypersensitivity. When the same injections were administered after establishment of ES-induced hypersensitivity, hypersensitivity was partially reduced by NMDAR antagonist only. In naïve animals, i.pl. Glu injection into the L4 dermatome induced tactile hypersensitivity, which was blocked by NMDAR antagonist and PKA and PKC inhibitors. These results suggest that the peripheral release of Glu, induced by antidromic nerve stimulation, leads to the expansion of tactile hypersensitive skin probably via nociceptor sensitization spread due to the diffusion of Glu into the skin near the release site. In addition, intracellular PKA- and PKC-dependent mechanisms mediated mainly by NMDAR activation are involved in Glu-induced nociceptor sensitization and subsequent hypersensitivity. PMID:26770021

  13. Peripheral NMDA Receptors Mediate Antidromic Nerve Stimulation-Induced Tactile Hypersensitivity in the Rat.

    PubMed

    Jang, Jun Ho; Nam, Taick Sang; Jun, Jaebeom; Jung, Se Jung; Kim, Dong-Wook; Leem, Joong Woo

    2015-01-01

    We investigated the role of peripheral NMDA receptors (NMDARs) in antidromic nerve stimulation-induced tactile hypersensitivity outside the skin area innervated by stimulated nerve. Tetanic electrical stimulation (ES) of the decentralized L5 spinal nerve, which induced enlargement of plasma extravasation, resulted in tactile hypersensitivity in the L4 plantar dermatome of the hind-paw. When intraplantar (i.pl.) injection was administered into the L4 dermatome before ES, NMDAR and group-I metabotropic Glu receptor (mGluR) antagonists and group-II mGluR agonist but not AMPA/kainate receptor antagonist prevented ES-induced hypersensitivity. I.pl. injection of PKA or PKC inhibitors also prevented ES-induced hypersensitivity. When the same injections were administered after establishment of ES-induced hypersensitivity, hypersensitivity was partially reduced by NMDAR antagonist only. In naïve animals, i.pl. Glu injection into the L4 dermatome induced tactile hypersensitivity, which was blocked by NMDAR antagonist and PKA and PKC inhibitors. These results suggest that the peripheral release of Glu, induced by antidromic nerve stimulation, leads to the expansion of tactile hypersensitive skin probably via nociceptor sensitization spread due to the diffusion of Glu into the skin near the release site. In addition, intracellular PKA- and PKC-dependent mechanisms mediated mainly by NMDAR activation are involved in Glu-induced nociceptor sensitization and subsequent hypersensitivity.

  14. Glial regulation of extrasynaptic NMDA receptor-mediated excitation of supraoptic nucleus neurones during dehydration.

    PubMed

    Joe, N; Scott, V; Brown, C H

    2014-01-01

    Magnocellular neurosecretory cells (MNCs) of the supraoptic nucleus (SON) project to the posterior pituitary gland where they release the hormones, vasopressin and oxytocin into the circulation to maintain plasma osmolality. Hormone release is proportionate to SON MNC action potential (spike) firing rate. When activated by ambient extracellular glutamate, extrasynaptic NMDA receptors (eNMDARs) mediate a tonic (persistent) depolarisation to increase the probability of action potential firing. In the present study, in vivo single-unit electrophysiological recordings were made from urethane-anaesthetised female Sprague-Dawley rats to investigate the impact of tonic eNMDAR activation on MNC activity. Water deprivation (for up to 48 h) caused an increase in the firing rate of SON MNCs that was associated with a general increase in post-spike excitability. To determine whether eNMDAR activation contributes to the increased MNC excitability during water deprivation, memantine, which preferentially blocks eNMDARs, was administered locally into the SON by microdialysis. Memantine significantly decreased the firing rate of MNCs recorded from 48-h water-deprived rats but had no effect on MNCs recorded from euhydrated rats. In the presence of the glial glutamate transporter-1 (GLT-1) blocker, dihydrokainate, memantine also reduced the MNC firing rate in euhydrated rats. Taken together, these observations suggest that GLT-1 clears extracellular glutamate to prevent the activation of eNDMARs under basal conditions and that, during dehydration, eNMDAR activation contributes to the increased firing rate of MNCs.

  15. NMDA receptors mediate leptin signaling and regulate potassium channel trafficking in pancreatic β-cells.

    PubMed

    Wu, Yi; Fortin, Dale A; Cochrane, Veronica A; Chen, Pei-Chun; Shyng, Show-Ling

    2017-08-02

    NMDA receptors (NMDARs) are Ca2+-permeant, ligand-gated ion channels activated by the excitatory neurotransmitter glutamate and have well-characterized roles in the nervous system. The expression and function of NMDARs in pancreatic β cells, by contrast, are poorly understood. Here, we report a novel function of NMDARs in β-cells. Using a combination of biochemistry, electrophysiology, and imaging techniques we now show that NMDARs have a key role in mediating the effect of leptin to modulate β-cell electrical activity by promoting AMP-activated protein kinase (AMPK)-dependent trafficking of KATP and Kv2.1 channels to the plasma membrane. Blocking NMDAR activity inhibited the ability of leptin to activate AMPK, induce KATP and Kv2.1 channel trafficking, and promote membrane hyperpolarization. Conversely, activation of NMDARs mimicked the effect of leptin, causing Ca2+ influx, AMPK activation, increased trafficking of KATP and Kv2.1 channels to the plasma membrane, and triggered membrane hyperpolarization. Moreover, leptin potentiated NMDAR currents and triggered NMDAR-dependent Ca2+ influx. Importantly, NMDAR-mediated signaling was observed in rat insulinoma 832/13 cells and in human β-cells indicating that this pathway is conserved across species. The ability of NMDARs to regulate potassium channel surface expression and thus, β-cell excitability provides mechanistic insight into the recently reported insulinotropic effects of NMDAR antagonists, and therefore highlights the therapeutic potential of these drugs in managing type 2 diabetes. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  16. NMDA Receptors Mediate Stimulus-Timing-Dependent Plasticity and Neural Synchrony in the Dorsal Cochlear Nucleus

    PubMed Central

    Stefanescu, Roxana A.; Shore, Susan E.

    2015-01-01

    Auditory information relayed by auditory nerve fibers and somatosensory information relayed by granule cell parallel fibers converge on the fusiform cells (FCs) of the dorsal cochlear nucleus, the first brain station of the auditory pathway. In vitro, parallel fiber synapses on FCs exhibit spike-timing-dependent plasticity with Hebbian learning rules, partially mediated by the NMDA receptor (NMDAr). Well-timed bimodal auditory-somatosensory stimulation, in vivo equivalent of spike-timing-dependent plasticity, can induce stimulus-timing-dependent plasticity (StTDP) of the FCs spontaneous and tone-evoked firing rates. In healthy guinea pigs, the resulting distribution of StTDP learning rules across a FC neural population is dominated by a Hebbian profile while anti-Hebbian, suppressive and enhancing LRs are less frequent. In this study, we investigate in vivo, the NMDAr contribution to FC baseline activity and long term plasticity. We find that blocking the NMDAr decreases the synchronization of FC- spontaneous activity and mediates differential modulation of FC rate-level functions such that low, and high threshold units are more likely to increase, and decrease, respectively, their maximum amplitudes. Three significant alterations in mean learning-rule profiles were identified: transitions from an initial Hebbian profile towards (1) an anti-Hebbian; (2) a suppressive profile; and (3) transitions from an anti-Hebbian to a Hebbian profile. FC units preserving their learning rules showed instead, NMDAr-dependent plasticity to unimodal acoustic stimulation, with persistent depression of tone-evoked responses changing to persistent enhancement following the NMDAr antagonist. These results reveal a crucial role of the NMDAr in mediating FC baseline activity and long-term plasticity which have important implications for signal processing and auditory pathologies related to maladaptive plasticity of dorsal cochlear nucleus circuitry. PMID:26622224

  17. Glucocorticoid receptor mediated the propofol self-administration by dopamine D1 receptor in nucleus accumbens.

    PubMed

    Wu, Binbin; Liang, Yuyuan; Dong, Zhanglei; Chen, Zhichuan; Zhang, Gaolong; Lin, Wenxuan; Wang, Sicong; Wang, Benfu; Ge, Ren-Shan; Lian, Qingquan

    2016-07-22

    Propofol, a widely used anesthetic, can cause addictive behaviors in both human and experimental animals. In the present study, we examined the involvement of glucocorticoid receptor (GR) signaling in the molecular process by which propofol may cause addiction. The propofol self-administration model was established by a fixed ratio 1 (FR1) schedule of reinforced dosing over successive 14days in rats. On day 15, the rats were treated with dexamethasone, a GR agonist (10-100μg/kg), or RU486, a GR antagonist (10-100μg/kg) at 1h prior to the last training. The animal behaviors were recorded automatically by the computer. The expression of dopamine D1 receptor in the nucleus accumbens (NAc) was examined by Western blot and the concentrations of plasma corticosterone were measured by enzyme-linked immunosorbent assay (ELISA). To further examine the specificity of GR in the process, mineralocorticoid receptor (MR) antagonist, spironolactone, and dexamethasone plus MR agonist, aldosterone, were also tested. Administration of dexamethasone (100μg/kg) or RU486 (⩾10mg/kg) significantly attenuated the rate of propofol maintained active nose-poke responses and infusions, which were accompanied by reductions in both plasma corticosterone level and the expression of D1 receptor in the NAc. Neither spironolactone alone nor dexamethasone combined with aldosterone affected the propofol-maintaining self-administrative behavior, indicating GR, but not MR, modulates the propofol reward in rats. In addition, neither the food-maintaining sucrose responses under FR1 schedule nor the locomotor activity was affected by any doses of dexamethasone or RU486 tested. These findings provide evidence that GR signaling may play an important role in propofol reward. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Low dose ketamine: a therapeutic and research tool to explore N-methyl-D-aspartate (NMDA) receptor-mediated plasticity in pain pathways.

    PubMed

    Chizh, Boris A

    2007-05-01

    Ketamine is a dissociative anaesthetic that has been used in the clinic for many years. At low, sub-anaesthetic doses, it is a relatively selective and potent antagonist of the N-methyl-D-aspartate (NMDA) receptor. It belongs to the class of uncompetitive antagonists and blocks the receptor by binding to a specific site within the NMDA receptor channel when it is open. Like other compounds of this class, ketamine can cause hallucinations or other untoward central effects which limit its use in the clinic. Nevertheless, because of the evidence on the importance of NMDA receptor-mediated pLasticity in chronic pain, low doses of ketamine have been explored in a wide range of pain conditions. The majority of studies with ketamine have shown efficacy; however, it has not been possible to separate safely the pain relief from the side effects of the drug. Hence, clinical use of ketamine as a pain treatment is very limited. Nevertheless, ketamine has served as a useful tool to provide a compelling rationale for developing other NMDA antagonists. Some of the new compounds of this class, particularly those acting at the NR2B subtype of the NMDA receptor, have shown promise in preclinical and clinical studies.

  19. Enhanced GABAA receptor-mediated activity following activation of NMDA receptors in Cajal-Retzius cells in the developing mouse neocortex

    PubMed Central

    Chan, Chun-Hung; Yeh, Hermes H

    2003-01-01

    Cajal-Retzius (CR) cells are among the earliest generated population of neurons in the developing neocortex and have been implicated in regulating cortical lamination. In rodents, CR cells are transient, being present only up to 2–3 weeks after birth. Although previous electrophysiological studies have demonstrated the presence of NMDA and GABAA receptors in CR cells, little is known about the functional properties of these receptors. Using whole-cell patch-clamp techniques in neocortical slices, we confirmed the presence of D-aminophosphonovaleric acid (APV)- and ifenprodil-sensitive NMDA receptors, and found that the functional expression of this receptor subtype is strain specific. The NMDA-induced response was consistently accompanied by overriding current transients that were blocked by APV and ifenprodil. In addition, bicuculline readily abolished these transients without affecting the NMDA-induced current response. The generation of these overriding current transients was dependent upon intracellular Ca2+ and was prevented by dialysis with the high-affinity Ca2+-chelator BAPTA. Overall, this study uncovered a synergistic interaction between these receptors, whereby activation of NMDA receptors leads to enhanced GABAA receptor-mediated activity through a Ca2+-dependent mechanism. PMID:12730335

  20. Blocking GABA(A) inhibition reveals AMPA- and NMDA-receptor-mediated polysynaptic responses in the CA1 region of the rat hippocampus.

    PubMed

    Crépel, V; Khazipov, R; Ben-Ari, Y

    1997-04-01

    We have investigated the conditions required to evoke polysynaptic responses in the isolated CA1 region of hippocampal slices from Wistar adult rats. Experiments were performed with extracellular and whole cell recording techniques. In the presence of bicuculline (10 microM), 6-cyano-7-nitroquinoxaline-2-3-dione (10 microM), glycine (10 microM), and a low external concentration of Mg2+ (0.3 mM), electrical stimulation of the Schaffer collaterals/commissural pathway evoked graded N-methyl-D-aspartate (NMDA)-receptor-mediated late field potentials in the stratum radiatum of the CA1 region. These responses were generated via polysynaptic connections because their latency varied strongly and inversely with the stimulation intensity and they were abolished by a high concentration of divalent cations (7 mM Ca2+). These responses likely were driven by local collateral branches of CA1 pyramidal cell axons because focal application of tetrodotoxin (30 microM) in the stratum oriens strongly reduced the late synaptic component and antidromic stimulation of CA1 pyramidal cells could evoke the polysynaptic response. Current-source density analysis suggested that the polysynaptic response was generated along the proximal part of the apical dendrites of CA1 pyramidal cells (50-150 microm below the pyramidal cell layer in the stratum radiatum). In physiological concentration of Mg2+ (1.3 mM), the pharmacologically isolated NMDA-receptor-mediated polysynaptic response was abolished. In control artificial cerebrospinal fluid (with physiological concentration of Mg2+), bicuculline ( 10 microM) generated a graded polysynaptic response. Under these conditions, this response was mediated both by alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/NMDA receptors. In the presence of D-2-amino-5-phosphonovalerate (50 microM), the polysynaptic response could be mediated by AMPA receptors, although less efficiently. In conclusion, suppression of gamma-aminobutyric acid

  1. NR2B-NMDA receptor mediated modulation of the tyrosine phosphatase STEP regulates glutamate induced neuronal cell death

    PubMed Central

    Poddar, Ranjana; Deb, Ishani; Mukherjee, Saibal; Paul, Surojit

    2011-01-01

    The present study examines the role of a neuron-specific tyrosine phosphatase (STEP) in excitotoxic cell death. Our findings demonstrate that p38 MAPK, a stress-activated kinase that is known to play a role in the etiology of excitotoxic cell death is a substrate of STEP. Glutamate-mediated NMDA receptor stimulation leads to rapid but transient activation of p38 MAPK, which is primarily dependent on NR2A-NMDA receptor activation. Conversely, activation of NR2B-NMDA receptors leads to dephosphorylation and subsequent activation of STEP, which in turn leads to inactivation of p38 MAPK. Thus during transient NMDA receptor stimulation, increases in STEP activity appears to limit the duration of activation of p38 MAPK and improves neuronal survival. However, if NR2B-NMDA receptor stimulation is sustained, protective effects of STEP activation are lost, as these stimuli cause significant degradation of active STEP, leading to secondary activation of p38 MAP kinase. Consistent with this observation, a cell transducible TAT-STEP peptide that constitutively binds to p38 MAPK attenuated neuronal cell death caused by sustained NMDA receptor stimulation. The findings imply that the activation and levels of STEP are dependent on the duration and magnitude of NR2B-NMDA receptor stimulation and STEP serves as a modulator of NMDA receptor dependent neuronal injury, through its regulation of p38 MAPK. PMID:21029094

  2. CaV3.2 calcium channels control NMDA receptor-mediated transmission: a new mechanism for absence epilepsy.

    PubMed

    Wang, Guangfu; Bochorishvili, Genrieta; Chen, Yucai; Salvati, Kathryn A; Zhang, Peng; Dubel, Steve J; Perez-Reyes, Edward; Snutch, Terrance P; Stornetta, Ruth L; Deisseroth, Karl; Erisir, Alev; Todorovic, Slobodan M; Luo, Jian-Hong; Kapur, Jaideep; Beenhakker, Mark P; Zhu, J Julius

    2015-07-15

    CaV3.2 T-type calcium channels, encoded by CACNA1H, are expressed throughout the brain, yet their general function remains unclear. We discovered that CaV3.2 channels control NMDA-sensitive glutamatergic receptor (NMDA-R)-mediated transmission and subsequent NMDA-R-dependent plasticity of AMPA-R-mediated transmission at rat central synapses. Interestingly, functional CaV3.2 channels primarily incorporate into synapses, replace existing CaV3.2 channels, and can induce local calcium influx to control NMDA transmission strength in an activity-dependent manner. Moreover, human childhood absence epilepsy (CAE)-linked hCaV3.2(C456S) mutant channels have a higher channel open probability, induce more calcium influx, and enhance glutamatergic transmission. Remarkably, cortical expression of hCaV3.2(C456S) channels in rats induces 2- to 4-Hz spike and wave discharges and absence-like epilepsy characteristic of CAE patients, which can be suppressed by AMPA-R and NMDA-R antagonists but not T-type calcium channel antagonists. These results reveal an unexpected role of CaV3.2 channels in regulating NMDA-R-mediated transmission and a novel epileptogenic mechanism for human CAE.

  3. CaV3.2 calcium channels control NMDA receptor-mediated transmission: a new mechanism for absence epilepsy

    PubMed Central

    Wang, Guangfu; Bochorishvili, Genrieta; Chen, Yucai; Salvati, Kathryn A.; Zhang, Peng; Dubel, Steve J.; Perez-Reyes, Edward; Snutch, Terrance P.; Stornetta, Ruth L.; Deisseroth, Karl; Erisir, Alev; Todorovic, Slobodan M.; Luo, Jian-Hong; Kapur, Jaideep; Beenhakker, Mark P.; Zhu, J. Julius

    2015-01-01

    CaV3.2 T-type calcium channels, encoded by CACNA1H, are expressed throughout the brain, yet their general function remains unclear. We discovered that CaV3.2 channels control NMDA-sensitive glutamatergic receptor (NMDA-R)-mediated transmission and subsequent NMDA-R-dependent plasticity of AMPA-R-mediated transmission at rat central synapses. Interestingly, functional CaV3.2 channels primarily incorporate into synapses, replace existing CaV3.2 channels, and can induce local calcium influx to control NMDA transmission strength in an activity-dependent manner. Moreover, human childhood absence epilepsy (CAE)-linked hCaV3.2(C456S) mutant channels have a higher channel open probability, induce more calcium influx, and enhance glutamatergic transmission. Remarkably, cortical expression of hCaV3.2(C456S) channels in rats induces 2- to 4-Hz spike and wave discharges and absence-like epilepsy characteristic of CAE patients, which can be suppressed by AMPA-R and NMDA-R antagonists but not T-type calcium channel antagonists. These results reveal an unexpected role of CaV3.2 channels in regulating NMDA-R-mediated transmission and a novel epileptogenic mechanism for human CAE. PMID:26220996

  4. Contribution of NMDA receptor-mediated component to the EPSP in mouse Schaffer collateral synapses under single pulse stimulation protocol.

    PubMed

    Neagu, Bogdan; Strominger, Norman L; Carpenter, David O

    2008-11-13

    The degree to which NMDA receptors contribute to hippocampal CA(1) stratum radiatum excitatory postsynaptic potentials (EPSP) is a matter of debate. This experiment was designed to resolve the issue by documenting and positively identifying the elements of the NMDA dependent component in the extracellularly recorded stratum radiatum CA(1) field potential under low stimulation conditions and in the presence of physiologic levels of Mg(2+). We show that EPSP generation consists of activation of both AMPA and NMDA receptor channels, which mediate distinct components of the recorded field potential. We propose that the EPSP is a combination of two waves rather than one, which sometimes has been attributed to the exclusive activation of AMPA channels. Our data suggest that the three recorded peaks signify different events. The first peak reflects the presynaptic volley while the other two represent the actual EPSP. The first peak of the EPSP is determined mainly by flow of ions through AMPA channels. The second peak most likely is determined by the concurrence of two phenomena: ionic flow through NMDA channels and the source corresponding to the sink generated at the cell bodies in the pyramidal layer. The NMDA dependent component was recorded when Mg(2+) was present in physiological concentrations. The presynaptic volley and second peak do not saturate over a 10-fold increase of the stimulation charge and their amplitudes are highly correlated. The first peak amplitude rapidly saturates. The sensitivity of the recorded signals is different, the first peak being the most sensitive (1.25-0.26 mV/nC). Isolation of NMDA dependent components under physiological conditions when using a single pulse low stimulation protocol would allow more precise investigations of the NMDA dependent forms of synaptic plasticity.

  5. Adjunctive alpha2-adrenoceptor blockade enhances the antipsychotic-like effect of risperidone and facilitates cortical dopaminergic and glutamatergic, NMDA receptor-mediated transmission.

    PubMed

    Marcus, Monica M; Wiker, Charlotte; Frånberg, Olivia; Konradsson-Geuken, Asa; Langlois, Xavier; Jardemark, Kent; Svensson, Torgny H

    2010-08-01

    Compared to both first- and second-generation antipsychotic drugs (APDs), clozapine shows superior efficacy in treatment-resistant schizophrenia. In contrast to most APDs clozapine possesses high affinity for alpha2-adrenoceptors, and clinical and preclinical studies provide evidence that the alpha2-adrenoceptor antagonist idazoxan enhances the antipsychotic efficacy of typical D2 receptor antagonists as well as olanzapine. Risperidone has lower affinity for alpha2-adrenoceptors than clozapine but higher than most other APDs. Here we examined, in rats, the effects of adding idazoxan to risperidone on antipsychotic effect using the conditioned avoidance response (CAR) test, extrapyramidal side-effect (EPS) liability using the catalepsy test, brain dopamine efflux using in-vivo microdialysis in freely moving animals, cortical N-methyl-D-aspartate (NMDA) receptor-mediated transmission using intracellular electrophysiological recording in vitro, and ex-vivo autoradiography to assess the in-vivo alpha2A- and alpha2C-adrenoceptor occupancies by risperidone. The dose of risperidone needed for antipsychotic effect in the CAR test was approximately 0.4 mg/kg, which produced 11% and 17% in-vivo receptor occupancy at alpha2A- and alpha2C-adrenoceptors, respectively. Addition of idazoxan (1.5 mg/kg) to a low dose of risperidone (0.25 mg/kg) enhanced the suppression of CAR, but did not enhance catalepsy. Both cortical dopamine release and NMDA receptor-mediated responses were enhanced. These data propose that the therapeutic effect of risperidone in schizophrenia can be enhanced and its EPS liability reduced by adjunctive treatment with an alpha2-adrenoceptor antagonist, and generally support the notion that the potent alpha2-adrenoceptor antagonistic action of clozapine may be highly important for its unique efficacy in schizophrenia.

  6. Prenatal nicotine is associated with reduced AMPA and NMDA receptor-mediated rises in calcium within the laterodorsal tegmentum: a pontine nucleus involved in addiction processes.

    PubMed

    McNair, L F; Kohlmeier, K A

    2015-06-01

    Despite huge efforts from public sectors to educate society as to the deleterious physiological consequences of smoking while pregnant, 12-25% of all babies worldwide are born to mothers who smoked during their pregnancies. Chief among the negative legacies bestowed to the exposed individual is an enhanced proclivity postnatally to addict to drugs of abuse, which suggests that the drug exposure during gestation changed the developing brain in such a way that biased it towards addiction. Glutamate signalling has been shown to be altered by prenatal nicotine exposure (PNE) and glutamate is the major excitatory neurotransmitter within the laterodorsal tegmental nucleus (LDT), which is a brainstem region importantly involved in responding to motivational stimuli and critical in development of drug addiction-associated behaviours, however, it is unknown whether PNE alters glutamate signalling within this nucleus. Accordingly, we used calcium imaging, to evaluate AMPA and NMDA receptor-mediated calcium responses in LDT brain slices from control and PNE mice. We also investigated whether the positive AMPA receptor modulator cyclothiazide (CYZ) had differential actions on calcium in the LDT following PNE. Our data indicated that PNE significantly decreased AMPA receptor-mediated calcium responses, and altered the neuronal calcium response to consecutive NMDA applications within the LDT. Furthermore, CYZ strongly potentiated AMPA-induced responses, however, this action was significantly reduced in the LDT of PNE mice when compared with enhancements in responses in control LDT cells. Immunohistochemical processing confirmed that calcium imaging recordings were obtained from the LDT nucleus as determined by presence of cholinergic neurons. Our results contribute to the body of evidence suggesting that neurobiological changes are induced if gestation is accompanied by nicotine exposure. We conclude that in light of the role played by the LDT in motivated behaviour, the

  7. Olfactory bulb glomerular NMDA receptors mediate olfactory nerve potentiation and odor preference learning in the neonate rat.

    PubMed

    Lethbridge, Rebecca; Hou, Qinlong; Harley, Carolyn W; Yuan, Qi

    2012-01-01

    Rat pup odor preference learning follows pairing of bulbar beta-adrenoceptor activation with olfactory input. We hypothesize that NMDA receptor (NMDAR)-mediated olfactory input to mitral cells is enhanced during training, such that increased calcium facilitates and shapes the critical cAMP pattern. Here, we demonstrate, in vitro, that olfactory nerve stimulation, at sniffing frequencies, paired with beta-adrenoceptor activation, potentiates olfactory nerve-evoked mitral cell firing. This potentiation is blocked by a NMDAR antagonist and by increased inhibition. Glomerular disinhibition also induces NMDAR-sensitive potentiation. In vivo, in parallel, behavioral learning is prevented by glomerular infusion of an NMDAR antagonist or a GABA(A) receptor agonist. A glomerular GABA(A) receptor antagonist paired with odor can induce NMDAR-dependent learning. The NMDA GluN1 subunit is phosphorylated in odor-specific glomeruli within 5 min of training suggesting early activation, and enhanced calcium entry, during acquisition. The GluN1 subunit is down-regulated 3 h after learning; and at 24 h post-training the GluN2B subunit is down-regulated. These events may assist memory stability. Ex vivo experiments using bulbs from trained rat pups reveal an increase in the AMPA/NMDA EPSC ratio post-training, consistent with an increase in AMPA receptor insertion and/or the decrease in NMDAR subunits. These results support a model of a cAMP/NMDA interaction in generating rat pup odor preference learning.

  8. Olfactory Bulb Glomerular NMDA Receptors Mediate Olfactory Nerve Potentiation and Odor Preference Learning in the Neonate Rat

    PubMed Central

    Harley, Carolyn W.; Yuan, Qi

    2012-01-01

    Rat pup odor preference learning follows pairing of bulbar beta-adrenoceptor activation with olfactory input. We hypothesize that NMDA receptor (NMDAR)-mediated olfactory input to mitral cells is enhanced during training, such that increased calcium facilitates and shapes the critical cAMP pattern. Here, we demonstrate, in vitro, that olfactory nerve stimulation, at sniffing frequencies, paired with beta-adrenoceptor activation, potentiates olfactory nerve-evoked mitral cell firing. This potentiation is blocked by a NMDAR antagonist and by increased inhibition. Glomerular dishinhibtion also induces NMDAR-sensitive potentiation. In vivo, in parallel, behavioral learning is prevented by glomerular infusion of an NMDAR antagonist or a GABAA receptor agonist. A glomerular GABAA receptor antagonist paired with odor can induce NMDAR-dependent learning. The NMDA GluN1 subunit is phosphorylated in odor-specific glomeruli within 5 min of training suggesting early activation, and enhanced calcium entry, during acquisition. The GluN1 subunit is down-regulated 3 h after learning; and at 24 h post-training the GluN2B subunit is down-regulated. These events may assist memory stability. Ex vivo experiments using bulbs from trained rat pups reveal an increase in the AMPA/NMDA EPSC ratio post-training, consistent with an increase in AMPA receptor insertion and/or the decrease in NMDAR subunits. These results support a model of a cAMP/NMDA interaction in generating rat pup odor preference learning. PMID:22496886

  9. Opposite function of dopamine D1 and NMDA receptors in striatal cannabinoid-mediated signaling

    PubMed Central

    Daigle, Tanya L.; Wetsel, William C.; Caron, Marc G.

    2011-01-01

    It is well established that the cannabinoid and dopamine systems interact at various levels to regulate basal ganglia function. While it is well known that acute administration of cannabinoids to mice can modify dopamine-dependent behaviors, an understanding of the intraneuronal signaling pathways employed by these agents in the striatum is not well understood. Here we use knockout (KO) mouse models to examine the regulation of striatal ERK1/2 signaling by behaviorally relevant doses of cannabinoids. This cellular pathway has been implicated as a central mediator of drug reward and synaptic plasticity. In C57BL/6J mice, acute administration of cannabinoid agonists, HU-210 and Δ9-THC, promotes a dose- and time-dependent decrease in the phosphorylation of ERK1/2 in dorsal striatum. Co-administration of the CB1 cannabinoid receptor (CB1R) antagonist AM251 with HU-210 prevents ERK1/2 inactivation, indicating a requirement for activation of this receptor. In dopamine D1 receptor (D1R) KO animals treated with HU-210, the magnitude of the HU-210-dependent decrease in striatal ERK1/2 signaling is greater than in wild-type controls. In contrast, the HU-210 administration to NMDA receptor knockdown mice (NR1-Kd) was ineffective at promoting striatal ERK1/2 inactivation. Genetic deletion of other potential ERK1/2 mediators, the dopamine D2 receptors (D2R)s or βarrestin-1 or -2, did not affect HU-210-induced modulation of ERK1/2 signaling in the striatum. These results support the hypothesis that dopamine D1 receptors and NMDA receptors act in an opposite manner to regulate striatal CB1R signal transduction. PMID:22034973

  10. Direct involvement of σ-1 receptors in the dopamine D1 receptor-mediated effects of cocaine

    PubMed Central

    Navarro, Gemma; Moreno, Estefanía; Aymerich, Marisol; Marcellino, Daniel; McCormick, Peter J.; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Canela, Enric I.; Ortiz, Jordi; Fuxe, Kjell; Lluís, Carmen; Ferré, Sergi; Franco, Rafael

    2010-01-01

    It is well known that cocaine blocks the dopamine transporter. This mechanism should lead to a general increase in dopaminergic neurotransmission, and yet dopamine D1 receptors (D1Rs) play a more significant role in the behavioral effects of cocaine than the other dopamine receptor subtypes. Cocaine also binds to σ-1 receptors, the physiological role of which is largely unknown. In the present study, D1R and σ1R were found to heteromerize in transfected cells, where cocaine robustly potentiated D1R-mediated adenylyl cyclase activation, induced MAPK activation per se and counteracted MAPK activation induced by D1R stimulation in a dopamine transporter-independent and σ1R-dependent manner. Some of these effects were also demonstrated in murine striatal slices and were absent in σ1R KO mice, providing evidence for the existence of σ1R-D1R heteromers in the brain. Therefore, these results provide a molecular explanation for which D1R plays a more significant role in the behavioral effects of cocaine, through σ1R-D1R heteromerization, and provide a unique perspective toward understanding the molecular basis of cocaine addiction. PMID:20956312

  11. Dorsal hippocampal NMDA receptors mediate the interactive effects of arachidonylcyclopropylamide and MDMA/ecstasy on memory retrieval in rats.

    PubMed

    Ghaderi, Marzieh; Rezayof, Ameneh; Vousooghi, Nasim; Zarrindast, Mohammad-Reza

    2016-04-03

    A combination of cannabis and ecstasy may change the cognitive functions more than either drug alone. The present study was designed to investigate the possible involvement of dorsal hippocampal NMDA receptors in the interactive effects of arachidonylcyclopropylamide (ACPA) and ecstasy/MDMA on memory retrieval. Adult male Wistar rats were cannulated into the CA1 regions of the dorsal hippocampus (intra-CA1) and memory retrieval was examined using the step-through type of passive avoidance task. Intra-CA1 microinjection of a selective CB1 receptor agonist, ACPA (0.5-4ng/rat) immediately before the testing phase (pre-test), but not after the training phase (post-training), impaired memory retrieval. In addition, pre-test intra-CA1 microinjection of MDMA (0.5-1μg/rat) dose-dependently decreased step-through latency, indicating an amnesic effect of the drug by itself. Interestingly, pre-test microinjection of a higher dose of MDMA into the CA1 regions significantly improved ACPA-induced memory impairment. Moreover, pre-test intra-CA1 microinjection of a selective NMDA receptor antagonist, D-AP5 (1 and 2μg/rat) inhibited the reversal effect of MDMA on the impairment of memory retrieval induced by ACPA. Pre-test intra-CA1 microinjection of the same doses of D-AP5 had no effect on memory retrieval alone. These findings suggest that ACPA or MDMA consumption can induce memory retrieval impairment, while their co-administration improves this amnesic effect through interacting with hippocampal glutamatergic-NMDA receptor mechanism. Thus, it seems that the tendency to abuse cannabis with ecstasy may be for avoiding cognitive dysfunction. Copyright © 2015. Published by Elsevier Inc.

  12. Dopamine D1 and D3 receptors mediate reconsolidation of cocaine memories in mouse models of drug self-administration.

    PubMed

    Yan, Y; Newman, A H; Xu, M

    2014-10-10

    Memories of drug experience and drug-associated environmental cues can elicit drug-seeking and taking behaviors in humans. Disruption of reconsolidation of drug memories dampens previous memories and therefore may provide a useful way to treat drug abuse. We and others previously demonstrated that dopamine D1 and D3 receptors play differential roles in acquiring cocaine-induced behaviors. Moreover, D3 receptors contribute to the reconsolidation of cocaine-induced conditioned place preference. In the present study, we examined effects of manipulating D1 or D3 receptors on reconsolidation of cocaine memories in mouse models of drug self-administration. We found that pharmacological blockade of D1 receptors or a genetic mutation of the D3 receptor gene attenuated reconsolidation that lasted for at least 1week after the memory retrieval. In contrast, with no memory retrieval, pharmacological antagonism of D1 receptors or the D3 receptor gene mutation did not significantly affect reconsolidation of cocaine memories. Pharmacological blockade of D3 receptors also attenuated reconsolidation in wild-type mice that lasted for at least 1week after the memory retrieval. These results suggest that D1 and D3 receptors and related signaling mechanisms play key roles in reconsolidation of cocaine memories in mice, and that these receptors may serve as novel targets for the treatment of cocaine abuse in humans. Copyright © 2014 IBRO. All rights reserved.

  13. Chronic restraint stress causes a delayed increase in responding for palatable food cues during forced abstinence via a dopamine D1-like receptor-mediated mechanism.

    PubMed

    Ball, Kevin T; Best, Olivia; Luo, Jonathan; Miller, Leah R

    2017-02-15

    Relapse to unhealthy eating habits in dieters is often triggered by stress. Animal models, moreover, have confirmed a causal role for acute stress in relapse. The role of chronic stress in relapse vulnerability, however, has received relatively little attention. Therefore, in the present study, we used an abstinence-based relapse model in rats to test the hypothesis that exposure to chronic stress increases subsequent relapse vulnerability. Rats were trained to press a lever for highly palatable food reinforcers in daily 3-h sessions and then tested for food seeking (i.e., responding for food associated cues) both before and after an acute or chronic restraint stress procedure (3h/day×1day or 10days, respectively) or control procedure (unstressed). The second food seeking test was conducted either 1day or 7days after the last restraint. Because chronic stress causes dopamine D1-like receptor-mediated alterations in prefrontal cortex (a relapse node), we also assessed dopaminergic involvement by administering either SCH-23390 (10.0μg/kg; i.p.), a dopamine D1-like receptor antagonist, or vehicle prior to daily treatments. Results showed that chronically, but not acutely, stressed rats displayed increased food seeking 7days, but not 1day, after the last restraint. Importantly, SCH-23390 combined with chronic stress reversed this effect. These results suggest that drugs targeting D1-like receptors during chronic stress may help to prevent future relapse in dieters.

  14. Endogenous D-serine contributes to NMDA-receptor-mediated light-evoked responses in the vertebrate retina.

    PubMed

    Gustafson, Eric C; Stevens, Eric R; Wolosker, Herman; Miller, Robert F

    2007-07-01

    We have combined electrophysiology and chemical separation and measurement techniques with capillary electrophoresis (CE) to evaluate the role of endogenous d-serine as an NMDA receptor (NMDAR) coagonist in the salamander retina. Electrophysiological experiments were carried out using whole cell recordings from retinal ganglion cells and extracellular recordings of the proximal negative response (PNR), while bath applying two D-serine degrading enzymes, including d-amino acid oxidase (DAAO) and D-serine deaminase (DsdA). The addition of either enzyme resulted in a significant and rapid decline in the light-evoked responses observed in ganglion cell and PNR recordings. The addition of exogenous D-serine in the presence of the enzymes restored the light-evoked responses to the control or supracontrol amplitudes. Heat-inactivated enzymes had no effect on the light responses and blocking NMDARs with AP7 eliminated the suppressive influence of the enzymes as well as the response enhancement normally associated with exogenous d-serine application. CE was used to separate amino acid racemates and to study the selectivity of DAAO and DsdA against D-serine and glycine. Both enzymes showed high selectivity for D-serine without significant effects on glycine. Our results strongly support the concept that endogenous D-serine plays an essential role as a coagonist for NMDARs, allowing them to contribute to the light-evoked responses of retinal ganglion cells. Furthermore under our experimental conditions, these coagonist sites are not saturated so that modulation of NMDAR sensitivity can be achieved with further modulaton of d-serine.

  15. Combination of behaviorally sub-effective doses of glutamate NMDA and dopamine D1 receptor antagonists impairs executive function.

    PubMed

    Desai, Sagar J; Allman, Brian L; Rajakumar, Nagalingam

    2017-04-14

    Impairment of executive function is a core feature of schizophrenia. Preclinical studies indicate that injections of either N-methyl d-aspartate (NMDA) or dopamine D1 receptor blockers impair executive function. Despite the prevailing notion based on postmortem findings in schizophrenia that cortical areas have marked suppression of glutamate and dopamine, recent in vivo imaging studies suggest that abnormalities of these neurotransmitters in living patients may be quite subtle. Thus, we hypothesized that modest impairments in both glutamate and dopamine function can act synergistically to cause executive dysfunction. In the present study, we investigated the effect of combined administration of "behaviorally sub-effective" doses of NMDA and dopamine D1 receptor antagonists on executive function. An operant conditioning-based set-shifting task was used to assess behavioral flexibility in rats that were systemically injected with NMDA and dopamine D1 receptor antagonists individually or in combination prior to task performance. Separate injections of the NMDA receptor antagonist, MK-801, and the dopamine D1 receptor antagonist, SCH 23390, at low doses did not impair set-shifting; however, the combined administration of these same behaviorally sub-effective doses of the antagonists significantly impaired the performance during set-shifting without affecting learning, retrieval of the memory of the initial rule, latency of responses or the number of omissions. The combined treatment also produced an increased number of perseverative errors. Our results indicate that NMDA and D1 receptor blockade act synergistically to cause behavioral inflexibility, and as such, subtle abnormalities in glutamatergic and dopaminergic systems may act cooperatively to cause deficits in executive function.

  16. Relief learning requires a coincident activation of dopamine D1 and NMDA receptors within the nucleus accumbens.

    PubMed

    Bergado Acosta, Jorge R; Kahl, Evelyn; Kogias, Georgios; Uzuneser, Taygun C; Fendt, Markus

    2017-03-01

    Relief learning is the association of a stimulus with the offset of an aversive event. Later, the now conditioned relief stimulus induces appetitive-like behavioral changes. We previously demonstrated that the NMDA receptors within the nucleus accumbens (NAC) are involved in relief learning. The NAC is also important for reward learning and it has been shown that reward learning is mediated by an interaction of accumbal dopamine and NMDA glutamate receptors. Since conditioned relief has reward-like properties, we hypothesized that (a) acquisition of relief learning requires the activation of dopamine D1 receptors in the NAC, and (b) if D1 receptors are involved in this process as expected, a concurrent dopamine D1 and NMDA receptor activation may mediate this learning. The present study tested these hypotheses. Therefore, rats received intra-NAC injections of the dopamine D1 receptor antagonist SCH23390 and the NMDA antagonist AP5, either separately or together, at different time points of a relief conditioning procedure. First, we showed that SCH23390 dose-dependently blocked acquisition and the expression of conditioned relief. Next, we demonstrated that co-injections of SCH23390 and AP5 into the NAC, at doses that were ineffective when applied separately, blocked acquisition but not consolidation or expression of relief learning. Notably, neither of the injections affected the locomotor response of the animals to the aversive stimuli suggesting that their perception is not changed. This data indicates that a co-activation of dopamine D1 and NMDA receptors in the NAC is required for acquisition of relief learning.

  17. Failure of MK-801 to suppress D1 receptor-mediated induction of locomotor activity and striatal preprotachykinin mRNA expression in the dopamine-depleted rat.

    PubMed

    Campbell, B M; Kreipke, C W; Walker, P D

    2006-01-01

    N-methyl-D-aspartate receptor antagonism exerts suppressive influences over dopamine D1 receptor-mediated striatal gene expression and locomotor behavior in the intact rat. The present study examined the effects of the N-methyl-D-aspartate receptor antagonist MK-801 on locomotor activity and striatal preprotachykinin mRNA expression stimulated by the D1 agonist (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide in rats with bilateral dopamine lesions. Two months after neonatal dopamine lesions with 6-hydroxydopamine, rats were challenged with (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (1.0 mg/kg) 15 min after administration of the N-methyl-D-aspartate receptor antagonist MK-801 (0.1 mg/kg). In the intact rat, MK-801 prevented the induction of striatal preprotachykinin mRNA by D1 agonism. Similarly, direct infusion of (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (3.0 microg) into the intact striatum produced an increase in locomotor activity that was suppressed by MK-801 (1.0 microg) co-infusion. In the dopamine-depleted rat, MK-801 (0.1 mg/kg) administered prior to (+/-)6-chloro-7, 8-dihydroxy-3-allyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide (1.0 mg/kg) increased, rather than suppressed, striatal preprotachykinin mRNA levels. Intrastriatal infusion of MK-801 (1.0 microg) failed to inhibit D1-mediated induction of motor activity in dopamine-depleted animals. Together, these data provide further support that N-methyl-D-aspartate receptor antagonists lose their ability to block D1-mediated behavioral activation following dopamine depletion. The activation, rather than suppression, of tachykinin neurons of the direct striatonigral pathway may play a facilitatory role in this mechanism.

  18. Time-limited modulation of appetitive Pavlovian memory by D1 and NMDA receptors in the nucleus accumbens

    PubMed Central

    Dalley, Jeffrey W.; Lääne, Kristjan; Theobald, David E. H.; Armstrong, Hannah C.; Corlett, Philip R.; Chudasama, Yogita; Robbins, Trevor W.

    2005-01-01

    Recent research has implicated the nucleus accumbens (NAc) in consolidating recently acquired goal-directed appetitive memories, including spatial learning and other instrumental processes. However, an important but unresolved issue is whether this forebrain structure also contributes to the consolidation of fundamental forms of appetitive learning acquired by Pavlovian associative processes. In addition, although dopaminergic and glutamatergic influences in the NAc have been implicated in instrumental learning, it is unclear whether similar mechanisms operate during Pavlovian conditioning. To evaluate these issues, the effects of posttraining intra-NAc infusions of D1, D2, and NMDA receptor antagonists, as well as d-amphetamine, were determined on Pavlovian autoshaping in rats, which assesses learning by discriminated approach behavior to a visual conditioned stimulus predictive of food reward. Intracerebral infusions were given either immediately after each conditioning session to disrupt early memory consolidation or after a delay of 24 h. Findings indicate that immediate, but not delayed, infusions of both D1 (SCH 23390) and NMDA (AP-5) receptor antagonists significantly impair learning on this task. By contrast, amphetamine and the D2 receptor antagonist sulpiride were without significant effect. These findings provide the most direct demonstration to date that D1 and NMDA receptors in the NAc contribute to, and are necessary for, the early consolidation of appetitive Pavlovian learning. PMID:15833811

  19. Methamphetamine blunts Ca2+ currents and excitatory synaptic transmission through D1/5 receptor-mediated mechanisms in the mouse medial prefrontal cortex

    PubMed Central

    González, Betina; Rivero-Echeto, Celeste; Muñiz, Javier A.; Cadet, Jean Lud; García-Rill, Edgar; Urbano, Francisco J.; Bisagno, Veronica

    2015-01-01

    Psychostimulant addiction is associated with dysfunctions in frontal cortex. Previous data demonstrated that repeated exposure to methamphetamine (METH) can alter prefrontal cortex (PFC) dependent functions. Here, we show that withdrawal from repetitive non-contingent METH administration (7 days, 1mg/kg) depressed voltage-dependent calcium currents (ICa) and increased IH amplitude and the paired-pulse ratio of evoked EPSCs in deep-layer pyramidal mPFC neurons. Most of these effects were blocked by systemic co-administration of the D1/D5 receptor antagonist SCH23390 (0.5 and 0.05 mg/kg). In vitro METH (i.e bath-applied to slices from naïve-treated animals) was able to emulate its systemic effects on ICa and evoked EPSCs paired-pulse ratio. We also provide evidence of altered mRNA expression of i) voltage-gated calcium channels P/Q-type Cacna1a (Cav2.1), N-type Cacna1b (Cav2.2), T-type Cav3.1 Cacna1g, Cav3.2 Cacna1h, Cav3.3 Cacna1i and the auxiliary subunit Cacna2d1 (α2δ1), ii) hyperpolarization-activated cyclic nucleotide-gated channels Hcn1 and Hcn2 and iii) glutamate receptors subunits AMPA-type Gria1, NMDA-type Grin1 and metabotropic Grm1 in the mouse mPFC after repeated METH treatment. Moreover, we show that some of these changes in mRNA expression were sensitive D1/5 receptor blockade. Altogether these altered mechanisms affecting synaptic physiology and transcriptional regulation may underlie prefrontal cortex functional alterations that could lead to PFC impairments observed in METH-addicted individuals. PMID:25871318

  20. Bisphenol-A rapidly promotes dynamic changes in hippocampal dendritic morphology through estrogen receptor-mediated pathway by concomitant phosphorylation of NMDA receptor subunit NR2B

    SciTech Connect

    Xu Xiaohong Ye Yinping; Li Tao; Chen Lei; Tian Dong; Luo Qingqing; Lu Mei

    2010-12-01

    Bisphenol-A (BPA) is known to be a potent endocrine disrupter. Evidence is emerging that estrogen exerts a rapid influence on hippocampal synaptic plasticity and the dendritic spine density, which requires activation of NMDA receptors. In the present study, we investigated the effects of BPA (ranging from 1 to 1000 nM), focusing on the rapid dynamic changes in dendritic filopodia and the expressions of estrogen receptor (ER) {beta} and NMDA receptor, as well as the phosphorylation of NMDA receptor subunit NR2B in the cultured hippocampal neurons. A specific ER antagonist ICI 182,780 was used to examine the potential involvement of ERs. The results demonstrated that exposure to BPA (ranging from 10 to 1000 nM) for 30 min rapidly enhanced the motility and the density of dendritic filopodia in the cultured hippocampal neurons, as well as the phosphorylation of NR2B (pNR2B), though the expressions of NMDA receptor subunits NR1, NR2B, and ER{beta} were not changed. The antagonist of ERs completely inhibited the BPA-induced increases in the filopodial motility and the number of filopodia extending from dendrites. The increased pNR2B induced by BPA (100 nM) was also completely eliminated. Furthermore, BPA attenuated the effects of 17{beta}-estradiol (17{beta}-E{sub 2}) on the dendritic filopodia outgrowth and the expression of pNR2B when BPA was co-treated with 17{beta}-E{sub 2}. The present results suggest that BPA, like 17{beta}-E{sub 2}, rapidly results in the enhanced motility and density of dendritic filopodia in the cultured hippocampal neurons with the concomitant activation of NMDA receptor subunit NR2B via an ER-mediated signaling pathway. Meanwhile, BPA suppressed the enhancement effects of 17{beta}-E{sub 2} when it coexists with 17{beta}-E{sub 2}. These results provided important evidence suggesting the neurotoxicity of the low levels of BPA during the early postnatal development of the brain.

  1. AMPA/Kainate, NMDA, and Dopamine D1 Receptor Function in the Nucleus Accumbens Core: A Context-Limited Role in the Encoding and Consolidation of Instrumental Memory

    ERIC Educational Resources Information Center

    Hernandez, Pepe J.; Andrzejewski, Matthew E.; Sadeghian, Kenneth; Panksepp, Jules B.; Kelley, Ann E.

    2005-01-01

    Neural integration of glutamate- and dopamine-coded signals within the nucleus accumbens (NAc) is a fundamental process governing cellular plasticity underlying reward-related learning. Intra-NAc core blockade of NMDA or D1 receptors in rats impairs instrumental learning (lever-pressing for sugar pellets), but it is not known during which phase of…

  2. AMPA/Kainate, NMDA, and Dopamine D1 Receptor Function in the Nucleus Accumbens Core: A Context-Limited Role in the Encoding and Consolidation of Instrumental Memory

    ERIC Educational Resources Information Center

    Hernandez, Pepe J.; Andrzejewski, Matthew E.; Sadeghian, Kenneth; Panksepp, Jules B.; Kelley, Ann E.

    2005-01-01

    Neural integration of glutamate- and dopamine-coded signals within the nucleus accumbens (NAc) is a fundamental process governing cellular plasticity underlying reward-related learning. Intra-NAc core blockade of NMDA or D1 receptors in rats impairs instrumental learning (lever-pressing for sugar pellets), but it is not known during which phase of…

  3. Histamine H3 receptor activation prevents dopamine D1 receptor-mediated inhibition of dopamine release in the rat striatum: a microdialysis study.

    PubMed

    Alfaro-Rodriguez, Alfonso; Alonso-Spilsbury, María; Arch-Tirado, Emilio; Gonzalez-Pina, Rigoberto; Arias-Montaño, José-Antonio; Bueno-Nava, Antonio

    2013-09-27

    Histamine H3 receptors (H3Rs) co-localize with dopamine (DA) D1 receptors (D1Rs) on striatal medium spiny neurons and functionally antagonize D1R-mediated responses. The intra-striatal administration of D1R agonists reduces DA release whereas D1R antagonists have the opposite effect. In this work, a microdialysis method was used to study the effect of co-activating D1 and H3 receptors on the release of DA from the rat dorsal striatum. Infusion of the D1R agonist SKF-38393 (0.5 and 1 μM) significantly reduced DA release (26-58%), and this effect was prevented by co-administration of the H3R agonist immepip (10 μM). In turn, the effect of immepip was blocked by the H3R antagonist thioperamide (10 μM). Our results indicate that co-stimulation of post-synaptic D1 and H3 receptors may indirectly regulate basal DA release in the rat striatum and provide in vivo evidence for a functional interaction between D1 and H3 receptors in the basal ganglia.

  4. Dopamine D1 Receptor-Mediated Transmission Maintains Information Flow Through the Cortico-Striato-Entopeduncular Direct Pathway to Release Movements.

    PubMed

    Chiken, Satomi; Sato, Asako; Ohta, Chikara; Kurokawa, Makoto; Arai, Satoshi; Maeshima, Jun; Sunayama-Morita, Tomoko; Sasaoka, Toshikuni; Nambu, Atsushi

    2015-12-01

    In the basal ganglia (BG), dopamine plays a pivotal role in motor control, and dopamine deficiency results in severe motor dysfunctions as seen in Parkinson's disease. According to the well-accepted model of the BG, dopamine activates striatal direct pathway neurons that directly project to the output nuclei of the BG through D1 receptors (D1Rs), whereas dopamine inhibits striatal indirect pathway neurons that project to the external pallidum (GPe) through D2 receptors. To clarify the exact role of dopaminergic transmission via D1Rs in vivo, we developed novel D1R knockdown mice in which D1Rs can be conditionally and reversibly regulated. Suppression of D1R expression by doxycycline treatment decreased spontaneous motor activity and impaired motor ability in the mice. Neuronal activity in the entopeduncular nucleus (EPN), one of the output nuclei of the rodent BG, was recorded in awake conditions to examine the mechanism of motor deficits. Cortically evoked inhibition in the EPN mediated by the cortico-striato-EPN direct pathway was mostly lost during suppression of D1R expression, whereas spontaneous firing rates and patterns remained unchanged. On the other hand, GPe activity changed little. These results suggest that D1R-mediated dopaminergic transmission maintains the information flow through the direct pathway to appropriately release motor actions.

  5. GABAA Receptor- and Non-NMDA Glutamate Receptor-Mediated Actions of Korean Red Ginseng Extract on the Gonadotropin Releasing Hormone Neurons.

    PubMed

    Cho, Dong Hyu; Bhattarai, Janardhan Prasad; Han, Seong Kyu

    2012-01-01

    Korean red ginseng (KRG) has been used worldwide as a traditional medicine for the treatment of various reproductive diseases. Gonadotropin releasing hormone (GnRH) neurons are the fundamental regulators of pulsatile release of gonadotropin required for fertility. In this study, an extract of KRG (KRGE) was applied to GnRH neurons to identify the receptors activated by KRGE. The brain slice patch clamp technique in whole cell and perforated patch was used to clarify the effect of KRGE on the membrane currents and membrane potentials of GnRH neurons. Application of KRGE (3 μg/μL) under whole cell patch induced remarkable inward currents (56.17±7.45 pA, n=25) and depolarization (12.91±3.80 mV, n=4) in GnRH neurons under high Cl(-) pipette solution condition. These inward currents were not only reproducible, but also concentration dependent. In addition, inward currents and depolarization induced by KRGE persisted in the presence of the voltage gated Na(+) channel blocker tetrodotoxin (TTX), suggesting that the responses by KRGE were postsynaptic events. Application of KRGE under the gramicidin perforated patch induced depolarization in the presence of TTX suggesting its physiological significance on GnRH response. Further, the KRGE-induced inward currents were partially blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; non-NMDA glutamate receptor antagonist, 10 μM) or picrotoxin (PIC; GABAA receptor antagonist, 50 μM), and almost blocked by PIC and CNQX mixture. Taken together, these results suggest that KRGE contains ingredients with possible GABA and non-NMDA glutamate receptor mimetic activity, and may play an important role in the endocrine function of reproductive physiology, via activation of GABAA and non-NMDA glutamate receptors in GnRH neurons.

  6. MMP-9- and NMDA receptor-mediated mechanism of diabetic renovascular remodeling and kidney dysfunction: hydrogen sulfide is a key modulator

    PubMed Central

    Kundu, Sourav; Pushpakumar, Sathnur B.; Sen, Utpal

    2015-01-01

    Previously we reported that matrix metalloproteinase-9 (MMP-9) plays an important role in extracellular matrix (ECM) remodeling in diabetic kidney. Induction of NMDA-R and dysregulation of connexins (Cxs) were also observed. We concluded that this was due to decreased H2S production by down regulation of CBS and CSE enzymes. However, the potential role of H2S to mitigate ECM dysregulation and renal dysfunction was not clearly understood. The present study was undertaken to determine whether H2S supplementation reduces MMP-9-induced ECM remodeling and dysfunction in diabetic kidney. Wild type (C57BL/6J), diabetic (Akita, C57BL/6J-Ins2Akita), MMP-9 knockout (MMP-9−/− , M9KO) and double KO of Akita/MMP-9−/− (DKO) mice were treated without or with 0.05 g/L of NaHS (as a source of H2S) in drinking water for 30 days. Decreased tissue production and plasma content of H2S in Akita mice were ameliorated with H2S supplementation. Dysregulated expression of MMP-9, CBS, CSE, NMDA-R1 and Cxs-40, -43 were also normalized in Akita mice treated with H2S. In addition, increased renovascular resistive index (RI), ECM deposition, plasma creatinine, and diminished renal vascular density and cortical blood flow in Akita mice were normalized with H2S treatment. We conclude that diminished H2S production in renal tissue and plasma levels in diabetes mediates adverse renal remodeling, and H2S therapy improves renal function through MMP-9- and NMDA-R1-mediated pathway. PMID:25659756

  7. Involvement of NMDA receptors in the ventrolateral striatum of rats in apomorphine-induced jaw movements.

    PubMed

    Fujita, Satoshi; Kiguchi, Motori; Kobayashi, Masayuki; Koshikawa, Noriaki; Waddington, John L

    2010-03-31

    The role of NMDA receptors in the ventrolateral striatum to modulate dopamine receptor-mediated jaw movements was investigated in freely moving rats, using a magnetic sensor system combined with intracerebral microinjection of drugs. Apomorphine (1mg/kg i.v.) induced repetitive jaw movements that were reduced, in a dose-dependent manner, by bilateral microinjections of the NMDA receptor agonist NMDA (0.1 and 1mug/0.2mul bilaterally) into the ventrolateral striatum. Apomorphine-induced repetitive jaw movements were also reduced, in a dose-dependent manner, by bilateral microinjections of the NMDA receptor antagonists d-APV (0.01 and 0.1mug) or MK-801 (0.5 and 5mug). The inhibitory effect of NMDA (1mug) was reduced by co-administration of MK-801 (0.5mug). Microinjections of drugs into the ventrolateral striatum in the absence of apomorphine did not affect jaw movements. These results suggest that NMDA receptors in the ventrolateral striatum play an important modulatory role in the expression of dopamine receptor-mediated jaw movements. However, similar effects of NMDA and NMDA antagonists echo previous paradoxical findings and indicate that interactions between dopamine and NMDA receptors are complex and multifaceted. Cellular mechanism(s) may involve differential effects of NMDA agonism and antagonism on dopamine D1-like vs D2-like receptors and, possibly, on related GABAergic processes. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Deletion of the NMDA-NR1 receptor subunit gene in the mouse nucleus accumbens attenuates apomorphine-induced dopamine D1 receptor trafficking and acoustic startle behavior

    PubMed Central

    Glass, Michael J.; Robinson, Danielle C.; Waters, Elizabeth; Pickel, Virginia M.

    2013-01-01

    The nucleus accumbens (Acb) contains subpopulations of neurons defined by their receptor content and potential involvement in sensorimotor gating and other behaviors that are dysfunctional in schizophrenia. In Acb neurons, the NMDA NR1 (NR1) subunit is co-expressed not only with the dopamine D1 receptor (D1R), but also with the μ-opioid receptor (μ-OR), which mediates certain behaviors that are adversely impacted by schizophrenia. The NMDA-NR1 subunit has been suggested to play a role in the D1R trafficking and behavioral dysfunctions resulting from systemic administration of apomorphine, a D1R and dopamine D2 receptor agonist that impacts prepulse inhibition (PPI) to auditory-evoked startle (AS). Together, this evidence suggests that the NMDA receptor may regulate D1R trafficking in Acb neurons, including those expressing μ-OR, in animals exposed to auditory startle and apomorphine. We tested this hypothesis by combining spatial-temporal gene deletion technology, dual labeling immunocytochemistry, and behavioral analysis. Deleting NR1 in Acb neurons prevented the increase in the dendritic density of plasma membrane D1Rs in single D1R and dual (D1R and μ-OR) labeled dendrites in the Acb in response to apomorphine and AS. Deleting NR1 also attenuated the decrease in AS induced by apomorphine. In the absence of apomorphine and startle, deletion of Acb NR1 diminished social interaction, without affecting novel object recognition, or open field activity. These results suggest that NR1 expression in the Acb is essential for apomorphine-induced D1R surface trafficking and reduction in AS, but also plays an independent role in controling social behaviors that are impaired in multiple psychiatric disorders. PMID:23345061

  9. Deletion of the NMDA-NR1 receptor subunit gene in the mouse nucleus accumbens attenuates apomorphine-induced dopamine D1 receptor trafficking and acoustic startle behavior.

    PubMed

    Glass, Michael J; Robinson, Danielle C; Waters, Elizabeth; Pickel, Virginia M

    2013-06-01

    The nucleus accumbens (Acb) contains subpopulations of neurons defined by their receptor content and potential involvement in sensorimotor gating and other behaviors that are dysfunctional in schizophrenia. In Acb neurons, the NMDA NR1 (NR1) subunit is coexpressed not only with the dopamine D1 receptor (D1R), but also with the µ-opioid receptor (µ-OR), which mediates certain behaviors that are adversely impacted by schizophrenia. The NMDA-NR1 subunit has been suggested to play a role in the D1R trafficking and behavioral dysfunctions resulting from systemic administration of apomorphine, a D1R and dopamine D2 receptor agonist that impacts prepulse inhibition to auditory-evoked startle (AS). Together, this evidence suggests that the NMDA receptor may regulate D1R trafficking in Acb neurons, including those expressing µ-OR, in animals exposed to auditory startle and apomorphine. We tested this hypothesis by combining spatial-temporal gene deletion technology, dual labeling immunocytochemistry, and behavioral analysis. Deleting NR1 in Acb neurons prevented the increase in the dendritic density of plasma membrane D1Rs in single D1R and dual (D1R and µ-OR) labeled dendrites in the Acb in response to apomorphine and AS. Deleting NR1 also attenuated the decrease in AS induced by apomorphine. In the absence of apomorphine and startle, deletion of Acb NR1 diminished social interaction, without affecting novel object recognition, or open field activity. These results suggest that NR1 expression in the Acb is essential for apomorphine-induced D1R surface trafficking, as well as auditory startle and social behaviors that are impaired in multiple psychiatric disorders. Copyright © 2013 Wiley Periodicals, Inc.

  10. Disruption of G(i/o) protein signaling in the nucleus accumbens results in a D1 dopamine receptor-mediated hyperactivity.

    PubMed

    Schroeder, Joseph A; Hummel, Michele; Unterwald, Ellen M

    2004-09-01

    Intra-accumbens infusion of pertussis toxin (PTX) results in a progressive and persistent locomotor hyperactivity and sensitizes rats to the locomotor-activating effects of cocaine. The present study further defined the hyperactivity resulting from inactivation of accumbens Gi/Go proteins and tested the hypothesis that PTX-induced hyperactivity is mediated by dopamine D1 receptors. PTX (0.15 microg/side) infused bilaterally into the nucleus accumbens of rats resulted in a progressive increase in locomotor activity that peaked at 218% of preinjection activity levels 15 days after injection and persisted for greater than 5 weeks postinjection. Administration of the D1 receptor antagonist SCH23390 16 and 23 days after PTX injections dose dependently attenuated PTX-induced hyperactivity. D1 receptor blockade did not significantly alter activity in sham-injected animals. These findings support the hypothesis that the hyperactivity resulting from PTX-mediated inactivation of G(i/o) proteins reflects increased nucleus accumbens D1 receptor activation and suggest that striatal D1 receptors are important mediators of activity-related behavior, such as cocaine-induced hyperactivity.

  11. Rapastinel (GLYX-13) has therapeutic potential for the treatment of post-traumatic stress disorder: characterization of a NMDA receptor-mediated metaplasticity process in the medial prefrontal cortex of rats

    PubMed Central

    Burgdorf, Jeffrey; Kroes, Roger A.; Zhang, Xiao-lei; Gross, Amanda L.; Schmidt, Mary; Weiss, Craig; Disterhoft, John F.; Burch, Ronald M.; Stanton, Patric K.; Moskal, Joseph R.

    2015-01-01

    depression models, PEL, and most importantly on CFE demonstrate the therapeutic potential of rapastinel for the treatment of PTSD. Moreover rapastinel appears to elicit its therapeutic effects through a NMDA receptor-mediated, LTP-like, metaplasticity process in the MPFC. PMID:26210936

  12. Cocaine-induced synaptic structural modification is differentially regulated by dopamine D1 and D3 receptors-mediated signaling pathways.

    PubMed

    Zhang, Lei; Huang, Lu; Lu, Kangrong; Liu, Yutong; Tu, Genghong; Zhu, Mengjuan; Ying, Li; Zhao, Jinlan; Liu, N; Guo, Fukun; Zhang, Lin; Zhang, Lu

    2016-10-12

    Synaptic plasticity plays a critical role in cocaine addiction. The dopamine D1 and D3 receptors differentially regulate the cocaine-induced gene expression, structural remodeling and behavioral response. However, how these two receptors coordinately mediate the ultra-structural changes of synapses after cocaine exposure and whether these changes are behaviorally relevant are still not clear. Here, using quantitative electron microscopy, we show that D1 and D3 receptors have distinct roles in regulating cocaine-induced ultra-structural changes of synapses in the nucleus accumbens and caudoputamen. Pre-treatment of cocaine-treated mice with D3 receptor antagonist NGB2904 resulted in an increase in the ratio of total and asymmetric synapse to neuron and in the length of postsynaptic densities, compared with cocaine treatment alone. In contrast, pre-treatment of cocaine-treated mice with D1 receptor antagonist SCH23390 caused a reduction in synapse-to-neuron ratio and in postsynaptic densities length. Similarly, NGB2904 and SCH23390 showed opposite/differential effects on cocaine-induced structural plasticity, conditioned place preference and locomotor activity and signaling activation, including the activation of ERK, CREB and NR1 and the expression of c-fos and Cdk5. Therefore, we provide direct electron microscopy evidence that dopamine D1 and D3 receptors reciprocally regulate the ultra-structural changes of synapses following chronic exposure to cocaine. In addition, our data suggest that D1 and D3 receptors may regulate cocaine-induced ultra-structural changes and behavior responses by impact on structural plasticity and signaling transduction. © 2016 Society for the Study of Addiction.

  13. Segregation and Crosstalk of D1 Receptor-Mediated Activation of ERK in Striatal Medium Spiny Neurons upon Acute Administration of Psychostimulants

    PubMed Central

    Gutierrez-Arenas, Omar; Eriksson, Olivia; Hellgren Kotaleski, Jeanette

    2014-01-01

    The convergence of corticostriatal glutamate and dopamine from the midbrain in the striatal medium spiny neurons (MSN) triggers synaptic plasticity that underlies reinforcement learning and pathological conditions such as psychostimulant addiction. The increase in striatal dopamine produced by the acute administration of psychostimulants has been found to activate not only effectors of the AC5/cAMP/PKA signaling cascade such as GluR1, but also effectors of the NMDAR/Ca2+/RAS cascade such as ERK. The dopamine-triggered effects on both these cascades are mediated by D1R coupled to Golf but while the phosphorylation of GluR1 is affected by reductions in the available amount of Golf but not of D1R, the activation of ERK follows the opposite pattern. This segregation is puzzling considering that D1R-induced Golf activation monotonically increases with DA and that there is crosstalk from the AC5/cAMP/PKA cascade to the NMDAR/Ca2+/RAS cascade via a STEP (a tyrosine phosphatase). In this work, we developed a signaling model which accounts for this segregation based on the assumption that a common pool of D1R and Golf is distributed in two D1R/Golf signaling compartments. This model integrates a relatively large amount of experimental data for neurons in vivo and in vitro. We used it to explore the crosstalk topologies under which the sensitivities of the AC5/cAMP/PKA signaling cascade to reductions in D1R or Golf are transferred or not to the activation of ERK. We found that the sequestration of STEP by its substrate ERK together with the insensitivity of STEP activity on targets upstream of ERK (i.e. Fyn and NR2B) to PKA phosphorylation are able to explain the experimentally observed segregation. This model provides a quantitative framework for simulation based experiments to study signaling required for long term potentiation in MSNs. PMID:24499932

  14. MPTP Impairs Dopamine D1 Receptor-Mediated Survival of Newborn Neurons in Ventral Hippocampus to Cause Depressive-Like Behaviors in Adult Mice

    PubMed Central

    Zhang, Tingting; Hong, Juan; Di, Tingting; Chen, Ling

    2016-01-01

    Parkinson’s disease (PD) is characterized by motor symptoms with depression. We evaluated the influence of dopaminergic depletion on hippocampal neurogenesis process to explore mechanisms of depression production. Five consecutive days of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) injection in mice (MPTP-mice) reduced dopaminergic fibers in hippocampal dentate gyrus (DG). MPTP-mice exhibited depressive-like behaviors later for 2–3 weeks. BrdU was injected 4 h after last-injection of MPTP. BrdU-positive (BrdU+) cells in dorsal (d-DG) and ventral (v-DG) DG were examined on day 1 (D1), 7 (D7), 14 (D14) and 21 (D21) after BrdU injection. Fewer D7-, D14- and D21-BrdU+ cells or BrdU+/NeuN+ cells, but not D1-BrdU+ cells, were found in v-DG of MPTP-mice than in controls. However, the number of BrdU+ cells in d-DG did not differ between the both. Loss of doublecortin-positive (DCX+) cells was observed in v-DG of MPTP-mice. Protein kinase A (PKA) and Ca2+/cAMP-response element binding protein (CREB) phosphorylation were reduced in v-DG of MPTP-mice, which were reversed by D1-like receptor (D1R) agonist SKF38393, but not D2R agonist quinpirole. The treatment of MPTP-mice with SKF38393 on days 2–7 after BrdU-injection reduced the loss of D7- and D21-BrdU+ cells in v-DG and improved the depressive-like behaviors; these changes were sensitive to PKA inhibitor H89. Moreover, the v-DG injection of SKF38393 in MPTP-mice could reduce the loss of D21-BrdU+ cells and relieve the depressive-like behaviors. In control mice, the blockade of D1R by SCH23390 caused the reduction of D21-BrdU+ cells in v-DG and the depressive-like behaviors. Our results indicate that MPTP-reduced dopaminergic depletion impairs the D1R-mediated early survival of newborn neurons in v-DG, producing depressive-like behaviors. PMID:27790091

  15. Glycine transporter type 1 blockade changes NMDA receptor-mediated responses and LTP in hippocampal CA1 pyramidal cells by altering extracellular glycine levels

    PubMed Central

    Martina, Marzia; Gorfinkel, Yelena; Halman, Samantha; Lowe, John A; Periyalwar, Pranav; Schmidt, Christopher J; Bergeron, Richard

    2004-01-01

    Long-term potentiation (LTP) in the hippocampal CA1 region requires the activation of NMDA receptors (NMDARs). NMDAR activation in turn requires membrane depolarization as well as the binding of glutamate and its coagonist glycine. Previous pharmacological studies suggest that the glycine transporter type 1 (GlyT1) maintains subsaturating concentrations of glycine at synaptic NMDARs. Antagonists of GlyT1 increase levels of glycine in the synaptic cleft and, like direct glycine site agonists, can augment NMDAR currents and NMDAR-mediated functions such as LTP. In addition, stimulation of the glycine site initiates signalling through the NMDAR complex, priming the receptors for clathrin-dependent endocytosis. We have used a new potent GlyT1 antagonist, CP-802,079, with whole-cell patch-clamp recordings in acute rat hippocampal slices to determine the effect of GlyT1 blockade on LTP. Reverse microdialysis experiments in the hippocampus of awake, freely moving rats, showed that this drug elevated only the extracellular concentration of glycine. We found that CP-802,079, sarcosine and glycine significantly increased the amplitude of the NMDAR currents and LTP. In contrast, application of higher concentrations of CP-802,079 and glycine slightly reduced NMDAR currents and did not increase LTP. Overall, these data suggest that the level of glycine present in the synaptic cleft tightly regulates the NMDAR activity. This level is kept below the ‘set point’ of the NMDAR internalization priming mechanism by the presence of GlyT1-dependent uptake. PMID:15064326

  16. Interactions of a Dopamine D1 Receptor Agonist with Glutamate NMDA Receptor Antagonists on the Volitional Consumption of Ethanol by the mHEP Rat

    PubMed Central

    McMillen, Brian A.; Lommatzsch, Courtney L.; Sayonh, Michael J.; Williams, Helen L.

    2013-01-01

    Stimulation of the dopamine D1 receptor is reported to cause the phosphorylation of DARPP-32 at the thre34 position and activates the protein. If intracellular Ca2+ is increased, such as after activation of the glutamate NMDA receptor, calcineurin activity increases and the phosphates will be removed. This balance of phosphorylation control suggests that a D1 receptor agonist and a NMDA glutamate receptor antagonist should have additive or synergistic actions to increase activated DARPP-32 and consequent behavioral effects. This hypothesis was tested in a volitional consumption of ethanol model: the selectively bred Myers’ high ethanol preferring (mHEP) rat. A 3-day baseline period was followed by 3-days of twice daily injections of drug(s) or vehicle(s) and then a 3-day post-treatment period. Vehicle, the D1 agonist SKF 38393, the non-competitive NMDA receptor antagonist memantine, or their combination were injected 2 h before and after lights out. The combination of 5.0 mg/kg SKF 38393 with either 3.0 or 10 mg/kg memantine did not produce an additive or synergistic effect. For example, 5.0 mg/kg SKF reduced consumption of ethanol by 27.3% and 10 mg/kg memantine by 39.8%. When combined, consumption declined by 48.2% and the proportion of ethanol solution to total fluids consumed declined by 17%. However, the consumption of food also declined by 36.6%. The latter result indicates that this dose combination had a non-specific effect. The combination of SKF 38393 with (+)-MK-801, another NMDA receptor antagonist, also failed to show an additive effect. The lack of additivity and specificity suggests that the hypothesis may not be correct for this in vivo model. The interaction of these different receptor systems with intraneuronal signaling and behaviors needs to be studied further. PMID:24276118

  17. D1 receptor-mediated inhibition of medial prefrontal cortex neurons is disrupted in adult rats exposed to amphetamine in adolescence.

    PubMed

    Kang, S; Paul, K; Hankosky, E R; Cox, C L; Gulley, J M

    2016-06-02

    Amphetamine (AMPH) exposure leads to changes in behavior and dopamine receptor function in the prefrontal cortex (PFC). Since dopamine plays an important role in regulating GABAergic transmission in the PFC, we investigated if AMPH exposure induces long-lasting changes in dopamine's ability to modulate inhibitory transmission in the PFC as well as whether the effects of AMPH differed depending on the age of exposure. Male Sprague-Dawley rats were given saline or 3 mg/kg AMPH (i.p.) repeatedly during adolescence or adulthood and following a withdrawal period of up to 5 weeks (Experiment 1) or up to 14 weeks (Experiment 2), they were sacrificed for in vitro whole-cell recordings in layer V/VI of the medial PFC. We found that in brain slices from either adolescent- or adult-exposed rats, there was an attenuation of dopamine-induced increases in inhibitory synaptic currents in pyramidal cells. These effects did not depend on age of exposure, were mediated at least partially by a reduced sensitivity of D1 receptors in AMPH-treated rats, and were associated with an enhanced behavioral response to the drug in a separate group of rats given an AMPH challenge following the longest withdrawal period. Together, these data reveal a prolonged effect of AMPH exposure on medial PFC function that persisted for up to 14 weeks in adolescent-exposed animals. These long-lasting neurophysiological changes may be a contributing mechanism to the behavioral consequences that have been observed in those with a history of amphetamine abuse.

  18. CHANGES IN LEVELS OF D1, D2, OR NMDA RECEPTORS DURING WITHDRAWAL FROM BRIEF OR EXTENDED DAILY ACCESS TO IV COCAINE

    PubMed Central

    Ben-Shahar, Osnat; Keeley, Patrick; Cook, Mariana; Brake, Wayne; Joyce, Megan; Nyffeler, Myriel; Heston, Rebecca; Ettenberg, Aaron

    2007-01-01

    We previously reported that brief (1 hr), but not extended (6 hrs), daily access to cocaine results in a sensitized locomotor response to cocaine and in elevated c-Fos immunoreactivity and DAT binding in the nucleus accumbens (N.Acc) core. In order to better our understanding of the neural adaptations mediating the transition from controlled drug-use to addiction, the current experiments were set to further explore the neural adaptations resulting from these two access conditions. Rats received either brief daily access to saline or cocaine, or brief daily access followed by extended daily access, to cocaine. Subjects were then sacrificed either 20 minutes, or 14 or 60 days, after the last self-administration session. Samples of the ventral tegmental area (VTA), N.Acc core and shell, dorsal striatum, and medial prefrontal cortex (mPFC) were taken for analysis of D1 ([3H]SCH-23390), D2 ([3H]Spiperone), and NMDA ([3H]MK-801) receptor binding (using the method of receptor autoradiography). At 20 minutes into withdrawal D2 receptors were elevated and NMDA receptors were reduced in the mPFC of the brief access animals while D1 receptors were elevated in the N.Acc shell of the extended access animals, compared to saline controls. D2 receptors were reduced in the N.Acc shell of the brief access animals compared to saline controls after 14 days, and compared to extended access animals after 60 days of withdrawal. In summary, extended access to cocaine resulted in only transient changes in D1 receptors binding. These results suggest that the development of compulsive drug use is largely unrelated to changes in total binding of D2 or NMDA receptors. PMID:17161392

  19. Genetic differences in NMDA and D1 receptor levels, and operant responding for food and morphine in Lewis and Fischer 344 rats.

    PubMed

    Martín, Sonsoles; Lyupina, Yulia; Crespo, José Antonio; González, Begoña; García-Lecumberri, Carmen; Ambrosio, Emilio

    2003-05-30

    Previously, we have shown that Lewis (LEW) rats acquire faster than Fischer 344 (F344) rats operant food- and morphine-reinforced tasks under fixed-ratio schedules of reinforcement. The first purpose of the present work has been to study if differences in operant responding behavior may participate in the reported differences in morphine self-administration behavior between both inbred rat strains. To this end, we have analyzed the microstructure of responding obtained under a variable-interval (VI) of food reinforcement by calculating the inter-response time (IRT) for each rat strain. LEW rats exhibited shorter IRTs than F344 rats, suggesting that LEW rats may have an inherent high or compulsive operant responding activity. When subjects of both inbred rat strains were submitted to a schedule of morphine reinforcement of high responding requirements such as progressive ratio schedules, LEW rats also reached significantly higher breaking points and final response ratio than F344 rats for i.v. morphine self-administration. Given that there are neurochemical differences between both rat strains and that glutamatergic N-methyl-D-aspartate (NMDA) and dopaminergic D(1) receptors have been involved in operant responding behavior, a second purpose of this work has been to measure basal NMDA and D(1) receptor levels in these rat strains by quantitative receptor autoradiography. Compared to F344 rats, LEW rats showed higher basal NMDA receptor levels in frontal and cingulate cortex, caudate putamen, central amygdaloid nuclei, and intermediate white layer of superior colliculus, and higher basal D(1) receptor levels in several areas of hippocampus and thalamus, and substantia nigra pars reticulata. Taken together, these results suggest that an inherent high operant responding activity of LEW rats may have a role in the previous reported faster acquisition of opiate-reinforced behavior in operant self-administration paradigms under fixed-ratio schedules of reinforcement. In

  20. NMDA and D1 receptors are involved in one-trial tolerance to the anxiolytic-like effects of diazepam in the elevated plus maze test in rats.

    PubMed

    Zhou, Heng; Yu, Cheng-Long; Wang, Li-Ping; Yang, Yue-Xiong; Mao, Rong-Rong; Zhou, Qi-Xin; Xu, Lin

    2015-08-01

    The elevated plus maze (EPM) test is used to examine anxiety-like behaviors in rodents. One interesting phenomenon in the EPM test is one-trial tolerance (OTT), which refers to the reduction in the anxiolytic-like effects of benzodiazepines when rodents are re-exposed to the EPM. However, the underlying mechanism of OTT is still unclear. In this study, we reported that OTT occurred when re-exposure to the EPM (trial 2) only depended on the prior experience of the EPM (trial 1) rather than diazepam treatment. This process was memory-dependent, as it was prevented by the N-methyl-D-aspartate (NMDA) receptors antagonist MK-801 1.5h before trial 2. In addition, OTT was maintained for at least one week but was partially abolished after an interval of 28 days. Furthermore, the administration of the D1-like receptors agonist SKF38393 to the bilateral dorsal hippocampus largely prevented OTT, as demonstrated by the ability of the diazepam treatment to produce significant anxiolytic-like effects in trial 2 after a one-day interval. These findings suggest that OTT to the EPM test may occur via the activation of NMDA receptors and the inactivation of D1-like receptors in certain brain regions, including the hippocampus. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Methylphenidate Enhances NMDA-Receptor Response in Medial Prefrontal Cortex via Sigma-1 Receptor: A Novel Mechanism for Methylphenidate Action

    PubMed Central

    Liu, Yue; Ji, Xiao-Hua; Peng, Ji-Yun; Zhang, Xue-Han; Zhen, Xue-Chu; Li, Bao-Ming

    2012-01-01

    Methylphenidate (MPH), commercially called Ritalin or Concerta, has been widely used as a drug for Attention Deficit Hyperactivity Disorder (ADHD). Noteworthily, growing numbers of young people using prescribed MPH improperly for pleasurable enhancement, take high risk of addiction. Thus, understanding the mechanism underlying high level of MPH action in the brain becomes an important goal nowadays. As a blocker of catecholamine transporters, its therapeutic effect is explained as being due to proper modulation of D1 and α2A receptor. Here we showed that higher dose of MPH facilitates NMDA-receptor mediated synaptic transmission via a catecholamine-independent mechanism, in layer V∼VI pyramidal cells of the rat medial prefrontal cortex (PFC). To indicate its postsynaptic action, we next found that MPH facilitates NMDA-induced current and such facilitation could be blocked by σ1 but not D1/5 and α2 receptor antagonists. And this MPH eliciting enhancement of NMDA-receptor activity involves PLC, PKC and IP3 receptor mediated intracellular Ca2+ increase, but does not require PKA and extracellular Ca2+ influx. Our additional pharmacological studies confirmed that higher dose of MPH increases locomotor activity via interacting with σ1 receptor. Together, the present study demonstrates for the first time that MPH facilitates NMDA-receptor mediated synaptic transmission via σ1 receptor, and such facilitation requires PLC/IP3/PKC signaling pathway. This novel mechanism possibly explains the underlying mechanism for MPH induced addictive potential and other psychiatric side effects. PMID:23284812

  2. The C-terminus of neuronal Kv2.1 channels is required for channel localization and targeting but not for NMDA-receptor mediated regulation of channel function

    PubMed Central

    Baver, Scott B.; O'Connell, Kristen M.S.

    2012-01-01

    The delayed rectifier voltage-gated potassium channel Kv2.1 underlies a majority of the somatic K+ current in neurons and is particularly important for regulating intrinsic neuronal excitability. Various stimuli alter Kv2.1 channel gating as well as localization of the channel to cell-surface cluster domains. It has been postulated that specific domains within the C-terminus of Kv2.1 are critical for channel gating and sub-cellular localization; however, the distinct regions that govern these processes remain elusive. Here we show that the soluble C-terminal fragment of the closely related channel Kv2.2 displaces Kv2.1 from clusters in both rat hippocampal neurons and HEK293 cells, however neither steady-state activity nor N-methyl-D-aspartate (NMDA)-dependent modulation are altered in spite of this non-clustered localization. Further, we demonstrate that the C-terminus of Kv2.1 is not necessary for steady-state gating, sensitivity to intracellular phosphatase or NMDA-dependent modulation, though this region is required for localization of Kv2.1 to clusters. Thus, the molecular determinants of Kv2.1 localization and modulation are distinct regions of the channel that function independently. PMID:22554782

  3. NMDA and dopamine D1 receptors within NAc-shell regulate IEG proteins expression in reward circuit during cocaine memory reconsolidation.

    PubMed

    Li, Y; Ge, S; Li, N; Chen, L; Zhang, S; Wang, J; Wu, H; Wang, X; Wang, X

    2016-02-19

    Reactivation of consolidated memory initiates a memory reconsolidation process, during which the reactivated memory is susceptible to strengthening, weakening or updating. Therefore, effective interference with the memory reconsolidation process is expected to be an important treatment for drug addiction. The nucleus accumbens (NAc) has been well recognized as a pathway component that can prevent drug relapse, although the mechanism underlying this function is poorly understood. We aimed to clarify the regulatory role of the NAc in the cocaine memory reconsolidation process, by examining the effect of applying different pharmacological interventions to the NAc on Zif 268 and Fos B expression in the entire reward circuit after cocaine memory reactivation. Through the cocaine-induced conditioned place preference (CPP) model, immunohistochemical and immunofluorescence staining for Zif 268 and Fos B were used to explore the functional activated brain nuclei after cocaine memory reactivation. Our results showed that the expression of Zif 268 and Fos B was commonly increased in the medial prefrontal cortex (mPFC), the infralimbic cortex (IL), the NAc-core, the NAc-shell, the hippocampus (CA1, CA2, and CA3 subregions), the amygdala, the ventral tegmental area (VTA), and the supramammillary nucleus (SuM) following memory reconsolidation, and Zif 268/Fos B co-expression was commonly observed (for Zif 268: 51-68%; for Fos B: 52-66%). Further, bilateral NAc-shell infusion of MK 801 and SCH 23390, but not raclopride or propranolol, prior to addictive memory reconsolidation, decreased Zif 268 and Fos B expression in the entire reward circuit, except for the amygdala, and effectively disturbed subsequent CPP-related behavior. In summary, N-methyl-d-aspartate (NMDA) and dopamine D1 receptors, but not dopamine D2 or β adrenergic receptors, within the NAc-shell, may regulate Zif 268 and Fos B expression in most brain nuclei of the reward circuit after cocaine memory reactivation

  4. Slowly developing depression of N-methyl-D-aspartate receptor mediated responses in young rat hippocampi

    PubMed Central

    Dozmorov, Mikhail; Li, Rui; Xu, Hui-Ping; Jilderos, Barbro; Wigström, Holger

    2004-01-01

    Background Activation of N-methyl-D-aspartate (NMDA) type glutamate receptors is essential in triggering various forms of synaptic plasticity. A critical issue is to what extent such plasticity involves persistent changes of glutamate receptor subtypes and many prior studies have suggested a main role for alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors in mediating the effect. Our previous work in hippocampal slices revealed that, under pharmacological unblocking of NMDA receptors, both AMPA and NMDA receptor mediated responses undergo a slowly developing depression. In the present study we have further adressed this phenomenon, focusing on the contribution via NMDA receptors. Pharmacologically isolated NMDA receptor mediated excitatory postsynaptic potentials (EPSPs) were recorded for two independent synaptic pathways in CA1 area using perfusion with low Mg2+ (0.1 mM) to unblock NMDA receptors. Results Following unblocking of NMDA receptors, there was a gradual decline of NMDA receptor mediated EPSPs for 2–3 hours towards a stable level of ca. 60–70 % of the maximal size. If such an experimental session was repeated twice in the same pathway with a period of NMDA receptor blockade in between, the depression attained in the first session was still evident in the second one and no further decay occurred. The persistency of the depression was also validated by comparison between pathways. It was found that the responses of a control pathway, unstimulated in the first session of receptor unblocking, behaved as novel responses when tested in association with the depressed pathway under the second session. In similar experiments, but with AP5 present during the first session, there was no subsequent difference between NMDA EPSPs. Conclusions Our findings show that merely evoking NMDA receptor mediated responses results in a depression which is input specific, induced via NMDA receptor activation, and is maintained for several hours through

  5. Biochemical characterization and expression analysis of a novel EF-hand Ca2+ binding protein calmyrin2 (Cib2) in brain indicates its function in NMDA receptor mediated Ca2+ signaling.

    PubMed

    Blazejczyk, Magdalena; Sobczak, Adam; Debowska, Katarzyna; Wisniewska, Marta B; Kirilenko, Aneta; Pikula, Slawomir; Jaworski, Jacek; Kuznicki, Jacek; Wojda, Urszula

    2009-07-01

    Calmyrin2 (CaMy2, Cib2) is a novel EF-hand calcium-binding protein found recently in skeletal muscles. CaMy2 mRNA was also detected in brain, but nothing is known about CaMy2 protein localization and properties in the brain. We report cloning and characterization of CaMy2 in rat brain: its expression pattern, intracellular localization and biochemical features. CaMy2 binds Ca2+ and exhibits Ca2+/conformational switch. Moreover, CaMy2 undergoes N-myristoylation without Ca2+/myristoyl switch, is membrane-associated and localizes in neurons together with Golgi apparatus and dendrite markers. CaMy2 transcript and protein are present mainly in the hippocampus and cortex. In cultured hippocampal neurons, CaMy2 is induced upon neuronal activation. Most prominent increase in CaMy2 protein (7-fold), and mRNA (2-fold) occurs upon stimulation of NMDA receptor (NMDAR). The induction is blocked by translation inhibitors, specific antagonists of NMDAR, the Ca2+-chelator BAPTA, and inhibitors of ERK1/2 and PKC, kinases transmitting NMDAR-linked Ca2+ signal. Our results show that CaMy2 level is controlled by NMDAR and Ca2+ and suggest CaMy2 role in Ca2+ signaling underlying NMDAR activation.

  6. Interaction of ApoA-IV with NR4A1 and NR1D1 Represses G6Pase and PEPCK Transcription: Nuclear Receptor-Mediated Downregulation of Hepatic Gluconeogenesis in Mice and a Human Hepatocyte Cell Line

    PubMed Central

    Li, Xiaoming; Xu, Min; Wang, Fei; Ji, Yong; DavidsoN, W. Sean; Li, Zongfang; Tso, Patrick

    2015-01-01

    We have previously shown that the nuclear receptor, NR1D1, is a cofactor in ApoA-IV-mediated downregulation of gluconeogenesis. Nuclear receptor, NR4A1, is involved in the transcriptional regulation of various genes involved in inflammation, apoptosis, and glucose metabolism. We investigated whether NR4A1 influences the effect of ApoA-IV on hepatic glucose metabolism. Our in situ proximity ligation assays and coimmunoprecipitation experiments indicated that ApoA-IV colocalized with NR4A1 in human liver (HepG2) and kidney (HEK-293) cell lines. The chromatin immunoprecipitation experiments and luciferase reporter assays indicated that the ApoA-IV and NR4A1 colocalized at the RORα response element of the human G6Pase promoter, reducing its transcriptional activity. Our RNA interference experiments showed that knocking down the expression of NR4A1 in primary mouse hepatocytes treated with ApoA-IV increased the expression of NR1D1, G6Pase, and PEPCK, and that knocking down NR1D1 expression increased the level of NR4A1. We also found that ApoA-IV induced the expression of endogenous NR4A1 in both cultured primary mouse hepatocytes and in the mouse liver, and decreased glucose production in primary mouse hepatocytes. Our findings showed that ApoA-IV colocalizes with NR4A1, which suppresses G6Pase and PEPCK gene expression at the transcriptional level, reducing hepatic glucose output and lowering blood glucose. The ApoA-IV-induced increase in NR4A1 expression in hepatocytes mediates further repression of gluconeogenesis. Our findings suggest that NR1D1 and NR4A1 serve similar or complementary functions in the ApoA-IV-mediated regulation of gluconeogenesis. PMID:26556724

  7. Interaction of ApoA-IV with NR4A1 and NR1D1 Represses G6Pase and PEPCK Transcription: Nuclear Receptor-Mediated Downregulation of Hepatic Gluconeogenesis in Mice and a Human Hepatocyte Cell Line.

    PubMed

    Li, Xiaoming; Xu, Min; Wang, Fei; Ji, Yong; DavidsoN, W Sean; Li, Zongfang; Tso, Patrick

    2015-01-01

    We have previously shown that the nuclear receptor, NR1D1, is a cofactor in ApoA-IV-mediated downregulation of gluconeogenesis. Nuclear receptor, NR4A1, is involved in the transcriptional regulation of various genes involved in inflammation, apoptosis, and glucose metabolism. We investigated whether NR4A1 influences the effect of ApoA-IV on hepatic glucose metabolism. Our in situ proximity ligation assays and coimmunoprecipitation experiments indicated that ApoA-IV colocalized with NR4A1 in human liver (HepG2) and kidney (HEK-293) cell lines. The chromatin immunoprecipitation experiments and luciferase reporter assays indicated that the ApoA-IV and NR4A1 colocalized at the RORα response element of the human G6Pase promoter, reducing its transcriptional activity. Our RNA interference experiments showed that knocking down the expression of NR4A1 in primary mouse hepatocytes treated with ApoA-IV increased the expression of NR1D1, G6Pase, and PEPCK, and that knocking down NR1D1 expression increased the level of NR4A1. We also found that ApoA-IV induced the expression of endogenous NR4A1 in both cultured primary mouse hepatocytes and in the mouse liver, and decreased glucose production in primary mouse hepatocytes. Our findings showed that ApoA-IV colocalizes with NR4A1, which suppresses G6Pase and PEPCK gene expression at the transcriptional level, reducing hepatic glucose output and lowering blood glucose. The ApoA-IV-induced increase in NR4A1 expression in hepatocytes mediates further repression of gluconeogenesis. Our findings suggest that NR1D1 and NR4A1 serve similar or complementary functions in the ApoA-IV-mediated regulation of gluconeogenesis.

  8. Epidermal Growth Factor Induces Proliferation of Hair Follicle-Derived Mesenchymal Stem Cells Through Epidermal Growth Factor Receptor-Mediated Activation of ERK and AKT Signaling Pathways Associated with Upregulation of Cyclin D1 and Downregulation of p16.

    PubMed

    Bai, Tingting; Liu, Feilin; Zou, Fei; Zhao, Guifang; Jiang, Yixu; Liu, Li; Shi, Jiahong; Hao, Deshun; Zhang, Qi; Zheng, Tong; Zhang, Yingyao; Liu, Mingsheng; Li, Shilun; Qi, Liangchen; Liu, Jin Yu

    2017-01-15

    The maintenance of highly proliferative capacity and full differentiation potential is a necessary step in the initiation of stem cell-based regenerative medicine. Our recent study showed that epidermal growth factor (EGF) significantly enhanced hair follicle-derived mesenchymal stem cell (HF-MSC) proliferation while maintaining the multilineage differentiation potentials. However, the underlying mechanism remains unclear. Herein, we investigated the role of EGF in HF-MSC proliferation. HF-MSCs were isolated and cultured with or without EGF. Immunofluorescence staining, flow cytometry, cytochemistry, and western blotting were used to assess proliferation, cell signaling pathways related to the EGF receptor (EGFR), and cell cycle progression. HF-MSCs exhibited surface markers of mesenchymal stem cells and displayed trilineage differentiation potentials toward adipocytes, chondrocytes, and osteoblasts. EGF significantly increased HF-MSC proliferation as well as EGFR, ERK1/2, and AKT phosphorylation (p-EGFR, p-ERK1/2, and p-AKT) in a time- and dose-dependent manner, but not STAT3 phosphorylation. EGFR inhibitor (AG1478), PI3K-AKT inhibitor (LY294002), ERK inhibitor (U0126), and STAT3 inhibitor (STA-21) significantly blocked EGF-induced HF-MSC proliferation. Moreover, AG1478, LY294002, and U0126 significantly decreased p-EGFR, p-AKT, and p-ERK1/2 expression. EGF shifted HF-MSCs at the G1 phase to the S and G2 phase. Concomitantly, cyclinD1, phosphorylated Rb, and E2F1expression increased, while that of p16 decreased. In conclusion, EGF induces HF-MSC proliferation through the EGFR/ERK and AKT pathways, but not through STAT-3. The G1/S transition was stimulated by upregulation of cyclinD1 and inhibition of p16 expression.

  9. Toluene exposure during brain growth spurt and adolescence produces differential effects on N-methyl-D-aspartate receptor-mediated currents in rat hippocampus.

    PubMed

    Chen, Hwei-Hsien; Lin, Yi-Ruu; Chan, Ming-Huan

    2011-09-10

    Toluene, an industrial organic solvent, is voluntarily inhaled as drug of abuse. Because inhibition of N-methyl-d-aspartate (NMDA) receptors is one of the possible mechanisms underlying developmental neurotoxicity of toluene, the purpose of the present study was to examine the effects of toluene exposure during two major neurodevelopmental stages, brain growth spurt and adolescence, on NMDA receptor-mediated current. Rats were administered with toluene (500 mg/kg, i.p.) or corn oil daily over postnatal days (PN) 4-9 (brain growth spurt) or PN 21-26 (early adolescence). Intracellular electrophysiological recordings employing in CA1 pyramidal neurons in the hippocampal slices were performed during PN 30-38. Toluene exposure during brain growth spurt enhanced NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) by electrical stimulation, but impaired the paired-pulse facilitation and NMDA response by exogenous application of NMDA. Toluene exposure during adolescence resulted in an increase in NMDA receptor-mediated EPSCs and a decrease in exogenous NMDA-induced currents, while lack of any effect on paired-pulse facilitation. These findings suggest that toluene exposure during brain growth spurt and adolescence might result in an increase in synaptic NMDA receptor responsiveness and a decrease in extrasynaptic NMDA receptor responsiveness, while only toluene exposure during brain growth spurt can produce presynaptic modulation in CA1 pyramidal neurons. The functional changes in NMDA receptor-mediated transmission underlying developmental toluene exposure may lead to the neurobehavioral disturbances.

  10. Neonatal +-methamphetamine exposure in rats alters adult locomotor responses to dopamine D1 and D2 agonists and to a glutamate NMDA receptor antagonist, but not to serotonin agonists.

    PubMed

    Graham, Devon L; Amos-Kroohs, Robyn M; Braun, Amanda A; Grace, Curtis E; Schaefer, Tori L; Skelton, Matthew R; Williams, Michael T; Vorhees, Charles V

    2013-03-01

    Neonatal exposure to (+)-methamphetamine (Meth) results in long-term behavioural abnormalities but its developmental mechanisms are unknown. In a series of experiments, rats were treated from post-natal days (PD) 11-20 (stage that approximates human development from the second to third trimester) with Meth or saline and assessed using locomotor activity as the readout following pharmacological challenge doses with dopamine, serotonin and glutamate agonists or antagonists during adulthood. Exposure to Meth early in life resulted in an exaggerated adult locomotor hyperactivity response to the dopamine D1 agonist SKF-82958 at multiple doses, a high dose only under-response activating effect of the D2 agonist quinpirole, and an exaggerated under-response to the activating effect of the N-methyl-d-aspartic acid (NMDA) receptor antagonist, MK-801. No change in locomotor response was seen following challenge with the 5-HT releaser p-chloroamphetamine or the 5-HT2/3 receptor agonist, quipazine. These are the first data to show that PD 11-20 Meth exposure induces long-lasting alterations to dopamine D1, D2 and glutamate NMDA receptor function and may suggest how developmental Meth exposure leads to many of its long-term adverse effects.

  11. Blonanserin Ameliorates Phencyclidine-Induced Visual-Recognition Memory Deficits: the Complex Mechanism of Blonanserin Action Involving D3-5-HT2A and D1-NMDA Receptors in the mPFC

    PubMed Central

    Hida, Hirotake; Mouri, Akihiro; Mori, Kentaro; Matsumoto, Yurie; Seki, Takeshi; Taniguchi, Masayuki; Yamada, Kiyofumi; Iwamoto, Kunihiro; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro

    2015-01-01

    Blonanserin differs from currently used serotonin 5-HT2A/dopamine-D2 receptor antagonists in that it exhibits higher affinity for dopamine-D2/3 receptors than for serotonin 5-HT2A receptors. We investigated the involvement of dopamine-D3 receptors in the effects of blonanserin on cognitive impairment in an animal model of schizophrenia. We also sought to elucidate the molecular mechanism underlying this involvement. Blonanserin, as well as olanzapine, significantly ameliorated phencyclidine (PCP)-induced impairment of visual-recognition memory, as demonstrated by the novel-object recognition test (NORT) and increased extracellular dopamine levels in the medial prefrontal cortex (mPFC). With blonanserin, both of these effects were antagonized by DOI (a serotonin 5-HT2A receptor agonist) and 7-OH-DPAT (a dopamine-D3 receptor agonist), whereas the effects of olanzapine were antagonized by DOI but not by 7-OH-DPAT. The ameliorating effect was also antagonized by SCH23390 (a dopamine-D1 receptor antagonist) and H-89 (a protein kinase A (PKA) inhibitor). Blonanserin significantly remediated the decrease in phosphorylation levels of PKA at Thr197 and of NR1 (an essential subunit of N-methyl-D-aspartate (NMDA) receptors) at Ser897 by PKA in the mPFC after a NORT training session in the PCP-administered mice. There were no differences in the levels of NR1 phosphorylated at Ser896 by PKC in any group. These results suggest that the ameliorating effect of blonanserin on PCP-induced cognitive impairment is associated with indirect functional stimulation of the dopamine-D1-PKA-NMDA receptor pathway following augmentation of dopaminergic neurotransmission due to inhibition of both dopamine-D3 and serotonin 5-HT2A receptors in the mPFC. PMID:25120077

  12. Sustained Extracellular Signal-Regulated Kinase 1/2 Phosphorylation in Neonate 6-Hydroxydopamine-Lesioned Rats after Repeated D1-Dopamine Receptor Agonist Administration: Implications for NMDA Receptor Involvement

    PubMed Central

    Papadeas, Sophia T.; Blake, Bonita L.; Knapp, Darin J.; Breese, George R.

    2010-01-01

    Extracellular signal-regulated kinase (ERK) 1/2, a well known regulator of gene expression, is likely to contribute to signaling events underlying enduring neural adaptations. Phosphorylated (phospho)-ERK was examined immunohistochemically after both single and repeated (i.e., sensitizing) doses of the partial D1-dopamine (DA) receptor agonist SKF-38393 (2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benazepine HCl) to adult rats lesioned as neonates (neonate lesioned) with 6-hydroxydopamine. Remarkably, prolonged phospho-ERK accumulated primarily in layers II–III of medial prefrontal cortex (MPC), where it declined gradually yet remained significantly elevated for at least 36 d after repeated doses of SKF-38393. Sustained (≥7 d) phospho-ERK was observed for shorter periods in various other cortical regions but was not detectable in striatum or nucleus accumbens. At 36 d, an additional injection of SKF-38393 to sensitized rats restored phospho-ERK to maximal levels only in MPC when examined 7 d later. Phosphorylated cAMP response element-binding protein (CREB), examined 7 d after the sensitizing regimen, was observed exclusively in MPC, where it was abundant throughout all layers. Systemic injections of SL327 (α-[amino[(4-aminophenyl)thio]methylene]-2-(trifluoromethyl)benzeneacetonitrile), an inhibitor of the upstream ERK activator mitogen ERK kinase, attenuated both ERK and CREB phosphorylation in layers II–III of MPC. Pretreatment with the D1 antagonist SCH-23390 ((R)-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7-OL maleate) inhibited the prolonged increase in MPC phospho-ERK, whereas the 5-HT2 receptor antagonist ketanserin (3-[2-[4-(4-fluorobenzoyl)-1-piperidinyl]ethyl]-2,4(1H,3H)-quinazolinedione tartrate) was ineffective. Competitive and noncompetitive NMDA receptor antagonists also blocked sustained ERK phosphorylation. Collectively, the present results demonstrate coupling of D1 and NMDA receptor function reflected in sustained

  13. Enhancement of N-methyl- D-aspartate receptor-mediated excitatory postsynaptic potentials in the neostriatum after methamphetamine sensitization. An in vitro slice study.

    PubMed

    Moriguchi, Shigeki; Watanabe, Shigenori; Kita, Hitoshi; Nakanishi, Hiroshi

    2002-05-01

    It has been suggested that behavioral methamphetamine sensitization involves changes in cortical excitatory synaptic inputs to neostriatal (Str) projection neurons. To test this, we performed blind whole-cell recording of medium spiny neurons in Str slice preparations. In Str neurons of naive rats, the amplitude of the subcortical white matter stimulation-induced N-methyl- D-aspartate receptor-mediated excitatory postsynaptic potentials (NMDA-EPSPs) was decreased upon hyperpolarization, owing to the voltage-dependent Mg(2+) blockade of NMDA receptor channels. In contrast, the amplitude of the NMDA-EPSPs in Str neurons of rats undergoing methamphetamine withdrawal (MW) did not show the Mg(2+) blockade and was nearly voltage independent over the membrane potential range of -70 to -110 mV. Application of the specific protein kinase C (PKC) activator, phorbol 12, 13- DL-acetate, blocked the voltage-dependent Mg(2+) blockade of NMDA receptor channels in Str neurons of naive rats. Application of the specific activator of cAMP-dependent protein kinase A (PKA), Sp-cAMPS-triethylamine salt, increased the amplitude of the NMDA receptor-mediated EPSPs at the rest but not at hyperpolarized potentials. Coapplication of the PKC and PKA activators yielded NMDA-EPSPs similar to those seen in Str neurons of MW rats. In Str slices of naive rats, tetanic subcortical white matter stimulation induced long-term depression of field potentials. In Str slices treated with the PKC and/or PKA, the same stimulation induced long-term potentiation of field potentials similar to those observed in slices obtained from MW rats. These results suggest that the enhancement of the NMDA receptor-mediated corticostriatal synaptic transmission plays an important role in behavioral methamphetamine sensitization. This enhancement is probably associated with phosphorylation of NMDA receptors mediated by the simultaneous activation of PKC and PKA.

  14. Receptor-Mediated Tobacco Toxicity

    PubMed Central

    Arredondo, Juan; Chernyavsky, Alexander I.; Marubio, Lisa M.; Beaudet, Arthur L.; Jolkovsky, David L.; Pinkerton, Kent E.; Grando, Sergei A.

    2005-01-01

    Tobacco is a known cause of oral disease but the mechanism remains elusive. Nicotine (Nic) is a likely culprit of pathobiological effects because it displaces the local cytotransmitter acetylcholine from the nicotinic receptors (nAChRs) expressed by oral keratinocytes (KCs). To gain a mechanistic insight into tobacco-induced morbidity in the oral cavity, we studied effects of exposures to environmental tobacco smoke (ETS) versus equivalent concentration of pure Nic on human and murine KCs. Both ETS and Nic up-regulated expression of cell cycle and apoptosis regulators, differentiation marker filaggrin, and signal transduction factors at both the mRNA and protein levels. These changes could be abolished in cultured human oral KCs transfected with anti-α3 small interfering RNA or treated with the α3β2-preferring antagonist α-conotoxin MII. Functional inactivation of α3-mediated signaling in α3−/− mutant KCs prevented most of the ETS/Nic-dependent changes in gene expression. To determine relevance of the in vitro findings to the in vivo situation, we studied gene expression in oral mucosa of neonatal α3+/+ and α3−/− littermates delivered by heterozygous mice soon after their exposures to ETS or equivalent concentration of pure Nic in drinking water. In addition to reverse transcriptase-polymerase chain reaction and Western blot, the ETS/Nic-dependent alterations in gene expression were also detected by semiquantitative immunofluorescence assay directly in KCs comprising murine oral mucosa. Only wild-type mice consistently developed significant (P < 0.05) changes in the gene expression. These results identified α3β2 nAChR as a major receptor mediating effects of tobacco products on KC gene expression. Real-time polymerase chain reaction demonstrated that in all three model systems the common genes targeted by α3β2-mediated ETS/Nic toxicity were p21, Bcl-2, NF-κB, and STAT-1. The expression of the nAChR subunits α5 and β2 and the muscarinic

  15. Non-ionotropic signaling by the NMDA receptor: controversy and opportunity.

    PubMed

    Gray, John A; Zito, Karen; Hell, Johannes W

    2016-01-01

    Provocative emerging evidence suggests that the N-methyl-d-aspartate (NMDA) receptor can signal in the absence of ion flux through the receptor. This non-ionotropic signaling is thought to be due to agonist-induced conformational changes in the receptor, independently of channel opening. Non-ionotropic NMDA receptor signaling has been proposed to be sufficient to induce synaptic long-term depression (LTD), directly challenging the decades-old model that prolonged low-level calcium influx is required to induce LTD. Here, we briefly review these recent findings, focusing primarily on the potential role of non-ionotropic signaling in NMDA receptor-mediated LTD. Further reports concerning additional roles of non-ionotropic NMDA receptor signaling are also discussed. If validated, this new view of NMDA receptor-mediated signaling will usher in an exciting new era of exploring synapse function and dysfunction.

  16. NMDA receptor modulators: an updated patent review (2013 – 2014)

    PubMed Central

    Strong, Katie L; Jing, Yao; Prosser, Anthony R; Traynelis, Stephen F; Liotta, Dennis C

    2016-01-01

    Introduction The NMDA receptor mediates a slow component of excitatory synaptic transmission, and NMDA receptor dysfunction has been implicated in numerous neurological disorders. Thus, interest in developing modulators that are able to regulate the channel continues to be strong. Recent research has led to the discovery of a number of compounds that hold therapeutic and clinical value. Deeper insight into the NMDA inter-subunit interactions and structural motifs gleaned from the recently solved crystal structures of the NMDA receptor should facilitate a deeper understanding of how these compounds modulate the receptor. Areas covered This article discusses the known pharmacology of NMDA receptors. A discussion of the patent literature since 2012 is also included, with an emphasis on those that claimed new chemical entities as regulators of the NMDA receptor. Expert Opinion The number of patents involving novel NMDA receptor modulators suggests a renewed interest in the NMDA receptor as a therapeutic target. Subunit-selective modulators continue to show promise, and the development of new subunit-selective NMDA receptor modulators appears poised for continued growth. Although a modest number of channel blocker patents were published, successful clinical outcomes involving ketamine have led to a resurgent interest in low-affinity channel blockers as therapeutics. PMID:25351527

  17. Paired-pulse depression of the N-methyl-D-aspartate receptor-mediated synaptic potentials in the amygdala.

    PubMed Central

    Huang, C C; Gean, P W

    1994-01-01

    1. An in vitro slice preparation of rat amygdala was used to study the paired-pulse depression of the N-methyl-D-aspartate (NMDA) receptor-mediated synaptic potential e.p.s.p.NMDA. 2. The e.p.s.p.NMDA was isolated pharmacologically by applying a solution containing the non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and the gamma-aminobutyric acidA (GABAA) blocker picrotoxin and increasing the stimulus intensity. 3. When two stimuli of identical strength were applied in close succession, the second e.p.s.p.NMDA was depressed. This paired-pulse depression was seen with interstimulus intervals of between 100 ms and 2000 ms; the maximal depression was observed at interval of 200 ms. 4. Superfusion of phaclofen or 2-hydroxy-saclofen inhibited the paired-pulse depression indicating the involvement of GABAB receptors. 5. Bath applications of Ba2+ or intracellular injection of Cs+ to block post- but not presynaptic GABAB receptors failed to inhibit the paired-pulse depression (PPD). 6. Incubation of slices with pertussis toxin prevented the postsynaptic hyperpolarization induced by baclofen. The PPD of e.p.s.p.NMDA, however, was not affected by pertussis toxin treatment. 7. These results suggest that GABA released by the first stimulus acts on GABAB receptors to suppress the second e.p.s.p.NMDA via mechanisms other than activation of a postsynaptic GABAB receptor-coupled K+ conductance. PMID:7858845

  18. Effects of S-citalopram, citalopram, and R-citalopram on the firing patterns of dopamine neurons in the ventral tegmental area, N-methyl-D-aspartate receptor-mediated transmission in the medial prefrontal cortex and cognitive function in the rat.

    PubMed

    Schilström, Björn; Konradsson-Geuken, Asa; Ivanov, Vladimir; Gertow, Jens; Feltmann, Kristin; Marcus, Monica M; Jardemark, Kent; Svensson, Torgny H

    2011-05-01

    Escitalopram, the S-enantiomer of citalopram, possesses superior efficacy compared to other selective serotonin reuptake inhibitors (SSRIs) in the treatment of major depression. Escitalopram binds to an allosteric site on the serotonin transporter, which further enhances the blockade of serotonin reuptake, whereas R-citalopram antagonizes this positive allosteric modulation. Escitalopram's effects on neurotransmitters other than serotonin, for example, dopamine and glutamate, are not well studied. Therefore, we here studied the effects of escitalopram, citalopram, and R-citalopram on dopamine cell firing in the ventral tegmental area, using single-cell recording in vivo and on NMDA receptor-mediated currents in pyramidal neurons in the medial prefrontal cortex using in vitro electrophysiology in rats. The cognitive effects of escitalopram and citalopram were also compared using the novel object recognition test. Escitalopram (40-640 μg/kg i.v.) increased both firing rate and burst firing of dopaminergic neurons, whereas citalopram (80-1280 μg/kg) had no effect on firing rate and only increased burst firing at high dosage. R-citalopram (40-640 μg/kg) had no significant effects. R-citalopram (320 μg/kg) antagonized the effects of escitalopram (320 μg/kg). A very low concentration of escitalopram (5 nM), but not citalopram (10 nM) or R-citalopram (5 nM), potentiated NMDA-induced currents in pyramidal neurons. Escitalopram's effect was antagonized by R-citalopram and blocked by the dopamine D(1) receptor antagonist SCH23390. Escitalopram, but not citalopram, improved recognition memory. Our data suggest that the excitatory effect of escitalopram on dopaminergic and NMDA receptor-mediated neurotransmission may have bearing on its cognitive-enhancing effect and superior efficacy compared to other SSRIs in major depression.

  19. Receptor-mediated DNA-targeted photoimmunotherapy.

    PubMed

    Karagiannis, Tom C; Lobachevsky, Pavel N; Leung, Brenda K Y; White, Jonathan M; Martin, Roger F

    2006-11-01

    We show the efficacy of a therapeutic strategy that combines the potency of a DNA-binding photosensitizer, UV(A)Sens, with the tumor-targeting potential of receptor-mediated endocytosis. The photosensitizer is an iodinated bibenzimidazole, which, when bound in the minor groove of DNA and excited by UV(A) irradiation, induces cytotoxic lesions attributed to a radical species resulting from photodehalogenation. Although reminiscent of photochemotherapy using psoralens and UV(A) irradiation, an established treatment modality in dermatology particularly for the treatment of psoriasis and cutaneous T-cell lymphoma, a critical difference is the extreme photopotency of the iodinated bibenzimidazole, approximately 1,000-fold that of psoralens. This feature prompted consideration of combination with the specificity of receptor-mediated targeting. Using two in vitro model systems, we show the UV(A) cytotoxicity of iodo ligand/protein conjugates, implying binding of the conjugate to cell receptors, internalization, and degradation of the conjugate-receptor complex, with release and translocation of the ligand to nuclear DNA. For ligand-transferrin conjugates, phototoxicity was inhibited by coincubation with excess native transferrin. Receptor-mediated UV(A)-induced cytotoxicity was also shown with the iodo ligand conjugate of an anti-human epidermal growth factor receptor monoclonal antibody, exemplifying the potential application of the strategy to other cancer-specific targets to thus improve the specificity of phototherapy of superficial lesions and for extracorporeal treatments.

  20. Receptor-mediated signaling in Aspergillus fumigatus

    PubMed Central

    Grice, C. M.; Bertuzzi, M.; Bignell, E. M.

    2013-01-01

    Aspergillus fumigatus is the most pathogenic species among the Aspergilli, and the major fungal agent of human pulmonary infection. To prosper in diverse ecological niches, Aspergilli have evolved numerous mechanisms for adaptive gene regulation, some of which are also crucial for mammalian infection. Among the molecules which govern such responses, integral membrane receptors are thought to be the most amenable to therapeutic modulation. This is due to the localization of these molecular sensors at the periphery of the fungal cell, and to the prevalence of small molecules and licensed drugs which target receptor-mediated signaling in higher eukaryotic cells. In this review we highlight the progress made in characterizing receptor-mediated environmental adaptation in A. fumigatus and its relevance for pathogenicity in mammals. By presenting a first genomic survey of integral membrane proteins in this organism, we highlight an abundance of putative seven transmembrane domain (7TMD) receptors, the majority of which remain uncharacterized. Given the dependency of A. fumigatus upon stress adaptation for colonization and infection of mammalian hosts, and the merits of targeting receptor-mediated signaling as an antifungal strategy, a closer scrutiny of sensory perception and signal transduction in this organism is warranted. PMID:23430083

  1. Acamprosate enhances N-methyl-D-apartate receptor-mediated neurotransmission but inhibits presynaptic GABA(B) receptors in nucleus accumbens neurons.

    PubMed

    Berton, F; Francesconi, W G; Madamba, S G; Zieglgänsberger, W; Siggins, G R

    1998-02-01

    Acamprosate (calcium acetylhomotaurine) is used therapeutically in Europe to reduce relapse in weaned alcoholics. However, the mechanisms of acamprosate action in the central nervous system are still obscure, although early studies suggested an action on GABA receptors. The nucleus accumbens (NAcc) is a brain region thought to underlie ethanol reinforcement. Recent studies from our laboratory have demonstrated that ethanol inhibits both N-methyl-D-aspartate (NMDA) and non-NMDA types of glutamatergic synaptic transmission in the NAcc. In the present study, we used voltage- and current-clamp intracellular recording of NAcc core neurons in a slice preparation to examine acamprosate actions on resting membrane properties and pharmacologically isolated synaptic responses. We isolated NMDA and non-NMDA receptor-mediated excitatory postsynaptic potentials or currents (EPSP/Cs) with 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and DL-2-amino-5-phosphonovalerate (d-APV), respectively. Bicuculline was also included to block GABA(A) receptors. Superfusion of acamprosate (5, 50, and 300 microM) did not alter the resting membrane properties of NAcc neurons. However, 300 microM acamprosate significantly increased the NMDA receptor-mediated components of EPSP/Cs (NMDA-EPSP/Cs) with recovery on washout. In contrast, 300 microM acamprosate had no significant effect on the non-NMDA receptor component of the EPSP/Cs (non-NMDA-EPSP/Cs). To test acamprosate actions on the GABA system, we superfused 60 microM d-APV and 20 microM CNQX to block glutamatergic transmission and evoked monosynaptic GABA(A) receptor-mediated synaptic responses within the NAcc. Acamprosate (300 microM) did not change these monosynaptic GABA(A)-IPSCs. We also used a paired-pulse paradigm to test whether acamprosate could act on presynaptic GABA(B) autoreceptors, in the presence of d-APV and CNQX to block glutamatergic transmission. Like 0.5 microM CGP 34358 (a GABA[B] receptor blocker), acamprosate significantly

  2. Menthol enhances phasic and tonic GABAA receptor-mediated currents in midbrain periaqueductal grey neurons

    PubMed Central

    Lau, Benjamin K; Karim, Shafinaz; Goodchild, Ann K; Vaughan, Christopher W; Drew, Geoffrey M

    2014-01-01

    Background and Purpose Menthol, a naturally occurring compound in the essential oil of mint leaves, is used for its medicinal, sensory and fragrant properties. Menthol acts via transient receptor potential (TRPM8 and TRPA1) channels and as a positive allosteric modulator of recombinant GABAA receptors. Here, we examined the actions of menthol on GABAA receptor-mediated currents in intact midbrain slices. Experimental Approach Whole-cell voltage-clamp recordings were made from periaqueductal grey (PAG) neurons in midbrain slices from rats to determine the effects of menthol on GABAA receptor-mediated phasic IPSCs and tonic currents. Key Results Menthol (150–750 μM) produced a concentration-dependent prolongation of spontaneous GABAA receptor-mediated IPSCs, but not non-NMDA receptor-mediated EPSCs throughout the PAG. Menthol actions were unaffected by TRPM8 and TRPA1 antagonists, tetrodotoxin and the benzodiazepine antagonist, flumazenil. Menthol also enhanced a tonic current, which was sensitive to the GABAA receptor antagonists, picrotoxin (100 μM), bicuculline (30 μM) and Zn2+ (100 μM), but unaffected by gabazine (10 μM) and a GABAC receptor antagonist, 1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid hydrate (TPMPA; 50 μM). In addition, menthol potentiated currents induced by the extrasynaptic GABAA receptor agonist THIP/gaboxadol (10 μM). Conclusions and Implications These results suggest that menthol positively modulates both synaptic and extrasynaptic populations of GABAA receptors in native PAG neurons. The development of agents that potentiate GABAA-mediated tonic currents and phasic IPSCs in a manner similar to menthol could provide a basis for novel GABAA-related pharmacotherapies. PMID:24460753

  3. Methamphetamine exposure antagonizes N-methyl-D-aspartate receptor-mediated neurotoxicity in organotypic hippocampal slice cultures.

    PubMed

    Smith, Katherine J; Self, Rachel L; Butler, Tracy R; Mullins, Michael M; Ghayoumi, Layla; Holley, Robert C; Littleton, John M; Prendergast, Mark A

    2007-07-09

    Glutamatergic systems have been increasingly recognized as mediators of methamphetamine's (METH) pharmacological effects though little is known about the means by which METH interacts with glutamate receptors. The present studies examined effects of METH (0.1-100 microM) on [3H]MK-801 binding to membranes prepared from adult rat cortex, hippocampus and cerebellum, as well as the neurotoxicity produced by 24-h exposure to N-methyl-D-aspartate (5-10 microM; NMDA) employing organotypic hippocampal slice cultures of neonatal rat. Co-incubation of [3H]MK-801 with METH (0.1-100 microM) did not reduce dextromethorphan (1 mM)-displaceable ligand binding. Exposure of slice cultures to NMDA for 24-h produced increases in uptake of the non-vital fluorescent marker propidium iodide (PI) of 150-500% above control levels, most notably, in the CA1 region pyramidal cell layer. Co-exposure to METH (>1.0 microM) with NMDA (5 microM) reduced PI uptake by approximately 50% in each subregion, though the CA1 pyramidal cell layer was markedly more sensitive to the protective effects of METH exposure. In contrast, METH exposure did not reduce PI uptake stimulated by 24-h exposure to 10 microM NMDA. Co-exposure to the NMDA receptor antagonist D-2-amino-5-phosphonovaleric acid (20 microM) prevented toxicity produced by exposure to 5 or 10 microM NMDA. These findings indicate that the pharmacological effects of short-term METH exposure involve inhibition of NMDA receptor-mediated neuronal signaling, not reflective of direct channel inhibition at an MK-801-sensitive site.

  4. Cellular prion protein and NMDA receptor modulation: protecting against excitotoxicity

    PubMed Central

    Black, Stefanie A. G.; Stys, Peter K.; Zamponi, Gerald W.; Tsutsui, Shigeki

    2014-01-01

    Although it is well established that misfolding of the cellular prion protein (PrPC) into the β-sheet-rich, aggregated scrapie conformation (PrPSc) causes a variety of transmissible spongiform encephalopathies (TSEs), the physiological roles of PrPC are still incompletely understood. There is accumulating evidence describing the roles of PrPC in neurodegeneration and neuroinflammation. Recently, we identified a functional regulation of NMDA receptors by PrPC that involves formation of a physical protein complex between these proteins. Excessive NMDA receptor activity during conditions such as ischemia mediates enhanced Ca2+ entry into cells and contributes to excitotoxic neuronal death. In addition, NMDA receptors and/or PrPC play critical roles in neuroinflammation and glial cell toxicity. Inhibition of NMDA receptor activity protects against PrPSc-induced neuronal death. Moreover, in mice lacking PrPC, infarct size is increased after focal cerebral ischemia, and absence of PrPC increases susceptibility of neurons to NMDA receptor-dependent death. Recently, PrPC was found to be a receptor for oligomeric beta-amyloid (Aβ) peptides, suggesting a role for PrPC in Alzheimer's disease (AD). Our recent findings suggest that Aβ peptides enhance NMDA receptor current by perturbing the normal copper- and PrPC-dependent regulation of these receptors. Here, we review evidence highlighting a role for PrPC in preventing NMDA receptor-mediated excitotoxicity and inflammation. There is a need for more detailed molecular characterization of PrPC-mediated regulation of NMDA receptors, such as determining which NMDA receptor subunits mediate pathogenic effects upon loss of PrPC-mediated regulation and identifying PrPC binding site(s) on the receptor. This knowledge will allow development of novel therapeutic interventions for not only TSEs, but also for AD and other neurodegenerative disorders involving dysfunction of PrPC. PMID:25364752

  5. Copper-dependent regulation of NMDA receptors by cellular prion protein: implications for neurodegenerative disorders

    PubMed Central

    Stys, Peter K; You, Haitao; Zamponi, Gerald W

    2012-01-01

    Abstract N-Methyl-d-aspartate (NMDA) receptors mediate a wide range of important nervous system functions. Conversely, excessive NMDA receptor activity leads to cytotoxic calcium overload and neuronal damage in a wide variety of CNS disorders. It is well established that NMDA receptors are tightly regulated by a number of cell signalling pathways. Recently, it has been shown that NMDA receptor activity is modulated by cellular prion protein (PrPC) in a copper-dependent manner. Here we give an overview of the current state of knowledge concerning the novel concept of potent modulation of this receptor's kinetics by copper ions, and the interplay between NMDA receptors and PrPC in the context of neurological diseases such as Alzheimer's disease, epilepsy, pain and depression. PMID:22310309

  6. Selective 5-HT7 Receptor Activation May Enhance Synaptic Plasticity Through N-methyl-D-aspartate (NMDA) Receptor Activity in the Visual Cortex.

    PubMed

    Xiang, Kangjian; Zhao, Xuefei; Li, Youjun; Zheng, Liang; Wang, Jue; Li, Yan-Hai

    2016-01-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter that modulates N-methyl-D-aspartate (NMDA) receptor activity by binding to several different 5-HT receptor subtypes. In the present study, we used whole-cell patch-clamp recordings in transverse slice preparations to test the role of 5-HT receptors in modulating the NMDA receptor-mediated miniature excitatory postsynaptic currents (mEPSCs) in layer II/III pyramidal neurons of the rat visual cortex. We found that the NMDA receptor-mediated component of mEPSCs could be potentiated by exogenously applied 5-HT. Similar results were obtained by exogenously applied 5-CT or 8-OH-DPAT (the 5-HT1A and 5-HT7 receptor agonist). A specific antagonist for the 5-HT7 receptor, SB-269970, completely blocked the increase in NMDA receptor-mediated component of mEPSCs by 5-CT or 8- OH-DPAT. Moreover, the selective 5-HT1A receptor antagonist, WAY-100135, displayed no influence on the enhancement in NMDA receptor-mediated component of mEPSCs by 5-CT or 8-OHDPAT. These results indicated that the increase in NMDA receptor-mediated component of mEPSCs by 5-HT in layer II/III pyramidal neurons of the young rat visual cortex requires activation of 5-HT7 receptors, but not 5-HT1A receptors. These observations might be clinically relevant to schizophrenia and Alzheimer's disease (AD), where enhancing NMDA receptor-mediated neurotransmission is considered to be a promising strategy for treatment of these diseases.

  7. Cytosolic phospholipase A(2) alpha mediates electrophysiologic responses of hippocampal pyramidal neurons to neurotoxic NMDA treatment.

    PubMed

    Shen, Ying; Kishimoto, Koji; Linden, David J; Sapirstein, Adam

    2007-04-03

    The arachidonic acid-generating enzyme cytosolic phospholipase A(2) alpha (cPLA(2)alpha) has been implicated in the progression of excitotoxic neuronal injury. However, the mechanisms of cPLA(2)alpha toxicity have yet to be determined. Here, we used a model system exposing mouse hippocampal slices to NMDA as an excitotoxic injury, in combination with simultaneous patch-clamp recording and confocal Ca(2+) imaging of CA1 pyramidal neurons. NMDA treatment caused significantly greater injury in wild-type (WT) than in cPLA(2)alpha null CA1 neurons. Bath application of NMDA evoked a slow inward current in voltage-clamped neurons (composed of both NMDA receptor-mediated and other conductances) that was smaller in cPLA(2)alpha null than in WT slices. This was not due to down-regulation of NMDA receptor function because NMDA receptor-mediated currents were equivalent in each genotype following brief photolysis of caged glutamate. Current-clamp recordings were made during and following NMDA exposure by eliciting a single action potential with a brief current injection. After NMDA exposure, WT CA1 neurons developed a spike-evoked plateau potential and an increased spike-evoked dendritic Ca(2+) transient. These effects were absent in CA1 neurons from cPLA(2)alpha null mice and WT neurons treated with a cPLA(2)alpha inhibitor. The Ca-sensitive K-channel toxins, apamin and paxilline, caused spike broadening and Ca(2+) enhancement in WT and cPLA(2)alpha null slices. NMDA application in WT and arachidonate applied to cPLA(2)alpha null cells occluded the effects of apamin/paxilline. These results indicate that cPLA(2)alpha activity is required for development of aberrant electrophysiologic events triggered by NMDA receptor activation, in part through attenuation of K-channel function.

  8. Mechanics of receptor-mediated endocytosis

    NASA Astrophysics Data System (ADS)

    Gao, Huajian; Shi, Wendong; Freund, Lambert B.

    2005-07-01

    Most viruses and bioparticles endocytosed by cells have characteristic sizes in the range of tens to hundreds of nanometers. The process of viruses entering and leaving animal cells is mediated by the binding interaction between ligand molecules on the viral capid and their receptor molecules on the cell membrane. How does the size of a bioparticle affect receptor-mediated endocytosis? Here, we study how a cell membrane containing diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle. It is shown that particles in the size range of tens to hundreds of nanometers can enter or exit cells via wrapping even in the absence of clathrin or caveolin coats, and an optimal particles size exists for the smallest wrapping time. This model can also be extended to include the effect of clathrin coat. The results seem to show broad agreement with experimental observations. Author contributions: H.G. and L.B.F. designed research; H.G., W.S., and L.B.F. performed research; and H.G., W.S., and L.B.F. wrote the paper.Abbreviations: CNT, carbon nanotube; SWNT, single-walled nanotube.

  9. Receptor-mediated signaling at plasmodesmata.

    PubMed

    Faulkner, Christine

    2013-01-01

    Plasmodesmata (PD) generate continuity between plant cells via the cytoplasm, endoplasmic reticulum (ER) and plasma membrane (PM), allowing movement of different classes of molecules between cells. Proteomic data indicates that the PD PM hosts many receptors and receptor kinases, as well as lipid raft and tetraspanin enriched microdomain associated proteins, suggesting the hypothesis that the PD PM is specialized with respect to both composition and function. PD-located receptor proteins and receptor kinases are responsible for perception of microbe associated molecular patterns at PD and initiate signaling that mediates changes to PD flux. In addition, developmentally relevant receptor kinases have different interactions dependent upon whether located at the PD PM or the cellular PM. The implications of these findings are that receptor-mediated signaling in PD membranes differs from that in the cellular PM and, in light the identification of PD-located proteins associated with membrane microdomains and the role of membrane microdomains in analogous signaling processes in animals, suggests that the PD PM contains specialized signaling platforms.

  10. Phenobarbital but Not Diazepam Reduces AMPA/kainate Receptor Mediated Currents and Exerts Opposite Actions on Initial Seizures in the Neonatal Rat Hippocampus

    PubMed Central

    Nardou, Romain; Yamamoto, Sumii; Bhar, Asma; Burnashev, Nail; Ben-Ari, Yehezkel; Khalilov, Ilgam

    2011-01-01

    Diazepam (DZP) and phenobarbital (PB) are extensively used as first and second line drugs to treat acute seizures in neonates and their actions are thought to be mediated by increasing the actions of GABAergic signals. Yet, their efficacy is variable with occasional failure or even aggravation of recurrent seizures questioning whether other mechanisms are not involved in their actions. We have now compared the effects of DZP and PB on ictal-like events (ILEs) in an in vitro model of mirror focus (MF). Using the three-compartment chamber with the two immature hippocampi and their commissural fibers placed in three different compartments, kainate was applied to one hippocampus and PB or DZP to the contralateral one, either after one ILE, or after many recurrent ILEs that produce an epileptogenic MF. We report that in contrast to PB, DZP aggravated propagating ILEs from the start, and did not prevent the formation of MF. PB reduced and DZP increased the network driven giant depolarizing potentials suggesting that PB may exert additional actions that are not mediated by GABA signaling. In keeping with this, PB but not DZP reduced field potentials recorded in the presence of GABA and NMDA receptor antagonists. These effects are mediated by a direct action on AMPA/kainate receptors since PB: (i) reduced AMPA/kainate receptor mediated currents induced by focal applications of glutamate; (ii) reduced the amplitude and the frequency of AMPA but not NMDA receptor mediated miniature excitatory postsynaptic currents (EPSCs); (iii) augmented the number of AMPA receptor mediated EPSCs failures evoked by minimal stimulation. These effects persisted in MF. Therefore, PB exerts its anticonvulsive actions partly by reducing AMPA/kainate receptors mediated EPSCs in addition to the pro-GABA effects. We suggest that PB may have advantage over DZP in the treatment of initial neonatal seizures since the additional reduction of glutamate receptors mediated signals may reduce the severity

  11. Role of NMDA Receptor-Mediated Glutamatergic Signaling in Chronic and Acute Neuropathologies

    PubMed Central

    2016-01-01

    N-Methyl-D-aspartate receptors (NMDARs) have two opposing roles in the brain. On the one hand, NMDARs control critical events in the formation and development of synaptic organization and synaptic plasticity. On the other hand, the overactivation of NMDARs can promote neuronal death in neuropathological conditions. Ca2+ influx acts as a primary modulator after NMDAR channel activation. An imbalance in Ca2+ homeostasis is associated with several neurological diseases including schizophrenia, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. These chronic conditions have a lengthy progression depending on internal and external factors. External factors such as acute episodes of brain damage are associated with an earlier onset of several of these chronic mental conditions. Here, we will review some of the current evidence of how traumatic brain injury can hasten the onset of several neurological conditions, focusing on the role of NMDAR distribution and the functional consequences in calcium homeostasis associated with synaptic dysfunction and neuronal death present in this group of chronic diseases. PMID:27630777

  12. NMDA receptor-mediated epileptiform persistent activity requires calcium release from intracellular stores in prefrontal neurons.

    PubMed

    Gao, Wen-Jun; Goldman-Rakic, Patricia S

    2006-02-01

    Various normal and pathological forms of synchronized population activity are generated by recurrent excitation among pyramidal neurons in the neocortex. However, the intracellular signaling mechanisms underlying this activity remain poorly understood. In this study, we have examined the cellular properties of synchronized epileptiform activity in the prefrontal cortex with particular emphasis on a potential role of intracellular calcium stores. We find that the zero-magnesium-induced synchronized activity is blocked by inhibition of sarco-endoplasmic reticulum Ca(2+)-ATPases, phospholipase C (PLC), the inositol 1,4,5-trisphosphate (IP3) receptor, and the ryanodine receptor. This same activity is, however, not affected by application of metabotropic glutamatergic receptor (mGluR) agonists, nor by introduction of an mGluR antagonist. These results suggest that persistent synchronized activity in vitro is dependent upon calcium release from internal calcium stores through the activation of PLC-IP3 receptor pathway. Our findings also raise the possibility that intracellular calcium release may be involved in the generation of pathologic synchronized activity in epilepsy in vivo and in physiological forms of synchronized cortical activity.

  13. NR2D-containing NMDA receptors mediate tissue plasminogen activator-promoted neuronal excitotoxicity.

    PubMed

    Baron, A; Montagne, A; Cassé, F; Launay, S; Maubert, E; Ali, C; Vivien, D

    2010-05-01

    Although the molecular bases of its actions remain debated, tissue-type plasminogen activator (tPA) is a paradoxical brain protease, as it favours some learning/memory processes, but increases excitotoxic neuronal death. Here, we show that, in cultured cortical neurons, tPA selectively promotes NR2D-containing N-methyl-D-aspartate receptor (NMDAR)-dependent activation. We show that tPA-mediated signalling and neurotoxicity through the NMDAR are blocked by co-application of an NR2D antagonist (phenanthrene derivative (2S(*), 3R(*))-1-(phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid, PPDA) or knockdown of neuronal NR2D expression. In sharp contrast with cortical neurons, hippocampal neurons do not exhibit NR2D both in vitro and in vivo and are consequently resistant to tPA-promoted NMDAR-mediated neurotoxicity. Moreover, we have shown that activation of synaptic NMDAR prevents further tPA-dependent NMDAR-mediated neurotoxicity and sensitivity to PPDA. This study shows that the earlier described pro-neurotoxic effect of tPA is mediated by NR2D-containing NMDAR-dependent extracellular signal-regulated kinase activation, a deleterious effect prevented by synaptic pre-activation.

  14. NMDA receptor mediates tau-induced neurotoxicity by calpain and ERK/MAPK activation

    PubMed Central

    Amadoro, Giuseppina; Ciotti, Maria Teresa; Costanzi, Marco; Cestari, Vincenzo; Calissano, Pietro; Canu, Nadia

    2006-01-01

    The altered function and/or structure of tau protein is postulated to cause cell death in tauopathies and Alzheimer’s disease. However, the mechanisms by which tau induces neuronal death remain unclear. Here we show that overexpression of human tau and of some of its N-terminal fragments in primary neuronal cultures leads to an N-methyl-d-aspartate receptor (NMDAR)-mediated and caspase-independent cell death. Death signaling likely originates from stimulation of extrasynaptic NR2B-subunit-containing NMDARs because it is accompanied by dephosphorylation of cAMP-response-element-binding protein (CREB) and it is inhibited by ifenprodil. Interestingly, activation of NMDAR leads to a crucial, sustained, and delayed phosphorylation of extracellular-regulated kinases 1 and 2, whose inhibition largely prevents tau-induced neuronal death. Moreover, NMDAR involvement causes the fatal activation of calpain, which, in turn, degrades tau protein into a 17-kDa peptide and possibly other highly toxic N-terminal peptides. Some of these peptides are hypothesized, on the basis of our in vitro experiments, to initiate a negative loop, ultimately leading to cell death. Thus, inhibition of calpain largely prevents tau degradation and cell death. Our findings unravel a cellular mechanism linking tau toxicity to NMDAR activation and might be relevant to Alzheimer’s disease and tauopathies where NMDAR-mediated toxicity is postulated to play a pivotal role. PMID:16477009

  15. Regulation of AMPA and NMDA receptor-mediated EPSPs in dendritic trees of thalamocortical cells

    PubMed Central

    Lajeunesse, Francis; Kröger, Helmut

    2013-01-01

    Two main excitatory synapses are formed at the dendritic arbor of first-order nuclei thalamocortical (TC) neurons. Ascending sensory axons primarily establish contacts at large proximal dendrites, whereas descending corticothalamic fibers form synapses on thin distal dendrites. With the use of a multicomparment computational model based on fully reconstructed TC neurons from the ventroposterolateral nucleus of the cat, we compared local responses at the site of stimulation as well as somatic responses induced by both α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)- and N-methyl-d-aspartate receptor (NMDAR)-mediated currents. We found that AMPAR-mediated responses, when synapses were located at proximal dendrites, induced a larger depolarization at the level of soma, whereas NMDAR-mediated responses were more efficient for synapses located at distal dendrites. The voltage transfer and transfer impedance were higher for NMDAR than for AMPAR activation at any location. For both types of synaptic current and for both input locations at the dendritic arbor, somatic responses were characterized by a low variability despite the large variability found in local responses in dendrites. The large neurons had overall smaller somatic responses than small neurons, but this relation was not found in local dendritic responses. We conclude that in TC cells, the dendritic location of small synaptic inputs does not play a major role in the amplitude of a somatic response, but the size of the neuron does. The variability of response amplitude between cells was much larger than the variability within cells. This suggests possible functional segregation of TC neurons of different size. PMID:23100131

  16. N-Methyl-D-Aspartate Receptor-Mediated Axonal Injury in Adult Rat Corpus Callosum

    PubMed Central

    Zhang, Jingdong; Liu, Jianuo; Fox, Howard S.; Xiong, Huangui

    2013-01-01

    Damage to white matter such as corpus callosum (CC) is a pathological characteristic in many brain disorders. Glutamate (Glut) excitotoxicity through AMPA receptors on oligodendrocyte (OL) was previously considered as a mechanism for white matter damage. Recent studies have shown that N-methyl-D-aspartate receptors (NMDARs) are expressed on myelin sheath of neonatal rat OL processes and that activation of these receptors mediated demyelization. Whether NMDARs are expressed in the adult CC and are involved in excitotoxic axonal injury remains to be determined. In this study, we demonstrate the presence of NMDARs in the adult rat CC and their distributions in myelinated nerve fibers and OL somata by means of immunocytochemical staining and Western blot. Incubation of the CC slices with Glut or NMDA induced axonal injury as revealed by analyzing amplitude of CC fiber compound action potentials (CAPs) and input–output response. Both Glut and NMDA decreased the CAP amplitude and input–output responses, suggesting an involvement of NMDARs in Glut- and NMDA-induced axonal injury. The involvement of NMDAR in Glut-induced axonal injury was further assayed by detection of β-amyloid precursor protein (β-APP) in the CC axonal fibers. Treatment of the CC slices with Glut resulted in β-APP accumulation in the CC fibers as detected by Western blot, reflecting an impairment of axonal transport function. This injurious effect of Glut on CC axonal transport was significantly blocked by MK801. Taken together, these results show that NMDARs are expressed in the adult CC and are involved in excitotoxic activity in adult CC slices in vitro. PMID:23161705

  17. Glycine Potentiates AMPA Receptor Function through Metabotropic Activation of GluN2A-Containing NMDA Receptors

    PubMed Central

    Li, Li-Jun; Hu, Rong; Lujan, Brendan; Chen, Juan; Zhang, Jian-Jian; Nakano, Yasuko; Cui, Tian-Yuan; Liao, Ming-Xia; Chen, Jin-Cao; Man, Heng-Ye; Feng, Hua; Wan, Qi

    2016-01-01

    NMDA receptors are Ca2+-permeable ion channels. The activation of NMDA receptors requires agonist glutamate and co-agonist glycine. Recent evidence indicates that NMDA receptor also has metabotropic function. Here we report that in cultured mouse hippocampal neurons, glycine increases AMPA receptor-mediated currents independent of the channel activity of NMDA receptors and the activation of glycine receptors. The potentiation of AMPA receptor function by glycine is antagonized by the inhibition of ERK1/2. In the hippocampal neurons and in the HEK293 cells transfected with different combinations of NMDA receptors, glycine preferentially acts on GluN2A-containing NMDA receptors (GluN2ARs), but not GluN2B-containing NMDA receptors (GluN2BRs), to enhance ERK1/2 phosphorylation independent of the channel activity of GluN2ARs. Without requiring the channel activity of GluN2ARs, glycine increases AMPA receptor-mediated currents through GluN2ARs. Thus, these results reveal a metabotropic function of GluN2ARs in mediating glycine-induced potentiation of AMPA receptor function via ERK1/2 activation. PMID:27807405

  18. Location- and Subunit-Specific NMDA Receptors Determine the Developmental Sevoflurane Neurotoxicity Through ERK1/2 Signaling.

    PubMed

    Wang, Wen-Yuan; Jia, Li-Jie; Luo, Yan; Zhang, Hong-Hai; Cai, Fang; Mao, Hui; Xu, Wei-Cai; Fang, Jun-Biao; Peng, Zhi-You; Ma, Zheng-Wen; Chen, Yan-Hong; Zhang, Juan; Wei, Zhen; Yu, Bu-Wei; Hu, Shuang-Fei

    2016-01-01

    It is well established that developmental exposure of sevoflurane (an inhalational anesthetic) is capable of inducing neuronal apoptosis and subsequent learning and memory disorders. Synaptic NMDA receptors activity plays an essential role in cell survival, while the extra-synaptic NMDA receptors activation is usually associated with cell death. However, whether synaptic or extra-synaptic NMDA receptors mediate developmental sevoflurane neurotoxicity is largely unknown. Here, we show that developmental sevoflurane treatment decreased NR2A, but increased NR2B subunit expression both in vitro and in vivo. Sevoflurane-induced neuronal apoptosis was attenuated by synaptic NMDA receptors activation or low dose of exogenous NMDA in vitro. Interestingly, these effects could be abolished by NR2A inhibitor PEAQX, but not NR2B inhibitor Ifenprodil in vitro. In contrast, activation of extra-synaptic NMDA receptors alone had no effects on sevoflurane neurotoxicity. In the scenario of extra-synaptic NMDA receptors stimulation, however, sevoflurane-induced neuronal apoptosis could be prevented by addition of Ifenprodil, but not by PEAQX in vitro. In addition, sevoflurane neurotoxicity could also be rescued by memantine, an uncompetitive antagonist for preferential blockade of extra-synaptic NMDA receptors both in vitro and in vivo. Furthermore, we found that developmental sevoflurane-induced phospho-ERK1/2 inhibition was restored by synaptic NMDA receptor activation (in vitro), low dose of NMDA (in vitro) or memantine (in vivo). And the neuroprotective role of synaptic NMDA activity was able to be reversed by MEK1/2 inhibitor U0126 in vitro. Finally, administration of memantine or NMDA significantly improved spatial learning and memory dysfunctions induced by developmental sevoflurane exposure without influence on locomotor activity. These results indicated that activation of synaptic NR2A-containing NMDA receptors, or inhibition of extra-synaptic NR2B-containing NMDA receptors

  19. Open-channel blockers of the NMDA receptor complex.

    PubMed

    Albensi, Benedict C; Ilkanich, Erin

    2004-11-01

    A variety of compounds have been shown to limit or prevent excitotoxicity by blocking N-methyl-D-aspartate (NMDA) receptor-mediated neurotransmission. However, many first-generation NMDA antagonists did not live up to clinical expectations in trials of acute brain injury because of the manifestation of multiple side effects. In spite of this, development of NMDA antagonists continues, where some of the newer agents block excitotoxicity through alternative mechanisms. For example, blockers selective to the NR2B subunit or agents that block metabotropic glutamate receptors or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors are currently under investigation. Several years ago, the arylalkylamine spider toxins were demonstrated to function as open-channel blockers similar to memantine, which was very recently approved by the U.S. FDA for use in patients with Alzheimer's dementia. With this said, programs focusing on NMDA antagonism via alternative mechanisms may still hold promise for treating acute injury and even chronic forms of dementia.

  20. Leptin Enhances NMDA-Induced Spinal Excitation in Rats: A Functional Link between Adipocytokine and Neuropathic Pain

    PubMed Central

    Tian, Yinghong; Wang, Shuxing; Ma, Yuxin; Lim, Grewo; Kim, Hyangin; Mao, Jianren

    2011-01-01

    Recent studies have shown that leptin (an adipocytokine) played an important role in nociceptive behavior induced by nerve injury, but the cellular mechanism of this action remains unclear. Using the whole cell patch-clamp recording from rat’s spinal cord slices, we showed that superfusion of leptin onto spinal cord slices dose-dependently enhanced NMDA receptor-mediated currents in spinal cord lamina II neurons. At the cellular level, the effect of leptin on spinal NMDA-induced currents was mediated through the leptin receptor and the JAK2/STAT3 (but not PI3K or MAPK) pathway, as the leptin effect was abolished in leptin receptor deficient (db/db) mice and inhibited by a JAK/STAT inhibitor. Moreover, we demonstrated in naïve rats that a single intrathecal administration of leptin enhanced spontaneous biting, scratching and licking behavior induced by intrathecal NMDA and that repeated intrathecal administration of leptin elicited thermal hyperalgesia and mechanical allodynia, which was attenuated by the non-competitive NMDA receptor antagonist MK-801. Intrathecal leptin also upregulated the expression of NMDA receptors and pSTAT3 within the rat’s spinal cord dorsal horn and intrathecal MK-801 attenuated this leptin effect as well. Our data demonstrate a relationship between leptin and NMDA receptor-mediated spinal neuronal excitation and its functional role in nociceptive behavior. Since leptin contributes to nociceptive behavior induced by nerve injury, the present findings suggest an important cellular link between the leptin’s spinal effect and the NMDA receptor-mediated cellular mechanism of neuropathic pain. PMID:21376468

  1. Receptor-Mediated Drug Delivery Systems Targeting to Glioma

    PubMed Central

    Wang, Shanshan; Meng, Ying; Li, Chengyi; Qian, Min; Huang, Rongqin

    2015-01-01

    Glioma has been considered to be the most frequent primary tumor within the central nervous system (CNS). The complexity of glioma, especially the existence of the blood-brain barrier (BBB), makes the survival and prognosis of glioma remain poor even after a standard treatment based on surgery, radiotherapy, and chemotherapy. This provides a rationale for the development of some novel therapeutic strategies. Among them, receptor-mediated drug delivery is a specific pattern taking advantage of differential expression of receptors between tumors and normal tissues. The strategy can actively transport drugs, such as small molecular drugs, gene medicines, and therapeutic proteins to glioma while minimizing adverse reactions. This review will summarize recent progress on receptor-mediated drug delivery systems targeting to glioma, and conclude the challenges and prospects of receptor-mediated glioma-targeted therapy for future applications.

  2. CNQX and DNQX block non-NMDA synaptic transmission but not NMDA-evoked locomotion in lamprey spinal cord.

    PubMed

    Alford, S; Grillner, S

    1990-01-08

    The motor pattern underlying locomotion in the lamprey is activated and maintained by excitatory amino acid neurotransmission. The quinoxalinediones 6,7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) are potent and selective antagonists of non-N-methyl-D-aspartate (NMDA) receptors in the mammalian central nervous system. In the lamprey, these compounds are now shown to block fast excitatory synaptic potentials elicited in neurones of the spinal ventral horn. They selectively antagonise responses to the application of selective kainate and quisqualate receptor agonists (kainate and alpha-amino-3-hydroxy-5-methyl-4-isoxalone (AMPA)) but do not influence NMDA receptor-mediated responses. Additionally, it is shown that the activation of NMDA receptors is sufficient to elicit and maintain fictive locomotion after blockade of non-NMDA receptors with either DNQX or CNQX. Conversely, activation of quisqualate receptors with AMPA, but not quisqualate leads to fictive locomotion with properties much like that activated by kainate.

  3. A specialized NMDA receptor function in layer 5 recurrent microcircuitry of the adult rat prefrontal cortex

    PubMed Central

    Wang, Huaixing; Stradtman, George G.; Wang, Xiao-Jing; Gao, Wen-Jun

    2008-01-01

    In the prefrontal cortex, NMDA receptors are important for normal prefrontal functions such as working memory, and their dysfunction plays a key role in the pathological processes of psychiatric disorders such as schizophrenia. Little is known, however, about the synaptic properties of NMDA receptors in the local circuits of recurrent excitation, a leading candidate mechanism underlying working memory. We investigated the NMDA receptor-mediated currents at monosynaptic connections between pairs of layer 5 pyramidal neurons. We found that NMDA receptor-mediated currents at prefrontal synapses in the adult, but not young, rats exhibit a twofold longer decay time-constant and temporally summate a train of stimuli more effectively, compared to those in the primary visual cortex. Experiments with pharmacological, immunocytochemical, and biochemical approaches further suggest that, in the adult animals, neurons express significantly more NR2B subunits in the prefrontal cortex than the visual cortex. The NR2B-rich synapses in the prefrontal circuitry may be critically implicated in online cognitive computations and plasticity in learning, as well as psychiatric disorders. PMID:18922773

  4. A critical role of spinal Shank2 proteins in NMDA-induced pain hypersensitivity

    PubMed Central

    Yoon, Seo-Yeon; Kwon, Soon-Gu; Kim, Yong Ho; Yeo, Ji-Hee; Ko, Hyoung-Gon; Roh, Dae-Hyun; Kaang, Bong-Kiun; Beitz, Alvin J; Lee, Jang-Hern

    2017-01-01

    Background Self-injurious behaviors (SIBs) are devastating traits in autism spectrum disorder (ASD). Although deficits in pain sensation might be one of the contributing factors underlying the development of SIBs, the mechanisms have yet to be addressed. Recently, the Shank2 synaptic protein has been considered to be a key component in ASD, and mutations of SHANK2 gene induce the dysfunction of N-methyl-D-aspartate (NMDA) receptors, suggesting a link between Shank2 and NMDA receptors in ASD. Given that spinal NMDA receptors play a pivotal role in pain hypersensitivity, we investigated the possible role of Shank2 in nociceptive hypersensitivity by examining changes in spontaneous pain following intrathecal NMDA injection in Shank2−/− (Shank2 knock-out, KO) mice. Results Intrathecal NMDA injection evoked spontaneous nociceptive behaviors. These NMDA-induced nociceptive responses were significantly reduced in Shank2 KO mice. We also observed a significant decrease of NMDA currents in the spinal dorsal horn of Shank2 KO mice. Subsequently, we examined whether mitogen-activated protein kinase or AKT signaling is involved in this reduced pain behavior in Shank2 KO mice because the NMDA receptor is closely related to these signaling molecules. Western blotting and immunohistochemistry revealed that spinally administered NMDA increased the expression of a phosphorylated form of extracellular signal-regulated kinase (p-ERK) which was significantly reduced in Shank2 KO mice. However, p38, JNK, or AKT were not changed by NMDA administration. The ERK inhibitor, PD98059, decreased NMDA-induced spontaneous pain behaviors in a dose-dependent manner in wild-type mice. Moreover, it was found that the NMDA-induced increase in p-ERK was primarily colocalized with Shank2 proteins in the spinal cord dorsal horn. Conclusion Shank2 protein is involved in spinal NMDA receptor-mediated pain, and mutations of Shank2 may suppress NMDA-ERK signaling in spinal pain transmission. This study

  5. DOPAMINE RECEPTOR ACTIVATION REVEALS A NOVEL, KYNURENATE-SENSITIVE COMPONENT OF STRIATAL NMDA NEUROTOXICITY

    PubMed Central

    Poeggeler, Burkhard; Rassoulpour, Arash; Wu, Hui-Qiu; Guidetti, Paolo; Roberts, Rosalinda C.; Schwarcz, Robert

    2007-01-01

    The N-methyl-D-aspartate (NMDA) subtype of glutamate receptors plays an important role in brain physiology, but excessive receptor stimulation results in seizures and excitotoxic nerve cell death. NMDA receptor-mediated neuronal excitation and injury can be prevented by high, non-physiological concentrations of the neuroinhibitory tryptophan metabolite kynurenic acid (KYNA). Here we report that endogenous KYNA, which is formed in and released from astrocytes, controls NMDA receptors in vivo. This was revealed with the aid of the dopaminergic drugs d-amphetamine and apomorphine, which cause rapid, transient decreases in striatal KYNA levels in rats. Intrastriatal injections of the excitotoxins NMDA or quinolinate (but not the non-NMDA receptor agonist kainate) at the time of maximal KYNA reduction resulted in 2-3-fold increases in excitotoxic lesion size. Pre-treatment with kynurenine 3-hydroxylase inhibitors or dopamine receptor antagonists, two classes of pharmacological agents that prevented the reduction in brain KYNA caused by dopaminergic stimulation, abolished the potentiation of neurotoxicity. Thus, the present study identifies a previously unappreciated role of KYNA as a functional link between dopamine receptor stimulation and NMDA neurotoxicity in the striatum. PMID:17629627

  6. Testing the NMDA, long-term potentiation, and cholinergic hypotheses of spatial learning.

    PubMed

    Cain, D P

    1998-03-01

    The problems and issues associated with the use of pharmacological antagonists in studies on learning and memory are considered in a review of the role of N-methyl-D-aspartate (NMDA) receptors, NMDA receptor-mediated long-term potentiation (LTP), and muscarinic receptors in spatial learning in the water maze. The evidence indicates that neither NMDA nor muscarinic receptors, nor NMDA receptor-mediated LTP, are required for spatial learning, although they might normally contribute to it. Detailed behavioral analyses have indicated that the water maze task is more complex than generally has been appreciated, and has a number of dissociable components. Naive rats trained under NMDA or muscarinic antagonism display sensorimotor disturbances that interfere with their ability to acquire the task. Rats made familiar with the general requirements of the task can learn the location of a hidden platform readily under NMDA or muscarinic antagonism. The ability of a rat to acquire the water maze task depends on its ability to apply instinctive behaviors to performance of the task in an adaptive manner. The instinctive behaviors undergo modification as the rat learns the general strategies required in the task. The evidence suggests that at least some of the plastic changes involved in acquiring the task occur in existing neural circuits situated in widespread areas of the brain, including sensory and motor structures in the cortex and elsewhere, and are therefore difficult to distinguish from existing sensorimotor mechanisms. More generally, the findings indicate the difficulty of inferring the occurrence or nonoccurrence of learning from behavior, and the difficulty of causally linking the action of particular receptor populations with the formation of specific memories.

  7. Fast, non-competitive and reversible inhibition of NMDA-activated currents by 2-BFI confers neuroprotection.

    PubMed

    Han, Zhao; Yang, Jin-Long; Jiang, Susan X; Hou, Sheng-Tao; Zheng, Rong-Yuan

    2013-01-01

    Excessive activation of the N-methyl-D-aspartic acid (NMDA) type glutamate receptors (NMDARs) causes excitotoxicity, a process important in stroke-induced neuronal death. Drugs that inhibit NMDA receptor-mediated [Ca(2+)]i influx are potential leads for development to treat excitotoxicity-induced brain damage. Our previous studies showed that 2-(2-benzofu-ranyl)-2-imidazoline (2-BFI), an immidazoline receptor ligand, dose-dependently protects rodent brains from cerebral ischemia injury. However, the molecular mechanisms remain unclear. In this study, we found that 2-BFI transiently and reversibly inhibits NMDA, but not AMPA currents, in a dose-dependent manner in cultured rat cortical neurons. The mechanism of 2-BFI inhibition of NMDAR is through a noncompetitive fashion with a faster on (Kon = 2.19±0.33×10(-9) M(-1) sec(-1)) and off rate (Koff = 0.67±0.02 sec(-1)) than those of memantine, a gold standard for therapeutic inhibition NMDAR-induced excitotoxicity. 2-BFI also transiently and reversibly blocked NMDA receptor-mediated calcium entry to cultured neurons and provided long-term neuroprotection against NMDA toxicity in vitro. Collectively, these studies demonstrated a potential mechanism of 2-BFI-mediated neuroprotection and indicated that 2-BFI is an excellent candidate for repositioning as a drug for stroke treatment.

  8. D2-like dopamine receptors mediate the response to amphetamine in a mouse model of ADHD

    PubMed Central

    Fan, Xueliang; Hess, Ellen J.

    2007-01-01

    The mechanisms underlying the effects of psychostimulants in attention deficit hyperactivity disorder (ADHD) are not well understood, but indirect evidence implicates D2 dopamine receptors. Here we dissect the components of dopaminergic neurotransmission in the hyperactive mouse mutant coloboma to identify pre- and postsynaptic elements essential for the effects of amphetamine in these mice. Amphetamine treatment reduced locomotor activity in coloboma mice, but induced a robust increase in dopamine overflow suggesting that abnormal regulation of dopamine efflux does not account for the behavioral effect. However, the D2-like dopamine receptor antagonists haloperidol and raclopride, but not the D1-like dopamine receptor antagonist SCH23390, blocked the amphetamine-induced reduction in locomotor activity in coloboma mice, providing direct evidence that D2-like dopamine receptors mediate the effect of amphetamine in these mice. With the precedent established that it is possible to directly antagonize this response, this strategy should prove useful for identifying novel therapeutics in ADHD. PMID:17291774

  9. Comparative analyses of lysophosphatidic acid receptor-mediated signaling.

    PubMed

    Fukushima, Nobuyuki; Ishii, Shoichi; Tsujiuchi, Toshifumi; Kagawa, Nao; Katoh, Kazutaka

    2015-06-01

    Lysophosphatidic acid (LPA) is a bioactive lipid mediator that activates G protein-coupled LPA receptors to exert fundamental cellular functions. Six LPA receptor genes have been identified in vertebrates and are classified into two subfamilies, the endothelial differentiation genes (edg) and the non-edg family. Studies using genetically engineered mice, frogs, and zebrafish have demonstrated that LPA receptor-mediated signaling has biological, developmental, and pathophysiological functions. Computational analyses have also identified several amino acids (aa) critical for LPA recognition by human LPA receptors. This review focuses on the evolutionary aspects of LPA receptor-mediated signaling by comparing the aa sequences of vertebrate LPA receptors and LPA-producing enzymes; it also summarizes the LPA receptor-dependent effects commonly observed in mouse, frog, and fish.

  10. Receptor-mediated Endocytosis in the Caenorhabditis elegans Oocyte

    PubMed Central

    Grant, Barth; Hirsh, David

    1999-01-01

    The Caenorhabditis elegans oocyte is a highly amenable system for forward and reverse genetic analysis of receptor-mediated endocytosis. We describe the use of transgenic strains expressing a vitellogenin::green fluorescent protein (YP170::GFP) fusion to monitor yolk endocytosis by the C. elegans oocyte in vivo. This YP170::GFP reporter was used to assay the functions of C. elegans predicted proteins homologous to vertebrate endocytosis factors using RNA-mediated interference. We show that the basic components and pathways of endocytic trafficking are conserved between C. elegans and vertebrates, and that this system can be used to test the endocytic functions of any new gene. We also used the YP170::GFP assay to identify rme (receptor-mediated endocytosis) mutants. We describe a new member of the low-density lipoprotein receptor superfamily, RME-2, identified in our screens for endocytosis defective mutants. We show that RME-2 is the C. elegans yolk receptor. PMID:10588660

  11. Receptors mediating toxicity and their involvement in endocrine disruption.

    PubMed

    Rüegg, Joëlle; Penttinen-Damdimopoulou, Pauliina; Mäkelä, Sari; Pongratz, Ingemar; Gustafsson, Jan-Ake

    2009-01-01

    Many toxic compounds exert their harmful effects by activating of certain receptors, which in turn leads to dysregulation of transcription. Some of these receptors are so called xenosensors. They are activated by external chemicals and evoke a cascade of events that lead to the elimination of the chemical from the system. Other receptors that are modulated by toxic substances are hormone receptors, particularly the ones of the nuclear receptor family. Some environmental chemicals resemble endogenous hormones and can falsely activate these receptors, leading to undesired activity in the cell. Furthermore, excessive activation of the xenosensors can lead to disturbances of the integrity of the system as well. In this chapter, the concepts of receptor-mediated toxicity and hormone disruption are introduced. We start by describing environmental chemicals that can bind to xenosensors and nuclear hormone receptors. We then describe the receptors most commonly targeted by environmental chemicals. Finally, the mechanisms by which receptor-mediated events can disrupt the system are depicted.

  12. Multiscale Modeling of Virus Entry via Receptor-Mediated Endocytosis

    NASA Astrophysics Data System (ADS)

    Liu, Jin

    2012-11-01

    Virus infections are ubiquitous and remain major threats to human health worldwide. Viruses are intracellular parasites and must enter host cells to initiate infection. Receptor-mediated endocytosis is the most common entry pathway taken by viruses, the whole process is highly complex and dictated by various events, such as virus motions, membrane deformations, receptor diffusion and ligand-receptor reactions, occurring at multiple length and time scales. We develop a multiscale model for virus entry through receptor-mediated endocytosis. The binding of virus to cell surface is based on a mesoscale three dimensional stochastic adhesion model, the internalization (endocytosis) of virus and cellular membrane deformation is based on the discretization of Helfrich Hamiltonian in a curvilinear space using Monte Carlo method. The multiscale model is based on the combination of these two models. We will implement this model to study the herpes simplex virus entry into B78 cells and compare the model predictions with experimental measurements.

  13. Modulation of NMDA and AMPA-mediated synaptic transmission by CB1 receptors in frontal cortical pyramidal cells.

    PubMed

    Li, Qiang; Yan, Haidun; Wilson, Wilkie A; Swartzwelder, H Scott

    2010-06-25

    Although the endogenous cannabinoid system modulates a variety of physiological and pharmacological processes, the specific role of cannabinoid CB1 receptors in the modulation of glutamatergic neurotransmission and neural plasticity is not well understood. Using whole-cell patch clamp recording techniques, evoked or spontaneous excitatory postsynaptic currents (eEPSCs or sEPSCs) were recorded from visualized, layer II/III pyramidal cells in frontal cortical slices from rat brain. Bath application of the CB1 receptor agonist, WIN 55212-2 (WIN), reduced the amplitude of NMDA receptor-mediated EPSCs in a concentration-dependent manner. When co-applied with the specific CB1 antagonists, AM251 or AM281, WIN did not suppress NMDA receptor-mediated EPSCs. WIN also reduced the amplitude of evoked AMPA receptor-mediated EPSCs, an effect that was also reversed by AM251. Both the frequency and amplitude of spontaneous AMPA receptor-mediated EPSCs were significantly reduced by WIN. In contrast, WIN reduced the frequency, but not the amplitude of miniature EPSCs, suggesting that the suppression of glutamatergic activity by CB1 receptors in the frontal neocortex is mediated by a presynaptic mechanism. Taken together, these data indicate a critical role for endocannabinoid signaling in the regulation of excitatory synaptic transmission in frontal neocortex, and suggest a possible neuronal mechanism whereby THC regulates cortical function.

  14. Salvia miltiorrhiza Bunge Blocks Ethanol-Induced Synaptic Dysfunction through Regulation of NMDA Receptor-Dependent Synaptic Transmission

    PubMed Central

    Park, Hye Jin; Lee, Seungheon; Jung, Ji Wook; Lee, Young Choon; Choi, Seong-Min; Kim, Dong Hyun

    2016-01-01

    Consumption of high doses of ethanol can lead to amnesia, which often manifests as a blackout. These blackouts experienced by ethanol consumers may be a major cause of the social problems associated with excess ethanol consumption. However, there is currently no established treatment for preventing these ethanol-induced blackouts. In this study, we tested the ethanol extract of the roots of Salvia miltiorrhiza (SM) for its ability to mitigate ethanol-induced behavioral and synaptic deficits. To test behavioral deficits, an object recognition test was conducted in mouse. In this test, ethanol (1 g/kg, i.p.) impaired object recognition memory, but SM (200 mg/kg) prevented this impairment. To evaluate synaptic deficits, NMDA receptor-mediated excitatory postsynaptic potential (EPSP) and long-term potentiation (LTP) in the mouse hippocampal slices were tested, as they are known to be vulnerable to ethanol and are associated with ethanol-induced amnesia. SM (10 and 100 μg/ml) significantly ameliorated ethanol-induced long-term potentiation and NMDA receptor-mediated EPSP deficits in the hippocampal slices. Therefore, these results suggest that SM prevents ethanol-induced amnesia by protecting the hippocampus from NMDA receptor-mediated synaptic transmission and synaptic plasticity deficits induced by ethanol. PMID:27257009

  15. A translational approach for NMDA receptor profiling as a vulnerability biomarker for depression and schizophrenia.

    PubMed

    Gunduz-Bruce, Handan; Kenney, Joshua; Changlani, Suravi; Peixoto, Aldo; Gueorguieva, Ralitza; Leone, Cheryl; Stachenfeld, Nina

    2017-03-13

    Altered N-methyl-D-aspartate (NMDA) receptor activity and glutamate signaling may underlie the pathogenesis of both schizophrenia and depression in subgroups of patients. In schizophrenia, pharmacologic modeling, postmortem and imaging data suggest reduced NMDA signaling. In contrast, recent clinical trials demonstrating the efficacy of the NMDA antagonist ketamine in severely depressed patients suggest increased NMDA receptor signaling. We conducted a proof of concept study to assess whether there is any in vivo evidence for an inverse association in depression and schizophrenia with respect to the NMDA receptor function. For this purpose we used a translational approach, based on findings from animal studies that NMDA receptor is a key mediator of arginine-vasopressin (AVP) release into the bloodstream. Using hypertonic saline to induce AVP release, as done in animal studies, we found that in depressed patients, NMDA receptor mediated AVP release induced by hypertonic saline infusion was significantly increased 0.24 (0.15) pg/ml P[AVP] /mOsmol POsm , P< 0.05 compared to schizophrenia patients 0.07 (0.07) pg/ml P[AVP] /mOsmol POsm , in whom same response was abnormally low. Slopes for healthy control were 0.11 (0.09) pg/ml P[AVP] /mOsmol POsm , and not different than either group. These findings are consistent with implicated NMDA receptor related abnormalities in depression and schizophrenia in subgroups of patients, and provide the first in vivo evidence towards this dichotomy. This article is protected by copyright. All rights reserved.

  16. Exacerbation of NMDA, AMPA, and L-glutamate excitotoxicity by the succinate dehydrogenase inhibitor malonate.

    PubMed

    Greene, J G; Greenamyre, J T

    1995-05-01

    We report that a subtoxic dose of the succinate dehydrogenase (SDH) inhibitor malonate greatly enhances the neurotoxicity of three different excitatory amino acid agonists: N-methyl-D-aspartate (NMDA), S-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (S-AMPA), and L-glutamate. In male Sprague-Dawley rats, intrastriatal stereotaxic injection of malonate alone (0.6 mumol), NMDA alone (15 nmol), S-AMPA alone (1 nmol), or glutamate alone (0.6 mumol) produced negligible toxicity as assessed by measurement of lesion volume. Coinjection of subtoxic malonate with NMDA produced a large lesion (15.2 +/- 1.4 mm3), as did coinjection of malonate with S-AMPA (11.0 +/- 1.0 mm3) or glutamate (12.8 +/- 0.7 mm3). Administration of the noncompetitive NMDA antagonist MK-801 (5 mg/kg i.p.) completely blocked the toxicity of malonate plus NMDA (0.5 +/- 0.3 mm3). This dose of MK-801 had little effect on the lesion produced by malonate plus S-AMPA (9.0 +/- 0.7 mm3), but it attenuated the toxicity of malonate plus glutamate by approximately 40% (7.5 +/- 0.9 mm3). Coinjection of the AMPA antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)-quinoxaline (NBQX; 2 nmol) had no effect on malonate plus NMDA or malonate plus glutamate toxicity (12.3 +/- 1.8 and 14.0 +/- 0.9 mm3, respectively) but greatly attenuated malonate plus S-AMPA toxicity (1.5 +/- 0.9 mm3). Combination of the two antagonists conferred no additional neuroprotection in any paradigm. These results indicate that metabolic inhibition exacerbates both NMDA receptor- and non-NMDA receptor-mediated excitotoxicity.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Modulation of NMDA receptor function by inhibition of D-amino acid oxidase in rodent brain.

    PubMed

    Strick, Christine A; Li, Cheryl; Scott, Liam; Harvey, Brian; Hajós, Mihály; Steyn, Stefanus J; Piotrowski, Mary A; James, Larry C; Downs, James T; Rago, Brian; Becker, Stacey L; El-Kattan, Ayman; Xu, Youfen; Ganong, Alan H; Tingley, F David; Ramirez, Andres D; Seymour, Patricia A; Guanowsky, Victor; Majchrzak, Mark J; Fox, Carol B; Schmidt, Christopher J; Duplantier, Allen J

    2011-01-01

    Observations that N-Methyl-D-Aspartate (NMDA) antagonists produce symptoms in humans that are similar to those seen in schizophrenia have led to the current hypothesis that schizophrenia might result from NMDA receptor hypofunction. Inhibition of D-amino acid oxidase (DAAO), the enzyme responsible for degradation of D-serine, should lead to increased levels of this co-agonist at the NMDA receptor, and thereby provide a therapeutic approach to schizophrenia. We have profiled some of the preclinical biochemical, electrophysiological, and behavioral consequences of administering potent and selective inhibitors of DAAO to rodents to begin to test this hypothesis. Inhibition of DAAO activity resulted in a significant dose and time dependent increase in D-serine only in the cerebellum, although a time delay was observed between peak plasma or brain drug concentration and cerebellum D-serine response. Pharmacokinetic/pharmacodynamic (PK/PD) modeling employing a mechanism-based indirect response model was used to characterize the correlation between free brain drug concentration and D-serine accumulation. DAAO inhibitors had little or no activity in rodent models considered predictive for antipsychotic activity. The inhibitors did, however, affect cortical activity in the Mescaline-Induced Scratching model, produced a modest but significant increase in NMDA receptor-mediated synaptic currents in primary neuronal cultures from rat hippocampus, and resulted in a significant increase in evoked hippocampal theta rhythm, an in vivo electrophysiological model of hippocampal activity. These findings demonstrate that although DAAO inhibition did not cause a measurable increase in D-serine in forebrain, it did affect hippocampal and cortical activity, possibly through augmentation of NMDA receptor-mediated currents.

  18. Ca2+-permeable non-NMDA glutamate receptors in rat magnocellular basal forebrain neurones

    PubMed Central

    Waters, D Jack; Allen, Timothy G J

    1998-01-01

    Ionotropic glutamate receptor-mediated responses were recorded from rat magnocellular basal forebrain neurones under voltage clamp from a somatically located patch-clamp pipette. Currents were recorded from both acutely dissociated neurones and neurones maintained in culture for up to 6 weeks. Non-NMDA and NMDA receptor-mediated events could be distinguished pharmacologically using the selective agonists (S)-α-amino-3-hydroxy-5-methyl-isoxazolepropionic acid (AMPA), kainate and N-methyl-D-aspartate (NMDA), and antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and D(-)-2-amino-5-phosphonopentanoic acid (AP5). Responses to rapid application of AMPA displayed pronounced and rapid desensitization. Responses to kainate showed no desensitization. Steady-state EC50 values for AMPA and kainate were 2.7 ± 0.4 μm (n = 5) and 138 ± 25 μm (n = 10), respectively. Cyclothiazide markedly increased current amplitude of responses to both agonists, whereas concanavalin A had no clear effect on either response. The selective AMPA receptor antagonist GYKI 53655 inhibited responses to kainate with an IC50 of 1.2 ± 0.08 μm (n = 5) at -70 mV. These data strongly suggest that AMPA receptors are the predominant non-NMDA receptors expressed by basal forebrain neurones. At -70 mV, approximately 6% of control current amplitude remained, at a maximally effective concentration of GYKI 53655. This residual response displayed desensitization, was insensitive to cyclothiazide and was potentiated by concanavalin A, suggesting that it was mediated by a kainate receptor. Current-voltage relationships for non-NMDA receptor-mediated currents were obtained from both nucleated patches pulled from neurones in culture and from acutely dissociated neurones. With 30 μm spermine in the recording pipette, currents frequently displayed double-rectification characteristic of non-NMDA receptors with high Ca2+ permeabilities. Ca2+ permeability, relative to Na+ and Cs+, was investigated using constant

  19. Different receptors mediate the electrophysiological and growth cone responses of an identified neuron to applied dopamine.

    PubMed

    Dobson, K S; Dmetrichuk, J M; Spencer, G E

    2006-09-15

    Neurotransmitters are among the many cues that may guide developing axons toward appropriate targets in the developing nervous system. We have previously shown in the mollusk Lymnaea stagnalis that dopamine, released from an identified pre-synaptic cell, differentially affects growth cone behavior of its target and non-target cells in vitro. Here, we describe a group of non-target cells that also produce an inhibitory electrophysiological response to applied dopamine. We first determined, using pharmacological blockers, which receptors mediate this physiological response. We demonstrated that the dopaminergic electrophysiological responses of non-target cells were sensitive to a D2 receptor antagonist, as are known target cell responses. However, the non-target cell receptors were linked to different G-proteins and intracellular signaling pathways than the target cell receptors. Despite the presence of a D2-like receptor at the soma, the growth cone collapse of these non-target cells was mediated by D1-like receptors. This study shows that different dopamine receptor sub-types mediated the inhibitory physiological and growth cone responses of an identified cell type. We therefore not only provide further evidence that D2- and D1-like receptors can be present on the same neuron in invertebrates, but also show that these receptors are likely involved in very different cellular functions.

  20. Dose-response approaches for nuclear receptor-mediated ...

    EPA Pesticide Factsheets

    A public workshop, organized by a Steering Committee of scientists from government, industry, universities, and research organizations, was held at the National Institute of Environmental Health Sciences (NIEHS) in September, 2010. The workshop explored the dose-response implications of toxicant modes of action (MOA) mediated by nuclear receptors. The dominant paradigm in human health risk assessment has been linear extrapolation without a threshold for cancer, and estimation of sub-threshold doses for non-cancer and (in appropriate cases) cancer endpoints. However, recent publications question the application of dose-response modeling approaches with a threshold. The growing body of molecular toxicology information and computational toxicology tools has allowed for exploration of the presence or absence of subthreshold doses for a number of receptor-mediated MOPs. The workshop explored the development of dose-response approaches for nuclear receptor-mediated liver cancer, within a MOA Human Relevance framework (HRF). Case studies addressed activation of the AHR; the CAR/PXR, and the PPARa. This paper describes the workshop process, key issues discussed, and conclusions. The value of an interactive workshop approach to apply current MOA/HRF frameworks was demonstrated. The results may help direct research on the MOA and dose-response of receptor-based toxicity, since there are commonalities for many receptors in the basic pathways involved for late steps in the

  1. Dose-response approaches for nuclear receptor-mediated ...

    EPA Pesticide Factsheets

    A public workshop, organized by a Steering Committee of scientists from government, industry, universities, and research organizations, was held at the National Institute of Environmental Health Sciences (NIEHS) in September, 2010. The workshop explored the dose-response implications of toxicant modes of action (MOA) mediated by nuclear receptors. The dominant paradigm in human health risk assessment has been linear extrapolation without a threshold for cancer, and estimation of sub-threshold doses for non-cancer and (in appropriate cases) cancer endpoints. However, recent publications question the application of dose-response modeling approaches with a threshold. The growing body of molecular toxicology information and computational toxicology tools has allowed for exploration of the presence or absence of subthreshold doses for a number of receptor-mediated MOPs. The workshop explored the development of dose-response approaches for nuclear receptor-mediated liver cancer, within a MOA Human Relevance framework (HRF). Case studies addressed activation of the AHR; the CAR/PXR, and the PPARa. This paper describes the workshop process, key issues discussed, and conclusions. The value of an interactive workshop approach to apply current MOA/HRF frameworks was demonstrated. The results may help direct research on the MOA and dose-response of receptor-based toxicity, since there are commonalities for many receptors in the basic pathways involved for late steps in the

  2. Dopamine receptor-mediated mechanisms involved in the expression of learned activity of primate striatal neurons.

    PubMed

    Watanabe, K; Kimura, M

    1998-05-01

    background discharge rates nor the responses of TANs were significantly influenced. Background discharge rate of TANs was also not affected by D1- or D2-class antagonists applied by either micropressure injection or iontophoresis. It was concluded that the nigrostriatal DA system enables TANs to express learned activity primarily through D2-class and partly through D1-class receptor-mediated mechanisms in the striatum.

  3. TAAR1 Modulates Cortical Glutamate NMDA Receptor Function.

    PubMed

    Espinoza, Stefano; Lignani, Gabriele; Caffino, Lucia; Maggi, Silvia; Sukhanov, Ilya; Leo, Damiana; Mus, Liudmila; Emanuele, Marco; Ronzitti, Giuseppe; Harmeier, Anja; Medrihan, Lucian; Sotnikova, Tatyana D; Chieregatti, Evelina; Hoener, Marius C; Benfenati, Fabio; Tucci, Valter; Fumagalli, Fabio; Gainetdinov, Raul R

    2015-08-01

    Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor expressed in the mammalian brain and known to influence subcortical monoaminergic transmission. Monoamines, such as dopamine, also play an important role within the prefrontal cortex (PFC) circuitry, which is critically involved in high-o5rder cognitive processes. TAAR1-selective ligands have shown potential antipsychotic, antidepressant, and pro-cognitive effects in experimental animal models; however, it remains unclear whether TAAR1 can affect PFC-related processes and functions. In this study, we document a distinct pattern of expression of TAAR1 in the PFC, as well as altered subunit composition and deficient functionality of the glutamate N-methyl-D-aspartate (NMDA) receptors in the pyramidal neurons of layer V of PFC in mice lacking TAAR1. The dysregulated cortical glutamate transmission in TAAR1-KO mice was associated with aberrant behaviors in several tests, indicating a perseverative and impulsive phenotype of mutants. Conversely, pharmacological activation of TAAR1 with selective agonists reduced premature impulsive responses observed in the fixed-interval conditioning schedule in normal mice. Our study indicates that TAAR1 plays an important role in the modulation of NMDA receptor-mediated glutamate transmission in the PFC and related functions. Furthermore, these data suggest that the development of TAAR1-based drugs could provide a novel therapeutic approach for the treatment of disorders related to aberrant cortical functions.

  4. TAAR1 Modulates Cortical Glutamate NMDA Receptor Function

    PubMed Central

    Espinoza, Stefano; Lignani, Gabriele; Caffino, Lucia; Maggi, Silvia; Sukhanov, Ilya; Leo, Damiana; Mus, Liudmila; Emanuele, Marco; Ronzitti, Giuseppe; Harmeier, Anja; Medrihan, Lucian; Sotnikova, Tatyana D; Chieregatti, Evelina; Hoener, Marius C; Benfenati, Fabio; Tucci, Valter; Fumagalli, Fabio; Gainetdinov, Raul R

    2015-01-01

    Trace Amine-Associated Receptor 1 (TAAR1) is a G protein-coupled receptor expressed in the mammalian brain and known to influence subcortical monoaminergic transmission. Monoamines, such as dopamine, also play an important role within the prefrontal cortex (PFC) circuitry, which is critically involved in high-o5rder cognitive processes. TAAR1-selective ligands have shown potential antipsychotic, antidepressant, and pro-cognitive effects in experimental animal models; however, it remains unclear whether TAAR1 can affect PFC-related processes and functions. In this study, we document a distinct pattern of expression of TAAR1 in the PFC, as well as altered subunit composition and deficient functionality of the glutamate N-methyl-D-aspartate (NMDA) receptors in the pyramidal neurons of layer V of PFC in mice lacking TAAR1. The dysregulated cortical glutamate transmission in TAAR1-KO mice was associated with aberrant behaviors in several tests, indicating a perseverative and impulsive phenotype of mutants. Conversely, pharmacological activation of TAAR1 with selective agonists reduced premature impulsive responses observed in the fixed-interval conditioning schedule in normal mice. Our study indicates that TAAR1 plays an important role in the modulation of NMDA receptor-mediated glutamate transmission in the PFC and related functions. Furthermore, these data suggest that the development of TAAR1-based drugs could provide a novel therapeutic approach for the treatment of disorders related to aberrant cortical functions. PMID:25749299

  5. AMPA receptor involvement in 5-hydroxytryptamine2A receptor-mediated pre-frontal cortical excitatory synaptic currents and DOI-induced head shakes.

    PubMed

    Zhang, Ce; Marek, Gerard J

    2008-01-01

    Glutamate plays an important role in the psychotomimetic effects of both channel blocking N-methyl D-aspartate (NMDA) receptor antagonists and hallucinogenic drugs which activate 5-hydroxytryptamine2A (5-HT2A) receptors. Previous work suggested that activation of non-NMDA ionotropic glutamate receptors mediates the effects of 5-HT-induced excitatory post-synaptic potentials/currents (EPSPs/EPSCs) when recording from layer V pyramidal cells in the rat medial pre-frontal cortex (mPFC). However, those effects are mediated by either alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) or kainate receptors of the iGluk5 subtype. To test whether activation of AMPA receptors is sufficient to mediate 5-HT-induced EPSCs, a 2,3-benzodiazepine that selectively blocks AMPA receptors was assessed. This selective AMPA receptor antagonist potently suppressed 5-HT-induced EPSCs. Since phenethylamine hallucinogens induce head shakes by activating 5-HT2A receptors in the mPFC and this action is modulated by glutamate, we also examined whether selective blockade of AMPA receptors would suppress DOI-induced head shakes. As predicted, we found that selective blockade of AMPA receptors suppressed DOI-induced head shakes. Given evidence that activation of AMPA receptors is an important downstream effect for both channel blocking NMDA receptor antagonists and phenethylamine hallucinogens, we also tested multiple doses of DOI with a sub-anesthetic dose of MK-801. Synergistic action between these two classes of psychotomimetic drugs was demonstrated by MK-801 enhancing DOI-induced head shakes and locomotor activity. These findings expand the dependence of both channel blocking NMDA receptor antagonists and phenethylamine hallucinogens on enhancing extracellular glutamate.

  6. Receptor-Mediated Transport of Insulin across Endothelial Cells

    NASA Astrophysics Data System (ADS)

    King, George L.; Johnson, Sandra M.

    1985-03-01

    Hormones such as insulin are transported from the interior to the exterior of blood vessels. Whether endothelial cells, which line the inner walls of blood vessels have a role in this transport of hormones is not clear, but it is known that endothelial cells can internalize and release insulin rapidly with little degradation. The transport of iodine-125-labeled insulin was measured directly through the use of dual chambers separated by a horizontal monolayer of cultured bovine aortic endothelial cells. In this setting, endothelial cells took up and released the labeled insulin, thereby transporting it across the cells. The transport of insulin across the endothelial cells was temperature sensitive and was inhibited by unlabeled insulin and by antibody to insulin receptor in proportion to the ability of these substances to inhibit insulin binding to its receptor. More than 80 percent of the transported insulin was intact. These data suggest that insulin is rapidly transported across endothelial cells by a receptor-mediated process.

  7. Receptor mediated cellular uptake of low molecular weight dendritic polyglycerols.

    PubMed

    Calderón, Marcelo; Reichert, Stephanie; Welker, Pia; Licha, Kai; Kratz, Felix; Haag, Rainer

    2014-01-01

    The development of effective polymer-based nanocarriers which are able to target diseased tissues still remains a great challenge in current research. Dendritic polyglycerols have emerged as novel polymeric scaffolds that have demonstrated a great potential for diverse biomedical applications. These architectures have already proven their usefulness in therapeutic approaches related to multivalency, given by the synergy between the nanosized dimensions combined with the high density of functional groups. However, a continuous effort is necessary to modify and tailor polyglycerol architectures to fit the future demands of biomedical applications. The present work deals with the development of a general synthetic strategy that allows the linkage of low molecular weight dendritic polyglycerols to fluorescent dyes and cell targeting ligands. The receptor mediated cellular uptake of the polyglycerol conjugates highlight their potential to acts as new targeted nanocarriers that should be able to decrease non-specific cellular uptake.

  8. Menthol inhibits 5-HT3 receptor-mediated currents.

    PubMed

    Ashoor, Abrar; Nordman, Jacob C; Veltri, Daniel; Yang, Keun-Hang Susan; Shuba, Yaroslav; Al Kury, Lina; Sadek, Bassem; Howarth, Frank C; Shehu, Amarda; Kabbani, Nadine; Oz, Murat

    2013-11-01

    The effects of alcohol monoterpene menthol, a major active ingredient of the peppermint plant, were tested on the function of human 5-hydroxytryptamine type 3 (5-HT3) receptors expressed in Xenopus laevis oocytes. 5-HT (1 μM)-evoked currents recorded by two-electrode voltage-clamp technique were reversibly inhibited by menthol in a concentration-dependent (IC50 = 163 μM) manner. The effects of menthol developed gradually, reaching a steady-state level within 10-15 minutes and did not involve G-proteins, since GTPγS activity remained unaltered and the effect of menthol was not sensitive to pertussis toxin pretreatment. The actions of menthol were not stereoselective as (-), (+), and racemic menthol inhibited 5-HT3 receptor-mediated currents to the same extent. Menthol inhibition was not altered by intracellular 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid injections and transmembrane potential changes. The maximum inhibition observed for menthol was not reversed by increasing concentrations of 5-HT. Furthermore, specific binding of the 5-HT3 antagonist [(3)H]GR65630 was not altered in the presence of menthol (up to 1 mM), indicating that menthol acts as a noncompetitive antagonist of the 5-HT3 receptor. Finally, 5-HT3 receptor-mediated currents in acutely dissociated nodose ganglion neurons were also inhibited by menthol (100 μM). These data demonstrate that menthol, at pharmacologically relevant concentrations, is an allosteric inhibitor of 5-HT3 receptors.

  9. Direct Visualization of Estrogen Receptor-Mediated Transcription in Living Cells

    DTIC Science & Technology

    2007-10-01

    Receptor-Mediated Transcription in Living Cells PRINCIPAL INVESTIGATOR: Paul M. Yen, M.D...reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of...Sep 2007 4. TITLE AND SUBTITLE Direct Visualization of Estrogen Receptor-Mediated Transcription in Living Cells 5a. CONTRACT NUMBER 5b. GRANT

  10. Enhancement of NMDA receptor-mediated excitatory postsynaptic currents by gp120-treated macrophages: Implications for HIV-1-associated neuropathology

    PubMed Central

    Yang, Jianming; Hu, Dehui; Xia, Jianxun; Liu, Jianuo; Zhang, Gang; Gendelman, Howard E.; Boukli, Nawal M.; Xiong, Huangui

    2013-01-01

    A plethora of prior studies has linked HIV-1-infected and immune activated brain mononuclear phagocytes (MP; blood borne macrophages and microglia) to neuronal dysfunction. These are modulated by N-methyl-D-aspartate receptor (NMDAR) antagonists and supporting their relevance for HIV-1-associated nervous system disease. The role of NMDAR subsets in HIV-1-induced neuronal injury, nonetheless, is poorly understood. To this end, we investigated conditioned media from HIV-1gp120-treated human monocyte-derived-macrophages (MDM) for its ability to affact NMDAR-mediated excitatory postsynaptic currents (EPSCNMDAR) in rat hippocampal slices. Bath application of gp120-treated MDM-conditioned media (MCM) produced an increase of EPSCNMDAR. In contrast, control (untreated) MCM had limited effects on EPSCNMDAR. Testing NR2A NMDAR (NR2AR)-mediated EPSC (EPSCNR2AR) and NR2B NMDAR (NR2BR)-mediated EPSC (EPSCNR2BR) for MCM showed significant increased EPSCNR2BR when compared to EPSCNR2AR enhancement. When synaptic NR2AR-mediated EPSC was blocked by bath application of MK801 combined with low frequency stimulations, MCM retained its ability to enhance EPSCNMDAR evoked by stronger stimulations. This suggested that increase in EPSCNMDAR was mediated, in part, through extra-synaptic NR2BR. Further analyses revealed that the soluble factors with low (<3kD) to medium (3-10kD) molecular weight mediated the observed increases in EPSCNMDAR. The link between activation of NR2BRs and HIV-1gp120 MCM for neuronal injury was demonstrated by NR2BR but not NR2AR blockers. Taken together, these results indicate that macrophage secretory products induce neuronal injury through extra-synaptic NR2BRs. PMID:23660833

  11. Metaplastic LTP inhibition after LTD induction in CA1 hippocampal slices involves NMDA Receptor-mediated Neurosteroidogenesis

    PubMed Central

    Izumi, Yukitoshi; O'Dell, Kazuko A; Zorumski, Charles F

    2013-01-01

    Long-term depression (LTD) induced by low-frequency electrical stimulation (LFS) in the CA1 region of the hippocampus is a form of synaptic plasticity thought to contribute to learning and memory and to the pathophysiology of neuropsychiatric disorders. In naïve hippocampal slices from juvenile rats, we previously found that LTD induction can impair subsequent induction of long-term potentiation (LTP) via a form of N-methyl-d-aspartate receptor (NMDAR)-dependent metaplasticity, and have recently observed that pharmacologically induced NMDAR-dependent LTP inhibition involves 5α-reduced neurosteroids that augment the actions of γ-aminobutyric acid (GABA). In this study, we found that both LFS-induced LTD and subsequent inhibition of LTP induction involve neurosteroid synthesis via NMDAR activation. Furthermore, the timing of 5α-reductase inhibition relative to LFS can dissociate effects on LTD and metaplastic LTP inhibition. These findings indicate that 5α-reduced neurosteroids play an important role in synaptic plasticity and synaptic modulation in the hippocampus. PMID:24303196

  12. Enhancement of NMDA receptor-mediated excitatory postsynaptic currents by gp120-treated macrophages: implications for HIV-1-associated neuropathology.

    PubMed

    Yang, Jianming; Hu, Dehui; Xia, Jianxun; Liu, Jianuo; Zhang, Gang; Gendelman, Howard E; Boukli, Nawal M; Xiong, Huangui

    2013-09-01

    A plethora of prior studies has linked HIV-1-infected and immune activated brain mononuclear phagocytes (MP; blood borne macrophages and microglia) to neuronal dysfunction. These are modulated by N-methyl-D-aspartate receptor (NMDAR) antagonists and supporting their relevance for HIV-1-associated nervous system disease. The role of NMDAR subsets in HIV-1-induced neuronal injury, nonetheless, is poorly understood. To this end, we investigated conditioned media from HIV-1gp120-treated human monocyte-derived-macrophages (MDM) for its abilities to affect NMDAR-mediated excitatory postsynaptic currents (EPSC(NMDAR)) in rat hippocampal slices. Bath application of gp120-treated MDM-conditioned media (MCM) produced an increase of EPSC(NMDAR). In contrast, control (untreated) MCM had limited effects on EPSC(NMDAR). Testing NR2A NMDAR (NR2AR)-mediated EPSC (EPSC(NR2AR)) and NR2B NMDAR (NR2BR)-mediated EPSC (EPSC(NR2BR)) for MCM showed significant increased EPSC(NR2BR) when compared to EPSC(NR2AR) enhancement. When synaptic NR2AR-mediated EPSC was blocked by bath application of MK801 combined with low frequency stimulations, MCM retained its ability to enhance EPSC(NMDAR) evoked by stronger stimulations. This suggested that increase in EPSC(NMDAR) was mediated, in part, through extra-synaptic NR2BR. Further analyses revealed that the soluble factors with low (<3 kD) to medium (3-10 kD) molecular weight mediated the observed increases in EPSC(NMDAR). The link between activation of NR2BRs and HIV-1gp120 MCM for neuronal injury was demonstrated by NR2BR but not NR2AR blockers. Taken together, these results indicate that macrophage secretory products induce neuronal injury through extra-synaptic NR2BRs.

  13. BDNF prevents NMDA-induced toxicity in models of Huntington's disease: the effects are genotype specific and adenosine A2A receptor is involved.

    PubMed

    Martire, Alberto; Pepponi, Rita; Domenici, Maria Rosaria; Ferrante, Antonella; Chiodi, Valentina; Popoli, Patrizia

    2013-04-01

    NMDA receptor-mediated excitotoxicity is thought to play a pivotal role in the pathogenesis of Huntington's disease (HD). The neurotrophin brain-derived neurotrophic factor (BDNF), which is also highly involved in HD and whose effects are modulated by adenosine A2 ARs, influences the activity and expression of striatal NMDA receptors. In electrophysiology experiments, we investigated the role of BDNF toward NMDA-induced effects in HD models, and the possible involvement of A2ARs. In corticostriatal slices from wild-type mice and age-matched symptomatic R6/2 mice (a model of HD), NMDA application (75 μM) induced a transient or a permanent (i.e., toxic) reduction of field potential amplitude, respectively. BDNF (10 ng/mL) potentiated NMDA effects in wild-type, while it protected from NMDA toxicity in R6/2 mice. Both effects of BDNF were prevented by A2 AR blockade. The protective effect of BDNF against NMDA-induced toxicity was reproduced in a cellular model of HD. These findings may have very important implications for the neuroprotective potential of BDNF and A2 AR ligands in HD.

  14. NMDA receptors in the rat VTA: a critical site for social stress to intensify cocaine taking.

    PubMed

    Covington, Herbert E; Tropea, Thomas F; Rajadhyaksha, Anjali M; Kosofsky, Barry E; Miczek, Klaus A

    2008-04-01

    Cocaine strengthens behaviors associated with its administration. The stress response by individuals that are defeated in a brief aggressive confrontation can also promote enduring behavioral consequences similar to those of stimulants. The study intends to find whether intermittent episodes of defeat promote cocaine's reinforcing effects by triggering N-methyl-D: -aspartic acid (NMDA)-receptor-mediated plasticity in the ventral tegmental area (VTA). Long-Evans rats were investigated after four social defeats in three experiments. Two experiments examined systemic or intra-VTA antagonism of NMDA receptors during stress on the later expression of behavioral sensitization and cocaine self-administration during fixed and progressive ratio (PR) schedules of reinforcement (0.3 mg/kg/infusion), including a novel 24-h variable-dose continuous access binge (0.2, 0.4, and 0.8 mg/kg/infusion, delivered in an irregular sequence). Third, the expression of receptor proteins NR1 (NMDA) and GluR1 [alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)] were examined in VTA and nucleus accumbens. Intermittent defeats augment locomotor responses to cocaine and increase cocaine taking. Rates of responding during binges are increased after defeat stress. These effects are prevented when NMDA or AMPA receptor antagonists are administered before defeats. VTA infusions of the NMDA antagonist AP-5 (5 nmol/side) before stress prevents locomotor sensitization to cocaine and intensified responding for cocaine during a PR schedule or binge. Episodic defeats increase GluR1 AMPA subunit protein expression in the VTA. Social stress stimulates NMDA receptors in the VTA, and this neural action of defeat may be essential for prompting a later increase in cocaine intake during binges.

  15. Spacelab D-1 mission

    NASA Technical Reports Server (NTRS)

    Dunbar, Bonnie J.

    1990-01-01

    The Spacelab D-1 (Deutchland Eins) Mission is discussed from the points of view of safety, materials handling, and toxic materials; the laboratory and equipment used; and some of the different philosophies utilized on this flight. How to enhance scientific return at the same time as being safe was examined.

  16. Cocaine disrupts histamine H3 receptor modulation of dopamine D1 receptor signaling: σ1-D1-H3 receptor complexes as key targets for reducing cocaine's effects.

    PubMed

    Moreno, Estefanía; Moreno-Delgado, David; Navarro, Gemma; Hoffmann, Hanne M; Fuentes, Silvia; Rosell-Vilar, Santi; Gasperini, Paola; Rodríguez-Ruiz, Mar; Medrano, Mireia; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Lluís, Carme; Ferré, Sergi; Ortiz, Jordi; Canela, Enric; McCormick, Peter J

    2014-03-05

    The general effects of cocaine are not well understood at the molecular level. What is known is that the dopamine D1 receptor plays an important role. Here we show that a key mechanism may be cocaine's blockade of the histamine H3 receptor-mediated inhibition of D1 receptor function. This blockade requires the σ1 receptor and occurs upon cocaine binding to σ1-D1-H3 receptor complexes. The cocaine-mediated disruption leaves an uninhibited D1 receptor that activates Gs, freely recruits β-arrestin, increases p-ERK 1/2 levels, and induces cell death when over activated. Using in vitro assays with transfected cells and in ex vivo experiments using both rats acutely treated or self-administered with cocaine along with mice depleted of σ1 receptor, we show that blockade of σ1 receptor by an antagonist restores the protective H3 receptor-mediated brake on D1 receptor signaling and prevents the cell death from elevated D1 receptor signaling. These findings suggest that a combination therapy of σ1R antagonists with H3 receptor agonists could serve to reduce some effects of cocaine.

  17. Receptor-mediated toxicity of pahutoxin, a marine trunkfish surfactant.

    PubMed

    Kalmanzon, Eliahu; Rahamim, Yocheved; Barenholz, Yechezkel; Carmeli, Shmuel; Zlotkin, Eliahu

    2003-07-01

    Pahutoxin (PHN, choline chloride ester of 3-acetoxypalmitic acid) is a natural fish-killing (ichthyotoxic) agent derived from the defensive secretions of trunkfish. In spite of its obvious structural resemblance to synthetic cationic long-chain quaternary ammonium detergents, we show that PHN's action does not rely on its surfactant properties and is in fact, receptor-mediated. The above conclusion is supported by the following data: 1. Ichthyotoxicity is not related to its detergency or surfactivity, as indicated by the fact that the lethal concentration is about 1.5 orders of magnitude below its critical micelle concentration value (69 microM) and its liposomal/seawater partition coefficient is low (62-85); 2. The trunkfish is tolerant to its own pahutoxin; 3. Ichthyotoxicity occurs only upon application to the surrounding water, suggesting the existence of externally located receptors; 4. The receptor hypothesis was supported by the aid of equilibrium saturation binding assays revealing the presence of specific binding sites to PHN on the fish gill membranes; 5. The PHN tolerant trunkfish was shown to be devoid of PHN-binding sites. Some chemo-ecological, and environmental implications are discussed.

  18. Glutamate receptor-mediated toxicity in optic nerve oligodendrocytes

    PubMed Central

    Matute, Carlos; Sánchez-Gómez, M. Victoria; Martínez-Millán, Luis; Miledi, Ricardo

    1997-01-01

    In cultured oligodendrocytes isolated from perinatal rat optic nerves, we have analyzed the expression of ionotropic glutamate receptor subunits as well as the effect of the activation of these receptors on oligodendrocyte viability. Reverse transcription–PCR, in combination with immunocytochemistry, demonstrated that most oligodendrocytes differentiated in vitro express the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluR3 and GluR4 and the kainate receptor subunits GluR6, GluR7, KA1 and KA2. Acute and chronic exposure to kainate caused extensive oligodendrocyte death in culture. This effect was partially prevented by the AMPA receptor antagonist GYKI 52466 and was completely abolished by the non-N-methyl-d-aspartate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), suggesting that both AMPA and kainate receptors mediate the observed kainate toxicity. Furthermore, chronic application of kainate to optic nerves in vivo resulted in massive oligodendrocyte death which, as in vitro, could be prevented by coinfusion of the toxin with CNQX. These findings suggest that excessive activation of the ionotropic glutamate receptors expressed by oligodendrocytes may act as a negative regulator of the size of this cell population. PMID:9238063

  19. Asialoglycoprotein receptor mediated hepatocyte targeting - strategies and applications.

    PubMed

    D'Souza, Anisha A; Devarajan, Padma V

    2015-04-10

    Hepatocyte resident afflictions continue to affect the human population unabated. The asialoglycoprotein receptor (ASGPR) is primarily expressed on hepatocytes and minimally on extra-hepatic cells. This makes it specifically attractive for receptor-mediated drug delivery with minimum concerns of toxicity. ASGPR facilitates internalization by clathrin-mediated endocytosis and exhibits high affinity for carbohydrates specifically galactose, N-acetylgalactosamine and glucose. Isomeric forms of sugar, galactose density and branching, spatial geometry and galactose linkages are key factors influencing ligand-receptor binding. Popular ligands for ASGPR mediated targeting are carbohydrate polymers, arabinogalactan and pullulan. Other ligands include galactose-bearing glycoproteins, glycopeptides and galactose modified polymers and lipids. Drug-ligand conjugates provide a viable strategy; nevertheless ligand-anchored nanocarriers provide an attractive option for ASGPR targeted delivery and are widely explored. The present review details various ligands and nanocarriers exploited for ASGPR mediated delivery of drugs to hepatocytes. Nanocarrier properties affecting ASGPR mediated uptake are discussed at length. The review also highlights the clinical relevance of ASGPR mediated targeting and applications in diagnostics. ASGPR mediated hepatocyte targeting provides great promise for improved therapy of hepatic afflictions.

  20. Visualization of Receptor-mediated Endocytosis in Yeast

    PubMed Central

    Mulholland, Jon; Konopka, James; Singer-Kruger, Birgit; Zerial, Marino; Botstein, David

    1999-01-01

    We studied the ligand-induced endocytosis of the yeast α-factor receptor Ste2p by immuno-electron microscopy. We observed and quantitated time-dependent loss of Ste2p from the plasma membrane of cells exposed to α-factor. This ligand-induced internalization of Ste2p was blocked in the well-characterized endocytosis-deficient mutant sac6Δ. We provide evidence that implicates furrow-like invaginations of the plasma membrane as the site of receptor internalization. These invaginations are distinct from the finger-like plasma membrane invaginations within actin cortical patches. Consistent with this, we show that Ste2p is not located within the cortical actin patch before and during receptor-mediated endocytosis. In wild-type cells exposed to α-factor we also observed and quantitated a time-dependent accumulation of Ste2p in intracellular, membrane-bound compartments. These compartments have a characteristic electron density but variable shape and size and are often located adjacent to the vacuole. In immuno-electron microscopy experiments these compartments labeled with antibodies directed against the rab5 homologue Ypt51p (Vps21p), the resident vacuolar protease carboxypeptidase Y, and the vacuolar H+-ATPase Vph1p. Using a new double-labeling technique we have colocalized antibodies against Ste2p and carboxypeptidase Y to this compartment, thereby identifying these compartments as prevacuolar late endosomes. PMID:10069819

  1. Purine receptor mediated actin cytoskeleton remodeling of human fibroblasts

    PubMed Central

    Goldman, Nanna; Chandler-Militello, Devin; Langevin, Helene; Nedergaard, Maiken; Takano, Takahiro

    2013-01-01

    Earlier studies have shown that activation of adenosine A1 receptors on peripheral pain fibers contributes to acupuncture-induced suppression of painful input. In addition to adenosine, acupuncture triggers the release of other purines, including ATP and ADP that may bind to purine receptors on nearby fibroblasts. We here show that purine agonists trigger increase in cytosolic Ca 2+ signaling in a cultured human fibroblasts cell line. The profile of agonist-induced Ca2+ increases indicates that the cells express functional P2yR2 and P2yR4 receptors, as well as P2yR1 and P2xR7 receptors. Unexpectedly, purine-induced Ca2+ signaling was associated with a remodeling of the actin cytoskeleton. ATP induced a transient loss in F-actin stress fiber. The changes of actin cytoskeleton occurred slowly and peaked at 10 min after agonist exposure. Inhibition of ATP-induced increases in Ca2+ by cyclopiazonic acid blocked receptor-mediated cytoskeleton remodeling. The Ca2+ ionophore failed to induce cytoskeletal remodeling despite triggering robust increases in cytosolic Ca2+. These observations indicate that purine signaling induces transient changes in fibroblast cytoarchitecture that could be related to the beneficial effects of acupuncture. PMID:23462235

  2. SPHINGOSINE-1-PHOSPHATE RECEPTORS MEDIATE NEUROMODULATORY FUNCTIONS IN THE CNS

    PubMed Central

    Sim-Selley, Laura J.; Goforth, Paulette B.; Mba, Mba U.; Macdonald, Timothy L.; Lynch, Kevin R.; Milstien, Sheldon; Spiegel, Sarah; Satin, Leslie S.; Welch, Sandra P.; Selley, Dana E.

    2009-01-01

    Sphingosine-1-phosphate is a ubiquitous, lipophilic cellular mediator that acts in part by activation of G-protein-coupled receptors. Modulation of S1P signaling is an emerging pharmacotherapeutic target for immunomodulatory drugs. Although multiple S1P receptor types exist in the CNS, little is known about their function. Here we report that S1P stimulated G- protein activity in the CNS, and results from [35S]GTPγS autoradiography using the S1P1-selective agonist SEW2871 and the S1P1/3-selective antagonist VPC44116 show that in several regions a majority of this activity is mediated by S1P1 receptors. S1P receptor activation inhibited glutamatergic neurotransmission as determined by electrophysiological recordings in cortical neurons in vitro, and this effect was mimicked by SEW2871 and inhibited by VPC44116. Moreover, central administration of S1P produced in vivo effects resembling the actions of cannabinoids, including thermal antinociception, hypothermia, catalepsy and hypolocomotion, but these actions were independent of CB1 receptors. At least one of the central effects of S1P, thermal antinociception, is also at least partly S1P1 receptor mediated because it was produced by SEW2871 and attenuated by VPC44116. These results indicate that CNS S1P receptors are part of a physiologically relevant and widespread neuromodulatory system, and that the S1P1 receptor contributes to S1P-mediated antinociception. PMID:19493165

  3. Hemoglobin Uptake by Paracoccidioides spp. Is Receptor-Mediated

    PubMed Central

    Bailão, Elisa Flávia Luiz Cardoso; Parente, Juliana Alves; Pigosso, Laurine Lacerda; de Castro, Kelly Pacheco; Fonseca, Fernanda Lopes; Silva-Bailão, Mirelle Garcia; Báo, Sônia Nair; Bailão, Alexandre Melo; Rodrigues, Marcio L.; Hernandez, Orville; McEwen, Juan G.; Soares, Célia Maria de Almeida

    2014-01-01

    Iron is essential for the proliferation of fungal pathogens during infection. The availability of iron is limited due to its association with host proteins. Fungal pathogens have evolved different mechanisms to acquire iron from host; however, little is known regarding how Paracoccidioides species incorporate and metabolize this ion. In this work, host iron sources that are used by Paracoccidioides spp. were investigated. Robust fungal growth in the presence of the iron-containing molecules hemin and hemoglobin was observed. Paracoccidioides spp. present hemolytic activity and have the ability to internalize a protoporphyrin ring. Using real-time PCR and nanoUPLC-MSE proteomic approaches, fungal growth in the presence of hemoglobin was shown to result in the positive regulation of transcripts that encode putative hemoglobin receptors, in addition to the induction of proteins that are required for amino acid metabolism and vacuolar protein degradation. In fact, one hemoglobin receptor ortholog, Rbt5, was identified as a surface GPI-anchored protein that recognized hemin, protoporphyrin and hemoglobin in vitro. Antisense RNA technology and Agrobacterium tumefaciens-mediated transformation were used to generate mitotically stable Pbrbt5 mutants. The knockdown strain had a lower survival inside macrophages and in mouse spleen when compared with the parental strain, which suggested that Rbt5 could act as a virulence factor. In summary, our data indicate that Paracoccidioides spp. can use hemoglobin as an iron source most likely through receptor-mediated pathways that might be relevant for pathogenic mechanisms. PMID:24831516

  4. Biologically bounded risk assessment for receptor-mediated nongenotoxic carcinogens.

    PubMed

    Gastel, J A; Sutter, T R

    1995-12-01

    We have developed a biologically bounded marginal effect model for use in risk assessment of human exposure to receptor-mediated nongenotoxic carcinogens. Schematically this model can be reduced to four components: CI, the absence of an observable biological response; CII, observable biochemical responses but no observable pathology; CIII, observable pathology; and CIV, both observable pathology and lethality. The inflection point in the marginal response curve between CI and CII is defined as the biologically evaluated scientifically tested no observable effect level (BESTNOEL). We demonstrate the utility of this approach by applying it to the well-studied nongenotoxic carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Using a well-developed mechanistic understanding of the initial interactions of TCDD with the cell, we justify the selection of the minimal effective dose for CYP1A1 mRNA induction as the BESTNOEL. With allowance for variation in human sensitivity to TCDD, the BESTNOEL is assigned a human liver tissue burden of approximately 0.25-25 ppt and an allowable daily intake level in the range of 15-1500 fg/kg/day. In the future, the BESTNOEL can help establish a lower boundary for acceptable extrapolation when using either statistical or biologically based attributable risk models.

  5. Hemoglobin uptake by Paracoccidioides spp. is receptor-mediated.

    PubMed

    Bailão, Elisa Flávia Luiz Cardoso; Parente, Juliana Alves; Pigosso, Laurine Lacerda; de Castro, Kelly Pacheco; Fonseca, Fernanda Lopes; Silva-Bailão, Mirelle Garcia; Báo, Sônia Nair; Bailão, Alexandre Melo; Rodrigues, Marcio L; Hernandez, Orville; McEwen, Juan G; Soares, Célia Maria de Almeida

    2014-05-01

    Iron is essential for the proliferation of fungal pathogens during infection. The availability of iron is limited due to its association with host proteins. Fungal pathogens have evolved different mechanisms to acquire iron from host; however, little is known regarding how Paracoccidioides species incorporate and metabolize this ion. In this work, host iron sources that are used by Paracoccidioides spp. were investigated. Robust fungal growth in the presence of the iron-containing molecules hemin and hemoglobin was observed. Paracoccidioides spp. present hemolytic activity and have the ability to internalize a protoporphyrin ring. Using real-time PCR and nanoUPLC-MSE proteomic approaches, fungal growth in the presence of hemoglobin was shown to result in the positive regulation of transcripts that encode putative hemoglobin receptors, in addition to the induction of proteins that are required for amino acid metabolism and vacuolar protein degradation. In fact, one hemoglobin receptor ortholog, Rbt5, was identified as a surface GPI-anchored protein that recognized hemin, protoporphyrin and hemoglobin in vitro. Antisense RNA technology and Agrobacterium tumefaciens-mediated transformation were used to generate mitotically stable Pbrbt5 mutants. The knockdown strain had a lower survival inside macrophages and in mouse spleen when compared with the parental strain, which suggested that Rbt5 could act as a virulence factor. In summary, our data indicate that Paracoccidioides spp. can use hemoglobin as an iron source most likely through receptor-mediated pathways that might be relevant for pathogenic mechanisms.

  6. Adult forebrain NMDA receptors gate social motivation and social memory.

    PubMed

    Jacobs, Stephanie; Tsien, Joe Z

    2017-02-01

    Motivation to engage in social interaction is critical to ensure normal social behaviors, whereas dysregulation in social motivation can contribute to psychiatric diseases such as schizophrenia, autism, social anxiety disorders and post-traumatic stress disorder (PTSD). While dopamine is well known to regulate motivation, its downstream targets are poorly understood. Given the fact that the dopamine 1 (D1) receptors are often physically coupled with the NMDA receptors, we hypothesize that the NMDA receptor activity in the adult forebrain principal neurons are crucial not only for learning and memory, but also for the proper gating of social motivation. Here, we tested this hypothesis by examining sociability and social memory in inducible forebrain-specific NR1 knockout mice. These mice are ideal for exploring the role of the NR1 subunit in social behavior because the NR1 subunit can be selectively knocked out after the critical developmental period, in which NR1 is required for normal development. We found that the inducible deletion of the NMDA receptors prior to behavioral assays impaired, not only object and social recognition memory tests, but also resulted in profound deficits in social motivation. Mice with ablated NR1 subunits in the forebrain demonstrated significant decreases in sociability compared to their wild type counterparts. These results suggest that in addition to its crucial role in learning and memory, the NMDA receptors in the adult forebrain principal neurons gate social motivation, independent of neuronal development.

  7. NMDA receptor antibodies

    PubMed Central

    Ramberger, Melanie; Bsteh, Gabriel; Schanda, Kathrin; Höftberger, Romana; Rostásy, Kevin; Baumann, Matthias; Aboulenein-Djamshidian, Fahmy; Lutterotti, Andreas; Deisenhammer, Florian; Berger, Thomas

    2015-01-01

    Objectives: To analyze the frequency of NMDA receptor (NMDAR) antibodies in patients with various inflammatory demyelinating diseases of the CNS and to determine their clinical correlates. Methods: Retrospective case-control study from 2005 to 2014 with the detection of serum IgG antibodies to NMDAR, aquaporin-4, and myelin oligodendrocyte glycoprotein by recombinant live cell-based immunofluorescence assays. Fifty-one patients with acute disseminated encephalomyelitis, 41 with neuromyelitis optica spectrum disorders, 34 with clinically isolated syndrome, and 89 with multiple sclerosis (MS) were included. Due to a known association of NMDAR antibodies with seizures and behavioral symptoms, patients with those clinical manifestations were preferentially included and are therefore overrepresented in our cohort. Nine patients with NMDAR encephalitis, 94 patients with other neurologic diseases, and 48 healthy individuals were used as controls. Results: NMDAR antibodies were found in all 9 patients with NMDAR encephalitis but in only 1 of 215 (0.5%) patients with inflammatory demyelination and in none of the controls. This patient had relapsing-remitting MS with NMDAR antibodies present at disease onset, with an increase in NMDAR antibody titer with the onset of psychiatric symptoms and cognitive deficits. Conclusion: In demyelinating disorders, NMDAR antibodies are uncommon, even in those with symptoms seen in NMDAR encephalitis. PMID:26309901

  8. NMDA Receptors Containing the GluN2D Subunit Control Neuronal Function in the Subthalamic Nucleus

    PubMed Central

    Swanger, Sharon A.; Vance, Katie M.; Pare, Jean-François; Sotty, Florence; Fog, Karina; Smith, Yoland

    2015-01-01

    synaptic transmission in the STN has been understudied. Here, we show that GluN2B- and GluN2D-containing NMDA receptors mediate the NMDA receptor component of EPSCs in subthalamic neurons. Moreover, our results demonstrate that pharmacologic modulation of GluN2D-containing receptors alters the time course of EPSCs and controls the in vivo spike-firing rate in the STN. This study identifies GluN2D as a potential target for modulating subthalamic neuron activity. PMID:26631477

  9. Dual actions of (-)-stepholidine on the dopamine receptor-mediated adenylate cyclase activity in rat corpus striatum.

    PubMed

    Dong, Z J; Guo, X; Chen, L J; Han, Y F; Jin, G Z

    1997-01-01

    (-)-Stepholidine (SPD) is an antagonist of normosensitive dopamine (DA) receptors, but it exhibits D1 agonistic action on rotational behaviour in rats with unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra pars compacta (SNC). In the present study, agonistic and antagonistic effects of SPD on the DA receptor-mediated synaptosomal adenylate cyclase (AC) activity in rat striatum were investigated. After blockade of D2 receptors, SPD augmented AC activity dose-dependently. The EC50 value was 41.1 +/- 8.6 micromol/L. At the concentration of 10 micromol/L, SPD increased cAMP formation from a basal level (50.8 +/- 10.3 pmol/mg protein/min) to 133.7 +/- 31.8 pmol/mg protein/min. The SPD-induced stimulation of AC activity was almost completely reversed by 10 micromol/L Sch23390. These results indicate that SPD possesses an agonistic action on the D1 receptor. Forskolin-stimulated adenylate cyclase (FSAC) activity was used as a model to elucidate the effect of SPD on D2 receptors. The results indicate that DA inhibited FSAC activity dose-dependently, while SPD partially restored FSAC activity. Taken together, these results support the conclusion that SPD has dual actions on DA receptors that mediate AC activity, i.e., an agonistic action on D1 receptors and an antagonistic action on D2 receptors.

  10. Bombesin receptor-mediated imaging and cytotoxicity: review and current status

    PubMed Central

    Sancho, Veronica; Di Florio, Alessia; Moody, Terry W.; Jensen, Robert T.

    2010-01-01

    The three mammalian bombesin (Bn) receptors (gastrin-releasing peptide [GRP] receptor, neuromedin B [NMB] receptor, BRS-3) are one of the classes of G protein-coupled receptors that are most frequently over-express/ectopically expressed by common, important malignancies. Because of the clinical success of somatostatin receptor-mediated imaging and cytotoxicity with neuroendocrine tumors, there is now increasing interest in pursuing a similar approach with Bn receptors. In the last few years then have been more than 200 studies in this area. In the present paper, the in vitro and in vivo results, as well as results of human studies from many of these studies are reviewed and the current state of Bn receptor-mediated imaging or cytotoxicity is discussed. Both Bn receptor-mediated imaging studies as well as Bn receptor-mediated tumoral cytotoxic studies using radioactive and non-radioactive Bn-based ligands are covered. PMID:21034419

  11. Histamine H3 receptor-mediated inhibition of noradrenaline release in the human brain.

    PubMed

    Schlicker, E; Werthwein, S; Zentner, J

    1999-01-01

    Stimulation-evoked 3H-noradrenaline release in human cerebrocortical slices was inhibited by histamine (in a manner sensitive to clobenpropit) and by imetit, suggesting H3 receptor-mediated inhibition of noradrenaline release in human brain.

  12. Evidence that somatostatin sst2 receptors mediate striatal dopamine release

    PubMed Central

    Hathway, G J; Humphrey, P P A; Kendrick, K M

    1999-01-01

    Somatostatin (SRIF) is a cyclic tetradecapeptide present in medium-sized aspiny interneurones in the rat striatum. We have previously shown that exogenous SRIF potently stimulates striatal dopamine (DA) release via a glutamate-dependent mechanism. We now report the ability of the selective sst2 receptor agonist, BIM-23027, to mimic this effect of SRIF.In vivo microdialysis studies were performed in anaesthetized male Wistar rats. In most experiments, compounds were administered by retrodialysis into the striatum for 15 min periods, 90 min and 225 min after sampling commenced, with levels of neurotransmitters being measured by HPLC with electrochemical and fluorescence detection.BIM-23027 (50 and 100 nM) stimulated DA release with extracellular levels increasing by up to 18 fold.Prior retrodialysis of BIM-23027 (50 nM) abolished the effects of subsequent administration of SRIF (100 nM).The agonist effects of both BIM-23027 and SRIF were abolished by the selective sst2 receptor antagonist, L-Tyr8-CYN-154806 (100 nM).The AMPA/kainate receptor antagonist, DNQX (100 μM), abolished the agonist effects of BIM-23027 as previously shown for SRIF.This study provides evidence that the sst2 receptor mediates the potent dopamine-releasing actions observed with SRIF in the rat striatum. Dopamine release evoked by both peptides appears to be mediated indirectly via a glutamatergic pathway. Other subtype-specific somatostatin receptor ligands were unable to elicit any effects and therefore we conclude that no other somatostatin receptor types are involved in mediating the dopamine-releasing actions of SRIF in the striatum. PMID:10578151

  13. Region-specific role for GluN2B-containing NMDA receptors in injury to Purkinje cells and CA1 neurons following global cerebral ischemia

    PubMed Central

    Quillinan, Nidia; Grewal, Himmat; Deng, Guiying; Shimizu, Kaori; Yonchek, Joan C; Strnad, Frank; Traystman, Richard J; Herson, Paco S

    2014-01-01

    Motor deficits are present in cardiac arrest survivors and injury to cerebellar Purkinje cells (PCs) likely contribute to impairments in motor coordination and post-hypoxic myoclonus. NMDA receptor mediated excitotoxicity is a well-established mechanism of cell death in several brain regions, but the role of NMDA receptors in PC injury remains understudied. Emerging data in cortical and hippocampal neurons indicates that the GluN2A-containing NMDA receptors signal to improve cell survival and GluN2B-containing receptors contribute to neuronal injury. This study compared neuronal injury in the hippocampal CA1 region to that in PCs and investigated the role of NMDA receptors in PC injury in our mouse model of cardiac arrest and cardiopulmonary resuscitation (CA/CPR). Analysis of cell density demonstrated a 24% loss of PCs within 24 hours after 8 min CA/CPR and injury stabilized to 33% by 7 days. The subunit promiscuous NMDA receptor antagonist MK-801 protected both CA1 neurons and PCs from ischemic injury following CA/CPR, demonstrating a role for NMDA receptor activation in injury to both brain regions. In contrast, the GluN2B antagonist, Co 101244, had no effect on Purkinje cell loss while protecting against injury in the CA1 region. These data indicate that ischemic injury to cerebellar PCs progresses via different cell death mechanisms compared to hippocampal CA1 neurons. PMID:25450957

  14. Differential NMDA receptor-dependent calcium loading and mitochondrial dysfunction in CA1 vs. CA3 hippocampal neurons

    PubMed Central

    Stanika, Ruslan I.; Winters, Christine A.; Pivovarova, Natalia B.; Andrews, S. Brian

    2009-01-01

    Hippocampal CA1 pyramidal neurons are selectively vulnerable to ischemia, while adjacent CA3 neurons are relatively resistant. Although glutamate receptor-mediated mitochondrial Ca2+ overload and dysfunction is a major component of ischemia-induced neuronal death, no direct relationship between selective neuronal vulnerability and mitochondrial dysfunction has been demonstrated in intact brain preparations. Here, we show that in organotypic slice cultures NMDA induces much larger Ca2+ elevations in vulnerable CA1 neurons than in resistant CA3. Consequently, CA1 mitochondria exhibit stronger calcium accumulation, more extensive swelling and damage, stronger depolarization of their membrane potential, and a significant increase in ROS generation. NMDA-induced Ca2+ and ROS elevations were abolished in Ca2+-free medium or by NMDAR antagonists, but not by zinc chelation. We conclude that Ca2+-overload-dependent mitochondrial dysfunction is a determining factor in the selective vulnerability of CA1 neurons. PMID:19879359

  15. Differential NMDA receptor-dependent calcium loading and mitochondrial dysfunction in CA1 vs. CA3 hippocampal neurons.

    PubMed

    Stanika, Ruslan I; Winters, Christine A; Pivovarova, Natalia B; Andrews, S Brian

    2010-02-01

    Hippocampal CA1 pyramidal neurons are selectively vulnerable to ischemia, while adjacent CA3 neurons are relatively resistant. Although glutamate receptor-mediated mitochondrial Ca(2+) overload and dysfunction is a major component of ischemia-induced neuronal death, no direct relationship between selective neuronal vulnerability and mitochondrial dysfunction has been demonstrated in intact brain preparations. Here, we show that in organotypic slice cultures NMDA induces much larger Ca(2+) elevations in vulnerable CA1 neurons than in resistant CA3. Consequently, CA1 mitochondria exhibit stronger calcium accumulation, more extensive swelling and damage, stronger depolarization of their membrane potential, and a significant increase in ROS generation. NMDA-induced Ca(2+) and ROS elevations were abolished in Ca(2+)-free medium or by NMDAR antagonists, but not by zinc chelation. We conclude that Ca(2)(+) overload-dependent mitochondrial dysfunction is a determining factor in the selective vulnerability of CA1 neurons.

  16. Induction of aryl hydrocarbon receptor-mediated and estrogen receptor-mediated activities, and modulation of cell proliferation by dinaphthofurans.

    PubMed

    Vondrácek, Jan; Chramostová, Katerina; Plísková, Martina; Bláha, Ludek; Brack, Werner; Kozubík, Alois; Machala, Miroslav

    2004-09-01

    A group of heterocyclic aromatic compounds, dinaphthofurans (DNFs), recently have been identified as potentially significant contaminants in freshwater sediments. In the present study, a battery of in vitro assays was used for detection of toxic effects of DNFs that are potentially associated with endocrine disruption and tumor promotion. Dinaphthofurans were found to act as relatively potent inducers of aryl hydrocarbon receptor (AhR)-mediated activity in the chemical-activated luciferase reporter gene expression DR-CALUX assay. The relative AhR-inducing potencies of DNFs were similar or even higher than relative potencies of unsubstituted polycyclic aromatic hydrocarbons (PAHs), with dinaphtho[1,2-b;2'3'-d]furan being the most potent AhR agonist. Two compounds, dinaphtho[2,1-b;2'3'-d]furan and dinaphtho[1,2-b;1'2'-d]furan, induced estrogen receptor (ER)-mediated activity in the estrogen receptor-mediated CALUX (the ER-CALUX) assay. Two types of potential tumor-promoting effects of DNFs were investigated, using in vitro bioassays for detection of inhibition of gap-junctional intercellular communication and detection of a release from contact inhibition. Although the acute inhibition of gap-junctional intercellular communication was not observed, all six tested DNFs were able to release rat liver epithelial WB-F344 cells from contact inhibition at concentrations as low as 100 nM. In summary, the present study indicated that DNFs can exert multiple biological effects in vitro, including induction of the AhR-mediated activity, release of cells from contact inhibition, and induction of ER-mediated activity.

  17. MPX-004 and MPX-007: New Pharmacological Tools to Study the Physiology of NMDA Receptors Containing the GluN2A Subunit.

    PubMed

    Volkmann, Robert A; Fanger, Christopher M; Anderson, David R; Sirivolu, Venkata Ramana; Paschetto, Kathy; Gordon, Earl; Virginio, Caterina; Gleyzes, Melanie; Buisson, Bruno; Steidl, Esther; Mierau, Susanna B; Fagiolini, Michela; Menniti, Frank S

    2016-01-01

    GluN2A is the most abundant of the GluN2 NMDA receptor subunits in the mammalian CNS. Physiological and genetic evidence implicate GluN2A-containing receptors in susceptibility to autism, schizophrenia, childhood epilepsy and neurodevelopmental disorders such as Rett Syndrome. However, GluN2A-selective pharmacological probes to explore the therapeutic potential of targeting these receptors have been lacking. Here we disclose a novel series of pyrazine-containing GluN2A antagonists exemplified by MPX-004 (5-(((3-chloro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)pyrazine-2-carboxamide) and MPX-007 (5-(((3-fluoro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)methylpyrazine-2-carboxamide). MPX-004 and MPX-007 inhibit GluN2A-containing NMDA receptors expressed in HEK cells with IC50s of 79 nM and 27 nM, respectively. In contrast, at concentrations that completely inhibited GluN2A activity these compounds have no inhibitory effect on GluN2B or GluN2D receptor-mediated responses in similar HEK cell-based assays. Potency and selectivity were confirmed in electrophysiology assays in Xenopus oocytes expressing GluN2A-D receptor subtypes. Maximal concentrations of MPX-004 and MPX-007 inhibited ~30% of the whole-cell current in rat pyramidal neurons in primary culture and MPX-004 inhibited ~60% of the total NMDA receptor-mediated EPSP in rat hippocampal slices. GluN2A-selectivity at native receptors was confirmed by the finding that MPX-004 had no inhibitory effect on NMDA receptor mediated synaptic currents in cortical slices from GRIN2A knock out mice. Thus, MPX-004 and MPX-007 offer highly selective pharmacological tools to probe GluN2A physiology and involvement in neuropsychiatric and developmental disorders.

  18. An EP2 Agonist Facilitates NMDA-Induced Outward Currents and Inhibits Dendritic Beading through Activation of BK Channels in Mouse Cortical Neurons

    PubMed Central

    Hayashi, Yoshinori; Morinaga, Saori; Liu, Xia; Zhang, Jing; Wu, Zhou; Yokoyama, Takeshi; Nakanishi, Hiroshi

    2016-01-01

    Prostaglandin E2 (PGE2), a major metabolite of arachidonic acid produced by cyclooxygenase pathways, exerts its bioactive responses by activating four E-prostanoid receptor subtypes, EP1, EP2, EP3, and EP4. PGE2 enables modulating N-methyl-D-aspartate (NMDA) receptor-mediated responses. However, the effect of E-prostanoid receptor agonists on large-conductance Ca2+-activated K+ (BK) channels, which are functionally coupled with NMDA receptors, remains unclear. Here, we showed that EP2 receptor-mediated signaling pathways increased NMDA-induced outward currents (INMDA-OUT), which are associated with the BK channel activation. Patch-clamp recordings from the acutely dissociated mouse cortical neurons revealed that an EP2 receptor agonist activated INMDA-OUT, whereas an EP3 receptor agonist reduced it. Agonists of EP1 or EP4 receptors showed no significant effects on INMDA-OUT. A direct perfusion of 3,5′-cyclic adenosine monophosphate (cAMP) through the patch pipette facilitated INMDA-OUT, which was abolished by the presence of protein kinase A (PKA) inhibitor. Furthermore, facilitation of INMDA-OUT caused by an EP2 receptor agonist was significantly suppressed by PKA inhibitor. Finally, the activation of BK channels through EP2 receptors facilitated the recovery phase of NMDA-induced dendritic beading in the primary cultured cortical neurons. These results suggest that a direct activation of BK channels by EP2 receptor-mediated signaling pathways plays neuroprotective roles in cortical neurons. PMID:27298516

  19. D2-like dopamine receptor-mediated modulation of activity-dependent plasticity at GABAergic synapses in the subthalamic nucleus

    PubMed Central

    Baufreton, Jérôme; Bevan, Mark D

    2008-01-01

    Reciprocally connected glutamatergic subthalamic nucleus (STN) and GABAergic external globus pallidus (GP) neurons normally exhibit weakly correlated, irregular activity but following the depletion of dopamine in Parkinson's disease they express more highly correlated, rhythmic bursting activity. Patch clamp recording was used to test the hypothesis that dopaminergic modulation reduces the capability of GABAergic inputs to pattern ‘pathological’ activity in STN neurons. Electrically evoked GABAA receptor-mediated IPSCs exhibited activity-dependent plasticity in STN neurons, i.e. IPSCs evoked at frequencies between 1 and 50 Hz exhibited depression that increased with the frequency of activity. Dopamine, the D2-like dopamine receptor agonist quinpirole and external media containing a low [Ca2+] reduced both the magnitude of IPSCs evoked at 1–50 Hz and synaptic depression at 10–50 Hz. Dopamine/quinpirole also reduced the frequency but not the amplitude of miniature IPSCs recorded in the presence of tetrodotoxin. D1-like and D4 agonists were ineffective and D2/3 but not D4 receptor antagonists reversed the effects of dopamine or quinpirole. Together these data suggest that presynaptic D2/3 dopamine receptors modulate the short-term dynamics of GABAergic transmission in the STN by lowering the initial probability of transmitter release. Simulated GABAA receptor-mediated synaptic conductances representative of control or modulated transmission were then generated in STN neurons using the dynamic clamp technique. Dopamine-modulated transmission was less effective at resetting autonomous activity or generating rebound burst firing than control transmission. The data therefore support the conclusion that dopamine acting at presynaptic D2-like receptors reduces the propensity for GABAergic transmission to generate correlated, bursting activity in STN neurons. PMID:18292127

  20. A novel form of long-term potentiation selectively expressed by NMDA receptors at hippocampal mossy fiber synapses

    PubMed Central

    Kwon, Hyung-Bae; Castillo, Pablo E.

    2008-01-01

    The mossy fiber to CA3 pyramidal cell synapse (mf-CA3) provides a major source of excitation to the hippocampus. Thus far, these glutamatergic synapses are well recognized for showing a presynaptic, NMDA receptor-independent form of LTP which is expressed as a long-lasting increase of transmitter release. Here, we show that in addition to this “classical” LTP, mf-CA3 synapses can undergo a form of LTP characterized by a selective enhancement of NMDA receptor-mediated transmission. This potentiation requires coactivation of NMDA and mGlu5 receptors, and a postsynaptic calcium rise. Unlike classical LTP, expression of this novel mossy fiber LTP is due to a PKC-dependent recruitment of NMDA receptors specifically to the mf-CA3 synapse via a SNARE-dependent process. Having two mechanistically different forms of LTP may allow mf-CA3 synapses to respond with more flexibility to the changing demands of the hippocampal network. PMID:18184568

  1. Role for the NR2B Subunit of the NMDA Receptor in Mediating Light Input to the Circadian System

    PubMed Central

    Wang, LM; Schroeder, A; Loh, D; Smith, D; Lin, K; Han, JH; Michel, S; Hummer, DL; Ehlen, JC; Albers, HE; Colwell, CS

    2008-01-01

    Light information reaches the suprachiasmatic nucleus (SCN) through a subpopulation of retinal ganglion cells that utilize glutamate as a neurotransmitter. A variety of evidence suggests that the release of glutamate then activates N-methyl-Daspartate (NMDA) receptors within the SCN and triggers a signaling cascade that ultimately leads to phase shifts in the circadian system. In this study, we first sought to explore the role of the NR2B subunit in mediating the effects of light on the circadian system. We found that localized microinjection of the NR2B subunit antagonist ifenprodil into the SCN region inhibits the magnitude of light-induced phase shifts of the circadian rhythm in wheel-running activity. Next, we found that the NR2B message and levels of phospho-NR2B levels vary with time of day in SCN tissue using semi-quantitative real-time PCR and Western blot analysis, respectively. Functionally, we found that blocking the NR2B subunit with ifenprodil significantly reduced the magnitude of NMDA currents recorded in SCN neurons. Ifenprodil also significantly reduced the magnitude of NMDA-induced calcium changes in SCN cells. Together, these results demonstrate that the NR2B subunit is an important component of NMDA receptor mediated responses within SCN neurons and that this subunit contributes to light-induced phase shifts of the mammalian circadian system. PMID:18380671

  2. Activation of the ζ receptor 1 suppresses NMDA responses in rat retinal ganglion cells.

    PubMed

    Zhang, X-J; Liu, L-L; Jiang, S-X; Zhong, Y-M; Yang, X-L

    2011-03-17

    The sigma receptor 1 (σR1) has been shown to modulate the activity of several voltage- and ligand-gated channels. Using patch-clamp techniques in rat retinal slice preparations, we demonstrated that activation of σR1 by SKF10047 (SKF) or PRE-084 suppressed N-methyl-D-aspartate (NMDA) receptor-mediated current responses from both ON and OFF type ganglion cells (GCs), dose-dependently, and the effect could be blocked by the σR1 antagonist BD1047 or the σR antagonist haloperidol. The suppression by SKF of NMDA currents was abolished with pre-incubation of the G protein inhibitor GDP-β-S or the Gi/o activator mastoparan. We further explored the intracellular signaling pathway responsible for the SKF-induced suppression of NMDA responses. Application of either cAMP/the PKA inhibitor Rp-cAMP or cGMP/the PKG inhibitor KT5823 did not change the SKF-induced effect, suggesting the involvement of neither cAMP/PKA nor cGMP/PKG pathway. In contrast, suppression of NMDA responses by SKF was abolished by internal infusion of the phosphatidylinostiol-specific phospholipase C (PLC) inhibitor U73122, but not by the phosphatidylcholine-PLC inhibitor D609. SKF-induced suppression of NMDA responses was dependent on intracellular Ca2+ concentration ([Ca2+]i), as evidenced by the fact that the effect was abolished when [Ca2+]i was buffered with 10 mM BAPTA. The SKF effect was blocked by xestospongin-C/heparin, IP3 receptor antagonists, but unchanged by ryanodine/caffeine, ryanodine receptor modulators. Furthermore, application of protein kinase C inhibitors Bis IV and Gö6976 eliminated the SKF effect. These results suggest that the suppression of NMDA responses of rat retinal GCs caused by the activation of σR1 may be mediated by a distinct [Ca2+]i-dependent PLC-PKC pathway. This effect of SKF could help ameliorate malfunction of GCs caused by excessive stimulation of NMDA receptors under pathological conditions.

  3. The NMDA receptor complex: a long and winding road to therapeutics.

    PubMed

    Wood, Paul L

    2005-03-01

    Advances in our basic understanding of inhibitory and excitatory amino acid neurotransmission have provided the foundation for directed drug discovery programs to modulate inhibitory GABAergic and excitatory N-methyl-D-aspartate (NMDA) receptor-mediated synapses. Gamma-Amino butyric acid (GABA(A)) and NMDA receptors are complex ion channels formed by multiple protein subunits that act as binding sites for transmitter amino acids and as allosteric regulatory binding sites to regulate ion channel activity. In the case of the NMDA receptor complex, one such allosteric site binds the obligatory glycine and/or d-serine co-agonist. Historical data from preclinical and clinical studies of GABAergic agents have clearly demonstrated that direct receptor modulators lack sufficient therapeutic indices to warrant clinical utility. However, pharmacological modulation of allosteric sites of the GABA multimeric receptor has resulted in the clinical development of safe and efficacious agents, exemplified by the benzodiazepines. Research has also revealed a similar outcome for the NMDA receptor, with allosteric modulators demonstrating improved safety profiles in the modulation of excitatory amino acid (EAA) transmission compared with direct NMDA receptor antagonists. First-generation EAA drugs were low affinity channel blockers of the NMDA multimeric receptor complex and included the anesthetic agent ketamine and the Alzheimer's drug memantine. As predicted by preclinical studies, direct NMDA receptor antagonists (eg, selfotel (Novartis AG) and high-affinity channel blockers (eg, dizocilpine) failed in the clinic as a result of narrow therapeutic indices. More recent efforts have focused on glycine/d-serine co-agonist function. These approaches include partial glycine agonists, in their agonist dose-range, for cognitive improvement and for treating schizophrenia. Such partial glycine agonists are also being advanced for the treatment of neuropathic pain in the antagonist dose

  4. Changes in NMDA receptor-induced cyclic nucleotide synthesis regulate the age-dependent increase in PDE4A expression in primary cortical cultures

    PubMed Central

    Hajjhussein, Hassan; Suvarna, Neesha U.; Gremillion, Carmen; Judson Chandler, L.; O’Donnell, James M.

    2007-01-01

    NMDA receptor-induced cAMP and cGMP are selectively hydrolyzed by PDE4 and PDE2, respectively, in rat primary cerebral cortical and hippocampal cultures. Because cAMP levels regulate the expression of PDE4 in rat primary cortical cultures, we examined the manner in which NMDA receptor activity regulates the age-dependent increase in the expression of PDE4A observed in vivo and in vitro. Inhibiting the activity of NR2B subunit with ifenprodil blocked NMDA receptor-induced cGMP synthesis and increased NMDA receptor-induced cAMP levels in a manner that reduced PDE4 activity. Therefore, NR1/NR2B receptor-induced cGMP signaling is involved in an acute cross-talk regulation of NR1/NR2A receptor-induced cAMP levels, mediated by PDE4. Chronic inhibition of NMDA receptor activity with MK-801 reduced PDE4A1 and PDE4A5 expression and activity in a time-dependent manner; this effect was reversed by adding the PKA activator dbr-cAMP. Inhibiting GABA receptors with bicuculline increased NMDA receptor-induced cAMP synthesis and PDE4A expression in cultures treated between DIV 16 and DIV 21 but not in cultures treated between DIV 8 and DIV 13. This effect was due to a high tone of NMDA receptor-induced cGMP in younger cultures, which negatively regulated the expression of PDE4A by a PKG-mediated process. The present results are consistent with behavioral data showing that both PDE4 and PDE2 are involved in NMDA receptor-mediated memory processes. PMID:17407767

  5. Hippocampal bursts caused by changes in NMDA receptor-dependent excitation in a mouse model of variant CJD.

    PubMed

    Ratté, Stéphanie; Prescott, Steven A; Collinge, John; Jefferys, John G R

    2008-10-01

    Prion diseases are heterogeneous in clinical presentation, suggesting that different prion diseases have distinct pathophysiological changes. To understand the pathophysiology specific to variant Creutzfeldt-Jakob Disease (vCJD), in vitro electrophysiological studies were performed in a mouse model in which human-derived vCJD prions were transmitted to transgenic mice expressing human instead of murine prion protein. Paired-pulse stimulation of the Schaffer collaterals evoked hypersynchronous bursting in the hippocampus of vCJD-inoculated mice; comparable bursts were never observed in control or Prnp knockout mice, or in mice inoculated with a strain of prion associated with classical CJD. Furthermore, NMDA receptor-mediated excitation was increased in vCJD-inoculated mice. Using pharmacological experiments and computer simulations, we demonstrate that the increase in NMDA receptor-mediated excitation is necessary and sufficient to explain the distinctive bursting pattern in vCJD. These pathophysiological changes appear to result from a prion strain-specific gain-of-function and may explain some of the distinguishing clinical features of vCJD.

  6. NMDA antagonists exert distinct effects in experimental organophosphate or carbamate poisoning in mice

    SciTech Connect

    Dekundy, Andrzej . E-mail: andrzej.dekundy@merz.de; Kaminski, Rafal M.; Zielinska, Elzbieta; Turski, Waldemar A.

    2007-03-15

    Organophosphate (OP) and carbamate acetylcholinesterase (AChE) inhibitors produce seizures and lethality in mammals. Anticonvulsant and neuroprotective properties of N-methyl-D-aspartate (NMDA) antagonists encourage the investigation of their effects in AChE inhibitor-induced poisonings. In the present study, the effects of dizocilpine (MK-801, 1 mg/kg) or 3-((RS)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP, 10 mg/kg), alone or combined with muscarinic antagonist atropine (1.8 mg/kg), on convulsant and lethal properties of an OP pesticide dichlorvos or a carbamate drug physostigmine, were studied in mice. Both dichlorvos and physostigmine induced dose-dependent seizure activity and lethality. Atropine did not prevent the occurrence of convulsions but decreased the lethal effects of both dichlorvos and physostigmine. MK-801 or CPP blocked or attenuated, respectively, dichlorvos-induced convulsions. Contrariwise, NMDA antagonists had no effect in physostigmine-induced seizures or lethality produced by dichlorvos or physostigmine. Concurrent pretreatment with atropine and either MK-801 or CPP blocked or alleviated seizures produced by dichlorvos, but not by physostigmine. Both MK-801 and CPP co-administered with atropine enhanced its antilethal effects in both dichlorvos and physostigmine poisoning. In both saline- and AChE inhibitor-treated mice, no interaction of the investigated antidotes with brain cholinesterase was found. The data indicate that both muscarinic ACh and NMDA receptor-mediated mechanisms contribute to the acute toxicity of AChE inhibitors, and NMDA receptors seem critical to OP-induced seizures.

  7. [Anti-NMDA-receptor encephalitis].

    PubMed

    Engen, Kristine; Agartz, Ingrid

    2016-06-01

    BACKGROUND In 2007 a clinical disease caused by autoantibodies directed against the N-methyl-D-aspartate (NMDA) receptor was described for the first time. Anti-NMDA-receptor encephalitis is a subacute, autoimmune neurological disorder with psychiatric manifestations. The disease is a form of limbic encephalitis and is often paraneoplastic. The condition is also treatable. In this review article we examine the development of the disease, clinical practice, diagnostics and treatment.MATERIAL AND METHOD The article is based on references retrieved from searches in PubMed, and a discretionary selection of articles from the authors' own literature archive.RESULTS The disease most frequently affects young women. It may initially be perceived as a psychiatric condition, as it usually presents in the form of delusions, hallucinations or mania. The diagnosis should be suspected in patients who later develop neurological symptoms such as various movement disorders, epileptic seizures and autonomic instability. Examination of serum or cerebrospinal fluid for NMDA receptor antibodies should be included in the assessment of patients with suspected encephalitis. MRI, EEG and assessment for tumours are important tools in diagnosing the condition and any underlying malignancy.INTERPRETATION If treatment is initiated early, the prognosis is good. Altogether 75 % of patients will fully recover or experience significant improvement. Apart from surgical resection of a possible tumour, the treatment consists of immunotherapy. Because of good possibilities for treatment, it is important that clinicians, particularly those in acute psychiatry, are aware of and alert to this condition.

  8. Receptor-mediated endocytosis for drug delivery in African trypanosomes: fulfilling Paul Ehrlich's vision of chemotherapy.

    PubMed

    Alsford, Sam; Field, Mark C; Horn, David

    2013-05-01

    Bloodstream-form cells of Trypanosoma brucei exhibit massively increased endocytic activity relative to the insect midgut stage, enabling rapid recycling of variant surface glycoprotein and antibody clearance from the surface. In addition, recent advances have identified a role for receptor-mediated endocytosis in the uptake of the antitrypanosomal drug, suramin, via invariant surface glycoprotein 75, and in the uptake of trypanosome lytic factor 1 via haptoglobin-haemoglobin receptor. Here, we argue that receptor-mediated endocytosis represents both a validated drug target and a promising route for the delivery of novel therapeutics into trypanosomes.

  9. Cell signaling pathways in the mechanisms of neuroprotection afforded by bergamot essential oil against NMDA-induced cell death in vitro

    PubMed Central

    Corasaniti, M T; Maiuolo, J; Maida, S; Fratto, V; Navarra, M; Russo, R; Amantea, D; Morrone, L A; Bagetta, G

    2007-01-01

    Background and purpose: The effects of bergamot essential oil (BEO; Citrus bergamia, Risso) on excitotoxic neuronal damage was investigated in vitro. Experimental approach: The study was performed in human SH-SY5Y neuroblastoma cells exposed to N-methyl-D-aspartate (NMDA). Cell viability was measured by dye exclusion. Reactive oxygen species (ROS) and caspase-3 activity were measured fluorimetrically. Calpain I activity and the activation (phosphorylation) of Akt and glycogen synthase kinase-3β (GSK-3β) were assayed by Western blotting. Key results: NMDA induced concentration-dependent, receptor-mediated, death of SH-SY5Y cells, ranging from 11 to 25% (0.25–5 mM). Cell death induced by 1 mM NMDA (21%) was preceded by a significant accumulation of intracellular ROS and by a rapid activation of the calcium-activated protease calpain I. In addition, NMDA caused a rapid deactivation of Akt kinase and this preceded the detrimental activation of the downstream kinase, GSK-3β. BEO (0.0005–0.01%) concentration dependently reduced death of SH-SY5Y cells caused by 1 mM NMDA. In addition to preventing ROS accumulation and activation of calpain, BEO (0.01%) counteracted the deactivation of Akt and the consequent activation of GSK-3β, induced by NMDA. Results obtained by using specific fractions of BEO, suggested that monoterpene hydrocarbons were responsible for neuroprotection afforded by BEO against NMDA-induced cell death. Conclusions and Implications: Our data demonstrate that BEO reduces neuronal damage caused in vitro by excitotoxic stimuli and that this neuroprotection was associated with prevention of injury-induced engagement of critical death pathways. PMID:17401440

  10. Ethanol affects NMDA receptor signaling at climbing fiber-Purkinje cell synapses in mice and impairs cerebellar LTD.

    PubMed

    He, Qionger; Titley, Heather; Grasselli, Giorgio; Piochon, Claire; Hansel, Christian

    2013-03-01

    Ethanol profoundly influences cerebellar circuit function and motor control. It has recently been demonstrated that functional N-methyl-(D)-aspartate (NMDA) receptors are postsynaptically expressed at climbing fiber (CF) to Purkinje cell synapses in the adult cerebellum. Using whole cell patch-clamp recordings from mouse cerebellar slices, we examined whether ethanol can affect NMDA receptor signaling in mature Purkinje cells. NMDA receptor-mediated currents were isolated by bath application of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzol[f]quinoxaline (NBQX). The remaining (D)-2-amino-5-phosphonovaleric acid ((D)-APV)-sensitive current was reduced by ethanol at concentrations as low as 10 mM. At a concentration of 50 mM ethanol, the blockade of (D)-APV-sensitive CF-excitatory postsynaptic currents was significantly stronger. Ethanol also altered the waveform of CF-evoked complex spikes by reducing the afterdepolarization. This effect was not seen when NMDA receptors were blocked by (D)-APV before ethanol wash-in. In contrast to CF synaptic transmission, parallel fiber (PF) synaptic inputs were not affected by ethanol. Finally, ethanol (10 mM) impaired long-term depression (LTD) at PF to Purkinje cell synapses as induced under control conditions by paired PF and CF activity. However, LTD induced by pairing PF stimulation with depolarizing voltage steps (substituting for CF activation) was not blocked by ethanol. These observations suggest that the sensitivity of cerebellar circuit function and plasticity to low concentrations of ethanol may be caused by an ethanol-mediated impairment of NMDA receptor signaling at CF synapses onto cerebellar Purkinje cells.

  11. Atypical effect of dopamine in modulating the functional inhibition of NMDA receptors of cultured retina cells.

    PubMed

    Do Nascimento, J L; Kubrusly, R C; Reis, R A; De Mello, M C; De Mello, F G

    1998-02-05

    Cultured retina cells released accumulated [3H]GABA (gamma-aminobutyric acid) when stimulated by L-glutamate, N-methyl-D-aspartate (NMDA) and kainate. In the absence of Mg2+, dopamine at 200 microM (IC50 60 microM), inhibited in more than 50% the release of [3H]GABA induced by L-glutamate and NMDA, but not by kainate. This effect was not blocked by the D1-like dopamine receptor antagonist, R-(+)-7-chloro-8-hydroxy-3-methyl- -phenyl-2,3,4,5-tetrahydro- H-3-benzazepine hydrochloride (SCH 23390), neither by haloperidol nor spiroperidol (dopamine D2-like receptor antagonists). The dopamine D1-like receptor agonist R(+)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,diol hydrochloride (SKF 38393) at 50 microM, but not its enantiomer, also inhibited the release of [3H]GABA induced by NMDA, but not by kainate; an effect that was not prevented by the antagonists mentioned above. (+/-)-6-Chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepin e hydrobromide (SKF 812497) had no effect. Neither 8BrcAMP (5 mM) nor forskolin (10 microM) inhibited the release of [3H]GABA. Our results suggest that dopamine and (+)-SKF 38393 inhibit the glutamate and NMDA-evoked [3H]GABA release through mechanisms that seem not to involve known dopaminergic receptor systems.

  12. Trace and contextual fear conditioning require neural activity and NMDA receptor-dependent transmission in the medial prefrontal cortex

    PubMed Central

    Gilmartin, Marieke R.; Helmstetter, Fred J.

    2010-01-01

    The contribution of the medial prefrontal cortex (mPFC) to the formation of memory is a subject of considerable recent interest. Notably, the mechanisms supporting memory acquisition in this structure are poorly understood. The mPFC has been implicated in the acquisition of trace fear conditioning, a task that requires the association of a conditional stimulus (CS) and an aversive unconditional stimulus (UCS) across a temporal gap. In both rat and human subjects, frontal regions show increased activity during the trace interval separating the CS and UCS. We investigated the contribution of prefrontal neural activity in the rat to the acquisition of trace fear conditioning using microinfusions of the γ-aminobutyric acid type A (GABAA) receptor agonist muscimol. We also investigated the role of prefrontal N-methyl-d-aspartate (NMDA) receptor-mediated signaling in trace fear conditioning using the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV). Temporary inactivation of prefrontal activity with muscimol or blockade of NMDA receptor-dependent transmission in mPFC impaired the acquisition of trace, but not delay, conditional fear responses. Simultaneously acquired contextual fear responses were also impaired in drug-treated rats exposed to trace or delay, but not unpaired, training protocols. Our results support the idea that synaptic plasticity within the mPFC is critical for the long-term storage of memory in trace fear conditioning. PMID:20504949

  13. NMDA-dependent mechanisms only affect the BOLD response in the rat dentate gyrus by modifying local signal processing

    PubMed Central

    Tiede, Regina; Krautwald, Karla; Fincke, Anja; Angenstein, Frank

    2012-01-01

    The role of N-methyl--aspartate (NMDA) receptor-mediated mechanisms in the formation of a blood oxygen level-dependent (BOLD) response was studied using electrical stimulation of the right perforant pathway. Stimulation of this fiber bundle triggered BOLD responses in the right hippocampal formation and in the left entorhinal cortex. The perforant pathway projects to and activates the dentate gyrus monosynaptically, activation in the contralateral entorhinal cortex is multisynaptic and requires forwarding and processing of signals. Application of the NMDA receptor antagonist MK801 during stimulation had no effect on BOLD responses in the right dentate gyrus, but reduced the BOLD responses in the left entorhinal cortex. In contrast, application of MK801 before the first stimulation train reduced the BOLD response in both regions. Electrophysiological recordings revealed that the initial stimulation trains changed the local processing of the incoming signals in the dentate gyrus. This altered electrophysiological response was not further changed by a subsequent application of MK801, which is in agreement with an unchanged BOLD response. When MK801 was present during the first stimulation train, a dissimilar electrophysiological response pattern was observed and corresponds to an altered BOLD response, indicating that NMDA-dependent mechanisms indirectly affect the BOLD response, mainly via modifying local signal processing and subsequent propagation. PMID:22167232

  14. N-Methyl-d-aspartate (NMDA) Receptor NR2 Subunit Selectivity of a Series of Novel Piperazine-2,3-dicarboxylate Derivatives: Preferential Blockade of Extrasynaptic NMDA Receptors in the Rat Hippocampal CA3-CA1 Synapse

    PubMed Central

    Feng, Bihua; Tsintsadze, Timur S.; Morley, Richard M.; Irvine, Mark W.; Tsintsadze, Vera; Lozovaya, Natasha A.; Jane, David E.; Monaghan, Daniel T.

    2009-01-01

    N-Methyl-d-aspartate (NMDA) receptor antagonists that are highly selective for specific NMDA receptor 2 (NR2) subunits have several potential therapeutic applications; however, to date, only NR2B-selective antagonists have been described. Whereas most glutamate binding site antagonists display a common pattern of NR2 selectivity, NR2A > NR2B > NR2C > NR2D (high to low affinity), (2S*,3R*)-1-(phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid (PPDA) has a low selectivity for NR2C- and NR2D-containing NMDA receptors. A series of PPDA derivatives were synthesized and then tested at recombinant NMDA receptors expressed in Xenopus laevis oocytes. In addition, the optical isomers of PPDA were resolved; the (−) isomer displayed a 50- to 80-fold greater potency than the (+) isomer. Replacement of the phenanthrene moiety of PPDA with naphthalene or anthracene did not improve selectivity. However, phenylazobenzoyl (UBP125) or phenylethynylbenzoyl (UBP128) substitution significantly improved selectivity for NR2B-, NR2C-, and NR2D-containing receptors over NR2A-containing NMDA receptors. Phenanthrene attachment at the 3 position [(2R*,3S*)-1-(phenanthrene-3-carbonyl)piperazine-2,3-dicarboxylic acid (UBP141); (2R*,3S*)-1-(9-bromophenanthrene-3-carbonyl)piperazine-2,3-dicarboxylic acid (UBP145); (2R*,3S*)-1-(9-chlorophenanthrene-3-carbonyl)piperazine-2,3-dicarboxylic acid (UBP160); and (2R*,3S*)-1-(9-iodophenanthrene-3-carbonyl)piperazine-2,3-dicarboxylic acid (UBP161)] displayed improved NR2D selectivity. UBP141 and its 9-brominated homolog (UBP145) both display a 7- to 10- fold selectivity for NR2D-containing receptors over NR2B- or NR2A-containing receptors. Schild analysis indicates that these two compounds are competitive glutamate binding site antagonists. Consistent with a physiological role for NR2D-containing receptors in the hippocampus, UBP141 (5 μM) displayed greater selectivity than PPDA for inhibiting the slow-decaying component of the NMDA receptor-mediated

  15. Prosurvival NMDA 2A receptor signaling mediates postconditioning neuroprotection in the hippocampus.

    PubMed

    Zhang, Xi; Zhang, Quanguang; Tu, Jingyi; Zhu, Ying; Yang, Fang; Liu, Bin; Brann, Darrell; Wang, Ruimin

    2015-03-01

    Ischemic postconditioning (Post C), which involves administration of a brief ischemia after the initial ischemic event, has been demonstrated to be strongly neuroprotective against global cerebral ischemia (GCI) and to improve cognitive outcome. To enhance understanding of the underlying mechanisms, the current study examined the role of NMDA receptors in mediating the beneficial effects of Post C (3 min ischemia) administered 2 days after GCI in adult male rats. The results revealed that Post C was strongly neuroprotective against GCI, and that this effect was blocked by administration of the NMDA receptor antagonist MK-801. Further work revealed that the NR2A-type NMDA receptors mediate the Post C beneficial effects as administration of a NR2A-preferring antagonist (NVP-A) blocked Post C neuroprotection and cognitive enhancement, while administration of a NR2B-preferring antagonist (Ro25) was without effect. Post C significantly up-regulated NR2A levels and phosphorylation of NR2A in the hippocampal CA1 region after Post C. Post C also increased Ca(2+) influx and activation/phosphorylation of CamKIIα at Thr(286), effects that were NR2A mediated as they were blocked by NVP-A. Phosphorylation of ERK and CREB was also increased by Post C, as were two downstream CREB-dependent prosurvival factors, brain derived neurotropic factor (BDNF) and Bcl2, effects that were blocked by the NR2A antagonist, NVP-A. Taken as a whole, the current study provides evidence that NR2A-activation and downstream prosurvival signaling is a critical mediator of Post C-induced neuroprotection and cognitive enhancement following GCI.

  16. D1 Mission Project Implementation

    NASA Astrophysics Data System (ADS)

    Brandt, Gunther

    1982-02-01

    The mission D1 is the first complete SL mission in the framework of the German Manned Space Program. This Mission will be under the mission management responsibility of the German Space Agency DFVLR. Its primary objective is to support basic and applied research in the following fields: materials processing, fluid physics, medicine, biology, botany. A further mission objective is to test: instrument reflyability (reuse of FSLP equipment, efficiency of crew operations in space and economies possible in crew operations. An important spin-off will be establishment of the management capability to implement and control complex manned space programs. This paper describes how the D1 project is implemented under German mission management responsibility. The major project tasks as they will be performed using German facilities, in particular all D1 unique aspects, will be addressed.

  17. Mannose receptor-mediated gene delivery into antigen presenting dendritic cells.

    PubMed

    Diebold, Sandra S; Plank, Christian; Cotten, Matt; Wagner, Ernst; Zenke, Martin

    2002-11-01

    Dendritic cells are professional antigen presenting cells and are unique in their ability to prime naïve T cells. Gene modification of dendritic cells is of particular interest for immunotherapy of diseases where the immune system has failed or is aberrantly regulated, such as in cancer or autoimmune disease, respectively. Dendritic cells abundantly express mannose receptor and mannose receptor-related receptors, and receptor-mediated gene transfer via mannose receptor offers a versatile tool for targeted gene delivery into these cells. Accordingly, mannose polyethylenimine DNA transfer complexes were generated and used for gene delivery into dendritic cells. Mannose receptor belongs to the group of scavenger receptors that allow dendritic cells to take up pathogenic material, which is directed for degradation and MHC class II presentation. Therefore, a limiting step of transgene expression by mannose receptor-mediated gene delivery is endosomal degradation of DNA. Several strategies have been explored to overcome this limitation including the addition of endosomolytic components to DNA transfer complexes like adenovirus particles and influenza peptides. Here, we review the current understanding of mannose receptor-mediated gene delivery into dendritic cells and discuss strategies to identify appropriate endosomolytic agents to improve DNA transfer efficacy.

  18. Size of single-wall carbon nanotube affects the folate receptor-mediated cancer cell targeting.

    PubMed

    Charbgoo, Fahimeh; Nikkhah, Maryam; Behmanesh, Mehrdad

    2017-08-30

    Advances in nanobiotechnology and targeting strategy could improve the delivery of therapeutic molecules into cancer cells, leading to improved treatment efficiency with minimal side effects on normal cells. To design an efficient nanocarrier, consideration of parameters that facilitate direct drug delivery into the target cells is important. We studied the effect of single-wall carbon nanotubes (SWNTs) size on their cell internalization level via the folate receptor-mediated pathway through folic acid targeting. Folate-SWNTs were covalently synthesized and characterized. Folate-SWNTs ≤ 450 nm had lower cell internalization level than folate-SWNTs >450 nm with a P value of ≤0.01. This indicated that using folate-SWNT with an average length of ≤450 nm was not suitable for receptor-mediated cancer cell targeting. Receptor-mediated uptake of folate-SWNTs is dependent on the nanoparticle length. However, sub-450 nm SWNTs could serve as a vehicle to transfer nucleic acids into the cells due to direct cell penetrance based on their needle-like structure. We find that SWNTs larger than 450 nm were suitable to target the cells through receptors. These results might provide a promising approach for designing more effective targeted delivery systems based on SWNTs. © 2017 International Union of Biochemistry and Molecular Biology, Inc.

  19. Nanoscale imaging and mechanical analysis of Fc receptor-mediated macrophage phagocytosis against cancer cells.

    PubMed

    Li, Mi; Liu, Lianqing; Xi, Ning; Wang, Yuechao; Xiao, Xiubin; Zhang, Weijing

    2014-02-18

    Fc receptor-mediated macrophage phagocytosis against cancer cells is an important mechanism in the immune therapy of cancers. Traditional research about macrophage phagocytosis was based on optical microscopy, which cannot reveal detailed information because of the 200-nm-resolution limit. Quantitatively investigating the macrophage phagocytosis at micro- and nanoscale levels is still scarce. The advent of atomic force microscopy (AFM) offers an excellent analytical instrument for quantitatively investigating the biological processes at single-cell and single-molecule levels under native conditions. In this work, we combined AFM and fluorescence microscopy to visualize and quantify the detailed changes in cell morphology and mechanical properties during the process of Fc receptor-mediated macrophage phagocytosis against cancer cells. Lymphoma cells were discernible by fluorescence staining. Then, the dynamic process of phagocytosis was observed by time-lapse optical microscopy. Next, AFM was applied to investigate the detailed cellular behaviors during macrophage phagocytosis under the guidance of fluorescence recognition. AFM imaging revealed the distinct features in cellular ultramicrostructures for the different steps of macrophage phagocytosis. AFM cell mechanical property measurements indicated that the binding of cancer cells to macrophages could make macrophages become stiffer. The experimental results provide novel insights in understanding the Fc-receptor-mediated macrophage phagocytosis.

  20. Topological strings in d < 1

    NASA Astrophysics Data System (ADS)

    Dijkgraaf, Robbert; Verlinde, Herman; Verlinde, Erik

    1991-03-01

    We calculate correlation functions in minimal topological field theories. These twisted versions of N = 2 minimal models have recently been proposed to describe d < 1 matrix models, once coupled to topological gravity. In our calculation we make use of the Landau-Ginzburg formulation of the N = 2 models, and we find a direct relation between the Landau-Ginzburg superpotential and the KdV differential operator. Using this correspondence we show that the minimal topological models are in perfect agreement with the matrix models as solved in terms of the KdV hierarchy. This proves the equivalence at tree-level of topological and ordinary string thoery in d < 1.

  1. NMDA Receptors on Dopaminoceptive Neurons Are Essential for Drug-Induced Conditioned Place Preference123

    PubMed Central

    Tokarski, Krzysztof; Bobula, Bartosz; Zygmunt, Magdalena; Smutek, Magdalena; Kamińska, Katarzyna; Gołembiowska, Krystyna; Hess, Grzegorz; Przewlocki, Ryszard

    2016-01-01

    Abstract Plasticity of the brain’s dopamine system plays a crucial role in adaptive behavior by regulating appetitive motivation and the control of reinforcement learning. In this study, we investigated drug- and natural-reward conditioned behaviors in a mouse model in which the NMDA receptor-dependent plasticity of dopaminoceptive neurons was disrupted. We generated a transgenic mouse line with inducible selective inactivation of the NR1 subunit in neurons expressing dopamine D1 receptors (the NR1D1CreERT2 mice). Whole-cell recordings of spontaneous EPSCs on neurons in the nucleus accumbens confirmed that a population of neurons lacked the NMDA receptor-dependent component of the current. This effect was accompanied by impaired long-term potentiation in the nucleus accumbens and in the CA1 area of the ventral, but not the dorsal, hippocampus. Mutant mice did not differ from control animals when tested for pavlovian or instrumental conditioning. However, NR1D1CreERT2 mice acquired no preference for a context associated with administration of drugs of abuse. In the conditioned place preference paradigm, mutant mice did not spend more time in the context paired with cocaine, morphine, or ethanol, although these mice acquired a preference for sucrose jelly and an aversion to naloxone injections, as normal. Thus, we observed that the selective inducible ablation of the NMDA receptors specifically blocks drug-associated context memory with no effect on positive reinforcement in general. PMID:27294197

  2. NMDA Receptors on Dopaminoceptive Neurons Are Essential for Drug-Induced Conditioned Place Preference.

    PubMed

    Sikora, Magdalena; Tokarski, Krzysztof; Bobula, Bartosz; Zajdel, Joanna; Jastrzębska, Kamila; Cieślak, Przemysław Eligiusz; Zygmunt, Magdalena; Sowa, Joanna; Smutek, Magdalena; Kamińska, Katarzyna; Gołembiowska, Krystyna; Engblom, David; Hess, Grzegorz; Przewlocki, Ryszard; Rodriguez Parkitna, Jan

    2016-01-01

    Plasticity of the brain's dopamine system plays a crucial role in adaptive behavior by regulating appetitive motivation and the control of reinforcement learning. In this study, we investigated drug- and natural-reward conditioned behaviors in a mouse model in which the NMDA receptor-dependent plasticity of dopaminoceptive neurons was disrupted. We generated a transgenic mouse line with inducible selective inactivation of the NR1 subunit in neurons expressing dopamine D1 receptors (the NR1(D1CreERT2) mice). Whole-cell recordings of spontaneous EPSCs on neurons in the nucleus accumbens confirmed that a population of neurons lacked the NMDA receptor-dependent component of the current. This effect was accompanied by impaired long-term potentiation in the nucleus accumbens and in the CA1 area of the ventral, but not the dorsal, hippocampus. Mutant mice did not differ from control animals when tested for pavlovian or instrumental conditioning. However, NR1(D1CreERT2) mice acquired no preference for a context associated with administration of drugs of abuse. In the conditioned place preference paradigm, mutant mice did not spend more time in the context paired with cocaine, morphine, or ethanol, although these mice acquired a preference for sucrose jelly and an aversion to naloxone injections, as normal. Thus, we observed that the selective inducible ablation of the NMDA receptors specifically blocks drug-associated context memory with no effect on positive reinforcement in general.

  3. NMDA receptor and schizophrenia: a brief history.

    PubMed

    Coyle, Joseph T

    2012-09-01

    Although glutamate was first hypothesized to be involved in the pathophysiology of schizophrenia in the 1980s, it was the demonstration that N-methyl-D-aspartate (NMDA) receptor antagonists, the dissociative anesthetics, could replicate the full range of psychotic, negative, cognitive, and physiologic features of schizophrenia in normal subjects that placed the "NMDA receptor hypofunction hypothesis" on firm footing. Additional support came from the demonstration that a variety of agents that enhanced NMDA receptor function at the glycine modulatory site significantly reduced negative symptoms and variably improved cognition in patients with schizophrenia receiving antipsychotic drugs. Finally, persistent blockade of NMDA receptors recreates in experimental animals the critical pathologic features of schizophrenia including downregulation of parvalbumin-positive cortical GABAergic neurons, pyramidal neuron dendritic dysgenesis, and reduced spine density.

  4. Site of action of the general anesthetic propofol in muscarinic M1 receptor-mediated signal transduction.

    PubMed

    Murasaki, Osamu; Kaibara, Muneshige; Nagase, Yoshihisa; Mitarai, Sayaka; Doi, Yoshiyuki; Sumikawa, Koji; Taniyama, Kohtaro

    2003-12-01

    Although a potential target site of general anesthetics is primarily the GABA A receptor, a chloride ion channel, a previous study suggested that the intravenous general anesthetic propofol attenuates the M1 muscarinic acetylcholine receptor (M1 receptor)-mediated signal transduction. In the present study, we examined the target site of propofol in M1 receptor-mediated signal transduction. Two-electrode voltage-clamp method was used in Xenopus oocytes expressing both M1 receptors and associated G protein alpha subunits (Gqalpha). Propofol inhibited M1 receptor-mediated signal transduction in a dose-dependent manner (IC50 = 50 nM). Injection of guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) into oocytes overexpressing Gqalpha was used to investigate direct effects of propofol on G protein coupled with the M1 receptor. Propofol did not affect activation of Gqalpha-mediated signal transduction with the intracellular injection of GTPgammaS. We also studied effects of propofol on l-[N-methyl-3H]scopolamine methyl chloride ([3H]NMS) binding and M1 receptor-mediated signal transduction in mammalian cells expressing M1 receptor. Propofol inhibited the M1 receptor-mediated signal transduction but did not inhibit binding of [3H]NMS. Effects of propofol on Gs- and Gi/o-coupled signal transduction were investigated, using oocytes expressing the beta2 adrenoceptor (beta2 receptor)/cystic fibrosis transmembrane conductance regulator or oocytes expressing the M2 muscarinic acetylcholine receptor (M2 receptor)/Kir3.1 (a member of G protein-gated inwardly rectifying K(+) channels). Neither beta2 receptor-mediated nor M2 receptor-mediated signal transduction was inhibited by a relatively high concentration of propofol (50 microM). These results indicate that propofol inhibits M1 receptor-mediated signal transduction by selectively disrupting interaction between the receptor and associated G protein.

  5. NMDA receptor subunit expression and PAR2 receptor activation in colospinal afferent neurons (CANs) during inflammation induced visceral hypersensitivity

    PubMed Central

    Suckow, Shelby K; Caudle, Robert M

    2009-01-01

    Background Visceral hypersensitivity is a clinical observation made when diagnosing patients with functional bowel disorders. The cause of visceral hypersensitivity is unknown but is thought to be attributed to inflammation. Previously we demonstrated that a unique set of enteric neurons, colospinal afferent neurons (CANs), co-localize with the NR1 and NR2D subunits of the NMDA receptor as well as with the PAR2 receptor. The aim of this study was to determine if NMDA and PAR2 receptors expressed on CANs contribute to visceral hypersensitivity following inflammation. Recently, work has suggested that dorsal root ganglion (DRG) neurons expressing the transient receptor potential vanilloid-1 (TRPV1) receptor mediate inflammation induced visceral hypersensitivity. Therefore, in order to study CAN involvement in visceral hypersensitivity, DRG neurons expressing the TRPV1 receptor were lesioned with resiniferatoxin (RTX) prior to inflammation and behavioural testing. Results CANs do not express the TRPV1 receptor; therefore, they survive following RTX injection. RTX treatment resulted in a significant decrease in TRPV1 expressing neurons in the colon and immunohistochemical analysis revealed no change in peptide or receptor expression in CANs following RTX lesioning as compared to control data. Behavioral studies determined that both inflamed non-RTX and RTX animals showed a decrease in balloon pressure threshold as compared to controls. Immunohistochemical analysis demonstrated that the NR1 cassettes, N1 and C1, of the NMDA receptor on CANs were up-regulated following inflammation. Furthermore, inflammation resulted in the activation of the PAR2 receptors expressed on CANs. Conclusion Our data show that inflammation causes an up-regulation of the NMDA receptor and the activation of the PAR2 receptor expressed on CANs. These changes are associated with a decrease in balloon pressure in response to colorectal distension in non-RTX and RTX lesioned animals. Therefore

  6. NMDA receptor subunit expression and PAR2 receptor activation in colospinal afferent neurons (CANs) during inflammation induced visceral hypersensitivity.

    PubMed

    Suckow, Shelby K; Caudle, Robert M

    2009-09-22

    Visceral hypersensitivity is a clinical observation made when diagnosing patients with functional bowel disorders. The cause of visceral hypersensitivity is unknown but is thought to be attributed to inflammation. Previously we demonstrated that a unique set of enteric neurons, colospinal afferent neurons (CANs), co-localize with the NR1 and NR2D subunits of the NMDA receptor as well as with the PAR2 receptor. The aim of this study was to determine if NMDA and PAR2 receptors expressed on CANs contribute to visceral hypersensitivity following inflammation. Recently, work has suggested that dorsal root ganglion (DRG) neurons expressing the transient receptor potential vanilloid-1 (TRPV1) receptor mediate inflammation induced visceral hypersensitivity. Therefore, in order to study CAN involvement in visceral hypersensitivity, DRG neurons expressing the TRPV1 receptor were lesioned with resiniferatoxin (RTX) prior to inflammation and behavioural testing. CANs do not express the TRPV1 receptor; therefore, they survive following RTX injection. RTX treatment resulted in a significant decrease in TRPV1 expressing neurons in the colon and immunohistochemical analysis revealed no change in peptide or receptor expression in CANs following RTX lesioning as compared to control data. Behavioral studies determined that both inflamed non-RTX and RTX animals showed a decrease in balloon pressure threshold as compared to controls. Immunohistochemical analysis demonstrated that the NR1 cassettes, N1 and C1, of the NMDA receptor on CANs were up-regulated following inflammation. Furthermore, inflammation resulted in the activation of the PAR2 receptors expressed on CANs. Our data show that inflammation causes an up-regulation of the NMDA receptor and the activation of the PAR2 receptor expressed on CANs. These changes are associated with a decrease in balloon pressure in response to colorectal distension in non-RTX and RTX lesioned animals. Therefore, these data suggest that CANs

  7. Age-dependent effects on social interaction of NMDA GluN2A receptor subtype-selective antagonism.

    PubMed

    Green, Torrian L; Burket, Jessica A; Deutsch, Stephen I

    2016-07-01

    NMDA receptor-mediated neurotransmission is implicated in the regulation of normal sociability in mice. The heterotetrameric NMDA receptor is composed of two obligatory GluN1 and either two "modulatory" GluN2A or GluN2B receptor subunits. GluN2A and GluN2B-containing receptors differ in terms of their developmental expression, distribution between synaptic and extrasynaptic locations, and channel kinetic properties, among other differences. Because age-dependent differences in disruptive effects of GluN2A and GluN2B subtype-selective antagonists on sociability and locomotor activity have been reported in rats, the current investigation explored age-dependent effects of PEAQX, a GluN2A subtype-selective antagonist, on sociability, stereotypic behaviors emerging during social interaction, and spatial working memory in 4- and 8-week old male Swiss Webster mice. The data implicate an age-dependent contribution of GluN2A-containing NMDA receptors to the regulation of normal social interaction in mice. Specifically, at a dose of PEAQX devoid of any effect on locomotor activity and mouse rotarod performance, the social interaction of 8-week old mice was disrupted without any effect on the social salience of a stimulus mouse. Moreover, PEAQX attenuated stereotypic behavior emerging during social interaction in 4- and 8-week old mice. However, PEAQX had no effect on spontaneous alternations, a measure of spatial working memory, suggesting that neural circuits mediating sociability and spatial working memory may be discrete and dissociable from each other. Also, the data suggest that the regulation of stereotypic behaviors and sociability may occur independently of each other. Because expression of GluN2A-containing NMDA receptors occurs at a later developmental stage, they may be more involved in mediating the pathogenesis of ASDs in patients with histories of "regression" after a period of normal development than GluN2B receptors.

  8. D1-class dopamine receptor involvement in the behavioral recovery from prefrontal cortical injury.

    PubMed

    Vargo, J M; Bromberg, B B; Best, P J; Corwin, J V; Marshall, J F

    1995-12-14

    Following unilateral aspiration of the left medial agranular cortex (AGm) region of prefrontal cortex, rats demonstrate contralateral neglect, characterized by a failure to orient to visual, tactile and auditory stimuli presented on the contralateral body side. While dopamine (DA) has been implicated in cortical neglect and its recovery, this study specifically examined D1-class DA receptors for their involvement in spontaneous recovery from neglect caused by AGm ablation. In the first experiment, left AGm-ablated rats demonstrated severe neglect of contralateral stimuli of each modality which spontaneously recovered over a period of several weeks. Recovered rats were given 7.0 micrograms/kg (s.c.) of the D1-selective antagonist SCH 23390. SCH 23390 reinstated severe neglect of contralateral stimuli, yet had no effect on orientation to ipsilateral stimuli. The same dose had no effect on the orientation behavior of controls. In a second experiment, D1 receptor characteristics were quantified via binding of [3H]SCH 23390 to tissue homogenates of the caudate-putamen of recovered AGm-ablated rats. Numbers and affinities of striatal D1 receptors of rats with unilateral AGm ablations did not differ between hemispheres or from values obtained from lesioned controls. Considered together, these findings indicate that recovery from neglect produced by cortical injury is associated with an increased dependence on D1-class receptor-mediated events, and that this increased dependence is unlikely to be mediated through changes in D1-class receptor numbers or affinities within caudate-putamen.

  9. Attention-Induced Variance and Noise Correlation Reduction in Macaque V1 Is Mediated by NMDA Receptors

    PubMed Central

    Herrero, Jose L.; Gieselmann, Marc A.; Sanayei, Mehdi; Thiele, Alexander

    2013-01-01

    Summary Attention improves perception by affecting different aspects of the neuronal code. It enhances firing rates, it reduces firing rate variability and noise correlations of neurons, and it alters the strength of oscillatory activity. Attention-induced rate enhancement in striate cortex requires cholinergic mechanisms. The neuropharmacological mechanisms responsible for attention-induced variance and noise correlation reduction or those supporting changes in oscillatory activity are unknown. We show that ionotropic glutamatergic receptor activation is required for attention-induced rate variance, noise correlation, and LFP gamma power reduction in macaque V1, but not for attention-induced rate modulations. NMDA receptors mediate attention-induced variance reduction and attention-induced noise correlation reduction. Our results demonstrate that attention improves sensory processing by a variety of mechanisms that are dissociable at the receptor level. PMID:23719166

  10. MPX-004 and MPX-007: New Pharmacological Tools to Study the Physiology of NMDA Receptors Containing the GluN2A Subunit

    PubMed Central

    Volkmann, Robert A.; Fanger, Christopher M.; Anderson, David R.; Sirivolu, Venkata Ramana; Paschetto, Kathy; Gordon, Earl; Virginio, Caterina; Gleyzes, Melanie; Buisson, Bruno; Steidl, Esther; Mierau, Susanna B.; Fagiolini, Michela; Menniti, Frank S.

    2016-01-01

    GluN2A is the most abundant of the GluN2 NMDA receptor subunits in the mammalian CNS. Physiological and genetic evidence implicate GluN2A-containing receptors in susceptibility to autism, schizophrenia, childhood epilepsy and neurodevelopmental disorders such as Rett Syndrome. However, GluN2A-selective pharmacological probes to explore the therapeutic potential of targeting these receptors have been lacking. Here we disclose a novel series of pyrazine-containing GluN2A antagonists exemplified by MPX-004 (5-(((3-chloro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)pyrazine-2-carboxamide) and MPX-007 (5-(((3-fluoro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)methylpyrazine-2-carboxamide). MPX-004 and MPX-007 inhibit GluN2A-containing NMDA receptors expressed in HEK cells with IC50s of 79 nM and 27 nM, respectively. In contrast, at concentrations that completely inhibited GluN2A activity these compounds have no inhibitory effect on GluN2B or GluN2D receptor-mediated responses in similar HEK cell-based assays. Potency and selectivity were confirmed in electrophysiology assays in Xenopus oocytes expressing GluN2A-D receptor subtypes. Maximal concentrations of MPX-004 and MPX-007 inhibited ~30% of the whole-cell current in rat pyramidal neurons in primary culture and MPX-004 inhibited ~60% of the total NMDA receptor-mediated EPSP in rat hippocampal slices. GluN2A-selectivity at native receptors was confirmed by the finding that MPX-004 had no inhibitory effect on NMDA receptor mediated synaptic currents in cortical slices from GRIN2A knock out mice. Thus, MPX-004 and MPX-007 offer highly selective pharmacological tools to probe GluN2A physiology and involvement in neuropsychiatric and developmental disorders. PMID:26829109

  11. Phosphatidylethanolamine-binding protein is not involved in μ-opioid receptor-mediated regulation of extracellular signal-regulated kinase

    PubMed Central

    BIAN, JIA-MING; WU, NING; SU, RUI-BIN; LI, JIN

    2015-01-01

    Stimulation of the μ-opioid receptor activates extracellular signal-regulated kinase (ERK), however, the mechanism by which this occurs remains to be elucidated. Phosphatidylethanolamine-binding protein (PEBP) has been reported to act as a negative regulator of the ERK cascade (Raf-MEK-ERK) by binding to Raf-1 kinase. In the present study, the role of PEBP in μ-opioid receptor-mediated ERK activation was investigated in Chinese hamster ovary/μ cells and SH-SY5Y cells, as well as in human embryonic kidney 293 cells expressing other types of G protein-coupled receptors. The acute activation of μ-opioid receptors by morphine or (D-Ala2, MePhe4, Gly5-ol) enkephalin induced a rapid activation of ERK. Prolonged morphine treatment did not affect the phosphorylation level of ERK compared with control cells, but the phosphorylation level of ERK decreased markedly when cells were precipitated with naloxone following chronic morphine treatment. For the phosphorylation of PEBP, no change was identified under the designated drug treatment and exposure duration. A total of two other types of G protein-coupled receptors, including Gs-coupled dopamine D1 receptors and Gq-coupled adrenergic α1A receptors were also investigated and only the activation of adrenergic α1A receptors induced an upregulated phosphorylation of PEBP, which was protein kinase C activity dependent. Thus, PEBP did not have a significant role in μ-opioid receptor-mediated regulation of ERK. PMID:25573435

  12. Chloride transporters and receptor-mediated endocytosis in the renal proximal tubule

    PubMed Central

    Devuyst, Olivier; Luciani, Alessandro

    2015-01-01

    Abstract The epithelial cells lining the proximal tubules of the kidney reabsorb a large amount of filtered ions and solutes owing to receptor-mediated endocytosis and polarized transport systems that reflect final cell differentiation. Dedifferentiation of proximal tubule cells and dysfunction of receptor-mediated endocytosis characterize Dent’s disease, a rare disorder caused by inactivating mutations in the CLCN5 gene that encodes the endosomal chloride–proton exchanger, ClC-5. The disease is characterized by a massive urinary loss of solutes (renal Fanconi syndrome), with severe metabolic complications and progressive renal failure. Investigations of mutations affecting the gating of ClC-5 revealed that the proximal tubule dysfunction may occur despite normal endosomal acidification. In addition to defective endocytosis, proximal tubule cells lacking ClC-5 show a trafficking defect in apical receptors and transporters, as well as lysosomal dysfunction and typical features of dedifferentiation, proliferation and oxidative stress. A similar but milder defect is observed in mouse models with defective CFTR, a chloride channel that is also expressed in the endosomes of proximal tubule cells. These data suggest a major role for endosomal chloride transport in the maintenance of epithelial differentiation and reabsorption capacity of the renal proximal tubule. Key points The reabsorptive activity of renal proximal tubule cells is mediated by receptor-mediated endocytosis and polarized transport systems that reflect final cell differentiation. Loss-of-function mutations of the endosomal chloride–proton exchanger ClC-5 (Dent’s disease) cause a major trafficking defect in proximal tubule cells, associated with lysosomal dysfunction, oxidative stress and dedifferentiation/proliferation. A similar but milder defect is associated with mutations in CFTR (cystic fibrosis transmembrane conductance regulator). Vesicular chloride transport appears to be important for

  13. Activation of the sigma receptor 1 modulates AMPA receptor-mediated light-evoked excitatory postsynaptic currents in rat retinal ganglion cells.

    PubMed

    Liu, Lei-Lei; Deng, Qin-Qin; Weng, Shi-Jun; Yang, Xiong-Li; Zhong, Yong-Mei

    2016-09-22

    Sigma receptor (σR), a unique receptor family, is classified into three subtypes: σR1, σR2 and σR3. It was previously shown that σR1 activation induced by 1μM SKF10047 (SKF) suppressed N-methyl-d-aspartate (NMDA) receptor-mediated responses of rat retinal ganglion cells (GCs) and the suppression was mediated by a distinct Ca(2+)-dependent phospholipase C (PLC)-protein kinase C (PKC) pathway. In the present work, using whole-cell patch-clamp techniques in rat retinal slice preparations, we further demonstrate that SKF of higher dosage (50μM) significantly suppressed AMPA receptor (AMPAR)-mediated light-evoked excitatory postsynaptic currents (L-EPSCs) of retinal ON-type GCs (ON GCs), and the effect was reversed by the σR1 antagonist BD1047, suggesting the involvement of σR1. The SKF (50μM) effect was unlikely due to a change in glutamate release from bipolar cells, as suggested by the unaltered paired-pulse ratio (PPR) of AMPAR-mediated EPSCs of ON GCs. SKF (50μM) did not change L-EPSCs of ON GCs when the G protein inhibitor GDP-β-S or the protein kinase G (PKG) inhibitor KT5823 was intracellularly infused. Calcium imaging further revealed that SKF (50μM) did not change intracellular calcium concentration in GCs and persisted to suppress L-EPSCs when intracellular calcium was chelated by BAPTA. The SKF (50μM) effect was intact when protein kinase A (PKA) and phosphatidylinostiol (PI)-PLC signaling pathways were both blocked. We conclude that the SKF (50μM) effect is Ca(2+)-independent, PKG-dependent, but not involving PKA, PI-PLC pathways.

  14. Gastrin promotes intestinal polyposis through cholecystokinin-B receptor-mediated proliferative signaling and fostering tumor microenvironment.

    PubMed

    Han, Y-M; Park, J-M; Park, S-H; Hahm, K B; Hong, S P; Kim, E-H

    2013-08-01

    Increased serum gastrin concentrations in patients with colorectal cancer suggested the tumorigenic trophic effect of gastrin. Detailed and global molecular mechanisms explaining trophic effect of gastrin had not been revealed. In the current study, intestinal polyposis of APC(Min/⁺) mice was compared between phosphate buffered saline (PBS) injected and gastrin (10 μg/kg, thrice per week) injected group. Total number of intestinal polyposis was counted and immunohistochemical staining with F4/80 and CD3 was done. MTT assay, cell cycle analysis, and Western blot for cyclin D1, CDK4, and β-catenin were performed in Raw 264.7 and HCT116 cells before and after gastrin administration. Experiments were repeated with YM022 or transfection with si-cholecystokinin-B receptor (CCK-B-R). Intraperitoneal gastrin significantly increased intestinal polyposis in APC(Min/⁺) mice (P<0.005), in which significant increases in macrophage were noted on F4/80 immunohistochemical staining (Plt;0.05) as well as Ki-67 staining (Plt;0.05) after gastrin. On comparative cytokine array, gastrin increased interleukin-1β (IL-1β), interleukin 3Rβ (IL-3Rβ), stromal cell-derived factor-1α (SDF-1α), thymus and activation-regulated chemokine (TARC), and thymus-derived chemotactic agent 3 (TCA-3) in macrophage cells, which was further confirmed with real time polymerase chain reaction (RT-PCR) analysis (P<0.05). In addition to increased inflammatory cytokines, gastrin increased macrophage proliferation accompanied with increased cyclin D1 and CDK4. Targeted for HCT116 cells, gastrin significantly increased proliferation as well as increases in synthetic phase of cell cycle. YM022 as gastrin antagonist significantly abolished the trophic actions of gastrin (P<0.05). HCT116 cells transfected with siCCK-B-R, gastrin did not increase either cell cycle or β-catenin in spite of gastrin administration. Conclusively, gastrin promoted intestinal polyposis through either direct gastrin receptor-mediated

  15. Receptor-Mediated Drug Delivery to Macrophages in Chemotherapy of Leishmaniasis

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Amitabha; Chaudhuri, Gautam; Arora, Sunil K.; Sehgal, Shobha; Basu, Sandip K.

    1989-05-01

    Methotrexate coupled to maleylated bovine serum albumin was taken up efficiently through the ``scavenger'' receptors present on macrophages and led to selective killing of intracellular Leishmania mexicana amazonensis amastigotes in cultured hamster peritoneal macrophages. The drug conjugate was nearly 100 times as effective as free methotrexate in eliminating the intracellular parasites. Furthermore, in a model of experimental cutaneous leishmaniasis in hamsters, the drug conjugate brought about more than 90% reduction in the size of footpad lesions within 11 days. In contrast, the free drug at a similar concentration did not significantly affect lesion size. These studies demonstrate the potential of receptor-mediated drug delivery in the therapy of macrophage-associated diseases.

  16. Investigations of receptor-mediated phagocytosis by hormone-induced (imprinted) Tetrahymena pyriformis.

    PubMed

    Kovács, P; Sundermann, C A; Csaba, G

    1996-08-15

    Receptor-mediated endocytosis by Tetrahvmena pyriformis was studied using tetramethylrhodamine isothiocyanate-labeled concanavalin A (TRITC-Con A) with fluorescence and confocal microscopy. In the presence of insulin, or 24 h after insulin pretreatment (hormonal imprinting), the binding and uptake of TRITC-Con A increased when compared to controls, owing to the binding of TRITC-Con A to sugar oligomers of insulin receptors. Mannose inhibited the binding of Con A, thus demonstrating the specificity of binding. Histamine, a phagocytosis-promoting factor in mammals and Tetrahymena, and galactose, did not influence the uptake of TRITC-Con A.

  17. NMDA receptor mediated phosphorylation of GluR1 subunits contributes to the appearance of calcium-permeable AMPA receptors after mechanical stretch injury

    PubMed Central

    Spaethling, Jennifer; Le, Linda; Meaney, David F

    2016-01-01

    Alterations in neuronal cytosolic calcium is a key mediator of the traumatic brain injury (TBI) pathobiology, but less is known of the role and source of calcium in shaping early changes in synaptic receptors and neural circuits after TBI. In this study, we examined the calcium source and potential phosphorylation events leading to insertion of calcium-permeable AMPARs (CP-AMPARs) after in vitro traumatic brain injury, a receptor subtype that influences neural circuit dynamics for hours to days following injury. We found that both synaptic and NR2B-containing NMDARs contribute significantly to the calcium influx following stretch injury. Moreover, an early and sustained phosphorylation of the S-831 site of the GluR1 subunit appeared after mechanical injury, and this phosphorylation was blocked with the inhibition of either synaptic NMDARs or NR2B-containing NMDARs. In comparison, mechanical injury led to no significant change in the S-845 phosphorylation of the GluR1 subunit. Although no change in S-845 phosphorylation appeared in injured cultures, we observed that inhibition of NR2B-containing NMDARs significantly increased S-845 phosphorylation one hour after injury while blockade of synaptic NMDARs did not change S-845 phosphorylation at any time point following injury. These findings show that a broad class of NMDARs are activated in parallel and that targeting either subpopulation will reverse some of the consequences of mechanical injury, providing distinct paths to treat the effects of mechanical injury on neural circuits after TBI. PMID:22426393

  18. Deletion of TRPC6 Attenuates NMDA Receptor-Mediated Ca2+ Entry and Ca2+-Induced Neurotoxicity Following Cerebral Ischemia and Oxygen-Glucose Deprivation

    PubMed Central

    Chen, Jin; Li, Zhaozhong; Hatcher, Jeffery T.; Chen, Qing-Hui; Chen, Li; Wurster, Robert D.; Chan, Sic L.; Cheng, Zixi

    2017-01-01

    Transient receptor potential canonical 6 (TRPC6) channels are permeable to Na+ and Ca2+ and are widely expressed in the brain. In this study, the role of TRPC6 was investigated following ischemia/reperfusion (I/R) and oxygen-glucose deprivation (OGD). We found that TRPC6 expression was increased in wild-type (WT) mice cortical neurons following I/R and in primary neurons with OGD, and that deletion of TRPC6 reduced the I/R-induced brain infarct in mice and the OGD- /neurotoxin-induced neuronal death. Using live-cell imaging to examine intracellular Ca2+ levels ([Ca2+]i), we found that OGD induced a significant higher increase in glutamate-evoked Ca2+ influx compared to untreated control and such an increase was reduced by TRPC6 deletion. Enhancement of TRPC6 expression using AdCMV-TRPC6-GFP infection in WT neurons increased [Ca2+]i in response to glutamate application compared to AdCMV-GFP control. Inhibition of N-methyl-d-aspartic acid receptor (NMDAR) with MK801 decreased TRPC6-dependent increase of [Ca2+]i in TRPC6 infected cells, indicating that such a Ca2+ influx was NMDAR dependent. Furthermore, TRPC6-dependent Ca2+ influx was blunted by blockade of Na+ entry in TRPC6 infected cells. Finally, OGD-enhanced Ca2+ influx was reduced, but not completely blocked, in the presence of voltage-dependent Na+ channel blocker tetrodotoxin (TTX) and dl-α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) blocker CNQX. Altogether, we concluded that I/R-induced brain damage was, in part, due to upregulation of TRPC6 in cortical neurons. We postulate that overexpression of TRPC6 following I/R may induce neuronal death partially through TRPC6-dependent Na+ entry which activated NMDAR, thus leading to a damaging Ca2+ overload. These findings may provide a potential target for future intervention in stroke-induced brain damage. PMID:28400714

  19. The effect of centrally acting myorelaxants on NMDA receptor-mediated synaptic transmission in the immature rat spinal cord in vitro.

    PubMed Central

    Siarey, R. J.; Long, S. K.; Evans, R. H.

    1992-01-01

    1. The effect of the myorelaxant drugs baclofen, diazepam and tizanidine have been compared on in vitro preparations of baby rat spinal cord and adult rat superior cervical ganglion. 2. Dorsal root-elicited long duration (time to half decay 9.71 +/- 0.29 s.e. mean, n = 31) ipsilateral ventral root reflexes (DR-VRP), measured as integrated area, of immature rat spinal cord preparations were abolished by RS-2-amino-5-phosphonopentanoate (AP5) (EC50 8.13 +/- 0.92 microM, n = 3). The initial short latency component of DR-VRP was resistant to AP5. 3. Baclofen abolished both components of the DR-VRP. Respective EC50 values for the AP5-insensitive and AP5-sensitive components were 237 +/- 68 nM (n +/- 7) and 57 +/- 10 nM (n = 7). These effects of baclofen were reversed by the GABAB antagonist, CGP35348. The apparent Kd values (16.7 +/- 6.4 microM, n = 3 and 14.3 +/- 3.9 microM, n = 6 respectively) for this reversal were not significantly different. 4. Tizanidine, clonidine and diazepam had no effect on the AP5-insensitive component of the DR-VRP. 5. The AP5-sensitive long duration component of the DR-VRP was depressed to respective maximal levels of 23.2 +/- 1.4% (n = 7), 18.8 +/- 3.8% (n = 4) and 47.6 +/- 1.6% (n = 5) of control (100%) levels by tizanidine (EC50 135 +/- 33 nM), clonidine (EC50 26.0 +/- 2.2 nM) and diazepam (EC25 114 +/- 12 nM, n = 4). The depressant effects of tizanidine and clonidine were reversed by idazoxan (1 microM).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1330190

  20. NMDA Receptor Antagonists for Treatment of Depression

    PubMed Central

    Ates-Alagoz, Zeynep; Adejare, Adeboye

    2013-01-01

    Depression is a psychiatric disorder that affects millions of people worldwide. Individuals battling this disorder commonly experience high rates of relapse, persistent residual symptoms, functional impairment, and diminished well-being. Medications have important utility in stabilizing moods and daily functions of many individuals. However, only one third of patients had considerable improvement with a standard antidepressant after 2 months and all patients had to deal with numerous side effects. The N-methyl-d-aspartate (NMDA) receptor family has received special attention because of its critical role in psychiatric disorders. Direct targeting of the NMDA receptor could result in more rapid antidepressant effects. Antidepressant-like effects of NMDA receptor antagonists have been demonstrated in different animal models. MK-801 (a use-dependent channel blocker), and CGP 37849 (an NMDA receptor antagonist) have shown antidepressant properties in preclinical studies, either alone or combined with traditional antidepressants. A recent development is use of ketamine clinically for refractory depression. The purpose of this review is to examine and analyze current literature on the role of NMDA receptor antagonists for treatment of depression and whether this is a feasible route in drug discovery. PMID:24276119

  1. Novel NMDA Receptor Modulators: An Update

    PubMed Central

    Santangelo, Rose M.; Acker, Timothy M.; Zimmerman, Sommer S.; Katzman, Brooke M.; Strong, Katie L.; Traynelis, Stephen F.; Liotta, Dennis C.

    2013-01-01

    Summary Introduction The NMDA receptor is a ligand-gated ion channel that plays a critical role in higher level brain processes and has been implicated in a range of neurological and psychiatric conditions. Although initial studies for the use of NMDA receptor antagonists in neuroprotection were unsuccessful, more recently, NMDA receptor antagonists have shown clinical promise in other indications such as Alzheimer’s disease, Parkinson’s disease, pain and depression. Based on the clinical observations and more recent insights into receptor pharmacology, new modulatory approaches are beginning to emerge, with potential therapeutic benefit. Areas Covered The article covers the known pharmacology and important features regarding NMDA receptors and their function. A discussion of pre-clinical and clinical relevance is included, as well. The subsequent patent literature review highlights the current state of the art targeting the receptor since the last review in 2010. Expert Opinion The complex nature of the NMDA receptor structure and function is becoming better understood. As knowledge about this receptor increases, it opens up new opportunities for targeting the receptor for many therapeutic indications. New strategies and advances in older technologies will need to be further developed before clinical success can be achieved. First-in-class potentiators and subunit-selective agents form the basis for most new strategies, complemented by efforts to limit off-target liability and fine-tune on-target properties. PMID:23009122

  2. NMDA receptors regulate nicotine-enhanced brain reward function and intravenous nicotine self-administration: Role of the ventral tegmental area and central nucleus of the amygdala

    PubMed Central

    Kenny, Paul J.; Chartoff, Elena; Roberto, Marisa; Carlezon, William A.; Markou, Athina

    2009-01-01

    Nicotine is considered an important component of tobacco responsible for the smoking habit in humans. Nicotine increases glutamate-mediated transmission throughout brain reward circuitries. This action of nicotine could potentially contribute to its intrinsic rewarding and reward-enhancing properties, which motivate consumption of the drug. Here we show that the competitive N-methyl-D-aspartate (NMDA) receptor antagonist LY235959 (0.5–2.5 mg/kg) abolished nicotine-enhanced brain reward function, reflected in blockade of the lowering of intracranial self-stimulation (ICSS) thresholds usually observed after experimenter-administered (0.25 mg/kg) or intravenously self-administered (0.03 mg/kg/infusion) nicotine injections. The highest LY235959 dose (5 mg/kg) tested reversed the hedonic valence of nicotine from positive to negative, reflected in nicotine-induced elevations of ICSS thresholds. LY235959 doses that reversed nicotine-induced lowering of ICSS thresholds also markedly decreased nicotine self-administration without altering responding for food reinforcement, whereas the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist NBQX had no effects on nicotine intake. In addition, nicotine self-administration upregulated NMDA receptor subunit expression in the central nucleus of the amygdala (CeA) and ventral tegmental area (VTA), suggesting important interactions between nicotine and the NMDA receptor. Furthermore, nicotine (1 μM) increased NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) in rat CeA slices, similar to its previously described effects in the VTA. Finally, infusion of LY235959 (0.1–10 ng/side) into the CeA or VTA decreased nicotine self-administration. Taken together, these data suggest that NMDA receptors, including those in the CeA and VTA, gate the magnitude and valence of the effects of nicotine on brain reward systems, thereby regulating motivation to consume the drug. PMID:18418357

  3. NMDA receptor hypofunction in the prelimbic cortex increases sensitivity to the rewarding properties of opiates via dopaminergic and amygdalar substrates.

    PubMed

    Bishop, Stephanie F; Lauzon, Nicole M; Bechard, Melanie; Gholizadeh, Shervin; Laviolette, Steven R

    2011-01-01

    The medial prefrontal cortex (mPFC) plays a significant role in associative learning and memory formation during the opiate addiction process. Various lines of evidence demonstrate that glutamatergic (GLUT) transmission through the N-methyl D-aspartate (NMDA) receptor can modulate neuronal network activity within the mPFC and influence dopaminergic signaling within the mesocorticolimbic pathway. However, little is known about how modulation of NMDA receptor signaling within the mPFC may regulate associative opiate reward learning and memory formation. Using a conditioned place preference (CPP) procedure, we examined the effects of selective NMDA receptor blockade directly within the prelimbic cortex (PLC) during the acquisition of associative opiate reward learning. NMDA receptor blockade specifically within the PLC caused a strong potentiation in the rewarding effects of either systemic or intra-ventral tegmental area (intra-VTA) morphine administration. This reward potentiation was dose dependently blocked by coadministration of dopamine D1 or D2 receptor antagonists and by blockade of presynaptic GLUT release. In addition, pharmacological inactivation of the basolateral amygdala (BLA) also prevented intra-PLC NMDA receptor blockade-induced potentiation of opiate reward signals, demonstrating a functional interaction between inputs from the VTA and BLA within the PLC, during the encoding and modulation of associative opiate reward information.

  4. 5-HT1-like receptor-mediated contraction in the human internal mammary artery.

    PubMed

    Yildiz, O; Ciçek, S; Ay, I; Tatar, H; Tuncer, M

    1996-07-01

    We wished to characterize the 5-hydroxytryptamine (5-HT) receptors mediating vasoconstriction in the human internal mammary artery (IMA). Segments of the IMA obtained from patients undergoing coronary by-pass surgery were suspended in an organ bath and exposed to 5-HT and sumatriptan (SUM), a 5-HT1-like receptor agonist, in the presence and absence of potassium chloride (KCl) and angiotensin II. 5-HT induced concentration-dependent contractions in all quiescent and pre-contracted preparations. SUM induced small contractions in 70% of quiescent IMA rings, whereas it elicited marked and concentration-dependent contractions in all of the preparations given a moderate tone by a threshold concentration of KCl and angiotensin II. The efficacy of SUM was higher in precontracted arteries. Concentration-effect curves (CEC) of 5-HT and SUM were not affected by the 5-HT3-receptor antagonist tropisetron (1 microM). The nonselective antagonist, methiothepin (30 nM), shifted the CEC of SUM to the right. 5-HT2A-receptor antagonist, ketanserin (1 microM) inhibited responses to 5-HT, whereas it affected only the responses to the smaller concentrations of SUM. When methiothepin (30 nM) was applied in the presence of ketanserin (1 microM), a further inhibition in the responses to 5-HT was observed. These results suggest that 5-HT1-like receptors mediate the contractile action of SUM and contribute to that of 5-HT in IMA.

  5. Receptor-mediated binding and uptake of GnRH agonist and antagonist by pituitary cells

    SciTech Connect

    Jennes, L.; Stumpf, W.E.; Conn, P.M.

    1984-01-01

    The intracellular pathway of an enzyme resistant GnRH agonist (D- Lys6 -GnRH) conjugated to ferritin or to colloidal gold was followed in cultured pituitary cells. After an initial uniform distribution over the cell surface of gonadotropes, the electrondense marker was internalized, either individually or in small groups. After longer incubation times, the marker appeared in the lysosomal compartment and the Golgi apparatus, where it could be found in the vesicular as well as cisternal portion. In addition, the receptor-mediated endocytosis of the GnRH antagonist D-p-Glu1-D-Phe2-D-Trp3-D- Lys6 -GnRH was studied by light and electron microscopic autoradiography after 30 and 60 min of incubation to ensure uptake. At both time points, in in vitro as well as in vivo studies, silver grains were localized over cytoplasmic organelles of castration cells, including dilated endoplasmic reticulum, lysosomes, and clear vesicles. No consistent association with cell nuclei, mitochondria, or secretory vesicles could be observed. The results suggest that both agonist and antagonist are binding selectively to the plasma membrane of gonadotropes and subsequently are taken up via receptor-mediated endocytosis for degradation or possible action on synthetic processes.

  6. Folate receptor mediated intracellular protein delivery using PLL-PEG-FOL conjugate.

    PubMed

    Hwa Kim, Sun; Hoon Jeong, Ji; Joe, Cheol O; Gwan Park, Tae

    2005-04-18

    To develop a receptor-mediated intracellular delivery system that can transport therapeutic proteins or other bioactive macromolecules into a specific cell, a di-block copolymer conjugate, poly(L-lysine)-poly(ethylene glycol)-folate (PLL-PEG-FOL), was synthesized. The PLL-PEG-FOL conjugate was physically complexed with fluorescein isothiocyanate conjugated bovine serum albumin (FITC-BSA) in an aqueous phase by ionic interactions. Cellular uptake of PLL-PEG-FOL/FITC-BSA complexes was greatly enhanced against a folate receptor over-expressing cell line (KB cells) compared to a folate receptor deficient cell line (A549 cells). The presence of an excess amount of free folate (1 mM) in the medium inhibited the intracellular delivery of PLL-PEG-FOL/FITC-BSA complexes. This suggests that the enhanced cellular uptake of FITC-BSA by KB cells in a specific manner was attributed to folate receptor-mediated endocytosis of the complexes having folate moieties on the surface. The PLL-PEG-FOL di-block copolymer could be potentially applied for intracellular delivery of a wide range of other biological active agents that have negative charges on the surface.

  7. Understanding magnetic nanoparticle osteoblast receptor-mediated endocytosis using experiments and modeling

    NASA Astrophysics Data System (ADS)

    Tran, Nhiem; Webster, Thomas J.

    2013-05-01

    Iron oxide nanoparticles are promising candidates for controlling drug delivery through an external magnetic force to treat a wide range of diseases, including osteoporosis. Previous studies have demonstrated that in the presence of hydroxyapatite coated magnetite (Fe3O4) nanoparticles, osteoblast (or bone forming cell) proliferation and long-term functions (such as calcium deposition) were significantly enhanced. Hydroxyapatite is the major inorganic component of bone. As a further attempt to understand why, in the current study, the uptake of such nanoparticles into osteoblasts was experimentally investigated and mathematically modeled. Magnetite nanoparticles were synthesized using a co-precipitation method and were coated with hydroxyapatite. A cellular uptake experiment at low temperatures indicated that receptor-mediated endocytosis contributed to the internalization of the magnetic nanoparticles into osteoblasts. A model was further developed to explain the uptake of magnetic nanoparticles into osteoblasts using receptor-mediated endocytosis. This model may explain the internalization of hydroxyapatite into osteoblasts to elevate intracellular calcium levels necessary to promote osteoblast functions to treat a wide range of orthopedic problems, including osteoporosis.

  8. Regulation and ontogeny of subtypes of muscarinic receptors and muscarinic receptor-mediated

    SciTech Connect

    Lee, W.

    1989-01-01

    The densities of total and M1 muscarinic receptors were measured using the muscarinic receptor antagonists {sup 3}H-quinuclidinyl benzilate and {sup 3}H-pirenzepine, respectively. Thus, the difference between the density of {sup 3}H-quinuclidinyl benzilate and {sup 3}H-pirenzepine binding sites represents the density of M2 sites. In addition, there is no observable change in either acetylcholine-stimulated phosphoinositide breakdown (suggested to be an M1 receptor-mediated response) or in carbachol-mediated inhibition of cyclic AMP accumulation (suggested to be an M2 receptor-mediated response) in slices of cortex+dorsal hippocampus following chronic atropine administration. In other experiments, it has been shown that the M1 and M2 receptors in rat cortex have different ontogenetic profiles. The M2 receptor is present at adult levels at birth, while the M1 receptor develops slowly from low levels at postnatal week 1 to adult levels at postnatal week 3. The expression of acetylcholine-stimulated phosphoinositide breakdown parallels the development of M1 receptors, while the development of carbachol-mediated inhibition of cyclic AMP accumulation occurs abruptly between weeks 2 and 3 postnatally.

  9. Neuregulin-1-beta1 enters brain and spinal cord by receptor-mediated transport.

    PubMed

    Kastin, Abba J; Akerstrom, Victoria; Pan, Weihong

    2004-02-01

    Proteins of the neuregulin (NRG) family play important regulatory roles in neuronal survival and synaptic activity. NRG-1-beta1 has particular potential as a therapeutic agent because it enhances myelination of neurites in spinal cord explants. In this study, we determined the permeation of NRG-1-beta1 across the blood-brain and blood-spinal cord barriers (BBB and BSCB respectively). Intact radioactively labeled NRG-1-beta1 had a saturable and relatively rapid influx rate from blood to the CNS in mice. Capillary depletion studies showed that NRG-1-beta1 entered the parenchyma of the brain and spinal cord rather than being trapped in the capillaries that compose the BBB. The possible mechanism of receptor-mediated transport was shown by the ability of antibodies to erbB3 and erbB4 receptors to inhibit the influx. Lipophilicity, less important for such saturable transport mechanisms, was measured by the octanol : buffer partition coefficient and found to be low. The results indicate that NRG-1-beta1 enters spinal cord and brain by a saturable receptor-mediated mechanism, which provides the opportunity for possible therapeutic manipulation at the BBB level.

  10. Adaptation in sound localization: from GABA(B) receptor-mediated synaptic modulation to perception.

    PubMed

    Stange, Annette; Myoga, Michael H; Lingner, Andrea; Ford, Marc C; Alexandrova, Olga; Felmy, Felix; Pecka, Michael; Siveke, Ida; Grothe, Benedikt

    2013-12-01

    Across all sensory modalities, the effect of context-dependent neural adaptation can be observed at every level, from receptors to perception. Nonetheless, it has long been assumed that the processing of interaural time differences, which is the primary cue for sound localization, is nonadaptive, as its outputs are mapped directly onto a hard-wired representation of space. Here we present evidence derived from in vitro and in vivo experiments in gerbils indicating that the coincidence-detector neurons in the medial superior olive modulate their sensitivity to interaural time differences through a rapid, GABA(B) receptor-mediated feedback mechanism. We show that this mechanism provides a gain control in the form of output normalization, which influences the neuronal population code of auditory space. Furthermore, psychophysical tests showed that the paradigm used to evoke neuronal GABA(B) receptor-mediated adaptation causes the perceptual shift in sound localization in humans that was expected on the basis of our physiological results in gerbils.

  11. The miR-199-dynamin regulatory axis controls receptor-mediated endocytosis.

    PubMed

    Aranda, Juan F; Canfrán-Duque, Alberto; Goedeke, Leigh; Suárez, Yajaira; Fernández-Hernando, Carlos

    2015-09-01

    Small non-coding RNAs (microRNAs) are important regulators of gene expression that modulate many physiological processes; however, their role in regulating intracellular transport remains largely unknown. Intriguingly, we found that the dynamin (DNM) genes, a GTPase family of proteins responsible for endocytosis in eukaryotic cells, encode the conserved miR-199a and miR-199b family of miRNAs within their intronic sequences. Here, we demonstrate that miR-199a and miR-199b regulate endocytic transport by controlling the expression of important mediators of endocytosis such as clathrin heavy chain (CLTC), Rab5A, low-density lipoprotein receptor (LDLR) and caveolin-1 (Cav-1). Importantly, miR-199a-5p and miR-199b-5p overexpression markedly inhibits CLTC, Rab5A, LDLR and Cav-1 expression, thus preventing receptor-mediated endocytosis in human cell lines (Huh7 and HeLa). Of note, miR-199a-5p inhibition increases target gene expression and receptor-mediated endocytosis. Taken together, our work identifies a new mechanism by which microRNAs regulate intracellular trafficking. In particular, we demonstrate that the DNM, miR-199a-5p and miR-199b-5p genes act as a bifunctional locus that regulates endocytosis, thus adding an unexpected layer of complexity in the regulation of intracellular trafficking.

  12. Target shape dependence in a simple model of receptor-mediated endocytosis and phagocytosis.

    PubMed

    Richards, David M; Endres, Robert G

    2016-05-31

    Phagocytosis and receptor-mediated endocytosis are vitally important particle uptake mechanisms in many cell types, ranging from single-cell organisms to immune cells. In both processes, engulfment by the cell depends critically on both particle shape and orientation. However, most previous theoretical work has focused only on spherical particles and hence disregards the wide-ranging particle shapes occurring in nature, such as those of bacteria. Here, by implementing a simple model in one and two dimensions, we compare and contrast receptor-mediated endocytosis and phagocytosis for a range of biologically relevant shapes, including spheres, ellipsoids, capped cylinders, and hourglasses. We find a whole range of different engulfment behaviors with some ellipsoids engulfing faster than spheres, and that phagocytosis is able to engulf a greater range of target shapes than other types of endocytosis. Further, the 2D model can explain why some nonspherical particles engulf fastest (not at all) when presented to the membrane tip-first (lying flat). Our work reveals how some bacteria may avoid being internalized simply because of their shape, and suggests shapes for optimal drug delivery.

  13. Triheteromeric NMDA Receptors at Hippocampal Synapses

    PubMed Central

    Tovar, Kenneth R.; McGinley, Matthew J.; Westbrook, Gary L.

    2013-01-01

    NMDA receptors are composed of two GluN1 (N1) and two GluN2 (N2) subunits. Constituent N2 subunits control the pharmacological and kinetic characteristics of the receptor. NMDA receptors in hippocampal or cortical neurons are often thought of as diheteromeric, i.e., containing only one type of N2 subunit. However, triheteromeric receptors with more than one type of N2 subunit also have been reported and the relative contribution of di- and triheteromeric NMDA receptors at synapses has been difficult to assess. Because wild-type hippocampal principal neurons express N1, N2A and N2B, we used cultured hippocampal principal neurons from N2A and N2B-knockout mice as templates for diheteromeric synaptic receptors. Summation of N1/N2B and N1/N2A excitatory postsynaptic currents could not account for the deactivation kinetics of wild-type excitatory postsynaptic currents (EPSCs) however. To make a quantitative estimate of NMDA receptor subtypes at wild-type synapses, we used the deactivation kinetics, as well as the effects of the competitive antagonist NVP-AAM077. Our results indicate that three types of NMDA receptors contribute to the wild-type EPSC, with at least two-thirds being triheteromeric receptors. Functional isolation of synaptic triheteromeric receptors revealed deactivation kinetics and pharmacology distinct from either diheteromeric receptor subtype. Because of differences in open probability, synaptic triheteromeric receptors outnumbered N1/N2A receptors by 5.8 to 1 and N1/N2B receptors by 3.2 to 1. Our results suggest that triheteromeric NMDA receptors must be either preferentially assembled or preferentially localized at synapses. PMID:23699525

  14. Mechanisms of dopamine D(1) and angiotensin type 2 receptor interaction in natriuresis.

    PubMed

    Padia, Shetal H; Kemp, Brandon A; Howell, Nancy L; Keller, Susanna R; Gildea, John J; Carey, Robert M

    2012-02-01

    Renal dopamine D(1)-like receptors (D(1)Rs) and angiotensin type 2 receptors (AT(2)Rs) are important natriuretic receptors counterbalancing angiotensin type 1 receptor-mediated tubular sodium reabsorption. Here we explore the mechanisms of D(1)R and AT(2)R interactions in natriuresis. In uninephrectomized, sodium-loaded Sprague-Dawley rats, direct renal interstitial infusion of the highly selective D(1)R agonist fenoldopam induced a natriuretic response that was abolished by the AT(2)R-specific antagonist PD-123319 or by microtubule polymerization inhibitor nocodazole but not by actin polymerization inhibitor cytochalasin D. By confocal microscopy and immunoelectron microscopy, fenoldopam translocated AT(2)Rs from intracellular sites to the apical plasma membranes of renal proximal tubule cells, and this translocation was abolished by nocodazole. Because D(1)R activation induces natriuresis via an adenylyl cyclase/cAMP signaling pathway, we explored whether this pathway is responsible for AT(2)R recruitment and AT(2)R-mediated natriuresis. Renal interstitial coinfusion of the adenylyl cyclase activator forskolin and 3-isobutly-1-methylxanthine induced natriuresis that was abolished either by PD-123319 or nocodazole but was unaffected by specific the D(1)R antagonist SCH-23390. Coadministration of forskolin and 3-isobutly-1-methylxanthine also translocated AT(2)Rs to the apical plasma membranes of renal proximal tubule cells; this translocation was abolished by nocodazole but was unaffected by SCH-23390. The results demonstrate that D(1)R-induced natriuresis requires AT(2)R recruitment to the apical plasma membranes of renal proximal tubule cells in a microtubule-dependent manner involving an adenylyl cyclase/cAMP signaling pathway. These studies provide novel insights regarding the mechanisms whereby renal D(1)Rs and AT(2)Rs act in concert to promote sodium excretion in vivo.

  15. Neuroprotective effects of a novel translocator protein (18 kDa) ligand, ZBD-2, against focal cerebral ischemia and NMDA-induced neurotoxicity.

    PubMed

    Li, Xu-Bo; Guo, Hong-Liang; Shi, Tian-Yao; Yang, Le; Wang, Min; Zhang, Kun; Guo, Yan-Yan; Wu, Yu-Mei; Liu, Shui-Bing; Zhao, Ming-Gao

    2015-10-01

    Ligands of the translocator protein (18 kDa) (TSPO) have demonstrated rapid anxiolytic efficacy in stress responses and stress-related disorders. This protein is involved in the synthesis of endogenous neurosteroids including pregnenolone, dehydroepiandrosterone, and progesterone. These neurosteroids promote γ-aminobutyric acid-mediated neurotransmission in the central neural system (CNS). A TSPO ligand, N-benzyl-N-ethyl-2-(7,8-dihydro-7-benzyl-8-oxo-2-phenyl-9H-purin-9-yl) acetamide (ZBD-2) was recently synthesized. The purpose of the present study was to investigate the neuroprotective effects of ZBD-2 and. In cultured cortical neurons, treatment with ZBD-2 attenuated excitotoxicity induced by N-methyl-d-aspartate (NMDA) exposure. It significantly decreased the number of apoptotic cells by downregulating GluN2B-containing NMDA receptors (NMDARs), the ratio of Bax/Bcl-2, and levels of pro-caspase-3. Systemic treatment of ZBD-2 provided significant neuroprotection in mice subjected to middle cerebral artery occlusion. These findings provide direct evidence that neuroprotection by ZBD-2 is partially mediated by inhibiting GluN2B-containing NMDA receptor-mediated excitotoxicity. © 2015 Wiley Publishing Asia Pty Ltd.

  16. Anti-NMDA Receptor Encephalitis and Vaccination.

    PubMed

    Wang, Hsiuying

    2017-01-18

    Anti-N-methyl-d-aspartate (Anti-NMDA) receptor encephalitis is an acute autoimmune neurological disorder. The cause of this disease is often unknown, and previous studies revealed that it might be caused by a virus, vaccine or tumor. It occurs more often in females than in males. Several cases were reported to be related to vaccination such as the H1N1 vaccine and tetanus/diphtheria/pertussis and polio vaccines. In this study, we reported an anti-NMDA receptor encephalitis case that may be caused by Japanese encephalitis vaccination. To investigate the association between anti-NMDA receptor encephalitis and vaccination, we analyzed the phylogenetic relationship of the microRNAs, which significantly regulate these vaccine viruses or bacteria, and the phylogenetic relationship of these viruses and bacteria. This reveals that anti-NMDA receptor encephalitis may be caused by Japanese encephalitis vaccination, as well as H1N1 vaccination or tetanus/diphtheria/pertussis and polio vaccinations, from the phylogenetic viewpoint.

  17. Modulation of the NMDA receptor by polyamines

    SciTech Connect

    Williams, K.; Romano, C.; Dichter, M.A.; Molinoff, P.B. )

    1991-01-01

    Results of recent biochemical and electrophysiological studies have suggested that a recognition site for polyamines exists as part of the NMDA receptor complex. The endogenous polyamines spermine and spermidine increase the binding of open-channel blockers and increase NMDA-elicited currents in cultured neutrons. These polyamines have been termed agonists at the polyamine recognition site. Studies of the effects of natural and synthetic polyamines on the binding of ({sup 3}H)MK-801 and on NMDA-elicited currents in cultured neurons have led to the identification of compounds classified as partial agonists, antagonists, and inverse agonists at the polyamine recognition site. Polyamines have also been found to affect the binding of ligands to the recognition sites for glutamate and glycine. However, these effects may be mediated at a site distinct from that at which polyamines act to modulate the binding of open-channel blockers. Endogenous polyamines may modulate excitatory synaptic transmission by acting at the polyamine recognition site of the NMDA receptor. This site could represent a novel therapeutic target for the treatment of ischemia-induced neurotoxicity, epilepsy, and neurodegenerative diseases.

  18. Anti-NMDA Receptor Encephalitis and Vaccination

    PubMed Central

    Wang, Hsiuying

    2017-01-01

    Anti-N-methyl-d-aspartate (Anti-NMDA) receptor encephalitis is an acute autoimmune neurological disorder. The cause of this disease is often unknown, and previous studies revealed that it might be caused by a virus, vaccine or tumor. It occurs more often in females than in males. Several cases were reported to be related to vaccination such as the H1N1 vaccine and tetanus/diphtheria/pertussis and polio vaccines. In this study, we reported an anti-NMDA receptor encephalitis case that may be caused by Japanese encephalitis vaccination. To investigate the association between anti-NMDA receptor encephalitis and vaccination, we analyzed the phylogenetic relationship of the microRNAs, which significantly regulate these vaccine viruses or bacteria, and the phylogenetic relationship of these viruses and bacteria. This reveals that anti-NMDA receptor encephalitis may be caused by Japanese encephalitis vaccination, as well as H1N1 vaccination or tetanus/diphtheria/pertussis and polio vaccinations, from the phylogenetic viewpoint. PMID:28106787

  19. Peripheral NMDA and non-NMDA receptors contribute to nociception: an electrophysiological study.

    PubMed

    Wang, C; Wang, Y; Zhao, Z

    2000-05-01

    The present study investigated the effects of peripheral administration of N-methy-D-aspartate (NMDA) and non-NMDA receptor antagonists on C-fiber evoked responses of the spinal dorsal horn neurons in the spinalized rats. When DL-2-amino-5-phosphonovaleric acid (AP5) (10 mM, 1 mM, 0.1 mM, 20 microl) or 6, 7-dinitroquinoxaline-2, 3-dione (DNQX) (1 mM, 0.1 mM, 0.01 mM, 20 microl) was subcutaneously injected into the receptive field on the hindplantar region, C-fiber evoked responses of the dorsal horn neurons were profoundly inhibited in a dose-dependent manner. Three hours after subcutaneous injection of carrageenan into the ipsilateral hindpaw, NMDA and non-NMDA antagonist-induced inhibition of C-fiber evoked responses was more potent than that in the normal rat (Student's t-test, p < 0.05). In the carragenan-treated rats, DNQX-induced inhibition was stronger than AP-5-induced one (Student's t-test, p < 0.05). The results suggest that peripheral NMDA and non-NMDA receptors are involved in mediating excitation of nociceptors.

  20. Administration of a non-NMDA antagonist, GYKI 52466, increases excitotoxic Purkinje cell degeneration caused by ibogaine.

    PubMed

    O'Hearn, E; Molliver, M E

    2004-01-01

    Ibogaine is a tremorigenic hallucinogen that has been proposed for clinical use in treating addiction. We previously reported that ibogaine, administered systemically, produces degeneration of a subset of Purkinje cells in the cerebellum, primarily within the vermis. Ablation of the inferior olive affords protection against ibogaine-induced neurotoxicity leading to the interpretation that ibogaine itself is not directly toxic to Purkinje cells. We postulated that ibogaine produces sustained excitation of inferior olivary neurons that leads to excessive glutamate release at climbing fiber terminals, causing subsequent excitotoxic injury to Purkinje cells. The neuronal degeneration induced by ibogaine provides an animal model for studying excitotoxic injury in order to analyze the contribution of glutamate receptors to this injury and to evaluate neuroprotective strategies. Since non-N-methyl-D-aspartate (NMDA) receptors mediate Purkinje cell excitation by climbing fibers, we hypothesized that 1-4-aminophenyl-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine (GYKI-52466), which antagonizes non-NMDA receptors, may have a neuroprotective effect by blocking glutamatergic excitation at climbing fiber synapses. To test this hypothesis, rats were administered systemic ibogaine plus GYKI-52466 and the degree of neuronal injury was analyzed in cerebellar sections. The results indicate that the AMPA antagonist GYKI-52466 (10 mg/kg i.p. x 3) does not protect against Purkinje cell injury at the doses used. Rather, co-administration of GYKI-52466 with ibogaine produces increased toxicity evidenced by more extensive Purkinje cell degeneration. Several hypotheses that may underlie this result are discussed. Although the reason for the increased toxicity found in this study is not fully explained, the present results show that a non-NMDA antagonist can produce increased excitotoxic injury under some conditions. Therefore, caution should be exercised before employing glutamate

  1. Association between genetic variations of NMDA receptor NR3 subfamily genes and heroin addiction in male Han Chinese.

    PubMed

    Xie, Xiaohu; Liu, Huifen; Zhang, Jianbing; Chen, Weisheng; Zhuang, Dingding; Duan, Shiwei; Zhou, Wenhua

    2016-09-19

    Growing amounts of evidence suggest that N-Methyl-d-aspartate (NMDA) receptor mediated glutamate neurotransmission may be involved in the pathophysiology of drug dependence. The NMDA receptor consists of three subfamilies (NR1, NR2, and NR3). The ability of subunit NR3 to negatively modulate the NMDA receptor function makes it an attractive candidate gene of heroin addiction. The purpose of this study is to explore the association between four single nucleotide polymorphisms (SNPs) of NR3 gene and heroin addiction. Genotyping of two SNPs (rs3739722 and rs17189632) in GRIN3A and two SNPs (rs4807399 and rs2240158) in GRIN3B was performed using TaqMan SNP genotyping method. The association between heroin addiction and these SNPs was assessed among 332 male heroin dependent patients and 400 male normal control subjects. The results showed the genotype and allele frequencies of rs17189632 and rs2240158 were significantly different between the cases and the controls (nominal P values were 0.0284, 0.0136 for rs17189632; 0.0048, 0.0013 for rs2240158, respectively). After Bonferroni correction, rs2240158 of GRIN3B was still found to be associated with heroin addiction. The frequencies of haplotype C-A at GRIN3A (rs3739722-rs17189632) and of C-C and C-T at GRIN3B (rs4807399-rs2240158) differed significantly between the cases and the controls. The genotype and allele distributions of rs3739722 and rs4807399 were not significantly different between in the cases and in the controls (P>0.05). These results suggest that GRIN3A rs17189632 and GRIN3B rs2240158 may contribute to the susceptibility of heroin addiction.

  2. Enzyme induction and histopathology elucidate aryl hydrocarbon receptor-mediated versus non-aryl hydrocarbon receptor-mediated effects of Aroclor 1268 in American mink (Neovison vison).

    PubMed

    Folland, William R; Newsted, John L; Fitzgerald, Scott D; Fuchsman, Phyllis C; Bradley, Patrick W; Kern, John; Kannan, Kurunthachalam; Zwiernik, Matthew J

    2016-03-01

    Polychlorinated biphenyl (PCB) concentrations reported in preferred prey and blubber of bottlenose dolphins from the Turtle-Brunswick River estuary (Georgia, USA) suggest the potential for adverse effects. However, PCBs in Turtle-Brunswick River estuary dolphins are primarily derived from Aroclor 1268, and predicting toxic effects of Aroclor 1268 is uncertain because of the mixture's unique composition and associated physiochemical characteristics. These differences suggest that toxicity benchmarks for other PCB mixtures may not be relevant to dolphins exposed to Aroclor 1268. American mink (Neovison vison) were used as a surrogate model for cetaceans to characterize mechanisms of action associated with Aroclor 1268 exposure. Mink share similarities in phylogeny and life history with cetaceans and are characteristically sensitive to PCBs, making them an attractive surrogate species for marine mammals in ecotoxicity studies. Adult female mink and a subsequent F1 generation were exposed to Aroclor 1268 through diet, and effects on enzyme induction, histopathology, thyroid hormone regulation, hematology, organ weights, and body condition index were compared to a negative control and a 3,3',4,4',5-pentachlorobiphenyl (PCB 126)-positive control. Aroclor 1268 dietary exposure concentrations ranged from 1.8 µg/g wet weight to 29 µg/g wet weight. Anemia, hypothyroidism, and hepatomegaly were observed in mink exposed to Aroclor 1268 beyond various dietary thresholds. Cytochrome P450 induction and squamous epithelial proliferation jaw lesions were low in Aroclor 1268 treatments relative to the positive control. Differences in enzyme induction and the development of squamous epithelial proliferation jaw lesions between Aroclor 1268 treatments and the positive control, coupled with effects observed in Aroclor 1268 treatments not observed in the positive control, indicate that mechanisms additional to the aryl hydrocarbon receptor-mediated pathway are associated with

  3. The CB₁ receptor-mediated endocannabinoid signaling and NGF: the novel targets of curcumin.

    PubMed

    Hassanzadeh, Parichehr; Hassanzadeh, Anna

    2012-05-01

    Increasing interest has recently been attracted towards the identification of natural compounds including those with antidepressant properties. Curcumin has shown promising antidepressant effect, however, its molecular target(s) have not been well defined. Based on the interaction between the neurotrophins and endocannabinoid system as well as their contribution to the emotional reactivity and antidepressant action, here we show that 4-week treatment with curcumin, similar to the classical antidepressant amitriptyline, results in the sustained elevation of brain nerve growth factor (NGF) and endocannabinoids in dose-dependent and brain region-specific fashion. Pretreatment with cannabinoid CB(1) receptor neutral antagonist AM4113, but not the CB(2) antagonist SR144528, prevents the enhancement of brain NGF contents. AM4113 exerts no effect by itself. Our findings by presenting the CB(1) receptor-mediated endocannabinoid signaling and NGF as novel targets for curcumin, suggest that more attention should be focused on the therapeutic potential of herbal medicines including curcumin.

  4. Using GFP--ligand fusions to measure receptor-mediated endocytosis in living cells.

    PubMed

    Medina-Kauwe, Lali K; Chen, Xinhua

    2002-01-01

    Recombinant DNA technology has enabled the production of many types of chimeric proteins containing heterologous functional domains that have served a variety of useful capacities for cell biology research. Among proteins gaining wide use as a fusion partner is Aequorea victoria green fluorescent protein (GFP). GFP has been employed by numerous groups as a reporter gene for cell transfection and as an autofluorescent tag by recombinant fusion to foreign sequences. Here we describe the use of GFP as a tag for ligands, and provide examples of how purified recombinant GFP-ligand fusion proteins may be used to detect ligand-receptor interactions, including receptor-mediated endocytosis. Both its utility and limitations are discussed.

  5. The C-kit receptor-mediated signal transduction and tumor-related diseases.

    PubMed

    Liang, Jing; Wu, Yan-Ling; Chen, Bing-Jia; Zhang, Wen; Tanaka, Yoshimasa; Sugiyama, Hiroshi

    2013-01-01

    As an important member of tyrosine kinase family, c-kit receptor causes specific expression of certain genes, regulates cell differentiation and proliferation, resists cell apoptosis, and plays a key role in tumor occurrence, development, migration and recurrence through activating the downstream signaling molecules following interaction with stem cell factor (SCF). The abnormality of SCF/c-kit signaling pathway is closely related to some certain tumors. The discovery of c-kit receptor-targeted drugs has promoted clinical-related cancer's diagnosis and treatment. In this paper, we review recent research progress on c-kit receptor-mediated signal transduction and its potential therapeutic application as a target in tumor-related diseases.

  6. Bicarbonate contributes to GABAA receptor-mediated neuronal excitation in surgically resected human hypothalamic hamartomas.

    PubMed

    Kim, Do-Young; Fenoglio, Kristina A; Kerrigan, John F; Rho, Jong M

    2009-01-01

    The role of bicarbonate (HCO(3)(-)) in GABA(A) receptor-mediated depolarization of human hypothalamic hamartoma (HH) neurons was investigated using cellular electrophysiological and calcium imaging techniques. Activation of GABA(A) receptors with muscimol (30 microM) provoked neuronal excitation in over 70% of large (18-22 microM) HH neurons in HCO(3)(-) buffer. Subsequent perfusion of HCO(3)(-)-free HEPES buffer produced partial suppression of muscimol-induced excitation. Additionally, 53% of large HH neurons under HCO(3)(-)-free conditions exhibited reduced intracellular calcium accumulation by muscimol. These results suggest that HCO(3)(-) efflux through GABA(A) receptors on a subpopulation of large HH neurons may contribute to membrane depolarization and subsequent activation of L-type calcium channels.

  7. The C-Kit Receptor-Mediated Signal Transduction and Tumor-Related Diseases

    PubMed Central

    Liang, Jing; Wu, Yan-Ling; Chen, Bing-Jia; Zhang, Wen; Tanaka, Yoshimasa; Sugiyama, Hiroshi

    2013-01-01

    As an important member of tyrosine kinase family, c-kit receptor causes specific expression of certain genes, regulates cell differentiation and proliferation, resists cell apoptosis, and plays a key role in tumor occurrence, development, migration and recurrence through activating the downstream signaling molecules following interaction with stem cell factor (SCF). The abnormality of SCF/c-kit signaling pathway is closely related to some certain tumors. The discovery of c-kit receptor-targeted drugs has promoted clinical-related cancer's diagnosis and treatment. In this paper, we review recent research progress on c-kit receptor-mediated signal transduction and its potential therapeutic application as a target in tumor-related diseases. PMID:23678293

  8. Chronic psychoemotional stress impairs cannabinoid-receptor-mediated control of GABA transmission in the striatum.

    PubMed

    Rossi, Silvia; De Chiara, Valentina; Musella, Alessandra; Kusayanagi, Hajime; Mataluni, Giorgia; Bernardi, Giorgio; Usiello, Alessandro; Centonze, Diego

    2008-07-16

    Exposure to stressful events has a myriad of consequences in animals and in humans, and triggers synaptic adaptations in many brain areas. Stress might also alter cannabinoid-receptor-mediated transmission in the brain, but no physiological study has addressed this issue so far. In the present study, we found that social defeat stress, induced in mice by exposure to aggression, altered cannabinoid CB(1)-receptor-mediated control of synaptic transmission in the striatum. In fact, the presynaptic inhibition of GABAergic IPSCs induced by the cannabinoid CB(1) receptor agonist HU210 [(6aR)-trans-3-(1,1-dimethylheptyl)-6a,7,10,10a-tetrahydro-1-hydroxy-6,6-dimethyl-6H-dibenzo[b,d]pyran-9-methanol] was reduced after a single stressful episode and fully abolished after 3 and 7 d of stress exposure. Repeated psychoemotional stress also impaired the sensitivity of GABA synapses to endocannabinoids mobilized by group I metabotropic glutamate receptor stimulation, whereas the cannabinoid CB(1)-mediated control of glutamate transmission was unaffected by repeated exposure to an aggressor. Corticosteroids released in response to the activation of the hypothalamic-pituitary-adrenal axis played a major role in the synaptic defects observed in stressed animals, because these alterations were fully prevented by pharmacological blockade of glucocorticoid receptors and were mimicked by corticosterone injections. The recovery of stress-induced synaptic defects was favored when stressed mice were given access to a running wheel or to sucrose consumption, which function as potent natural rewards. A similar rescuing effect was obtained by a single injection of cocaine, a psychostimulant with strong rewarding properties. Targeting cannabinoid CB(1) receptors or endocannabinoid metabolism might be a valuable option to treat stress-associated neuropsychiatric conditions.

  9. Extracellular acidosis impairs P2Y receptor-mediated Ca(2+) signalling and migration of microglia.

    PubMed

    Langfelder, Antonia; Okonji, Emeka; Deca, Diana; Wei, Wei-Chun; Glitsch, Maike D

    2015-04-01

    Microglia are the resident macrophage and immune cell of the brain and are critically involved in combating disease and assaults on the brain. Virtually all brain pathologies are accompanied by acidosis of the interstitial fluid, meaning that microglia are exposed to an acidic environment. However, little is known about how extracellular acidosis impacts on microglial function. The activity of microglia is tightly controlled by 'on' and 'off' signals, the presence or absence of which results in generation of distinct phenotypes in microglia. Activation of G protein coupled purinergic (P2Y) receptors triggers a number of distinct behaviours in microglia, including activation, migration, and phagocytosis. Using pharmacological tools and fluorescence imaging of the murine cerebellar microglia cell line C8B4, we show that extracellular acidosis interferes with P2Y receptor-mediated Ca(2+) signalling in these cells. Distinct P2Y receptors give rise to signature intracellular Ca(2+) signals, and Ca(2+) release from stores and Ca(2+) influx are differentially affected by acidotic conditions: Ca(2+) release is virtually unaffected, whereas Ca(2+) influx, mediated at least in part by store-operated Ca(2+) channels, is profoundly inhibited. Furthermore, P2Y1 and P2Y6-mediated stimulation of migration is inhibited under conditions of extracellular acidosis, whereas basal migration independent of P2Y receptor activation is not. Taken together, our results demonstrate that an acidic microenvironment impacts on P2Y receptor-mediated Ca(2+) signalling, thereby influencing microglial responses and responsiveness to extracellular signals. This may result in altered behaviour of microglia under pathological conditions compared with microglial responses in healthy tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Current injection and receptor-mediated excitation produce similar maximal firing rates in hypoglossal motoneurons.

    PubMed

    Wakefield, Hilary E; Fregosi, Ralph F; Fuglevand, Andrew J

    2016-03-01

    The maximum firing rates of motoneurons (MNs), activated in response to synaptic drive, appear to be much lower than that elicited by current injection. It could be that the decrease in input resistance associated with increased synaptic activity (but not current injection) might blunt overall changes in membrane depolarization and thereby limit spike-frequency output. To test this idea, we recorded, in the same cells, maximal firing responses to current injection and to synaptic activation. We prepared 300 μm medullary slices in neonatal rats that contained hypoglossal MNs and used whole-cell patch-clamp electrophysiology to record their maximum firing rates in response to triangular-ramp current injections and to glutamate receptor-mediated excitation. Brief pressure pulses of high-concentration glutamate led to significant depolarization, high firing rates, and temporary cessation of spiking due to spike inactivation. In the same cells, we applied current clamp protocols that approximated the time course of membrane potential change associated with glutamate application and with peak current levels large enough to cause spike inactivation. Means (SD) of maximum firing rates obtained in response to glutamate application were nearly identical to those obtained in response to ramp current injection [glutamate 47.1 ± 12.0 impulses (imp)/s, current injection 47.5 ± 11.2 imp/s], even though input resistance was 40% less during glutamate application compared with current injection. Therefore, these data suggest that the reduction in input resistance associated with receptor-mediated excitation does not, by itself, limit the maximal firing rate responses in MNs. Copyright © 2016 the American Physiological Society.

  11. Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors.

    PubMed

    Perin, Martina; Longordo, Fabio; Massonnet, Christine; Welker, Egbert; Lüthi, Anita

    2014-10-01

    Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4-8, corresponding to 4-8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4-8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)-CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral-CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg(-1)), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep-wake cycle.

  12. Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors

    PubMed Central

    Perin, Martina; Longordo, Fabio; Massonnet, Christine; Welker, Egbert; Lüthi, Anita

    2014-01-01

    Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4–8, corresponding to 4–8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4–8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)–CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral–CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg−1), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep–wake cycle. PMID:25085886

  13. Synthesis and mannose receptor-mediated uptake of clustered glycomimetics by human dendritic cells: effect of charge.

    PubMed

    Angyalosi, Gerhild; Grandjean, Cyrille; Lamirand, Mélanie; Auriault, Claude; Gras-Masse, Hélène; Melnyk, Oleg

    2002-10-07

    Effect of charge and shape of multivalent lysine-based cluster glycomimetics on their mannose receptor-mediated uptake by human dendritic cells has been evaluated: The capture is strongly affected by the shape of the ligands. The effect of charge is less pronounced although positive charges on the ligands seem to favor non-specific endocytosis capture.

  14. The differential effects of 5-HT(1A) receptor stimulation on dopamine receptor-mediated abnormal involuntary movements and rotations in the primed hemiparkinsonian rat.

    PubMed

    Dupre, Kristin B; Eskow, Karen L; Negron, Giselle; Bishop, Christopher

    2007-07-16

    Serotonin 1A receptor (5-HT(1A)R) agonists have emerged as valuable supplements to l-DOPA therapy, demonstrating that they can decrease side effects and enhance motor function in animal models of Parkinson's disease (PD) and human PD patients. The precise mechanism by which these receptors act remains unknown and there is limited information on how 5-HT(1A)R stimulation impacts striatal dopamine (DA) D1 receptor (D1R) and D2 receptor (D2R) function. The current study examined the effects of 5-HT(1A)R stimulation on DA receptor-mediated behaviors. Male Sprague-Dawley rats were rendered hemiparkinsonian by unilateral 6-OHDA lesions and primed with the D1R agonist SKF81297 (0.8 mg/kg, i.p.) in order to sensitize DA receptors. Using a randomized within subjects design, rats received a first injection of: Vehicle (dH(2)O) or the 5-HT(1A)R agonist +/-8-OH-DPAT (0.1 or 1.0 mg/kg, i.p.), followed by a second injection of: Vehicle (dimethyl sulfoxide), the D1R agonist SKF81297 (0.8 mg/kg, i.p.), the D2R agonist quinpirole (0.2 mg/kg, i.p.), or l-DOPA (12 mg/kg+benserazide, 15 mg/kg, i.p.). On test days, rats were monitored over a 2-h period immediately following the second injection for abnormal involuntary movements (AIMs), analogous to dyskinesia observed in PD patients, and contralateral rotations. The present findings indicate that 5-HT(1A)R stimulation reduces AIMs induced by D1R, D2R and l-DOPA administration while its effects on DA agonist-induced rotations were receptor-dependent, suggesting that direct 5-HT(1A)R and DA receptor interactions may contribute to the unique profile of 5-HT(1A)R agonists for the improvement of PD treatment.

  15. Dopamine and NMDA systems modulate long-term nociception in the rat anterior cingulate cortex.

    PubMed

    López-Avila, Alberto; Coffeen, Ulises; Ortega-Legaspi, J Manuel; del Angel, Rosendo; Pellicer, Francisco

    2004-09-01

    The anterior cingulate cortex (ACC) plays a key role in pain processing. It has been reported that increased activity of glutamatergic projections into the ACC intensifies nociception; whereas dopaminergic projections inhibit it. The aim of this study was to evaluate the role of dopaminergic and NMDA systems of the ACC in the modulation of long-term nociception elicited by sciatic denervation in the rat. Score, onset and incidence of long-term nociception were measured by the autotomy behavior. The effects of a single microinjection into the ACC of different doses of dopamine (100 nM, 100 microM and 100 mM), a NMDA receptor antagonist (MK801 200 nM and 9.34 mM) and amantadine, a dopamine agonist and NMDA receptor antagonist (10, 100 and 1000 microM) were tested on long-term nociception. Dopamine diminished autotomy behavior in an inverse dose-dependent manner, with dopamine 100 nM as most effective concentration. MK801 and amantadine elicited a significant reduction on autotomy score. Prior injections of D1 and D2 receptor antagonists blocked the antinociceptive effects of amantadine on long-term nociceptive behavior. The present study suggests an interaction between dopaminergic and glutamatergic systems within the ACC in the genesis and maintenance of long-term nociception.

  16. Developmental changes in AMPA and kainate receptor-mediated quantal transmission at thalamocortical synapses in the barrel cortex.

    PubMed

    Bannister, Neil J; Benke, Timothy A; Mellor, Jack; Scott, Helen; Gürdal, Esra; Crabtree, John W; Isaac, John T R

    2005-05-25

    During the first week of life, there is a shift from kainate to AMPA receptor-mediated thalamocortical transmission in layer IV barrel cortex. However, the mechanisms underlying this change and the differential properties of AMPA and kainate receptor-mediated transmission remain essentially unexplored. To investigate this, we studied the quantal properties of AMPA and kainate receptor-mediated transmission using strontium-evoked miniature EPSCs. AMPA and kainate receptor-mediated transmission exhibited very different quantal properties but were never coactivated by a single quantum of transmitter, indicating complete segregation to different synapses within the thalamocortical input. Nonstationary fluctuation analysis showed that synaptic AMPA receptors exhibited a range of single-channel conductance (gamma) and a strong negative correlation between gamma and functional channel number, indicating that these two parameters are reciprocally regulated at thalamocortical synapses. We obtained the first estimate of gamma for synaptic kainate receptors (<2 pS), and this primarily accounted for the small quantal size of kainate receptor-mediated transmission. Developmentally, the quantal contribution to transmission of AMPA receptors increased and that of kainate receptors decreased. No changes in AMPA or kainate quantal amplitude or in AMPA receptor gamma were observed, demonstrating that the developmental change was attributable to a decrease in the number of kainate synapses and an increase in the number of AMPA synapses contributing to transmission. Therefore, we demonstrate fundamental differences in the quantal properties for these two types of synapse. Thus, the developmental switch in transmission will dramatically alter information transfer at thalamocortical inputs to layer IV.

  17. 4'-Demethylnobiletin, a bioactive metabolite of nobiletin enhancing PKA/ERK/CREB signaling, rescues learning impairment associated with NMDA receptor antagonism via stimulation of the ERK cascade.

    PubMed

    Al Rahim, Md; Nakajima, Akira; Saigusa, Daisuke; Tetsu, Naomi; Maruyama, Yuji; Shibuya, Masatoshi; Yamakoshi, Hiroyuki; Tomioka, Yoshihisa; Iwabuchi, Yoshiharu; Ohizumi, Yasushi; Yamakuni, Tohru

    2009-08-18

    The biochemical and pharmacological activities of nobiletin, including neurotrophic and memory-enhancing action, in both in vitro and in vivo systems are well established. However, whether its metabolites do have such beneficial effects like nobiletin remains to be examined. Here we, for the first time, report that 2-(4-hydroxy-3-methoxyphenyl)-5,6,7,8-tetramethoxychromen-4-one (4'-demethylnobiletin), a major metabolite of nobiletin identified in the urine of rats and mice, stimulates the phosphorylation of ERK and CREB and enhances CRE-mediated transcription by activating a PKA/MEK/ERK pathway, like nobiletin, in cultured hippocampal neurons. Since NMDA receptor-mediated ERK signaling is involved in memory processing, including associative memories, we also examined whether 4'-demethylnobiletin, by activating ERK signaling, could restore learning impairment. Chronic intraperitoneal (ip) treatment of the mice with 10 or 50 mg of 4'-demethylnobiletin/kg rescued the NMDA receptor antagonist MK-801-induced learning impairment, accompanied by improvement of the MK-801-induced decrease in the level of ERK phosphorylation in the hippocampus of the animals. Consistently, 4'-demethylnobiletin also restored MK-801-induced inhibition of NMDA-stimulated phosphorylation of not only ERK but also PKA substrates in cultured rat hippocampal neurons. Moreover, we actually detected 4'-demethylnobiletin in the brain of mice following acute ip administration, demonstrating that the metabolite can cross the blood-brain barrier to reach the brain and thereby exert its effects to reverse learning impairment. Therefore, these results suggest that 4'-demethylnobiletin, a bioactive metabolite of nobiletin, may serve as a potential therapeutic agent, at least, for memory disorders associated with a dysregulated NMDA receptor ERK signaling, like nobiletin.

  18. AMPA receptor mediated D-serine release from retinal glial cells

    PubMed Central

    Sullivan, Steve J.; Miller, Robert F.

    2010-01-01

    The NMDA receptor coagonist D-serine is important in a number of different processes in the central nervous system, ranging from synaptic plasticity to disease states, including schizophrenia. D-serine appears to be the major coagonist acting on retinal ganglion cell NMDA receptors, but the cell type from which it originates and whether its release can be modulated by activity are unknown. In this study, we utilized a mutant mouse line with elevated D-serine to investigate this question. Direct measurements of extracellular D-serine using capillary electrophoresis demonstrate that D-serine can be released from the intact mouse retina through an AMPA receptor dependent mechanism. AMPA-evoked D-serine release persisted in the presence of a cocktail of neural inhibitors but was abolished after administration of a glial toxin. These findings provide the first evidence that extracellular D-serine levels in the retina can be modulated, and that such modulation is contingent upon glial cell activity. PMID:20969576

  19. NMDA receptor binding in focal epilepsies.

    PubMed

    McGinnity, C J; Koepp, M J; Hammers, A; Riaño Barros, D A; Pressler, R M; Luthra, S; Jones, P A; Trigg, W; Micallef, C; Symms, M R; Brooks, D J; Duncan, J S

    2015-10-01

    To demonstrate altered N-methyl-d-aspartate (NMDA) receptor availability in patients with focal epilepsies using positron emission tomography (PET) and [(18)F]GE-179, a ligand that selectively binds to the open NMDA receptor ion channel, which is thought to be overactive in epilepsy. Eleven patients (median age 33 years, 6 males) with known frequent interictal epileptiform discharges had an [(18)F]GE-179 PET scan, in a cross-sectional study. MRI showed a focal lesion but discordant EEG changes in two, was non-localising with multifocal EEG abnormalities in two, and was normal in the remaining seven patients who all had multifocal EEG changes. Individual patient [(18)F]GE-179 volume-of-distribution (VT) images were compared between individual patients and a group of 10 healthy controls (47 years, 7 males) using Statistical Parametric Mapping. Individual analyses revealed a single cluster of focal VT increase in four patients; one with a single and one with multifocal MRI lesions, and two with normal MRIs. Post hoc analysis revealed that, relative to controls, patients not taking antidepressants had globally increased [(18)F]GE-179 VT (+28%; p<0.002), and the three patients taking an antidepressant drug had globally reduced [(18)F]GE-179 VT (-29%; p<0.002). There were no focal abnormalities common to the epilepsy group. In patients with focal epilepsies, we detected primarily global increases of [(18)F]GE-179 VT consistent with increased NMDA channel activation, but reduced availability in those taking antidepressant drugs, consistent with a possible mode of action of this class of drugs. [(18)F]GE-179 PET showed focal accentuations of NMDA binding in 4 out of 11 patients, with difficult to localise and treat focal epilepsy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. Activation of D1/D5 Dopamine Receptors Protects Neurons from Synapse Dysfunction Induced by Amyloid-β Oligomers*

    PubMed Central

    Jürgensen, Sofia; Antonio, Leandro L.; Mussi, Gabriela E. A.; Brito-Moreira, Jordano; Bomfim, Theresa R.; De Felice, Fernanda G.; Garrido-Sanabria, Emilio R.; Cavalheiro, Ésper A.; Ferreira, Sergio T.

    2011-01-01

    Soluble oligomers of the amyloid-β peptide (AβOs) accumulate in the brains of Alzheimer disease (AD) patients and are implicated in synapse failure and early memory loss in AD. AβOs have been shown to impact synapse function by inhibiting long term potentiation, facilitating the induction of long term depression and inducing internalization of both AMPA and NMDA glutamate receptors, critical players in plasticity mechanisms. Because activation of dopamine D1/D5 receptors plays important roles in memory circuits by increasing the insertion of AMPA and NMDA receptors at synapses, we hypothesized that selective activation of D1/D5 receptors could protect synapses from the deleterious action of AβOs. We show that SKF81297, a selective D1/D5 receptor agonist, prevented the reduction in surface levels of AMPA and NMDA receptors induced by AβOs in hippocampal neurons in culture. Protection by SKF81297 was abrogated by the specific D1/D5 antagonist, SCH23390. Levels of AMPA receptor subunit GluR1 phosphorylated at Ser845, which regulates AMPA receptor association with the plasma membrane, were reduced in a calcineurin-dependent manner in the presence of AβOs, and treatment with SKF81297 prevented this reduction. Establishing the functional relevance of these findings, SKF81297 blocked the impairment of long term potentiation induced by AβOs in hippocampal slices. Results suggest that D1/D5 receptors may be relevant targets for development of novel pharmacological approaches to prevent synapse failure in AD. PMID:21115476

  1. Activation of D1/D5 dopamine receptors protects neurons from synapse dysfunction induced by amyloid-beta oligomers.

    PubMed

    Jürgensen, Sofia; Antonio, Leandro L; Mussi, Gabriela E A; Brito-Moreira, Jordano; Bomfim, Theresa R; De Felice, Fernanda G; Garrido-Sanabria, Emilio R; Cavalheiro, Ésper A; Ferreira, Sergio T

    2011-02-04

    Soluble oligomers of the amyloid-β peptide (AβOs) accumulate in the brains of Alzheimer disease (AD) patients and are implicated in synapse failure and early memory loss in AD. AβOs have been shown to impact synapse function by inhibiting long term potentiation, facilitating the induction of long term depression and inducing internalization of both AMPA and NMDA glutamate receptors, critical players in plasticity mechanisms. Because activation of dopamine D1/D5 receptors plays important roles in memory circuits by increasing the insertion of AMPA and NMDA receptors at synapses, we hypothesized that selective activation of D1/D5 receptors could protect synapses from the deleterious action of AβOs. We show that SKF81297, a selective D1/D5 receptor agonist, prevented the reduction in surface levels of AMPA and NMDA receptors induced by AβOs in hippocampal neurons in culture. Protection by SKF81297 was abrogated by the specific D1/D5 antagonist, SCH23390. Levels of AMPA receptor subunit GluR1 phosphorylated at Ser(845), which regulates AMPA receptor association with the plasma membrane, were reduced in a calcineurin-dependent manner in the presence of AβOs, and treatment with SKF81297 prevented this reduction. Establishing the functional relevance of these findings, SKF81297 blocked the impairment of long term potentiation induced by AβOs in hippocampal slices. Results suggest that D1/D5 receptors may be relevant targets for development of novel pharmacological approaches to prevent synapse failure in AD.

  2. Memory in aged mice is rescued by enhanced expression of the GluN2B subunit of the NMDA receptor

    PubMed Central

    Brim, B. L.; Haskell, R.; Awedikian, R.; Ellinwood, N.M.; Jin, L.; Kumar, A.; Foster, T.C.; Magnusson, K.

    2012-01-01

    The GluN2B subunit of the N-methyl-D-aspartate (NMDA) receptor shows age-related declines in expression across the frontal cortex and hippocampus. This decline is strongly correlated to age-related memory declines. This study was designed to determine if increasing GluN2B subunit expression in the frontal lobe or hippocampus would improve memory in aged mice. Mice were injected bilaterally with either the GluN2B vector, containing cDNA specific for the GluN2B subunit and enhanced Green Fluorescent Protein (eGFP); a control vector or vehicle. Spatial memory, cognitive flexibility, and associative memory were assessed using the Morris water maze. Aged mice, with increased GluN2B subunit expression, exhibited improved long-term spatial memory, comparable to young mice. However, memory was rescued on different days in the Morris water maze; early for hippocampal GluN2B subunit enrichment and later for the frontal lobe. A higher concentration of the GluN2B antagonist, Ro 25-6981, was required to impair long-term spatial memory in aged mice with enhanced GluN2B expression, as compared to aged controls, suggesting there was an increase in the number of GluN2B-containing NMDA receptors. In addition, hippocampal slices from aged mice with increased GluN2B subunit expression exhibited enhanced NMDA receptor-mediated excitatory post-synaptic potentials (EPSP). Treatment with Ro 25-6981 showed that a greater proportion of the NMDA receptor-mediated EPSP was due to the GluN2B subunit in these animals, as compared to aged controls. These results suggest that increasing the production of the GluN2B subunit in aged animals enhances memory and synaptic transmission. Therapies that enhance GluN2B subunit expression within the aged brain may be useful for ameliorating age-related memory declines. PMID:23103326

  3. A family of photoswitchable NMDA receptors

    PubMed Central

    Berlin, Shai; Szobota, Stephanie; Reiner, Andreas; Carroll, Elizabeth C; Kienzler, Michael A; Guyon, Alice; Xiao, Tong; Trauner, Dirk; Isacoff, Ehud Y

    2016-01-01

    NMDA receptors, which regulate synaptic strength and are implicated in learning and memory, consist of several subtypes with distinct subunit compositions and functional properties. To enable spatiotemporally defined, rapid and reproducible manipulation of function of specific subtypes, we engineered a set of photoswitchable GluN subunits ('LiGluNs'). Photo-agonism of GluN2A or GluN2B elicits an excitatory drive to hippocampal neurons that can be shaped in time to mimic synaptic activation. Photo-agonism of GluN2A at single dendritic spines evokes spine-specific calcium elevation and expansion, the morphological correlate of LTP. Photo-antagonism of GluN2A alone, or in combination with photo-antagonism of GluN1a, reversibly blocks excitatory synaptic currents, prevents the induction of long-term potentiation and prevents spine expansion. In addition, photo-antagonism in vivo disrupts synaptic pruning of developing retino-tectal projections in larval zebrafish. By providing precise and rapidly reversible optical control of NMDA receptor subtypes, LiGluNs should help unravel the contribution of specific NMDA receptors to synaptic transmission, integration and plasticity. DOI: http://dx.doi.org/10.7554/eLife.12040.001 PMID:26929991

  4. Spatial learning and goldfish telencephalon NMDA receptors.

    PubMed

    Gómez, Yolanda; Vargas, Juan Pedro; Portavella, Manuel; López, Juan Carlos

    2006-05-01

    Recent results have demonstrated that the mammalian hippocampus and the dorso-lateral telencephalon of ray-finned fishes share functional similarities in relation to spatial memory systems. In the present study, we investigated whether the physiological mechanisms of this hippocampus-dependent spatial memory system were also similar in mammals and ray-finned fishes, and therefore possibly conserved through evolution in vertebrates. In Experiment 1, we studied the effects of the intracranial administration of the noncompetitive NMDA receptor antagonist MK-801 during the acquisition of a spatial task. The results indicated dose-dependent drug-induced impairment of spatial memory. Experiment 2 evaluated if the MK-801 produced disruption of retrieval of a learned spatial response. Data showed that the administration of MK-801 did not impair the retrieval of the information previously stored. The last experiment analyzed the involvement of the telencephalic NMDA receptors in a spatial and in a cue task. Results showed a clear impairment in spatial learning but not in cue learning when NMDA receptors were blocked. As a whole, these results indicate that physiological mechanisms of this hippocampus-dependent system could be a general feature in vertebrate, and therefore phylogenetically conserved.

  5. Nicotine impairs cyclooxygenase-2-dependent kinin-receptor-mediated murine airway relaxations

    SciTech Connect

    Xu, Yuan Cardell, Lars-Olaf

    2014-02-15

    Introduction: Cigarette smoke induces local inflammation and airway hyperreactivity. In asthmatics, it worsens the symptoms and increases the risk for exacerbation. The present study investigates the effects of nicotine on airway relaxations in isolated murine tracheal segments. Methods: Segments were cultured for 24 h in the presence of vehicle, nicotine (10 μM) and/or dexamethasone (1 μM). Airway relaxations were assessed in myographs after pre-contraction with carbachol (1 μM). Kinin receptors, cyclooxygenase (COX) and inflammatory mediator expressions were assessed by real-time PCR and confocal-microscopy-based immunohistochemistry. Results: The organ culture procedure markedly increased bradykinin- (selective B{sub 2} receptor agonist) and des-Arg{sup 9}-bradykinin- (selective B{sub 1} receptor agonist) induced relaxations, and slightly increased relaxation induced by isoprenaline, but not that induced by PGE{sub 2}. The kinin receptor mediated relaxations were epithelium-, COX-2- and EP2-receptor-dependent and accompanied by drastically enhanced mRNA levels of kinin receptors, as well as inflammatory mediators MCP-1 and iNOS. Increase in COX-2 and mPGES-1 was verified both at mRNA and protein levels. Nicotine selectively suppressed the organ-culture-enhanced relaxations induced by des-Arg{sup 9}-bradykinin and bradykinin, at the same time reducing mPGES-1 mRNA and protein expressions. α7-nicotinic acetylcholine receptor inhibitors α-bungarotoxin and MG624 both blocked the nicotine effects on kinin B{sub 2} receptors, but not those on B{sub 1}. Dexamethasone completely abolished kinin-induced relaxations. Conclusion: It is tempting to conclude that a local inflammatory process per se could have a bronchoprotective component by increasing COX-2 mediated airway relaxations and that nicotine could impede this safety mechanism. Dexamethasone further reduced airway inflammation together with relaxations. This might contribute to the steroid resistance seen in

  6. Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD)

    PubMed Central

    Okada, Yasunobu; Maeno, Emi; Shimizu, Takahiro; Dezaki, Katsuya; Wang, Jun; Morishima, Shigeru

    2001-01-01

    A fundamental property of animal cells is the ability to regulate their own cell volume. Even under hypotonic stress imposed by either decreased extracellular or increased intracellular osmolarity, the cells can re-adjust their volume after transient osmotic swelling by a mechanism known as regulatory volume decrease (RVD). In most cell types, RVD is accomplished mainly by KCl efflux induced by parallel activation of K+ and Cl− channels. We have studied the molecular mechanism of RVD in a human epithelial cell line (Intestine 407). Osmotic swelling results in a significant increase in the cytosolic Ca2+ concentration and thereby activates intermediate-conductance Ca2+-dependent K+ (IK) channels. Osmotic swelling also induces ATP release from the cells to the extracellular compartment. Released ATP stimulates purinergic ATP (P2Y2) receptors, thereby inducing phospholipase C-mediated Ca2+ mobilization. Thus, RVD is facilitated by stimulation of P2Y2 receptors due to augmentation of IK channels. In contrast, stimulation of another G protein-coupled Ca2+-sensing receptor (CaR) enhances the activity of volume-sensitive outwardly rectifying Cl− channels, thereby facilitating RVD. Therefore, it is possible that Ca2+ efflux stimulated by swelling-induced and P2Y2 receptor-mediated intracellular Ca2+ mobilization activates the CaR, thereby secondarily upregulating the volume-regulatory Cl− conductance. On the other hand, the initial process towards apoptotic cell death is coupled to normotonic cell shrinkage, called apoptotic volume decrease (AVD). Stimulation of death receptors, such as TNFα receptor and Fas, induces AVD and thereafter biochemical apoptotic events in human lymphoid (U937), human epithelial (HeLa), mouse neuroblastoma × rat glioma hybrid (NG108-15) and rat phaeochromocytoma (PC12) cells. In those cells exhibiting AVD, facilitation of RVD is always observed. Both AVD induction and RVD facilitation as well as succeeding apoptotic events can be

  7. Receptor-mediated control of regulatory volume decrease (RVD) and apoptotic volume decrease (AVD).

    PubMed

    Okada, Y; Maeno, E; Shimizu, T; Dezaki, K; Wang, J; Morishima, S

    2001-04-01

    A fundamental property of animal cells is the ability to regulate their own cell volume. Even under hypotonic stress imposed by either decreased extracellular or increased intracellular osmolarity, the cells can re-adjust their volume after transient osmotic swelling by a mechanism known as regulatory volume decrease (RVD). In most cell types, RVD is accomplished mainly by KCl efflux induced by parallel activation of K+ and Cl- channels. We have studied the molecular mechanism of RVD in a human epithelial cell line (Intestine 407). Osmotic swelling results in a significant increase in the cytosolic Ca2+ concentration and thereby activates intermediate-conductance Ca2+-dependent K+ (IK) channels. Osmotic swelling also induces ATP release from the cells to the extracellular compartment. Released ATP stimulates purinergic ATP (P2Y2) receptors, thereby inducing phospholipase C-mediated Ca2+ mobilization. Thus, RVD is facilitated by stimulation of P2Y2 receptors due to augmentation of IK channels. In contrast, stimulation of another G protein-coupled Ca2+-sensing receptor (CaR) enhances the activity of volume-sensitive outwardly rectifying Cl- channels, thereby facilitating RVD. Therefore, it is possible that Ca2+ efflux stimulated by swelling-induced and P2Y2 receptor-mediated intracellular Ca2+ mobilization activates the CaR, thereby secondarily upregulating the volume-regulatory Cl- conductance. On the other hand, the initial process towards apoptotic cell death is coupled to normotonic cell shrinkage, called apoptotic volume decrease (AVD). Stimulation of death receptors, such as TNF receptor and Fas, induces AVD and thereafter biochemical apoptotic events in human lymphoid (U937), human epithelial (HeLa), mouse neuroblastoma x rat glioma hybrid (NG108-15) and rat phaeochromocytoma (PC12) cells. In those cells exhibiting AVD, facilitation of RVD is always observed. Both AVD induction and RVD facilitation as well as succeeding apoptotic events can be abolished by

  8. Histamine H4 receptor mediates eosinophil chemotaxis with cell shape change and adhesion molecule upregulation

    PubMed Central

    Ling, Ping; Ngo, Karen; Nguyen, Steven; Thurmond, Robin L; Edwards, James P; Karlsson, Lars; Fung-Leung, Wai-Ping

    2004-01-01

    During mast cell degranulation, histamine is released in large quantities. Human eosinophils were found to express histamine H4 but not H3 receptors. The possible effects of histamine on eosinophils and the receptor mediating these effects were investigated in our studies. Histamine (0.01–30 μM) induced a rapid and transient cell shape change in human eosinophils, but had no effects on neutrophils. The maximal shape change was at 0.3 μM histamine with EC50 at 19 nM. After 60 min incubation with 1 μM histamine, eosinophils were desensitized and were refractory to shape change response upon histamine restimulation. Histamine (0.01–1 μM) also enhanced the eosinophil shape change induced by other chemokines. Histamine-induced eosinophil shape change was mediated by the H4 receptor. This effect was completely inhibited by H4 receptor-specific antagonist JNJ 7777120 (IC50 0.3 μM) and H3/H4 receptor antagonist thioperamide (IC50 1.4 μM), but not by selective H1, H2 or H3 receptor antagonists. H4 receptor agonists imetit (EC50 25 nM) and clobenpropit (EC50 72 nM) could mimic histamine effect in inducing eosinophil shape change. Histamine (0.01–100 μM) induced upregulation of adhesion molecules CD11b/CD18 (Mac-1) and CD54 (ICAM-1) on eosinophils. This effect was mediated by the H4 receptor and could be blocked by H4 receptor antagonists JNJ 7777120 and thioperamide. Histamine (0.01–10 μM) induced eosinophil chemotaxis with an EC50 of 83 nM. This effect was mediated by the H4 receptor and could be blocked by H4 receptor antagonists JNJ 7777120 (IC50 86 nM) and thioperamide (IC50 519 nM). Histamine (0.5 μM) also enhanced the eosinophil shape change induced by other chemokines. In conclusion, we have demonstrated a new mechanism of eosinophil recruitment driven by mast cells via the release of histamine. Using specific histamine receptor ligands, we have provided a definitive proof that the H4 receptor mediates eosinophil chemotaxis, cell shape change and

  9. Anti-NMDA Receptor Encephalitis in a Pregnant Woman.

    PubMed

    Kim, Jiyoung; Park, Seung Ha; Jung, Yu Ri; Park, Soon Won; Jung, Dae Soo

    2015-06-01

    Anti N-methyl-D-aspartate (NMDA) receptor encephalitis is one of the most common types of autoimmune synaptic encephalitis. Anti-NMDA receptor encephalitis commonly occurs in young women with ovarian teratoma. It has variable clinical manifestations and treatment responses. Sometimes it is misdiagnosed as a psychiatric disorder or viral encephalitis. To the best of our knowledge, anti-NMDA receptor encephalitis is a rare condition in pregnant women. We report a case of anti-NMDA receptor encephalitis in a pregnant woman who presented with abnormal behavior, epileptic seizure, and hypoventilation.

  10. H2 receptor-mediated facilitation and H3 receptor-mediated inhibition of noradrenaline release in the guinea-pig brain.

    PubMed

    Timm, J; Marr, I; Werthwein, S; Elz, S; Schunack, W; Schlicker, E

    1998-03-01

    , hippocampal or hypothalamic slices were used instead of cortical slices. The Ca2+-induced tritium overflow in guinea-pig cortex slices was inhibited by histamine (in the presence of ranitidine); this effect was abolished by clobenpropit. In slices superfused in the presence of clobenpropit, impromidine failed to facilitate the Ca2+-evoked tritium overflow. The electrically evoked tritium overflow in mouse brain cortex slices was inhibited by histamine by about 60% (both in the absence or presence of ranitidine). The inhibitory effect of histamine was abolished (but not reversed) by clobenpropit. In conclusion, noradrenaline release in the guinea-pig brain cortex is inhibited via presynaptic H3 receptors and facilitated via H2 receptors not located presynaptically. In the mouse brain cortex, only inhibitory H3 receptors occur. The extent of the H3 receptor-mediated effect is more marked in the mouse than in the guinea-pig brain cortex.

  11. Receptor-mediated uptake and transport of macromolecules in the human placenta.

    PubMed

    Schneider, Henning; Miller, Richard K

    2010-01-01

    The human placenta is required to be the anchor, the conduit and the controller during pregnancy. The survival of the baby and its associated placenta is dependent upon the placenta shielding the embryo/fetus from harm, e.g., autoimmune disease - thrombophilia, antiphospholipid syndrome or infections, while simultaneously providing for the passage of critical nutrients (e.g., amino acids, vitamins) and beneficial immunoglobulins. In a number of instances, the movements of macromolecules into and through the placenta can result in the passage of the intact molecules into the fetal circulation or in the case of proteins - catabolism to amino acids which are utilized by the placenta and the fetus for continued growth and development. The transfer of two such macromolecules, immunoglobulin G (IgG) and vitamin B12 (cyanocobalamin or B12), are examined as to the unique receptor-mediated transfer capability of the human placenta, its transfer specificity as related to specific receptors and the role of endogeneous placental proteins (trancobalamins) in facilitating the recognition and transport of specifically B12. Brief comparisons will be made to other animal species and the differences in specific organ transfer capabilities.

  12. Kainate Receptors Mediate Signaling in Both Transient and Sustained OFF Bipolar Cell Pathways in Mouse Retina

    PubMed Central

    Looger, Loren L.; Tomita, Susumu

    2014-01-01

    A fundamental question in sensory neuroscience is how parallel processing is implemented at the level of molecular and circuit mechanisms. In the retina, it has been proposed that distinct OFF cone bipolar cell types generate fast/transient and slow/sustained pathways by the differential expression of AMPA- and kainate-type glutamate receptors, respectively. However, the functional significance of these receptors in the intact circuit during light stimulation remains unclear. Here, we measured glutamate release from mouse bipolar cells by two-photon imaging of a glutamate sensor (iGluSnFR) expressed on postsynaptic amacrine and ganglion cell dendrites. In both transient and sustained OFF layers, cone-driven glutamate release from bipolar cells was blocked by antagonists to kainate receptors but not AMPA receptors. Electrophysiological recordings from bipolar and ganglion cells confirmed the essential role of kainate receptors for signaling in both transient and sustained OFF pathways. Kainate receptors mediated responses to contrast modulation up to 20 Hz. Light-evoked responses in all mouse OFF bipolar pathways depend on kainate, not AMPA, receptors. PMID:24790183

  13. Cellular mechanisms of the 5-HT7 receptor-mediated signaling

    PubMed Central

    Guseva, Daria; Wirth, Alexander; Ponimaskin, Evgeni

    2014-01-01

    Serotonin (5-hydroxytryptamine or 5-HT) is an important neurotransmitter regulating a wide range of physiological and pathological functions via activation of heterogeneously expressed 5-HT receptors. The 5-HT7 receptor is one of the most recently described members of the 5-HT receptor family. Functionally, 5-HT7 receptor is associated with a number of physiological and pathological responses, including serotonin-induced phase shifting of the circadian rhythm, control of memory as well as locomotor and exploratory activity. A large body of evidence indicates involvement of the 5-HT7 receptor in anxiety and depression, and recent studies suggest that 5-HT7 receptor can be highly relevant for the treatment of major depressive disorders. The 5-HT7 receptor is coupled to the stimulatory Gs-protein, and receptor stimulation results in activation of adenylyl cyclase (AC) leading to a rise of cAMP concentration. In addition, this receptor is coupled to the G12-protein to activate small GTPases of the Rho family. This review focuses on molecular mechanisms responsible for the 5-HT7 receptor-mediated signaling. We provide detailed overview of signaling cascades controlled and regulated by the 5-HT7 receptor and discuss the functional impact of 5-HT7 receptor for the regulation of different cellular and subcellular processes. PMID:25324743

  14. Multivalent ligand-receptor-mediated interaction of small filled vesicles with a cellular membrane

    NASA Astrophysics Data System (ADS)

    Zhdanov, Vladimir P.

    2017-07-01

    The ligand-receptor-mediated contacts of small sub-100-nm-sized lipid vesicles (or nanoparticles) with the cellular membrane are of interest in the contexts of cell-to-cell communication, endocytosis of membrane-coated virions, and drug (RNA) delivery. In all these cases, the interior of vesicles is filled by biologically relevant content. Despite the diversity of such systems, the corresponding ligand-receptor interaction possesses universal features. One of them is that the vesicle-membrane contacts can be accompanied by the redistribution of ligands and receptors between the contact and contact-free regions. In particular, the concentrations of ligands and receptors may become appreciably higher in the contact regions and their composition may there be different compared to that in the suspended state in the solution. A statistical model presented herein describes the corresponding distribution of various ligands and receptors and allows one to calculate the related change of the free energy with variation of the vesicle-engulfment extent. The results obtained are used to clarify the necessary conditions for the vesicle-assisted pathway of drug delivery.

  15. A new Kupffer cell receptor mediating plasma clearance of carcinoembryonic antigen by the rat.

    PubMed Central

    Toth, C A; Thomas, P; Broitman, S A; Zamcheck, N

    1982-01-01

    Native human carcinoembryonic antigen is rapidly removed from the circulation by the rat liver Kupffer cell after intravenous injection. The molecule is subsequently transferred to the hepatocyte in an immunologically identifiable form. Carcinoembryonic antigen has a circulatory half-life of 3.7 (+/- 0.8) min, and cellular entry is by receptor-mediated endocytosis. Non-specific fluid pinocytosis and phagocytosis can be excluded as possible mechanisms by the kinetics of clearance and failure of colloidal carbon to inhibit uptake. Substances with known affinity for the hepatic receptors for mannose, N-acetylglucosamine, fucose and galactose all fail to inhibit carcinoembryonic antigen clearance. After two cycles of the Smith degradation, carcinoembryonic antigen is still able to inhibit clearance of the native molecule. Receptor specificity is apparently not dependent on those non-reducing terminal sugars of the native molecule. Performic acid-oxidized carcinoembryonic antigen also inhibits clearance of carcinoembryonic antigen in vivo. Receptor binding is not dependent on tertiary protein conformation. Non-specific cross-reacting antigen, a glycoprotein structurally similar to carcinoembryonic antigen, is cleared by the same mechanism. PMID:6896821

  16. A new Kupffer cell receptor mediating plasma clearance of carcinoembryonic antigen by the rat.

    PubMed

    Toth, C A; Thomas, P; Broitman, S A; Zamcheck, N

    1982-05-15

    Native human carcinoembryonic antigen is rapidly removed from the circulation by the rat liver Kupffer cell after intravenous injection. The molecule is subsequently transferred to the hepatocyte in an immunologically identifiable form. Carcinoembryonic antigen has a circulatory half-life of 3.7 (+/- 0.8) min, and cellular entry is by receptor-mediated endocytosis. Non-specific fluid pinocytosis and phagocytosis can be excluded as possible mechanisms by the kinetics of clearance and failure of colloidal carbon to inhibit uptake. Substances with known affinity for the hepatic receptors for mannose, N-acetylglucosamine, fucose and galactose all fail to inhibit carcinoembryonic antigen clearance. After two cycles of the Smith degradation, carcinoembryonic antigen is still able to inhibit clearance of the native molecule. Receptor specificity is apparently not dependent on those non-reducing terminal sugars of the native molecule. Performic acid-oxidized carcinoembryonic antigen also inhibits clearance of carcinoembryonic antigen in vivo. Receptor binding is not dependent on tertiary protein conformation. Non-specific cross-reacting antigen, a glycoprotein structurally similar to carcinoembryonic antigen, is cleared by the same mechanism.

  17. Beta receptor-mediated modulation of the late positive potential in humans.

    PubMed

    de Rover, Mischa; Brown, Stephen B R E; Boot, Nathalie; Hajcak, Greg; van Noorden, Martijn S; van der Wee, Nic J A; Nieuwenhuis, Sander

    2012-02-01

    Electrophysiological studies have identified a scalp potential, the late positive potential (LPP), which is modulated by the emotional intensity of observed stimuli. Previous work has shown that the LPP reflects the modulation of activity in extrastriate visual cortical structures, but little is known about the source of that modulation. The present study investigated whether beta-adrenergic receptors are involved in the generation of the LPP. We used a genetic individual differences approach (experiment 1) and a pharmacological manipulation (experiment 2) to test the hypothesis that the LPP is modulated by the activation of β-adrenergic receptors. In experiment 1, we found that LPP amplitude depends on allelic variation in the β1-receptor gene polymorphism. In experiment 2, we found that LPP amplitude was modulated by the β-blocker propranolol in a direction dependent on subjects' level of trait anxiety: In participants with lower trait anxiety, propranolol led to a (nonsignificant) decrease in the LPP modulation; in participants with higher trait anxiety, propranolol increased the emotion-related LPP modulation. These results provide initial support for the hypothesis that the LPP reflects the downstream effects, in visual cortical areas, of β-receptor-mediated activation of the amygdala.

  18. Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons.

    PubMed

    Paternain, A V; Morales, M; Lerma, J

    1995-01-01

    Although both protein and mRNAs for kainate receptor subunits are abundant in several brain regions, the responsiveness of AMPA receptors to kainate has made it difficult to demonstrate the presence of functional kainate-type receptors in native cells. Recently, however, we have shown that many hippocampal neurons in culture express glutamate receptors of the kainate type. The large nondesensitizing response that kainate induces at AMPA receptors precludes detection and analysis of smaller, rapidly desensitizing currents induced by kainate at kainate receptors. Consequently, the functional significance of these strongly desensitizing glutamate receptors remains enigmatic. We report here that the family of new noncompetitive antagonists of AMPA receptors (GYKI 52466 and 53655) minimally affects kainate-induced responses at kainate receptors while completely blocking AMPA receptor-mediated currents, making it possible to separate the responses mediated by each receptor. These compounds will allow determination of the role played by kainate receptors in synaptic transmission and plasticity in the mammalian brain, as well as evaluation of their involvement in neurotoxicity.

  19. Muscarinic receptor-mediated inositol tetrakisphosphate response in bovine adrenal chromaffin cells

    SciTech Connect

    Sanborn, B.B.; Schneider, A.S. )

    1990-01-01

    Inositol trisphosphate (IP{sub 3}), a product of the phosphoinositide cycle, mobilizes intracellular Ca{sup 2+} in many cell types. New evidence suggests that inositol tetrakisphosphate (IP{sub 4}), an IP{sub 3} derivative, may act as another second messenger to further alter calcium homeostasis. However, the function and mechanism of action of IP{sub 4} are presently unresolved. We now report evidence of muscarinic receptor-mediated accumulation of IP{sub 4} in bovine adrenal chromaffin cells, a classic neurosecretory system in which calcium movements have been well studied. Muscarine stimulated an increase in ({sup 3}H)IP{sub 4} and ({sup 3}H)IP{sub 3} accumulation in chromaffin cells and this effect was completely blocked by atropine. ({sup 3}H)IP{sub 4} accumulation was detectable within 15 sec, increased to a maximum by 30 sec and thereafter declined. 2,3-diphosphoglycerate, an inhibitor of IP{sub 3} and IP{sub 4} hydrolysis, enhanced accumulation of these inositol polyphosphates. The results provide the first evidence of a rapid inositol tetrakisphosphate response in adrenal chromaffin cells, which should facilitate the future resolution of the relationship between IP{sub 4} and calcium homeostasis.

  20. Substance P selectively modulates GABA(A) receptor-mediated synaptic transmission in striatal cholinergic interneurons.

    PubMed

    Govindaiah, G; Wang, Yanyan; Cox, Charles L

    2010-02-01

    Substance P (SP) is co-localized and co-released with gamma-amino butyric acid (GABA) from approximately 50% of GABAergic medium spiny neurons (MSNs) in the striatum. MSNs innervate several cellular targets including neighboring MSNs and cholinergic interneurons via collaterals. However, the functional role of SP release onto striatal interneurons is unknown. Here we examined SP-mediated actions on inhibitory synaptic transmission in cholinergic interneurons using whole-cell recordings in mouse corticostriatal slices. We found that SP selectively suppressed GABA(A) receptor-mediated inhibitory post-synaptic currents (IPSCs), but not excitatory post-synaptic currents (EPSCs) in cholinergic interneurons. In contrast, SP did not alter IPSCs in fast-spiking interneurons and MSNs. SP suppressed IPSC amplitude in a concentration-dependent and reversible manner, and the NK1 receptor antagonist RP67580 attenuated the SP-mediated suppression. In addition, RP67580 alone enhanced the evoked IPSC amplitude in cholinergic interneurons, suggesting an endogenous action of SP on regulation of inhibitory synaptic transmission. SP did not alter the paired-pulse ratio, but reduced the amplitudes of GABA(A) agonist muscimol-induced outward currents and miniature IPSCs in cholinergic interneurons, suggesting SP exerts its effects primarily at the post-synaptic site. Our results indicate that the physiological effects of SP are to enhance the activity of striatal cholinergic interneurons and provide a rationale for designing potential new antiparkinsonian agents.

  1. Cloned M1 muscarinic receptors mediate both adenylate cyclase inhibition and phosphoinositide turnover.

    PubMed Central

    Stein, R; Pinkas-Kramarski, R; Sokolovsky, M

    1988-01-01

    The rat M1 muscarinic receptor gene was cloned and expressed in a rat cell line lacking endogenous muscarinic receptors. Assignment of the cloned receptors to the M1 class was pharmacologically confirmed by their high affinity for the M1-selective muscarinic antagonist pirenzepine and low affinity for the M2-selective antagonist AF-DX-116. Guanylyl imidodiphosphate [Gpp(NH)p] converted agonist binding sites on the receptor, from high-affinity to the low-affinity state, thus indicating that the cloned receptors couple to endogenous G-proteins. The cloned receptors mediated both adenylate cyclase inhibition and phosphoinositide hydrolysis, but by different mechanisms. Pertussis toxin blocked the inhibition of adenylate cyclase (indicating coupling of the receptor to inhibitory G-protein), but did not affect phosphoinositide turnover. Furthermore, the stimulation of phosphoinositide hydrolysis was less efficient than the inhibition of adenylate cyclase. These findings demonstrate that cloned M1 receptors are capable of mediating multiple responses in the cell by coupling to different effectors, possibly to different G-proteins. Images PMID:2846274

  2. Fluid shear stress sensitizes cancer cells to receptor-mediated apoptosis via trimeric death receptors

    NASA Astrophysics Data System (ADS)

    Mitchell, Michael J.; King, Michael R.

    2013-01-01

    Cancer metastasis, the process of cancer cell migration from a primary to distal location, typically leads to a poor patient prognosis. Hematogenous metastasis is initiated by intravasation of circulating tumor cells (CTCs) into the bloodstream, which are then believed to adhere to the luminal surface of the endothelium and extravasate into distal locations. Apoptotic agents such as tumor necrosis factor apoptosis-inducing ligand (TRAIL), whether in soluble ligand form or expressed on the surface of natural killer cells, have shown promise in treating CTCs to reduce the probability of metastasis. The role of hemodynamic shear forces in altering the cancer cell response to apoptotic agents has not been previously investigated. Here, we report that human colon cancer COLO 205 and prostate cancer PC-3 cells exposed to a uniform fluid shear stress in a cone-and-plate viscometer become sensitized to TRAIL-induced apoptosis. Shear-induced sensitization directly correlates with the application of fluid shear stress, and TRAIL-induced apoptosis increases in a fluid shear stress force- and time-dependent manner. In contrast, TRAIL-induced necrosis is not affected by the application fluid shear stress. Interestingly, fluid shear stress does not sensitize cancer cells to apoptosis when treated with doxorubicin, which also induces apoptosis in cancer cells. Caspase inhibition experiments reveal that shear stress-induced sensitization to TRAIL occurs via caspase-dependent apoptosis. These results suggest that physiological fluid shear forces can modulate receptor-mediated apoptosis of cancer cells in the presence of apoptotic agents.

  3. Internalisation of the bleomycin molecules responsible for bleomycin toxicity: a receptor-mediated endocytosis mechanism.

    PubMed

    Pron, G; Mahrour, N; Orlowski, S; Tounekti, O; Poddevin, B; Belehradek, J; Mir, L M

    1999-01-01

    Bleomycin (BLM) does not diffuse through the plasma membrane but nevertheless displays cytotoxic activity due to DNA break generation. The aim of the study was to describe the mechanism of BLM internalisation. We previously provided evidence for the existence of BLM-binding sites at the surface of DC-3F Chinese hamster fibroblasts, as well as of their involvement in BLM cytotoxicity on DC-3F cells and related BLM-resistant sublines. Here we report that A253 human cells and their BLM-resistant subline C-10E also possessed a membrane protein of ca. 250 kDa specifically binding BLM. Part of this C-10E cell resistance could be explained by a decrease in the number of BLM-binding sites exposed at the cell surface with respect to A253 cells. The comparison between A253 and DC-3F cells exposing a similar number of BLM-binding sites revealed that the faster the fluid phase endocytosis, the greater the cell sensitivity to BLM. Moreover, the experimental modification of endocytotic vesicle size showed that BLM cytotoxicity was directly correlated with the flux of plasma membrane area engulfed during endocytosis rather than with the fluid phase volume incorporated. Thus, BLM would be internalised by a receptor-mediated endocytosis mechanism which would first require BLM binding to its membrane receptor and then the transfer of the complex into intracellular endocytotic vesicles, followed by BLM entry into the cytosol, probably from a nonacidic compartment.

  4. Optimization of stress response through the nuclear receptor-mediated cortisol signalling network

    PubMed Central

    Kolodkin, Alexey; Sahin, Nilgun; Phillips, Anna; Hood, Steve R.; Bruggeman, Frank J.; Westerhoff, Hans V.; Plant, Nick

    2013-01-01

    It is an accepted paradigm that extended stress predisposes an individual to pathophysiology. However, the biological adaptations to minimize this risk are poorly understood. Using a computational model based upon realistic kinetic parameters we are able to reproduce the interaction of the stress hormone cortisol with its two nuclear receptors, the high-affinity glucocorticoid receptor and the low-affinity pregnane X-receptor. We demonstrate that regulatory signals between these two nuclear receptors are necessary to optimize the body’s response to stress episodes, attenuating both the magnitude and duration of the biological response. In addition, we predict that the activation of pregnane X-receptor by multiple, low-affinity endobiotic ligands is necessary for the significant pregnane X-receptor-mediated transcriptional response observed following stress episodes. This integration allows responses mediated through both the high and low-affinity nuclear receptors, which we predict is an important strategy to minimize the risk of disease from chronic stress. PMID:23653204

  5. M2-like macrophages are responsible for collagen degradation through a mannose receptor-mediated pathway.

    PubMed

    Madsen, Daniel H; Leonard, Daniel; Masedunskas, Andrius; Moyer, Amanda; Jürgensen, Henrik Jessen; Peters, Diane E; Amornphimoltham, Panomwat; Selvaraj, Arul; Yamada, Susan S; Brenner, David A; Burgdorf, Sven; Engelholm, Lars H; Behrendt, Niels; Holmbeck, Kenn; Weigert, Roberto; Bugge, Thomas H

    2013-09-16

    Tissue remodeling processes critically depend on the timely removal and remodeling of preexisting collagen scaffolds. Nevertheless, many aspects related to the turnover of this abundant extracellular matrix component in vivo are still incompletely understood. We therefore took advantage of recent advances in optical imaging to develop an assay to visualize collagen turnover in situ and identify cell types and molecules involved in this process. Collagen introduced into the dermis of mice underwent cellular endocytosis in a partially matrix metalloproteinase-dependent manner and was subsequently routed to lysosomes for complete degradation. Collagen uptake was predominantly executed by a quantitatively minor population of M2-like macrophages, whereas more abundant Col1a1-expressing fibroblasts and Cx3cr1-expressing macrophages internalized collagen at lower levels. Genetic ablation of the collagen receptors mannose receptor (Mrc1) and urokinase plasminogen activator receptor-associated protein (Endo180 and Mrc2) impaired this intracellular collagen degradation pathway. This study demonstrates the importance of receptor-mediated cellular uptake to collagen turnover in vivo and identifies a key role of M2-like macrophages in this process.

  6. Endothelial adenosine A2a receptor-mediated glycolysis is essential for pathological retinal angiogenesis.

    PubMed

    Liu, Zhiping; Yan, Siyuan; Wang, Jiaojiao; Xu, Yiming; Wang, Yong; Zhang, Shuya; Xu, Xizhen; Yang, Qiuhua; Zeng, Xianqiu; Zhou, Yaqi; Gu, Xuejiao; Lu, Sarah; Fu, Zhongjie; Fulton, David J; Weintraub, Neal L; Caldwell, Ruth B; Zhang, Wenbo; Wu, Chaodong; Liu, Xiao-Ling; Chen, Jiang-Fan; Ahmad, Aftab; Kaddour-Djebbar, Ismail; Al-Shabrawey, Mohamed; Li, Qinkai; Jiang, Xuejun; Sun, Ye; Sodhi, Akrit; Smith, Lois; Hong, Mei; Huo, Yuqing

    2017-09-19

    Adenosine/adenosine receptor-mediated signaling has been implicated in the development of various ischemic diseases, including ischemic retinopathies. Here, we show that the adenosine A2a receptor (ADORA2A) promotes hypoxia-inducible transcription factor-1 (HIF-1)-dependent endothelial cell glycolysis, which is crucial for pathological angiogenesis in proliferative retinopathies. Adora2a expression is markedly increased in the retina of mice with oxygen-induced retinopathy (OIR). Endothelial cell-specific, but not macrophage-specific Adora2a deletion decreases key glycolytic enzymes and reduces pathological neovascularization in the OIR mice. In human primary retinal microvascular endothelial cells, hypoxia induces the expression of ADORA2A by activating HIF-2α. ADORA2A knockdown decreases hypoxia-induced glycolytic enzyme expression, glycolytic flux, and endothelial cell proliferation, sprouting and tubule formation. Mechanistically, ADORA2A activation promotes the transcriptional induction of glycolytic enzymes via ERK- and Akt-dependent translational activation of HIF-1α protein. Taken together, these findings advance translation of ADORA2A as a therapeutic target in the treatment of proliferative retinopathies and other diseases dependent on pathological angiogenesis.Pathological angiogenesis in the retina is a major cause of blindness. Here the authors show that adenosine receptor A2A drives pathological angiogenesis in the oxygen-induced retinopathy mouse model by promoting glycolysis in endothelial cells via the ERK/Akt/HIF-1α pathway, thereby suggesting new therapeutic targets for disease treatment.

  7. MAGI-1 acts as a scaffolding molecule for NGF receptor-mediated signaling pathway.

    PubMed

    Ito, Hidenori; Morishita, Rika; Iwamoto, Ikuko; Mizuno, Makoto; Nagata, Koh-ichi

    2013-10-01

    We have recently found that the membrane-associated guanylate kinase with inverted organization-1 (MAGI-1) was enriched in rat nervous tissues such as the glomeruli in olfactory bulb of adult rats and dorsal root entry zone in spinal cord of embryonic rats. In addition, we revealed the localization of MAGI-1 in the growth cone of the primary cultured rat dorsal root ganglion cells. These results point out the possibility that MAGI-1 is involved in the regulation of neurite extension or guidance. In this study, we attempted to reveal the physiological role(s) of MAGI-1 in neurite extension. We found that RNA interference (RNAi)-mediated knockdown of MAGI-1 caused inhibition of nerve growth factor (NGF)-induced neurite outgrowth in PC12 rat pheochromocytoma cells. To clarify the involvement of MAGI-1 in NGF-mediated signal pathway, we tried to identify binding partners for MAGI-1 and identified p75 neurotrophin receptor (p75NTR), a low affinity NGF receptor, and Shc, a phosphotyrosine-binding adaptor. These three proteins formed an immunocomplex in PC12 cells. Knockdown as well as overexpression of MAGI-1 caused suppression of NGF-stimulated activation of the Shc-ERK pathway, which is supposed to play important roles in neurite outgrowth of PC12 cells. These results indicate that MAGI-1 may act as a scaffolding molecule for NGF receptor-mediated signaling pathway.

  8. Cell receptors: definition, mechanisms and regulation of receptor-mediated endocytosis.

    PubMed

    Féger, J; Gil-Falgon, S; Lamaze, C

    1994-12-01

    Receptors allow the cells to recognize specific ligands and to receive extracellular messages. They can be classified into five families: 1) receptors for lipidic or lipophilic ligands; 2) the seven transmembrane receptors which mediate their messages by transduction through the activation of G-proteins, effectors and second messengers to amplify the response; 3) receptors which present an enzymatic activity on their transmembrane domains; 4) channel-receptors, transmembrane oligomeric molecules which let ions flow into the cell and 5) receptors which role is to internalize ligands, whatever their various functions. In parallel a concept of membrane plasticity was developed: vesicles are constantly formed from the plasma membrane, addressing complexes of ligand-receptors to specific intracellular compartments. This receptor-mediated endocytosis of ligand plays a critical role in regulating the number of a given receptor at the plasma membrane and in the cellular uptake of nutrients, growth factors and hormones. Many pathways exist for these transports but little is known about the signals which select the ligands or the receptors and direct them to their appropriate intracellular destination.

  9. The effect of vanadate on receptor-mediated endocytosis of asialoorosomucoid in rat liver parenchymal cells

    SciTech Connect

    Kindberg, G.M.; Gudmundsen, O.; Berg, T. )

    1990-06-05

    Vanadate is a phosphate analogue that inhibits enzymes involved in phosphate release and transfer reactions. Since such reactions may play important roles in endocytosis, we studied the effects of vanadate on various steps in receptor-mediated endocytosis of asialoorosomucoid labeled with 125I-tyramine-cellobiose (125I-TC-AOM). The labeled degradation products formed from 125I-TC-AOM are trapped in the lysosomes and may therefore serve as lysosomal markers in subcellular fractionation studies. Vanadate reduced the amount of active surface asialoglycoprotein receptors approximately 70%, but had no effect on the rate of internalization and retroendocytosis of ligand. The amount of surface asialoglycoprotein receptors can be reduced by lowering the incubation temperature gradually from 37 to 15 degrees C; vanadate affected only the temperature--sensitive receptors. Vanadate inhibited degradation of 125I-TC-AOM 70-80%. Degradation was much more sensitive to vanadate than binding; half-maximal effects were seen at approximately 1 mM vanadate for binding and approximately 0.1 mM vanadate for degradation. By subcellular fractionation in sucrose and Nycodenz gradients, it was shown that vanadate completely prevented the transfer of 125I-TC-AOM from endosomes to lysosomes. Therefore, the inhibition of degradation by vanadate was indirect; in the presence of vanadate, ligand did not gain access to the lysosomes. The limited degradation in the presence of vanadate took place in a prelysosomal compartment. Vanadate did not affect cell viability and ATP content.

  10. FLIP ing the coin? Death receptor-mediated signals during skin tumorigenesis.

    PubMed

    Leverkus, Martin; Diessenbacher, Philip; Geserick, Peter

    2008-07-01

    Keratinocyte skin cancer is a multi-step process, during which a number of obstacles have to be overcome by the tumor cell to allow the development of a manifest tumor. Beside proliferation and immortality, apoptosis resistance is one additional and critical step during skin carcinogenesis. Over the past two decades, much has been learned about the prototypical membrane-bound inducers of apoptosis, namely the death receptors and their ligands, and the apoptosis signalling pathways activated by death receptors have been elucidated in great detail. In contrast, much less is known about the tissue-specific role of the death receptor/ligands systems during the development of skin cancer. Here, we summarize and discuss the role of this intriguing receptor family and the potential mechanistical impact of the intracellular caspase-8 inhibitor cFLIP for keratinocyte skin cancer. Given more recent data about cFLIP and its isoforms, a more complex regulatory role of cFLIP can be suspected. Indeed, cFLIP may not solely interfere with death receptor-mediated apoptosis signalling pathways, but may positively or negatively influence other, potential harmful signalling pathways such as the production of inflammatory cytokines, tumor cell migration or the activation of transcription factors such as NF-kappaB, considered crucial during skin tumorigenesis. In this respect, cFLIP may act to 'FLIP the coin' during the development of keratinocyte skin cancer.

  11. Receptor-mediated transcytosis: a mechanism for active extravascular transport of nanoparticles in solid tumors.

    PubMed

    Lu, Wei; Xiong, Chiyi; Zhang, Rui; Shi, Lifang; Huang, Miao; Zhang, Guodong; Song, Shaoli; Huang, Qian; Liu, Gang-Yu; Li, Chun

    2012-08-10

    Targeted nanoparticle-based delivery systems have been used extensively to develop effective cancer theranostics. However, how targeting ligands affect extravascular transport of nanoparticles in solid tumors remains unclear. Here, we show, using B16/F10 melanoma cells expressing melanocortin type-1 receptor (MC1R), that the nature of targeting ligands, i.e., whether they are agonists or antagonists, directs tumor uptake and intratumoral distribution after extravasation of nanoparticles from tumor vessels into the extravascular fluid space. Pegylated hollow gold nanospheres (HAuNS, diameter=40 nm) coated with MC1R agonist are internalized upon ligand-receptor binding, whereas MC1R antagonist-conjugated HAuNS remain attached on the cell surface. Transcellular transport of agonist-conjugated HAuNS was confirmed by a multilayer tumor cell model and by transmission electron microscopy. MC1R agonist- but not MC1R antagonist-conjugated nanoparticles exhibit significantly higher tumor uptake than nontargeted HAuNS and are quickly dispersed from tumor vessels via receptor-mediated endocytosis and subsequent transcytosis. These results confirm an active transport mechanism that can be used to overcome one of the major biological barriers for efficient nanoparticle delivery to solid tumors. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Hormone stimulation of androgen receptor mediates dynamic changes in DNA methylation patterns at regulatory elements

    PubMed Central

    Dhiman, Vineet K.; Attwood, Kristopher; Campbell, Moray J.; Smiraglia, Dominic J.

    2015-01-01

    DNA methylation is an epigenetic modification that contributes to stable gene silencing by interfering with the ability of transcriptional regulators to bind to DNA. Recent findings have revealed that hormone stimulation of certain nuclear receptors induces rapid, dynamic changes in DNA methylation patterns alongside transcriptional responses at a subset of target loci, over time. However, the ability of androgen receptor (AR) to dynamically regulate gene transcription is relatively under-studied and its role in the regulation of DNA methylation patterns remains to be elucidated. Here we demonstrate in normal prostate cells that hormone stimulated AR activity results in dynamic changes in the transcription rate and DNA methylation patterns at the AR target genes, TIPARP and SGK1. Time-resolved chromatin immunoprecipitation experiments on the SGK1 locus reveals dynamic recruitment of AR and RNA Polymerase II, as well as the recruitment of proteins involved in the DNA demethylation process, TET1 and TDG. Furthermore, the presence of DNA methylation at dynamic regions inhibits protein binding and transcriptional activity of SGK1. These findings establish AR activity as a contributing factor to the dynamic regulation of DNA methylation patterns at target genes in prostate biology and infer further complexity involved in nuclear receptor mediation of transcriptional regulation. PMID:26646795

  13. Spinal GABA receptors mediate the suppressive effect of electroacupuncture on cold allodynia in rats.

    PubMed

    Park, Jung-Hyun; Han, Jae-Bok; Kim, Sun-Kwang; Park, Jung-Hyuk; Go, Dong-Hyun; Sun, Boram; Min, Byung-Il

    2010-03-31

    This study was performed to determine whether spinal GABAergic systems mediate the relieving effects of low frequency electroacupuncture (EA) on cold allodynia in a rat tail model of neuropathic pain. For neuropathic surgery, the right superior caudal trunk was resected at the level between the S1 and S2 spinal nerves innervating the tail. Two weeks after the nerve injury, the intrathecal catheter was implanted. Five days after the catheterization, rats were intrathecally injected with gabazine (GABA(A) receptor antagonist, 0.0003, 0.001 or 0.003mug), or saclofen (GABA(B) receptor antagonist, 3, 10 or 30mug). Ten minutes after the injection, EA (2Hz) was applied to the ST36 acupoint for 30min. The cold allodynia was assessed by the tail immersion test (i.e. immersing the tail in cold (4 degrees C) water and measuring the latency of an abrupt tail movement) before and after the EA treatment. EA stimulation at ST36 significantly inhibited the cold allodynia sign, whereas EA at non-acupoint and plain acupuncture at ST36 (without electrical stimulation) did not show antiallodynic effects. Intrathecal administration of gabazine or saclofen blocked the relieving effects of ST36 EA stimulation on cold allodynia. These results suggest that spinal GABA(A) and GABA(B) receptors mediate the suppressive effect of low frequency EA on cold allodynia in the tail neuropathic rats.

  14. Receptor-Mediated Entry of Pristine Octahedral DNA Nanocages in Mammalian Cells.

    PubMed

    Vindigni, Giulia; Raniolo, Sofia; Ottaviani, Alessio; Falconi, Mattia; Franch, Oskar; Knudsen, Birgitta R; Desideri, Alessandro; Biocca, Silvia

    2016-06-28

    DNA offers excellent programming properties for the generation of nanometer-scaled polyhedral structures with a broad variety of potential applications. Translation to biomedical applications requires improving stability in biological fluids, efficient and selective cell binding, and/or internalization of the assembled DNA nanostructures. Here, we report an investigation on the selective mechanism of cellular uptake of pristine DNA nanocages in cells expressing the receptor "oxidized low-density lipoprotein receptor-1" (LOX-1), a scavenger receptor associated with cardiovascular diseases and, more recently, identified as a tumor marker. For this purpose a truncated octahedral DNA nanocage functionalized with a single biotin molecule, which allows DNA cage detection through the biotin-streptavidin assays, was constructed. The results indicate that DNA nanocages are stable in biological fluids, including human serum, and are selectively bound and very efficiently internalized in vesicles only in LOX-1-expressing cells. The amount of internalized cages is 30 times higher in LOX-1-expressing cells than in normal fibroblasts, indicating that the receptor-mediated uptake of pristine DNA nanocages can be pursued for a selective cellular internalization. These results open the route for a therapeutic use of pristine DNA cages targeting LOX-1-overexpressing tumor cells.

  15. Accumbens shell AMPA receptors mediate expression of extinguished reward seeking through interactions with basolateral amygdala.

    PubMed

    Millan, E Zayra; McNally, Gavan P

    2011-07-01

    Extinction is the reduction in drug seeking when the contingency between drug seeking behavior and the delivery of drug reward is broken. Here, we investigated a role for the nucleus accumbens shell (AcbSh). Rats were trained to respond for 4% (v/v) alcoholic beer in one context (Context A) followed by extinction in a second context (Context B). Rats were subsequently tested in the training context, A (ABA), or the extinction context, B (ABB). Pre-test injections of the glutamate AMPA receptor antagonist, NBQX (1 µg) into AcbSh had no effect on renewal of alcoholic beer seeking when rats were returned to the training context (ABA). However, NBQX increased responding when rats were tested in the extinction context (ABB). In a second experiment, rats received training, extinction, and test in the same context. Pre-test injections of NBQX (0, 0.3, and 1 µg) into the AcbSh dose-dependently attenuated expression of extinction. We also found that NBQX in the AcbSh had no effect on initial acquisition of extinction or the motivation to respond for reward as measured by break point on a progressive ratio schedule. Finally, we show that pharmacological disconnection of a basolateral amygdala (BLA) → AcbSh pathway via NBQX in AcbSh combined with reversible inactivation of the contralateral BLA attenuates expression of extinction. Together, these results suggest that AcbSh AMPA receptors mediate expression of extinguished reward seeking through glutamatergic inputs from the BLA.

  16. Cellular mechanisms of the 5-HT7 receptor-mediated signaling.

    PubMed

    Guseva, Daria; Wirth, Alexander; Ponimaskin, Evgeni

    2014-01-01

    Serotonin (5-hydroxytryptamine or 5-HT) is an important neurotransmitter regulating a wide range of physiological and pathological functions via activation of heterogeneously expressed 5-HT receptors. The 5-HT7 receptor is one of the most recently described members of the 5-HT receptor family. Functionally, 5-HT7 receptor is associated with a number of physiological and pathological responses, including serotonin-induced phase shifting of the circadian rhythm, control of memory as well as locomotor and exploratory activity. A large body of evidence indicates involvement of the 5-HT7 receptor in anxiety and depression, and recent studies suggest that 5-HT7 receptor can be highly relevant for the treatment of major depressive disorders. The 5-HT7 receptor is coupled to the stimulatory Gs-protein, and receptor stimulation results in activation of adenylyl cyclase (AC) leading to a rise of cAMP concentration. In addition, this receptor is coupled to the G12-protein to activate small GTPases of the Rho family. This review focuses on molecular mechanisms responsible for the 5-HT7 receptor-mediated signaling. We provide detailed overview of signaling cascades controlled and regulated by the 5-HT7 receptor and discuss the functional impact of 5-HT7 receptor for the regulation of different cellular and subcellular processes.

  17. Low temperature blocks fluid-phase pinocytosis and receptor-mediated endocytosis in Trypanosoma cruzi epimastigotes.

    PubMed

    de Figueiredo, R C; Soares, M J

    2000-05-01

    Gold-labeled albumin and transferrin were used to follow at the ultrastructural level the early events and the effect of low temperature on protein uptake by Trypanosoma cruzi epimastigotes. In parasites incubated for 5 min at 28 degrees C with protein-gold complexes, extracellular markers were found only at the cytostome and/or the flagellar pocket regions, whereas intracellular gold particles were detected inside small uncoated vesicles located nearby. Within 10 min, labeling was also observed in uncoated vesicles close to the nucleus. Only after 30 min could the tracers be detected in the reservosomes. Weak labeling in the cytostome and flagellar pocket of parasites incubated at 4 degrees C with the albumin-gold solution indicated that albumin uptake occurred by fluid-phase pinocytosis. On the other hand, intense labeling at the cytostome was observed in parasites incubated at 4 degrees C with gold-labeled transferrin, showing that receptor-mediated endocytosis occurs mainly at this site. Both proteins were absent from the cells at 4 degrees C and 12 degrees C. Raising the temperature from 12 degrees C to 28 degrees C led to transferrin labeling in intracellular vesicles dispersed throughout the cytoplasm, but not in reservosomes. Our results suggest that low temperatures affect the transport and pinching of endocytic vesicles as well as the rate of delivery of transferrin to reservosomes.

  18. Receptor mediated endocytosis of vicilin in Callosobruchus maculatus (Coleoptera: Chrysomelidae) larval midgut epithelial cells.

    PubMed

    Kunz, Daniele; Oliveira, Gabriel B; Uchôa, Adriana F; Samuels, Richard I; Macedo, Maria Lígia R; Silva, Carlos P

    2017-08-01

    The transport of proteins across the intestinal epithelium of insects is still not well understood. There is evidence that vicilin, a major storage protein of cowpea seeds (Vigna unguiculata), is internalized in larvae of the seed-beetle Callosobruchus maculatus. It has been reported that this vicilin interacts with proteins present in the microvillar membranes of columnar cells along the digestive tract of the larvae. In the present work, we studied the cellular pathway involved in endocytosis of vicilin in larval C. maculatus by employing ex vivo experiments. In the ex vivo approach, we incubated FITC-labelled vicilin with isolated midgut wholemounts in the absence or in the presence of endocytosis inhibitors. The fate of labelled or non-labelled globulins was monitored by confocal microscopy and fluorescence measurement. Our results suggest that the internalization of vicilins is due to receptor-mediated endocytosis. Here we report the identity of a microvillar vicilin-binding protein that was purified using affinity chromatography on a vicilin-sepharose column. The putative vicilin receptor showed high homology to proteins with the CRAL-TRIO domain, specifically the Sec14 superfamily member α-tocopherol transfer protein. The precise mechanism involved in vicilin internalization was defined through the use of specific inhibitors of the endocytosis pathway. The inhibitors filipin III and nystatin significantly inhibited the endocytosis of vicilin, while chlorpromazine and phenylarsine oxide had a much lower effect on endocytosis, suggesting that the endocytic pathway is predominantly mediated by caveolin. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Killing of intracellular Mycobacterium tuberculosis by receptor-mediated drug delivery

    SciTech Connect

    Majumdar, S.; Basu, S.K. )

    1991-01-01

    p-Aminosalicylic acid (PAS) conjugated to maleylated bovine serum albumin (MBSA) was taken up efficiently through high-affinity MBSA-binding sites on macrophages. Binding of the radiolabeled conjugate to cultured mouse peritoneal macrophages at 4 degrees C was competed for by MBSA but not by PAS. At 37 degrees C, the radiolabeled conjugate was rapidly degraded by the macrophages, leading to release of acid-soluble degradation products in the medium. The drug conjugate was nearly 100 times as effective as free PAS in killing the intracellular mycobacteria in mouse peritoneal macrophages infected in culture with Mycobacterium tuberculosis. The killing of intracellular mycobacteria mediated by the drug conjugate was effectively prevented by simultaneous addition of excess MBSA (100 micrograms/ml) or chloroquine (3 microM) to the medium, whereas these agents did not affect the microbicidal action of free PAS. These results suggest that (i) uptake of the PAS-MBSA conjugate was mediated by cell surface receptors on macrophages which recognize MBSA and (ii) lysosomal hydrolysis of the internalized conjugate resulted in intracellular release of a pharmacologically active form of the drug, which led to selective killing of the M. tuberculosis harbored by mouse macrophages infected in culture. This receptor-mediated modality of delivering drugs to macrophages could contribute to greater therapeutic efficacy and minimization of toxic side effects in the management of tuberculosis and other intracellular mycobacterial infections.

  20. Lactate modulates the activity of primary cortical neurons through a receptor-mediated pathway.

    PubMed

    Bozzo, Luigi; Puyal, Julien; Chatton, Jean-Yves

    2013-01-01

    Lactate is increasingly described as an energy substrate of the brain. Beside this still debated metabolic role, lactate may have other effects on brain cells. Here, we describe lactate as a neuromodulator, able to influence the activity of cortical neurons. Neuronal excitability of mouse primary neurons was monitored by calcium imaging. When applied in conjunction with glucose, lactate induced a decrease in the spontaneous calcium spiking frequency of neurons. The effect was reversible and concentration dependent (IC50 ∼4.2 mM). To test whether lactate effects are dependent on energy metabolism, we applied the closely related substrate pyruvate (5 mM) or switched to different glucose concentrations (0.5 or 10 mM). None of these conditions reproduced the effect of lactate. Recently, a Gi protein-coupled receptor for lactate called HCA1 has been introduced. To test if this receptor is implicated in the observed lactate sensitivity, we incubated cells with pertussis toxin (PTX) an inhibitor of Gi-protein. PTX prevented the decrease of neuronal activity by L-lactate. Moreover 3,5-dyhydroxybenzoic acid, a specific agonist of the HCA1 receptor, mimicked the action of lactate. This study indicates that lactate operates a negative feedback on neuronal activity by a receptor-mediated mechanism, independent from its intracellular metabolism.

  1. Lactate Modulates the Activity of Primary Cortical Neurons through a Receptor-Mediated Pathway

    PubMed Central

    Bozzo, Luigi; Puyal, Julien; Chatton, Jean-Yves

    2013-01-01

    Lactate is increasingly described as an energy substrate of the brain. Beside this still debated metabolic role, lactate may have other effects on brain cells. Here, we describe lactate as a neuromodulator, able to influence the activity of cortical neurons. Neuronal excitability of mouse primary neurons was monitored by calcium imaging. When applied in conjunction with glucose, lactate induced a decrease in the spontaneous calcium spiking frequency of neurons. The effect was reversible and concentration dependent (IC50 ∼4.2 mM). To test whether lactate effects are dependent on energy metabolism, we applied the closely related substrate pyruvate (5 mM) or switched to different glucose concentrations (0.5 or 10 mM). None of these conditions reproduced the effect of lactate. Recently, a Gi protein-coupled receptor for lactate called HCA1 has been introduced. To test if this receptor is implicated in the observed lactate sensitivity, we incubated cells with pertussis toxin (PTX) an inhibitor of Gi-protein. PTX prevented the decrease of neuronal activity by L-lactate. Moreover 3,5-dyhydroxybenzoic acid, a specific agonist of the HCA1 receptor, mimicked the action of lactate. This study indicates that lactate operates a negative feedback on neuronal activity by a receptor-mediated mechanism, independent from its intracellular metabolism. PMID:23951229

  2. Activation of D1 dopamine receptors induces emergence from isoflurane general anesthesia

    PubMed Central

    Taylor, Norman E.; Chemali, Jessica J.; Brown, Emery N.; Solt, Ken

    2012-01-01

    BACKGROUND A recent study showed that methylphenidate induces emergence from isoflurane anesthesia. Methylphenidate inhibits dopamine and norepinephrine reuptake transporters. The objective of this study was to test the hypothesis that selective dopamine receptor activation induces emergence from isoflurane anesthesia. METHODS In adult rats, we tested the effects of chloro-APB (D1 agonist) and quinpirole (D2 agonist) on time to emergence from isoflurane general anesthesia. We then performed a dose–response study to test for chloro-APB-induced restoration of righting during continuous isoflurane anesthesia. SCH-23390 (D1 antagonist) was used to confirm that the effects induced by chloro-APB are specifically mediated by D1 receptors. In a separate group of animals, spectral analysis was performed on surface electroencephalogram recordings to assess neurophysiological changes induced by chloro-APB and quinpirole during isoflurane general anesthesia. RESULTS Chloro-APB decreased median time to emergence from 330s to 50s. The median difference in time to emergence between the saline control group (n=6) and the chloro-APB group (n = 6) was 222s (95% CI: 77–534s, Mann-Whitney test). This difference was statistically significant (p = 0.0082). During continuous isoflurane anesthesia, chloro-APB dose-dependently restored righting (n = 6) and decreased electroencephalogram delta power (n = 4). These effects were inhibited by pretreatment with SCH-23390. Quinpirole did not restore righting (n = 6) and had no significant effect on the electroencephalogram (n = 4) during continuous isoflurane anesthesia. CONCLUSIONS Activation of D1 receptors by chloro-APB decreases time to emergence from isoflurane anesthesia, and produces behavioral and neurophysiological evidence of arousal during continuous isoflurane anesthesia. These findings suggest that selective activation of a D1 receptor-mediated arousal mechanism is sufficient to induce emergence from isoflurane general

  3. Cyclin D1 expression in prostate carcinoma.

    PubMed

    Pereira, R A; Ravinal, R C; Costa, R S; Lima, M S; Tucci, S; Muglia, V F; Reis, R B dos; Silva, G E B

    2014-06-01

    The purpose of this study was to investigate the relationship between cyclin D1 expression and clinicopathological parameters in patients with prostate carcinoma. We assessed cyclin D1 expression by conventional immunohistochemistry in 85 patients who underwent radical prostatectomy for prostate carcinoma and 10 normal prostate tissue samples retrieved from autopsies. We measured nuclear immunostaining in the entire tumor area and based the results on the percentage of positive tumor cells. The preoperative prostate-specific antigen (PSA) level was 8.68±5.16 ng/mL (mean±SD). Cyclin D1 staining was positive (cyclin D1 expression in >5% of tumor cells) in 64 cases (75.4%) and negative (cyclin D1 expression in ≤5% of tumor cells) in 21 cases (including 15 cases with no immunostaining). Normal prostate tissues were negative for cyclin D1. Among patients with a high-grade Gleason score (≥7), 86% of patients demonstrated cyclin D1 immunostaining of >5% (P<0.05). In the crude analysis of cyclin D1 expression, the high-grade Gleason score group showed a mean expression of 39.6%, compared to 26.9% in the low-grade Gleason score group (P<0.05). Perineural invasion tended to be associated with cyclin D1 expression (P=0.07), whereas cyclin D1 expression was not associated with PSA levels or other parameters. Our results suggest that high cyclin D1 expression could be a potential marker for tumor aggressiveness.

  4. D1-D2 Dopamine Receptor Synergy Promotes Calcium Signaling via Multiple Mechanisms

    PubMed Central

    Chun, Lani S.; Free, R. Benjamin; Doyle, Trevor B.; Huang, Xi-Ping; Rankin, Michele L.

    2013-01-01

    The D1 dopamine receptor (D1R) has been proposed to form a hetero-oligomer with the D2 dopamine receptor (D2R), which in turn results in a complex that couples to phospholipase C–mediated intracellular calcium release. We have sought to elucidate the pharmacology and mechanism of action of this putative signaling pathway. Dopamine dose-response curves assaying intracellular calcium mobilization in cells heterologously expressing the D1 and D2 subtypes, either alone or in combination, and using subtype selective ligands revealed that concurrent stimulation is required for coupling. Surprisingly, characterization of a putative D1-D2 heteromer-selective ligand, 6-chloro-2,3,4,5-tetrahydro-3-methyl-1-(3-methylphenyl)-1H-3-benzazepine-7,8-diol (SKF83959), found no stimulation of calcium release, but it did find a broad range of cross-reactivity with other G protein–coupled receptors. In contrast, SKF83959 appeared to be an antagonist of calcium mobilization. Overexpression of Gqα with the D1 and D2 dopamine receptors enhanced the dopamine-stimulated calcium response. However, this was also observed in cells expressing Gqα with only the D1R. Inactivation of Gi or Gs with pertussis or cholera toxin, respectively, largely, but not entirely, reduced the calcium response in D1R and D2R cotransfected cells. Moreover, sequestration of Gβγ subunits through overexpression of G protein receptor kinase 2 mutants either completely or largely eliminated dopamine-stimulated calcium mobilization. Our data suggest that the mechanism of D1R/D2R–mediated calcium signaling involves more than receptor-mediated Gq protein activation, may largely involve downstream signaling pathways, and may not be completely heteromer-specific. In addition, SKF83959 may not exhibit selective activation of D1-D2 heteromers, and its significant cross-reactivity to other receptors warrants careful interpretation of its use in vivo. PMID:23680635

  5. 7 CFR 15d.1 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 1 2010-01-01 2010-01-01 false Purpose. 15d.1 Section 15d.1 Agriculture Office of the Secretary of Agriculture NONDISCRIMINATION IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE UNITED STATES... policy of the United States Department of Agriculture in programs or activities conducted by...

  6. 7 CFR 15d.1 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false Purpose. 15d.1 Section 15d.1 Agriculture Office of the Secretary of Agriculture NONDISCRIMINATION IN PROGRAMS OR ACTIVITIES CONDUCTED BY THE UNITED STATES... policy of the United States Department of Agriculture in programs or activities conducted by...

  7. A pp32-retinoblastoma protein complex modulates androgen receptor-mediated transcription and associates with components of the splicing machinery

    SciTech Connect

    Adegbola, Onikepe; Pasternack, Gary R. . E-mail: gpastern@jhmi.edu

    2005-08-26

    We have previously shown pp32 and the retinoblastoma protein interact. pp32 and the retinoblastoma protein are nuclear receptor transcriptional coregulators: the retinoblastoma protein is a coactivator for androgen receptor, the major regulator of prostate cancer growth, while pp32, which is highly expressed in prostate cancer, is a corepressor of the estrogen receptor. We now show pp32 increases androgen receptor-mediated transcription and the retinoblastoma protein modulates this activity. Using affinity purification and mass spectrometry, we identify members of the pp32-retinoblastoma protein complex as PSF and nonO/p54nrb, proteins implicated in coordinate regulation of nuclear receptor-mediated transcription and splicing. We show that the pp32-retinoblastoma protein complex is modulated during TPA-induced K562 differentiation. Present evidence suggests that nuclear receptors assemble multiprotein complexes to coordinately regulate transcription and mRNA processing. Our results suggest that pp32 and the retinoblastoma protein may be part of a multiprotein complex that coordinately regulates nuclear receptor-mediated transcription and mRNA processing.

  8. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression.

    PubMed

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A; Choi, Hueng-Sik

    2016-01-01

    Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Activation of the hepatic CB1 receptor by arachidonyl-2'-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion.

  9. The Orphan Nuclear Receptor ERRγ Regulates Hepatic CB1 Receptor-Mediated Fibroblast Growth Factor 21 Gene Expression

    PubMed Central

    Jung, Yoon Seok; Lee, Ji-Min; Kim, Don-Kyu; Lee, Yong-Soo; Kim, Ki-Sun; Kim, Yong-Hoon; Kim, Jina; Lee, Myung-Shik; Lee, In-Kyu; Kim, Seong Heon; Cho, Sung Jin; Jeong, Won-Il; Lee, Chul-Ho; Harris, Robert A.; Choi, Hueng-Sik

    2016-01-01

    Background Fibroblast growth factor 21 (FGF21), a stress inducible hepatokine, is synthesized in the liver and plays important roles in glucose and lipid metabolism. However, the mechanism of hepatic cannabinoid type 1 (CB1) receptor-mediated induction of FGF21 gene expression is largely unknown. Results Activation of the hepatic CB1 receptor by arachidonyl-2’-chloroethylamide (ACEA), a CB1 receptor selective agonist, significantly increased FGF21 gene expression. Overexpression of estrogen-related receptor (ERR) γ increased FGF21 gene expression and secretion both in hepatocytes and mice, whereas knockdown of ERRγ decreased ACEA-mediated FGF21 gene expression and secretion. Moreover, ERRγ, but not ERRα and ERRβ, induced FGF21 gene promoter activity. In addition, deletion and mutation analysis of the FGF21 promoter identified a putative ERRγ-binding motif (AGGTGC, a near-consensus response element). A chromatin immunoprecipitation assay revealed direct binding of ERRγ to the FGF21 gene promoter. Finally, GSK5182, an ERRγ inverse agonist, significantly inhibited hepatic CB1 receptor-mediated FGF21 gene expression and secretion. Conclusion Based on our data, we conclude that ERRγ plays a key role in hepatic CB1 receptor-mediated induction of FGF21 gene expression and secretion. PMID:27455076

  10. NMDA Receptor Modulators in the Treatment of Drug Addiction.

    PubMed

    Tomek, Seven E; Lacrosse, Amber L; Nemirovsky, Natali E; Olive, M Foster

    2013-02-06

    Glutamate plays a pivotal role in drug addiction, and the N-methyl-D-aspartate (NMDA) glutamate receptor subtype serves as a molecular target for several drugs of abuse. In this review, we will provide an overview of NMDA receptor structure and function, followed by a review of the mechanism of action, clinical efficacy, and side effect profile of NMDA receptor ligands that are currently in use or being explored for the treatment of drug addiction. These ligands include the NMDA receptor modulators memantine and acamprosate, as well as the partial NMDA agonist D-cycloserine. Data collected to date suggest that direct NMDA receptor modulators have relatively limited efficacy in the treatment of drug addiction, and that partial agonism of NMDA receptors may have some efficacy with regards to extinction learning during cue exposure therapy. However, the lack of consistency in results to date clearly indicates that additional studies are needed, as are studies examining novel ligands with indirect mechanisms for altering NMDA receptor function.

  11. Active NMDA glutamate receptors are expressed by mammalian osteoclasts

    PubMed Central

    Espinosa, Leon; Itzstein, Cécile; Cheynel, Hervé; Delmas, Pierre D; Chenu, Chantal

    1999-01-01

    The N-methyl-D-aspartate (NMDA) glutamate receptor, widely distributed in the mammalian nervous system, has recently been identified in bone. In this study, we have investigated whether NMDA receptors expressed by osteoclasts have an electrophysiological activity. Using the patch clamp technique two agonists of the NMDA receptor, L-glutamate (Glu) and NMDA, were shown to activate whole-cell currents recorded in isolated rabbit osteoclasts. The current-voltage (I-V) relationships of the currents induced by Glu (IGlu) and NMDA (INMDA) were studied using Mg2+-free solutions. The agonist-induced currents had a linear I-V relationship with a reversal potential near 0 mV, as expected for a voltage independent and non-selective cationic current. IGlu and INMDA were sensitive to specific blockers of NMDA subtype glutamate receptors, such as magnesium ions, (5R, 10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a, d]cyclohepten -5,10-imine (MK-801) and 1-(1,2-diphenylethyl) piperidine (DEP). The block of IGlu and INMDA by these specific antagonists was voltage dependent, strong for negative potentials (inward current) and absent for positive potentials (outward current). These results demonstrate that NMDA receptors are functional in rabbit osteoclasts, and that their electrophysiological and pharmacological properties in these cells are similar to those documented for neuronal cells. Active NMDA receptors expressed by osteoclasts may represent a new target for regulating bone resorption. PMID:10373688

  12. MMP-7 cleaves the NR1 NMDA receptor subunit and modifies NMDA receptor function

    PubMed Central

    Szklarczyk, Arek; Ewaleifoh, Osefame; Beique, Jean-Claude; Wang, Yue; Knorr, David; Haughey, Norman; Malpica, Tanya; Mattson, Mark P.; Huganir, Richard; Conant, Katherine

    2008-01-01

    Matrix metalloproteinases (MMPs) are zinc-dependent enzymes that play a role in the inflammatory response. These enzymes have been well studied in the context of cancer biology and inflammation. Recent studies, however, suggest that these enzymes also play roles in brain development and neurodegenerative disease. Select MMPs can target proteins critical to synaptic structure and neuronal survival, including integrins and cadherins. Here, we show that one member of the MMP family, MMP-7, which may be released from cells, including microglia, can target a protein critical to synaptic function. Through analysis of extracts from murine cortical slice preparations, we show that MMP-7 cleaves the NR1 subunit of the N-methyl-d-aspartate (NMDA) receptor to generate an N-terminal fragment of ∼65 kDa. Moreover, studies with recombinant protein show that MMP-7-mediated cleavage of NR1 occurs at amino acid 517, which is extracellular and just distal to the first transmembrane domain. Data suggest that NR2A, which shares sequence homology with NR1, is also cleaved following treatment of slices with MMP-7, while select AMPA receptor subunits are not. Consistent with a potential effect of MMP-7 on ligand binding, additional experiments demonstrate that NMDA-mediated calcium flux is significantly diminished by MMP-7 pretreatment of cultures. In addition, the AMPA/NMDA ratio is increased by MMP-7 pretreatment. These data suggest that synaptic function may be altered in neurological conditions associated with increased levels of MMP-7.—Szklarczyk, A., Ewaleifoh, O., Beique, J.-C., Wang, Y., Knorr, D., Haughey, N., Malpica, T., Mattson, M. P., Huganir, R., Conant, K. MMP-7 cleaves the NR1 NMDA receptor subunit and modifies NMDA receptor function. PMID:18644839

  13. Ketamine's antidepressant action: beyond NMDA receptor inhibition.

    PubMed

    Hashimoto, Kenji

    2016-11-01

    The N-methyl-D-aspartate (NMDA) receptor antagonist ketamine is one of the most attractive antidepressants since this drug causes rapid-onset and sustained antidepressant effects in treatment resistant patients with depression. There are unanswered questions about how ketamine induces its rapid and sustained antidepressant actions. This key article suggests that (2R,6R)-HNK (hydroxynorketamine), a major metabolite of (R)-ketamine, shows antidepressant effects in rodent models of depression, indicating that the metabolism of (R)-ketamine to (2R,6R)-HNK is pivotal in its antidepressant action. Here these findings are put into context and their significance is discussed.

  14. SK&F 96365, a novel inhibitor of receptor-mediated calcium entry.

    PubMed Central

    Merritt, J E; Armstrong, W P; Benham, C D; Hallam, T J; Jacob, R; Jaxa-Chamiec, A; Leigh, B K; McCarthy, S A; Moores, K E; Rink, T J

    1990-01-01

    A novel inhibitor of receptor-mediated calcium entry (RMCE) is described. SK&F 96365 (1-(beta-[3-(4-methoxy-phenyl)propoxy]-4-methoxyphenethyl)-1H- imidazole hydrochloride) is structurally distinct from the known 'calcium antagonists' and shows selectivity in blocking RMCE compared with receptor-mediated internal Ca2+ release. Human platelets, neutrophils and endothelial cells were loaded with the fluorescent Ca2(+)-indicator dyes quin2 or fura-2, in order to measure Ca2+ or Mn2+ entry through RMCE as well as Ca2+ release from internal stores. The IC50 (concn. producing 50% inhibition) for inhibition of RMCE by SK&F 96365 in platelets stimulated with ADP or thrombin was 8.5 microM or 11.7 microM respectively; these concentrations of SK&F 96365 did not affect internal Ca2+ release. Similar effects of SK&F 96365 were observed in suspensions of neutrophils and in single endothelial cells. SK&F 96365 also inhibited agonist-stimulated Mn2+ entry in platelets and neutrophils. The effects of SK&F 96365 were independent of cell type and of agonist, as would be expected for a compound that modulates post-receptor events. Voltage-gated Ca2+ entry in fura-2-loaded GH3 (pituitary) cells and rabbit ear-artery smooth-muscle cells held under voltage-clamp was also inhibited by SK&F 96365; however, the ATP-gated Ca2(+)-permeable channel of rabbit ear-artery smooth-muscle cells was unaffected by SK&F 96365. Thus SK&F 96365 (unlike the 'organic Ca2+ antagonists') shows no selectivity between voltage-gated Ca2+ entry and RMCE, although the lack of effect on ATP-gated channels indicates that it discriminates between different types of RMCE. The effects of SK&F 96365 on functional responses of cells thought to be dependent on Ca2+ entry via RMCE were also studied. Under conditions where platelet aggregation is dependent on stimulated Ca2+ entry via RMCE, the response was blocked by SK&F 96365 with an IC50 of 15.9 microM, which is similar to the IC50 of 8-12 microM observed for

  15. Characterization of putative 5-HT7 receptors mediating tachycardia in the cat

    PubMed Central

    Villalón, Carlos M; Heiligers, Jan P C; Centurión, David; De Vries, Peter; Saxena, Pramod R

    1997-01-01

    , sumatriptan (30, 100 and 300 μg kg−1) and indorenate (300 and 1000 μg kg−1) or the 5-HT4 receptor (partial) agonist cisapride (300 and 1000 μg kg−1) were devoid of effects on feline heart rate per se and failed to modify significantly 5-HT-induced tachycardic responses. Based upon the above rank order of agonist potency, the failure of sumatriptan, indorenate or cisapride to produce cardioacceleration and the blockade by a series of drugs showing high affinity for the cloned 5-ht7 receptor, the present results indicate that the 5-HT receptor mediating tachycardia in the cat is operationally similar to other putative 5-HT7 receptors mediating vascular and non-vascular responses (e.g. relaxation of the rabbit femoral vein, canine external carotid and coronary arteries, rat systemic vasculature and guinea-pig ileum). Since these responses represent functional correlates of the 5-ht7 gene product, the 5-HT7 receptor appellation is reinforced. Therefore, the present experimental model, which is not complicated by the presence of other 5-HT receptors, can be utilized to characterize and develop new drugs with potential agonist and antagonist properties at functional 5-HT7 receptors. PMID:9249256

  16. Potentiating effect of eszopiclone on GABA(A) receptor-mediated responses in pedunculopontine neurons.

    PubMed

    Ye, Meijun; Garcia-Rill, Edgar

    2009-07-01

    The pedunculopontine nucleus (PPN) is part of the cholinergic arm of the reticular activating system, which is mostly active during waking and REM sleep. GABAergic modulation of this area appears to regulate sleep-wake cycles. Eszopiclone (ESZ), a nonbenzodiazepine hypnotic agent, appears to modulate GABAergic receptors. However, the action site of ESZ in the brain is still unresolved. We tested the hypothesis that ESZ acts by potentiating GABA(A) receptors on PPN neurons. Wholecell voltage clamp recordings were performed on PPN neurons in 7-15 day rat brainstem slices, and the potentiating effects of ESZ on the responses to the GABA(A) receptor agonist isoguvacine (IGV), and on GABA(A) receptor-mediated inhibitory post-synaptic currents (IPSCs), were determined. In the presence of tetrodotoxin, ESZ (1) increased the amplitude of the outward current induced by IGV, (2) increased its duration, and (3) enhanced the IGV-induced decrease in input resistance (Rin). The GABA(A) receptor antagonist gabazine (GBZ) blocked these effects. ESZ alone did not induce detectable currents or change Rin at a holding potential of -60 mV, but when held at 0 mV, ESZ induced an outward current in 13/21 PPN cells, an effect blocked by GBZ. ESZ also increased the amplitude (n = 18/21), duration (n = 17/21), and frequency (n = 13/15) of IPSCs. ESZ may potentiate GABA(A) inhibition in the PPN via pre- and post-synaptic modulation, which may underlie the hypnotic effects of ESZ. The differential effects of ESZ on both pre- and post-synaptic sites may partially explain why it has less significant side effects compared to other hypnotic agents.

  17. PKCɛ mediates substance P inhibition of GABAA receptors-mediated current in rat dorsal root ganglion.

    PubMed

    Li, Li; Zhao, Lei; Wang, Yang; Ma, Ke-tao; Shi, Wen-yan; Wang, Ying-zi; Si, Jun-qiang

    2015-02-01

    The mechanism underlying the modulatory effect of substance P (SP) on GABA-activated response in rat dorsal root ganglion (DRG) neurons was investigated. In freshly dissociated rat DRG neurons, whole-cell patch-clamp technique was used to record GABA-activated current and sharp electrode intracellular recording technique was used to record GABA-induced membrane depolarization. Application of GABA (1-1000 μmol/L) induced an inward current in a concentration-dependent manner in 114 out of 127 DRG neurons (89.8 %) examined with whole-cell patch-clamp recordings. Bath application of GABA (1-1000 μmol/L) evoked a depolarizing response in 236 out of 257 (91.8%) DRG neurons examined with intracellular recordings. Application of SP (0.001-1 μmol/L) suppressed the GABA-activated inward current and membrane depolarization. The inhibitory effects were concentration-dependent and could be blocked by the selective neurokinin 1 (NK1) receptors antagonist spantide but not by L659187 and SR142801 (1 μmol/L, n=7), selective antagonists of NK2 and NK3. The inhibitory effect of SP was significantly reduced by the calcium chelator BAPTA-AM, phospholipase C (PLC) inhibitor U73122, and PKC inhibitor chelerythrine, respectively. The PKA inhibitor H-89 did not affect the SP effect. Remarkably, the inhibitory effect of SP on GABA-activated current was nearly completely removed by a selective PKCε inhibitor epilon-V1-2 but not by safingol and LY333531, selective inhibitors of PKCα and PKCβ. Our results suggest that NK1 receptor mediates SP-induced inhibition of GABA-activated current and membrane depolarization by activating intracellular PLC-Ca²⁺-PKCε cascade. SP might regulate the excitability of peripheral nociceptors through inhibition of the "pre-synaptic inhibition" evoked by GABA, which may explain its role in pain and neurogenic inflammation.

  18. EP2 receptor mediates PGE2-induced cystogenesis of human renal epithelial cells.

    PubMed

    Elberg, Gerard; Elberg, Dorit; Lewis, Teresa V; Guruswamy, Suresh; Chen, Lijuan; Logan, Charlotte J; Chan, Michael D; Turman, Martin A

    2007-11-01

    Autosomal-dominant polycystic kidney disease (ADPKD) is characterized by formation of cysts from tubular epithelial cells. Previous studies indicate that secretion of prostaglandin E2 (PGE2) into cyst fluid and production of cAMP underlie cyst expansion. However, the mechanism by which PGE2 directly stimulates cAMP formation and modulates cystogenesis is still unclear, because the particular E-prostanoid (EP) receptor mediating the PGE2 effect has not been characterized. Our goal is to define the PGE2 receptor subtype involved in ADPKD. We used a three-dimensional cell-culture system of human epithelial cells from normal and ADPKD kidneys in primary cultures to demonstrate that PGE2 induces cyst formation. Biochemical evidence gathered by using real-time RT-PCR mRNA analysis and immunodetection indicate the presence of EP2 receptor in cystic epithelial cells in ADPKD kidney. Pharmacological evidence obtained by using PGE2-selective analogs further demonstrates that EP2 mediates cAMP formation and cystogenesis. Functional evidence for a role of EP2 receptor in mediating cAMP signaling was also provided by inhibiting EP2 receptor expression with transfection of small interfering RNA in cystic epithelial cells. Our results indicate that PGE2 produced in cyst fluid binds to adjacent EP2 receptors located on the apical side of cysts and stimulates EP2 receptor expression. PGE2 binding to EP2 receptor leads to cAMP signaling and cystogenesis by a mechanism that involves protection of cystic epithelial cells from apoptosis. The role of EP2 receptor in mediating the PGE2 effect on stimulating cyst formation may have direct pharmacological implications for the treatment of polycystic kidney disease.

  19. EP₃ receptors mediate PGE₂-induced hypothalamic paraventricular nucleus excitation and sympathetic activation.

    PubMed

    Zhang, Zhi-Hua; Yu, Yang; Wei, Shun-Guang; Nakamura, Yoshiko; Nakamura, Kazuhiro; Felder, Robert B

    2011-10-01

    Prostaglandin E(2) (PGE(2)), an important mediator of the inflammatory response, acts centrally to elicit sympathetic excitation. PGE(2) acts on at least four E-class prostanoid (EP) receptors known as EP(1), EP(2), EP(3), and EP(4). Since PGE(2) production within the brain is ubiquitous, the different functions of PGE(2) depend on the expression of these prostanoid receptors in specific brain areas. The type(s) and location(s) of the EP receptors that mediate sympathetic responses to central PGE(2) remain unknown. We examined this question using PGE(2), the relatively selective EP receptor agonists misoprostol and sulprostone, and the available selective antagonists for EP(1), EP(3), and EP(4). In urethane-anesthetized rats, intracerebroventricular (ICV) administration of PGE(2), sulprostone or misoprostol increased renal sympathetic nerve activity, blood pressure, and heart rate. These responses were significantly reduced by ICV pretreatment with the EP(3) receptor antagonist; the EP(1) and EP(4) receptor antagonists had little or no effect. ICV PGE(2) or misoprostol increased the discharge of neurons in the hypothalamic paraventricular nucleus (PVN). ICV misoprostol increased the c-Fos immunoreactivity of PVN neurons, an effect that was substantially reduced by the EP(3) receptor antagonist. Real-time PCR detected EP(3) receptor mRNA in PVN, and immunohistochemical studies revealed sparsely distributed EP(3) receptors localized in GABAergic terminals and on a few PVN neurons. Direct bilateral PVN microinjections of PGE(2) or sulprostone elicited sympathoexcitatory responses that were significantly reduced by the EP(3) receptor antagonist. These data suggest that EP(3) receptors mediate the central excitatory effects of PGE(2) on PVN neurons and sympathetic discharge.

  20. Characterization of Parameters Influencing Receptor-Mediated Endocytosis in Cultured Soybean Cells 1

    PubMed Central

    Horn, Mark A.; Heinstein, Peter F.; Low, Philip S.

    1992-01-01

    In a recent publication, we were able to demonstrate that biotin enters plant cells by receptor-mediated endocytosis and that impermeable macromolecules can be cotransported into cells by the same pathway if they are first covalently linked to biotin. In the present study, we have exploited the biotin endocytosis pathway to evaluate the variables in the cell wall and surrounding growth medium that influence the efficiency of endocytosis in plants. Under normal growth conditions, the major constraint limiting macromolecule endocytosis was found to be the size of the internalized macromolecule. Thus, a log-linear relationship with a negative slope exists between the molecular weight of the biotin-conjugated macromolecule and its rate of internalization by cultured soybean cells. This relationship, which extends from insulin (Mr approximately 5700) to immunoglobulin G (Mr approximately 160,000), is characterized by a slope of −1.04 × 105 molecules/cell/min per log Mr unit and an x intercept (no endocytosis detectable) of approximately log 160,000 daltons. Unfortunately, mild digestion with cell wall-degrading enzymes is unable to increase significantly the upper size limit of molecules that can be internalized, but uptake of lower molecular weight proteins can be enhanced by mild cell wall digestion. The optimal extracellular pH for endocytosis was found to be 4.6, i.e. near the normal pH of the cell culture medium. Furthermore, the osmotic strength at which endocytosis occurs most rapidly was observed to be isotonic to slightly hypotonic, suggesting that turgor pressure within the plant cell must not be a major determinant of endocytosis rates by cultured soybean (Glycine max) cells. Finally, cell age was found to impact significantly on the rate of macromolecule internalization, with maximal uptake rates occurring during early exponential growth and decreasing by a factor of 2 when the cells reach stationary growth phase. PMID:16668694

  1. Direct muscarinic and nicotinic receptor-mediated excitation of rat medial vestibular nucleus neurons in vitro

    NASA Technical Reports Server (NTRS)

    Phelan, K. D.; Gallagher, J. P.

    1992-01-01

    We have utilized intracellular recording techniques to investigate the cholinoceptivity of rat medial vestibular nucleus (MVN) neurons in a submerged brain slice preparation. Exogenous application of the mixed cholinergic agonists, acetylcholine (ACh) or carbachol (CCh), produced predominantly membrane depolarization, induction of action potential firing, and decreased input resistance. Application of the selective muscarinic receptor agonist muscarine (MUSC), or the selective nicotinic receptor agonists nicotine (NIC) or 1,1-dimethyl-4-phenylpiperazinium (DMPP) also produced membrane depolarizations. The MUSC-induced depolarization was accompanied by decreased conductance, while an increase in conductance appeared to underlie the NIC- and DMPP-induced depolarizations. The muscarinic and nicotinic receptor mediated depolarizations persisted in tetrodotoxin and/or low Ca2+/high Mg2+ containing media, suggesting direct postsynaptic receptor activation. The MUSC-induced depolarization could be reversibly blocked by the selective muscarinic-receptor antagonist, atropine, while the DMPP-induced depolarization could be reversibly suppressed by the selective ganglionic nicotinic-receptor antagonist, mecamylamine. Some neurons exhibited a transient membrane hyperpolarization during the depolarizing response to CCh or MUSC application. This transient inhibition could be reversibly blocked by the gamma-aminobutyric acid (GABA) antagonist, bicuculline, suggesting that the underlying hyperpolarization results indirectly from the endogenous release of GABA acting at GABA receptors. This study confirms the cholinoceptivity of MVN neurons and establishes that individual MVN cells possess muscarinic as well as nicotinic receptors. The data provide support for a prominent role of cholinergic mechanisms in the direct and indirect regulation of the excitability of MVN neurons.

  2. PAC₁ receptors mediate positive chronotropic responses to PACAP-27 and VIP in isolated mouse atria.

    PubMed

    Hoover, Donald B; Girard, Beatrice M; Hoover, Jeffrey L; Parsons, Rodney L

    2013-08-05

    PACAP and VIP have prominent effects on cardiac function in several species, but little is known about their influence on the murine heart. Accordingly, we evaluated the expression of PACAP/VIP receptors in mouse heart and the response of isolated atria to peptide agonists. Quantitative PCR demonstrated that PAC₁, VPAC₁, and VPAC₂ receptor mRNAs are present throughout the mouse heart. Expression of all three receptor transcripts was low, PAC₁ being the lowest. No regional differences in expression were detected for individual receptor mRNAs after normalization to L32. Pharmacological effects of PACAP-27, VIP, and the selective PAC₁ agonist maxadilan were evaluated in isolated, spontaneously beating atria from C57BL/6 mice of either sex. Incremental additions of PACAP-27 at 1 min intervals caused a concentration-dependent tachycardia with a logEC₅₀=-9.08 ± 0.15 M (n=7) and a maximum of 96.3 ± 5.9% above baseline heart rate. VIP and maxadilan also caused tachycardia but their potencies were about two orders of magnitude less. Increasing the dosing interval to 5 min caused a leftward shift of the concentration-response curve to maxadilan but no changes in the curves for PACAP-27 or VIP. Under this condition, neither the potency nor the efficacy of maxadilan differed from those of PACAP-27. Neither PACAP-27 nor maxadilan caused tachyphylaxis, and maximal responses to maxadilan were maintained for at least 2 h. We conclude that all three VIP/PACAP family receptors are expressed by mouse cardiac tissue, but only PAC₁ receptors mediate positive chronotropic responses to PACAP-27 and VIP.

  3. Greater Beta-Adrenergic Receptor Mediated Vasodilation in Women Using Oral Contraceptives

    PubMed Central

    Limberg, Jacqueline K.; Peltonen, Garrett L.; Johansson, Rebecca E.; Harrell, John W.; Kellawan, Jeremy M.; Eldridge, Marlowe W.; Sebranek, Joshua J.; Walker, Benjamin J.; Schrage, William G.

    2016-01-01

    Background: β-adrenergic receptors play an important role in mitigating the pressor effects of sympathetic nervous system activity in young women. Based on recent data showing oral contraceptive use in women abolishes the relationship between muscle sympathetic nervous system activity and blood pressure, we hypothesized forearm blood flow responses to a β-adrenergic receptor agonist would be greater in young women currently using oral contraceptives (OC+, n = 13) when compared to those not using oral contraceptives (OC–, n = 10). Methods: Women (18–35 years) were studied during the early follicular phase of the menstrual cycle (days 1–5) or placebo phase of oral contraceptive use. Forearm blood flow (FBF, Doppler ultrasound) and mean arterial blood pressure (MAP, brachial arterial catheter) were measured at baseline and during graded brachial artery infusion of the β-adrenergic receptor agonist, Isoproterenol (ISO), as well as Acetylcholine (ACH, endothelium-dependent vasodilation) and Nitroprusside (NTP, endothelium-independent vasodilation). Forearm vascular conductance was calculated (FVC = FBF/MAP, ml/min/100 mmHg) and the rise in FVC from baseline during infusion quantified vasodilation (ΔFVC = FVCinfusion − FVCbaseline). Results: ISO increased FVC in both groups (p < 0.01) and ISO-mediated ΔFVC was greater in OC+ compared to OC– (Main effect of group, p = 0.02). Expressing data as FVC and FBF resulted in similar conclusions. FVC responses to both ACH and NTP were also greater in OC+ compared to OC–. Conclusions: These data are the first to demonstrate greater β-adrenergic receptor-mediated vasodilation in the forearm of women currently using oral contraceptives (placebo phase) when compared to those not using oral contraceptives (early follicular phase), and suggest oral contraceptive use influences neurovascular control. PMID:27375493

  4. Focal kappa-opioid receptor-mediated dependence and withdrawal in the nucleus paragigantocellularis.

    PubMed

    Sinchaisuk, S; Ho, I K; Rockhold, R W

    2002-12-01

    The nucleus paragigantocellularis (PGi) has been hypothesized to play an important role in the development of physical dependence on opioids, including the prototype mu-opioid receptor agonist, morphine, and the mixed agonist/antagonist, butorphanol, which shows selective kappa-opioid receptor agonist activity, in rats. In confirmation of previous work, electrical stimulation of the PGi in opioid-nai;ve rats induced stimulus-intensity-related, withdrawal-like behaviors similar to those observed during naloxone-precipitated withdrawal from dependence upon butorphanol. Novel findings were made in rats surgically implanted with cannulae aimed at the lateral ventricle and the right PGi and made physically dependent by intracerebroventricular infusion of either morphine (26 nmol/microl/h) or butorphanol (26 nmol/microl/h) through an osmotic minipump for 3 days. Two hours following termination of the opioid infusion, microinjections of naloxone (11 nmol/400 nl), a nonselective opioid receptor antagonist, or nor-binaltorphimine (nor-BNI) (3.84 nmol/400 nl), a selective kappa-opioid receptor antagonist, were made into the PGi of morphine-dependent and butorphanol-dependent rats. Discrete PGi injections precipitated withdrawal behaviors, with significant (P<.05) increases noted in the incidence of teeth chattering, wet-dog shakes, and scratching. Composite scores for behavioral withdrawal were significantly higher in nor-BNI-precipitated, butorphanol-dependent rats (score=6.8+/-0.6), in naloxone-precipitated, butorphanol-dependent rats (8.9+/-0.8), and in naloxone-precipitated, morphine-dependent rats (11.5+/-0.9) than in all other groups. Both kappa- and mu-opioid receptor mediated dependence can be demonstrated at the level of a discrete medullary site, the PGi, which further supports a specific role for this nucleus in elicitation of behavioral responses during opioid withdrawal.

  5. Self-Assembly into Nanoparticles Is Essential for Receptor Mediated Uptake of Therapeutic Antisense Oligonucleotides.

    PubMed

    Ezzat, Kariem; Aoki, Yoshitsugu; Koo, Taeyoung; McClorey, Graham; Benner, Leif; Coenen-Stass, Anna; O'Donovan, Liz; Lehto, Taavi; Garcia-Guerra, Antonio; Nordin, Joel; Saleh, Amer F; Behlke, Mark; Morris, John; Goyenvalle, Aurelie; Dugovic, Branislav; Leumann, Christian; Gordon, Siamon; Gait, Michael J; El-Andaloussi, Samir; Wood, Matthew J A

    2015-07-08

    Antisense oligonucleotides (ASOs) have the potential to revolutionize medicine due to their ability to manipulate gene function for therapeutic purposes. ASOs are chemically modified and/or incorporated within nanoparticles to enhance their stability and cellular uptake, however, a major challenge is the poor understanding of their uptake mechanisms, which would facilitate improved ASO designs with enhanced activity and reduced toxicity. Here, we study the uptake mechanism of three therapeutically relevant ASOs (peptide-conjugated phosphorodiamidate morpholino (PPMO), 2'Omethyl phosphorothioate (2'OMe), and phosphorothioated tricyclo DNA (tcDNA) that have been optimized to induce exon skipping in models of Duchenne muscular dystrophy (DMD). We show that PPMO and tcDNA have high propensity to spontaneously self-assemble into nanoparticles. PPMO forms micelles of defined size and their net charge (zeta potential) is dependent on the medium and concentration. In biomimetic conditions and at low concentrations, PPMO obtains net negative charge and its uptake is mediated by class A scavenger receptor subtypes (SCARAs) as shown by competitive inhibition and RNAi silencing experiments in vitro. In vivo, the activity of PPMO was significantly decreased in SCARA1 knockout mice compared to wild-type animals. Additionally, we show that SCARA1 is involved in the uptake of tcDNA and 2'OMe as shown by competitive inhibition and colocalization experiments. Surface plasmon resonance binding analysis to SCARA1 demonstrated that PPMO and tcDNA have higher binding profiles to the receptor compared to 2'OMe. These results demonstrate receptor-mediated uptake for a range of therapeutic ASO chemistries, a mechanism that is dependent on their self-assembly into nanoparticles.

  6. Endostatin inhibits androgen-independent prostate cancer growth by suppressing nuclear receptor-mediated oxidative stress.

    PubMed

    Lee, Joo Hyoung; Kang, Minsung; Wang, Hong; Naik, Gurudatta; Mobley, James A; Sonpavde, Guru; Garvey, W Timothy; Darley-Usmar, Victor M; Ponnazhagan, Selvarangan

    2017-04-01

    Androgen-deprivation therapy has been identified to induce oxidative stress in prostate cancer (PCa), leading to reactivation of androgen receptor (AR) signaling in a hormone-refractory manner. Thus, antioxidant therapies have gained attention as adjuvants for castration-resistant PCa. Here, we report for the first time that human endostatin (ES) prevents androgen-independent growth phenotype in PCa cells through its molecular targeting of AR and glucocorticoid receptor (GR) and downstream pro-oxidant signaling. This reversal after ES treatment significantly decreased PCa cell proliferation through down-regulation of GR and up-regulation of manganese superoxide dismutase and reduced glutathione levels. Proteome and biochemical analyses of ES-treated PCa cells further indicated a significant up-regulation of enzymes in the major reactive oxygen species (ROS) scavenging machinery, including catalase, glutathione synthetase, glutathione reductase, NADPH-cytochrome P450 reductase, biliverdin reductase, and thioredoxin reductase, resulting in a concomitant reduction of intracellular ROS. ES further augmented the antioxidant system through up-regulation of glucose influx, the pentose phosphate pathway, and NAD salvaging pathways. This shift in cancer cell redox homeostasis by ES significantly decreased the effect of protumorigenic oxidative machinery on androgen-independent PCa growth, suggesting that ES can suppress GR-induced resistant phenotype upon AR antagonism and that the dual targeting action of ES on AR and GR can be further translated to PCa therapy.-Lee, J. H., Kang, M., Wang, H., Naik, G., Mobley, J. A., Sonpavde, G., Garvey, W. T., Darley-Usmar, V. M., Ponnazhagan, S. Endostatin inhibits androgen-independent prostate cancer growth by suppressing nuclear receptor-mediated oxidative stress.

  7. P2Y6 Receptor-Mediated Proinflammatory Signaling in Human Bronchial Epithelia

    PubMed Central

    Hao, Yuan; Liang, Jocelyn F.; Chow, Alison W.; Cheung, Wing-tai; Ko, Wing-hung

    2014-01-01

    P2Y receptors are expressed in virtually all epithelia and are responsible for the control of fluid and electrolyte transport. In asthmatic inflammation, the bronchial epithelia are damaged by eosinophil-derived, highly toxic cationic proteins, such as major basic protein (MBP). Consequently, extracellular nucleotides are released into the extracellular space from airway epithelial cells, and act in an autocrine or paracrine fashion to regulate immune functions. Our data show damage to the human bronchial epithelial cell line, 16HBE14o-, by poly-L-arginine-induced UDP release into the extracellular medium. Activation of P2Y6 receptor by its natural ligand, UDP, or its specific agonist, MRS 2693, led to the production of two proinflammatory cytokines, interleukin (IL)-6 and IL-8. This may have resulted from increased IL-6 and IL-8 mRNA expression, and activation of p38 and ERK1/2 MAPK, and NF-κB pathways. Our previous study demonstrated that UDP stimulated transepithelial Cl− secretion via both Ca2+- and cAMP-dependent pathways in 16HBE14o- epithelia. This was further confirmed in this study by simultaneous imaging of Ca2+ and cAMP levels in single cells using the Fura-2 fluorescence technique and a FRET-based approach, respectively. Moreover, the P2Y6 receptor-mediated production of IL-6 and IL-8 was found to be dependent on Ca2+, but not the cAMP/PKA pathway. Together, these studies show that nucleotides released during the airway inflammatory processes will activate P2Y6 receptors, which will lead to further release of inflammatory cytokines. The secretion of cytokines and the formation of such “cytokine networks” play an important role in sustaining the airway inflammatory disease. PMID:25243587

  8. Receptor-Mediated Enhancement of Beta Adrenergic Drug Activity by Ascorbate In Vitro and In Vivo

    PubMed Central

    Dillon, Patrick F.; Root-Bernstein, Robert; Robinson, N. Edward; Abraham, William M.; Berney, Catherine

    2010-01-01

    Rationale Previous in vitro research demonstrated that ascorbate enhances potency and duration of activity of agonists binding to alpha 1 adrenergic and histamine receptors. Objectives Extending this work to beta 2 adrenergic systems in vitro and in vivo. Methods Ultraviolet spectroscopy was used to study ascorbate binding to adrenergic receptor preparations and peptides. Force transduction studies on acetylcholine-contracted trachealis preparations from pigs and guinea pigs measured the effect of ascorbate on relaxation due to submaximal doses of beta adrenergic agonists. The effect of inhaled albuterol with and without ascorbate was tested on horses with heaves and sheep with carbachol-induced bronchoconstriction. Measurements Binding constants for ascorbate binding to beta adrenergic receptor were derived from concentration-dependent spectral shifts. Dose- dependence curves were obtained for the relaxation of pre-contracted trachealis preparations due to beta agonists in the presence and absence of varied ascorbate. Tachyphylaxis and fade were also measured. Dose response curves were determined for the effect of albuterol plus-and-minus ascorbate on airway resistance in horses and sheep. Main Results Ascorbate binds to the beta 2 adrenergic receptor at physiological concentrations. The receptor recycles dehydroascorbate. Physiological and supra-physiological concentrations of ascorbate enhance submaximal epinephrine and isoproterenol relaxation of trachealis, producing a 3–10-fold increase in sensitivity, preventing tachyphylaxis, and reversing fade. In vivo, ascorbate improves albuterol's effect on heaves and produces a 10-fold enhancement of albuterol activity in “asthmatic” sheep. Conclusions Ascorbate enhances beta-adrenergic activity via a novel receptor-mediated mechanism; increases potency and duration of beta adrenergic agonists effective in asthma and COPD; prevents tachyphylaxis; and reverses fade. These novel effects are probably caused by a

  9. cap alpha. /sub 2/-Adrenergic receptor-mediated sensitization of forskolin-stimulated cyclic AMP production

    SciTech Connect

    Jones, S.B.; Toews, M.L.; Turner, J.T.; Bylund, D.B.

    1987-03-01

    Preincubation of HT29 human colonic adenocarcinoma cells with ..cap alpha../sub 2/-adrenergic agonists resulted in a 10- to 20-fold increase in forskolin-stimulated cyclic AMP production as compared to cells preincubated without agonist. Similar results were obtained using either a (/sup 3/H)adenine prelabeling assay or a cyclic AMP radioimmunoassay to measure cyclic AMP levels. This phenomenon, which is termed sensitization, is ..cap alpha../sub 2/-adrenergic receptor-mediated and rapid in onset and reversal. Yohimbine, an ..cap alpha../sub 2/-adrenergic receptor-selective antagonist, blocked norepinephrine-induced sensitization, whereas prazosin (..cap alpha../sub 1/-adrenergic) and sotalol (..beta..-adrenergic) did not. The time for half-maximal sensitization was 5 min and the half-time for reversal was 10 min. Only a 2-fold sensitization of cyclic AMP production stimulated by vasoactive intestinal peptide was observed, indicating that sensitization is relatively selective for forskolin. Sensitization reflects an increased production of cyclic AMP and not a decreased degradation of cyclic AMP, since incubation with a phosphodiesterase inhibitor and forskolin did not mimic sensitization. Increasing the levels of cyclic AMP during the preincubation had no effect on sensitization, indicating that sensitization is not caused by decreased cyclic AMP levels during the preincubation. This rapid and dramatic sensitization of forskolin-stimulated cyclic AMP production is a previously unreported effect that can be added to the growing list of ..cap alpha../sub 2/-adrenergic responses that are not mediated by a decrease in cyclic AMP.

  10. EP3 receptors mediate PGE2-induced hypothalamic paraventricular nucleus excitation and sympathetic activation

    PubMed Central

    Zhang, Zhi-Hua; Yu, Yang; Wei, Shun-Guang; Nakamura, Yoshiko; Nakamura, Kazuhiro

    2011-01-01

    Prostaglandin E2 (PGE2), an important mediator of the inflammatory response, acts centrally to elicit sympathetic excitation. PGE2 acts on at least four E-class prostanoid (EP) receptors known as EP1, EP2, EP3, and EP4. Since PGE2 production within the brain is ubiquitous, the different functions of PGE2 depend on the expression of these prostanoid receptors in specific brain areas. The type(s) and location(s) of the EP receptors that mediate sympathetic responses to central PGE2 remain unknown. We examined this question using PGE2, the relatively selective EP receptor agonists misoprostol and sulprostone, and the available selective antagonists for EP1, EP3, and EP4. In urethane-anesthetized rats, intracerebroventricular (ICV) administration of PGE2, sulprostone or misoprostol increased renal sympathetic nerve activity, blood pressure, and heart rate. These responses were significantly reduced by ICV pretreatment with the EP3 receptor antagonist; the EP1 and EP4 receptor antagonists had little or no effect. ICV PGE2 or misoprostol increased the discharge of neurons in the hypothalamic paraventricular nucleus (PVN). ICV misoprostol increased the c-Fos immunoreactivity of PVN neurons, an effect that was substantially reduced by the EP3 receptor antagonist. Real-time PCR detected EP3 receptor mRNA in PVN, and immunohistochemical studies revealed sparsely distributed EP3 receptors localized in GABAergic terminals and on a few PVN neurons. Direct bilateral PVN microinjections of PGE2 or sulprostone elicited sympathoexcitatory responses that were significantly reduced by the EP3 receptor antagonist. These data suggest that EP3 receptors mediate the central excitatory effects of PGE2 on PVN neurons and sympathetic discharge. PMID:21803943

  11. Bradykinin B2-receptor-mediated modulation of membrane currents in guinea-pig cardiomyocytes

    PubMed Central

    Sakamoto, Naoya; Uemura, Hiroko; Hara, Yukio; Saito, Toshihiro; Masuda, Yoshiaki; Nakaya, Haruaki

    1998-01-01

    In order to define the electrophysiological mechanism(s) responsible for bradykinin (BK)-induced positive inotropic and chronotropic responses in isolated guinea-pig atria, effects of BK on the membrane currents were examined in isolated atrial cells using patch clamp techniques.BK (0.1–1000 nM) increased the L-type Ca2+ current (ICa), which was recorded from enzymatically-dissociated atrial myocytes by the nystatin-perforated patch method, in a concentration-dependent fashion, and the calculated EC50 value for increasing ICa was 5.2 nM. In conventional ruptured patch experiments, BK inhibited the muscarinic acetylcholine receptor-operated K+ current (IK.ACh) that was activated by the muscarinic agonist carbachol (1 μM) with an EC50 value of 0.57 nM. Both the increase in ICa and the decrease in IK.ACh were blocked by HOE140, a selective bradykinin B2 receptor antagonist.The BK-induced inhibition of IK.ACh was significantly attenuated by staurosporine and calphostin C, protein kinase C inhibitors. In addition, the IK.ACh inhibition by BK was also attenuated by the tyrosine kinase inhibitor genistein or tyrphostin but not by daidzein, an inactive analogue of genistein. However, neither protein kinase C inhibitor nor tyrosine kinase inhibitor affected the BK-induced increase in ICa.In the presence and absence of muscarinic stimulation, BK prolonged the action potential recorded from the atrial cells in the current clamp mode.We conclude that BK increases ICa and decreases IK.ACh in atrial cells, resulting in positive inotropic and chronotropic responses in atrial preparations. Protein kinase C activation, and possibly tyrosine kinase activation, may be involved in the B2-receptor-mediated IK.ACh inhibition. PMID:9786500

  12. Receptor-mediated cell attachment and detachment kinetics. I. Probabilistic model and analysis.

    PubMed Central

    Cozens-Roberts, C.; Lauffenburger, D. A.; Quinn, J. A.

    1990-01-01

    The kinetics of receptor-mediated cell adhesion to a ligand-coated surface play a key role in many physiological and biotechnology-related processes. We present a probabilistic model of receptor-ligand bond formation between a cell and surface to describe the probability of adhesion in a fluid shear field. Our model extends the deterministic model of Hammer and Lauffenburger (Hammer, D.A., and D.A. Lauffenburger. 1987. Biophys. J. 52:475-487) to a probabilistic framework, in which we calculate the probability that a certain number of bonds between a cell and surface exists at any given time. The probabilistic framework is used to account for deviations from ideal, deterministic behavior, inherent in chemical reactions involving relatively small numbers of reacting molecules. Two situations are investigated: first, cell attachment in the absence of fluid stress; and, second, cell detachment in the presence of fluid stress. In the attachment case, we examine the expected variance in bond formation as a function of attachment time; this also provides an initial condition for the detachment case. Focusing then on detachment, we predict transient behavior as a function of key system parameters, such as the distractive fluid force, the receptor-ligand bond affinity and rate constants, and the receptor and ligand densities. We compare the predictions of the probabilistic model with those of a deterministic model, and show how a deterministic approach can yield some inaccurate results; e.g., it cannot account for temporally continuous cell attach mentor detachment, it can underestimate the time needed for cell attachment, it can overestimate the time required for cell detachment for a given level of force, and it can overestimate the force necessary for cell detachment. PMID:2174271

  13. Direct muscarinic and nicotinic receptor-mediated excitation of rat medial vestibular nucleus neurons in vitro

    NASA Technical Reports Server (NTRS)

    Phelan, K. D.; Gallagher, J. P.

    1992-01-01

    We have utilized intracellular recording techniques to investigate the cholinoceptivity of rat medial vestibular nucleus (MVN) neurons in a submerged brain slice preparation. Exogenous application of the mixed cholinergic agonists, acetylcholine (ACh) or carbachol (CCh), produced predominantly membrane depolarization, induction of action potential firing, and decreased input resistance. Application of the selective muscarinic receptor agonist muscarine (MUSC), or the selective nicotinic receptor agonists nicotine (NIC) or 1,1-dimethyl-4-phenylpiperazinium (DMPP) also produced membrane depolarizations. The MUSC-induced depolarization was accompanied by decreased conductance, while an increase in conductance appeared to underlie the NIC- and DMPP-induced depolarizations. The muscarinic and nicotinic receptor mediated depolarizations persisted in tetrodotoxin and/or low Ca2+/high Mg2+ containing media, suggesting direct postsynaptic receptor activation. The MUSC-induced depolarization could be reversibly blocked by the selective muscarinic-receptor antagonist, atropine, while the DMPP-induced depolarization could be reversibly suppressed by the selective ganglionic nicotinic-receptor antagonist, mecamylamine. Some neurons exhibited a transient membrane hyperpolarization during the depolarizing response to CCh or MUSC application. This transient inhibition could be reversibly blocked by the gamma-aminobutyric acid (GABA) antagonist, bicuculline, suggesting that the underlying hyperpolarization results indirectly from the endogenous release of GABA acting at GABA receptors. This study confirms the cholinoceptivity of MVN neurons and establishes that individual MVN cells possess muscarinic as well as nicotinic receptors. The data provide support for a prominent role of cholinergic mechanisms in the direct and indirect regulation of the excitability of MVN neurons.

  14. Functional evaluation of the receptors mediating vasoconstriction of rat aorta by trace amines and amphetamines.

    PubMed

    Broadley, Kenneth J; Fehler, Martina; Ford, William R; Kidd, Emma J

    2013-09-05

    Trace amines including β-phenylethylamine (β-PEA) and amphetamines classically exert pharmacological actions via indirect sympathomimetic mechanisms. However, there is evidence for other mechanisms and this study explores the receptors mediating vasoconstriction in rat aorta. β-PEA, d-amphetamine, MDMA, cathinone and methylphenidate caused concentration-dependent contractions of rat isolated aortic rings which were unaffected by prazosin (1 μM), ICI-118,551 (1 μM), cocaine (10 μM) and pargyline (10 μM), to inhibit α1- and β2-adrenoceptors, neuronal transport and monoamine oxidase (MAO), respectively. Octopamine concentration-response curves, however, were shifted to the right. In the presence of the inhibitors, the rate of onset of octopamine contractions was slowed. Lineweaver-Burk analysis of the kinetics of the response generated different KM values for octopamine in the absence (2.35 × 10(-6)M) and presence (6.09 × 10(-5)M) of inhibitors, indicating mediation by different receptors. Tryptamine-induced vasoconstriction also resisted blockade by adrenergic inhibitors and the 5-HT1A, 1B, 1D and 5-HT2A receptor antagonists, methiothepin (50 nM) and ketanserin (30 nM), respectively. Trace amines and amphetamines therefore exert vasoconstriction independently of adrenoceptors, neuronal transport and 5-HT receptor activation. There was no evidence of tachyphylaxis or cross-tachyphylaxis of the vasoconstriction to these amines. Tyramine was a partial agonist and in its presence, β-PEA, d-amphetamine and octopamine were antagonised indicating that they all act through a common receptor for which tyramine serves as an antagonist. We conclude that the vasoconstriction is via TAAR-1, because of structural similarities between amines, ability to stimulate recombinant trace amine-associated receptor 1 (TAAR-1) and the presence of TAAR-1 in rat aorta. © 2013 Elsevier B.V. All rights reserved.

  15. Fc receptor-mediated immune responses: new tools but increased complexity in HIV prevention.

    PubMed

    Vargas-Inchaustegui, Diego A; Robert-Guroff, Marjorie

    2013-07-01

    The modest success of the RV144 HIV vaccine trial in Thailand and the ensuing suggestion that a Fc-receptormediated antibody activity might have played a role in the protection observed have intensified investigations on Fcrelated immune responses. HIV neutralizing antibodies have been and continue to be the focal point of research into humoral immune protection. However, recent knowledge that their protective efficacy can be augmented by Fc-FcR interactions has increased the complexity of identifying immune correlates of protection. If anything, continued studies of both humoral and cellular immune mechanisms point to the lack of a single protective anti-HIV immune response. Here we focus on humoral immunity, analyzing the role played by Fc receptor-related responses and discussing how new knowledge of their interactions requires further investigation, but may also spur novel vaccination approaches. We initially address classical Fc-receptor mediated anti-viral mechanisms including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell mediated viral inhibition (ADCVI), and antibody-dependent cellular phagocytosis (ADCP), as well as the effector cells that mediate these functions. Next, we summarize key aspects of FcR-Fc interactions that are important for potential control of HIV/SIV such as FcR polymorphisms and post-transcriptional modifications. Finally we discuss less commonly studied non-mechanistic anti-HIV immune functions: antibody avidity and envelopespecific B cell memory. Overall, a spectrum of immune responses, reflecting the immune system's redundancy, will likely be needed to prevent HIV infection and/or disease progression. Aside from elicitation of critical immune mechanisms, a successful vaccine will need to induce mature B cell responses and long-lasting immune memory.

  16. Receptor-mediated endocytosis and endosomal acidification is impaired in proximal tubule epithelial cells of Dent disease patients.

    PubMed

    Gorvin, Caroline M; Wilmer, Martijn J; Piret, Sian E; Harding, Brian; van den Heuvel, Lambertus P; Wrong, Oliver; Jat, Parmjit S; Lippiat, Jonathan D; Levtchenko, Elena N; Thakker, Rajesh V

    2013-04-23

    Receptor-mediated endocytosis, involving megalin and cubilin, mediates renal proximal-tubular reabsorption and is decreased in Dent disease because of mutations of the chloride/proton antiporter, chloride channel-5 (CLC-5), resulting in low-molecular-weight proteinuria, hypercalciuria, nephrolithiasis, and renal failure. To facilitate studies of receptor-mediated endocytosis and the role of CLC-5, we established conditionally immortalized proximal-tubular epithelial cell lines (ciPTECs) from three patients with CLC-5 mutations (30:insH, R637X, and del132-241) and a normal male. Confocal microscopy using the tight junction marker zona occludens-1 (ZO-1) and end-binding protein-1 (EB-1), which is specific for the plus end of microtubules demonstrated that the ciPTECs polarized. Receptor-mediated endocytic uptake of fluorescent albumin and transferrin in 30:insH and R637X ciPTECs was significantly decreased, compared with normal ciPTECs, and could be further reduced by competition with 10-fold excess of unlabeled albumin and transferrin, whereas in the del132-241 ciPTEC, receptor-mediated endocytic uptake was abolished. Investigation of endosomal acidification by live-cell imaging of pHluorin-VAMP2 (vesicle-associated membrane protein-2), a pH-sensitive-GFP construct, revealed that the endosomal pH in normal and 30:insH ciPTECs was similar, whereas in del132-241 and R637X ciPTECs, it was significantly more alkaline, indicating defective acidification in these ciPTECs. The addition of bafilomycin-A1, a V-ATPase inhibitor, raised the pH significantly in all ciPTECs, demonstrating that the differences in acidification were not due to alterations in the V-ATPase, but instead to abnormalities of CLC-5. Thus, our studies, which have established human Dent disease ciPTECs that will facilitate studies of mechanisms in renal reabsorption, demonstrate that Dent disease-causing CLC-5 mutations have differing effects on endosomal acidification and receptor-mediated endocytosis

  17. (-)-nicotine ameliorates corticosterone's potentiation of N-methyl-d-aspartate receptor-mediated cornu ammonis 1 toxicity.

    PubMed

    Mulholland, P J; Self, R L; Harris, B R; Littleton, J M; Prendergast, M A

    2004-01-01

    Hypercortisolemia, long-term exposure of the brain to high concentrations of stress hormones (i.e. cortisol), may occur in patients suffering from depression, alcoholism, and other disorders. This has been suggested to produce neuropathological effects, in part, via increased function or sensitivity of N-methyl-d-aspartate (NMDA)-type glutamate receptors. Given that cigarette smoking is highly prevalent in some of these patient groups and nicotine has been shown to reduce toxic consequences of NMDA receptor function, it may be suggested that nicotine intake may attenuate the neurotoxic effects of hypercortisolemia. To investigate this possibility, organotypic hippocampal slice cultures derived from rat were pre-treated with corticosterone (0.001-1 microM) alone or in combination with selective glucocorticoid receptor antagonists for 72-h prior to a brief (1-h) NMDA exposure (5 microM). Pre-treatment with corticosterone (0.001-1 microM) alone did not cause hippocampal damage, while NMDA exposure produced significant cellular damage in the cornu ammonis (CA)1 subregion. No significant damage was observed in the dentate gyrus or CA3 regions following NMDA exposure. Pre-treatment of cultures with corticosterone (0.1-1 microM) markedly exacerbated NMDA-induced CA1 and dentate gyrus region damage. This effect in the CA1 region was prevented by co-administration of the glucocorticoid receptor antagonist RU486 (>or=1 microM), but not spironolactone (1-10 microM), a mineralocorticoid receptor antagonist. In a second series of studies, both acute and pre-exposure of cultures to (-)-nicotine (1-10 microM) significantly reduced NMDA toxicity in the CA1 region. Co-administration of cultures to (-)-nicotine (1-10 microM) with 100 nM corticosterone prevented corticosterone's exacerbation of subsequent CA1 insult. This protective effect of (-)-nicotine was not altered by co-exposure of cultures to 10 microM dihydro-beta-erythroidine but was blocked by co-exposure to 100 n

  18. MDMA-induced loss of parvalbumin interneurons within the dentate gyrus is mediated by 5HT2A and NMDA receptors.

    PubMed

    Collins, Stuart A; Gudelsky, Gary A; Yamamoto, Bryan K

    2015-08-15

    MDMA is a widely abused psychostimulant which causes a rapid and robust release of the monoaminergic neurotransmitters dopamine and serotonin. Recently, it was shown that MDMA increases extracellular glutamate concentrations in the dorsal hippocampus, which is dependent on serotonin release and 5HT2A/2C receptor activation. The increased extracellular glutamate concentration coincides with a loss of parvalbumin-immunoreactive (PV-IR) interneurons of the dentate gyrus region. Given the known susceptibility of PV interneurons to excitotoxicity, we examined whether MDMA-induced increases in extracellular glutamate in the dentate gyrus are necessary for the loss of PV cells in rats. Extracellular glutamate concentrations increased in the dentate gyrus during systemic and local administration of MDMA. Administration of the NMDA receptor antagonist, MK-801, during systemic injections of MDMA, prevented the loss of PV-IR interneurons seen 10 days after MDMA exposure. Local administration of MDL100907, a selective 5HT2A receptor antagonist, prevented the increases in glutamate caused by reverse dialysis of MDMA directly into the dentate gyrus and prevented the reduction of PV-IR. These findings provide evidence that MDMA causes decreases in PV within the dentate gyrus through a 5HT2A receptor-mediated increase in glutamate and subsequent NMDA receptor activation.

  19. Molecular mechanism linking BDNF/TrkB signaling with the NMDA receptor in memory: the role of Girdin in the CNS.

    PubMed

    Itoh, Norimichi; Enomoto, Atsushi; Nagai, Taku; Takahashi, Masahide; Yamada, Kiyofumi

    2016-07-01

    It is well known that synaptic plasticity is the cellular mechanism underlying learning and memory. Activity-dependent synaptic changes in electrical properties and morphology, including synaptogenesis, lead to alterations of synaptic strength, which is associated with long-term potentiation (LTP). Brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) signaling is involved in learning and memory formation by regulating synaptic plasticity. The phosphatidylinositol 3-kinase (PI3-K)/Akt pathway is one of the key signaling cascades downstream BDNF/TrkB and is believed to modulate N-methyl-d-aspartate (NMDA) receptor-mediated synaptic plasticity. However, the molecular mechanism underlying the connection between these two key players in synaptic plasticity remains largely unknown. Girders of actin filament (Girdin), an Akt substrate that directly binds to actin filaments, has been shown to play a role in neuronal migration and neuronal development. Recently, we identified Girdin as a key molecule involved in regulating long-term memory. It was demonstrated that phosphorylation of Girdin by Akt contributed to the maintenance of LTP by linking the BDNF/TrkB signaling pathway with NMDA receptor activity. These findings indicate that Girdin plays a pivotal role in a variety of processes in the CNS. Here, we review recent advances in our understanding about the roles of Girdin in the CNS and focus particularly on neuronal migration and memory.

  20. Deactivation and desensitization of non-NMDA receptors in patches and the time course of EPSCs in rat cerebellar granule cells.

    PubMed Central

    Silver, R A; Colquhoun, D; Cull-Candy, S G; Edmonds, B

    1996-01-01

    1. Spontaneous and evoked non-NMDA receptor-mediated EPSCs were recorded from cerebellar granule cells in slices at approximately 24 and approximately 34 degrees C. The EPSC decay was fitted with the sum of two exponential functions. 2. The time courses of non-NMDA receptor deactivation and desensitization were determined with fast concentration jumps of glutamate onto patches from cultured granule cells. Deactivation (decay time constant tau = 0.6 ms at 24 degrees C) was substantially faster than desensitization (tau = 4 ms). Both processes were fitted by single exponential functions. 3. The decay of the fast component of the spontaneous EPSC (tau EPSCfast = 0.9 ms at 23 degrees C) was marginally slower than deactivation but too fast to be determined by desensitization. Our results suggest that the decay of this component is set by both the rate of decline of transmitter concentration and channel deactivation. 4. A simple diffusion model predicts that the time course of transmitter in the cleft declines slowly during the later stages of its action. The slow phase of transmitter removal could account for the time course of the slow component of the spontaneous EPSC (tau EPSCslow = 8 ms at 23 degrees C). PMID:8735702

  1. Tuning the Engine of Cognition: A Focus on NMDA/D1 Receptor Interactions in Prefrontal Cortex

    ERIC Educational Resources Information Center

    Castner, Stacy A.; Williams, Graham V.

    2007-01-01

    The prefrontal cortex of the primate frontal lobes provides the capacity for judgment which can constantly adapt behavior in order to optimize its outcome. Adjudicating between long-term memory programs and prepotent responses, this capacity reviews all incoming information and provides an interpretation dependent on the events that have just…

  2. Tuning the Engine of Cognition: A Focus on NMDA/D1 Receptor Interactions in Prefrontal Cortex

    ERIC Educational Resources Information Center

    Castner, Stacy A.; Williams, Graham V.

    2007-01-01

    The prefrontal cortex of the primate frontal lobes provides the capacity for judgment which can constantly adapt behavior in order to optimize its outcome. Adjudicating between long-term memory programs and prepotent responses, this capacity reviews all incoming information and provides an interpretation dependent on the events that have just…

  3. The autophagy machinery restrains iNKT cell activation through CD1D1 internalization.

    PubMed

    Keller, Christian W; Loi, Monica; Ewert, Svenja; Quast, Isaak; Theiler, Romina; Gannagé, Monique; Münz, Christian; De Libero, Gennaro; Freigang, Stefan; Lünemann, Jan D

    2017-03-15

    Invariant natural killer T (iNKT) cells are innate T cells with powerful immune regulatory functions that recognize glycolipid antigens presented by the CD1D protein. While iNKT-cell-activating glycolipids are currently being explored for their efficacy to improve immunotherapy against infectious diseases and cancer, little is known about the mechanisms that control CD1D antigen presentation and iNKT cell activation in vivo. CD1D molecules survey endocytic pathways to bind lipid antigens in MHC class II containing compartments (MIICs) before recycling to the plasma membrane. Autophagosomes intersect with MIICs and autophagy-related proteins are known to support antigen loading for increased CD4(+) T cell immunity. Here, we report that mice with dendritic cell (DC)-specific deletion of the essential autophagy gene Atg5 showed better CD1D1-restricted glycolipid presentation in vivo. These effects led to enhanced iNKT cell cytokine production upon antigen recognition and lower bacterial loads during Sphingomonas paucimobilis infection. Enhanced iNKT cell activation was independent of receptor-mediated glycolipid uptake or costimulatory signals. Instead, loss of Atg5 in DCs impaired clathrin-dependent internalization of CD1D1 molecules via the adaptor protein complex 2 (AP2) and, thus, increased surface expression of stimulatory CD1D1-glycolipid complexes. These findings indicate that the autophagic machinery assists in the recruitment of AP2 to CD1D1 molecules resulting in attenuated iNKT cell activation, in contrast to the supporting role of macroautophagy in CD4(+) T cell stimulation.

  4. Resolvin D1 protects periodontal ligament

    PubMed Central

    Mustafa, Manal; Zarrough, Ahmed; Bolstad, Anne Isine; Lygre, Henning; Mustafa, Kamal; Hasturk, Hatice; Serhan, Charles; Kantarci, Alpdogan

    2013-01-01

    Resolution agonists are endogenous mediators that drive inflammation to homeostasis. We earlier demonstrated in vivo activity of resolvins and lipoxins on regenerative periodontal wound healing. The goal of this study was to determine the impact of resolvin D1 (RvD1) on the function of human periodontal ligament (PDL) fibroblasts, which are critical for wound healing during regeneration of the soft and hard tissues around teeth. Primary cells were cultured from biopsies obtained from three individuals free of periodontal diseases. Peripheral blood mononuclear cells were isolated by density gradient centrifugation from whole blood of healthy volunteers. PGE2, leukotriene B4 (LTB4), and lipoxin A4 (LXA4) in culture supernatants were measured by ELISA. The direct impact of RvD1 on PDL fibroblast proliferation was measured and wound closure was analyzed in vitro using a fibroblast culture “scratch assay.” PDL fibroblast function in response to RvD1 was further characterized by basic FGF production by ELISA. IL-1β and TNF-α enhanced the production of PGE2. Treatment of PDL cells and monocytes with 0.1–10 ng/ml RvD1 (0.27–27 M) reduced cytokine induced production of PGE2 and upregulated LXA4 production by both PDL cells and monocytes. RvD1 significantly enhanced PDL fibroblast proliferation and wound closure as well as basic FGF release. The results demonstrate that anti-inflammatory and proresolution actions of RvD1 with upregulation of arachidonic acid-derived endogenous resolution pathways (LXA4) and suggest resolution pathway synergy establishing a novel mechanism for the proresolution activity of the ω-3 docosahexaenoic acid-derived resolution agonist RvD1. PMID:23864609

  5. Involvement of D1 and D2 dopamine receptors in the antidepressant-like effects of selegiline in maternal separation model of mouse.

    PubMed

    Amiri, Shayan; Amini-Khoei, Hossein; Mohammadi-Asl, Ali; Alijanpour, Sakineh; Haj-Mirzaian, Arya; Rahimi-Balaei, Maryam; Razmi, Ali; Olson, Carl O; Rastegar, Mojgan; Mehdizadeh, Mehdi; Zarrindast, Mohammad-Reza

    2016-09-01

    Mother-infant interactions are known to be associated with the psychological well-being of an individual in adulthood. It is well accepted that emotional stress in early life, such as maternal separation (MS), leads to alterations in the neurotransmission systems of various brain regions, especially the mesolimbic dopaminergic system, and subsequently can increase the risk for development of psychiatric disorders including depression in adulthood. Selegiline is an irreversible monoamine oxidase (MAO) type B inhibitor which increases striatal dopamine levels and exerts an antidepressant effect. In this study, 180min of MS stress was applied to mice at postnatal day (PND) 2-14 followed by behavioral tests for determining depressive-like behaviors, such as forced swimming test (FST), splash test and sucrose preference test (SPT) in adult mice (PND 50). The open field test (OFT) also was applied to validate FST results. We used SCH23390 (D1 antagonist) and sulpiride (D2 antagonist) in order to determine the role of D1 and D2 dopamine receptors in antidepressant-like effects of selegiline. Our results revealed that MS provoked depressive-like behaviors in adult male mice, and the administration of selegiline attenuated depressive-like behaviors in MS mice. Our findings showed that D1 dopamine receptors facilitate the positive effects of selegiline on the passive behavior in the FST. Furthermore, antidepressant effects of selegiline on hedonic difficulties are mediated via D2 receptor in the SPT. The results of the splash test revealed that both D1 and D2 receptors mediate the protective effect of selegiline against motivational and self-care problems. Based on our results, we conclude that both D1 and D2 dopamine receptors are involved in mediating the antidepressant-like effect of selegiline. We found that D1 receptors mediate an effect on despair behavior, D2 receptors mediate an effect on anhedonia, and both D1 and D2 receptors contribute to the protective effects of

  6. Effect of Dopaminergic D1 Receptors on Plasticity Is Dependent of Serotoninergic 5-HT1A Receptors in L5-Pyramidal Neurons of the Prefrontal Cortex

    PubMed Central

    Meunier, Claire Nicole Jeanne; Callebert, Jacques; Cancela, José-Manuel; Fossier, Philippe

    2015-01-01

    Major depression and schizophrenia are associated with dysfunctions of serotoninergic and dopaminergic systems mainly in the prefrontal cortex (PFC). Both serotonin and dopamine are known to modulate synaptic plasticity. 5-HT1A receptors (5-HT1ARs) and dopaminergic type D1 receptors are highly represented on dendritic spines of layer 5 pyramidal neurons (L5PyNs) in PFC. How these receptors interact to tune plasticity is poorly understood. Here we show that D1-like receptors (D1Rs) activation requires functional 5HT1ARs to facilitate LTP induction at the expense of LTD. Using 129/Sv and 5-HT1AR-KO mice, we recorded post-synaptic currents evoked by electrical stimulation in layer 2/3 after activation or inhibition of D1Rs. High frequency stimulation resulted in the induction of LTP, LTD or no plasticity. The D1 agonist markedly enhanced the NMDA current in 129/Sv mice and the percentage of L5PyNs displaying LTP was enhanced whereas LTD was reduced. In 5-HT1AR-KO mice, the D1 agonist failed to increase the NMDA current and orientated the plasticity towards L5PyNs displaying LTD, thus revealing a prominent role of 5-HT1ARs in dopamine-induced modulation of plasticity. Our data suggest that in pathological situation where 5-HT1ARs expression varies, dopaminergic treatment used for its ability to increase LTP could turn to be less and less effective. PMID:25775449

  7. Effect of dopaminergic D1 receptors on plasticity is dependent of serotoninergic 5-HT1A receptors in L5-pyramidal neurons of the prefrontal cortex.

    PubMed

    Meunier, Claire Nicole Jeanne; Callebert, Jacques; Cancela, José-Manuel; Fossier, Philippe

    2015-01-01

    Major depression and schizophrenia are associated with dysfunctions of serotoninergic and dopaminergic systems mainly in the prefrontal cortex (PFC). Both serotonin and dopamine are known to modulate synaptic plasticity. 5-HT1A receptors (5-HT1ARs) and dopaminergic type D1 receptors are highly represented on dendritic spines of layer 5 pyramidal neurons (L5PyNs) in PFC. How these receptors interact to tune plasticity is poorly understood. Here we show that D1-like receptors (D1Rs) activation requires functional 5HT1ARs to facilitate LTP induction at the expense of LTD. Using 129/Sv and 5-HT1AR-KO mice, we recorded post-synaptic currents evoked by electrical stimulation in layer 2/3 after activation or inhibition of D1Rs. High frequency stimulation resulted in the induction of LTP, LTD or no plasticity. The D1 agonist markedly enhanced the NMDA current in 129/Sv mice and the percentage of L5PyNs displaying LTP was enhanced whereas LTD was reduced. In 5-HT1AR-KO mice, the D1 agonist failed to increase the NMDA current and orientated the plasticity towards L5PyNs displaying LTD, thus revealing a prominent role of 5-HT1ARs in dopamine-induced modulation of plasticity. Our data suggest that in pathological situation where 5-HT1ARs expression varies, dopaminergic treatment used for its ability to increase LTP could turn to be less and less effective.

  8. NMDA Receptor Function During Senescence: Implication on Cognitive Performance

    PubMed Central

    Kumar, Ashok

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptors, a family of L-glutamate receptors, play an important role in learning and memory, and are critical for spatial memory. These receptors are tetrameric ion channels composed of a family of related subunits. One of the hallmarks of the aging human population is a decline in cognitive function; studies in the past couple of years have demonstrated deterioration in NMDA receptor subunit expression and function with advancing age. However, a direct relationship between impaired memory function and a decline in NMDA receptors is still ambiguous. Recent studies indicate a link between an age-associated NMDA receptor hypofunction and memory impairment and provide evidence that age-associated enhanced oxidative stress might be contributing to the alterations associated with senescence. However, clear evidence is still deficient in demonstrating the underlying mechanisms and a relationship between age-associated impaired cognitive faculties and NMDA receptor hypofunction. The current review intends to present an overview of the research findings regarding changes in expression of various NMDA receptor subunits and deficits in NMDA receptor function during senescence and its implication in age-associated impaired hippocampal-dependent memory function. PMID:26732087

  9. Sex Differences Distinguish Intracortical Glutamate Receptor-Mediated Regulation of Extracellular Dopamine Levels in the Prefrontal Cortex of Adult Rats

    PubMed Central

    Locklear, M. N.; Cohen, A. B.; Jone, A.; Kritzer, M. F.

    2016-01-01

    Executive functions of the prefrontal cortex (PFC) are sensitive to local dopamine (DA) levels. Although sex differences distinguish these functions and their dysfunction in disease, the basis for this is unknown. We asked whether sex differences might result from dimorphisms in the glutamatergic mechanisms that regulate PFC DA levels. Using antagonists selective for α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartate (NMDA) receptors, we compared drug effects on in vivo microdialysis DA measurements in the PFC of adult male and female rats. We found that baseline DA levels were similar across sex, AMPA antagonism decreased PFC DA in both sexes, and NMDA antagonism increased DA in males but decreased DA in females. We also found that, at subseizure-producing drug levels, γ-aminobutyric acid (GABA)-A antagonism did not affect DA in either sex but that GABA-B antagonism transiently increased PFC DA in both sexes, albeit more so in females. Finally, when NMDA antagonism was coincident with GABA-B antagonism, PFC DA levels in males responded as if to GABA-B antagonism alone, whereas in females, DA effects mirrored those induced by NMDA antagonism. Taken together, these data suggest commonalities and fundamental differences in the intracortical amino acid transmitter mechanisms that regulate DA homeostasis in the male and female rat PFCs. PMID:25260707

  10. Oxidative stress upregulates the NMDA receptor on cerebrovascular endothelium.

    PubMed

    Betzen, Christian; White, Robin; Zehendner, Christoph M; Pietrowski, Eweline; Bender, Bianca; Luhmann, Heiko J; Kuhlmann, Christoph R W

    2009-10-15

    N-methyl-d-aspartate receptor (NMDA-R)-mediated oxidative stress has been implicated in blood-brain barrier (BBB) disruption in a variety of neuropathological diseases. Although some interactions between both phenomena have been elucidated, possible influences of reactive oxygen species (ROS) on the NMDA-R itself have so far been neglected. The objective of this study was to examine how the cerebroendothelial NMDA-R is affected by exposure to oxidative stress and to assess possible influences on BBB integrity. RT-PCR confirmed several NMDA-R subunits (NR1, NR2B-D) expressed in the bEnd3 cell line (murine cerebrovascular endothelial cells). NR1 protein expression after exposure to ROS was observed via in-cell Western. The functionality of the expressed NMDA-R was determined by measuring DiBAC fluorescence in ROS-preexposed cells upon stimulation with the specific agonist NMDA. Finally, the effects on barrier integrity were evaluated using the ECIS system to detect changes in monolayer impedance upon NMDA-R stimulation after exposure to ROS. The expression of NR1 significantly (p<0.001) increased 72 h after 30 min exposure to superoxide (+33.8+/-7.5%), peroxynitrite (+84.9+/-10.7%), or hydrogen peroxide (+92.8+/-7.6%), resulting in increased cellular response to NMDA-R stimulation and diminished monolayer impedance. We conclude that oxidative stress upregulates NMDA-R on cerebrovascular endothelium and thus heightens susceptibility to glutamate-induced BBB disruption.

  11. RabGEF1/Rabex-5 Regulates TrkA-Mediated Neurite Outgrowth and NMDA-Induced Signaling Activation in NGF-Differentiated PC12 Cells

    PubMed Central

    Tam, See-Ying; Lilla, Jennifer N.; Chen, Ching-Cheng; Kalesnikoff, Janet; Tsai, Mindy

    2015-01-01

    Nerve growth factor (NGF) binds to its cognate receptor TrkA and induces neuronal differentiation by activating distinct downstream signal transduction events. RabGEF1 (also known as Rabex-5) is a guanine nucleotide exchange factor for Rab5, which regulates early endosome fusion and vesicular trafficking in endocytic pathways. Here, we used the antisense (AS) expression approach to induce an NGF-dependent sustained knockdown of RabGEF1 protein expression in stable PC12 transfectants. We show that RabGEF1 is a negative regulator of NGF-induced neurite outgrowth and modulates other cellular and signaling processes that are activated by the interaction of NGF with TrkA receptors, such as cell cycle progression, cessation of proliferation, and activation of NGF-mediated downstream signaling responses. Moreover, RabGEF1 can bind to Rac1, and the activation of Rac1 upon NGF treatment is significantly enhanced in AS transfectants, suggesting that RabGEF1 is a negative regulator of NGF-induced Rac1 activation in PC12 cells. Furthermore, we show that RabGEF1 can also interact with NMDA receptors by binding to the NR2B subunit and its associated binding partner SynGAP, and negatively regulates activation of nitric oxide synthase activity induced by NMDA receptor stimulation in NGF-differentiated PC12 cells. Our data suggest that RabGEF1 is a negative regulator of TrkA-dependent neuronal differentiation and of NMDA receptor-mediated signaling activation in NGF-differentiated PC12 cells. PMID:26588713

  12. RabGEF1/Rabex-5 Regulates TrkA-Mediated Neurite Outgrowth and NMDA-Induced Signaling Activation in NGF-Differentiated PC12 Cells.

    PubMed

    Tam, See-Ying; Lilla, Jennifer N; Chen, Ching-Cheng; Kalesnikoff, Janet; Tsai, Mindy

    2015-01-01

    Nerve growth factor (NGF) binds to its cognate receptor TrkA and induces neuronal differentiation by activating distinct downstream signal transduction events. RabGEF1 (also known as Rabex-5) is a guanine nucleotide exchange factor for Rab5, which regulates early endosome fusion and vesicular trafficking in endocytic pathways. Here, we used the antisense (AS) expression approach to induce an NGF-dependent sustained knockdown of RabGEF1 protein expression in stable PC12 transfectants. We show that RabGEF1 is a negative regulator of NGF-induced neurite outgrowth and modulates other cellular and signaling processes that are activated by the interaction of NGF with TrkA receptors, such as cell cycle progression, cessation of proliferation, and activation of NGF-mediated downstream signaling responses. Moreover, RabGEF1 can bind to Rac1, and the activation of Rac1 upon NGF treatment is significantly enhanced in AS transfectants, suggesting that RabGEF1 is a negative regulator of NGF-induced Rac1 activation in PC12 cells. Furthermore, we show that RabGEF1 can also interact with NMDA receptors by binding to the NR2B subunit and its associated binding partner SynGAP, and negatively regulates activation of nitric oxide synthase activity induced by NMDA receptor stimulation in NGF-differentiated PC12 cells. Our data suggest that RabGEF1 is a negative regulator of TrkA-dependent neuronal differentiation and of NMDA receptor-mediated signaling activation in NGF-differentiated PC12 cells.

  13. GABAA and GABAB receptor-mediated effects in guinea-pig ileum.

    PubMed

    Giotti, A; Luzzi, S; Spagnesi, S; Zilletti, L

    1983-03-01

    1 The effects of gamma-aminobutyric acid (GABA) and related substances were examined in guinea-pig ileum longitudinal muscle.2 GABA at doses ranging from 10(-7) M to 3 x 10(-6) M elicited a relaxation while at higher doses (3 x 10(-6) M - 10(-4) M), as previously described, it caused a contraction followed by relaxation.3 GABA-induced relaxation was bicuculline-insensitive, was mimicked by (-)-baclofen but not by homotaurine and muscimol. The effect of baclofen was stereospecific. GABA- and (-)-baclofen-induced relaxations were dose-dependent and their ED(50) values were similar. A specific cross-desensitization occurred between GABA and (-)-baclofen.4 The bicuculline-insensitive relaxation induced by GABA and (-)-baclofen was prevented by tetrodotoxin and hyoscine but not by phentolamine plus propranolol, naloxone or theophylline.5 In preparations in which the muscle tone was raised by histamine or prostaglandin F(2alpha), GABA and (-)-baclofen induced relaxation to the same extent as before increasing the tone. If the tone was raised by DMPP, a greater bicuculline-insensitive relaxation occurred.6 Contraction caused by GABA was bicuculline-sensitive and was mimicked by homotaurine and muscimol. Contraction was dose-dependent and muscimol was about three times more potent than GABA or homotaurine. A specific cross-desensitization occurred between the contractile effects of GABA and those of homotaurine or muscimol.7 Bicuculline competitively antagonized the contractile effects of GABA, homotaurine and muscimol and gave closely similar pA(2) values. The slope of the Schild plot for the above drugs was near 1, confirming the competitive nature of the antagonism.8 The bicuculline-sensitive contraction induced by GABA, homotaurine and muscimol was abolished by tetrodotoxin and was non-competitively antagonized by hyoscine, while it was unaffected by hexamethonium, mepyramine and methysergide.9 It is concluded that two receptors mediate the GABA effects in guinea

  14. Characterization of prejunctional 5-HT receptors mediating inhibition of sympathetic vasopressor responses in the pithed rat.

    PubMed Central

    Villalón, C. M.; Contreras, J.; Ramírez-San Juan, E.; Castillo, C.; Perusquía, M.; Terrón, J. A.

    1995-01-01

    1. It has recently been shown that continuous infusions of 5-hydroxytryptamine (5-HT) are able to inhibit, in a dose-dependent manner, the pressor responses induced by preganglionic (T7-T9) sympathetic stimulation in pithed rats pretreated with desipramine (50 micrograms kg-1, i.v.). This inhibitory effect, besides being significantly more pronounced at lower frequencies of stimulation (0.03-I Hz) and devoid of tachyphylaxis, is reversible after interrupting the infusions of 5-HT (up to 5.6 micrograms kg-1 min-1). In the present study we have characterized the pharmacological profile of the receptors mediating the above inhibitory effect of 5-HT. 2. The inhibition induced by 5.6 micrograms kg-1 min-1 of 5-HT on sympathetically-induced pressor responses was not blocked after i.v. treatment with physiological saline (1 ml kg-1), ritanserin (0.1 mg kg-1), MDL 72222 (0.15 mg kg-1) or tropisetron (3 mg kg-1), which did not modify the sympathetically-induced pressor responses per se, but was significantly antagonized by the 5-HT1-like and 5-HT2 receptor antagonist, methysergide (0.3 mg kg-1), which also produced a slight attenuation of the pressor responses to 0.03 and 0.1 Hz per se. 3. Unexpectedly and contrasting with methysergide, the 5-HT1-like and 5-HT2 receptor antagonists, methiothepin (0.01, 0.03 and 0.1 mg kg-1) and metergoline (1 and 3 mg kg-1), apparently failed to block the above 5-HT-induced inhibition. Nevertheless, it is noteworthy that these antagonists also blocked the electrically-induced pressor responses per se, presumably by blockade of vascular alpha 1-adrenoceptors and, indeed, this property might have masked their potential antagonism at the inhibitory 5-HT1-like receptors. 4. Consistent with the above findings, 5-carboxamidotryptamine (5-CT, a potent 5-HT1-like receptor agonist), metergoline and methysergide mimicked the inhibitory action of 5-HT with the following rank order of agonist potency: 5CT > > 5-HT > metergoline > or = methysergide. 5

  15. Pharmacological characterization of prostanoid receptors mediating vasoconstriction in human umbilical vein

    PubMed Central

    Daray, Federico Manuel; Minvielle, Ana Itatí; Puppo, Soledad; Rothlin, Rodolfo Pedro

    2003-01-01

    This study was undertaken to characterize pharmacologically the prostanoid receptor subtypes mediating contraction in human umbilical vein (HUV).HUV rings were mounted in organ baths and concentration–response curves to U-46619 (TXA2 mimetic) were constructed in the absence or presence of SQ-29548 or ICI-192,605 (TP receptor antagonists). U-46619 was a potent constrictor (pEC50: 8.03). SQ-29548 and ICI-192,605 competitively antagonized responses to U-46619 with pKB values of 7.96 and 9.07, respectively.Concentration–response curves to EP receptor agonists: PGE2, misoprostol and 17-phenyl-trinor-PGE2 gave pEC50 values of 5.06, 5.25 and 5.32, respectively. Neither pEC50 nor maximum of PGE2 and 17-phenyl-trinor-PGE2 concentration–response curves were modified by the DP/EP1/EP2 receptor antagonist AH 6809 (1 μM). However, ICI-192,605 produced a concentration-dependent antagonism of the responses to all the EP receptor agonists. The pA2 estimated for ICI-192,605 against PGE2 or misoprostol were 8.91 and 9.22, respectively.Concentration–response curves to FP receptor agonists: PGF2α and fluprostenol gave pEC50 values of 6.20 and 5.82, respectively. ICI-192,605 (100 nM) was completely ineffective against PGF2α or fluprostenol. In addition, lack of antagonistic effect of AH 6809 (1 μM) against PGF2α was observed.In conclusion, the findings obtained with TP-selective agonist and antagonists provide strong evidence of the involvement of TP receptors promoting vasoconstriction in HUV. Furthermore, the action of the natural and synthetic EP receptor agonists appears to be mediated via TP receptors. On the other hand, the results employing FP receptor agonists and antagonists of different prostanoid receptors suggest the presence of FP receptors mediating vasoconstriction in this vessel. PMID:12922927

  16. Cannabinoid CB1 receptor mediates glucocorticoid effects on hormone secretion induced by volume and osmotic changes.

    PubMed

    Ruginsk, S G; Uchoa, E T; Elias, L L K; Antunes-Rodrigues, J

    2012-02-01

    The present study provides the first in vivo evidence that the cannabinoid CB(1) receptor mediates the effects of dexamethasone on hormone release induced by changes in circulating volume and osmolality. Male adult rats were administered with the CB(1) receptor antagonist rimonabant (10 mg/Kg, p.o.), followed or not in 1 hour by dexamethasone (1 mg/Kg, i.p.). Extracellular volume expansion (EVE, 2 mL/100 g of body weight, i.v.) was performed 2 hours after dexamethasone or vehicle treatment using either isotonic (I-EVE, 0.15 mol/L) or hypertonic (H-EVE, 0.30 mol/L) NaCl solution. Five minutes after EVE, animals were decapitated and trunk blood was collected for all plasma measurements. Rimonabant potentiated oxytocin (OT) secretion induced by H-EVE and completely reversed the inhibitory effects of dexamethasone in response to the same stimulus. These data suggest that glucocorticoid modulation of OT release is mediated by the CB(1) receptor. Although dexamethasone did not affect vasopressin (AVP) secretion induced by H-EVE, the administration of rimonabant potentiated AVP release in response to the same stimulus, supporting the hypothesis that the CB(1) receptor regulates AVP secretion independently of glucocorticoid-mediated signalling. Dexamethasone alone did not affect atrial natriuretic peptide (ANP) release stimulated by I-EVE or H-EVE. However, pretreatment with rimonabant potentiated ANP secretion induced by H-EVE, suggesting a possible role for the CB(1) receptor in the control of peripheral factors that modulate cardiovascular function. Rimonabant also reversed the inhibitory effects of dexamethasone on H-EVE-induced corticosterone secretion, reinforcing the hypothesis that the CB(1) receptor may be involved in the negative feedback exerted by glucocorticoids on the activity of the hypothalamic-pituitary-adrenal axis. Collectively, the results of the present study indicate that the CB(1) receptor modulates neurohypophyseal hormone secretion and

  17. Adenosine A2B-receptor-mediated cyclic AMP accumulation in primary rat astrocytes.

    PubMed Central

    Peakman, M. C.; Hill, S. J.

    1994-01-01

    1. The effects of adenosine receptor agonists and antagonists on the accumulation of cyclic AMP have been investigated in primary cultures of rat astrocytes. 2. Adenosine A2-receptor stimulation caused a concentration-dependent increase in the accumulation of [3H]-cyclic AMP in cells prelabelled with [3H]-adenine. The rank order of agonist potencies was 5'-N-ethylcarboxamidoadenosine (NECA; EC50 = 1 microM) > adenosine (EC50 = 5 microM) > 2-chloroadenosine (EC50 = 20 microM) >> CGS 21680 (EC50 > 10 microM). The presence of 0.5 microM dipyridamole, an adenosine uptake blocker, had no effect on the potency of adenosine. 3. The response to 10 microM NECA was antagonized in a concentration-dependent manner by the non-selective adenosine receptor antagonists, xanthine amine congener (apparent KD = 12 nM), PD 115,199 (apparent KD = 134 nM) and 8-phenyltheophylline (apparent KD = 126 nM). However, the A1-receptor-selective antagonist, 8-cyclopentyl-1,3-dipropylxanthine, had no significant effect on the responses to NECA or 2-chloroadenosine at concentrations up to 1 microM. 4. Stimulation of A1-receptors with the selective agonist, N6-cyclopentyladenosine, did not alter the basal accumulation of [3H]-cyclic AMP but inhibited a forskolin-mediated elevation of [3H]-cyclic AMP accumulation by a maximal value of 42%. This inhibition was fully reversed in the presence of 0.1 microM, 8-cyclopentyl-1,3-dipropylxanthine. 5. The time course for NECA-mediated [3H]-cyclic AMP accumulation was investigated. The results suggest that there is a substantial efflux of cyclic AMP from the cells in addition to the rapid and sustained elevation of intracellular cyclic AMP (5 fold over basal) which was also observed. 6. These data indicate that rat astrocytes in primary culture express an A2B-adenosine receptor coupled positively to adenylyl cyclase. Furthermore, the presence of A1-receptors negatively coupled to adenylyl cyclase appears to have no significant effect on the A2B-receptor-mediated

  18. Lipoprotein lipase regulates Fc receptor-mediated phagocytosis by macrophages maintained in glucose-deficient medium.

    PubMed Central

    Yin, B; Loike, J D; Kako, Y; Weinstock, P H; Breslow, J L; Silverstein, S C; Goldberg, I J

    1997-01-01

    During periods of intense activity such as phagocytosis, macrophages are thought to derive most of their energy from glucose metabolism under both aerobic and anaerobic conditions. To determine whether fatty acids released from lipoproteins by macrophage lipoprotein lipase (LPL) could substitute for glucose as a source of energy for phagocytosis, we cultured peritoneal macrophages from normal and LPL knockout (LPL-KO) mice that had been rescued from neonatal demise by expression of human LPL via the muscle creatine kinase promoter. Normal and LPL-KO macrophages were cultured in medium containing normal (5 mM) or low (1 mM) glucose, and were tested for their capacity to phagocytose IgG-opsonized sheep erythrocytes. LPL-KO macrophages maintained in 1 and 5 mM glucose phagocytosed 67 and 79% fewer IgG-opsonized erythrocytes, respectively, than macrophages from normal mice. Addition of VLDL to LPL-expressing macrophages maintained in 1 mM glucose enhanced the macrophages' phagocytosis of IgG-opsonized erythrocytes, but did not stimulate phagocytosis by LPL-KO macrophages. Inhibition of secreted LPL with a monoclonal anti-LPL antibody or with tetrahydrolipstatin blocked the ability of VLDL to enhance phagocytosis by LPL-expressing macrophages maintained in 1 mM glucose. Addition of oleic acid significantly enhanced phagocytosis by both LPL-expressing and LPL-KO macrophages maintained in 1 mM glucose. Moreover, oleic acid stimulated phagocytosis in cells cultured in non-glucose-containing medium, and increased the intracellular stores of creatine phosphate. Inhibition of oxidative phosphorylation, but not of glycolysis, blocked the capacity of oleic acid to stimulate phagocytosis. Receptor-mediated endocytosis of acetyl LDL by macrophages from LPL-expressing and LPL-KO mice was similar whether the cells were maintained in 5 or 1 mM glucose, and was not augmented by VLDL. We postulate that fatty acids derived from macrophage LPL-catalyzed hydrolysis of triglycerides and

  19. Melatonin receptors mediate improvements of survival in a model of polymicrobial sepsis.

    PubMed

    Fink, Tobias; Glas, Michael; Wolf, Alexander; Kleber, Astrid; Reus, Erik; Wolff, Martin; Kiefer, Daniel; Wolf, Beate; Rensing, Hauke; Volk, Thomas; Mathes, Alexander M

    2014-01-01

    -α, interleukin-6, and interleukin-10 were observed 5 hours after cecal ligation and incision in rats (p < 0.05 vs baseline and corresponding sham); neither ramelteon nor melatonin treatment significantly affected immune response. Melatonin receptors mediate improvements of survival after polymicrobial sepsis in rats and mice; this effect appears to be independent from major alterations of cytokine release.

  20. The Impact of Hyperthermia on Receptor-Mediated Interleukin-6 Regulation in Mouse Skeletal Muscle

    PubMed Central

    Welc, Steven S.; Morse, Deborah A.; Mattingly, Alex J.; Laitano, Orlando; King, Michelle A.; Clanton, Thomas L.

    2016-01-01

    In inflammatory cells, hyperthermia inhibits lipopolysaccharide (LPS)-induced interleukin-6 (IL-6) gene expression and protein secretion. Since hyperthermia alone stimulates IL-6 in skeletal muscle, we hypothesized that it would amplify responses to other receptor-mediated stimuli. IL-6 regulation was tested in C2C12 myotubes and in soleus during treatment with epinephrine (EPI) or LPS. In EPI-treated myotubes (100 ng/ml), 1 h exposure at 40.5°C-42°C transiently increased IL-6 mRNA compared to EPI treatment alone at 37°C. In LPS-treated myotubes (1 μg/ml), exposure to 41°C-42°C also increased IL-6 mRNA. In isolated mouse soleus, similar amplifications of IL-6 gene expression were observed in 41°C, during both low (1 ng/ml) and high dose (100 ng/ml) EPI, but only in high dose LPS (1 μg/ml). In myotubes, heat increased IL-6 secretion during EPI exposure but had no effect or inhibited secretion with LPS. In soleus there were no effects of heat on IL-6 secretion during either EPI or LPS treatment. Mechanisms for the effects of heat on IL-6 mRNA were explored using a luciferase-reporter in C2C12 myotubes. Overexpression of heat shock factor-1 (HSF-1) had no impact on IL-6 promoter activity during EPI stimulation, but elevated IL-6 promoter activity during LPS stimulation. In contrast, when the activator protein-1 (AP-1) element was mutated, responses to both LPS and EPI were suppressed in heat. Using siRNA against activating transcription factor-3 (ATF-3), a heat-stress-induced inhibitor of IL-6, no ATF-3-dependent effects were observed. The results demonstrate that, unlike inflammatory cells, hyperthermia in muscle fibers amplifies IL-6 gene expression to EPI and LPS. The effect appears to reflect differential engagement of HSF-1 and AP-1 sensitive elements on the IL-6 gene, with no evidence for involvement of ATF-3. The functional significance of increased IL-6 mRNA expression during heat may serve to overcome the well-known suppression of protein synthetic

  1. Effect of taurine deficiency on adenosine receptor-mediated relaxation of the rat aorta.

    PubMed

    Abebe, Worku; Mozaffari, Mahmood S

    2003-11-01

    not altered by taurine deficiency. The results indicate that endogenous taurine deficiency causes differential inhibitory effects on adenosine receptor-mediated vasorelaxation, depending upon the agonists used. Given the recognized role of adenosine in the vasculature, these alterations suggest taurine-mediated modulation of blood flow regulation.

  2. Convulsions induced by centrally administered NMDA in mice: effects of NMDA antagonists, benzodiazepines, minor tranquilizers and anticonvulsants.

    PubMed Central

    Moreau, J. L.; Pieri, L.; Prud'hon, B.

    1989-01-01

    1. Convulsions were induced reproducibly by intracerebroventricular injection of N-methyl-D-aspartic acid (NMDA) to conscious mice. 2. Competitive (carboxypiperazine-propylphosphonic acid, CPP; 2-amino-7-phosphonoheptanoic acid, AP7) and non-competitive (MK801; phencyclidine, PCP; thienylcyclohexylpiperidine, TCP; dextrorphan; dextromethorphan) NMDA antagonists prevented NMDA-induced convulsions. 3. Benzodiazepine receptor agonists and partial agonists (triazolam, diazepam, clonazepam, Ro 16-6028), classical anticonvulsants (diphenylhydantoin, phenobarbitone, sodium valproate) and meprobamate were also found to prevent NMDA-induced convulsions. 4. Flumazenil (a benzodiazepine receptor antagonist) and the GABA agonists THIP and muscimol (up to subtoxic doses) were without effect. 5. Flumazenil reversed the anticonvulsant action of diazepam, but not that of MK801. 6. Results obtained in this model differ somewhat from those described in a seizure model with systemic administration of NMDA. An explanation for this discrepancy is offered. 7. This model is a simple test for assessing the in vivo activity of NMDA antagonists and also expands the battery of chemically-induced seizure models for characterizing anticonvulsants not acting at NMDA receptors. PMID:2574061

  3. Pioglitazone and dexamethasone induce adipogenesis in D1 bone marrow stromal cell line, but not through the peroxisome proliferator-activated receptor-gamma pathway.

    PubMed

    Hung, Shao-Hung; Yeh, Ching-Hua; Huang, Hsuan-Ti; Wu, Peihua; Ho, Mei-Ling; Chen, Chung-Hwan; Wang, Chihuei; Chao, David; Wang, Gwo-Jaw

    2008-03-12

    Osteoblasts and adipocytes share a common progenitor in bone marrow. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) plays a critical role in adipogenesis. Using a mouse pluripotent mesenchymal cell, D1, as a model, several reports have demonstrated that dexamethasone, a glucocorticoid, can induce adipogenesis. We first examined whether adipogenesis induction in D1 cells is initiated by activation of PPAR-gamma. The results revealed that pioglitazone induces adipogenesis in D1 cells in a dose-dependent manner and decreases alkaline phosphatase activity in D1 cells. Interestingly, this adipogenesis was not blocked by bisphenol A diglycidyl ether, a PPAR-gamma antagonist. A PPAR-gamma-mediated reporter gene assay showed no response to pioglitazone. We then asked whether dexamethasone-induced adipogenesis can be repressed by mifepristone (RU486), an antagonist of glucocorticoid receptor. The results disclosed that mifepristone cannot counteract dexamethasone-induced adipogenesis, and mifepristone itself induced adipogenesis in D1 cells. Moreover, glucocorticoid receptor-mediated reporter gene assay was not responsive to dexamethasone or mifepristone. We concluded that the adipogenesis induced by pioglitazone and dexamethasone in D1 cells may not occur via a PPAR-gamma and glucocorticoid receptor pathway. Finally, we analyzed the gene expression profile of D1 by cDNA microarray after treatment with dexamethasone. We found that the expression of several adipogenesis-related genes is highly provoked by this agent.

  4. Fasting activation of AgRP neurons requires NMDA receptors and involves spinogenesis and increased excitatory tone.

    PubMed

    Liu, Tiemin; Kong, Dong; Shah, Bhavik P; Ye, Chianping; Koda, Shuichi; Saunders, Arpiar; Ding, Jun B; Yang, Zongfang; Sabatini, Bernardo L; Lowell, Bradford B

    2012-02-09

    AgRP neuron activity drives feeding and weight gain whereas that of nearby POMC neurons does the opposite. However, the role of excitatory glutamatergic input in controlling these neurons is unknown. To address this question, we generated mice lacking NMDA receptors (NMDARs) on either AgRP or POMC neurons. Deletion of NMDARs from AgRP neurons markedly reduced weight, body fat and food intake whereas deletion from POMC neurons had no effect. Activation of AgRP neurons by fasting, as assessed by c-Fos, Agrp and Npy mRNA expression, AMPA receptor-mediated EPSCs, depolarization and firing rates, required NMDARs. Furthermore, AgRP but not POMC neurons have dendritic spines and increased glutamatergic input onto AgRP neurons caused by fasting was paralleled by an increase in spines, suggesting fasting induced synaptogenesis and spinogenesis. Thus glutamatergic synaptic transmission and its modulation by NMDARs play key roles in controlling AgRP neurons and determining the cellular and behavioral response to fasting.

  5. Wnt5a promotes cancer cell invasion and proliferation by receptor-mediated endocytosis-dependent and -independent mechanisms, respectively

    PubMed Central

    Shojima, Kensaku; Sato, Akira; Hanaki, Hideaki; Tsujimoto, Ikuko; Nakamura, Masahiro; Hattori, Kazunari; Sato, Yuji; Dohi, Keiji; Hirata, Michinari; Yamamoto, Hideki; Kikuchi, Akira

    2015-01-01

    Wnt5a activates the Wnt/β-catenin-independent pathway and its overexpression is associated with tumor aggressiveness enhancing invasive activity. For this action, Wnt5a-induced receptor endocytosis with clathrin is required. Wnt5a expression was previously believed to be associated with cancer cell motility but not proliferation. Recently, it was reported that Wnt5a is also implicated in cancer cell proliferation, but the mechanism was not clear. In this study, we generated a neutralizing anti-Wnt5a monoclonal antibody (mAb5A16) to investigate the mechanism by which Wnt5a regulates cancer cell proliferation. Wnt5a stimulated both invasion and proliferation of certain types of cancer cells, including HeLaS3 cervical cancer cells and A549 lung cancer cells although Wnt5a promoted invasion but not proliferation in other cancer cells such as KKLS gastric cancer cells. mAb5A16 did not affect the binding of Wnt5a to its receptor, but it suppressed Wnt5a-induced receptor-mediated endocytosis. mAb5A16 inhibited invasion but not proliferation of HeLaS3 and A549 cells. Wnt5a activated Src family kinases (SFKs) and Wnt5a-dependent cancer cell proliferation was dependent on SFKs, yet blockade of receptor-mediated endocytosis did not affect cancer cell proliferation and SFK activity. These results suggest that Wnt5a promotes invasion and proliferation of certain types of cancer cells through receptor-mediated endocytosis-dependent and -independent mechanisms, respectively. PMID:25622531

  6. Antipsychotic-Induced Alterations in CB1 Receptor-Mediated G-Protein Signaling and In Vivo Pharmacology in Rats

    PubMed Central

    Kendler, Seth H.; Burston, James J.; Howard, Daniel R.; Selley, Dana E.; Sim-Selley, Laura J.

    2008-01-01

    Dysregulation of the endocannabinoid and dopamine systems have been implicated in schizophrenia. The purpose of this study was to examine the effects of sub-chronic treatment with two antipsychotics on CB1 receptor-mediated in vitro and in vivo effects. Adult and adolescent male and female rats were injected twice daily with haloperidol (0.3 mg/kg), clozapine (10 mg/kg), or saline for 10 days. Subsequently, CB1 receptor number and function were assessed by [3H]SR141716 and WIN55,212-2-stimulated [35S]GTPγS binding, respectively. The effects of sub-chronic antipsychotic treatment on the in vivo actions of Δ9-tetrahydrocannabinol (Δ9-THC) were also evaluated. In adult female rats, antipsychotic treatment attenuated maximal stimulation of CB1 receptor-mediated G-protein activity in the striatum (clozapine) and prefrontal cortex (both antipsychotics), but not in the ventral midbrain. Associated changes in CB1 receptor number were not observed, suggesting that this attenuation was not due to downregulation. In vivo, sub-chronic treatment with clozapine, but not haloperidol, attenuated Δ9-THC-induced suppression of activity in adult females, whereas neither drug altered hypothermia or catalepsy. In contrast, antipsychotic treatment did not change CB1 receptor-mediated G-protein activation in any brain region in adult male rats and in adolescents of either sex. In vivo, haloperidol, but not clozapine, enhanced Δ9-THC-mediated suppression of activity and hypothermia in adult male rats whereas neither antipsychotic affected Δ9-THC-induced in vivo effects in adolescent rats. These findings suggest that modulation of the endocannabinoid system might contribute in a sex- and age-selective manner to differences in motor side effects of clozapine versus haloperidol. PMID:18708079

  7. Zonal differences in ethanol-induced impairments in receptor-mediated endocytosis of asialoglycoproteins in isolated rat hepatocytes

    SciTech Connect

    Casey, C.A.; Kragskow, S.L.; Sorrell, M.F.; Tuma, D.J. )

    1991-02-01

    We have shown previously that ethanol-induced defects in receptor-mediated endocytosis of asialoorosomucoid occurred as early as 1 wk after ethanol feeding. This study was undertaken as an initial attempt to establish a possible role of defective receptor-mediated endocytosis in liver injury by investigating whether differences exist in the effects of ethanol on receptor-mediated endocytosis in hepatocytes isolated from different regions of the liver. Perivenule cells, present in the distal half of the liver, are thought to be more susceptible to ethanol-induced liver injury than are the periportal cells located in the proximal half of the liver acini. For these studies, we fed male Sprague-Dawley rats for 7 days with liquid diets containing either ethanol (36% of calories) or isocaloric carbohydrate. Perivenule and periportal hepatocytes were then isolated using a digitonin-collagenase perfusion method. In control animals, cells isolated from the perivenule region bound significantly more ligand than did cells from the periportal region. Amounts of ligand internalized and degraded were also greater in perivenule than in periportal cells in these animals. After ethanol feeding, cells isolated from both the perivenule and periportal regions bound significantly less ligand than their respective controls. This impairment in surface and total binding was more pronounced in perivenule than in periportal cells. Internalization and degradation of the ligand were also more adversely affected in the centrilobular region as shown by decreases of greater than 60% in perivenule cells and by only 20% to 30% in periportal cells of ethanol-fed animals compared with controls.

  8. Excitability changes of somatic and viscero-somatic nociceptive reflexes in the decerebrate-spinal rabbit: role of NMDA receptors.

    PubMed Central

    Laird, J M; de la Rubia, P G; Cervero, F

    1995-01-01

    1. Wind-up (frequency-dependent potentiation of the responses of spinal neurones to stimulation of unmyelinated afferents) and other N-methyl-D-aspartate (NMDA) receptor-mediated phenomena have been proposed as key mechanisms underlying persistent pain states. In this study we have compared wind-up in visceral and somatic nociceptive pathways to examine the possible contribution of these mechanisms to visceral pain and hyperalgesia. 2. Experiments were performed on thirteen decerebrate spinalized rabbits. A somato-somatic (SS) reflex (evoked by stimulating skin and muscle afferents from the L2 spinal nerve) and a viscero-somatic (VS) reflex (evoked by stimulating visceral afferents in the splanchnic nerve) were recorded from the L1 spinal nerve. The reflexes consisted of an early (A fibre) and a late (C fibre) component. 3. Conditioning trains of sixteen high intensity electrical stimuli at 1 Hz were applied to the somatic or visceral nerve. These conditioning stimuli did not produce wind-up in the early component of either reflex but evoked powerful wind-up in the late SS reflex (mean percentage of baseline +/- S.E.M., 191 +/- 30%). In contrast wind-up was weak or absent in the late VS reflex (mean percentage of baseline +/- S.E.M., 21 +/- 6%). Conditioning of somatic afferents facilitated both the early and late SS reflex but strongly depressed the early and late VS reflex. Conditioning of visceral afferents had little effect on the early SS reflex, but depressed the early VS reflex and the late components of both reflexes. 4. Intravenous administration (1-10 mg kg-1) of the NMDA receptor antagonist ketamine dose-dependently inhibited the strong wind-up in the late SS reflex and the weak wind-up in the late VS reflex, but also dose-dependently inhibited the early and late components of both baseline reflexes. 5. We conclude that neural mechanisms other than wind-up may underlie the development of visceral pain and hyperalgesia. The present results emphasize the

  9. Potentiation of N-methyl-D-aspartate receptor-mediated neuronal injury during methamphetamine withdrawal in vitro requires co-activation of IP3 receptors.

    PubMed

    Smith, Katherine J; Butler, Tracy R; Self, Rachel L; Braden, Brittany B; Prendergast, Mark A

    2008-01-02

    Recent findings suggest that methamphetamine (METH) functions acutely to inhibit N-methyl-d-aspartate (NMDA) receptor function. Protracted withdrawal from METH exposure may increase the sensitivity of NMDA receptors to agonist exposure, promoting neuronal excitability. However, the relevance of METH effects on NMDA receptor activity with regard to neuronal viability has not been fully studied. The present studies examined the effects of protracted METH exposure (6 or 7 days; 1.0-100 microM) and withdrawal (1 or 7 days) on NMDA receptor-dependent neurotoxicity, determined with use of the non-vital fluorescent marker propidium iodide, in organotypic slice cultures of male and female rats. Prolonged exposure to METH (100 microM) produced only modest toxicity in the granule cell layer of the dentate gyrus. Withdrawal from METH exposure (1 or 7 days) did not produce overt neuronal injury in any region of slice cultures. Exposure to NMDA (5 microM) produced marked neurotoxicity in the CA1 pyramidal cell layer. Neither co-exposure to METH nor 1 day of METH withdrawal in combination with NMDA exposure altered NMDA-induced neurotoxicity. In contrast, protracted withdrawal from METH exposure (7 days) was associated with a marked (approximately 400%) increase in NMDA-induced neurotoxicity in CA1 region pyramidal cells. This potentiation of neurotoxicity was prevented by co-exposure to the selective NMDA receptor antagonist 5-2-amino-5-phosphonovaleric acid (20 microM) and was markedly attenuated by co-exposure of slices to xestospongin C (1 microM), an antagonist of IP(3) receptors. The results of the present studies suggest that long-term METH withdrawal functionally sensitizes the NMDA receptor to agonist exposure and requires the co-activation of NMDA and IP(3) receptors.

  10. Potentiation of N-Methyl-d-Aspartate receptor-mediated neuronal injury during methamphetamine withdrawal in vitro requires co-activation of IP3 receptors

    PubMed Central

    Smith, Katherine J.; Butler, Tracy R.; Self, Rachel L.; Braden, Brittany B.; Prendergast, Mark A.

    2007-01-01

    Recent findings suggest that methamphetamine (METH) functions acutely to inhibit N-methyl-d-aspartate (NMDA) receptor function. Protracted withdrawal from METH exposure may increase the sensitivity of NMDA receptors to agonist exposure, promoting neuronal excitability. However, the relevance of METH effects on NMDA receptor activity with regard to neuronal viability has not been studied. The present studies examined the effects of protracted METH exposure (6 or 7 days; 1.0-100 μM) and withdrawal (1 or 7 days) on NMDA receptor-dependent neurotoxicity, determined with use of the non-vital fluorescent marker propidium iodide, in organotypic slice cultures of male and female rats. Prolonged exposure to METH (100 μM) produced only modest toxicity in the granule cell layer of the dentate gyrus. Withdrawal from METH exposure (1 or 7 days) did not produce overt neuronal injury in any region of slice cultures. Exposure to NMDA (5 μM) produced marked neurotoxicity in the CA1 pyramidal cell layer. Neither co-exposure to METH nor 1 day of METH withdrawal in combination with NMDA exposure altered NMDA-induced neurotoxicity. In contrast, protracted withdrawal from METH exposure (7 days) was associated with a marked (~400%) increase in NMDA-induced neurotoxicity in CA1 region pyramidal cells. This potentiation of neurotoxicity was prevented by co-exposure to the selective NMDA receptor antagonist 5-2-amino-5-phoshonovaleric acid (20 μM) and was markedly attenuated by co-exposure of slices to xestospongin C (1 μM), an antagonist of IP3 receptors. The results of the present studies suggest that long-term METH withdrawal functionally sensitizes the NMDA receptor to agonist exposure and requires the co-activation of NMDA and IP3 receptors. PMID:18021755

  11. [Transient brain ischemia: NMDA receptor modulation and delayed neuronal death].

    PubMed

    Benquet, Pascal; Gee, Christine E; Gerber, Urs

    2008-02-01

    Transient global ischemia induces delayed neuronal death in certain cell types and brain regions while sparing cells in other areas. A key process through which oxygen-glucose deprivation triggers cell death is the excessive accumulation of the neurotransmitter glutamate leading to over excitation of neurons. In certain neurons this increase in glutamate will potentiate the NMDA type of glutamate receptor, which can then initiate cell death. This review provides an update of the neurophysiological, cellular and molecular mechanisms inducing post-ischemic plasticity of NMDA receptors, focusing on the sensitive CA1 pyramidal neurons in the hippocampus as compared to the relatively resistant neighboring CA3 neurons. Both a change in the equilibrium between protein tyrosine kinases/phosphatases and an increased density of surface NMDA receptors in response to ischemia may explain the selective vulnerability of specific cell types. Implications for the treatment of stroke and reasons for the failures of human clinical trials utilizing NMDA receptor antagonists are also discussed.

  12. NMDA neurotransmission as a critical mediator of borderline personality disorder

    PubMed Central

    Grosjean, Bernadette; Tsai, Guochuan E.

    2007-01-01

    Studies of the neurobehavioural components of borderline personality disorder (BPD) have shown that symptoms and behaviours of BPD are partly associated with disruptions in basic neurocognitive processes, in particular, in the executive neurocognition and memory systems. A growing body of data indicates that the glutamatergic system, in particular, the N-methyl-D-aspartate (NMDA) subtype receptor, plays a major role in neuronal plasticity, cognition and memory and may underlie the pathophysiology of multiple psychiatric disorders. In this paper, we review the literature regarding BPD and its cognitive deficits and the current data on glutamatergic and NMDA neurotransmission. We propose that multiple cognitive dysfunctions and symptoms presented by BPD patients, like dissociation, psychosis and impaired nociception, may result from the dysregulation of the NMDA neurotransmission. This impairment may be the result of a combination of biological vulnerability and environmental influences mediated by the NMDA neurotransmission. PMID:17353939

  13. Spinal NMDA NR1 Subunit Expression Following Transient TNBS Colitis

    PubMed Central

    Zhou, QiQi; Price, Donald D.; Caudle, Robert M.; Verne, G. Nicholas

    2009-01-01

    Background: N-methyl-D-aspartic acid (NMDA) receptors play an important role in the development of hypersensitivity to visceral and somatic stimuli following inflammation or tissue injury. Our objective was to investigate the role of NMDA NR1 receptors in the spinal cord (T10-L1; L4-S1) of a subset of rats that remain hypersensitive following histological resolution of TNBS-induced colitis compared to saline treated rats and rats that had recovered both behaviorally and histologically. We hypothesized that NMDA NR1 subunit expression mediates hypersensitivity following transient TNBS colitis. Methods: Male Sprague-Dawley rats (150g-250g) received 20mg/rat intracolonic trinitrobenzene sulfonic acid (TNBS) in 50% ethanol or saline. Animals underwent nociceptive visceral/somatic pain testing 16 weeks after resolution of TNBS colitis. Animals were sacrificed and their spinal cord (T10-L1; L4-S1) was retrieved and 2-dimensional polyacrylamide gel electrophoresis and immunohistocytochemistry techniques were used to investigate spinal-NMDA receptor expression. Results: NR1001 was the only NMDA NR1 receptor subunit that was expressed in recovered and control rats, whereas hypersensitive animals expressed NR1011 and NR1111 as well as NR1001 subunits. Immunohistochemistry analysis demonstrated increased expression of NMDA NR1-N1, C1, and C2-plus expression in lamina I & II of the spinal cord (T10-L1; L4-S1) in hypersensitive rats but not in recovered/control rats. Conclusions: Selective increases in the expression of the NMDA NR1 splice variants occur in hypersensitive rats following resolution of TNBS colitis. This suggests that the NMDA NR1 receptor play an important role in the development of neuronal plasticity and central sensitization. The recombination of NR1 splice variants may serve as a key functional protein that maintains hypersensitivity following resolution of TNBS colitis. PMID:19406112

  14. Dopamine decreases NMDA currents in the oval bed nucleus of the stria terminalis of cocaine self-administering rats.

    PubMed

    Krawczyk, Michal; deBacker, Julian; Mason, Xenos; Jones, Andrea A; Dumont, Eric C

    2014-06-03

    Dopamine (DA) and N-methyl-D-aspartate receptors (NMDARs) contribute in the neural processes underlying drug-driven behaviors. DA is a potent modulator of NMDAR, but few studies have investigated the functional interaction between DA and NMDAR in the context of substance abuse. We combined the rat model of cocaine self-administration with brain slice electrophysiology to study DA modulation of NMDA currents in the oval bed nucleus of the stria terminalis (ovBNST), a dense DA terminal field involved in maintenance of cocaine self-administration amongst other drug related behaviors. Long-Evans rats self-administered intravenous cocaine (0.75 mg/kg/injection) on a progressive ratio (PR) schedule of reinforcement for 15 days and whole-cell patch-clamp recordings were done on the 16th day. DA reduced NMDA currents in brain-slices from cocaine self-administering rats, but not in those of drug-naïve and sucrose self-administering, or when cocaine exposure was passive (yoked), revealing a mechanism unique to voluntary cocaine intake. DA reduced NMDA currents by activating G-protein-coupled D1- and D2-like receptors that converged on phospholipase C and protein phosphatases. Accordingly, our study reveals a mechanism that may contribute to dysfunctional synaptic plasticity associated with drug-driven behaviors during acute withdrawal.

  15. Regulation of muscarinic acetylcholine receptor-mediated synaptic responses by adenosine receptors in the rat hippocampus.

    PubMed Central

    Morton, R A; Davies, C H

    1997-01-01

    '-N-ethylcarboxamidoadenosine (CGS 21680; 0.5-1.0 microM) did not significantly affect the EPSPm. 4. The selective adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX; 0.2 microM) fully reversed the depressant effects of both adenosine (100 microM) and CADO (1 microM) on the EPSPm and the stimulus-evoked reductions in spike frequency adaptation. 5. DPCPX (0.2 microM) alone caused a small but variable mean increase in the EPSPm of 22 +/- 19% and enabled activation of an EPSPm by a previously subthreshold stimulus. In contrast, the selective adenosine kinase inhibitor 5-iodotubercidin (5-IT; 10 microM) inhibited the EPSPm by 74 +/- 10%, an effect that was reversed by DPCPX. 6. The concentration-response relationship for the depressant action of CADO on the EPSPm more closely paralleled that for its presynaptic depressant action on glutamate-mediated EPSPs than that for postsynaptic hyperpolarization. The respective mean IC50 and EC50 concentrations for these effects were 0.3, 0.8 and 3.0 microM. 7. CADO (1-5 microM) did not have a significant effect on the postsynaptic depolarization, increase in input resistance and reduction in spike frequency adaptation evoked by carbachol (0.5-3.0 microM). All these effects were abolished by atropine (1 microM). 8. These data provide good evidence for an adenosine A1 receptor-mediated inhibition of mAChR-mediated synaptic responses in hippocampal CA1 pyramidal neurones. This inhibition is mediated predominantly presynaptically, is active tonically and can be enhanced when extracellular levels of endogenous adenosine are raised. PMID:9234198

  16. 42 CFR 52d.1 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL CANCER INSTITUTE CLINICAL CANCER EDUCATION PROGRAM § 52d.1 Applicability. The regulations in this part apply to grants under the Clinical Cancer Education Program authorized by section 404(a)(4) of the Public Health Service Act, to...

  17. 42 CFR 52d.1 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL CANCER INSTITUTE CLINICAL CANCER EDUCATION PROGRAM § 52d.1 Applicability. The regulations in this part apply to grants under the Clinical Cancer Education Program authorized by section 404(a)(4) of the Public Health Service Act, to...

  18. 42 CFR 52d.1 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL CANCER INSTITUTE CLINICAL CANCER EDUCATION PROGRAM § 52d.1 Applicability. The regulations in this part apply to grants under the Clinical Cancer Education Program authorized by section 404(a)(4) of the Public Health Service Act, to...

  19. 42 CFR 52d.1 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL CANCER INSTITUTE CLINICAL CANCER EDUCATION PROGRAM § 52d.1 Applicability. The regulations in this part apply to grants under the Clinical Cancer Education Program authorized by section 404(a)(4) of the Public Health Service Act, to...

  20. 42 CFR 52d.1 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES GRANTS NATIONAL CANCER INSTITUTE CLINICAL CANCER EDUCATION PROGRAM § 52d.1 Applicability. The regulations in this part apply to grants under the Clinical Cancer Education Program authorized by section 404(a)(4) of the Public Health Service Act, to...

  1. DOUGLAS XA3D-1 #413 AIRPLANE.

    NASA Image and Video Library

    1955-07-27

    DOUGLAS XA3D-1 #413 AIRPLANE MOUNTED IN THE NACA AMES RESEARCH CENTER'S 40X80_FOOT SUBSONIC WIND TUNNEL Testing the boundary layer control of the A3D in the 40 x 80 wind tunnel. Boundary layer control was added to increase the lift of the wing for take off from an aircraft carrier.

  2. DOUGLAS XA3D-1 #413 AIRPLANE.

    NASA Image and Video Library

    1955-07-27

    DOUGLAS XA3D-1 #413 AIRPLANE MOUNTED IN THE NACA AMES RESEARCH CENTER'S 40X80_FOOT SUBSONIC WIND TUNNEL sweptback wing Testing the wing boundary layer control of the A3D in the 40 x 80 wind tunnel. Boundary layer control was added to increase the lift of the wing for aircraft carrier take off and landing.

  3. Non-NMDA receptor antagonist-induced drinking in rat

    NASA Technical Reports Server (NTRS)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  4. The role of striatal NMDA receptors in drug addiction.

    PubMed

    Ma, Yao-Ying; Cepeda, Carlos; Cui, Cai-Lian

    2009-01-01

    The past decade has witnessed an impressive accumulation of evidence indicating that the excitatory amino acid glutamate and its receptors, in particular the N-methyl-D-aspartate (NMDA) receptor subtype, play an important role in drug addiction. Various lines of research using animal models of drug addiction have demonstrated that drug-induced craving is accompanied by significant upregulation of NR2B subunit expression. Furthermore, selective blockade of NR2B-containing NMDA receptors in the striatum, especially in the nucleus accumbens (NAc) can inhibit drug craving and reinstatement. The purpose of this review is to examine the role of striatal NMDA receptors in drug addiction. After a brief description of glutamatergic innervation and NMDA receptor subunit distribution in the striatum, we discuss potential mechanisms to explain the role of striatal NMDA receptors in drug addiction by elucidating signaling cascades involved in the regulation of subunit expression and redistribution, phosphorylation of receptor subunits, as well as activation of intracellular signals triggered by drug experience. Understanding the mechanisms regulating striatal NMDA receptor changes in drug addiction will provide more specific and rational targets to counteract the deleterious effects of drug addiction.

  5. Targeting of NMDA receptors in new treatments for schizophrenia.

    PubMed

    Hashimoto, Kenji

    2014-09-01

    Abnormalities in glutamatergic neurotransmission mediated by N-methyl-d-aspartate (NMDA) are implicated in the pathophysiology of schizophrenia, although the precise mechanisms are unknown. The author examines the role of the NMDA receptor in schizophrenia, focusing on results from preclinical and clinical studies that support the NMDA receptor hypothesis of schizophrenia. The author first reviewed papers detailing alterations in the levels of endogenous substances such as glutamine, glutamate, d-serine, l-serine, kynurenic acid and glutathione (GSH), all of which can affect NMDA receptor function. Next, the author reviewed clinical findings for glycine, d-serine, d-cycloserine, d-amino acid oxidase inhibitors (e.g., sodium benzoate) and glycine transporter-1 inhibitors (e.g., sarcosine, bitopertin), as potential therapeutic drugs. In addition, the author outlined how oxidative stress associated with decreased levels of the endogenous antioxidant GSH may play a role in the pathophysiology of schizophrenia. Finally, the author reviewed N-acetylcysteine (NAC), a precursor of GSH and an activator of the cystine-glutamate antiporter, as a potential therapeutic drug. Given the NMDA receptor hypothesis of schizophrenia, the glycine modulatory site on NMDA receptors is the most attractive therapeutic target for this disease. In addition, both the kynurenine pathway and cystine-glutamate antiporter represent credible potential therapeutic targets for schizophrenia.

  6. Non-NMDA receptor antagonist-induced drinking in rat

    NASA Technical Reports Server (NTRS)

    Xu, Z.; Johnson, A. K.

    1998-01-01

    Glutamate has been implicated in the central control of mechanisms that maintain body fluid homeostasis. The present studies demonstrate that intracerebroventricular (i.c.v.) injections of the non-N-methyl-d-aspartate (NMDA) receptor antagonists 6, 7-dinitroquinoxaline-2,3-dione (DNQX) and 6-cyano-7-nitroquinoxaline-2,3 dione (CNQX) induce drinking in rats. The dipsogenic effect of i.c.v. DNQX was antagonized by the non-NMDA receptor agonist alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA). The water intake induced by DNQX was also blocked by pretreatment with a NMDA receptor antagonist, MK-801, but not by angiotensin type 1 (AT1) or acetylcholine muscarinic receptor antagonists (losartan and atropine). The results indicate that non-NMDA receptors may exert a tonic inhibitory effect within brain circuits that control dipsogenic activity and that functional integrity of NMDA receptors may be required for the non-NMDA receptor antagonists to induce water intake. Copyright 1998 Published by Elsevier Science B.V.

  7. Morphine inhibits an alpha9-acetylcholine nicotinic receptor-mediated response by a mechanism which does not involve opioid receptors.

    PubMed

    Lioudyno, M I; Verbitsky, M; Holt, J C; Elgoyhen, A B; Guth, P S

    2000-11-01

    Nicotinic acetylcholine (nACh) receptors are known to be targets for modulation by a number of substances, including the opiates. It is known that acetylcholine (ACh) coexists with opioid peptides in cochlear efferent neurons, and such a colocalization has been proposed for the vestibular system. In the present study we test the hypothesis that morphine, an opioid receptor agonist with a broad spectrum of selectivity, modulates alpha9nACh receptor-mediated responses in frog vestibular hair cells. Morphine dose-dependently and reversibly inhibited ACh-induced currents as recorded by the perforated patch-clamp method. In the presence of morphine the ACh dose-response curve was shifted to the right in a parallel fashion, suggesting a competitive interaction. However, naloxone did not antagonize the inhibition produced by morphine. To test the hypothesis that morphine could interact with the alpha9nACh receptor without the involvement of opioid receptors, experiments were performed using Xenopus laevis oocytes injected with the alpha9nACh receptor cRNA. The currents activated by ACh in Xenopus oocytes, a system that lacks opioid receptors, were also dose-dependently inhibited by morphine. We conclude that morphine inhibits the alpha9nACh receptor-mediated response in hair cells and Xenopus oocytes through a mechanism which does not involve opioid receptors but may be a direct block of the alpha9nACh receptor.

  8. Activation of innate antiviral immune response via double-stranded RNA-dependent RLR receptor-mediated necroptosis

    PubMed Central

    Wang, Wei; Wang, Wei-Hua; Azadzoi, Kazem M.; Su, Ning; Dai, Peng; Sun, Jianbin; Wang, Qin; Liang, Ping; Zhang, Wentao; Lei, Xiaoying; Yan, Zhen; Yang, Jing-Hua

    2016-01-01

    Viruses induce double-stranded RNA (dsRNA) in the host cells. The mammalian system has developed dsRNA-dependent recognition receptors such as RLRs that recognize the long stretches of dsRNA as PAMPs to activate interferon-mediated antiviral pathways and apoptosis in severe infection. Here we report an efficient antiviral immune response through dsRNA-dependent RLR receptor-mediated necroptosis against infections from different classes of viruses. We demonstrated that virus-infected A549 cells were efficiently killed in the presence of a chimeric RLR receptor, dsCARE. It measurably suppressed the interferon antiviral pathway but promoted IL-1β production. Canonical cell death analysis by morphologic assessment, phosphatidylserine exposure, caspase cleavage and chemical inhibition excluded the involvement of apoptosis and consistently suggested RLR receptor-mediated necroptosis as the underlying mechanism of infected cell death. The necroptotic pathway was augmented by the formation of RIP1-RIP3 necrosome, recruitment of MLKL protein and the activation of cathepsin D. Contributing roles of RIP1 and RIP3 were confirmed by gene knockdown. Furthermore, the necroptosis inhibitor necrostatin-1 but not the pan-caspase inhibitor zVAD impeded dsCARE-dependent infected cell death. Our data provides compelling evidence that the chimeric RLR receptor shifts the common interferon antiviral responses of infected cells to necroptosis and leads to rapid death of the virus-infected cells. This mechanism could be targeted as an efficient antiviral strategy. PMID:26935990

  9. GIPC interacts with the beta1-adrenergic receptor and regulates beta1-adrenergic receptor-mediated ERK activation.

    PubMed

    Hu, Liaoyuan A; Chen, Wei; Martin, Negin P; Whalen, Erin J; Premont, Richard T; Lefkowitz, Robert J

    2003-07-11

    Beta1-adrenergic receptors, expressed at high levels in the human heart, have a carboxyl-terminal ESKV motif that can directly interact with PDZ domain-containing proteins. Using the beta1-adrenergic receptor carboxyl terminus as bait, we identified the novel beta1-adrenergic receptor-binding partner GIPC in a yeast two-hybrid screen of a human heart cDNA library. Here we demonstrate that the PDZ domain-containing protein, GIPC, co-immunoprecipitates with the beta1-adrenergic receptor in COS-7 cells. Essential for this interaction is the Ser residue of the beta1-adrenergic receptor carboxyl-terminal ESKV motif. Our data also demonstrate that beta1-adrenergic receptor stimulation activates the mitogen-activated protein kinase, ERK1/2. beta1-adrenergic receptor-mediated ERK1/2 activation was inhibited by pertussis toxin, implicating Gi, and was substantially decreased by the expression of GIPC. Expression of GIPC had no observable effect on beta1-adrenergic receptor sequestration or receptor-mediated cAMP accumulation. This GIPC effect was specific for the beta1-adrenergic receptor and was dependent on an intact PDZ binding motif. These data suggest that GIPC can regulate beta1-adrenergic receptor-stimulated, Gi-mediated, ERK activation while having no effect on receptor internalization or Gs-mediated cAMP signaling.

  10. GABAa and GABAc receptor-mediated modulation of responses to color stimuli: electroretinographic study in the turtle Emys orbicularis.

    PubMed

    Kupenova, Petia; Vitanova, Lily; Popova, Elka

    2010-04-01

    GABAergic transmission is involved in color coding in the retina. The specific contribution of different GABA receptors to spectral sensitivity of the retinal responses is not well characterized. We studied GABAa and GABAc receptor-mediated effects on the intensity-response functions of the electroretinographic ON (b-wave) and OFF (d-wave) responses to color stimuli. For this purpose, we compared the effects of GABAa receptor blockade by bicuculline with the effects of GABAa + GABAc receptor blockade by picrotoxin. The blockade of both GABAa and GABAc receptors caused an amplitude increase of the electroretinographic responses, but the effects of the two blockades depended in a specific manner on stimulus intensity and wavelength. The effects of GABAa receptor blockade showed distinct color ON/OFF asymmetry. The absolute and relative sensitivities of the ON responses to blue stimuli and OFF responses to red stimuli were increased to the greatest degree while the sensitivity of the ON responses to red stimuli and OFF responses to blue stimuli was least increased. In contrast, color ON/OFF asymmetry was not typical of the effects of GABAc receptor blockade. The most prominent GABAc effect was the sensitivity increase of the ON and OFF responses to blue stimuli and, to some lesser extent, to green stimuli. The results of this study indicate a specific role of GABAa and GABAc receptor-mediated influences in processing of chromatic information in the distal retina.

  11. Loss of progesterone receptor-mediated actions induce preterm cellular and structural remodeling of the cervix and premature birth.

    PubMed

    Yellon, Steven M; Dobyns, Abigail E; Beck, Hailey L; Kurtzman, James T; Garfield, Robert E; Kirby, Michael A

    2013-01-01

    A decline in serum progesterone or antagonism of progesterone receptor function results in preterm labor and birth. Whether characteristics of premature remodeling of the cervix after antiprogestins or ovariectomy are similar to that at term was the focus of the present study. Groups of pregnant rats were treated with vehicle, a progesterone receptor antagonist (onapristone or mifepristone), or ovariectomized on day 17 postbreeding. As expected, controls given vehicle delivered at term while rats delivered preterm after progesterone receptor antagonist treatment or ovariectomy. Similar to the cervix before term, the preterm cervix of progesterone receptor antagonist-treated rats was characterized by reduced cell nuclei density, decreased collagen content and structure, as well as a greater presence of macrophages per unit area. Thus, loss of nuclear progesterone receptor-mediated actions promoted structural remodeling of the cervix, increased census of resident macrophages, and preterm birth much like that found in the cervix at term. In contrast to the progesterone receptor antagonist-induced advance in characteristics associated with remodeling, ovariectomy-induced loss of systemic progesterone did not affect hypertrophy, extracellular collagen, or macrophage numbers in the cervix. Thus, the structure and macrophage census in the cervix appear sufficient for premature ripening and birth to occur well before term. With progesterone receptors predominantly localized on cells other than macrophages, the findings suggest that interactions between cells may facilitate the loss of progesterone receptor-mediated actions as part of a final common mechanism that remodels the cervix in certain etiologies of preterm and with parturition at term.

  12. Receptor-mediated oral delivery of a bioencapsulated green fluorescent protein expressed in transgenic chloroplasts into the mouse circulatory system

    PubMed Central

    Limaye, Arati; Koya, Vijay; Samsam, Mohtashem; Daniell, Henry

    2012-01-01

    Oral delivery of biopharmaceutical proteins expressed in plant cells should reduce their cost of production, purification, processing, cold storage, transportation, and delivery. However, poor intestinal absorption of intact proteins is a major challenge. To overcome this limitation, we investigate here the concept of receptor-mediated oral delivery of chloroplast-expressed foreign proteins. Therefore, the transmucosal carrier cholera toxin B-subunit and green fluorescent protein (CTB-GFP), separated by a furin cleavage site, was expressed via the tobacco chloroplast genome. Polymerase chain reaction (PCR) and Southern blot analyses confirmed site-specific transgene integration and homoplasmy. Immunoblot analysis and ELISA confirmed expression of monomeric and pentameric forms of CTB-GFP, up to 21.3% of total soluble proteins. An in vitro furin cleavage assay confirmed integrity of the engineered furin cleavage site, and a GM1 binding assay confirmed the functionality of CTB-GFP pentamers. Following oral administration of CTB-GFP expressing leaf material to mice, GFP was observed in the mice intestinal mucosa, liver, and spleen in fluorescence and immunohistochemical studies, while CTB remained in the intestinal cell. This report of receptor-mediated oral delivery of a foreign protein into the circulatory system opens the door for low-cost production and delivery of human therapeutic proteins. PMID:16603603

  13. Receptor-mediated endocytosis of albumin by kidney proximal tubule cells is regulated by phosphatidylinositide 3-kinase.

    PubMed Central

    Brunskill, N J; Stuart, J; Tobin, A B; Walls, J; Nahorski, S

    1998-01-01

    Receptor-mediated endocytosis of albumin is an important function of the kidney proximal tubule epithelium. We have measured endocytosis of [125I]-albumin in opossum kidney cells and examined the regulation of this process by phosphatidylinositide 3-kinase (PI 3-kinase). Albumin endocytosis was inhibited by both wortmannin (IC50 6.9 nM) and LY294002 (IC50 6.5 microM) at concentrations that suggested the involvement of PI 3-kinase in its regulation. Recycling rates were unaffected. We transfected OK cells with either a wild-type p85 subunit of PI 3-kinase, or a dominant negative form of the p85 subunit (Deltap85) using the LacSwitch expression system. Transfects were screened by immunoblotting with anti-PI 3-kinase antibodies. Under basal conditions, transfects demonstrated no expression of p85 or Deltap85, but expression was briskly induced by treatment of the cells with IPTG (EC50 13.7 microM). Inhibition of PI 3-kinase activity by Deltap85 was confirmed by in vitro kinase assay of anti-phosphotyrosine immunoprecipitates from transfected cells stimulated with insulin. Expression of Deltap85 resulted in marked inhibition of albumin endocytosis, predominantly as a result of reduction of the Vmax of the transport process. Expression of p85 had no significant effect on albumin uptake. The results demonstrate that PI 3-kinase regulates an early step in the receptor-mediated endocytosis of albumin by kidney proximal tubular cells. PMID:9593770

  14. Antigen-Specific Immune Modulation Targets mTORC1 Function To Drive Chemokine Receptor-Mediated T Cell Tolerance.

    PubMed

    Chen, Weirong; Wan, Xiaoxiao; Ukah, Tobechukwu K; Miller, Mindy M; Barik, Subhasis; Cattin-Roy, Alexis N; Zaghouani, Habib

    2016-11-01

    To contain autoimmunity, pathogenic T cells must be eliminated or diverted from reaching the target organ. Recently, we defined a novel form of T cell tolerance whereby treatment with Ag downregulates expression of the chemokine receptor CXCR3 and prevents diabetogenic Th1 cells from reaching the pancreas, leading to suppression of type 1 diabetes (T1D). This report defines the signaling events underlying Ag-induced chemokine receptor-mediated tolerance. Specifically, we show that the mammalian target of rapamycin complex 1 (mTORC1) is a major target for induction of CXCR3 downregulation and crippling of Th1 cells. Indeed, Ag administration induces upregulation of programmed death-ligand 1 on dendritic cells in a T cell-dependent manner. In return, programmed death-ligand 1 interacts with the constitutively expressed programmed death-1 on the target T cells and stimulates docking of Src homology 2 domain-containing tyrosine phosphatase 2 phosphatase to the cytoplasmic tail of programmed death-1. Active Src homology 2 domain-containing tyrosine phosphatase 2 impairs the signaling function of the PI3K/protein kinase B (AKT) pathway, leading to functional defect of mTORC1, downregulation of CXCR3 expression, and suppression of T1D. Thus, mTORC1 component of the metabolic pathway serves as a target for chemokine receptor-mediated T cell tolerance and suppression of T1D.

  15. Further characterization of the 5-HT receptor mediating vascular relaxation and elevation of cyclic AMP in porcine isolated vena cava.

    PubMed Central

    Sumner, M. J.; Feniuk, W.; Humphrey, P. P.

    1989-01-01

    1. 5-Hydroxytryptamine (5-HT) and 5-carboxamidotryptamine (5-CT) produce both smooth muscle relaxation and elevation of tissue adenosine 3':5'-cyclic monophosphate (cyclic AMP) levels in isolated rings of neonatal porcine vena cava. We now present studies attempting to characterize in more detail the 5-HT receptor mediating these responses. 2. Both 5-HT and 5-CT relaxed porcine isolated vena cava rings (EC50 values 200 nM and 4 nM respectively) and elevated tissue cyclic AMP levels (EC50 values 1500 nM and 16 nM respectively). For both responses 5-CT was approximately 50-100 fold more potent than 5-HT. 3. Both 5-CT-induced smooth muscle relaxation and cyclic AMP elevation were potently and specifically antagonized to a similar extent by methiothepin, methysergide and spiperone. 4. At concentrations up to 1 microM, 8-hydroxy-2-(di-n-propylamino) tetralin, buspirone, ipsapirone, n,n-dipropyl-5-CT, cyanopindolol, RU24969, ketanserin, GR38032 and GR43175 were devoid of both agonist and antagonist activity for both responses. 5. These findings suggest that the same 5-HT1-like receptor mediates both smooth muscle relaxation and elevation of cyclic AMP. This receptor is unlike any known 5-HT1 ligand binding site or adenylate cyclase-coupled 5-HT receptor in brain tissues. PMID:2541857

  16. 5-Carboxamidotryptamine is a selective agonist at 5-hydroxytryptamine receptors mediating vasodilatation and tachycardia in anaesthetized cats.

    PubMed Central

    Connor, H. E.; Feniuk, W.; Humphrey, P. P.; Perren, M. J.

    1986-01-01

    We have attempted to characterize the 5-hydroxytryptamine (5-HT) receptors mediating bronchoconstriction, vasodilatation, vasodepression and tachycardia in anaesthetized cats following bilateral vagosympathectomy and beta-adrenoceptor blockade with propranolol. 5-HT (1-100 micrograms/kg-1 i.v.) caused dose-related bronchoconstriction and tachycardia but variable and complex effects on diastolic blood pressure and carotid arterial vascular resistance. In contrast, 5-carboxamidotryptamine (5-CT; 0.01-1 micrograms kg-1 i.v.) caused consistent, dose-related decreases in diastolic blood pressure and carotid arterial vascular resistance and increases in heart rate. 5-CT did not cause bronchoconstriction. The 5-HT-induced bronchoconstriction was dose-dependently antagonized by methiothepin, methysergide and ketanserin (10-100 micrograms kg-1 i.v.). The highest doses used of these antagonists did not antagonize bronchoconstriction induced by prostaglandin F2 alpha. The high potency of all three antagonists indicate a 5-HT2-receptor mediated effect. The 5-HT- and 5-CT-induced tachycardia as well as the 5-CT-induced vasodepressor and carotid arterial vasodilator responses were dose-dependently antagonized by low doses of methiothepin (10-100 micrograms kg-1 i.v.) and by high doses of methysergide (100-1000 micrograms kg-1 i.v.) but were little affected by ketanserin in doses up to 1000 micrograms kg-1 i.v. These selective effects of 5-CT appear to be mediated by '5-HT1-like' receptors. PMID:2937503

  17. Receptor-Mediated Endocytosis of Two-Dimensional Nanomaterials Undergoes Flat Vesiculation and Occurs by Revolution and Self-Rotation.

    PubMed

    Mao, Jian; Chen, Pengyu; Liang, Junshi; Guo, Ruohai; Yan, Li-Tang

    2016-01-26

    Two-dimensional nanomaterials, such as graphene and transitional metal dichalcogenide nanosheets, are promising materials for the development of antimicrobial surfaces and the nanocarriers for intracellular therapy. Understanding cell interaction with these emerging materials is an urgently important issue to promoting their wide applications. Experimental studies suggest that two-dimensional nanomaterials enter cells mainly through receptor-mediated endocytosis. However, the detailed molecular mechanisms and kinetic pathways of such processes remain unknown. Here, we combine computer simulations and theoretical derivation of the energy within the system to show that the receptor-mediated transport of two-dimensional nanomaterials, such as graphene nanosheet across model lipid membrane, experiences a flat vesiculation event governed by the receptor density and membrane tension. The graphene nanosheet is found to undergo revolution relative to the membrane and, particularly, unique self-rotation around its normal during membrane wrapping. We derive explicit expressions for the formation of the flat vesiculation, which reveals that the flat vesiculation event can be fundamentally dominated by a dimensionless parameter and a defined relationship determined by complicated energy contributions. The mechanism offers an essential understanding on the cellular internalization and cytotoxicity of the emerging two-dimensional nanomaterials.

  18. 5-HT7 receptor-mediated fear conditioning and possible involvement of extracellular signal-regulated kinase.

    PubMed

    Takeda, Kotaro; Tsuji, Minoru; Miyagawa, Kazuya; Takeda, Hiroshi

    2017-01-18

    Fear conditioning is a valuable behavioral paradigm for studying the neural basis of emotional learning and memory. The present study examined the involvement of extracellular signal-regulated kinase 1/2 (ERK) signaling on the serotonin (5-HT)7 receptor-mediated fear conditioning. Conditioning was performed in a trial in which a tone was followed by an electrical foot-shock. Context- and tone-dependent fear were examined in tests conducted 24 and 48h after conditioning, respectively. The selective 5-HT7 receptor antagonist 2a-[4-(4-phenyl-1,2,3,6-tetrahydropyridyl)butyl]-2a,3,4,-tetrahydrobenzo(c,d)indol-2-(1H)-one (DR4004) (5mg/kg), when administered intraperitoneally (i.p.) immediately after conditioning, caused a significant decrease in both context- and tone-dependent fear responses (freezing behavior). A significant increase in ERK activity was observed in the amygdala of mice that displayed context- or tone-dependent fear responses, and these changes were also inhibited by the administration of DR4004 (5mg/kg, i.p.) immediately after conditioning. In contrast, the increase in hippocampal ERK activity in mice that displayed context-dependent fear responses was further enhanced by the administration of DR4004 (5mg/kg, i.p.). These results suggest that 5-HT7 receptor-mediated ERK signaling may play a significant role in the processes of emotional learning and memory.

  19. Acute neuregulin-1 signaling influences AMPA receptor mediated responses in cultured cerebellar granule neurons

    PubMed Central

    Fenster, Catherine; Vullhorst, Detlef; Buonanno, Andres

    2012-01-01

    Neuregulin-1 (NRG1) is a trophic and differentiation factor that signals through ErbB receptor tyrosine kinases to regulate nervous system development. Previous studies have demonstrated that NRG1 affects plasticity at glutamatergic synapses in principal glutamatergic neurons of the hippocampus and frontal cortex; however, immunohistochemical and genetic analyses strongly suggest these effects are indirect and mediated via ErbB4 receptors on GABAergic interneurons. Here, we used cultured cerebellar granule cells (CGCs) that express ErbB4 to analyze the cell-autonomous effects of NRG1 stimulation on glutamatergic function. These cultures have the advantage that they are relatively homogenous and consist primarily of granule neurons that express ErbB4. We show that acute NRG1 treatment does not affect whole-cell AMPA or NMDA receptor (NMDAR) mediated currents in CGCs at 10–12 days in vitro. NRG1 also does not affect the frequency or amplitude of spontaneous AMPAR or NMDAR mediated miniature excitatory post-synaptic currents (mEPSCs). To further investigate the effects of NRG1 on activity-dependent plasticity of glutamatergic synapses in CGCs, we characterized the effects of activation of synaptic NMDAR with high-glyine/0 Mg2+ on AMPAR-mEPSC frequency and amplitude. We show that high-glycine induces a form of chemical long-term potentiation (chemLTP) in CGCs characterized by an increase in AMPAR-mEPSC frequency but not amplitude. Moreover, NRG1 induces a decrease in AMPAR-mEPSC frequency following chemLTP, but does not affect AMPAR-mEPSC amplitude. CGCs in our cultures conditions express low levels of GluR1, in contrast to dissociated hippocampal cultures, but do express the long isoform of GluR4. This study provides first evidence that (1) high-glycine can induce plasticity at glutamatergic synapses in CGCs, and (2) that acute NRG1/ErbB-signaling can regulate glutamatergic plasticity in CGCs. Taken together with previous reports, our results suggest that, similar

  20. Acute neuregulin-1 signaling influences AMPA receptor mediated responses in cultured cerebellar granule neurons.

    PubMed

    Fenster, Catherine; Vullhorst, Detlef; Buonanno, Andres

    2012-01-04

    Neuregulin-1 (NRG1) is a trophic and differentiation factor that signals through ErbB receptor tyrosine kinases to regulate nervous system development. Previous studies have demonstrated that NRG1 affects plasticity at glutamatergic synapses in principal glutamatergic neurons of the hippocampus and frontal cortex; however, immunohistochemical and genetic analyses strongly suggest these effects are indirect and mediated via ErbB4 receptors on GABAergic interneurons. Here, we used cultured cerebellar granule cells (CGCs) that express ErbB4 to analyze the cell-autonomous effects of NRG1 stimulation on glutamatergic function. These cultures have the advantage that they are relatively homogenous and consist primarily of granule neurons that express ErbB4. We show that acute NRG1 treatment does not affect whole-cell AMPA or NMDA receptor (NMDAR) mediated currents in CGCs at 10-12 days in vitro. NRG1 also does not affect the frequency or amplitude of spontaneous AMPAR or NMDAR mediated miniature excitatory post-synaptic currents (mEPSCs). To further investigate the effects of NRG1 on activity-dependent plasticity of glutamatergic synapses in CGCs, we characterized the effects of high-glyine/0 Mg(2+) (which activates synaptic NMDARs) on AMPAR-mEPSC frequency and amplitude. We show that high-glycine induces a form of chemical long-term potentiation (chemLTP) in CGCs characterized by an increase in AMPAR-mEPSC frequency but not amplitude. Moreover, NRG1 induces a decrease in AMPAR-mEPSC frequency following chemLTP, but does not affect AMPAR-mEPSC amplitude. CGCs in our cultures conditions express low levels of GluR1, in contrast to dissociated hippocampal cultures, but do express the long isoform of GluR4. This study provides first evidence that (1) high-glycine can induce plasticity at glutamatergic synapses in CGCs, and (2) that acute NRG1/ErbB-signaling can regulate glutamatergic plasticity in CGCs. Taken together with previous reports, our results suggest that, similar

  1. Dopamine and serotonin receptors mediating contractions of the snail, Helix pomatia, salivary duct.

    PubMed

    Kiss, T; Hiripi, L; Papp, N; Elekes, K

    2003-01-01

    The combination of high performance liquid chromatography, bioassay and immunocytochemistry was applied to study the regulation of the salivary duct muscle of the snail, Helix pomatia. The major function of the duct appears to be to propel the saliva toward the buccal cavity during feeding. It has been established that serotonin and dopamine applied exogenously mimic the effect on the duct exerted by the stimulation of the salivary nerve. Immunohistochemistry revealed the presence of serotonin, but not dopaminergic nerve elements in the nerve and along the duct surface. However, both serotonin (14.9-15.5 pmol/mg) and dopamine (0.38-0.58 pmol/mg), as well as the synthesizing enzymes (tyrozine hydroxylase 0.28 pmol/mg tissue/h and DOPA 0.32 nmol synthesized DA/mg tissue/h) could regularly be assayed in the salivary duct by high performance liquid chromatography. When released following the stimulation of the salivary nerve, both monoamines were shown to interact with distinct membrane receptors. Dopamine elicited a sustained increase of the muscle tone in concentration-dependent manner (K(d)=1.5 microM). Mammalian D(1) receptor antagonist flupenthixol and fluphenazine attenuated, whereas the D(1) receptor agonist SKF-38393 mimicked the effect elicited by exogenous dopamine. Serotonin had a double effect on the salivary duct: a relaxing and a contracting one with different K(d) values 76 nM and 2.4 microM, respectively. 5-HT(2) receptor antagonist ritanserin and ketanserin attenuated the serotonin-induced relaxation. In contrast 5-HT(3) antagonist metoclopramide and MDL2222 decreased and 5-HT(3) receptor agonist 1-(m-chlorophenyl)-biguanide mimicked the serotonin-induced contraction, suggesting that serotonin exerted its action on two different receptor subtypes. The release of radiolabeled serotonin and dopamine upon nerve stimulation was found to be Ca-dependent. Furthermore, the increase in serotonin concentration induced a decrease of the potency of dopamine to

  2. Targeting the D1-N-methyl-D-aspartate receptor complex reduces L-dopa-induced dyskinesia in 6-hydroxydopamine-lesioned Parkinson's rats.

    PubMed

    Song, Lu; Zhang, Zhanzhao; Hu, Rongguo; Cheng, Jie; Li, Lin; Fan, Qinyi; Wu, Na; Gan, Jing; Zhou, Mingzhu; Liu, Zhenguo

    2016-01-01

    L-3,4-dihydroxyphenylalanine (L-dopa) remains the most effective therapy for Parkinson's disease (PD), but its long-term administration is associated with the development of debilitating motor complications known as L-dopa-induced dyskinesia (LID). Enhanced function of dopamine D1 receptor (D1R) and N-methyl-D-aspartate receptor (NMDAR) is believed to participate in the pathogenesis of LID. Given the existence of physical and functional interactions between D1R and NMDAR, we explored the effects of uncoupling D1R and NMDA GluN1 (GluN1) interaction on LID by using the Tat-conjugated interfering peptide (Tat-D1-t2). In this study, we demonstrated in 6-hydroxydopamine (6-OHDA)-lesioned PD rat model that intrastriatal injection of Tat-D1-t2 alleviated dyskinetic behaviors and downregulated the phosphorylation of DARPP-32 at Thr34 induced by levodopa. Moreover, we also showed intrastriatal administration of Tat-D1-t2 elicited alterations in membranous GluN1 and D1R expression. These findings indicate that D1R/GluN1 complexes may be a molecular target with therapeutic potential for the treatment of dyskinesia in Parkinson's patients.

  3. Hydrocarbon molar water solubility predicts NMDA vs. GABAA receptor modulation.

    PubMed

    Brosnan, Robert J; Pham, Trung L

    2014-11-19

    Many anesthetics modulate 3-transmembrane (such as NMDA) and 4-transmembrane (such as GABAA) receptors. Clinical and experimental anesthetics exhibiting receptor family specificity often have low water solubility. We hypothesized that the molar water solubility of a hydrocarbon could be used to predict receptor modulation in vitro. GABAA (α1β2γ2s) or NMDA (NR1/NR2A) receptors were expressed in oocytes and studied using standard two-electrode voltage clamp techniques. Hydrocarbons from 14 different organic functional groups were studied at saturated concentrations, and compounds within each group differed only by the carbon number at the ω-position or within a saturated ring. An effect on GABAA or NMDA receptors was defined as a 10% or greater reversible current change from baseline that was statistically different from zero. Hydrocarbon moieties potentiated GABAA and inhibited NMDA receptor currents with at least some members from each functional group modulating both receptor types. A water solubility cut-off for NMDA receptors occurred at 1.1 mM with a 95% CI = 0.45 to 2.8 mM. NMDA receptor cut-off effects were not well correlated with hydrocarbon chain length or molecular volume. No cut-off was observed for GABAA receptors within the solubility range of hydrocarbons studied. Hydrocarbon modulation of NMDA receptor function exhibits a molar water solubility cut-off. Differences between unrelated receptor cut-off values suggest that the number, affinity, or efficacy of protein-hydrocarbon interactions at these sites likely differ.

  4. Dopamine D1 receptor activation leads to object recognition memory in a coral reef fish.

    PubMed

    Hamilton, Trevor J; Tresguerres, Martin; Kline, David I

    2017-07-01

    Object recognition memory is the ability to identify previously seen objects and is an adaptive mechanism that increases survival for many species throughout the animal kingdom. Previously believed to be possessed by only the highest order mammals, it is now becoming clear that fish are also capable of this type of memory formation. Similar to the mammalian hippocampus, the dorsolateral pallium regulates distinct memory processes and is modulated by neurotransmitters such as dopamine. Caribbean bicolour damselfish (Stegastes partitus) live in complex environments dominated by coral reef structures and thus likely possess many types of complex memory abilities including object recognition. This study used a novel object recognition test in which fish were first presented two identical objects, then after a retention interval of 10 min with no objects, the fish were presented with a novel object and one of the objects they had previously encountered in the first trial. We demonstrate that the dopamine D1-receptor agonist (SKF 38393) induces the formation of object recognition memories in these fish. Thus, our results suggest that dopamine-receptor mediated enhancement of spatial memory formation in fish represents an evolutionarily conserved mechanism in vertebrates. © 2017 The Author(s).

  5. WAVE1 in neurons expressing the D1 dopamine receptor regulates cellular and behavioral actions of cocaine

    PubMed Central

    Ceglia, Ilaria; Lee, Ko-Woon; Cahill, Michael E.; Graves, Steven M.; Dietz, David; Surmeier, Dalton J.; Nestler, Eric J.; Nairn, Angus C.; Kim, Yong

    2017-01-01

    Wiskott-Aldrich syndrome protein (WASP) family verprolin homologous protein 1 (WAVE1) regulates actin-related protein 2/3 (Arp2/3) complex-mediated actin polymerization. Our previous studies have found WAVE1 to be inhibited by Cdk5-mediated phosphorylation in brain and to play a role in the regulation of dendritic spine morphology. Here we report that mice in which WAVE1 was knocked out (KO) in neurons expressing the D1 dopamine receptor (D1-KO), but not mice where WAVE1 was knocked out in neurons expressing the D2 dopamine receptor (D2-KO), exhibited a significant decrease in place preference associated with cocaine. In contrast to wild-type (WT) and WAVE1 D2-KO mice, cocaine-induced sensitized locomotor behavior was not maintained in WAVE1 D1-KO mice. After chronic cocaine administration and following withdrawal, an acute cocaine challenge induced WAVE1 activation in striatum, which was assessed by dephosphorylation. The cocaine-induced WAVE1 dephosphorylation was attenuated by coadministration of either a D1 dopamine receptor or NMDA glutamate receptor antagonist. Upon an acute challenge of cocaine following chronic cocaine exposure and withdrawal, we also observed in WT, but not in WAVE1 D1-KO mice, a decrease in dendritic spine density and a decrease in the frequency of excitatory postsynaptic AMPA receptor currents in medium spiny projection neurons expressing the D1 dopamine receptor (D1-MSNs) in the nucleus accumbens. These results suggest that WAVE1 is involved selectively in D1-MSNs in cocaine-evoked neuronal activity-mediated feedback regulation of glutamatergic synapses. PMID:28115704

  6. Mechanism-Based Tumor-Targeting Drug Delivery System. Validation of Efficient Vitamin Receptor-Mediated Endocytosis and Drug Release

    SciTech Connect

    Chen, S.; Wong, S.; Zhao, X.; Chen, J.; Chen, J.; Kuznetsova, L.; Ojima, I.

    2010-05-01

    An efficient mechanism-based tumor-targeting drug delivery system, based on tumor-specific vitamin-receptor mediated endocytosis, has been developed. The tumor-targeting drug delivery system is a conjugate of a tumor-targeting molecule (biotin: vitamin H or vitamin B-7), a mechanism-based self-immolative linker and a second-generation taxoid (SB-T-1214) as the cytotoxic agent. This conjugate (1) is designed to be (i) specific to the vitamin receptors overexpressed on tumor cell surface and (ii) internalized efficiently through receptor-mediated endocytosis, followed by smooth drug release via glutathione-triggered self-immolation of the linker. In order to monitor and validate the sequence of events hypothesized, i.e., receptor-mediated endocytosis of the conjugate, drug release, and drug-binding to the target protein (microtubules), three fluorescent/fluorogenic molecular probes (2, 3, and 4) were designed and synthesized. The actual occurrence of these processes was unambiguously confirmed by means of confocal fluorescence microscopy (CFM) and flow cytometry using L1210FR leukemia cells, overexpressing biotin receptors. The molecular probe 4, bearing the taxoid linked to fluorescein, was also used to examine the cell specificity (i.e., efficacy of receptor-based cell targeting) for three cell lines, L1210FR (biotin receptors overexpressed), L1210 (biotin receptors not overexpressed), and WI38 (normal human lung fibroblast, biotin receptor negative). As anticipated, the molecular probe 4 exhibited high specificity only to L1210FR. To confirm the direct correlation between the cell-specific drug delivery and anticancer activity of the probe 4, its cytotoxicity against these three cell lines was also examined. The results clearly showed a good correlation between the two methods. In the same manner, excellent cell-specific cytotoxicity of the conjugate 1 (without fluorescein attachment to the taxoid) against the same three cell lines was confirmed. This mechanism

  7. D1R/GluN1 complexes in the striatum integrate dopamine and glutamate signalling to control synaptic plasticity and cocaine-induced responses

    PubMed Central

    Cahill, E; Pascoli, V; Trifilieff, P; Savoldi, D; Kappès, V; Lüscher, C; Caboche, J; Vanhoutte, P

    2014-01-01

    Convergent dopamine and glutamate signalling onto the extracellular signal-regulated kinase (ERK) pathway in medium spiny neurons (MSNs) of the striatum controls psychostimulant-initiated adaptive processes underlying long-lasting behavioural changes. We hypothesised that the physical proximity of dopamine D1 (D1R) and glutamate NMDA (NMDAR) receptors, achieved through the formation of D1R/NMDAR complexes, may act as a molecular bridge that controls the synergistic action of dopamine and glutamate on striatal plasticity and behavioural responses to drugs of abuse. We found that concomitant stimulation of D1R and NMDAR drove complex formation between endogenous D1R and the GluN1 subunit of NMDAR. Conversely, preventing D1R/GluN1 association with a cell-permeable peptide (TAT-GluN1C1) left individual D1R and NMDAR-dependent signalling intact, but prevented D1R-mediated facilitation of NMDAR–calcium influx and subsequent ERK activation. Electrophysiological recordings in striatal slices from mice revealed that D1R/GluN1 complexes control the D1R-dependent enhancement of NMDAR currents and long-term potentiation in D1R-MSN. Finally, intra-striatal delivery of TAT-GluN1C1 did not affect acute responses to cocaine but reduced behavioural sensitization. Our findings uncover D1R/GluN1 complexes as a major substrate for the dopamine–glutamate interaction in MSN that is usurped by addictive drugs to elicit persistent behavioural alterations. They also identify D1R/GluN1 complexes as molecular targets with a therapeutic potential for the vast spectrum of psychiatric diseases associated with an imbalance between dopamine and glutamate transmission. PMID:25070539

  8. Stereocontrolled total synthesis of neuroprotectin D1 / protectin D1 and its aspirin-triggered stereoisomer

    PubMed Central

    Petasis, Nicos A.; Yang, Rong; Winkler, Jeremy W.; Zhu, Min; Uddin, Jasim; Bazan, Nicolas G.; Serhan, Charles N.

    2012-01-01

    Neuroprotectin D1 / protectin D1, a potent anti-inflammatory, proresolving, and neuroprotective lipid mediator derived biosynthetically from docosahexaenoic acid, was prepared in enantiomerically pure form via total organic synthesis. The synthetic strategy is highly stereocontrolled and convergent, featuring epoxide opening of glycidol starting materials for the introduction of the 10(R) and 17(S) hydroxyl groups. The desired alkene Z geometry was secured via the cis-reduction of alkyne precursors, while the conjugated E,E,Z triene was introduced at the end, in order to minimize Z/E isomerization. The same strategy, was also employed for the total synthesis of aspirin-triggered neuroprotectin D1 / protectin D1 having the 17(R)-stereochemistry. Synthetic compounds obtained with the reported method were matched with endogenously derived materials, and helped establish their complete stereochemistry. PMID:22690022

  9. Comparative Ultrastructural Analysis of D1 and D5 Dopamine Receptor Distribution in the Substantia Nigra and Globus Pallidus of Monkeys

    PubMed Central

    Kliem, Michele A.; Pare, Jean-Francois; Khan, Zafar U.; Wichmann, Thomas; Smith, Yoland

    2009-01-01

    Dopamine acts through the D1-like (D1, D5) and D2-like (D2, D3, D4) receptor families. Various studies have shown a preponderance of presynaptic dopamine D1 receptors on axons and terminals in the internal globus pallidus (GPi) and substantia nigra reticulata (SNr), but little is known about D5 receptors distribution in these brain regions. In order to further characterize the potential targets whereby dopamine could mediate its effects in basal ganglia output nuclei, we undertook a comparative electron microscopic analysis of D1 and D5 receptors immunoreactivity in the GPi and SNr of rhesus monkeys. At the light microscopic level, D1 receptor labeling was confined to small punctate elements, while D5 receptor immunoreactivity was predominantly expressed in cellular and dendritic processes throughout the SNr and GPi. At the electron microscopic level, 90% of D1 receptor labeling was found in unmyelinated axons or putative GABAergic terminals in both basal ganglia output nuclei. In contrast, D5 receptor labeling showed a different pattern of distribution. Although the majority (65−75%) of D5 receptor immunoreactivity was also found in unmyelinated axons and terminals in GPi and SNr, significant D5 receptor immunolabeling was also located in dendritic and glial processes. Immunogold studies showed that about 50% of D1 receptor immunoreactivity in axons was bound to the plasma membrane providing functional sites for D1 receptor-mediated effects on transmitter release in GPi and SNr. These findings provide evidence for the existence of extrastriatal pre- and post-synaptic targets through which dopamine and drugs acting at D1-like receptors may regulate basal ganglia outflow and possibly exert some of their anti-parkinsonian effects. PMID:19750130

  10. Oligodendroglial NMDA Receptors Regulate Glucose Import and Axonal Energy Metabolism.

    PubMed

    Saab, Aiman S; Tzvetavona, Iva D; Trevisiol, Andrea; Baltan, Selva; Dibaj, Payam; Kusch, Kathrin; Möbius, Wiebke; Goetze, Bianka; Jahn, Hannah M; Huang, Wenhui; Steffens, Heinz; Schomburg, Eike D; Pérez-Samartín, Alberto; Pérez-Cerdá, Fernando; Bakhtiari, Davood; Matute, Carlos; Löwel, Siegrid; Griesinger, Christian; Hirrlinger, Johannes; Kirchhoff, Frank; Nave, Klaus-Armin

    2016-07-06

    Oligodendrocytes make myelin and support axons metabolically with lactate. However, it is unknown how glucose utilization and glycolysis are adapted to the different axonal energy demands. Spiking axons release glutamate and oligodendrocytes express NMDA receptors of unknown function. Here we show that the stimulation of oligodendroglial NMDA receptors mobilizes glucose transporter GLUT1, leading to its incorporation into the myelin compartment in vivo. When myelinated optic nerves from conditional NMDA receptor mutants are challenged with transient oxygen-glucose deprivation, they show a reduced functional recovery when returned to oxygen-glucose but are indistinguishable from wild-type when provided with oxygen-lactate. Moreover, the functional integrity of isolated optic nerves, which are electrically silent, is extended by preincubation with NMDA, mimicking axonal activity, and shortened by NMDA receptor blockers. This reveals a novel aspect of neuronal energy metabolism in which activity-dependent glutamate release enhances oligodendroglial glucose uptake and glycolytic support of fast spiking axons. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. NMDA receptors and the differential ischemic vulnerability of hippocampal neurons.

    PubMed

    Gee, Christine E; Benquet, Pascal; Raineteau, Olivier; Rietschin, Lotty; Kirbach, Sebastian W; Gerber, Urs

    2006-05-01

    Transient cerebral ischemia causes an inhomogeneous pattern of cell death in the brain. We investigated mechanisms, which may underlie the greater susceptibility of hippocampal CA1 vs. CA3 pyramidal cells to ischemic insult. Using an in vitro oxygen-glucose deprivation (OGD) model of ischemia, we found that N-methyl-D-aspartate (NMDA) responses were enhanced in the more susceptible CA1 pyramidal cells and transiently depressed in the resistant CA3 pyramidal cells. The long-lasting potentiation of NMDA responses in CA1 cells was associated with delayed cell death and was prevented by blocking tyrosine kinase-dependent up-regulation of NMDA receptor function. In CA3 cells, the energy deprivation-induced transient depression of NMDA responses was converted to potentiation by blocking protein phosphatase signalling. These results suggest that energy deprivation differentially shifts the intracellular equilibrium between the tyrosine kinase and phosphatase activities that modulate NMDA responses in CA1 and CA3 pyramidal cells. Therapeutic modulation of tyrosine phosphorylation may thus prove beneficial in mitigating ischemia-induced neuronal death in vulnerable brain areas.

  12. Structural insights into competitive antagonism in NMDA receptors

    PubMed Central

    Jespersen, Annie; Tajima, Nami; Fernandez-Cuervo, Gabriela; Garnier-Amblard, Ethel C.; Furukawa, Hiro

    2014-01-01

    Summary There has been a great level of enthusiasm to down-regulate overactive N-methyl-d-aspartate (NMDA) receptors to protect neurons from excitotoxicity. NMDA receptors play pivotal roles in basic brain development and functions as well as in neurological disorders and diseases. However, mechanistic understanding of antagonism in NMDA receptors is limited due to complete lack of antagonist-bound structures for the l-glutamate-binding GluN2 subunits. Here we report the crystal structures of GluN1/GluN2A NMDA receptor ligand-binding domain (LBD) heterodimers in complex with GluN1- and GluN2-targeting antagonists. The crystal structures reveal that the antagonists, D-(−)-2-Amino-5-phosphonopentanoic acid (d-AP5) and 1-(Phenanthrene-2-carbonyl)piperazine-2,3-dicarboxylic acid (PPDA), have discrete binding modes and mechanisms for opening of the bilobed architecture of GluN2A LBD compared to the agonist-bound form. The current study shows distinct ways by which the conformations of NMDA receptor LBDs may be controlled and coupled to receptor inhibition and provides possible strategies to develop therapeutic compounds with higher subtype-specificity. PMID:24462099

  13. Cortical hypometabolism demonstrated by PET in relapsing NMDA receptor encephalitis.

    PubMed

    Pillai, Sekhar C; Gill, Deepak; Webster, Richard; Howman-Giles, Robert; Dale, Russell C

    2010-09-01

    N-methyl-d-aspartate (NMDA) receptor encephalitis is a newly defined type of autoimmune encephalitis. Two girls (age 3 years, case 1, and 7 years, case 2) with relapsing NMDA receptor encephalitis each had the classic clinical features of encephalopathy, movement disorders, psychiatric symptoms, seizures, insomnia, and mild autonomic dysfunction. Both patients had persistent neuropsychiatric disability, despite immune therapies. Positron emission tomography (PET) scans were performed during clinical relapse at 6 weeks (case 1) and 5 months (case 2). In both cases, the scans demonstrated reduced fluorodeoxyglucose metabolism in the cerebral cortex, with the temporal regions being most affected. PET imaging was more sensitive than magnetic resonance imaging in these patients. In contrast, the one previous report of acute NMDA receptor encephalitis indicated cortical hypermetabolism. Thus, NMDA receptor encephalitis may be associated with variable PET findings, possibly dependent upon the timing of the study, or other factors. Future studies should investigate whether cortical hypometabolism is associated with a relapsing course, and whether it is predictive of a poorer outcome in NMDA receptor encephalitis.

  14. Progesterone reverts LPS-reduced FAAH activity in murine peripheral blood mononuclear cells by a receptor-mediated fashion.

    PubMed

    Wolfson, Manuel L; Aisemberg, Julieta; Salazar, Ana I; Domínguez Rubio, Ana P; Vercelli, Claudia A; Franchi, Ana M

    2013-12-05

    Increased anandamide concentrations are associated with pregnancy failure. Anandamide levels are regulated by the fatty acid amide hydrolase (FAAH). The aim of the study was to investigate the role of progesterone (P) on FAAH modulation in murine peripheral blood mononuclear cells (PBMC) under septic conditions. We observed that in vivo administration of LPS to non-pregnant (NP) mice decreased FAAH activity of PBMC while in pregnant mice no changes in FAAH activity were observed. NP animals administered with P had a similar response to LPS as the pregnant animals. Also, NP mice injected with P antagonist and P showed that the effect of P on LPS-reduced FAAH activity was impaired. Furthermore, LPS produced a decrease in the ratio of PR-B/PR-A in NP animals. Our results showed that, in our model the endotoxin decreased PBMC's FAAH activity and this condition was reverted by P in a receptor-mediated fashion.

  15. Cholera Toxin Inhibits the T-Cell Antigen Receptor-Mediated Increases in Inositol Trisphosphate and Cytoplasmic Free Calcium

    NASA Astrophysics Data System (ADS)

    Imboden, John B.; Shoback, Dolores M.; Pattison, Gregory; Stobo, John D.

    1986-08-01

    The addition of monoclonal antibodies to the antigen receptor complex on the malignant human T-cell line Jurkat generates increases in inositol trisphosphate and in the concentration of cytoplasmic free calcium. Exposure of Jurkat cells to cholera toxin for 3 hr inhibited these receptor-mediated events and led to a selective, partial loss of the antigen receptor complex from the cellular surface. None of the effects of cholera toxin on the antigen receptor complex were mimicked by the B subunit of cholera toxin or by increasing intracellular cAMP levels with either forskolin or 8-bromo cAMP. These results suggest that a cholera toxin substrate can regulate signal transduction by the T-cell antigen receptor.

  16. Functional evidence for a 5-HT2B receptor mediating contraction of longitudinal muscle in human small intestine.

    PubMed Central

    Borman, R A; Burleigh, D E

    1995-01-01

    Application of 5-hydroxytryptamine induces contraction of longitudinal muscle strips from human terminal ileum. The response was resistant to antagonism by ketanserin, ondansetron or DAU6285, but was non-surmountably antagonized by methysergide. The selective 5-HT2B/2C receptor antagonist, SB 200646A evoked a concentration-dependent, parallel and dextral displacement of the concentration-response curve to 5-HT, yielding a pA2 estimate of 7.17. Application of yohimbine, a 5-HT1 and 5-HT2B receptor antagonist, also induced a rightward shift of the response curve to 5-HT, yielding a pA2 estimate of 8.10. In conclusion, it appears that a 5-HT2B receptor mediates the contractile response of the longitudinal muscle of human small intestine to 5-HT. PMID:7599919

  17. Imaging receptor-mediated endocytosis with a polymeric nanoparticle-based coherent anti-stokes Raman scattering probe.

    PubMed

    Tong, Ling; Lu, Yanhui; Lee, Robert J; Cheng, Ji-Xin

    2007-08-23

    Coherent anti-Stokes Raman scattering (CARS) microscopy was used to visualize receptor-mediated endocytosis and intracellular trafficking with the aid of a CARS probe. The probe was made of 200-nm polystyrene particles encapsulated in folate-targeted liposomes. By tuning (omega(p) - omega(s)) to 3045 cm(-1), which corresponds to the aromatic C-H stretching vibration, the polystyrene nanoparticles with a high density of aromatic C-H bonds were detected with a high signal-to-noise ratio, while the epi-detected CARS signal from cellular organelles was cancelled by the destructive interference between the resonant contribution from the aliphatic C-H vibration and the nonresonant contribution. Without any photobleaching, the CARS probe allowed single-particle tracking analysis of intracellular endosome transport. No photodamage to cells was observed under the current experimental conditions. These results show the advantages and potential of using a CARS probe to study cellular processes.

  18. The influence of receptor-mediated interactions on reaction-diffusion mechanisms of cellular self-organisation.

    PubMed

    Klika, Václav; Baker, Ruth E; Headon, Denis; Gaffney, Eamonn A

    2012-04-01

    Understanding the mechanisms governing and regulating self-organisation in the developing embryo is a key challenge that has puzzled and fascinated scientists for decades. Since its conception in 1952 the Turing model has been a paradigm for pattern formation, motivating numerous theoretical and experimental studies, though its verification at the molecular level in biological systems has remained elusive. In this work, we consider the influence of receptor-mediated dynamics within the framework of Turing models, showing how non-diffusing species impact the conditions for the emergence of self-organisation. We illustrate our results within the framework of hair follicle pre-patterning, showing how receptor interaction structures can be constrained by the requirement for patterning, without the need for detailed knowledge of the network dynamics. Finally, in the light of our results, we discuss the ability of such systems to pattern outside the classical limits of the Turing model, and the inherent dangers involved in model reduction.

  19. Loss of Progesterone Receptor-Mediated Actions Induce Preterm Cellular and Structural Remodeling of the Cervix and Premature Birth

    PubMed Central

    Yellon, Steven M.; Dobyns, Abigail E.; Beck, Hailey L.; Kurtzman, James T.; Garfield, Robert E.; Kirby, Michael A.

    2013-01-01

    A decline in serum progesterone or antagonism of progesterone receptor function results in preterm labor and birth. Whether characteristics of premature remodeling of the cervix after antiprogestins or ovariectomy are similar to that at term was the focus of the present study. Groups of pregnant rats were treated with vehicle, a progesterone receptor antagonist (onapristone or mifepristone), or ovariectomized on day 17 postbreeding. As expected, controls given vehicle delivered at term while rats delivered preterm after progesterone receptor antagonist treatment or ovariectomy. Similar to the cervix before term, the preterm cervix of progesterone receptor antagonist-treated rats was characterized by reduced cell nuclei density, decreased collagen content and structure, as well as a greater presence of macrophages per unit area. Thus, loss of nuclear progesterone receptor-mediated actions promoted structural remodeling of the cervix, increased census of resident macrophages, and preterm birth much like that found in the cervix at term. In contrast to the progesterone receptor antagonist-induced advance in characteristics associated with remodeling, ovariectomy-induced loss of systemic progesterone did not affect hypertrophy, extracellular collagen, or macrophage numbers in the cervix. Thus, the structure and macrophage census in the cervix appear sufficient for premature ripening and birth to occur well before term. With progesterone receptors predominantly localized on cells other than macrophages, the findings suggest that interactions between cells may facilitate the loss of progesterone receptor-mediated actions as part of a final common mechanism that remodels the cervix in certain etiologies of preterm and with parturition at term. PMID:24339918

  20. Intracellular Ca2+ release through ryanodine receptors contributes to AMPA receptor-mediated mitochondrial dysfunction and ER stress in oligodendrocytes

    PubMed Central

    Ruiz, A; Matute, C; Alberdi, E

    2010-01-01

    Overactivation of ionotropic glutamate receptors in oligodendrocytes induces cytosolic Ca2+ overload and excitotoxic death, a process that contributes to demyelination and multiple sclerosis. Excitotoxic insults cause well-characterized mitochondrial alterations and endoplasmic reticulum (ER) dysfunction, which is not fully understood. In this study, we analyzed the contribution of ER-Ca2+ release through ryanodine receptors (RyRs) and inositol triphosphate receptors (IP3Rs) to excitotoxicity in oligodendrocytes in vitro. First, we observed that oligodendrocytes express all previously characterized RyRs and IP3Rs. Blockade of Ca2+-induced Ca2+ release by TMB-8 following α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) receptor-mediated insults attenuated both oligodendrocyte death and cytosolic Ca2+ overload. In turn, RyR inhibition by ryanodine reduced as well the Ca2+ overload whereas IP3R inhibition was ineffective. Furthermore, AMPA-triggered mitochondrial membrane depolarization, oxidative stress and activation of caspase-3, which in all instances was diminished by RyR inhibition. In addition, we observed that AMPA induced an ER stress response as revealed by α subunit of the eukaryotic initiation factor 2α phosphorylation, overexpression of GRP chaperones and RyR-dependent cleavage of caspase-12. Finally, attenuating ER stress with salubrinal protected oligodendrocytes from AMPA excitotoxicity. Together, these results show that Ca2+ release through RyRs contributes to cytosolic Ca2+ overload, mitochondrial dysfunction, ER stress and cell death following AMPA receptor-mediated excitotoxicity in oligodendrocytes. PMID:21364659

  1. Characterization of GABA/sub A/ receptor-mediated /sup 36/chloride uptake in rat brain synaptoneurosomes

    SciTech Connect

    Luu, M.D.; Morrow, A.L.; Paul, S.M.; Schwartz, R.D.

    1987-09-07

    ..gamma..-Aminobutyric acid (GABA) receptor-mediated /sup 36/chloride (/sup 36/Cl/sup -/) uptake was measured in synaptoneurosomes from rat brain. GABA and GABA agonists stimulated /sup 36/Cl/sup -/ uptake in a concentration-dependent manner with the following order of potency: Muscimol>GABA>piperidine-4-sulfonic acid (P4S)>4,5,6,7-tetrahydroisoxazolo-(5,4-c)pyridin-3-ol (THIP)=3-aminopropanesulfonic acid (3APS)>>taurine. Both P4S and 3APS behaved as partial agonists, while the GABA/sub B/ agonist, baclofen, was ineffective. The response to muscimol was inhibited by bicuculline and picrotoxin in a mixed competitive/non-competitive manner. Other inhibitors of GABA receptor-opened channels or non-neuronal anion channels such as penicillin, picrate, furosemide and disulfonic acid stilbenes also inhibited the response to muscimol. A regional variation in muscimol-stimulated /sup 36/Cl/sup -/ uptake was observed; the largest responses were observed in the cerebral cortex, cerebellum and hippocampus, moderate responses were obtained in the striatum and hypothalamus and the smallest response was observed in the pons-medulla. GABA receptor-mediated /sup 36/Cl/sup -/ uptake was also dependent on the anion present in the media. The muscinol response varied in media containing the following anions: Br/sup -/>Cl/sup -/greater than or equal toNO/sub 3//sup -/>I/sup -/greater than or equal toSCN/sup -/>>C/sub 3/H/sub 5/OO/sup -/greater than or equal toClO/sub 4//sup -/>F/sup -/, consistent with the relative anion permeability through GABA receptor-gated anion channels and the enhancement of convulsant binding to the GABA receptor-gated Cl/sup -/ channel. 43 references, 4 figures, 3 tables.

  2. Dose-response approaches for nuclear receptor-mediated modes of action for liver carcinogenicity: Results of a workshop.

    PubMed

    Andersen, Melvin E; Preston, R Julian; Maier, Andrew; Willis, Alison M; Patterson, Jacqueline

    2014-01-01

    A public workshop, organized by a Steering Committee of scientists from government, industry, universities and research organizations, was held at the National Institute of Environmental Health Sciences (NIEHS) in September, 2010. The workshop explored the dose-response implications of toxicant modes of action (MOA) mediated by nuclear receptors. The dominant paradigm in human health risk assessment has been linear extrapolation without a threshold for cancer, and estimation of sub-threshold doses for non-cancer and (in appropriate cases) cancer endpoints. However, recent publications question the application of dose-response modeling approaches with a threshold. The growing body of molecular toxicology information and computational toxicology tools has allowed for exploration of the presence or absence of sub-threshold doses for a number of receptor-mediated MOAs. The workshop explored the development of dose-response approaches for nuclear receptor-mediated liver cancer, within a MOA Human Relevance Framework (HRF). Case studies addressed activation of the AHR, the CAR and the PPARα. This article describes the workshop process, key issues discussed and conclusions. The value of an interactive workshop approach to apply current MOA/HRF frameworks was demonstrated. The results may help direct research on the MOA and dose-response of receptor-based toxicity, since there are commonalities for many receptors in the basic pathways involved for late steps in the MOA, and similar data gaps in early steps. Three additional papers in this series describe the results and conclusions for each case-study receptor regarding its MOA, relevance of the MOA to humans and the resulting dose-response implications.

  3. A new CysLT1 and CysLT2 receptors-mediated anaphylaxis guinea pig model.

    PubMed

    Sekioka, Tomohiko; Kadode, Michiaki; Osakada, Noriko; Fujita, Manabu; Matsumura, Naoya; Yamaura, Yoshiyuki; Nakade, Shinji; Nabe, Takeshi; Kawabata, Kazuhito

    2017-04-01

    Although the effectiveness of CysLT1 receptor antagonists on asthma has been clinically established, the effects of CysLT2 receptor antagonists are still unclear. The purpose of this study was to develop a new CysLT1 and CysLT2 receptors-mediated anaphylaxis guinea pig model using S-hexyl GSH, a γ-glutamyl transpeptidase (GTP) inhibitor, to suppress conversion of LTC4 to LTD4. Actively sensitized guinea pigs were challenged with OVA in the absence or presence of S-hexyl GSH, and survival rate following anaphylactic response was monitored. OVA-induced fatal anaphylaxis in the absence of S-hexyl GSH was almost completely inhibited by montelukast, a CysLT1 receptor antagonist, but not by the CysLT2 receptor antagonist BayCysLT2RA. However, under treatment with S-hexyl-GSH, the inhibitory effect of motelukast was dramatically diminished, whereas that of BayCysLT2RA was markedly increased. The dual CysLT1/2 receptor antagonist ONO-6950 effectively inhibited anaphylactic response in both S-hexyl GSH-treated and non-treated animals. LC/MS/MS analysis revealed that S-hexyl GSH treatment actually inhibited LTC4 metabolism in the blood and lung tissues. Using S-hexyl GSH, we developed a novel CysLT1 and CysLT2 receptors-mediated anaphylaxis guinea pig model that can be useful for not only screening both CysLT2 and CysLT1/2 receptors antagonists, but also for functional analysis of CysLT2 receptors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Adenosine A2 receptor-mediated regulation of renal hemodynamics and glomerular filtration rate is abolished in diabetes.

    PubMed

    Persson, Patrik; Hansell, Peter; Palm, Fredrik

    2013-01-01

    Alterations in glomerular filtration rate (GFR) are one of the earliest indications of altered kidney function in diabetes. Adenosine regulates GFR through tubuloglomerular feedback mechanism acting on adenosine A1 receptor. In addition, adenosine can directly regulate vascular tone by acting on A1 and A2 receptors expressed in afferent and efferent arterioles. Opposite to A1 receptors, A2 receptors mediate vasorelaxation. This study investigates the involvement of adenosine A2 receptors in regulation of renal blood flow (RBF) and GFR in control and diabetic kidneys. GFR was measured by inulin clearance and RBF by a transonic flow probe placed around the renal artery. Measurements were performed in isoflurane-anesthetized normoglycemic and alloxan-diabetic C57BL/6 mice during baseline and after acute administration of 3,7-dimethyl-1-propargylxanthine (DMPX), a selective A2 receptor antagonist. GFR and RBF were lower in diabetic mice compared to control (258 ± 61 vs. 443 ± 33 μl min(-1) and 1,083 ± 51 vs. 1,405 ± 78 μl min(-1)). In control animals, DMPX decreased RBF by -6%, whereas GFR increased +44%. DMPX had no effects on GFR and RBF in diabetic mice. Sodium excretion increased in diabetic mice after A2 receptor blockade (+78%). In conclusion, adenosine acting on A2 receptors mediates an efferent arteriolar dilatation which reduces filtration fraction (FF) and maintains GFR within normal range in normoglycemic mice. However, this regulation is absent in diabetic mice, which may contribute to reduced oxygen availability in the diabetic kidney.

  5. The P2Y2 Nucleotide Receptor Mediates Tissue Factor Expression in Human Coronary Artery Endothelial Cells*

    PubMed Central

    Ding, Ling; Ma, Wanshu; Littmann, Timothy; Camp, Riley; Shen, Jianzhong

    2011-01-01

    The discovery of the role of P2Y12 receptor in platelet aggregation leads to a new anti-thrombotic drug Plavix; however, little is known about non-platelet P2Y receptors in thrombosis. This study tested the hypothesis that endothelial P2Y receptor(s) mediates up-regulation of tissue factor (TF), the initiator of coagulation cascade. Stimulation of human coronary artery endothelial cells (HCAEC) by UTP/ATP increased the mRNA level of TF but not of its counterpart-tissue factor pathway inhibitor, which was accompanied by up-regulation of TF protein and cell surface activity. RT-PCR revealed a selective expression of P2Y2 and P2Y11 receptors in HCAEC. Consistent with this, TF up-regulation was inhibited by suramin or by siRNA silencing of P2Y2 receptor, but not by NF-157, a P2Y11-selective antagonist, suggesting a role for the P2Y2 receptor. In addition, P2Y2 receptor activated ERK1/2, JNK, and p38 MAPK pathways without affecting the positive NF-κB and negative AKT regulatory pathways of TF expression. Furthermore, TF up-regulation was abolished or partially suppressed by inhibition of p38 or JNK but not ERK1/2. Interestingly, blockade of the PLC/Ca2+ pathway did not affect P2Y2 receptor activation of p38, JNK, and TF induction. However, blockade of Src kinase reduced phosphorylation of p38 but not JNK, eliminating TF induction. In contrast, inhibition of Rho kinase reduced phosphorylation of JNK but not p38, decreasing TF expression. These findings demonstrate that P2Y2 receptor mediates TF expression in HCAEC through new mechanisms involving Src/p38 and Rho/JNK pathways, possibly contributing to a pro-thrombotic status after vascular injury. PMID:21652710

  6. Chronic Neuropathic Pain in Mice Reduces μ-Opioid Receptor-Mediated G-protein Activity in the Thalamus

    PubMed Central

    Hoot, Michelle R.; Sim-Selley, Laura J.; Selley, Dana E.; Scoggins, Krista L.; Dewey, William L.

    2011-01-01

    Neuropathic pain is a debilitating condition that is often difficult to treat using conventional pharmacological interventions and the exact mechanisms involved in the establishment and maintenance of this type of chronic pain have yet to be fully elucidated. The present studies examined the effect of chronic nerve injury on μ-opioid receptors and receptor-mediated G-protein activity within the supraspinal brain regions involved in pain processing of mice. Chronic constriction injury (CCI) reduced paw withdrawal latency, which was maximal at 10 days post-injury. [d-Ala2,(N-Me)Phe4, Gly5-OH] enkephalin (DAMGO)-stimulated [35S]GTPγS binding was then conducted at this time point in membranes prepared from the rostral ACC (rACC), thalamus and periaqueductal grey (PAG) of CCI and sham-operated mice. Results showed reduced DAMGO-stimulated [35S]GTPγS binding in the thalamus and PAG of CCI mice, with no change in the rACC. In thalamus, this reduction was due to decreased maximal stimulation by DAMGO, with no difference in EC50 values. In PAG, however, DAMGO Emax values did not significantly differ between groups, possibly due to the small magnitude of the main effect. [3H]Naloxone binding in membranes of the thalamus showed no significant differences in Bmax values between CCI and sham-operated mice, indicating that the difference in G-protein activation did not result from differences in μ-opioid receptor levels. These results suggest that CCI induced a region-specific adaptation of μ-opioid receptor-mediated G-protein activity, with apparent desensitization of the μ-opioid receptor in the thalamus and PAG and could have implications for treatment of neuropathic pain. PMID:21762883

  7. Low responsiveness to agents evoking 5-HT2 receptor-mediated behaviors in Sardinian alcohol-preferring rats.

    PubMed

    Ciccocioppo, R; Panocka, I; Stefanini, E; Gessa, G L; Massi, M

    1995-05-01

    The selective NK3 tachykinin agonist senktide evokes in rodents 5-HT mediated behaviors, including 5-HT2 receptor-mediated wet dog shakes (WDS) and head shakes (HS). It was observed previously that genetically selected Sardinian alcohol-preferring (sP) rats show a small number of WDS and HS following intracerebroventricular (ICV) injection of senktide. The present study was aimed at confirming these observations and at providing information on the reasons accounting for the anomalous response of sP rats. Senktide (500-2000 ng/rat, ICV) produced a much lower number of WDS and HS in sP rats than in nonselected Wistar (nsW) rats. Both behaviors were suppressed by the 5-HT2 antagonist ritanserin (1 mg/kg, subcutaneously), confirming that 5-HT2 receptors mediate the response. HS induced by the ICV injection of 5-HT agonists endowed with marked activity at 5-HT2 receptors, such as quipazine (1500-6000 ng/rat) or DOI (500-3500 ng/rat), were much less pronounced in sP rats than in nsW rats. Moreover, WDS following peripheral injection of 5-hydroxytryptophan, 25-100 mg/kg, and carbidopa, 12.5 mg/kg, were less intense in sP and in ethanol-naive sP rats than in nsW and in Sardinian alcohol-nonpreferring rats. These findings suggest that sP rats have an inherent different regulation of central 5-HT2 mechanisms.

  8. Receptor-mediated Ca2+ and PKC signaling triggers the loss of cortical PKA compartmentalization through the redistribution of gravin.

    PubMed

    Schott, Micah B; Grove, Bryon

    2013-11-01

    A-Kinase Anchoring Proteins (AKAPs) direct the flow of cellular information by positioning multiprotein signaling complexes into proximity with effector proteins. However, certain AKAPs are not stationary but can undergo spatiotemporal redistribution in response to stimuli. Gravin, a 300kD AKAP that intersects with a diverse signaling array, is localized to the plasma membrane but has been shown to translocate to the cytosol following the elevation of intracellular calcium ([Ca(2+)]i). Despite the potential for gravin redistribution to impact multiple signaling pathways, the dynamics of this event remain poorly understood. In this study, quantitative microscopy of cells expressing gravin-EGFP revealed that Ca(2+) elevation caused the complete translocation of gravin from the cell cortex to the cytosol in as little as 60s of treatment with ionomycin or thapsigargin. In addition, receptor mediated signaling was also shown to cause gravin redistribution following ATP treatment, and this event required both [Ca(2+)]i elevation and PKC activation. To understand the mechanism for Ca(2+) mediated gravin dynamics, deletion of calmodulin-binding domains revealed that a fourth putative calmodulin binding domain called CB4 (a.a. 670-694) is critical for targeting gravin to the cell cortex despite its location downstream of gravin's membrane-targeting domains, which include an N-terminal myristoylation site and three polybasic domains. Finally, confocal microscopy of cells co-transfected with gravin-EYFP and PKA RII-ECFP revealed that gravin redistribution mediated by ionomycin, thapsigargin, and ATP each triggered the gravin-dependent loss of PKA localized at the cell cortex. Our results support the hypothesis that gravin redistribution regulates cross-talk between PKA-dependent signaling and receptor-mediated events involving Ca(2+) and PKC. © 2013.

  9. Insulin-Independent GABAA Receptor-Mediated Response in the Barrel Cortex of Mice with Impaired Met Activity

    PubMed Central

    Lo, Fu-Sun; Erzurumlu, Reha S.

    2016-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder caused by genetic variants, susceptibility alleles, and environmental perturbations. The autism associated gene MET tyrosine kinase has been implicated in many behavioral domains and endophenotypes of autism, including abnormal neural signaling in human sensory cortex. We investigated somatosensory thalamocortical synaptic communication in mice deficient in Met activity in cortical excitatory neurons to gain insights into aberrant somatosensation characteristic of ASD. The ratio of excitation to inhibition is dramatically increased due to decreased postsynaptic GABAA receptor-mediated inhibition in the trigeminal thalamocortical pathway of mice lacking active Met in the cerebral cortex. Furthermore, in contrast to wild-type mice, insulin failed to increase GABAA receptor-mediated response in the barrel cortex of mice with compromised Met signaling. Thus, lacking insulin effects may be a risk factor in ASD pathogenesis. SIGNIFICANCE STATEMENT A proposed common cause of neurodevelopmental disorders is an imbalance in excitatory neural transmission, provided by the glutamatergic neurons, and the inhibitory signals from the GABAergic interneurons. Many genes associated with autism spectrum disorders impair synaptic transmission in the expected cell type. Previously, inactivation of the autism-associated Met tyrosine kinase receptor in GABAergic interneurons led to decreased inhibition. In thus report, decreased Met signaling in glutamatergic neurons had no effect on excitation, but decimated inhibition. Further experiments indicate that loss of Met activity downregulates GABAA receptors on glutamatergic neurons in an insulin independent manner. These data provide a new mechanism for the loss of inhibition and subsequent abnormal excitation/inhibition balance and potential molecular candidates for treatment or prevention. PMID:27030755

  10. Halothane inhibits the cholinergic-receptor-mediated influx of calcium in primary culture of bovine adrenal medulla cells

    SciTech Connect

    Yashima, N.; Wada, A.; Izumi, F.

    1986-04-01

    Adrenal medulla cells are cholinoceptive cells. Stimulation of the acetylcholine receptor causes the influx of Ca to the cells, and Ca acts as the coupler of the stimulus-secretion coupling. In this study, the authors investigated the effects of halothane on the receptor-mediated influx of /sup 45/Ca using cultured bovine adrenal medulla cells. Halothane at clinical concentrations (0.5-2%) inhibited the influx of /sup 45/Ca caused by carbachol, with simultaneous inhibition of catecholamine secretion. The influx of /sup 45/Ca and the secretion of catecholamines caused by K depolarization were inhibited by a large concentration of Mg, which competes with Ca at Ca channels, but not inhibited by halothane. Inhibition of the /sup 45/Ca influx by halothane was not overcome by increase in the carbachol concentration. Inhibition of the /sup 45/Ca influx by halothane was examined in comparison with that caused by a large concentration of Mg by the application of Scatchard analysis as the function of the external Ca concentration. Halothane decreased the maximal influx of /sup 45/Ca without altering the apparent kinetic constant of Ca to Ca channels. On the contrary, a large concentration of Mg increased the apparent kinetic constant without altering the maximal influx of /sup 45/Ca. Based on these findings, the authors suggest that inhibition of the /sup 45/Ca influx by halothane was not due to the direct competitive inhibition of Ca channels, nor to the competitive antagonism of agonist-receptor interaction. As a possibility, halothane seems to inhibit the receptor-mediated activation of Ca channels through the interference of coupling between the receptor and Ca channels.

  11. H1 and H2 receptors mediate postexercise hyperemia in sedentary and endurance exercise-trained men and women.

    PubMed

    McCord, Jennifer L; Halliwill, John R

    2006-12-01