Insua, Ignacio; Alvarado, Mario; Masaguer, Christian F; Iglesias, Alba; Brea, José; Loza, María I; Carro, Laura
2013-10-15
A series of new 1,4-disubstituted triazoles was prepared from appropriate arylacetylenes and aminoalkylazides using click chemistry methodology. These compounds were evaluated as potential ligands on several subtypes of dopamine receptors in in vitro competition assays, showing high affinity for dopamine D3 receptors, lower affinity for D2 and D4, and no affinity for the D1 receptors. Compound 18 displayed the highest affinity at the D3 receptor with a Ki value of 2.7 nM, selectivity over D2 (70-fold) and D4 (200-fold), and behaviour as a competitive antagonist in the low nanomolar range. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dopamine receptor contribution to the action of PCP, LSD and ketamine psychotomimetics.
Seeman, P; Ko, F; Tallerico, T
2005-09-01
Although phencyclidine and ketamine are used to model a hypoglutamate theory of schizophrenia, their selectivity for NMDA receptors has been questioned. To determine the affinities of phencyclidine, ketamine, dizocilpine and LSD for the functional high-affinity state of the dopamine D2 receptor, D2High, their dissociation constants (Ki) were obtained on [3H]domperidone binding to human cloned dopamine D2 receptors. Phencyclidine had a high affinity for D2High with a Ki of 2.7 nM, in contrast to its low affinity for the NMDA receptor, with a Ki of 313 nM, as labeled by [3H]dizocilpine on rat striatal tissue. Ketamine also had a high affinity for D2High with a Ki of 55 nM, an affinity higher than its 3100 nM Ki for the NMDA sites. Dizocilpine had a Ki of 0.3 nM at D2High, but a Kd of 1.8 nM at the NMDA receptor. LSD had a Ki of 2 nM at D2High. Because the psychotomimetics had higher potency at D2High than at the NMDA site, the psychotomimetic action of these drugs must have a major contribution from D2 agonism. Because these drugs have a combined action on both dopamine receptors and NMDA receptors, these drugs, when given in vivo, test a combined hyperdopamine and hypoglutamate theory of psychosis.
Guanine nucleotide regulatory protein co-purifies with the D/sub 2/-dopamine receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Senogles, S.E.; Caron, M.G.
1986-05-01
The D/sub 2/-dopamine receptor from bovine anterior pituitary was purified approx.1000 fold by affinity chromatography on CMOS-Sepharose. Reconstitution of the affinity-purified receptor into phospholipid vesicles revealed the presence of high and low affinity agonist sites as detected by N-n-propylnorapomorphine (NPA) competition experiments with /sup 3/H-spiperone. High affinity agonist binding could be converted to the low affinity form by guanine nucleotides, indicating the presence of an endogenous guanine nucleotide binding protein (N protein) in the affinity-purified D/sub 2/ receptor preparations. Furthermore, this preparation contained an agonist-sensitive GTPase activity which was stimulated 2-3 fold over basal by 10 ..mu..M NPA. /sup 35/S-GTP..gamma..Smore » binding to these preparations revealed a stoichiometry of 0.4-0.7 mole N protein/mole receptor, suggesting the N protein may be specifically coupled with the purified D/sub 2/-dopamine receptor and not present as a contaminant. Pertussis toxin treatment of the affinity purified receptor preparations prevented high affinity agonist binding, as well as agonist stimulation of the GTPase activity, presumably by inactivating the associated N protein. Pertussis toxin lead to the ADP-ribosylation of a protein of 39-40K on SDS-PAGE. These findings indicate that an endogenous N protein, N/sub i/ or N/sub o/, co-purifies with the D/sub 2/-dopamine receptor which may reflect a precoupling of this receptor with an N protein within the membranes.« less
Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors.
Wood, Martyn; Dubois, Vanessa; Scheller, Dieter; Gillard, Michel
2015-02-01
Rotigotine acts as a dopamine receptor agonist with high affinity for the dopamine D2, D3, D4 and D5 receptors but with a low affinity for the dopamine D1 receptor. We have investigated this further in radioligand binding and functional studies and compared the profile of rotigotine with that of other drugs used in the treatment of Parkinson's disease (PD). The binding of rotigotine to human dopamine D1, D2, D3, D4 and D5 receptors was determined in radioligand binding studies using [(3)H]rotigotine and compared with that of standard antagonist radioligands. Functional interactions of rotigotine with human dopamine receptors was also determined. [(3)H]rotigotine can be used as an agonist radioligand to label all dopamine receptor subtypes and this can be important to derive agonist affinity estimates. Rotigotine maintains this high affinity in functional studies at all dopamine receptors especially D1, D2 and D3 receptors and, to a lesser extent, D4 and D5 receptors. Rotigotine, like apomorphine but unlike ropinirole and pramipexole, was a potent agonist at all dopamine receptors. Rotigotine is a high-potency agonist at human dopamine D1, D2 and D3 receptors with a lower potency at D4 and D5 receptors. These studies differentiate rotigotine from conventional dopamine D2 agonists, used in the treatment of PD, such as ropinirole and pramipexole which lack activity at the D1 and D5 receptors, but resembles that of apomorphine which has greater efficacy in PD than other dopamine agonists but has suboptimal pharmacokinetic properties. © 2014 The British Pharmacological Society.
Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors
Wood, Martyn; Dubois, Vanessa; Scheller, Dieter; Gillard, Michel
2015-01-01
Background and Purpose Rotigotine acts as a dopamine receptor agonist with high affinity for the dopamine D2, D3, D4 and D5 receptors but with a low affinity for the dopamine D1 receptor. We have investigated this further in radioligand binding and functional studies and compared the profile of rotigotine with that of other drugs used in the treatment of Parkinson's disease (PD). Experimental Approach The binding of rotigotine to human dopamine D1, D2, D3, D4 and D5 receptors was determined in radioligand binding studies using [3H]rotigotine and compared with that of standard antagonist radioligands. Functional interactions of rotigotine with human dopamine receptors was also determined. Key Results [3H]rotigotine can be used as an agonist radioligand to label all dopamine receptor subtypes and this can be important to derive agonist affinity estimates. Rotigotine maintains this high affinity in functional studies at all dopamine receptors especially D1, D2 and D3 receptors and, to a lesser extent, D4 and D5 receptors. Rotigotine, like apomorphine but unlike ropinirole and pramipexole, was a potent agonist at all dopamine receptors. Conclusions and Implications Rotigotine is a high-potency agonist at human dopamine D1, D2 and D3 receptors with a lower potency at D4 and D5 receptors. These studies differentiate rotigotine from conventional dopamine D2 agonists, used in the treatment of PD, such as ropinirole and pramipexole which lack activity at the D1 and D5 receptors, but resembles that of apomorphine which has greater efficacy in PD than other dopamine agonists but has suboptimal pharmacokinetic properties. PMID:25339241
Rosenfeld, M R; Dvorkin, B; Klein, P N; Makman, M H
1982-03-04
Rat striatum contains two populations of dopaminergic [3H]spiroperidol binding sites. The two populations are similar in their affinities for chlorpromazine and dopamine. Only one population, that with a somewhat higher affinity for spiroperidol itself, exhibits high affinity for the selective D2 antagonists molindone, metoclopramide and domperidone. Hence, this population may represent D2 receptor sites. The other larger population may represent either a separate class of receptor sites or a different form of D2 receptor sites.
Roglic, G; Andric, D; Kostic-Rajacic, S; Dukic, S; Soskic, V
2001-12-01
1-(2-Heteroarylalkyl)-4-phenylpiperazines containing methyl group in either the alpha- or the beta-position of the side alkyl chain were synthesized as racemic mixtures. They were evaluated for in vitro binding affinity at the D1 and D2 dopamine and 5-HT1A serotonin receptors using synaptosomal membranes of the bovine caudate nucleus and hippocampus, respectively, as a source of the corresponding receptors. Tritiated SCH 23390 (D1 receptor-selective), spiperone (D2 receptor-selective), and 8-OH-DPAT (5-HT1A receptor-selective) were employed as the radioligands. None of the new compounds expressed significant affinity for the D1 receptor. Introduction of the methyl group into the beta-position of the parent molecules increased the affinity for the D2 receptor (10b-13b), and decreased the affinity for the 5-HT1A receptor with the exception of imidazole (11b) which was a rather efficient displacer of 8-OH-DPAT. Most potent of the newly synthesized compounds in [3H]spiperone assay were compounds (+/-)6-[1-methyl-2- (4-phenylpiperazin-1-yl)-ethyl]-1,4-dihydroquinoxaline-2,3-dione (10b), Kd = 6.0 nM and (+/-)5-[1-methyl-2-(4-phenylpiperazin-1-yl)-ethyl]-1,3-dihydrobenzoimidazol- 2-thione (13b), Kd = 5.3 nM. However, compounds containing methyl group in alpha-position (10a-13a) of the parent molecules expressed a decreased affinity for the D2 receptor, while the affinity for the 5-HT1A receptor remained in the same range of concentrations as that of closely related achiral parent compounds (14-17) run in the same binding assays as references.
Molero, Anabel; Vendrell, Marc; Bonaventura, Jordi; Zachmann, Julian; López, Laura; Pardo, Leonardo; Lluis, Carme; Cortés, Antoni; Albericio, Fernando; Casadó, Vicent; Royo, Miriam
2015-06-05
Ligands acting at multiple dopamine receptors hold potential as therapeutic agents for a number of neurodegenerative disorders. Specifically, compounds able to bind at D1R and D2R with high affinity could restore the effects of dopamine depletion and enhance motor activation on degenerated nigrostriatal dopaminergic systems. We have directed our research towards the synthesis and characterisation of heterocycle-peptide hybrids based on the indolo[2,3-a]quinolizidine core. This privileged structure is a water-soluble and synthetically accessible scaffold with affinity for diverse GPCRs. Herein we have prepared a solid-phase combinatorial library of 80 indoloquinolizidine-peptides to identify compounds with enhanced binding affinity at D2R, a receptor that is crucial to re-establish activity on dopamine-depleted degenerated GABAergic neurons. We applied computational tools and high-throughput screening assays to identify 9a{1,3,3} as a ligand for dopamine receptors with nanomolar affinity and agonist activity at D2R. Our results validate the application of indoloquinolizidine-peptide combinatorial libraries to fine-tune the pharmacological profiles of multiple ligands at D1 and D2 dopamine receptors. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Werle, E; Lenz, T; Strobel, G; Weicker, H
1988-07-01
The binding properties of 3- and 4-O-sulfo-conjugated dopamine (DA-3-O-S, DA-4-O-S) as well as 3-O-methylated dopamine (MT) to rat striatal dopamine D2 receptors were investigated. 3H-spiperone was used as a radioligand in the binding studies. In saturation binding experiments (+)butaclamol, which has been reported to bind to dopaminergic D2 and serotoninergic 5HT2 receptors, was used in conjunction with ketanserin and sulpiride, which preferentially label 5HT2 and D2 receptors, respectively, in order to discriminate between 3H-spiperone binding to D2 and to 5HT2 receptors. Under our particular membrane preparation and assay conditions, 3H-spiperone binds to D2 and 5HT2 receptors with a maximal binding capacity (Bmax) of 340 fmol/mg protein in proportions of about 75%:25% with similar dissociation constants KD (35 pmol/l; 43 pmol/l). This result was verified by the biphasic competition curve of ketanserin, which revealed about 20% high (KD = 24 nmol/l) and 80% low (KD = 420 nmol/l) affinity binding sites corresponding to 5HT2 and D2 receptors, respectively. Therefore, all further competition experiments at a tracer concentration of 50 pmol/l were performed in the presence of 0.1 mumol/l ketanserin to mask the 5HT2 receptors. DA competition curves were best fitted assuming two binding sites, with high (KH = 0.12 mumol/l) and low (KL = 18 mumol/l) affinity, present in a ratio of 3:1. The high affinity binding sites were interconvertible by 100 mumol/l guanyl-5-yl imidodiphosphate [Gpp(NH)p], resulting in a homogenous affinity state of DA receptors (KD = 2.8 mumol/l).2+ off
Durdagi, Serdar; Salmas, Ramin Ekhteiari; Stein, Matthias; Yurtsever, Mine; Seeman, Philip
2016-02-17
We have recently reported G-protein coupled receptor (GPCR) model structures for the active and inactive states of the human dopamine D2 receptor (D2R) using adrenergic crystal structures as templates. Since the therapeutic concentrations of dopamine agonists that suppress the release of prolactin are the same as those that act at the high-affinity state of the D2 receptor (D2High), D2High in the anterior pituitary gland is considered to be the functional state of the receptor. In addition, the therapeutic concentrations of anti-Parkinson drugs are also related to the dissociation constants in the D2High form of the receptor. The discrimination between the high- and low-affinity (D2Low) components of the D2R is not obvious and requires advanced computer-assisted structural biology investigations. Therefore, in this work, the derived D2High and D2Low receptor models (GPCR monomer and dimer three-dimensional structures) are used as drug-binding targets to investigate binding interactions of dopamine and apomorphine. The study reveals a match between the experimental dissociation constants of dopamine and apomorphine at their high- and low-affinity sites of the D2 receptor in monomer and dimer and their calculated dissociation constants. The allosteric receptor-receptor interaction for dopamine D2R dimer is associated with the accessibility of adjacent residues of transmembrane region 4. The measured negative cooperativity between agonist ligand at dopamine D2 receptor is also correctly predicted using the D2R homodimerization model.
Gopishetty, Bhaskar; Zhang, Suhong; Kharkar, Prashant S.; Antonio, Tamara; Reith, Maarten; Dutta, Aloke K.
2013-01-01
The goal of the present study was to explore, in our previously developed hybrid template, the effect of introduction of additional heterocyclic rings (mimicking catechol hydroxyl groups as bioisosteric replacement) on selectivity and affinity for the D3 versus D2 receptor. In addition, we wanted to explore the effect of derivatization of functional groups of the agonist binding moiety in compounds developed by us earlier from the hybrid template. Binding affinity (Ki) of the new compounds was measured with tritiated spiperone as the radioligand and HEK-293 cells expressing either D2 or D3 receptors. Functional activity of selected compounds was assessed in the GTPγS binding assay. In the imidazole series, compound 10a exhibited the highest D3 affinity whereas the indole derivative 13 exhibited similar high D3 affinity. Functionalization of the amino group in agonist (+)-9d with different sulfonamides derivatives improved the D3 affinity significantly with (+)-14f exhibiting the highest affinity. However, functionalization of the hydroxyl and amino groups of 15 and (+)-9d, known agonist and partial agonist, to sulfonate ester and amide in general modulated the affinity. In both cases loss of agonist potency resulted from such derivatization. PMID:23623679
Chen, Yin; Xu, Xiangqing; Liu, Xin; Yu, Minquan; Liu, Bi-Feng; Zhang, Guisen
2012-01-01
It is important to develop novel antipsychotics that can effectively treat schizophrenia with minor side-effects. The aim of our work is to develop novel antipsychotics that act on dopamine D(2) and D(3), serotonin 5-HT(1A) and 5-HT(2A) receptors with low affinity for the serotonin 5-HT(2C) and H(1) receptors, which can effectively cure positive symptoms, negative symptoms and cognitive impairment without the weight gain side-effect. A series of 2-substituted-5-thiopropylpiperazine (piperidine) -1,3,4-oxadiazoles derivatives have been synthesized and the target compounds were evaluated for binding affinities to D(2), 5-HT(1A) and 5-HT(2A) receptors. Preliminary results indicated that compounds 14, 16 and 22 exhibited high affinities to D(2), 5-HT(1A) and 5-HT(2A) receptors among these compounds. Further binding tests showed that compound 22 had high affinity for D(3) receptor, and low affinity for serotonin 5-HT(2C) and H(1) receptors. In addition, compound 22 inhibited apomorphine-induced climbing behavior and MK-801-induced hyperactivity with no extrapyramidal symptoms liability in mice. Moreover, compound 22 exhibited acceptable pharmacokinetic properties. Compound 22 showed an atypical antipsychotic activity without liability for extrapyramidal symptoms. We anticipate compound 22 to be useful for developing a novel class of drug for the treatment of schizophrenia.
Newman, Amy Hauck; Grundt, Peter; Cyriac, George; Deschamps, Jeffrey R.; Taylor, Michelle; Kumar, Rakesh; Ho, David; Luedtke, Robert R.
2009-01-01
In the present report, the D3 receptor pharmacophore is modified in the 2,3-diCl-and 2-OCH3-phenyl piperazine class of compounds with the goal to improve D3 receptor affinity and selectivity. This extension of structure-activity relationships (SAR) has resulted in the identification of the first enantioselective D3 antagonists (R- and S-22) to be reported, wherein enantioselectivity is more pronounced at D3 than at D2, and that a binding region on the second extracellular loop (E2) may play a role in both enantioselectivity and D3 receptor selectivity. Moreover, we have discovered some of the most D3-selective compounds reported to date that show high affinity (Ki =1 nM) for D3 and ∼400-fold selectivity over the D2 receptor subtype. Several of these analogues showed exquisite selectivity for D3 receptors over >60 other receptors further underscoring their value as in vivo research tools. These lead compounds also have appropriate physical characteristics for in vivo exploration and therefore will be useful in determining how intrinsic activity at D3 receptors tested in vitro is related to behaviors in animal models of addiction and other neuropsychiatric disorders. PMID:19331412
Newman-Tancredi, Adrian; Assié, Marie-Bernadette; Leduc, Nathalie; Ormière, Anne-Marie; Danty, Nathalie; Cosi, Cristina
2005-09-01
Serotonin 5-HT1A receptors are promising targets in the management of schizophrenia but little information exists about affinity and efficacy of novel antipsychotics at these sites. We addressed this issue by comparing binding affinity at 5-HT1A receptors with dopamine rD2 receptors, which are important targets for antipsychotic drug action. Agonist efficacy at 5-HT1A receptors was determined for G-protein activation and adenylyl cyclase activity. Whereas haloperidol, thioridazine, risperidone and olanzapine did not interact with 5-HT1A receptors, other antipsychotic agents exhibited agonist properties at these sites. E(max) values (% effect induced by 10 microM of 5-HT) for G-protein activation at rat brain 5-HT1A receptors: sarizotan (66.5), bifeprunox (35.9), SSR181507 (25.8), nemonapride (25.7), ziprasidone (20.6), SLV313 (19), aripiprazole (15), tiospirone (8.9). These data were highly correlated with results obtained at recombinant human 5-HT1A receptors in determinations of G-protein activation and inhibition of forskolin-stimulated adenylyl cyclase. In binding-affinity determinations, the antipsychotics exhibited diverse properties at r5-HT1A receptors: sarizotan (pK(i)=8.65), SLV313 (8.64), SSR181507 (8.53), nemonapride (8.35), ziprasidone (8.30), tiospirone (8.22), aripiprazole (7.42), bifeprunox (7.19) and clozapine (6.31). The affinity ratios of the ligands at 5-HT1A vs. D2 receptors also varied widely: ziprasidone, SSR181507 and SLV313 had similar affinities whereas aripiprazole, nemonapride and bifeprunox were more potent at D2 than 5-HT1A receptors. Taken together, these data indicate that aripiprazole has low efficacy and modest affinity at 5-HT1A receptors, whereas bifeprunox has low affinity but high efficacy. In contrast, SSR181507 has intermediate efficacy but high affinity, and is likely to have more prominent 5-HT1A receptor agonist properties. Thus, the contribution of 5-HT1A receptor activation to the pharmacological profile of action of the antipsychotics will depend on the relative 5-HT1A/D2 affinities and on 5-HT1A agonist efficacy of the drugs.
Šukalović, V; Roglić, G; Husinec, S; Kostić-Rajaćić, S; Andrić, D; Šoškić, Vukić
2003-11-01
Several tertiary 2-phenylethyl, 2-(1-naphthyl)ethyl and 2-(2-naphthyl)ethyl amines were synthesized and their binding affinities for dopamine D(1), D(2) and serotonin 5-HT(1A) receptors evaluated in radioligand binding assays. All compounds were inactive in D(1) dopamine radioligand binding assay. The 2-(1-naphthyl)ethyl analogues expressed a low but significant binding affinity for the D(2) and moderate one for the 5-HT(1A) receptor subtypes. Most of the remaining compounds expressed binding affinity at the 5-HT(1A) receptor subtype but were inactive in D(2) receptor binding assay. Based on these results and considering the chemical characteristics of the compounds synthesized and evaluated for dopaminergic and serotonergic activity throughout the present study it can be concluded that hydrophobic type of interaction (stacking or edge-to-face) plays a significant role in the formation of receptor-ligand complexes of 2-(1-naphthyl)ethyl amines. This structural motive can be applied to design and synthesize new, more potent dopaminergic/serotonergic ligands by slight chemical modifications.
Brown, Dennis A.; Mishra, Manoj; Zhang, Suhong; Biswas, Swati; Parrington, Ingrid; Antonio, Tamara; Reith, Maarten E. A.; Dutta, Aloke K.
2009-01-01
Here we report on the design and synthesis of several heterocyclic analogues belonging to the 5/ 7-{[2-(4-aryl-piperazin-1-yl)-ethyl]-propyl-amino}-5,6,7,8-tetrahydro-naphthalen-2-ol series of molecules. Compounds were subjected to [3H]spiperone binding assays, carried out with HEK-293 cells expressing either D2 or D3 dopamine receptors, in order to evaluate their inhibition constant (Ki) at these receptors. Results indicate that N-substitution on the piperazine ring can accommodate various substituted indole rings. The results also show that in order to maintain high affinity and selectivity for the D3 receptor the heterocyclic ring does not need to be connected directly to the piperazine ring as the majority of compounds included here are linked either via an amide or a methylene linker to the heterocyclic moiety. The enantiomers of the most potent racemic compound 10e exhibited differential activity with (-)-10e (Ki; D2 = 47.5 nM, D3 = 0.57 nM) displaying higher affinity at both D2 and D3 receptors compared to its enantiomer (+)-10e (Ki; D2 = 113 nM, D3 = 3.73 nM). Additionally, compound (-)-10e was more potent and selective for the D3 receptor compared to either 7-OH-DPAT or 5-OH-DPAT. Among the bioisosteric derivatives, the indazole derivative 10g and benzo[b]thiophene derivative 10i exhibited the highest affinity for D2 and D3 receptors. In the functional GTPγS binding study, one of the lead molecules, (-)-15, exhibited potent agonist activity at both D2 and D3 receptors with preferential activity at D3. PMID:19427222
Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I.; Lluís, Carme; Cortés, Antoni; Volkow, Nora D.; Schiffmann, Serge N.; Ferré, Sergi; Casadó, Vicent
2015-01-01
Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain. PMID:26100888
Bonaventura, Jordi; Navarro, Gemma; Casadó-Anguera, Verònica; Azdad, Karima; Rea, William; Moreno, Estefanía; Brugarolas, Marc; Mallol, Josefa; Canela, Enric I; Lluís, Carme; Cortés, Antoni; Volkow, Nora D; Schiffmann, Serge N; Ferré, Sergi; Casadó, Vicent
2015-07-07
Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain.
Cummings, David F.; Ericksen, Spencer S.; Goetz, Angela
2010-01-01
Conserved serines of transmembrane segment (TM) five (TM5) are critical for the interactions of endogenous catecholamines with α1- and α2-adrenergic, β2-adrenergic, and D1, D2, and D3 dopamine receptors. The unique high-affinity interaction of the D4 dopamine receptor subtype with both norepinephrine and dopamine, and the fact that TM5 serine interactions have never been studied for this receptor subtype, led us to investigate the interactions of ligands with D4 receptor TM5 serines. Serine-to-alanine mutations at positions 5.42 and 5.46 drastically decreased affinities of dopamine and norepinephrine for the D4 receptor. The D4-S5.43A receptor mutant had substantially reduced affinity for norepinephrine, but a modest loss of affinity for dopamine. In functional assays of cAMP accumulation, norephinephrine was unable to activate any of the mutant receptors, even though the agonist quinpirole displayed wild-type functional properties for all of them. Dopamine was unable to activate the S5.46A mutant and had reduced potency for the S5.43A mutant and reduced potency and efficacy for the S5.42A mutant. In contrast, Ro10-4548 [RAC-2′-2-hydroxy-3-4-(4-hydroxy-2-methoxyphenyl)-1-piperazinyl-propoxy-acetanilide], a catechol-like antagonist of the wild-type receptor unexpectedly functions as an agonist of the S5.43A mutant. Other noncatechol ligands had similar properties for mutant and wild-type receptors. This is the first example of a dopamine receptor point mutation selectively changing the receptor's interaction with a specific antagonist to that of an agonist, and together with other data, provides evidence, supported by molecular modeling, that catecholamine-type agonism is induced by different ligand-specific configurations of intermolecular H-bonds with the TM5 conserved serines. PMID:20215412
Rizvić, Eldina; Janković, Goran; Kostić-Rajačić, Slađana; Savić, Miroslav M
2017-08-20
Lerimazoline is a sympathomimetic drug that belongs to the imidazoline class of compounds, and is used as a nasal decongestant. Studies on lerimazoline are rare, and its pharmacological profile is not completely understood. Here, we analyzed the affinity of lerimazoline for dopamine receptor D2, serotonin 5-HT1A and 5-HT2A receptors and α1-adrenoceptor, and investigated lerimazoline contractile effects in isolated rat thoracic aorta. We also determined the effect of several antagonists on the contractile response to lerimazoline, including prazosin (α1-adrenoceptor antagonist), RX 821002 and rauwolscine (α2-adrenoceptor antagonists), JP 1302 (α2C-adrenoceptor antagonist), methiothepin (non-selective 5-HT receptor antagonist), SB 224289 (5-HT1B receptor antagonist), BRL 15572 (5-HT1D receptor antagonist), and ketanserin (5-HT2A receptor antagonist). Lerimazoline displayed high affinity for the 5-HT1A receptor (Ki = 162.5 nM), similar to the previously reported affinity for the 5-HT1D receptor. Binding affinity estimates (Ki) for α1, 5-HT2A, and D2 receptors were 6656, 4202 and 3437.5 nM, respectively (the literature reported Ki for 5-HT1B receptor is 3480 nM). Lerimazoline caused concentration-dependent contractions in 70% of preparations, varying in the range between 40% and 55% of the maximal contraction elicited by phenylephrine. While prazosin reduced the maximum contractile response to lerimazoline, rauwolscine showed a non-significant trend in reduction of the response. Both ketanserin (10 nM and 1 µM) and methiothepin strongly suppressed the maximum response to lerimazoline. Overall, our results suggest that 5-HT2A and, less distinctly, α1-adrenergic receptors are involved in the lerimazoline-induced contractions, which makes lerimazoline an "atypical" decongestant.
Rangel-Barajas, Claudia; Malik, Maninder; Taylor, Michelle; Neve, Kim A.; Mach, Robert H.; Luedtke, Robert R.
2014-01-01
LS-3-134 is a substituted N-phenylpiperazine derivative that has been reported to exhibit a) high-affinity binding (Ki value 0.2 nM) at human D3 dopamine receptors, b) >100-fold D3 vs. D2 dopamine receptor subtype binding selectivity and c) low-affinity binding (Ki values >5,000 nM) at sigma 1 and sigma 2 receptors. Based upon a forskolin-dependent activation of the adenylyl cyclase inhibition assay, LS-3-134 is a weak partial agonist at both D2 and D3 dopamine receptor subtypes (29% and 35% of full agonist activity, respectively). In this study, [3H]-labeled LS-3-134 was prepared and evaluated to further characterize its use as a D3 dopamine receptor selective radioligand. Kinetic and equilibrium radioligand binding studies were performed. This radioligand rapidly reaches equilibrium (10-15 min at 37°C) and binds with high affinity to both human (Kd = 0.06 ± 0.01 nM) and rat (Kd = 0.2 ± 0.02 nM) D3 receptors expressed in HEK-293 cells. Direct and competitive radioligand binding studies using rat caudate and nucleus accumbens tissue indicate that [3H]LS-3-134 selectively binds a homogeneous population of binding sites with a dopamine D3 receptor pharmacological profile. Based upon these studies we propose that [3H]LS-3-134 represents a novel D3 dopamine receptor selective radioligand that can be used for studying the expression and regulation of the D3 dopamine receptor subtype. PMID:25041389
Bedini, Annalida; Spadoni, Gilberto; Gatti, Giuseppe; Lucarini, Simone; Tarzia, Giorgio; Rivara, Silvia; Lorenzi, Simone; Lodola, Alessio; Mor, Marco; Lucini, Valeria; Pannacci, Marilou; Scaglione, Francesco
2006-12-14
A novel series of melatonin receptor ligands was discovered by opening the cyclic scaffolds of known classes of high affinity melatonin receptor antagonists, while retaining the pharmacophore elements postulated by previously described 3D-QSAR and receptor models. Compounds belonging to the classes of 2,3- and [3,3-diphenylprop(en)yl]alkanamides and of o- or [(m-benzyl)phenyl]ethyl-alkanamides were synthesized and tested on MT(1) and MT(2) receptors. The class of 3,3-diphenyl-propenyl-alkanamides was the most interesting one, with compounds having MT(2) receptor affinity similar to that of MLT, remarkable MT(2) selectivity, and partial agonist or antagonist behavior. In particular, the (E)-m-methoxy cyclobutanecarboxamido derivative 18f and the di-(m-methoxy) acetamido one, 18g, have sub-nM affinity for the MT(2) subtype, with more than 100-fold selectivity over MT(1), 18f being an antagonist and 18g a partial agonist on GTPgammaS test. Docking of 18g into a previously developed MT(2) receptor model showed a binding scheme consistent with that of other antagonists. The MT(2) expected binding affinities of the new compounds were calculated by a previously developed 3D-QSAR CoMFA model, giving satisfactory predictions.
NASA Astrophysics Data System (ADS)
Tapken, Daniel; Steffensen, Thomas Bielefeldt; Leth, Rasmus; Kristensen, Lise Baadsgaard; Gerbola, Alexander; Gajhede, Michael; Jørgensen, Flemming Steen; Olsen, Lars; Kastrup, Jette Sandholm
2017-04-01
Ionotropic glutamate receptors (iGluRs) are responsible for most of the fast excitatory communication between neurons in our brain. The GluD2 receptor is a puzzling member of the iGluR family: It is involved in synaptic plasticity, plays a role in human diseases, e.g. ataxia, binds glycine and D-serine with low affinity, yet no ligand has been discovered so far that can activate its ion channel. In this study, we show that the hinge region connecting the two subdomains of the GluD2 ligand-binding domain is responsible for the low affinity of D-serine, by analysing GluD2 mutants with electrophysiology, isothermal titration calorimetry and molecular dynamics calculations. The hinge region is highly variable among iGluRs and fine-tunes gating activity, suggesting that in GluD2 this region has evolved to only respond to micromolar concentrations of D-serine.
Tapken, Daniel; Steffensen, Thomas Bielefeldt; Leth, Rasmus; Kristensen, Lise Baadsgaard; Gerbola, Alexander; Gajhede, Michael; Jørgensen, Flemming Steen; Olsen, Lars; Kastrup, Jette Sandholm
2017-04-07
Ionotropic glutamate receptors (iGluRs) are responsible for most of the fast excitatory communication between neurons in our brain. The GluD2 receptor is a puzzling member of the iGluR family: It is involved in synaptic plasticity, plays a role in human diseases, e.g. ataxia, binds glycine and D-serine with low affinity, yet no ligand has been discovered so far that can activate its ion channel. In this study, we show that the hinge region connecting the two subdomains of the GluD2 ligand-binding domain is responsible for the low affinity of D-serine, by analysing GluD2 mutants with electrophysiology, isothermal titration calorimetry and molecular dynamics calculations. The hinge region is highly variable among iGluRs and fine-tunes gating activity, suggesting that in GluD2 this region has evolved to only respond to micromolar concentrations of D-serine.
Tapken, Daniel; Steffensen, Thomas Bielefeldt; Leth, Rasmus; Kristensen, Lise Baadsgaard; Gerbola, Alexander; Gajhede, Michael; Jørgensen, Flemming Steen; Olsen, Lars; Kastrup, Jette Sandholm
2017-01-01
Ionotropic glutamate receptors (iGluRs) are responsible for most of the fast excitatory communication between neurons in our brain. The GluD2 receptor is a puzzling member of the iGluR family: It is involved in synaptic plasticity, plays a role in human diseases, e.g. ataxia, binds glycine and D-serine with low affinity, yet no ligand has been discovered so far that can activate its ion channel. In this study, we show that the hinge region connecting the two subdomains of the GluD2 ligand-binding domain is responsible for the low affinity of D-serine, by analysing GluD2 mutants with electrophysiology, isothermal titration calorimetry and molecular dynamics calculations. The hinge region is highly variable among iGluRs and fine-tunes gating activity, suggesting that in GluD2 this region has evolved to only respond to micromolar concentrations of D-serine. PMID:28387240
Żmudzki, Paweł; Satała, Grzegorz; Chłoń-Rzepa, Grażyna; Bojarski, Andrzej J; Kazek, Grzegorz; Siwek, Agata; Gryboś, Anna; Głuch-Lutwin, Monika; Wesołowska, Anna; Pawłowski, Maciej
2016-10-01
In our previous papers, we have reported that some 8-amino-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione derivatives possessed high affinity and displayed agonistic, partial agonistic, or antagonistic activity for serotonin 5-HT 1A and dopamine D 2 receptors. In order to examine further the influence of the substituent in the position 8 of the purine moiety and the influence of the xanthine core on the affinity for serotonin 5-HT 1A , 5-HT 2A , 5-HT 6 , 5-HT 7 , and dopamine D 2 receptors, two series of 1-arylpiperazynylalkyl derivatives of 8-amino-3,7-dimethyl-1H-purine-2,6(3H,7H)-dione were synthesized. All the final compounds were investigated in in vitro competition binding experiments for the serotonin 5-HT 1A , 5-HT 2A , 5-HT 6 , 5-HT 7 , and dopamine D 2 receptors. The structure-affinity relationships for this group of compounds were discussed. For selected compounds, the functional assays for the 5-HT 1A and D 2 receptors were carried out. The results of the assays indicated that these groups of derivatives possessed antagonistic activity for 5-HT 1A receptors and agonistic, partial agonistic, or antagonistic activity for D 2 receptors. In total, 26 new compounds were synthesized, 20 of which were tested in in vitro binding experiments and 5 were tested in in vitro functional assays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Suga, Hinako; Ehlert, Frederick J.
2013-01-01
We investigated how asparagine mutagenesis of conserved aspartic acids in helix two (D2.50) and three (D3.32) of M1 – M4 muscarinic receptors alters the irreversible binding of acetylcholine mustard and BR384 (4-[(2-bromoethyl)methyl-amino]-2-butynyl N-(3-chlorophenyl)carbamate), a nitrogen mustard derivative of McN-A-343 ([4-[[N-(3-chlorophenyl)carbamoyl]oxy]-2-butynyl] trimethylammonium chloride). The D2.50N mutation moderately increased the affinity of the aziridinium ions of acetylcholine mustard and BR384 for M2 – M4 receptors and had little effect on the rate constant for receptor alkylation. The D3.32N mutation greatly reduced the rate constant for receptor alkylation by acetylcholine mustard, but not by BR384, although the affinity of BR384 was reduced. The combination of both mutations (D2.50N/D3.32N) substantially reduced the rate constant for receptor alkylation by BR384 relative to wild type and mutant D2.50N and D3.32N receptors. The change in binding affinity caused by the mutations suggests that the D2.50N mutation alters the interaction of acetylcholine mustard with D3.32 of M1 and M3 receptors, but not that of the M4 receptor. BR384 exhibited the converse relationship. The simplest explanation is that acetylcholine mustard and BR384 alkylate at least two residues on M1 – M4 receptors and that the D2.50N mutation alters the rate of alkylation of D3.32 relative to another residue, perhaps D2.50 itself. PMID:23826889
Interactions of ligands with active and inactive conformations of the dopamine D2 receptor.
Malmberg, A; Mohell, N; Backlund Höök, B; Johansson, A M; Hacksell, U; Nordvall, G
1998-04-10
The affinities of 19 pharmacologically diverse dopamine D2 receptor ligands were determined for the active and inactive conformations of cloned human dopamine D2 receptors expressed in Ltk cells. The agonist [3H]quinpirole was used to selectively label the guanine nucleotide-binding protein-coupled, active receptor conformation. The antagonist [3H]raclopride, in the presence of the non-hydrolysable GTP-analogue Gpp(NH)p and sodium ions and in the absence of magnesium ions, was used to label the free inactive receptor conformation. The intrinsic activities of the ligands were determined in a forskolin-stimulated cyclic AMP assay using the same cells. An excellent correlation was shown between the affinity ratios (KR/KRG) of the ligands for the two receptor conformations and their intrinsic activity (r=0.96). The ligands included eight structurally related and enantiopure 2-aminotetralin derivatives; the enantiomers of 5-hydroxy-2-(dipropylamino)tetralin, 5-methoxy-2-(dipropylamino)tetralin, 5-fluoro-2-(dipropylamino)tetralin and 2-(dipropylamino)tetralin. The (S)-enantiomers behaved as full agonists in the cyclic AMP assay and displayed a large KR/KRG ratio. The (R)-enantiomers were classified as partial agonists and had lower ratios. The structure-affinity relationships of these compounds at the active and the inactive receptor conformations were analysed separately, and used in conjunction with a homology based receptor model of the dopamine D2 receptor. This led to proposed binding modes for agonists, antagonists and partial agonists in the 2-aminotetralin series. The concepts used in this study should be of value in the design of ligands with predetermined affinity and intrinsic activity.
Weltrowska, Grazyna; Nguyen, Thi M.-D.; Chung, Nga N.; Wood, JodiAnne; Ma, Xiaoyu; Guo, Jason; Wilkes, Brian C.; Ge, Yang; Laferrière, André; Coderre, Terence J.; Schiller, Peter W.
2016-01-01
Head-to-tail cyclization of the μ opioid receptor (MOR) agonist [Dmt1]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2 (9; Dmt = 2′,6′-dimethyltyrosine) resulted in a highly active, selective MOR antagonist, c[-d-Arg-Phe-Lys-Dmt-] (1) (“cyclodal”), with subnanomolar binding affinity. A docking study of cyclodal using the crystal structure of MOR in the inactive form showed a unique binding mode with the two basic residues of the ligand forming salt bridges with the Asp127 and Glu229 receptor residues. Cyclodal showed high plasma stability and was able to cross the blood–brain barrier to reverse morphine-induced, centrally mediated analgesia when given intravenously. Surprisingly, the mirror-image isomer (optical antipode) of cyclodal, c[-Arg-d-Phe-d-Lys-d-Dmt-] (2), also turned out to be a selective MOR antagonist with 1 nM binding affinity, and thus, these two compounds represent the first example of mirror image opioid receptor ligands with both optical antipodes having high binding affinity. Reduction of the Lys-Dmt peptide bond in cyclodal resulted in an analogue, c[-d-Arg-Phe-LysΨ[CH2NH]Dmt-] (8), with MOR agonist activity. PMID:27676089
Structure-Based Virtual Screening for Dopamine D2 Receptor Ligands as Potential Antipsychotics.
Kaczor, Agnieszka A; Silva, Andrea G; Loza, María I; Kolb, Peter; Castro, Marián; Poso, Antti
2016-04-05
Structure-based virtual screening using a D2 receptor homology model was performed to identify dopamine D2 receptor ligands as potential antipsychotics. From screening a library of 6.5 million compounds, 21 were selected and were subjected to experimental validation. From these 21 compounds tested, ten D2 ligands were identified (47.6% success rate, among them D2 receptor antagonists, as expected) that have additional affinity for other receptors tested, in particular 5-HT2A receptors. The affinity (Ki values) of the compounds ranged from 58 nm to about 24 μM. Similarity and fragment analysis indicated a significant degree of structural novelty among the identified compounds. We found one D2 receptor antagonist that did not have a protonatable nitrogen atom, which is a key structural element of the classical D2 pharmacophore model necessary for interaction with the conserved Asp(3.32) residue. This compound exhibited greater than 20-fold binding selectivity for the D2 receptor over the D3 receptor. We provide additional evidence that the amide hydrogen atom of this compound forms a hydrogen bond with Asp(3.32), as determined by tests of its derivatives that cannot maintain this interaction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Erspamer, V; Melchiorri, P; Falconieri-Erspamer, G; Negri, L; Corsi, R; Severini, C; Barra, D; Simmaco, M; Kreil, G
1989-07-01
Deltorphins are endogenous linear heptapeptides, isolated from skin extracts of frogs belonging to the genus Phyllomedusa, that have a higher affinity and selectivity for delta opioid binding sites than any other natural compound known. Two deltorphins with the sequence Tyr-Ala-Phe-Asp(or Glu)-Val-Val-Gly-NH2 have been isolated from skin extracts of Phyllomedusa bicolor. The alanine in position 2 is in the D configuration. These peptides, [D-Ala2]deltorphins I and II, show an even higher affinity for delta receptors than the previously characterized deltorphin, which contains D-methionine as the second amino acid. These peptides show some similarity to another constituent of Phyllomedusa skin, dermorphin, which is highly selective for mu-opioid receptors. These peptides all have the N-terminal sequence Tyr-D-Xaa-Phe, where D-Xaa is either D-alanine or D-methionine. While this structure seems to be capable of activating both mu and delta opioid receptors, differences in the C-terminal regions of these peptides are probably responsible for the observed high receptor selectivity of dermorphin and deltorphin.
Erspamer, V; Melchiorri, P; Falconieri-Erspamer, G; Negri, L; Corsi, R; Severini, C; Barra, D; Simmaco, M; Kreil, G
1989-01-01
Deltorphins are endogenous linear heptapeptides, isolated from skin extracts of frogs belonging to the genus Phyllomedusa, that have a higher affinity and selectivity for delta opioid binding sites than any other natural compound known. Two deltorphins with the sequence Tyr-Ala-Phe-Asp(or Glu)-Val-Val-Gly-NH2 have been isolated from skin extracts of Phyllomedusa bicolor. The alanine in position 2 is in the D configuration. These peptides, [D-Ala2]deltorphins I and II, show an even higher affinity for delta receptors than the previously characterized deltorphin, which contains D-methionine as the second amino acid. These peptides show some similarity to another constituent of Phyllomedusa skin, dermorphin, which is highly selective for mu-opioid receptors. These peptides all have the N-terminal sequence Tyr-D-Xaa-Phe, where D-Xaa is either D-alanine or D-methionine. While this structure seems to be capable of activating both mu and delta opioid receptors, differences in the C-terminal regions of these peptides are probably responsible for the observed high receptor selectivity of dermorphin and deltorphin. PMID:2544892
Stefanowicz, Jacek; Słowiński, Tomasz; Wróbel, Martyna Zofia; Herold, Franciszek; Gomółka, Anna Edyta; Wesołowska, Anna; Jastrzębska-Więsek, Magdalena; Partyka, Anna; Andres-Mach, Marta; Czuczwar, Stanisław Jerzy; Łuszczki, Jarogniew Jacek; Zagaja, Mirosław; Siwek, Agata; Nowak, Gabriel; Żołnierek, Maria; Bączek, Tomasz; Ulenberg, Szymon; Belka, Mariusz; Turło, Jadwiga
2016-09-15
A series of novel 3β-aminotropane derivatives containing a 2-naphthalene or a 2-quinoline moiety was synthesised and evaluated for their affinity for 5-HT1A, 5-HT2A and D2 receptors. Their affinity for the receptors was in the nanomolar to micromolar range. p-Substitution (6c, 6f, 6i, 6l, 6o), as well as substitution with chlorine atoms (6g, 6h, 6i), led to a significant increase in binding affinity for D2 receptors with compounds 6f (Ki=0.6nM), 6c and 6i (Ki=0.4nM), having the highest binding affinities. m-Substituted derivatives were the most promising ligands in terms of 5-HT2A receptor binding affinity whereas 2-quinoline derivatives (10a, 10b) displayed the highest affinity for 5-HT1AR and were the most selective ligands with Ki=62.7nM and Ki=30.5nM, respectively. Finally, the selected ligands 6b, 6d, 6e, 6g, 6h, 6k, 6n and 6o, with triple binding activity for the D2, 5-HT1A and 5-HT2A receptors, were subjected to in vivo tests, such as those for induced hypothermia, climbing behaviour and the head twitch response, in order to determine their pharmacological profile. The tested ligands presented neither agonist nor antagonist properties for the 5-HT1A receptors in the induced hypothermia and lower lip retraction (LLR) tests. All tested compounds displayed antagonistic activity against 5-HT2A, with 6n and 6o being the most active. Four (6b, 6k, 6n and 6o) out of eight tested compounds could be classified as D2 antagonists. Additionally, evaluation of metabolic stability was performed for selected ligands, and introduction of halogen atoms into the benzene ring of 6h, 6k, 6n and 6o improved their metabolic stability. The project resulted in the selection of the lead compounds 6n and 6o, which had antipsychotic profiles, combining dopamine D2-receptor and 5-HT2A antagonism and metabolic stability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Makman, Maynard H.; Dvorkin, B.; Klein, Patrice N.
1982-01-01
Sodium ion (Na+) influences binding of both dopamine agonists and antagonists to D2 receptors in striatum and retina. Also, Na+ markedly potentiates the loss of high-affinity agonist binding due to the GTP analogue p[NH]ppG. 2-Amino-6, 7-dihydroxy-1,2,3,4-tetrahydro[5,8-3H]naphthalene ([3H]ADTN) binds exclusively to an agonist conformation of D2 receptor in both striatum and retina, distinct from the antagonist conformation labeled by [3H]spiroperidol or [3H]domperidone in striatum or by [3H]spiroperidol in retina. Na+ is not required for interaction of [3H]ADTN or antagonist radioligand sites with the selective D2 agonist LY-141865, the D2 antagonist domperidone, or nonselective dopamine agonists or antagonists; however, Na+ is necessary for high affinity interaction of those radioligand sites with the D2 antagonists molindone and metoclopramide. With Na+ present, striatal sites for [3H]ADTN, [3H]spiroperidol, and [3H]domperidone have similar affinities for antagonists but only [3H]ADTN sites have high affinity for agonists. Na+ further decreases the low affinity of dopamine agonists for [3H]spiroperidol binding sites. Also, Na+ enhances [3H]spiroperidol and decreases [3H]ADTN binding. Na+ alone causes bound [3H]ADTN to dissociate from at least 30% of striatal and 50% of retinal sites, and with Na+ present [3H]ADTN rapidly dissociates from the remaining sites upon addition of p[NH]ppG. It is proposed that D2 receptors in striatum and retina exist in distinct but interconvertible conformational states, with different properties depending on the presence or absence of Na+ and of guanine nucleotide. PMID:6213964
Ma, Weina; Yang, Liu; Lv, Yanni; Fu, Jia; Zhang, Yanmin; He, Langchong
2017-06-23
The equilibrium dissociation constant (K D ) of drug-membrane receptor affinity is the basic parameter that reflects the strength of interaction. The cell membrane chromatography (CMC) method is an effective technique to study the characteristics of drug-membrane receptor affinity. In this study, the K D value of CMC relative standard method for the determination of drug-membrane receptor affinity was established to analyze the relative K D values of drugs binding to the membrane receptors (Epidermal growth factor receptor and angiotensin II receptor). The K D values obtained by the CMC relative standard method had a strong correlation with those obtained by the frontal analysis method. Additionally, the K D values obtained by CMC relative standard method correlated with pharmacological activity of the drug being evaluated. The CMC relative standard method is a convenient and effective method to evaluate drug-membrane receptor affinity. Copyright © 2017 Elsevier B.V. All rights reserved.
Cocaine Self-Administration Produces a Persistent Increase in Dopamine D2High Receptors
Briand, Lisa A.; Flagel, Shelly B.; Seeman, Philip; Robinson, Terry E.
2008-01-01
Cocaine addicts are reported to have decreased numbers of striatal dopamine D2 receptors. However, in rodents, repeated cocaine administration consistently produces hypersensitivity to the psychomotor activating effects of both indirect dopamine agonists, such as cocaine itself, and importantly, to direct-acting D2 receptor agonists. The current study reports a possible resolution to this long-standing paradox. The dopamine D2 receptor exists in both a low and a high affinity state, and dopamine exerts its effects via the more functionally relevant high-affinity D2 receptor (D2High). We report here that cocaine self-administration experience produces a large (approximately 150%) increase in the proportion of D2High receptors in the striatum with no change in the total number of D2 receptors, and this effect is evident both 3 and 30 days after the discontinuation of cocaine self-administration. Changes in D2High receptors would not be evident with the probes used in human (and non-human primate) imaging studies. We suggest, therefore, that cocaine addicts and animals previously treated with cocaine may be hyper-responsive to dopaminergic drugs in part because an increase in D2High receptors results in dopamine supersensitivity. This may also help explain why stimuli that increase dopamine neurotransmission, including drugs themselves, are so effective in producing relapse in individuals with a history of exposure to cocaine. PMID:18284941
Lan, Hongxiang; Liu, Yong; Bell, Michal I; Gurevich, Vsevolod V; Neve, Kim A
2009-01-01
Arrestins mediate G protein-coupled receptor desensitization, internalization, and signaling. Dopamine D(2) and D(3) receptors have similar structures but distinct characteristics of interaction with arrestins. The goals of this study were to compare arrestin-binding determinants in D(2) and D(3) receptors other than phosphorylation sites and to create a D(2) receptor that is deficient in arrestin binding. We first assessed the ability of purified arrestins to bind to glutathione transferase (GST) fusion proteins containing the receptor third intracellular loops (IC3). Arrestin3 bound to IC3 of both D(2) and D(3) receptors, with the affinity and localization of the binding site indistinguishable between the receptor subtypes. Mutagenesis of the GST-IC3 fusion proteins identified an important determinant of the binding of arrestin3 in the N-terminal region of IC3. Alanine mutations of this determinant (IYIV212-215) in the full-length D(2) receptor generated a signaling-biased receptor with intact ligand binding and G-protein coupling and activation, but deficient in receptor-mediated arrestin3 translocation to the membrane, agonist-induced receptor internalization, and agonist-induced desensitization in human embryonic kidney 293 cells. This mutation also decreased arrestin-dependent activation of extracellular signal-regulated kinases. The finding that nonphosphorylated D(2)-IC3 and D(3)-IC3 have similar affinity for arrestin is consistent with previous suggestions that the differential effects of D(2) and D(3) receptor activation on membrane translocation of arrestin and receptor internalization are due, at least in part, to differential phosphorylation of the receptors. In addition, these results imply that the sequence IYIV212-215 at the N terminus of IC3 of the D(2) receptor is a key element of the arrestin binding site.
Newman-Tancredi, A; Gavaudan, S; Conte, C; Chaput, C; Touzard, M; Verrièle, L; Audinot, V; Millan, M J
1998-08-21
Recombinant human (h) 5-HT1A receptor-mediated G-protein activation was characterised in membranes of transfected Chinese hamster ovary (CHO) cells by use of guanosine-5'-O-(3-[35S]thio)-triphosphate ([35S]GTPgammaS binding). The potency and efficacy of 21 5-HT receptor agonists and antagonists was determined. The agonists, 5-CT (carboxamidotryptamine) and flesinoxan displayed high affinity (subnanomolar Ki values) and high efficacy (Emax > 90%, relative to 5-HT = 100%). In contrast, ipsapirone, zalospirone and buspirone displayed partial agonist activity. EC50s for agonist stimulation of [35S]GTPgammaS binding correlated well with Ki values from competition binding (r = +0.99). Among the compounds tested for antagonist activity, methiothepin and (+)butaclamol exhibited 'inverse agonist' behaviour, inhibiting basal [35S]GTPgammaS binding. The actions of 17 antipsychotic agents were investigated. Clozapine and several putatively 'atypical' antipsychotic agents, including ziprasidone, quetiapine and tiospirone, exhibited partial agonist activity and marked affinity at h5-HT1A receptors, similar to their affinity at hD2 dopamine receptors. In contrast, risperidone and sertindole displayed low affinity at h5-HT1A receptors and behaved as 'neutral' antagonists, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Likewise the 'typical' neuroleptics, haloperidol, pimozide, raclopride and chlorpromazine exhibited relatively low affinity and 'neutral' antagonist activity at h5-HT1A receptors with Ki values which correlated with their respective Kb values. The present data show that (i) [35S]GTPgammaS binding is an effective method to evaluate the efficacy and potency of agonists and antagonists at recombinant human 5-HT1A receptors. (ii) Like clozapine, several putatively 'atypical' antipsychotic drugs display balanced serotonin h5-HT1A/dopamine hD2 receptor affinity and partial agonist activity at h5-HT1A receptors. (iii) Several 'typical' and some putatively 'atypical' antipsychotic agents displayed antagonist properties at h5-HT1A sites with generally much lower affinity than at hD2 dopamine receptors. It is suggested that agonist activity at 5-HT1A receptors may be of utility for certain antipsychotic agents.
Blonanserin extensively occupies rat dopamine D3 receptors at antipsychotic dose range.
Baba, Satoko; Enomoto, Takeshi; Horisawa, Tomoko; Hashimoto, Takashi; Ono, Michiko
2015-03-01
Antagonism of the dopamine D3 receptor has been hypothesized to be beneficial for schizophrenia cognitive deficits, negative symptoms and extrapyramidal symptoms. However, recent animal and human studies have shown that most antipsychotics do not occupy D3 receptors in vivo, despite their considerable binding affinity for this receptor in vitro. In the present study, we investigated the D3 receptor binding of blonanserin, a dopamine D2/D3 and serotonin 5-HT2A receptors antagonist, in vitro and in vivo. Blonanserin showed the most potent binding affinity for human D3 receptors among the tested atypical antipsychotics (risperidone, olanzapine and aripiprazole). Our GTPγS-binding assay demonstrated that blonanserin acts as a potent full antagonist for human D3 receptors. All test-drugs exhibited antipsychotic-like efficacy in methamphetamine-induced hyperactivity in rats. Treatment with blonanserin at its effective dose blocked the binding of [(3)H]-(+)-PHNO, a D2/D3 receptor radiotracer, both in the D2 receptor-rich region (striatum) and the D3 receptor-rich region (cerebellum lobes 9 and 10). On the other hand, the occupancies of other test-drugs for D3 receptors were relatively low. In conclusion, we have shown that blonanserin, but not other tested antipsychotics, extensively occupies D3 receptors in vivo in rats. Copyright © 2015 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.
Kara, Elodie; Lin, Hong; Svensson, Kjell; Johansson, Anette M; Strange, Philip G
2010-01-01
BACKGROUND AND PURPOSE The two phenylpiperidines, OSU6162 and ACR16, have been proposed as novel drugs for the treatment of brain disorders, including schizophrenia and Huntington's disease, because of their putative dopamine stabilizing effects. Here we evaluated the activities of these compounds in a range of assays for the D2 dopamine receptor in vitro. EXPERIMENTAL APPROACH The affinities of these compounds for the D2 dopamine receptor were evaluated in competition with [3H]spiperone and [3H]NPA. Agonist activity of these compounds was evaluated in terms of their ability to stimulate [35S]GTPγS binding. KEY RESULTS Both compounds had low affinities for inhibition of [3H]spiperone binding (pKi vs. [3H]spiperone, ACR16: <5, OSU6162: 5.36). Neither compound was able to stimulate [35S]GTPγS binding when assayed in the presence of Na+ ions, but if the Na+ ions were removed, both compounds were low-affinity, partial agonists (Emax relative to dopamine: ACR16: 10.2%, OSU6162:54.3%). Schild analysis of the effects of OSU6162 to inhibit dopamine-stimulated [35S]GTPγS binding indicated Schild slopes of ∼0.9, suggesting little deviation from competitive inhibition. OSU6162 was, however, able to accelerate [3H]NPA dissociation from D2 dopamine receptors, indicating some allosteric effects of this compound. CONCLUSIONS AND IMPLICATIONS The two phenylpiperidines were low-affinity, low-efficacy partial agonists at the D2 dopamine receptor in vitro, possibly exhibiting some allosteric effects. Comparing their in vitro and in vivo effects, the in vitro affinities were a reasonable guide to potencies in vivo. However, the lack of in vitro–in vivo correlation for agonist efficacy needs to be further addressed. PMID:20804495
Lacivita, Enza; De Giorgio, Paola; Lee, Irene T.; Rodeheaver, Sean I.; Weiss, Bryan A.; Fracasso, Claudia; Caccia, Silvio; Berardi, Francesco; Perrone, Roberto; Zhang, Ming-Rong; Maeda, Jun; Higuchi, Makoto; Suhara, Tetsuya; Schetz, John A.; Leopoldo, Marcello
2010-01-01
Here we describe the design, synthesis, physicochemical, and pharmacological evaluation of D4 dopamine receptor ligands related to N-[2-[4-(4-chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide (2). Structural features were incorporated to increase affinity for the target receptor, to improve selectivity over D2 and sigma1 receptors, to enable labeling with carbon-11 or fluorine-18, and to adjust lipophilicity within the range considered optimal for brain penetration and low nonspecific binding. Compounds 7 and 13 showed the overall best characteristics: nanomolar affinity for the D4 receptor, > 100-fold selectivity over D2 and D3 dopamine receptor 5-HT1A, 5-HT2A and 5-HT2C serotonin receptors and sigma1 receptors, and logP = 2.37–2.55. Following intraperitoneal administration, both compounds rapidly entered the central nervous system. The methoxy of N-[2-[4-(3-cyanopyridin-2-yl)piperazin-1-yl]ethyl]-3-methoxybenzamide (7) was radiolabelled with carbon-11 and subjected to PET analysis in non-human primate. [11C]7 time-dependently accumulated to saturation in the posterior eye in the region of the retina, a tissue containing a high density of D4 receptors. PMID:20873719
Tomić, Mirko; Vasković, Djurdjica; Tovilović, Gordana; Andrić, Deana; Penjišević, Jelena; Kostić-Rajačić, Sladjana
2011-05-01
Five groups of previously synthesized and initially screened non-substituted and 4-halogenated arylpiperazin-1-yl-ethyl-benzimidazoles were estimated for their in-vitro binding affinities at the rat D(2) , 5-HT(2A) , and α(1) -adrenergic receptors. Among all these compounds, 2-methoxyphenyl and 2-chlorophenyl piperazines demonstrate the highest affinities for the tested receptors. The effects of 4-halogenation of benzimidazoles reveal that substitution with bromine may greatly increase the affinity of the compounds for the studied receptors, while the effect of substitution with chlorine is less remarkable. Most of the tested components show 5-HT(2A)/D(2) pK(i) binding ratios slightly above or less than 1, while only 4-chloro-6-(2-{4-[3-(trifluoromethyl)phenyl]piperazin-1-yl}ethyl)-1H-benzimidazole expresses an appropriate higher binding ratio (1.14), which was indicated for atypical neuroleptics. This compound exhibits a non-cataleptic action in rats and prevents d-amphetamine-induced hyperlocomotion in mice, which suggest its atypical antipsychotic potency. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Coldwell, Martyn C; Boyfield, Izzy; Brown, Tony; Hagan, Jim J; Middlemiss, Derek N
1999-01-01
The aim of the present study was to characterize functional responses to ropinirole, its major metabolites in man (SKF-104557 (4-[2-(propylamino)ethyl]-2-(3H) indolone), SKF-97930 (4-carboxy-2-(3H) indolone)) and other dopamine receptor agonists at human dopamine D2(long) (hD2), D3 (hD3) and D4.4 (hD4) receptors separately expressed in Chinese hamster ovary cells using microphysiometry.All the receptor agonists tested (ropinirole, SKF-104557, SKF-97930, bromocriptine, lisuride, pergolide, pramipexole, talipexole, dopamine) increased extracellular acidification rate in Chinese hamster ovary clones expressing the human D2, D3 or D4 receptor. The pEC50s of ropinirole at hD2, hD3 and hD4 receptors were 7.4, 8.4 and 6.8, respectively. Ropinirole is therefore at least 10 fold selective for the human dopamine D3 receptor over the other D2 receptor family members.At the hD2 and hD3 dopamine receptors all the compounds tested were full agonists as compared to quinpirole. Talipexole and the ropinirole metabolite, SKF-104557, were partial agonists at the hD4 receptor.Bromocriptine and lisuride had a slow onset of agonist action which precluded determination of EC50s.The rank order of agonist potencies was dissimilar to the rank order of radioligand binding affinities at each of the dopamine receptor subtypes. Functional selectivities of the dopamine receptor agonists, as measured in the microphysiometer, were less than radioligand binding selectivities.The results show that ropinirole is a full agonist at human D2, D3 and D4 dopamine receptors. SKF-104557 the major human metabolite of ropinirole, had similar radioligand binding affinities to, but lower functional potencies than, the parent compound. PMID:10455328
Paul, Noel M.; Taylor, Michelle; Kumar, Rakesh; Deschamps, Jeffrey R.; Luedtke, Robert R.; Newman, Amy Hauck
2011-01-01
Discovering dopamine D2-like receptor subtype-selective ligands has been a focus of significant investigation. The D2R-selective antagonist 3-[4-(4-chlorophenyl)-4-hydroxypiperidinyl]methylindole (1, L741,626; Ki(D2R/D3R) = 11.2:163 nM) has previously provided a lead template for chemical modification. Herein, analogues have been synthesized where the piperidine was replaced by a tropane ring that reversed the selectivity seen in the parent compound, in human hD2LR- or hD3R-transfected HEK 293 cells (31, Ki(D2R/D3R) = 33.4: 15.5 nM). Further exploration of both N-substituted and aryl ring-substituted analogues resulted in the discovery of several high affinity D2R/D3R ligands with 3-benzofurylmethyl-substituents (e.g., 45, Ki(D2R/D3R) = 1.7:0.34 nM) that induced high affinity not achieved in similarly N-substituted piperidine analogues and significantly (470-fold) improved D3R binding affinity compared to the parent ligand 1. X-ray crystallographic data revealed a distinctive spatial arrangement of pharmacophoric elements in the piperidinol vs tropine analogues, providing clues for the diversity in SAR at the D2 and D3 receptor subtypes. PMID:18774793
Shi, B; Narayanan, T K; Yang, Z Y; Christian, B T; Mukherjee, J
1999-10-01
We have developed radiotracers based on agonists that may potentially allow the in vivo assessment of the high affinity (HA) state of the dopamine D-2 receptors. The population of HA state, which is likely the functional state of the receptor, may be altered in certain diseases. We carried out radiosyntheses and evaluated the binding affinities, lipophilicity, and in vitro autoradiographic binding characteristics of three dopamine D-2 receptor agonists: (+/-)-2-(N,N-dipropyl)amino-5-hydroxytetralin (5-OH-DPAT), (+/-)-2-(N-phenethyl-N-propyl)amino-5-hydroxytetralin (PPHT), and (+/-)-2-(N-cyclohexylethyl-N-propyl)amino-5-hydroxytetralin (ZYY-339). In 3H-spiperone assays using rat striata, ZYY-339 exhibited subnanomolar affinity for D-2 receptor sites (IC50 = 0.010 nM), PPHT was somewhat weaker (IC50 = 0.65 nM), and 5-OH-DPAT exhibited the weakest affinity (IC50 = 2.5 nM) of the three compounds. Radiosynthesis of these derivatives, 2-(N-propyl-N-1'-11C-propyl)amino-5-hydroxytetralin (11C-5-OH-DPAT), 2-(N-phenethyl-N-1'-11C-propyl)amino-5-hydroxytetralin (11C-PPHT), and 2-(N-cyclohexylethyl-N-1'-11C-propyl)amino-5-hydroxytetralin (11C-ZYY-339) was achieved by first synthesizing 11C-1-propionyl chloride and subsequent coupling with the appropriate secondary amine precursor to form the respective amide, which was then reduced to provide the desired tertiary amine products. The final products were obtained by reverse-phase high performance liquid chromatography (HPLC) purification in radiochemical yields of 5-10% after 60-75 min from the end of 11CO2 trapping and with specific activities in the range of 250-1,000 Ci/mmol. In vitro autoradiographs in rat brain slices with 11C-5-OH-DPAT, 11C-PPHT, and 11C-ZYY-339 revealed selective binding of the three radiotracers to the dopamine D-2 receptors in the striata.
Tahara, A; Tsukada, J; Ishii, N; Tomura, Y; Wada, K; Kusayama, T; Yatsu, T; Uchida, W; Tanaka, A
1999-10-22
Radioligand binding studies with [3H]vasopressin (AVP) were used to determine the affinities of AVP receptor agonists and antagonists for mouse liver and kidney plasma membrane preparations. Both membrane preparations exhibited one class of high-affinity binding site. AVP ligand binding inhibition studies confirmed that mouse liver binding sites belong to the V1A subtype while kidney binding sites belong to the V2 receptor subtype. The affinity of each ligand for mouse V1A receptors was very similar to that for rat V1A receptors, showing differences in Ki values of less than 3-fold. In contrast, several peptide (d(CH2)5Tyr(Me)AVP) and nonpeptide (OPC-21268 and SR 49059) ligands had different affinities for mouse and rat kidney V2 receptors, with differences in Ki values ranging from 14- to 17-fold. These results indicate that mouse and rat kidney V2 receptors show significant pharmacologic differences.
Ferreri, Florian; Drapier, Dominique; Baloche, Emmanuelle; Ouzid, Mehemed; Zimmer, Luc; Llorca, Pierre-Michel
2018-01-01
Abstract Background The denomination of typical antipsychotic for loxapine has poor relation to current knowledge of the molecule’s relevant modes of action. Materials and Methods Competition binding experiments were performed on expressed human recombinant receptors in CHO cells and HEK-293 cells for D1 to D5, 5-HT1A, 5-HT2A, 5-HT2C, 5-HT4, 5-HT6, and 5-HT7. In vitro autoradiographies using [11C]-Raclopride [18F]-Altanserin [18F]-MPPF [11C]-SB207145, and [18F]-2FNQ1P were measured in brain tissue of a male primate followed by addition of increasing doses of loxapine succinate. Results In cell cultures, the measured Kb confirmed high affinity of loxapine for the D2; intermediate affinity for the D1, D4, D5, 5-HT2C receptorsl and a lack of affinity toward D3, 5-HT1A, 5-HT4, 5-HT6, and 5-HT7 receptors. In brain tissue, PET autoradiographies showed a radiopharmaceutical displacement at low concentrations of loxapine on D2 and 5-HT2A receptors. Conclusion This preclinical study reveals that loxapine receptorial spectrum is close to an “atypical” profile (D2/5HT2A ratio, 1.14). Loxapine is rightly classified as a DS-RAn agent in the Neuroscience Based Nomenclature classification. PMID:29106549
Talkad, V D; Patto, R J; Metz, D C; Turner, R J; Fortune, K P; Bhat, S T; Gardner, J D
1994-10-20
By measuring binding of [125I]CCK-8 and [3H]L-364,718 to rat pancreatic acini we demonstrated directly that the pancreatic CCK receptor can exist in three different affinity states with respect to CCK--high affinity, low affinity and very low affinity. Binding of [125I]CCK-8 reflects interaction of the tracer with the high and low affinity states, whereas binding of [3H]L-364,718 reflects interaction of the tracer with the low and very low affinity states. Treating acini with carbachol abolished the high affinity state of the CCK receptor and converted approximately 25% of the low affinity receptors to the very low affinity state. Carbachol treatment was particularly useful in establishing the values of Kd for the high and low affinity states for different CCK receptor agonists and antagonists. Of the various CCK receptor agonists tested, CCK-8 had the highest affinity for the high affinity state (Kd approximately 1 nM), whereas CCK-JMV-180 had the highest affinity for the low (Kd 7 nM) and very low affinity (Kd 200 nM) states. Gastrin and de(SO4)CCK-8 had affinities for the high and low affinity states of the receptor that were 100- to 400-fold less than those of CCK-8 but had affinities for the very low affinity state that were only 3- to 10-fold less than that of CCK-8. CCK receptor antagonists showed several patterns in interacting with the different states of the CCK receptor. L-364,718 had the same affinity for each state of the CCK receptor. CR1409 and Bt2cGMP each had similar affinities for the high and low affinity states and lower affinity for the very low affinity state. L-365,260 and CCK-JMV-179 had the highest affinity for the low affinity state and lower affinities for the high and very low affinity states. Different CCK receptor agonists caused the same maximal stimulation of amylase secretion but showed different degrees of amplification in terms of the relationship between their abilities to stimulate amylase secretion and their abilities to occupy the low affinity state of the CCK receptor. When amplification was expressed quantitatively as the value of Kd for the low affinity state divided by the corresponding EC50 for stimulating amylase secretion the values were CCK-8 (1000), de(SO)CCK-8 (1500), gastrin (100) and CCK-JMV-180 (Menozzi, D., Vinayek, R., Jensen, R.T. and Gardner, J.D. (1991) J. Biol. Chem. 266, 10385-1091).(ABSTRACT TRUNCATED AT 400 WORDS)
Tabet, Michael R.; Norman, Mantana K.; Fey, Brittney K.; Tsibulsky, Vladimir L.; Millard, Ronald W.
2011-01-01
Differences in the time to maximal effect (Tmax) of a series of dopamine receptor antagonists on the self-administration of cocaine are not consistent with their lipophilicity (octanol-water partition coefficients at pH 7.4) and expected rapid entry into the brain after intravenous injection. It was hypothesized that the Tmax reflects the time required for maximal occupancy of receptors, which would occur as equilibrium was approached. If so, the Tmax should be related to the affinity for the relevant receptor population. This hypothesis was tested using a series of nine antagonists having a 2500-fold range of Ki or Kd values for D2-like dopamine receptors. Rats self-administered cocaine at regular intervals and then were injected intravenously with a dose of antagonist, and the self-administration of cocaine was continued for 6 to 10 h. The level of cocaine at the time of every self-administration (satiety threshold) was calculated throughout the session. The satiety threshold was stable before the injection of antagonist and then increased approximately 3-fold over the baseline value at doses of antagonists selected to produce this approximately equivalent maximal magnitude of effect (maximum increase in the equiactive cocaine concentration, satiety threshold; Cmax). Despite the similar Cmax, the mean Tmax varied between 5 and 157 min across this series of antagonists. Furthermore, there was a strong and significant correlation between the in vivo Tmax values for each antagonist and the affinity for D2-like dopamine receptors measured in vitro. It is concluded that the cocaine self-administration paradigm offers a reliable and predictive bioassay for measuring the affinity of a competitive antagonist for D2-like dopamine receptors. PMID:21606176
Stronger Dopamine D1 Receptor-Mediated Neurotransmission in Dyskinesia.
Farré, Daniel; Muñoz, Ana; Moreno, Estefanía; Reyes-Resina, Irene; Canet-Pons, Júlia; Dopeso-Reyes, Iria G; Rico, Alberto J; Lluís, Carme; Mallol, Josefa; Navarro, Gemma; Canela, Enric I; Cortés, Antonio; Labandeira-García, José L; Casadó, Vicent; Lanciego, José L; Franco, Rafael
2015-12-01
Radioligand binding assays to rat striatal dopamine D1 receptors showed that brain lateralization of the dopaminergic system were not due to changes in expression but in agonist affinity. D1 receptor-mediated striatal imbalance resulted from a significantly higher agonist affinity in the left striatum. D1 receptors heteromerize with dopamine D3 receptors, which are considered therapeutic targets for dyskinesia in parkinsonian patients. Expression of both D3 and D1-D3 receptor heteromers were increased in samples from 6-hydroxy-dopamine-hemilesioned rats rendered dyskinetic by treatment with 3, 4-dihydroxyphenyl-L-alanine (L-DOPA). Similar findings were obtained using striatal samples from primates. Radioligand binding studies in the presence of a D3 agonist led in dyskinetic, but not in lesioned or L-DOPA-treated rats, to a higher dopamine sensitivity. Upon D3-receptor activation, the affinity of agonists for binding to the right striatal D1 receptor increased. Excess dopamine coming from L-DOPA medication likely activates D3 receptors thus making right and left striatal D1 receptors equally responsive to dopamine. These results show that dyskinesia occurs concurrently with a right/left striatal balance in D1 receptor-mediated neurotransmission.
Li, Yangmei; Cazares, Margret; Wu, Jinhua; Houghten, Richard A; Toll, Laurence; Dooley, Colette
2016-02-11
To optimize the structure of a μ-opioid receptor ligand, analogs H-Tyr-c[D-Lys-Xxx-Tyr-Gly] were synthesized and their biological activity was tested. The analog containing a Phe(3) was identified as not only exhibiting binding affinity 14-fold higher than the original hit but also producing agonist activity 3-fold more potent than morphine. NMR study suggested that a trans conformation at D-Lys(2)-Xxx(3) is crucial for these cyclic peptides to maintain high affinity, selectivity, and functional activity toward the μ-opioid receptor.
2015-01-01
We report a class of potent and selective dopamine D3 receptor antagonists based upon tranylcypromine. Although tranylcypromine has a low affinity for the rat D3 receptor (Ki = 12.8 μM), our efforts have yielded (1R,2S)-11 (CJ-1882), which has Ki values of 2.7 and 2.8 nM at the rat and human dopamine D3 receptors, respectively, and displays respective selectivities of >10000-fold and 223-fold over the rat and human D2 receptors. Evaluation in a β-arrestin functional assay showed that (1R,2S)-11 is a potent and competitive antagonist at the human D3 receptor. PMID:24848155
Takeda, K; Taniyama, K; Kuno, T; Sano, I; Ishikawa, T; Ohmura, I; Tanaka, C
1991-05-01
The mechanism of action of clebopride on the motility of guinea pig stomach was examined by the receptor binding assay for bovine brain membrane and by measuring gastric contractility and the release of acetylcholine from the stomach. The receptor binding assay revealed that clebopride bound to the D2 dopamine receptor with a high affinity and to the alpha-2 adrenoceptor and 5-HT2 serotonin receptor with relatively lower affinity, and not to D1 dopamine, alpha-1 adrenergic, muscarinic acetylcholine, H1 histamine, or opioid receptor. In strips of the stomach, clebopride at 10(-8) M to 10(-5) M enhanced the electrical transmural stimulation-evoked contraction and the release of acetylcholine. This enhancement was attributed to the blockade of the D2 dopamine receptor and alpha-2 adrenoceptor because: 1) Maximum responses obtained with specific D2 dopamine receptor antagonist, domperidone, and with specific alpha-2 adrenoceptor antagonist, yohimbine, were smaller than that with clebopride, and the sum of the effects of these two specific receptor antagonists is approximately equal to the effect of clebopride. 2) The facilitatory effect of clebopride was partially eliminated by pretreatment of the sample with domperidone or yohimbine, and the facilitatory effect of clebopride was not observed in preparations treated with the combination of domperidone and yohimbine. Clebopride also antagonized the inhibitory effects of dopamine and clonidine on the electrical transmural stimulation-evoked responses. These results indicate that clebopride acts on post ganglionic cholinergic neurons at D2 and alpha-2 receptors in this preparation to enhance enteric nervous system stimulated motility.
Affinity States of Striatal Dopamine D2 Receptors in Antipsychotic-Free Patients with Schizophrenia
Kubota, Manabu; Nagashima, Tomohisa; Takano, Harumasa; Kodaka, Fumitoshi; Fujiwara, Hironobu; Takahata, Keisuke; Moriguchi, Sho; Higuchi, Makoto; Okubo, Yoshiro; Takahashi, Hidehiko; Ito, Hiroshi
2017-01-01
Abstract Background Dopamine D2 receptors are reported to have high-affinity (D2High) and low-affinity (D2Low) states. Although an increased proportion of D2High has been demonstrated in animal models of schizophrenia, few clinical studies have investigated this alteration of D2High in schizophrenia in vivo. Methods Eleven patients with schizophrenia, including 10 antipsychotic-naive and 1 antipsychotic-free individuals, and 17 healthy controls were investigated. Psychopathology was assessed by Positive and Negative Syndrome Scale, and a 5-factor model was used. Two radioligands, [11C]raclopride and [11C]MNPA, were employed to quantify total dopamine D2 receptor and D2High, respectively, in the striatum by measuring their binding potentials. Binding potential values of [11C]raclopride and [11C]MNPA and the binding potential ratio of [11C]MNPA to [11C]raclopride in the striatal subregions were statistically compared between the 2 diagnostic groups using multivariate analysis of covariance controlling for age, gender, and smoking. Correlations between binding potential and Positive and Negative Syndrome Scale scores were also examined. Results Multivariate analysis of covariance demonstrated a significant effect of diagnosis (schizophrenia and control) on the binding potential ratio (P=.018), although the effects of diagnosis on binding potential values obtained with either [11C]raclopride or [11C]MNPA were nonsignificant. Posthoc test showed that the binding potential ratio was significantly higher in the putamen of patients (P=.017). The Positive and Negative Syndrome Scale “depressed” factor in patients was positively correlated with binding potential values of both ligands in the caudate. Conclusions The present study indicates the possibilities of: (1) a higher proportion of D2High in the putamen despite unaltered amounts of total dopamine D2 receptors; and (2) associations between depressive symptoms and amounts of caudate dopamine D2 receptors in patients with schizophrenia. PMID:29016872
Schwanstecher, C; Meyer, M; Schwanstecher, M; Panten, U
1998-03-01
1. The structure activity relationships for the insulin secretagogues N-benzoyl-D-phenylalanine (NBDP) and related compounds were examined at the sulphonylurea receptor level by use of cultured HIT-T15 and mouse pancreatic beta-cells. The affinities of these compounds for the sulphonylurea receptor were compared with their potencies for K(ATP)-channel inhibition. In addition, the effects of cytosolic nucleotides on K(ATP)-channel inhibition by NBDP were investigated. 2. NBDP displayed a dissociation constant for binding to the sulphonylurea receptor (K(D) value) of 11 microM and half-maximally effective concentrations of K(ATP)-channel inhibition (EC50 values) between 2 and 4 microM (in the absence of cytosolic nucleotides or presence of 0.1 mM GDP or 1 mM ADP). 3. In the absence of cytosolic nucleotides or presence of GDP (0.1 mM) maximally effective concentrations of NBDP (0.1-1 mM) reduced K(ATP)-channel activity to 47% and 44% of control, respectively. In the presence of ADP (1 mM), K(ATP)-channel activity was completely suppressed by 0.1 mM NBDP. 4. The L-isomer of N-benzoyl-phenylalanine displayed a 20 fold lower affinity and an 80 fold lower potency than the D-isomer. 5. Introduction of a p-nitro substituent in the D-phenylalanine moiety of NBDP did not decrease lipophilicity but lowered affinity and potency by more than 30 fold. 6. Introduction of a p-amino substituent in the D-phenylalanine moiety of NBDP (N-benzoyl-p-amino-D-phenylalanine, NBADP) reduced lipophilicity and lowered affinity and potency by about 10 fold. This loss of affinity and potency was compensated for by formation of the phenylpropionic acid derivative of NBADP. A similar difference in affinity was observed for the sulphonylurea carbutamide and its phenylpropionic acid derivative. 7. Replacing the benzene ring in the D-phenylalanine moiety of NBDP by a cyclohexyl ring increased lipophilicity, and the K(D) and EC50 values were slightly lower than for NBDP. Exchange of both benzene rings in NBDP by cyclohexyl rings further increased lipophilicity without altering affinity and potency. 8. This study shows that N-acylphenylalanines interact with the sulphonylurea receptor of pancreatic beta-cells in a stereospecific manner. Their potency depends on lipophilic but not aromatic properties of their benzene rings. As observed for sulphonylureas, interaction of N-acylphenylalanines with the sulphonylurea receptor does not induce complete inhibition of K(ATP)-channel activity in the absence of inhibitory cytosolic nucleotides.
Leopoldo, Marcello; Lacivita, Enza; De Giorgio, Paola; Fracasso, Claudia; Guzzetti, Sara; Caccia, Silvio; Contino, Marialessandra; Colabufo, Nicola A; Berardi, Francesco; Perrone, Roberto
2008-09-25
Starting from the previously reported 5-HT 7 receptor agents 4-7 with N-(1,2,3,4-tetrahydronaphthalen-1-yl)-4-aryl-1-piperazinehexanamide structure, the 1-(2-methylthiophenyl)-, 1-(2-diphenyl)-, 1-(2-isopropylphenyl)-, and 1-(2-methoxyphenyl)piperazine derivatives 8-31 were designed with the primary aim to obtain new compounds endowed with suitable physicochemical properties for rapid and extensive penetration into the brain. The affinities for 5-HT 7, 5-HT 1A, and D 2 receptors of compounds 8-31 were assessed, and several compounds displayed 5-HT 7 receptor affinities in the nanomolar range. Among these, N-(4-cyanophenylmethyl)-4-(2-diphenyl)-1-piperazinehexanamide (25) showed high 5-HT 7 receptor affinity (Ki = 0.58 nM), high selectivity over 5-HT 1A and D 2 receptors (324- and 245-fold, respectively), and agonist properties (maximal effect = 82%, EC 50 = 0.60 microM). After intraperitoneal injection in mice, 25 rapidly reached the systemic circulation and entered the brain. Its brain concentration-time profile paralleled that in plasma, indicating that 25 rapidly and freely distributes across the blood-brain barrier. Compound 25 underwent N-dealkylation to the corresponding 1-arylpiperazine metabolite.
Structural basis for collagen recognition by the immune receptor OSCAR.
Zhou, Long; Hinerman, Jennifer M; Blaszczyk, Michal; Miller, Jeanette L C; Conrady, Deborah G; Barrow, Alexander D; Chirgadze, Dimitri Y; Bihan, Dominique; Farndale, Richard W; Herr, Andrew B
2016-02-04
The osteoclast-associated receptor (OSCAR) is a collagen-binding immune receptor with important roles in dendritic cell maturation and activation of inflammatory monocytes as well as in osteoclastogenesis. The crystal structure of the OSCAR ectodomain is presented, both free and in complex with a consensus triple-helical peptide (THP). The structures revealed a collagen-binding site in each immunoglobulin-like domain (D1 and D2). The THP binds near a predicted collagen-binding groove in D1, but a more extensive interaction with D2 is facilitated by the unusually wide D1-D2 interdomain angle in OSCAR. Direct binding assays, combined with site-directed mutagenesis, confirm that the primary collagen-binding site in OSCAR resides in D2, in marked contrast to the related collagen receptors, glycoprotein VI (GPVI) and leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1). Monomeric OSCAR D1D2 binds to the consensus THP with a KD of 28 µM measured in solution, but shows a higher affinity (KD 1.5 μM) when binding to a solid-phase THP, most likely due to an avidity effect. These data suggest a 2-stage model for the interaction of OSCAR with a collagen fibril, with transient, low-affinity interactions initiated by the membrane-distal D1, followed by firm adhesion to the primary binding site in D2. © 2016 by The American Society of Hematology.
Paquet, J -L; Luccarini, J -M; Fouchet, C; Defrêne, E; Loillier, B; Robert, C; Bélichard, P; Cremers, B; Pruneau, D
1999-01-01
The present study addresses the differences in binding profiles and functional properties of the human and rat bradykinin (BK) B2 receptor using various kinin receptor peptide derivatives as well as the non-peptide receptor antagonists WIN 64338 (phosphonium, [[4-[[2-[[bis(cyclohexylamino)methylene]amino]-3-(2-naphtalenyl)1-oxopropyl]amino]-phenyl]-methyl]tributyl, chloride, monohydro-chloride), and FR173657 (E)-3-(6-acetamido-3-pyridyl)-N-[-N-[2,4-dichloro-3-[(2-methyl-8-quinolinyl)oxymethyl]-phenyl]N-methylamino carbonyl methyl] acrylamide. [3H]-BK bound with a similar affinity to membranes of Chinese hamster ovary cells (CHO-K1) expressing the cloned human (hB2-CHO) or rat (rB2-CHO) B2 receptor, human embryonic intestine cells (INT407) expressing the native B2 receptor, human umbilical vein (HUV) and rat uterus (RU). WIN 64338 and FR173657 bound with a 3.8–6.6 fold and 7.0–16.3 fold higher affinity the rat than the human B2 receptor, respectively. The affinity values of BK derivatives as well as non-peptide antagonists were reduced by 6–23 fold in physiological HBSS compared to low ionic strength TES binding buffer. BK (0.01–3000 nM) increased inositol triphosphates (IP3) levels in hB2-CHO, rB2-CHO and INT407 cells. The B2 receptor antagonist, Hoe 140 (D-Arg0-[ Hyp3, Thi5, D-Tic7, Oic8]-BK) at 10−7 M, significantly shifted to the right the IP3 response curves to BK giving apparent pKB values of 8.56, 9.79 and 8.84 for hB2-CHO, rB2-CHO and INT407 cells, respectively. In human isolated umbilical vein, Hoe 140, D-Arg0-[Hyp3, D-Phe7, Leu8]-BK and NPC 567 had a lower potency in functional assays (pKB 8.18, 5.77 and 5.60, respectively) than expected from their affinity in binding studies (pKi 10.52, 8.64 and 8.27, respectively). FR173657 behaved as a high affinity ligand with pKi values of 8.59 and 9.81 and potent competitive antagonist with pKB values of 7.80 and 8.17 in HUV and RU, respectively. FR173657 bound with a similar affinity the cloned and native bradykinin B2 receptor in human (pKi of 8.66 and 8.59, respectively) and in rat (pKi 9.67 and 9.81, respectively). In conclusion, we suggest that the binding buffer composition has to be taken into account when screening new compounds and that inter-species differences should be considered when setting up animal models with the aim of developing bradykinin B2 receptor antagonists as therapeutic agents. PMID:10204994
Imaging Agonist-Induced D2/D3 Receptor Desensitization and Internalization In Vivo with PET/fMRI.
Sander, Christin Y; Hooker, Jacob M; Catana, Ciprian; Rosen, Bruce R; Mandeville, Joseph B
2016-04-01
This study investigated the dynamics of dopamine receptor desensitization and internalization, thereby proposing a new technique for non-invasive, in vivo measurements of receptor adaptations. The D2/D3 agonist quinpirole, which induces receptor internalization in vitro, was administered at graded doses in non-human primates while imaging with simultaneous positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). A pronounced temporal divergence between receptor occupancy and fMRI signal was observed: occupancy remained elevated while fMRI responded transiently. Analogous experiments with an antagonist (prochlorperazine) and a lower-affinity agonist (ropinirole) exhibited reduced temporal dissociation between occupancy and function, consistent with a mechanism of desensitization and internalization that depends upon drug efficacy and affinity. We postulated a model that incorporates internalization into a neurovascular-coupling relationship. This model yielded in vivo desensitization/internalization rates (0.2/min for quinpirole) consistent with published in vitro measurements. Overall, these results suggest that simultaneous PET/fMRI enables characterization of dynamic neuroreceptor adaptations in vivo, and may offer a first non-invasive method for assessing receptor desensitization and internalization.
Imaging Agonist-Induced D2/D3 Receptor Desensitization and Internalization In Vivo with PET/fMRI
Sander, Christin Y; Hooker, Jacob M; Catana, Ciprian; Rosen, Bruce R; Mandeville, Joseph B
2016-01-01
This study investigated the dynamics of dopamine receptor desensitization and internalization, thereby proposing a new technique for non-invasive, in vivo measurements of receptor adaptations. The D2/D3 agonist quinpirole, which induces receptor internalization in vitro, was administered at graded doses in non-human primates while imaging with simultaneous positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). A pronounced temporal divergence between receptor occupancy and fMRI signal was observed: occupancy remained elevated while fMRI responded transiently. Analogous experiments with an antagonist (prochlorperazine) and a lower-affinity agonist (ropinirole) exhibited reduced temporal dissociation between occupancy and function, consistent with a mechanism of desensitization and internalization that depends upon drug efficacy and affinity. We postulated a model that incorporates internalization into a neurovascular-coupling relationship. This model yielded in vivo desensitization/internalization rates (0.2/min for quinpirole) consistent with published in vitro measurements. Overall, these results suggest that simultaneous PET/fMRI enables characterization of dynamic neuroreceptor adaptations in vivo, and may offer a first non-invasive method for assessing receptor desensitization and internalization. PMID:26388148
Zagórska, Agnieszka; Kołaczkowski, Marcin; Bucki, Adam; Siwek, Agata; Kazek, Grzegorz; Satała, Grzegorz; Bojarski, Andrzej J; Partyka, Anna; Wesołowska, Anna; Pawłowski, Maciej
2015-06-05
A novel series of arylpiperazinylalkyl purine-2,4-diones (4-27) and purine-2,4,8-triones (31-38) was synthesized and tested to evaluated their affinity for the serotoninergic (5-HT1A, 5-HT6, 5-HT7) and dopaminergic (D2) receptors. Compounds with purine-2,4-dione nucleus generally had affinity values higher than the corresponding purine-2,4,8-trione compounds. A spectrum of receptor activities was observed for compounds with a substituent at the 7-position of the imidazo[2,1-f]purine-2,4-dione system and some potent 5-HT1A (18, 25), 5-HT7 (14) and mixed 5-HT1A/5-HT7 (8, 9) receptor ligands with additional affinity for dopamine D2 receptors (15) has been identified. Moreover, docking studies proved that a substituent at the 7-position of 1,3-dimethyl-(1H,8H)-imidazo[2,1-f]purine-2,4-dione could be essential for receptor affinity and selectivity, especially towards 5-HT1A and 5-HT7. The results of the preliminary pharmacological in vivo studies of selected derivatives of 1,3-dimethyl-(1H,8H)-imidazo[2,1-f]purine-2,4-dione, including 9 as a potential anxiolytic, 8 and 15 as potential antidepressants, and 18 and 25 as potential antidepressant and anxiolytic agents. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Pittalà, Valeria; Romeo, Giuseppe; Salerno, Loredana; Siracusa, Maria Angela; Modica, Maria; Materia, Luisa; Mereghetti, Ilario; Cagnotto, Alfredo; Mennini, Tiziana; Marucci, Gabriella; Angeli, Piero; Russo, Filippo
2006-01-01
The discovery of a new series of selective and high-affinity alpha(1)-adrenoceptor (alpha(1)-AR) ligands, characterized by a 1H-pyrrolo[2,3-d]-pyrimidine-2,4(3H,7H)-dione system, is described in this paper. Some synthesized compounds, including 20, 22, and 30, displayed affinity in the nanomolar range for alpha(1)-ARs and substantial selectivity with respect to 5-HT(1A) and dopaminergic D(1) and D(2) receptors. Functional assays, performed on selected derivatives, showed antagonistic properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garzon, J.; Sanchez-Blazquez, P.; Lee, N.M.
1984-10-01
The binding of the putative kappa agonist ethylketocyclazocine (EKC) to synaptosomal membranes of mouse brain was studied. This benzomorphan was able to bind to different opioid receptors. A portion of this binding was not inhibited by the agonist naloxone, even at high concentrations (10 microM). This population of receptors, to which opioate alkaloids and opiod peptides display very low affinity, is probably the sigma receptor. Another class of binding sites was identified by the simultaneous addition of the selective agonists Sandoz FK-33824 and D-Ala2-D-Leu5-enkephalin, which blocked the access of EKC to mu and delta opioid receptors, respectively, leaving a portionmore » of naloxone-displaceable benzomorphan binding still detectable. Analysis of this remaining binding revealed a small population of receptors of high affinity, the kappa receptor. Therefore, EKC binds to the mu, delta, kappa and sigma receptors in the mouse brain, with similar affinities for the mu and kappa (0.22 and 0.15 nM). These results confirm the existence of a kappa opioid receptor type in the mouse brain.« less
Harley, E. A.; Middlemiss, D. N.; Ragan, C. I.
1995-01-01
1. Radioligand binding assays using [3H]-(-)-sulpiride, in the presence of 1 mM ethylenediaminetetraacetic acid (EDTA) and 100 microM guanylylimidodiphosphate (GppNHp) and [3H]-N0437 were developed to label the low and high agonist affinity states of the rD2(444) receptor (long form of the rat D2 receptor) respectively. The ratios of the affinities of compounds in these two assays (Kapp [3H]-(-)-supiride/Kapp [3H]-N-0437) were then calculated. 2. The prediction that the binding ratio reflected the functional efficacy of a compound was supported by measurement of the ability of a number of compounds acting at dopamine receptors to inhibit rD2(444)-mediated inhibition of cyclic AMP production. When the rank order of the ratios of a number of these compounds was compared to their ability to inhibit the production of cyclic AMP, a significant correlation was seen (Spearman rank correlation coefficient = 0.943, P = 0.01). 3. In conclusion, the sulpiride/N-0437 binding ratio reliably predicted the efficacy of compounds acting at dopamine receptors to inhibit cyclic AMP production mediated by the rD2(444) receptor. PMID:7582561
Harvey, Brian H; Naciti, Carla; Brand, Linda; Stein, Dan J
2004-12-01
Structural hippocampus and prefrontal cortex changes occur in patients with posttraumatic stress disorder (PTSD) that appears correlated with cognitive dysfunction. In these brain regions, serotonin (5HT) plays a prominent role in symptom presentation and treatment of PTSD. However, 5HT is both anxiogenic and anxiolytic, and while 5HT reuptake inhibitors are effective in treatment, the role of 5HT in the development of PTSD remains uncertain. Using a model of repeated trauma in rats, we observed significant spatial memory impairment together with significantly increased 5HT(1A) receptor density (B(max)), decreased 5HT(1A) receptor affinity (K(d)), and significantly increased 5HT(2A) receptor affinity on day 7 poststress. The serotonergic agent fluoxetine (FLX; 10 mg/kg/d ip) administered 1 week before stress and continuing throughout the stress procedure, but not the 5HT depleter p-chloro-phenylalanine (PCPA; 300/100/50 mg/kg/d ip), prevented stress-induced cognitive dysfunction. PCPA, however, reversed stress-induced hippocampal 5HT(1A) receptor affinity changes, with FLX narrowly missing significance. Neither drug reversed stress effects on 5HT(2A) receptor affinity. Thus, 5HT plays an important part in the cognitive-behavioral changes evoked by repeated trauma. That raised 5HT activity may mediate hippocampal 5HT(1A) receptor changes evoked by stress suggests a bidirectional role for 5HT in the development of PTSD.
Hashimoto, Takashi; Baba, Satoko; Ikeda, Hiroko; Oda, Yasunori; Hashimoto, Kenji; Shimizu, Isao
2018-07-05
Long-term treatment with antipsychotic drugs in patients with schizophrenia can lead to dopamine supersensitivity psychosis. It is reported that repeated administration of haloperidol caused dopamine supersensitivity in rats. Blonanserin is an atypical antipsychotic drug with high affinity for dopamine D 2 , D 3 and serotonin 2A receptors. In this study, we investigated whether chronic administration of blonanserin leads to dopamine supersensitivity. Following oral treatment with blonanserin (0.78 mg/kg) or haloperidol (1.1 mg/kg) twice daily for 28 days, the dopamine D 2 agonist quinpirole-induced hyperlocomotion test and a dopamine D 2 receptor binding assay were conducted. We found that haloperidol significantly enhanced both quinpirole-induced hyperlocomotion and striatal dopamine D 2 receptor density in rats. On the other hand, repeated administration of blonanserin had no effect on either locomotor activity or striatal dopamine D 2 receptor density. Further, our results show that mRNA levels of dopamine D 2 and D 3 receptors in several brain regions were unaffected by repeated administration of both agents. In addition, we examined the effect of the dopamine D 3 receptor antagonist PG-01037 on development of dopamine supersensitivity induced by chronic haloperidol treatment and showed that PG-01037 prevents the development of supersensitivity to quinpirole in chronic haloperidol-treated rats. Given the higher affinity of blonanserin at dopamine D 3 receptors than haloperidol, antagonism of blonanserin at dopamine D 3 receptors may play a role in lack of dopamine supersensitivity after chronic administration. The present findings suggest long-term treatment with antipsychotic dose of blonanserin may be unlikely to lead to dopamine supersensitivity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Williams, Chad M.; Schonnesen, Alexandra A.; Zhang, Shu-Qi; Ma, Ke-Yue; He, Chenfeng; Yamamoto, Tori; Eckhardt, S. Gail; Klebanoff, Christopher A.; Jiang, Ning
2017-01-01
The discovery of naturally occurring T cell receptors (TCRs) that confer specific, high-affinity recognition of pathogen and cancer-associated antigens remains a major goal in cellular immunotherapies. The contribution of the CD8 co-receptor to the interaction between the TCR and peptide-bound major histocompatibility complex (pMHC) has previously been correlated with the activation and responsiveness of CD8+ T cells. However, these studies have been limited to model systems of genetically engineered hybridoma TCRs or transgenic mouse TCRs against either a single epitope or an array of altered peptide ligands. CD8 contribution in a native human antigen-specific T cell response remains elusive. Here, using Hepatitis C Virus-specific precursor CTLs spanning a large range of TCR affinities, we discovered that the functional responsiveness of any given TCR correlated with the contribution of CD8 to TCR/pMHC binding. Furthermore, we found that CD8 contribution to TCR/pMHC binding in the two-dimensional (2D) system was more accurately reflected by normalized synergy (CD8 cooperation normalized by total TCR/pMHC bonds) rather than synergy (total CD8 cooperation) alone. While synergy showed an increasing trend with TCR affinity, normalized synergy was demonstrated to decrease with the increase of TCR affinity. Critically, normalized synergy was shown to correlate with CTL functionality and peptide sensitivity, corroborating three-dimensional (3D) analysis of CD8 contribution with respect to TCR affinity. In addition, we identified TCRs that were independent of CD8 for TCR/pMHC binding. Our results resolve the current discrepancy between 2D and 3D analysis on CD8 contribution to TCR/pMHC binding, and demonstrate that naturally occurring high-affinity TCRs are more capable of CD8-independent interactions that yield greater functional responsiveness even with CD8 blocking. Taken together, our data suggest that addition of the normalized synergy parameter to our previously established TCR discovery platform using 2D TCR affinity and sequence test would allow for selection of TCRs specific to any given antigen with the desirable attributes of high TCR affinity, CD8 co-receptor independence and functional superiority. Utilizing TCRs with less CD8 contribution could be beneficial for adoptive cell transfer immunotherapies using naturally occurring or genetically engineered T cells against viral or cancer-associated antigens. PMID:28804489
Fiorentini, Monica; Bach, Anders; Strømgaard, Kristian; Kastrup, Jette S; Gajhede, Michael
2013-04-01
PSD-93 (chapsyn-110, DLG2) is a member of the family of membrane-associated guanylate kinase (MAGUK) proteins. The MAGUK proteins are involved in receptor localization and signalling pathways. The best characterized MAGUK protein, PSD-95, is known to be involved in NMDA receptor signalling via its PDZ domains. The PDZ domains of PSD-95 and PSD-93 are structurally very similar, but relatively little is known about the function of PSD-93. PSD-93 has been suggested to interact with GluD2 from the family of ionotropic glutamate receptors. Here, the interactions of four residues (GTSI) representing the extreme C-terminus of GluD2 with PSD-93 PDZ1 have been investigated in the crystalline phase. Two different binding modes of these residues were observed, suggesting that the peptide is not tightly bound to PSD-93 PDZ1. In accordance, the two N-terminal PSD-93 PDZ domains show no appreciable binding affinity for a GluD2-derived C-terminal octapeptide, whereas micromolar affinity was observed for a GluN2B-derived C-terminal octapeptide. This indicates that if present, the interactions between GluD2 and PSD-93 involve more than the extreme terminus of the receptor. In contrast, the tumour-suppressor protein SCRIB PDZ3 shows low micromolar affinity towards the GluD2-derived octapeptide, which is in agreement with previous findings using high-throughput assays.
Dopamine D2 receptors photolabeled by iodo-azido-clebopride.
Niznik, H B; Dumbrille-Ross, A; Guan, J H; Neumeyer, J L; Seeman, P
1985-04-19
Iodo-azido-clebopride, a photoaffinity compound for dopamine D2 receptors, had high affinity for canine brain striatal dopamine D2 receptors with a dissociation constant (Kd) of 14 nM. Irradiation of striatal homogenate with iodo-azido-clebopride irreversibly inactivated 50% of dopamine D2 receptors at 20 nM (as indicated by subsequent [3H]spiperone binding). Dopamine agonists and antagonists prevented this photo-inactivation with the appropriate rank-order of potency. Striatal dopamine D1, serotonin (S2), alpha 1- and beta-adrenoceptors were not significantly inactivated following irradiation with iodo-azido-clebopride. Thus, iodo-azido-clebopride is a selective photoaffinity probe for dopamine D2 receptors, the radiolabelled form of which may aid in the molecular characterization of these proteins.
CJ-1639: A Potent and Highly Selective Dopamine D3 Receptor Full Agonist.
Chen, Jianyong; Collins, Gregory T; Levant, Beth; Woods, James; Deschamps, Jeffrey R; Wang, Shaomeng
2011-08-11
We have identified several ligands with high binding affinities to the dopamine D3 receptor and excellent selectivity over the D2 and D1 receptors. CJ-1639 (17) binds to the D3 receptor with a K(i) value of 0.50 nM and displays a selectivity of >5,000 times over D2 and D1 receptors in binding assays using dopamine receptors expressed in the native rat brain tissues. CJ-1639 binds to human D3 receptor with a K(i) value of 3.61 nM and displays over >1000-fold selectivity over human D1 and D2 receptors. CJ-1639 is active at 0.01 mg/kg at the dopamine D3 receptor in the rat and only starts to show a modest D2 activity at doses as high as 10 mg/kg. CJ-1639 is the most potent and selective D3 full agonist reported to date.
Blonanserin Augmentation for Treatment-Resistant Somatic Symptom Disorder: A Case Series.
Nagoshi, Yasuhide; Tominaga, Toshiyuki; Fukui, Kenji
2016-01-01
The augmentation of selective serotonin reuptake inhibitors with antipsychotics that have a high dopamine-receptor-D2 affinity may be effective in treatment-resistant obsessive-compulsive disorder and somatic symptom disorder, which is similar to illness anxiety disorder. Blonanserin, a novel antipsychotic developed in Japan, has a high affinity for the D2 receptor and weak or very little affinity for other receptors. This article presents two case studies that demonstrate the efficacy of blonanserin augmentation for treatment-resistant somatic symptom disorder. Two patients with treatment-resistant somatic symptom disorder were prescribed concomitant use of blonanserin. Augmentation with blonanserin resulted in the remarkable amelioration of all symptoms. Sedative adverse drug reactions produced by aripiprazole were improved after replacing it with blonanserin. Blonanserin is effective in treatment-resistant somatic symptom disorder. Furthermore, compared with aripiprazole, blonanserin is more likely to result in medication adherence in patients with somatic symptom disorder because it reduced adverse drug reactions.
Assié, Marie-Bernadette; Dominguez, Hélène; Consul-Denjean, Nathalie; Newman-Tancredi, Adrian
2006-09-01
Interaction with dopamine D2-like receptors plays a major role in the therapeutic effects of antipsychotic drugs. We examined in vivo dopamine D2 receptor occupancy of various established and potential antipsychotics in mouse striatum and olfactory tubercles 1 h after administration of the compound, using [3H]nemonapride as a ligand. All the compounds reduced in vivo binding of [3H]nemonapride in the striatum. When administered systemically, conventional antipsychotics, D2 antagonists, nemonapride (ID50: 0.034 mg/kg), eticlopride (0.047), haloperidol (0.11) and raclopride (0.11) potently inhibited [3H]nemonapride binding. The 'atypical' antipsychotics, risperidone (0.18), ziprasidone (0.38), aripiprazole (1.6), olanzapine (0.99), and clozapine (11.1) were less potent for occupying D2-like receptors. New compounds, displaying marked agonism at 5-HT1A receptors in addition to D2 receptor affinity, exhibited varying D2 receptor occupancy: bifeprunox (0.25), SLV313 (0.78), SSR181507 (1.6) and sarizotan (6.7). ID50 values for inhibition of [3H]nemonapride binding in the striatum correlated with those in the olfactory tubercles (r=0.95, P<0.0001). These values also correlated with previously-reported in vitro affinity of the compounds at rat D2 receptors (r=0.85, P=0.0001) and with inhibition of apomorphine-induced climbing in mice (r=0.79 P=0.0005). In contrast, there was no significant correlation between ID50 values herein and previously-reported ED50 values for catalepsy in mice. These data indicate that: (1) there is no difference in D2 receptor occupancy in limbic versus striatal regions between most classical and atypical or potential antipsychotics; and (2) high occupancy of D2 receptors can be dissociated from catalepsy, if the drugs also activate 5-HT1A receptors. Taken together, these data support the strategy of simultaneously targeting D2 receptor blockade and 5-HT1A receptor activation for new antipsychotics.
2016-01-01
Novel 1-, 5-, and 8-substituted analogues of sumanirole (1), a dopamine D2/D3 receptor (D2R/D3R) agonist, were synthesized. Binding affinities at both D2R and D3R were higher when determined in competition with the agonist radioligand [3H]7-hydroxy-N,N-dipropyl-2-aminotetralin (7-OH-DPAT) than with the antagonist radioligand [3H]N-methylspiperone. Although 1 was confirmed as a D2R-preferential agonist, its selectivity in binding and functional studies was lower than previously reported. All analogues were determined to be D2R/D3R agonists in both GoBRET and mitogenesis functional assays. Loss of efficacy was detected for the N-1-substituted analogues at D3R. In contrast, the N-5-alkyl-substituted analogues, and notably the n-butyl-arylamides (22b and 22c), all showed improved affinity at D2R over 1 with neither a loss of efficacy nor an increase in selectivity. Computational modeling provided a structural basis for the D2R selectivity of 1, illustrating how subtle differences in the highly homologous orthosteric binding site (OBS) differentially affect D2R/D3R affinity and functional efficacy. PMID:27035329
Piekielna, Justyna; De Marco, Rossella; Gentilucci, Luca; Cerlesi, Maria Camilla; Calo', Girolamo; Tömböly, Csaba; Artali, Roberto; Janecka, Anna
2016-05-01
The study reports the synthesis and biological evaluation of two opioid analogs, a monomer and a dimer, obtained as products of the solid-phase, side-chain to side-chain cyclization of the pentapeptide Tyr-d-Lys-Phe-Phe-AspNH2 . The binding affinities to the mu, delta, and kappa opioid receptors, as well as results obtained in a calcium mobilization functional assay are reported. Tyr-[d-Lys-Phe-Phe-Asp]2 -NH2 1 was a potent and selective full agonist of mu with sub-nanomolar affinity, while the dimer (Tyr-[d-Lys-Phe-Phe-Asp]2 -NH2 )2 2 showed a significant mixed mu/kappa affinity, acting as an agonist at the mu. Molecular docking computations were utilized to explain the ability of the dimeric cyclopeptide 2 to interact with the receptor. Interestingly, in spite of the increased ring size, the higher flexibility allowed 2 to fold and fit into the mu receptor binding pocket. Both cyclopeptides were shown to elicit strong antinociceptive activity after intraventricular injection but only cyclomonomer 1 was able to cross the blood-brain barrier. However, the cyclodimer 2 displayed a potent peripheral antinociceptive activity in a mouse model of visceral inflammatory pain. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 309-317, 2016. © 2016 Wiley Periodicals, Inc.
Atkinson, Peter J; Bromidge, Steven M; Duxon, Mark S; Gaster, Laramie M; Hadley, Michael S; Hammond, Beverley; Johnson, Christopher N; Middlemiss, Derek N; North, Stephanie E; Price, Gary W; Rami, Harshad K; Riley, Graham J; Scott, Claire M; Shaw, Tracey E; Starr, Kathryn R; Stemp, Geoffrey; Thewlis, Kevin M; Thomas, David R; Thompson, Mervyn; Vong, Antonio K K; Watson, Jeannette M
2005-02-01
Starting from a high throughput screening hit, a series of 3,4-dihydro-2H-benzoxazinones has been identified with both high affinity for the 5-HT(1A) receptor and potent 5-HT reuptake inhibitory activity. The 5-(2-methyl)quinolinyloxy derivative combined high 5-HT(1A/1B/1D) receptor affinities with low intrinsic activity and potent inhibition of the 5-HT reuptake site (pK(i)8.2). This compound also had good oral bioavailability and brain penetration in the rat.
Rangel-Barajas, Claudia; Malik, Maninder; Vangveravong, Suwanna; Mach, Robert H; Luedtke, Robert R
2014-08-01
Because of the complexity and heterogeneity of human neuropsychiatric disorders, it has been difficult to identify animal models that mimic the symptoms of these neuropathologies and can be used to screen for antipsychotic agents. For this study we selected the murine 5HT2A/2C receptor agonist-induced head twitch response (HTR) induced by the administration of 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), which has been proposed as an animal model of symptoms associated with a variety of behavioral and psychiatric conditions. We investigated the DOI-induced HTR in male DBA/2J mice using a panel of D2-like (D2, D3 and D4) and D2 dopamine receptor selective compounds. When DBA/2J mice were administered a daily dose of DOI (5 mg/kg), tolerance to the DOI occurs. However, administrations of the same dose of DOI every other day (48 h) or on a weekly basis did not lead to tolerance and the ability to induce tolerance after daily administration of DOI remains intact after repeated weekly administration of DOI. Subsequently, a panel of D2-like dopamine receptor antagonists was found to effectively inhibit the DOI-induced HTR in DBA/2J mice. However, the benzamide eticlopride, which is a high affinity D2-like antagonist, was a notable exception. SV 293, SV-III-130s and N-methylbenperidol, which exhibit a high affinity for D2 versus the D3 dopamine receptor subtypes (60- to 100-fold binding selectivity), were also found to inhibit the HTR in DBA/2J mice. This observation suggests a functional interaction between dopaminergic and serotonergic systems through D2 dopamine receptors and the 5-HT2A serotonin receptors in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.
Coldwell, M C; Boyfield, I; Brown, A M; Stemp, G; Middlemiss, D N
1999-01-01
This study characterized pharmacologically the functional responses to agonists at human dopamine D2(long) (hD2), D3 (hD3) and D4.4 (hD4) zreceptors separately expressed in cloned cells using the cytosensor microphysiometer. Dopaminergic receptor agonists caused increases in extracellular acidification rate in adherent Chinese hamster ovary (CHO) clones expressing hD2, hD3 or hD4 receptors. Acidification rate responses to agonists in other cell lines expressing these receptors were smaller than those in adherent CHO cells. The time courses and maximum increases in acidification rate of the agonist responses in adherent CHO cells were different between the three dopamine receptor clones. Responses were blocked by pretreatment of cells with pertussis toxin or amiloride analogues. Most agonists had full intrinsic activity at each of the dopamine receptor subtypes, as compared to quinpirole, however both enantiomers of UH-232 and (−)3-PPP were partial agonists in this assay system. The functional potency of full agonists at each of the three receptors expressed in CHO cells was either higher than, or similar to, the apparent inhibition constants (Ki) determined in [125I]-iodosulpride competition binding studies. Functional selectivities of the agonists were less than radioligand binding selectivities. The rank orders of agonist potencies and selectivities were similar, but not identical, to the rank orders of radioligand binding affinities and selectivities. The dopamine receptor antagonists, iodosulpride and clozapine, had no effect on basal acidification rates but inhibited acidification responses in CHO cells to quinpirole in an apparently competitive manner. Antagonist potencies closely matched their radioligand binding affinities in these cells. PMID:10455259
Kawano, Susumu; Ito, Risa; Nishiyama, Miharu; Kubo, Mai; Matsushima, Tomoko; Minamisawa, Motoko; Ambo, Akihiro; Sasaki, Yusuke
2007-07-01
Receptor binding properties and antinociceptive activities of chimeric peptides linked by spacers were investigated. The peptides consisted of the micro-opioid receptor ligand dermorphin (Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH(2)) or its analog YRFB (Tyr-D-Arg-Phe-betaAla-NH(2)) linked to the ORL1 receptor ligand Ac-Arg-Tyr-Tyr-Arg-Ile-Lys-NH(2) (Ac-RYYRIK-NH(2)). All chimeric peptides were found to possess high receptor binding affinities for both micro-opioid and ORL1 receptors in mouse brain membranes although their binding affinities for both receptors in spinal membranes were significantly lower. Among them, chimeric peptide 2, which consists of dermorphin and Ac-RYYRIK-NH(2) connected by a long spacer, had the highest binding affinity towards both receptors. In the tail-flick test following intrathecal (i.t.) administration to mice, all chimeric peptides showed potent and dose-dependent antinociceptive activities with an ED(50) of 1.34-4.51 (pmol/mouse), nearly comparable to dermorphin alone (ED(50); 1.08 pmol/mouse). In contrast to their micro-opioid receptor binding profiles, intracerebroventricular (i.c.v.) administration of the chimeric peptides resulted in much less potent antinociceptive activity (ED(50) 5.55-100< pmol/mouse) than when administered i.t. (ED(50): 1.34-4.51 pmol/mouse). These results suggest the involvement of nociceptin-like agonistic effects of the Ac-RYYRIK pharmacophore in the peptides, and the regulation of mu-opioid receptor-mediated antinociception in brain. The present chimeric peptides may be useful as pharmacological tools for studies on micro-opioid receptor/ORL1 receptor heterodimers.
Haadsma-Svensson, S R; Cleek, K A; Dinh, D M; Duncan, J N; Haber, C L; Huff, R M; Lajiness, M E; Nichols, N F; Smith, M W; Svensson, K A; Zaya, M J; Carlsson, A; Lin, C H
2001-12-20
5,6-Dimethoxy-2-(N-dipropyl)-aminoindan (3, PNU-99194A) was found to be a selective dopamine D(3) receptor antagonist with potential antipsychotic properties in animal models. To investigate the effects of nitrogen substitution on structure-activity relationships, a series of 5,6-dimethoxy-N-alkyl- and N-alkylaryl-substituted 2-aminoindans were synthesized and evaluated in vitro for binding affinity and metabolic stability. The results indicate that substitution at the amine nitrogen of the 2-aminoindans is fairly limited to the di-N-propyl group in order to achieve selective D(3) antagonists. Thus, combinations of various alkyl groups were generally inactive at the D(3) receptor. Although substitution with an N-alkylaryl or N-alkylheteroaryl group yields compounds with potent D(3) binding affinity, the D(2) affinity is also enhanced, resulting in a less than 4-fold preference for the D(3) receptor site, and no improvements in metabolic stability were noted. A large-scale synthesis of the D(3) antagonist 3 has been developed that has proven to be reproducible with few purification steps. The improvements include the use of 3,4-dimethoxybenzaldehyde as a low-cost starting material to provide the desired 5,6-dimethoxy-1-indanone 5c in good overall yield (65%) and the formation of a soluble silyl oxime 17 that was reduced efficiently with BH(3).Me(2)S. The resulting amino alcohol was alkylated and then deoxygenated using a Lewis acid and Et(3)SiH to give the desired product 3 in good overall yield of ( approximately 65%) from the indanone 5c.
Targeting the dopamine D3 receptor: an overview of drug design strategies.
Cortés, Antoni; Moreno, Estefanía; Rodríguez-Ruiz, Mar; Canela, Enric I; Casadó, Vicent
2016-07-01
Dopamine is a neurotransmitter widely distributed in both the periphery and the central nervous system (CNS). Its physiological effects are mediated by five closely related G protein-coupled receptors (GPCRs) that are divided into two major subclasses: the D1-like (D1, D5) and the D2-like (D2, D3, D4) receptors. D3 receptors (D3Rs) have the highest density in the limbic areas of the brain, which are associated with cognitive and emotional functions. These receptors are therefore attractive targets for therapeutic management. This review summarizes the functional and pharmacological characteristics of D3Rs, including the design and clinical relevance of full agonists, partial agonists and antagonists, as well as the capacity of these receptors to form active homodimers, heterodimers or higher order receptor complexes as pharmacological targets in several neurological and neurodegenerative disorders. The high sequence homology between D3R and the D2-type challenges the development of D3R-selective compounds. The design of new D3R-preferential ligands with improved physicochemical properties should provide a better pharmacokinetic/bioavailability profile and lesser toxicity than is found with existing D3R ligands. It is also essential to optimize D3R affinity and, especially, D3R vs. D2-type binding and functional selectivity ratios. Developing allosteric and bitopic ligands should help to improve the D3R selectivity of these drugs. As most evidence points to the ability of GPCRs to form homomers and heteromers, the most promising therapeutic strategy in the future is likely to involve the application of heteromer-selective drugs. These selective ligands would display different affinities for a given receptor depending on the receptor partners within the heteromer. Therefore, designing novel compounds that specifically target and modulate D1R-D3R heteromers would be an interesting approach for the treatment of levodopa (L-DOPA)-induced dyskinesias.
Purification and characterization of rat liver nuclear thyroid hormone receptors.
Ichikawa, K; DeGroot, L J
1987-01-01
Nuclear thyroid hormone receptor was purified to 904 pmol of L-3,5,3'-triiodothyronine (T3) binding capacity per mg of protein with 2.5-5.2% recovery by sequentially using hydroxylapatite column chromatography, ammonium sulfate precipitation, Sephadex G-150 gel filtration, DNA-cellulose column chromatography, DEAE-Sephadex column chromatography, and heparin-Sepharose column chromatography. Assuming that one T3 molecule binds to the 49,000-Da unit of the receptor, we reproducibly obtained 6.4-14.7 micrograms of receptor protein with 4.2-4.9% purity from 4-5 kg of rat liver. Elution of receptor from the heparin-Sepharose column was performed using 10 mM pyridoxal 5'-phosphate, which was observed to diminish binding of receptor to heparin-Sepharose or DNA-cellulose. This effect was specific for pyridoxal 5'-phosphate, since related compounds were not effective. Purified receptor bound T3 with high affinity (6.0 X 10(9) liter/mol), and the order of affinity of iodothyronine analogues to purified receptor was identical to that observed with crude receptor preparations [3,5,3'-triiodothyroacetic acid greater than L-T3 greater than D-3,5,3'-triiodothyronine (D-T3) greater than L-thyroxine greater than D-thyroxine]. Purified receptor had a sedimentation coefficient of 3.4 S, Stokes radius of 34 A, and calculated molecular mass of 49,000. Among several bands identified by silver staining after electrophoresis in NaDodSO4/polyacrylamide gels, one 49,000-Da protein showed photoaffinity labeling with [125I]thyroxine that was displaceable with excess unlabeled T3. The tryptic fragment and endogenous proteinase-digested fragment of the affinity-labeled receptor showed saturable binding in 27,000-Da and 36,000-Da peptides, respectively. These molecular masses are in agreement with estimates from gel filtration and gradient sedimentation, indicating that affinity labeling occurred at the hormone binding domain of nuclear thyroid hormone receptor. This procedure reproducibly provides classical native rat liver T3 nuclear receptor in useful quantity and purity and of the highest specific activity so far reported. Images PMID:3472213
α2A- and α2C-Adrenoceptors as Potential Targets for Dopamine and Dopamine Receptor Ligands.
Sánchez-Soto, Marta; Casadó-Anguera, Verònica; Yano, Hideaki; Bender, Brian Joseph; Cai, Ning-Sheng; Moreno, Estefanía; Canela, Enric I; Cortés, Antoni; Meiler, Jens; Casadó, Vicent; Ferré, Sergi
2018-03-18
The poor norepinephrine innervation and high density of Gi/o-coupled α 2A - and α 2C -adrenoceptors in the striatum and the dense striatal dopamine innervation have prompted the possibility that dopamine could be an effective adrenoceptor ligand. Nevertheless, the reported adrenoceptor agonistic properties of dopamine are still inconclusive. In this study, we analyzed the binding of norepinephrine, dopamine, and several compounds reported as selective dopamine D 2 -like receptor ligands, such as the D 3 receptor agonist 7-OH-PIPAT and the D 4 receptor agonist RO-105824, to α 2 -adrenoceptors in cortical and striatal tissue, which express α 2A -adrenoceptors and both α 2A - and α 2C -adrenoceptors, respectively. The affinity of dopamine for α 2 -adrenoceptors was found to be similar to that for D 1 -like and D 2 -like receptors. Moreover, the exogenous dopamine receptor ligands also showed high affinity for α 2A - and α 2C -adrenoceptors. Their ability to activate Gi/o proteins through α 2A - and α 2C -adrenoceptors was also analyzed in transfected cells with bioluminescent resonance energy transfer techniques. The relative ligand potencies and efficacies were dependent on the Gi/o protein subtype. Furthermore, dopamine binding to α 2 -adrenoceptors was functional, inducing changes in dynamic mass redistribution, adenylyl cyclase activity, and ERK1/2 phosphorylation. Binding events were further studied with computer modeling of ligand docking. Docking of dopamine at α 2A - and α 2C -adrenoceptors was nearly identical to its binding to the crystallized D 3 receptor. Therefore, we provide conclusive evidence that α 2A - and α 2C -adrenoceptors are functional receptors for norepinephrine, dopamine, and other previously assumed selective D 2 -like receptor ligands, which calls for revisiting previous studies with those ligands.
Salmas, Ramin Ekhteiari; Seeman, Philip; Aksoydan, Busecan; Erol, Ismail; Kantarcioglu, Isik; Stein, Matthias; Yurtsever, Mine; Durdagi, Serdar
2017-06-21
Dopamine receptor D2 (D2R) plays an important role in the human central nervous system and is a focal target of antipsychotic agents. The D2 High R and D2 Low R dimeric models previously developed by our group are used to investigate the prediction of binding affinity of the LY404,039 ligand and its binding mechanism within the catalytic domain. The computational data obtained using molecular dynamics simulations fit well with the experimental results. The calculated binding affinities of LY404,039 using MM/PBSA for the D2 High R and D2 Low R targets were -12.04 and -9.11 kcal/mol, respectively. The experimental results suggest that LY404,039 binds to D2 High R and D2 Low R with binding affinities (K i ) of 8.2 and 1640 nM, respectively. The high binding affinity of LY404,039 in terms of binding to [ 3 H]domperidone was inhibited by the presence of a guanine nucleotide, indicating an agonist action of the drug at D2 High R. The interaction analysis demonstrated that while Asp114 was among the most critical amino acids for D2 High R binding, residues Ser193 and Ser197 were significantly more important within the binding cavity of D2 Low R. Molecular modeling analyses are extended to ensemble docking as well as structure-based pharmacophore model (E-pharmacophore) development using the bioactive conformation of LY404,039 at the binding pocket as a template and screening of small-molecule databases with derived pharmacophore models.
Carro, Laura; Torrado, María; Raviña, Enrique; Masaguer, Christian F; Lage, Sonia; Brea, José; Loza, María I
2014-01-01
A series of novel α-tetralone and α-tetralol derivatives was synthesized, and their binding affinities for 5-HT(2A) and D₂ receptors, the most important targets implicated in the anti-schizophrenia drug action, were evaluated to elucidate how substitutions in the aromatic ring of the pharmacophore affect to the affinity or selectivity for these receptors. The replacement of the H-7 in the tetrahydronaphthalene system by an amino group resulted in privileged 5-HT(2A) affinity of the 6-fluorobenzo[d]isoxazol derivative 36 and the alcohol 25 both showing a pK(i) value for 5-HT(2A) higher than 8.3 and good binding affinities for D₂ receptor leading to a Meltzer's ratio characteristic of an atypical antipsychotic profile. Additionally, a small collection of 3-aminomethyltetralone derivatives was prepared and examined here for their affinities and selectivities as 5-HT(2A)/D₂ dual ligands. Compound 11 shows the best profile with good pKi values for 5-HT(2A) and D₂ receptors leading to a Meltzer's ratio characteristic of a typical antipsychotic behaviour. These three compounds behaved as competitive antagonists of both 5-HT(2A) and D₂ receptors, and might be promising pharmacological tools for the investigation of the dual function of the 5HT(2A)-D₂ ligands. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Purification of brain D2 dopamine receptor.
Williamson, R A; Worrall, S; Chazot, P L; Strange, P G
1988-01-01
D2 dopamine receptors have been extracted from bovine brain using the detergent cholate and purified approximately 20,000-fold by affinity chromatography on haloperidol-sepharose and wheat germ agglutinin-agarose columns. The purified preparation contains D2 dopamine receptors as judged by the pharmacological specificity of [3H]spiperone binding to the purified material. The sp. act. of [3H]spiperone binding in the purified preparation is 2.5 nmol/mg protein. The purified preparation shows a major diffuse band at Mr 95,000 upon SDS-polyacrylamide gel electrophoresis and there is evidence for microheterogeneity either at the protein or glycosylation level. Photoaffinity labelling of D2 dopamine receptors also shows a species of Mr 95,000. The D2 dopamine receptor therefore is a glycoprotein of Mr 95,000. Images PMID:3243275
Agarwal, Sri Mahavir; Bose, Anushree; Shivakumar, Venkataram; Narayanaswamy, Janardhanan C; Chhabra, Harleen; Kalmady, Sunil V; Varambally, Shivarama; Nitsche, Michael A; Venkatasubramanian, Ganesan; Gangadhar, Bangalore N
2016-01-30
Transcranial direct current stimulation (tDCS) has generated interest as a treatment modality for schizophrenia. Dopamine, a critical pathogenetic link in schizophrenia, is also known to influence tDCS effects. We evaluated the influence of antipsychotic drug type (as defined by dopamine D2 receptor affinity) on the impact of tDCS in schizophrenia. DSM-IV-TR-diagnosed schizophrenia patients [N=36] with persistent auditory hallucinations despite adequate antipsychotic treatment were administered add-on tDCS. Patients were divided into three groups based on the antipsychotic's affinity to D2 receptors. An auditory hallucinations score (AHS) was measured using the auditory hallucinations subscale of the Psychotic Symptom Rating Scales (PSYRATS). Add-on tDCS resulted in a significant reduction inAHS. Antipsychotic drug type had a significant effect on AHS reduction. Patients treated with high affinity antipsychotics showed significantly lesser improvement compared to patients on low affinity antipsychotics or a mixture of the two. Furthermore, a significant sex-by-group interaction occurred; type of medication had an impact on tDCS effects only in women. Improvement differences could be due to the larger availability of the dopamine receptor system in patients taking antipsychotics with low D2 affinity. Sex-specific differences suggest potential estrogen-mediated effects. This study reports a first-time observation on the clinical utility of antipsychotic drug type in predicting tDCS effects in schizophrenia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Further evaluation of the tropane analogs of haloperidol.
Sampson, Dinithia; Bricker, Barbara; Zhu, Xue Y; Peprah, Kwakye; Lamango, Nazarius S; Setola, Vincent; Roth, Bryan L; Ablordeppey, Seth Y
2014-09-01
Previous work from our labs has indicated that a tropane analog of haloperidol with potent D2 binding but designed to avoid the formation of MPP(+)-like metabolites, such as 4-(4-chlorophenyl)-1-(4-(4-fluorophenyl)-4-oxobutyl)pyridin-1-ium (BCPP(+)) still produced catalepsy, suggesting a strong role for the D2 receptor in the production of catalepsy in rats, and hence EPS in humans. This study tested the hypothesis that further modifications of the tropane analog to produce compounds with less potent binding to the D2 receptor than haloperidol, would produce less catalepsy. These tests have now revealed that while haloperidol produced maximum catalepsy, these compounds produced moderate to low levels of catalepsy. Compound 9, with the least binding affinity to the D2R, produced the least catalepsy and highest Minimum Adverse Effective Dose (MAED) of the analogs tested regardless of their affinities at other receptors including the 5-HT1AR. These observations support the hypothesis that moderation of the D2 binding of the tropane analogs could reduce catalepsy potential in rats and consequently EPS in man. Published by Elsevier Ltd.
Potent haloperidol derivatives covalently binding to the dopamine D2 receptor.
Schwalbe, Tobias; Kaindl, Jonas; Hübner, Harald; Gmeiner, Peter
2017-10-01
The dopamine D 2 receptor (D 2 R) is a common drug target for the treatment of a variety of neurological disorders including schizophrenia. Structure based design of subtype selective D 2 R antagonists requires high resolution crystal structures of the receptor and pharmacological tools promoting a better understanding of the protein-ligand interactions. Recently, we reported the development of a chemically activated dopamine derivative (FAUC150) designed to covalently bind the L94C mutant of the dopamine D 2 receptor. Using FAUC150 as a template, we elaborated the design and synthesis of irreversible analogs of the potent antipsychotic drug haloperidol forming covalent D 2 R-ligand complexes. The disulfide- and Michael acceptor-functionalized compounds showed significant receptor affinity and an irreversible binding profile in radioligand depletion experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rickli, Anna; Luethi, Dino; Reinisch, Julian; Buchy, Danièle; Hoener, Marius C; Liechti, Matthias E
2015-12-01
N-2-methoxybenzyl-phenethylamines (NBOMe drugs) are newly used psychoactive substances with poorly defined pharmacological properties. The aim of the present study was to characterize the receptor binding profiles of a series of NBOMe drugs compared with their 2,5-dimethoxy-phenethylamine analogs (2C drugs) and lysergic acid diethylamide (LSD) in vitro. We investigated the binding affinities of 2C drugs (2C-B, 2C-C, 2C-D, 2C-E, 2C-H, 2C-I, 2C-N, 2C-P, 2C-T-2, 2C-T-4, 2C-T-7, and mescaline), their NBOMe analogs, and LSD at monoamine receptors and determined functional 5-hydroxytryptamine-2A (5-HT2A) and 5-HT2B receptor activation. Binding at and the inhibition of monoamine uptake transporters were also determined. Human cells that were transfected with the respective human receptors or transporters were used (with the exception of trace amine-associated receptor-1 [TAAR1], in which rat/mouse receptors were used). All of the compounds potently interacted with serotonergic 5-HT2A, 5-HT2B, 5-HT2C receptors and rat TAAR1 (most Ki and EC50: <1 μM). The N-2-methoxybenzyl substitution of 2C drugs increased the binding affinity at serotonergic 5-HT2A, 5-HT2C, adrenergic α1, dopaminergic D1-3, and histaminergic H1 receptors and monoamine transporters but reduced binding to 5-HT1A receptors and TAAR1. As a result, NBOMe drugs were very potent 5-HT2A receptor agonists (EC50: 0.04-0.5 μM) with high 5-HT2A/5-HT1A selectivity and affinity for adrenergic α1 receptors (Ki: 0.3-0.9 μM) and TAAR1 (Ki: 0.06-2.2 μM), similar to LSD, but not dopaminergic D1-3 receptors (most Ki:>1 μM), unlike LSD. The binding profile of NBOMe drugs predicts strong hallucinogenic effects, similar to LSD, but possibly more stimulant properties because of α1 receptor interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Meini, Stefania; Cucchi, Paola; Catalani, Claudio; Bellucci, Francesca; Santicioli, Paolo; Giuliani, Sandro; Maggi, Carlo Alberto
2010-06-10
Several species-related differences have been reported in kinin B(2) receptor pharmacology. The present study aimed to evaluate the affinity of the bradykinin B(2) receptor antagonist MEN16132 for the rabbit and pig B(2) receptor, and radioligand binding experiments using [(3)H]bradykinin and membranes of rabbit and pig ileum smooth muscle were conducted. The [(3)H]bradykinin binding was characterized by homologous displacement curves indicating K(d) values of 0.65 and 0.33nM in rabbit and pig, respectively. The B(2) receptor specificity of [(3)H]bradykinin binding was shown by the low affinity (>microM) displayed by agonists ([desArg(9)]bradykinin and Lys[desArg(9)]bradykinin) and antagonists [Leu(8),desArg(9)]bradykinin and Lys[Leu(8),desArg(9)]bradykinin) selective for the B(1) receptor. The affinity of MEN16132 and other antagonists was determined by inhibition curves (pK(i) values in the rabbit and pig assay, respectively): MEN16132 (10.4 and 10.3) and peptide compounds such as icatibant (10.1 and 9.9) and MEN11270 (10.3 and 10.1) displayed subnanomolar potency in both assays; the nonpeptide LF16-0687 (8.4 and 8.5) and FR173657 (8.2 and 9.1) exhibited a different affinity pattern, whereas WIN64338 displayed low affinity (5.7 and
Joseph, Lauren; Thomsen, Morgane
2017-06-30
Muscarinic M 1 /M 4 receptor stimulation can reduce abuse-related effects of cocaine and may represent avenues for treating cocaine addiction. Muscarinic antagonists can mimic and enhance effects of cocaine, including discriminative stimulus (S D ) effects, but the receptor subtypes mediating those effects are not known. A better understanding of the complex cocaine/muscarinic interactions is needed to evaluate and develop potential muscarinic-based medications. Here, knockout mice lacking M 1 , M 2 , or M 4 receptors (M 1 -/- , M 2 -/- , M 4 -/- ), as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline. Muscarinic receptor antagonists with no subtype selectivity (scopolamine), or preferential affinity at the M 1 , M 2 , or M 4 subtype (telenzepine, trihexyphenidyl; methoctramine, AQ-RA 741; tropicamide) were tested alone and in combination with cocaine. In intact animals, antagonists with high affinity at M 1 /M 4 receptors partially substituted for cocaine and increased the S D effect of cocaine, while M 2 -preferring antagonists did not substitute, and reduced the S D effect of cocaine. The cocaine-like effects of scopolamine were absent in M 1 -/- mice. The cocaine S D attenuating effects of methoctramine were absent in M 2 -/- mice and almost absent in M 1 -/- mice. The findings indicate that the cocaine-like S D effects of muscarinic antagonists are primarily mediated through M 1 receptors, with a minor contribution of M 4 receptors. The data also support our previous findings that stimulation of M 1 receptors and M 4 receptors can each attenuate the S D effect of cocaine, and show that this can also be achieved by blocking M 2 autoreceptors, likely via increased acetylcholine release. Copyright © 2017 Elsevier B.V. All rights reserved.
Challenges in the development of dopamine D2- and D3-selective radiotracers for PET imaging studies.
Mach, Robert H; Luedtke, Robert R
2018-03-01
The dopamine D2-like receptors (ie, D2/3 receptors) have been the most extensively studied CNS receptor with Positron Emission Tomography (PET). The 3 different radiotracers that have been used in these studies are [ 11 C]raclopride, [ 18 F]fallypride, and [ 11 C]PHNO. Because these radiotracers have a high affinity for both dopamine D2 and D3 receptors, the density of dopamine receptors in the CNS is reported as the D2/3 binding potential, which reflects a measure of the density of both receptor subtypes. Although the development of D2- and D3-selective PET radiotracers has been an active area of research for many years, this by and large presents an unmet need in the area of translational PET imaging studies. This article discusses some of the challenges that have inhibited progress in this area of research and the current status of the development of subtype selective radiotracers for imaging D3 and D2 dopamine receptors with PET. Copyright © 2017 John Wiley & Sons, Ltd.
Phasic dopamine release drives rapid activation of striatal D2-receptors
Marcott, Pamela F; Mamaligas, Aphroditi A; Ford, Christopher P
2014-01-01
Summary Striatal dopamine transmission underlies numerous goal-directed behaviors. Medium spiny neurons (MSNs) are a major target of dopamine in the striatum. However, as dopamine does not directly evoke a synaptic event in MSNs, the time course of dopamine signaling in these cells remains unclear. To examine how dopamine release activates D2-receptors on MSNs, G-protein activated inwardly rectifying potassium (GIRK2; Kir 3.2) channels were virally overexpressed in the striatum and the resulting outward currents were used as a sensor of D2-receptor activation. Electrical and optogenetic stimulation of dopamine terminals evoked robust D2-receptor inhibitory post-synaptic currents (IPSCs) in GIRK2-expressing MSNs that occurred in under a second. Evoked D2-IPSCs could be driven by repetitive stimulation and were not occluded by background dopamine tone. Together, the results indicate that D2-receptors on MSNs exhibit functional low affinity and suggest that striatal D2-receptors can encode both tonic and phasic dopamine signals. PMID:25242218
Schwanstecher, Christina; Meyer, Miriam; Schwanstecher, Mathias; Panten, Uwe
1998-01-01
The structure activity relationships for the insulin secretagogues N-benzoyl-D-phenylalanine (NBDP) and related compounds were examined at the sulphonylurea receptor level by use of cultured HIT-T15 and mouse pancreatic β-cells. The affinities of these compounds for the sulphonylurea receptor were compared with their potencies for KATP-channel inhibition. In addition, the effects of cytosolic nucleotides on KATP-channel inhibition by NBDP were investigated.NBDP displayed a dissociation constant for binding to the sulphonylurea receptor (KD value) of 11 μM and half-maximally effective concentrations of KATP-channel inhibition (EC50 values) between 2 and 4 μM (in the absence of cytosolic nucleotides or presence of 0.1 mM GDP or 1 mM ADP).In the absence of cytosolic nucleotides or presence of GDP (0.1 mM) maximally effective concentrations of NBDP (0.1–1 mM) reduced KATP-channel activity to 47% and 44% of control, respectively. In the presence of ADP (1 mM), KATP-channel activity was completely suppressed by 0.1 mM NBDP.The L-isomer of N-benzoyl-phenylalanine displayed a 20 fold lower affinity and an 80 fold lower potency than the D-isomer.Introduction of a p-nitro substituent in the D-phenylalanine moiety of NBDP did not decrease lipophilicity but lowered affinity and potency by more than 30 fold.Introduction of a p-amino substituent in the D-phenylalanine moiety of NBDP (N-benzoyl-p-amino-D-phenylalanine, NBADP) reduced lipophilicity and lowered affinity and potency by about 10 fold. This loss of affinity and potency was compensated for by formation of the phenylpropionic acid derivative of NBADP. A similar difference in affinity was observed for the sulphonylurea carbutamide and its phenylpropionic acid derivative.Replacing the benzene ring in the D-phenylalanine moiety of NBDP by a cyclohexyl ring increased lipophilicity, and the KD and EC50 values were slightly lower than for NBDP. Exchange of both benzene rings in NBDP by cyclohexyl rings further increased lipophilicity without altering affinity and potency.This study shows that N-acylphenylalanines interact with the sulphonylurea receptor of pancreatic β-cells in a stereospecific manner. Their potency depends on lipophilic but not aromatic properties of their benzene rings. As observed for sulphonylureas, interaction of N-acylphenylalanines with the sulphonylurea receptor does not induce complete inhibition of KATP-channel activity in the absence of inhibitory cytosolic nucleotides. PMID:9559882
Kinin receptor classification.
Regoli, D; Jukic, D; Tousignant, C; Rhaleb, N E
1992-01-01
Apparent affinities of kinin agonists and antagonists were determined in terms of pD2 and pA2 respectively, on three isolated smooth muscles: rabbit jugular vein (Rb.J.V.), rabbit aorta (Rb.A.) and guinea pig ileum (G.P.I.). Both kinin agonists and antagonists were evaluated for their ability to induce the release of histamine from rat mastocytes. Our results indicate that the kininase I metabolites (desArg9-BK and desArg10-KD) were inactive on Rb.J.V. and G.P.I. (B2 preparations) and were full agonists on Rb.A. (B1) while [Tyr(Me)8]-BK and [Hyp3,Tyr(Me)8]-BK were inactive on Rb.A. and maintain a high affinity on Rb.J.V. and G.P.I. In addition, [Hyp3]-BK was a potent agonist on Rb.J.V. (pD2 = 8.88) and was of a moderate affinity on G.P.I. (pD2 = 7.27). On the other hand, the affinity of [Aib7]-BK was identical to that of BK on G.P.I. (pD2 = 7.90) but drastically reduced in Rb.J.V. (pD2 = 6.28). Conctractile effects of kinins in the Rb.J.V. and G.P.I. were reduced or eliminated by B2 receptor antagonists but at different concentration levels (e.g. DArg[Hyp3,DPhe7,Leu8]-BK showed pA2 values of 8.86 on Rb.J.V., but only 6.77 on G.P.I. DArg[Hyp3,Gly6,Leu8]BK showed high affinity on Rb.J.V. (pA2 = 7.60) but was a full agonist on G.P.I. Conversely, DArg[Tyr3,DPhe7,Leu8,BK] showed high agonistic activity on Rb.J.V. (pD2 = 8.30, alpha E = 1.0) and showed a pA2 value of 6.80 on G.P.I. All compounds (agonists and antagonists) were quite potent on histamine release induced in rat mastocytes. [Arg1(Tos),Hyp3,Thi5,DTic7,Oic8]-BK and DArg[Hyp3,Thi5,DTic7,Oic8]-BK showed almost similar pA2 values on both Rb.J.V. and G.P.I., but were inactive on Rb.A. (B1). These results suggest that kinins act on at least four functional sites: B1 (Rb.A.), B2A (Rb.J.V.), B2B (G.P.I.) and BH. However, there is no clear evidence of a kinin receptor on rat mast cells and the release of histamine may simply be a non-receptor phenomenon. Our data also show that B2A and B2B receptor subtypes might simply be variations of the B2 receptor in different species.
Altered coupling of muscarinic acetylcholine receptors in pancreatic acinar carcinoma of rat
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chien, J.L.; Warren, J.R.
The structure and function of muscarinic acetylcholine receptors (mAChR) in acinar carcinoma cells have been compared to mAChR in normal pancreatic acinar cells. Similar 80 kD proteins identified by SDS-PAGE of tumor and normal mAChR affinity-labeled with the muscarinic antagonist /sup 3/H-propylbenzilyl-choline mustards, and identical binding of the antagonist N-methylscopolamine to tumor and normal cells (K/sub D/approx.4x10/sup -10/ M), indicate conservation of mAChR proteins in carcinoma cells. Carcinoma mAChR display homogeneous binding of the agonists carbamylcholine (CCh), K/sub D/approx.3x10/sup -5/ M, and oxotremorine (Oxo), K/sub D/approx.x10/sup -6/ M, whereas normal cells display heterogeneous binding, with a minor component of highmore » affinity interactions for CCh, K/sub D/approx.3x10/sup -6/ M, and Oxo, K/sub D/approx.2x/sup -17/ M, and a major component of low affinity interactions for CCh, K/sub D/approx.1x10/sup -4/ M, and Oxo, K/sub D/approx.2x10/sup -5/ M. Both carcinoma and normal cells exhibit concentration-dependent CCh-stimulated increase in cytosolic free Ca/sup 2 +/, as measured by intracellular Quin 2 fluorescence and /sup 45/Ca/sup 2 +/ efflux. However, carcinoma cells demonstrate 50% maximal stimulation of intracellular Ca/sup 2 +/ release at a CCh concentration (EC/sub 50/approx.6x10/sup -7/ M) one log below that observed for normal cells. The authors propose an altered coupling of mAChR to intracellular Ca/sup 2 +/ homeostasis in carcinoma cells, which is manifest as a single activated receptor state for agonist binding, and increased sensitivity to muscarinic receptor stimulation of Ca/sup 2 +/ release.« less
Yadav, Rakesh; Bansal, Ranju; Rohilla, Suman; Kachler, Sonja; Klotz, Karl-Norbert
2016-04-01
The carboxylate amides of 8-phenyl-1,3-dimethylxanthine described herein represent a new series of selective ligands of the adenosine A2A receptors exhibiting bronchospasmolytic activity. The effects of location of 8-phenyl substitutions on the adenosine receptor (AR) binding affinities of the newly synthesized xanthines have also been studied. The compounds displayed moderate to potent binding affinities toward various adenosine receptor subtypes when evaluated through radioligand binding studies. However, most of the compounds showed the maximum affinity for the A2A subtype, some with high selectivity versus all other subtypes. Xanthine carboxylate amide 13b with a diethylaminoethylamino moiety at the para-position of the 8-phenylxanthine scaffold was identified as the most potent A2A adenosine receptor ligand with Ki=0.06μM. Similarly potent and highly A2A-selective are the isovanillin derivatives 16a and 16d. In addition, the newly synthesized xanthine derivatives showed good in vivo bronchospasmolytic activity when tested in guinea pigs. Copyright © 2016 Elsevier Inc. All rights reserved.
Malik, Maninder; Rangel-Barajas, Claudia; Sumien, Nathalie; Su, Chang; Singh, Meharvan; Chen, Zhenglan; Huang, Ren-Qi; Meunier, Johann; Maurice, Tangui; Mach, Robert H; Luedtke, Robert R
2015-01-01
Background and Purpose Cognitive deficits in patients with Alzheimer's disease, Parkinson's disease, traumatic brain injury and stroke often involve alterations in cholinergic signalling. Currently available therapeutic drugs provide only symptomatic relief. Therefore, novel therapeutic strategies are needed to retard and/or arrest the progressive loss of memory. Experimental Approach Scopolamine-induced memory impairment provides a rapid and reversible phenotypic screening paradigm for cognition enhancement drug discovery. Male C57BL/6J mice given scopolamine (1 mg·kg−1) were used to evaluate the ability of LS-1–137, a novel sigma (σ1) receptor-selective agonist, to improve the cognitive deficits associated with muscarinic antagonist administration. Key Results LS-1–137 is a high-affinity (Ki = 3.2 nM) σ1 receptor agonist that is 80-fold selective for σ1, compared with σ2 receptors. LS-1–137 binds with low affinity at D2-like (D2, D3 and D4) dopamine and muscarinic receptors. LS-1–137 was found to partially reverse the learning deficits associated with scopolamine administration using a water maze test and an active avoidance task. LS-1–137 treatment was also found to trigger the release of brain-derived neurotrophic factor from rat astrocytes. Conclusions and Implications The σ1 receptor-selective compound LS-1–137 may represent a novel candidate cognitive enhancer for the treatment of muscarinic receptor-dependent cognitive deficits. PMID:25573298
Schindler, Emmanuelle A D; Dave, Kuldip D; Smolock, Elaine M; Aloyo, Vincent J; Harvey, John A
2012-03-01
After decades of social stigma, hallucinogens have reappeared in the clinical literature demonstrating unique benefits in medicine. The precise behavioral pharmacology of these compounds remains unclear, however. Two commonly studied hallucinogens, (±)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and lysergic acid diethylamide (LSD), were investigated both in vivo and in vitro to determine the pharmacology of their behavioral effects in an animal model. Rabbits were administered DOI or LSD and observed for head bob behavior after chronic drug treatment or after pretreatment with antagonist ligands. The receptor binding characteristics of DOI and LSD were studied in vitro in frontocortical homogenates from naïve rabbits or ex vivo in animals receiving an acute drug injection. Both DOI- and LSD-elicited head bobs required serotonin(2A) (5-HT(2A)) and dopamine(1) (D(1)) receptor activation. Serotonin(2B/2C) receptors were not implicated in these behaviors. In vitro studies demonstrated that LSD and the 5-HT(2A/2C) receptor antagonist, ritanserin, bound frontocortical 5-HT(2A) receptors in a pseudo-irreversible manner. In contrast, DOI and the 5-HT(2A/2C) receptor antagonist, ketanserin, bound reversibly. These binding properties were reflected in ex vivo binding studies. The two hallucinogens also differed in that LSD showed modest D(1) receptor binding affinity whereas DOI had negligible binding affinity at this receptor. Although DOI and LSD differed in their receptor binding properties, activation of 5-HT(2A) and D(1) receptors was a common mechanism for eliciting head bob behavior. These findings implicate these two receptors in the mechanism of action of hallucinogens. Copyright © 2011 Elsevier Inc. All rights reserved.
2017-01-01
18F-Labeled building blocks from the type of [18F]fluorophenylazocarboxylic-tert-butyl esters offer a rapid, mild, and reliable method for the 18F-fluoroarylation of biomolecules. Two series of azocarboxamides were synthesized as potential radioligands for dopamine D3 and the μ-opioid receptor, revealing compounds 3d and 3e with single-digit and sub-nanomolar affinity for the D3 receptor and compound 4c with only micromolar affinity for the μ-opioid receptor, but enhanced selectivity for the μ-subtype in comparison to the lead compound AH-7921. A “minimalist procedure” without the use of a cryptand and base for the preparation of 4-[18F]fluorophenylazocarboxylic-tert-butyl ester [18F]2a was established, together with the radiosynthesis of methyl-, methoxy-, and phenyl-substituted derivatives ([18F]2b–f). With the substituted [18F]fluorophenylazocarbylates in hand, two prototype azocarboxylates radioligands were synthesized by 18F-fluoroarylation, namely the methoxy azocarboxamide [18F]3d as the D3 receptor radioligand and [18F]4a as a prototype structure of the μ-opioid receptor radioligand. By introducing the new series of [18F]fluorophenylazocarboxylic-tert-butyl esters, the method of 18F-fluoroarylation was significantly expanded, thereby demonstrating the versatility of 18F-labeled phenylazocarboxylates for the design of potential radiotracers for positron emission tomography . PMID:29479577
Attia, Mohamed I; Güclü, Deniz; Hertlein, Barbara; Julius, Justin; Witt-Enderby, Paula A; Zlotos, Darius P
2007-07-07
A structure for the self-condensation product of 2-(1H-indol-2-yl)ethyl tosylate 2a, previously proposed as 6,7,14,15-tetrahydro-15aH-azocino[1,2-a:6,5-b]diindole 3a, was revised based on the (13)C-2D-INADEQUATE experiment, and proved to be 7,7a,13,14-tetrahydro-6H-cyclobuta[b]pyrimido[1,2-a:3,4-a']diindole 4a. A mechanism for the unexpected formation of this novel hexacyclic heterocycle was proposed and its NMR solution structure was elucidated. Five derivatives of the title ring skeleton 12-16 designed as melatonin receptor ligands were synthesized and their affinities for the human MT(1) and MT(2) receptors were determined. Both butyramides 13 and 15, as well as the non-methoxy acetamide 12 exhibited micromolar binding affinities for both receptors being slightly MT(2) selective. The methoxy acetamide 14 showed the best pharmacological profile exhibiting a five times higher affinity for MT(1) (K(i) = 49 nM) than for MT(2) (K(i) = 246 nM) receptor.
Paulke, Alexander; Kremer, Christian; Wunder, Cora; Achenbach, Janosch; Djahanschiri, Bardya; Elias, Anderson; Schwed, J Stefan; Hübner, Harald; Gmeiner, Peter; Proschak, Ewgenij; Toennes, Stefan W; Stark, Holger
2013-07-09
The convolvulacea Argyreia nervosa (Burm. f.) is well known as an important medical plant in the traditional Ayurvedic system of medicine and it is used in numerous diseases (e.g. nervousness, bronchitis, tuberculosis, arthritis, and diabetes). Additionally, in the Indian state of Assam and in other regions Argyreia nervosa is part of the traditional tribal medicine (e.g. the Santali people, the Lodhas, and others). In the western hemisphere, Argyreia nervosa has been brought in attention as so called "legal high". In this context, the seeds are used as source of the psychoactive ergotalkaloid lysergic acid amide (LSA), which is considered as the main active ingredient. As the chemical structure of LSA is very similar to that of lysergic acid diethylamide (LSD), the seeds of Argyreia nervosa (Burm. f.) are often considered as natural substitute of LSD. In the present study, LSA and LSD have been compared concerning their potential pharmacological profiles based on the receptor binding affinities since our recent human study with four volunteers on p.o. application of Argyreia nervosa seeds has led to some ambiguous effects. In an initial step computer-aided in silico prediction models on receptor binding were employed to screen for serotonin, norepinephrine, dopamine, muscarine, and histamine receptor subtypes as potential targets for LSA. In addition, this screening was extended to accompany ergotalkaloids of Argyreia nervosa (Burm. f.). In a verification step, selected LSA screening results were confirmed by in vitro binding assays with some extensions to LSD. In the in silico model LSA exhibited the highest affinity with a pKi of about 8.0 at α1A, and α1B. Clear affinity with pKi>7 was predicted for 5-HT1A, 5-HT1B, 5-HT1D, 5-HT6, 5-HT7, and D2. From these receptors the 5-HT1D subtype exhibited the highest pKi with 7.98 in the prediction model. From the other ergotalkaloids, agroclavine and festuclavine also seemed to be highly affine to the 5-HT1D-receptor with pKi>8. In general, the ergotalkaloids of Argyreia nervosa seem to prefer serotonin and dopamine receptors (pKi>7). However, with exception of ergometrine/ergometrinine only for 5-HT3A, and histamine H2 and H4 no affinities were predicted. Compared to LSD, LSA exhibited lower binding affinities in the in vitro binding assays for all tested receptor subtypes. However, with a pKi of 7.99, 7.56, and 7.21 a clear affinity for 5-HT1A, 5-HT2, and α2 could be demonstrated. For DA receptor subtypes and the α1-receptor the pKi ranged from 6.05 to 6.85. Since the psychedelic activity of LSA in the recent human study was weak and although LSA from Argyreia nervosa is often considered as natural exchange for LSD, LSA should not be regarded as LSD-like psychedelic drug. However, vegetative side effects and psychotropic effects may be triggered by serotonin or dopamine receptor subtypes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
De Wachter, Rien; de Graaf, Chris; Keresztes, Atilla; Vandormael, Bart; Ballet, Steven; Tóth, Géza; Rognan, Didier; Tourwé, Dirk
2011-10-13
The Phe(3) residue of the N-terminal tetrapeptide of dermorphin (H-Dmt-d-Ala-Phe-Gly-NH(2)) was conformationally constrained using 4- or 5-methyl-substituted 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one (Aba) stereoisomeric scaffolds. Several of the synthesized peptides were determined to be high affinity agonists for the μ opioid receptor (OPRM) with selectivity over the δ opioid receptor (OPRD). Interesting effects of the Aba configuration on ligand binding affinity were observed. H-Dmt-d-Ala-erythro-(4S,5S)-5-Me-Aba-Gly-NH(2)9 and H-Dmt-threo-(4R,5S)-5-Me-Aba-Gly-NH(2)12 exhibited subnanomolar affinity for OPRM, while they possess an opposite absolute configuration at position 4 of the Aba ring. However, in the 4-methyl substituted analogues, H-Dmt-d-Ala-(4R)-Me-Aba-Gly-NH(2)14 was significantly more potent than the (4S)-derivative 13. These unexpected results were rationalized using the binding poses predicted by molecular docking simulations. Interestingly, H-Dmt-d-Ala-(4R)-Me-Aba-Gly-NH(2)14 is proposed to bind in a different mode compared with the other analogues. Moreover, in contrast to Ac-4-Me-Aba-NH-Me, which adopts a β-turn in solution and in the crystal structure, the binding mode of this analogue suggests an alternative receptor-bound conformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiberi, M.; Magnan, J.
The binding characteristics of selective and nonselective opioids have been studied in whole guinea pig spinal cord, using a computer fitting method to analyze the data obtained from saturation and competition studies. The delineation of specific binding sites labeled by the mu-selective opioid (3H)D-Ala2,MePhe4,Gly-ol5-enkephalin (Kd = 2.58 nM, R = 4.52 pmol/g of tissue) and by the delta-selective opioid (3H)D-Pen2, D-Pen5-enkephalin (Kd = 2.02 nM, R = 1.47 pmol/g of tissue) suggests the presence of mu and delta-receptors in the spinal cord tissue. The presence of kappa receptors was probed by the kappa-selective opioid (3H)U69593 (Kd = 3.31 nM, Rmore » = 2.00 pmol/g of tissue). The pharmacological characterization of the sites labeled by (3H)U69593 confirms the assumption that this ligand discriminates kappa receptors in guinea pig spinal cord. The benzomorphan (3H)ethylketazocine labels a population of receptors with one homogeneous affinity state (Kd = 0.65 nM, R = 7.39 pmol/g of tissue). The total binding capacity of this ligand was not different from the sum of the binding capacities of mu, delta-, and kappa-selective ligands. Under mu- and delta-suppressed conditions, (3H)ethylketazocine still binds to receptors with one homogeneous affinity state (Kd = 0.45 nM, R = 1.69 pmol/g of tissue). Competition studies performed against the binding of (3H)ethylketazocine under these experimental conditions reveal that the pharmacological profile of the radiolabeled receptors is similar to the profile of the kappa receptors labeled with (3H)U69593. Saturation studies using the nonselective opioid (3H)bremazocine demonstrate that this ligand binds to spinal cord membranes with heterogeneous affinities (Kd1 = 0.28 nM, R1 = 7.91 pmol/g of tissue; Kd2 = 3.24 nM, R2 = 11.2 pmol/g of tissue).« less
Analogues of luteinizing hormone-releasing hormone containing cytotoxic groups.
Janáky, T; Juhász, A; Bajusz, S; Csernus, V; Srkalovic, G; Bokser, L; Milovanovic, S; Redding, T W; Rékási, Z; Nagy, A
1992-02-01
In an attempt to produce better cytotoxic analogues, chemotherapeutic antineoplastic radicals including an alkylating nitrogen mustard derivative of D-phenylalanine (D-melphalan), reactive cyclopropane, anthraquinone derivatives [2-(hydroxymethyl)anthraquinone and the anticancer antibiotic doxorubicin], and an antimetabolite (methotrexate) were coupled to suitably modified agonists and antagonists of luteinizing hormone-releasing hormone (LH-RH). Analogues with D-lysine6 and D-ornithine6 or N epsilon-(2,3-diaminopropionyl)-D-lysine and N delta-(2,3-diaminopropionyl)-D-ornithine were used as carriers for one or two cytotoxic moieties. The enhanced biological activities produced by the incorporation of D amino acids into position 6 of the agonistic analogues were further increased by the attachment of hydrophobic cytotoxic groups, resulting in compounds with 10-50 times higher activity than LH-RH. Most of the monosubstituted agonistic analogues showed high affinities for the membrane receptors of human breast cancer cells, while the receptor binding affinities of peptides containing two cytotoxic side chains were lower. Antagonistic carriers [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Trp3,Arg5,D-Lys6,D-Ala10] LH-RH [where Nal(2) is 3-(2-naphthyl)alanine], [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Trp3,Arg5,N epsilon-(2,3-diaminopropionyl)-D-Lys6,D-Ala10]LH-RH, and their D-Pal(3)3 homologs [Pal(3) is 3-(3-pyridyl)alanine] as well as [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Pal(3)3,Tyr5,N epsilon-(2,3-diamino-propionyl)-D-Lys6,D-Ala10]LH-RH were linked to cytotoxic compounds. The hybrid molecules inhibited ovulation in rats at doses of 10 micrograms and suppressed LH release in vitro. The receptor binding of cytotoxic analogues was decreased compared to the precursor peptides, although analogues with 2-(hydroxymethyl)anthraquinone hemiglutarate had high affinities. All of the cytotoxic analogues tested inhibited [3H]thymidine incorporation into DNA in cultures of human breast and prostate cancer cell lines. Some cytotoxic analogues also significantly suppressed the growth of mammary and prostate cancers in vivo in animal models.
Analogues of luteinizing hormone-releasing hormone containing cytotoxic groups.
Janáky, T; Juhász, A; Bajusz, S; Csernus, V; Srkalovic, G; Bokser, L; Milovanovic, S; Redding, T W; Rékási, Z; Nagy, A
1992-01-01
In an attempt to produce better cytotoxic analogues, chemotherapeutic antineoplastic radicals including an alkylating nitrogen mustard derivative of D-phenylalanine (D-melphalan), reactive cyclopropane, anthraquinone derivatives [2-(hydroxymethyl)anthraquinone and the anticancer antibiotic doxorubicin], and an antimetabolite (methotrexate) were coupled to suitably modified agonists and antagonists of luteinizing hormone-releasing hormone (LH-RH). Analogues with D-lysine6 and D-ornithine6 or N epsilon-(2,3-diaminopropionyl)-D-lysine and N delta-(2,3-diaminopropionyl)-D-ornithine were used as carriers for one or two cytotoxic moieties. The enhanced biological activities produced by the incorporation of D amino acids into position 6 of the agonistic analogues were further increased by the attachment of hydrophobic cytotoxic groups, resulting in compounds with 10-50 times higher activity than LH-RH. Most of the monosubstituted agonistic analogues showed high affinities for the membrane receptors of human breast cancer cells, while the receptor binding affinities of peptides containing two cytotoxic side chains were lower. Antagonistic carriers [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Trp3,Arg5,D-Lys6,D-Ala10] LH-RH [where Nal(2) is 3-(2-naphthyl)alanine], [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Trp3,Arg5,N epsilon-(2,3-diaminopropionyl)-D-Lys6,D-Ala10]LH-RH, and their D-Pal(3)3 homologs [Pal(3) is 3-(3-pyridyl)alanine] as well as [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Pal(3)3,Tyr5,N epsilon-(2,3-diamino-propionyl)-D-Lys6,D-Ala10]LH-RH were linked to cytotoxic compounds. The hybrid molecules inhibited ovulation in rats at doses of 10 micrograms and suppressed LH release in vitro. The receptor binding of cytotoxic analogues was decreased compared to the precursor peptides, although analogues with 2-(hydroxymethyl)anthraquinone hemiglutarate had high affinities. All of the cytotoxic analogues tested inhibited [3H]thymidine incorporation into DNA in cultures of human breast and prostate cancer cell lines. Some cytotoxic analogues also significantly suppressed the growth of mammary and prostate cancers in vivo in animal models. PMID:1310542
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, J.
1986-01-01
Transient elevations in murine secondary palatal adenosine 3',5'-monophosphate (cAMP) levels occur during palate ontogeny. Since palatal processes exposed to dibutyryl cAMP differentiate precociously, increases in palatal cAMP levels are of interest. Prostaglandin E/sub 2/ (PGE/sub 2/), which is synthesized by murine embryonic palate mesenchyme cells (MEPM), regulates cAMP levels in adult tissues via specific membrane bound receptors coupled to adenylate cyclase. Therefore, a PGE/sub 2/ receptor-adenylate cyclase systems was proposed in the developing murine secondary palate. Utilizing a radioligand binding assay, it was determined that murine palatal tissue on day 13 of gestation contained PGE/sub 2/ receptors that were saturable,more » of high affinity and low capacity. Specific (/sup 3/H)-PGE/sub 2/ binding was reversible by 30 min. The order of prostanoid binding affinity at specific PGE/sub 2/ binding sites was E/sub 2/ > F/sub 2//sub ..cap alpha../ > A/sub 2/ > E/sub 1/ = D/sub 2/ indicating specificity of the receptor for PGE/sub 2/. The ability of MEPM cells to respond to PGE/sub 2/ with dose-dependent accumulations of intracellular cAMP demonstrated the functional nature of these binding sites. Analysis of palatal PGE/sub 2/ receptor characteristics on days 12 and 14 of palate development indicated temporal alterations in receptor affinity and density during palate ontogeny.« less
Einsiedel, Jürgen; Weber, Klaus; Thomas, Christoph; Lehmann, Thomas; Hübner, Harald; Gmeiner, Peter
2003-10-06
Employing the achiral 4-aminopiperidine derivative clebopride as a lead compound, chiral analogues were developed displaying dopamine receptor binding profiles that proved to be strongly dependent on the stereochemistry. Compared to the D1 receptor, the test compounds showed high selectivity for the D2-like subtypes including D2(long), D2(short), D3 and D4. The highest D4 and D3 affinities were observed for the cis-3-amino-4-methylpyrrolidines 3e and the enantiomer ent3e resulting in K(i) values of 0.23 and 1.8 nM, respectively. The benzamides of type 3 and 5 were synthesized in enantiopure form starting from (S)-aspartic acid and its unnatural optical antipode.
Kuzhikandathil, Eldo V; Bartoszyk, Gerd D
2006-09-01
Sarizotan (EMD 128130) is a chromane derivative that exhibits affinity at serotonin and dopamine receptors. Sarizotan effectively suppresses levodopa-induced dyskinesia in primate and rodent models of Parkinson's disease, and tardive dyskinesia in a rodent model. Results from clinical trials suggest that sarizotan significantly alleviates levodopa-induced dyskinesia. The functional effects of sarizotan on individual dopamine receptor subtypes are not known. Here we report the functional effects of sarizotan on human D2-like dopamine receptors (D2S, D2L, D3, D4.2 and D4.4) individually expressed in the AtT-20 neuroendocrine cell line. Using the coupling of D2-like dopamine receptors to G-protein coupled inward rectifier potassium channels we determined that sarizotan is a full agonist at D3 and D4.4 receptors (EC50=5.6 and 5.4 nM, respectively) but a partial agonist at D2S, D2L and D4.2 receptors (EC50=29, 23 and 4.5 nM, respectively). Consistent with its partial agonist property, sarizotan is an antagonist at D2S and D2L receptors (IC50=52 and 121 nM, respectively). Using the coupling of D2-like dopamine receptors to adenylyl cyclase we determined that sarizotan is a full agonist at D2L, D3, D4.2 and D4.4 receptors (EC50=0.51, 0.47, 0.48 and 0.23 nM, respectively) but a partial agonist at D2S receptors (EC50=0.6 nM).
Pintsuk, Julia; Borroto-Escuela, Dasiel O; Pomierny, Bartosz; Wydra, Karolina; Zaniewska, Magdalena; Filip, Malgorzata; Fuxe, Kjell
2016-05-01
In the current study behavioral and biochemical experiments were performed to study changes in the allosteric A2AR-D2R interactions in the ventral and dorsal striatum after cocaine self-administration versus corresponding yoked saline control. By using ex vivo [(3)H]-raclopride/quinpirole competition experiments, the effects of the A2AR agonist CGS 21680 (100 nM) on the KiH and KiL values of the D2-like receptor (D2-likeR) were determined. One major result was a significant reduction in the D2-likeR agonist high affinity state observed with CGS 21680 after cocaine self-administration in the ventral striatum compared with the yoked saline group. The results therefore support the hypothesis that A2AR agonists can at least in part counteract the motivational actions of cocaine. This action is mediated via the D2-likeR by targeting the A2AR protomer of A2AR-D2-like R heteroreceptor complexes in the ventral striatum, which leads to the reduction of D2-likeR protomer recognition through the allosteric receptor-receptor interaction. In contrast, in the dorsal striatum the CGS 21680-induced antagonistic modulation in the D2-likeR agonist high affinity state was abolished after cocaine self-administration versus the yoked saline group probably due to a local dysfunction/disruption of the A2AR-D2-like R heteroreceptor complexes. Such a change in the dorsal striatum in cocaine self-administration can contribute to the development of either locomotor sensitization, habit-forming learning and/or the compulsive drug seeking by enhanced D2-likeR protomer signaling. Potential differences in the composition and stoichiometry of the A2AR-D2R heteroreceptor complexes, including differential recruitment of sigma 1 receptor, in the ventral and dorsal striatum may explain the differential regional changes observed in the A2A-D2-likeR interactions after cocaine self-administration. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sippl, Wolfgang
2000-08-01
One of the major challenges in computational approaches to drug design is the accurate prediction of binding affinity of biomolecules. In the present study several prediction methods for a published set of estrogen receptor ligands are investigated and compared. The binding modes of 30 ligands were determined using the docking program AutoDock and were compared with available X-ray structures of estrogen receptor-ligand complexes. On the basis of the docking results an interaction energy-based model, which uses the information of the whole ligand-receptor complex, was generated. Several parameters were modified in order to analyze their influence onto the correlation between binding affinities and calculated ligand-receptor interaction energies. The highest correlation coefficient ( r 2 = 0.617, q 2 LOO = 0.570) was obtained considering protein flexibility during the interaction energy evaluation. The second prediction method uses a combination of receptor-based and 3D quantitative structure-activity relationships (3D QSAR) methods. The ligand alignment obtained from the docking simulations was taken as basis for a comparative field analysis applying the GRID/GOLPE program. Using the interaction field derived with a water probe and applying the smart region definition (SRD) variable selection, a significant and robust model was obtained ( r 2 = 0.991, q 2 LOO = 0.921). The predictive ability of the established model was further evaluated by using a test set of six additional compounds. The comparison with the generated interaction energy-based model and with a traditional CoMFA model obtained using a ligand-based alignment ( r 2 = 0.951, q 2 LOO = 0.796) indicates that the combination of receptor-based and 3D QSAR methods is able to improve the quality of the underlying model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benyhe, S.; Varga, E.; Hepp, J.
1990-09-01
The distribution and properties of frog brain kappa-opioid receptor subtypes differ not only from those of the guinea pig brain, but also from that of the rat brain. In guinea pig cerebellum the kappa 1 is the dominant receptor subtype, frog brain contains mainly the kappa 2 subtype, and the distribution of the rat brain subtypes is intermediate between the two others. In competition experiments it has been established that ethylketocyclazocine and N-cyclopropylmethyl-norazidomorphine, which are nonselective kappa-ligands, have relatively high affinities to frog brain membranes. The kappa 2 ligands (Met5)enkephalin-Arg6-Phe7 and etorphine also show high affinities to the frog brain.more » Kappa 1 binding sites measured in the presence of 5 microM/D-Ala2-Leu5/enkephalin represent 25-30% of (3H)ethylketocyclazocine binding in frog brain membranes. The kappa 2 subtype in frog brain resembles more to the mu subtype than the delta subtype of opioid receptors, but it differs from the mu subtype in displaying low affinity toward beta-endorphin and /D-Ala2-(Me)Phe4-Gly5-ol/enkephalin (DAGO). From our data it is evident that the opioid receptor subtypes are already present in the amphibian brain but the differences among them are less pronounced than in mammalian brain.« less
Hasbi, Ahmed; Perreault, Melissa L; Shen, Maurice Y F; Zhang, Lucia; To, Ryan; Fan, Theresa; Nguyen, Tuan; Ji, Xiaodong; O'Dowd, Brian F; George, Susan R
2014-11-01
Although the dopamine D1-D2 receptor heteromer has emerging physiological relevance and a postulated role in different neuropsychiatric disorders, such as drug addiction, depression, and schizophrenia, there is a need for pharmacological tools that selectively target such receptor complexes in order to analyze their biological and pathophysiological functions. Since no selective antagonists for the D1-D2 heteromer are available, serial deletions and point mutations were used to precisely identify the amino acids involved in an interaction interface between the receptors, residing within the carboxyl tail of the D1 receptor that interacted with the D2 receptor to form the D1-D2 receptor heteromer. It was determined that D1 receptor carboxyl tail residues (404)Glu and (405)Glu were critical in mediating the interaction with the D2 receptor. Isolated mutation of these residues in the D1 receptor resulted in the loss of agonist activation of the calcium signaling pathway mediated through the D1-D2 receptor heteromer. The physical interaction between the D1 and D2 receptor could be disrupted, as shown by coimmunoprecipitation and BRET analysis, by a small peptide generated from the D1 receptor sequence that contained these amino acids, leading to a switch in G-protein affinities and loss of calcium signaling, resulting in the inhibition of D1-D2 heteromer function. The use of the D1-D2 heteromer-disrupting peptide in vivo revealed a pathophysiological role for the D1-D2 heteromer in the modulation of behavioral despair. This peptide may represent a novel pharmacological tool with potential therapeutic benefits in depression treatment. © FASEB.
Human IgG1 antibodies antagonizing activating receptor NKG2D on natural killer cells
Steigerwald, Jutta; Raum, Tobias; Pflanz, Stefan; Cierpka, Ronny; Mangold, Susanne; Rau, Doris; Hoffmann, Patrick; Kvesic, Majk; Zube, Christina; Linnerbauer, Stefanie; Lumsden, John; Sriskandarajah, Mirnaalini; Kufer, Peter; Baeuerle, Patrick A
2009-01-01
NKG2D is a surface receptor expressed on NK cells but also on CD8+ T cells, γδ T cells, and auto-reactive CD4+/CD28− T cells of patients with rheumatoid arthritis. Various studies suggested that NKG2D plays a critical role in autoimmune diseases, e.g., in diabetes, celiac disease and rheumatoid arthritis (RA), rendering the activating receptor a potential target for antibody-based therapies. Here, we describe the generation and characteristics of a panel of human, high-affinity anti-NKG2D IgG1 monoclonal antibodies (mAbs) derived by phage display. The lead molecule mAb E4 bound with an affinity (KD) of 2.7 ± 1.4 × 10−11 M to soluble and membrane-bound human NKG2D, and cross-reacted with NKG2D from cynomolgus macaque, indicating potential suitability for studies in a relevant primate model. MAb E4 potently antagonized the cytolytic activity of NKL cells against BaF/3-MICA cells expressing NKG2D ligand, and blocked the NKG2D ligand-induced secretion of TNFα, IFNγ and GM-CSF, as well as surface expression of CRTAM by NK cells cultured on immobilized MICA or ULBP-1 ligands. The antibody did not show a detectable loss of binding to NKG2D after seven days in human serum at 37°C, and resisted thermal inactivation up to 70°C. Based on these results, anti-human NKG2D mAb E4 provides an ideal candidate for development of a novel therapeutic agent antagonizing a key receptor of NK and cytotoxic T cells with implications in autoimmune diseases. PMID:20061825
Ramasamy, Seetha; Chin, Sek Peng; Sukumaran, Sri Devi; Buckle, Michael James Christopher; Kiew, Lik Voon; Chung, Lip Yong
2015-01-01
Bacopa monnieri has been used in Ayurvedic medicine to improve memory and cognition. The active constituent responsible for its pharmacological effects is bacoside A, a mixture of dammarane-type triterpenoid saponins containing sugar chains linked to a steroid aglycone skeleton. Triterpenoid saponins have been reported to be transformed in vivo to metabolites that give better biological activity and pharmacokinetic characteristics. Thus, the activities of the parent compounds (bacosides), aglycones (jujubogenin and pseudojujubogenin) and their derivatives (ebelin lactone and bacogenin A1) were compared using a combination of in silico and in vitro screening methods. The compounds were docked into 5-HT1A, 5-HT2A, D1, D2, M1 receptors and acetylcholinesterase (AChE) using AutoDock and their central nervous system (CNS) drug-like properties were determined using Discovery Studio molecular properties and ADMET descriptors. The compounds were screened in vitro using radioligand receptor binding and AChE inhibition assays. In silico studies showed that the parent bacosides were not able to dock into the chosen CNS targets and had poor molecular properties as a CNS drug. In contrast, the aglycones and their derivatives showed better binding affinity and good CNS drug-like properties, were well absorbed through the intestines and had good blood brain barrier (BBB) penetration. Among the compounds tested in vitro, ebelin lactone showed binding affinity towards M1 (Ki = 0.45 μM) and 5-HT2A (4.21 μM) receptors. Bacoside A and bacopaside X (9.06 μM) showed binding affinity towards the D1 receptor. None of the compounds showed any inhibitory activity against AChE. Since the stimulation of M1 and 5-HT2A receptors has been implicated in memory and cognition and ebelin lactone was shown to have the strongest binding energy, highest BBB penetration and binding affinity towards M1 and 5-HT2A receptors, we suggest that B. monnieri constituents may be transformed in vivo to the active form before exerting their pharmacological activity. PMID:25965066
Ramasamy, Seetha; Chin, Sek Peng; Sukumaran, Sri Devi; Buckle, Michael James Christopher; Kiew, Lik Voon; Chung, Lip Yong
2015-01-01
Bacopa monnieri has been used in Ayurvedic medicine to improve memory and cognition. The active constituent responsible for its pharmacological effects is bacoside A, a mixture of dammarane-type triterpenoid saponins containing sugar chains linked to a steroid aglycone skeleton. Triterpenoid saponins have been reported to be transformed in vivo to metabolites that give better biological activity and pharmacokinetic characteristics. Thus, the activities of the parent compounds (bacosides), aglycones (jujubogenin and pseudojujubogenin) and their derivatives (ebelin lactone and bacogenin A1) were compared using a combination of in silico and in vitro screening methods. The compounds were docked into 5-HT1A, 5-HT2A, D1, D2, M1 receptors and acetylcholinesterase (AChE) using AutoDock and their central nervous system (CNS) drug-like properties were determined using Discovery Studio molecular properties and ADMET descriptors. The compounds were screened in vitro using radioligand receptor binding and AChE inhibition assays. In silico studies showed that the parent bacosides were not able to dock into the chosen CNS targets and had poor molecular properties as a CNS drug. In contrast, the aglycones and their derivatives showed better binding affinity and good CNS drug-like properties, were well absorbed through the intestines and had good blood brain barrier (BBB) penetration. Among the compounds tested in vitro, ebelin lactone showed binding affinity towards M1 (Ki = 0.45 μM) and 5-HT2A (4.21 μM) receptors. Bacoside A and bacopaside X (9.06 μM) showed binding affinity towards the D1 receptor. None of the compounds showed any inhibitory activity against AChE. Since the stimulation of M1 and 5-HT2A receptors has been implicated in memory and cognition and ebelin lactone was shown to have the strongest binding energy, highest BBB penetration and binding affinity towards M1 and 5-HT2A receptors, we suggest that B. monnieri constituents may be transformed in vivo to the active form before exerting their pharmacological activity.
Expression of mammalian beta-adrenergic receptors in Xenopus laevis oocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahouth, S.W.; Malbon, C.C.
1987-05-01
Xenopus laevis oocytes are a useful transcription and expression system for DNA and RNA, respectively. Total cellular RNA was extracted from mouse lymphoma S49 cells and poly(A)/sup +/mRNA prepared by affinity chromatography of RNA on oligo(dT) cellulose. The membranes of S49 cells contain beta-adrenergic receptors that display pharmacological characteristics of beta/sub 2/-subtype. Xenopus laevis oocytes were injected with 50 ng of mRNA/oocyte. Expression of beta-adrenergic receptors in oocytes incubated for 30 hr after microinjection was assessed in membranes by radioligand binding using (/sup 3/H) dihydroalprenolol. The injected oocytes displayed 0.34 fmol receptor/oocyte as compared to 0.02 fmol receptor/oocyte in themore » control oocytes. The affinity of beta-adrenergic receptors in injected oocytes for this radioligand was 2 nM, a value similar to the affinity of beta-adrenergic receptors for DHA in S49 cell membranes. The potency of beta-adrenergic agonists in competing for DHA binding to oocytes membranes was isoproterenol > epinephrine > norepineprine, indicating that the expressed beta-adrenergic receptors were of the beta/sub 2/-subtype. The K/sub I/ of these agonists for the beta-adrenergic receptor in oocyte membranes was 0.03, 0.15 and 1.2 ..mu..M, respectively. The role of post-translational modification in dictating receptor subtype is analyzed using mRNA of beta/sub 1/- as well as beta/sub 2/-adrenergic receptors.« less
Nastasi, Giovanni; Miceli, Carla; Pittalà, Valeria; Modica, Maria N; Prezzavento, Orazio; Romeo, Giuseppe; Rescifina, Antonio; Marrazzo, Agostino; Amata, Emanuele
2017-01-01
Sigma (σ) receptors are accepted as a particular receptor class consisting of two subtypes: sigma-1 (σ 1 ) and sigma-2 (σ 2 ). The two receptor subtypes have specific drug actions, pharmacological profiles and molecular characteristics. The σ 2 receptor is overexpressed in several tumor cell lines, and its ligands are currently under investigation for their role in tumor diagnosis and treatment. The σ 2 receptor structure has not been disclosed, and researchers rely on σ 2 receptor radioligand binding assay to understand the receptor's pharmacological behavior and design new lead compounds. Here we present the sigma-2 Receptor Selective Ligands Database (S2RSLDB) a manually curated database of the σ 2 receptor selective ligands containing more than 650 compounds. The database is built with chemical structure information, radioligand binding affinity data, computed physicochemical properties, and experimental radioligand binding procedures. The S2RSLDB is freely available online without account login and having a powerful search engine the user may build complex queries, sort tabulated results, generate color coded 2D and 3D graphs and download the data for additional screening. The collection here reported is extremely useful for the development of new ligands endowed of σ 2 receptor affinity, selectivity, and appropriate physicochemical properties. The database will be updated yearly and in the near future, an online submission form will be available to help with keeping the database widely spread in the research community and continually updated. The database is available at http://www.researchdsf.unict.it/S2RSLDB.
Pescatore, Robyn; Marrone, Gina F; Sedberry, Seth; Vinton, Daniel; Finkelstein, Netanel; Katlowitz, Yitzchak E; Pasternak, Gavril W; Wilson, Krista R; Majumdar, Susruta
2015-06-17
Deltorphins are naturally occurring peptides produced by the skin of the giant monkey frog (Phyllomedusa bicolor). They are δ-opioid receptor-selective agonists. Herein, we report the design and synthesis of a peptide, Tyr-d-Ala-(pI)Phe-Glu-Ile-Ile-Gly-NH2 3 (GATE3-8), based on the [d-Ala(2)]deltorphin II template, which is δ-selective in in vitro radioligand binding assays over the μ- and κ-opioid receptors. It is a full agonist in [(35)S]GTPγS functional assays and analgesic when administered supraspinally to mice. Analgesia of 3 (GATE3-8) is blocked by the selective δ receptor antagonist naltrindole, indicating that the analgesic action of 3 is mediated by the δ-opioid receptor. We have established a radioligand in which (125)I is incorporated into 3 (GATE3-8). The radioligand has a KD of 0.1 nM in Chinese hamster ovary (CHO) cells expressing the δ receptor. Additionally, a series of peptides based on 3 (GATE3-8) was synthesized by incorporating various halogens in the para position on the aromatic ring of Phe(3). The peptides were characterized for binding affinity at the μ-, δ-, and κ-opioid receptors, which showed a linear correlation between binding affinity and the size of the halogen substituent. These peptides may be interesting tools for probing δ-opioid receptor pharmacology.
Synthesis and Pharmacology of Halogenated δ-Opioid-Selective [D-Ala2]Deltorphin II Peptide Analogues
Pescatore, Robyn; Marrone, Gina F.; Sedberry, Seth; Vinton, Daniel; Finkelstein, Netanel; Katlowitz, Yitzchak E.; Pasternak, Gavril W.; Wilson, Krista R.; Majumdar, Susruta
2015-01-01
Deltorphins are naturally occurring peptides produced by the skin of the giant monkey frog (Phyllomedusa bicolor). They are δ-opioid receptor-selective agonists. Herein, we report the design and synthesis of a peptide, Tyr-D-Ala-(pI)Phe-Glu-Ile-Ile-Gly-NH2 3 (GATE3-8), based on the [D-Ala2]deltorphin II template, which is δ-selective in in vitro radioligand binding assays over the μ- and κ-opioid receptors. It is a full agonist in [35S]GTPγS functional assays and analgesic when administered supraspinally to mice. Analgesia of 3 (GATE3-8) is blocked by the selective δ receptor antagonist naltrindole, indicating that the analgesic action of 3 is mediated by the δ-opioid receptor. We have established a radioligand in which 125I isincorporated into 3 (GATE3-8). The radioligand has a KD of 0.1 nM in Chinese hamster ovary (CHO) cells expressing the δ receptor. Additionally, a series of peptides based on 3 (GATE3-8) was synthesized by incorporating various halogens in the para position on the aromatic ring of Phe3. The peptides were characterized for binding affinity at the μ-, δ-, and κ-opioid receptors, which showed a linear correlation between binding affinity and the size of the halogen substituent. These peptides may be interesting tools for probing δ-opioid receptor pharmacology. PMID:25844930
Ashokkumar, N; Pari, L; Rao, Ch Appa
2006-07-01
In the present study, we focused on the insulin-receptor binding in circulating erythrocytes of N-benzoyl-D-phenylalanine (NBDP) and metformin in neonatal streptozotocin (nSTZ)-induced male Wistar rats. We measured blood levels of glucose and plasma insulin and the binding of insulin to cell-membrane ER receptors in NBDP and metformin-treated diabetic rats. The mean specific binding of insulin to ER was significantly lower in diabetic control rats (DC) (53.0 +/- 3.1%) than in NBDP (62.0 +/- 3.1%), metformin (66.0 +/- 3.3%) and NBDP and metformin combination-treated (72.0 +/- 4.2%) diabetic rats, resulting in a significant decrease in plasma insulin. Scatchard plot analysis demonstrated that the decrease in insulin binding was accounted for by a lower number of insulin receptor sites per cell in DC rats when compared with NBDP and metformin-treated rats. High-affinity (Kd1), low-affinity (Kd2), and kinetic analysis revealed an increase in the average receptor affinity in ER from NBDP and metformin-treated diabetic rats having NBDP 2.0 +/- 0.10 x 10(-10) M(-1) (Kd1); 12.0 +/- 0.85 x 10(-8) M(-1) (Kd2), Metformin 2.1 +/- 0.15 x 10(-10) M(-1) (Kd1); 15.0 +/- 0.80 x 10(-8) M(-1) (Kd2), NBDP and metformin 2.7 +/- 0.10 x 10(-10) M(-1) (Kd1); 20.0 +/- 1.2 x 10(-8) M(-1) (Kd2) compared with 0.9 +/- 0.06 x 10(-10) M(-1) (Kd1); 6.0 +/- 0.30 x 10(-8) M(-1) (Kd2) in DC rats. The results suggest an acute alteration in the number of insulin receptors on ER membranes in nSTZ induced diabetic control rats. Treatment with NBDP along with metformin significantly improved specific insulin binding, with receptor number and affinity binding reaching almost normal non-diabetic levels. The data presented here show that NBDP along with metformin increase total ER membrane insulin binding sites with a concomitant significant increase in plasma insulin.
Dubois, Fanny; Vandermoere, Franck; Gernez, Aurélie; Murphy, Jane; Toth, Rachel; Chen, Shuai; Geraghty, Kathryn M; Morrice, Nick A; MacKintosh, Carol
2009-11-01
We devised a strategy of 14-3-3 affinity capture and release, isotope differential (d(0)/d(4)) dimethyl labeling of tryptic digests, and phosphopeptide characterization to identify novel targets of insulin/IGF1/phosphatidylinositol 3-kinase signaling. Notably four known insulin-regulated proteins (PFK-2, PRAS40, AS160, and MYO1C) had high d(0)/d(4) values meaning that they were more highly represented among 14-3-3-binding proteins from insulin-stimulated than unstimulated cells. Among novel candidates, insulin receptor substrate 2, the proapoptotic CCDC6, E3 ubiquitin ligase ZNRF2, and signaling adapter SASH1 were confirmed to bind to 14-3-3s in response to IGF1/phosphatidylinositol 3-kinase signaling. Insulin receptor substrate 2, ZNRF2, and SASH1 were also regulated by phorbol ester via p90RSK, whereas CCDC6 and PRAS40 were not. In contrast, the actin-associated protein vasodilator-stimulated phosphoprotein and lipolysis-stimulated lipoprotein receptor, which had low d(0)/d(4) scores, bound 14-3-3s irrespective of IGF1 and phorbol ester. Phosphorylated Ser(19) of ZNRF2 (RTRAYpS(19)GS), phospho-Ser(90) of SASH1 (RKRRVpS(90)QD), and phospho- Ser(493) of lipolysis-stimulated lipoprotein receptor (RPRARpS(493)LD) provide one of the 14-3-3-binding sites on each of these proteins. Differential 14-3-3 capture provides a powerful approach to defining downstream regulatory mechanisms for specific signaling pathways.
Dubois, Fanny; Vandermoere, Franck; Gernez, Aurélie; Murphy, Jane; Toth, Rachel; Chen, Shuai; Geraghty, Kathryn M.; Morrice, Nick A.; MacKintosh, Carol
2009-01-01
We devised a strategy of 14-3-3 affinity capture and release, isotope differential (d0/d4) dimethyl labeling of tryptic digests, and phosphopeptide characterization to identify novel targets of insulin/IGF1/phosphatidylinositol 3-kinase signaling. Notably four known insulin-regulated proteins (PFK-2, PRAS40, AS160, and MYO1C) had high d0/d4 values meaning that they were more highly represented among 14-3-3-binding proteins from insulin-stimulated than unstimulated cells. Among novel candidates, insulin receptor substrate 2, the proapoptotic CCDC6, E3 ubiquitin ligase ZNRF2, and signaling adapter SASH1 were confirmed to bind to 14-3-3s in response to IGF1/phosphatidylinositol 3-kinase signaling. Insulin receptor substrate 2, ZNRF2, and SASH1 were also regulated by phorbol ester via p90RSK, whereas CCDC6 and PRAS40 were not. In contrast, the actin-associated protein vasodilator-stimulated phosphoprotein and lipolysis-stimulated lipoprotein receptor, which had low d0/d4 scores, bound 14-3-3s irrespective of IGF1 and phorbol ester. Phosphorylated Ser19 of ZNRF2 (RTRAYpS19GS), phospho-Ser90 of SASH1 (RKRRVpS90QD), and phospho- Ser493 of lipolysis-stimulated lipoprotein receptor (RPRARpS493LD) provide one of the 14-3-3-binding sites on each of these proteins. Differential 14-3-3 capture provides a powerful approach to defining downstream regulatory mechanisms for specific signaling pathways. PMID:19648646
Leopoldo, Marcello; Selivanova, Svetlana V; Müller, Adrienne; Lacivita, Enza; Schetz, John A; Ametamey, Simon M
2014-09-01
The D4 dopamine receptor belongs to the D2 -like family of dopamine receptors, and its exact regional distribution in the central nervous system is still a matter of considerable debate. The availability of a selective radioligand for the D4 receptor with suitable properties for positron emission tomography (PET) would help resolve issues of D4 receptor localization in the brain, and the presumed diurnal change of expressed protein in the eye and pineal gland. We report here on in vitro and in vivo characteristics of the high-affinity D4 receptor-selective ligand N-{2-[4-(3-cyanopyridin-2-yl)piperazin-1-yl]ethyl}-3-[(11) C]methoxybenzamide ([(11) C]2) in rat. The results provide new insights on the in vitro properties that a brain PET dopamine D4 radioligand should possess in order to have improved in vivo utility in rodents. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javitt, D.C.; Zukin, S.R.
1989-01-01
N-Methyl-D-aspartate (N-Me-D-Asp) and phencyclidine receptors interactively mediate central nervous system processes including psychotomimetic effects of drugs as well as neurodegenerative, cognitive, and developmental events. To elucidate the mechanism of this interaction, effects of N-Me-D-Asp agonists and antagonists and of glycine-like agents upon binding of the radiolabeled phencyclidine receptor ligand ({sup 3}H)MK-801 were determined in rat brain. Scatchard analysis revealed two discrete components of ({sup 3}H)MK-801 binding after 4 hr of incubation. Incubation in the presence of L-glutamate led to an increase in apparent densities but not in affinities of both components of ({sup 3}H)MK-801 binding as well as conversion ofmore » sites from apparent low to high affinity. Incubation in the presence of combined D-serine and L-glutamate led to an increase in the apparent density of high-affinity ({sup 3}H)MK-801 binding compared with incubation in the presence of either L-glutamate or D-serine alone. These data support a model in which phencyclidine receptor ligands bind differentially to closed as well as open conformations of the N-Me-D-Asp receptor complex and in which glycine-like agents permit or facilitate agonist-induced conversion of N-Me-D-Asp receptors from closed to open conformations.« less
de Costa, B R; Bowen, W D; Hellewell, S B; George, C; Rothman, R B; Reid, A A; Walker, J M; Jacobson, A E; Rice, K C
1989-08-01
The synthesis and in vitro sigma receptor activity of the two diastereomers of U50,488 [(+/-)-2], namely, (1R,2S)-(+)- cis-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacet ami de [(+)-1] and (1S,2R)-(-)-cis-3,4-dichloro- N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide [(-)-1], are described. (+)-1 and (-)-1 were synthesized from (+/-)-trans-N-methyl-2-aminocyclohexanol [(+/-)-3]. Pyridinium chlorochromate (PCC) oxidation of the N-t-Boc-protected derivative of (+/-)-3 afforded (+/-)-2-[N- [(tert-butyloxy)carbonyl]-N-methylamino]cyclohexanone [(+/-)-5]. The sequence of enamine formation with pyrrolidine, catalytic reduction, N-deprotection, and optical resolution afforded (1R,2S)-(-)-cis-2-pyrrolidinyl-N-methylcyclohexylamine [(-)-10] and (1S,2R)-(+)-cis-2-pyrrolidinyl-N-methylcyclohexylamine [(+)-10]. The optical purity (greater than 99.5%) of (-)-10 and (+)-10 was determined by HPLC analysis of the diastereomeric ureas formed by reaction with optically pure (R)-alpha-methylbenzyl isocyanate. The absolute configuration of (-)-10 and (+)-10 was determined by single-crystal X-ray diffractometry of the bis-(R)-mandelate salt. Condensation of optically pure (-)-10 and (+)-10 with 3,4-dichlorophenylacetic acid furnished (+)-1 and (-)-1, respectively. Compounds (+)-1, (-)-1, (-)-2, and (+)-2 were compared for their binding affinities at kappa opioid, sigma, D2-dopamine, and phencyclidine (PCP) receptors in competitive binding assays using [3H]bremazocine ([3H]BREM) or [3H]U69,593, [3H]-(+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine [[3H]-(+)-3-PPP], or [3H]-1,3-di(o-tolyl)guanidine ([3H]DTG), [3H]-(-)-sulpiride [[3H]-(-)SULP], and [3H]-1- [1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP), respectively. In the systems examined, (-)-2 exhibited the highest affinity for kappa receptors, with a Ki of 44 +/- 8 nM. However, (-)-2 also showed moderate affinity for sigma receptors, with a Ki of 594 +/- 3 nM [[3H]-(+)-3-PPP]. The (1R,2R)-(+)-enantiomer, (+)-2, had low affinity for both kappa and sigma receptors, exhibiting Ki values of 1298 +/- 49 nM at kappa ([3H]BREM) and 1270 +/- 168 nM at sigma [[3H]-(+)-3-PPP]. In contrast, the chiral cis compounds (+)-1 and (-)-1 showed high affinity for sigma receptors and negligible affinity for kappa opioid receptors in the [3H]BREM assay. Compound (-)-1 exhibited a Ki of 81 +/- 13 nM at sigma receptors [[3H]-(+)-3-PPP] and 250 +/- 8 nM ([3H]DTG).(ABSTRACT TRUNCATED AT 400 WORDS)
Vandormael, Bart; Fourla, Danai-Dionysia; Gramowski-Voss, Alexandra; Kosson, Piotr; Weiss, Dieter G; Schröder, Olaf H-U; Lipkowski, Andrzej; Georgoussi, Zafiroula; Tourwé, Dirk
2011-11-24
Novel dermorphin tetrapeptides are described in which Tyr(1) is replaced by Dmt(1), where d-Ala(2) and Gly(4) are N-methylated, and where Phe(3)-Gly(4) residue is substituted by the constrained Aba(3)-Gly(4) peptidomimetic. Most of these peptidic ligands displayed binding affinities in the nanomolar range for both μ- and δ-opioid receptors but no detectable affinity for the κ-opioid receptor. Measurements of cAMP accumulation, phosphorylation of extracellular signal-regulated kinase (ERK1/2) in HEK293 cells stably expressing each of these receptors individually, and functional screening in primary neuronal cultures confirmed the potent agonistic properties of these peptides. The most potent ligand H-Dmt-NMe-d-Ala-Aba-Gly-NH(2) (BVD03) displayed mixed μ/δ opioid agonist properties with picomolar functional potencies. Functional electrophysiological in vitro assays using primary cortical and spinal cord networks showed that this analogue possessed electrophysiological similarity toward gabapentin and sufentanil, which makes it an interesting candidate for further study as an analgesic for neuropathic pain.
Vianello, P; Albinati, A; Pinna, G A; Lavecchia, A; Marinelli, L; Borea, P A; Gessi, S; Fadda, P; Tronci, S; Cignarella, G
2000-06-01
Various lines of evidence, including molecular modeling studies, imply that the endoethylenic bridge of 3,8-diazabicyclo[3.2. 1]octanes (DBO, 1) plays an essential role in modulating affinity toward mu opioid receptors. This hypothesis, together with the remarkable analgesic properties observed for N(3) propionyl, N(8) arylpropenyl derivatives (2) and of the reverted isomers (3), has prompted us to insert an additional endoethylenic bridge on the piperazine moiety in order to identify derivatives with increased potency toward this receptor class. In the present report, we describe the synthesis of the novel compounds 9,10-diazatricyclo[4.2. 1.1(2,5)]decane (4) and 2,7-diazatricyclo[4.4.0.0(3,8)]decane (5), as well as the representative derivatives functionalized at the two nitrogen atoms by propionyl and arylpropenyl groups (6a-e, 7a-d). Opioid receptor binding assays revealed that, among the compounds tested, the N-propionyl-N-cinnamyl derivatives 6a and 7a exhibited the highest mu-receptor affinity, and remarkably, compound 7a displayed in vivo (mice) an analgesic potency 6-fold that of morphine.
Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain.
Volkow, N D; Wang, G-J; Logan, J; Alexoff, D; Fowler, J S; Thanos, P K; Wong, C; Casado, V; Ferre, S; Tomasi, D
2015-04-14
Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A2A receptors (A2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [(11)C]raclopride (DA D2/D3 receptor radioligand sensitive to endogenous DA) to assess if caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300 mg p.o.) significantly increased the availability of D2/D3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D2/D3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D2/D3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D2/D3 receptor availability. Instead, we interpret our findings to reflect an increase in D2/D3 receptor levels in striatum with caffeine (or changes in affinity). The association between increases in D2/D3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D2/D3 receptors.
Caffeine increases striatal dopamine D2/D3 receptor availability in the human brain
Volkow, N D; Wang, G-J; Logan, J; Alexoff, D; Fowler, J S; Thanos, P K; Wong, C; Casado, V; Ferre, S; Tomasi, D
2015-01-01
Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A2A receptors (A2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [11C]raclopride (DA D2/D3 receptor radioligand sensitive to endogenous DA) to assess if caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300 mg p.o.) significantly increased the availability of D2/D3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D2/D3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D2/D3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D2/D3 receptor availability. Instead, we interpret our findings to reflect an increase in D2/D3 receptor levels in striatum with caffeine (or changes in affinity). The association between increases in D2/D3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D2/D3 receptors. PMID:25871974
Caffeine increases striatal dopamine D 2/D 3 receptor availability in the human brain
Volkow, N. D.; Wang, G. -J.; Logan, J.; ...
2015-04-14
Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A 2A receptors (A 2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [ 11C]raclopride (DA D 2/D 3 receptor radioligand sensitive to endogenous DA) to assess ifmore » caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300mg p.o.) significantly increased the availability of D 2/D 3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D 2/D 3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D 2/D 3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D 2/D 3 receptor availability. Instead, we interpret our findings to reflect an increase in D 2/D 3 receptor levels in striatum with caffeine (or changes in affinity). Furthermore, the association between increases in D 2/D 3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D 2/D 3 receptors.« less
Caffeine increases striatal dopamine D 2/D 3 receptor availability in the human brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Volkow, N. D.; Wang, G. -J.; Logan, J.
Caffeine, the most widely consumed psychoactive substance in the world, is used to promote wakefulness and enhance alertness. Like other wake-promoting drugs (stimulants and modafinil), caffeine enhances dopamine (DA) signaling in the brain, which it does predominantly by antagonizing adenosine A 2A receptors (A 2AR). However, it is unclear if caffeine, at the doses consumed by humans, increases DA release or whether it modulates the functions of postsynaptic DA receptors through its interaction with adenosine receptors, which modulate them. We used positron emission tomography and [ 11C]raclopride (DA D 2/D 3 receptor radioligand sensitive to endogenous DA) to assess ifmore » caffeine increased DA release in striatum in 20 healthy controls. Caffeine (300mg p.o.) significantly increased the availability of D 2/D 3 receptors in putamen and ventral striatum, but not in caudate, when compared with placebo. In addition, caffeine-induced increases in D 2/D 3 receptor availability in the ventral striatum were associated with caffeine-induced increases in alertness. Our findings indicate that in the human brain, caffeine, at doses typically consumed, increases the availability of DA D 2/D 3 receptors, which indicates that caffeine does not increase DA in the striatum for this would have decreased D 2/D 3 receptor availability. Instead, we interpret our findings to reflect an increase in D 2/D 3 receptor levels in striatum with caffeine (or changes in affinity). Furthermore, the association between increases in D 2/D 3 receptor availability in ventral striatum and alertness suggests that caffeine might enhance arousal, in part, by upregulating D 2/D 3 receptors.« less
Bergman, Jack; Roof, Rebecca A.; Furman, Cheryse A.; Conroy, Jennie L.; Mello, Nancy K.; Sibley, David R.; Skolnick, Phil
2016-01-01
Converging lines of evidence indicate that elevations in synaptic dopamine levels play a pivotal role in the reinforcing effects of cocaine, which are associated with its abuse liability. This evidence has led to the exploration of dopamine receptor blockers as pharmacotherapy for cocaine addiction. While neither D1 nor D2 receptor antagonists have proven effective, medications acting at two other potential targets, D3 and D4 receptors, have yet to be explored for this indication in the clinic. Buspirone, a 5-HT1A partial agonist approved for the treatment of anxiety, has been reported to also bind with high affinity to D3 and D4 receptors. In view of this biochemical profile, the present research was conducted to examine both the functional effects of buspirone on these receptors and, in non-human primates, its ability to modify the reinforcing effects of i.v. cocaine in a behaviourally selective manner. Radioligand binding studies confirmed that buspirone binds with high affinity to recombinant human D3 and D4 receptors (~98 and ~29 nM respectively). Live cell functional assays also revealed that buspirone, and its metabolites, function as antagonists at both D3 and D4 receptors. In behavioural studies, doses of buspirone that had inconsistent effects on food-maintained responding (0.1 or 0.3 mg/kg i.m.) produced a marked downward shift in the dose–effect function for cocaine-maintained behaviour, reflecting substantial decreases in self-administration of one or more unit doses of i.v. cocaine in each subject. These results support the further evaluation of buspirone as a candidate medication for the management of cocaine addiction. PMID:22827916
Wang, Qiong; Sun, Rui; Wu, Leyan; Huang, Junfeng; Wang, Ping; Yuan, Hailong; Qiu, Feifei; Xu, Xiaohong; Wu, Di; Yu, Ying; Liu, Xin; Zhang, Qing
2013-12-01
The thrombopoietin receptor is a crucial element in thrombopoietin-initiated signaling pathways, which stimulates the differentiation of normal hematopoietic progenitor cells, the maturation of megakaryocytes, and the generation of platelets. In this study, we identified a novel activating variant of thrombopoietin receptor, termed Mpl-D, in human megakaryoblastic leukemia Dami cells and demonstrated that the binding affinity of the Mpl-D receptor for thrombopoietin is enhanced. Cell cycle analysis revealed that in the presence of thrombopoietin, most Mpl-D expressing NIH3T3 (NIH3T3/Mpl-D) cells were prevalent in G1 phase while the S and G2/M populations were less frequently observed. Unexpectedly, thrombopoietin induced strong and prolonged ERK1/2 signaling in NIH3T3/Mpl-D cells compared with its receptor wild-type expressing NIH3T3 (NIH3T3/Mpl-F) cells. Further analysis of the mRNA levels of cyclin D1/D2 in NIH3T3/Mpl-D cells demonstrated markedly down-regulated expression compared to NIH3T3/Mpl-F cells in the presence of thrombopoietin. Thus, the prolonged activation of ERK1/2 by Mpl-D might lead to G1 cell cycle arrest through a profound reduction of cyclin D1/D2 in order to support cell survival without proliferation. We also provided tertiary structural basis for the Mpl-D and thrombopoietin interaction, which might provide insights into how Mpl-D effectively increases binding to thrombopoietin and significantly contributes to its specific signaling pathway. These results suggest a new paradigm for the regulation of cytokine receptor expression and function through the alternative splicing variant of Mpl in Dami cells, which may play a role in the pathogenesis of megakaryoblastic leukemia. Copyright © 2013 Elsevier Ltd. All rights reserved.
Dziedzicka-Wasylewska, Marta; Rogoż, Renata
1998-01-01
The present study shows the effects of imipramine in a single dose (10 mg kg−1, p.o.) or following repeated (14 days, twice a day) treatment on the level of mRNA coding for D2 dopamine receptors in the rat caudate putamen (CP). Repeated administration of imipramine resulted in the increase of the level of mRNA coding for D2 dopamine receptors. Radioligand binding studies with the D2 receptor agonist, [3H]-N-0437, indicated, that following imipramine administration, the affinity of the agonist for the D2 dopamine receptor significantly increased, though without any alterations in the Bmax. Pharmacological manipulations (by use of forskolin, GppNHp and quinpirole) of the cyclic AMP generating system, ex vivo following administration of imipramine indicated that an up-regulation of factors inhibiting cyclic GMP formation takes place. Most probably it is the D2 dopamine receptor which undergoes functional up-regulation, resulting from the enhancement of its biosynthesis. PMID:9535010
Varano, Flavia; Catarzi, Daniela; Falsini, Matteo; Vincenzi, Fabrizio; Pasquini, Silvia; Varani, Katia; Colotta, Vittoria
2018-07-23
In this study a new set of thiazolo[5,4-d]pyrimidine derivatives was synthesized. These derivatives bear different substituents at positions 2 and 5 of the thiazolopyrimidine core while maintaining a free amino group at position-7. The new compounds were tested for their affinity and potency at human (h) A 1 , A 2A , A 2B and A 3 adenosine receptors expressed in CHO cells. The results reveal that the higher affinity of these new set of thiazolopyrimidines is toward the hA 1 and hA 2A adenosine receptors subtypes and is tuned by the substitution pattern at both the 2 and 5 positions of the thiazolopyrimidine nucleus. Functional studies evidenced that the compounds behaved as dual A 1 /A 2A antagonists/inverse agonists. Compound 3, bearing a 5-((2-methoxyphenyl) methylamino) group and a phenyl moiety at position 2, displayed the highest affinity (hA 1 K i = 10.2 nM; hA 2A K i = 4.72 nM) and behaved as a potent A 1 /A 2A antagonist/inverse agonist (hA 1 IC 50 = 13.4 nM; hA 2A IC 50 = 5.34 nM). Copyright © 2018 Elsevier Ltd. All rights reserved.
Asakura, M; Tsukamoto, T; Imafuku, J; Matsui, H; Ino, M; Hasegawa, K
1984-10-30
Quantitative analysis of direct ligand binding of both [3H]clonidine and [3H]rauwolscine to the rat cerebral cortex alpha 2-receptors indicates the existence of two affinity states of the same receptor populations. In the presence of Mn2+, the high affinity state of [3H]clonidine binding was increased, whereas the high affinity state of [3H]rauwolscine binding was reduced. By contrast, GTP in micromolar ranges caused a decrease of the agonist high affinity state and an increase of the antagonist high affinity state. The total receptor sites and the respective separate affinities for both radioligands were approximately equal to their control values under all conditions, indicating that Mn2+ and GTP modulate the proportion of the two affinity states of the receptor. These results can be incorporated into a two-step, ternary complex model involving a guanine nucleotide binding protein (N protein) for the agonist and antagonist interaction with the alpha 2-receptor. Furthermore, the effects of GTP on the interaction of both ligands with the two affinity states can be mimicked by EDTA. It is suggested that divalent cations induce the formation of the receptor-N protein binary complex showing high affinity for agonists and low affinity for antagonists.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knapp, R.J.; Sharma, S.D.; Toth, G.
(D-Pen2,4{prime}-125I-Phe4,D-Pen5)enkephalin ((125I)DPDPE) is a highly selective radioligand for the delta opioid receptor with a specific activity (2200 Ci/mmol) that is over 50-fold greater than that of tritium-labeled DPDPE analogs. (125I)DPDPE binds to a single site in rat brain membranes with an equilibrium dissociation constant (Kd) value of 421 {plus minus} 67 pM and a receptor density (Bmax) value of 36.4 {plus minus} 2.7 fmol/mg protein. The high affinity of this site for delta opioid receptor ligands and its low affinity for mu or kappa receptor-selective ligands are consistent with its being a delta opioid receptor. The distribution of these sitesmore » in rat brain, observed by receptor autoradiography, is also consistent with that of delta opioid receptors. Association and dissociation binding kinetics of 1.0 nM (125I) DPDPE are monophasic at 25 degrees C. The association rate (k + 1 = 5.80 {plus minus} 0.88 {times} 10(7) M-1 min-1) is about 20- and 7-fold greater than that measured for 1.0 nM (3H) DPDPE and 0.8 nM (3H) (D-Pen2,4{prime}-Cl-Phe4, D-Pen5)enkephalin, respectively. The dissociation rate of (125I)DPDPE (0.917 {plus minus} 0.117 {times} 10(-2) min-1) measured at 1.0 nM is about 3-fold faster than is observed for either of the other DPDPE analogs. The rapid binding kinetics of (125I)DPDPE is advantageous because binding equilibrium is achieved with much shorter incubation times than are required for other cyclic enkephalin analogs. This, in addition to its much higher specific activity, makes (125I)DPDPE a valuable new radioligand for studies of delta opioid receptors.« less
Klemm, W R; Block, H
1988-02-01
The dopaminergic role of D-1 and D-2 receptors in catalepsy was evaluated using drugs with preferential receptor affinities. The D-1 antagonist, SCH 23390, caused distinct catalepsy in mice at 1, 2, and 10 mg/kg, IP, but not at two lower doses. The selective D-1 blocker, molindone, also caused catalepsy at 5 and 10 mg/kg; and blockade of both receptor types produced additive cataleptogenic effects. Apomorphine (4 mg/kg), which is an agonist for both receptors, potentiated SCH 23390-induced catalepsy much more than it did the catalepsy induced by molindone; the potentiation was produced by higher, not lower, doses of apomorphine. To determine if the apomorphine potentiation was mediated by D-1 or D-2 receptors, we tested selective agonists in mice that were concurrently injected with selective blockers. SCH 23390-induced catalepsy was potentiated by a large dose of the D-2 agonist, bromocriptine. The catalepsy of D-2 blockade with molindone was not potentiated by the D-1 agonist, SKF 38393, which slightly disrupted the catalepsy of D-2 blockade. We conclude that catalepsy is not a simple D-2 blockade phenomenon and that preferential antagonism of either receptor type can cause catalepsy. Catalepsy is most profound when both receptor types are blocked. Dopamine agonists, in large concentrations, are known to promote movements, and thus it is not surprising that they tend to disrupt catalepsy.(ABSTRACT TRUNCATED AT 250 WORDS)
A photoaffinity ligand for dopamine D2 receptors: azidoclebopride.
Niznik, H B; Guan, J H; Neumeyer, J L; Seeman, P
1985-02-01
In order to label D2 dopamine receptors selectively and covalently by means of a photosensitive compound, azidoclebopride was synthesized directly from clebopride. The dissociation constant (KD) of clebopride for the D2 dopamine receptor (canine brain striatum) was 1.5 nM, while that for azidoclebopride was 21 nM. The affinities of both clebopride and azidoclebopride were markedly reduced in the absence of sodium chloride. In the presence of ultraviolet light, azidoclebopride inactivated D2 dopamine receptors irreversibly, as indicated by the inability of the receptors to bind [3H]spiperone. Maximal photoinactivation of about 60% of the D2 dopamine receptors occurred at 1 microM azidoclebopride; 30% of the receptors were inactivated at 80 nM azidoclebopride (pseudo-IC50). Dopamine agonists selectively protected the D2 receptors from being inactivated by azidoclebopride, the order of potency being (-)-N-n-propylnorapomorphine greater than apomorphine greater than (+/-)-6,7-dihydroxy-2-aminotetralin greater than (+)-N-n-propylnorapomorphine greater than dopamine greater than noradrenaline greater than serotonin. Similarly, dopaminergic antagonists prevented the photoinactivation of D2 receptors by azidoclebopride with the following order of potency: spiperone greater than (+)-butaclamol greater than haloperidol greater than clebopride greater than (-)-sulpiride greater than (-)-butaclamol. The degree of D2 dopamine receptor photoinduced inactivation by azidoclebopride was not significantly affected by scavengers such as p-aminobenzoic acid and dithiothreitol. Furthermore, irradiation of striatal membranes with a concentration of azidoclebopride sufficient to inactivate dopamine D2 receptors by 60% did not significantly reduce dopamine D1, serotonin (S2), benzodiazepine, alpha 1- or beta-noradrenergic receptors. This study describes the use of a novel and selective photoaffinity ligand for brain dopamine D2 receptors. The molecule, in radiolabeled form, may aid in the molecular characterization of these receptors.
Seow, Vernon; Lim, Junxian; Cotterell, Adam J.; Yau, Mei-Kwan; Xu, Weijun; Lohman, Rink-Jan; Kok, W. Mei; Stoermer, Martin J.; Sweet, Matthew J.; Reid, Robert C.; Suen, Jacky Y.; Fairlie, David P.
2016-01-01
Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1–3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents. PMID:27094554
NASA Astrophysics Data System (ADS)
Seow, Vernon; Lim, Junxian; Cotterell, Adam J.; Yau, Mei-Kwan; Xu, Weijun; Lohman, Rink-Jan; Kok, W. Mei; Stoermer, Martin J.; Sweet, Matthew J.; Reid, Robert C.; Suen, Jacky Y.; Fairlie, David P.
2016-04-01
Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1-3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents.
Chen, Xiao-Wen; Sun, Yuan-Yuan; Fu, Lei; Li, Jian-Qi
2016-11-10
A series of novel benzisothiazolylpiperazine derivatives combining potent dopamine D2 and D3, and serotonin 5-HT1A and 5-HT2A receptor properties were synthesized and evaluated for their potential antipsychotic properties. The most-promising derivative was 9j. The unique pharmacological features of 9j were a high affinity for D2, D3, 5-HT1A, and 5-HT2A receptors, together with a 20-fold selectivity for the D3 versus D2 subtype, and a low affinity for muscarinic M1 (reducing the risk of anticholinergic side effects), and for hERG channels (reducing incidence of QT interval prolongation). In animal behavioral models, 9j inhibited the locomotor-stimulating effects of phencyclidine, blocked conditioned avoidance response, and improved the cognitive deficit in the novel object recognition tests in rats. 9j exhibited a low potential for catalepsy, consistent with results with risperidone. In addition, favorable brain penetration of 9j in rats was detected. These studies have demonstrated that 9j is a potential atypical antipsychotic candidate. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Romero-Hernandez, Annabel; Simorowski, Noriko; Karakas, Erkan
2016-01-01
Summary Zinc is vastly present in the mammalian brain and controls functions of various cell surface receptors to regulate neurotransmission. A distinctive characteristic of N-methyl-D-aspartate (NMDA) receptors containing a GluN2A subunit is that their ion channel activity is allosterically inhibited by a nano-molar concentration of zinc that binds to an extracellular domain called an amino terminal domain (ATD). Despite physiological importance, the molecular mechanism underlying the high-affinity zinc inhibition has been incomplete due to lack of a GluN2A ATD structure. Here we show the first crystal structures of the heterodimeric GluN1-GluN2A ATD, which provide the complete map of the high-affinity zinc binding site and reveals distinctive features from the ATD of the GluN1-GluN2B subtype. Perturbation of hydrogen bond networks at the hinge of the GluN2A bi-lobe structure affects both zinc inhibition and open probability supporting the general model where the bi-lobe motion in ATD regulates the channel activity in NMDA receptors. PMID:27916457
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bidlack, J.M.; Frey, D.K.; Seyed-Mozaffari, A.
The binding properties of 14{beta}-(bromoacetamido)morphine (BAM) and the ability of BAM to irreversibly inhibit opioid binding to rat brain membranes were examined to characterize the affinity and selectivity of BAM as an irreversible affinity ligand for opioid receptors. BAM had the same receptor selectivity as morphine, with a 3-5-fold decrease in affinity for the different types of opioid receptors. When brain membranes were incubated with BAM, followed by extensive washing, opioid binding was restored to control levels. However, when membranes were incubated with dithiothreitol (DTT), followed by BAM, and subsequently washed, 90% of the 0.25 nM ({sup 3}H)(D-Ala{sup 2},(Me)Phe{sup 4},Gly(ol){supmore » 5})enkephalin (DAGO) binding was irreversibly inhibited as a result of the specific alkylation of a sulfhydryl group at the {mu} binding site. This inhibition was dependent on the concentrations of both DTT and BAM. The {mu} receptor specificity of BAM alkylation was demonstrated by the ability of BAM alkylated membranes to still bind the {delta}-selective peptide ({sup 3}H)(D-penicillamine{sup 2},D-penicillamine{sup 5})enkephalin (DPDPE) and (-)-({sup 3}H)bremazocine in the presence of {mu} and {delta} blockers, selective for {kappa} binding sites. Morphine and naloxone partially protected the binding site from alkylation with BAM, while ligands that did not bind to the {mu}s site did not afford protection. These studies have demonstrated that when a disulfide bond at or near {mu} opioid binding sites was reduced, BAM could then alkylate this site, resulting in the specific irreversible labeling of {mu} opioid receptors.« less
Martin, G R; Robertson, A D; MacLennan, S J; Prentice, D J; Barrett, V J; Buckingham, J; Honey, A C; Giles, H; Moncada, S
1997-05-01
1. 311C90 (zolmitriptan zomig: (S)-4[[3-[2-(dimethylamino)ethyl]-1H-indol-5-yl]methyl]-2-oxazolidinone) is a novel 5-HT1B/1D receptor agonist with proven efficacy in the acute treatment of migraine. Here, we describe the receptor specificity of the drug and its actions on trigeminal-evoked plasma protein extravasation into the dura mater of the anaesthetized guinea-pig. 2. At the "5-HT1B-like' receptor mediating vascular contraction (rabbit saphenous vein), the compound was a potent (p[A50] = 6.79 +/- 0.06) partial agonist achieving 77 +/- 4% of the maximum effect to 5-hydroxytryptamine (5-HT). In the same experiments, sumatriptan (p[A50] = 6.48 +/- 0.04) was half as potent as 311C90 and produced 97 +/- 2% of the 5-HT maximum effect. Studies in which receptor inactivation methods were used to estimate the affinity (pKA) and efficacy relative to 5-HT (tau rel) for each agonist confirmed that 311C90 exhibits higher affinity than sumatriptan (pKA = 6.63 +/- 0.04 and 6.16 +/- 0.03, respectively) and that both drugs are partial agonists relative to 5-HT (tau rel = 0.61 +/- 0.03 and 0.63 +/- 0.10, respectively, compared to 5-HT = 1.0). 3. Consistent with its effects in rabbit saphenous vein, 311C90 also produced concentration-dependent contractions of primate basilar artery and human epicardial coronary artery rings. In basilar artery, agonist potency (p[A50] = 6.92 +/- 0.07) was similar to that demonstrated in rabbit saphenous vein, again being 2-3 fold higher than for sumatriptan (p[A50] = 6.46 +/- 0.03). Both agonists produced about 50% of the maximum response obtained with 5-HT in the same preparations. In rings of human coronary artery, the absolute potency of 311C90 and sumatriptan was higher than in primate basilar artery (p[A50] = 7.3 +/- 0.1 and 6.7 +/- 0.1, respectively), but maximum effects relative to 5-HT were lower (37 +/- 8% and 35 +/- 7%, respectively). In both types of vessel, the inability of 5-HT1B/1D agonists to achieve the same maximum as the endogenous agonist 5-HT is explained by the additional presence of 5-HT2A receptors. 4. 311C90 displayed high affinity at human recombinant 5-HT1D (formerly 5-HT1D alpha) and 5-HT1B (formerly 5-HT1D beta) receptors in transfected CHO-K1 cell membranes (pIC50 values = 9.16 +/- 0.12 and 8.32 +/- 0.09, respectively). In intact cells, the drug produced concentration-dependent inhibition of forskolin-stimulated adenylyl cyclase (p[A50] = 9.9 and 9.5, respectively) achieving the same maximum effect as 5-HT. Excepting human recombinant 5-HT1A and 5-ht1F receptors at which the drug behaved as an agonist with modest affinity (pIC50 = 6.45 +/- 0.11 and 7.22 +/- 0.12, respectively), 311C90 exhibited low, or no detectable affinity (pKi or pKB < or = 5.5) at numerous other monoamine receptors, including other 5-HT receptor subtypes. 5. When administered to anaesthetized guinea-pigs ten minutes before unilateral electrical stimulation of the trigeminal ganglion (1.2 mA, 5 Hz, 5 ms, 5 min), 311C90 (3-30 micrograms kg-1, i.v.) caused a dose-dependent inhibition of [125I]-albumin extravasation within the ipsilateral dura mater. At the same doses, the drug also produced dose-dependent falls in cranial vascular conductance (32.3 +/- 7.5% at 30 micrograms kg-1), as measured in the ear by laser doppler flowmetry. 6. These results show that 311C90, a novel member of the 5-HT1B/1D agonist drug class, exhibits a high degree of pharmacological specificity. Its potent partial agonist action at "5-HT1B-like' receptors in intracranial arteries, coupled with potent agonism at 5-HT1D and 5-HT1B receptors and an ability to inhibit neurogenic plasma protein extravasation in the dura, are consistent with its utility as an effective acute treatment for migraine.
Relative binding affinity prediction of farnesoid X receptor in the D3R Grand Challenge 2 using FEP.
Schindler, Christina; Rippmann, Friedrich; Kuhn, Daniel
2018-01-01
Physics-based free energy simulations have increasingly become an important tool for predicting binding affinity and the recent introduction of automated protocols has also paved the way towards a more widespread use in the pharmaceutical industry. The D3R 2016 Grand Challenge 2 provided an opportunity to blindly test the commercial free energy calculation protocol FEP+ and assess its performance relative to other affinity prediction methods. The present D3R free energy prediction challenge was built around two experimental data sets involving inhibitors of farnesoid X receptor (FXR) which is a promising anticancer drug target. The FXR binding site is predominantly hydrophobic with few conserved interaction motifs and strong induced fit effects making it a challenging target for molecular modeling and drug design. For both data sets, we achieved reasonable prediction accuracy (RMSD ≈ 1.4 kcal/mol, rank 3-4 according to RMSD out of 20 submissions) comparable to that of state-of-the-art methods in the field. Our D3R results boosted our confidence in the method and strengthen our desire to expand its applications in future in-house drug design projects.
Relative binding affinity prediction of farnesoid X receptor in the D3R Grand Challenge 2 using FEP+
NASA Astrophysics Data System (ADS)
Schindler, Christina; Rippmann, Friedrich; Kuhn, Daniel
2018-01-01
Physics-based free energy simulations have increasingly become an important tool for predicting binding affinity and the recent introduction of automated protocols has also paved the way towards a more widespread use in the pharmaceutical industry. The D3R 2016 Grand Challenge 2 provided an opportunity to blindly test the commercial free energy calculation protocol FEP+ and assess its performance relative to other affinity prediction methods. The present D3R free energy prediction challenge was built around two experimental data sets involving inhibitors of farnesoid X receptor (FXR) which is a promising anticancer drug target. The FXR binding site is predominantly hydrophobic with few conserved interaction motifs and strong induced fit effects making it a challenging target for molecular modeling and drug design. For both data sets, we achieved reasonable prediction accuracy (RMSD ≈ 1.4 kcal/mol, rank 3-4 according to RMSD out of 20 submissions) comparable to that of state-of-the-art methods in the field. Our D3R results boosted our confidence in the method and strengthen our desire to expand its applications in future in-house drug design projects.
Groman, Stephanie M.; James, Alex S.; Seu, Emanuele; Tran, Steven; Clark, Taylor A.; Harpster, Sandra N.; Crawford, Maverick; Burtner, Joanna Lee; Feiler, Karen; Roth, Robert H.; Elsworth, John D.; London, Edythe D.
2014-01-01
For >30 years, positron emission tomography (PET) has proven to be a powerful approach for measuring aspects of dopaminergic transmission in the living human brain; this technique has revealed important relationships between dopamine D2-like receptors and dimensions of normal behavior, such as human impulsivity, and psychopathology, particularly behavioral addictions. Nevertheless, PET is an indirect estimate that lacks cellular and functional resolution and, in some cases, is not entirely pharmacologically specific. To identify the relationships between PET estimates of D2-like receptor availability and direct in vitro measures of receptor number, affinity, and function, we conducted neuroimaging and behavioral and molecular pharmacological assessments in a group of adult male vervet monkeys. Data gathered from these studies indicate that variation in D2-like receptor PET measurements is related to reversal-learning performance and sensitivity to positive feedback and is associated with in vitro estimates of the density of functional dopamine D2-like receptors. Furthermore, we report that a simple behavioral measure, eyeblink rate, reveals novel and crucial links between neuroimaging assessments and in vitro measures of dopamine D2 receptors. PMID:25339755
Design of an Insulin Analog with Enhanced Receptor Binding Selectivity
Zhao, Ming; Wan, Zhu-li; Whittaker, Linda; Xu, Bin; Phillips, Nelson B.; Katsoyannis, Panayotis G.; Ismail-Beigi, Faramarz; Whittaker, Jonathan; Weiss, Michael A.
2009-01-01
Insulin binds with high affinity to the insulin receptor (IR) and with low affinity to the type 1 insulin-like growth factor (IGF) receptor (IGFR). Such cross-binding, which reflects homologies within the insulin-IGF signaling system, is of clinical interest in relation to the association between hyperinsulinemia and colorectal cancer. Here, we employ nonstandard mutagenesis to design an insulin analog with enhanced affinity for the IR but reduced affinity for the IGFR. Unnatural amino acids were introduced by chemical synthesis at the N- and C-capping positions of a recognition α-helix (residues A1 and A8). These sites adjoin the hormone-receptor interface as indicated by photocross-linking studies. Specificity is enhanced more than 3-fold on the following: (i) substitution of GlyA1 by d-Ala or d-Leu, and (ii) substitution of ThrA8 by diaminobutyric acid (Dab). The crystal structure of [d-AlaA1,DabA8]insulin, as determined within a T6 zinc hexamer to a resolution of 1.35 Å, is essentially identical to that of human insulin. The nonstandard side chains project into solvent at the edge of a conserved receptor-binding surface shared by insulin and IGF-I. Our results demonstrate that modifications at this edge discriminate between IR and IGFR. Because hyperinsulinemia is typically characterized by a 3-fold increase in integrated postprandial insulin concentrations, we envisage that such insulin analogs may facilitate studies of the initiation and progression of cancer in animal models. Future development of clinical analogs lacking significant IGFR cross-binding may enhance the safety of insulin replacement therapy in patients with type 2 diabetes mellitus at increased risk of colorectal cancer. PMID:19773552
Blair, J B; Marona-Lewicka, D; Kanthasamy, A; Lucaites, V L; Nelson, D L; Nichols, D E
1999-03-25
The synthesis and biological activity of 6-[2-(N, N-dimethylamino)ethyl]-4H-thieno[3,2-b]pyrrole (3a) and 4-[2-(N, N-dimethylamino)ethyl]-6H-thieno[2,3-b]pyrrole (3b), thienopyrroles as potential bioisosteres of N,N-dimethyltryptamine (1a), are reported. Hallucinogen-like activity was evaluated in the two-lever drug discrimination paradigm using LSD- and DOI-trained rats. Neither 3a nor 3b substituted for LSD or DOI up to doses of 50 micromol/kg. By comparison, 1a fully substituted in LSD-trained rats. However, 3a and 3b fully substituted for the 5-HT1A agonist LY293284 ((-)-(4R)-6-acetyl-4-(di-n-propylamino)-1,3,4, 5-tetrahydrobenz[c,d]indole). Both 3a and 3b induced a brief "serotonin syndrome" and salivation, an indication of 5-HT1A receptor activation. At the cloned human 5-HT2A receptor 3b had about twice the affinity of 3a. At the cloned human 5-HT2B and 5-HT2C receptors, however, 3a had about twice the affinity of 3b. Therefore, thiophene lacks equivalence as a replacement for the phenyl ring in the indole nucleus of tryptamines that bind to 5-HT2 receptor subtypes and possess LSD-like behavioral effects. Whereas both of the thienopyrroles had lower affinity than the corresponding 1a at 5-HT2 receptors, 3a and 3b had significantly greater affinity than 1a at the 5-HT1A receptor. Thus, thienopyrrole does appear to serve as a potent bioisostere for the indole nucleus in compounds that bind to the serotonin 5-HT1A receptor. These differences in biological activity suggest that serotonin receptor isoforms are very sensitive to subtle changes in the electronic character of the aromatic systems of indole compounds.
NASA Astrophysics Data System (ADS)
Réau, Manon; Langenfeld, Florent; Zagury, Jean-François; Montes, Matthieu
2018-01-01
The Drug Design Data Resource (D3R) Grand Challenges are blind contests organized to assess the state-of-the-art methods accuracy in predicting binding modes and relative binding free energies of experimentally validated ligands for a given target. The second stage of the D3R Grand Challenge 2 (GC2) was focused on ranking 102 compounds according to their predicted affinity for Farnesoid X Receptor. In this task, our workflow was ranked 5th out of the 77 submissions in the structure-based category. Our strategy consisted in (1) a combination of molecular docking using AutoDock 4.2 and manual edition of available structures for binding poses generation using SeeSAR, (2) the use of HYDE scoring for pose selection, and (3) a hierarchical ranking using HYDE and MM/GBSA. In this report, we detail our pose generation and ligands ranking protocols and provide guidelines to be used in a prospective computer aided drug design program.
Khansari, Maryam Emami; Johnson, Corey R; Basaran, Ismet; Nafis, Aemal; Wang, Jing; Leszczynski, Jerzy; Hossain, Md Alamgir
2015-01-01
Tris(3-aminopropyl)amine-based tripodal urea and thiourea receptors, tris([(4-cyanophenyl)amino]propyl)urea ( L1 ) and tris([(4-cyanophenyl)amino]propyl)thiourea ( L2 ), have been synthesized and their anion binding properties have been investigated for halides and oxoanions. As investigated by 1 H NMR titrations, each receptor binds an anion with a 1:1 stoichiometry via hydrogen-bonding interactions (NH⋯anion), showing the binding trend in the order of F - > H 2 PO 4 - > HCO 3 - > HSO 4 - > CH 3 COO - > SO 4 2- > Cl - > Br - > I in DMSO- d 6 . The interactions of the receptors were further studied by 2D NOESY, showing the loss of NOESY contacts of two NH resonances for the complexes of F - , H 2 PO 4 - , HCO 3 - , HSO 4 - or CH 3 COO - due to the strong NH⋯anion interactions. The observed higher binding affinity for HSO 4 - than SO 4 2- is attributed to the proton transfer from HSO 4 - to the central nitrogen of L1 or L2 which was also supported by the DFT calculations, leading to the secondary acid-base interactions. The thiourea receptor L2 has a general trend to show a higher affinity for an anion as compared to the urea receptor L1 for the corresponding anion in DMSO- d 6 . In addition, the compound L2 has been exploited for its extraction properties for fluoride in water using a liquid-liquid extraction technique, and the results indicate that the receptor effectively extracts fluoride from water showing ca. 99% efficiency (based on L2 ).
Characterization of glucagon-like peptide-1 receptor-binding determinants.
Xiao, Q; Jeng, W; Wheeler, M B
2000-12-01
Glucagon-like peptide 1 (GLP-1) is a potent insulinotropic hormone currently under study as a therapeutic agent for type 2 diabetes. Since an understanding of the molecular mechanisms leading to high-affinity receptor (R) binding and activation may facilitate the development of more potent GLP-1R agonists, we have localized specific regions of GLP-1R required for binding. The purified N-terminal fragment (hereafter referred to as NT) of the GLP-1R produced in either insect (Sf9) or mammalian (COS-7) cells was shown to bind GLP-1. The physical interaction of NT with GLP-1 was first demonstrated by cross-linking ((125)I-GLP-1/NT complex band at approximately 28 kDa) and secondly by attachment to Ni(2+)-NTA beads. The GLP-1R NT protein attached to beads bound GLP-1, but with lower affinity (inhibitory concentration (IC(50)): 4.5 x 10(-7) M) than wild-type (WT) GLP-1R (IC(50): 5.2 x 10(-9)M). The low affinity of GLP-1R NT suggested that other receptor domains may contribute to GLP-1 binding. This was supported by studies using chimeric glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 receptors. GIP(1-151)/GLP-1R, but not GIP(1-222)/GLP-1R, exhibited specific GLP-1 binding and GLP-1-induced cAMP production, suggesting that the region encompassing transmembrane (TM) domain 1 through to TM3 was required for binding. Since it was hypothesized that certain charged or polar amino acids in this region might be involved in binding, these residues (TM2-TM3) were analyzed by substitution mutagenesis. Five mutants (K197A, D198A, K202A, D215A, R227A) displayed remarkably reduced binding affinity. These studies indicate that the NT domain of the GLP-1R is able to bind GLP-1, but charged residues concentrated at the distal TM2/extracellular loop-1 (EC1) interface (K197, D198, K202) and in EC1 (D215 and R227) probably contribute to the binding determinants of the GLP-1R.
Lee, Min Jung; Cho, Kang Hun; Park, Hyun Min; Sung, Hyun Jung; Choi, Sunghak; Im, Weonbin
2014-07-15
DA-6886, the gastrointestinal prokinetic benzamide derivative is a novel 5-HT4 receptor agonist being developed for the treatment of constipation-predominant irritable bowel syndrome (IBS-C). The purpose of this study was to characterize in vitro and in vivo pharmacological profile of DA-6886. We used various receptor binding assay, cAMP accumulation assay, organ bath experiment and colonic transit assay in normal and chemically constipated mice. DA-6886 exhibited high affinity and selectivity to human 5-HT4 receptor splice variants, with mean pKi of 7.1, 7.5, 7.9 for the human 5-HT4a, 5-HT4b and 5-HT4d, respectively. By contrast, DA-6886 did not show significant affinity for several receptors including dopamine D2 receptor, other 5-HT receptors except for 5-HT2B receptor (pKi value of 6.2). The affinity for 5-HT4 receptor was translated into functional agonist activity in Cos-7 cells expressing 5-HT4 receptor splice variants. Furthermore, DA-6886 induced relaxation of the rat oesophagus preparation (pEC50 value of 7.4) in a 5-HT4 receptor antagonist-sensitive manner. The evaluation of DA-6886 in CHO cells expressing hERG channels revealed that it inhibited hERG channel current with an pIC50 value of 4.3, indicating that the compound was 1000-fold more selective for the 5-HT4 receptor over hERG channels. In the normal ICR mice, oral administration of DA-6886 (0.4 and 2mg/kg) resulted in marked stimulation of colonic transit. Furthermore, in the loperamide-induced constipation mouse model, 2mg/kg of DA-6886 significantly improved the delay of colonic transit, similar to 10mg/kg of tegaserod. Taken together, DA-6886 is a highly potent and selective 5-HT4 receptor agonist to accelerate colonic transit in mice, which might be therapeutic agent having a favorable safety profile in the treatment of gastrointestinal motor disorders such as IBS-C and chronic constipation. Copyright © 2014 Elsevier B.V. All rights reserved.
Somatostatin receptors in differentiated ovarian tumors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reubi, J.C.; Horisberger, U.; Klijn, J.G.
1991-05-01
The presence of somatostatin receptors was investigated in 57 primary human ovarian tumors using in vitro receptor autoradiography with three different somatostatin radioligands, {sup 125}I-(Tyr11)-somatostatin-14, {sup 125}I-(Leu8, D-Trp22, Tyr25)-somatostatin-28, or {sup 125}I-(Tyr3)-SMS 201-995. Three cases, all belonging to epithelial tumors, were receptor positive; specifically 1 of 42 adenocarcinomas, 1 of 3 borderline malignancies, and 1 of 2 cystadenomas. Four other epithelial tumors (3 fibroadenomas, 1 Brenner tumor), 4 sex cord-stromal tumors (2 fibrothecomas, 2 granulosa cell tumors), and 2 germ cell tumors (1 dysgerminoma, 1 teratoma) were receptor negative. In the positive cases, the somatostatin receptors were localized on epithelialmore » cells exclusively, were of high affinity (KD = 4.6 nmol/l (nanomolar)), and specific for somatostatin analogs. These receptors bound somatostatin-14 and somatostatin-28 radioligands with a higher affinity than the octapeptide (Tyr3)-SMS 201-995. Healthy ovarian tissue had no somatostatin receptors. A subpopulation of relatively well-differentiated ovarian tumors, therefore, was identified pathobiochemically on the basis of its somatostatin receptor content. This small group of somatostatin receptor-positive tumors may be a target for in vivo diagnostic imaging with somatostatin ligands.« less
NASA Astrophysics Data System (ADS)
Schübler, Moritz; Sadek, Bassem; Kottke, Tim; Weizel, Lilia; Stark, Holger
2017-09-01
Neurleptic drugs, e.g. aripiprazole, targeting the dopamine D2s and D3 receptors (D2sR and D3R) in the central nervous system are widely used in the treatment of several psychotic and neurodegenerative diseases. Therefore, a new series of benz[d]thiazole-based ligands (1-18) was synthesized by applying the bioisosteric approach derived from the selective D3Rs ligand BP-897 and its structurally related benz[d]imidazole derivatives. Herein, introduction of the benz[d]thiazole moiety was well tolerated by D2sR and D3R binding sites leading to antagonist affinities in the low nanomolar concentration range at both receptor subtypes. Further exploration of different substitution patterns at the benz[d]thiazole heterocycle and the basic 4-phenylpiperazine resulted in the discovery of high dually acting D2sR and D3R ligands. Moreover, the methoxy substitution at 2-position of 4-phenylpiperazine resulted in significantly (22-fold) increased D2sR binding affinity as compared to the parent ligand BP-897, and improved physicochemical and drug-likeness properties of ligands 1-9. However, the latter structural modifications failed to improve the drug-able properties in ligands having un-substituted 4-phenylpiperazine analogues (10-18). Accordingly, compound 7 showed in addition to high dual affinity at the D2sR and D3R (Ki (hD2SR) = 2.8 ± 0.8 nM; Ki (hD3R) = 3.0 ± 1.6 nM), promising clogS, clogP, LE (hD2sR, hD3R), LipE (hD2sR, hD3R), and drug-likeness score values of -4.7, 4.2, (0.4, 0.4), (4.4, 4.3), and 0.7, respectively. Also, the deaminated analogue 8 (Ki (hD2SR) = 3.2 ± 0.4 nM; Ki (hD3R) = 8.5 ± 2.2 nM) revealed clogS, clogP, LE (hD2sR, hD3R), LipE (hD2sR, hD3R) and drug-likeness score values of -4.7, 4.2, (0.4, 0.4), (3.9, 3.5), and 0.4, respectively. The results observed for the newly developed benz[d]thiazole-based ligands 1-18 provide clues for the diversity in structure activity relationships (SARs) at the D2sR and D3R subtypes.
Coopman, K.; Wallis, R.; Robb, G.; Brown, A. J. H.; Wilkinson, G. F.; Timms, D.
2011-01-01
The C-terminal regions of glucagon-like peptide-1 (GLP-1) bind to the N terminus of the GLP-1 receptor (GLP-1R), facilitating interaction of the ligand N terminus with the receptor transmembrane domain. In contrast, the agonist exendin-4 relies less on the transmembrane domain, and truncated antagonist analogs (e.g. exendin 9–39) may interact solely with the receptor N terminus. Here we used mutagenesis to explore the role of residues highly conserved in the predicted transmembrane helices of mammalian GLP-1Rs and conserved in family B G protein coupled receptors in ligand binding and GLP-1R activation. By iteration using information from the mutagenesis, along with the available crystal structure of the receptor N terminus and a model of the active opsin transmembrane domain, we developed a structural receptor model with GLP-1 bound and used this to better understand consequences of mutations. Mutation at Y152 [transmembrane helix (TM) 1], R190 (TM2), Y235 (TM3), H363 (TM6), and E364 (TM6) produced similar reductions in affinity for GLP-1 and exendin 9–39. In contrast, other mutations either preferentially [K197 (TM2), Q234 (TM3), and W284 (extracellular loop 2)] or solely [D198 (TM2) and R310 (TM5)] reduced GLP-1 affinity. Reduced agonist affinity was always associated with reduced potency. However, reductions in potency exceeded reductions in agonist affinity for K197A, W284A, and R310A, while H363A was uncoupled from cAMP generation, highlighting critical roles of these residues in translating binding to activation. Data show important roles in ligand binding and receptor activation of conserved residues within the transmembrane domain of the GLP-1R. The receptor structural model provides insight into the roles of these residues. PMID:21868452
Khansari, Maryam Emami; Johnson, Corey R.; Basaran, Ismet; Nafis, Aemal; Wang, Jing
2015-01-01
Tris(3-aminopropyl)amine-based tripodal urea and thiourea receptors, tris([(4-cyanophenyl)amino]propyl)urea (L1) and tris([(4-cyanophenyl)amino]propyl)thiourea (L2), have been synthesized and their anion binding properties have been investigated for halides and oxoanions. As investigated by 1H NMR titrations, each receptor binds an anion with a 1:1 stoichiometry via hydrogen-bonding interactions (NH⋯anion), showing the binding trend in the order of F− > H2PO4− > HCO3− > HSO4− > CH3COO− > SO42− > Cl− > Br− > I in DMSO-d6. The interactions of the receptors were further studied by 2D NOESY, showing the loss of NOESY contacts of two NH resonances for the complexes of F−, H2PO4−, HCO3−, HSO4− or CH3COO− due to the strong NH⋯anion interactions. The observed higher binding affinity for HSO4− than SO42− is attributed to the proton transfer from HSO4− to the central nitrogen of L1 or L2 which was also supported by the DFT calculations, leading to the secondary acid-base interactions. The thiourea receptor L2 has a general trend to show a higher affinity for an anion as compared to the urea receptor L1 for the corresponding anion in DMSO-d6. In addition, the compound L2 has been exploited for its extraction properties for fluoride in water using a liquid-liquid extraction technique, and the results indicate that the receptor effectively extracts fluoride from water showing ca. 99% efficiency (based on L2). PMID:28184300
Clayton, R N; Shakespear, R A; Duncan, J A; Marshall, J C; Munson, P J; Rodbard, D
1979-12-01
Studies of pituitary plasma membrane gonadotropin-releasing hormone (GnRH) receptors using [125I]-iodo-GnRH suffer major disadvantages. Only a small (less than 25%) proportion of specific tracer binding is to high affinity sites, with more than 70% bound to low affinity sites (Ka = 1 x 10(6) M-1). [125I]Iodo-GnRH is also inactivated during incubation with pituitary plasma membrane preparations. Two superactive analongs of GnRH, substituted in positions 6 and 10, were used as the labeled ligand to overcome these problems. Both analogs bound to the same high affinity sites as GnRH on bovine pituitary plasma membranes, though the affinity of the analogs was higher than that of the natural decapeptide (Ka = 2.0 x 10(9), 6.0 x 10(9), and 3.0 x 10(8) M-1 for [D-Ser(TBu)6]des-Gly10-GnRH ethylamide, [D-Ala6]des-Gly10-GnRH ethylamide, and GnRH, respectively. The labeled analogs bound to a single class of high affinity sites with less than 15% of the specific binding being to low affinity sites (Ka approximately equal to 1 x 10(6) M-1). The labeled analogs were not inactivated during incubation with the pituitary membrane preparations. Using the analogs as tracer, a single class of high affinity sites (K1 = 4.0 x 10(9) M-1) was also demonstrated on crude 10,800 x g rat pituitary membrane preparations. Use of these analogs as both the labeled and unlabeled ligand offers substantial advantages over GnRH for investigation of GnRH receptors, allowing accurate determination of changes in their numbers and affinities under various physiological conditions.
Allosteric regulation by oleamide of the binding properties of 5-hydroxytryptamine7 receptors.
Hedlund, P B; Carson, M J; Sutcliffe, J G; Thomas, E A
1999-12-01
Oleamide belongs to a family of amidated lipids with diverse biological activities, including sleep induction and signaling modulation of several 5-hydroxytryptamine (5-HT) receptor subtypes, including 5-HT1A, 5-HT2A/2C, and 5-HT7. The 5-HT7 receptor, predominantly localized in the hypothalamus, hippocampus, and frontal cortex, stimulates cyclic AMP formation and is thought to be involved in the regulation of sleep-wake cycles. Recently, it was proposed that oleamide acts at an allosteric site on the 5-HT7 receptor to regulate cyclic AMP formation. We have further investigated the interaction between oleamide and 5-HT7 receptors by performing radioligand binding assays with HeLa cells transfected with the 5-HT7 receptor. Methiothepin, clozapine, and 5-HT all displaced specific [3H]5-HT (100 nM) binding, with pK(D) values of 7.55, 7.85, and 8.39, respectively. Oleamide also displaced [3H]5-HT binding, but the maximum inhibition was only 40% of the binding. Taking allosteric (see below) cooperativity into account, a K(D) of 2.69 nM was calculated for oleamide. In saturation binding experiments, oleamide caused a 3-fold decrease in the affinity of [3H]5-HT for the 5-HT7 receptor, without affecting the number of binding sites. A Schild analysis showed that the induced shift in affinity of [3H]5-HT reached a plateau, unlike that of a competitive inhibitor, illustrating the allosteric nature of the interaction between oleamide and the 5-HT7 receptor. Oleic acid, the product of oleamide hydrolysis, had a similar effect on [3H]5-HT binding, whereas structural analogs of oleamide, trans-9,10-octadecenamide, cis-8,9-octadecenamide, and erucamide, did not alter [3H]5-HT binding significantly. The findings support the hypothesis that oleamide acts via an allosteric site on the 5-HT7 receptor regulating receptor affinity.
Schepmann, Dirk; Lehmkuhl, Kirstin; Brune, Stefanie; Wünsch, Bernhard
2011-07-15
A selective competitive binding assay for the determination of the affinity of compounds to the human σ(2) receptor using 96-well multiplates and a solid state scintillator was developed. In the assay system, [(3)H]ditolylguanidine (DTG) was used as radioligand and membrane homogenates from human RT-4 cells physiologically expressing σ(2) receptors served as receptor material. In order to block the interaction of the unselective radioligand [(3)H]DTG with σ(1) receptors, all experiments were performed in the presence of the σ(1) selective ligand (+)-pentazocine. The density of σ(2) receptors of the cells was analyzed by a saturation experiment with [(3)H]DTG. The radioligand [(3)H]DTG was bound to a single, saturable site on human σ(2) receptors, resulting in a B(max) value of 2108±162fmol/mg protein and K(d)-value of 8.3±2.0nM. The expression of competing σ(1) receptors was evaluated by performing a saturation experiment using the σ(1) selective radioligand [(3)H](+)-pentazocine, which resulted in a B(max) value of 279±40fmol/mg protein and K(d) value of 13.4±1.6nM. For validation of the σ(2) binding assay, the K(i)-values of four σ(2) ligands (ditolylguanidine, haloperidol, rimczole and BMY-14802) were determined with RT-4 cell membrane preparations. The K(i) values obtained from these experiments are in good accordance with the K(i)-values obtained with rat liver membrane preparations as receptor material and with K(i) values given in the literature. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seeman, P.; Niznik, H.B.; Guan, H.C.
1989-12-01
Dopamine receptor types D{sub 1} and D{sub 2} can oppose enhance each other's actions for electrical, biochemical, and psychomotor effects. The authors report a D{sub 1}-D{sub 2} interaction in homogenized tissue as revealed by ligand binding. D{sub 2} agonists lowered the binding of ({sup 3}H)raclopride to D{sub 2} receptors in striatal and anterior pituitary tissues. Pretreating the tissue with the D{sub 1}-selective antagonist SCH 23390 prevented the agonist-induced decrease in ({sup 3}H)raclopride binding to D{sub 2} sites in the striatum but not in the anterior pituitary, which has no D{sub 1} receptors. Conversely, a dopamine-induced reduction in the binding ofmore » ({sup 3}H)SCH 23390 to D{sub 1} receptors could be prevented by the D{sub 2}-selective antagonist eticlopride. Receptor photolabeling experiments confirmed both these D{sub 1}-D{sub 2} interactions. The blocking effect by SCH 23390 was similar to that produced by a nonhydrolyzable guanine nucleotide analogue, and SCH 23390 reduced the number of agonist-labeled D{sub 2} receptors in the high-affinity state. Thus, the D{sub 1}-D{sub 2} link may be mediated by guanine nucleotide-binding protein components. The link may underlie D{sub 1}-D{sub 2} interactions influencing behavior, since the link was missing in over half the postmortem striata from patients with schizophrenia and Huntington disease (both diseases that show some hyperdopamine signs) but was present in human control, Alzheimer, and Parkinson striata.« less
Rabiner, Eugenii A; Gunn, Roger N; Wilkins, Martin R; Sedman, Ewen; Grasby, Paul M
2002-09-01
The use of so-called, atypical antipsychotic medication is becoming more widespread in the treatment of psychotic disorders. EMD 128 130 is a novel compound acting as an agonist at the 5-HT1A receptor, and as an antagonist at the dopamine-2 (D2) receptor. This dual action may confer additional benefits over selective D2 antagonists in the treatment of psychotic disorders. In this study, we investigated the occupancy of EMD 128 130 in vivo at the human D2 and 5-HT1A receptors with positron emission tomography using the radiotracers [11C]raclopride and [11C]WAY-100635. Seven healthy volunteers were examined before and after 5 days of treatment with EMD 128 130, administered in an incremental dose building up to 50 mg, b.d. A significant occupancy was demonstrated at the human D2 receptor (40% following a dose of 50 mg, b.d.) while there was no consistent effect observed at the 5-HT1A receptor, despite a similar affinity of EMD 128 130 for cloned human D2 and 5-HT1A receptors, and the presence of typical, central 5-HT1A agonist side-effects. The differential effects of EMD 128 130 at the D2 and the 5-HT1A receptor (antagonist at D2 receptor, agonist at the 5-HTIA receptor) may explain the differences in occupancy observed.
Chen, Chen; Tucci, Fabio C; Jiang, Wanlong; Tran, Joe A; Fleck, Beth A; Hoare, Sam R; Wen, Jenny; Chen, Takung; Johns, Michael; Markison, Stacy; Foster, Alan C; Marinkovic, Dragan; Chen, Caroline W; Arellano, Melissa; Harman, John; Saunders, John; Bozigian, Haig; Marks, Daniel
2008-05-15
A series of 2-piperazine-alpha-isopropylbenzylamine derivatives were synthesized and characterized as melanocortin-4 receptor (MC4R) antagonists. Attaching an amino acid to benzylamines 7 significantly increased their binding affinity, and the resulting compounds 8-12 bound selectively to MC4R over other melanocortin receptor subtypes and behaved as functional antagonists. These compounds were also studied for their permeability using Caco-2 cell monolayers and metabolic stability in human liver microsomes. Most compounds exhibited low permeability and high efflux ratio possibly due to their high molecular weights. They also showed moderate metabolic stability which might be associated with their moderate to high lipophilicity. Pharmacokinetic properties of these MC4R antagonists, including brain penetration, were studied in mice after oral and intravenous administrations. Two compounds identified to possess high binding affinity and selectivity, 10d and 11d, were studied in a murine cachexia model. After intraperitoneal (ip) administration of 1mg/kg dose, mice treated with 10d had significantly more food intake and weight gain than the control animals, demonstrating efficacy by blocking the MC4 receptor. Similar in vivo effects were also observed when 11d was dosed orally at 20mg/kg. These results provide further evidence that a potent and selective MC4R antagonist has potential in the treatment of cancer cachexia.
Bartoszyk, G D; Van Amsterdam, C; Greiner, H E; Rautenberg, W; Russ, H; Seyfried, C A
2004-02-01
Sarizotan exhibited high affinities only to serotonin 5-HT1A receptors and dopamine DA D4>D3>D2 receptors with the profile of a 5-HT1A agonist and DA antagonist demonstrated by the inhibition of cAMP-stimulation and guinea pig ileum contraction, decreased accumulation of the 5-HT precursor 5-hydroxytryptophan and increased levels of 5-HT metabolites, increased accumulation of DA precursor dihydroxyphenylalanine (DOPA) and the reduced levels of DA metabolites in intact rats. However, sarizotan at higher doses decreased DA precursor accumulation in reserpinized rats and induced contralateral rotational behavior in unilaterally substantia nigra lesioned rats, indicating some intrinsic dopaminergic activity; at D2 receptors sarizotan may act as a partial agonist, depending on the dopaminergic impulse flow. Sarizotan represents a new approach for the treatment of extrapyramidal motor complications such as l-DOPA-induced dyskinesia in Parkinson's disease.
Negri, L.; Improta, G.; Lattanzi, R.; Potenza, R. L.; Luchetti, F.; Melchiorri, P.
1995-01-01
1. In rats, the interaction between the mu-opioid agonist dermorphin and the delta-opioid agonist [D-Ala2, Glu4]deltorphin was studied in binding experiments to delta-opioid receptors and in the antinociceptive test to radiant heat. 2. When injected i.c.v., doses of [D-Ala2, Glu4]deltorphin higher than 20 nmol produced antinociception in the rat tail-flick test to radiant heat. Lower doses were inactive. None of the doses tested elicited the maximum achievable response. This partial antinociception was accomplished with an in vivo occupancy of more than 97% of brain delta-opioid receptors and of 17% of mu-opioid receptors. Naloxone (0.1 mg kg-1, s.c.), and naloxonazine (10 mg kg-1, i.v., 24 h before), but not the selective delta-opioid antagonist naltrindole, antagonized the antinociception. 3. In vitro competitive inhibition studies in rat brain membranes showed that [D-Ala2, Glu4]deltorphin displaced [3H]-naltrindole from two delta-binding sites of high and low affinity. The addition of 100 microM Gpp[NH]p produced a three fold increase in the [D-Ala2, Glu4]deltorphin Ki value for both binding sites. The addition of 10 nM dermorphin increased the Ki value of the delta-agonist for the high affinity site five times. When Gpp[NH]p was added to the incubation medium together with 10 nM dermorphin, the high affinity Ki of the delta-agonist increased 15 times. 4. Co-administration into the rat brain ventricles of subanalgesic doses of dermorphin and [D-Ala2, Glu4]deltorphin resulted in synergistic antinociceptive responses. 5. Pretreatment with naloxone or with the non-equilibrium mu-antagonists naloxonazine and beta-funaltrexamine completely abolished the antinociceptive response of the mu-delta agonist combinations. 6. Pretreatment with the delta-opioid antagonists naltrindole and DALCE reduced the antinociceptive response of the dermorphin-[D-Ala2, Glu4]deltorphin combinations to a value near that observed after the mu-agonist alone. At the dosage used, naltrindole occupied more than 98% of brain delta-opioid receptors without affecting mu-opioid-receptors. 7. These data suggest that in the rat tail-flick test to radiant heat, mu- and delta-opioid agonists co-operate positively in evoking an antinociceptive response. Although interactions between different opioid pathways cannot be excluded, in vitro binding results indicate that this co-operative antinociception is probably mediated by co-activation of the delta-opioid receptors at the cellular level by the mu- and delta-agonist. PMID:8680727
Varano, Flavia; Catarzi, Daniela; Vincenzi, Fabrizio; Falsini, Matteo; Pasquini, Silvia; Borea, Pier Andrea; Colotta, Vittoria; Varani, Katia
2018-06-09
This paper describes the synthesis and characterization of N 5 -(hetero)arylalkyl-substituted-thiazolo [5,4-d]pyrimidine-5,7-diamine derivatives (4-19) as novel human (h) A 2A adenosine receptor (AR) inverse agonists. Competition binding and cyclic AMP assays indicate that the examined compounds behave as hA 2A AR inverse agonists showing binding affinity values in the nanomolar or subnanomolar range. Notably, compounds 4, 5, 6 and 11 showed two affinity values for the hA 2A ARs with the highest (KH) falling in the femtomolar range and the lowest (KL) of the nanomolar order. In addition, in cyclic AMP assays, compounds 4, 5, 6 and 11 exhibited potency (IC 50 ) values in the picomolar range. This study has confirmed that 2-(2-furanyl)thiazolo [5,4-d]pyrimidine-5,7-diamine-based derivatives represent a unique new class of hA 2A AR inverse agonists. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Sóvágó, Judit; Farde, Lars; Halldin, Christer; Schukin, Evgenij; Schou, Magnus; Laszlovszky, István; Kiss, Béla; Gulyás, Balázs
2005-10-15
The effect of reserpine induced dopamine depletion on the binding of the putative dopamine-D3 receptor ligand, [(11)C]RGH-1756 was examined in the monkey brain with positron emission tomography (PET). In a previous series of experiments, we have made an attempt to selectively label D3 receptors in the monkey brain using [(11)C]RGH-1756. Despite high selectivity and affinity of RGH-1756 in vitro, [(11)C]RGH-1756 displayed only low specific binding to D3 receptors in vivo. The aim of the present study was to examine whether low specific binding of [(11)C]RGH-1756 is caused by insufficient in vivo affinity of the ligand, or by high physiological occupancy of D3 receptors by endogenous dopamine (DA). PET experiments were performed in three monkeys under baseline conditions and after administration of reserpine (0.5 mg/kg). The results of the baseline measurements corresponded well to our earlier observations with [(11)C]RGH-1756. Reserpine caused no evident change in the regional distribution of [(11)C]RGH-1756 in the monkey brain, and no conspicuous regional accumulation of activity could be observed. After reserpine treatment there was no evident increase of specific binding and binding potential (BP) of [(11)C]RGH-1756. The lack of increased [(11)C]RGH-1756 binding after reserpine treatment indicates that competition with endogenous DA is not the predominant reason for the failure of the radioligand to label D3 receptors. Therefore, the low binding of [(11)C]RGH-1756 could largely be explained by the need for very high affinity of radioligand for D3 receptors in vivo, to obtain a suitable signal for the minute densities of D3 receptors expressed in the primate brain.
Hasbi, Ahmed; Perreault, Melissa L.; Shen, Maurice Y. F.; Zhang, Lucia; To, Ryan; Fan, Theresa; Nguyen, Tuan; Ji, Xiaodong; O'Dowd, Brian F.; George, Susan R.
2014-01-01
Although the dopamine D1-D2 receptor heteromer has emerging physiological relevance and a postulated role in different neuropsychiatric disorders, such as drug addiction, depression, and schizophrenia, there is a need for pharmacological tools that selectively target such receptor complexes in order to analyze their biological and pathophysiological functions. Since no selective antagonists for the D1-D2 heteromer are available, serial deletions and point mutations were used to precisely identify the amino acids involved in an interaction interface between the receptors, residing within the carboxyl tail of the D1 receptor that interacted with the D2 receptor to form the D1-D2 receptor heteromer. It was determined that D1 receptor carboxyl tail residues 404Glu and 405Glu were critical in mediating the interaction with the D2 receptor. Isolated mutation of these residues in the D1 receptor resulted in the loss of agonist activation of the calcium signaling pathway mediated through the D1-D2 receptor heteromer. The physical interaction between the D1 and D2 receptor could be disrupted, as shown by coimmunoprecipitation and BRET analysis, by a small peptide generated from the D1 receptor sequence that contained these amino acids, leading to a switch in G-protein affinities and loss of calcium signaling, resulting in the inhibition of D1-D2 heteromer function. The use of the D1-D2 heteromer-disrupting peptide in vivo revealed a pathophysiological role for the D1-D2 heteromer in the modulation of behavioral despair. This peptide may represent a novel pharmacological tool with potential therapeutic benefits in depression treatment.—Hasbi, A., Perreault, M. L., Shen, M. Y. F., Zhang, L., To, R., Fan, T., Nguyen, T., Ji, X., O'Dowd, B. F., George, S. R. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism. PMID:25063849
Wager, Travis T; Chappie, Thomas; Horton, David; Chandrasekaran, Ramalakshmi Y; Samas, Brian; Dunn-Sims, Elizabeth R; Hsu, Cathleen; Nawreen, Nawshaba; Vanase-Frawley, Michelle A; O'Connor, Rebecca E; Schmidt, Christopher J; Dlugolenski, Keith; Stratman, Nancy C; Majchrzak, Mark J; Kormos, Bethany L; Nguyen, David P; Sawant-Basak, Aarti; Mead, Andy N
2017-01-18
Dopamine receptor antagonism is a compelling molecular target for the treatment of a range of psychiatric disorders, including substance use disorders. From our corporate compound file, we identified a structurally unique D3 receptor (D3R) antagonist scaffold, 1. Through a hybrid approach, we merged key pharmacophore elements from 1 and D3 agonist 2 to yield the novel D3R/D2R antagonist PF-4363467 (3). Compound 3 was designed to possess CNS drug-like properties as defined by its CNS MPO desirability score (≥4/6). In addition to good physicochemical properties, 3 exhibited low nanomolar affinity for the D3R (D3 K i = 3.1 nM), good subtype selectivity over D2R (D2 K i = 692 nM), and high selectivity for D3R versus other biogenic amine receptors. In vivo, 3 dose-dependently attenuated opioid self-administration and opioid drug-seeking behavior in a rat operant reinstatement model using animals trained to self-administer fentanyl. Further, traditional extrapyramidal symptoms (EPS), adverse side effects arising from D2R antagonism, were not observed despite high D2 receptor occupancy (RO) in rodents, suggesting that compound 3 has a unique in vivo profile. Collectively, our data support further investigation of dual D3R and D2R antagonists for the treatment of drug addiction.
Keller, Max; Pop, Nathalie; Hutzler, Christoph; Beck-Sickinger, Annette G; Bernhardt, Günther; Buschauer, Armin
2008-12-25
Synthesis and characterization of (R)-N(alpha)-(2,2-diphenylacetyl)-N-(4-hydroxybenzyl)-N(omega)-([2,3-(3)H]-propanoyl)argininamide ([(3)H]-UR-MK114), an easily accessible tritium-labeled NPY Y(1) receptor (Y(1)R) antagonist (K(B): 0.8 nM, calcium assay, HEL cells) derived from the (R)-argininamide BIBP 3226, is reported. The radioligand binds with high affinity (K(D), saturation: 1.2 nM, kinetic experiments: 1.1 nM, SK-N-MC cells) and selectivity for Y(1)R over Y(2), Y(4), and Y(5) receptors. The title compound is a useful pharmacological tool for the determination of Y(1)R ligand affinities, quantification of Y(1)R binding sites, and autoradiography.
Beyond small molecule SAR – using the dopamine D3 receptor crystal structure to guide drug design
Keck, Thomas M.; Burzynski, Caitlin; Shi, Lei; Newman, Amy Hauck
2016-01-01
The dopamine D3 receptor is a target of pharmacotherapeutic interest in a variety of neurological disorders including schizophrenia, restless leg syndrome, and drug addiction. The high protein sequence homology between the D3 and D2 receptors has posed a challenge to developing D3 receptor-selective ligands whose behavioral actions can be attributed to D3 receptor engagement, in vivo. However, through primarily small molecule structure-activity relationship (SAR) studies, a variety of chemical scaffolds have been discovered over the past two decades that have resulted in several D3 receptor-selective ligands with high affinity and in vivo activity. Nevertheless, viable clinical candidates remain limited. The recent determination of the high-resolution crystal structure of the D3 receptor has invigorated structure-based drug design, providing refinements to the molecular dynamic models and testable predictions about receptor-ligand interactions. This review will highlight recent preclinical and clinical studies demonstrating potential utility of D3 receptor-selective ligands in the treatment of addiction. In addition, new structure-based rational drug design strategies for D3 receptor-selective ligands that complement traditional small molecule SAR to improve the selectivity and directed efficacy profiles are examined. PMID:24484980
Adrenergic receptors in frontal cortex in human brain.
Cash, R; Raisman, R; Ruberg, M; Agid, Y
1985-02-05
The binding of three adrenergic ligands ([3H]prazosin, [3H]clonidine, [3H]dihydroalprenolol) was studied in the frontal cortex of human brain. alpha 1-Receptors, labeled by [3H]prazosin, predominated. [3H]Clonidine bound to two classes of sites, one of high affinity and one of low affinity. Guanosine triphosphate appeared to lower the affinity of [3H]clonidine for its receptor. [3H]Dihydroalprenolol bound to three classes of sites: the beta 1-receptor, the beta 2-receptor and a receptor with low affinity which represented about 40% of the total binding, but which was probably a non-specific site; the beta 1/beta 2 ratio was 1/2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fedynyshyn, J.P.
The opioid binding characteristics of the rat (PAG) and the signal transduction mechanisms of the opioid receptors were examined with in vitro radioligand binding, GTPase, adenylyl cyclase, and inositol phosphate assays. The nonselective ligand {sup 3}H-ethylketocyclazocine (EKC), the {mu} and {delta} selective ligand {sup 3}H-(D-Ala{sup 2}, D-Leu{sup 5}) enkephalin (DADLE), the {mu} selective ligand {sup 3}H-(D-Ala{sup 2}, N-methyl Phe{sup 4}, Glyol{sup 5}) enkephalin (DAGO), and the {delta} selective ligand {sup 3}H-(D-Pen{sup 2}, D-Pen{sup 5}) enkephalin (DPDPE) were separately used as tracer ligands to label opioid binding sites in rat PAG enriched P{sub 2} membrane in competition with unlabeled DADLE, DAGO,more » DPDPE, or the {kappa} selective ligand trans-3,4-dichloro-N-(2-(1-pyrrolidinyl)cyclohexyl)benzeneacetamide, methane sulfonate, hydrate (U50, 488H). Only {mu} selective high affinity opioid binding was observed. No high affinity {delta} or {kappa} selective binding was detected. {sup 3}H-DAGO was used as a tracer ligand to label {mu} selective high affinity opioid binding sites in PAG enriched P{sub 2} membrane in competition with unlabeled {beta}-endorphin, dynorphin A (1-17), BAM-18, methionine enkephalin, dynorphin A (1-8), and leucine enkephalin. Of these endogenous opioid peptides only those with previously reported high affinity {mu} type opioid binding activity competed with {sup 3}H-DAGO for binding sites in rat PAG enriched P{sub 2} membrane with affinities similar to that of unlabeled DAGO.« less
Identification of a null mutation in the human dopamine D4 receptor gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noethen, M.M.; Cichon, S.; Hebebrand, J.
1994-09-01
Dopamine receptors belong to the family of G protein-coupled receptors. Five different dopamine receptor genes have thus far been identified. These receptors are classified into two main subfamilies: D1, which includes the D1 and D5 receptors, and D2, which includes the D2, D3, and D4 receptors. The dopamine D4 receptor is of great interest for research into neuropsychiatric disorders and psychopharmacology in light of the fact that it binds the antipsychotic medication clozapine with higher affinity than does any other dopamine receptor. In addition, among the dopamine receptors, the D4 receptor shows a uniquely high degree of genetic variation inmore » the human population. We identified a new 13 bp deletion in exon 1 of the D4 gene. This frameshift creates a terminator codon at amino acid position 98. mRNA isolated from brain tissue of two heterozygous persons showed both alleles to be expressed. The deletion occurs with a frequency of 2% in the German population. One person was identified to be homozygous for the deletion. Interestingly, he has a normal intelligence and did not exhibit a major psychiatric disorder as defined by DSM III-R. The 13 bp deletion is the first mutation resulting in premature translation termination reported for a dopamine receptor gene so far. This mutation is a good candidate to test for potential effects on disease and/or individual response to pharmacotherapy. Association studies in patients with various psychiatric illnesses and differences in response to clozapine are underway.« less
Greney, Hugues; Urosevic, Dragan; Schann, Stephan; Dupuy, Laurence; Bruban, Véronique; Ehrhardt, Jean-Daniel; Bousquet, Pascal; Dontenwill, Monique
2002-07-01
The I1 subtype of imidazoline receptors (I1R) is a plasma membrane protein that is involved in diverse physiological functions. Available radioligands used so far to characterize the I(1)R were able to bind with similar affinities to alpha2-adrenergic receptors (alpha2-ARs) and to I1R. This feature was a major drawback for an adequate characterization of this receptor subtype. New imidazoline analogs were therefore synthesized and the present study describes one of these compounds, 2-(2-chloro-4-iodo-phenylamino)-5-methyl-pyrroline (LNP 911), which was of high affinity and selectivity for the I1R. LNP 911 was radioiodinated and its binding properties characterized in different membrane preparations. Saturation experiments with [125I]LNP 911 revealed a single high affinity binding site in PC-12 cell membranes (K(D) = 1.4 nM; B(max) = 398 fmol/mg protein) with low nonspecific binding. [125I]LNP 911 specific binding was inhibited by various imidazolines and analogs but was insensitive to guanosine-5'-O-(3-thio)triphosphate. The rank order of potency of some competing ligands [LNP 911, PIC, rilmenidine, 4-chloro-2-(imidazolin-2-ylamino)-isoindoline (BDF 6143), lofexidine, and clonidine] was consistent with the definition of [125I]LNP 911 binding sites as I1R. However, other high-affinity I1R ligands (moxonidine, efaroxan, and benazoline) exhibited low affinities for these binding sites in standard binding assays. In contrast, when [125I]LNP 911 was preincubated at 4 degrees C, competition curves of moxonidine became biphasic. In this case, moxonidine exhibited similar high affinities on [125I]LNP 911 binding sites as on I1R defined with [125I]PIC. Moxonidine proved also able to accelerate the dissociation of [125I]LNP 911 from its binding sites. These results suggest the existence of an allosteric modulation at the level of the I1R, which seems to be corroborated by the dose-dependent enhancement by LNP 911 of the agonist effects on the adenylate cyclase pathway associated to I1R. Because [125I]LNP 911 was unable to bind to the I2 binding site and alpha2AR, our data indicate that [125I]LNP 911 is the first highly selective radioiodinated probe for I1R with a nanomolar affinity. This new tool should facilitate the molecular characterization of the I1 imidazoline receptor.
Ikoma, Yoko; Watabe, Hiroshi; Hayashi, Takuya; Miyake, Yoshinori; Teramoto, Noboru; Minato, Kotaro; Iida, Hidehiro
2010-01-01
Positron emission tomography (PET) with [11C]raclopride has been used to investigate the density (Bmax) and affinity (Kd) of dopamine D2 receptors related to several neurological and psychiatric disorders. However, in assessing the Bmax and Kd, multiple PET scans are necessary under variable specific activities of administered [11C]raclopride, resulting in a long study period and unexpected physiological variations. In this paper, we have developed a method of multiple-injection graphical analysis (MI-GA) that provides the Bmax and Kd values from a single PET scan with three sequential injections of [11C]raclopride, and we validated the proposed method by performing numerous simulations and PET studies on monkeys. In the simulations, the three-injection protocol was designed according to prior knowledge of the receptor kinetics, and the errors of Bmax and Kd estimated by MI-GA were analyzed. Simulations showed that our method could support the calculation of Bmax and Kd, despite a slight overestimation compared with the true magnitudes. In monkey studies, we could calculate the Bmax and Kd of diseased or normal striatum in a 150 mins scan with the three-injection protocol of [11C]raclopride. Estimated Bmax and Kd values of D2 receptors in normal or partially dopamine-depleted striatum were comparable to the previously reported values. PMID:19904285
Binding pose and affinity prediction in the 2016 D3R Grand Challenge 2 using the Wilma-SIE method
NASA Astrophysics Data System (ADS)
Hogues, Hervé; Sulea, Traian; Gaudreault, Francis; Corbeil, Christopher R.; Purisima, Enrico O.
2018-01-01
The Farnesoid X receptor (FXR) exhibits significant backbone movement in response to the binding of various ligands and can be a challenge for pose prediction algorithms. As part of the D3R Grand Challenge 2, we tested Wilma-SIE, a rigid-protein docking method, on a set of 36 FXR ligands for which the crystal structures had originally been blinded. These ligands covered several classes of compounds. To overcome the rigid protein limitations of the method, we used an ensemble of publicly available structures for FXR from the PDB. The use of the ensemble allowed Wilma-SIE to predict poses with average and median RMSDs of 2.3 and 1.4 Å, respectively. It was quite clear, however, that had we used a single structure for the receptor the success rate would have been much lower. The most successful predictions were obtained on chemical classes for which one or more crystal structures of the receptor bound to a molecule of the same class was available. In the absence of a crystal structure for the class, observing a consensus binding mode for the ligands of the class using one or more receptor structures of other classes seemed to be indicative of a reasonable pose prediction. Affinity prediction proved to be more challenging with generally poor correlation with experimental IC50s (Kendall tau 0.3). Even when the 36 crystal structures were used the accuracy of the predicted affinities was not appreciably improved. A possible cause of difficulty is the internal energy strain arising from conformational differences in the receptor across complexes, which may need to be properly estimated and incorporated into the SIE scoring function.
Further evidence of no linkage between schizophrenia and the dopamine D{sub 3} receptor gene locus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nanko, S.; Fukuda, R.; Hattori, M.
The dopamine hypothesis of schizophrenia proposed that dopaminergic pathways are involved in the etiology of the disease. In particular, interest among psychiatrists has focused on the D{sub 2} receptor because of its affinity to antipsychotic drugs. Recently a new dopamine receptor gene has been cloned and named the dopamine D{sub 3} receptor. The D{sub 3} receptor is a potential site for antipsychotic drug action and may be involved in the pathophysiology of schizophrenia. We have carried out a linkage study between the susceptibility gene for schizophrenia and polymorphism of the dopamine D{sub 3} receptor gene in two Japanese pedigrees. Themore » LOD scores were negative for all genetic models and for all affective status at a recombination fraction {theta} = 0. Linkage of DRD{sub 3} has been excluded for the model 1 (dominant model) and the model 3 (recessive model). The LOD score was -3.43 at {theta} = 0 for model 1 (dominant model) and broad definition of affected status. These results were consistent with previous studies. 19 refs., 2 figs., 3 tabs.« less
Wood, Martyn; Ates, Ali; Andre, Veronique Marie; Michel, Anne; Barnaby, Robert; Gillard, Michel
2016-02-01
Agonists at dopamine D2 and D3 receptors are important therapeutic agents in the treatment of Parkinson's disease. Compared with the use of agonists, allosteric potentiators offer potential advantages such as temporal, regional, and phasic potentiation of natural signaling, and that of receptor subtype selectivity. We report the identification of a stereoselective interaction of a benzothiazol racemic compound that acts as a positive allosteric modulator (PAM) of the rat and human dopamine D2 and D3 receptors. The R isomer did not directly stimulate the dopamine D2 receptor but potentiated the effects of dopamine. In contrast the S isomer attenuated the effects of the PAM and the effects of dopamine. In radioligand binding studies, these compounds do not compete for binding of orthosteric ligands, but indeed the R isomer increased the number of high-affinity sites for [(3)H]-dopamine without affecting K(d). We went on to identify a more potent PAM for use in native receptor systems. This compound potentiated the effects of D2/D3 signaling in vitro in electrophysiologic studies on dissociated striatal neurons and in vivo on the effects of L-dopa in the 6OHDA (6-hydroxydopamine) contralateral turning model. These PAMs lacked activity at a wide variety of receptors, lacked PAM activity at related Gi-coupled G protein-coupled receptors, and lacked activity at D1 receptors. However, the PAMs did potentiate [(3)H]-dopamine binding at both D2 and D3 receptors. Together, these studies show that we have identified PAMs of the D2 and D3 receptors both in vitro and in vivo. Such compounds may have utility in the treatment of hypodopaminergic function. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Zald, David H.; Woodward, Neil D.; Cowan, Ronald L.; Riccardi, Patrizia; Ansari, M. Sib; Baldwin, Ronald M.; Cowan, Ronald L.; Smith, Clarence E.; Hakyemez, Helene; Li, Rui; Kessler, Robert M.
2010-01-01
Individual differences in dopamine D2-like receptor availability arise across all brain regions expressing D2-like receptors. However, the inter-relationships in receptor availability across brain regions are poorly understood. To address this issue, we examined the relationship between D2-like binding potential (BPND) across striatal and extrastriatal regions in a sample of healthy participants. PET imaging was performed with the high affinity D2/D3 ligand [18F]fallypride in 45 participants. BPND images were submitted to voxel-wise principal components analysis to determine the pattern of associations across brain regions. Individual differences in D2-like BPND were explained by three distinguishable components. A single component explained almost all of the variance within the striatum, indicating that individual differences in receptor availability vary in a homogenous manner across the caudate, putamen, and ventral striatum. Cortical BPND was only modestly related to striatal BPND, and mostly loaded on a distinct component. After controlling for the general level of cortical D2-like BPND, an inverse relationship emerged between receptor availability in the striatum and the ventral temporal and ventromedial frontal cortices, suggesting possible cross-regulation of D2-like receptors in these regions. The analysis additionally revealed evidence of: 1) a distinct component involving the midbrain and limbic areas; 2) a dissociation between BPND in the medial and lateral temporal regions; and 3) a dissociation between BPND in the medial/midline and lateral thalamus. In summary, individual differences in D2-like receptor availability reflect several distinct patterns. This conclusion has significant implications for neuropsychiatric models that posit global or regionally specific relationships between dopaminergic tone and behavior. PMID:20149883
Prostaglandins and Their Receptors in Eosinophil Function and As Therapeutic Targets
Peinhaupt, Miriam; Sturm, Eva M.; Heinemann, Akos
2017-01-01
Of the known prostanoid receptors, human eosinophils express the prostaglandin D2 (PGD2) receptors DP1 [also D-type prostanoid (DP)] and DP2 (also chemoattractant receptor homologous molecule, expressed on Th2 cells), the prostaglandin E2 receptors EP2 and EP4, and the prostacyclin (PGI2) receptor IP. Prostanoids can bind to either one or multiple receptors, characteristically have a short half-life in vivo, and are quickly degraded into metabolites with altered affinity and specificity for a given receptor subtype. Prostanoid receptors signal mainly through G proteins and naturally activate signal transduction pathways according to the G protein subtype that they preferentially interact with. This can lead to the activation of sometimes opposing signaling pathways. In addition, prostanoid signaling is often cell-type specific and also the combination of expressed receptors can influence the outcome of the prostanoid impulse. Accordingly, it is assumed that eosinophils and their (patho-)physiological functions are governed by a sensitive prostanoid signaling network. In this review, we specifically focus on the functions of PGD2, PGE2, and PGI2 and their receptors on eosinophils. We discuss their significance in allergic and non-allergic diseases and summarize potential targets for drug intervention. PMID:28770200
Ihara, Makoto; Hikida, Mai; Matsushita, Hiroyuki; Yamanaka, Kyosuke; Kishimoto, Yuya; Kubo, Kazuki; Watanabe, Shun; Sakamoto, Mifumi; Matsui, Koutaro; Yamaguchi, Akihiro; Okuhara, Daiki; Furutani, Shogo; Sattelle, David B; Matsuda, Kazuhiko
2018-06-01
Neonicotinoid insecticides interact with the orthosteric site formed at subunit interfaces of insect nicotinic ACh (nACh) receptors. However, their interactions with the orthosteric sites at α-non α and α-α subunit interfaces remain poorly understood. The aim of this study was to elucidate the mechanism of neonicotinoid actions using the Drosophila Dα1-chicken β2 hybrid nACh receptor. Computer models of the (Dα1) 3 (β2) 2 nACh receptor in complex with imidacloprid and thiacloprid were generated. Amino acids in the Dα1 subunit were mutated to corresponding amino acids in the human α4 subunit to examine their effects on the agonist actions of neonicotinoids on (Dα1) 3 (β2) 2 and (Dα1) 2 (β2) 3 nACh receptors expressed in Xenopus laevis oocytes using voltage-clamp electrophysiology. The (Dα1) 3 (β2) 2 nACh receptor models indicated that amino acids in loops D, E and G probably determine the effects of neonicotinoids. The amino acid mutations tested had minimal effects on the EC 50 for ACh. However, the R57S mutation in loop G, although having minimal effect on imidacloprid's actions, reduced the affinity of thiacloprid for the (Dα1) 3 (β2) 2 nACh receptor, while scarcely affecting thiacloprid's action on the (Dα1) 2 (β2) 3 nACh receptor. Both the K140T and the combined R57S;K140T mutations reduced neonicotinoid efficacy but only for the (Dα1) 3 (β2) 2 nACh receptor. Combining the E78K mutation with the R57S;K140T mutations resulted in a selective reduction of thiacloprid's affinity for the (Dα1) 3 (β2) 2 nACh receptor. These findings suggest that a triangle of residues from loops D, E and G contribute to the selective actions of neonicotinoids on insect-vertebrate hybrid nACh receptors. This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc. © 2017 The British Pharmacological Society.
Czoty, Paul W; Nader, Michael A
2015-03-13
Drugs acting at D3 dopamine receptors have been suggested as medications for cocaine dependence. These experiments examined the effects of intravenously and orally administered buspirone, a D2-like receptor antagonist with high affinity for D3 and D4 receptors, on the relative reinforcing strength of cocaine in group-housed male cynomolgus monkeys. Use of socially housed monkeys permitted the assessment of whether social status, known to influence D2-like receptor availability, modulates the behavioral effects of buspirone. Buspirone was administered acutely to monkeys self-administering cocaine under a food-drug choice procedure in which a cocaine self-administration dose-effect curve was determined daily. When administered by either route, buspirone significantly decreased cocaine choice in dominant-ranked monkeys. In subordinate monkeys, however, i.v. buspirone was ineffective on average, and oral buspirone increased choice of lower cocaine doses. The effects of buspirone only differed according to route of administration in subordinate monkeys. Moreover, it is noteworthy that the effects of buspirone were similar to those of the D3 receptor-selective antagonist PG01037 and qualitatively different than those of less selective drugs that act at D2-like or serotonin (5-HT)1A receptors, suggesting a D3 and possibly D4 receptor mechanism of action for buspirone. Taken together, the data support the utility of drugs targeting D3/D4 receptors as potential treatments for cocaine addiction, particularly in combination with enriching environmental manipulations.
N-terminal galanin-(1-16) fragment is an agonist at the hippocampal galanin receptor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisone, G.; Berthold, M.; Bedecs, K.
1989-12-01
The galanin N-terminal fragment (galanin-(1-16)) has been prepared by solid-phase synthesis and by enzymic cleavage of galanin by endoproteinase Asp-N. This peptide fragment displaced {sup 125}I-labeled galanin in receptor autoradiography experiments on rat forebrain and spinal cord and in equilibrium binding experiments from high-affinity binding sites in the ventral hippocampus with an IC50 of approximately 3 nM. In tissue slices of the same brain area, galanin-(1-16), similarly to galanin, inhibited the muscarinic agonist-stimulated breakdown of inositol phospholipids. Upon intracerebroventricular administration, galanin-(1-16) (10 micrograms/15 microliters) also inhibited the scopolamine (0.3 mg/kg, s.c.)-evoked release of acetylcholine, as studied in vivo by microdialysis.more » Substitution of (L-Trp2) for (D-Trp2) resulted in a 500-fold loss in affinity as compared with galanin-(1-16). It is concluded that, in the ventral hippocampus, the N-terminal galanin fragment (galanin-(1-16)) is recognized by the galanin receptors controlling acetylcholine release and muscarinic agonist-stimulated inositol phospholipid breakdown as a high-affinity agonist and that amino acid residue (Trp2) plays an important role in the receptor-ligand interactions.« less
Wilson, Richard J; Giblin, Gerard M P; Roomans, Susan; Rhodes, Sharron A; Cartwright, Kerri-Ann; Shield, Vanessa J; Brown, Jason; Wise, Alan; Chowdhury, Jannatara; Pritchard, Sara; Coote, Jim; Noel, Lloyd S; Kenakin, Terry; Burns-Kurtis, Cynthia L; Morrison, Valerie; Gray, David W; Giles, Heather
2006-01-01
N-{2-[4-(4,9-diethoxy-1-oxo-1,3-dihydro-2H-benzo[f]isoindol-2-yl)phenyl]acetyl}benzene sulphonamide (GW627368X) is a novel, potent and selective competitive antagonist of prostanoid EP4 receptors with additional human TP receptor affinity. At recombinant human prostanoid EP4 receptors expressed in HEK293 cells, GW627368X produced parallel rightward shifts of PGE2 concentration–effect (E/[A]) curves resulting in an affinity (pKb) estimate of 7.9±0.4 and a Schild slpoe not significantly different from unity. The affinity was independent of the agonist used. In rings of phenylephrine precontracted piglet saphenous vein, GW627368X (30–300 nM) produced parallel rightward displacement of PGE2 E/[A] curves (pKb=9.2±0.2; slope=1). GW627368X appears to bind to human prostanoid TP receptors but not the TP receptors of other species. In human washed platelets, GW627368X (10 μM) produced 100% inhibition of U-46619 (EC100)-induced aggregation (approximate pA2 ∼7.0). However, in rings of rabbit and piglet saphenous vein and of guinea-pig aorta GW627368X (10 μM) did not displace U-46619 E/[A] curves indicating an affinity of <5.0 for rabbit and guinea-pig prostanoid TP receptors. In functional assays GW627368X is devoid of both agonism and antagonist affinity for prostanoid CRTH2, EP2, EP3, IP and FP receptors. At prostanoid EP1 receptors, GW627368X was an antagonist with a pA2 of 6.0, and at prostanoid IP receptors the compound increased the maximum effect of iloprost by 55%. At rabbit prostanoid EP2 receptors the pA2 of GW627368X was <5.0. In competition radioligand bioassays, GW627368X had affinity for human prostanoid EP4 and TP receptors (pKi=7.0±0.2 (n=10) and 6.8 (n=2), respectively). Affinity for all other human prostanoid receptors was <5.3. GW627368X will be a valuable tool to explore the role of the prostanoid EP4 receptor in many physiological and pathological settings. PMID:16604093
Lee, Sang-Chul; Hong, Seungpyo; Park, Keunwan; Jeon, Young Ho; Kim, Dongsup; Cheong, Hae-Kap; Kim, Hak-Sung
2012-01-01
Repeat proteins are increasingly attracting much attention as alternative scaffolds to immunoglobulin antibodies due to their unique structural features. Nonetheless, engineering interaction interface and understanding molecular basis for affinity maturation of repeat proteins still remain a challenge. Here, we present a structure-based rational design of a repeat protein with high binding affinity for a target protein. As a model repeat protein, a Toll-like receptor4 (TLR4) decoy receptor composed of leucine-rich repeat (LRR) modules was used, and its interaction interface was rationally engineered to increase the binding affinity for myeloid differentiation protein 2 (MD2). Based on the complex crystal structure of the decoy receptor with MD2, we first designed single amino acid substitutions in the decoy receptor, and obtained three variants showing a binding affinity (KD) one-order of magnitude higher than the wild-type decoy receptor. The interacting modes and contributions of individual residues were elucidated by analyzing the crystal structures of the single variants. To further increase the binding affinity, single positive mutations were combined, and two double mutants were shown to have about 3000- and 565-fold higher binding affinities than the wild-type decoy receptor. Molecular dynamics simulations and energetic analysis indicate that an additive effect by two mutations occurring at nearby modules was the major contributor to the remarkable increase in the binding affinities. PMID:22363519
Stark, Adam J; Smith, Christopher T; Petersen, Kalen J; Trujillo, Paula; van Wouwe, Nelleke C; Donahue, Manus J; Kessler, Robert M; Deutch, Ariel Y; Zald, David H; Claassen, Daniel O
2018-01-01
Parkinson's disease (PD) is characterized by widespread degeneration of monoaminergic (especially dopaminergic) networks, manifesting with a number of both motor and non-motor symptoms. Regional alterations to dopamine D 2/3 receptors in PD patients are documented in striatal and some extrastriatal areas, and medications that target D 2/3 receptors can improve motor and non-motor symptoms. However, data regarding the combined pattern of D 2/3 receptor binding in both striatal and extrastriatal regions in PD are limited. We studied 35 PD patients off-medication and 31 age- and sex-matched healthy controls (HCs) using PET imaging with [ 18 F]fallypride, a high affinity D 2/3 receptor ligand, to measure striatal and extrastriatal D 2/3 nondisplaceable binding potential (BP ND ). PD patients completed PET imaging in the off medication state, and motor severity was concurrently assessed. Voxel-wise evaluation between groups revealed significant BP ND reductions in PD patients in striatal and several extrastriatal regions, including the locus coeruleus and mesotemporal cortex. A region-of-interest (ROI) based approach quantified differences in dopamine D 2/3 receptors, where reduced BP ND was noted in the globus pallidus, caudate, amygdala, hippocampus, ventral midbrain, and thalamus of PD patients relative to HC subjects. Motor severity positively correlated with D 2/3 receptor density in the putamen and globus pallidus. These findings support the hypothesis that abnormal D 2/3 expression occurs in regions related to both the motor and non-motor symptoms of PD, including areas richly invested with noradrenergic neurons.
Millan, M J; Newman-Tancredi, A; Lochon, S; Touzard, M; Aubry, S; Audinot, V
2002-04-01
Although several tritiated agonists have been used for radiolabelling serotonin (5-hydroxytryptamine, 5-HT)(1B) receptors in rats, data with a selective, radiolabelled antagonist have not been presented. Inasmuch as [3H]GR125,743 specifically labels cloned, human and native guinea pig 5-HT(1B) receptors and has been employed for characterization of cerebral 5-HT(1B) receptor in the latter species [Eur. J. Pharmacol. 327 (1997) 247.], the present study evaluated its utility for characterization of native, cerebral 5-HT(1B) sites in the rat. In homogenates of frontal cortex, [3H]GR125,743 (0.8 nM) showed rapid association (t(1/2)=3.4 min), >90% specific binding and high affinity (K(d)=0.6 nM) for a homogeneous population of receptors with a density (B(max)) of 160 fmol/mg protein. In competition binding studies, affinities were determined for 15 chemically diverse 5-HT(1B) agonists, including 2-[5-[3-(4-methylsulphonylamino)benzyl-1,2,4-oxadiazol-5-yl]-1H-indole-3-yl]ethylamine (L694,247; pK(i), 10.4), 5-carboxamidotryptamine (5-CT; 9.7), 3-[3-(2-dimethylamino-ethyl)-1H-indol-6-yl]-N-(4-methoxybenzyl)acrylamide (GR46,611; 9.6), 5-methoxy-3-(1,2,5,6-tetrahydro-4-pyridinyl)-1H-indole (RU24,969; 9.5), dihydroergotamine (DHE; 8.6), 5-H-pyrrolo[3,2-b]pyridin-5-one,1,4-dihydro-3-(1,2,3,6-tetrahydro-4-pyridinyl (CP93,129; 8.4), anpirtoline (7.9), sumatriptan (7.4), 1-[2-(3-fluorophenyl)ethyl]-4-[3-[5-(1,2,4-triazol-4-yl)-1H-indol-3-yl]propyl]piperazine (L775,606; 6.4) and (minus sign)-1(S)-[2-[4-(4-methoxyphenyl)piperazin-1-yl]ethyl]-N-methyl-3,4-dihydro-1H-2-benzopyran-6-carboxamide (PNU109,291; <5.0). Similarly, affinities were established for 13 chemically diverse antagonists, including N-[4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]-3-methyl-4-(4-pyridyl)benzamide (GR125,743; pK(i), 9.1), (-)cyanopindolol (9.0), (-)-tertatolol (8.2), N-(4-methoxy-3-(4-methylpiperazin-1-yl)phenyl]-2'-methyl-4'-(5-methyl-1,2,4-oxadiozol-3-yl)biphenyl-4-carboxamide (GR127,935; 8.2), N-[3-(1,4-benzodioxan-5-yl)piperidin-4-yl]N-(indan-2yl)amine (S18127; 7.9), metergoline (7.8), (-)-pindolol (7.6), 1'-methyl-5-[2'-methyl-4'-(5-methyl-1,2,4-oxadiazol-3-yl)-biphenyl-4-ylcarbonyl]-2,3,6,7-tetrahydro-5H-spiro[furo[2,3-f]indole-3,4'-piperidine] (SB224,289; 7.5) and ketanserin (<5.0). These rank orders of affinity correspond to the binding profile of 5-HT(1B) rather than 5-HT(1D) receptors. The low affinities of L775,066 and PNU109,291 versus L694,247 should be noted, as well as the low affinity of ketanserin as compared to SB224,289. Finally, in line with species differences, the affinities of several ligands including CP93,129, RU24,969, (-)-pindolol and (-)-propanolol in rat 5-HT(1B) sites were markedly different to guinea pig 5-HT(1B) sites labelled with [3H]GR125,743. In conclusion, [3H]GR125,743 is an appropriate tool for the radiolabelling of native, rat 5-HT(1B) receptors and permitted determination of the affinities of an extensive series of ligands at these sites.
Profile of blonanserin for the treatment of schizophrenia
Tenjin, Tomomi; Miyamoto, Seiya; Ninomiya, Yuriko; Kitajima, Rei; Ogino, Shin; Miyake, Nobumi; Yamaguchi, Noboru
2013-01-01
Blonanserin was developed as an antipsychotic drug in Japan and approved for the treatment of schizophrenia. It belongs to a series of 4-phenyl-2-(1-piperazinyl)pyridines and acts as an antagonist at dopamine D2, D3, and serotonin 5-HT2A receptors. Blonanserin has low affinity for 5-HT2C, adrenergic α1, histamine H1, and muscarinic M1 receptors, but displays relatively high affinity for 5-HT6 receptors. In several short-term double-blind clinical trials, blonanserin had equal efficacy as haloperidol and risperidone for positive symptoms in patients with chronic schizophrenia and was also superior to haloperidol for improving negative symptoms. Blonanserin is generally well tolerated and has a low propensity to cause metabolic side effects and prolactin elevation. We recently reported that blonanserin can improve some types of cognitive function associated with prefrontal cortical function in patients with first-episode and chronic schizophrenia. Taken together, these results suggest that blonanserin may be a promising candidate for a first-line antipsychotic for acute and maintenance therapy for schizophrenia. Further comparative studies are warranted to clarify the benefit/risk profile of blonanserin and its role in the treatment of schizophrenia. PMID:23766647
Profile of blonanserin for the treatment of schizophrenia.
Tenjin, Tomomi; Miyamoto, Seiya; Ninomiya, Yuriko; Kitajima, Rei; Ogino, Shin; Miyake, Nobumi; Yamaguchi, Noboru
2013-01-01
Blonanserin was developed as an antipsychotic drug in Japan and approved for the treatment of schizophrenia. It belongs to a series of 4-phenyl-2-(1-piperazinyl)pyridines and acts as an antagonist at dopamine D2, D3, and serotonin 5-HT2A receptors. Blonanserin has low affinity for 5-HT2C, adrenergic α1, histamine H1, and muscarinic M1 receptors, but displays relatively high affinity for 5-HT6 receptors. In several short-term double-blind clinical trials, blonanserin had equal efficacy as haloperidol and risperidone for positive symptoms in patients with chronic schizophrenia and was also superior to haloperidol for improving negative symptoms. Blonanserin is generally well tolerated and has a low propensity to cause metabolic side effects and prolactin elevation. We recently reported that blonanserin can improve some types of cognitive function associated with prefrontal cortical function in patients with first-episode and chronic schizophrenia. Taken together, these results suggest that blonanserin may be a promising candidate for a first-line antipsychotic for acute and maintenance therapy for schizophrenia. Further comparative studies are warranted to clarify the benefit/risk profile of blonanserin and its role in the treatment of schizophrenia.
Jurutka, Peter W; Bartik, Leonid; Whitfield, G Kerr; Mathern, Douglas R; Barthel, Thomas K; Gurevich, Miriam; Hsieh, Jui-Cheng; Kaczmarska, Magdalena; Haussler, Carol A; Haussler, Mark R
2007-12-01
The vitamin D hormone, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], binds with high affinity to the nuclear vitamin D receptor (VDR), which recruits its retinoid X receptor (RXR) heterodimeric partner to recognize vitamin D responsive elements (VDREs) in target genes. 1,25(OH)(2)D(3) is known primarily as a regulator of calcium, but it also controls phosphate (re)absorption at the intestine and kidney. Fibroblast growth factor 23 (FGF23) is a phosphaturic hormone produced in osteoblasts that, like PTH, lowers serum phosphate by inhibiting renal reabsorption through Npt2a/Npt2c. Real-time PCR and reporter gene transfection assays were used to probe VDR-mediated transcriptional control by 1,25(OH)(2)D(3). Reporter gene and mammalian two-hybrid transfections, plus competitive receptor binding assays, were used to discover novel VDR ligands. 1,25(OH)(2)D(3) induces FGF23 78-fold in osteoblasts, and because FGF23 in turn represses 1,25(OH)(2)D(3) synthesis, a reciprocal relationship is established, with FGF23 indirectly curtailing 1,25(OH)(2)D(3)-mediated intestinal absorption and counterbalancing renal reabsorption of phosphate, thereby reversing hyperphosphatemia and preventing ectopic calcification. Therefore, a 1,25(OH)(2)D(3)-FGF23 axis regulating phosphate is comparable in importance to the 1,25(OH)(2)D(3)-PTH axis that regulates calcium. 1,25(OH)(2)D(3) also elicits regulation of LRP5, Runx2, PHEX, TRPV6, and Npt2c, all anabolic toward bone, and RANKL, which is catabolic. Regulation of mouse RANKL by 1,25(OH)(2)D(3) supports a cloverleaf model, whereby VDR-RXR heterodimers bound to multiple VDREs are juxtapositioned through chromatin looping to form a supercomplex, potentially allowing simultaneous interactions with multiple co-modulators and chromatin remodeling enzymes. VDR also selectively binds certain omega3/omega6 polyunsaturated fatty acids (PUFAs) with low affinity, leading to transcriptionally active VDR-RXR complexes. Moreover, the turmeric-derived polyphenol, curcumin, activates transcription of a VDRE reporter construct in human colon cancer cells. Activation of VDR by PUFAs and curcumin may elicit unique, 1,25(OH)(2)D(3)-independent signaling pathways to orchestrate the bioeffects of these lipids in intestine, bone, skin/hair follicle, and other VDR-containing tissues.
Transient overexpression of striatal D2 receptors impairs operant motivation and interval timing.
Drew, Michael R; Simpson, Eleanor H; Kellendonk, Christoph; Herzberg, William G; Lipatova, Olga; Fairhurst, Stephen; Kandel, Eric R; Malapani, Chara; Balsam, Peter D
2007-07-18
The striatum receives prominent dopaminergic innervation that is integral to appetitive learning, performance, and motivation. Signaling through the dopamine D2 receptor is critical for all of these processes. For instance, drugs with high affinity for the D2 receptor potently alter timing of operant responses and modulate motivation. Recently, in an attempt to model a genetic abnormality encountered in schizophrenia, mice were generated that reversibly overexpress D2 receptors specifically in the striatum (Kellendonk et al., 2006). These mice have impairments in working memory and behavioral flexibility, components of the cognitive symptoms of schizophrenia, that are not rescued when D2 overexpression is reversed in the adult. Here we report that overexpression of striatal D2 receptors also profoundly affects operant performance, a potential index of negative symptoms. Mice overexpressing D2 exhibited impairments in the ability to time food rewards in an operant interval timing task and reduced motivation to lever press for food reward in both the operant timing task and a progressive ratio schedule of reinforcement. The motivational deficit, but not the timing deficit, was rescued in adult mice by reversing D2 overexpression with doxycycline. These results suggest that early D2 overexpression alters the organization of interval timing circuits and confirms that striatal D2 signaling in the adult regulates motivational process. Moreover, overexpression of D2 under pathological conditions such as schizophrenia and Parkinson's disease could give rise to motivational and timing deficits.
Flook, Adam M.; Yang, Jianquan; Miao, Yubin
2013-01-01
The purpose of this study was to examine the effects of amino acids on melanoma targeting and clearance properties of new 99mTc-labeled Arg-X-Asp-conjugated alpha-melanocyte stimulating hormone (α-MSH) peptides. RSD-Lys-(Arg11)CCMSH {c[Arg-Ser-Asp-dTyr-Asp]-Lys-Cys-Cys-Glu-His-dPhe-Arg-Trp-Cys-Arg-Pro-Val-NH2}, RNleD-Lys-(Arg11)CCMSH, RPheD-Lys-(Arg11)CCMSH and RdPheD-Lys-(Arg11)CCMSH peptides were synthesized and evaluated for their melanocortin-1 (MC1) receptor binding affinities in B16/F1 melanoma cells. The biodistribution of 99mTc-RSD-Lys-(Arg11)CCMSH, 99mTc-RFD-Lys-(Arg11)CCMSH and 99mTc-RfD-Lys-(Arg11)CCMSH were determined in B16/F1 melanoma-bearing C57 mice. The substitution of Gly with Ser, Phe and dPhe increased the MC1 receptor binding affinities of the peptides, whereas the substitution of Gly with Nle decreased the MC1 receptor binding affinity of the peptide. 99mTc-RSD-Lys-(Arg11)CCMSH exhibited the highest melanoma uptake (18.01 ± 4.22% ID/g) and the lowest kidney and liver uptake among these 99mTc-peptides. The B16/F1 melanoma lesions could be clearly visualized by SPECT/CT using 99mTc-RSD-Lys-(Arg11)CCMSH as an imaging probe. It is desirable to reduce the renal uptake of 99mTc-RSD-Lys-(Arg11)CCMSH to facilitate its potential therapeutic application. PMID:24131154
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branchek, T.; Adham, N.; Macchi, M.
1990-11-01
The binding properties of the 5-hydroxytryptamine2 (5-HT2) receptor have been the subject of much interest and debate in recent years. The hallucinogenic amphetamine derivative 4-bromo-2,5-dimethoxyphenylisopropylamine (DOB) has been shown to bind to a small number of binding sites with properties very similar to (3H)ketanserin-labeled 5-HT2 receptors, but with much higher agonist affinities. Some researchers have interpreted this as evidence for the existence of a new subtype of 5-HT2 receptor (termed 5-HT2A), whereas others have interpreted these data as indicative of agonist high affinity and agonist low affinity states for the 5-HT2 receptor. In this investigation, a cDNA clone encoding themore » serotonin 5-HT2 receptor was transiently transfected into monkey kidney Cos-7 cells and stably transfected into mouse fibroblast L-M(TK-) cells. In both systems, expression of this single serotonin receptor cDNA led to the appearance of both (3H)DOB and (3H)ketanserin binding sites with properties that matched their binding characteristics in mammalian brain homogenates. Addition of guanosine 5'-(beta, gamma-imido) triphosphate (Gpp(NH)p) to this system caused a rightward shift and steepening of agonist competition curves for (3H) ketanserin binding, converting a two-site binding curve to a single low affinity binding state. Gpp(NH)p addition also caused a 50% decrease in the number of high affinity (3H)DOB binding sites, with no change in the dissociation constant of the remaining high affinity states. These data on a single human 5-HT2 receptor cDNA expressed in two different transfection host cells indicate that (3H)DOB and (3H)ketanserin binding reside on the same gene product, apparently interacting with agonist and antagonist conformations of a single human 5-HT2 receptor protein.« less
Synthesis and Structure–Activity Relationships of N-Benzyl Phenethylamines as 5-HT2A/2C Agonists
2014-01-01
N-Benzyl substitution of 5-HT2A receptor agonists of the phenethylamine structural class of psychedelics (such as 4-bromo-2,5-dimethoxyphenethylamine, often referred to as 2C-B) confer a significant increase in binding affinity as well as functional activity of the receptor. We have prepared a series of 48 compounds with structural variations in both the phenethylamine and N-benzyl part of the molecule to determine the effects on receptor binding affinity and functional activity at 5-HT2A and 5-HT2C receptors. The compounds generally had high affinity for the 5-HT2A receptor with 8b having the highest affinity at 0.29 nM but with several other compounds also exhibiting subnanomolar binding affinities. The functional activity of the compounds was distributed over a wider range with 1b being the most potent at 0.074 nM. Most of the compounds exhibited low to moderate selectivity (1- to 40-fold) for the 5-HT2A receptor in the binding assays, although one compound 6b showed an impressive 100-fold selectivity for the 5-HT2A receptor. In the functional assay, selectivity was generally higher with 1b being more than 400-fold selective for the 5-HT2A receptor. PMID:24397362
Synthesis and structure-activity relationships of N-benzyl phenethylamines as 5-HT2A/2C agonists.
Hansen, Martin; Phonekeo, Karina; Paine, James S; Leth-Petersen, Sebastian; Begtrup, Mikael; Bräuner-Osborne, Hans; Kristensen, Jesper L
2014-03-19
N-Benzyl substitution of 5-HT2A receptor agonists of the phenethylamine structural class of psychedelics (such as 4-bromo-2,5-dimethoxyphenethylamine, often referred to as 2C-B) confer a significant increase in binding affinity as well as functional activity of the receptor. We have prepared a series of 48 compounds with structural variations in both the phenethylamine and N-benzyl part of the molecule to determine the effects on receptor binding affinity and functional activity at 5-HT2A and 5-HT2C receptors. The compounds generally had high affinity for the 5-HT2A receptor with 8b having the highest affinity at 0.29 nM but with several other compounds also exhibiting subnanomolar binding affinities. The functional activity of the compounds was distributed over a wider range with 1b being the most potent at 0.074 nM. Most of the compounds exhibited low to moderate selectivity (1- to 40-fold) for the 5-HT2A receptor in the binding assays, although one compound 6b showed an impressive 100-fold selectivity for the 5-HT2A receptor. In the functional assay, selectivity was generally higher with 1b being more than 400-fold selective for the 5-HT2A receptor.
Tateno, Amane; Arakawa, Ryosuke; Okumura, Masaki; Fukuta, Hajime; Honjo, Kazuyoshi; Ishihara, Keiichi; Nakamura, Hiroshi; Kumita, Shin-ichiro; Okubo, Yoshiro
2013-04-01
Blonanserin is a novel antipsychotic with high affinities for dopamine D(2) and 5-HT(2A) receptors, and it was recently approved for the treatment of schizophrenia in Japan and Korea. Although double-blind clinical trials have demonstrated that blonanserin has equal efficacy to risperidone, and with a better profile especially with respect to prolactin elevation, its profile of in vivo receptor binding has not been investigated in patients with schizophrenia. Using positron emission tomography (PET), we measured striatal and extrastriatal dopamine D(2) receptor occupancy by blonanserin in 15 patients with schizophrenia treated with fixed doses of blonanserin (ie, 8, 16, and 24 mg/d) for at least 4 weeks before PET scans, and in 15 healthy volunteers. Two PET scans, 1 with [(11)C]raclopride for the striatum and 1 with [(11)C]FLB 457 for the temporal cortex and pituitary, were performed on the same day. Striatal dopamine D(2) receptor occupancy by blonanserin was 60.8% (3.0%) [mean (SD)] at 8 mg, 73.4% (4.9%) at 16 mg, and 79.7% (2.3%) at 24 mg. The brain/plasma concentration ratio calculated from D(2) receptor occupancy in the temporal cortex and pituitary was 3.38, indicating good blood-brain barrier permeability. This was the first study to show clinical daily dose amounts of blonanserin occupying dopamine D(2) receptors in patients with schizophrenia. The clinical implications obtained in this study were the optimal therapeutic dose range of 12.9 to 22.1 mg/d of blonanserin required for 70% to 80% dopamine D(2) receptor occupancy in the striatum, and the good blood-brain barrier permeability that suggested a relatively lower risk of hyperprolactinemia.
NASA Astrophysics Data System (ADS)
Kurkcuoglu, Zeynep; Koukos, Panagiotis I.; Citro, Nevia; Trellet, Mikael E.; Rodrigues, J. P. G. L. M.; Moreira, Irina S.; Roel-Touris, Jorge; Melquiond, Adrien S. J.; Geng, Cunliang; Schaarschmidt, Jörg; Xue, Li C.; Vangone, Anna; Bonvin, A. M. J. J.
2018-01-01
We present the performance of HADDOCK, our information-driven docking software, in the second edition of the D3R Grand Challenge. In this blind experiment, participants were requested to predict the structures and binding affinities of complexes between the Farnesoid X nuclear receptor and 102 different ligands. The models obtained in Stage1 with HADDOCK and ligand-specific protocol show an average ligand RMSD of 5.1 Å from the crystal structure. Only 6/35 targets were within 2.5 Å RMSD from the reference, which prompted us to investigate the limiting factors and revise our protocol for Stage2. The choice of the receptor conformation appeared to have the strongest influence on the results. Our Stage2 models were of higher quality (13 out of 35 were within 2.5 Å), with an average RMSD of 4.1 Å. The docking protocol was applied to all 102 ligands to generate poses for binding affinity prediction. We developed a modified version of our contact-based binding affinity predictor PRODIGY, using the number of interatomic contacts classified by their type and the intermolecular electrostatic energy. This simple structure-based binding affinity predictor shows a Kendall's Tau correlation of 0.37 in ranking the ligands (7th best out of 77 methods, 5th/25 groups). Those results were obtained from the average prediction over the top10 poses, irrespective of their similarity/correctness, underscoring the robustness of our simple predictor. This results in an enrichment factor of 2.5 compared to a random predictor for ranking ligands within the top 25%, making it a promising approach to identify lead compounds in virtual screening.
Garg, Neeraj; Li, Yi-Lin; Garcia Collazo, Ana Maria; Litten, Chris; Ryono, Denis E; Zhang, Minsheng; Caringal, Yolanda; Brigance, Robert P; Meng, Wei; Washburn, William N; Agback, Peter; Mellström, Karin; Rehnmark, Stefan; Rahimi-Ghadim, Mahmoud; Norin, Thomas; Grynfarb, Marlena; Sandberg, Johnny; Grover, Gary; Malm, Johan
2007-08-01
Based on the scaffold of the pharmacologically selective thyromimetic 2b, structurally a close analog to KB-141 (2a), a number of novel N-acylated-alpha-amino acid derivatives were synthesized and tested in a TR radioligand binding assay as well as in a reporter cell assay. On the basis of TRbeta(1)-isoform selectivity and affinity, as well as affinity to the reporter cell assay, 3d was selected for further studies in the cholesterol-fed rat model. In this model 3d revealed an improved therapeutic window between cholesterol and TSH lowering but decreased margins versus tachycardia compared with 2a.
Kumar, Virendra; Guo, Deqi; Marella, Michael; Cassel, Joel A; Dehaven, Robert N; Daubert, Jeffrey D; Mansson, Erik
2008-06-15
A series of 2-substituted sulfamoyl arylacetamides of general structure 2 were prepared as potent kappa opioid receptor agonists and the affinities of these compounds for opioid and chimeric receptors were compared with those of dynorphin A. Compounds 2e and 2i were identified as non-peptide small molecules that bound to chimeras 3 and 4 with high affinities similar to dynorphin A, resulting in K(i) values of 1.5 and 1.2 nM and 1.3 and 2.2 nM, respectively.
Perlikowska, Renata; Piekielna, Justyna; Gentilucci, Luca; De Marco, Rossella; Cerlesi, Maria Camilla; Calo, Girolamo; Artali, Roberto; Tömböly, Csaba; Kluczyk, Alicja; Janecka, Anna
2016-02-15
Cyclic pentapeptide Tyr-c[D-Lys-Phe-Phe-Asp]NH2, based on the structure of endomorphin-2 (EM-2), which shows high affinity to the μ-opioid receptor (MOR) and a very strong antinociceptive activity in mice was used as a parent compound for the structure-activity relationship studies. In this report we synthesized analogs of a general sequence Dmt-c[D-Lys-Xaa-Yaa-Asp]NH2, with D-1- or D-2-naphthyl-3-alanine (D-1-Nal or D-2-Nal) in positions 3 or 4. In our earlier papers we have indicated that replacing a phenylalanine residue by the more extended aromatic system of naphthylalanines may result in increased bioactivities of linear analogs. The data obtained here showed that only cyclopeptides modified in position 4 retained the sub-nanomolar MOR and nanomolar κ-opioid receptor (KOR) affinity, similar but not better than that of a parent cyclopeptide. In the in vivo mouse hot-plate test, the most potent analog, Dmt-c[D-Lys-Phe-D-1-Nal-Asp]NH2, exhibited higher than EM-2 but slightly lower than the cyclic parent peptide antinociceptive activity after peripheral (ip) and also central administration (icv). Conformational analyses in a biomimetic environment and molecular docking studies disclosed the structural determinants responsible for the different pharmacological profiles of position 3- versus position 4-modified analogs. Copyright © 2015. Published by Elsevier Masson SAS.
Müller, Christa E; Diekmann, Martina; Thorand, Mark; Ozola, Vita
2002-02-11
This study describes the preparation and binding properties of [(3)H]PSB-11, a novel, potent, and selective antagonist radioligand for human A(3) adenosine receptors (ARs). [(3)H]PSB-11 binding to membranes of Chinese hamster ovary (CHO) cells expressing the human A(3) AR was saturable and reversible. Saturation experiments showed that [(3)H]PSB-11 labeled a single class of binding sites with high affinity (K(D)=4.9 nM) and limited capacity (B(max)=3500 fmol/mg of protein). PSB-11 is highly selective versus the other adenosine receptor subtypes. The new radioligand shows an extraordinarily low degree of non-specific binding rendering it a very useful tool for studying the (patho)physiological roles of A(3 )ARs.
Azriel, Y; Burcher, E
2001-06-01
Radioiodinated neurotensin ((125)I-NT) was used to characterize and localize NT binding sites in normal human sigmoid colon. Specimens were obtained from patients (30-77 years old) undergoing resection for colon carcinoma. Specific binding of (125)I-NT to sigmoid circular muscle membranes was enhanced by o-phenanthroline (1 mM) but other peptidase inhibitors were ineffective. (125)I-NT bound to a high-affinity site of K(d) = 0.88 +/- 0.09 nM and B(max) = 4.03 +/- 0.66 fmol/mg of wet weight tissue (n = 14), although in the majority of patients another site, of low but variable affinity, could also be detected. Specific binding of 50 pM (125)I-NT was inhibited by NT(8-13) > NT > SR142948A > or = neuromedin N > or = SR48692, consistent with binding to the NT1 receptor. In autoradiographic studies, dense specific binding of (125)I-NT was seen over myenteric and submucosal ganglia, moderate binding over circular muscle, and sparse binding over longitudinal muscle and taenia coli. Levocabastine, which has affinity for the NT2 receptor, did not inhibit specific binding of (125)I-NT in membrane competition or autoradiographic studies. NT contracted sigmoid colon circular muscle strips with a pD(2) value of 6.8 +/- 0.2 nM (n = 25). The contractile responses to NT were significantly potentiated in the presence of tetrodotoxin (1 microM), indicating a neural component. Results from functional studies support actions for NT on both muscle and enteric neurons, consistent with the presence of NT receptors on circular muscle and ganglia of human sigmoid colon. The lack of inhibition by levocabastine suggests that the second binding site detected does not correspond to the NT2 receptor.
De Marco, Rossella; Bedini, Andrea; Spampinato, Santi; Cavina, Lorenzo; Pirazzoli, Edoardo; Gentilucci, Luca
2016-10-13
Recently, the tryptophan-containing noncationizable opioid peptides emerged with atypical structure and unexpected in vivo activity. Herein, we describe analogs of the naturally occurring mixed κ/μ-ligand c[Phe-d-Pro-Phe-Trp] 1 (CJ-15,208). Receptor affinity, selectivity, and agonism/antagonism varied upon enlarging macrocycle size, giving the μ-agonist 9 or the δ-antagonist 10 characterized by low nanomolar affinity. In particular, the μ-agonist c[β-Ala-d-Pro-Phe-Trp] 9 was shown to elicit potent antinociception in a mouse model of visceral pain upon systemic administration.
Narendran, Rajesh; Frankle, W. Gordon; Mason, N. Scott; Laymon, Charles M.; Lopresti, Brian J; Price, Julie C.; Kendro, Steve; Vora, Shivangi; Litschge, Maralee; Mountz, James M.; Mathis, Chester A.
2009-01-01
Objective (-)-N-[11C]-Propyl-norapomorphine (NPA) is a full dopamine D2/3 receptor agonist radiotracer suitable for imaging D2/3 receptors configured in a state of high affinity for agonists using Positron Emission Tomography (PET). The aim of the present study was to define the optimal analytic method to derive accurate and reliable D2/3 receptor parameters with [11C]NPA. Methods Six healthy subjects (4 females/2 males) underwent two [11C]NPA scans in the same day. D2/3 receptor binding parameters were estimated using kinetic analysis (using 1- and 2- tissue compartment models) as well as simplified reference tissue method in the three functional subdivisions of the striatum (associative striatum, AST; limbic striatum LST and sensorimotor striatum SMST). The test-retest variability and intraclass correlation coefficient were assessed for distribution volume (VT), binding potential relative to plasma concentration (BPP), and binding potential relative to nondisplaceable uptake (BPND) Results A two-tissue compartment kinetic model adequately described the functional subdivisions of the striatum as well as cerebellum time-activity data. The reproducibility of VT was excellent (≤ 10%) in all regions, for this approach. The reproducibility of both BPP (≤ 12%) and BPND (≤ 10%) was also excellent. The intraclass correlation coefficient of BPP and BPND were acceptable as well (> 0.75) in the three functional subdivisions of the striatum. Although SRTM led to an underestimation of BPND values relative to that estimated by kinetic analysis by 8 to 13%, the values derived using both the methods were reasonably well correlated (r2 = 0.89, n = 84). Both methods were similarly effective at detecting the differences in [11C]NPA BPND between subjects. Conclusion The results of this study indicate that [11C]NPA can be used to measure D2/3 receptors configured in a state of high affinity for the agonists with high reliability and reproducibility in the functional subdivisions of the human striatum. PMID:19301416
Existence of three subtypes of bradykinin B2 receptors in guinea pig.
Seguin, L; Widdowson, P S; Giesen-Crouse, E
1992-12-01
We describe the binding of [3H]bradykinin to homogenates of guinea pig brain, lung, and ileum. Analysis of [3H]bradykinin binding kinetics in guinea pig brain, lung, and ileum suggests the existence of two binding sites in each tissue. The finding of two binding sites for [3H]bradykinin in ileum, lung, and brain was further supported by Scatchard analysis of equilibrium binding in each tissue. [3H]Bradykinin binds to a high-affinity site in brain, lung, and ileum (KD = 70-200 pM), which constitutes approximately 20% of the bradykinin binding, and to a second, lower-affinity site (0.63-0.95 nM), which constitutes the remaining 80% of binding. Displacement studies with various bradykinin analogues led us to subdivide the high- and lower-affinity sites in each tissue and to suggest the existence of three subtypes of B2 receptors in the guinea pig, which we classify as B2a, B2b, and B2c. Binding of [3H]bradykinin is largely to a B2b receptor subtype, which constitutes the majority of binding in brain, lung, and ileum and represents the lower-affinity site in our binding studies. Receptor subtype B2c constitutes approximately 20% of binding sites in the brain and lung and is equivalent to the high-affinity site in brain and lung. We suggest that a third subtype of B2 receptor (high-affinity site in ileum), B2a, is found only in the ileum. All three subtypes of B2 receptors display a high affinity for bradykinin, whereas they show different affinities for various bradykinin analogues displaying agonist or antagonist activities.(ABSTRACT TRUNCATED AT 250 WORDS)
Pharmacologic characterization of the oxytocin receptor in human uterine smooth muscle cells.
Tahara, A; Tsukada, J; Tomura, Y; Wada, K i; Kusayama, T; Ishii, N; Yatsu, T; Uchida, W; Tanaka, A
2000-01-01
[(3)H]-oxytocin was used to characterize the oxytocin receptor found in human uterine smooth muscle cells (USMC). Specific binding of [(3)H]-oxytocin to USMC plasma membranes was dependent upon time, temperature and membrane protein concentration. Scatchard plot analysis of equilibrium binding data revealed the existence of a single class of high-affinity binding sites with an apparent equilibrium dissociation constant (K(d)) of 0.76 nM and a maximum receptor density (B(max)) of 153 fmol mg(-1) protein. The Hill coefficient (n(H)) did not differ significantly from unity, suggesting binding to homogenous, non-interacting receptor populations. Competitive inhibition of [(3)H]-oxytocin binding showed that oxytocin and vasopressin (AVP) receptor agonists and antagonists displaced [(3)H]-oxytocin in a concentration-dependent manner. The order of potencies for peptide agonists and antagonists was: oxytocin>[Asu(1,6)]-oxytocin>AVP= atosiban>d(CH(2))(5)Tyr(Me)AVP>[Thr(4),Gly(7)]-oxytocin>dDAVP, and for nonpeptide antagonists was: L-371257>YM087>SR 49059>OPC-21268>SR 121463A>OPC-31260. Oxytocin significantly induced concentration-dependent increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) and hyperplasia in USMC. The oxytocin receptor antagonists, atosiban and L-371257, potently and concentration-dependently inhibited oxytocin-induced [Ca(2+)](i) increase and hyperplasia. In contrast, the V(1A) receptor selective antagonist, SR 49059, and the V(2) receptor selective antagonist, SR 121463A, did not potently inhibit oxytocin-induced [Ca(2+)](i) increase and hyperplasia. The potency order of antagonists in inhibiting oxytocin-induced [Ca(2+)](i) increase and hyperplasia was similar to that observed in radioligand binding assays. In conclusion, these data provide evidence that the high-affinity [(3)H]-oxytocin binding site found in human USMC is a functional oxytocin receptor coupled to [Ca(2+)](i) increase and cell growth. Thus human USMC may prove to be a valuable tool in further investigation of the physiologic and pathophysiologic roles of oxytocin in the uterus. British Journal of Pharmacology (2000) 129, 131 - 139
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borrelli, A.; Blosser, J.; Barrantes, M.
Although numerous studies have described the anorectic, cardiovascular, and behavioral effects of phenthylamines, a comparison of the pharmacological concordance of these properties in a single species is needed. The objectives of this study were to compare the anorectic potency of 13 phenethylamines following po administration with their effects on spontaneous locomotor activity (SLA) and blood pressure (BP) in vivo and with amphetamine receptor affinity in vitro. The anorectic potencies (ED 50) ranged from 12 umol/kg (fenfluramine) to over 400 umol/kg (d-norephedrine and 1-pseudoephedrine). d-Amphetamine, phentermine, and d-norpseudoephedrine were among the most active and 1-pseudoephedrine and 1-nor-ephedrine the least active inmore » increasing SLA. 1-Norephedrine, and d-norpseudoephedrine were the most active increasing BP while d-norephedrine produced a weak vasodepressor effect. A significant correlation (r = .80) was observed between anorectic potency and affinity (IC 50) for /sup 3/H-amphetamine binding sites in the hypothalamus. However, the stereoselectivity between pairs of enantiomers to inhibit food consumption was not paralleled in binding affinity. The rank order of concordance of phenethylamines in anorectic activity was most apparent in behavior and binding affinity.« less
Crystal Structures of the Glutamate Receptor Ion Channel GluK3 and GluK5 Amino-Terminal Domains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Janesh; Mayer, Mark L.
2010-11-30
Ionotropic glutamate receptors (iGluRs) mediate the majority of fast excitatory synaptic neurotransmission in the central nervous system. The selective assembly of iGluRs into AMPA, kainate, and N-methyl-d-aspartic acid (NMDA) receptor subtypes is regulated by their extracellular amino-terminal domains (ATDs). Kainate receptors are further classified into low-affinity receptor families (GluK1-GluK3) and high-affinity receptor families (GluK4-GluK5) based on their affinity for the neurotoxin kainic acid. These two families share a 42% sequence identity for the intact receptor but only a 27% sequence identity at the level of ATD. We have determined for the first time the high-resolution crystal structures of GluK3 andmore » GluK5 ATDs, both of which crystallize as dimers but with a strikingly different dimer assembly at the R1 interface. By contrast, for both GluK3 and GluK5, the R2 domain dimer assembly is similar to those reported previously for other non-NMDA iGluRs. This observation is consistent with the reports that GluK4-GluK5 cannot form functional homomeric ion channels and require obligate coassembly with GluK1-GluK3. Our analysis also reveals that the relative orientation of domains R1 and R2 in individual non-NMDA receptor ATDs varies by up to 10{sup o}, in contrast to the 50{sup o} difference reported for the NMDA receptor GluN2B subunit. This restricted domain movement in non-NMDA receptor ATDs seems to result both from extensive intramolecular contacts between domain R1 and domain R2 and from their assembly as dimers, which interact at both R1 and R2 domains. Our results provide the first insights into the structure and function of GluK4-GluK5, the least understood family of iGluRs.« less
Synthesis and pharmacological evaluation of indole-based sigma receptor ligands
Mésangeau, Christophe; Amata, Emanuele; Alsharif, Walid; Seminerio, Michael J.; Robson, Matthew J.; Matsumoto, Rae R.; Poupaert, Jacques H.; McCurdy, Christopher R.
2011-01-01
A series of novel indole-based analogues were prepared and their affinities for sigma receptors were determined using in vitro radioligand binding assays. The results of this study identified several compounds with nanomolar sigma-2 affinity and significant selectivity over sigma-1 receptors. In particular, 2-(4-(3-(4-fluorophenyl)indol-1-yl)butyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (9f) was found to display high affinity at sigma-2 receptors with good selectivity (σ-1/σ-2 = 395). The pharmacological binding profile for this compound was established with other relevant nonsigma sites. PMID:21899931
Hida, Hirotake; Mouri, Akihiro; Mori, Kentaro; Matsumoto, Yurie; Seki, Takeshi; Taniguchi, Masayuki; Yamada, Kiyofumi; Iwamoto, Kunihiro; Ozaki, Norio; Nabeshima, Toshitaka; Noda, Yukihiro
2015-01-01
Blonanserin differs from currently used serotonin 5-HT2A/dopamine-D2 receptor antagonists in that it exhibits higher affinity for dopamine-D2/3 receptors than for serotonin 5-HT2A receptors. We investigated the involvement of dopamine-D3 receptors in the effects of blonanserin on cognitive impairment in an animal model of schizophrenia. We also sought to elucidate the molecular mechanism underlying this involvement. Blonanserin, as well as olanzapine, significantly ameliorated phencyclidine (PCP)-induced impairment of visual-recognition memory, as demonstrated by the novel-object recognition test (NORT) and increased extracellular dopamine levels in the medial prefrontal cortex (mPFC). With blonanserin, both of these effects were antagonized by DOI (a serotonin 5-HT2A receptor agonist) and 7-OH-DPAT (a dopamine-D3 receptor agonist), whereas the effects of olanzapine were antagonized by DOI but not by 7-OH-DPAT. The ameliorating effect was also antagonized by SCH23390 (a dopamine-D1 receptor antagonist) and H-89 (a protein kinase A (PKA) inhibitor). Blonanserin significantly remediated the decrease in phosphorylation levels of PKA at Thr197 and of NR1 (an essential subunit of N-methyl-D-aspartate (NMDA) receptors) at Ser897 by PKA in the mPFC after a NORT training session in the PCP-administered mice. There were no differences in the levels of NR1 phosphorylated at Ser896 by PKC in any group. These results suggest that the ameliorating effect of blonanserin on PCP-induced cognitive impairment is associated with indirect functional stimulation of the dopamine-D1-PKA-NMDA receptor pathway following augmentation of dopaminergic neurotransmission due to inhibition of both dopamine-D3 and serotonin 5-HT2A receptors in the mPFC. PMID:25120077
Chess-Williams, R.; Chapple, C. R.; Verfurth, F.; Noble, A. J.; Couldwell, C. J.; Michel, M. C.
1996-01-01
1. The affinity of the alpha 1-adrenoceptor antagonist SB 216469 (also known as REC 15/2739) has been determined at native and cloned alpha 1-adrenoceptor subtypes by radioligand binding and at functional alpha 1-adrenoceptor subtypes in isolated tissues. 2. In radioligand binding studies with [3H]-prazosin, SB 216469 had a high affinity at the alpha 1A-adrenoceptors of the rat cerebral cortex and kidney (9.5-9.8) but a lower affinity at the alpha 1B-adrenoceptors of the rat spleen and liver (7.7-8.2). 3. At cloned rat alpha 1-adrenoceptor subtypes transiently expressed in COS-1 cells and also at cloned human alpha 1-adrenoceptor subtypes stably transfected in Rat-1 cells, SB 216469 exhibited a high affinity at the alpha 1a-adrenoceptors (9.6-10.4) with a significantly lower affinity at the alpha 1b-adrenoceptor (8.0-8.4) and an intermediate affinity at the alpha 1d-adrenoceptor (8.7-9.2). 4. At functional alpha 1-adrenoceptors, SB 216469 had a similar pharmacological profile, with a high affinity at the alpha 1A-adrenoceptors of the rat vas deferens and anococcygeus muscle (pA2 = 9.5-10.0), a low affinity at the alpha 1B-adrenoceptors of the rat spleen (6.7) and guinea-pig aorta (8.0), and an intermediate affinity at the alpha 1D-adrenoceptors of the rat aorta (8.8). 5. Several recent studies have concluded that the alpha 1-adrenoceptor present in the human prostate has the pharmacological characteristics of the alpha 1A-adrenoceptor subtype. However, the affinity of SB 216469 at human prostatic alpha 1-adrenoceptors (pA2 = 8.1) determined in isolated tissue strips, was significantly lower than the values obtained at either the cloned alpha 1a-adrenoceptors (human, rat, bovine) or the native alpha 1A-adrenoceptors in radioligand binding and functional studies in the rat. 6. Our results with SB 216469, therefore, suggest that the alpha 1-adrenoceptor mediating contractile responses of the human prostate has properties which distinguish it from the cloned alpha 1a-adrenoceptor or native alpha 1A-adrenoceptor. Since it has previously been shown that the receptor is not the alpha 1B- or alpha 1D-adrenoceptor, the functional alpha 1-adrenoceptor of the human prostate may represent a novel receptor with properties which differ from any of the alpha 1-adrenoceptors currently defined by pharmacological means. PMID:8937710
Benítez, Sonia; Villegas, Virtudes; Bancells, Cristina; Jorba, Oscar; González-Sastre, Francesc; Ordóñez-Llanos, Jordi; Sánchez-Quesada, José Luis
2004-12-21
The binding characteristics of electropositive [LDL(+)] and electronegative LDL [LDL(-)] subfractions to the LDL receptor (LDLr) were studied. Saturation kinetic studies in cultured human fibroblasts demonstrated that LDL(-) from normolipemic (NL) and familial hypercholesterolemic (FH) subjects had lower binding affinity than their respective LDL(+) fractions (P < 0.05), as indicated by higher dissociation constant (K(D)) values. FH-LDL(+) also showed lower binding affinity (P < 0.05) than NL-LDL(+) (K(D), sorted from lower to higher affinity: NL-LDL(-), 33.0 +/- 24.4 nM; FH-LDL(-), 24.4 +/- 7.1 nM; FH-LDL(+), 16.6 +/- 7.0 nM; NL-LDL(+), 10.9 +/- 5.7 nM). These results were confirmed by binding displacement studies. The impaired affinity binding of LDL(-) could be attributed to altered secondary and tertiary structure of apolipoprotein B, but circular dichroism (CD) and tryptophan fluorescence (TrpF) studies revealed no structural differences between LDL(+) and LDL(-). To ascertain the role of increased nonesterified fatty acids (NEFA) and lysophosphatidylcholine (LPC) content in LDL(-), LDL(+) was enriched in NEFA or hydrolyzed with secretory phospholipase A(2). Modification of LDL gradually decreased the affinity to LDLr in parallel to the increasing content of NEFA and/or LPC. Modified LDLs with a NEFA content similar to that of LDL(-) displayed similar affinity. ApoB structure studies of modified LDLs by CD and TrpF showed no difference compared to LDL(+) or LDL(-). Our results indicate that NEFA loading or phospholipase A(2) lipolysis of LDL leads to changes that affect the affinity of LDL to LDLr with no major effect on apoB structure. Impaired affinity to the LDLr shown by LDL(-) is related to NEFA and/or LPC content rather than to structural differences in apolipoprotein B.
Flook, Adam M; Yang, Jianquan; Miao, Yubin
2013-11-14
The purpose of this study was to examine the effects of amino acids on melanoma targeting and clearance properties of new (99m)Tc-labeled Arg-X-Asp-conjugated α-melanocyte stimulating hormone (α-MSH) peptides. RSD-Lys-(Arg(11))CCMSH {c[Arg-Ser-Asp-DTyr-Asp]-Lys-Cys-Cys-Glu-His-dPhe-Arg-Trp-Cys-Arg-Pro-Val-NH2}, RNleD-Lys-(Arg(11))CCMSH, RPheD-Lys-(Arg(11))CCMSH, and RdPheD-Lys-(Arg(11))CCMSH peptides were synthesized and evaluated for their melanocortin-1 (MC1) receptor binding affinities in B16/F1 melanoma cells. The biodistribution of (99m)Tc-RSD-Lys-(Arg(11))CCMSH, (99m)Tc-RFD-Lys-(Arg(11))CCMSH, and (99m)Tc-RfD-Lys-(Arg(11))CCMSH were determined in B16/F1 melanoma-bearing C57 mice. The substitution of Gly with Ser, Phe, and dPhe increased the MC1 receptor binding affinities of the peptides, whereas the substitution of Gly with Nle decreased the MC1 receptor binding affinity of the peptide. (99m)Tc-RSD-Lys-(Arg(11))CCMSH exhibited the highest melanoma uptake (18.01 ± 4.22% ID/g) and the lowest kidney and liver uptake among these (99m)Tc-peptides. The B16/F1 melanoma lesions could be clearly visualized by SPECT/CT using (99m)Tc-RSD-Lys-(Arg(11))CCMSH as an imaging probe. It is desirable to reduce the renal uptake of (99m)Tc-RSD-Lys-(Arg(11))CCMSH to facilitate its potential therapeutic application.
Pharmacological, neurochemical, and behavioral profile of JB-788, a new 5-HT1A agonist.
Picard, M; Morisset, S; Cloix, J F; Bizot, J C; Guerin, M; Beneteau, V; Guillaumet, G; Hevor, T K
2010-09-01
A novel pyridine derivative, 8-{4-[(6-methoxy-2,3-dihydro-[1,4]dioxino[2,3-b]pyridine-3-ylmethyl)-amino]-butyl}-8-aza-spiro[4.5]decane-7,9-dione hydrochloride, termed JB-788, was designed to selectively target 5-HT(1A) receptors. In the present study, the pharmacological profile of JB-788 was characterized in vitro using radioligands binding tests and in vivo using neurochemical and behavioural experiments. JB-788 bound tightly to human 5-HT(1A) receptor expressed in human embryonic kidney 293 (HEK-293) cells with a K(i) value of 0.8 nM. Its binding affinity is in the same range as that observed for the (+/-)8-OH-DPAT, a reference 5HT(1A) agonist compound. Notably, JB-788 only bound weakly to 5-HT(1B) or 5-HT(2A) receptors and moreover the drug displayed only weak or indetectable binding to muscarinic, alpha(2), beta(1) and beta(2) adrenergic receptors, or dopaminergic D(1) receptors. JB-788 was found to display substantial binding affinity for dopaminergic D(2) receptors and, to a lesser extend to alpha(1) adrenoreceptors. JB-788 dose-dependently decreased forskolin-induced cAMP accumulation in HEK cells expressing human 5-HT(1A), thus acting as a potent 5-HT(1A) receptor agonist (E(max.) 75%, EC(50) 3.5 nM). JB-788 did not exhibit any D(2) receptor agonism but progressively inhibited the effects of quinpirole, a D(2) receptor agonist, in the cAMP accumulation test with a K(i) value of 250 nM. JB-788 induced a weak change in cAMP levels in mouse brain but, like some antipsychotics, transiently increased glycogen contents in various brain regions. Behavioral effects were investigated in mice using the elevated plus-maze. JB-788 was found to increase the time duration spent by animals in anxiogenic situations. Locomotor hyperactivity induced by methamphetamine in mouse, a model of antipsychotic activity, was dose-dependently inhibited by JB-788. Altogether, these results suggest that JB-788 displays pharmacological properties, which could be of interest in the area of anxiolytic and antipsychotic drugs. Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Suhr, Steven T.; Gil, Elad B.; Senut, Marie-Claude; Gage, Fred H.
1998-01-01
Our studies of the Bombyx mori ecdysone receptor (BE) revealed that, unlike the Drosophila melanogaster ecdysone receptor (DE), treatment of BE with the ecdysone agonist tebufenozide stimulated high level transactivation in mammalian cells without adding an exogenous heterodimer partner. Gel mobility shift and transfection assays with both the ultraspiracle gene product (Usp) and retinoid X receptor heterodimer partners indicated that this property of BE stems from significantly augmented heterodimer complex formation and concomitant DNA binding. We have mapped this “gain of function” to determinants within the D and E domains of BE and demonstrated that, although the D domain determinant is sufficient for high affinity heterodimerization with Usp, both determinants are necessary for high affinity interaction with retinoid X receptor. Modified BE receptors alone used as replication-defective retroviruses potently stimulated separate “reporter” viruses in all cell types examined, suggesting that BE has potentially broad utility in the modulation of transgene expression in mammalian cells. PMID:9653129
Narendran, Rajesh; Tumuluru, Divya; May, Maureen A.; Chowdari, Kodavali V.; Himes, Michael L.; Fasenmyer, Kelli; Frankle, W. Gordon; Nimgaonkar, Vishwajit L.
2016-01-01
Basic investigations link a Val158Met polymorphism (rs4680) in the catechol-O-methyltransferase (COMT) gene to not only its enzymatic activity, but also to its dopaminergic tone in the prefrontal cortex. Previous PET studies have documented the relationship between COMT Val158Met polymorphism and D1 and D2/3 receptor binding potential (BP), and interpreted them in terms of dopaminergic tone. The use of baseline dopamine D1 and D2/3 receptor binding potential (BPND) as a proxy for dopaminergic tone is problematic because they reflect both endogenous dopamine levels (a change in radiotracer's apparent affinity) and receptor density. In this analysis of 31 healthy controls genotyped for the Val158Met polymorphism (Val/Val, Val/Met, and Met/Met), we used amphetamine-induced displacement of [11C]FLB 457 as a direct measure of dopamine release. Our analysis failed to show a relationship between COMT genotype status and prefrontal cortical dopamine release. COMT genotype was also not predictive of baseline dopamine D2/3 receptor BPND. PMID:27322568
McGovern, Donna L; Mosier, Philip D; Roth, Bryan L; Westkaemper, Richard B
2010-04-01
The highly potent and kappa-opioid (KOP) receptor-selective hallucinogen Salvinorin A and selected analogs have been analyzed using the 3D quantitative structure-affinity relationship technique Comparative Molecular Field Analysis (CoMFA) in an effort to derive a statistically significant and predictive model of salvinorin affinity at the KOP receptor and to provide additional statistical support for the validity of previously proposed structure-based interaction models. Two CoMFA models of Salvinorin A analogs substituted at the C-2 position are presented. Separate models were developed based on the radioligand used in the kappa-opioid binding assay, [(3)H]diprenorphine or [(125)I]6 beta-iodo-3,14-dihydroxy-17-cyclopropylmethyl-4,5 alpha-epoxymorphinan ([(125)I]IOXY). For each dataset, three methods of alignment were employed: a receptor-docked alignment derived from the structure-based docking algorithm GOLD, another from the ligand-based alignment algorithm FlexS, and a rigid realignment of the poses from the receptor-docked alignment. The receptor-docked alignment produced statistically superior results compared to either the FlexS alignment or the realignment in both datasets. The [(125)I]IOXY set (Model 1) and [(3)H]diprenorphine set (Model 2) gave q(2) values of 0.592 and 0.620, respectively, using the receptor-docked alignment, and both models produced similar CoMFA contour maps that reflected the stereoelectronic features of the receptor model from which they were derived. Each model gave significantly predictive CoMFA statistics (Model 1 PSET r(2)=0.833; Model 2 PSET r(2)=0.813). Based on the CoMFA contour maps, a binding mode was proposed for amine-containing Salvinorin A analogs that provides a rationale for the observation that the beta-epimers (R-configuration) of protonated amines at the C-2 position have a higher affinity than the corresponding alpha-epimers (S-configuration). (c) 2010. Published by Elsevier Inc.
Irukayama-Tomobe, Yoko; Tanaka, Hirokazu; Yokomizo, Takehiko; Hashidate-Yoshida, Tomomi; Yanagisawa, Masashi; Sakurai, Takeshi
2009-03-10
GPR109B (HM74) is a putative G protein-coupled receptor (GPCR) whose cognate ligands have yet to be characterized. GPR109B shows a high degree of sequence similarity to GPR109A, another GPCR that was identified as a high-affinity nicotinic acid (niacin) receptor. However, the affinity of nicotinic acid to GPR109B is very low. In this study, we found that certain aromatic D-amino acids, including D-phenylalanine, D-tryptophan, and the metabolite of the latter, D-kynurenine, decreased the activity of adenylate cyclase in cells transfected with GPR109B cDNA through activation of pertussis toxin (PTX)-sensitive G proteins. These D-amino acids also elicited a transient rise of intracellular Ca(2+) level in cells expressing GPR109B in a PTX-sensitive manner. In contrast, these D-amino acids did not show any effects on cells expressing GPR109A. We found that the GPR109B mRNA is abundantly expressed in human neutrophils. D-phenylalanine and D-tryptophan induced a transient increase of intracellular Ca(2+) level and a reduction of cAMP levels in human neutrophils. Furthermore, knockdown of GPR109B by RNA interference inhibited the D-amino acids-induced decrease of cellular cAMP levels in human neutrophils. These D-amino acids induced chemotactic activity of freshly prepared human neutrophils. We also found that D-phenylalanine and D-tryptophan induced chemotactic responses in Jurkat cells transfected with the GPR109B cDNA but not in mock-transfected Jurkat cells. These results suggest that these aromatic D-amino acids elicit a chemotactic response in human neutrophils via activation of GPR109B.
Tateno, Amane; Sakayori, Takeshi; Kim, Woo-Chan; Honjo, Kazuyoshi; Nakayama, Haruo; Arakawa, Ryosuke; Okubo, Yoshiro
2018-06-01
Blockade of D3 receptor, a member of the dopamine D2-like receptor family, has been suggested as a possible medication for schizophrenia. Blonanserin has high affinity in vitro for D3 as well as D2 receptors. We investigated whether a single dose of 12 mg blonanserin, which was within the daily clinical dose range (i.e., 8-24 mg) for the treatment of schizophrenia, occupies D3 as well as D2 receptors in healthy subjects. Six healthy males (mean 35.7±7.6 years) received 2 positron emission tomography scans, the first prior to taking blonanserin, and the second 2 hours after the administration of a single dose of 12 mg blonanserin. Dopamine receptor occupancies by blonanserin were evaluated by [11C]-(+)-PHNO. Occupancy of each region by 12 mg blonanserin was: caudate (range 64.3%-81.5%; mean±SD, 74.3±5.6%), putamen (range 60.4%-84.3%; mean±SD, 73.3%±8.2%), ventral striatum (range 40.1%-88.2%; mean±SD, 60.8%±17.1%), globus pallidus (range 65.8%-87.6%; mean±SD, 75.7%±8.6%), and substantia nigra (range 56.0%-88.7%; mean±SD, 72.4%±11.0%). Correlation analysis between plasma concentration of blonanserin and receptor occupancy in D2-rich (caudate and putamen) and D3-rich (globus pallidus and substantia nigra) regions showed that EC50 for D2-rich region was 0.39 ng/mL (r=0.43) and EC50 for D3-rich region was 0.40 ng/mL (r=0.79). A single dose of 12 mg blonanserin occupied D3 receptor to the same degree as D2 receptor in vivo. Our results were consistent with previous studies that reported that some of the pharmacological effect of blonanserin is mediated via D3 receptor antagonism.
Pharmacologic characterization of the oxytocin receptor in human uterine smooth muscle cells
Tahara, Atsuo; Tsukada, Junko; Tomura, Yuichi; Wada, Koh-ichi; Kusayama, Toshiyuki; Ishii, Noe; Yatsu, Takeyuki; Uchida, Wataru; Tanaka, Akihiro
2000-01-01
[3H]-oxytocin was used to characterize the oxytocin receptor found in human uterine smooth muscle cells (USMC). Specific binding of [3H]-oxytocin to USMC plasma membranes was dependent upon time, temperature and membrane protein concentration. Scatchard plot analysis of equilibrium binding data revealed the existence of a single class of high-affinity binding sites with an apparent equilibrium dissociation constant (Kd) of 0.76 nM and a maximum receptor density (Bmax) of 153 fmol mg−1 protein. The Hill coefficient (nH) did not differ significantly from unity, suggesting binding to homogenous, non-interacting receptor populations. Competitive inhibition of [3H]-oxytocin binding showed that oxytocin and vasopressin (AVP) receptor agonists and antagonists displaced [3H]-oxytocin in a concentration-dependent manner. The order of potencies for peptide agonists and antagonists was: oxytocin>[Asu1,6]-oxytocin>AVP= atosiban>d(CH2)5Tyr(Me)AVP>[Thr4,Gly7]-oxytocin>dDAVP, and for nonpeptide antagonists was: L-371257>YM087>SR 49059>OPC-21268>SR 121463A>OPC-31260. Oxytocin significantly induced concentration-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) and hyperplasia in USMC. The oxytocin receptor antagonists, atosiban and L-371257, potently and concentration-dependently inhibited oxytocin-induced [Ca2+]i increase and hyperplasia. In contrast, the V1A receptor selective antagonist, SR 49059, and the V2 receptor selective antagonist, SR 121463A, did not potently inhibit oxytocin-induced [Ca2+]i increase and hyperplasia. The potency order of antagonists in inhibiting oxytocin-induced [Ca2+]i increase and hyperplasia was similar to that observed in radioligand binding assays. In conclusion, these data provide evidence that the high-affinity [3H]-oxytocin binding site found in human USMC is a functional oxytocin receptor coupled to [Ca2+]i increase and cell growth. Thus human USMC may prove to be a valuable tool in further investigation of the physiologic and pathophysiologic roles of oxytocin in the uterus. PMID:10694212
Sade, Hadassah; Baumgartner, Claudia; Hugenmatter, Adrian; Moessner, Ekkehard; Freskgård, Per-Ola; Niewoehner, Jens
2014-01-01
We have adapted an in vitro model of the human blood-brain barrier, the immortalized human cerebral microvascular endothelial cells (hCMEC/D3), to quantitatively measure protein transcytosis. After validating the receptor-mediated transport using transferrin, the system was used to measure transcytosis rates of antibodies directed against potential brain shuttle receptors. While an antibody to the insulin-like growth factor 1 receptor (IGF1R) was exclusively recycled to the apical compartment, the fate of antibodies to the transferrin receptor (TfR) was determined by their relative affinities at extracellular and endosomal pH. An antibody with reduced affinity at pH5.5 showed significant transcytosis, while pH-independent antibodies of comparable affinities at pH 7.4 remained associated with intracellular vesicular compartments and were finally targeted for degradation. PMID:24788759
NASA Astrophysics Data System (ADS)
Gaieb, Zied; Liu, Shuai; Gathiaka, Symon; Chiu, Michael; Yang, Huanwang; Shao, Chenghua; Feher, Victoria A.; Walters, W. Patrick; Kuhn, Bernd; Rudolph, Markus G.; Burley, Stephen K.; Gilson, Michael K.; Amaro, Rommie E.
2018-01-01
The Drug Design Data Resource (D3R) ran Grand Challenge 2 (GC2) from September 2016 through February 2017. This challenge was based on a dataset of structures and affinities for the nuclear receptor farnesoid X receptor (FXR), contributed by F. Hoffmann-La Roche. The dataset contained 102 IC50 values, spanning six orders of magnitude, and 36 high-resolution co-crystal structures with representatives of four major ligand classes. Strong global participation was evident, with 49 participants submitting 262 prediction submission packages in total. Procedurally, GC2 mimicked Grand Challenge 2015 (GC2015), with a Stage 1 subchallenge testing ligand pose prediction methods and ranking and scoring methods, and a Stage 2 subchallenge testing only ligand ranking and scoring methods after the release of all blinded co-crystal structures. Two smaller curated sets of 18 and 15 ligands were developed to test alchemical free energy methods. This overview summarizes all aspects of GC2, including the dataset details, challenge procedures, and participant results. We also consider implications for progress in the field, while highlighting methodological areas that merit continued development. Similar to GC2015, the outcome of GC2 underscores the pressing need for methods development in pose prediction, particularly for ligand scaffolds not currently represented in the Protein Data Bank (http://www.pdb.org), and in affinity ranking and scoring of bound ligands.
Burcher, E; Warner, F J
1998-06-01
In this study, we have used radioligand binding and functional techniques to investigate tachykinin receptors in the small intestine of the cane toad Bufo marinus. The radioligand [125I]Bolton-Hunter [Sar9,Met(O2)11]substance P (selective at mammalian NK-1 receptors) showed no specific binding. Specific binding of [125I]Bolton-Hunter substance P ([125I]BHSP) was saturable, of high affinity (Kd 0.3 nM) and was inhibited by SP (IC50 0.64 nM) > ranakinin approximately neurokinin A (NKA) > or = SP(5-11) > or = neuropeptide gamma > or = scyliorhinin II > scyliorhinin I > or = [Sar9]-SP > or = neurokinin B approximately physalaemin approximately carassin > SP(7-11) approximately eledoisin > or = SP(4-11) approximately SP(6-11). Binding was also inhibited by Gpp[NH]p > or = GTPgammaS > App[NH]p, indicating a G-protein coupled receptor. The order of potency of tachykinins and analogues in contracting the isolated lower small intestine was carassin (EC50 1.4 nM) > eledoisin approximately SP > or = physalaemin > or = ranakinin > SP(6-11) > scyliorhinin II > or = neuropeptide gamma > neurokinin B approximately NKA approximately scyliorhinin I > or = SP(4-11) > or = SP(5-11) > [Sar9]SP > SP(7-11). In both studies, the selective mammalian NK-1, NK-2 and NK-3 receptor agonists [Sar9,Met(O2)11]SP, [Lys5,Me-Leu9,Nle10]NKA(4-10) and senktide were weak or ineffective. There was a strong positive correlation between the pD2 and pIC50 values for mammalian tachykinins and analogues (r = 0.907), but not for the non-mammalian tachykinins, which were all full agonists but variable binding competitors. [Sar9,Met(O2)11]-SP(pD2 5.7) was approximately 25-fold less potent as an agonist than [Sar9]SP, which was itself 25-fold weaker than SP. Responses to SP were significantly reduced (n = 8, P<0.001) by the antagonist [D-Arg1,D-Trp7,9,Leu11]-SP (spantide; 1 microM). Highly selective NK-1 receptor antagonists including CP 99994 and GR 82334 (both 1 microM) were ineffective in both functional and binding studies. Tetrodotoxin (1 microM) did not inhibit contractile responses to SP, NKA and senktide. In summary, this study has shown the presence of one or more tachykinin receptor in the toad intestine. The binding site recognised by [125I]BHSP prefers SP and ranakinin. This toad "NK-1-like receptor" differs from the mammalian NK-1 receptor in having a low affinity for all mammalian NK-1 selective ligands, including antagonists. For some non-mammalian peptides, their high potency as contractile agonists relative to their poor binding affinity suggests the existence of other tachykinin receptors in the toad small intestine.
NASA Astrophysics Data System (ADS)
Wingert, Bentley M.; Oerlemans, Rick; Camacho, Carlos J.
2018-01-01
The goal of virtual screening is to generate a substantially reduced and enriched subset of compounds from a large virtual chemistry space. Critical in these efforts are methods to properly rank the binding affinity of compounds. Prospective evaluations of ranking strategies in the D3R grand challenges show that for targets with deep pockets the best correlations (Spearman ρ 0.5) were obtained by our submissions that docked compounds to the holo-receptors with the most chemically similar ligand. On the other hand, for targets with open pockets using multiple receptor structures is not a good strategy. Instead, docking to a single optimal receptor led to the best correlations (Spearman ρ 0.5), and overall performs better than any other method. Yet, choosing a suboptimal receptor for crossdocking can significantly undermine the affinity rankings. Our submissions that evaluated the free energy of congeneric compounds were also among the best in the community experiment. Error bars of around 1 kcal/mol are still too large to significantly improve the overall rankings. Collectively, our top of the line predictions show that automated virtual screening with rigid receptors perform better than flexible docking and other more complex methods.
Zorrilla, Silvia; Garzón, Beatriz; Pérez-Sala, Dolores
2010-04-01
Peroxisome proliferator-activated receptor gamma (PPARgamma) is a member of the nuclear receptor superfamily involved in insulin sensitization, atherosclerosis, inflammation, and carcinogenesis. PPARgamma transcriptional activity is modulated by specific ligands that promote conformational changes allowing interaction with coactivators. Here we show that the fluorophore 1-anilinonaphthalene-8-sulfonic acid (ANS) binds to PPARgamma-LBD (ligand binding domain), displaying negligible interaction with other nuclear receptors such as PPARalpha and retinoid X receptor alpha (RXRalpha). ANS binding is competed by PPARgamma agonists such as rosiglitazone, 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), and 9,10-dihydro-15-deoxy-Delta(12,14)-prostaglandin J(2) (CAY10410). Moreover, the affinity of PPARgamma for these ligands, determined through ANS competition titrations, is within the range of that reported previously, thereby suggesting that ANS competition could be useful in the screening and characterization of novel PPARgamma agonists. In contrast, gel-based competition assays showed limited performance with noncovalently bound ligands. We applied the ANS binding assay to characterize a biotinylated analog of 15d-PGJ(2) that does not activate PPAR in cells. We found that although this compound bound to PPARgamma with low affinity, it failed to promote PPARgamma interaction with a fluorescent SRC-1 peptide, indicating a lack of receptor activation. Therefore, combined approaches using ANS and fluorescent coactivator peptides to monitor PPARgamma binding and interactions may provide valuable strategies to fully understand the role of PPARgamma ligands. Copyright 2009 Elsevier Inc. All rights reserved.
Dostalova, Zuzana; Zhou, Xiaojuan; Liu, Aiping; Zhang, Xi; Zhang, Yinghui; Desai, Rooma; Forman, Stuart A; Miller, Keith W
2014-02-01
Gamma-aminobutyric acid type A receptors (GABA(A)Rs) are the most important inhibitory chloride ion channels in the central nervous system and are major targets for a wide variety of drugs. The subunit compositions of GABA(A)Rs determine their function and pharmacological profile. GABAA Rs are heteropentamers of subunits, and (α1)2 (β3)2 (γ2L)1 is a common subtype. Biochemical and biophysical studies of GABA(A)Rs require larger quantities of receptors of defined subunit composition than are currently available. We previously reported high-level production of active human α1β3 GABA(A)R using tetracycline-inducible stable HEK293 cells. Here we extend the strategy to receptors containing three different subunits. We constructed a stable tetracycline-inducible HEK293-TetR cell line expressing human (N)-FLAG-α1β3γ2L-(C)-(GGS)3 GK-1D4 GABA(A)R. These cells achieved expression levels of 70-90 pmol [(3)H]muscimol binding sites/15-cm plate at a specific activity of 15-30 pmol/mg of membrane protein. Incorporation of the γ2 subunit was confirmed by the ratio of [(3)H]flunitrazepam to [(3)H]muscimol binding sites and sensitivity of GABA-induced currents to benzodiazepines and zinc. The α1β3γ2L GABA(A)Rs were solubilized in dodecyl-D-maltoside, purified by anti-FLAG affinity chromatography and reconstituted in CHAPS/asolectin at an overall yield of ∼ 30%. Typical purifications yielded 1.0-1.5 nmoles of [(3)H]muscimol binding sites/60 plates. Receptors with similar properties could be purified by 1D4 affinity chromatography with lower overall yield. The composition of the purified, reconstituted receptors was confirmed by ligand binding, Western blot, and proteomics. Allosteric interactions between etomidate and [(3)H]muscimol binding were maintained in the purified state. © 2013 The Protein Society.
NASA Astrophysics Data System (ADS)
Duan, Rui; Xu, Xianjin; Zou, Xiaoqin
2018-01-01
D3R 2016 Grand Challenge 2 focused on predictions of binding modes and affinities for 102 compounds against the farnesoid X receptor (FXR). In this challenge, two distinct methods, a docking-based method and a template-based method, were employed by our team for the binding mode prediction. For the new template-based method, 3D ligand similarities were calculated for each query compound against the ligands in the co-crystal structures of FXR available in Protein Data Bank. The binding mode was predicted based on the co-crystal protein structure containing the ligand with the best ligand similarity score against the query compound. For the FXR dataset, the template-based method achieved a better performance than the docking-based method on the binding mode prediction. For the binding affinity prediction, an in-house knowledge-based scoring function ITScore2 and MM/PBSA approach were employed. Good performance was achieved for MM/PBSA, whereas the performance of ITScore2 was sensitive to ligand composition, e.g. the percentage of carbon atoms in the compounds. The sensitivity to ligand composition could be a clue for the further improvement of our knowledge-based scoring function.
Lai, H; Carino, M A
1992-07-01
Acute (20 min) exposure to 100-dB white noise elicits a naltrexone-sensitive decrease in sodium-dependent high-affinity choline uptake in the frontal cortex and hippocampus of the rat. In the present study, the subtypes of opioid receptors involved were investigated by pretreating rats with microinjection of specific opioid-receptor antagonists into the lateral cerebroventricle before noise exposure. We found that the noise-induced decrease in high-affinity choline uptake in the hippocampus was blocked by pretreatment with either mu-, delta-, or kappa-opioid-receptor antagonists, whereas the effect of noise on frontal cortical high-affinity choline uptake was blocked by a mu- and delta- but not by a kappa-antagonist. These data further confirm the role of endogenous opioids in mediating the effects of noise on central cholinergic activity and indicate that different neural mechanisms are involved in the effects of noise on the frontal cortical and hippocampal cholinergic systems.
Borroto-Escuela, Dasiel O; Romero-Fernandez, Wilber; Narvaez, Manuel; Oflijan, Julia; Agnati, Luigi F; Fuxe, Kjell
2014-01-03
Dopamine D2LR-serotonin 5-HT2AR heteromers were demonstrated in HEK293 cells after cotransfection of the two receptors and shown to have bidirectional receptor-receptor interactions. In the current study the existence of D2L-5-HT2A heteroreceptor complexes was demonstrated also in discrete regions of the ventral and dorsal striatum with in situ proximity ligation assays (PLA). The hallucinogenic 5-HT2AR agonists LSD and DOI but not the standard 5-HT2AR agonist TCB2 and 5-HT significantly increased the density of D2like antagonist (3)H-raclopride binding sites and significantly reduced the pKiH values of the high affinity D2R agonist binding sites in (3)H-raclopride/DA competition experiments. Similar results were obtained in HEK293 cells and in ventral striatum. The effects of the hallucinogenic 5-HT2AR agonists on D2R density and affinity were blocked by the 5-HT2A antagonist ketanserin. In a forskolin-induced CRE-luciferase reporter gene assay using cotransfected but not D2R singly transfected HEK293 cells DOI and LSD but not TCB2 significantly enhanced the D2LR agonist quinpirole induced inhibition of CRE-luciferase activity. Haloperidol blocked the effects of both quinpirole alone and the enhancing actions of DOI and LSD while ketanserin only blocked the enhancing actions of DOI and LSD. The mechanism for the allosteric enhancement of the D2R protomer recognition and signalling observed is likely mediated by a biased agonist action of the hallucinogenic 5-HT2AR agonists at the orthosteric site of the 5-HT2AR protomer. This mechanism may contribute to the psychotic actions of LSD and DOI and the D2-5-HT2A heteroreceptor complex may thus be a target for the psychotic actions of hallunicogenic 5-HT2A agonists. Copyright © 2013 Elsevier Inc. All rights reserved.
Tonini, M; Cipollina, L; Poluzzi, E; Crema, F; Corazza, G R; De Ponti, F
2004-02-15
Antidopaminergic gastrointestinal prokinetics (bromopride, clebopride, domperidone, levosulpiride and metoclopramide) have been exploited clinically for the management of motor disorders of the upper gastrointestinal tract, including functional dyspepsia, gastric stasis of various origins and emesis. The prokinetic effect of these drugs is mediated through the blockade of enteric (neuronal and muscular) inhibitory D2 receptors. The pharmacological profiles of the marketed compounds differ in terms of their molecular structure, affinity at D2 receptors, ability to interact with other receptor systems [5-hydroxytryptamine-3 (5-HT3) and 5-HT4 receptors for metoclopramide; 5-HT4 receptors for levosulpiride) and ability to permeate the blood-brain barrier (compared with the other compounds, domperidone does not easily cross the barrier). It has been suggested that the serotonergic (5-HT4) component of some antidopaminergic prokinetics may enhance their therapeutic efficacy in gastrointestinal disorders, such as functional dyspepsia and diabetic gastroparesis. The antagonism of central D2 receptors may lead to both therapeutic (e.g. anti-emetic effect due to D2 receptor blockade in the area postrema) and adverse (including hyperprolactinaemia and extrapyramidal dystonic reactions) effects. As the pituitary (as well as the area postrema) is outside the blood-brain barrier, hyperprolactinaemia is a side-effect occurring with all antidopaminergic prokinetics, although to different extents. Extrapyramidal reactions are most commonly observed with compounds crossing the blood-brain barrier, although with some differences amongst the various agents. Prokinetics with a high dissociation constant compared with that of dopamine at the D2 receptor (i.e. compounds that bind loosely to D2 receptors in the nigrostriatal pathway) elicit fewer extrapyramidal signs and symptoms. A knowledge of central and peripheral D2 receptor pharmacology can help the clinician to choose between the antidopaminergic prokinetics to obtain a more favourable risk/benefit ratio.
Yamada, M; Yamada, M; Lombet, A; Forgez, P; Rostène, W
1998-01-01
Neurotensin has been shown to produce pharmacological effects both in brain and periphery. Several of these effects are mediated by a high-affinity neurotensin NT1 receptor. On the other hand, a low-affinity levocabastine-sensitive neurotensin NT2 receptor was molecularly cloned from rodent brain recently. In this study, in contrast to NT1 receptor, levocabastine (a histamine H1 receptor antagonist) and SR48692 (an antagonist for NT1 receptor) strongly stimulated intracellular Ca2+ mobilization in transfected Chinese hamster ovary cells expressing rat NT2 receptor, thus acting as potent NT2 receptor. Furthermore, despite of their affinities for NT2 receptor, the Ca2+ responses to potent NT1 agonists, neurotensin or JMV449 ([Lys8-(CH2NH)-Lys9]Pro-Tyr-Ile-Leu, a peptidase resistant analogue of neurotensin) were much smaller than that observed with SR48692. These findings suggest that NT1 and NT2 receptors present distinct functional characteristics and that SR48692 may act as a potent agonist for NT2 receptor.
Nematode cholinergic pharmacology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segerberg, M.A.
1989-01-01
Nematode acetylcholine (ACh) receptors were characterized using both biochemical and electrophysiological techniques, including: (1) receptor binding studies in crude homogenates of the free-living nematode Caenorhabditis elegans and the parasitic nematode Ascaris lumbricoides with the high-affinity probe ({sup 3}H)N-methylscopolamine (({sup 3}H)NMS) which binds to muscarinic receptors in many vertebrate and invertebrate tissues (2) measurement of depolarization and contraction induced by a variety of cholinergic agents, including N-methylscopolamine (NMS), in an innervated dorsal muscle strip preparation of Ascaris; (3) examination of the antagonistic actions of d-tubocurarine (dTC) and NMS at dorsal neuromuscular junction; (4) measurement of input resistance changes in Ascaris commissuralmore » motorneurons induced by ACh, dTC, NMS, pilocarpine and other cholinergic drugs.« less
Huang, Mei; Panos, John J; Kwon, Sunoh; Oyamada, Yoshihiro; Rajagopal, Lakshmi; Meltzer, Herbert Y
2014-03-01
Atypical antipsychotic drugs (AAPDs) have been suggested to be more effective in improving cognitive impairment in schizophrenia than typical APDs, a conclusion supported by differences in receptor affinities and neurotransmitter efflux in the cortex and the hippocampus. More potent serotonin (5-HT)2A than dopamine (DA) D2 receptors antagonism, and direct or indirect 5-HT1A agonism, characterize almost all AAPDs. Blonanserin, an AAPD, has slightly greater affinity for D2 than 5-HT2A receptors. Using microdialysis and ultra performance liquid chromatography-mass spectrometry/mass spectrometry, we compared the abilities of the typical APD, haloperidol, three AAPDs, blonanserin, lurasidone, and olanzapine, and a selective 5-HT1A partial agonist, tandospirone, and all, except haloperidol, were found to ameliorate the cognitive deficits produced by the N-methyl-d-aspartate antagonist, phencyclidine, altering the efflux of neurotransmitters and metabolites in the rat cortex and nucleus accumbens. Blonanserin, lurasidone, olanzapine, and tandospirone, but not haloperidol, increased the efflux of cortical DA and its metabolites, homovanillic acid and 3,4-dihydroxyphenylacetic acid. Olanzapine and lurasidone increased the efflux of acetylcholine; lurasidone increased glutamate as well. None of the compounds significantly altered the efflux of 5-HT or its metabolite, 5-hydroxyindole acetic acid, or GABA, serine, and glycine. The ability to increase cortical DA efflux was the only shared effect of the compounds which ameliorates the deficit in cognition in rodents following phencyclidine. © 2013 International Society for Neurochemistry.
[Blonanserin in the treatment of schizophrenia].
Tenjin, Tomomi; Miyamoto, Seiya
2013-04-01
Blonanserin was developed in Japan in 2008 as an antipsychotic drug. It has high affinity for dopamine D2/3 and serotonin 5-HT2A receptors, but shows low affinity for adrenergic alpha1, histamine H1, and muscarinic M1 receptors. Several short-term double-blind trials demonstrated that blonanserin was well tolerated and had equal efficacy to haloperidol and risperidone in terms of positive symptoms and depressive symptoms in patients with chronic schizophrenia. It was also superior to haloperidol in improving negative symptoms. We have recently reported that blonanserin may improve some types of cognitive function associated with the frontal lobe activity in patients with first-episode schizophrenia. Taken together, blonanserin may be a promising candidate for a first-line antipsychotic for patients with first-episode and chronic schizophrenia.
Guanine nucleotide-binding protein regulation of melatonin receptors in lizard brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivkees, S.A.; Carlson, L.L.; Reppert, S.M.
Melatonin receptors were identified and characterized in crude membrane preparations from lizard brain by using {sup 125}I-labeled melatonin ({sup 125}I-Mel), a potent melatonin agonist. {sup 125}I-Mel binding sites were saturable; Scatchard analysis revealed high-affinity and lower affinity binding sites, with apparent K{sub d} of 2.3 {plus minus} 1.0 {times} 10{sup {minus}11} M and 2.06 {plus minus} 0.43 {times} 10{sup {minus}10} M, respectively. Binding was reversible and inhibited by melatonin and closely related analogs but not by serotonin or norepinephrine. Treatment of crude membranes with the nonhydrolyzable GTP analog guanosine 5{prime}-({gamma}-thio)triphosphate (GTP({gamma}S)), significantly reduced the number of high-affinity receptors and increasedmore » the dissociation rate of {sup 125}I-Mel from its receptor. Furthermore, GTP({gamma}S) treatment of ligand-receptor complexes solubilized by Triton X-100 also led to a rapid dissociation of {sup 125}I-Mel from solubilized ligand-receptor complexes. Gel filtration chromatography of solubilized ligand-receptor complexes revealed two major peaks of radioactivity corresponding to M{sub r} > 400,000 and M{sub r} ca. 110,000. This elution profile was markedly altered by pretreatment with GTP({gamma}S) before solubilization; only the M{sub r} 110,000 peak was present in GTP({gamma}S)-pretreated membranes. The results strongly suggest that {sup 125}I-mel binding sites in lizard brain are melatonin receptors, with agonist-promoted guanine nucleotide-binding protein (G protein) coupling and that the apparent molecular size of receptors uncoupled from G proteins is about 110,000.« less
Ballet, Steven; Mayorov, Alexander V.; Cai, Minying; Tymecka, Dagmara; Chandler, Kevin B.; Palmer, Erin S.; Van Rompaey, Karolien; Misicka, Aleksandra; Tourwé, Dirk; Hruby, Victor J.
2008-01-01
In search of new selective antagonists and/or agonists for the human melanocortin receptor subtypes hMC1R to hMC5R to elucidate the specific biological roles of each GPCR, we modified the structures of the superagonist MT-II (Ac-Nle-c[Asp-His-D-Phe-Arg-Trp-Lys]-NH2) and the hMC3R/hMC4R antagonist SHU9119 (Ac-Nle-c[Asp-His-D-Nal(2′)-Arg-Trp-Lys]-NH2) by replacing the His-D-Phe and His-D-Nal(2′) fragments in MT-II and SHU9119, respectively, with Aba-Xxx (4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one-Xxx) dipeptidomimetics (Xxx = D-Phe/pCl-D-Phe/D-Nal(2′)). Employment of the Aba mimetic yielded novel selective high affinity hMC3R and hMC3R/hMC5R antagonists. PMID:17314042
Shawon, Jakaria; Khan, Akib Mahmud; Rahman, Adhip; Hoque, Mohammad Mazharol; Khan, Mohammad Abdul Kader; Sarwar, Mohammed G; Halim, Mohammad A
2016-10-01
Molecular recognition has central role on the development of rational drug design. Binding affinity and interactions are two key components which aid to understand the molecular recognition in drug-receptor complex and crucial for structure-based drug design in medicinal chemistry. Herein, we report the binding affinity and the nonbonding interactions of azelaic acid and related compounds with the receptor DNA polymerase I (2KFN). Quantum mechanical calculation was employed to optimize the modified drugs using B3LYP/6-31G(d,p) level of theory. Charge distribution, dipole moment and thermodynamic properties such as electronic energy, enthalpy and free energy of these optimized drugs are also explored to evaluate how modifications impact the drug properties. Molecular docking calculation was performed to evaluate the binding affinity and nonbonding interactions between designed molecules and the receptor protein. We notice that all modified drugs are thermodynamically more stable and some of them are more chemically reactive than the unmodified drug. Promise in enhancing hydrogen bonds is found in case of fluorine-directed modifications as well as in the addition of trifluoroacetyl group. Fluorine participates in forming fluorine bonds and also stimulates alkyl, pi-alkyl interactions in some drugs. Designed drugs revealed increased binding affinity toward 2KFN. A1, A2 and A3 showed binding affinities of -8.7, -8.6 and -7.9 kcal/mol, respectively against 2KFN compared to the binding affinity -6.7 kcal/mol of the parent drug. Significant interactions observed between the drugs and Thr358 and Asp355 residues of 2KFN. Moreover, designed drugs demonstrated improved pharmacokinetic properties. This study disclosed that 9-octadecenoic acid and drugs containing trifluoroacetyl and trifluoromethyl groups are the best 2KFN inhibitors. Overall, these results can be useful for the design of new potential candidates against DNA polymerase I.
El-Tayeb, Ali; Griessmeier, Kerstin J; Müller, Christa E
2005-12-15
The selective antagonist radioligand [(3)H]2-propylthioadenosine-5'-adenylic acid (1,1-dichloro-1-phosphonomethyl-1-phosphonyl) anhydride ([(3)H]PSB-0413) was prepared by catalytic hydrogenation of its propargyl precursor with a high specific radioactivity of 74Ci/mmol. In preliminary saturation binding studies, [(3)H]PSB-0413 showed high affinity for platelet P2Y(12) receptors with a K(D) value of 4.57nM. Human platelets had a high density of P2Y(12) receptors exhibiting a B(max) value of 7.66pmol/mg of protein.
Krummenacher, Claude; Rux, Ann H.; Whitbeck, J. Charles; Ponce-de-Leon, Manuel; Lou, Huan; Baribaud, Isabelle; Hou, Wangfang; Zou, Changhua; Geraghty, Robert J.; Spear, Patricia G.; Eisenberg, Roselyn J.; Cohen, Gary H.
1999-01-01
The human herpesvirus entry mediator C (HveC/PRR1) is a member of the immunoglobulin family used as a cellular receptor by the alphaherpesviruses herpes simplex virus (HSV), pseudorabies virus, and bovine herpesvirus type 1. We previously demonstrated direct binding of the purified HveC ectodomain to purified HSV type 1 (HSV-1) and HSV-2 glycoprotein D (gD). Here, using a baculovirus expression system, we constructed and purified truncated forms of the receptor containing one [HveC(143t)], two [HveC(245t)], or all three immunoglobulin-like domains [HveC(346t)] of the extracellular region. All three constructs were equally able to compete with HveC(346t) for gD binding. The variable domain bound to virions and blocked HSV infection as well as HveC(346t). Thus, all of the binding to the receptor occurs within the first immunoglobulin-like domain, or V-domain, of HveC. These data confirm and extend those of Cocchi et al. (F. Cocchi, M. Lopez, L. Menotti, M. Aoubala, P. Dubreuil, and G. Campadelli-Fiume, Proc. Natl. Acad. Sci. USA 95:15700, 1998). Using biosensor analysis, we measured the affinity of binding of gD from HSV strains KOS and rid1 to two forms of HveC. Soluble gDs from the KOS strain of HSV-1 had the same affinity for HveC(346t) and HveC(143t). The mutant gD(rid1t) had an increased affinity for HveC(346t) and HveC(143t) due to a faster rate of complex formation. Interestingly, we found that HveC(346t) was a tetramer in solution, whereas HveC(143t) and HveC(245t) formed dimers, suggesting a role for the third immunoglobulin-like domain of HveC in oligomerization. In addition, the stoichiometry between gD and HveC appeared to be influenced by the level of HveC oligomerization. PMID:10482562
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lentz, T.L.
1991-11-12
Peptides corresponding to portions of curaremimetic neurotoxin loop 2 and to a structurally similar segment of rabies virus glycoprotein were synthetically modified in order to gain information on structure-function relationships of neurotoxin loop 2 interactions with the acetylcholine receptor. Binding of synthetic peptides to the acetylcholine receptor of Torpedo electric organ membranes was assessed by measuring their ability to inhibit the binding of {sup 125}I-{alpha}-bungarotoxin to the receptor. The peptides showing the highest affinity for the receptor were a peptide corresponding to the sequence of loop 2 (residues 25-44) of Ophiophagus hannah (king cobra) toxin b and the structurally similarmore » segment of CVS rabies virus glycoprotein. These affinities were comparable to those of d-tubocurarine and suberyldicholine. These results demonstrate the importance of loop 2 in the neurotoxin interaction with the receptor. N- and C-terminal deletions of the loop 2 peptides and substitution of residues invariant or highly conserved among neurotoxins were performed in order to determine the role of individual residues in binding. Residues 25-40 are the most crucial in the interaction with the acetylcholine receptor. Since this region of the glycoprotein contains residues corresponding to all of the functionally invariant neurotoxin residues, it may interact with the acetylcholine receptor through a mechanism similar to that of the neurotoxins.« less
Current drug treatments targeting dopamine D3 receptor.
Leggio, Gian Marco; Bucolo, Claudio; Platania, Chiara Bianca Maria; Salomone, Salvatore; Drago, Filippo
2016-09-01
Dopamine receptors (DR) have been extensively studied, but only in recent years they became object of investigation to elucidate the specific role of different subtypes (D1R, D2R, D3R, D4R, D5R) in neural transmission and circuitry. D1-like receptors (D1R and D5R) and D2-like receptors (D2R, D2R and D4R) differ in signal transduction, binding profile, localization in the central nervous system and physiological effects. D3R is involved in a number of pathological conditions, including schizophrenia, Parkinson's disease, addiction, anxiety, depression and glaucoma. Development of selective D3R ligands has been so far challenging, due to the high sequence identity and homology shared by D2R and D3R. As a consequence, despite a rational design of selective DR ligands has been carried out, none of currently available medicines selectively target a given D2-like receptor subtype. The availability of the D3R ligand [(11)C]-(+)-PHNO for positron emission tomography studies in animal models as well as in humans, allows researchers to estimate the expression of D3R in vivo; displacement of [(11)C]-(+)-PHNO binding by concurrent drug treatments is used to estimate the in vivo occupancy of D3R. Here we provide an overview of studies indicating D3R as a target for pharmacological therapy, and a review of market approved drugs endowed with significant affinity at D3R that are used to treat disorders where D3R plays a relevant role. Copyright © 2016 Elsevier Inc. All rights reserved.
Reid, Alicia E; Ding, Yu-Shin; Eckelman, William C; Logan, Jean; Alexoff, David; Shea, Colleen; Xu, Youwen; Fowler, Joanna S
2008-04-01
The only radiotracer available for the selective imaging of muscarinic M2 receptors in vivo is 3-(3-(3-[18F]fluoropropyl)thio)-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridine) ([18F]FP-TZTP). We have prepared and labeled 3-(3-(3-fluoropropylthio)-1,2,5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridne (FP-TZTP, 3) and two other TZTP derivatives with 11C at the methylpyridine moiety to explore the potential of using 11C-labeled FP-TZTP for positron emission tomography imaging of M2 receptors and to compare the effect of small structural changes on tracer pharmacokinetics (PK) in brain and peripheral organs. 11C-radiolabeled FP-TZTP, 3-(3-propylthio)-TZTP (6) and 3,3,3-(3-(3-trifluoropropyl)-TZTP (10) were prepared, and log D, plasma protein binding (PPB), affinity constants, time-activity curves (TACs), area under the curve (AUC) for arterial plasma, distribution volumes (DV) and pharmacological blockade in baboons were compared. Values for log D, PPB and affinity constants were similar for 3, 6 and 10. The fraction of parent radiotracer in the plasma was higher and the AUC lower for 10 than for 3 and 6. TACs for brain regions were similar for 3 and 6, which showed PK similar to the 18F tracer, while 10 showed slower uptake and little clearance over 90 min. DVs for 3 and 6 were similar to the 18F tracer but higher for 10. Uptake of the three tracers was significantly reduced by coinjection of unlabeled 3 and 6. Small structural variations on the TZTP structure greatly altered the PK in brain and behavior in blood with little change in the log D, PPB or affinity. The study suggests that 11C-radiolabeled 3 will be a suitable alternative to [18F]FP-TZTP for translational studies in humans.
Isolation and Pharmacological Evaluation of Minor Cannabinoids from High-Potency Cannabis sativa.
Radwan, Mohamed M; ElSohly, Mahmoud A; El-Alfy, Abir T; Ahmed, Safwat A; Slade, Desmond; Husni, Afeef S; Manly, Susan P; Wilson, Lisa; Seale, Suzanne; Cutler, Stephen J; Ross, Samir A
2015-06-26
Seven new naturally occurring hydroxylated cannabinoids (1-7), along with the known cannabiripsol (8), have been isolated from the aerial parts of high-potency Cannabis sativa. The structures of the new compounds were determined by 1D and 2D NMR spectroscopic analysis, GC-MS, and HRESIMS as 8α-hydroxy-Δ(9)-tetrahydrocannabinol (1), 8β-hydroxy-Δ(9)-tetrahydrocannabinol (2), 10α-hydroxy-Δ(8)-tetrahydrocannabinol (3), 10β-hydroxy-Δ(8)-tetrahydrocannabinol (4), 10α-hydroxy-Δ(9,11)-hexahydrocannabinol (5), 9β,10β-epoxyhexahydrocannabinol (6), and 11-acetoxy-Δ(9)-tetrahydrocannabinolic acid A (7). The binding affinity of isolated compounds 1-8, Δ(9)-tetrahydrocannabinol, and Δ(8)-tetrahydrocannabinol toward CB1 and CB2 receptors as well as their behavioral effects in a mouse tetrad assay were studied. The results indicated that compound 3, with the highest affinity to the CB1 receptors, exerted the most potent cannabimimetic-like actions in the tetrad assay, while compound 4 showed partial cannabimimetic actions. Compound 2, on the other hand, displayed a dose-dependent hypolocomotive effect only.
Characteristics of recombinantly expressed rat and human histamine H3 receptors.
Wulff, Birgitte S; Hastrup, Sven; Rimvall, Karin
2002-10-18
Human and rat histamine H(3) receptors were recombinantly expressed and characterized using receptor binding and a functional cAMP assay. Seven of nine agonists had similar affinities and potencies at the rat and human histamine H(3) receptor. S-alpha-methylhistamine had a significantly higher affinity and potency at the human than rat receptor, and for 4-[(1R*,2R*)-2-(5,5-dimethyl-1-hexynyl)cyclopropyl]-1H-imidazole (Perceptin) the preference was the reverse. Only two of six antagonists had similar affinities and potencies at the human and the rat histamine H(3) receptor. Ciproxifan, thioperamide and (1R*,2R*)-trans-2-imidazol-4 ylcyclopropyl) (cyclohexylmethoxy) carboxamide (GT2394) had significantly higher affinities and potencies at the rat than at the human histamine H(3) receptor, while for N-(4-chlorobenzyl)-N-(7-pyrrolodin-1-ylheptyl)guanidine (JB98064) the preference was the reverse. All antagonists also showed potent inverse agonism properties. Iodoproxyfan, Perceptin, proxyfan and GR175737, compounds previously described as histamine H(3) receptor antagonists, acted as full or partial agonists at both the rat and the human histamine H(3) receptor. Copyright 2002 Elsevier Science B.V.
Thekkumkara, Thomas; Snyder, Russell; Karamyan, Vardan T
2016-01-01
The role of 2-methoxyestradiol is becoming a major area of investigation because of its therapeutic utility, though its mechanism is not fully explored. Recent studies have identified the G-protein-coupled receptor 30 (GPR30, GPER) as a high-affinity membrane receptor for 2-methoxyestradiol. However, studies aimed at establishing the binding affinities of steroid compounds for specific targets are difficult, as the tracers are highly lipophilic and often result in nonspecific binding in lipid-rich membrane preparations with low-level target receptor expression. 2-Methoxyestradiol binding studies are essential to elucidate the underlying effects of this novel estrogen metabolite and to validate its targets; therefore, this competitive receptor-binding assay protocol was developed in order to assess the membrane receptor binding and affinity of 2-methyoxyestradiol.
A Receptor-Coupled Evanescent Biosensor
1990-05-01
fibers ....................................... 18 6. The effects of various concentrations of d-TC (0), carbamyl- choline (&), and aGT (0) on binding of...affinity gel washed with the homogenization buffer containing 0.1% Triton X-100. The affinity gel was then mixed with 50 mL of 1 M carbamy- choline for 4 h...at 23*C, then filtered, and the filtrate, containing carbamyl- choline and the nAChR protein, was dialyzed against 5 mM Tris pH 7.2 to remove the drug
Lu, Jie; Hathaway, Helen J; Royce, Melanie E; Prossnitz, Eric R; Miao, Yubin
2014-02-01
The purpose of this study was to examine whether the introduction of D-Phe could improve the GnRH receptor binding affinities of DOTA-conjugated D-Lys(6)-GnRH peptides. Building upon the construct of DOTA-Ahx-(D-Lys(6)-GnRH1) we previously reported, an aromatic amino acid of D-Phe was inserted either between the DOTA and Ahx or between the Ahx and D-Lys(6) to generate new DOTA-D-Phe-Ahx-(D-Lys(6)-GnRH) or DOTA-Ahx-D-Phe-(D-Lys(6)-GnRH) peptides. Compared to DOTA-Ahx-(D-Lys(6)-GnRH1) (36.1 nM), the introduction of D-Phe improved the GnRH receptor binding affinities of DOTA-D-Phe-Ahx-(D-Lys(6)-GnRH) (16.3 nM) and DOTA-Ahx-D-Phe-(D-Lys(6)-GnRH) (7.6 nM). The tumor targeting and pharmacokinetic properties of (111)In-DOTA-Ahx-D-Phe-(D-Lys(6)-GnRH) was determined in MDA-MB-231 human breast cancer-xenografted nude mice. Compared to (111)In-DOTA-Ahx-(D-Lys(6)-GnRH1), (111)In-DOTA-Ahx-D-Phe-(D-Lys(6)-GnRH) exhibited comparable tumor uptake with faster renal and liver clearance. The MDA-MB-231 human breast cancer-xenografted tumors were clearly visualized by single photon emission computed tomography (SPECT) using (111)In-DOTA-Ahx-D-Phe-(D-Lys(6)-GnRH) as an imaging probe, providing a new insight into the design of new GnRH peptides in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jones, Brian W; Hinkle, Patricia M
2008-07-01
Arrestin binding to agonist-occupied phosphorylated G protein-coupled receptors typically increases the affinity of agonist binding, increases resistance of receptor-bound agonist to removal with high acid/salt buffer, and leads to receptor desensitization and internalization. We tested whether thyrotropin-releasing hormone (TRH) receptors lacking phosphosites in the C-terminal tail could form stable and functional complexes with arrestin. Fibroblasts from mice lacking arrestins 2 and 3 were used to distinguish between arrestin-dependent and -independent effects. Arrestin did not promote internalization or desensitization of a receptor that had key Ser/Thr phosphosites mutated to Ala (4Ala receptor). Nevertheless, arrestin greatly increased acid/salt resistance and the affinity of 4Ala receptor for TRH. Truncation of 4Ala receptor just distal to the key phosphosites (4AlaStop receptor) abolished arrestin-dependent acid/salt resistance but not the effect of arrestin on agonist affinity. Arrestin formed stable complexes with activated wild-type and 4Ala receptors but not with 4AlaStop receptor, as measured by translocation of arrestin-green fluorescent protein to the plasma membrane or chemical cross-linking. An arrestin mutant that does not interact with clathrin and AP2 did not internalize receptor but still promoted high affinity TRH binding, acid/salt resistance, and desensitization. A sterically restricted arrestin mutant did not cause receptor internalization or desensitization but did promote acid/salt resistance and high agonist affinity. The results demonstrate that arrestin binds to proximal or distal phosphosites in the receptor tail. Arrestin binding at either site causes increased agonist affinity and acid/salt resistance, but only the proximal phosphosites evoke the necessary conformational changes in arrestin for receptor desensitization and internalization.
1991-01-01
Video-enhanced microscopy was used to examine the interaction of elastin- or laminin-coated gold particles with elastin binding proteins on the surface of live cells. By visualizing the binding events in real time, it was possible to determine the specificity and avidity of ligand binding as well as to analyze the motion of the receptor-ligand complex in the plane of the plasma membrane. Although it was difficult to interpret the rates of binding and release rigorously because of the possibility for multiple interactions between particles and the cell surface, relative changes in binding have revealed important aspects of the regulation of affinity of ligand-receptor interaction in situ. Both elastin and laminin were found to compete for binding to the cell surface and lactose dramatically decreased the affinity of the receptor(s) for both elastin and laminin. These findings were supported by in vitro studies of the detergent-solubilized receptor. Further, immobilization of the ligand-receptor complexes through binding to the cytoskeleton dramatically decreased the ability of bound particles to leave the receptor. The changes in the kinetics of ligand-coated gold binding to living cells suggest that both laminin and elastin binding is inhibited by lactose and that attachment of receptor to the cytoskeleton increases its affinity for the ligand. PMID:1848864
Characterization of 4-Nitrophenylpropyl-N-alkylamine Interactions with Sigma Receptors
Chu, Uyen B.; Hajipour, Abdol R.; Ramachandran, Subramaniam; Ruoho, Arnold E.
2011-01-01
Sigma receptors are small membrane proteins implicated in a number of pathophysiological conditions including drug addiction, psychosis and cancer; thus, small molecule inhibitors of sigma receptors have been proposed as potential pharmacotherapeutics for these diseases. We previously discovered that endogenous monochain N-alkyl sphingolipids including D-erythro-sphingosine, sphinganine, and N,N-dimethyl sphingosine bind to the sigma-1 receptor at physiologically relevant concentrations [Ramachandran et al. 2009 Eur J Pharmacol. 609(1–3):19–26]. Here, we investigated several N-alkylamines of varying chain lengths as sigma receptor ligands. Although the KI values for N-alkylamines were found to be in the micromolar range, when N-3-phenylpropyl and N-3-(4-nitrophenyl)propyl derivatives of butyl- (1a and 1b), heptyl- (2a and 2b), dodecyl- (3a and 3b), and octadecyl-amine (4a and 4b) were evaluated as sigma receptor ligands we found that these compounds exhibited nanomolar affinities with both sigma-1 and sigma-2 receptors. A screen of the high affinity ligands 2a, 2b, 3a and 3b against a variety of other receptors/transporters confirmed these four compounds to be highly selective mixed sigma-1 and sigma-2 ligands. Additionally, in HEK293 cells reconstituted with Kv1.4 potassium channel and the sigma-1 receptor, these derivatives were able to inhibit the outward current from the channel – consistent with sigma receptor modulation. Finally, cytotoxicity assays showed that 2a, 2b, 3a and 3b were highly potent against a number of cancer cell lines, demonstrating their potential utility as mixed sigma-1 and sigma-2 receptor anti-cancer agents. PMID:21790129
Zurawski, S M; Imler, J L; Zurawski, G
1990-01-01
Some mouse interleukin-2 (mIL-2) proteins with substitutions at residue Gln141 are unable to trigger a maximal biological response. The Asp141 protein induces the lowest maximal response. The Asp141 protein can weakly antagonize the biological activity of mIL-2 and strongly antagonizes the biological activity of active mIL-2 mutant proteins that have defects in interactions with the high affinity receptor. Residue 141 mutant proteins bind with reduced affinity to T cells expressing the high affinity IL-2 receptor, yet bind normally to transfected fibroblasts expressing only the alpha and beta chains of the receptor. These results suggest that a third receptor component is important for both binding and signal transduction. PMID:2249656
Investigations into the binding affinities of different human 5-HT4 receptor splice variants.
Irving, Helen R; Tochon-Danguy, Nathalie; Chinkwo, Kenneth A; Li, Jian G; Grabbe, Carmen; Shapiro, Marina; Pouton, Colin W; Coupar, Ian M
2010-01-01
This study examined whether the drug-receptor-binding sites of 5 selected human 5-HT(4) receptor splice variants [h5-HT4(a), h5-HT4(b), h5-HT4(c), h5-HT4(d) and h5-HT4(g)] display preferential affinities towards agonists. The agonists selected on the basis of chemical diversity and clinical relevance were: 5-HT4 benzamides, renzapride, zacopride and prucalopride; the benzimidazolones, DAU 6236 and BIMU 1; the aromatic ketone, RS67333, and the indole carbazimidamide tegaserod. The rank order of affinities ranging across the splice variants was: tegaserod (pKi: 7.38-7.91) > or = Y-36912 (pKi: 7.03-7.85) = BIMU 1 (pKi: 6.92-7.78) > or = DAU 6236 (pKi: 6.79-7.99) > or = 5-HT (pKi: 5.82-7.29) > or = 5-MeOT (pKi: 5.64-6.83) > or = renzapride (pKi: 4.85-5.56). We obtained affinity values for the 5-HT4(b), (d) and (g) variants for RS67333 (pKi: 7:48-8.29), prucalopride (pKi: 6.86-7.37) and zacopride (pKi: 5.88-7.0). These results indicate that the ligands interact with the same conserved site in each splice variant. Some splice variants have a higher affinity for certain agonists and the direction of selectivity followed a common trend of lowest affinity at the (d) variant. However, this trend was not evident in functional experiments. Our findings suggest that it may be possible to design splice variant selective ligands, which may be of relevance for experimental drugs but may be difficult to develop clinically. 2010 S. Karger AG, Basel.
Vitamin D Receptor Signaling and Cancer.
Campbell, Moray J; Trump, Donald L
2017-12-01
The vitamin D receptor (VDR) binds the secosteroid hormone 1,25(OH) 2 D 3 with high affinity and regulates gene programs that control a serum calcium levels, as well as cell proliferation and differentiation. A significant focus has been to exploit the VDR in cancer settings. Although preclinical studies have been strongly encouraging, to date clinical trials have delivered equivocal findings that have paused the clinical translation of these compounds. However, it is entirely possible that mining of genomic data will help to refine precisely what are the key anticancer actions of vitamin D compounds and where these can be used most effectively. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Liu, Y; Yu, H; Svensson, B E; Cortizo, L; Lewander, T; Hacksell, U
1993-12-24
A series of 2-(dipropylamino)tetralin derivatives in which the C8 substituent is varied has been prepared and evaluated pharmacologically to explore the importance of the C8 substituent in the interaction of 2-aminotetralin-based ligands with serotonin (5-HT1A) receptors. Enantiopure derivatives were prepared by facile palladium-catalyzed reactions of the triflates of the enantiomers of 8-hydroxy-2-(dipropylamino)tetralin (8-OH-DPAT, 1). The affinity of the compounds for the 5-HT1A receptors was evaluated by competition experiments with [3H]-8-OH-DPAT in rat hippocampal and cortical tissue. In addition, the compounds were evaluated for central 5-HT and dopamine receptor stimulating activity in vivo by use of biochemical and behavioral assays in rats. With the exception of the carboxy-substituted derivative which is devoid of 5-HT1A receptor affinity, the compounds have moderate to high affinities (K(i) values range from 0.7 to 130 nM) for 5-HT1A receptors. Surprisingly, several of the derivatives do not produce any apparent effects in vivo although they have fairly high 5-HT1A receptor affinities. However, the methoxycarbonyl- and acetyl-substituted derivatives are potent 5-HT1A receptor agonists in vivo and exhibit in vitro affinities in the same range as the enantiomers of 1.
Kucwaj-Brysz, Katarzyna; Kurczab, Rafał; Jastrzębska-Więsek, Magdalena; Żesławska, Ewa; Satała, Grzegorz; Nitek, Wojciech; Partyka, Anna; Siwek, Agata; Jankowska, Agnieszka; Wesołowska, Anna; Kieć-Kononowicz, Katarzyna; Handzlik, Jadwiga
2018-03-10
This paper presents a computer-aided insight into the receptor-ligand interaction for novel analogs of the lead structure 5-(4-fluorophenyl)-3-(2-hydroxy-3-(4-(2-methoxyphenyl)piperazin-1-yl)propyl)-5-methylimidazolidine-2,4-dione (1, MF-8), as part of the search for potent and selective serotonin 5-HT 7 receptor (5-HT 7 R) agents. New hydantoin derivatives (4-19) were designed and synthesized. For 5-phenyl-3-(2-hydroxy-3-(4-(2-ethoxyphenyl)piperazin-1-yl)propyl)-5-methylimidazolidine-2,4-dione (4), its crystal structure was determined experimentally. Molecular modeling studies were performed, including both pharmacophore and structure-based approaches. New compounds were investigated in radioligand binding assays (RBA) for their affinity toward 5-HT 7 R and selectivity over 5-HT 1A R, dopamine D 2 R and α 1 -, α 2 -and β-adrenoceptors. Selected compounds (5-8) were assessed for their antidepressant and anxiolytic effects in vivo in mice. Most of the tested compounds displayed potent affinity and selectivity for 5-HT 7 R in RBA, in particular seven compounds (4, 5, 7, 8 and 10-12,K i ≤ 10 nM). Antidepressant-like activity in vivo for all tested compounds (5-8) was confirmed. SAR analysis based on both crystallography-supported molecular modeling and RBA results indicated that mono-phenyl substituents at both hydantoin and piperazine are more favorable for 5-HT 7 R affinity than the di-phenyl ones. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Candida albicans C3d receptor, isolated by using a monoclonal antibody.
Linehan, L; Wadsworth, E; Calderone, R
1988-01-01
Pseudohyphae of Candida albicans possess a receptor for C3d, a fragment of the complement component C3. This receptor was partially purified by using a monoclonal antibody (CA-A) that previously had been shown to inhibit the binding of C3d to C. albicans pseudohyphae. Purified immunoglobulin G from ascites fluid (CA-A) was coupled to a cyanogen bromide-activated Sepharose column, and an affinity-purified fraction (A2) from C. albicans pseudohyphae was obtained. This fraction inhibited rosetting of the EAC3d receptor by pseudohyphae and appeared to contain glycoprotein, since receptor activity could be removed when A2 was incubated with lectins specific for mannose and glucose. A2 was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and two polypeptides of approximately 60 and 70 kilodaltons (kDa) were consistently identified in reducing gels. The 60-kDa protein was identified as a glycoprotein by concanavalin A binding. A2 was further analyzed by high-pressure liquid chromatography (HPLC). Of three fractions obtained by HPLC, one containing the 60-kDa protein was found to have receptor activity. When analyzed by HPLC, this protein was found to contain mannose and glucose in approximately equal amounts. Both immunofluorescence and electron microscopy of pseudohyphae treated with CA-A identified A2 as a surface moiety. Thus, the C3d receptor of C. albicans, isolated with CA-A, is a glycoprotein of approximately 60 kDa. Images PMID:2969374
Kołaczkowski, Marcin; Marcinkowska, Monika; Bucki, Adam; Śniecikowska, Joanna; Pawłowski, Maciej; Kazek, Grzegorz; Siwek, Agata; Jastrzębska-Więsek, Magdalena; Partyka, Anna; Wasik, Anna; Wesołowska, Anna; Mierzejewski, Paweł; Bienkowski, Przemyslaw
2015-03-06
We describe a novel class of designed multiple ligands (DMLs) combining serotonin 5-HT6 receptor (5-HT6R) antagonism with dopamine D2 receptor (D2R) partial agonism. Prototype hybrid molecules were designed using docking to receptor homology models. Diverse pharmacophore moieties yielded 3 series of hybrids with varying in vitro properties at 5-HT6R and D2R, and at M1 receptor and hERG channel antitargets. 4-(piperazin-1-yl)-1H-indole derivatives showed highest antagonist potency at 5-HT6R, with 7-butoxy-3,4-dihydroquinolin-2(1H)-one and 2-propoxybenzamide derivatives having promising D2R partial agonism. 2-(3-(4-(1-(phenylsulfonyl)-1H-indol-4-yl)piperazin-1-yl)propoxy)benzamide (47) exhibited nanomolar affinity at both 5-HT6R and D2R and was evaluated in rat models. It displayed potent antidepressant-like and anxiolytic-like activity in the Porsolt and Vogel tests, respectively, more pronounced than that of a reference selective 5-HT6R antagonist or D2R partial agonist. In addition, 47 also showed antidepressant-like activity (Porsolt's test) and anxiolytic-like activity (open field test) in aged (>18-month old) rats. In operant conditioning tests, 47 enhanced responding for sweet reward in the saccharin self-administration test, consistent with anti-anhedonic properties. Further, 47 facilitated extinction of non-reinforced responding for sweet reward, suggesting potential procognitive activity. Taken together, these studies suggest that DMLs combining 5-HT6R antagonism and D2R partial agonism may successfully target affective disorders in patients from different age groups without a risk of cognitive deficits. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Romagnoli, Romeo; Baraldi, Pier Giovanni; Pavani, Maria Giovanna; Tabrizi, Mojgan Aghazadeh; Moorman, Allan R; Di Virgilio, Francesco; Cattabriga, Elena; Pancaldi, Cecilia; Gessi, Stefania; Borea, Pier Andrea
2004-11-15
The design, synthesis, and preliminary biological evaluation of the first potent radioligand antagonist for the P2X(7) receptor, named [(3)H]-1-[(S)-N,O-bis-(isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-(o-tolyl)-piperazine (compound 13), are reported. This compound bound to human P2X(7) receptors expressed in HEK transfected cells with K(D) and B(max) value of 3.46+/-0.1 nM and 727+/-73 fmol/mg of protein, respectively. The high affinity and facile labeling makes it a promising radioligand for a further characterization of P2X(7) receptor subtype.
Siemens, I R; Yee, D K; Reagan, L P; Fluharty, S J
1994-01-01
The murine neuroblastoma N1E-115 cell line possesses type 1 and type 2 angiotensin II (AngII) receptor subtypes. In vitro differentiation of these cells substantially increases the density of the AT2-receptor subtype, whereas the density of the AT1 receptors remains unchanged. In the present study, we report that the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) selectively solubilized AT2 receptors from N1E-115 cell membranes and that these receptors could be purified further to near homogeneity by affinity chromatography. More specifically, the presence of an agonist (AngII) during affinity purification of AT2 receptors resulted in the elution of high (110-kDa) and low (66-kDa) molecular mass proteins as determined by gel electrophoresis under nonreducing conditions. In contrast, when the nonselective antagonist Sar1,Ile8-AngII was used during purification, only the lower 66-kDa protein was observed. Affinity purification in the presence of the peptide and nonpeptide AT2-receptor antagonists CGP42112A and PD123319 also resulted in elution of the same 66-kDa protein, but unlike that in the presence of Sar1,Ile8-AngII, some of the high molecular weight site was observed as well. On the other hand, Losartan, an AT1-receptor antagonist, was completely ineffective in eluting any AngII receptors from the affinity column, further confirming their AT2 identity. After agonist elution, the 110-kDa band dissociated into two low molecular mass bands of 66 kDa and 54 kDa when sodium dodecyl sulfate-gel electrophoresis was run under reducing conditions.(ABSTRACT TRUNCATED AT 250 WORDS)
Characterization of binding affinity of CJ-023,423 for human prostanoid EP4 receptor.
Murase, Akio; Nakao, Kazunari; Takada, Junji
2008-01-01
In order to characterize the receptor binding pharmacology of CJ-023,423, a potent and selective EP4 antagonist, we performed a radioligand receptor binding assay under various assay conditions. An acidic (pH 6) and hypotonic buffer is a conventional, well-known buffer for prostaglandin E2 receptor binding assays. CJ-023,423 showed moderate binding affinity for human EP4 receptor under conventional buffer conditions. However, its binding affinity was greatly increased under neutral (pH 7.4) and isotonic buffer conditions. In this report, the binding mechanism between CJ-023,423 and human EP4 receptor is discussed based on the binding affinities determined under various assay conditions. Copyright 2008 S. Karger AG, Basel.
Malik, Maninder; Rangel-Barajas, Claudia; Mach, Robert H; Luedtke, Robert R
2016-09-01
Several receptor mediated pathways have been shown to modulate the murine head twitch response (HTR). However, the role of sigma receptors in the murine (±)-2,5-dimethoxy-4-iodoamphetamine (DOI)-induced HTR has not been previously investigated. We examined the ability of LS-1-137, a novel sigma-1 vs. sigma-2 receptor selective phenylacetamide, to modulate the DOI-induced HTR in DBA/2J mice. We also assessed the in vivo efficacy of reference sigma-1 receptor antagonists and agonists PRE-084 and PPCC. The effect of the sigma-2 receptor selective antagonist RHM-1-86 was also examined. Rotarod analysis was performed to monitor motor coordination after LS-1-137 administration. Radioligand binding techniques were used to determine the affinity of LS-1-137 at 5-HT2A and 5-HT2C receptors. LS-1-137 and the sigma-1 receptor antagonists haloperidol and BD 1047 were able to attenuate a DOI-induced HTR, indicating that LS-1-137 was acting in vivo as a sigma-1 receptor antagonist. LS-1-137 did not compromise rotarod performance within a dose range capable of attenuating the effects of DOI. Radioligand binding studies indicate that LS-1-137 exhibits low affinity binding at both 5-HT2A and 5-HT2C receptors. Based upon the results from these and our previous studies, LS-1-137 is a neuroprotective agent that attenuates the murine DOI-induced HTR independent of activity at 5-HT2 receptor subtypes, D2-like dopamine receptors, sigma-2 receptors and NMDA receptors. LS-1-137 appears to act as a sigma-1 receptor antagonist to inhibit the DOI-induced HTR. Therefore, the DOI-induced HTR can be used to assess the in vivo efficacy of sigma-1 receptor selective compounds. Copyright © 2016. Published by Elsevier Inc.
Concepts in receptor optimization: targeting the RGD peptide.
Chen, Wei; Chang, Chia-en; Gilson, Michael K
2006-04-12
Synthetic receptors have a wide range of potential applications, but it has been difficult to design low molecular weight receptors that bind ligands with high, "proteinlike" affinities. This study uses novel computational methods to understand why it is hard to design a high-affinity receptor and to explore the limits of affinity, with the bioactive peptide RGD as a model ligand. The M2 modeling method is found to yield excellent agreement with experiment for a known RGD receptor and then is used to analyze a series of receptors generated in silico with a de novo design algorithm. Forces driving binding are found to be systematically opposed by proportionate repulsions due to desolvation and entropy. In particular, strong correlations are found between Coulombic attractions and the electrostatic desolvation penalty and between the mean energy change on binding and the cost in configurational entropy. These correlations help explain why it is hard to achieve high affinity. The change in surface area upon binding is found to correlate poorly with affinity within this series. Measures of receptor efficiency are formulated that summarize how effectively a receptor uses surface area, total energy, and Coulombic energy to achieve affinity. Analysis of the computed efficiencies suggests that a low molecular weight receptor can achieve proteinlike affinity. It is also found that macrocyclization of a receptor can, unexpectedly, increase the entropy cost of binding because the macrocyclic structure further restricts ligand motion.
Akunne, H C; Demattos, S B; Whetzel, S Z; Wustrow, D J; Davis, D M; Wise, L D; Cody, W L; Pugsley, T A; Heffner, T G
1995-04-18
The major signal transduction pathway for neurotensin (NT) receptors is the G-protein-dependent stimulation of phospholipase C, leading to the mobilization of intracellular free Ca2+ ([Ca2+]i) and the stimulation of cyclic GMP. We investigated the functional actions of an analog of NT(8-13), N alpha MeArg-Lys-Pro-Trp-tLeu-Leu (NT1), and other NT related analogs by quantitative measurement of the cytosolic free Ca2+ concentration in HT-29 (human colonic adenocarcinoma) cells using the Ca(2+)-sensitive dye fura-2/AM and by effects on cyclic GMP levels in rat cerebellar slices. The NT receptor binding affinities for these analogs to HT-29 cell membranes and newborn (10-day-old) mouse brain membranes were also investigated. Data obtained from HT-29 cell and mouse brain membrane preparations showed saturable single high-affinity sites and binding densities (Bmax) of 130.2 and 87.5 fmol/mg protein, respectively. The respective KD values were 0.47 and 0.39 nM, and the Hill coefficients were 0.99 and 0.92. The low-affinity levocabastine-sensitive site was not present (K1 > 10,000) in either membrane preparation. Although the correlation of binding between HT-29 cell membranes and mouse brain membranes was quite significant (r = 0.92), some of the reference agents had lower binding affinities in the HT-29 cell membranes. The metabolically stable compound NT1 plus other NT analogs and related peptides [NT, NT(8-13), xenopsin, neuromedin N, NT(9-13), kinetensin and (D-Trp11)-NT] increased intracellular Ca2+ levels in HT-29 cells, indicating NT receptor agonist properties. The effect of NT1 in mobilizing [Ca2+]i blocked by SR 48692, a non-peptide NT antagonist. Receptor binding affinities of NT analogs to HT-29 cell membranes were positively correlated with potencies for mobilizing intracellular calcium in the same cells. In addition, NT1 increased cyclic GMP levels in rat cerebellar slices, confirming the latter findings of its NT agonist action. These results substantiate the in vitro NT agonist properties of the hexapeptide NT analog NT1.
Sauvé, K; Nachman, M; Spence, C; Bailon, P; Campbell, E; Tsien, W H; Kondas, J A; Hakimi, J; Ju, G
1991-01-01
Human interleukin 2 (IL-2) analogs with defined amino acid substitutions were used to identify specific residues that interact with the 55-kDa subunit (p55) or alpha chain of the human IL-2 receptor. Analog proteins containing specific substitutions for Lys-35, Arg-38, Phe-42, or Lys-43 were inactive in competitive binding assays for p55. All of these analogs retained substantial competitive binding to the intermediate-affinity p70 subunit (beta chain) of the receptor complex. The analogs varied in ability to interact with the high-affinity p55/p70 receptor. Despite the lack of binding to p55, all analogs exhibited significant biological activity, as assayed on the murine CTLL cell line. The dissociation constants of Arg-38 and Phe-42 analogs for p70 were consistent with intermediate-affinity binding; the Kd values were not significantly affected by the presence of p55 in binding to the high-affinity IL-2 receptor complex. These results confirm the importance of the B alpha-helix in IL-2 as the locus for p55-receptor binding and support a revised model of IL-2-IL-2 receptor interaction. PMID:2052547
Chaki, Shigeyuki; Hirota, Shiho; Funakoshi, Takeo; Suzuki, Yoshiko; Suetake, Sayoko; Okubo, Taketoshi; Ishii, Takaaki; Nakazato, Atsuro; Okuyama, Shigeru
2003-02-01
We investigated the effects of a novel melanocortin-4 (MC4) receptor antagonist,1-[(S)-2-(4-fluorophenyl)-2-(4-isopropylpiperadin-1-yl)ethyl]-4-[4-(2-methoxynaphthalen-1-yl)butyl]piperazine (MCL0129) on anxiety and depression in various rodent models. MCL0129 inhibited [(125)I][Nle(4)-D-Phe(7)]-alpha-melanocyte-stimulating hormone (alpha-MSH) binding to MC4 receptor with a K(i) value of 7.9 nM, without showing affinity for MC1 and MC3 receptors. MCL0129 at 1 microM had no apparent affinity for other receptors, transporters, and ion channels related to anxiety and depression except for a moderate affinity for the sigma(1) receptor, serotonin transporter, and alpha(1)-adrenoceptor, which means that MCL0129 is selective for the MC4 receptor. MCL0129 attenuated the alpha-MSH-increased cAMP formation in COS-1 cells expressing the MC4 receptor, whereas MCL0129 did not affect basal cAMP levels, thereby indicating that MCL0129 acts as an antagonist at the MC4 receptor. Swim stress markedly induced anxiogenic-like effects in both the light/dark exploration task in mice and the elevated plus-maze task in rats, and MCL0129 reversed the stress-induced anxiogenic-like effects. Under nonstress conditions, MCL0129 prolonged time spent in the light area in the light/dark exploration task and suppressed marble-burying behavior. MCL0129 shortened immobility time in the forced swim test and reduced the number of escape failures in inescapable shocks in the learned helplessness test, thus indicating an antidepressant potential. In contrast, MCL0129 had negligible effects on spontaneous locomotor activity, Rotarod performance, and hexobarbital-induced anesthesia. These observations indicate that MCL0129 is a potent and selective MC4 antagonist with anxiolytic- and antidepressant-like activities in various rodent models. MC4 receptor antagonists may prove effective for treating subjects with stress-related disorders such as depression and/or anxiety.
Structure-based Understanding of Binding Affinity and Mode ...
The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interactions and specific hydrogen bonds with the ligand. Here we present a framework for quantitative analysis of the steric and electronic features of the human ERα-ligand complex using three dimensional (3D) protein-ligand interaction description combined with 3D-QSAR approach. An empirical hydrophobicity density field is applied to account for hydrophobic contacts of ligand within the LBP. The obtained 3D-QSAR model revealed that hydrophobic contacts primarily determine binding affinity and govern binding mode with hydrogen bonds. Several residues of the LBP appear to be quite flexible and adopt a spectrum of conformations in various ERα-ligand complexes, in particular His524. The 3D-QSAR was combined with molecular docking based on three receptor conformations to accommodate receptor flexibility. The model indicates that the dynamic character of the LBP allows accommodation and stable binding of structurally diverse ligands, and proper representation of the protein flexibility is critical for reasonable description of binding of the ligands. Our results provide a quantitative and mechanistic understanding of binding affinity and mode of ERα agonists and antagonists that may be applicab
Riba, P; Tóth, Z; Hosztafi, S; Friedmann, T; Fürst, S
2003-01-01
The agonistic and antagonistic properties of N-cyclopropylmethyl (N-CPM) morphine derivatives were observed in mouse vas deferens (MVD), longitudinal muscle of guinea pig ileum (GPI) and rabbit vas deferens (LVD). In MVD the K(e) values of the titled compounds (N-CPM-morphine, N-CPM-isomorphine, N-CPM-dihydromorphine, N-CPM-dihydroisomorpPhine, N-CPM-dihydromorphone and naltrexone) were measured for mu-, kappa- and delta-receptors using normorphine, ethylketocyclazocine (EKC) and D-Pen2-D-Pen5-enkephaline (DPDPE) as selective agonists on the receptors, respectively. For mu-receptors of MVD the tested compounds showed similar affinity. For kappa-receptors the non-iso-6-OH derivatives possessed much less affinity than the iso-derivatives. Similar difference could be observed for delta-receptors. The agonistic activities of these compounds in MVD were observed to be between 0-20% of the inhibition of muscle contractions. In GPI the compounds except naltrexone possessed strong agonistic activities effectively antagonized by nor-binaltorphimine (nor-BNI) (K(e) of nor-BNI was 0.23 nM) suggesting that they were strong kappa-receptor agonists. We investigated these agents in LVD too, which contains kappa-receptors, but they did not produce any agonist potencies. It raises the possibility that the kappa-receptor subtypes of LVD and MVD are different from the kappa-receptor subtype of GPI or the vasa deferentia contain much fewer kappa-receptors than GPI and the intrinsic activities of these compounds are too small to reach the 50% inhibition of the contractions.
Structure and assembly mechanism for heteromeric kainate receptors.
Kumar, Janesh; Schuck, Peter; Mayer, Mark L
2011-07-28
Native glutamate receptor ion channels are tetrameric assemblies containing two or more different subunits. NMDA receptors are obligate heteromers formed by coassembly of two or three divergent gene families. While some AMPA and kainate receptors can form functional homomeric ion channels, the KA1 and KA2 subunits are obligate heteromers which function only in combination with GluR5-7. The mechanisms controlling glutamate receptor assembly involve an initial step in which the amino terminal domains (ATD) assemble as dimers. Here, we establish by sedimentation velocity that the ATDs of GluR6 and KA2 coassemble as a heterodimer of K(d) 11 nM, 32,000-fold lower than the K(d) for homodimer formation by KA2; we solve crystal structures for the GluR6/KA2 ATD heterodimer and heterotetramer assemblies. Using these structures as a guide, we perform a mutant cycle analysis to probe the energetics of assembly and show that high-affinity ATD interactions are required for biosynthesis of functional heteromeric receptors. Copyright © 2011 Elsevier Inc. All rights reserved.
Foster, A C; Kemp, J A; Leeson, P D; Grimwood, S; Donald, A E; Marshall, G R; Priestley, T; Smith, J D; Carling, R W
1992-05-01
The glycine site on the N-methyl-D-aspartate (NMDA) subtype of receptors for the excitatory neurotransmitter glutamate is a potential target for the development of neuroprotective drugs. We report here two chemical series of glycine site antagonists derived from kynurenic acid (KYNA), with greatly improved potency and selectivity. Disubstitution with chlorine or bromine in the 5- and 7-positions of KYNA increased affinity for [3H]glycine binding sites in rat cortex/hippocampus P2 membranes, with a parallel increase of potency for antagonism of NMDA-evoked responses in the rat cortical wedge preparation. The optimal compound was 5-I,7-Cl-KYNA, with an IC50 for [3H]glycine binding of 29 nM and an apparent Kb in the cortical wedge preparation of 0.41 microM. Reduction of the right-hand ring of 5,7-diCl-KYNA reduced affinity by 10-fold, but this was restored by substitution in the 4-position with the trans-phenylamide and further improved in the trans-benzylamide. The optimal compound was the transphenylurea (L-689,560), with an IC50 of 7.4 nM and an apparent Kb of 0.13 microM. Both series of compounds displayed a high degree of selectivity for the glycine site, having IC50 values of greater than 10 microM versus radioligand binding to the glutamate recognition sites of NMDA, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), and kainate receptors and the strychnine-sensitive glycine receptor. Selectivity versus AMPA receptor-mediated responses was also apparent in the rat cortical wedge and in patch-clamp recordings of cortical neurons in culture. Experiments using [3H]dizocilpine (MK-801) binding indicated that 5,7-diBr-KYNA, 5,7-diCl-KYNA, 5-I,7-Cl-KYNA, and L-689,560 all behaved as full antagonists and were competitive with glycine. Patch-clamp recordings of cortical neurons in culture also indicated that NMDA-induced currents were antagonized by competition for the glycine site, and gave no evidence for partial agonist activity. pKi values for 5,7-diBr-KYNA and L-689,560 in these experiments were 7.2 and 7.98, respectively, similar to the affinities of these compounds in the glycine binding assay. The high affinity and selectivity of these new derivatives make them useful tools to investigate the function of the glycine site on the NMDA receptor.
Functional antagonistic properties of clozapine at the 5-HT3 receptor.
Hermann, B; Wetzel, C H; Pestel, E; Zieglgänsberger, W; Holsboer, F; Rupprecht, R
1996-08-23
The atypical neuroleptic clozapine is thought to exert its psychopharmacological actions through a variety of neurotransmitter receptors. It binds preferentially to D4 and 5-HT2 receptors; however, little is known on it's interaction with the 5-HT3 receptor. Using a cell line stably expressing the 5-HT3 receptor, whole-cell voltage-clamp analysis revealed functional antagonistic properties of clozapine at low nanomolar concentrations in view of a binding affinity in the upper nanomolar range. Because the concentration of clozapine required for an interaction with the 5-HT3 receptor can be achieved with therapeutical doses, functional antagonistic properties at this ligand-gated ion channel may contribute to its unique psychopharmacological profile.
Naftopidil for the treatment of urinary symptoms in patients with benign prostatic hyperplasia
Masumori, Naoya
2011-01-01
Naftopidil, approved only in Japan, is an α1-adrenergic receptor antagonist (α1-blocker) used to treat lower urinary tract symptoms (LUTS) suggestive of benign prostatic hyperplasia (BPH). Different from tamsulosin hydrochloride and silodosin, in that it has higher and extremely higher affinity respectively, for the α1A-adrenergic receptor subtype than for the α1D type, naftopidil has distinct characteristics because it has a three times greater affinity for the α1D-adrenergic receptor subtype than for the α1A subtype. Although well-designed large-scale randomized controlled studies are lacking and the optimal dosage of naftopidil is not always completely determined, previous reports from Japan have shown that naftopidil has superior efficacy to a placebo and comparable efficacy to other α1-blockers such as tamsulosin. On the other hand, the incidences of ejaculatory disorders and intraoperative floppy iris syndrome induced by naftopidil may be lower than for tamsulosin and silodosin having high affinity for the α1A-adrenergic receptor subtype. However, it remains unknown if the efficacy and safety of naftopidil in Japanese is applicable to white, black and Hispanic men having LUTS/BPH in western countries. PMID:21753885
Escobar, Angélica P; Cornejo, Francisca A; Olivares-Costa, Montserrat; González, Marcela; Fuentealba, José A; Gysling, Katia; España, Rodrigo A; Andrés, María E
2015-09-01
Dopamine from the ventral tegmental area and glutamate from several brain nuclei converge in the nucleus accumbens (NAc) to drive motivated behaviors. Repeated activation of D2 receptors with quinpirole (QNP) induces locomotor sensitization and compulsive behaviors, but the mechanisms are unknown. In this study, in vivo microdialysis and fast scan cyclic voltammetry in adult anesthetized rats were used to investigate the effect of repeated QNP on dopamine and glutamate neurotransmission within the NAc. Following eight injections of QNP, a significant decrease in phasic and tonic dopamine release was observed in rats that displayed locomotor sensitization. Either a systemic injection or the infusion of QNP into the NAc decreased dopamine release, and the extent of this effect was similar in QNP-sensitized and control rats, indicating that inhibitory D2 autoreceptor function is maintained despite repeated activation of D2 receptors and decreased dopamine extracellular levels. Basal extracellular levels of glutamate in the NAc were also significantly lower in QNP-treated rats than in controls. Moreover, the increase in NAc glutamate release induced by direct stimulation of medial prefrontal cortex was significantly lower in QNP-sensitized rats. Together, these results indicate that repeated activation of D2 receptors disconnects NAc from medial prefrontal cortex and ventral tegmental area. Repeated administration of the dopamine D2 receptor agonist quinpirole (QNP) induces locomotor sensitization. We found that the NAc of QNP-sensitized rats has reduced glutamate levels coming from prefrontal cortex together with a decreased phasic and tonic dopamine neurotransmission but a conserved presynaptic D2 receptor function. We suggest that locomotor sensitization is because of increased affinity state of D2 post-synaptic receptors. © 2015 International Society for Neurochemistry.
Zhao-Shea, Rubing; Cohen, Bruce N.; Just, Herwig; McClure-Begley, Tristan; Whiteaker, Paul; Grady, Sharon R.; Salminen, Outi; Gardner, Paul D.; Lester, Henry A.; Tapper, Andrew R.
2010-01-01
Recent studies suggest that high-affinity neuronal nicotinic acetylcholine receptors (nAChRs) containing α4 and β2 subunits (α4β2*) functionally interact with G-protein-coupled dopamine (DA) D2 receptors in basal ganglia. We hypothesized that if a functional interaction between these receptors exists, then mice expressing an M2 point mutation (Leu9′Ala) rendering α4 nAChRs hypersensitive to ACh may exhibit altered sensitivity to a D2-receptor agonist. When challenged with the D2R agonist, quinpirole (0.5–10 mg/kg), Leu9′Ala mice, but not wild-type (WT) littermates, developed severe, reversible motor impairment characterized by rigidity, catalepsy, akinesia, and tremor. While striatal DA tissue content, baseline release, and quinpirole-induced DA depletion did not differ between Leu9′Ala and WT mice, quinpirole dramatically increased activity of cholinergic striatal interneurons only in mutant animals, as measured by increased c-Fos expression in choline acetyltransferase (ChAT)-positive interneurons. Highlighting the importance of the cholinergic system in this mouse model, inhibiting the effects of ACh by blocking muscarinic receptors, or by selectively activating hypersensitive nAChRs with nicotine, rescued motor symptoms. This novel mouse model mimics the imbalance between striatal DA/ACh function associated with severe motor impairment in disorders such as Parkinson’s disease, and the data suggest that a D2R–α4*-nAChR functional interaction regulates cholinergic interneuron activity.—Zhao-Shea, R., Cohen, B. N., Just, H., McClure-Begley, T., Whiteaker, P., Grady, S. R., Salminen, O., Gardner, P. D., Lester, H. A., Tapper, A. R. Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive α4 nicotinic receptors via a cholinergic-dependent mechanism. PMID:19720621
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sebulsky, M. Tom; Speziali, Craig D.; Shilton, Brian H.
Staphylococcus aureus can utilize ferric hydroxamates as a source of iron under iron-restricted growth conditions. Proteins involved in this transport process are: FhuCBG, which encodes a traffic ATPase; FhuD2, a post-translationally modified lipoprotein that acts as a high affinity receptor at the cytoplasmic membrane for the efficient capture of ferric hydroxamates; and FhuD1, a protein with similarity to FhuD2. Gene duplication likely gave rise to fhuD1 and fhuD2. While the genomic locations of fhuCBG and fhuD2 in S. aureus strains are conserved, both the presence and the location of fhuD1 are variable. The apparent redundancy of FhuD1 led us tomore » examine the role of this protein. We demonstrate that FhuD1 is expressed only under conditions of iron limitation through the regulatory activity of Fur. FhuD1 fractions with the cell membrane and binds hydroxamate siderophores but with lower affinity than FhuD2. Using small angle x-ray scattering, the solution structure of FhuD1 resembles that of FhuD2, and only a small conformational change is associated with ferrichrome binding. FhuD1, therefore, appears to be a receptor for ferric hydroxamates, like FhuD2. Our data to date suggest, however, that FhuD1 is redundant to FhuD2 and plays a minor role in hydroxamate transport. However, given the very real possibility that we have not yet identified the proper conditions where FhuD1 does provide an advantage over FhuD2, we anticipate that FhuD1 serves an enhanced role in the transport of untested hydroxamate siderophores and that it may play a prominent role during the growth of S. aureus in its natural environments.« less
Xu, Rong; Lord, Sarah A; Peterson, Ryan M; Fergason-Cantrell, Emily A; Lever, John R; Lever, Susan Z
2015-01-01
Two series of novel ether analogs of the sigma (σ) receptor ligand 1-[2-(3,4-dimethoxyphenyl)ethyl]-4-(3-phenylpropyl)piperazine (SA4503) have been prepared. In one series, the alkyl portion of the 4-methoxy group was replaced with allyl, propyl, bromoethyl, benzyl, phenethyl, and phenylpropyl moieties. In the second series, the 3,4-dimethoxy was replaced with cyclic methylenedioxy, ethylenedioxy and propylenedioxy groups. These ligands, along with 4-O-des-methyl SA4503, were evaluated for σ1 and σ2 receptor affinity, and compared to SA4503 and several known ether analogs. SA4503 and a subset of ether analogs were also evaluated for dopamine transporter (DAT) and serotonin transporter (SERT) affinity. The highest σ1 receptor affinities, Ki values of 1.75-4.63 nM, were observed for 4-O-des-methyl SA4503, SA4503 and the methylenedioxy analog. As steric bulk increased, σ1 receptor affinity decreased, but only to a point. Allyl, propyl and bromoethyl substitutions gave σ1 receptor Ki values in the 20-30 nM range, while bulkier analogs having phenylalkyl, and Z- and E-iodoallyl, ether substitutions showed higher σ1 affinities, with Ki values in the 13-21 nM range. Most ligands studied exhibited comparable σ1 and σ2 affinities, resulting in little to no subtype selectivity. SA4503, the fluoroethyl analog and the methylenedioxy congener showed modest six- to fourteen-fold selectivity for σ1 sites. DAT and SERT interactions proved much more sensitive than σ receptor interactions to these structural modifications. For example, the benzyl congener (σ1Ki=20.8 nM; σ2Ki=16.4 nM) showed over 100-fold higher DAT affinity (Ki=121 nM) and 6-fold higher SERT affinity (Ki=128nM) than the parent SA4503 (DAT Ki=12650 nM; SERT Ki=760 nM). Thus, ether modifications to the SA4503 scaffold can provide polyfunctional ligands having a broader spectrum of possible pharmacological actions. Copyright © 2014 Elsevier Ltd. All rights reserved.
Experience with indium-111 and yttrium-90-labeled somatostatin analogs.
Virgolini, I; Traub, T; Novotny, C; Leimer, M; Füger, B; Li, S R; Patri, P; Pangerl, T; Angelberger, P; Raderer, M; Burggasser, G; Andreae, F; Kurtaran, A; Dudczak, R
2002-01-01
The high level expression of somatostatin receptors (SSTR) on various tumor cells has provided the molecular basis for successful use of radiolabeled octreotide / lanreotide analogs as tumor tracers in nuclear medicine. Other (nontumoral) potential indications for SSTR scintigraphy are based on an increased lymphocyte binding at sites of inflammatory or immunologic diseases such as thyroid-associated ophthalmology. The vast majority of human tumors seem to over-express the one or the other of five distinct hSSTR subtype receptors. Whereas neuroendocrine tumors frequently overexpress hSSTR2, intestinal adenocarcinomas seem to overexpress more often hSSTR3 or hSSTR4, or both of these hSSTR. In contrast to In-DTPA-DPhe(1)-octreotide (OctreoScan(R)) which binds to hSSTR2 and 5 with high affinity (Kd 0.1-5 nM), to hSSTR3 with moderate affinity (K(d) 10-100 nM) and does not bind to hSSTR1 and hSSTR4, (111)In / (90)Y-DOTA-lanreotide was found to bind to hSSTR2, 3, 4, and 5 with high affinity, and to hSSTR1 with lower affinity (K(d) 200 nM). Based on its unique hSSTR binding profile, (111)In-DOTA-lanreotide was suggested to be a potential radioligand for tumor diagnosis, and (90)Y-DOTA-lanreotide suitable for receptor-mediated radionuclide therapy. As opposed to (111)In-DTPA-DPhe(1)-octreotide and (111)In-DOTA-DPhe(1)-Tyr(3)-octreotide, discrepancies in the scintigraphic results were seen in about one third of (neuroendocrine) tumor patients concerning both the tumor uptake as well as detection of tumor lesions. On a molecular level, these discrepancies seem to be based on a "higherrdquuo; high-affinity binding of (111)In-DOTA-DPhe(1)-Tyr(3)-octreotide to hSSTR2 (K(d) 0.1-1 nM). Other somatostatin analogs with divergent affinity to the five known hSSTR subtype receptors have also found their way into the clinics, such as (99m)Tc-depreotide (NeoSpect(R); NeoTect(R)). Most of the imaging results are reported for neuroendocrine tumors (octreotide analogs) or nonsmall cell lung cancer ((99m)Tc-depreotide), indicating high diagnostic cabability of this type of receptor tracers. Consequently to their use as receptor imaging agents, hSSTR recognizing radioligands have also been implemented for experimental receptor-targeted radionuclide therapy. Beneficial results were reported for high-dose treatment with (111)In-DTPA-DPhe(1)-octreotide, based on the emission of Auger electrons. The Phase IIa study "MAURITIUS" (Multicenter Analysis of a Universal Receptor Imaging and Treatment Initiative, a eUropean Study) showed in progressive cancer patients (therapy entry criteria) with a calculated tumor dose > 10 Gy / GBq (90)Y-DOTA-lanreotide, the proof-of-principle for treating tumor patients with peptide receptor imaging agents. In the "MAURITIUS" study, cummulative treatment doses up to 200 mCi (90)Y-DOTA-lanreotide were given as short-term infusion. Overall treatment results in 70 patients indicated stable tumor disease in 35% of patients and regressive tumor disease in 10% of tumor patients with different tumor entities expressing hSSTR. No acute or chronic severe hematological toxicity, change in renal or liver function parameters due to (90)Y-DOTA-lanreotide treatment, were reported. (90)Y-DOTA-DPhe(1)-Tyr(3)-octreotide may show a higher tumor uptake in neuroendocrine tumor lesions and may therefore be superior for treatment in patients with neuroendocrine tumors. However, there is only limited excess to long-term and survival data at present. Potential indications for (90Y-DOTA-lanreotide are radioiodine-negative thyroid cancer, hepatocellular cancer and lung cancer. Besides newer approaches and recent developments of 188)Re-labeled radioligands, no clinical results on the treatment response are yet available. In conclusion, several radioligands have been implemented on the basis of peptide receptor recognition throughout the last decade. A plentitude of preclinical data and clinical studies confirm their potential use in diagnosis as well as "proof-of-principle" for therapy of cancer patients. However, an optimal radiopeptide formulatioents. However, an optimal radiopeptide formulation does not yet exist for receptor-targeted radionuclide therapy. Ongoing developments may result in peptides more suitable for this kind of receptor-targeted radionuclide therapy.
Newman-Tancredi, A; Cussac, D; Brocco, M; Rivet, J M; Chaput, C; Touzard, M; Pasteau, V; Millan, M J
2001-11-30
Unilateral 6-hydroxydopamine (6-OHDA) lesions of substantia nigra pars compacta (SNPC) neurons in rats induce behavioural hypersensitivity to dopaminergic agonists. However, the role of specific dopamine receptors is unclear, and potential alterations in their transduction mechanisms remain to be evaluated. The present study addressed these issues employing the dopaminergic agonist, quinelorane, which efficaciously stimulated G-protein activation (as assessed by [35S]GTPgammaS binding) at cloned hD2 (and hD3) receptors. At rat striatal membranes, dopamine stimulated [35S]GTPgammaS binding by 1.9-fold over basal, but its actions were only partially reversed by the selective D2/D3 receptor antagonist, raclopride, indicating the involvement of other receptor subtypes. In contrast, quinelorane-induced stimulation (48% of the effect of dopamine) was abolished by raclopride, and by the D2 receptor antagonist, L741,626. Further, novel antagonists selective for D3 and D4 receptors, S33084 and S18126, respectively, blocked the actions of quinelorane at concentrations corresponding to their affinities for D2 receptors. Quinelorane potently induced contralateral rotation in unilaterally 6-OHDA-lesioned rats, an effect abolished by raclopride and L741,626, but not by D3 and D4 receptor-selective doses of S33084 and S18126, respectively. In functional ([35S]GTPgammaS) autoradiography experiments, quinelorane stimulated G-protein activation in caudate putamen and, to a lesser extent, in nucleus accumbens and cingulate cortex of naive rats. In unilaterally SNPC-lesioned rats, quinelorane-induced G-protein activation in the caudate putamen on the non-lesioned side was similar to that seen in naive animals (approximately 50% stimulation), but significantly greater on the lesioned side (approximately 80%). This increase was both pharmacologically and regionally specific since it was reversed by raclopride, and was not observed in nucleus accumbens or cingulate cortex. In conclusion, the present data indicate that, in rat striatum, the actions of quinelorane are mediated primarily by D2 receptors, and suggest that behavioural hypersensitivity to this agonist, induced by unilateral SNPC lesions, is associated with an increase in D2, but not D3 or D4, receptor-mediated G-protein activation.
Vandehey, Nicholas T; Moirano, Jeffrey M; Converse, Alexander K; Holden, James E; Mukherjee, Jogesh; Murali, Dhanabalan; Nickles, R Jerry; Davidson, Richard J; Schneider, Mary L; Christian, Bradley T
2010-01-01
18F-Fallypride and 11C-FLB457 are commonly used PET radioligands for imaging extrastriatal dopamine D2/D3 receptors, but differences in their in vivo kinetics may affect the sensitivity for measuring subtle changes in receptor binding. Focusing on regions of low binding, a direct comparison of the kinetics of 18F-fallypride and 11C-FLB457 was made using a MI protocol. Injection protocols were designed to estimate K1, k2, fNDkon, Bmax, and koff in the midbrain and cortical regions of the rhesus monkey. 11C-FLB457 cleared from the arterial plasma faster and yielded a ND space distribution volume (K1/k2) that is three times higher than 18F-fallypride, primarily due to a slower k2 (FAL:FLB; k2=0.54 min−1:0.18 min−1). The dissociation rate constant, koff, was slower for 11C-FLB457, resulting in a lower KDapp than 18F-fallypride (FAL:FLB; 0.39 nM:0.13 nM). Specific D2/D3 binding could be detected in the cerebellum for 11C-FLB457 but not 18F-fallypride. Both radioligands can be used to image extrastriatal D2/D3 receptors, with 11C-FLB457 providing greater sensitivity to subtle changes in low-receptor-density cortical regions and 18F-fallypride being more sensitive to endogenous dopamine displacement in medium-to-high-receptor-density regions. In the presence of specific D2/D3 binding in the cerebellum, reference region analysis methods will give a greater bias in BPND with 11C-FLB457 than with 18F-fallypride. PMID:20040928
Bapst, Jean-Philippe; Eberle, Alex N
2017-01-01
A majority of melanotic and amelanotic melanomas overexpress melanocortin type 1 receptors (MC1Rs) for α-melanocyte-stimulating hormone. Radiolabeled linear or cyclic analogs of α-MSH have a great potential as diagnostic or therapeutic tools for the management of malignant melanoma. Compounds such as [ 111 In]DOTA-NAP-amide exhibit high affinity for the MC1R in vitro , good tumor uptake in vivo , but they may suffer from relatively high kidney uptake and retention in vivo . We have shown previously that the introduction of negative charges into radiolabeled DOTA-NAP-amide peptide analogs may enhance their excretion and reduce kidney retention. To address the question of where to place negative charges within the ligand, we have extended these studies by designing two novel peptides, Ac-Nle-Asp-His-d-Phe-Arg-Trp-Gly-Lys(DOTA)-d-Asp-d-Asp-OH (DOTA-NAP-d-Asp-d-Asp) with three negative charges at the C -terminal end (overall net charge of the molecule -2) and DOTA-Gly-Tyr(P)-Nle-Asp-His-d-Phe-Arg-Trp-NH 2 (DOTA-Phospho-MSH 2-9 ) with two negative charges in the N -terminal region (net charge -1). The former peptide showed markedly reduced receptor affinity and biological activity by >10-fold compared to DOTA-NAP-amide as reference compound, and the latter peptide displayed similar bioactivity and receptor affinity as the reference compound. The uptake by melanoma tumor tissue of [ 111 In]DOTA-Phospho-MSH 2-9 was 7.33 ± 0.47 %ID/g 4 h after injection, i.e., almost equally high as with [ 111 In]DOTA-NAP-amide. The kidney retention was 2.68 ± 0.18 %ID/g 4 h after injection and hence 44% lower than that of [ 111 In]DOTA-NAP-amide. Over an observation period from 4 to 48 h, the tumor-to-kidney ratio of [ 111 In]DOTA-Phospho-MSH 2-9 was 35% more favorable than that of the reference compound. In a comparison of DOTA-NAP-d-Asp-d-Asp, DOTA-Phospho-MSH 2-9 and DOTA-NAP-amide with five previously published analogs of DOTA-NAP-amide that altogether cover a range of peptides with an overall net charge between +2 and -2, we now demonstrate that a net charge of -1, with the extra negative charges preferably placed in the N -terminal region, has led to the lowest kidney uptake and retention. Charges of +2 or -2 markedly increased kidney uptake and retention. In conclusion, the novel DOTA-Phospho-MSH 2-9 may represent a new lead compound for negatively charged linear MC1R ligands that can be further developed into a clinically relevant melanoma targeting radiopeptide.
Bapst, Jean-Philippe; Eberle, Alex N.
2017-01-01
A majority of melanotic and amelanotic melanomas overexpress melanocortin type 1 receptors (MC1Rs) for α-melanocyte-stimulating hormone. Radiolabeled linear or cyclic analogs of α-MSH have a great potential as diagnostic or therapeutic tools for the management of malignant melanoma. Compounds such as [111In]DOTA-NAP-amide exhibit high affinity for the MC1R in vitro, good tumor uptake in vivo, but they may suffer from relatively high kidney uptake and retention in vivo. We have shown previously that the introduction of negative charges into radiolabeled DOTA-NAP-amide peptide analogs may enhance their excretion and reduce kidney retention. To address the question of where to place negative charges within the ligand, we have extended these studies by designing two novel peptides, Ac-Nle-Asp-His-d-Phe-Arg-Trp-Gly-Lys(DOTA)-d-Asp-d-Asp-OH (DOTA-NAP-d-Asp-d-Asp) with three negative charges at the C-terminal end (overall net charge of the molecule −2) and DOTA-Gly-Tyr(P)-Nle-Asp-His-d-Phe-Arg-Trp-NH2 (DOTA-Phospho-MSH2-9) with two negative charges in the N-terminal region (net charge −1). The former peptide showed markedly reduced receptor affinity and biological activity by >10-fold compared to DOTA-NAP-amide as reference compound, and the latter peptide displayed similar bioactivity and receptor affinity as the reference compound. The uptake by melanoma tumor tissue of [111In]DOTA-Phospho-MSH2-9 was 7.33 ± 0.47 %ID/g 4 h after injection, i.e., almost equally high as with [111In]DOTA-NAP-amide. The kidney retention was 2.68 ± 0.18 %ID/g 4 h after injection and hence 44% lower than that of [111In]DOTA-NAP-amide. Over an observation period from 4 to 48 h, the tumor-to-kidney ratio of [111In]DOTA-Phospho-MSH2-9 was 35% more favorable than that of the reference compound. In a comparison of DOTA-NAP-d-Asp-d-Asp, DOTA-Phospho-MSH2-9 and DOTA-NAP-amide with five previously published analogs of DOTA-NAP-amide that altogether cover a range of peptides with an overall net charge between +2 and −2, we now demonstrate that a net charge of −1, with the extra negative charges preferably placed in the N-terminal region, has led to the lowest kidney uptake and retention. Charges of +2 or −2 markedly increased kidney uptake and retention. In conclusion, the novel DOTA-Phospho-MSH2-9 may represent a new lead compound for negatively charged linear MC1R ligands that can be further developed into a clinically relevant melanoma targeting radiopeptide. PMID:28491052
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, D.G. Jr.; Horvath, E.; Traber, J.
GTP (guanosine-5'-triphosphate) markedly reduced high-affinity /sup 3/H-oxotremorine-M binding to M/sub 2/ receptors on brain slices in autoradiographic experiments while /sup 3/H-pirenzepine binding to M/sub 1/ receptors was largely unaffected. The distribution of M/sub 1/ receptors so labelled was also not altered by GTP to include former M/sub 2/-rich regions, thus indicating that GTP could not, by itself, interconvert high agonist-affinity M/sub 2/ receptors to M/sub 1/ receptors. 18 references, 1 figure.
Auclair, Agnès L; Galinier, Alexandra; Besnard, Joël; Newman-Tancredi, Adrian; Depoortère, Ronan
2007-07-01
Prepulse inhibition (PPI) of the startle reflex has been extensively studied because it is disrupted in several psychiatric diseases, most notably schizophrenia. In rats, and to a lesser extent, in humans, PPI can be diminished by dopamine (DA) D(2)/D(3) and serotonin 5-HT(1A) receptor agonists. A novel class of potential antipsychotics (SSR181507, bifeprunox, and SLV313) possess partial agonist/antagonist properties at D(2) receptors and various levels of 5-HT(1A) activation. It thus appeared warranted to assess, in Sprague-Dawley rats, the effects of these antipsychotics on basal PPI. SSR181507, sarizotan, and bifeprunox decreased PPI, with a near-complete abolition at 2.5-10 mg/kg; SLV313 had a significant effect at 0.16 mg/kg only. Co-treatment with the 5-HT(1A) receptor antagonist WAY100,635 (0.63 mg/kg) showed that the 5-HT(1A) agonist activity of SSR181507 was responsible for its effect. By contrast, antipsychotics with low affinity and/or efficacy at 5-HT(1A) receptors, such as aripiprazole (another DA D(2)/D(3) and 5-HT(1A) ligand), and established typical and atypical antipsychotics (haloperidol, clozapine, risperidone, olanzapine, quetiapine, and ziprasidone) had no effect on basal PPI (0.01-2.5 to 2.5-40 mg/kg). The present data demonstrate that some putative antipsychotics with pronounced 5-HT(1A) agonist activity, coupled with partial agonist activity at DA D(2) receptors, markedly diminish PPI of the startle reflex in rats. These data raise the issue of the influence of such compounds on sensorimotor gating in humans.
NASA Technical Reports Server (NTRS)
Kutner, A.; Link, R. P.; Schnoes, H. K.; DeLuca, H. F.
1986-01-01
3-Azidobenzoates and 3-azidonitrobenzoates of 25-hydroxyvitamin D3 as well as 3-deoxy-3-azido-25-hydroxyvitamin D3 and 3-deoxy-3-azido-1,25-dihydroxyvitamin D3 were prepared as photoaffinity labels for vitamin D serum binding protein and 1,25-dihydroxyvitamin D3 intestinal receptor protein. The compounds prepared were easily activated by short- or long-wavelength uv light, as monitored by uv and ir spectrometry. The efficacy of the compounds to compete with 25-hydroxyvitamin D3 or 1,25-dihydroxyvitamin D3 for the binding site of serum binding protein and receptor, respectively, was studied to evaluate the vitamin D label with the highest affinity for the protein. The presence of an azidobenzoate or azidonitrobenzoate substituent at the C-3 position of 25-OH-D3 significantly decreased (10(4)- to 10(6)-fold) the binding activity. However, the labels containing the azido substituent attached directly to the vitamin D skeleton at the C-3 position showed a high affinity, only 20- to 150-fold lower than that of the parent compounds with their respective proteins. Therefore, 3-deoxy-3-azidovitamins present potential ligands for photolabeling of vitamin D proteins and for studying the structures of the protein active sites.
Identification of 2-arylbenzimidazoles as potent human histamine H4 receptor ligands.
Lee-Dutra, Alice; Arienti, Kristen L; Buzard, Daniel J; Hack, Michael D; Khatuya, Haripada; Desai, Pragnya J; Nguyen, Steven; Thurmond, Robin L; Karlsson, Lars; Edwards, James P; Breitenbucher, J Guy
2006-12-01
A series of 2-arylbenzimidazoles was synthesized and found to bind with high affinity to the human histamine H(4) receptor. Structure-activity relationships were investigated through library preparation and evaluation as well as traditional medicinal chemistry approaches, leading to the discovery of compounds with single-digit nanomolar affinity for the H(4) receptor.
An Analytical Model for Determining Two-Dimensional Receptor-Ligand Kinetics
Cheung, Luthur Siu-Lun; Konstantopoulos, Konstantinos
2011-01-01
Cell-cell adhesive interactions play a pivotal role in major pathophysiological vascular processes, such as inflammation, infection, thrombosis, and cancer metastasis, and are regulated by hemodynamic forces generated by blood flow. Cell adhesion is mediated by the binding of receptors to ligands, which are both anchored on two-dimensional (2-D) membranes of apposing cells. Biophysical assays have been developed to determine the unstressed (no-force) 2-D affinity but fail to disclose its dependence on force. Here we develop an analytical model to estimate the 2-D kinetics of diverse receptor-ligand pairs as a function of force, including antibody-antigen, vascular selectin-ligand, and bacterial adhesin-ligand interactions. The model can account for multiple bond interactions necessary to mediate adhesion and resist detachment amid high hemodynamic forces. Using this model, we provide a generalized biophysical interpretation of the counterintuitive force-induced stabilization of cell rolling observed by a select subset of receptor-ligand pairs with specific intrinsic kinetic properties. This study enables us to understand how single-molecule and multibond biophysics modulate the macroscopic cell behavior in diverse pathophysiological processes. PMID:21575567
Structure of unliganded HSV gD reveals a mechanism for receptor-mediated activation of virus entry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krummenacher, Claude; Supekar, Vinit M.; Whitbeck, J. Charles
2010-07-19
Herpes simplex virus (HSV) entry into cells requires binding of the envelope glycoprotein D (gD) to one of several cell surface receptors. The 50 C-terminal residues of the gD ectodomain are essential for virus entry, but not for receptor binding. We have determined the structure of an unliganded gD molecule that includes these C-terminal residues. The structure reveals that the C-terminus is anchored near the N-terminal region and masks receptor-binding sites. Locking the C-terminus in the position observed in the crystals by an intramolecular disulfide bond abolished receptor binding and virus entry, demonstrating that this region of gD moves uponmore » receptor binding. Similarly, a point mutant that would destabilize the C-terminus structure was nonfunctional for entry, despite increased affinity for receptors. We propose that a controlled displacement of the gD C-terminus upon receptor binding is an essential feature of HSV entry, ensuring the timely activation of membrane fusion.« less
Ross, Nicolette C; Reilley, Kate J; Murray, Thomas F; Aldrich, Jane V; McLaughlin, Jay P
2012-02-01
The κ opioid receptor antagonists demonstrate potential for maintaining abstinence from psychostimulant abuse, but existing non-peptide κ-receptor selective antagonists show exceptionally long activity. We hypothesized that the L- and D-Trp isomers of CJ-15,208, a natural cyclic tetrapeptide reported to be a κ-receptor antagonist in vitro, would demonstrate short-acting, dose-dependent antagonism in vivo, preventing reinstatement of cocaine-seeking behaviour. Affinity, selectivity and efficacy of the L-Trp and D-Trp isomers for opioid receptors were assessed in vitro in radioligand and GTPγS binding assays. Opioid receptor agonist and antagonist activities were characterized in vivo following i.c.v. administration with the 55°C warm water tail-withdrawal assay. The D-Trp isomer, which demonstrated primarily κ-receptor selective antagonist activity, was further evaluated for its prevention of stress- and drug-induced reinstatement of extinguished cocaine conditioned place preference (CPP). The two isomers showed similar affinity and selectivity for κ receptors (K(i) 30-35 nM) as well as κ receptor antagonism in vitro. As expected, the D-Trp cyclic tetrapeptide exhibited minimal agonist activity and induced dose-dependent κ-receptor selective antagonism lasting less than 18 h in vivo. Pretreatment with this peptide prevented stress-, but not cocaine-induced, reinstatement of extinguished cocaine CPP. In contrast, the L-Trp cyclic tetrapeptide unexpectedly demonstrated mixed opioid agonist/antagonist activity. The L-Trp and the D-Trp isomers of CJ-15,208 demonstrate stereospecific opioid activity in vivo. The relatively brief κ opioid receptor antagonism, coupled with the prevention of stress-induced reinstatement of extinguished cocaine-seeking behaviour, suggests the D-Trp isomer could be used therapeutically to maintain abstinence from psychostimulant abuse. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
Serotonergic and dopaminergic activities of rigidified (R)-aporphine derivatives.
Linnanen, T; Brisander, M; Mohell, N; Johansson, A M
2001-02-12
Novel rigidified (R)-aporphine derivatives were synthesized from (R)-1,11-carbonylaporphine by ring expansion reactions. The structures of the novel analogues were assigned by NMR spectroscopy and X-ray crystallography. The compounds showed moderate affinities and selectivities at serotonin S-HT1A and 5-HT7 and dopamine D2A receptors.
Krumins, S A; Kim, D C; Igwe, O J; Larson, A A
1993-01-01
Substance P (SP) appears to mediate many processes of the central nervous system, including pain. This report deals with modulation of opioid binding in the mouse brain by SP and SP fragments, as well as by salts and guanine nucleotides. Binding studies of the selective mu opioid receptor agonist [D-Ala2, MePhe4,Gly(ol)5]enkephalin (DAMGO) to mouse brain membrane preparations demonstrated that guanine nucleotide modulation of DAMGO binding affinity was modified by SP. However, SP had little or no influence on inhibition of DAMGO binding induced by salts, such as MgCl2, CaCl2, or NaCl. By replacing GTP with GppNHp, SP (0.1 nM) produced multiple affinity forms of the DAMGO receptor, while at a higher concentration (10 nM), SP lost its influence on DAMGO binding. Furthermore, 0.1 nM SP changed DAMGO binding parameters in a medium containing NaCl, CaCl2, and GppNHp such that the high- and low-affinity conformations of the receptor converted to a single site following the addition of SP to the incubation medium. While the C-terminal SP fragment SP(5-11) was without effect, the N-terminal SP fragments SP(1-9) and SP(1-7) appeared to imitate SP in modifying GppNHp-modulated DAMGO binding. These results suggest that SP functions as a modulator of opioid binding at the mu receptor and it appears that the N-terminus of SP plays a role in the modulatory process.
Phase I trial on sms-D70 somatostatin analogue in advanced prostate and renal cell cancer.
Joensuu, T K; Nilsson, S; Holmberg, A R; Márquez, M; Tenhunen, M; Saarto, T; Joensuu, H
2004-12-01
Plasma concentrations and tolerability of a novel somatostatin analogue sms-D70 were studied in patients with metastatic hormone-resistant prostate cancer (HRPC) or metastatic renal cell cancer. To overcome the limitations of the octapeptides having affinity only to somatostatin receptor subtypes 2 and 5, HRPC expressing mainly somatostatin receptors 1 and 4, a somatostatin derivative based on the natural somatostatin having affinity to all five somatostatin receptor subtypes, was developed. The in vivo stability of this dextran-conjugated derivative, somatostatin-D70, was confirmed previously in animal studies, and the nanomolar "panaffinity" has been shown in in vitro receptor binding studies on cell lines transfected with the somatostatin receptor genes. Sms-D70 was given with subcutaneous injection once a week at dose levels of 5, 10, 20, 35, and 50 mg. For pharmacokinetic studies, sms-D70 was labeled with 131I. Fourteen patients were treated, of whom 10 had prostate and 4 renal cell cancer. The kinetic data revealed high stability with a long half-life in the blood. The drug was well tolerated, and no grade 4 (WHO) toxicity was observed. The maximal tolerated dose could not be established due to the lack of dose-limiting toxicities. Objective PSA responses were not recorded in these heavily treated patients, but subjective stabilization of pain was observed and urinary symptoms were alleviated in four patients. Three patients with metastatic HRPC received 5-10-mg intravenous injections of sms-D70 once weekly for 4-14 months on a compassionate use basis. In all cases, serum PSA values decreased more than 50% from the pretreatment level, but these results are difficult to interpret due to concomitant treatments given to these patients. In conclusion, sms-D70 was well tolerated in the treatment of metastatic prostate and renal cell cancer, but no responses were found in these heavily treated patients.
Novel, potent, and radio-iodinatable somatostatin receptor 1 (sst1) selective analogues.
Erchegyi, Judit; Cescato, Renzo; Grace, Christy Rani R; Waser, Beatrice; Piccand, Véronique; Hoyer, Daniel; Riek, Roland; Rivier, Jean E; Reubi, Jean Claude
2009-05-14
The proposed sst(1) pharmacophore (J. Med. Chem. 2005, 48, 523-533) derived from the NMR structures of a family of mono- and dicyclic undecamers was used to design octa-, hepta-, and hexamers with high affinity and selectivity for the somatostatin sst(1) receptor. These compounds were tested for their in vitro binding properties to all five somatostatin (SRIF) receptors using receptor autoradiography; those with high SRIF receptor subtype 1 (sst(1)) affinity and selectivity were shown to be agonists when tested functionally in a luciferase reporter gene assay. Des-AA(1,4-6,10,12,13)-[DTyr(2),DAgl(NMe,2naphthoyl)(8),IAmp(9)]-SRIF-Thr-NH(2) (25) was radio-iodinated ((125)I-25) and specifically labeled sst(1)-expressing cells and tissues. 3D NMR structures were calculated for des-AA(1,4-6,10,12,13)-[DPhe(2),DTrp(8),IAmp(9)]-SRIF-Thr-NH(2) (16), des-AA(1,2,4-6,10,12,13)-[DAgl(NMe,2naphthoyl)(8),IAmp(9)]-SRIF-Thr-NH(2) (23), and des-AA(1,2,4-6,10,12,13)-[DAgl(NMe,2naphthoyl)(8),IAmp(9),Tyr(11)]-SRIF-NH(2) (27) in DMSO. Though the analogues have the sst(1) pharmacophore residues at the previously determined distances from each other, the positioning of the aromatic residues in 16, 23, and 27 is different from that described earlier, suggesting an induced fit mechanism for sst(1) binding of these novel, less constrained sst(1)-selective family members.
Xu, Liping; Vagner, Josef; Alleti, Ramesh; Rao, Venkataramanarao; Jagadish, Bhumasamudram; Morse, David L; Hruby, Victor J; Gillies, Robert J; Mash, Eugene A
2010-04-15
A labeled variant of MSH(4), a tetrapeptide that binds to the human melanocortin 4 receptor (hMC4R) with low microM affinity, was prepared by solid-phase synthesis methods, purified, and characterized. The labeled ligand, Eu-DTPA-PEGO-His-dPhe-Arg-Trp-NH(2), exhibited a K(d) for hMC4R of 9.1+/-1.4 microM, approximately 10-fold lower affinity than the parental ligand. The labeled MSH(4) derivative was employed in a competitive binding assay to characterize the interactions of hMC4R with monovalent and divalent MSH(4) constructs derived from squalene. The results were compared with results from a similar assay that employed a more potent labeled ligand, Eu-DTPA-NDP-alpha-MSH. While results from the latter assay reflected only statistical effects, results from the former assay reflected a mixture of statistical, proximity, and/or cooperative binding effects. Copyright 2010 Elsevier Ltd. All rights reserved.
Beaver, Joshua E; Peacor, Brendan C; Bain, Julianne V; James, Lindsey I; Waters, Marcey L
2015-03-21
Dynamic combinatorial chemistry was used to generate a set of receptors for peptides containing methylated lysine (KMen, n = 0-3) and study the contribution of electrostatic effects and pocket depth to binding affinity and selectivity. We found that changing the location of a carboxylate resulted in an increase in preference for KMe2, presumably based on ability to form a salt bridge with KMe2. The number of charged groups on either the receptor or peptide guest systematically varied the binding affinities to all guests by approximately 1-1.5 kcal mol(-1), with little influence on selectivity. Lastly, formation of a deeper pocket led to both increased affinity and selectivity for KMe3 over the lower methylation states. From these studies, we identified that the tightest binder was a receptor with greater net charge, with a Kd of 0.2 μM, and the receptor with the highest selectivity was the one with the deepest pocket, providing 14-fold selectivity between KMe3 and KMe2 and a Kd for KMe3 of 0.3 μM. This work provides key insights into approaches to improve binding affinity and selectivity in water, while also demonstrating the versatility of dynamic combinatorial chemistry for rapidly exploring the impact of subtle changes in receptor functionality on molecular recognition in water.
Newman-Tancredi, A; Nicolas, J P; Audinot, V; Gavaudan, S; Verrièle, L; Touzard, M; Chaput, C; Richard, N; Millan, M J
1998-08-01
This study examined the activity of chemically diverse alpha2 adrenoceptor ligands at recombinant human (h) and native rat (r) alpha2A adrenoceptors compared with 5-HT1A receptors. First, in competition binding experiments at h alpha2A and h5-HT1A receptors expressed in CHO cells, several compounds, including the antagonists 1-(2-pyrimidinyl)piperazine (1-PP), (+/-)-idazoxan, benalfocin (SKF 86466), yohimbine and RX 821,002, displayed preference for h alpha2A versus h5-HT1A receptors of only 1.4-, 3.6-, 4-, 10- and 11-fold, respectively (based on differences in pKi values). Clonidine, brimonidine (UK 14304), the benzopyrrolidine fluparoxan and the guanidines guanfacine and guanabenz exhibited intermediate selectivity (22- to 31-fold) for h alpha2A receptors. Only the antagonist atipamezole and the agonist dexmedetomidine (DMT) displayed high preference for alpha2 adrenoceptors (1290- and 91-fold, respectively). Second, the compounds were tested for their ability to induce h5-HT1A receptor-mediated G-protein activation, as indicated by the stimulation of [35S]GTPgammaS binding. All except atipamezole and RX 821,002 exhibited agonist activity, with potencies which correlated with their affinity for h5-HT1A receptors. Relative efficacies (Emax values) were 25-35% for guanabenz, guanfacine, WB 4101 and benalfocin, 50-65% for 1-PP, (+/-)-idazoxan and clonidine, and over 70% for fluparoxan, oxymetazoline and yohimbine (relative to 5-HT = 100%). Yohimbine-induced [35S]GTPgammaS binding was inhibited by the selective 5-HT1A receptor antagonist WAY 100,635. In contrast, RX 821,002 was the only ligand which exhibited antagonist activity at h5-HT1A receptors, inhibiting 5-HT-stimulated [35S]GTPgammaS binding. Atipamezole, which exhibited negligeable affinity for 5-HT1A receptors, was inactive. Third, the affinities for r alpha2A differed considerably from the affinities for h alpha2A receptors whereas the affinities for r5-HT1A differed much less from the affinities for h5-HT1A receptors. This affected markedly the affinity ratios of certain compounds. For example, (+/-)-idazoxan was only 3.6-fold selective for h alpha2A versus h5-HT1A but 51-fold selective for r alpha2A versus r5-HT1A receptors. Conversely, yohimbine was tenfold selective for h alpha2A versus h5-HT1A adrenoceptors but 4.2-fold selective for r alpha2A versus r5-HT1A receptors. Nevertheless, both atipamezole and DMT were highly selective for both rat and human alpha2A versus rat or human 5-HT1A receptors. In conclusion, these data indicate that: (1) the agonist DMT and the antagonist atipamezole are the ligands of choice to distinguish alpha2-mediated from 5-HT1A-mediated actions, whilst several of the other compounds show only low or modest selectivity for alpha2A over 5-HT1A receptors; (2) caution should be exercised in experimental and clinical interpretation of the actions of traditionally employed alpha2 ligands, such as clonidine, yohimbine and (+/-)-idazoxan, which exhibit marked agonist activity at 5-HT1A receptors.
RELATIVE BINDING AFFINITY OF ALKYLPHENOLS TO RAINBOW TROUT ESTROGEN RECEPTOR
RELATIVE BINDING AFFINITY OF ALKYLPHENOLS TO RAINBOW TROUT ESTROGEN RECEPTOR. T R Henry1, J S Denny2 and P K Schmieder2. USEPA, ORD, NHEERL, 1Experimental Toxicology Division and 2Mid-Continent Ecology Division, Duluth, MN, USA.
The USEPA has been mandated to screen industria...
Peng, Youyi; Keenan, Susan M; Zhang, Qiang; Kholodovych, Vladyslav; Welsh, William J
2005-03-10
Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were constructed using comparative molecular field analysis (CoMFA) on a series of opioid receptor antagonists. To obtain statistically significant and robust CoMFA models, a sizable data set of naltrindole and naltrexone analogues was assembled by pooling biological and structural data from independent studies. A process of "leave one data set out", similar to the traditional "leave one out" cross-validation procedure employed in partial least squares (PLS) analysis, was utilized to study the feasibility of pooling data in the present case. These studies indicate that our approach yields statistically significant and highly predictive CoMFA models from the pooled data set of delta, mu, and kappa opioid receptor antagonists. All models showed excellent internal predictability and self-consistency: q(2) = 0.69/r(2) = 0.91 (delta), q(2) = 0.67/r(2) = 0.92 (mu), and q(2) = 0.60/r(2) = 0.96 (kappa). The CoMFA models were further validated using two separate test sets: one test set was selected randomly from the pooled data set, while the other test set was retrieved from other published sources. The overall excellent agreement between CoMFA-predicted and experimental binding affinities for a structurally diverse array of ligands across all three opioid receptor subtypes gives testimony to the superb predictive power of these models. CoMFA field analysis demonstrated that the variations in binding affinity of opioid antagonists are dominated by steric rather than electrostatic interactions with the three opioid receptor binding sites. The CoMFA steric-electrostatic contour maps corresponding to the delta, mu, and kappa opioid receptor subtypes reflected the characteristic similarities and differences in the familiar "message-address" concept of opioid receptor ligands. Structural modifications to increase selectivity for the delta over mu and kappa opioid receptors have been predicted on the basis of the CoMFA contour maps. The structure-activity relationships (SARs) together with the CoMFA models should find utility for the rational design of subtype-selective opioid receptor antagonists.
Kaetzel, C S; Robinson, J K; Chintalacharuvu, K R; Vaerman, J P; Lamm, M E
1991-01-01
The polymeric immunoglobulin receptor (pIgR) on mucosal epithelial cells binds dimeric IgA (dIgA) on the basolateral surface and mediates transport of dIgA to the apical surface. Using Madin-Darby canine kidney epithelial cells stably transfected with pIgR cDNA, we found that soluble immune complexes (ICs) of 125I-labeled rat monoclonal antidinitrophenyl (DNP) dIgA (125I-dIgA) and DNP/biotin-bovine serum albumin were transported from the basolateral to the apical surface and then released. Monomeric IgA ICs were not transported, consistent with the specificity of pIgR for polymeric immunoglobulins. Essentially all the 125I-dIgA in apical culture supernatants was streptavidin precipitable, indicating that dIgA remained bound to antigen during transcytosis. While both dIgA and dIgA ICs bound pIgR with equal affinity (Kd approximately 8 nM), the number of high-affinity binding sites per cell was 2- to 3-fold greater for dIgA than for dIgA ICs. The extent of endocytosis of dIgA and dIgA ICs was correlated with the number of high-affinity binding sites. SDS/PAGE analysis of intracellular dIgA and dIgA ICs demonstrated that in both cases IgA remained undegraded during transport. The results suggest that the pathways of epithelial transcytosis of free dIgA and dIgA ICs are the same. Given the high population density of mucosal IgA plasma cells and the enormous surface area of pIgR-expressing mucosal epithelium, it is likely that significant local transcytosis of IgA ICs occurs in vivo. Such a process would allow direct elimination of IgA ICs at the mucosal sites where they are likely to form, thus providing an important defense function for IgA. Images PMID:1924341
Binding affinities of NKG2D and CD94 to sialyl Lewis X-expressing N-glycans and heparin.
Higai, Koji; Suzuki, Chiho; Imaizumi, Yuzo; Xin, Xin; Azuma, Yutaro; Matsumoto, Kojiro
2011-01-01
Lectin-like receptors natural killer group 2D (NKG2D) and CD94 on natural killer (NK) cells bind to α2,3-NeuAc-containing N-glycans and heparin/heparan sulfate (HS). Using recombinant glutathione S-transferase-fused extracellular lectin-like domains of NKG2D (rGST-NKG2Dlec) and CD94 (rGST-CD94lec), we evaluated their binding affinities (K(d)) to high sialyl Lewis X (sLeX)-expressing transferrin secreted by HepG2 cells (HepTf) and heparin-conjugated bovine serum albumin (Heparin-BSA), using quartz crystal microbalance (QCM) and enzyme immunoassay (EIA) microplate methods. K(d) values obtained by linear reciprocal plots revealed good coincidence between the two methods. K(d) values of rGST-NKG2Dlec obtained by QCM and EIA, respectively, were 1.19 and 1.11 µM for heparin-BSA >0.30 and 0.20 µM for HepTf, while those of rGST-CD94lec were 1.31 and 1.45 µM for HepTf >0.37 and 0.36 µM for heparin-BSA. These results suggested that these glycans can interact with NKG2D and CD94 to modulate NK cell-dependent cytotoxicity.
Simple guanidinium motif for the selective binding and extraction of sulfate
Seipp, Charles A.; Williams, Neil J.; Bryantsev, Vyacheslav S.; ...
2017-06-30
A simple bidentate anion receptor, shown previously to adopt a rigid pseudobicyclic conformation while binding anions in the solid state, selectively binds sulfate in aqueous solutions with logK1 and logK2 values of 3.78 ± 0.12 M-1 and 2.10 ± 0.23 M-1, respectively. This anion receptor has little to no affinity for nitrate and chloride in the same solutions. A lipophilic derivative was synthesized in four steps to yield an extractant that is capable of partitioning sulfate into 1,2 dichloroethane from water in the presence of large excesses of chloride. This extractant demonstrated D values as high as 2.5 with onlymore » 30 mM of anion receptor.« less
Simple guanidinium motif for the selective binding and extraction of sulfate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seipp, Charles A.; Williams, Neil J.; Bryantsev, Vyacheslav S.
A simple bidentate anion receptor, shown previously to adopt a rigid pseudobicyclic conformation while binding anions in the solid state, selectively binds sulfate in aqueous solutions with logK1 and logK2 values of 3.78 ± 0.12 M-1 and 2.10 ± 0.23 M-1, respectively. This anion receptor has little to no affinity for nitrate and chloride in the same solutions. A lipophilic derivative was synthesized in four steps to yield an extractant that is capable of partitioning sulfate into 1,2 dichloroethane from water in the presence of large excesses of chloride. This extractant demonstrated D values as high as 2.5 with onlymore » 30 mM of anion receptor.« less
NASA Astrophysics Data System (ADS)
Pratesi, Alessandro; Ginanneschi, Mauro; Lumini, Marco; Papini, Anna M.; Novellino, Ettore; Brancaccio, Diego; Carotenuto, Alfonso
2017-02-01
In vivo somatostatin receptor scintigraphy is a valuable method for the visualization of human endocrine tumours and their metastases. In fact, peptide ligands of somatostatin receptors (sst’s) conjugated with chelating agents are in clinical use. We have recently developed octreotide dicarba-analogues, which show interesting binding profiles at sst’s. In this context, it was mandatory to explore the possibility that our analogues could maintain their activity also upon conjugation with DOTA. In this paper, we report and discuss the synthesis, binding affinity and conformational preferences of three DOTA-conjugated dicarba-analogues of octreotide. Interestingly, two conjugated analogues exhibited nanomolar affinities on sst2 and sst5 somatostatin receptor subtypes.
DOTA-Derivatives of Octreotide Dicarba-Analogs with High Affinity for Somatostatin sst2,5 Receptors.
Pratesi, Alessandro; Ginanneschi, Mauro; Lumini, Marco; Papini, Anna M; Novellino, Ettore; Brancaccio, Diego; Carotenuto, Alfonso
2017-01-01
In vivo somatostatin receptor scintigraphy is a valuable method for the visualization of human endocrine tumors and their metastases. In fact, peptide ligands of somatostatin receptors (sst's) conjugated with chelating agents are in clinical use. We have recently developed octreotide dicarba-analogs, which show interesting binding profiles at sst's. In this context, it was mandatory to explore the possibility that our analogs could maintain their activity also upon conjugation with DOTA. In this paper, we report and discuss the synthesis, binding affinity and conformational preferences of three DOTA-conjugated dicarba-analogs of octreotide. Interestingly, two conjugated analogs exhibited nanomolar affinities on sst 2 and sst 5 somatostatin receptor subtypes.
Aronstam, R. S.; Carrier, G. O.
1982-01-01
1 The binding of carbamylcholine to membranes prepared from the longitudinal muscle of guinea-pig ileum was determined from its inhibition of the binding of [3H]-3-quinuclidinyl benzilate. Carbamylcholine binding was resolved into high and low affinity components with apparent dissociation constants of 0.11 +/- 0.02 and 11 +/- 1 microM; 42% of the receptors displayed high affinity carbamylcholine binding. 2 Alkylation of longitudinal muscle membranes with N-ethylmaleimide increased muscarinic receptor affinity for carbamylcholine in a manner consistent with a conversion of low affinity to high affinity receptors. After exposure the muscle membrane fragments to 1 mM N-ethylmaleimide for 20 min at 35 degrees C, carbamylcholine binding was resolved into two components with apparent dissociation constants of 0.11 +/- 0.01 and 9 +/- 2 microM, with 74% of the receptors displaying the higher affinity. 3 Exposure of longitudinal membranes mounted in an organ chamber to 1 mM N-ethylmaleimide for 30s depressed isometric contractions in response to acetylcholine by 80%, while contractions induced by K+ and Ba2+ were reduced by less than 20% and 10%, respectively. Acetylcholine dose-response curves were shifted to the right while Ba2+ curves were unaffected. 4 It is suggested that N-ethylmaleimide has a selective effect on muscarinic responses in the longitudinal muscle by disrupting processes occurring after receptor occupancy but before the induction of phospholipid turnover or calcium influx in the postsynaptic membrane. PMID:7126999
Sternfeld, F; Guiblin, A R; Jelley, R A; Matassa, V G; Reeve, A J; Hunt, P A; Beer, M S; Heald, A; Stanton, J A; Sohal, B; Watt, A P; Street, L J
1999-02-25
The design, synthesis, and biological evaluation of a novel series of 3-[2-(pyrrolidin-1-yl)ethyl]indoles with excellent selectivity for h5-HT1D (formerly 5-HT1Dalpha) receptors over h5-HT1B (formerly 5-HT1Dbeta) receptors are described. Clinically effective antimigraine drugs such as Sumatriptan show little selectivity between h5-HT1D and h5-HT1B receptors. The differential expression of h5-HT1D and h5-HT1B receptors in neural and vascular tissue prompted an investigation of whether a compound selective for the h5-HT1D subtype would have the same clinical efficacy but with reduced side effects. The pyrrolidine 3b was initially identified as having 9-fold selectivity for h5-HT1D over h5-HT1B receptors. Substitution of the pyrrolidine ring of 3b with methylbenzylamine groups gave compounds with nanomolar affinity for the h5-HT1D receptor and 100-fold selectivity with respect to h5-HT1B receptors. Modification of the indole 5-substituent led to the oxazolidinones 24a,b with up to 163-fold selectivity for the h5-HT1D subtype and improved selectivity over other serotonin receptors. The compounds were shown to be full agonists by measurement of agonist-induced [35S]GTPgammaS binding in CHO cells expressed with h5-HT receptors. This study suggests that the h5-HT1D and h5-HT1B receptors can be differentiated by appropriate substitution of the ligand in the region which binds to the aspartate residue and reveals a large binding pocket in the h5-HT1D receptor domain which is absent for the h5-HT1B receptor. The compounds described herein will be important tools to delineate the role of h5-HT1D receptors in migraine.
NASA Astrophysics Data System (ADS)
Rifai, Eko Aditya; van Dijk, Marc; Vermeulen, Nico P. E.; Geerke, Daan P.
2018-01-01
Computational protein binding affinity prediction can play an important role in drug research but performing efficient and accurate binding free energy calculations is still challenging. In the context of phase 2 of the Drug Design Data Resource (D3R) Grand Challenge 2 we used our automated eTOX ALLIES approach to apply the (iterative) linear interaction energy (LIE) method and we evaluated its performance in predicting binding affinities for farnesoid X receptor (FXR) agonists. Efficiency was obtained by our pre-calibrated LIE models and molecular dynamics (MD) simulations at the nanosecond scale, while predictive accuracy was obtained for a small subset of compounds. Using our recently introduced reliability estimation metrics, we could classify predictions with higher confidence by featuring an applicability domain (AD) analysis in combination with protein-ligand interaction profiling. The outcomes of and agreement between our AD and interaction-profile analyses to distinguish and rationalize the performance of our predictions highlighted the relevance of sufficiently exploring protein-ligand interactions during training and it demonstrated the possibility to quantitatively and efficiently evaluate if this is achieved by using simulation data only.
Oakley, Robert H; Hudson, Christine C; Cruickshank, Rachael D; Meyers, Diane M; Payne, Richard E; Rhem, Shay M; Loomis, Carson R
2002-11-01
G protein-coupled receptors (GPCRs) have proven to be a rich source of therapeutic targets; therefore, finding compounds that regulate these receptors is a critical goal in drug discovery. The Transfluor technology utilizes the redistribution of fluorescently labeled arrestins from the cytoplasm to agonist-occupied receptors at the plasma membrane to monitor quantitatively the activation or inactivation of GPCRs. Here, we show that the Transfluor technology can be quantitated on the INCell Analyzer system (INCAS) using the vasopressin V(2) receptor (V(2)R), which binds arrestin with high affinity, and the beta(2)-adrenergic receptor (beta(2)AR), which binds arrestin with low affinity. U2OS cells stably expressing an arrestin-green fluorescent protein conjugate and either the V(2)R or the beta(2)AR were plated in 96-well plastic plates and analyzed by the INCAS at a screening rate of 5 min per plate. Agonist dose-response and antagonist dose-inhibition curves revealed signal-to-background ratios of approximately 25:1 and 8:1 for the V(2)R and beta(2)AR, respectively. EC(50) values agreed closely with K(d) values reported in the literature for the different receptor agonists. In addition, small amounts of arrestin translocation induced by sub-EC(50) doses of agonist were distinguished from the background noise of untreated cells. Furthermore, differences in the magnitude of arrestin translocation distinguished partial agonists from full agonists, and Z' values for these ligands were >0.5. These data show that the Transfluor technology, combined with an automated image analysis system, provides a direct, robust, and universal assay for high throughput screening of known and orphan GPCRs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dawson, T.M.; Dawson, V.L.; Gage, F.H.
1991-03-01
Interruption of the ascending dopamine neurons of the nigrostriatal pathway, by 6-hydroxydopamine (6-OHDA) lesion in rats, produced a significant loss of the dopamine transport complexes labeled with the phencyclidine derivative (3H)BTCP. This loss of dopamine innervation in the striatum was present at least 12 to 14 months after lesioning and was functionally manifested by ipsilateral rotation of the animals in response to amphetamine. In these same animals, in comparison to controls, there was a significant increase in the number (Bmax) of (3H)SCH 23390-labeled D-1 receptors in the striatum (36.7%) and the substantia nigra (35.1%) and a 54.4% increase in themore » number (Bmax) of (3H)sulpiride-labeled striatal D-2 receptors without an apparent change in affinity (Kd). Ten to twelve months after the transplantation of homologous fetal substantia nigra into the denervated striatum, there was a significant decrease in amphetamine-induced turning behavior. In these animals, there was an ingrowth of dopamine nerve terminals in the striatum as demonstrated by a return of (3H)BTCP binding. Accompanying this reinnervation was the normalization of D-1 and D-2 receptors to control values in the striatum as well as the return of D-1 receptors to prelesion densities in the substantia nigra. In a subgroup of transplanted rats, amphetamine continued to induce ipsilateral turning. In these animals both D-1 and D-2 receptors remained supersensitive. These results support the hypothesis that the functional recovery of transplanted animals is due, in part, to reinnervation of the striatum. In addition, long-term alterations in receptor density may be related to the behavioral deficits that are associated with the 6-OHDA-lesioned rat.« less
Hypothyroidism leads to increased dopamine receptor sensitivity and concentration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crocker, A.D.; Overstreet, D.H.; Crocker, J.M.
1986-06-01
Rats treated with iodine-131 were confirmed to be hypothyroid by their reduced baseline core body temperatures, reduced serum thyroxine concentrations and elevated serum thyroid stimulating hormone concentrations. When hypothyroid rats were compared to euthyroid controls they were more sensitive to the effects of apomorphine (1.0 mumol/kg) on stereotypy, operant responding and body temperature and showed a smaller reduction in locomotor activity after injection of haloperidol (0.25 mumol/kg). Receptor binding studies on striatal homogenates indicated that hypothyroid rats had increased concentrations of D2 dopamine receptors but there was no change in the affinity. It is concluded that hypothyroidism increases dopamine receptormore » sensitivity by increasing receptor concentration.« less
Philips, Brian J; Ansell, Pete J; Newton, Leslie G; Harada, Nobuhiro; Honda, Shin-Ichiro; Ganjam, Venkataseshu K; Rottinghaus, George E; Welshons, Wade V; Lubahn, Dennis B
2004-06-01
Primary evidence for novel estrogen signaling pathways is based upon well-documented estrogenic responses not inhibited by estrogen receptor antagonists. In addition to 17beta-E2, the catechol estrogen 4-hydroxyestradiol (4OHE2) has been shown to elicit biological responses independent of classical estrogen receptors in estrogen receptor-alpha knockout (ERalphaKO) mice. Consequently, our research was designed to biochemically characterize the protein(s) that could be mediating the biological effects of catechol estrogens using enzymatically synthesized, radiolabeled 4-hydroxyestrone (4OHE1) and 4OHE2. Scatchard analyses identified a single class of high-affinity (K(d) approximately 1.6 nM), saturable cytosolic binding sites in several ERalphaKO estrogen-responsive tissues. Specific catechol estrogen binding was competitively inhibited by unlabeled catechol estrogens, but not by 17beta-E2 or the estrogen receptor antagonist ICI 182,780. Tissue distribution studies indicated significant binding differences both within and among various tissues in wild-type, ERalphaKO, and aromatase knockout female mice. Ligand metabolism experiments revealed extensive metabolism of labeled catechol estrogen, suggesting that catechol estrogen metabolites were responsible for the specific binding. Collectively, our data provide compelling evidence for the interaction of catechol estrogen metabolites with a novel binding protein that exhibits high affinity, specificity, and selective tissue distribution. The extensive biochemical characterization of this binding protein indicates that this protein may be a receptor, and thus may mediate ERalpha/beta-independent effects of catechol estrogens and their metabolites.
Synthesis and biological evaluation of cyclopropyl analogues of 2-amino-5-phosphonopentanoic acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dappen, M.S.; Pellicciari, R.; Natalini, B.
1991-01-01
A series of cyclopropyl analogues related to 2-amino-5-phosphonopentanoic acid (AP5) were synthesized and their biological activity was assessed as competitive antagonists for the N-methyl-D-aspartate (NMDA) receptor. In vitro receptor binding using (3H)-L-glutamate as the radioligand provided affinity data, while modulation of (3H)MK-801 binding was used as a functional assay. The analogues were also evaluated in (3H)kainate binding to assess selectivity over non-NMDA glutamate receptors. Of the compounds tested, 4,5-methano-AP5 analogue 26 was the most potent selective NMDA antagonist; however, potency was lower than that for (((+/-)-2-carboxypiperidin-4-yl)methyl)phosphonic acid (CGS 19755, 5).
NASA Astrophysics Data System (ADS)
Barlocco, Daniela; Cignarella, Giorgio; Greco, Giovanni; Novellino, Ettore
1993-10-01
Molecular modeling studies were carried out on a set of piperazine and 3,8-diazabicyclo[3.2.1]octane derivatives with the aim to highlight the main factors modulating their affinity for the μ-opioid receptor. Structure-affinity relationships were developed with the aid of molecular mechanics and semiempirical quantum-mechanics methods. According to our proposed pharmacodynamic model, the binding to the μ-receptor is promoted by the following physico-chemical features: the presence of hydrocarbon fragments on the nitrogen ring frame capable of interacting with one of two hypothesized hydrophobic receptor pockets; a `correct' orientation of an N-propionyl side chain so as to avoid a sterically hindered region of the receptor; the possibility of accepting a hydrogen bond from a receptor site complementary to the morphine phenol oxygen.
Keeler, Benjamin E; Baran, Christine A; Brewer, Kori L; Clemens, Stefan
2012-12-01
Frequency-dependent modulation and dopamine (DA) receptors strongly modulate neural circuits in the spinal cord. Of the five known DA receptor subtypes, the D3 receptor has the highest affinity to DA, and D3-mediated actions are mainly inhibitory. Using an animal model of spinal sensorimotor dysfunction, the D3 receptor knockout mouse (D3KO), we investigated the physiological consequences of D3 receptor dysfunction on pain-associated signaling pathways in the spinal cord, the initial integration site for the processing of pain signaling. In the D3KO spinal cord, inhibitory actions of DA on the proprioceptive monosynaptic stretch reflex are converted from depression to facilitation, but its effects on longer-latency and pain-associated reflex responses and the effects of FM have not been studied. Using behavioral approaches in vivo, we found that D3KO animals exhibit reduced paw withdrawal latencies to thermal pain stimulation (Hargreaves' test) over wild type (WT) controls. Electrophysiological and pharmacological approaches in the isolated spinal cord in vitro showed that constant current stimulation of dorsal roots at a pain-associated frequency was associated with a significant reduction in the frequency-dependent modulation of longer-latency reflex (LLRs) responses but not monosynaptic stretch reflexes (MSRs) in D3KO. Application of the D1 and D2 receptor agonists and the voltage-gated calcium-channel ligand, pregabalin, but not DA, was able to restore the frequency-dependent modulation of the LLR in D3KO to WT levels. Thus we demonstrate that nociception-associated LLRs and proprioceptive MSRs are differentially modulated by frequency, dopaminergics and the Ca(2+) channel ligand, pregabalin. Our data suggest a role for the DA D3 receptor in pain modulation and identify the D3KO as a possible model for increased nociception. Copyright © 2012 Elsevier Inc. All rights reserved.
Cell-specific targeting by heterobivalent ligands.
Josan, Jatinder S; Handl, Heather L; Sankaranarayanan, Rajesh; Xu, Liping; Lynch, Ronald M; Vagner, Josef; Mash, Eugene A; Hruby, Victor J; Gillies, Robert J
2011-07-20
Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach--to specifically target combinations of cell-surface receptors using heteromultivalent ligands ("receptor combination approach"). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle(4), dPhe(7)]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20-50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH(2). Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging.
Schulz, Steffen B; Heidmann, Karin E; Mike, Arpad; Klaft, Zin-Juan; Heinemann, Uwe; Gerevich, Zoltan
2012-01-01
BACKGROUND AND PURPOSE Disturbed cortical gamma band oscillations (30–80 Hz) have been observed in schizophrenia: positive symptoms of the disease correlate with an increase in gamma oscillation power, whereas negative symptoms are associated with a decrease. EXPERIMENTAL APPROACH Here we investigated the effects of first and second generation antipsychotics (FGAs and SGAs, respectively) on gamma oscillations. The FGAs haloperidol, flupenthixol, chlorpromazine, chlorprothixene and the SGAs clozapine, risperidone, ziprasidone, amisulpride were applied on gamma oscillations induced by acetylcholine and physostigmine in the CA3 region of rat hippocampal slices. KEY RESULTS Antipsychotics inhibited the power of gamma oscillations and increased the bandwidth of the gamma band. Haloperidol and clozapine had the highest inhibitory effects. To determine which receptor is responsible for the alterations in gamma oscillations, the effects of the antipsychotics were plotted against their pKi values for 19 receptors and analysed for correlation. Our results indicated that 5-HT3 receptors have an enhancing effect on gamma oscillations whereas dopamine D3 receptors inhibit them. To test this prediction, m-chlorophenylbiguanide, PD 128907 and CP 809101, selective agonists at 5-HT3, D3 and 5-HT2C receptors were applied and revealed that 5-HT3 receptors indeed enhanced the gamma power whereas D3 receptors reduced it. As predicted, 5-HT2C receptors had no effects on gamma oscillations. CONCLUSION AND IMPLICATIONS Our data suggest that antipsychotics alter hippocampal gamma oscillations by interacting with 5-HT3 and dopamine D3 receptors. Moreover, a correlation of receptor affinities with the biological effects can be used to predict targets for the pharmacological effects of multi-target drugs. PMID:22817643
Smith, C T; Dang, L C; Buckholtz, J W; Tetreault, A M; Cowan, R L; Kessler, R M; Zald, D H
2017-04-11
Dopamine function is broadly implicated in multiple neuropsychiatric conditions believed to have a genetic basis. Although a few positron emission tomography (PET) studies have investigated the impact of single-nucleotide polymorphisms (SNPs) in the dopamine D2 receptor gene (DRD2) on D2/3 receptor availability (binding potential, BP ND ), these studies have often been limited by small sample size. Furthermore, the most commonly studied SNP in D2/3 BP ND (Taq1A) is not located in the DRD2 gene itself, suggesting that its linkage with other DRD2 SNPs may explain previous PET findings. Here, in the largest PET genetic study to date (n=84), we tested for effects of the C957T and -141C Ins/Del SNPs (located within DRD2) as well as Taq1A on BP ND of the high-affinity D2 receptor tracer 18 F-Fallypride. In a whole-brain voxelwise analysis, we found a positive linear effect of C957T T allele status on striatal BP ND bilaterally. The multilocus genetic scores containing C957T and one or both of the other SNPs produced qualitatively similar striatal results to C957T alone. The number of C957T T alleles predicted BP ND in anatomically defined putamen and ventral striatum (but not caudate) regions of interest, suggesting some regional specificity of effects in the striatum. By contrast, no significant effects arose in cortical regions. Taken together, our data support the critical role of C957T in striatal D2/3 receptor availability. This work has implications for a number of psychiatric conditions in which dopamine signaling and variation in C957T status have been implicated, including schizophrenia and substance use disorders.
Effect of single point mutations of the human tachykinin NK1 receptor on antagonist affinity.
Lundstrom, K; Hawcock, A B; Vargas, A; Ward, P; Thomas, P; Naylor, A
1997-10-15
Molecular modelling and site-directed mutagenesis were used to identify eleven amino acid residues which may be involved in antagonist binding of the human tachykinin NK1 receptor. Recombinant receptors were expressed in mammalian cells using the Semliki Forest virus system. Wild type and mutant receptors showed similar expression levels in BHK and CHO cells, verified by metabolic labelling. Binding affinities were determined for a variety of tachykinin NK1 receptor antagonists in SFV-infected CHO cells. The binding affinity for GR203040, CP 99,994 and CP 96,345 was significantly reduced by mutant Q165A. The mutant F268A significantly reduced the affinity for GR203040 and CP 99,994 and the mutant H197A had reduced affinity for CP 96,345. All antagonists seemed to bind in a similar region of the receptor, but do not all rely on the same binding site interactions. Functional coupling to G-proteins was assayed by intracellular Ca2+ release in SFV-infected CHO cells. The wild type receptor and all mutants except A162L and F268A responded to substance P stimulation.
Journigan, V Blair; Polgar, Willma E; Tuan, Edward W; Lu, James; Daga, Pankaj R; Zaveri, Nurulain T
2017-10-16
Few opioid ligands binding to the three classic opioid receptor subtypes, mu, kappa and delta, have high affinity at the fourth opioid receptor, the nociceptin/orphanin FQ receptor (NOP). We recently reported the discovery of AT-076 (1), (R)-7-hydroxy-N-((S)-1-(4-(3-hydroxyphenyl)piperidin-1-yl)-3-methylbutan-2-yl)-1,2,3,4-tetrahydroisoquinoline-3-carboxamide, a pan antagonist with nanomolar affinity for all four subtypes. Since AT-076 binds with high affinity at all four subtypes, we conducted a structure-activity relationship (SAR) study to probe ligand recognition features important for pan opioid receptor activity, using chemical modifications of key pharmacophoric groups. SAR analysis of the resulting analogs suggests that for the NOP receptor, the entire AT-076 scaffold is crucial for high binding affinity, but the binding mode is likely different from that of NOP antagonists C-24 and SB-612111 bound in the NOP crystal structure. On the other hand, modifications of the 3-hydroxyphenyl pharmacophore, but not the 7-hydroxy Tic pharmacophore, are better tolerated at kappa and mu receptors and yield very high affinity multifunctional (e.g. 12) or highly selective (e.g. 16) kappa ligands. With the availability of the opioid receptor crystal structures, our SAR analysis of the common chemotype of AT-076 suggests rational approaches to modulate binding selectivity, enabling the design of multifunctional or selective opioid ligands from such scaffolds.
Ring size of somatostatin analogues (ODT-8) modulates receptor selectivity and binding affinity
Erchegyi, Judit; Grace, Christy Rani R.; Samant, Manoj; Cescato, Renzo; Piccand, Veronique; Riek, Roland; Reubi, Jean Claude; Rivier, Jean E.
2009-01-01
The synthesis, biological testing and NMR studies of several analogues of H-c[Cys3-Phe6-Phe7-dTrp8-Lys9-Thr10-Phe11-Cys14]-OH (ODT-8, a pan-somatostatin analogue) (1), have been performed to assess the effect of changing the stereochemistry and the number of the atoms in the disulfide bridge on binding affinity. Cysteine at positions 3 and/or 14 (SRIF numbering) were/was substituted with d-cysteine, Nor-cysteine, d-Nor-cysteine, Homo-cysteine and/or d-Homo-cysteine. The 3D structures of selected partially selective, bioactive analogues (3, 18, 19 and 21) were carried out in DMSO. Interestingly and not unexpectedly, the 3D structures of these analogues comprised the pharmacophore for which the analogues had the highest binding affinities (i.e., sst4 in all cases). PMID:18410084
Dihydrogenphosphate recognition: Assistance from the acidic OH moiety of the anion
NASA Astrophysics Data System (ADS)
Das, Rituraj; Pathak, Nibedan; Choudhury, Samarjit; Borah, Suchibrata; Mahanta, Sanjeev Pran
2017-11-01
The binding affinity of the acidic hydrogen i.e. OH moiety of dihydrogenphosphate was investigated with receptors having competent H-bond donor and H-bond acceptor component. Three derivatives of 2, 3-dipyrrol-2‧-ylquinoxaline substituted with H-bond acceptor moiety at pyrrole α- positions were synthesized and their dihydrogenphosphate affinity was studied. All the three receptors shows general affinity towards fluoride, acetate and cyanide ions in DMSO solution. Interestingly, formyl substitution at both the pyrrole α-positions of 2, 3-dipyrrol-2‧-ylquinoxaline leads to binding of H2PO4-. 1H-NMR study rules out the involvement of the H-bond donor unit of the receptor in the biding event and reveals that the binding occurs predominantly via the Osbnd H⋯O interaction between the acidic OH moiety of the anion and the Cdbnd O of the formyl group of the receptor.
Durdagi, Serdar; Aksoydan, Busecan; Erol, Ismail; Kantarcioglu, Isik; Ergun, Yavuz; Bulut, Gulay; Acar, Melih; Avsar, Timucin; Liapakis, George; Karageorgos, Vlasios; Salmas, Ramin E; Sergi, Barış; Alkhatib, Sara; Turan, Gizem; Yigit, Berfu Nur; Cantasir, Kutay; Kurt, Bahar; Kilic, Turker
2018-02-10
AT1 antagonists is the most recent drug class of molecules against hypertension and they mediate their actions through blocking detrimental effects of angiotensin II (A-II) when acts on type I (AT1) A-II receptor. The effects of AT1 antagonists are not limited to cardiovascular diseases. AT1 receptor blockers may be used as potential anti-cancer agents - due to the inhibition of cell proliferation stimulated by A-II. Therefore, AT1 receptors and the A-II biosynthesis mechanisms are targets for the development of new synthetic drugs and therapeutic treatment of various cardiovascular and other diseases. In this work, multi-scale molecular modeling approaches were performed and it is found that oxazolone and imidazolone derivatives reveal similar/better interaction energy profiles compared to the FDA approved sartan molecules at the binding site of the AT1 receptor. In silico-guided designed hit molecules were then synthesized and tested for their binding affinities to human AT1 receptor in radioligand binding studies, using [ 125 I-Sar 1 -Ile 8 ] AngII. Among the compounds tested, 19d and 9j molecules bound to receptor in a dose response manner and with relatively high affinities. Next, cytotoxicity and wound healing assays were performed for these hit molecules. Since hit molecule 19d led to deceleration of cell motility in all three cell lines (NIH3T3, A549, and H358) tested in this study, this molecule is investigated in further tests. In two cell lines (HUVEC and MCF-7) tested, 19d induced G2/M cell cycle arrest in a concentration dependent manner. Adherent cells detached from the plates and underwent cell death possibly due to apoptosis at 19d concentrations that induced cell cycle arrest. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Relationships between chemical structure and affinity for acetylcholine receptors
Abramson, F. B.; Barlow, R. B.; Mustafa, M. G.; Stephenson, R. P.
1969-01-01
1. Series of analogues of acetylcholine have been prepared in which the acetyl group was replaced by phenylacetyl, cyclohexylacetyl, diphenylacetyl, dicyclohexylacetyl, (±)-phenylcyclohexylacetyl, benziloyl and (±)-phenylcyclohexylhydroxyacetyl groups and the trimethylammonium group was replaced by Me2EtN+, MeEt2N+, Et3N+, [Formula: see text] Further series were prepared in which the acetoxyethyl group was replaced by ethoxyethyl, phenylethoxyethyl, cyclohexylethoxyethyl, diphenylethoxyethyl, and dicyclohexylethoxyethyl groups, and by n-pentyl, 5-phenylpentyl, 5-cyclohexylpentyl and 5:5-diphenylpentyl groups. 2. The ethoxyethyl and n-pentyl series contain some compounds which are agonists or partial agonists when tested on the isolated guinea-pig ileum, but all the other compounds are antagonists. 3. The affinity of the compounds for the postganglionic (“muscarinesensitive”) acetylcholine receptors has been measured in conditions in which the antagonists have been shown to be acting competitively. There were considerable differences between their affinities, the most active (log K, 9·8) having one million times the affinity of the least active (log K, 3·7). 4. The changes in affinity as the onium group was modified were not entirely independent of changes in the rest of the molecule. Increasing the size of the onium group, as judged from conductivity measurements on simpler onium salts, increased affinity in the series containing one large group (phenyl or cyclohexyl) but, in the series with two large groups, affinity declined when the size was increased beyond -+NMeEt2. 5. In general, the effects of changes in the rest of the molecule on affinity were bigger than the effects of changes in the onium group and there were bigger interactions. Affinity was increased to a greater extent by introducing one phenyl and one cyclohexyl group together than by introducing either two phenyl or two cyclohexyl groups; the increment was greater than the separate contributions made by one phenyl and one cyclohexyl group. 6. The factors which influence the binding of molecules to receptors are discussed. There is no evidence that the separation between the onium group and the group in the receptor with which it interacts is greater in compounds with high affinity nor is there any evidence, from the study of the series which contain agonists and partial agonists, that ability to activate receptors depends upon the onium group being able to come close to this charged group in the receptors. PMID:5343350
Sharma, P; Postel, S; Sundberg, E J; Kranz, D M
2013-12-01
Staphylococcal food poisoning is a gastrointestinal disorder caused by the consumption of food containing Staphylococcal enterotoxins. Staphylococcal enterotoxin A (SEA) is the most common enterotoxin recovered from food poisoning outbreaks in the USA. In addition to its enteric activity, SEA also acts as a potent superantigen through stimulation of T cells, although less is known about its interactions than the superantigens SEB, SEC and toxic shock syndrome toxin-1. To understand more about SEA:receptor interactions, and to develop toxin-detection systems for use in food testing, we engineered various SEA-binding receptor mutants. The extracellular domain of the receptor, a variable region of the beta chain (Vβ22) of the T-cell receptor, was engineered for stability as a soluble protein and for high affinity, using yeast-display technology. The highest affinity mutant was shown to bind SEA with a Kd value of 4 nM. This was a 25 000-fold improvement in affinity compared with the wild-type receptor, which bound to SEA with low affinity (Kd value of 100 µM), similar to other superantigen:Vβ interactions. The SEA:Vβ interface was centered around residues within the complementarity determining region 2 loop. The engineered receptor was specific for SEA, in that it did not bind to two other closely related enterotoxins SEE or SED, providing information on the SEA residues possibly involved in the interaction. The specificity and affinity of these high-affinity Vβ proteins also provide useful agents for the design of more sensitive and specific systems for SEA detection.
Sharma, P.; Postel, S.; Sundberg, E.J.; Kranz, D.M.
2013-01-01
Staphylococcal food poisoning is a gastrointestinal disorder caused by the consumption of food containing Staphylococcal enterotoxins. Staphylococcal enterotoxin A (SEA) is the most common enterotoxin recovered from food poisoning outbreaks in the USA. In addition to its enteric activity, SEA also acts as a potent superantigen through stimulation of T cells, although less is known about its interactions than the superantigens SEB, SEC and toxic shock syndrome toxin-1. To understand more about SEA:receptor interactions, and to develop toxin-detection systems for use in food testing, we engineered various SEA-binding receptor mutants. The extracellular domain of the receptor, a variable region of the beta chain (Vβ22) of the T-cell receptor, was engineered for stability as a soluble protein and for high affinity, using yeast-display technology. The highest affinity mutant was shown to bind SEA with a Kd value of 4 nM. This was a 25 000-fold improvement in affinity compared with the wild-type receptor, which bound to SEA with low affinity (Kd value of 100 µM), similar to other superantigen:Vβ interactions. The SEA:Vβ interface was centered around residues within the complementarity determining region 2 loop. The engineered receptor was specific for SEA, in that it did not bind to two other closely related enterotoxins SEE or SED, providing information on the SEA residues possibly involved in the interaction. The specificity and affinity of these high-affinity Vβ proteins also provide useful agents for the design of more sensitive and specific systems for SEA detection. PMID:24167300
Webster, D E; Lu, J; Chen, S-N; Farnsworth, N R; Wang, Z Jim
2006-06-30
The dried ripe fruit of Vitex agnus-castus L. (VAC) is widely used for the treatment of premenstrual syndrome (PMS). A previous study reported that extracts of VAC showed affinity to opiate receptors; however, functional activity was not determined. We tested two different VAC extracts in receptor binding and functional assays. Our objectives were: (1) to confirm the opiate affinity; (2) to rule out interference by free fatty acids (FFA); (3) to determine the mode of action of VAC at the mu-opiate receptor. Methanol extracts of VAC were prepared either before (VAC-M1) or after (VAC-M2) extraction with petroleum ether to remove fatty acids. Both extracts showed significant affinities to the mu-opiate receptor, as indicated by the concentration-dependent displacement of [3H]DAMGO binding in Chinese hamster ovary (CHO)-human mu-opiate receptor (hMOR) cells. The IC50 values were estimated to be 159.8 microg/ml (VAC-M1) and 69.5 microg/ml (VAC-M2). Since the defatted extract not only retained, but exhibited a higher affinity (p<0.001), it argued against significant interference by fatty acids. In an assay to determine receptor activation, VAC-M1 and VAC-M2 stimulated [35S]GTPgammaS binding by 41 and 61% (p<0.001), respectively. These results suggested for the first time that VAC acted as an agonist at the mu-opiate receptor, supporting its beneficial action in PMS.
Rocca, Jeffery F; Lister, Joshua G; Beninger, Richard J
2017-02-01
Rats repeatedly exposed to the bar test following injections with a dopamine D2-like receptor antagonist such as haloperidol show increased descent latencies, suggesting that contextual stimuli may lose their ability to elicit approach and other responses. Here, we showed that rats took progressively longer to initiate descent from a horizontal bar across sessions following daily intraperitoneal treatment (paired group) with the D2-like receptor antagonist, spiroperidol (0.125 and 0.25 mg/kg), but not in the control group that received 0.25 mg/kg in their home cage and testing following saline. When both groups were tested following an injection of spiroperidol or following saline, a sensitized and a conditioned increase in descent latency, respectively, were observed in the paired but not in the unpaired group. No evidence of sensitization or conditioning was found with the substituted benzamide compound, eticlopride (0.15-0.5 mg/kg), or the D2-like receptor partial agonist, aripiprazole (0.25-0.5 mg/kg). The different effects of these agents on learning may be related to different region-specific affinities for dopamine receptors or differences in receptor dissociation profiles. We suggest that the behavioural changes observed in spiroperidol-treated rats may reflect inverse incentive learning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allescher, H.D.; Ahmad, S.; Classen, M.
Receptor binding of the opioid receptor antagonist, ({sup 3}H)diprenorphine, which has a similar affinity to the various opioid receptor subtypes, was characterized in subcellular fractions derived from either longitudinal or circular smooth muscle of the canine small intestine with their plexuses (myenteric plexus and deep muscular plexus, respectively) attached. The distribution of opioid binding activity showed a good correlation in the different fractions with the binding of the neuronal marker ({sup 3}H)saxitoxin but no correlation to the smooth muscle plasma membrane marker 5'-nucleotidase. The saturation data (Kd = 0.12 +/- 0.04 nM and maximum binding = 400 +/- 20 fmol/mg)more » and the data from kinetic experiments (Kd = 0.08 nmol) in the myenteric plexus were in good agreement with results obtained previously from the circular muscle/deep muscular plexus preparation. Competition experiments using selective drugs for mu (morphiceptin-analog (N-MePhe3-D-Pro4)-morphiceptin), delta (D-Pen2,5-enkephalin) and kappa (dynorphin 1-13, U50488-H) ligands showed the existence of all three receptor subtypes. The existence of kappa receptors was confirmed in saturation experiments using ({sup 3}H) ethylketocycloazocine as labeled ligand. Two putative opioid agonists, with effects on gastrointestinal motility, trimebutine and JO-1196 (fedotozin), were also examined. Trimebutine (Ki = 0.18 microM), Des-Met-trimebutine (Ki = 0.72 microM) and Jo-1196 (Ki = 0.19 microM) displaced specific opiate binding. The relative affinity for the opioid receptor subtypes was mu = 0.44, delta = 0.30 and kappa = 0.26 for trimebutine and mu = 0.25, delta = 0.22 and kappa = 0.52 for Jo-1196.« less
The actions of some esters of 4-hydroxyquinuclidine on guinea-pig ileum, atria and rat fundus strip.
Barlow, R B; Kitchen, R
1982-11-01
1 The acetyl, phenylacetyl, and diphenylacetyl esters of 4-hydroxyquinuclidine and their methiodides have been prepared.2 4-Diphenylacetoxyquinuclidine methiodide has higher affinity for muscarinic receptors than 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP methiodide) but it is less selective. At 30 degrees C its affinity for receptors in ileum is about 5 times that for receptors in atria, a difference similar to that found with diphenylacetoxytrophine methiodide. With 4-DAMP methiodide affinity for receptors in the ileum is over 10 times that for receptors in atria.3 4-Diphenylacetoxyquinuclidine methiodide has higher affinity for muscarinic receptors than 3-diphenylacetoxyquinuclidine hydrochloride or its methiodide.4 4-Acetoxyquinuclidine hydrochloride has less than one-hundredth of the activity of 3-acetoxyquinuclidine hydrochloride (acecyclidine) on guinea-pig ileum, atria, and rat fundus: however, 4-acetoxyquinuclidine methiodide is consistently more active than its 3-isomer, though it is only about 1/25 times as active as acecyclidine.5 4-Acetoxyquinuclidine hydrochloride is only a poor substrate for electric eel acetylcholinesterase: its affinity is similar to that of acecyclidine but it is greatly reduced by methylation.6 The relations between the structure and activity of the agonists are very different from the relations between the structure and affinity of the antagonists, which supports the view that agonists and antagonists bind to different conformations of the muscarinic receptor.
Terrón, J. A.
1996-01-01
1. The relaxant effect of 5-hydroxytryptamine (5-HT) in the dog isolated coronary artery deprived of endothelium is mediated by a receptor unrelated to the 5-HT1, 5-HT2, 5-HT3 or 5-HT4 types. Based upon the pharmacological characteristics of this relaxant 5-HT receptor and those reported for the new members of the 5-HT receptor family, the present study explored the possibility that the relaxant 5-HT receptor referred to above, corresponds to the cloned 5-ht7 subtype. Thus, the relaxing and/or blocking effects of several 5-HT receptor drugs as well as some typical and atypical antipsychotic drugs with high affinity for the cloned 5-ht7 receptor in precontracted ring segments were analyzed. 2. 5-HT, 5-carboxamidotryptamine (5-CT) and 5-methoxytryptamine, but not 8-OH-DPAT or sumatriptan, produced concentration-dependent relaxations in endothelium-denuded canine coronary artery rings precontracted with prostaglandin F2a (2 microM). Clozapine (1 microM) produced in some cases a small relaxing effect and antagonized 5-HT- and 5-CT-induced relaxation suggesting a partial agonist effect. In the presence of the 5-HT1D receptor antagonist, GR127935 (100 nM), the rank order of agonist potency was 5-CT > 5-HT > clozapine > or = 5-methoxytryptamine. 8-OH-DPAT and sumatriptan remained inactive as agonists. 3. In GR127935-treated preparations, methiothepin (3 nM) and mianserin (1 microM), as well as the antipsychotics, clozapine (1 microM), pimozide (300 nM), risperidone (3 nM) and spiperone (1 microM), failed to induce a significant relaxation in prostaglandin F2x-precontracted vessels, but produced significant rightward displacements of the concentration-response curves to 5-HT and 5-CT without significantly reducing the Emax. In a final set of experiments with 5-CT, metergoline (100 nM) and mesulergine (300 nM) behaved as competitive antagonists. In contrast, lisuride (3 nM) noncompetitively antagonized 5-CT-induced relaxation. The estimated affinity (apparent pKa values) of the above antagonist drugs for the relaxant 5-HT receptor significantly correlated with their reported affinity at the cloned 5-ht7 receptor. 4. Taken together, the above pharmacological data may suggest that the relaxant 5-HT receptor in the smooth muscle of the canine coronary artery is similar to the cloned 5-ht7 receptor subtype. PMID:8832067
Nilvebrant, Johan; Åstrand, Mikael; Georgieva-Kotseva, Maria; Björnmalm, Mattias; Löfblom, John; Hober, Sophia
2014-01-01
The epidermal growth factor receptor 2, ERBB2, is a well-validated target for cancer diagnostics and therapy. Recent studies suggest that the over-expression of this receptor in various cancers might also be exploited for antibody-based payload delivery, e.g. antibody drug conjugates. In such strategies, the full-length antibody format is probably not required for therapeutic effect and smaller tumor-specific affinity proteins might be an alternative. However, small proteins and peptides generally suffer from fast excretion through the kidneys, and thereby require frequent administration in order to maintain a therapeutic concentration. In an attempt aimed at combining ERBB2-targeting with antibody-like pharmacokinetic properties in a small protein format, we have engineered bispecific ERBB2-binding proteins that are based on a small albumin-binding domain. Phage display selection against ERBB2 was used for identification of a lead candidate, followed by affinity maturation using second-generation libraries. Cell surface display and flow-cytometric sorting allowed stringent selection of top candidates from pools pre-enriched by phage display. Several affinity-matured molecules were shown to bind human ERBB2 with sub-nanomolar affinity while retaining the interaction with human serum albumin. Moreover, parallel selections against ERBB2 in the presence of human serum albumin identified several amino acid substitutions that dramatically modulate the albumin affinity, which could provide a convenient means to control the pharmacokinetics. The new affinity proteins competed for ERBB2-binding with the monoclonal antibody trastuzumab and recognized the native receptor on a human cancer cell line. Hence, high affinity tumor targeting and tunable albumin binding were combined in one small adaptable protein. PMID:25089830
Barkey, Natalie M; Tafreshi, Narges K; Josan, Jatinder S; De Silva, Channa R; Sill, Kevin N; Hruby, Victor J; Gillies, Robert J; Morse, David L; Vagner, Josef
2011-12-08
The incidence of malignant melanoma is rising faster than that of any other cancer in the United States. Because of its high expression on the surface of melanomas, MC1R has been investigated as a target for selective imaging and therapeutic agents against melanoma. Eight ligands were screened against cell lines engineered to overexpress MC1R, MC4R, or MC5R. Of these, compound 1 (4-phenylbutyryl-His-dPhe-Arg-Trp-NH(2)) exhibited high (0.2 nM) binding affinity for MC1R and low (high nanomolar) affinities for MC4R and MC5R. Functionalization of the ligand at the C-terminus with an alkyne for use in Cu-catalyzed click chemistry was shown not to affect the binding affinity. Finally, formation of the targeted polymer, as well as the targeted micelle formulation, also resulted in constructs with low nanomolar binding affinity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zukin, R.S.; Eghbali, M.; Olive, D.
{kappa} opioid receptors ({kappa} receptors) have been characterized in homogenates of guinea pig and rat brain under in vitro binding conditions. {kappa} receptors were labeled by using the tritiated prototypic {kappa} opioid ethylketocyclazocine under conditions in which {mu} and {delta} opioid binding was suppressed. In the case of guinea pig brain membranes, a single population of high-affinity {kappa} opioid receptor sites was observed. In contrast, in the case of rat brain, two populations of {kappa} sites were observed. To test the hypothesis that the high- and low-affinity {kappa} sites represent two distinct {kappa} receptor subtypes, a series of opioids weremore » tested for their abilities to compete for binding to the two sites. U-69,593 and Cambridge 20 selectively displaced the high-affinity {kappa} site in both guinea pig and rat tissue, but were inactive at the rat-brain low-affinity site. Other {kappa} opioid drugs competed for binding to both sites, but with different rank orders of potency. Quantitative light microscopy in vitro autoradiography was used to visualize the neuroanatomical pattern of {kappa} receptors in rat and guinea pig brain. The distribution patterns of the two {kappa} receptor subtypes of rat brain were clearly different. Collectively, these data provide direct evidence for the presence of two {kappa} receptor subtypes; the U-69,593-sensitive, high-affinity {kappa}{sub 1} site predominates in guinea pig brain, and the U-69,593-insensitive, low-affinity {kappa}{sub 2} site predominates in rat brain.« less
Chang, H. Ming; Berde, Charles B.; Holz, George G.; Steward, Grieg F.; Kream, Richard M.
2010-01-01
An in vitro model system for analysis of presynaptic inhibitory actions of spinal opioids has been applied. Embryonic sensory neurons derived from chick dorsal root ganglia were grown in primary cell culture, and the release of substance P was evoked by electrical field stimulation during exposure to drugs with well-demonstrated affinity for opioid receptors. This allowed a pharmacologic characterization of the inhibitory actions of specific opioid agonists on the release of substance P as measured by radioimmunoassay (RIA). Sufentanil (0.5 µm), a high affinity µ receptor agonist, U-50,488H (25 µm), a selective κ receptor agonist, and morphine (10 µm), an agonist with high affinity for µ and δ receptors, inhibited the evoked release of substance P by approximately 60%, 40%, and 50%, respectively. For sufentanil the response was demonstrated to be dose-dependent. As is the case for its analgesic action in vivo, morphine was approximately 50-fold less potent than sufentanil on a molar basis in this assay. The actions of sufentanil, U-50-488H and morphine were mimicked by the endogenous opioid peptide met-enkephalin, and its stable synthetic analog D-ala2-met5-enkephalinamide (DAME). Naloxone (25 µm), an opioid receptor antagonist, blocked the inhibitory action of sufentanil (0.5 µm), morphine (5 µm), and DAME (5 µm), but not U-50,488H (10 µm). The action of U-50,488H was partially blocked by the antagonist naltrexone (25 µm). Stereo-selectivity of agonist action was confirmed by the failure of dextrorphan (50 µm), an inactive opioid isomer, to inhibit the release of substance P. Actions mediated by specific opioid receptors were thus demonstrated by high affinity responses to agonists, blockade of agonist responses by opioid antagonists, and stereoselectivity. These findings suggest that in the spinal cord presynaptic inhibition of evoked substance P release is mediated by µ, K and δ opioid receptors located on primary sensory nerve terminals. Activation of these receptors may explain, at least in part, the spinal analgesic actions of specific opioid agonists. PMID:2467589
Role of hydrogen bonding in ligand interaction with the N-methyl-D-aspartate receptor ion channel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leeson, P.D.; Carling, R.W.; James, K.
1990-05-01
Displacement of (3H)MK-801 (dizocilpine, 1) binding to rat brain membranes has been used to evaluate the affinities of novel dibenzocycloalkenimines related to 1 for the ion channel binding site (also known as the phencyclidine or PCP receptor) on the N-methyl-D-aspartate (NMDA) subtype of excitory amino acid receptor. In common with many other agents having actions in the central nervous system, these compounds contain a hydrophobic aromatic moiety and a basic nitrogen atom. The conformational rigidity of these ligands provides a unique opportunity to evaluate the importance of specific geometrical properties that influence active-site recognition, in particular the role of themore » nitrogen atom in hydrogen-bonding interactions. The relative affinities (IC50s) of hydrocarbon-substituted analogues of 1 and ring homologated cyclooctenimines illustrate the importance of size-limited hydrophobic binding of both aryl rings and of the quaternary C-5 methyl group. Analysis of the binding of a series of the 10 available structurally rigid dibenzoazabicyclo(x.y.z)alkanes, by using molecular modeling techniques, uncovered a highly significant correlation between affinity and a proposed ligand-active site hydrogen bonding vector (r = 0.950, p less than 0.001). These results are used to generate a pharmacophore of the MK-801 recognition site/PCP receptor, which accounts for the binding of all of the known ligands.« less
NASA Astrophysics Data System (ADS)
Gober, Isaiah Nathaniel
This dissertation involves the design and synthesis of new synthetic receptors and their application in the molecular recognition of methylated lysine and their use as tools for chemical biology. The dissertation is divided into four parts. The first section focuses on the development of a novel labeling method that is based on ligand-directed affinity labeling principles. In this labeling method, a synthetic receptor that binds to trimethyl lysine (Kme3) is attached through a linker to an electrophilic tag group that can react with a nucleophilic amine in a histone peptide. This affinity labeling probe, which we called CX4-ONBD, is equipped with an electrophilic tag that allows for turn-on fluorescence labeling of Kme3 histone peitdes. We show that the probe gives a pronounced turn-on fluorescence response when it is incubated with a histone peptide that contains Kme3 and a nearby reactive lysine. This probe also displays >5-fold selectivity in covalent labeling over an unmethylated lysine peptide. This represents the first time a synthetic receptor has been used for affinity labeling purposes, and it also expands on the chemical toolkit that is available for sensing PTMs like lysine methylation. In the second section, the supramolecular affinity labeling method that was optimized using CX4-ONBD was applied to the development of a real-time assay for measuring enzymatic activity. More specifically, the probe was used to create a turn-on fluorescence assay for histone deacetylase (HDAC) activity and for inhibitor screening and IC50 determination. Most commercial kits for HDAC activity have limited substrate scope, and other common methods used for characterizing enzymatic activity often require chromatographic separation and are therefore not high-throughput. This small molecule receptor-mediated affinity labeling strategy allowed for facile readout of HDAC activity and inhibition. Overall, this application of supramolecular affinity labeling expands on the possible ways for detecting PTMs and may find use in the development of new assays for enzymes that lack robust methods for measuring their activity. The third section explores the development of new small molecule receptors capable of selectively binding hydrophilic guests in water, such as the lower methylation states of lysine. We identified a receptor, A2I, that has improved binding affinity and selectivity for dimethyllysine (Kme2). The receptor was discovered and synthesized by using dynamic combinatorial chemistry (DCC) to redesign a small molecule receptor (A2B ) that preferentially binds trimethyllysine (Kme3). Incorporating a biphenyl monomer with ortho-di-substituted carboxylates into the receptor lead to the formation of a salt bridge interaction with Kme2. These favorable electrostatic and hydrogen bonding interactions produced a receptor with 32-fold tighter binding to Kme2, which is the highest affinity synthetic receptor for Kme2 in the context of a peptide that has been reported. This work provides insight into effective strategies for binding hydrophilic, cationic guests in water and is an encouraging result toward a synthetic receptor that selectively binds Kme2 over other methylation states of lysine. In the final section, a small molecule receptor for Kme3 (A 2B) was redesigned using DCC to incorporate either aromatic or acidic amino acids into the receptor. We proposed that the incorporation of amino acids could introduce additional non-covalent interactions (such as cation-pi, electrostatic, and hydrogen bonding) with a guest bound inside the pocket of the receptor. However, selective non-covalent interactions between the amino acid side chain on the modified receptor and the bound methylated lysine guest could not be achieved. This is most likely due to the conformational flexibility of the amino acid-functionalized receptors. Furthermore, attaching amino acids to the receptor seemed to increase non-specific electrostatic interactions, resulting in tighter binding to the unmethylated lysine peptide (compared to A2B). Ultimately, this highlights the importance of incorporating monomers with less conformational flexibility that can rigidly place functional groups into the binding pocket.
Crooks, Peter A; Kottayil, Santosh G; Al-Ghananeem, Abeer M; Byrn, Stephen R; Butterfield, D Allan
2006-08-15
A series of 3-O-acyl-6-O-sulfate esters of morphine, dihydromorphine, N-methylmorphinium iodide, codeine, and dihydrocodeine were prepared and evaluated for their ability to bind to mu-, delta-, kappa(1)-, kappa(2)-, and kappa(3)-opiate receptors. Several compounds exhibited good affinity for the mu-opiate receptor. Morphine-3-O-propionyl-6-O-sulfate had four times greater affinity than morphine at the mu-opiate receptor and was the most selective compound at this receptor subtype.
Brown, Dean G; Brown, Giles A; Centrella, Paolo; Certel, Kaan; Cooke, Robert M; Cuozzo, John W; Dekker, Niek; Dumelin, Christoph E; Ferguson, Andrew; Fiez-Vandal, Cédric; Geschwindner, Stefan; Guié, Marie-Aude; Habeshian, Sevan; Keefe, Anthony D; Schlenker, Oliver; Sigel, Eric A; Snijder, Arjan; Soutter, Holly T; Sundström, Linda; Troast, Dawn M; Wiggin, Giselle; Zhang, Jing; Zhang, Ying; Clark, Matthew A
2018-06-01
The discovery of ligands via affinity-mediated selection of DNA-encoded chemical libraries is driven by the quality and concentration of the protein target. G-protein-coupled receptors (GPCRs) and other membrane-bound targets can be difficult to isolate in their functional state and at high concentrations, and therefore have been challenging for affinity-mediated selection. Here, we report a successful selection campaign against protease-activated receptor 2 (PAR2). Using a thermo-stabilized mutant of PAR2, we conducted affinity selection using our >100-billion-compound DNA-encoded library. We observed a number of putative ligands enriched upon selection, and subsequent cellular profiling revealed these ligands to comprise both agonists and antagonists. The agonist series shared structural similarity with known agonists. The antagonists were shown to bind in a novel allosteric binding site on the PAR2 protein. This report serves to demonstrate that cell-free affinity selection against GPCRs can be achieved with mutant stabilized protein targets.
Molecular recognition at adenine nucleotide (P2) receptors in platelets.
Jacobson, Kenneth A; Mamedova, Liaman; Joshi, Bhalchandra V; Besada, Pedro; Costanzi, Stefano
2005-04-01
Transmembrane signaling through P2Y receptors for extracellular nucleotides controls a diverse array of cellular processes, including thrombosis. Selective agonists and antagonists of the two P2Y receptors present on the platelet surface-the G (q)-coupled P2Y (1) subtype and the G (i)-coupled P2Y (12) subtype-are now known. High-affinity antagonists of each have been developed from nucleotide structures. The (N)-methanocarba bisphosphate derivatives MRS2279 and MRS2500 are potent and selective P2Y (1) receptor antagonists. The carbocyclic nucleoside AZD6140 is an uncharged, orally active P2Y (12) receptor antagonist of nM affinity. Another nucleotide receptor on the platelet surface, the P2X (1) receptor, the activation of which may also be proaggregatory, especially under conditions of high shear stress, has high-affinity ligands, although high selectivity has not yet been achieved. Although alpha,beta-methylene-adenosine triphosphate (ATP) is the classic agonist for the P2X (1) receptor, where it causes rapid desensitization, the agonist BzATP is among the most potent in activating this subtype. The aromatic sulfonates NF279 and NF449 are potent antagonists of the P2X (1) receptor. The structures of the two platelet P2Y receptors have been modeled, based on a rhodopsin template, to explain the basis for nucleotide recognition within the putative transmembrane binding sites. The P2Y (1) receptor model, especially, has been exploited in the design and optimization of antagonists targeted to interact selectively with that subtype.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lever, J.R.; Scheffel, U.A.; Stathis, M.
1990-01-01
Apparent affinities (K{sub i}) of (E)- and (Z)-N-(iodoallyl)spiperone ((E)- and (Z)- NIASP) for dopamine D{sub 2} and serotonin 5-HT{sub 2} receptors were determined in competition binding assays. (Z)-NIASP (K{sub i} 0.35 nM, D{sub 2}; K{sub i} 1.75 nM, 5-HT{sub 2}) proved slightly more potent and selective for D{sub 2} sites in vitro than (E)-NIASP (K{sub i} 0.72 nM, D{sub 2}; K{sub i} 1.14 nM, 5-HT{sub 2}). In vivo, radioiodinated (E)- and (Z)-({sup 125}I)-NIASP showed regional distributions in mouse brain which are consonant with prolonged binding to dopamine D{sub 2} receptors accompanied by a minor serotonergic component of shorter duration. Stereoselective,more » dose-dependent blockade of (E)-({sup 125}I)-NIASP uptake was found for drugs binding to dopamine D{sub 2} sites, while drugs selective for serotonin 5-HT{sub 2}, {alpha}{sub 1}-adrenergic and dopamine D{sub 1} receptors did not inhibit radioligand binding 2 hr postinjection. Specific binding in striatal tissue was essentially irreversible over the time course of the study, and (E)-({sup 125}I)-NIASP gave a striatal to cerebellar tissue radioactivity concentration of 16.9 to 1 at 6 hr postinjection. Thus, (E)-({sup 125}I)-NIASP binds with high selectivity and specificity to dopamine D{sub 2} sites in vivo.« less
Mechanisms of Host Receptor Adaptation by Severe Acute Respiratory Syndrome Coronavirus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Kailang; Peng, Guiqing; Wilken, Matthew
The severe acute respiratory syndrome coronavirus (SARS-CoV) from palm civets has twice evolved the capacity to infect humans by gaining binding affinity for human receptor angiotensin-converting enzyme 2 (ACE2). Numerous mutations have been identified in the receptor-binding domain (RBD) of different SARS-CoV strains isolated from humans or civets. Why these mutations were naturally selected or how SARS-CoV evolved to adapt to different host receptors has been poorly understood, presenting evolutionary and epidemic conundrums. In this study, we investigated the impact of these mutations on receptor recognition, an important determinant of SARS-CoV infection and pathogenesis. Using a combination of biochemical, functional,more » and crystallographic approaches, we elucidated the molecular and structural mechanisms of each of these naturally selected RBD mutations. These mutations either strengthen favorable interactions or reduce unfavorable interactions with two virus-binding hot spots on ACE2, and by doing so, they enhance viral interactions with either human (hACE2) or civet (cACE2) ACE2. Therefore, these mutations were viral adaptations to either hACE2 or cACE2. To corroborate the above analysis, we designed and characterized two optimized RBDs. The human-optimized RBD contains all of the hACE2-adapted residues (Phe-442, Phe-472, Asn-479, Asp-480, and Thr-487) and possesses exceptionally high affinity for hACE2 but relative low affinity for cACE2. The civet-optimized RBD contains all of the cACE2-adapted residues (Tyr-442, Pro-472, Arg-479, Gly-480, and Thr-487) and possesses exceptionally high affinity for cACE2 and also substantial affinity for hACE2. These results not only illustrate the detailed mechanisms of host receptor adaptation by SARS-CoV but also provide a molecular and structural basis for tracking future SARS-CoV evolution in animals.« less
Mechanisms of Host Receptor Adaptation by Severe Acute Respiratory Syndrome Coronavirus*
Wu, Kailang; Peng, Guiqing; Wilken, Matthew; Geraghty, Robert J.; Li, Fang
2012-01-01
The severe acute respiratory syndrome coronavirus (SARS-CoV) from palm civets has twice evolved the capacity to infect humans by gaining binding affinity for human receptor angiotensin-converting enzyme 2 (ACE2). Numerous mutations have been identified in the receptor-binding domain (RBD) of different SARS-CoV strains isolated from humans or civets. Why these mutations were naturally selected or how SARS-CoV evolved to adapt to different host receptors has been poorly understood, presenting evolutionary and epidemic conundrums. In this study, we investigated the impact of these mutations on receptor recognition, an important determinant of SARS-CoV infection and pathogenesis. Using a combination of biochemical, functional, and crystallographic approaches, we elucidated the molecular and structural mechanisms of each of these naturally selected RBD mutations. These mutations either strengthen favorable interactions or reduce unfavorable interactions with two virus-binding hot spots on ACE2, and by doing so, they enhance viral interactions with either human (hACE2) or civet (cACE2) ACE2. Therefore, these mutations were viral adaptations to either hACE2 or cACE2. To corroborate the above analysis, we designed and characterized two optimized RBDs. The human-optimized RBD contains all of the hACE2-adapted residues (Phe-442, Phe-472, Asn-479, Asp-480, and Thr-487) and possesses exceptionally high affinity for hACE2 but relative low affinity for cACE2. The civet-optimized RBD contains all of the cACE2-adapted residues (Tyr-442, Pro-472, Arg-479, Gly-480, and Thr-487) and possesses exceptionally high affinity for cACE2 and also substantial affinity for hACE2. These results not only illustrate the detailed mechanisms of host receptor adaptation by SARS-CoV but also provide a molecular and structural basis for tracking future SARS-CoV evolution in animals. PMID:22291007
Gronert, K; Martinsson-Niskanen, T; Ravasi, S; Chiang, N; Serhan, C N
2001-01-01
Aspirin-triggered lipoxin A(4) (ATL, 15-epi-LXA(4)) and leukotriene D(4) (LTD(4)) possess opposing vascular actions mediated via receptors distinct from the LXA(4) receptor (ALX) that is involved in leukocyte trafficking. Here, we identified these receptors by nucleotide sequencing and demonstrate that LTD(4) receptor (CysLT(1)) is induced in human vascular endothelia by interleukin-1beta. Recombinant CysLT(1) receptor gave stereospecific binding with both [(3)H]-LTD(4) and a novel labeled mimetic of ATL ([(3)H]-ATLa) that was displaced with LTD(4) and ATLa ( approximately IC(50) 0.2 to 0.9 nmol/L), but not with a bioinactive ATL isomer. The clinically used CysLT(1) receptor antagonist, Singulair, showed a lower rank order for competition with [(3)H]-ATLa (IC(50) approximately 8.3 nmol/L). In contrast, LTD(4) was an ineffective competitive ligand for recombinant ALX receptor with [(3)H]-ATLa, and ATLa did not compete for [(3)H]-LTB(4) binding with recombinant LTB(4) receptor. Endogenous murine CysLT(1) receptors also gave specific [(3)H]-ATLa binding that was displaced with essentially equal affinity by LTD(4) or ATLa. Systemic ATLa proved to be a potent inhibitor (>50%) of CysLT(1)-mediated vascular leakage in murine skin (200 microg/kg) in addition to its ability to block polymorphonuclear leukocyte recruitment to dorsal air pouch (4 microg/kg). These results indicate that ATL and LTD(4) bind and compete with equal affinity at CysLT(1), providing a molecular basis for aspirin-triggered LXs serving as a local damper of both vascular CysLT(1) signals as well as ALX receptor-regulated polymorphonuclear leukocyte traffic.
Europium-labeled epidermal growth factor and neurotensin: novel probes for receptor-binding studies.
Mazor, Ohad; Hillairet de Boisferon, Marc; Lombet, Alain; Gruaz-Guyon, Anne; Gayer, Batya; Skrzydelsky, Delphine; Kohen, Fortune; Forgez, Patricia; Scherz, Avigdor; Rostene, William; Salomon, Yoram
2002-02-01
We investigated the possibility of labeling two biologically active peptides, epidermal growth factor (EGF) and neurotensin (NT), with europium (Eu)-diethylenetriaminepentaacetic acid. More specifically, we tested them as probes in studying receptor binding using time-resolved fluorescence of Eu3+. The relatively simple synthesis yields ligands with acceptable binding characteristics similar to isotopically labeled derivatives. The binding affinity (Kd) of labeled Eu-EGF to human A431 epidermal carcinoid cells was 3.6 +/- 1.2 nM, similar to the reported Kd values of EGF, whereas the Kd of Eu-NT to human HT29 colon cancer cells (7.4 +/- 0.5 nM) or to Chinese hamster ovary (CHO) cells transfected with the high-affinity NT receptor (CHO-NT1) were about 10-fold higher than the Kd values of NT. The bioactivity of the Eu-labeled EGF as determined by stimulation of cultured murine D1 hematopoietic cell proliferation was nearly the same as that obtained with native EGF. The maximal stimulation of Ca2+ influx with NT and Eu-NT in CHO-NT1 cells was similar, but the respective K0.5 values were 20 pM and 1 nM, corresponding to differences in the binding affinities previously described. The results of these studies indicate that Eu labeling of peptide hormones and growth factor molecules ranging from 10(3) to 10(5) Da can be conveniently accomplished. Importantly, the Eu-labeled products are stable for approximately 2 years and are completely safe for laboratory use compared to the biohazardous radioligands. Thus, Eu-labeled peptides present an attractive alternative for commonly used radiolabeled ligands in biological studies in general and in receptor assays in particular.
Barlow, R. B.; Ramtoola, S.
1980-01-01
1 From measurements of the affinity constants of hydratropyltropine and its methiodide for muscarine-sensitive acetylcholine receptors in the guinea-pig ileum, the increment in log K for the hydroxyl group in atropine is 2.06 and in the methiodide it is 2.16. These effects are slightly bigger than any so far recorded with these receptors. 2 The estimate of the increment in apparent molal volume for the hydroxyl group is 1.1 cm3/mol in atropine and 1.0 cm3/mol in the methobromide. 3 The large effect of the group on affinity may be linked to its small apparent size in water as suggested in the previous paper. PMID:7470742
Receptors for bradykinin and related kinins: a critical analysis.
Regoli, D; Jukic, D; Gobeil, F; Rhaleb, N E
1993-08-01
Kinins exert a variety of biological actions and have been implicated in the pathogenesis of inflammation, pain, asthma, and other diseases. Kinins act through specific receptors that are widespread and belong to two major categories, B1 and B2. B2 has been cloned and shown to be of the rhodopsin type, consisting of seven hydrophobic membrane domains connected by extracellular and intracellular loops. Recent pharmacological findings from various laboratories suggest the existence of new receptor types, which have been named B3, B4, and B5. These findings are analysed critically, especially with respect to the criteria that have been used for affirming the existence of new receptor entities. The analysis is restricted to data obtained in isolated organs, almost exclusively smooth muscle preparations. Criteria for receptor characterization and classification are the order of potency of agonists and the apparent affinities of antagonists. The analysis reveals that receptors for bradykinin and related kinins are of two types, B1 and B2. B1 mediates the rapid acute response (smooth muscle contraction or relaxation) as well as some effects occurring more slowly (e.g., collagen synthesis). B1 receptor functions have been shown to be modulated by interleukins. B2 receptors are responsible for most of the kinins' biological effects, including arterial vasodilatation, plasma extravasation, venoconstriction, activation of sensory fibers (e.g., fibers for pain), and stimulation of the release of prostaglandins, endothelium-dependent relaxing factor (from endothelia), noradrenaline (from nerve terminals and adrenals), and other endogenous agents. The pharmacological characteristics of the receptor sites (B2) mediating this array of biological effects show differences between species, and two B2 receptor subtypes are proposed, namely B2A (rabbit, dog, and possibly man) and B2B (guinea pig, hamster, rat). B2A and B2B receptor subtypes have been characterized by using fairly selective agonists and competitive antagonists (e.g., D-Arg[Hyp3, D-Phe7,Leu8]BK). Noncompetitive antagonists (non-equilibrium), such as HOE 140, do not discriminate between B2A and B2B subtypes. Species differences cannot account for the multiplicity of receptors that have been proposed for rat vas deferens, pre- and post-junctional sites, and rat uterus, guinea pig ileum, and rat blood pressure. The existence of hypothetical new receptor sites was based on data obtained with partial agonists and have not been substantiated by data obtained with potent pure antagonists. The B3 receptor, proposed to explain the unusual behaviour of the guinea pig tracheal response to kinins, has to be carefully reconsidered after the finding that HOE 140 acts as a pure antagonist on this tissue and shows a fairly high affinity for the tracheal site.(ABSTRACT TRUNCATED AT 400 WORDS)
1997-07-11
REPORT DOCUMENTATION PAGE Form ApprovedOMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour...DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 words) 14. SUBJECT TERMS 15. NUMBER OF PAGES 50 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY...CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT OF REPORT OF THIS PAGE OF ABSTRACT Standard Form 298(Rev. 2-89) (EG) Prescribed byANSI
Martina, Marzia; Turcotte, Marie-Eve B; Halman, Samantha; Bergeron, Richard
2007-01-01
The sigma receptor (σR), once considered a subtype of the opioid receptor, is now described as a distinct pharmacological entity. Modulation of N-methyl-d-aspartate receptor (NMDAR) functions by σR-1 ligands is well documented; however, its mechanism is not fully understood. Using patch-clamp whole-cell recordings in CA1 pyramidal cells of rat hippocampus and (+)pentazocine, a high-affinity σR-1 agonist, we found that σR-1 activation potentiates NMDAR responses and long-term potentiation (LTP) by preventing a small conductance Ca2+-activated K+ current (SK channels), known to shunt NMDAR responses, to open. Therefore, the block of SK channels and the resulting increased Ca2+ influx through the NMDAR enhances NMDAR responses and LTP. These results emphasize the importance of the σR-1 as postsynaptic regulator of synaptic transmission. PMID:17068104
Martina, Marzia; Turcotte, Marie-Eve B; Halman, Samantha; Bergeron, Richard
2007-01-01
The sigma receptor (sigmaR), once considered a subtype of the opioid receptor, is now described as a distinct pharmacological entity. Modulation of N-methyl-D-aspartate receptor (NMDAR) functions by sigmaR-1 ligands is well documented; however, its mechanism is not fully understood. Using patch-clamp whole-cell recordings in CA1 pyramidal cells of rat hippocampus and (+)pentazocine, a high-affinity sigmaR-1 agonist, we found that sigmaR-1 activation potentiates NMDAR responses and long-term potentiation (LTP) by preventing a small conductance Ca2+-activated K+ current (SK channels), known to shunt NMDAR responses, to open. Therefore, the block of SK channels and the resulting increased Ca2+ influx through the NMDAR enhances NMDAR responses and LTP. These results emphasize the importance of the sigmaR-1 as postsynaptic regulator of synaptic transmission.
Lee, Jung-Rok; Bechstein, Daniel J. B.; Ooi, Chin Chun; Patel, Ashka; Gaster, Richard S.; Ng, Elaine; Gonzalez, Lino C.; Wang, Shan X.
2016-01-01
Substantial efforts have been made to understand the interactions between immune checkpoint receptors and their ligands targeted in immunotherapies against cancer. To carefully characterize the complete network of interactions involved and the binding affinities between their extracellular domains, an improved kinetic assay is needed to overcome limitations with surface plasmon resonance (SPR). Here, we present a magneto-nanosensor platform integrated with a microfluidic chip that allows measurement of dissociation constants in the micromolar-range. High-density conjugation of magnetic nanoparticles with prey proteins allows multivalent receptor interactions with sensor-immobilized bait proteins, more closely mimicking natural-receptor clustering on cells. The platform has advantages over traditional SPR in terms of insensitivity of signal responses to pH and salinity, less consumption of proteins and better sensitivities. Using this platform, we characterized the binding affinities of the PD-1—PD-L1/PD-L2 co-inhibitory receptor system, and discovered an unexpected interaction between the two known PD-1 ligands, PD-L1 and PD-L2. PMID:27447090
Brosnan, Robert J; Pham, Trung L
2011-03-01
Isoflurane and carbon dioxide (CO(2)) negatively modulate N-methyl-d-aspartate (NMDA) receptors, but via different mechanisms. Isoflurane is a competitive antagonist at the NMDA receptor glycine binding site, whereas CO(2) inhibits NMDA receptor current through extracellular acidification. Isoflurane and CO(2) exhibit additive minimum alveolar concentration effects in rats, but we hypothesized that they would not additively inhibit NMDA receptor currents in vitro because they act at different molecular sites. NMDA receptors were expressed in frog oocytes and studied using 2-electrode voltage clamp techniques. A glycine concentration response for NMDA was measured in the presence and absence of CO(2). Concentration-response curves for isoflurane, H(+), CO(2), and ketamine as a function of NMDA inhibition were measured, and a Hill equation was used to calculate the EC(50) for each compound. Binary drug combinations containing ½ EC(50) were additive if NMDA current inhibition was not statistically different from 50%. The ½ EC(50) binary drug combinations decreased the percentage baseline NMDA receptor current as follows (mean ± SD, n = 5 to 6 oocytes each): CO(2)+ H(+) (51% ± 5%), CO(2 )+ isoflurane (54% ± 5%), H(+) + isoflurane (51% ± 3%), CO(2)+ ketamine (67% ± 8%), and H(+) + ketamine (64% ± 2%). In contrast to our hypothesis, NMDA receptor inhibition by CO(2) and isoflurane is additive. Possibly, CO(2) acidification modulates a pH-sensitive loop on the NMDA receptor that in turn alters glycine binding affinity on the GluN1 subunit. However, ketamine plus either CO(2) or H(+) synergistically inhibits NMDA receptor currents. Drugs acting via different mechanisms can thus exhibit additive or synergistic receptor effects. Additivity may not robustly indicate commonality between molecular anesthetic mechanisms.
Vilums, Maris; Zweemer, Annelien J M; Yu, Zhiyi; de Vries, Henk; Hillger, Julia M; Wapenaar, Hannah; Bollen, Ilse A E; Barmare, Farhana; Gross, Raymond; Clemens, Jeremy; Krenitsky, Paul; Brussee, Johannes; Stamos, Dean; Saunders, John; Heitman, Laura H; Ijzerman, Adriaan P
2013-10-10
Preclinical models of inflammatory diseases (e.g., neuropathic pain, rheumatoid arthritis, and multiple sclerosis) have pointed to a critical role of the chemokine receptor 2 (CCR2) and chemokine ligand 2 (CCL2). However, one of the biggest problems of high-affinity inhibitors of CCR2 is their lack of efficacy in clinical trials. We report a new approach for the design of high-affinity and long-residence-time CCR2 antagonists. We developed a new competition association assay for CCR2, which allows us to investigate the relation of the structure of the ligand and its receptor residence time [i.e., structure-kinetic relationship (SKR)] next to a traditional structure-affinity relationship (SAR). By applying combined knowledge of SAR and SKR, we were able to re-evaluate the hit-to-lead process of cyclopentylamines as CCR2 antagonists. Affinity-based optimization yielded compound 1 with good binding (Ki = 6.8 nM) but very short residence time (2.4 min). However, when the optimization was also based on residence time, the hit-to-lead process yielded compound 22a, a new high-affinity CCR2 antagonist (3.6 nM), with a residence time of 135 min.
Novel pyrrolinones as N-methyl-D-aspartate receptor antagonists.
Poschenrieder, Hermann; Stachel, Hans-Dietrich; Höfner, Georg; Mayer, Peter
2005-04-01
A series of oximes, deriving from 2-arylidene-pyrroline-3,4-diones (7, 8, 22, 23) has been prepared. The presence of tautomers in their solutions has been established by spectroscopic means. The compounds reacted with diazomethane chiefly by N-methylation forming nitrones (10, 11). The analogously prepared 2-arylidene-4-nitropyrrolin-3-ones (12, 13, 24, 25), formally derived from nitrotetramic acids, yielded nitronic acid esters (14, 15, 26) upon reaction with diazomethane. The structures were elucidated by spectral evidence and-in the case of compounds 10 and 20b-by X-ray diffraction analysis. The binding affinity of some of the new compounds toward the N-methyl-d-aspartate (NMDA) (glycine site) receptor has been measured thus providing the basis for further structure-activity relationship studies. Oxime 8b showed the highest binding potency (Ki= 9.2 microM).
Simtong, Piyapong; Romphruk, Amornrat V; Traum, Annalena; Burg-Roderfeld, Monika; Bein, Gregor; Jakubowski, Konstantin; Dominik, Andreas; Theisen, Michael; Kana, Ikhlaq Hussain; Sachs, Ulrich J; Santoso, Sentot
2018-05-21
The Fcγ receptor IIIb (FcγRIIIb) is a low-affinity receptor of IgG and is essential in neutrophil mediated effector functions. Different allelic forms of FcγRIIIb carrying human neutrophil antigen (HNA-1a, -1b, -1c and -1d) have been identified. Here, we have generated stable transfected HEK293 cell lines expressing HNA-1aa, -1bb, and -1bc. Of these, cells expressing HNA-1bc interacted significantly stronger (2.277 versus 0.743) with human IgG than cells expressing the HNA-1aa or -1bb alloforms. The higher affinity of IgG towards the HNA-1c alloform was confirmed using neutrophils derived from German blood donors. Neutrophils from HNA-1abc phenotyped individuals bound IgG significantly stronger (1.825 versus 0.903) than neutrophils from HNA-1ab typed individuals. These findings were confirmed by the SPR analysis demonstrating that recombinant HNA-1bc had a higher affinity (KD 7.24 x 10 -6 M) than recombinant HNA-1bb (KD 1.15 x 10 -5 M) against normal IgG. Finally, we demonstrated that Plasmodium falciparum merozoites opsonized with human IgG affinity purified against P. falciparum Glutamate rich protein (GLURP) enhanced stronger ROS emission in neutrophils obtained from HNA-1abc donors compared to neutrophils from HNA-1ab donors. Collectively, these results indicate that the amino acid substitution Ala 78 Asp resulting in the HNA-1c allotype leads to higher affinity towards human IgG, enhancement of neutrophil activation and possibly effective clearance of malaria by intracellular ROS. Copyright © 2018 American Society for Microbiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajasekaran, Maheswari; Brents, Lisa K.; Franks, Lirit N.
K2 or Spice is an emerging drug of abuse that contains synthetic cannabinoids, including JWH-018 and JWH-073. Recent reports indicate that monohydroxylated metabolites of JWH-018 and JWH-073 retain high affinity and activity at cannabinoid type-1 receptors (CB{sub 1}Rs), potentially contributing to the enhanced toxicity of K2 compared to marijuana. Since the parent compounds also bind to cannabinoid type-2 receptors (CB{sub 2}Rs), this study investigated the affinity and intrinsic activity of JWH-018, JWH-073 and several monohydroxylated metabolites at human CB{sub 2}Rs (hCB{sub 2}Rs). The affinity of cannabinoids for hCB{sub 2}Rs was determined by competition binding studies employing CHO-hCB{sub 2} membranes. Intrinsicmore » activity of compounds was assessed by G-protein activation and adenylyl cyclase (AC)-inhibition in CHO-hCB{sub 2} cells. JWH-073, JWH-018 and several of their human metabolites exhibit nanomolar affinity and act as potent agonists at hCB{sub 2}Rs. Furthermore, a major omega hydroxyl metabolite of JWH-073 (JWH-073-M5) binds to CB{sub 2}Rs with 10-fold less affinity than the parent molecule, but unexpectedly, is equipotent in regulating AC-activity when compared to the parent molecule. Finally, when compared to CP-55,940 and Δ{sup 9}-tetrahydrocannabinol (Δ{sup 9}-THC), JWH-018, JWH-018-M5 and JWH-073-M5 require significantly less CB{sub 2}R occupancy to produce similar levels of AC-inhibition, indicating that these compounds may more efficiently couple CB{sub 2}Rs to AC than the well characterized cannabinoid agonists examined. These results indicate that JWH-018, JWH-073 and several major human metabolites of these compounds exhibit high affinity and demonstrate distinctive signaling properties at CB{sub 2}Rs. Therefore, future studies examining pharmacological and toxicological properties of synthetic cannabinoids present in K2 products should consider potential actions of these drugs at both CB{sub 1} and CB{sub 2}Rs. - Highlights: • JWH-018 and JWH-073 are synthetic cannabinoids present in abused K2 products. • JWH-018, JWH-073 and their human metabolites have high affinity for CB{sub 2} receptors. • JWH-018, JWH-073 and their human metabolites are potent agonists at CB{sub 2} receptors. • JWH-018, JWH-073 and their metabolites exhibit distinct CB{sub 2} signaling properties. • Studies of JWH-018 and JWH-073 should consider actions at CB{sub 1} and CB{sub 2} receptors.« less
Design of chimeric peptide ligands to galanin receptors and substance P receptors.
Langel, U; Land, T; Bartfai, T
1992-06-01
Several chimeric peptides were synthesized and found to be high-affinity ligands for both galanin and substance P receptors in membranes from the rat hypothalamus. The peptide galantide, composed of the N-terminal part of galanin and C-terminal part of substance P (SP), galanin-(1-12)-Pro-SP-(5-11) amide, which is the first galanin antagonist to be reported, recognizes two classes of galanin binding sites (KD(1) less than 0.1 nM and KD(2) approximately 6 nM) in the rat hypothalamus, while it appears to bind to a single population of SP receptors (KD approximately 40 nM). The chimeric peptide has higher affinity towards galanin receptors than the endogenous peptide galanin-(1-29) (KD approximately 1 nM) or its N-terminal fragment galanin-(1-13) (KD approximately 1 microM), which constitutes the N-terminus of the chimeric peptide. Galantide has also higher affinity for the SP receptors than the C-terminal SP fragment-(4-11) amide (KD = 0.4 microM), which constitutes its C-terminal portion. Substitution of amino acid residues, which is of importance for recognition of galanin by galanin receptors, such as [Trp2], in the galanin portion of the chimeric peptide or substitution of ([Phe7] or [Met11]-amide) in the SP portion of chimeric peptide both cause significant loss in affinity of the analogs of galantide for both the galanin- and the SP-receptors. These results suggest that the high affinity of the chimeric peptide, galantide, may in part be accounted for by simultaneous recognition/binding to both receptors.(ABSTRACT TRUNCATED AT 250 WORDS)
Pinna, G A; Murineddu, G; Curzu, M M; Villa, S; Vianello, P; Borea, P A; Gessi, S; Toma, L; Colombo, D; Cignarella, G
2000-08-01
A series of N-3-arylpropenyl-N-9-propionyl-3,9-diazabicyclo[3.3.1]nonanes (1a-g) and of reverted N-3-propionyl-N-9-arylpropenyl isomers (2a-g), as homologues of the previously reported analgesic 3,8-diazabicyclo[3.2.1]octanes (I-II), were synthesized and evaluated for the binding affinity towards opioid receptor subtypes mu, delta and kappa. Compounds 1a-g and 2a-g exhibited a strong selective mu-affinity with Ki values in the nanomolar range, which favourably compared with those of I and II. In addition, contrary to the trend observed for DBO-I, II, the mu-affinity of series 2 is markedly higher than that of the isomeric series 1. This aspect was discussed on the basis of the conformational studies performed on DBN which allowed hypotheses on the mode of interaction of these compounds with the mu receptor.
Gopinath, Subash C B; Kumar, Penmetcha K R
2013-11-01
Influenza virus hemagglutinin (HA) mediates both receptor (glycan) binding and membrane fusion for cell entry and has been the basis for typing influenza A viruses. In this study we have selected RNA aptamers (D-12 and D-26) that specifically target the HA protein of the recent pandemic influenza virus pdmH1N1 (A/California/07/2009). Among the selected aptamers the D-26 aptamer showed higher affinity for the HA of pdmH1N1 and was able to distinguish HA derived from other sub-types of influenza A viruses. The affinity of the D-26 aptamer was further improved upon incorporation of 2'-fluoropyrimidines to a level of 67 fM. Furthermore, the high affinity D-12 and D-26 aptamers were tested for their ability to interfere with HA-glycan interactions using a chicken red blood cell (RBC) agglutination assay. At a concentration of 200 nM the D-26 aptamer completely abolished the agglutination of RBCs, whereas D-12 only did so at 400 nM. These studies suggest that the selected aptamer D-26 not only has a higher affinity and specificity for the HA of pdmH1N1 but also has a better ability to efficiently interfere with HA-glycan interactions compared with the D-12 aptamer. The D-26 aptamer warrants further study regarding its application in developing topical virucidal products against the pdmH1N1 virus and also in surveillance of the pdmH1N1 influenza virus. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Layton, Meredith J.; Cross, Bronwyn A.; Metcalf, Donald; Ward, Larry D.; Simpson, Richard J.; Nicola, Nicos A.
1992-09-01
A protein that specifically binds leukemia inhibitory factor (LIF) has been isolated from normal mouse serum by using four successive fractionation steps: chromatography on a LIF affinity matrix, anion-exchange chromatography, size-exclusion chromatography, and preparative native gel electrophoresis. The purified LIF-binding protein (LBP) is a glycoprotein with an apparent molecular mass of 90 kDa that specifically binds 125I-labeled murine LIF with an affinity comparable to that of the low-affinity cellular LIF receptor (K_d = 600 pM). N-terminal sequencing has identified this protein as a soluble truncated form of the α chain of the cellular LIF receptor. LBP is present in normal mouse serum at high levels (1 μg/ml) and these levels are elevated in pregnant mice and reduced in neonatal mice. Since normal serum concentrations of LBP can block the biological actions of LIF in culture, LBP may serve as an inhibitor of the systemic effects of locally produced LIF.
Leong, Max K.; Syu, Ren-Guei; Ding, Yi-Lung; Weng, Ching-Feng
2017-01-01
The glycine-binding site of the N-methyl-D-aspartate receptor (NMDAR) subunit GluN1 is a potential pharmacological target for neurodegenerative disorders. A novel combinatorial ensemble docking scheme using ligand and protein conformation ensembles and customized support vector machine (SVM)-based models to select the docked pose and to predict the docking score was generated for predicting the NMDAR GluN1-ligand binding affinity. The predicted root mean square deviation (RMSD) values in pose by SVM-Pose models were found to be in good agreement with the observed values (n = 30, r2 = 0.928–0.988, = 0.894–0.954, RMSE = 0.002–0.412, s = 0.001–0.214), and the predicted pKi values by SVM-Score were found to be in good agreement with the observed values for the training samples (n = 24, r2 = 0.967, = 0.899, RMSE = 0.295, s = 0.170) and test samples (n = 13, q2 = 0.894, RMSE = 0.437, s = 0.202). When subjected to various statistical validations, the developed SVM-Pose and SVM-Score models consistently met the most stringent criteria. A mock test asserted the predictivity of this novel docking scheme. Collectively, this accurate novel combinatorial ensemble docking scheme can be used to predict the NMDAR GluN1-ligand binding affinity for facilitating drug discovery. PMID:28059133
Leong, Max K; Syu, Ren-Guei; Ding, Yi-Lung; Weng, Ching-Feng
2017-01-06
The glycine-binding site of the N-methyl-D-aspartate receptor (NMDAR) subunit GluN1 is a potential pharmacological target for neurodegenerative disorders. A novel combinatorial ensemble docking scheme using ligand and protein conformation ensembles and customized support vector machine (SVM)-based models to select the docked pose and to predict the docking score was generated for predicting the NMDAR GluN1-ligand binding affinity. The predicted root mean square deviation (RMSD) values in pose by SVM-Pose models were found to be in good agreement with the observed values (n = 30, r 2 = 0.928-0.988, = 0.894-0.954, RMSE = 0.002-0.412, s = 0.001-0.214), and the predicted pK i values by SVM-Score were found to be in good agreement with the observed values for the training samples (n = 24, r 2 = 0.967, = 0.899, RMSE = 0.295, s = 0.170) and test samples (n = 13, q 2 = 0.894, RMSE = 0.437, s = 0.202). When subjected to various statistical validations, the developed SVM-Pose and SVM-Score models consistently met the most stringent criteria. A mock test asserted the predictivity of this novel docking scheme. Collectively, this accurate novel combinatorial ensemble docking scheme can be used to predict the NMDAR GluN1-ligand binding affinity for facilitating drug discovery.
NASA Astrophysics Data System (ADS)
Leong, Max K.; Syu, Ren-Guei; Ding, Yi-Lung; Weng, Ching-Feng
2017-01-01
The glycine-binding site of the N-methyl-D-aspartate receptor (NMDAR) subunit GluN1 is a potential pharmacological target for neurodegenerative disorders. A novel combinatorial ensemble docking scheme using ligand and protein conformation ensembles and customized support vector machine (SVM)-based models to select the docked pose and to predict the docking score was generated for predicting the NMDAR GluN1-ligand binding affinity. The predicted root mean square deviation (RMSD) values in pose by SVM-Pose models were found to be in good agreement with the observed values (n = 30, r2 = 0.928-0.988, = 0.894-0.954, RMSE = 0.002-0.412, s = 0.001-0.214), and the predicted pKi values by SVM-Score were found to be in good agreement with the observed values for the training samples (n = 24, r2 = 0.967, = 0.899, RMSE = 0.295, s = 0.170) and test samples (n = 13, q2 = 0.894, RMSE = 0.437, s = 0.202). When subjected to various statistical validations, the developed SVM-Pose and SVM-Score models consistently met the most stringent criteria. A mock test asserted the predictivity of this novel docking scheme. Collectively, this accurate novel combinatorial ensemble docking scheme can be used to predict the NMDAR GluN1-ligand binding affinity for facilitating drug discovery.
Vinayek, R; Patto, R J; Menozzi, D; Gregory, J; Mrozinski, J E; Jensen, R T; Gardner, J D
1993-03-10
Based on the effects of monensin on binding of 125I-CCK-8 and its lack of effect on CCK-8-stimulated amylase secretion we previously proposed that pancreatic acinar cells possess three classes of CCK receptors: high-affinity receptors, low-affinity receptors and very low-affinity receptors [1]. In the present study we treated pancreatic acini with carbachol to induce a complete loss of high-affinity CCK receptors and then examined the action of CCK-8 on inositol trisphosphate IP3(1,4,5), cytosolic calcium and amylase secretion in an effort to confirm and extend our previous hypothesis. We found that first incubating pancreatic acini with 10 mM carbachol decreased binding of 125I-CCK-8 measured during a second incubation by causing a complete loss of high-affinity CCK receptors with no change in the low-affinity CCK receptors. Carbachol treatment of acini, however, did not alter the action of CCK-8 on IP3(1,4,5), cytosolic calcium or amylase secretion or the action of CCK-JMV-180 on amylase secretion or on the supramaximal inhibition of amylase secretion caused by CCK-8. The present findings support our previous hypothesis that pancreatic acinar cells possess three classes of CCK receptors and suggest that high-affinity CCK receptors do not mediate the action of CCK-8 on enzyme secretion, that low-affinity CCK receptors may mediate the action of CCK on cytosolic calcium that does not involve IP3(1,4,5) and produce the upstroke of the dose-response curve for CCK-8-stimulated amylase secretion and that very low-affinity CCK receptors mediate the actions of CCK on IP3(1,4,5) and cytosolic calcium and produce the downstroke of the dose-response curve for CCK-8-stimulated amylase secretion. Moreover, CCK-JMV-180 is a full agonist for stimulating amylase secretion by acting at low-affinity CCK receptors and is an antagonist at very low-affinity CCK receptors.
Liu, Yue; Canal, Clinton E; Cordova-Sintjago, Tania C; Zhu, Wanying; Booth, Raymond G
2017-01-18
While exploring the structure-activity relationship of 4-phenyl-2-dimethylaminotetralins (PATs) at serotonin 5-HT 2C receptors, we discovered that relatively minor modification of PAT chemistry impacts function at 5-HT 2C receptors. In HEK293 cells expressing human 5-HT 2C-INI receptors, for example, (-)-trans-3'-Br-PAT and (-)-trans-3'-Cl-PAT are agonists regarding Gα q -inositol phosphate signaling, whereas (-)-trans-3'-CF 3 -PAT is an inverse agonist. To investigate the ligand-receptor interactions that govern this change in function, we performed site-directed mutagenesis of 14 amino acids of the 5-HT 2C receptor based on molecular modeling and reported G protein-coupled receptor crystal structures, followed by molecular pharmacology studies. We found that S3.36, T3.37, and F5.47 in the orthosteric binding pocket are critical for affinity (K i ) of all PATs tested, we also found that F6.44, M6.47, C7.45, and S7.46 are primarily involved in regulating EC/IC 50 functional potencies of PATs. We discovered that when residue S5.43, N6.55, or both are mutated to alanine, (-)-trans-3'-CF 3 -PAT switches from inverse agonist to agonist function, and when N6.55 is mutated to leucine, (-)-trans-3'-Br-PAT switches from agonist to inverse agonist function. Notably, most point-mutations that affected PAT pharmacology did not significantly alter affinity (K D ) of the antagonist radioligand [ 3 H]mesulergine, but every mutation tested negatively impacted serotonin binding. Also, amino acid mutations differentially affected the pharmacology of other commercially available 5-HT 2C ligands tested. Collectively, the data show that functional outcomes shared by different ligands are mediated by different amino acids and that some 5-HT 2C receptor residues important for pharmacology of one ligand are not necessarily important for another ligand.
Structural basis of ligand recognition in 5-HT3 receptors
Kesters, Divya; Thompson, Andrew J; Brams, Marijke; van Elk, René; Spurny, Radovan; Geitmann, Matthis; Villalgordo, Jose M; Guskov, Albert; Helena Danielson, U; Lummis, Sarah C R; Smit, August B; Ulens, Chris
2013-01-01
The 5-HT3 receptor is a pentameric serotonin-gated ion channel, which mediates rapid excitatory neurotransmission and is the target of a therapeutically important class of anti-emetic drugs, such as granisetron. We report crystal structures of a binding protein engineered to recognize the agonist serotonin and the antagonist granisetron with affinities comparable to the 5-HT3 receptor. In the serotonin-bound structure, we observe hydrophilic interactions with loop E-binding site residues, which might enable transitions to channel opening. In the granisetron-bound structure, we observe a critical cation–π interaction between the indazole moiety of the ligand and a cationic centre in loop D, which is uniquely present in the 5-HT3 receptor. We use a series of chemically tuned granisetron analogues to demonstrate the energetic contribution of this electrostatic interaction to high-affinity ligand binding in the human 5-HT3 receptor. Our study offers the first structural perspective on recognition of serotonin and antagonism by anti-emetics in the 5-HT3 receptor. PMID:23196367
Hur, Byung-ung; Yoon, Jae-bong; Liu, Li-Kun; Cha, Sang-hoon
2010-11-30
Specific antibodies that possess a subnanomolar affinity are very difficult to obtain from human naïve immunoglobulin repertoires without the use of lengthy affinity optimization procedures. Here, we designed a hierarchical phage-displayed antibody library system to generate an enormous diversity of combinatorial Fab fragments (6×10(17)) and attempted to isolate high-affinity Fabs against the human epidermal growth factor receptor (EGFR). A primary antibody library, designated HuDVFab-8L, comprising 4.5×10(9) human naïve heavy chains and eight unspecified human naïve light chains was selected against the EGFR-Fc protein by biopanning, and four anti-EGFR Fab clones were isolated. Because one of the Fab clones, denoted EG-L2-11, recognized a native EGFR expressed on A431 cells, the heavy chain of the Fab was shuffled with a human naïve light chain repertoire with a diversity of 1.4×10(8) and selected a second time against the EGFR-Fc protein again. One EG-L2-11 variant, denoted EG-19-11, recognized an EGFR epitope that was almost the same as that bound by cetuximab and had a K(D) of approximately 540 pM for soluble EGFR, which is about 7-fold higher than that of the FabC225 derived from cetuximab. This variant was also internalized by A431 cells, likely via receptor-mediated endocytosis, and it efficiently inhibited EGF-mediated tyrosine phosphorylation of the EGFR. These results demonstrate that the use of our hierarchical antibody library system is advantageous in generating fully human antibodies especially with a therapeutic purpose. Copyright © 2010 Elsevier B.V. All rights reserved.
Astolfi, M.; Treggiari, S.; Giachetti, A.; Meini, S.; Maggi, C. A.; Manzini, S.
1994-01-01
1. The aim of this study was to characterize the tachykinin NK2 receptor subtype mediating the spasmogenic response in the human isolated bronchus. The motor response to neurokinin A (NKA) and the selective NK2 agonist [beta Ala8]NKA(4-10), as well as the antagonistic effects of cyclic (L659,877) and linear (MEN 10376) peptide NK2 antagonists were assessed in the presence or absence of amastatin (an inhibitor of aminopeptidases A and M). 2. NKA was more potent than [beta Ala8]NKA(4-10) in eliciting bronchoconstriction (pD2 being 7,43 and 6,87 respectively). In the presence of amastatin (1 microM), the estimated affinity of [beta Ala8]NKA(4-10), but not that of NKA, was significantly increased to yield a pD2 of 7,44. 3. L659,877 and MEN 10376 inhibited [beta Ala8]NKA(4-10)-induced contraction with similar affinities; pA2 values were 5.7 +/- 0.22 and 6.3 +/- 0.32, respectively. Amastatin (1 microM) increased the potency of MEN 10376 to 7.28 +/- 0.46, whereas that of L659,877 was unaffected. 4. In the presence of amastatin the pseudopeptide MDL 28,564 behaved as a partial agonist. 5. We conclude that the NK2 receptor subtype present in the human bronchus has properties similar to those described for the circular muscle of the human colon and thus may be classified as a 'NK2A' subtype. We show that the apparent potency of peptides, bearing N-terminal acidic residues, is influenced by an amastatin-sensitive peptidase, possibly aminopeptidase A. PMID:8004400
Astolfi, M; Treggiari, S; Giachetti, A; Meini, S; Maggi, C A; Manzini, S
1994-02-01
1. The aim of this study was to characterize the tachykinin NK2 receptor subtype mediating the spasmogenic response in the human isolated bronchus. The motor response to neurokinin A (NKA) and the selective NK2 agonist [beta Ala8]NKA(4-10), as well as the antagonistic effects of cyclic (L659,877) and linear (MEN 10376) peptide NK2 antagonists were assessed in the presence or absence of amastatin (an inhibitor of aminopeptidases A and M). 2. NKA was more potent than [beta Ala8]NKA(4-10) in eliciting bronchoconstriction (pD2 being 7,43 and 6,87 respectively). In the presence of amastatin (1 microM), the estimated affinity of [beta Ala8]NKA(4-10), but not that of NKA, was significantly increased to yield a pD2 of 7,44. 3. L659,877 and MEN 10376 inhibited [beta Ala8]NKA(4-10)-induced contraction with similar affinities; pA2 values were 5.7 +/- 0.22 and 6.3 +/- 0.32, respectively. Amastatin (1 microM) increased the potency of MEN 10376 to 7.28 +/- 0.46, whereas that of L659,877 was unaffected. 4. In the presence of amastatin the pseudopeptide MDL 28,564 behaved as a partial agonist. 5. We conclude that the NK2 receptor subtype present in the human bronchus has properties similar to those described for the circular muscle of the human colon and thus may be classified as a 'NK2A' subtype. We show that the apparent potency of peptides, bearing N-terminal acidic residues, is influenced by an amastatin-sensitive peptidase, possibly aminopeptidase A.
Prenner, Lars; Sieben, Anne; Zeller, Karin; Weiser, Dieter; Häberlein, Hanns
2007-05-01
Beta-adrenergic receptors (beta-AR) are potential targets for antidepressants. Desensitization and downregulation of beta-AR are discussed as possible modes of action for antidepressants. We have investigated the effects of hyperforin and hyperoside, compounds with potentially antidepressant activity from St. John's Wort, on the binding behavior and dynamics of beta2-AR in living rat C6 glioblastoma cells, compared to desipramine (desmethylimipramine; DMI) by means of fluorescence correlation spectroscopy (FCS) and fluorescence microscopy. FCS-binding studies with the fluorescently labeled ligand Alexa532-noradrenaline (Alexa532-NA) binding to beta2-AR of C6 cells showed a significant reduction in total beta2-AR binding after preincubation with hyperforin and hyperoside for 3 days, respectively, which was also found for DMI. This was mainly observed in high-affinity receptor-ligand complexes with hindered lateral mobility (D2 = 1.1 (+/-0.4) microm2/s) in the biomembrane. However, internalization of beta2-AR was found neither in z-scans of these C6 cells nor in HEK 293 cells stably transfected with GFP-tagged beta2-adrenergic receptors (beta2AR-GFP) after incubation up to 6 days with either DMI, hyperforin, or hyperoside. Thus, under these conditions reduction of beta2-AR binding was not mediated by receptor internalization. Additionally, preincubation of C6 cells with DMI, hyperforin, and hyperoside led to a loss of second messenger cAMP after beta2-adrenergic stimulating conditions with terbutaline. Our current results indicate that hyperforin and hyperoside from St. John's Wort, as well as DMI, reduce beta2-adrenergic sensitivity in C6 cells, emphasizing the potential usefulness of St. John's Wort dry extracts in clinical treatment of depressive symptoms.
1993-01-01
To assess the role of immunoglobulin D (IgD) in vivo we generated IgD- deficient mice by gene targeting and studied B cell development and function in the absence of IgD expression. In the mutant animals, conventional and CD5-positive (B1) B cells are present in normal numbers, and the expression of the surface markers CD22 and CD23 in the compartment of conventional B cells indicates acquisition of a mature phenotype. As in wild-type animals, most of the peripheral B cells are resting cells. The IgD-deficient mice respond well to T cell- independent and -dependent antigens. However, in heterozygous mutant animals, B cells expressing the wild type IgH locus are overrepresented in the peripheral B cell pool, and T cell-dependent IgG1 responses are further dominated by B cells expressing the wild-type allele. Similarly, in homozygous mutant (IgD-deficient) animals, affinity maturation is delayed in the early primary response compared to control animals, although the mutants are capable of generating high affinity B cell memory. Thus, rather than being involved in major regulatory processes as had been suggested, IgD seems to function as an antigen receptor optimized for efficient recruitment of B cells into antigen- driven responses. The IgD-mediated acceleration of affinity maturation in the early phase of the T cell-dependent primary response may confer to the animal a critical advantage in the defense against pathogens. PMID:8418208
Klippel, A; Escobedo, J A; Fantl, W J; Williams, L T
1992-01-01
Upon stimulation by its ligand, the platelet-derived growth factor (PDGF) receptor associates with the 85-kDa subunit of phosphatidylinositol (PI) 3-kinase. The 85-kDa protein (p85) contains two Src homology 2 (SH2) domains and one SH3 domain. To define the part of p85 that interacts with the PDGF receptor, a series of truncated p85 mutants was analyzed for association with immobilized PDGF receptor in vitro. We found that a fragment of p85 that contains a single Src homology domain, the C-terminal SH2 domain (SH2-C), was sufficient for directing the high-affinity interaction with the receptor. Half-maximal binding of SH2-C to the receptor was observed at an SH2-C concentration of 0.06 nM. SH2-C, like full-length p85, was able to distinguish between wild-type PDGF receptor and a mutant receptor lacking the PI 3-kinase binding site. An excess of SH2-C blocked binding of full-length p85 and PI 3-kinase to the receptor but did not interfere with the binding of two other SH2-containing proteins, phospholipase C-gamma and GTPase-activating protein. These results demonstrate that a region of p85 containing a single SH2 domain accounts both for the high affinity and specificity of binding of PI 3-kinase to the PDGF receptor. Images PMID:1312663
Pharmacological characterization of the new histamine H4 receptor agonist VUF 8430
Lim, Herman D; Adami, Maristella; Guaita, Elena; Werfel, Thomas; Smits, Rogier A; de Esch, Iwan JP; Bakker, Remko A; Gutzmer, Ralf; Coruzzi, Gabriella; Leurs, Rob
2009-01-01
Background and purpose: We compare the pharmacological profiles of a new histamine H4 receptor agonist 2-(2-guanidinoethyl)isothiourea (VUF 8430) with that of a previously described H4 receptor agonist, 4-methylhistamine. Experimental approach: Radioligand binding and functional assays were performed using histamine H4 receptors expressed in mammalian cell lines. Compounds were also evaluated ex vivo in monocyte-derived dendritic cells endogenously expressing H4 receptors and in vivo in anaesthetized rats for gastric acid secretion activity. Key results: Both VUF 8430 and 4-methylhistamine were full agonists at human H4 receptors with lower affinity at rat and mouse H4 receptors. Both compounds induced chemotaxis of monocyte-derived dendritic cells. VUF 8430 also showed reasonable affinity and was a full agonist at the H3 receptor. Agmatine is a metabolite of arginine, structurally related to VUF 8430, and was a H4 receptor agonist with micromolar affinity. At histamine H3 receptors, agmatine was a full agonist, whereas 4-methylhistamine was an agonist only at high concentrations. Both VUF 8430 and agmatine were inactive at H1 and H2 receptors, whereas 4-methylhistamine is as active as histamine at H2 receptors. In vivo, VUF 8430 only caused a weak secretion of gastric acid mediated by H2 receptors, whereas 4-methylhistamine, dimaprit, histamine and amthamine, at equimolar doses, induced 2.5- to 6-fold higher output than VUF 8430. Conclusions and implications: Our results suggest complementary use of 4-methylhistamine and VUF 8430 as H4 receptor agonists. Along with H4 receptor antagonists, both agonists can serve as useful pharmacological tools in studies of histamine H4 receptors. PMID:19413569
Molecular basis for the Kallmann syndrome-linked fibroblast growth factor receptor mutation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thurman, Ryan D.; Kathir, Karuppanan Muthusamy; Rajalingam, Dakshinamurthy
Highlights: Black-Right-Pointing-Pointer The structural basis of the Kallmann syndrome is elucidated. Black-Right-Pointing-Pointer Kallmann syndrome mutation (A168S) induces a subtle conformational change(s). Black-Right-Pointing-Pointer Structural interactions mediated by beta-sheet G are most perturbed. Black-Right-Pointing-Pointer Ligand (FGF)-receptor interaction(s) is completely abolished by Kallmann mutation. Black-Right-Pointing-Pointer Kallmann mutation directly affects the FGF signaling process. -- Abstract: Kallmann syndrome (KS) is a developmental disease that expresses in patients as hypogonadotropic hypogonadism and anosmia. KS is commonly associated with mutations in the extracellular D2 domain of the fibroblast growth factor receptor (FGFR). In this study, for the first time, the molecular basis for the FGFR associatedmore » KS mutation (A168S) is elucidated using a variety of biophysical experiments, including multidimensional NMR spectroscopy. Secondary and tertiary structural analysis using far UV circular dichroism, fluorescence and limited trypsin digestion assays suggest that the KS mutation induces subtle tertiary structure change in the D2 domain of FGFR. Results of isothermal titration calorimetry experiments show the KS mutation causes a 10-fold decrease in heparin binding affinity and also a complete loss in ligand (FGF-1) binding. {sup 1}H-{sup 15}N chemical perturbation data suggest that complete loss in the ligand (FGF) binding affinity is triggered by a subtle conformational change that disrupts crucial structural interactions in both the heparin and the FGF binding sites in the D2 domain of FGFR. The novel findings reported in this study are expected to provide valuable clues toward a complete understanding of the other genetic diseases linked to mutations in the FGFR.« less
Pau, Amedeo; Catto, Marco; Pinna, Giovanni; Frau, Simona; Murineddu, Gabriele; Asproni, Battistina; Curzu, Maria M; Pisani, Leonardo; Leonetti, Francesco; Loza, Maria Isabel; Brea, José; Pinna, Gérard A; Carotti, Angelo
2015-06-01
By following a multitarget ligand design approach, a library of 47 compounds was prepared, and they were tested as binders of selected G protein-coupled receptors (GPCRs) and inhibitors of acetyl and/or butyryl cholinesterase. The newly designed ligands feature pyridazinone-based tricyclic scaffolds connected through alkyl chains of variable length to proper amine moieties (e.g., substituted piperazines or piperidines) for GPCR and cholinesterase (ChE) molecular recognition. The compounds were tested at three different GPCRs, namely serotoninergic 5-HT1A, adrenergic α1A, and dopaminergic D2 receptors. Our main goal was the discovery of compounds that exhibit, in addition to ChE inhibition, antagonist activity at 5-HT1A because of its involvement in neuronal deficits typical of Alzheimer's and other neurodegenerative diseases. Ligands with nanomolar affinity for the tested GPCRs were discovered, but most of them behaved as dual antagonists of α1A and 5-HT1A receptors. Nevertheless, several compounds displaying this GPCR affinity profile also showed moderate to good inhibition of AChE and BChE, thus deserving further investigations to exploit the therapeutic potential of such unusual biological profiles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Functional somatostatin receptors on a rat pancreatic acinar cell line
DOE Office of Scientific and Technical Information (OSTI.GOV)
Viguerie, N.; Tahiri-Jouti, N.; Esteve, J.P.
1988-07-01
Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of {sup 125}I-(Tyr{sup 11})Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 {plus minus} 20 fmol/10{sup 6} cells. Somatostatin receptor structure was analyzed by covalently cross-linking {sup 125}I-(Tyr{sup 11})somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibitionmore » of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein N{sub i} to inhibit adenylate cyclase.« less
Jenkins, Jeremy L; Dean, Donald H
2001-01-01
Background To better understand the molecular interactions of Bt toxins with non-target insects, we have examined the real-time binding specificity and affinity of Cry1 toxins to native silkworm (Bombyx mori) midgut receptors. Previous studies on B. mori receptors utilized brush border membrane vesicles or purifed receptors in blot-type assays. Results The Bombyx mori (silkworm) aminopeptidase N (APN) and cadherin-like receptors for Bacillus thuringiensis insecticidal Cry1Aa toxin were purified and their real-time binding affinities for Cry toxins were examined by surface plasmon resonance. Cry1Ab and Cry1Ac toxins did not bind to the immobilized native receptors, correlating with their low toxicities. Cry1Aa displayed moderate affinity for B. mori APN (75 nM), and unusually tight binding to the cadherin-like receptor (2.6 nM), which results from slow dissociation rates. The binding of a hybrid toxin (Aa/Aa/Ac) was identical to Cry1Aa. Conclusions These results indicate domain II of Cry1Aa is essential for binding to native B. mori receptors and for toxicity. Moreover, the high-affinity binding of Cry1Aa to native cadherin-like receptor emphasizes the importance of this receptor class for Bt toxin research. PMID:11722800
Rosenthaler, Sarah; Pöhn, Birgit; Kolmanz, Caroline; Huu, Chi Nguyen; Krewenka, Christopher; Huber, Alexandra; Kranner, Barbara; Rausch, Wolf-Dieter; Moldzio, Rudolf
2014-01-01
Phytocannabinoids are potential candidates for neurodegenerative disease treatment. Nonetheless, the exact mode of action of major phytocannabinoids has to be elucidated, but both, receptor and non-receptor mediated effects are discussed. Focusing on the often presumed structure-affinity-relationship, Ki values of phytocannabinoids cannabidiol (CBD), cannabidivarin (CBDV), cannabichromene (CBC), cannabigerol (CBG), cannabinol (CBN), THC acid (THCA) and THC to human CB1 and CB2 receptors were detected by using competitive inhibition between radioligand [(3)H]CP-55,940 and the phytocannabinoids. The resulting Ki values to CB1 range from 23.5 nM (THCA) to 14711 nM (CBDV), whereas Ki values to CB2 range from 8.5 nM (THC) to 574.2 nM (CBDV). To study the relationship between binding affinity and effects on neurons, we investigated possible CB1 related cytotoxic properties in murine mesencephalic primary cell cultures and N18TG2 neuroblastoma cell line. Most of the phytocannabinoids did not affect the number of dopaminergic neurons in primary cultures, whereas propidium iodide and resazurin formation assays revealed cytotoxic properties of CBN, CBDV and CBG. However, THC showed positive effects on N18TG2 cell viability at a concentration of 10 μM, whereas CBC and THCA also displayed slightly positive activities. These findings are not linked to the receptor binding affinity therewith pointing to another mechanism than a receptor mediated one. [Corrected] Copyright © 2014 Elsevier Inc. All rights reserved.
Cramer, Richard D.
2015-01-01
The possible applicability of the new template CoMFA methodology to the prediction of unknown biological affinities was explored. For twelve selected targets, all ChEMBL binding affinities were used as training and/or prediction sets, making these 3D-QSAR models the most structurally diverse and among the largest ever. For six of the targets, X-ray crystallographic structures provided the aligned templates required as input (BACE, cdk1, chk2, carbonic anhydrase-II, factor Xa, PTP1B). For all targets including the other six (hERG, cyp3A4 binding, endocrine receptor, COX2, D2, and GABAa), six modeling protocols applied to only three familiar ligands provided six alternate sets of aligned templates. The statistical qualities of the six or seven models thus resulting for each individual target were remarkably similar. Also, perhaps unexpectedly, the standard deviations of the errors of cross-validation predictions accompanying model derivations were indistinguishable from the standard deviations of the errors of truly prospective predictions. These standard deviations of prediction ranged from 0.70 to 1.14 log units and averaged 0.89 (8x in concentration units) over the twelve targets, representing an average reduction of almost 50% in uncertainty, compared to the null hypothesis of “predicting” an unknown affinity to be the average of known affinities. These errors of prediction are similar to those from Tanimoto coefficients of fragment occurrence frequencies, the predominant approach to side effect prediction, which template CoMFA can augment by identifying additional active structural classes, by improving Tanimoto-only predictions, by yielding quantitative predictions of potency, and by providing interpretable guidance for avoiding or enhancing any specific target response. PMID:26065424
Discovery of Tertiary Sulfonamides as Potent Liver X Receptor Antagonists
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuercher, William J.; Buckholz, Richard G.; Campobasso, Nino
2010-08-12
Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.
Discovery of tertiary sulfonamides as potent liver X receptor antagonists.
Zuercher, William J; Buckholz, Richard G; Campobasso, Nino; Collins, Jon L; Galardi, Cristin M; Gampe, Robert T; Hyatt, Stephen M; Merrihew, Susan L; Moore, John T; Oplinger, Jeffrey A; Reid, Paul R; Spearing, Paul K; Stanley, Thomas B; Stewart, Eugene L; Willson, Timothy M
2010-04-22
Tertiary sulfonamides were identified in a HTS as dual liver X receptor (LXR, NR1H2, and NR1H3) ligands, and the binding affinity of the series was increased through iterative analogue synthesis. A ligand-bound cocrystal structure was determined which elucidated key interactions for high binding affinity. Further characterization of the tertiary sulfonamide series led to the identification of high affinity LXR antagonists. GSK2033 (17) is the first potent cell-active LXR antagonist described to date. 17 may be a useful chemical probe to explore the cell biology of this orphan nuclear receptor.
G protein γ (Gγ) subtype dependent targeting of GRK2 to M3 receptor by Gβγ.
Samaradivakara, Saroopa; Kankanamge, Dinesh; Senarath, Kanishka; Ratnayake, Kasun; Karunarathne, Ajith
2018-06-11
Interactions of cytosolic G protein coupled receptor kinase 2 (GRK2) with activated G protein coupled receptors (GPCRs) induce receptor phosphorylation and desensitization. GRK2 is recruited to active M3-muscarinic receptors (M3R) with the participation of the receptor, Gαq and Gβγ. Since we have shown that signaling efficacy of Gβγ is governed by its Gγ subtype identity, the present study examined whether recruitment of GRK2 to M3R is also Gγ subtype dependent. To capture the dynamics of GRK2-recruitment concurrently with GPCR-G protein activation, we employed live cell confocal imaging and a novel assay based on Gβγ translocation. Data show that M3R activation-induced GRK2 recruitment is Gγ subtype dependent in which Gβγ dimers with low PM-affinity Gγ9 exhibited a two-fold higher GRK2-recruitment compared to high PM affinity Gγ3 expressing cells. Since 12-mammalian Gγ types exhibit a cell and tissue specific expressions and the PM-affinity of a Gγ is linked to its subtype identity, our results indicate a mechanism by which Gγ profile of a cell controls GRK2 signaling and GPCR desensitization. Copyright © 2018 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Taft, William C.; Delorenzo, Robert J.
1984-05-01
Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance.
Taft, W C; DeLorenzo, R J
1984-01-01
Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance. PMID:6328498
Zagórska, Agnieszka; Gryzło, Beata; Satała, Grzegorz; Bojarski, Andrzej J; Głuch-Lutwin, Monika; Mordyl, Barbara; Kazek, Grzegorz; Pawłowski, Maciej
2016-01-01
A series of octahydro- and 6,7-dimethoxy-3,4-dihydro- isoquinolin-2(1H)-yl-alkyl derivatives of imidazo- and pyrimidino[2,1-f]purines were synthesized and biologically evaluated in in vitro competition binding experiments for serotonin 5-HT(1A), 5-HT(6), 5-HT(7), and dopamine D2 receptors and inhibitory potencies for phosphodiesterases - PDE4B1 and PDE10A. The structure-activity relationships allowed to determine the structural features responsible for receptor and enzyme activity. Compound 5 (8-(4-(6,7-dimethoxy-3,4-dihydroiso- quinolin-2(1H)butyl)1,3-dimethyl-H-imidazo[2,1-f]purine-2,4(3H,8H)-dione) could be regarded as promising structure for further modification and detailed mechanistic study for obtained hybrid ligands.
Harland, Aubrie A; Yeomans, Larisa; Griggs, Nicholas W; Anand, Jessica P; Pogozheva, Irina D; Jutkiewicz, Emily M; Traynor, John R; Mosberg, Henry I
2015-11-25
In a previously described peptidomimetic series, we reported the development of bifunctional μ-opioid receptor (MOR) agonist and δ-opioid receptor (DOR) antagonist ligands with a lead compound that produced antinociception for 1 h after intraperitoneal administration in mice. In this paper, we expand on our original series by presenting two modifications, both of which were designed with the following objectives: (1) probing bioavailability and improving metabolic stability, (2) balancing affinities between MOR and DOR while reducing affinity and efficacy at the κ-opioid receptor (KOR), and (3) improving in vivo efficacy. Here, we establish that, through N-acetylation of our original peptidomimetic series, we are able to improve DOR affinity and increase selectivity relative to KOR while maintaining the desired MOR agonist/DOR antagonist profile. From initial in vivo studies, one compound (14a) was found to produce dose-dependent antinociception after peripheral administration with an improved duration of action of longer than 3 h.
O'Herrin, Sean M.; Lebowitz, Michael S.; Bieler, Joan G.; al-Ramadi, Basel K.; Utz, Ursula; Bothwell, Alfred L.M.; Schneck, Jonathan P.
1997-01-01
Understanding the regulation of cell surface expression of specific peptide–major histocompatibility complex (MHC) complexes is hindered by the lack of direct quantitative analyses of specific peptide–MHC complexes. We have developed a direct quantitative biochemical approach by engineering soluble divalent T cell receptor analogues (TCR–Ig) that have high affinity for their cognate peptide–MHC ligands. The generality of this approach was demonstrated by specific staining of peptide-pulsed cells with two different TCR–Ig complexes: one specific for the murine alloantigen 2C, and one specific for a viral peptide from human T lymphocyte virus–1 presented by human histocompatibility leukocyte antigens–A2. Further, using 2C TCR– Ig, a more detailed analysis of the interaction with cognate peptide–MHC complexes revealed several interesting findings. Soluble divalent 2C TCR–Ig detected significant changes in the level of specific antigenic–peptide MHC cell surface expression in cells treated with γ-interferon (γ-IFN). Interestingly, the effects of γ-IFN on expression of specific peptide–MHC complexes recognized by 2C TCR–Ig were distinct from its effects on total H-2 Ld expression; thus, lower doses of γ-IFN were required to increase expression of cell surface class I MHC complexes than were required for upregulation of expression of specific peptide–MHC complexes. Analysis of the binding of 2C TCR–Ig for specific peptide–MHC ligands unexpectedly revealed that the affinity of the 2C TCR–Ig for the naturally occurring alloreactive, putatively, negatively selecting, complex, dEV-8–H-2 Kbm3, is very low, weaker than 71 μM. The affinity of the 2C TCR for the other naturally occurring, negatively selecting, alloreactive complex, p2Ca–H-2 Ld, is ∼1000-fold higher. Thus, negatively selecting peptide–MHC complexes do not necessarily have intrinsically high affinity for cognate TCR. These results, uniquely revealed by this analysis, indicate the importance of using high affinity biologically relevant cognates, such as soluble divalent TCR, in furthering our understanding of immune responses. PMID:9334373
Agrawal, Sangeeta; Bhatnagar, Rishi Raj; Tiwari, Anjani; Srivastava, Rakesh; Sharma, Upasana
2013-11-01
Benzimidazole and their metal analogs that can act as multimodal agent and have non-peptidic CCK-B receptor antagonist were synthesized and characterized on the basis of spectroscopic techniques such as FT-IR, NMR, FAB-MS and also evaluated for biologic efficacy. The ligands showed binding to most of the organs, known to express CCK receptors in biodistribution studies. Cholecystokinin (CCK1 and CCK2) receptor binding affinities of these analogs (IC50) are 0.802 ± 0.007 for compound C and 0.326 ± 0.012 for compound D in rat pancreatic acini. These studies have provided a new template for further development of novel agents for various related diseases.
Psychedelics and the human receptorome.
Ray, Thomas S
2010-02-02
We currently understand the mental effects of psychedelics to be caused by agonism or partial agonism of 5-HT(2A) (and possibly 5-HT(2C)) receptors, and we understand that psychedelic drugs, especially phenylalkylamines, are fairly selective for these two receptors. This manuscript is a reference work on the receptor affinity pharmacology of psychedelic drugs. New data is presented on the affinity of twenty-five psychedelic drugs at fifty-one receptors, transporters, and ion channels, assayed by the National Institute of Mental Health-Psychoactive Drug Screening Program (NIMH-PDSP). In addition, comparable data gathered from the literature on ten additional drugs is also presented (mostly assayed by the NIMH-PDSP). A new method is introduced for normalizing affinity (K(i)) data that factors out potency so that the multi-receptor affinity profiles of different drugs can be directly compared and contrasted. The method is then used to compare the thirty-five drugs in graphical and tabular form. It is shown that psychedelic drugs, especially phenylalkylamines, are not as selective as generally believed, interacting with forty-two of forty-nine broadly assayed sites. The thirty-five drugs of the study have very diverse patterns of interaction with different classes of receptors, emphasizing eighteen different receptors. This diversity of receptor interaction may underlie the qualitative diversity of these drugs. It should be possible to use this diverse set of drugs as probes into the roles played by the various receptor systems in the human mind.
Mauzy, C; Wu, L H; Egloff, A M; Mirzadegan, T; Chung, F Z
1992-01-01
In the G protein-coupled receptor family, a highly conserved aspartic acid located within the third transmembrane domain has been shown to be involved in ligand binding. Within the endothelin (ET) peptide receptor family, this aspartic acid has been replaced by a lysine. To assess the importance of this residue in ET binding, the lysine (position 181) of rat ET type B receptor was replaced by an aspartic acid. The effects on ligand binding and phosphoinositide turnover of both the wild-type and K181D mutant receptors were examined using transient receptor expression in COS-7 cells. Using [125I]ET-1 as the radioactive peptide ligand in displacement binding studies, the wild-type receptor displayed a typical non-isopeptide-selective binding profile with similar IC50 values (0.2-0.6 nM) for all three ET peptides (ET-1, ET-2, and ET-3). The mutant receptor showed an increase in IC50 values for ET-1 (5 nM), ET-2 (27 nM), and ET-3 (127 nM). The K181D mutant receptor still elicited full inositol phosphate (IP) accumulation responses in the presence of saturating concentrations of ETs (10 nM of ET-1, 100 nM of ET-2, or 1 microM of ET-3), indicating that the mutation did not affect G protein coupling.
Ringdahl, B.
1984-01-01
The dissociation constants (KD values) and relative efficacies of seven acetamide analogues of oxotremorine, including two enantiomeric pairs, at muscarinic receptors in the guinea-pig isolated ileum were determined. The method used involved analysis of dose-response data before and after fractional inactivation of receptors with propylbenzilylcholine mustard. All of the compounds studied had lower affinities than oxotremorine, but some had substantially higher relative efficacies. Replacement of the pyrrolidine ring of N-methyl-N-(4- pyrrolidino -2- butynyl )acetamide(I), the parent compound in the series, by a dimethylamino or a trimethylammonium group decreased the affinity 32 and 4.5 fold, respectively, whereas the relative efficacy increased 5.7-8.3 times. There was no correlation between relative efficacies and affinities of the compounds. The structural requirements for high affinity and high efficacy appeared to be quite different. PMID:6733356
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cody, Vivian, E-mail: cody@hwi.buffalo.edu; University at Buffalo, 700 Ellicott Street, Buffalo, NY 14203; Pace, Jim
2012-12-01
Structural data for the S74D variant of the pentameric B subunit of type II heat-labile enterotoxin of Escherichia coli reveal a smaller pore opening that may explain its reduced Toll-like receptor binding affinity compared to that of the wild type enterotoxin. The explanation for the enhanced Toll-like receptor binding affinity of the S74A variant is more complex than simply being attributed to the pore opening. The pentameric B subunit of the type II heat-labile enterotoxin of Escherichia coli (LT-IIb-B{sub 5}) is a potent signaling molecule capable of modulating innate immune responses. It has previously been shown that LT-IIb-B{sub 5}, butmore » not the LT-IIb-B{sub 5} Ser74Asp variant [LT-IIb-B{sub 5}(S74D)], activates Toll-like receptor (TLR2) signaling in macrophages. Consistent with this, the LT-IIb-B{sub 5}(S74D) variant failed to bind TLR2, in contrast to LT-IIb-B{sub 5} and the LT-IIb-B{sub 5} Thr13Ile [LT-IIb-B{sub 5}(T13I)] and LT-IIb-B{sub 5} Ser74Ala [LT-IIb-B{sub 5}(S74A)] variants, which displayed the highest binding activity to TLR2. Crystal structures of the Ser74Asp, Ser74Ala and Thr13Ile variants of LT-IIb-B{sub 5} have been determined to 1.90, 1.40 and 1.90 Å resolution, respectively. The structural data for the Ser74Asp variant reveal that the carboxylate side chain points into the pore, thereby reducing the pore size compared with that of the wild-type or the Ser74Ala variant B pentamer. On the basis of these crystallographic data, the reduced TLR2-binding affinity of the LT-IIb-B{sub 5}(S74D) variant may be the result of the pore of the pentamer being closed. On the other hand, the explanation for the enhanced TLR2-binding activity of the LT-IIb-B{sub 5}(S74A) variant is more complex as its activity is greater than that of the wild-type B pentamer, which also has an open pore as the Ser74 side chain points away from the pore opening. Data for the LT-IIb-B{sub 5}(T13I) variant show that four of the five variant side chains point to the outside surface of the pentamer and one residue points inside. These data are consistent with the lack of binding of the LT-IIb-B{sub 5}(T13I) variant to GD1a ganglioside.« less
Burcher, Elizabeth; Shang, Fei; Warner, Fiona J; Du, Qin; Lubowski, David Z; King, Denis W; Liu, Lu
2008-01-01
Neurokinin A (NKA) is an important spasmogen in human colon. We examined inflammatory disease-related changes in the tachykinin NK(2) receptor system in human sigmoid colon circular muscle, using functional, radioligand binding, and quantitative reverse transcription-polymerase chain reaction methods. In circular muscle strips, indomethacin enhanced contractile responses to NKA (p < 0.01) and to the NK(2) receptor-selective agonist [Lys(5),MeLeu(9),Nle(10)]-NKA(4-10) (p < 0.05) in both normal and acute diverticular disease (DD) specimens, indicating NK(2) receptor-mediated release of relaxant prostanoids. Contractile responses to both tachykinins were reduced in strips from DD (p < 0.001) and ulcerative colitis (UC) (p < 0.05) specimens. Responses to acetylcholine were no different in other strips from the same disease patients, demonstrating that the change in responsiveness to tachykinins in disease is specifically mediated by the NK(2) receptor. In membranes from UC specimens, receptor affinity for (125)I-NKA (median K(D) 0.91 nM, n = 16) was lower (p < 0.01) than that in age-matched control specimens (K(D) 0.55 nM, n = 40), whereas K(D) (0.65 nM, n = 28) in DD was no different from control. No disease-related changes in receptor number (B(max)) were found (mean, 2.0-2.5 fmol/mg of wet weight tissue), suggesting that the reduced contractile responses in disease are not due to a loss of receptor number. Different mechanisms may account for the reduced contractility in DD compared with UC. A gender-related difference in receptor density was seen in controls, with B(max) lower in females (1.77 fmol/mg, n = 15) than in males (2.60 fmol/mg, n = 25, p = 0.01). In contrast, no gender-related differences were seen in NK(2) receptor mRNA in control colonic muscle, indicating that the gender difference is a post-translational event.
Functionalized Congeners of P2Y1 Receptor Antagonists:
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Castro, Sonia; Maruoka, Hiroshi; Hong, Kunlun
2010-01-01
The P2Y{sub 1} receptor is a prothrombotic G protein-coupled receptor (GPCR) activated by ADP. Preference for the North (N) ring conformation of the ribose moiety of adenine nucleotide 3',5'-bisphosphate antagonists of the P2Y{sub 1} receptor was established by using a ring-constrained methanocarba (a bicyclo[3.1.0]hexane) ring as a ribose substitute. A series of covalently linkable N{sup 6}-methyl-(N)-methanocarba-2'-deoxyadenosine-3',5'-bisphosphates containing extended 2-alkynyl chains was designed, and binding affinity at the human (h) P2Y{sub 1} receptor determined. The chain of these functionalized congeners contained hydrophilic moieties, a reactive substituent, or biotin, linked via an amide. Variation of the chain length and position of anmore » intermediate amide group revealed high affinity of carboxylic congener 8 (K{sub i} 23 nM) and extended amine congener 15 (K{sub i} 132 nM), both having a 2-(1-pentynoyl) group. A biotin conjugate 18 containing an extended {epsilon}-aminocaproyl spacer chain exhibited higher affinity than a shorter biotinylated analogue. Alternatively, click coupling of terminal alkynes of homologous 2-dialkynyl nucleotide derivatives to alkyl azido groups produced triazole derivatives that bound to the P2Y{sub 1} receptor following deprotection of the bisphosphate groups. The preservation of receptor affinity of the functionalized congeners was consistent with new P2Y{sub 1} receptor modeling and ligand docking. Attempted P2Y{sub 1} antagonist conjugation to PAMAM dendrimer carriers by amide formation or palladium-catalyzed reaction between an alkyne on the dendrimer and a 2-iodopurine-derivatized nucleotide was unsuccessful. A dialkynyl intermediate containing the chain length favored in receptor binding was conjugated to an azide-derivatized dendrimer, and the conjugate inhibited ADP-promoted human platelet aggregation. This is the first example of attaching a strategically functionalized P2Y receptor antagonist to a PAMAM dendrimer to produce a multivalent conjugate exhibiting a desired biological effect, i.e., antithrombotic action.« less
Functional importance of GLP-1 receptor species and expression levels in cell lines.
Knudsen, Lotte Bjerre; Hastrup, Sven; Underwood, Christina Rye; Wulff, Birgitte Schjellerup; Fleckner, Jan
2012-04-10
Of the mammalian species, only the GLP-1 receptors of rat and human origin have been described and characterized. Here, we report the cloning of the homologous GLP-1 receptors from mouse, rabbit, pig, cynomolgus monkey and chimp. The GLP-1 receptor is highly conserved across species, thus underlining the physiological importance of the peptide hormone and its receptor across a wide range of mammals. We expressed the receptors by stable transfection of BHK cells, both in cell lines with high expression levels of the cloned receptors, as well as in cell lines with lower expression levels, more comparable to endogenous expression of these receptors. High expression levels of cloned GLP-1 receptors markedly increased the potency of GLP-1 and other high affinity ligands, whereas the K(d) values were not affected. For a low affinity ligand like the ago-allosteric modulator Compound 2, expression levels of the human GLP-1 receptor were important for maximal efficacy as well as potency. The two natural metabolites of GLP-1, GLP-1(9-37) and GLP-1(9-36)amide were agonists when tested on a cell line with high expression of the recombinant human GLP-1 receptor, whereas they behaved as (low potent) antagonists on a cell line that expressed the receptor endogenously, as well as cells expressing a moderate level of the recombinant human GLP-1 receptor. The amide form was a more potent agonist than the free acid from. In conclusion, receptor expression level is an important parametre for selecting cell lines with cloned GLP-1 receptors for functional characterization of physiological and pharmaceutical ligands. Copyright © 2011 Elsevier B.V. All rights reserved.
Persson, Petra; Shrimpton, J.M.; McCormick, S.D.; Bjornsson, Bjorn Thrandur
2000-01-01
High-affinity, low-capacity estradiol-17β (E2) binding is present in rainbow trout scale. The Kd and Bmax of the scale E2 binding are similar to those of the liver E2 receptor (Kd is 1.6 ± 0.1 and 1.4 ± 0.1 nM, and Bmax is 9.1 ± 1.2 and 23.1 ± 2.2 fmol x mg protein-1, for scale and liver, respectively), but different from those of the high-affinity, low-capacity E2 binding in plasma (Kd is 4.0 ± 0.4 nM and Bmax is 625.4 ± 63.1 fmol x mg protein-1). The E2 binding in scale was displaced by testosterone, but not by diethylstilbestrol. Hence, the ligand binding specificity is different from that of the previously characterized liver E2 receptor, where E2 is displaced by diethylstilbestrol, but not by testosterone. The putative scale E2 receptor thus appears to bind both E2 and testosterone, and it is proposed that the increased scale resorption observed during sexual maturation in both sexes of several salmonid species may be mediated by this receptor. No high-affinity, low-capacity E2 binding could be detected in rainbow trout gill or skin.
Vlainić, Josipa; Jembrek, Maja Jazvinšćak; Vlainić, Toni; Štrac, Dubravka Švob; Peričić, Danka
2012-01-01
Aim: Zolpidem is a non-benzodiazepine agonist at benzodiazepine binding site in GABAA receptors, which is increasingly prescribed. Recent studies suggest that prolonged zolpidem treatment induces tolerance. The aim of this study was to explore the adaptive changes in GABAA receptors following short and long-term exposure to zolpidem in vitro. Methods: Human embryonic kidney (HEK) 293 cells stably expressing recombinant α1β2γ2s GABAA receptors were exposed to zolpidem (1 and 10 μmol/L) for short-term (2 h daily for 1, 2, or 3 consecutive days) or long-term (continuously for 48 h). Radioligand binding studies were used to determine the parameters of [3H]flunitrazepam binding sites. Results: A single (2 h) or repeated (2 h daily for 2 or 3 d) short-term exposure to zolpidem affected neither the maximum number of [3H]flunitrazepam binding sites nor the affinity. In both control and short-term zolpidem treated groups, addition of GABA (1 nmol/L–1 mmol/L) enhanced [3H]flunitrazepam binding in a concentration-dependent manner. The maximum enhancement of [3H]flunitrazepam binding in short-term zolpidem treated group was not significantly different from that in the control group. In contrast, long-term exposure to zolpidem resulted in significantly increase in the maximum number of [3H]flunitrazepam binding sites without changing the affinity. Furthermore, long-term exposure to zolpidem significantly decreased the ability of GABA to stimulate [3H]flunitrazepam binding. Conclusion: The results suggest that continuous, but not intermittent and short-term, zolpidem-exposure is able to induce adaptive changes in GABAA receptors that could be related to the development of tolerance and dependence. PMID:22922343
Voulgaraki, Despina; Mitnacht-Kraus, Rita; Letarte, Michelle; Foster-Cuevas, Mildred; Brown, Marion H; Neil Barclay, A
2005-01-01
CD200 (OX2) is a membrane glycoprotein that interacts with a structurally related receptor (CD200R) involved in the regulation of macrophage function. The interaction is of low affinity (KD ∼ 1 μm) but can be detected using CD200 displayed in a multivalent form on beads or with dimeric fusion proteins consisting of the extracellular region of CD200 and immunoglobulin Fc regions. We prepared putative pentamers and trimers of mouse CD200 with sequences from cartilage oligomeric matrix protein (COMP) and surfactant protein D (SP-D), respectively. The COMP protein gave high-avidity binding and was a valuable tool for showing the interaction whilst the SP-D protein gave weak binding. In vivo experiments showed that an agonistic CD200R monoclonal antibody caused some amelioration in a model of experimental autoimmune encephalomyelitis but the COMP protein was cleared rapidly and had minimal effect. Pentameric constructs also allowed detection of the rat CD48/CD2 interaction, which is of much lower affinity (KD ∼ 70 μm). These reagents may have an advantage over Fc-bearing hybrid molecules for probing cell surface proteins without side-effects due to the Fc regions. The CD200-COMP gave strong signals in protein microarrays, suggesting that such reagents may be valuable in high throughput detection of weak interactions. PMID:15946251
Identification of four areas each enriched in a unique muscarinic receptor subtype
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoss, W.; Ellerbrock, B.R.; Goldman, P.S.
The affinities of muscarinic agonists and antagonists were determined by autoradiography and image analysis in selected areas of the rat brain. IC{sub 50} values and Hill coefficients for the inhibition of the binding of 0.2 nM ({sup 3}H)-QNB to dentate gyrus, superior colliculus, rhomboid thalamus and substantia nigra were measured in coronal sections. Pirenzepine displayed a high affinity for receptors in the dentate gyrus and AF-DX 116, the superior colliculus. Both pirenzepine and AF-DX 116 had high affinities for the substantia nigra and low affinities for the rhomboid thalamus. Gallamine displayed a 50-fold preference for superior colliculus over dentate gyrusmore » receptors. Amitriptyline was less selective, showing a modest preference for substantia nigra receptors and 4-DAMP was essentially nonselective. Carbachol was the most selective agonist with a 4000-fold preference for superior colliculus over dentate gyrus receptors. Other agonists except RS 86 were also selective for superior colliculus receptors in the order carbachol >> arecoline > bethanechol > McN A343 = oxotremorine = pilocarpine.« less
Development of a Sigma-2 Receptor affinity filter through a Monte Carlo based QSAR analysis.
Rescifina, Antonio; Floresta, Giuseppe; Marrazzo, Agostino; Parenti, Carmela; Prezzavento, Orazio; Nastasi, Giovanni; Dichiara, Maria; Amata, Emanuele
2017-08-30
For the first time in sigma-2 (σ 2 ) receptor field, a quantitative structure-activity relationship (QSAR) model has been built using pK i values of the whole set of known selective σ 2 receptor ligands (548 compounds), taken from the Sigma-2 Receptor Selective Ligands Database (S2RSLDB) (http://www.researchdsf.unict.it/S2RSLDB/), through the Monte Carlo technique and employing the software CORAL. The model has been developed by using a large and structurally diverse set of compounds, allowing for a prediction of different populations of chemical compounds endpoint (σ 2 receptor pK i ). The statistical quality reached, suggested that model for pK i determination is robust and possesses a satisfactory predictive potential. The statistical quality is high for both visible and invisible sets. The screening of the FDA approved drugs, external to our dataset, suggested that sixteen compounds might be repositioned as σ 2 receptor ligands (predicted pK i ≥8). A literature check showed that six of these compounds have already been tested for affinity at σ 2 receptor and, of these, two (Flunarizine and Terbinafine) have shown an experimental σ 2 receptor pK i >7. This suggests that this QSAR model may be used as focusing screening filter in order to prospectively find or repurpose new drugs with high affinity for the σ 2 receptor, and overall allowing for an enhanced hit rate respect to a random screening. Copyright © 2017 Elsevier B.V. All rights reserved.
Wiley, Jenny L.; Smith, Valerie J.; Chen, Jianhong; Martin, Billy R.; Huffman, John W.
2012-01-01
To develop SAR at both the cannabinoid CB1 and CB2 receptors for 3-(1-naphthoyl)indoles bearing moderately electron withdrawing substituents at C-4 of the naphthoyl moiety, 1-propyl and 1-pentyl-3-(4-fluoro, chloro, bromo and iodo-1-naphthoyl) derivatives were prepared. To study the steric and electronic effects of substituents at the 8-position of the naphthoyl group, the 3-(4-chloro, bromo and iodo-1-naphthoyl)indoles were also synthesized. The affinities of both groups of compounds for the CB1 and CB2 receptors were determined and several of them were evaluated in vivo in the mouse. The effects of these substituents on receptor affinities and in vivo activity are discussed and structure-activity relationships are presented. Although many of these compounds are selective for the CB2 receptor, only three JWH-423, 1-propyl-3-(4-iodo-1-naphthoyl)indole, JWH-422, 2-methyl-1-propyl-3-(4-iodo-1-naphthoyl)indole, the 2-methyl analog of JWH-423 and JWH-417, 1-pentyl-3-(8-iodo-1-naphthoyl)indole, possess the desirable combination of low CB1 affinity and good CB2 affinity. PMID:22341572
Madsen, Ulf; Pickering, Darryl S; Nielsen, Birgitte; Bräuner-Osborne, Hans
2005-01-01
4-Alkylated analogues of homoibotenic acid (HIBO) have previously shown high potency and selectivity at ionotropic and metabotropic glutamic acid receptor (iGluR and mGluR) subtypes. Compounds with different selectivity profiles are valuable pharmacological tools for neuropharmacological studies, and the series of 4-alkyl-HIBO analogues have been extended in this paper in the search for versatile agents. Pharmacological characterization of five new analogues, branched and unbranched 4-alkyl-HIBO analogues, have been carried out. The present compounds are all weak antagonists at Group I mGluRs (mGluR1 and 5) presenting only small differences in potencies (Ki values ranging from 89 to 670 microM). Affinities were studied at native and cloned iGluRs, and the compounds described show preference for the AMPA receptor subtypes GluR1 and 2 over GluR3 and 4. However, compared to previous 4-alkyl-HIBO analogues, these compounds show a remarkably high affinity for the Kain preferring subtype GluR5. The observed GluR5 affinities were either similar or higher compared to their GluR1 and 2 affinity. Isopropyl-HIBO showed the highest affinity for GluR5 (Ki=0.16 microM), and represents a unique compound with high affinity towards the three subtypes GluR1, 2 and 5. In general, these compounds represent new selectivity profiles compared to previously reported Glu receptor analogues.
Competitive antagonists discriminate between NK2 tachykinin receptor subtypes.
Maggi, C A; Patacchini, R; Giuliani, S; Rovero, P; Dion, S; Regoli, D; Giachetti, A; Meli, A
1990-07-01
1. We have compared the ability of various tachykinins and selective tachykinin receptor agonists to induce contraction of the endothelium-denuded rabbit pulmonary artery (RPA) and hamster trachea (HT) and have estimated the affinity of some newly developed NK2 selective antagonists in the same tissues. 2. In confirmation of previous findings, experiments with the agonists indicated that NK2 receptors are the main if not the sole mediators of the response to tachykinins in both RPA and HT. No evidence for significant degradation of neurokinin A (NKA) was found in either tissue when experiments were repeated in the presence of a mixture of peptidase inhibitors (thiorphan, captopril and bestatin, 1 microM each). 3. The peptide antagonists tested were: Peptide I = [Tyr5, D-Trp6,8,9, Arg10]-NKA(4-10); Peptide II = [Tyr5, D-Trp6,8,9, Arg10]-NKA(3-10); Peptide III = Ac-Leu-Asp-Gln-Trp-Phe-Gly-NH2. The three peptides produced a concentration-dependent rightward shift of the concentration-response curve to NKA in both RPA and HT with no significant depression of the maximal response attainable. The slopes of the Schild plots were not significantly different from unity, indicating a competitive antagonism. Peptides I and II were about 100 times more potent in the RPA than in the HT, while Peptide III was about 100 times more potent in the HT than RPA. 4. The pA2 values obtained in these two tissues with the three antagonists were not significantly different when tested in the absence or presence of peptidase inhibitors, or when a selective NK2 receptor agonist, [beta Ala8]-NKA(4-10) was used instead of NKA. Similar pA2 values were obtained after 15 or 90min of incubation with the antagonists. Peptides I, II and III had no inhibitory effect on contractions produced by noradrenaline in the RPA or by carbachol in the HT. 5. Peptides I, II and III showed weak or no antagonistic activity toward the vasodilatator effect of substance P in the dog carotid artery (NK, receptor-mediated) or toward the contractile effect of neurokinin B in the rat portal vein (NK3 receptor-mediated). 6. These results provide pharmacological evidence for heterogeneity of NK2 receptors in the RPA and HT. The NK2 receptors present in these tissues are not discriminated by natural tachykinins or selective agonists, but are recognized with very different affinity by NK2 receptor antagonists.
Valerian extract and valerenic acid are partial agonists of the 5-HT5a receptor in vitro.
Dietz, Birgit M; Mahady, Gail B; Pauli, Guido F; Farnsworth, Norman R
2005-08-18
Insomnia is the most frequently encountered sleep complaint worldwide. While many prescription drugs are used to treat insomnia, extracts of valerian (Valeriana officinalis L., Valerianaceae) are also used for the treatment of insomnia and restlessness. To determine novel mechanisms of action, radioligand binding studies were performed with valerian extracts (100% methanol, 50% methanol, dichloromethane [DCM], and petroleum ether [PE]) at the melatonin, glutamate, and GABA(A) receptors, and 8 serotonin receptor subtypes. Both DCM and PE extracts had strong binding affinity to the 5-HT(5a) receptor, but only weak binding affinity to the 5-HT(2b) and the serotonin transporter. Subsequent binding studies focused on the 5-HT(5a) receptor due to the distribution of this receptor in the suprachiasmatic nucleus of the brain, which is implicated in the sleep-wake cycle. The PE extract inhibited [(3)H]lysergic acid diethylamide (LSD) binding to the human 5-HT(5a) receptor (86% at 50 microg/ml) and the DCM extract inhibited LSD binding by 51%. Generation of an IC(50) curve for the PE extract produced a biphasic curve, thus GTP shift experiments were also performed. In the absence of GTP, the competition curve was biphasic (two affinity sites) with an IC(50) of 15.7 ng/ml for the high-affinity state and 27.7 microg/ml for the low-affinity state. The addition of GTP (100 microM) resulted in a right-hand shift of the binding curve with an IC(50) of 11.4 microg/ml. Valerenic acid, the active constituent of both extracts, had an IC(50) of 17.2 microM. These results indicate that valerian and valerenic acid are new partial agonists of the 5-HT(5a) receptor.
Valerian extract and valerenic acid are partial agonists of the 5-HT5a receptor in vitro
Dietz, Birgit M.; Mahady, Gail B.; Pauli, Guido F.; Farnsworth, Norman R.
2018-01-01
Insomnia is the most frequently encountered sleep complaint worldwide. While many prescription drugs are used to treat insomnia, extracts of valerian (Valeriana officinalis L., Valerianaceae) are also used for the treatment of insomnia and restlessness. To determine novel mechanisms of action, radioligand binding studies were performed with valerian extracts (100% methanol, 50% methanol, dichloromethane [DCM], and petroleum ether [PE]) at the melatonin, glutamate, and GABAA receptors, and 8 serotonin receptor subtypes. Both DCM and PE extracts had strong binding affinity to the 5-HT5a receptor, but only weak binding affinity to the 5-HT2b and the serotonin transporter. Subsequent binding studies focused on the 5-HT5a receptor due to the distribution of this receptor in the suprachiasmatic nucleus of the brain, which is implicated in the sleep–wake cycle. The PE extract inhibited [3H]lysergic acid diethylamide (LSD) binding to the human 5-HT5a receptor (86% at 50 μg/ml) and the DCM extract inhibited LSD binding by 51%. Generation of an IC50 curve for the PE extract produced a biphasic curve, thus GTP shift experiments were also performed. In the absence of GTP, the competition curve was biphasic (two affinity sites) with an IC50 of 15.7 ng/ml for the high-affinity state and 27.7 μg/ml for the low-affinity state. The addition of GTP (100 AM) resulted in a right-hand shift of the binding curve with an IC50 of 11.4 μg/ml. Valerenic acid, the active constituent of both extracts, had an IC50 of 17.2 AM. These results indicate that valerian and valerenic acid are new partial agonists of the 5-HT5a receptor. PMID:15921820
Huang, Mei; Kwon, Sunoh; Oyamada, Yoshihiro; Rajagopal, Lakshmi; Miyauchi, Masanori; Meltzer, Herbert Y
2015-11-01
Blonanserin is a novel atypical antipsychotic drug (APD), which, unlike most atypical APDs, has a slightly higher affinity for dopamine (DA) D2 than serotonin (5-HT)2A receptors, and is an antagonist at both, as well as at D3 receptors. The effects of atypical APDs to enhance rodent cortical, hippocampal, limbic, and dorsal striatal (dSTR) DA and acetylcholine (ACh) release, contribute to their ability to improve novel object recognition (NOR) in rodents treated with sub-chronic (sc) phencyclidine (PCP) and cognitive impairment associated with schizophrenia (CIAS). Here we determined the ability of blonanserin, the D3 antagonist NGB 2904, and the typical APD, haloperidol, a D2 antagonist, to enhance neurotransmitter efflux in the medial prefrontal cortex (mPFC) and dSTR of mice, and to ameliorate the scPCP-induced deficit in NOR in rats. Blonanserin, 10mg/kg, i.p., increased DA, norepinephrine (NE), and ACh efflux in mPFC and dSTR. NGB 2904, 3mg/kg, increased DA and ACh, but not NE, efflux in mPFC, and DA, but not ACh, efflux in dSTR. Haloperidol increased DA and NE efflux in dSTR only. The selective D3 agonist PD 128907 partially blocked the blonanserin-induced cortical ACh, DA, NE and striatal DA efflux. NGB 2904, 3mg/kg, like blonanserin, 1mg/kg, and the combination of sub-effective doses of NGB 2904 and blonanserin (both 0.3mg/kg), ameliorated the scPCP-induced NOR deficit in rats. These results suggest that D3 receptor blockade may contribute to the ability of blonanserin to increase cortical DA and ACh efflux, as well as to restore NOR and improve CIAS. Copyright © 2015 Elsevier Inc. All rights reserved.
Omidfar, K; Rasaee, M J; Modjtahedi, H; Forouzandeh, M; Taghikhani, M; Bakhtiari, A; Paknejad, M; Kashanian, S
2004-01-01
EGFRvIII is the type III deletion mutant form of the epidermal growth factor receptor (EGFR) with transforming activity. This tumor-specific antigen is ligand independent, contains a constitutively active tyrosine kinase domain and has been shown to be present in a number of human malignancies. In this study, we report the production and characterization of camel antibodies that are directed against the external domain of the EGFRvIII. Antibodies developed in camels are smaller (i.e. IgG2 and IgG3 subclasses lack light chains) than any other conventional mammalian antibodies. This property of camel antibodies makes them ideal tools for basic research and other applications such as tumor imaging and cancer therapy. In the present study, camel antibodies were generated by immunization of camelids (Camelus bactrianus and Camelus dromedarius) with a synthetic 14-amino acid peptide corresponding to the mutated sequence of the EGFR, tissue homogenates of several patients with human glioblastoma, medulloblastoma and aggressive breast carcinoma, as well as EGFR-expressing cell lines. Three subclasses of camel IgG [conventional (IgG1, 160 kD) and heavy chain-only antibodies (IgG2 and IgG3, 90 kD)] were separated by their different binding properties to protein A and protein G affinity columns. The anti-EGFRvIII peptide antibodies from immunized camels were purified further using the EGFRvIII synthetic peptide affinity column. The purified anti-EGFRvIII peptide camel antibodies selectively bound to the EGFRvIII peptide and affinity-purified EGFRvIII from malignant tissues and detected a protein band of 140 kD from malignant tissues by Western blot. Affinity analysis showed that the antibodies from C. bactrianus and C. dromedarius reacted with peptide and antigen purified from a small cell lung cancer ascitic fluid with affinities of 2 x 10(8) and 5 x 10(7)M(-1) to the same extent, respectively. Since the functional antigen-binding domain of the anti-EGFRvIII antibodies in camels is much simpler and located only on the heavy chains of proteins, we are currently developing recombinant and smaller versions of the variable domain of these naturally occurring heavy-chain antibodies (V(HH)) for use in tumor imaging and cancer therapy.
Chaudhary, Amit; Yadav, Birendra Singh; Singh, Swati; Maurya, Pramod Kumar; Mishra, Alok; Srivastva, Shweta; Varadwaj, Pritish Kumar; Singh, Nand Kumar; Mani, Ashutosh
2017-10-01
Ficus religiosa L. is generally known as Peepal and belongs to family Moraceae . The tree is a source of many compounds having high medicinal value. In gastrointestinal tract, histamine H2 receptors have key role in histamine-stimulated gastric acid secretion. Their over stimulation causes its excessive production which is responsible for gastric ulcer. This study aims to screen the range of phytochemicals present in F. religiosa for binding with human histamine H2 and identify therapeutics for a gastric ulcer from the plant. In this work, a 3D-structure of human histamine H2 receptor was modeled by using homology modeling and the predicted model was validated using PROCHECK. Docking studies were also performed to assess binding affinities between modeled receptor and 34 compounds. Molecular dynamics simulations were done to identify most stable receptor-ligand complexes. Absorption, distribution, metabolism, excretion, and screening was done to evaluate pharmacokinetic properties of compounds. The results suggest that seven ligands, namely, germacrene, bergaptol, lanosterol, Ergost-5-en-3beta-ol, α-amyrin acetate, bergapten, and γ-cadinene showed better binding affinities. Among seven phytochemicals, lanosterol and α-amyrin acetate were found to have greater stability during simulation studies. These two compounds may be a suitable therapeutic agent against histamine H2 receptor. This study was performed to screen antiulcer compounds from F. religiosa . Molecular modeling, molecular docking and MD simulation studies were performed with selected phytochemicals from F. religiosa . The analysis suggests that Lanosterol and α-amyrin may be a suitable therapeutic agent against histamine H2 receptor. This study facilitates initiation of the herbal drug discovery process for the antiulcer activity. Abbreviations used: ADMET: Absorption, distribution, metabolism, excretion and toxicity, DOPE: Discrete Optimized Potential Energy, OPLS: Optimized potential for liquid simulations, RMSD: Root-mean-square deviation, HOA: Human oral absorption, MW: Molecular weight, SP: Standard-precision, XP: Extra-precision, GPCRs: G protein-coupled receptors, SASA: Solvent accessible surface area, Rg: Radius of gyration, NHB: Number of hydrogen bond.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sun Hong; Kyeong, Min Sik; Hwang, Yuri
Highlights: Black-Right-Pointing-Pointer 1-Dehydro-10-gingerdione (1D10G) from ginger inhibits LPS binding to MD-2. Black-Right-Pointing-Pointer 1D10G suppresses MyD88- or TRIF-dependent signaling in LPS-activated macrophages. Black-Right-Pointing-Pointer 1D10G down-regulates the expression of NF-{kappa}B-, AP1- or IRF3-target genes. Black-Right-Pointing-Pointer MD-2 is a molecular target in the anti-inflammatory action of 1D10G. -- Abstract: Myeloid differentiation protein 2 (MD-2) is a co-receptor of toll-like receptor 4 (TLR4) for innate immunity. Here, we delineated a new mechanism of 1-dehydro-10-gingerdione (1D10G), one of pungent isolates from ginger (Zingiber officinale), in the suppression of lipopolysaccharide (LPS)-induced gene expression of inflammatory cytokines. 1D10G inhibited LPS binding to MD-2 with higher affinity thanmore » gingerol and shogaol from dietary ginger. Moreover, 1D10G down-regulated TLR4-mediated expression of nuclear factor-{kappa}B (NF-{kappa}B) or activating protein 1 (AP1)-target genes such as tumor necrosis factor {alpha} (TNF-{alpha}) and interleukin-1{beta}, as well as those of interferon (IFN) regulatory factor 3 (IRF3)-target IFN-{beta} gene and IFN-{gamma} inducible protein 10 (IP-10) in LPS-activated macrophages. Taken together, MD-2 is a molecular target in the anti-inflammatory action of 1D10G.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lianying; College of Life Science, Dezhou University, Dezhou 253023; Ren, Xiao-Min
2014-09-15
Perfluorinated compounds (PFCs) have been shown to disrupt lipid metabolism and even induce cancer in rodents through activation of peroxisome proliferator-activated receptors (PPARs). Lines of evidence showed that PPARα was activated by PFCs. However, the information on the binding interactions between PPARγ and PFCs and subsequent alteration of PPARγ activity is still limited and sometimes inconsistent. In the present study, in vitro binding of 16 PFCs to human PPARγ ligand binding domain (hPPARγ-LBD) and their activity on the receptor in cells were investigated. The results showed that the binding affinity was strongly dependent on their carbon number and functional group.more » For the eleven perfluorinated carboxylic acids (PFCAs), the binding affinity increased with their carbon number from 4 to 11, and then decreased slightly. The binding affinity of the three perfluorinated sulfonic acids (PFSAs) was stronger than their PFCA counterparts. No binding was detected for the two fluorotelomer alcohols (FTOHs). Circular dichroim spectroscopy showed that PFC binding induced distinctive structural change of the receptor. In dual luciferase reporter assays using transiently transfected Hep G2 cells, PFCs acted as hPPARγ agonists, and their potency correlated with their binding affinity with hPPARγ-LBD. Molecular docking showed that PFCs with different chain length bind with the receptor in different geometry, which may contribute to their differences in binding affinity and transcriptional activity. - Highlights: • Binding affinity between PFCs and PPARγ was evaluated for the first time. • The binding strength was dependent on fluorinated carbon chain and functional group. • PFC binding induced distinctive structural change of the receptor. • PFCs could act as hPPARγ agonists in Hep G2 cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arinami, Tadao; Hamaguchi, Hideo; Itokawa, Masanari
The dopamine D2 receptor gene is a candidate gene for schizophrenia because the potency of certain neuroleptics correlates with their affinity for this receptor. Case-control studies in 291 schizophrenics, 78 patients with affective disorders, and 579 controls on an association of a molecular variant of S311C of the dopamine D2 receptor with psychiatric disorders were conducted. The frequency of individuals with S311C was significantly higher in schizophrenics with the absence of negative symptoms (17.1%, P < 0.00001), but similar in schizophrenics with the presence of negative symptoms (5.7%, P = 0.46) when compared with the controls (4.1%). The frequency ofmore » S311C was significantly higher in familiar schizophrenics from one local area but not in those from other areas. It was significant that S311C was frequently present in patients with mood-incongruent psychotic affective disorders (33.3%, P < 0.0001), but not in those with other affective disorders. These data suggest that S311C might be one of the genetic factors for symptomatic dimensions of delusions and hallucinations and might be involved in underlying clinical heterogeneity in schizophrenia and affective disorders. 48 refs., 3 tabs.« less
Del Bello, Fabio; Bonifazi, Alessandro; Giorgioni, Gianfabio; Cifani, Carlo; Micioni Di Bonaventura, Maria Vittoria; Petrelli, Riccardo; Piergentili, Alessandro; Fontana, Stefano; Mammoli, Valerio; Yano, Hideaki; Matucci, Rosanna; Vistoli, Giulio; Quaglia, Wilma
2018-04-26
In the present article, the M 1 mAChR bitopic agonist 1-[3-(4-butylpiperidin-1-yl)propyl]-1,2,3,4-tetrahydroquinolin-2-one (77-LH-28-1, 1) has been demonstrated to show unexpected D 4 R selectivity over D 2 R and D 3 R and to behave as a D 4 R antagonist. To better understand the structural features required for the selective interaction with the D 4 R and to obtain compounds unable to activate mAChRs, the aliphatic butyl chain and the piperidine nucleus of 1 were modified, affording compounds 2-14. The 4-benzylpiperidine 9 and the 4-phenylpiperazine 12 showed high D 4 R affinity and selectivity not only over the other D 2 -like subtypes, but also over M 1 -M 5 mAChRs. Derivative 12 was also highly selective over some selected off-targets. This compound showed biased behavior, potently and partially activating G i protein and inhibiting β-arrestin2 recruitment in functional studies. Pharmacokinetic studies demonstrated that it was characterized by a relevant brain penetration. Therefore, 12 might be a useful tool to better clarify the role played by D 4 R in disorders in which this subtype is involved.
LHRH-pituitary plasma membrane binding: the presence of specific binding sites in other tissues.
Marshall, J C; Shakespear, R A; Odell, W D
1976-11-01
Two specific binding sites for LHRH are present on plasma membranes prepared from rat and bovine anterior pituitary glands. One site is of high affinity (K = 2X108 1/MOL) and the second is of lower affinity (8-5X105 1/mol) and much greater capacity. Studies on membrane fractions prepared from other tissues showed the presence of a single specific site for LHRH. The kinetics and specificity of this site were similar to those of the lower affinity pituitary receptor. These results indicate that only pituitary membranes possess the higher affinity binding site and suggest that the low affinity site is not of physiological importance in the regulation of gonadotrophin secretion. After dissociation from membranes of non-pituitary tissues 125I-LHRH rebound to pituitary membrane preparations. Thus receptor binding per se does not result in degradation of LHRH and the function of these peripheral receptors remains obscure.
Mechanism of action of the hypnotic zolpidem in vivo
Crestani, Florence; Martin, James R; Möhler, Hanns; Rudolph, Uwe
2000-01-01
Zolpidem is a widely used hypnotic agent acting at the GABAA receptor benzodiazepine site. On recombinant receptors, zolpidem displays a high affinity to α1-GABAA receptors, an intermediate affinity to α2- and α3-GABAA receptors and fails to bind to α5-GABAA receptors. However, it is not known which receptor subtype is essential for mediating the sedative-hypnotic action in vivo. Studying α1(H101R) mice, which possess zolpidem-insensitive α1-GABAA receptors, we show that the sedative action of zolpidem is exclusively mediated by α1-GABAA receptors. Similarly, the activity of zolpidem against pentylenetetrazole-induced tonic convulsions is also completely mediated by α1-GABAA receptors. These results establish that the sedative-hypnotic and anticonvulsant activities of zolpidem are due to its action on α1-GABAA receptors and not on α2- or α3-GABAA receptors. PMID:11090095
Improta, G; Broccardo, M
1992-01-01
Pharmacological assays in isolated tissues and binding tests have recently shown that two peptides, with the sequence Tyr-D-Ala-Phe-Asp-(or Glu)- Val-Val-Gly-NH2, isolated from skin extracts of Phyllomedusa bicolor and named [D-Ala2]deltorphin I and II, respectively, possess a higher affinity and selectivity for delta-opioid receptors than any other known natural compound. Since much evidence supports the role of spinal delta-opioid sites in producing antinociceptive effects, we investigated whether analgesia might be detected by direct spinal cord administration of [D-Ala2]deltorphin II (DADELT II) in the rat. The thermal antinociceptive effects of intrathecal DADELT II and dermorphin, a potent mu-selective agonist, were compared at different postinjection times by means of the tail-flick test. The DADELT II produced a dose-related inhibition of the tail-flick response, which lasted 10-60 min depending on the dose and appeared to be of shorter duration than the analgesia produced in rats after intrathecal injection of dermorphin (20-120 min). The analgesic effect of infused or injected DADELT II was completely abolished by naltrindole, the highly selective delta antagonist. These results confirm the involvement of delta receptors in spinal analgesic activity in the rat.
Musante, Veronica; Neri, Elisa; Feligioni, Marco; Puliti, Aldamaria; Pedrazzi, Marco; Conti, Valerio; Usai, Cesare; Diaspro, Alberto; Ravazzolo, Roberto; Henley, Jeremy M; Battaglia, Giuseppe; Pittaluga, Anna
2008-09-01
The effects of mGlu1 and mGlu5 receptor activation on the depolarization-evoked release of [3H]d-aspartate ([3H]D-ASP) from mouse cortical synaptosomes were investigated. The mGlu1/5 receptor agonist 3,5-DHPG (0.1-100microM) potentiated the K+(12mM)-evoked [3H]D-ASP overflow. The potentiation occurred in a concentration-dependent manner showing a biphasic pattern. The agonist potentiated [3H]D-ASP exocytosis when applied at 0.3microM; the efficacy of 3,5-DHPG then rapidly declined and reappeared at 30-100microM. The fall of efficacy of agonist at intermediate concentration may be consistent with 3,5-DHPG-induced receptor desensitization. Facilitation of [3H]D-ASP exocytosis caused by 0.3microM 3,5-DHPG was prevented by the selective mGlu5 receptor antagonist MPEP, but was insensitive to the selective mGlu1 receptor antagonist CPCCOEt. In contrast, CPCCOEt prevented the potentiation by 50microM 3,5-DHPG, while MPEP had minimal effect. Unexpectedly, LY 367385 antagonized both the 3,5-DHPG-induced effects. A total of 0.3microM 3,5-DHPG failed to facilitate the K+-evoked [3H]D-ASP overflow from mGlu5 receptor knockout (mGlu5-/-) cortical synaptosomes, but not from nerve terminals prepared from the cortex of animals lacking the mGlu1 receptors, the crv4/crv4 mice. On the contrary, 50microM 3,5-DHPG failed to affect the [3H]D-ASP exocytosis from cortical synaptosomes obtained from crv4/crv4 and mGlu5-/-mice. Western blot analyses in subsynaptic fractions support the existence of both mGlu1 and mGlu5 autoreceptors located presynaptically, while immunocytochemistry revealed their presence at glutamatergic terminals. We propose that mGlu1 and mGlu5 autoreceptors exist on mouse glutamatergic cortical terminals; mGlu5 receptors may represent the "high affinity" binding sites for 3,5-DHPG, while mGlu1 autoreceptors represent the "low affinity" binding sites.
Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model.
Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G
2015-01-01
CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical.
Potent neutralizing anti-CD1d antibody reduces lung cytokine release in primate asthma model
Nambiar, Jonathan; Clarke, Adam W; Shim, Doris; Mabon, David; Tian, Chen; Windloch, Karolina; Buhmann, Chris; Corazon, Beau; Lindgren, Matilda; Pollard, Matthew; Domagala, Teresa; Poulton, Lynn; Doyle, Anthony G
2015-01-01
CD1d is a receptor on antigen-presenting cells involved in triggering cell populations, particularly natural killer T (NKT) cells, to release high levels of cytokines. NKT cells are implicated in asthma pathology and blockade of the CD1d/NKT cell pathway may have therapeutic potential. We developed a potent anti-human CD1d antibody (NIB.2) that possesses high affinity for human and cynomolgus macaque CD1d (KD ∼100 pM) and strong neutralizing activity in human primary cell-based assays (IC50 typically <100 pM). By epitope mapping experiments, we showed that NIB.2 binds to CD1d in close proximity to the interface of CD1d and the Type 1 NKT cell receptor β-chain. Together with data showing that NIB.2 inhibited stimulation via CD1d loaded with different glycolipids, this supports a mechanism whereby NIB.2 inhibits NKT cell activation by inhibiting Type 1 NKT cell receptor β-chain interactions with CD1d, independent of the lipid antigen in the CD1d antigen-binding cleft. The strong in vitro potency of NIB.2 was reflected in vivo in an Ascaris suum cynomolgus macaque asthma model. Compared with vehicle control, NIB.2 treatment significantly reduced bronchoalveolar lavage (BAL) levels of Ascaris-induced cytokines IL-5, IL-8 and IL-1 receptor antagonist, and significantly reduced baseline levels of GM-CSF, IL-6, IL-15, IL-12/23p40, MIP-1α, MIP-1β, and VEGF. At a cellular population level NIB.2 also reduced numbers of BAL lymphocytes and macrophages, and blood eosinophils and basophils. We demonstrate that anti-CD1d antibody blockade of the CD1d/NKT pathway modulates inflammatory parameters in vivo in a primate inflammation model, with therapeutic potential for diseases where the local cytokine milieu is critical. PMID:25751125
Hwang, D R; Kegeles, L S; Laruelle, M
2000-08-01
Imaging neuroreceptors with radiolabeled agonists might provide valuable information on the in vivo agonist affinity states of receptors of interest. We report here the radiosynthesis, biodistribution in rodents, and imaging studies in baboons of [(11)C]-labeled (-)-N-propyl-norapomorphine [(-)-NPA]. (-)-[(11)C]NPA was prepared by reacting norapomorphine with [(11)C]propionyl chloride and a lithium aluminum hydride reduction. [(11)C]Propionyl chloride was prepared by reacting [(11)C]CO(2) with ethylmagnesium bromide, followed by reacting with phthaloyl chloride. The radiochemical yield of (-)-[(11)C]NPA was 2.5% at end of synthesis (EOS), and the synthesis time was 60 min. The specific activity was 1700+/-1900 mCi/micromol ( N=7; ranged 110-5200 mCi/micromol at EOS). Rodent biodistribution studies showed high uptake of [(11)C](-)-NPA in D(2) receptor-rich areas, and the striatum/cerebellum ratios were 1.7, 3.4, and 4.4 at 5 min, 30 min, and 60 min postinjection, respectively. Pretreating the animals with haloperidol (1 mg/kg) decreased the striatum/cerebellum ratio at 30 min postinjection to 1.3. (-)-[(11)C]NPA was also evaluated via baboon positron emission tomography (PET) studies. Under control conditions ( N=4), rapid uptake of the tracer was observed and the striatum/cerebellum ratio reached 2.86+/-0.15 at 45 min postinjection. Following haloperidol pretreatment (0.2 mg/kg IV), the striatum/cerebellum ratio was 1.29 at 45 min postinjection. The result demonstrated the existence of specific binding of this new tracer to the D(2) receptor. To our knowledge, the current finding of a striatum/cerebellum ratio of 2.8 in baboon was the highest reported with a radiolabeled D(2) agonist. (-)-[(11)C]NPA is a promising new D(2) agonist PET tracer for probing D(2) receptors in vivo using PET.
Dopaminergic Modulation of Sleep-Wake States.
Herrera-Solis, Andrea; Herrera-Morales, Wendy; Nunez-Jaramillo, Luis; Arias-Carrion, Oscar
2017-01-01
The role of dopamine in sleep-wake regulation is considered as a wakefulness-promoting agent. For the clinical treatment of excessive daytime sleepiness, drugs have been commonly used to increase dopamine release. However, sleep disorders or lack of sleep are related to several dopaminerelated disorders. The effects of dopaminergic agents, nevertheless, are mediated by two families of dopamine receptors, D1 and D2-like receptors; the first family increases adenylyl cyclase activity and the second inhibits adenylyl cyclase. For this reason, the dopaminergic agonist effects on sleep-wake cycle are complex. Here, we review the state-of-the-art and discuss the different effects of dopaminergic agonists in sleep-wake states, and propose that these receptors account for the affinity, although not the specificity, of several effects on the sleep-wake cycle. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Interaction of 3,8-diazabicyclo (3.2.1) octanes with mu and delta opioid receptors.
Cignarella, G; Barlocco, D; Tranquillini, M E; Volterra, A; Brunello, N; Racagni, G
1988-05-01
A series of 3,8-diazabicyclo (3.2.1) octanes (DBO) (1) substituted at the nitrogen atoms by acyl and aralkenyl groups, were tested in in vitro binding assays towards mu and delta opioid receptors. The most representative terms (1a, 1d, 1g, 1j,) were also evaluated for the analgesic potency in vivo by the hot plate method. Among the compounds tested the most potent was the p.nitrocinnamyl DBO (1d) which displayed a mu/delta selectivity and an analgesic activity respectively 25 and 17 fold those of morphine. On the contrary, the m.hydroxycinnamyl DBO (1g) was markedly less active as agonist than the parent 1a, thus suggesting that structure 1 interacts with opioid receptors in a different fashion than morphine. Compound 1j isomer of 1a which is provided with high mu affinity, but lower analgesic potency, was found to possess a mixed agonist-antagonist activity.
Monoamine receptor interaction profiles of 4-thio-substituted phenethylamines (2C-T drugs).
Luethi, Dino; Trachsel, Daniel; Hoener, Marius C; Liechti, Matthias E
2018-05-15
4-Thio-substituted phenethylamines (2C-T drugs) are potent psychedelics with poorly defined pharmacological properties. Because of their psychedelic effects, 2C-T drugs are sometimes sold as new psychoactive substances (NPSs). The aim of the present study was to characterize the monoamine receptor and transporter interaction profiles of a series of 2C-T drugs. We determined the binding affinities of 2C-T drugs at monoamine receptors and transporters in human cells that were transfected with the respective receptors or transporters. We also investigated the functional activation of serotonergic 5-hydroxytryptamine 2A (5-HT 2A ) and 5-HT 2B receptors, activation of human trace amine-associated receptor 1 (TAAR 1 ), and inhibition of monoamine uptake transporters. 2C-T drugs had high affinity for 5-HT 2A and 5-HT 2C receptors (1-54 nM and 40-350 nM, respectively). With activation potencies of 1-53 nM and 44-370 nM, the drugs were potent 5-HT 2A receptor and 5-HT 2B receptor, respectively, partial agonists. An exception to this were the benzylthiophenethylamines, which did not potently activate the 5-HT 2B receptor (EC 50 > 3000 nM). Furthermore, the compounds bound to serotonergic 5-HT 1A and adrenergic receptors. The compounds had high affinity for the rat TAAR 1 (5-68 nM) and interacted with the mouse but not human TAAR 1 . The 2C-T drugs did not potently interact with monoamine transporters (K i > 4000 nM). The receptor binding profile of 2C-T drugs predicts psychedelic effects that are mediated by potent 5-HT 2 receptor interactions. This article is part of the Special Issue entitled 'Designer Drugs and Legal Highs.' Copyright © 2017 Elsevier Ltd. All rights reserved.
Absence of C-type natriuretic peptide receptors in hamster glomeruli.
Luk, J K; Wong, E F; Wong, N L
1994-01-01
The distribution of atrial natriuretic peptide receptor B (ANPR-B) varies between tissues and species. The aim of this study is to determine whether ANPR-B is present in the hamster glomeruli. In vitro C-type natriuretic peptide (CNP)- and atrial natriuretic factor (ANF)-stimulated cGMP accumulation studies were performed in hamster glomeruli. Elevated cGMP accumulations were observed upon ANF addition. No cGMP response was seen with CNP. Competitive receptor-binding experiments were performed with 125I-CNP and 125I-ANF against their respective cold peptides in hamster glomeruli. Although no CNP binding was detected, positive ANF binding was found and two types of ANF receptor were demonstrated. The affinity (Kdl) and maximum binding capacity (Bmaxl) of the high-affinity ANF receptor were 0.014 +/- 0.001 nM and 60.4 +/- 10.2 fmol/mg protein, respectively. Those of the low-affinity receptor (Kd2 and Bmax2) were 45.7 +/- 6.2 nM and 28.3 +/- 6.3 pmol/mg protein, respectively. Similarly, saturation binding experiments also failed to show any CNP receptor binding in hamster glomeruli. This finding suggests that ANPR-B is not present in hamster glomeruli and CNP is not a direct physiological regulator of hamster renal function.
Engineered Interleukin-2 Antagonists for the Inhibition of Regulatory T cells
Liu, David V.; Maier, Lisa M.; Hafler, David A.; Wittrup, K. Dane
2014-01-01
The immunosuppressive effects of CD4+ CD25high regulatory T cells interfere with anti-tumor immune responses in cancer patients. Here, we present a novel class of engineered human Interleukin (IL)-2 analogues that antagonize the IL-2 receptor, for inhibiting regulatory T cell suppression. These antagonists have been engineered for high affinity to the α subunit of the IL-2 receptor and very low affinity to either the β or γ subunit, resulting in a signaling-deficient IL-2 analogue that sequesters the IL-2 receptor α subunit from wild type IL-2. Two variants, “V91R” and “Q126T” with residue substitutions that disrupt the β and γ subunit binding interfaces, respectively, have been characterized in both a T cell line and in human primary regulatory T cells. These mutants retain their high affinity binding to IL-2 receptor α subunit, but do not activate STAT5 phosphorylation or stimulate T cell growth. The two mutants competitively antagonize wild-type IL-2 signaling through the IL-2 receptor with similar efficacy, with inhibition constants of 183 pM for V91R and 216 pM for Q126T. Here, we present a novel approach to CD25-mediated Treg inhibition, with the use of an engineered human IL-2 analogue that antagonizes the IL-2 receptor. PMID:19816193
Franks, Lirit N.; Ford, Benjamin M.; Madadi, Nikhil R.; Penthala, Narsimha R.; Crooks, Peter A.; Prather, Paul L.
2014-01-01
Our laboratory recently reported that a group of novel indole quinuclidine analogues bind with nanomolar affinity to cannabinoid type-1 and type-2 receptors. This study characterized the intrinsic activity of these compounds by determining whether they exhibit agonist, antagonist, or inverse agonist activity at cannabinoid type-1 and/or type-2 receptors. Cannabinoid receptors activate Gi/Go-proteins that then proceed to inhibit activity of the downstream intracellular effector adenylyl cyclase. Therefore, intrinsic activity was quantified by measuring the ability of compounds to modulate levels of intracellular cAMP in intact cells. Concerning cannabinoid type-1 receptors endogenously expressed in Neuro2A cells, a single analogue exhibited agonist activity, while eight acted as neutral antagonists and two possessed inverse agonist activity. For cannabinoid type-2 receptors stably expressed in CHO cells, all but two analogues acted as agonists; these two exceptions exhibited inverse agonist activity. Confirming specificity at cannabinoid type-1 receptors, modulation of adenylyl cyclase activity by all proposed agonists and inverse agonists was blocked by co-incubation with the neutral cannabinoid type-1 antagonist O-2050. All proposed cannabinoid type-1 receptor antagonists attenuated adenylyl cyclase modulation by cannabinoid agonist CP-55,940. Specificity at cannabinoid type-2 receptors was confirmed by failure of all compounds to modulate adenylyl cyclase activity in CHO cells devoid of cannabinoid type-2 receptors. Further characterization of select analogues demonstrated concentration-dependent modulation of adenylyl cyclase activity with potencies similar to their respective affinities for cannabinoid receptors. Therefore, indole quinuclidines are a novel structural class of compounds exhibiting high affinity and a range of intrinsic activity at cannabinoid type-1 and type-2 receptors. PMID:24858620
Neuroprotection Profile of the High Affinity NMDA Receptor Antagonist Conantokin-G
2002-01-01
antagonist dextromethorphan reduced infarction a maxi- TABLE 4 Physiological parameters for (0.5 nmol) Con-G and vehicle-treated rats with and without MCAo...experience, only AHN649, an analog of dextromethorphan , has produced comparable reductions in cerebral infarction (Tortella et al. 1999). Although...ischemia) and neurotoxicity (electroencephalographic) studies in rats with AHN649, a 3-amino analog of dextromethorphan and low-affinity N-methyl-D
McLeod, Michael C; Aubé, Jeffrey; Frankowski, Kevin J
2016-12-01
Analogues of the decahydrobenzoquinolin-5-one class of sigma (σ) receptor ligands were used to probe the structure-activity relationship trends for this recently discovered series of σ ligands. In all, 29 representatives were tested for σ and opioid receptor affinity, leading to the identification of compounds possessing improved σ 1 selectivity and, for the first time in this series, examples possessing preferential σ 2 affinity. Several structural features associated with these selectivity trends have been identified. Two analogues of improved selectivity were evaluated in a binding panel of 43 CNS-relevant targets to confirm their sigma receptor preference. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ping, Jinglei; Vishnubhotla, Ramya; Xi, Jin; Ducos, Pedro; Saven, Jeffery G; Liu, Renyu; Johnson, Alan T Charlie
2018-05-22
Opioid neuropeptides play a significant role in pain perception, appetite regulation, sleep, memory, and learning. Advances in understanding of opioid peptide physiology are held back by the lack of methodologies for real-time quantification of affinities and kinetics of the opioid neuropeptide-receptor interaction at levels typical of endogenous secretion (<50 pM) in biosolutions with physiological ionic strength. To address this challenge, we developed all-electronic opioid-neuropeptide biosensors based on graphene microelectrodes functionalized with a computationally redesigned water-soluble μ-opioid receptor. We used the functionalized microelectrode in a bias-free charge measurement configuration to measure the binding kinetics and equilibrium binding properties of the engineered receptor with [d-Ala 2 , N-MePhe 4 , Gly-ol]-enkephalin and β-endorphin at picomolar levels in real time.
Cik, M; Masure, S; Lesage, A S; Van Der Linden, I; Van Gompel, P; Pangalos, M N; Gordon, R D; Leysen, J E
2000-09-08
The members of the glial cell line-derived neurotrophic factor (GDNF) family signal via binding to the glycosyl phosphatidylinositol-anchored membrane proteins, the GDNF family receptors alpha (GFRalpha), and activation of cRET. We performed a detailed analysis of the binding of GDNF and neurturin to their receptors and investigated the influence of cRET on the binding affinities. We show that the rate of dissociation of (125)I-GDNF from GFRalpha1 is increased in the presence of 50 nm GDNF, an effect that can be explained by the occurrence of negative cooperativity. Scatchard plots of the ligand concentration binding isotherms reveal a pronounced downward curvature at low (125)I-GDNF concentrations suggesting the presence of positive cooperativity. This effect is observed in the range of GDNF concentrations responsible for biological activity (1-20 pm) and may have an important role in cRET-independent signaling. A high affinity site with a K(D) of 11 pm for (125)I-GDNF is detected only when GFRalpha1 is co-expressed with cRET at a DNA ratio of 1:3. These results suggest an interaction of GFRalpha1 and cRET in the absence of GDNF and demonstrate that the high affinity binding can be measured only when cRET is present.
Wilcox, R A; Fauq, A; Kozikowski, A P; Nahorski, S R
1997-02-03
The novel synthetic analogues D-3-fluoro-myo-inositol 1,5-bisphosphate-4-phosphorothioate, [3F-Ins(1,5)P2-4PS], D-3-fluoro-myo-inositol 1,4-bisphosphate-5-phosphorothioate [3F-Ins(1,4)P2-5PS], and D-3-fluoro-myo-inositol 1-phosphate-4,5-bisphosphorothioate [3F-Ins(1)P-(4,5)PS2] were utilised to define the structure-activity relationships which could produce partial agonism at the Ca2+ mobilising myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] receptor. Based on prior structure-activity data we hypothesised that the minimal structural requirements for lns(1,4,5)P3 receptor partial agonism, were phosphorothioate substitution of the crucial vicinal 4,5-bisphosphate pair accompanied by another structural perturbation, such fluorination of 3-position of the myo-inositol ring. All the analogues fully displaced [3H]Ins(1,4,5)P3 from a single Ins(1,4,5)P3 binding site in pig cerebellar membranes [3F-Ins(1,5)P2-4PS (1C50 = 26 nM), 3F-Ins(1,4)P2-5PS (IC50 = 80 nM) and 3F-Ins(1)P-(4,5)PS2 (IC50 = 109 nM) cf. Ins(1,4,5)P3 (IC50 = 11 nM)]. In contrast, 3F-Ins(1,5)P2-4PS (IC50 = 424 nM) and 3F-Ins(1,4)P2-5PS (IC50 = 3579 nM) were weak full agonists at the Ca2+ mobilising Ins(1,4,5)P3 receptor of permeabilised SH-SY5Y neuroblastoma cells, being respectively 4- and 36-fold less potent than Ins(1,4,5)P3 (EC50 = 99 nM). While 3F-Ins(1)P-(4,5)PS2 (EC50 = 11345 nM) was a partial agonist releasing only 64.3 +/- 1.9% of the Ins(1,4,5)P3-sensitive intracellular Ca2+ pools. 3F-Ins(1)P-(4,5)PS2 was unique among the Ins(1,4,5)P3 receptor partial agonists so far identified in having a relatively high affinity for the Ins(1,4,5)P3 binding site, accompanied by a significant loss of intrinsic activity for Ca2+ mobilisation. This improved affinity was probably due to the retention of the 1-position phosphate, which enhances interaction with the Ins-(1,4,5)P3 receptor. 3F-Ins(1)P-(4,5)PS2 may be an important lead compound for the development of efficient Ins(1,4,5)P3 receptor antagonists.
Coupling of G Proteins to Reconstituted Monomers and Tetramers of the M2 Muscarinic Receptor*
Redka, Dar'ya S.; Morizumi, Takefumi; Elmslie, Gwendolynne; Paranthaman, Pranavan; Shivnaraine, Rabindra V.; Ellis, John; Ernst, Oliver P.; Wells, James W.
2014-01-01
G protein-coupled receptors can be reconstituted as monomers in nanodiscs and as tetramers in liposomes. When reconstituted with G proteins, both forms enable an allosteric interaction between agonists and guanylyl nucleotides. Both forms, therefore, are candidates for the complex that controls signaling at the level of the receptor. To identify the biologically relevant form, reconstituted monomers and tetramers of the purified M2 muscarinic receptor were compared with muscarinic receptors in sarcolemmal membranes for the effect of guanosine 5′-[β,γ-imido]triphosphate (GMP-PNP) on the inhibition of N-[3H]methylscopolamine by the agonist oxotremorine-M. With monomers, a stepwise increase in the concentration of GMP-PNP effected a lateral, rightward shift in the semilogarithmic binding profile (i.e. a progressive decrease in the apparent affinity of oxotremorine-M). With tetramers and receptors in sarcolemmal membranes, GMP-PNP effected a vertical, upward shift (i.e. an apparent redistribution of sites from a state of high affinity to one of low affinity with no change in affinity per se). The data were analyzed in terms of a mechanistic scheme based on a ligand-regulated equilibrium between uncoupled and G protein-coupled receptors (the “ternary complex model”). The model predicts a rightward shift in the presence of GMP-PNP and could not account for the effects at tetramers in vesicles or receptors in sarcolemmal membranes. Monomers present a special case of the model in which agonists and guanylyl nucleotides interact within a complex that is both constitutive and stable. The results favor oligomers of the M2 receptor over monomers as the biologically relevant state for coupling to G proteins. PMID:25023280
Coupling of g proteins to reconstituted monomers and tetramers of the M2 muscarinic receptor.
Redka, Dar'ya S; Morizumi, Takefumi; Elmslie, Gwendolynne; Paranthaman, Pranavan; Shivnaraine, Rabindra V; Ellis, John; Ernst, Oliver P; Wells, James W
2014-08-29
G protein-coupled receptors can be reconstituted as monomers in nanodiscs and as tetramers in liposomes. When reconstituted with G proteins, both forms enable an allosteric interaction between agonists and guanylyl nucleotides. Both forms, therefore, are candidates for the complex that controls signaling at the level of the receptor. To identify the biologically relevant form, reconstituted monomers and tetramers of the purified M2 muscarinic receptor were compared with muscarinic receptors in sarcolemmal membranes for the effect of guanosine 5'-[β,γ-imido]triphosphate (GMP-PNP) on the inhibition of N-[(3)H]methylscopolamine by the agonist oxotremorine-M. With monomers, a stepwise increase in the concentration of GMP-PNP effected a lateral, rightward shift in the semilogarithmic binding profile (i.e. a progressive decrease in the apparent affinity of oxotremorine-M). With tetramers and receptors in sarcolemmal membranes, GMP-PNP effected a vertical, upward shift (i.e. an apparent redistribution of sites from a state of high affinity to one of low affinity with no change in affinity per se). The data were analyzed in terms of a mechanistic scheme based on a ligand-regulated equilibrium between uncoupled and G protein-coupled receptors (the "ternary complex model"). The model predicts a rightward shift in the presence of GMP-PNP and could not account for the effects at tetramers in vesicles or receptors in sarcolemmal membranes. Monomers present a special case of the model in which agonists and guanylyl nucleotides interact within a complex that is both constitutive and stable. The results favor oligomers of the M2 receptor over monomers as the biologically relevant state for coupling to G proteins. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
Exploring new scaffolds for angiotensin II receptor antagonism.
Kritsi, Eftichia; Matsoukas, Minos-Timotheos; Potamitis, Constantinos; Karageorgos, Vlasios; Detsi, Anastasia; Magafa, Vasilliki; Liapakis, George; Mavromoustakos, Thomas; Zoumpoulakis, Panagiotis
2016-09-15
Nowadays, AT1 receptor (AT1R) antagonists (ARBs) constitute the one of the most prevalent classes of antihypertensive drugs that modulate the renin-angiotensin system (RAS). Their main uses include also treatment of diabetic nephropathy (kidney damage due to diabetes) and congestive heart failure. Towards this direction, our study has been focused on the discovery of novel agents bearing different scaffolds which may evolve as a new class of AT1 receptor antagonists. To fulfill this aim, a combination of computational approaches and biological assays were implemented. Particularly, a pharmacophore model was established and served as a 3D search query to screen the ChEMBL15 database. The reliability and accuracy of virtual screening results were improved by using molecular docking studies. In total, 4 compounds with completely diverse chemical scaffolds from potential ARBs, were picked and tested for their binding affinity to AT1 receptor. Results revealed high nanomolar to micromolar affinity (IC50) for all the compounds. Especially, compound 4 exhibited a binding affinity of 199nM. Molecular dynamics simulations were utilized in an effort to provide a molecular basis of their binding to AT1R in accordance to their biological activities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Heal, David J; Hallam, Michelle; Prow, Michael; Gosden, Jane; Cheetham, Sharon; Choi, Yong K; Tarazi, Frank; Hutson, Peter
2017-06-01
Adult, female rats given irregular, limited access to chocolate develop binge-eating behaviour with normal bodyweight and compulsive/perseverative and impulsive behaviours similar to those in binge-eating disorder. We investigated whether (a) dysregulated central nervous system dopaminergic and opioidergic systems are part of the psychopathology of binge-eating and (b) these neurotransmitter systems may mediate the actions of drugs ameliorating binge-eating disorder psychopathology. Binge-eating produced a 39% reduction of striatal D 1 receptors with 22% and 23% reductions in medial and lateral caudate putamen and a 22% increase of striatal μ-opioid receptors. There was no change in D 1 receptor density in nucleus accumbens, medial prefrontal cortex or dorsolateral frontal cortex, striatal D 2 receptors and dopamine reuptake transporter sites, or μ-opioid receptors in frontal cortex. There were no changes in ligand affinities. The concentrations of monoamines, metabolites and estimates of dopamine (dopamine/dihydroxyphenylacetic acid ratio) and serotonin/5-hydroxyindolacetic acid ratio turnover rates were unchanged in striatum and frontal cortex. However, turnover of dopamine and serotonin in the hypothalamus was increased ~20% and ~15%, respectively. Striatal transmission via D 1 receptors is decreased in binge-eating rats while μ-opioid receptor signalling may be increased. These changes are consistent with the attenuation of binge-eating by lisdexamfetamine, which increases catecholaminergic neurotransmission, and nalmefene, a μ-opioid antagonist.
May, Jesse A.; Sharif, Najam A.; Chen, Hwang-Hsing; Liao, John C.; Kelly, Curtis R.; Glennon, Richard A.; Young, Richard; Li, Jun-Xu; Rice, Kenner C.; France, Charles P.
2013-01-01
AL-38022A is a novel synthetic serotonergic (5-HT) ligand that exhibited high affinity for each of the 5-HT2 receptor subtypes (Ki ≤ 2.2 nM), but a significantly lower (>100-fold less) affinity for other 5-HT receptors. In addition, AL-38022A displayed a very low affinity for a broad array of other receptors, neurotransmitter transport sites, ion channels, and second messenger elements, making it a relatively selective agent. AL-38022A potently stimulated functional responses via native and cloned rat (EC50 range: 1.9 – 22.5 nM) and human (EC50 range: 0.5 – 2.2 nM) 5-HT2 receptor subtypes including [Ca2+]i mobilization and tissue contractions with apparently similar potencies and intrinsic activities and was a full agonist at all 5-HT2 receptor subtypes. The CNS activity of AL-38022A was assessed by evaluating its discriminative stimulus effects in both a rat and a monkey drug discrimination paradigm using DOM as the training drug. AL-38022A fully generalized to the DOM stimulus in each of these studies; in monkeys MDL 100907 antagonized both DOM and AL-38022A. The pharmacological profile of AL-38022A suggests that it could be a useful tool in defining 5-HT2 receptor signaling and receptor characterization where 5-HT may function as a neurotransmitter. PMID:18718483
Cholecystokinin octapeptide analogues stable to brain proteolysis.
Knight, M; Barone, P; Tamminga, C A; Steardo, L; Chase, T N
1985-01-01
Based on recent findings identifying the initial degradative cleavage of CCK-8 at the Met3-Gly4 bond by a metalloendopeptidase, two analogues of CCK-8 with D-Ala and D-Trp substitutions at the Gly4 position were synthesized as stable analogues. Their stability to proteolysis by brain membranes and their binding potency at central CCK receptors were quantified. Both peptides are stable to degradation by peptidases in cortical synaptic membrane preparations. The analogues are nearly equipotent to CCK-8 in their affinities for inhibition of 125I-CCK-33 binding to guinea pig cortical membranes. L-Ala and L-Trp substituted peptides were synthesized for comparison. Both these peptides are degraded by synaptic membranes and the L-Trp substituted peptide possesses a greatly reduced affinity for central CCK receptors. Therefore, the structure of CCK due to the D conformation of Gly is more capable of interacting with brain CCK receptors. Further conformational analysis will establish whether the stabilized structure is a beta-bend or a beta-turn. Since these peptides are highly potent and stable to brain proteolysis they may be useful as stable CCK analogues for in vivo application.
Santhosh, KT; Elkhateeb, O; Nolette, N; Outbih, O; Halayko, AJ; Dakshinamurti, S
2011-01-01
BACKGROUND AND PURPOSE Neonatal pulmonary hypertension (PPHN) is characterized by pulmonary vasoconstriction, due in part to dysregulation of the thromboxane prostanoid (TP) receptor. Hypoxia induces TP receptor–mediated hyperresponsiveness, whereas serine phosphorylation mediates desensitization of TP receptors. We hypothesized that prostacyclin (IP) receptor activity induces TP receptor phosphorylation and decreases ligand affinity; that TP receptor sensitization in hypoxic myocytes is due to IP receptor inactivation; and that this would be reversible by the cAMP-specific phosphodiesterase inhibitor milrinone. EXPERIMENTAL APPROACH We examined functional regulation of TP receptors by serine phosphorylation and effects of IP receptor stimulation and protein kinase A (PKA) activity on TP receptor sensitivity in myocytes from neonatal porcine resistance pulmonary arteries after 72 h hypoxia in vitro. Ca2+ response curves to U46619 (TP receptor agonist) were determined in hypoxic and normoxic myocytes incubated with or without iloprost (IP receptor agonist), forskolin (adenylyl cyclase activator), H8 (PKA inhibitor) or milrinone. TP and IP receptor saturation binding kinetics were measured in presence of iloprost or 8-bromo-cAMP. KEY RESULTS Ligand affinity for TP receptors was normalized in vitro by IP receptor signalling intermediates. However, IP receptor affinity was compromised in hypoxic myocytes, decreasing cAMP production. Milrinone normalized TP receptor sensitivity in hypoxic myocytes by restoring PKA-mediated regulatory TP receptor phosphorylation. CONCLUSIONS AND IMPLICATIONS TP receptor sensitivity and EC50 for TP receptor agonists was regulated by PKA, as TP receptor serine phosphorylation by PKA down-regulated Ca2+ mobilization. Hypoxia decreased IP receptor activity and cAMP generation, inducing TP receptor hyperresponsiveness, which was reversed by milrinone. PMID:21385177
Fichna, Jakub; Perlikowska, Renata; Wyrębska, Anna; Gach, Katarzyna; Piekielna, Justyna; do-Rego, Jean Claude; Toth, Geza; Kluczyk, Alicja; Janecki, Tomasz; Janecka, Anna
2011-12-01
This study reports the synthesis and biological evaluation of a series of new side-chain-to-side-chain cyclized endomorphin-2 (EM-2) and morphiceptin analogs of a general structure Tyr-c(Xaa-Phe-Phe-Yaa)NH(2) or Tyr-c(Xaa-Phe-D-Pro-Yaa)NH(2), respectively, where Xaa and Yaa were L/D Asp or L/D Lys. Further modification of these analogs was achieved by introduction of 2',6'-dimethyl-L-tyrosine (Dmt) instead of Tyr in position 1. Peptides were synthesized by solid phase method and cleaved from the resin by a microwave-assisted procedure. Dmt(1)-substituted analogs displayed high affinity at the μ-opioid receptors, remained intact after incubation with the rat brain homogenate and showed remarkable, long-lasting μ-opioid receptor-mediated antinociceptive activity after central, but not peripheral administration. Our results demonstrate that cyclization is a promising strategy in the development of new opioid analgesics, but further modifications are necessary to enhance the blood-brain barrier permeability. Copyright © 2011. Published by Elsevier Ltd.
Ciucci, Alessandra; Palma, Carla; Manzini, Stefano; Werge, Thomas M
1998-01-01
The binding modalities of substance P and neurokinin A on the wild type and Gly166 to-Cys mutant NK1 receptors expressed on CHO cells were investigated in homologous and heterologous binding experiments using both radiolabelled substance P and neurokinin A.On the wild type NK1 receptor NKA displaces radiolabelled substance P with very low apparent affinity, despite its high-affinity binding constant (determined in homologous binding experiments). The Gly166 to-Cys substitution in the NK1 tachykinin receptor greatly enhances the apparent affinity of neurokinin A in competition for radiolabelled substance P, but it does not change the binding constant of neurokinin A. The mutation, thereby, eliminates the discrepancy between the low apparent affinity and the high binding constant of neurokinin A.On the wild type receptor the binding capacity of neurokinin A is significantly smaller than that of substance P. In contrast, the two tachykinins bind to approximately the same number of sites on the mutant receptor.Simultaneous mass action law analysis of binding data in which multiple radioligands were employed in parallel demonstrated that a one-site model was unable to accommodate all the experimental data, whereas a two-site model provided a dramatically better description.These two receptor-sites display equally high affinity for substance P, while neurokinin A strongly discriminates between a high and a low affinity component. The binding affinities of neurokinin A are not affected by the mutation, which instead specifically alters the distribution between receptor sites in favour of a high affinity neurokinin A binding form.The low apparent affinity and binding capacity of neurokinin A on the wild type receptor results from neurokinin A binding with high affinity only to a fraction of the sites labelled by substance P. The mutation increases the proportion of this site, and consequently enhances the apparent affinity and binding capacity of neurokinin A.The binding modalities of septide-like ligands (i.e. neurokinin B, SP(6-11), SP-methyl ester) are affected similarly to neurokinin A and are better resolved into two sites. The mutation leaves the affinity of these ligands for the two receptor forms unchanged, but increases the fraction of high-affinity sites. On the other hand, the binding of non-peptide and peptide antagonists (SR140.333 and FK888) behaved similarly to substance P with a single high affinity site that is unaffected by the mutation.These findings may suggest that the NK1 receptor exists in two different forms with similar affinity for substance P and NK1 antagonists, but with a high and a low affinity for neurokinin A and septide-like ligands. Hence, the Gly166 in the NK1 receptor would seem to control the distribution between a pan-reactive form and a substance P-selective form of the receptor. PMID:9786514
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niessen, Markus; Jaschinski, Frank; Item, Flurin
2007-02-15
Ligand-activated insulin receptor (IR) attracts and phosphorylates various substrates such as insulin receptor substrates 1-4 (IRS) and Shc. To investigate how binding affinity for substrate affects signalling we generated chimeric receptors with the {beta}-chain of the insulin receptor containing NPXY motives with different affinities for receptor substrates. We found that the extent of receptor tyrosine phosphorylation positively correlates with binding affinity towards IRS1/2 but not towards Shc. Moreover, overexpression of IRS1 or IRS2 but not of Shc increased IR tyrosine phosphorylation in a dose-dependent manner, also independent of insulin. Molecular truncations of IRS1 revealed that neither the isolated PH andmore » PTB domains nor the C-terminus with the tyrosine phosphorylation sites alone are sufficient for substrate-dependent receptor activation. Overexpression of IRS1 and IRS2 impaired insulin-induced internalization of the IR in a dose-dependent manner suggesting that IRS proteins prevent endosome-associated receptor dephosphorylation/inactivation. IRS1 and IRS2 could therefore target the activated IR to different cellular compartments. Overexpression of IRS1 and IRS2 inhibited insulin-stimulated activation of the MAP kinases Erk1/2 while it increased/induced activation of Akt/PKB. Finally, overexpression of IRS1 and IRS2 but not of Shc induced DNA synthesis in starved CHO-IR cells independent of exogenous growth factors. Our results demonstrate that variations in cellular IRS1 and IRS2 concentration affect insulin signalling both upstream and downstream and that IRS proteins could play instructive rather than just permissive roles in signal transmission.« less
Vijayan, R S K; Ghoshal, Nanda
2008-10-01
Given the heterogeneity of GABA(A) receptor, the pharmacological significance of identifying subtype selective modulators is increasingly being recognized. Thus, drugs selective for GABA(A) alpha(3) receptors are expected to display fewer side effects than the drugs presently in clinical use. Hence we carried out 3D QSAR (three-dimensional quantitative structure-activity relationship) studies on a series of novel GABA(A) alpha(3) subtype selective modulators to gain more insight into subtype affinity. To identify the 3D functional attributes required for subtype selectivity, a chemical feature-based pharmacophore, primarily based on selective ligands representing diverse structural classes was generated. The obtained pseudo receptor model of the benzodiazepine binding site revealed a binding mode akin to "Message-Address" concept. Scaffold hopping was carried out across multi-conformational May Bridge database for the identification of novel chemotypes. Further a focused data reduction approach was employed to choose a subset of enriched compounds based on "Drug likeness" and "Similarity-based" methods. These results taken together could provide impetus for rational design and optimization of more selective and high affinity leads with a potential to have decreased adverse effects.
Kurimura, Muneaki; Liu, Hehua; Sulima, Agnieszka; Hashimoto, Akihiro; Przybyl, Anna K.; Ohshima, Etsuo; Kodato, Shinichi; Deschamps, Jeffrey R.; Dersch, Christina M.; Rothman, Richard B.; Lee, Yong Sok; Jacobson, Arthur E.; Rice, Kenner C.
2008-01-01
In the isomeric series of 12 racemic topologically rigid N-methyl analogues of oxide-bridged phenylmorphans, all but two of the racemates, the ortho- and para-b-oxide-bridged phenylmorphansa 20 and 12, have remained to be synthesized. The b-isomers were very difficult to synthesize because of the highly strained 5,6-trans-fused ring junction that had to be formed. Our successful strategy required functionalization of the position para (or ortho) to a fluorine atom on the aromatic ring using an electron-withdrawing nitro group to activate that fluorine. The racemic N-phenethyl analogues 24 and 16 were moderately potent κ-receptor antagonists in the [35S]GTPγS assay. We synthesized the N-phenethyl-substituted oxide-bridged phenylmorphans in the ortho- and para-d oxide-bridged phenylmorphana series (51 and 52) which had not been previously evaluated using contemporary receptor binding assays to see whether they also have higher affinity for opioid receptors than their N-methyl relatives 46 and 47. PMID:19053757
Matsumoto, R R; McCracken, K A; Friedman, M J; Pouw, B; De Costa, B R; Bowen, W D
2001-05-11
Cocaine's ability to interact with sigma receptors suggests that these proteins mediate some of its behavioral effects. Therefore, three novel sigma receptor ligands with antagonist activity were evaluated in Swiss Webster mice: BD1018 (3S-1-[2-(3,4-dichlorophenyl)ethyl]-1,4-diazabicyclo[4.3.0]nonane), BD1063 (1-[2-(3,4-dichlorophenyl)ethyl]-4-methylpiperazine), and LR132 (1R,2S-(+)-cis-N-[2-(3,4-dichlorophenyl)ethyl]-2-(1-pyrrolidinyl)cyclohexylamine). Competition binding assays demonstrated that all three compounds have high affinities for sigma1 receptors. The three compounds vary in their affinities for sigma2 receptors and exhibit negligible affinities for dopamine, opioid, GABA(A) and NMDA receptors. In behavioral studies, pre-treatment of mice with BD1018, BD1063, or LR132 significantly attenuated cocaine-induced convulsions and lethality. Moreover, post-treatment with LR132 prevented cocaine-induced lethality in a significant proportion of animals. In contrast to the protection provided by the putative antagonists, the well-characterized sigma receptor agonist di-o-tolylguanidine (DTG) and the novel sigma receptor agonist BD1031 (3R-1-[2-(3,4-dichlorophenyl)ethyl]-1,4-diazabicyclo[4.3.0]nonane) each worsened the behavioral toxicity of cocaine. At doses where alone, they produced no significant effects on locomotion, BD1018, BD1063 and LR132 significantly attenuated the locomotor stimulatory effects of cocaine. To further validate the hypothesis that the anti-cocaine effects of the novel ligands involved antagonism of sigma receptors, an antisense oligodeoxynucleotide against sigma1 receptors was also shown to significantly attenuate the convulsive and locomotor stimulatory effects of cocaine. Together, the data suggests that functional antagonism of sigma receptors is capable of attenuating a number of cocaine-induced behaviors.
Rozsa, Bernadett; Nadji, Mehrdad; Schally, Andrew V; Dezso, Balazs; Flasko, Tibor; Toth, Gyorgy; Mile, Melinda; Block, Norman L; Halmos, Gabor
2011-04-01
The majority of men will develop symptoms of benign prostatic hyperplasia (BPH) after 70 years of age. Various studies indicate that antagonists of LHRH, such as cetrorelix, exert direct inhibitory effects on BPH mediated by specific LHRH receptors. Our aim was to investigate the mRNA for LHRH and LHRH receptors and the expression of LHRH receptors in specimens of human BPH. The expression of mRNA for LHRH (n=35) and LHRH receptors (n=55) was investigated by RT-PCR in surgical specimens of BPH, using specific primers. The characteristics of binding sites for LHRH on 20 samples were determined by ligand competition assays. The LHRH receptor expression was also examined in 64 BPH specimens by immunohistochemistry. PCR products for LHRH were found in 18 of 35 (51%) BPH tissues and mRNA for LHRH receptors was detected in 39 of 55 (71%) BPH specimens. Eighteen of 20 (90%) samples showed a single class of high affinity binding sites for [D-Trp(6) ]LHRH with a mean K(d) of 4.04 nM and a mean B(max) of 527.6 fmol/mg membrane protein. LHRH antagonist cetrorelix showed high affinity binding to LHRH receptors in BPH. Positive immunohistochemical reaction for LHRH receptors was present in 42 of 64 (67%) BPH specimens. A high incidence of LHRH receptors in BPH supports the use of LHRH antagonists such as cetrorelix, for treatment of patients with lower urinary tract symptoms from BPH. Copyright © 2010 Wiley-Liss, Inc.
Structural basis of nectin-1 recognition by pseudorabies virus glycoprotein D
Qi, Jianxun; Wu, Lili; Tian, Kegong; Luo, Tingrong; Shi, Yi
2017-01-01
An early and yet indispensable step in the alphaherpesvirus infection is the engagement of host receptors by the viral envelope glycoprotein D (gD). Of the thus-far identified gD receptors, nectin-1 is likely the most effective in terms of its wide usage by multiple alphaherpesviruses for cell entry. The molecular basis of nectin-1 recognition by the gD protein is therefore an interesting scientific question in the alphaherpesvirus field. Previous studies focused on the herpes simplex virus (HSV) of the Simplexvirus genus, for which both the free gD structure and the gD/nectin-1 complex structure were reported at high resolutions. The structural and functional features of other alphaherpesviral gDs, however, remain poorly characterized. In the current study, we systematically studied the characteristics of nectin-1 binding by the gD of a Varicellovirus genus member, the pseudorabies virus (PRV). We first showed that PRV infects host cells via both human and swine nectin-1, and that its gD exhibits similar binding affinities for nectin-1 of the two species. Furthermore, we demonstrated that removal of the PRV gD membrane-proximal residues could significantly increase its affinity for the receptor binding. The structures of PRV gD in the free and the nectin-1-bound states were then solved, revealing a similar overall 3D fold as well as a homologous nectin-1 binding mode to its HSV counterpart. However, several unique features were observed at the binding interface of PRV gD, enabling the viral ligand to utilize different gD residues (from those of HSV) for nectin-1 engagement. These observed binding characteristics were further verified by the mutagenesis study using the key-residue mutants of nectin-1. The structural and functional data obtained in this study, therefore, provide the basis of receptor recognition by PRV gD. PMID:28542478
Arai, Kazune; Kashiwazaki, Aki; Fujiwara, Yoko; Tsuchiya, Hiroyoshi; Sakai, Nobuya; Shibata, Katsushi; Koshimizu, Taka-aki
2015-02-15
A group of synthetic substance P (SP) antagonists, such as [Arg(6),D-Trp(7,9),N(Me)Phe(8)]-substance P(6-11) and [D-Arg(1),D-Phe(5),D-Trp(7,9),Leu(11)]-substance P, bind to a range of distinct G-protein-coupled receptor (GPCR) family members, including V1a vasopressin receptors, and they competitively inhibit agonist binding. This extended accessibility enabled us to identify a GPCR subset with a partially conserved binding site structure. By combining pharmacological data and amino acid sequence homology matrices, a pharmacological lineage of GPCRs that are sensitive to these two SP antagonists was constructed. We found that sensitivity to the SP antagonists was not limited to the Gq-protein-coupled V1a and V1b receptors; Gs-coupled V2 receptors and oxytocin receptors, which couple with both Gq and Gi, also demonstrated sensitivity. Unexpectedly, a dendrogram based on the amino acid sequences of 222 known GPCRs showed that a group of receptors sensitive to the SP antagonists are located in close proximity to vasopressin/oxytocin receptors. Gonadotropin-releasing peptide receptors, located near the vasopressin receptors in the dendrogram, were also sensitive to the SP analogs, whereas α1B adrenergic receptors, located more distantly from the vasopressin receptors, were not sensitive. Our finding suggests that pharmacological lineage analysis is useful in selecting subsets of candidate receptors that contain a conserved binding site for a ligand with broad-spectrum binding abilities. The knowledge that the binding site of the two broad-spectrum SP analogs partially overlaps with that of distinct peptide agonists is valuable for understanding the specificity/broadness of peptide ligands. Copyright © 2015 Elsevier B.V. All rights reserved.
Chinol, Marco; Bodei, Lisa; Cremonesi, Marta; Paganelli, Giovanni
2002-04-01
High concentrations of subtype 2 somatostatin tumor receptors (sst(2)) are expressed in numerous tumors, enabling primary and metastatic masses to be localized by scintigraphy after injecting (111)In-labeled somatostatin analogue octreotide. In addition to neuroendocrine tumors, somatostatin receptors have been identified on cancers of the central nervous system, breast, lung, and lymphatic tissue, and the use of radionuclide-labeled somatostatin analogues appeared promising for therapy as well as for diagnosis of such malignancies. The somatostatin analogue [DOTA-(D)Phe(1)-Tyr(3)] octreotide (DOTATOC) possesses favorable characteristics for its potential therapeutic use in that it shows high affinity for sst(2), moderately high affinity for sst(5), and intermediate affinity for sst(3), high hydrophilicity, stable and facile labeling with (111)In and (90)Y. We began to investigate the potential therapeutic applications of (90)Y DOTATOC in 1997 by performing a thorough dosimetric study in 18 patients who were administered (111)In DOTATOC to estimate the absorbed doses during(90)Y-DOTATOC therapy. Then, we moved on and treated an overall number of 256 patients, mostly recruited in 2 distinct protocols with and without the administration of kidney protecting agents, with (90)Y DOTATOC. No major acute reactions were observed up to the activity of 5.55 GBq per cycle. The MTD per cycle was defined as 5.18 GBq. Objective therapeutic responses were documented in more than 20% of patients in terms of partial and complete responses. The present article reports in details our clinical experience (still ongoing) and outcomes with the use of (90)Y DOTATOC. Copyright 2002, Elsevier Science (USA). All rights reserved.
Lee, Sang-Min; Booe, Jason M; Gingell, Joseph J; Sjoelund, Virginie; Hay, Debbie L; Pioszak, Augen A
2017-07-05
The calcitonin receptor (CTR) is a class B G protein-coupled receptor that is activated by the peptide hormones calcitonin and amylin. Calcitonin regulates bone remodeling through CTR, whereas amylin regulates blood glucose and food intake by activating CTR in complex with receptor activity-modifying proteins (RAMPs). These receptors are targeted clinically for the treatment of osteoporosis and diabetes. Here, we define the role of CTR N-glycosylation in hormone binding using purified calcitonin and amylin receptor extracellular domain (ECD) glycoforms and fluorescence polarization/anisotropy and isothermal titration calorimetry peptide-binding assays. N-Glycan-free CTR ECD produced in Escherichia coli exhibited ∼10-fold lower peptide affinity than CTR ECD produced in HEK293T cells, which yield complex N-glycans, or in HEK293S GnTI - cells, which yield core N-glycans (Man 5 GlcNAc 2 ). PNGase F-catalyzed removal of N-glycans at N73, N125, and N130 in the CTR ECD decreased peptide affinity ∼10-fold, whereas Endo H-catalyzed trimming of the N-glycans to single GlcNAc residues had no effect on peptide binding. Similar results were observed for an amylin receptor RAMP2-CTR ECD complex. Characterization of peptide-binding affinities of purified N → Q CTR ECD glycan site mutants combined with PNGase F and Endo H treatment strategies and mass spectrometry to define the glycan species indicated that a single GlcNAc residue at CTR N130 was responsible for the peptide affinity enhancement. Molecular modeling suggested that this GlcNAc functions through an allosteric mechanism rather than by directly contacting the peptide. These results reveal an important role for N-linked glycosylation in the peptide hormone binding of a clinically relevant class B GPCR.
Decker, T; Schneller, F; Kronschnabl, M; Dechow, T; Lipford, G B; Wagner, H; Peschel, C
2000-05-01
CpG-oligodeoxynucleotides (CpG-ODN) have been shown to induce proliferation, cytokine production, and surface molecule regulation in normal and malignant human B cells. In the present study, we investigated the potential of CpG-ODN to induce functional high-affinity receptors in leukemic and normal B cells and the effects of costimulation with IL-2 on proliferation, cytokine secretion, and surface molecule regulation. Highly purified B cells from B-CLL patients and normal controls were stimulated with CpG-ODN with or without IL-2. Expression of CD25 was determined using FACS, and the presence of high-affinity IL-2 receptors was determined by scatchard analysis. Costimulatory effects of IL-2 and CpG-ODN were investigated using proliferation assays, ELISA (IL-6, TNF-alpha), and FACS analysis (CD80, CD86 expression). Reactivity of autologous and allogeneic T cells toward activated B-CLL cells was determined in mixed lymphocyte reactions and Interferon-gamma Elispot assays. The CpG-ODN DSP30 caused a significantly stronger induction of the IL-2 receptor alpha chain in malignant as compared with normal B cells (p = 0.03). This resulted in the expression of functional high-affinity IL-2 receptors in B-CLL cells, but fewer numbers of receptors with less affinity were expressed in normal B cells. Although addition of IL-2 to CpG-ODN-stimulated cells augmented proliferation in both normal B cells and B-CLL cells, no costimulatory effect on cytokine production or surface molecule expression could be observed in normal B cells. In contrast, TNF-alpha and IL-6 production was increased in B-CLL cells, and the expression of CD80 and CD86 was further enhanced when IL-2 was used as a costimulus. Autologous and allogeneic immune recognition of B-CLL cells stimulated with CpG-ODN and IL-2 was increased compared with B-CLL cells stimulated with CpG-ODN alone. Stimulation of B-CLL cells with CpG-ODN and IL-2 might be an attractive strategy for potential immunotherapies for B-CLL patients.
Molecular interactions between general anesthetics and the 5HT2B receptor.
Matsunaga, Felipe; Gao, Lu; Huang, Xi-Ping; Saven, Jeffery G; Roth, Bryan L; Liu, Renyu
2015-01-01
Serotonin modulates many processes through a family of seven serotonin receptors. However, no studies have screened for interactions between general anesthetics currently in clinical use and serotonergic G-protein-coupled receptors (GPCRs). Given that both intravenous and inhalational anesthetics have been shown to target other classes of GPCRs, we hypothesized that general anesthetics might interact directly with some serotonin receptors and thus modify their function. Radioligand binding assays were performed to screen serotonin receptors for interactions with propofol and isoflurane as well as for affinity determinations. Docking calculations using the crystal structure of 5-HT2B were performed to computationally confirm the binding assay results and locate anesthetic binding sites. The 5-HT2B class of receptors interacted significantly with both propofol and isoflurane in the primary screen. The affinities for isoflurane and propofol were determined to be 7.78 and .95 μM, respectively, which were at or below the clinical concentrations for both anesthetics. The estimated free energy derived from docking calculations for propofol (-6.70 kcal/mol) and isoflurane (-5.10 kcal/mol) correlated with affinities from the binding assay. The anesthetics were predicted to dock at a pharmacologically relevant binding site of 5HT2B. The molecular interactions between propofol and isoflurane with the 5-HT2B class of receptors were discovered and characterized. This finding implicates the serotonergic GPCRs as potential anesthetic targets.
Gabe, Maria Buur Nordskov; Sparre-Ulrich, Alexander Hovard; Pedersen, Mie Fabricius; Gasbjerg, Lærke Smidt; Inoue, Asuka; Bräuner-Osborne, Hans; Hartmann, Bolette; Rosenkilde, Mette Marie
2018-04-01
GIP(3-30)NH 2 is a high affinity antagonist of the GIP receptor (GIPR) in humans inhibiting insulin secretion via G protein-dependent pathways. However, its ability to inhibit G protein-independent signaling is unknown. Here we determine its action on arrestin-recruitment and receptor internalization in recombinant cells. As GIP is adipogenic, we evaluate the inhibitory actions of GIP(3-30)NH 2 in human adipocytes. Finally, we determine the receptor selectivity of GIP(3-30)NH 2 among other human and animal GPCRs. cAMP accumulation and β-arrestin 1 and 2 recruitment were studied in transiently transfected HEK293 cells and real-time internalization in transiently transfected HEK293A and in HEK293A β-arrestin 1 and 2 knockout cells. Furthermore, human subcutaneous adipocytes were assessed for cAMP accumulation following ligand stimulation. Competition binding was examined in transiently transfected COS-7 cells using human 125 I-GIP(3-30)NH 2 . The selectivity of human GIP(3-30)NH 2 was examined by testing for agonistic and antagonistic properties on 62 human GPCRs. Human GIP(3-30)NH 2 inhibited GIP(1-42)-induced cAMP and β-arrestin 1 and 2 recruitment on the human GIPR and Schild plot analysis showed competitive antagonism with a pA 2 and Hill slope of 16.8 nM and 1.11 ± 0.02 in cAMP, 10.6 nM and 1.15 ± 0.05 in β-arrestin 1 recruitment, and 10.2 nM and 1.06 ± 0.05 in β-arrestin 2 recruitment. Efficient internalization of the GIPR was dependent on the presence of either β-arrestin 1 or 2. Moreover, GIP(3-30)NH 2 inhibited GIP(1-42)-induced internalization in a concentration-dependent manner and notably also inhibited GIP-mediated signaling in human subcutaneous adipocytes. Finally, the antagonist was established as GIPR selective among 62 human GPCRs being species-specific with high affinity binding to the human and non-human primate (Macaca fascicularis) GIPRs, and low affinity binding to the rat and mouse GIPRs (K d values of 2.0, 2.5, 31.6 and 100 nM, respectively). In conclusion, human GIP(3-30)NH 2 is a selective and species-specific GIPR antagonist with broad inhibition of signaling and internalization in transfected cells as well as in human adipocytes. Copyright © 2018 Elsevier Inc. All rights reserved.
Hamouda, Ayman K.; Wang, Ze-Jun; Stewart, Deirdre S.; Jain, Atul D.; Glennon, Richard A.
2015-01-01
Desformylflustrabromine (dFBr) is a positive allosteric modulator (PAM) of α4β2 and α2β2 nAChRs that, at concentrations >1 µM, also inhibits these receptors and α7 nAChRs. However, its interactions with muscle-type nAChRs have not been characterized, and the locations of its binding site(s) in any nAChR are not known. We report here that dFBr inhibits human muscle (αβεδ) and Torpedo (αβγδ) nAChR expressed in Xenopus oocytes with IC50 values of ∼1 μM. dFBr also inhibited the equilibrium binding of ion channel blockers to Torpedo nAChRs with higher affinity in the nAChR desensitized state ([3H]phencyclidine; IC50 = 4 μM) than in the resting state ([3H]tetracaine; IC50 = 60 μM), whereas it bound with only very low affinity to the ACh binding sites ([3H]ACh, IC50 = 1 mM). Upon irradiation at 312 nm, [3H]dFBr photoincorporated into amino acids within the Torpedo nAChR ion channel with the efficiency of photoincorporation enhanced in the presence of agonist and the agonist-enhanced photolabeling inhibitable by phencyclidine. In the presence of agonist, [3H]dFBr also photolabeled amino acids in the nAChR extracellular domain within binding pockets identified previously for the nonselective nAChR PAMs galantamine and physostigmine at the canonical α-γ interface containing the transmitter binding sites and at the noncanonical δ-β subunit interface. These results establish that dFBr inhibits muscle-type nAChR by binding in the ion channel and that [3H]dFBr is a photoaffinity probe with broad amino acid side chain reactivity. PMID:25870334
Stark, Adam J; Smith, Christopher T; Lin, Ya-Chen; Petersen, Kalen J; Trujillo, Paula; van Wouwe, Nelleke C; Kang, Hakmook; Donahue, Manus J; Kessler, Robert M; Zald, David H; Claassen, Daniel O
2018-03-28
The nigrostriatal and mesocorticolimbic dopamine networks regulate reward-driven behavior. Regional alterations to mesolimbic dopamine D 2/3 receptor expression are described in drug-seeking and addiction disorders. Parkinson's disease (PD) patients are frequently prescribed D 2 -like dopamine agonist (DAgonist) therapy for motor symptoms, yet a proportion develop clinically significant behavioral addictions characterized by impulsive and compulsive behaviors (ICBs). Until now, changes in D 2/3 receptor binding in both striatal and extrastriatal regions have not been concurrently quantified in this population. We identified 35 human PD patients (both male and female) receiving DAgonist therapy, with ( n = 17) and without ( n = 18) ICBs, matched for age, disease duration, disease severity, and dose of dopamine therapy. In the off-dopamine state, all completed PET imaging with [ 18 F]fallypride, a high affinity D 2 -like receptor ligand that can measure striatal and extrastriatal D 2/3 nondisplaceable binding potential (BP ND ). Striatal differences between ICB+/ICB- patients localized to the ventral striatum and putamen, where ICB+ subjects had reduced BP ND In this group, self-reported severity of ICB symptoms positively correlated with midbrain D 2/3 receptor BP ND Group differences in regional D 2/3 BP ND relationships were also notable: ICB+ (but not ICB-) patients expressed positive correlations between midbrain and caudate, putamen, globus pallidus, and amygdala BP ND s. These findings support the hypothesis that compulsive behaviors in PD are associated with reduced ventral and dorsal striatal D 2/3 expression, similar to changes in comparable behavioral disorders. The data also suggest that relatively preserved ventral midbrain dopaminergic projections throughout nigrostriatal and mesolimbic networks are characteristic of ICB+ patients, and may account for differential DAgonist therapeutic response. SIGNIFICANCE STATEMENT The biologic determinants of compulsive reward-based behaviors have broad clinical relevance, from addiction to neurodegenerative disorders. Here, we address biomolecular distinctions in Parkinson's disease patients with impulsive compulsive behaviors (ICBs). This is the first study to image a large cohort of ICB+ patients using positron emission tomography with [18F]fallypride, allowing quantification of D 2/3 receptors throughout the mesocorticolimbic network. We demonstrate widespread differences in dopaminergic networks, including (1) D2-like receptor distinctions in the ventral striatum and putamen, and (2) a preservation of widespread dopaminergic projections emerging from the midbrain, which is associated with the severity of compulsive behaviors. This clearly illustrates the roles of D 2/3 receptors and medication effects in maladaptive behaviors, and localizes them specifically to nigrostriatal and extrastriatal regions. Copyright © 2018 the authors 0270-6474/18/383231-10$15.00/0.
Boschert, V.; Frisch, C.; Back, J. W.; van Pee, K.; Weidauer, S. E.; Muth, E.-M.; Schmieder, P.; Beerbaum, M.; Knappik, A.; Timmerman, P.
2016-01-01
The glycoprotein sclerostin has been identified as a negative regulator of bone growth. It exerts its function by interacting with the Wnt co-receptor LRP5/6, blocks the binding of Wnt factors and thereby inhibits Wnt signalling. Neutralizing anti-sclerostin antibodies are able to restore Wnt activity and enhance bone growth thereby presenting a new osteoanabolic therapy approach for diseases such as osteoporosis. We have generated various Fab antibodies against human and murine sclerostin using a phage display set-up. Biochemical analyses have identified one Fab developed against murine sclerostin, AbD09097 that efficiently neutralizes sclerostin's Wnt inhibitory activity. In vitro interaction analysis using sclerostin variants revealed that this neutralizing Fab binds to sclerostin's flexible second loop, which has been shown to harbour the LRP5/6 binding motif. Affinity maturation was then applied to AbD09097, providing a set of improved neutralizing Fab antibodies which particularly bind human sclerostin with enhanced affinity. Determining the crystal structure of AbD09097 provides first insights into how this antibody might recognize and neutralize sclerostin. Together with the structure–function relationship derived from affinity maturation these new data will foster the rational design of new and highly efficient anti-sclerostin antibodies for the therapy of bone loss diseases such as osteoporosis. PMID:27558933
Persson, Petra; Shrimpton, J. Mark; McCormick, Stephen D.; Bjornsson, Bjorn Thrandur
2000-01-01
High-affinity, low-capacity estradiol-17β (E2) binding is present in rainbow trout scale. The Kd and Bmax of the scale E2 binding are similar to those of the liver E2 receptor (Kd is 1.6 ± 0.1 and 1.4 ± 0.1 nM, and Bmax is 9.1 ± 1.2 and 23.1 ± 2.2 fmol × mg protein-1, for scale and liver, respectively), but different from those of the high-affinity, low-capacity E2 binding in plasma (Kd is 4.0 ± 0.4 nM and Bmax is 625.4 ± 63.1 fmol × mg protein−1). The E2 binding in scale was displaced by testosterone, but not by diethylstilbestrol. Hence, the ligand binding specificity is different from that of the previously characterized liver E2 receptor, where E2 is displaced by diethylstilbestrol, but not by testosterone. The putative scale E2 receptor thus appears to bind both E2 and testosterone, and it is proposed that the increased scale resorption observed during sexual maturation in both sexes of several salmonid species may be mediated by this receptor. No high-affinity, low-capacity E2 binding could be detected in rainbow trout gill or skin.
NASA Astrophysics Data System (ADS)
Xu, Xianjin; Yan, Chengfei; Zou, Xiaoqin
2017-08-01
The growing number of protein-ligand complex structures, particularly the structures of proteins co-bound with different ligands, in the Protein Data Bank helps us tackle two major challenges in molecular docking studies: the protein flexibility and the scoring function. Here, we introduced a systematic strategy by using the information embedded in the known protein-ligand complex structures to improve both binding mode and binding affinity predictions. Specifically, a ligand similarity calculation method was employed to search a receptor structure with a bound ligand sharing high similarity with the query ligand for the docking use. The strategy was applied to the two datasets (HSP90 and MAP4K4) in recent D3R Grand Challenge 2015. In addition, for the HSP90 dataset, a system-specific scoring function (ITScore2_hsp90) was generated by recalibrating our statistical potential-based scoring function (ITScore2) using the known protein-ligand complex structures and the statistical mechanics-based iterative method. For the HSP90 dataset, better performances were achieved for both binding mode and binding affinity predictions comparing with the original ITScore2 and with ensemble docking. For the MAP4K4 dataset, although there were only eight known protein-ligand complex structures, our docking strategy achieved a comparable performance with ensemble docking. Our method for receptor conformational selection and iterative method for the development of system-specific statistical potential-based scoring functions can be easily applied to other protein targets that have a number of protein-ligand complex structures available to improve predictions on binding.
8-(2-Furyl)adenine derivatives as A₂A adenosine receptor ligands.
Dal Ben, Diego; Buccioni, Michela; Lambertucci, Catia; Thomas, Ajiroghene; Klotz, Karl-Norbert; Federico, Stephanie; Cacciari, Barbara; Spalluto, Giampiero; Volpini, Rosaria
2013-01-01
Selective adenosine receptor modulators are potential tools for numerous therapeutic applications, including cardiovascular, inflammatory, and neurodegenerative diseases. In this work, the synthesis and biological evaluation at the four human adenosine receptor subtypes of a series of 9-substituted 8-(2-furyl)adenine derivatives are reported. Results show that 8-(2-furyl)-9-methyladenine is endowed with high affinity at the A₂A subtype. Further modification of this compound with introduction of arylacetyl or arylcarbamoyl groups in N(6)-position takes to different effects on the A₂A affinity and in particular on the selectivity versus the other three adenosine receptor subtypes. A molecular modelling analysis at three different A₂A receptor crystal structures provides an interpretation of the obtained biological results. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Use of 2-(/sup 125/I)iodomelatonin to characterize melatonin binding sites in chicken retina
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubocovich, M.L.; Takahashi, J.S.
2-(/sup 125/I)Iodomelatonin binds with high affinity to a site possessing the pharmacological characteristics of a melatonin receptor in chicken retinal membranes. The specific binding of 2-(/sup 125/I)iodomelatonin is stable, saturable, and reversible. Saturation experiments indicated that 2-(/sup 125/I)iodomelatonin labeled a single class of sites with an affinity constant (Kd) of 434 +/- 56 pM and a total number of binding sites (Bmax) of 74.0 +/- 13.6 fmol/mg of protein. The affinity constant obtained from kinetic analysis was in close agreement with that obtained in saturation experiments. Competition experiments showed a monophasic reduction of 2-(/sup 125/I)iodomelatonin binding with a pharmacological ordermore » of indole amine affinities characteristic of a melatonin receptor: 2-iodomelatonin greater than 6-chloromelatonin greater than or equal to melatonin greater than or equal to 6,7-dichloro-2-methylmelatonin greater than 6-hydroxymelatonin greater than or equal to 6-methoxymelatonin much greater than N-acetyltryptamine greater than N-acetyl-5-hydroxytryptamine greater than 5-methoxytryptamine greater than 5-hydroxytryptamine (inactive). The affinities of these melatonin analogs in competing for 2-(/sup 125/I)iodomelatonin binding sites were correlated closely with their potencies for inhibition of the calcium-dependent release of (3H)dopamine from chicken and rabbit retinas, indicating association of the binding site with a functional response regulated by melatonin. The results indicate that 2-(/sup 125/I)iodomelatonin is a selective, high-affinity radioligand for the identification and characterization of melatonin receptor sites.« less
Solubilization of phencyclidine receptors from rat cerebral cortex in an active ligand binding site
DOE Office of Scientific and Technical Information (OSTI.GOV)
McVittie, L.D.; Sibley, D.R.
1989-01-01
A phencyclidine (PCP) receptor binding site has been solubilized in an active ligand-binding state from rat cerebral cortical membranes with sodium deoxycholate. Optimal receptor solubilization occurs at a detergent/protein ratio of 0.5 (w/w); for 5 mg protein/ml solubilized with 0.25% sodium deoxycholate, about 60% of the protein and 25% of the receptor is solubilized. Specific binding of either (/sup 3/H)-N-(1-(2-thienyl)cyclohexyl)piperidine ((/sup 3/H)TCP) or (/sup 3/H)MK-801 is measurable by filtration through Sephadex G-50 columns or glass fiber filters; more than 60% of the binding activity is stable after 48 h at 4/degrees/C. In the presence of detergent, (/sup 3/H)TCP binding exhibitsmore » a K/sub d/ of 250 nM, a B/sub max/ of 0.56 pmol/mg protein, and a pharmacological profile consistent with that of the membrane-bound PCP receptor, although most drugs bind with affinities 2 to 8 fold lower than in membranes. Upon reduction of detergent concentration, binding parameters approximate those for the membrane-bound receptor (/sup 3/H)TCP binding: K/sub d/ = 48 nM, M/sub max/ = 1.13 pmol/mg protein.« less
Solubilization and purification of melatonin receptors from lizard brain.
Rivkees, S A; Conron, R W; Reppert, S M
1990-09-01
Melatonin receptors in lizard brain were identified and characterized using 125I-labeled melatonin ([125I]MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resulted in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography.
Richter, K; Egger, R; Negri, L; Corsi, R; Severini, C; Kreil, G
1990-06-01
We present the structure of four precursors for [D-Ala2]deltorphins I and II as deduced from cDNAs cloned from skin of the frog Phyllomedusa bicolor. These contain the genetic information for one copy of [D-Ala2]deltorphin II and zero, one, or three copies of [D-Ala2]deltorphin I. In each case, the D-alanine of the end product is encoded by a normal GCG codon for L-alanine. In addition, the existence of three peptides related to dermorphin was predicted from the amino acid sequence of the precursors. These peptides were synthesized with a D-alanine in position 2 and their pharmacological properties were tested. Two of them, [Lys7]dermorphin-OH and [Trp4,Asn7]dermorphin-OH, were found to have roughly the same affinity and selectivity for mu-type opioid receptors as dermorphin.
Richter, K; Egger, R; Negri, L; Corsi, R; Severini, C; Kreil, G
1990-01-01
We present the structure of four precursors for [D-Ala2]deltorphins I and II as deduced from cDNAs cloned from skin of the frog Phyllomedusa bicolor. These contain the genetic information for one copy of [D-Ala2]deltorphin II and zero, one, or three copies of [D-Ala2]deltorphin I. In each case, the D-alanine of the end product is encoded by a normal GCG codon for L-alanine. In addition, the existence of three peptides related to dermorphin was predicted from the amino acid sequence of the precursors. These peptides were synthesized with a D-alanine in position 2 and their pharmacological properties were tested. Two of them, [Lys7]dermorphin-OH and [Trp4,Asn7]dermorphin-OH, were found to have roughly the same affinity and selectivity for mu-type opioid receptors as dermorphin. PMID:2352951
Hastrup, H; Schwartz, T W
1996-12-16
The three main tachykinins, substance P, neurokinin A (NKA), and neurokinin B, are believed to be selective ligands for respectively the NK-1, NK-2 and NK-3 receptors. However, NKA also has actions which cannot be mediated through its normal NK-2 receptor and the synthetic peptide [pGlu6,Pro9]-Substance P9-11--called septide--is known to have tachykinin-like actions despite its apparent lack of binding to any known tachykinin receptor. In the cloned NK-1 receptor expressed in COS-7 cells NKA and septide as expected were poor competitors for radiolabeled substance P. However, by using radiolabeled NKA and septide directly, it was found that both peptides in homologous binding assays as well as in competition against each other in fact bound to the NK-1 receptor with high affinity: Kd values of 0.51 +/- 0.15 nM (NKA) and 0.55 +/- 0.03 nM (septide). It is concluded that NKA and septide are high-affinity ligands for the NK-1 receptor but that they are poor competitors for substance P, which in contrast competes very well for binding with both NKA and septide.
Involvement of Semaphorin (Sema4D) in T-Dependent Activation of B Cells.
Kuklina, Е М; Nekrasova, I V; Valieva, Yu V
2017-08-01
The involvement of endogenous semaphorin (Sema4D) into the key stage of T-dependent differentiation of B cells, formation of plasmoblasts, was demonstrated in vitro in T/B cell co-culture under conditions of polyclonal activation of T cells. The effect of semaphorin was not associated with activation of high-affinity Sema4D receptor plexin B1, but involves lowaffinity receptor CD72. These data indicate that Sema4D-dependent signal regulates not only the initial stage of B-cell activation, proliferative response to the antigen, but also further differentiation of B cells into plasma cells.
Dziubina, Anna; Szmyd, Karina; Zygmunt, Małgorzata; Sapa, Jacek; Dudek, Magdalena; Filipek, Barbara; Drabczyńska, Anna; Załuski, Michał; Pytka, Karolina; Kieć-Kononowicz, Katarzyna
2016-12-01
It has recently been suggested that the adenosine A 2A receptor plays a role in several animal models of depression. Additionally, A 2A antagonists have reversed behavioral deficits and exhibited a profile similar to classical antidepressants. In the present study, imidazo- and pyrimido[2,1-f]purinedione derivatives (KD 66, KD 167, KD 206) with affinity to A 2A receptors but poor A 1 affinity were evaluated for their antidepressant- and anxiolytic-like activity. The activity of these derivatives was tested using a tail suspension and forced swim test, two widely-used behavioral paradigms for the evaluation of antidepressant-like activity. In turn, the anxiolytic activity was evaluated using the four-plate test. The results showed the antidepressant-like activity of pyrimido- and imidazopurinedione derivatives (i.e. KD 66, KD 167 and KD 206) in acute and chronic behavioral tests in mice. KD 66 revealed an anxiolytic-like effect, while KD 167 increased anxiety behaviors. KD 206 had no effect on anxiety. Furthermore, none of the tested compounds increased locomotor activity. Available data support the proposition that the examined compounds with adenosine A 2A receptor affinity may be an interesting target for the development of antidepressant and/or anxiolytic agents. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Binding affinities of anti-acetylcholine receptor autoantibodies in myasthenia gravis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bray, J.J.; Drachman, D.B.
1982-01-01
Antibodies directed against acetylcholine (ACh) receptors are present in the sera of nearly 90% of patients with myasthenia gravis (MG), and are involved in the pathogenesis of this autoimmune disease. However, the antibody titers measured by the standard radioimmunoassay correspond poorly with the clinical severity of the disease. To determine whether this disparity could be accounted for by differences in the binding affinities of anti-ACh receptor antibodies in different patients, we have measured the binding affinities of these autoantibodies in 15 sera from MG patients. The affinity constants (K/sub o/), as determined by Scatchard analysis, were all in the rangemore » of 10/sup 10/ M/sup -1/, comparable to the highest values reported in immunized animals. The affinity constants were truly representative of the population of autoantibodies detected by the radioimmunoassay, as shown by the remarkable linearity of the Scatchard plots (r/sup 2/>0.90) and the close correlation between the antibody titers determined by extrapolation of the Scatchard plots and by saturation analysis (r = 0.99; p < 0.001). There was only a 6-fold variation in affinity constants measured in this series of patients despite widely differing antibody titers and severity of the disease. Factors other than the titer and affinity of anti-ACh receptor antibodies may correlate better with the clinical manifestations of MG.« less
Thom, George; Burrell, Matthew; Haqqani, Arsalan S; Yogi, Alvaro; Lessard, Etienne; Brunette, Eric; Delaney, Christie; Baumann, Ewa; Callaghan, Deborah; Rodrigo, Natalia; Webster, Carl I; Stanimirovic, Danica B
2018-04-02
The blood-brain barrier (BBB) is a formidable obstacle for brain delivery of therapeutic antibodies. However, antibodies against the transferrin receptor (TfR), enriched in brain endothelial cells, have been developed as delivery carriers of therapeutic cargoes into the brain via a receptor-mediated transcytosis pathway. In vitro and in vivo studies demonstrated that either a low-affinity or monovalent binding of these antibodies to the TfR improves their release on the abluminal side of the BBB and target engagement in brain parenchyma. However, these studies have been performed with mouse-selective TfR antibodies that recognize different TfR epitopes and have varied binding characteristics. In this study, we evaluated serum pharmacokinetics and brain and CSF exposure of the rat TfR-binding antibody OX26 affinity variants, having K D s of 5 nM, 76 nM, 108 nM, and 174 nM, all binding the same epitope in bivalent format. Pharmacodynamic responses were tested in the Hargreaves chronic pain model after conjugation of OX26 affinity variants with the analgesic and antiepileptic peptide, galanin. OX26 variants with affinities of 76 nM and 108 nM showed enhanced brain and cerebrospinal fluid (CSF) exposure and higher potency in the Hargreaves model, compared to a 5 nM affinity variant; lowering affinity to 174 nM resulted in prolonged serum pharmacokinetics, but reduced brain and CSF exposure. The study demonstrates that binding affinity optimization of TfR-binding antibodies could improve their brain and CSF exposure even in the absence of monovalent TfR engagement.
Critical Hydrogen Bond Formation for Activation of the Angiotensin II Type 1 Receptor*
Cabana, Jérôme; Holleran, Brian; Beaulieu, Marie-Ève; Leduc, Richard; Escher, Emanuel; Guillemette, Gaétan; Lavigne, Pierre
2013-01-01
G protein-coupled receptors contain selectively important residues that play central roles in the conformational changes that occur during receptor activation. Asparagine 111 (N1113.35) is such a residue within the angiotensin II type 1 (AT1) receptor. Substitution of N1113.35 for glycine leads to a constitutively active receptor, whereas substitution for tryptophan leads to an inactivable receptor. Here, we analyzed the AT1 receptor and two mutants (N111G and N111W) by molecular dynamics simulations, which revealed a novel molecular switch involving the strictly conserved residue D742.50. Indeed, D742.50 forms a stable hydrogen bond (H-bond) with the residue in position 1113.35 in the wild-type and the inactivable receptor. However, in the constitutively active mutant N111G-AT1 receptor, residue D74 is reoriented to form a new H-bond with another strictly conserved residue, N461.50. When expressed in HEK293 cells, the mutant N46G-AT1 receptor was poorly activable, although it retained a high binding affinity. Interestingly, the mutant N46G/N111G-AT1 receptor was also inactivable. Molecular dynamics simulations also revealed the presence of a cluster of hydrophobic residues from transmembrane domains 2, 3, and 7 that appears to stabilize the inactive form of the receptor. Whereas this hydrophobic cluster and the H-bond between D742.50 and W1113.35 are more stable in the inactivable N111W-AT1 receptor, the mutant N111W/F77A-AT1 receptor, designed to weaken the hydrophobic core, showed significant agonist-induced signaling. These results support the potential for the formation of an H-bond between residues D742.50 and N461.50 in the activation of the AT1 receptor. PMID:23223579
Nagaoka, Hikaru; Nishiwaki, Hisashi; Kubo, Takuya; Akamatsu, Miki; Yamauchi, Satoshi; Shuto, Yoshihiro
2015-02-15
In the present study, nitromethylene neonicotinoid derivatives possessing substituents that contain a sulfur atom, oxygen atom or aromatic ring at position 5 on the imidazolidine ring were synthesized to evaluate their affinity for the nicotinic acetylcholine receptor (nAChR) and their insecticidal activity against adult female houseflies. Comparing the receptor affinity of the alkylated derivative with the receptor affinity of compounds possessing either ether or thioether groups revealed that conversion of the carbon atom to a sulfur atom did not influence the receptor affinity, whereas conversion to an oxygen atom was disadvantageous for the receptor affinity. The receptor affinity of compounds possessing a benzyl or phenyl group was lower than that of the unsubstituted compound. Analysis of the three-dimensional quantitative structure-activity relationship using comparative molecular field analysis demonstrated that steric hindrance of the receptor should exist around the C3 of an n-butyl group attached at position 5 on the imidazolidine ring. A docking study of the nAChR-ligand model suggested that the ligand-binding region expands as the length of the substituent increases by brushing against the amino acids that form the binding region. The insecticidal activity of the compounds was positively correlated with the receptor affinity by considering logP and the number of heteroatoms, including sulfur and oxygen atoms, in the substituents, suggesting that the insecticidal activity is influenced by the receptor affinity, hydrophobicity, and metabolic stability of the compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.
Pari, Leelavinothan; Latha, Muniappan; Rao, Chippada Appa
2004-01-01
We investigated the insulin-receptor-binding effect of Scoparia dulcis plant extract in streptozotocin (STZ)-induced male Wistar rats, using circulating erythrocytes (ER) as a model system. An aqueous extract of S dulcis plant (SPEt) (200 mg/kg body weight) was administered orally. We measured blood levels of glucose and plasma insulin and the binding of insulin to cell-membrane ER receptors. Glibenclamide was used as standard reference drug. The mean specific binding of insulin to ER was significantly lower in diabetic control rats (DC) (55.0 +/- 2.8%) than in SPEt-treated (70.0 +/- 3.5%)- and glibenclamide-treated (65.0 +/- 3.3%) diabetic rats, resulting in a significant decrease in plasma insulin. Scatchard plot analysis demonstrated that the decrease in insulin binding was accounted for by a lower number of insulin receptor sites per cell in DC rats when compared with SPEt- and glibenclamide-treated rats. High-affinity (Kd1), low-affinity (Kd2), and kinetic analysis revealed an increase in the average receptor affinity in ER from SPEt and glibenclamide treated diabetic rats having 2.5 +/- 0.15 x 10(10) M(-1) (Kd1); 17.0 +/- 1.0 x 10(-8) M(-1) (Kd2), and 2.0 +/- 0.1 x 10(-10) M(-1) (Kd1); 12.3 +/- 0.9 x 10(-8) M(-1) (Kd2) compared with 1.0 +/- 0.08 x 10(-10) M(-1) (Kd1); 2.7 +/- 0.25 x 10(-8) M(-1) (Kd2) in DC rats. The results suggest an acute alteration in the number of insulin receptors on ER membranes in STZ-induced diabetic rats. Treatment with SPEt and glibenclamide significantly improved specific insulin binding, with receptor number and affinity binding (p < 0.001) reaching almost normal non-diabetic levels. The data presented here show that SPEt and glibenclamide increase total ER membrane insulin binding sites with a concomitant significant increase in plasma insulin.
Two classes of cholesterol binding sites for the β2AR revealed by thermostability and NMR.
Gater, Deborah L; Saurel, Olivier; Iordanov, Iordan; Liu, Wei; Cherezov, Vadim; Milon, Alain
2014-11-18
Cholesterol binding to G protein-coupled receptors (GPCRs) and modulation of their activities in membranes is a fundamental issue for understanding their function. Despite the identification of cholesterol binding sites in high-resolution x-ray structures of the ?2 adrenergic receptor (β2AR) and other GPCRs, the binding affinity of cholesterol for this receptor and exchange rates between the free and bound cholesterol remain unknown. In this study we report the existence of two classes of cholesterol binding sites in β2AR. By analyzing the β2AR unfolding temperature in lipidic cubic phase (LCP) as a function of cholesterol concentration we observed high-affinity cooperative binding of cholesterol with sub-nM affinity constant. In contrast, saturation transfer difference (STD) NMR experiments revealed the existence of a second class of cholesterol binding sites, in fast exchange on the STD NMR timescale. Titration of the STD signal as a function of cholesterol concentration provided a lower limit of 100 mM for their dissociation constant. However, these binding sites are specific for both cholesterol and β2AR, as shown with control experiments using ergosterol and a control membrane protein (KpOmpA). We postulate that this specificity is mediated by the high-affinity bound cholesterol molecules and propose the formation of transient cholesterol clusters around the high-affinity binding sites.
Seet, Bruce T; Berry, Donna M; Maltzman, Jonathan S; Shabason, Jacob; Raina, Monica; Koretzky, Gary A; McGlade, C Jane; Pawson, Tony
2007-02-07
The relationship between the binding affinity and specificity of modular interaction domains is potentially important in determining biological signaling responses. In signaling from the T-cell receptor (TCR), the Gads C-terminal SH3 domain binds a core RxxK sequence motif in the SLP-76 scaffold. We show that residues surrounding this motif are largely optimized for binding the Gads C-SH3 domain resulting in a high-affinity interaction (K(D)=8-20 nM) that is essential for efficient TCR signaling in Jurkat T cells, since Gads-mediated signaling declines with decreasing affinity. Furthermore, the SLP-76 RxxK motif has evolved a very high specificity for the Gads C-SH3 domain. However, TCR signaling in Jurkat cells is tolerant of potential SLP-76 crossreactivity, provided that very high-affinity binding to the Gads C-SH3 domain is maintained. These data provide a quantitative argument that the affinity of the Gads C-SH3 domain for SLP-76 is physiologically important and suggest that the integrity of TCR signaling in vivo is sustained both by strong selection of SLP-76 for the Gads C-SH3 domain and by a capacity to buffer intrinsic crossreactivity.
Return of D4 Dopamine Receptor Antagonists in Drug Discovery.
Lindsley, Craig W; Hopkins, Corey R
2017-09-14
The dopamine D 4 receptor garnered a great deal of interest in the early 1990s when studies showed the atypical antipsychotic clozapine possessed higher affinity for D 4 , relative to other dopamine receptor subtypes, and that this activity might underlie the unique clinical efficacy of clozapine. Unfortunately, D 4 antagonists that were developed for schizophrenia failed in the clinic. Thus, D 4 fell out of favor as a therapeutic target, and work in this area was silent for decades. Recently, D 4 ligands with improved selectivity for D 4 against not only D 1-3,5 but also other biogenic amine targets have emerged, and D 4 is once again in the spotlight as a novel target for both addiction and Parkinson's disease (PD), as well as other emerging diseases. This report will review the historical data for D 4 , review the known D 4 ligands, and then highlight new data supporting a role for D 4 inhibition in addiction, PD, and cancer.
Levoin, Nicolas; Calmels, Thierry; Poupardin-Olivier, Olivia; Labeeuw, Olivier; Danvy, Denis; Robert, Philippe; Berrebi-Bertrand, Isabelle; Ganellin, C Robin; Schunack, Walter; Stark, Holger; Capet, Marc
2008-10-01
Drug-discovery projects frequently employ structure-based information through protein modeling and ligand docking, and there is a plethora of reports relating successful use of them in virtual screening. Hit/lead optimization, which represents the next step and the longest for the medicinal chemist, is very rarely considered. This is not surprising because lead optimization is a much more complex task. Here, a homology model of the histamine H(3) receptor was built and tested for its ability to discriminate ligands above a defined threshold of affinity. In addition, drug safety is also evaluated during lead optimization, and "antitargets" are studied. So, we have used the same benchmarking procedure with the HERG channel and CYP2D6 enzyme, for which a minimal affinity is strongly desired. For targets and antitargets, we report here an accuracy as high as at least 70%, for ligands being classified above or below the chosen threshold. Such a good result is beyond what could have been predicted, especially, since our test conditions were particularly stringent. First, we measured the accuracy by means of AUC of ROC plots, i. e. considering both false positive and false negatives. Second, we used as datasets extensive chemical libraries (nearly a thousand ligands for H(3)). All molecules considered were true H(3) receptor ligands with moderate to high affinity (from microM to nM range). Third, the database is issued from concrete SAR (Bioprojet H(3) BF2.649 library) and is not simply constituted by few active ligands buried in a chemical catalogue.
Synthesis and Characterization of New Bivalent Agents as Melatonin- and Histamine H3-Ligands
Pala, Daniele; Scalvini, Laura; Lodola, Alessio; Mor, Marco; Flammini, Lisa; Barocelli, Elisabetta; Lucini, Valeria; Scaglione, Francesco; Bartolucci, Silvia; Bedini, Annalida; Rivara, Silvia; Spadoni, Gilberto
2014-01-01
Melatonin is an endogenous molecule involved in many pathophysiological processes. In addition to the control of circadian rhythms, its antioxidant and neuroprotective properties have been widely described. Thus far, different bivalent compounds composed by a melatonin molecule linked to another neuroprotective agent were synthesized and tested for their ability to block neurodegenerative processes in vitro and in vivo. To identify a novel class of potential neuroprotective compounds, we prepared a series of bivalent ligands, in which a prototypic melatonergic ligand is connected to an imidazole-based H3 receptor antagonist through a flexible linker. Four imidazolyl-alkyloxy-anilinoethylamide derivatives, characterized by linkers of different length, were synthesized and their binding affinity for human MT1, MT2 and H3 receptor subtypes was evaluated. Among the tested compounds, 14c and 14d, bearing a pentyl and a hexyl linker, respectively, were able to bind to all receptor subtypes at micromolar concentrations and represent the first bivalent melatonergic/histaminergic ligands reported so far. These preliminary results, based on binding affinity evaluation, pave the way for the future development of new dual-acting compounds targeting both melatonin and histamine receptors, which could represent promising therapeutic agents for the treatment of neurodegenerative pathologies. PMID:25222552
Santhosh, K T; Elkhateeb, O; Nolette, N; Outbih, O; Halayko, A J; Dakshinamurti, S
2011-07-01
Neonatal pulmonary hypertension (PPHN) is characterized by pulmonary vasoconstriction, due in part to dysregulation of the thromboxane prostanoid (TP) receptor. Hypoxia induces TP receptor-mediated hyperresponsiveness, whereas serine phosphorylation mediates desensitization of TP receptors. We hypothesized that prostacyclin (IP) receptor activity induces TP receptor phosphorylation and decreases ligand affinity; that TP receptor sensitization in hypoxic myocytes is due to IP receptor inactivation; and that this would be reversible by the cAMP-specific phosphodiesterase inhibitor milrinone. We examined functional regulation of TP receptors by serine phosphorylation and effects of IP receptor stimulation and protein kinase A (PKA) activity on TP receptor sensitivity in myocytes from neonatal porcine resistance pulmonary arteries after 72 h hypoxia in vitro. Ca(2+) response curves to U46619 (TP receptor agonist) were determined in hypoxic and normoxic myocytes incubated with or without iloprost (IP receptor agonist), forskolin (adenylyl cyclase activator), H8 (PKA inhibitor) or milrinone. TP and IP receptor saturation binding kinetics were measured in presence of iloprost or 8-bromo-cAMP. Ligand affinity for TP receptors was normalized in vitro by IP receptor signalling intermediates. However, IP receptor affinity was compromised in hypoxic myocytes, decreasing cAMP production. Milrinone normalized TP receptor sensitivity in hypoxic myocytes by restoring PKA-mediated regulatory TP receptor phosphorylation. TP receptor sensitivity and EC(50) for TP receptor agonists was regulated by PKA, as TP receptor serine phosphorylation by PKA down-regulated Ca(2+) mobilization. Hypoxia decreased IP receptor activity and cAMP generation, inducing TP receptor hyperresponsiveness, which was reversed by milrinone. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.
Synthesis of heteroaromatic tropeines and heterogeneous binding to glycine receptors.
Maksay, Gábor; Vincze, Zoltán; Nemes, Péter
2009-10-01
Heteroaromatic carboxylic esters of (nor)tropine were synthesized. Tropine esters displaced [(3)H]strychnine binding to glycine receptors of rat spinal cord with low Hill slopes. Two-site displacement resulted in nanomolar IC(50,1) and micromolar IC(50,2) values, and IC(50,2)/IC(50,1) ratios up to 615 depending on the heteroaromatic rings and N-methyl substitution. Nortropeines displayed high affinity and low heterogeneity. IC(50,1) and IC(50,2) values of tropeines did not correlate suggesting different binding modes/sites. Glycine potentiated only the nanomolar displacement reflecting positive allosteric interactions and potentiation of ionophore function. Affinities of three (nor)tropeines were different for glycine receptors but identical for 5-HT(3) receptors.
Jensen, Henrik Sindal; Nichol, Kathryn; Lee, Deborah; Ebert, Bjarke
2014-01-01
Clobazam (CLB), a 1,5-benzodiazepine (BZD), was FDA-approved in October 2011 for the adjunctive treatment of seizures associated with Lennox-Gastaut syndrome (LGS) in patients 2 years and older. BZDs exert various CNS effects through allosteric modulation of GABAA receptors. The structurally distinct, 1,4-BZD clonazepam (CLN) is also approved to treat LGS. The precise mechanisms of action and clinical efficacy of both are unknown. Data show that the GABAA α1-subunit–selective compound zolpidem [ZOL] exhibits hypnotic/sedative effects. Conversely, data from knock-in mice carrying BZD binding site mutations suggest that the α2 subunit mediates anticonvulsant effects, without sedative actions. Hence, the specific pattern of interactions across the GABAA receptor complexes of BZDs might be reflected in their clinical efficacies and adverse effect profiles. In this study, GABAA-receptor binding affinities of CLB, N-desmethylclobazam (N-CLB, the major metabolite of CLB), CLN, and ZOL were characterized with native receptors from rat-brain homogenates and on cloned receptors from HEK293 cells transfected with combinations of α (α1, α2, α3, or α5), β2, and γ2 subtypes. Our results demonstrate that CLB and N-CLB have significantly greater binding affinities for α2- vs. α1-receptor complexes, a difference not observed for CLN, for which no distinction between α2 and α1 receptors was observed. Our experiments with ZOL confirmed the high preference for α1 receptors. These results provide potential clues to a new understanding of the pharmacologic modes of action of CLB and N-CLB. PMID:24533090
Bozarov, Andrey; Wang, Yu-Zhong; Yu, Jun Ge; Wunderlich, Jacqueline; Hassanain, Hamdy H; Alhaj, Mazin; Cooke, Helen J; Grants, Iveta; Ren, Tianhua; Christofi, Fievos L
2009-12-01
We tested the novel hypothesis that endogenous adenosine (eADO) activates low-affinity A3 receptors in a model of neurogenic diarrhea in the guinea pig colon. Dimaprit activation of H2 receptors was used to trigger a cyclic coordinated response of contraction and Cl(-) secretion. Contraction-relaxation was monitored by sonomicrometry (via intracrystal distance) simultaneously with short-circuit current (I(sc), Cl(-) secretion). The short interplexus reflex coordinated response was attenuated or abolished by antagonists at H2 (cimetidine), 5-hydroxytryptamine 4 receptor (RS39604), neurokinin-1 receptor (GR82334), or nicotinic (mecamylamine) receptors. The A1 agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA) abolished coordinated responses, and A1 antagonists could restore normal responses. A1-selective antagonists alone [8-cyclopentyltheophylline (CPT), 1,3-dipropyl-8-(2-amino-4-chlorophenyl)xanthine (PACPX), or 8-cyclopentyl-N(3)-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-xanthine (FSCPX)] caused a concentration-dependent augmentation of crypt cell secretion or contraction and acted at nanomolar concentrations. The A3 agonist N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) abolished coordinated responses and the A3 antagonist 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(+/-)-dihydropyridine-3,5-dicarboxylate (MRS1191) could restore and further augment responses. The IB-MECA effect was resistant to knockdown of adenosine A1 receptor with the irreversible antagonist FSCPX; the IC(50) for IB-MECA was 0.8 microM. MRS1191 alone could augment or unmask coordinated responses to dimaprit, and IB-MECA suppressed them. MRS1191 augmented distension-evoked reflex I(sc) responses. Adenosine deaminase mimicked actions of adenosine receptor antagonists. A3 receptor immunoreactivity was differentially expressed in enteric neurons of different parts of colon. After tetrodotoxin, IB-MECA caused circular muscle relaxation. The data support the novel concept that eADO acts at low-affinity A3 receptors in addition to high-affinity A1 receptors to suppress coordinated responses triggered by immune-histamine H2 receptor activation. The short interplexus circuit activated by histamine involves adenosine, acetylcholine, substance P, and serotonin. We postulate that A3 receptor modulation may occur in gut inflammatory diseases or allergic responses involving mast cell and histamine release.
Bozarov, Andrey; Wang, Yu-Zhong; Yu, Jun Ge; Wunderlich, Jacqueline; Hassanain, Hamdy H.; Alhaj, Mazin; Cooke, Helen J.; Grants, Iveta; Ren, Tianhua
2009-01-01
We tested the novel hypothesis that endogenous adenosine (eADO) activates low-affinity A3 receptors in a model of neurogenic diarrhea in the guinea pig colon. Dimaprit activation of H2 receptors was used to trigger a cyclic coordinated response of contraction and Cl− secretion. Contraction-relaxation was monitored by sonomicrometry (via intracrystal distance) simultaneously with short-circuit current (Isc, Cl− secretion). The short interplexus reflex coordinated response was attenuated or abolished by antagonists at H2 (cimetidine), 5-hydroxytryptamine 4 receptor (RS39604), neurokinin-1 receptor (GR82334), or nicotinic (mecamylamine) receptors. The A1 agonist 2-chloro-N6-cyclopentyladenosine (CCPA) abolished coordinated responses, and A1 antagonists could restore normal responses. A1-selective antagonists alone [8-cyclopentyltheophylline (CPT), 1,3-dipropyl-8-(2-amino-4-chlorophenyl)xanthine (PACPX), or 8-cyclopentyl-N3-[3-(4-(fluorosulfonyl)benzoyloxy)propyl]-xanthine (FSCPX)] caused a concentration-dependent augmentation of crypt cell secretion or contraction and acted at nanomolar concentrations. The A3 agonist N6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide (IB-MECA) abolished coordinated responses and the A3 antagonist 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(±)-dihydropyridine-3,5-dicarboxylate (MRS1191) could restore and further augment responses. The IB-MECA effect was resistant to knockdown of adenosine A1 receptor with the irreversible antagonist FSCPX; the IC50 for IB-MECA was 0.8 μM. MRS1191 alone could augment or unmask coordinated responses to dimaprit, and IB-MECA suppressed them. MRS1191 augmented distension-evoked reflex Isc responses. Adenosine deaminase mimicked actions of adenosine receptor antagonists. A3 receptor immunoreactivity was differentially expressed in enteric neurons of different parts of colon. After tetrodotoxin, IB-MECA caused circular muscle relaxation. The data support the novel concept that eADO acts at low-affinity A3 receptors in addition to high-affinity A1 receptors to suppress coordinated responses triggered by immune-histamine H2 receptor activation. The short interplexus circuit activated by histamine involves adenosine, acetylcholine, substance P, and serotonin. We postulate that A3 receptor modulation may occur in gut inflammatory diseases or allergic responses involving mast cell and histamine release. PMID:19808660
NASA Astrophysics Data System (ADS)
Sommer, Thomas; Hübner, Harald; El Kerdawy, Ahmed; Gmeiner, Peter; Pischetsrieder, Monika; Clark, Timothy
2017-03-01
The dopamine D2 receptor (D2R) is involved in food reward and compulsive food intake. The present study developed a virtual screening (VS) method to identify food components, which may modulate D2R signalling. In contrast to their common applications in drug discovery, VS methods are rarely applied for the discovery of bioactive food compounds. Here, databases were created that exclusively contain substances occurring in food and natural sources (about 13,000 different compounds in total) as the basis for combined pharmacophore searching, hit-list clustering and molecular docking into D2R homology models. From 17 compounds finally tested in radioligand assays to determine their binding affinities, seven were classified as hits (hit rate = 41%). Functional properties of the five most active compounds were further examined in β-arrestin recruitment and cAMP inhibition experiments. D2R-promoted G-protein activation was observed for hordenine, a constituent of barley and beer, with approximately identical ligand efficacy as dopamine (76%) and a Ki value of 13 μM. Moreover, hordenine antagonised D2-mediated β-arrestin recruitment indicating functional selectivity. Application of our databases provides new perspectives for the discovery of bioactive food constituents using VS methods. Based on its presence in beer, we suggest that hordenine significantly contributes to mood-elevating effects of beer.
Varano, Flavia; Catarzi, Daniela; Colotta, Vittoria; Squarcialupi, Lucia; Matucci, Rosanna
2014-11-01
Ionotropic glutamate receptor (iGluR) modulators, specially AMPA receptor antagonists, are potential tools for numerous therapeutic applications in neurological disorders, including Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, epilepsy, chronic pain, and neuropathology ensuing from cerebral ischemia or cardiac arrest. In this work, the synthesis and binding affinities at the Gly/NMDA, AMPA, and kainic acid (KA) receptors of a new series of 1,2,4-benzothiadiazine-1,1-dioxide derivatives are reported. The results show that 1,2,4-benzothiadiazine-1,1-dioxide is a new scaffold for obtaining iGluR ligands. Moreover, this work has led us to the 7-(3-formylpyrrol-1-yl)-6-trifluoromethyl substituted compound 7, which displays the highest AMPA receptor affinity and high selectivity versus the Gly/NMDA (90-fold) and KA (46-fold) receptors. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
de Jong, M; Bakker, W H; Krenning, E P; Breeman, W A; van der Pluijm, M E; Bernard, B F; Visser, T J; Jermann, E; Béhé, M; Powell, P; Mäcke, H R
1997-04-01
In vitro octreotide receptor binding of [111In-DOTA0,d-Phe1, Tyr3]octreotide (111In-DOTATOC) and the in vivo metabolism of 90Y- or 111In-labelled DOTATOC were investigated in rats in comparison with [111In-DTPA0]octreotide [111In-DTPAOC). 111In-DOTATOC was found to have an affinity similar to octreotide itself for the octreotide receptor in rat cerebral cortex microsomes. Twenty-four hours after injection of 90Y- or 111In-labelled DOTATOC, uptake of radioactivity in the octreotide receptor-expressing tissues pancreas, pituitary, adrenals and tumour was a factor of 2-6 that after injection of 111In-DTPAOC. Uptake of labelled DOTATOC in pituitary, pancreas, adrenals and tumour was almost completely blocked by pretreatment with 0.5 mg unlabelled octreotide, indicating specific binding to the octreotide receptors. These findings strongly indicate that 90Y-DOTATOC is a promising radiopharmaceutical for radiotherapy and that 111In-DOTATOC is of potential value for diagnosis of patients with octreotide receptor-positive lesions, such as most neuroendocrine tumours.
Assembly of oligomeric death domain complexes during Toll receptor signaling.
Moncrieffe, Martin C; Grossmann, J Günter; Gay, Nicholas J
2008-11-28
The Drosophila Toll receptor is activated by the endogenous protein ligand Spätzle in response to microbial stimuli in immunity and spatial cues during embryonic development. Downstream signaling is mediated by the adaptor proteins Tube, the kinase Pelle, and the Drosophila homologue of myeloid differentiation primary response protein (dMyD88). Here we have characterized heterodimeric (dMyD88-Tube) and heterotrimeric (dMyD88-Tube-Pelle) death domain complexes. We show that both the heterodimeric and heterotrimeric complexes form kidney-shaped structures and that Tube is bivalent and has separate high affinity binding sites for dMyD88 and Pelle. Additionally we found no interaction between the isolated death domains of Pelle and dMyD88. These results indicate that the mode of assembly of the heterotrimeric dMyD88-Tube-Pelle complex downstream of the activated Toll receptor is unique. The measured dissociation constants for the interaction between the death domains of dMyD88 and Tube and of Pelle and a preformed dMyD88-Tube complex are used to propose a model of the early postreceptor events in Drosophila Toll receptor signaling.
Assembly of Oligomeric Death Domain Complexes during Toll Receptor Signaling*
Moncrieffe, Martin C.; Grossmann, J. Günter; Gay, Nicholas J.
2008-01-01
The Drosophila Toll receptor is activated by the endogenous protein ligand Spätzle in response to microbial stimuli in immunity and spatial cues during embryonic development. Downstream signaling is mediated by the adaptor proteins Tube, the kinase Pelle, and the Drosophila homologue of myeloid differentiation primary response protein (dMyD88). Here we have characterized heterodimeric (dMyD88-Tube) and heterotrimeric (dMyD88-Tube-Pelle) death domain complexes. We show that both the heterodimeric and heterotrimeric complexes form kidney-shaped structures and that Tube is bivalent and has separate high affinity binding sites for dMyD88 and Pelle. Additionally we found no interaction between the isolated death domains of Pelle and dMyD88. These results indicate that the mode of assembly of the heterotrimeric dMyD88-Tube-Pelle complex downstream of the activated Toll receptor is unique. The measured dissociation constants for the interaction between the death domains of dMyD88 and Tube and of Pelle and a preformed dMyD88-Tube complex are used to propose a model of the early postreceptor events in Drosophila Toll receptor signaling. PMID:18829464
Mattsson, Cecilia; Svensson, Peder; Boettcher, Henning; Sonesson, Clas
2013-05-01
To further investigate the structure-activity relationship (SAR) of the 5-hydroxytryptamine type 6 (5-HT6) receptor agonist 5-chloro-2-methyl-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole (EMD386088, 6), a series of 2-methyl-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indoles were synthesized, and in vitro affinity to, and functional activity at 5-HT6 receptors was tested. We focused on substituents made at the indole N(1)-, 2- and 5-positions and these were found to not only influence the affinity at 5-HT6 receptors but also the intrinsic activity leading to antagonists, partial agonists and full agonists. In order for a compound to demonstrate potent 5-HT6 receptor agonist properties, the indole N(1) should be unsubstituted, an alkyl group such as 2-methyl is needed and finally halogen substituents in the indole 5-position (fluoro, chloro or, bromo) were essential requirements. However, the introduction of a benzenesulfonyl group at N(1)-position switched the full agonist 6 to be a 5-HT6 receptor antagonist (30). A few compounds within the 2-methyl-3-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indoles were also screened for off-targets and generally they displayed low affinity for other 5-HT subtypes and serotonin transporter protein (SERT). Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Ibrahim, Mohamed A; El-Alfy, Abir T; Ezel, Kelly; Radwan, Mohamed O; Shilabin, Abbas G; Kochanowska-Karamyan, Anna J; Abd-Alla, Howaida I; Otsuka, Masami; Hamann, Mark T
2017-08-09
In previous studies, we have isolated several marine indole alkaloids and evaluated them in the forced swim test (FST) and locomotor activity test, revealing their potential as antidepressant and sedative drug leads. Amongst the reported metabolites to display such activities was 5-bromo- N , N -dimethyltryptamine. Owing to the importance of the judicious introduction of halogens into drug candidates, we synthesized two series built on a 2-(1 H -indol-3-yl)- N , N -dimethylethanamine scaffold with different halogen substitutions. The synthesized compounds were evaluated for their in vitro and in vivo antidepressant and sedative activities using the mouse forced swim and locomotor activity tests. Receptor binding studies of these compounds to serotonin (5-HT) receptors were conducted. Amongst the prepared compounds, 2-(1 H -indol-3-yl)- N , N -dimethyl-2-oxoacetamide ( 1a ), 2-(5-bromo-1 H -indol-3-yl)- N , N -dimethyl-2-oxoacetamide ( 1d ), 2-(1 H -indol-3-yl)- N , N -dimethylethanamine ( 2a ), 2-(5-chloro-1 H -indol-3-yl)- N , N -dimethylethanamine ( 2c ), 2-(5-bromo-1 H -indol-3-yl)- N , N -dimethylethanamine ( 2d ), and 2-(5-iodo-1 H -indol-3-yl)- N , N -dimethylethanamine ( 2e ) have been shown to possess significant antidepressant-like action, while compounds 2c , 2d , and 2e exhibited potent sedative activity. Compounds 2a , 2c , 2d , and 2e showed nanomolar affinities to serotonin receptors 5-HT 1A and 5-HT₇. The in vitro data indicates that the antidepressant action exerted by these compounds in vivo is mediated, at least in part, via interaction with serotonin receptors. The data presented here shows the valuable role that bromine plays in providing novel chemical space and electrostatic interactions. Bromine is ubiquitous in the marine environment and a common element of marine natural products.
Persaud, Stephen P.; Donermeyer, David L.; Weber, K. Scott; Kranz, David M.; Allen, Paul M.
2010-01-01
Interactions between the T cell receptor and cognate peptide-MHC are crucial initiating events in the adaptive immune response. These binding events are highly specific yet occur with micromolar affinity. Even weaker interactions between TCR and self-pMHC complexes play critical regulatory roles in T cell development, maintenance and coagonist activity. Due to their low affinity, the kinetics and thermodynamics of such weak interactions are difficult to study. In this work, we used M15, a high-affinity TCR engineered from the 3.L2 TCR system, to study the binding properties, thermodynamics, and specificity of two altered peptide ligands (APLs). Our affinity measurements of the high-affinity TCR support the view that the wild type TCR binds these APLs in the millimolar affinity range, and hence very low affinities can still elicit biological functions. Finally, single methylene differences among the APLs gave rise to strikingly different binding thermodynamics. These minor changes in the pMHC antigen were associated with significant and unpredictable changes in both the entropy and enthalpy of the reaction. As the identical TCR was analyzed with several structurally similar ligands, the distinct thermodynamic binding profiles provide a mechanistic perspective on how exquisite antigen specificity is achieved by the T cell receptor. PMID:20334923
Hiranita, Takato; Hong, Weimin C.; Kopajtic, Theresa
2017-01-01
Several N-substituted benztropine (BZT) analogs are atypical dopamine transport inhibitors as they have affinity for the dopamine transporter (DAT) but have minimal cocaine-like pharmacologic effects and can block numerous effects of cocaine, including its self-administration. Among these compounds, N-methyl (AHN1-055), N-allyl (AHN2-005), and N-butyl (JHW007) analogs of 3α-[bis(4′-fluorophenyl)methoxy]-tropane were more potent in antagonizing self-administration of cocaine and d-methamphetamine than in decreasing food-maintained responding. The antagonism of cocaine self-administration (0.03–1.0 mg/kg per injection) with the above BZT analogs was reproduced in the present study. Further, the stimulant-antagonist effects resembled previously reported effects of pretreatments with combinations of standard DAT inhibitors and σ1-receptor (σ1R) antagonists. Therefore, the present study examined binding of the BZT analogs to σRs, as well as their in vivo σR antagonist effects. Each of the BZT analogs displaced radiolabeled σR ligands with nanomolar affinity. Further, self-administration of the σR agonist DTG (0.1–3.2 mg/kg/injection) was dose dependently blocked by AHN2-005 and JHW007 but potentiated by AHN1-055. In contrast, none of the BZT analogs that were active against DTG self-administration was active against the self-administration of agonists at dopamine D1-like [R(+)-SKF 81297, (±)-SKF 82958 (0.00032–0.01 mg/kg per injection each)], D2-like [R(–)-NPA (0.0001–0.0032 mg/kg per injection), (–)-quinpirole (0.0032–0.1 mg/kg per injection)], or μ-opioid (remifentanil, 0.0001–0.0032 mg/kg per injection) receptors. The present results indicate that behavioral antagonist effects of the N-substituted BZT analogs are specific for abused drugs acting at the DAT and further suggest that σR antagonism contributes to those actions. PMID:28442581
Hiranita, Takato; Hong, Weimin C; Kopajtic, Theresa; Katz, Jonathan L
2017-07-01
Several N-substituted benztropine (BZT) analogs are atypical dopamine transport inhibitors as they have affinity for the dopamine transporter (DAT) but have minimal cocaine-like pharmacologic effects and can block numerous effects of cocaine, including its self-administration. Among these compounds, N -methyl (AHN1-055), N -allyl (AHN2-005), and N -butyl (JHW007) analogs of 3 α -[bis(4'-fluorophenyl)methoxy]-tropane were more potent in antagonizing self-administration of cocaine and d -methamphetamine than in decreasing food-maintained responding. The antagonism of cocaine self-administration (0.03-1.0 mg/kg per injection) with the above BZT analogs was reproduced in the present study. Further, the stimulant-antagonist effects resembled previously reported effects of pretreatments with combinations of standard DAT inhibitors and σ 1 -receptor ( σ 1 R) antagonists. Therefore, the present study examined binding of the BZT analogs to σ Rs, as well as their in vivo σ R antagonist effects. Each of the BZT analogs displaced radiolabeled σ R ligands with nanomolar affinity. Further, self-administration of the σ R agonist DTG (0.1-3.2 mg/kg/injection) was dose dependently blocked by AHN2-005 and JHW007 but potentiated by AHN1-055. In contrast, none of the BZT analogs that were active against DTG self-administration was active against the self-administration of agonists at dopamine D 1 -like [ R (+)-SKF 81297, (±)-SKF 82958 (0.00032-0.01 mg/kg per injection each)], D 2 -like [ R (-)-NPA (0.0001-0.0032 mg/kg per injection), (-)-quinpirole (0.0032-0.1 mg/kg per injection)], or μ -opioid (remifentanil, 0.0001-0.0032 mg/kg per injection) receptors. The present results indicate that behavioral antagonist effects of the N -substituted BZT analogs are specific for abused drugs acting at the DAT and further suggest that σ R antagonism contributes to those actions. U.S. Government work not protected by U.S. copyright.
Identification of 6H1 as a P2Y purinoceptor: P2Y5.
Webb, T E; Kaplan, M G; Barnard, E A
1996-02-06
We have determined the identity of the orphan G-protein coupled receptor cDNA, 6H1, present in activated chicken T cells, as a subtype of P2Y purinoceptor. This identification is based on first on the degree of sequence identity shared with recently cloned members of the P2Y receptor family and second on the pharmacological profile. Upon transient expression in COS-7 cells the 6H1 receptor bound the radiolabel [35S]dATP alpha S specifically and with high affinity (Kd, 10 nM). This specific binding could be competitively displaced by a range of ligands active at P2 purinoceptors, with ATP being the most active (K (i)), 116 nM). Such competition studies have established the following rank order of activity: ATP ADP 2-methylthioATP alpha, beta-methylene ATP, UTP, thus confirming 6H1 as a member of the growing family of P2Y purinoceptors. As the fifth receptor of this type to be identified we suggest that it be named P2Y5.
Berry, L M; Adams, R; Airey, M; Bracher, M G; Bourne, T; Carrington, B; Cross, A S; Davies, G C G; Finney, H M; Foulkes, R; Gozzard, N; Griffin, R A; Hailu, H; Lamour, S D; Lawson, A D; Lightwood, D J; McKnight, A J; O'Dowd, V L; Oxbrow, A K F; Popplewell, A G; Shaw, S; Stephens, P E; Sweeney, B; Tomlinson, K L; Uhe, C; Palframan, R T
2009-02-01
Interleukin-13 (IL-13) sequentially binds to IL-13Ralpha1 and IL-4Ralpha forming a high affinity signalling complex. This receptor complex is expressed on multiple cell types in the airway and signals through signal transducer and activator of transcription factor-6 (STAT-6) to stimulate the production of chemokines, cytokines and mucus. Antibodies have been generated, using the UCB Selected Lymphocyte Antibody Method (UCB SLAM), that block either binding of murine IL-13 (mIL-13) to mIL-13Ralpha1 and mIL-13Ralpha2, or block recruitment of mIL-4Ralpha to the mIL-13/mIL-13Ralpha1 complex. Monoclonal antibody (mAb) A was shown to bind to mIL-13 with high affinity (K(D) 11 pM) and prevent binding of mIL-13 to mIL-13Ralpha1. MAb B, that also bound mIL-13 with high affinity (K(D) 8 pM), was shown to prevent recruitment of mIL-4Ralpha to the mIL-13/mIL-13Ralpha1 complex. In vitro, mAbs A and B similarly neutralised mIL-13-stimulated STAT-6 activation and TF-1 cell proliferation. In vivo, mAbs A and B demonstrated equipotent, dose-dependent inhibition of eotaxin generation in mice stimulated by intraperitoneal administration of recombinant mIL-13. In an allergic lung inflammation model in mice, mAbs A and B equipotently inhibited muc5ac mucin mRNA upregulation in lung tissue measured two days after intranasal allergen challenge. These data support the design of therapeutics for the treatment of allergic airway disease that inhibits assembly of the high affinity IL-13 receptor signalling complex, by blocking the binding of IL-13 to IL-13Ralpha1 and IL-13Ralpha2, or the subsequent recruitment of IL-4Ralpha.
Characterization of high affinity (/sup 3/H)triazolam binding in rat brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Earle, M.; Concas, A.; Yamamura, H.I.
1986-03-01
The hypnotic Triazolam (TZ), a triazolo (1,4)-benzodiazepine, displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. Specific binding properties of this recently tritiated TZ were characterized. The authors major objectives were the direct measurement of the temperature dependence and the GABA effect on (/sup 3/H)TZ binding. Saturation studies showed a shift to lower affinity at 37/sup 0/C (K/sub d/ = 0.25 +/- 0.01 nM at O/sup 0/C; K/sub d/ = 1.46 +/- 0.03 nM at 37/sup 0/C) while the B/sub max/ values remained unchanged (1003 +/- 37 fmoles/mg prot. atmore » 0/sup 0/C and 1001 +/- 43 fmoles/mg prot. at 37/sup 0/C). Inhibition studies showed that (/sup 3/H)TZ binding displayed no GABA shift at 0/sup 0/C(K/sub i/ 0.37 +/- 0.03 nM/- GABA and K/sub i/ = 0.55 +/- 0.13 nM/+GABA) but a nearly two-fold shift was apparent at 37/sup 0/C (K/sub i/ = 2.92 +/- 0.2 nM/-GABA; K/sub i/ = 1.37 +/- 0.11 mM/+GABA). These results were also confirmed by saturation studies in the presence or absence of GABA showing a shift to higher affinity in the presence of GABA only at 37/sup 0/C. In Ro 15-1788/(/sup 3/H)TZ competition experiments the presence of GABA did not affect the inhibitory potency of Ro 15-1788 on (/sup 3/H)TZ binding at both temperatures. In conclusion (/sup 3/H)TZ binding showed an extremely high affinity for benzodiazepine receptors. In contrast to reported literature, the findings suggest that TZ interacts with benzodiazepine receptors similar to other benzodiazepine agonists.« less
Synthesis and binding affinity of neuropeptide Y at opiate receptors.
Kiddle, James J; McCreery, Heather J; Soles, Sonia
2003-03-24
Neuropeptide Y and several metabolic fragments were synthesized and evaluated for binding affinity at non-selective opiate receptors. Neuropeptide Y and several C-terminal fragments were shown to bind to non-selective opiate receptors with an affinity similar to that of Leu-enkephalin.
Ghandi, Mehdi; Sherafat, Fatemeh; Sadeghzadeh, Masoud; Alirezapour, Behrouz
2016-06-01
New spirocyclic-2,6-diketopiperazine derivatives containing benzylpiperidine and cycloalkane moieties were synthesized by a one-pot two-step sequential Ugi/intramolecular N-amidation process in moderate to good yields. The in vitro ligand-binding profile studies performed on the sigma-1 and sigma-2 receptors revealed that the σ1 affinities and subtype selectivities of three spirocyclic piperidine derivatives are generally comparable to those of spirocycloalkane analogues. Compared to the low σ1 affinities obtained for cycloalkyl-substituted spirocyclic-2,6-diketopiperazines with n=2, those with n=1 proved to have optimal fitting with σ2 subtype by exhibiting higher affinities. Moreover, the best binding affinity and subtype selectivity was identified for compound 3c with Kiσ1=5.9±0.5nM and Kiσ2=563±21nM as well as 95-fold σ1/σ2 selectivity ratio, respectively. Copyright © 2016. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Mella, Jaime; Villegas, Francisco; Morales-Verdejo, César; Lagos, Carlos F.; Recabarren-Gajardo, Gonzalo
2017-07-01
We recently reported a series of 39 weakly basic N-arylsulfonylindoles as novel 5-HT6 antagonists. Eight of the compounds exhibited moderate to high binding affinities, with 2-(4-(2-Methoxyphenyl)piperazin-1-yl)-1-(1-tosyl-1H-indol-3-yl)ethanol 16 showing the highest binding affinity (pKi = 7.87). Given these encouraging results and as a continuation of our research, we performed an extensive step-by-step search for the best 3D-QSAR model that allows us to rationally propose novel molecules with improved 5-HT6 affinity based on our previously reported series. A comparative molecular similarity indices analysis (CoMSIA) model built on a docking-based alignment was developed, wherein steric, electrostatic, hydrophobic and hydrogen bond properties are correlated with biological activity. The model was validated internally and externally (q2 = 0.721; r2pred = 0.938), and identified the sulfonyl and hydroxyl groups and the piperazine ring among the main regions of the molecules that can be modified to create new 5-HT6 antagonists.
Angulo, Jesús; Enríquez-Navas, Pedro M; Nieto, Pedro M
2010-07-12
The direct evaluation of dissociation constants (K(D)) from the variation of saturation transfer difference (STD) NMR spectroscopy values with the receptor-ligand ratio is not feasible due to the complex dependence of STD intensities on the spectral properties of the observed signals. Indirect evaluation, by competition experiments, allows the determination of K(D), as long as a ligand of known affinity is available for the protein under study. Herein, we present a novel protocol based on STD NMR spectroscopy for the direct measurements of receptor-ligand dissociation constants (K(D)) from single-ligand titration experiments. The influence of several experimental factors on STD values has been studied in detail, confirming the marked impact on standard determinations of protein-ligand affinities by STD NMR spectroscopy. These factors, namely, STD saturation time, ligand residence time in the complex, and the intensity of the signal, affect the accumulation of saturation in the free ligand by processes closely related to fast protein-ligand rebinding and longitudinal relaxation of the ligand signals. The proposed method avoids the dependence of the magnitudes of ligand STD signals at a given saturation time on spurious factors by constructing the binding isotherms using the initial growth rates of the STD amplification factors, in a similar way to the use of NOE growing rates to estimate cross relaxation rates for distance evaluations. Herein, it is demonstrated that the effects of these factors are cancelled out by analyzing the protein-ligand association curve using STD values at the limit of zero saturation time, when virtually no ligand rebinding or relaxation takes place. The approach is validated for two well-studied protein-ligand systems: the binding of the saccharides GlcNAc and GlcNAcbeta1,4GlcNAc (chitobiose) to the wheat germ agglutinin (WGA) lectin, and the interaction of the amino acid L-tryptophan to bovine serum albumin (BSA). In all cases, the experimental K(D) measured under different experimental conditions converged to the thermodynamic values. The proposed protocol allows accurate determinations of protein-ligand dissociation constants, extending the applicability of the STD NMR spectroscopy for affinity measurements, which is of particular relevance for those proteins for which a ligand of known affinity is not available.
Solubilization and purification of melatonin receptors from lizard brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivkees, S.A.; Conron, R.W. Jr.; Reppert, S.M.
Melatonin receptors in lizard brain were identified and characterized using {sup 125}I-labeled melatonin (({sup 125}I)MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resultedmore » in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography.« less
Distinct Contributions of T1R2 and T1R3 Taste Receptor Subunits to the Detection of Sweet Stimuli
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nie,Y.; Vigues, S.; Hobbs, J.
2005-01-01
The molecular mechanisms by which G protein-coupled receptor (GPCR)-type chemosensory receptors of animals selectively interact with their cognate ligands remain poorly understood. There is growing evidence that many chemosensory receptors exist in multimeric complexes, though little is known about the relative contributions of individual subunits to receptor functions. This study showed that each of the two subunits in the mammalian heteromeric T1R2:T1R3 sweet taste receptor binds sweet stimuli, though with distinct affinities and conformational changes. Furthermore, ligand affinities for T1R3 are drastically reduced by the introduction of a single amino acid change associated with decreased sweet taste sensitivity in mice.more » Thus, individual T1R subunits increase the receptive range of the sweet taste receptor, offering a functional mechanism for phenotypic variations in sweet taste.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadan, M.J.
/sup 125/I-Labeled receptor ligands can be synthesized with specific activities exceeding 2000 Ci/mmol, making them nearly 70-fold more sensitive in receptor site assays than (mono) tritiated ligands. We have synthesized and characterized /sup 125/I-lysergic acid diethylamide (/sup 125/I-LSD), the first radioiodinated ligand for serotonin receptor studies. The introduction of /sup 125/I at the 2 position of LSD increased both the affinity and selectivity of this compound for serotonin 5-HT/sub 2/ receptors in rat cortex. The high specific activity of /sup 125/I-LSD and its high ratio of specific to nonspecific binding make this ligand especially useful for autoradiographic studies of serotoninmore » receptor distribution. We have found that /sup 125/I-LSD binds with high affinity to a class of serotonin receptors in the CNS of the marine mollusk Aplysia californica.« less