Sample records for d2 receptor subtype

  1. Pharmacological and molecular characterization of muscarinic receptor subtypes in human esophageal smooth muscle.

    PubMed

    Preiksaitis, H G; Krysiak, P S; Chrones, T; Rajgopal, V; Laurier, L G

    2000-12-01

    Esophageal peristalsis is dependent on activation of muscarinic receptors, but little is known about the roles of specific receptor subtypes in the human esophagus. We examined muscarinic receptor expression and function in human esophageal smooth muscle obtained from patients undergoing resection for cancer. [(3)H]Quinuclidinyl benzylate (QNB)-specific binding was similar in longitudinal muscle (B(max) = 106 +/- 22 fmol/mg of protein, K(d) = 68 +/- 9 pM) and circular muscle (B(max) = 81 +/- 16 fmol/mg of protein, K(d) = 79 +/- 15 pM). Subtype-selective antagonists inhibited [(3)H]QNB similarly in muscle from both layers. Further analysis of antagonist inhibition of [(3)H]QNB binding showed a major site (60-70%) with antagonist affinity profile consistent with the M2 subtype and a second site that could not be classified. Reverse transcription-polymerase chain reaction and immunoblotting demonstrated the presence of all five known muscarinic receptor subtypes, and immunocytochemistry on acutely isolated smooth muscle cells confirmed the expression of each subtype on the muscle cells. Subtype-selective antagonists had similar inhibitory effects on carbachol-evoked contractions in longitudinal muscle and circular muscle strips with pA(2) values of 9.5 +/- 0.1 and 9.6 +/- 0.2 for 4-diphenylacetoxy-N-methylpiperidine methiodide, 7.1 +/- 0.1 and 7.0 +/- 0.2 for pirenzepine, and 6.2 +/- 0.2 and 6.4 +/- 0.2 for methoctramine, respectively. We conclude that human esophageal smooth muscle expresses muscarinic receptor subtypes M1 through M5. The antagonist sensitivity profile for muscle contraction is consistent with activation of the M3 subtype.

  2. Characterization of [3H]LS-3-134, a Novel Arylamide Phenylpiperazine D3 Dopamine Receptor Selective Radioligand

    PubMed Central

    Rangel-Barajas, Claudia; Malik, Maninder; Taylor, Michelle; Neve, Kim A.; Mach, Robert H.; Luedtke, Robert R.

    2014-01-01

    LS-3-134 is a substituted N-phenylpiperazine derivative that has been reported to exhibit a) high-affinity binding (Ki value 0.2 nM) at human D3 dopamine receptors, b) >100-fold D3 vs. D2 dopamine receptor subtype binding selectivity and c) low-affinity binding (Ki values >5,000 nM) at sigma 1 and sigma 2 receptors. Based upon a forskolin-dependent activation of the adenylyl cyclase inhibition assay, LS-3-134 is a weak partial agonist at both D2 and D3 dopamine receptor subtypes (29% and 35% of full agonist activity, respectively). In this study, [3H]-labeled LS-3-134 was prepared and evaluated to further characterize its use as a D3 dopamine receptor selective radioligand. Kinetic and equilibrium radioligand binding studies were performed. This radioligand rapidly reaches equilibrium (10-15 min at 37°C) and binds with high affinity to both human (Kd = 0.06 ± 0.01 nM) and rat (Kd = 0.2 ± 0.02 nM) D3 receptors expressed in HEK-293 cells. Direct and competitive radioligand binding studies using rat caudate and nucleus accumbens tissue indicate that [3H]LS-3-134 selectively binds a homogeneous population of binding sites with a dopamine D3 receptor pharmacological profile. Based upon these studies we propose that [3H]LS-3-134 represents a novel D3 dopamine receptor selective radioligand that can be used for studying the expression and regulation of the D3 dopamine receptor subtype. PMID:25041389

  3. Challenges in the development of dopamine D2- and D3-selective radiotracers for PET imaging studies.

    PubMed

    Mach, Robert H; Luedtke, Robert R

    2018-03-01

    The dopamine D2-like receptors (ie, D2/3 receptors) have been the most extensively studied CNS receptor with Positron Emission Tomography (PET). The 3 different radiotracers that have been used in these studies are [ 11 C]raclopride, [ 18 F]fallypride, and [ 11 C]PHNO. Because these radiotracers have a high affinity for both dopamine D2 and D3 receptors, the density of dopamine receptors in the CNS is reported as the D2/3 binding potential, which reflects a measure of the density of both receptor subtypes. Although the development of D2- and D3-selective PET radiotracers has been an active area of research for many years, this by and large presents an unmet need in the area of translational PET imaging studies. This article discusses some of the challenges that have inhibited progress in this area of research and the current status of the development of subtype selective radiotracers for imaging D3 and D2 dopamine receptors with PET. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Characterization of kappa 1 and kappa 2 opioid binding sites in frog (Rana esculenta) brain membrane preparation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benyhe, S.; Varga, E.; Hepp, J.

    1990-09-01

    The distribution and properties of frog brain kappa-opioid receptor subtypes differ not only from those of the guinea pig brain, but also from that of the rat brain. In guinea pig cerebellum the kappa 1 is the dominant receptor subtype, frog brain contains mainly the kappa 2 subtype, and the distribution of the rat brain subtypes is intermediate between the two others. In competition experiments it has been established that ethylketocyclazocine and N-cyclopropylmethyl-norazidomorphine, which are nonselective kappa-ligands, have relatively high affinities to frog brain membranes. The kappa 2 ligands (Met5)enkephalin-Arg6-Phe7 and etorphine also show high affinities to the frog brain.more » Kappa 1 binding sites measured in the presence of 5 microM/D-Ala2-Leu5/enkephalin represent 25-30% of (3H)ethylketocyclazocine binding in frog brain membranes. The kappa 2 subtype in frog brain resembles more to the mu subtype than the delta subtype of opioid receptors, but it differs from the mu subtype in displaying low affinity toward beta-endorphin and /D-Ala2-(Me)Phe4-Gly5-ol/enkephalin (DAGO). From our data it is evident that the opioid receptor subtypes are already present in the amphibian brain but the differences among them are less pronounced than in mammalian brain.« less

  5. Neuroendocrine mediators up-regulate alpha1b- and alpha1d-adrenergic receptor subtypes in human monocytes.

    PubMed

    Rouppe van der Voort, C; Kavelaars, A; van de Pol, M; Heijnen, C J

    1999-03-01

    Beta2- and alpha2-adrenergic receptors (AR) are thought to be the main AR subtypes to exert the effects of catecholamines on the immune system. However, in the present study, we demonstrate that another subtype of AR can be induced in human monocytes. Expression of alpha1b- and alpha1d-AR mRNA can be obtained by culturing freshly isolated human peripheral blood monocytes with the neuroendocrine mediators dexamethasone or the beta2-AR agonist terbutaline. Using the human monocytic cell line THP-1, we demonstrate that increased levels of alpha1b- and alpha1d-mRNA are accompanied by increased levels of receptor protein as determined by Western blot analysis and radioligand binding assays. This study describes for the first time regulated expression of alpha1-AR subtypes in human monocytes.

  6. Role of Dopamine Receptors Subtypes, D1-Like and D2-Like, within the Nucleus Accumbens Subregions, Core and Shell, on Memory Consolidation in the One-Trial Inhibitory Avoidance Task

    ERIC Educational Resources Information Center

    Manago, Francesca; Castellano, Claudio; Oliverio, Alberto; Mele, Andrea; De Leonibus, Elvira

    2009-01-01

    Recent evidence demonstrated that dopamine within the nucleus accumbens mediates consolidation of both associative and nonassociative memories. However, the specific contribution of the nucleus accumbens subregions, core and shell, and of D1 and D2 receptors subtypes has not been yet clarified. The aim of this study was, therefore, to directly…

  7. Effects of volatile solvents on recombinant N-methyl-D-aspartate receptors expressed in Xenopus oocytes

    PubMed Central

    Cruz, Silvia L; Balster, Robert L; Woodward, John J

    2000-01-01

    We have previously shown that toluene dose-dependently inhibits recombinant N-methyl-D-aspartate (NMDA) receptors at micromolar concentrations. This inhibition was rapid, almost complete and reversible. The NR1/2B combination was the most sensitive receptor subtype tested with an IC50 value for toluene of 0.17 mM. We now report on the effects of other commonly abused solvents (benzene, m-xylene, ethylbenzene, propylbenzene, 1,1,1-trichlorethane (TCE) and those of a convulsive solvent, 2,2,2-trifluoroethyl ether (flurothyl), on NMDA-induced currents measured in Xenopus oocytes expressing NR1/2A or NR1/2B receptor subtypes. All of the alkylbenzenes and TCE produced a reversible inhibition of NMDA-induced currents that was dose- and subunit-dependent. The NR1/2B receptor subtype was several times more sensitive to these compounds than the NR1/2A subtype. The convulsant solvent flurothyl had no effect on NMDA responses in oocytes but potently inhibited ion flux through recombinant GABA receptors expressed in oocytes. Overall, these results suggest that abused solvents display pharmacological selectivity and that NR1/2B NMDA receptors may be an important target for the actions of these compounds on the brain. PMID:11090101

  8. Stereocontrolled dopamine receptor binding and subtype selectivity of clebopride analogues synthesized from aspartic acid.

    PubMed

    Einsiedel, Jürgen; Weber, Klaus; Thomas, Christoph; Lehmann, Thomas; Hübner, Harald; Gmeiner, Peter

    2003-10-06

    Employing the achiral 4-aminopiperidine derivative clebopride as a lead compound, chiral analogues were developed displaying dopamine receptor binding profiles that proved to be strongly dependent on the stereochemistry. Compared to the D1 receptor, the test compounds showed high selectivity for the D2-like subtypes including D2(long), D2(short), D3 and D4. The highest D4 and D3 affinities were observed for the cis-3-amino-4-methylpyrrolidines 3e and the enantiomer ent3e resulting in K(i) values of 0.23 and 1.8 nM, respectively. The benzamides of type 3 and 5 were synthesized in enantiopure form starting from (S)-aspartic acid and its unnatural optical antipode.

  9. An intracellular loop 2 amino acid residue determines differential binding of arrestin to the dopamine D2 and D3 receptors.

    PubMed

    Lan, Hongxiang; Teeter, Martha M; Gurevich, Vsevolod V; Neve, Kim A

    2009-01-01

    Dopamine D(2) and D(3) receptors are similar subtypes with distinct interactions with arrestins; the D(3) receptor mediates less agonist-induced translocation of arrestins than the D(2) receptor. The goals of this study were to compare nonphosphorylated arrestin-binding determinants in the second intracellular domain (IC2) of the D(2) and D(3) receptors to identify residues that contribute to the differential binding of arrestin to the subtypes. Arrestin 3 bound to glutathione transferase (GST) fusion proteins of the D(2) receptor IC2 more avidly than to the D(3) receptor IC2. Mutagenesis of the fusion proteins identified a residue at the C terminus of IC2, Lys149, that was important for the preferential binding of arrestin 3 to D(2)-IC2; arrestin binding to D(2)-IC2-K149C was greatly decreased compared with wild-type D(2)-IC2, whereas binding to the reciprocal mutant D(3)-IC2-C147K was enhanced compared with wild-type D(3)-IC2. Mutating this lysine in the full-length D(2) receptor to cysteine decreased the ability of the D(2) receptor to mediate agonist-induced arrestin 3 translocation to the membrane and decreased agonist-induced receptor internalization in human embryonic kidney 293 cells. The reciprocal mutation in the D(3) receptor increased receptor-mediated translocation of arrestin 3 without affecting agonist-induced receptor internalization. G protein-coupled receptor crystal structures suggest that Lys149, at the junction of IC2 and the fourth membrane-spanning helix, has intramolecular interactions that contribute to maintaining an inactive receptor state. It is suggested that the preferential agonist-induced binding of arrestin3 to the D(2) receptor over the D(3) receptor is due in part to Lys149, which could be exposed as a result of receptor activation.

  10. D2 dopaminergic and 5-HT1A serotonergic activity of 2-(1-naphthyl)ethyl- and 2-(2-naphthyl)ethyl amines.

    PubMed

    Šukalović, V; Roglić, G; Husinec, S; Kostić-Rajaćić, S; Andrić, D; Šoškić, Vukić

    2003-11-01

    Several tertiary 2-phenylethyl, 2-(1-naphthyl)ethyl and 2-(2-naphthyl)ethyl amines were synthesized and their binding affinities for dopamine D(1), D(2) and serotonin 5-HT(1A) receptors evaluated in radioligand binding assays. All compounds were inactive in D(1) dopamine radioligand binding assay. The 2-(1-naphthyl)ethyl analogues expressed a low but significant binding affinity for the D(2) and moderate one for the 5-HT(1A) receptor subtypes. Most of the remaining compounds expressed binding affinity at the 5-HT(1A) receptor subtype but were inactive in D(2) receptor binding assay. Based on these results and considering the chemical characteristics of the compounds synthesized and evaluated for dopaminergic and serotonergic activity throughout the present study it can be concluded that hydrophobic type of interaction (stacking or edge-to-face) plays a significant role in the formation of receptor-ligand complexes of 2-(1-naphthyl)ethyl amines. This structural motive can be applied to design and synthesize new, more potent dopaminergic/serotonergic ligands by slight chemical modifications.

  11. Effects of muscarinic receptor antagonists on cocaine discrimination in wild-type mice and in muscarinic receptor M1, M2, and M4 receptor knockout mice.

    PubMed

    Joseph, Lauren; Thomsen, Morgane

    2017-06-30

    Muscarinic M 1 /M 4 receptor stimulation can reduce abuse-related effects of cocaine and may represent avenues for treating cocaine addiction. Muscarinic antagonists can mimic and enhance effects of cocaine, including discriminative stimulus (S D ) effects, but the receptor subtypes mediating those effects are not known. A better understanding of the complex cocaine/muscarinic interactions is needed to evaluate and develop potential muscarinic-based medications. Here, knockout mice lacking M 1 , M 2 , or M 4 receptors (M 1 -/- , M 2 -/- , M 4 -/- ), as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline. Muscarinic receptor antagonists with no subtype selectivity (scopolamine), or preferential affinity at the M 1 , M 2 , or M 4 subtype (telenzepine, trihexyphenidyl; methoctramine, AQ-RA 741; tropicamide) were tested alone and in combination with cocaine. In intact animals, antagonists with high affinity at M 1 /M 4 receptors partially substituted for cocaine and increased the S D effect of cocaine, while M 2 -preferring antagonists did not substitute, and reduced the S D effect of cocaine. The cocaine-like effects of scopolamine were absent in M 1 -/- mice. The cocaine S D attenuating effects of methoctramine were absent in M 2 -/- mice and almost absent in M 1 -/- mice. The findings indicate that the cocaine-like S D effects of muscarinic antagonists are primarily mediated through M 1 receptors, with a minor contribution of M 4 receptors. The data also support our previous findings that stimulation of M 1 receptors and M 4 receptors can each attenuate the S D effect of cocaine, and show that this can also be achieved by blocking M 2 autoreceptors, likely via increased acetylcholine release. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Dopamine Receptor-Specific Contributions to the Computation of Value.

    PubMed

    Burke, Christopher J; Soutschek, Alexander; Weber, Susanna; Raja Beharelle, Anjali; Fehr, Ernst; Haker, Helene; Tobler, Philippe N

    2018-05-01

    Dopamine is thought to play a crucial role in value-based decision making. However, the specific contributions of different dopamine receptor subtypes to the computation of subjective value remain unknown. Here we demonstrate how the balance between D1 and D2 dopamine receptor subtypes shapes subjective value computation during risky decision making. We administered the D2 receptor antagonist amisulpride or placebo before participants made choices between risky options. Compared with placebo, D2 receptor blockade resulted in more frequent choice of higher risk and higher expected value options. Using a novel model fitting procedure, we concurrently estimated the three parameters that define individual risk attitude according to an influential theoretical account of risky decision making (prospect theory). This analysis revealed that the observed reduction in risk aversion under amisulpride was driven by increased sensitivity to reward magnitude and decreased distortion of outcome probability, resulting in more linear value coding. Our data suggest that different components that govern individual risk attitude are under dopaminergic control, such that D2 receptor blockade facilitates risk taking and expected value processing.

  13. Differential manipulation of arrestin-3 binding to basal and agonist-activated G protein-coupled receptors.

    PubMed

    Prokop, Susanne; Perry, Nicole A; Vishnivetskiy, Sergey A; Toth, Andras D; Inoue, Asuka; Milligan, Graeme; Iverson, Tina M; Hunyady, Laszlo; Gurevich, Vsevolod V

    2017-08-01

    Non-visual arrestins interact with hundreds of different G protein-coupled receptors (GPCRs). Here we show that by introducing mutations into elements that directly bind receptors, the specificity of arrestin-3 can be altered. Several mutations in the two parts of the central "crest" of the arrestin molecule, middle-loop and C-loop, enhanced or reduced arrestin-3 interactions with several GPCRs in receptor subtype and functional state-specific manner. For example, the Lys139Ile substitution in the middle-loop dramatically enhanced the binding to inactive M 2 muscarinic receptor, so that agonist activation of the M 2 did not further increase arrestin-3 binding. Thus, the Lys139Ile mutation made arrestin-3 essentially an activation-independent binding partner of M 2 , whereas its interactions with other receptors, including the β 2 -adrenergic receptor and the D 1 and D 2 dopamine receptors, retained normal activation dependence. In contrast, the Ala248Val mutation enhanced agonist-induced arrestin-3 binding to the β 2 -adrenergic and D 2 dopamine receptors, while reducing its interaction with the D 1 dopamine receptor. These mutations represent the first example of altering arrestin specificity via enhancement of the arrestin-receptor interactions rather than selective reduction of the binding to certain subtypes. Copyright © 2017. Published by Elsevier Inc.

  14. Evidence for Noncanonical Neurotransmitter Activation: Norepinephrine as a Dopamine D2-Like Receptor Agonist

    PubMed Central

    Sánchez-Soto, Marta; Bonifazi, Alessandro; Cai, Ning Sheng; Ellenberger, Michael P.; Newman, Amy Hauck

    2016-01-01

    The Gαi/o-coupled dopamine D2-like receptor family comprises three subtypes: the D2 receptor (D2R), with short and long isoform variants (D2SR and D2LR), D3 receptor (D3R), and D4 receptor (D4R), with several polymorphic variants. The common overlap of norepinephrine innervation and D2-like receptor expression patterns prompts the question of a possible noncanonical action by norepinephrine. In fact, previous studies have suggested that norepinephrine can functionally interact with D4R. To our knowledge, significant interactions between norepinephrine and D2R or D3R receptors have not been demonstrated. By using radioligand binding and bioluminescent resonance energy transfer (BRET) assays in transfected cells, the present study attempted a careful comparison between dopamine and norepinephrine in their possible activation of all D2-like receptors, including the two D2R isoforms and the most common D4R polymorphic variants. Functional BRET assays included activation of G proteins with all Gαi/o subunits, adenylyl cyclase inhibition, and β arrestin recruitment. Norepinephrine acted as a potent agonist for all D2-like receptor subtypes, with the general rank order of potency of D3R > D4R ≥ D2SR ≥ D2L. However, for both dopamine and norepinephrine, differences depended on the Gαi/o protein subunit involved. The most striking differences were observed with Gαi2, where the rank order of potencies for both dopamine and norepinephrine were D4R > D2SR = D2LR >> D3R. Furthermore the results do not support the existence of differences in the ability of dopamine and norepinephrine to activate different human D4R variants. The potency of norepinephrine for adrenergic α2A receptor was only about 20-fold higher compared with D3R and D4R across the three functional assays. PMID:26843180

  15. Dopaminergic modulation of locomotor network activity in the neonatal mouse spinal cord

    PubMed Central

    Sharples, Simon A.; Humphreys, Jennifer M.; Jensen, A. Marley; Dhoopar, Sunny; Delaloye, Nicole; Clemens, Stefan

    2015-01-01

    Dopamine is now well established as a modulator of locomotor rhythms in a variety of developing and adult vertebrates. However, in mice, while all five dopamine receptor subtypes are present in the spinal cord, it is unclear which receptor subtypes modulate the rhythm. Dopamine receptors can be grouped into two families—the D1/5 receptor group and the D2/3/4 group, which have excitatory and inhibitory effects, respectively. Our data suggest that dopamine exerts contrasting dose-dependent modulatory effects via the two receptor families. Our data show that administration of dopamine at concentrations >35 μM slowed and increased the regularity of a locomotor rhythm evoked by bath application of 5-hydroxytryptamine (5-HT) and N-methyl-d(l)-aspartic acid (NMA). This effect was independent of the baseline frequency of the rhythm that was manipulated by altering the NMA concentration. We next examined the contribution of the D1- and D2-like receptor families on the rhythm. Our data suggest that the D1-like receptor contributes to enhancement of the stability of the rhythm. Overall, the D2-like family had a pronounced slowing effect on the rhythm; however, quinpirole, the D2-like agonist, also enhanced rhythm stability. These data indicate a receptor-dependent delegation of the modulatory effects of dopamine on the spinal locomotor pattern generator. PMID:25652925

  16. Immunohistochemical localization of alpha and beta adrenergic receptors in the human nasal turbinate.

    PubMed

    Shirasaki, Hideaki; Kanaizumi, Etsuko; Himi, Tetsuo

    2016-06-01

    Adrenergic receptors (ARs) include four general types (α1, α2, β1 and β2), which are found in different target tissues. α-AR agonists are commonly used for decongestant therapy of upper airway diseases. In order to clarify the roles of AR subtypes in the upper airways, we investigated the localization of these receptors by immunohistochemistry. Human turbinates were obtained after turbinectomy from 12 patients with nasal obstruction refractory to medical therapy. The specific cells expressing α- and β-AR proteins were identified by immunostaining using an anti-human AR subtype-specific antibodies (α1A-, α1D-, α2C- and β2-ARs) antibody. Immunohistochemical analysis revealed that immunoreactivities for α1D- and β2-ARs were densely distributed in submucosal glands. In contrast, immunoreactivities for α1A- and 2C-ARs were densely distributed in vascular smooth muscle. Our results suggested that adrenergic receptor (AR) subtypes had different roles in upper airway diseases, such as allergic rhinitis and nonallergic rhinitis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. Nucleus accumbens medium spiny neuron subtypes mediate depression-related outcomes to social defeat stress.

    PubMed

    Francis, T Chase; Chandra, Ramesh; Friend, Danielle M; Finkel, Eric; Dayrit, Genesis; Miranda, Jorge; Brooks, Julie M; Iñiguez, Sergio D; O'Donnell, Patricio; Kravitz, Alexxai; Lobo, Mary Kay

    2015-02-01

    The nucleus accumbens is a critical mediator of depression-related outcomes to social defeat stress. Previous studies demonstrate distinct neuroplasticity adaptations in the two medium spiny neuron (MSN) subtypes, those enriched in dopamine receptor D1 versus dopamine receptor D2, in reward and reinforcement leading to opposing roles for these MSNs in these behaviors. However, the distinct roles of nucleus accumbens MSN subtypes, in depression, remain poorly understood. Using whole-cell patch clamp electrophysiology, we examined excitatory input to MSN subtypes and intrinsic excitability measures in D1-green fluorescent protein and D2-green fluorescent protein bacterial artificial chromosome transgenic mice that underwent chronic social defeat stress (CSDS). Optogenetic and pharmacogenetic approaches were used to bidirectionally alter firing of D1-MSNs or D2-MSNs after CSDS or before a subthreshold social defeat stress in D1-Cre or D2-Cre bacterial artificial chromosome transgenic mice. We demonstrate that the frequency of excitatory synaptic input is decreased in D1-MSNs and increased in D2-MSNs in mice displaying depression-like behaviors after CSDS. Enhancing activity in D1-MSNs results in resilient behavioral outcomes, while inhibition of these MSNs induces depression-like outcomes after CSDS. Bidirectional modulation of D2-MSNs does not alter behavioral responses to CSDS; however, repeated activation of D2-MSNs in stress naïve mice induces social avoidance following subthreshold social defeat stress. Our studies uncover novel functions of MSN subtypes in depression-like outcomes. Notably, bidirectional alteration of D1-MSN activity promotes opposite behavioral outcomes to chronic social stress. Therefore, targeting D1-MSN activity may provide novel treatment strategies for depression or other affective disorders. Copyright © 2015 Society of Biological Psychiatry. All rights reserved.

  18. Identification of the dopamine autoreceptor in the guinea-pig retina as D2 receptor using novel subtype-selective antagonists

    PubMed Central

    Weber, Bernd; Schlicker, Eberhard; Sokoloff, Pierre; Stark, Holger

    2001-01-01

    Dopamine release in the retina is subject to modulation via autoreceptors, which belong to the D2 receptor family (encompassing the D2, D3 and D4 receptors). The aim of the present study was to determine the receptor subtype (D2 vs D3) involved in the inhibition of dopamine release in guinea-pig retinal discs, using established (haloperidol, (S)-nafadotride) and novel dopamine receptor antagonists (ST-148, ST-198). hD2L and hD3 receptors were expressed in CHO cells and the pKi values determined in binding studies with [125I]-iodosulpride were: haloperidol 9.22 vs 8.54; ST-148 7.85 vs 6.60; (S)-nafadotride 8.52 vs 9.51; ST-198 6.14 vs 7.92. The electrically evoked tritium overflow from retinal discs preincubated with [3H]-noradrenaline (which represents quasi-physiological dopamine release) was inhibited by the dopamine receptor agonists B-HT 920 (talipexole) and quinpirole (maximally by 82 and 71%; pEC50 5.80 and 5.83). The concentration-response curves of these agonists were shifted to the right by haloperidol (apparent pA2 8.69 and 8.23) and ST-148 (7.52 and 7.66). (S)-Nafadotride 0.01 μM and ST-198 0.32 μM did not affect the concentration-response curve of B-HT 920. The dopamine autoreceptor in the guinea-pig retina can be classified as a D2 receptor. ST-148 and ST-198 show an improved selectivity for D2 and D3 receptors when compared to haloperidol and (S)-nafadotride, respectively. PMID:11498509

  19. Prostaglandins and Their Receptors in Eosinophil Function and As Therapeutic Targets

    PubMed Central

    Peinhaupt, Miriam; Sturm, Eva M.; Heinemann, Akos

    2017-01-01

    Of the known prostanoid receptors, human eosinophils express the prostaglandin D2 (PGD2) receptors DP1 [also D-type prostanoid (DP)] and DP2 (also chemoattractant receptor homologous molecule, expressed on Th2 cells), the prostaglandin E2 receptors EP2 and EP4, and the prostacyclin (PGI2) receptor IP. Prostanoids can bind to either one or multiple receptors, characteristically have a short half-life in vivo, and are quickly degraded into metabolites with altered affinity and specificity for a given receptor subtype. Prostanoid receptors signal mainly through G proteins and naturally activate signal transduction pathways according to the G protein subtype that they preferentially interact with. This can lead to the activation of sometimes opposing signaling pathways. In addition, prostanoid signaling is often cell-type specific and also the combination of expressed receptors can influence the outcome of the prostanoid impulse. Accordingly, it is assumed that eosinophils and their (patho-)physiological functions are governed by a sensitive prostanoid signaling network. In this review, we specifically focus on the functions of PGD2, PGE2, and PGI2 and their receptors on eosinophils. We discuss their significance in allergic and non-allergic diseases and summarize potential targets for drug intervention. PMID:28770200

  20. The three α1-adrenoceptor subtypes show different spatio-temporal mechanisms of internalization and ERK1/2 phosphorylation.

    PubMed

    Perez-Aso, M; Segura, V; Montó, F; Barettino, D; Noguera, M A; Milligan, G; D'Ocon, P

    2013-10-01

    We analyzed the kinetic and spatial patterns characterizing activation of the MAP kinases ERK 1 and 2 (ERK1/2) by the three α1-adrenoceptor (α1-AR) subtypes in HEK293 cells and the contribution of two different pathways to ERK1/2 phosphorylation: protein kinase C (PKC)-dependent ERK1/2 activation and internalization-dependent ERK1/2 activation. The different pathways of phenylephrine induced ERK phosphorylation were determined by western blot, using the PKC inhibitor Ro 31-8425, the receptor internalization inhibitor concanavalin A and the siRNA targeting β-arrestin 2. Receptor internalization properties were studied using CypHer5 technology and VSV-G epitope-tagged receptors. Activation of α1A- and α1B-ARs by phenylephrine elicited rapid ERK1/2 phosphorylation that was directed to the nucleus and inhibited by Ro 31-8425. Concomitant with phenylephrine induced receptor internalization α1A-AR, but not α1B-AR, produced a maintained and PKC-independent ERK phosphorylation, which was restricted to the cytosol and inhibited by β-arrestin 2 knockdown or concanavalin A treatment. α1D-AR displayed constitutive ERK phosphorylation, which was reduced by incubation with prazosin or the selective α1D antagonist BMY7378. Following activation by phenylephrine, α1D-AR elicited rapid, transient ERK1/2 phosphorylation that was restricted to the cytosol and not inhibited by Ro 31-8425. Internalization of the α1D-AR subtype was not observed via CypHer5 technology. The three α1-AR subtypes present different spatio-temporal patterns of receptor internalization, and only α1A-AR stimulation translates to a late, sustained ERK1/2 phosphorylation that is restricted to the cytosol and dependent on β-arrestin 2 mediated internalization. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Dopamine D3 receptors contribute to methamphetamine-induced alterations in dopaminergic neuronal function: Role of hyperthermia

    PubMed Central

    Baladi, Michelle G.; Newman, Amy H.; Nielsen, Shannon M.; Hanson, Glen R.; Fleckenstein, Annette E.

    2014-01-01

    Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia. PMID:24685638

  2. Dopamine D(3) receptors contribute to methamphetamine-induced alterations in dopaminergic neuronal function: role of hyperthermia.

    PubMed

    Baladi, Michelle G; Newman, Amy H; Nielsen, Shannon M; Hanson, Glen R; Fleckenstein, Annette E

    2014-06-05

    Methamphetamine administration causes long-term deficits to dopaminergic systems that, in humans, are thought to be associated with motor slowing and memory impairment. Methamphetamine interacts with the dopamine transporter (DAT) and increases extracellular concentrations of dopamine that, in turn, binds to a number of dopamine receptor subtypes. Although the relative contribution of each receptor subtype to the effects of methamphetamine is not fully known, non-selective dopamine D2/D3 receptor antagonists can attenuate methamphetamine-induced changes to dopamine systems. The present study extended these findings by testing the role of the dopamine D3 receptor subtype in mediating the long-term dopaminergic, and for comparison serotonergic, deficits caused by methamphetamine. Results indicate that the dopamine D3 receptor selective antagonist, PG01037, attenuated methamphetamine-induced decreases in striatal DAT, but not hippocampal serotonin (5HT) transporter (SERT), function, as assessed 7 days after treatment. However, PG01037 also attenuated methamphetamine-induced hyperthermia. When methamphetamine-induced hyperthermia was maintained by treating rats in a warm ambient environment, PG01037 failed to attenuate the effects of methamphetamine on DAT uptake. Furthermore, PG01037 did not attenuate methamphetamine-induced decreases in dopamine and 5HT content. Taken together, the present study demonstrates that dopamine D3 receptors mediate, in part, the long-term deficits in DAT function caused by methamphetamine, and that this effect likely involves an attenuation of methamphetamine-induced hyperthermia. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Identification of N-methyl-D-aspartic acid (NMDA) receptor subtype-specific binding sites that mediate direct interactions with scaffold protein PSD-95.

    PubMed

    Cousins, Sarah L; Stephenson, F Anne

    2012-04-13

    N-methyl-D-aspartate (NMDA) neurotransmitter receptors and the postsynaptic density-95 (PSD-95) membrane-associated guanylate kinase (MAGUK) family of scaffolding proteins are integral components of post-synaptic macromolecular signaling complexes that serve to propagate glutamate responses intracellularly. Classically, NMDA receptor NR2 subunits associate with PSD-95 MAGUKs via a conserved ES(E/D)V amino acid sequence located at their C termini. We previously challenged this dogma to demonstrate a second non-ES(E/D)V PSD-95-binding site in both NMDA receptor NR2A and NR2B subunits. Here, using a combination of co-immunoprecipitations from transfected mammalian cells, yeast two-hybrid interaction assays, and glutathione S-transferase (GST) pulldown assays, we show that NR2A subunits interact directly with PSD-95 via the C-terminal ESDV motif and additionally via an Src homology 3 domain-binding motif that associates with the Src homology 3 domain of PSD-95. Peptide inhibition of co-immunoprecipitations of NR2A and PSD-95 demonstrates that both the ESDV and non-ESDV sites are required for association in native brain tissue. Furthermore, we refine the non-ESDV site within NR2B to residues 1149-1157. These findings provide a molecular basis for the differential association of NMDA receptor subtypes with PSD-95 MAGUK scaffold proteins. These selective interactions may contribute to the organization, lateral mobility, and ultimately the function of NMDA receptor subtypes at synapses. Furthermore, they provide a more general molecular mechanism by which the scaffold, PSD-95, may discriminate between potential interacting partner proteins.

  4. Identification of N-Methyl-d-aspartic Acid (NMDA) Receptor Subtype-specific Binding Sites That Mediate Direct Interactions with Scaffold Protein PSD-95*

    PubMed Central

    Cousins, Sarah L.; Stephenson, F. Anne

    2012-01-01

    N-methyl-d-aspartate (NMDA) neurotransmitter receptors and the postsynaptic density-95 (PSD-95) membrane-associated guanylate kinase (MAGUK) family of scaffolding proteins are integral components of post-synaptic macromolecular signaling complexes that serve to propagate glutamate responses intracellularly. Classically, NMDA receptor NR2 subunits associate with PSD-95 MAGUKs via a conserved ES(E/D)V amino acid sequence located at their C termini. We previously challenged this dogma to demonstrate a second non-ES(E/D)V PSD-95-binding site in both NMDA receptor NR2A and NR2B subunits. Here, using a combination of co-immunoprecipitations from transfected mammalian cells, yeast two-hybrid interaction assays, and glutathione S-transferase (GST) pulldown assays, we show that NR2A subunits interact directly with PSD-95 via the C-terminal ESDV motif and additionally via an Src homology 3 domain-binding motif that associates with the Src homology 3 domain of PSD-95. Peptide inhibition of co-immunoprecipitations of NR2A and PSD-95 demonstrates that both the ESDV and non-ESDV sites are required for association in native brain tissue. Furthermore, we refine the non-ESDV site within NR2B to residues 1149–1157. These findings provide a molecular basis for the differential association of NMDA receptor subtypes with PSD-95 MAGUK scaffold proteins. These selective interactions may contribute to the organization, lateral mobility, and ultimately the function of NMDA receptor subtypes at synapses. Furthermore, they provide a more general molecular mechanism by which the scaffold, PSD-95, may discriminate between potential interacting partner proteins. PMID:22375001

  5. Synthesis and binding affinity of new 1,4-disubstituted triazoles as potential dopamine D(3) receptor ligands.

    PubMed

    Insua, Ignacio; Alvarado, Mario; Masaguer, Christian F; Iglesias, Alba; Brea, José; Loza, María I; Carro, Laura

    2013-10-15

    A series of new 1,4-disubstituted triazoles was prepared from appropriate arylacetylenes and aminoalkylazides using click chemistry methodology. These compounds were evaluated as potential ligands on several subtypes of dopamine receptors in in vitro competition assays, showing high affinity for dopamine D3 receptors, lower affinity for D2 and D4, and no affinity for the D1 receptors. Compound 18 displayed the highest affinity at the D3 receptor with a Ki value of 2.7 nM, selectivity over D2 (70-fold) and D4 (200-fold), and behaviour as a competitive antagonist in the low nanomolar range. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Species differences in the relative densities of D1- and D2-like dopamine receptor subtypes in the Japanese quail and rats: an in vitro quantitative receptor autoradiography study.

    PubMed

    Kleitz, Hayley K; Cornil, Charlotte A; Balthazart, Jacques; Ball, Gregory F

    2009-01-01

    Evidence has accumulated that the regulation of male sexual behavior by dopamine might not be the same in Japanese quail (and perhaps all birds) as it is in mammals. For example, the non-selective dopamine receptor agonist, apomorphine (APO), facilitates male sexual behavior in rats but inhibits it in quail. Although the general organization of the dopamine system is similar in birds and mammals, it is possible that the relative distribution and/or density of binding sites are different. We therefore compared the relative densities of D1-like and D2-like receptor subtypes in Japanese quail and rats, with the use of in vitro quantitative receptor autoradiography. Brain sections from 8 male rats and 8 male quail were labeled with [(3)H]SCH-23390 and [(3)H]Spiperone. In general we found a systematic species difference in the relative density of D1- vs. D2-like receptors such that the D2/D1 ratio is higher in quail than in rats in areas, known to be important target sites for dopamine action such as striatal regions or the preoptic area, which is also associated with activation of sexual behavior. This difference might explain the variation in the behavioral effectiveness of APO in rats as compared to quail; with a higher relative density of D2-like receptors in quail, a similar dose of APO would be more likely to activate inhibitory processes in quail than in rats. (c) 2009 S. Karger AG, Basel.

  7. Altered striatal function in a mutant mouse lacking D1A dopamine receptors.

    PubMed Central

    Drago, J; Gerfen, C R; Lachowicz, J E; Steiner, H; Hollon, T R; Love, P E; Ooi, G T; Grinberg, A; Lee, E J; Huang, S P

    1994-01-01

    Of the five known dopamine receptors, D1A and D2 represent the major subtypes expressed in the striatum of the adult brain. Within the striatum, these two subtypes are differentially distributed in the two main neuronal populations that provide direct and indirect pathways between the striatum and the output nuclei of the basal ganglia. Movement disorders, including Parkinson disease and various dystonias, are thought to result from imbalanced activity in these pathways. Dopamine regulates movement through its differential effects on D1A receptors expressed by direct output neurons and D2 receptors expressed by indirect output neurons. To further examine the interaction of D1A and D2 neuronal pathways in the striatum, we used homologous recombination to generate mutant mice lacking functional D1A receptors (D1A-/-). D1A-/- mutants are growth retarded and die shortly after weaning age unless their diet is supplemented with hydrated food. With such treatment the mice gain weight and survive to adulthood. Neurologically, D1A-/- mice exhibit normal coordination and locomotion, although they display a significant decrease in rearing behavior. Examination of the striatum revealed changes associated with the altered phenotype of these mutants. D1A receptor binding was absent in striatal sections from D1A-/- mice. Striatal neurons normally expressing functional D1A receptors are formed and persist in adult homozygous mutants. Moreover, substance P mRNA, which is colocalized specifically in striatal neurons with D1A receptors, is expressed at a reduced level. In contrast, levels of enkephalin mRNA, which is expressed in striatal neurons with D2 receptors, are unaffected. These findings show that D1A-/- mice exhibit selective functional alterations in the striatal neurons giving rise to the direct striatal output pathway. Images Fig. 2 Fig. 4 PMID:7809078

  8. Association of dopamine D(3) receptors with actin-binding protein 280 (ABP-280).

    PubMed

    Li, Ming; Li, Chuanyu; Weingarten, Paul; Bunzow, James R; Grandy, David K; Zhou, Qun Yong

    2002-03-01

    Proteins that bind to G protein-coupled receptors have been identified as regulators of receptor localization and signaling. In our previous studies, a cytoskeletal protein, actin-binding protein 280 (ABP-280), was found to associate with the third cytoplasmic loop of dopamine D(2) receptors. In this study, we demonstrate that ABP-280 also interacts with dopamine D(3) receptors, but not with D(4) receptors. Similar to the dopamine D(2) receptor, the D(3)/ABP-280 association is of signaling importance. In human melanoma M2 cells lacking ABP-280, D(3) receptors were unable to inhibit forskolin-stimulated cyclic AMP (cAMP) production significantly. D(4) receptors, however, exhibited a similar degree of inhibition of forskolin-stimulated cAMP production in ABP-280-deficient M2 cells and ABP-280-replent M2 subclones (A7 cells). Further experiments revealed that the D(3)/ABP-280 interaction was critically dependent upon a 36 amino acid carboxyl domain of the D(3) receptor third loop, which is conserved in the D(2) receptor but not in the D(4) receptor. Our results demonstrate a subtype-specific regulation of dopamine D(2)-family receptor signaling by the cytoskeletal protein ABP-280.

  9. Phosphoinositide system-linked serotonin receptor subtypes and their pharmacological properties and clinical correlates.

    PubMed Central

    Pandey, S C; Davis, J M; Pandey, G N

    1995-01-01

    Serotonergic neurotransmission represents a complex mechanism involving pre- and post-synaptic events and distinct 5-HT receptor subtypes. Serotonin (5-HT) receptors have been classified into several categories, and they are termed as 5-HT1, 5-HT2, 5-HT3, 5-HT4, 5-HT5, 5-HT6 and 5-HT7 type receptors. 5-HT1 receptors have been further subdivided into 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E and 5-HT1F. 5-HT2 receptors have been divided into 5-HT2A, 5-HT2B and 5-HT2C receptors. All 5-HT2 receptor subtypes are linked to the multifunctional phosphoinositide (PI) signalling system. 5-HT3 receptors are considered ion-gated receptors and are also linked to the PI signalling system by an unknown mechanism. The 5-HT2A receptor subtype is the most widely studied of the 5-HT receptors in psychiatric disorders (for example, suicide, depression and schizophrenia) as well as in relation to the mechanism of action of antidepressant drugs. The roles of 5-HT2C and 5-HT3 receptors in psychiatric disorders are less clear. These 5-HT receptors also play an important role in alcoholism. It has been shown that 5-HT2A, 5-HT2C and 5-HT3 antagonists cause attenuation of alcohol intake in animals and humans. However, the exact mechanisms are unknown. The recent cloning of the cDNAs for 5-HT2A, 5-HT2C and 5-HT3 receptors provides the opportunity to explore the molecular mechanisms responsible for the alterations in these receptors during illness as well as pharmacotherapy. This review article will focus on the current research into the pharmacological properties, molecular biology, and clinical correlates of 5-HT2A, 5-HT2C and 5-HT3 receptors. PMID:7786883

  10. Transmembrane Segment Five Serines of the D4 Dopamine Receptor Uniquely Influence the Interactions of Dopamine, Norepinephrine, and Ro10-4548

    PubMed Central

    Cummings, David F.; Ericksen, Spencer S.; Goetz, Angela

    2010-01-01

    Conserved serines of transmembrane segment (TM) five (TM5) are critical for the interactions of endogenous catecholamines with α1- and α2-adrenergic, β2-adrenergic, and D1, D2, and D3 dopamine receptors. The unique high-affinity interaction of the D4 dopamine receptor subtype with both norepinephrine and dopamine, and the fact that TM5 serine interactions have never been studied for this receptor subtype, led us to investigate the interactions of ligands with D4 receptor TM5 serines. Serine-to-alanine mutations at positions 5.42 and 5.46 drastically decreased affinities of dopamine and norepinephrine for the D4 receptor. The D4-S5.43A receptor mutant had substantially reduced affinity for norepinephrine, but a modest loss of affinity for dopamine. In functional assays of cAMP accumulation, norephinephrine was unable to activate any of the mutant receptors, even though the agonist quinpirole displayed wild-type functional properties for all of them. Dopamine was unable to activate the S5.46A mutant and had reduced potency for the S5.43A mutant and reduced potency and efficacy for the S5.42A mutant. In contrast, Ro10-4548 [RAC-2′-2-hydroxy-3-4-(4-hydroxy-2-methoxyphenyl)-1-piperazinyl-propoxy-acetanilide], a catechol-like antagonist of the wild-type receptor unexpectedly functions as an agonist of the S5.43A mutant. Other noncatechol ligands had similar properties for mutant and wild-type receptors. This is the first example of a dopamine receptor point mutation selectively changing the receptor's interaction with a specific antagonist to that of an agonist, and together with other data, provides evidence, supported by molecular modeling, that catecholamine-type agonism is induced by different ligand-specific configurations of intermolecular H-bonds with the TM5 conserved serines. PMID:20215412

  11. Structure–Activity Relationships for a Novel Series of Dopamine D2-like Receptor Ligands Based on N-Substituted 3-Aryl-8-azabicyclo[3.2.1]octan-3-ol

    PubMed Central

    Paul, Noel M.; Taylor, Michelle; Kumar, Rakesh; Deschamps, Jeffrey R.; Luedtke, Robert R.; Newman, Amy Hauck

    2011-01-01

    Discovering dopamine D2-like receptor subtype-selective ligands has been a focus of significant investigation. The D2R-selective antagonist 3-[4-(4-chlorophenyl)-4-hydroxypiperidinyl]methylindole (1, L741,626; Ki(D2R/D3R) = 11.2:163 nM) has previously provided a lead template for chemical modification. Herein, analogues have been synthesized where the piperidine was replaced by a tropane ring that reversed the selectivity seen in the parent compound, in human hD2LR- or hD3R-transfected HEK 293 cells (31, Ki(D2R/D3R) = 33.4: 15.5 nM). Further exploration of both N-substituted and aryl ring-substituted analogues resulted in the discovery of several high affinity D2R/D3R ligands with 3-benzofurylmethyl-substituents (e.g., 45, Ki(D2R/D3R) = 1.7:0.34 nM) that induced high affinity not achieved in similarly N-substituted piperidine analogues and significantly (470-fold) improved D3R binding affinity compared to the parent ligand 1. X-ray crystallographic data revealed a distinctive spatial arrangement of pharmacophoric elements in the piperidinol vs tropine analogues, providing clues for the diversity in SAR at the D2 and D3 receptor subtypes. PMID:18774793

  12. Current drug treatments targeting dopamine D3 receptor.

    PubMed

    Leggio, Gian Marco; Bucolo, Claudio; Platania, Chiara Bianca Maria; Salomone, Salvatore; Drago, Filippo

    2016-09-01

    Dopamine receptors (DR) have been extensively studied, but only in recent years they became object of investigation to elucidate the specific role of different subtypes (D1R, D2R, D3R, D4R, D5R) in neural transmission and circuitry. D1-like receptors (D1R and D5R) and D2-like receptors (D2R, D2R and D4R) differ in signal transduction, binding profile, localization in the central nervous system and physiological effects. D3R is involved in a number of pathological conditions, including schizophrenia, Parkinson's disease, addiction, anxiety, depression and glaucoma. Development of selective D3R ligands has been so far challenging, due to the high sequence identity and homology shared by D2R and D3R. As a consequence, despite a rational design of selective DR ligands has been carried out, none of currently available medicines selectively target a given D2-like receptor subtype. The availability of the D3R ligand [(11)C]-(+)-PHNO for positron emission tomography studies in animal models as well as in humans, allows researchers to estimate the expression of D3R in vivo; displacement of [(11)C]-(+)-PHNO binding by concurrent drug treatments is used to estimate the in vivo occupancy of D3R. Here we provide an overview of studies indicating D3R as a target for pharmacological therapy, and a review of market approved drugs endowed with significant affinity at D3R that are used to treat disorders where D3R plays a relevant role. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Dopamine D2-Like Receptors and Behavioral Economics of Food Reinforcement

    PubMed Central

    Soto, Paul L; Hiranita, Takato; Xu, Ming; Hursh, Steven R; Grandy, David K; Katz, Jonathan L

    2016-01-01

    Previous studies suggest dopamine (DA) D2-like receptor involvement in the reinforcing effects of food. To determine contributions of the three D2-like receptor subtypes, knockout (KO) mice completely lacking DA D2, D3, or D4 receptors (D2R, D3R, or D4R KO mice) and their wild-type (WT) littermates were exposed to a series of fixed-ratio (FR) food-reinforcement schedules in two contexts: an open economy with additional food provided outside the experimental setting and a closed economy with all food earned within the experimental setting. A behavioral economic model was used to quantify reinforcer effectiveness with food pellets obtained as a function of price (FR schedule value) plotted to assess elasticity of demand. Under both economies, as price increased, food pellets obtained decreased more rapidly (ie, food demand was more elastic) in DA D2R KO mice compared with WT littermates. Extinction of responding was studied in two contexts: by eliminating food deliveries and by delivering food independently of responding. A hyperbolic model quantified rates of extinction. Extinction in DA D2R KO mice occurred less rapidly compared with WT mice in both contexts. Elasticity of food demand was higher in DA D4R KO than WT mice in the open, but not closed, economy. Extinction of responding in DA D4R KO mice was not different from that in WT littermates in either context. No differences in elasticity of food demand or extinction rate were obtained in D3R KO mice and WT littermates. These results indicate that the D2R is the primary DA D2-like receptor subtype mediating the reinforcing effectiveness of food. PMID:26205210

  14. In vitro study on the effects of some selected agonists and antagonists of alpha(1)-adrenergic receptors on the contractility of the aneurysmally-changed aortic smooth muscle in humans.

    PubMed

    Gnus, J; Czerski, A; Ferenc, S; Zawadzki, W; Witkiewicz, W; Hauzer, W; Rusiecka, A; Bujok, J

    2012-02-01

    The study included 18 sections of the aneurysmally-changed abdominal aortas, obtained from patients of the Provincial Specialist Hospital in Wroclaw and 18 sections of normal abdominal aortas obtained from swine. The collected samples were placed horizontally in the incubation chamber. Changes in their transverse section area were registered. They were stretched to a tension of 5 mN. Krebs-Henseleit buffer was used as the incubatory environment. Incubation of the sections was performed at a temperature of 37°C, in the gaseous mixture of oxygen and carbon dioxide used in the following proportion: 95% of O(2) and 5% of CO(2). Contractions of the aorta were registered with isotonic transducers (Letica Scientific Instruments). In the studies, we examined the influence of α(1)-adrenergic receptors (and their subtypes α(1A), α(1B), α(1D)) on the contractility of the aortic muscle in humans and swine by their stimulation or inhibition with some selected agonists or antagonists. This time, it was shown that the stimulation of α(1)-adrenergic receptors leads to contractions of the human and swine aortic muscle; the observed increase in the muscle tone may follow from the stimulation of all subtypes of alpha-1 receptor (α(1A), α(1B), α(1D)). All three subtypes of 1-adrenergic receptor are engaged in vasoconstriction, especially of α(1A) and α(1D) subtypes; the α(1B) subtype is less significant for aortic contractility. The contractile response of the aneurysmally-changed abdominal aorta in humans to agonists of α-adrenergic receptors was significantly less intense than that of the normal porcine aorta. It can be concluded that aneurysms influence the contractile response of the aorta.

  15. Dopamine D₂-Like Receptors and Behavioral Economics of Food Reinforcement.

    PubMed

    Soto, Paul L; Hiranita, Takato; Xu, Ming; Hursh, Steven R; Grandy, David K; Katz, Jonathan L

    2016-03-01

    Previous studies suggest dopamine (DA) D2-like receptor involvement in the reinforcing effects of food. To determine contributions of the three D2-like receptor subtypes, knockout (KO) mice completely lacking DA D2, D3, or D4 receptors (D2R, D3R, or D4R KO mice) and their wild-type (WT) littermates were exposed to a series of fixed-ratio (FR) food-reinforcement schedules in two contexts: an open economy with additional food provided outside the experimental setting and a closed economy with all food earned within the experimental setting. A behavioral economic model was used to quantify reinforcer effectiveness with food pellets obtained as a function of price (FR schedule value) plotted to assess elasticity of demand. Under both economies, as price increased, food pellets obtained decreased more rapidly (ie, food demand was more elastic) in DA D2R KO mice compared with WT littermates. Extinction of responding was studied in two contexts: by eliminating food deliveries and by delivering food independently of responding. A hyperbolic model quantified rates of extinction. Extinction in DA D2R KO mice occurred less rapidly compared with WT mice in both contexts. Elasticity of food demand was higher in DA D4R KO than WT mice in the open, but not closed, economy. Extinction of responding in DA D4R KO mice was not different from that in WT littermates in either context. No differences in elasticity of food demand or extinction rate were obtained in D3R KO mice and WT littermates. These results indicate that the D2R is the primary DA D2-like receptor subtype mediating the reinforcing effectiveness of food.

  16. Pharmacological characterization of recombinant human and rat P2X receptor subtypes.

    PubMed

    Bianchi, B R; Lynch, K J; Touma, E; Niforatos, W; Burgard, E C; Alexander, K M; Park, H S; Yu, H; Metzger, R; Kowaluk, E; Jarvis, M F; van Biesen, T

    1999-07-02

    ATP functions as a fast neurotransmitter through the specific activation of a family of ligand-gated ion channels termed P2X receptors. In this report, six distinct recombinant P2X receptor subtypes were pharmacologically characterized in a heterologous expression system devoid of endogenous P2 receptor activity. cDNAs encoding four human P2X receptor subtypes (hP2X1, hP2X3, hP2X4, and hP2X7), and two rat P2X receptor subtypes (rP2X2 and rP2X3), were stably expressed in 1321N1 human astrocytoma cells. Furthermore, the rP2X2 and rP2X3 receptor subtypes were co-expressed in these same cells to form heteromultimeric receptors. Pharmacological profiles were determined for each receptor subtype, based on the activity of putative P2 ligands to stimulate Ca2+ influx. The observed potency and kinetics of each response was receptor subtype-specific and correlated with their respective electrophysiological properties. Each receptor subtype exhibited a distinct pharmacological profile, based on its respective sensitivity to nucleotide analogs, diadenosine polyphosphates and putative P2 receptor antagonists. Alphabeta-methylene ATP (alphabeta-meATP), a putative P2X receptor-selective agonist, was found to exhibit potent agonist activity only at the hP2X1, hP2X3 and rP2X3 receptor subtypes. Benzoylbenzoic ATP (BzATP, 2' and 3' mixed isomers), which has been reported to act as a P2X7 receptor-selective agonist, was least active at the rat and human P2X7 receptors, but was a potent (nM) agonist at hP2X1, rP2X3 and hP2X3 receptors. These data comprise a systematic examination of the functional pharmacology of P2X receptor activation.

  17. Synthesis and pharmacological characterization of novel xanthine carboxylate amides as A2A adenosine receptor ligands exhibiting bronchospasmolytic activity.

    PubMed

    Yadav, Rakesh; Bansal, Ranju; Rohilla, Suman; Kachler, Sonja; Klotz, Karl-Norbert

    2016-04-01

    The carboxylate amides of 8-phenyl-1,3-dimethylxanthine described herein represent a new series of selective ligands of the adenosine A2A receptors exhibiting bronchospasmolytic activity. The effects of location of 8-phenyl substitutions on the adenosine receptor (AR) binding affinities of the newly synthesized xanthines have also been studied. The compounds displayed moderate to potent binding affinities toward various adenosine receptor subtypes when evaluated through radioligand binding studies. However, most of the compounds showed the maximum affinity for the A2A subtype, some with high selectivity versus all other subtypes. Xanthine carboxylate amide 13b with a diethylaminoethylamino moiety at the para-position of the 8-phenylxanthine scaffold was identified as the most potent A2A adenosine receptor ligand with Ki=0.06μM. Similarly potent and highly A2A-selective are the isovanillin derivatives 16a and 16d. In addition, the newly synthesized xanthine derivatives showed good in vivo bronchospasmolytic activity when tested in guinea pigs. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Potent haloperidol derivatives covalently binding to the dopamine D2 receptor.

    PubMed

    Schwalbe, Tobias; Kaindl, Jonas; Hübner, Harald; Gmeiner, Peter

    2017-10-01

    The dopamine D 2 receptor (D 2 R) is a common drug target for the treatment of a variety of neurological disorders including schizophrenia. Structure based design of subtype selective D 2 R antagonists requires high resolution crystal structures of the receptor and pharmacological tools promoting a better understanding of the protein-ligand interactions. Recently, we reported the development of a chemically activated dopamine derivative (FAUC150) designed to covalently bind the L94C mutant of the dopamine D 2 receptor. Using FAUC150 as a template, we elaborated the design and synthesis of irreversible analogs of the potent antipsychotic drug haloperidol forming covalent D 2 R-ligand complexes. The disulfide- and Michael acceptor-functionalized compounds showed significant receptor affinity and an irreversible binding profile in radioligand depletion experiments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Design, Synthesis, and Structure–Activity Relationship Studies of a Series of [4-(4-Carboxamidobutyl)]-1-arylpiperazines: Insights into Structural Features Contributing to Dopamine D3 versus D2 Receptor Subtype Selectivity

    PubMed Central

    2015-01-01

    Antagonist and partial agonist modulators of the dopamine D3 receptor (D3R) have emerged as promising therapeutics for the treatment of substance abuse and neuropsychiatric disorders. However, development of druglike lead compounds with selectivity for the D3 receptor has been challenging because of the high sequence homology between the D3R and the dopamine D2 receptor (D2R). In this effort, we synthesized a series of acylaminobutylpiperazines incorporating aza-aromatic units and evaluated their binding and functional activities at the D3 and D2 receptors. Docking studies and results from evaluations against a set of chimeric and mutant receptors suggest that interactions at the extracellular end of TM7 contribute to the D3R versus D2R selectivity of these ligands. Molecular insights from this study could potentially enable rational design of potent and selective D3R ligands. PMID:25126833

  20. Differential regulation of the cell cycle by alpha1-adrenergic receptor subtypes.

    PubMed

    Gonzalez-Cabrera, Pedro J; Shi, Ting; Yun, June; McCune, Dan F; Rorabaugh, Boyd R; Perez, Dianne M

    2004-11-01

    Alpha(1)-Adrenergic receptors have been implicated in growth-promoting pathways. A microarray study of individual alpha(1)-adrenergic receptor subtypes (alpha(1A), alpha(1B), and alpha(1D)) expressed in Rat-1 fibroblasts revealed that epinephrine altered the transcription of several cell cycle regulatory genes in a direction consistent with the alpha(1A)- and alpha(1D)-adrenergic receptors mediating G(1)-S cell cycle arrest and the alpha(1B-)mediating cell-cycle progression. A time course indicated that in alpha(1A) cells, epinephrine stimulated a G(1)-S arrest, which began after 8 h of stimulation and maximized at 16 h, at which point was completely blocked with cycloheximide. The alpha(1B)-adrenergic receptor profile also showed unchecked cell cycle progression, even under low serum conditions and induced foci formation. The G(1)-S arrest induced by alpha(1A)- and alpha(1D)-adrenergic receptors was associated with decreased cyclin-dependent kinase-6 and cyclin E-associated kinase activities and increased expression of the cyclin-dependent kinase inhibitor p27(Kip1), all of which were blocked by prazosin. There were no differences in kinase activities and/or expression of p27(Kip1) in epinephrine alpha(1B)-AR fibroblasts, although the microarray did indicate differences in p27(Kip1) RNA levels. Cell counts proved the antimitotic effect of epinephrine in alpha(1A) and alpha(1D) cells and indicated that alpha(1B)-adrenergic receptor subtype expression was sufficient to cause proliferation of Rat-1 fibroblasts independent of agonist stimulation. Analysis in transfected PC12 cells also confirmed the alpha(1A)- and alpha(1B)-adrenergic receptor effect. The alpha(1B)-subtype native to DDT1-MF2 cells, a smooth muscle cell line, caused progression of the cell cycle. These results indicate that the alpha(1A)- and alpha(1D)-adrenergic receptors mediate G(1)-S cell-cycle arrest, whereas alpha(1B)-adrenergic receptor expression causes a cell cycle progression and may induce transformation in sensitive cell lines.

  1. Age and the means of bypassing stasis influence the intrinsic subtype of immortalized human mammary epithelial cells.

    PubMed

    Lee, Jonathan K; Garbe, James C; Vrba, Lukas; Miyano, Masaru; Futscher, Bernard W; Stampfer, Martha R; LaBarge, Mark A

    2015-01-01

    Based on molecular features, breast cancers are grouped into intrinsic subtypes that have different prognoses and therapeutic response profiles. With increasing age, breast cancer incidence increases, with hormone receptor-positive and other luminal-like subtype tumors comprising a majority of cases. It is not known at what stage of tumor progression subtype specification occurs, nor how the process of aging affects the intrinsic subtype. We examined subtype markers in immortalized human mammary epithelial cell lines established following exposure of primary cultured cell strains to a two-step immortalization protocol that targets the two main barriers to immortality: stasis (stress-associated senescence) and replicative senescence. Cell lines derived from epithelial cells obtained from non-tumorous pre- and post-menopausal breast surgery tissues were compared. Additionally, comparisons were made between lines generated using two different genetic interventions to bypass stasis: transduction of either an shRNA that down-regulated p16(INK4A), or overexpressed constitutive active cyclin D1/CDK2. In all cases, the replicative senescence barrier was bypassed by transduction of c-Myc. Cells from all resulting immortal lines exhibited normal karyotypes. Immunofluorescence, flow cytometry, and gene expression analyses of lineage-specific markers were used to categorize the intrinsic subtypes of the immortalized lines. Bypassing stasis with p16 shRNA in young strains generated cell lines that were invariably basal-like, but the lines examined from older strains exhibited some luminal features such as keratin 19 and estrogen receptor expression. Overexpression of cyclin D1/CDK2 resulted in keratin 19 positive, luminal-like cell lines from both young and old strains, and the lines examined from older strains exhibited estrogen receptor expression. Thus age and the method of bypassing stasis independently influence the subtype of immortalized human mammary epithelial cells.

  2. 5-Amino-6-chloro-N-[(1-isobutylpiperidin-4-yl)methyl]-2-methylimidazo[1,2-alpha]pyridine-8-carboxamide (CJ-033,466), a novel and selective 5-hydroxytryptamine4 receptor partial agonist: pharmacological profile in vitro and gastroprokinetic effect in conscious dogs.

    PubMed

    Mikami, Tadayoshi; Ochi, Yasuo; Suzuki, Keiko; Saito, Toshiyuki; Sugie, Yutaka; Sakakibara, Minoru

    2008-04-01

    5-Hydroxytryptamine (5-HT) receptors and dopamine(2) (D(2)) receptor modulate gastrointestinal motility. Gastroprokinetic agents that act on several 5-HT receptor subtypes and/or D(2) receptors are used clinically. Although the 5-HT(4) receptor is known to mediate the gastroprokinetic effects of these agents, the absence of highly selective 5-HT(4) receptor agonists has made it difficult to confirm the physiological consequences of selective 5-HT(4) receptor stimulation. In this study, we report the in vitro pharmacological profiles and the in vivo gastroprokinetic effects of 5-amino-6-chloro-N-[(1-isobutylpiperidin-4-yl)methyl]-2-methylimidazo[1,2-alpha]pyridine-8-carboxamide (CJ-033,466), a novel, potent, and selective 5-HT(4) partial agonist. Compared with preceding 5-HT(4) agonists such as cisapride, mosapride, and tegaserod, CJ-033,466 had a superior in vitro profile, with nanomolar agonistic activities for the 5-HT(4) receptor and 1000-fold greater selectivity for the 5-HT(4) receptor over other 5-HT and D(2) receptors. In vivo studies in conscious dogs showed that CJ-033,466 dose-dependently stimulated gastric antral motility in both the fasted and postprandial states at the same dose range and that it was 30 times more potent than cisapride. Furthermore, CJ-033,466 accelerated the gastric emptying rate in a gastroparesis dog model at the minimally effective dose established in the gastric motility study. In conclusion, CJ-033,466 is a potent and highly selective 5-HT(4) agonist that stimulates physiologically coordinated gastric motility, and it has no activity on other 5-HT receptor subtypes and D(2) receptors. Therefore, CJ-033,466 could be used to treat gastroparesis, providing better gastroprokinetics and reduced side effects mediated by the other receptors.

  3. Expression of mammalian beta-adrenergic receptors in Xenopus laevis oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahouth, S.W.; Malbon, C.C.

    1987-05-01

    Xenopus laevis oocytes are a useful transcription and expression system for DNA and RNA, respectively. Total cellular RNA was extracted from mouse lymphoma S49 cells and poly(A)/sup +/mRNA prepared by affinity chromatography of RNA on oligo(dT) cellulose. The membranes of S49 cells contain beta-adrenergic receptors that display pharmacological characteristics of beta/sub 2/-subtype. Xenopus laevis oocytes were injected with 50 ng of mRNA/oocyte. Expression of beta-adrenergic receptors in oocytes incubated for 30 hr after microinjection was assessed in membranes by radioligand binding using (/sup 3/H) dihydroalprenolol. The injected oocytes displayed 0.34 fmol receptor/oocyte as compared to 0.02 fmol receptor/oocyte in themore » control oocytes. The affinity of beta-adrenergic receptors in injected oocytes for this radioligand was 2 nM, a value similar to the affinity of beta-adrenergic receptors for DHA in S49 cell membranes. The potency of beta-adrenergic agonists in competing for DHA binding to oocytes membranes was isoproterenol > epinephrine > norepineprine, indicating that the expressed beta-adrenergic receptors were of the beta/sub 2/-subtype. The K/sub I/ of these agonists for the beta-adrenergic receptor in oocyte membranes was 0.03, 0.15 and 1.2 ..mu..M, respectively. The role of post-translational modification in dictating receptor subtype is analyzed using mRNA of beta/sub 1/- as well as beta/sub 2/-adrenergic receptors.« less

  4. Characterization of rodent liver and kidney AVP receptors: pharmacologic evidence for species differences.

    PubMed

    Tahara, A; Tsukada, J; Ishii, N; Tomura, Y; Wada, K; Kusayama, T; Yatsu, T; Uchida, W; Tanaka, A

    1999-10-22

    Radioligand binding studies with [3H]vasopressin (AVP) were used to determine the affinities of AVP receptor agonists and antagonists for mouse liver and kidney plasma membrane preparations. Both membrane preparations exhibited one class of high-affinity binding site. AVP ligand binding inhibition studies confirmed that mouse liver binding sites belong to the V1A subtype while kidney binding sites belong to the V2 receptor subtype. The affinity of each ligand for mouse V1A receptors was very similar to that for rat V1A receptors, showing differences in Ki values of less than 3-fold. In contrast, several peptide (d(CH2)5Tyr(Me)AVP) and nonpeptide (OPC-21268 and SR 49059) ligands had different affinities for mouse and rat kidney V2 receptors, with differences in Ki values ranging from 14- to 17-fold. These results indicate that mouse and rat kidney V2 receptors show significant pharmacologic differences.

  5. Development of 2′-substituted (2S,1′R,2′S)-2-(carboxycyclopropyl)glycine analogues as potent N-methyl-d-aspartic acid receptor agonists

    PubMed Central

    Risgaard, Rune; Nielsen, Simon D.; Hansen, Kasper B.; Jensen, Christina M.; Nielsen, Birgitte; Traynelis, Stephen F.; Clausen, Rasmus P.

    2013-01-01

    A series of 2′-substituted analogues of the selective NMDA receptor ligand (2S,1′R,2′S)-2-(carboxycyclopropyl)glycine ((S)-CCG-IV) have been designed, synthesized and pharmacologically characterized. The design was based on a docking study hypothesizing that substituents in the 2′-position would protrude into a region where differences among the NMDA receptor GluN2 subunits exist. Various synthetic routes were explored, and two different routes provided a series of alkyl-substituted analogues. Pharmacological characterization revealed that these compounds are NMDA receptor agonists and that potency decreases with increasing size of the alkyl groups. Variations in agonist activity are observed at the different recombinant NMDA receptor subtypes. This study demonstrates that it is possible to introduce substituents in the 2′-position of (S)-CCG-IV while maintaining agonist activity and that variation among NMDA receptor subtypes may be achieved by probing this region of the receptor. PMID:23614571

  6. Taxonomy of breast cancer based on normal cell phenotype predicts outcome

    PubMed Central

    Santagata, Sandro; Thakkar, Ankita; Ergonul, Ayse; Wang, Bin; Woo, Terri; Hu, Rong; Harrell, J. Chuck; McNamara, George; Schwede, Matthew; Culhane, Aedin C.; Kindelberger, David; Rodig, Scott; Richardson, Andrea; Schnitt, Stuart J.; Tamimi, Rulla M.; Ince, Tan A.

    2014-01-01

    Accurate classification is essential for understanding the pathophysiology of a disease and can inform therapeutic choices. For hematopoietic malignancies, a classification scheme based on the phenotypic similarity between tumor cells and normal cells has been successfully used to define tumor subtypes; however, use of normal cell types as a reference by which to classify solid tumors has not been widely emulated, in part due to more limited understanding of epithelial cell differentiation compared with hematopoiesis. To provide a better definition of the subtypes of epithelial cells comprising the breast epithelium, we performed a systematic analysis of a large set of breast epithelial markers in more than 15,000 normal breast cells, which identified 11 differentiation states for normal luminal cells. We then applied information from this analysis to classify human breast tumors based on normal cell types into 4 major subtypes, HR0–HR3, which were differentiated by vitamin D, androgen, and estrogen hormone receptor (HR) expression. Examination of 3,157 human breast tumors revealed that these HR subtypes were distinct from the current classification scheme, which is based on estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. Patient outcomes were best when tumors expressed all 3 hormone receptors (subtype HR3) and worst when they expressed none of the receptors (subtype HR0). Together, these data provide an ontological classification scheme associated with patient survival differences and provides actionable insights for treating breast tumors. PMID:24463450

  7. P2 receptor subtypes in the cardiovascular system.

    PubMed Central

    Kunapuli, S P; Daniel, J L

    1998-01-01

    Extracellular nucleotides have been implicated in a number of physiological functions. Nucleotides act on cell-surface receptors known as P2 receptors, of which several subtypes have been cloned. Both ATP and ADP are stored in platelets and are released upon platelet activation. Furthermore, nucleotides are also released from damaged or broken cells. Thus during vascular injury nucleotides play an important role in haemostasis through activation of platelets, modulation of vascular tone, recruitment of neutrophils and monocytes to the site of injury, and facilitation of adhesion of leucocytes to the endothelium. Nucleotides also moderate these functions by generating nitric oxide and prostaglandin I2 through activation of endothelial cells, and by activating different receptor subtypes on vascular smooth muscle cells. In the heart, P2 receptors regulate contractility through modulation of L-type Ca2+ channels, although the molecular mechanisms involved are still under investigation. Classical pharmacological studies have identified several P2 receptor subtypes in the cardiovascular system. Molecular pharmacological studies have clarified the nature of some of these receptors, but have complicated the picture with others. In platelets, the classical P2T receptor has now been resolved into three P2 receptor subtypes: the P2Y1, P2X1 and P2TAC receptors (the last of these, which is coupled to the inhibition of adenylate cyclase, is yet to be cloned). In peripheral blood leucocytes, endothelial cells, vascular smooth muscle cells and cardiomyocytes, the effects of classical P2X, P2Y and P2U receptors have been found to be mediated by more than one P2 receptor subtype. However, the exact functions of these multiple receptor subtypes remain to be understood, as P2-receptor-selective agonists and antagonists are still under development. PMID:9841859

  8. Treatment and prognosis of breast cancer patients with brain metastases according to intrinsic subtype.

    PubMed

    Kuba, Sayaka; Ishida, Mayumi; Nakamura, Yoshiaki; Yamanouchi, Kosho; Minami, Shigeki; Taguchi, Kenichi; Eguchi, Susumu; Ohno, Shinji

    2014-11-01

    How breast cancer subtypes should affect treatment decisions for breast cancer patients with brain metastases is unclear. We analyzed local brain metastases treatments and their outcomes according to subtype in patients with breast cancer and brain metastases. We reviewed records and database information for women treated at the National Kyushu Cancer Center between 2001 and 2010. Patients were divided into three breast cancer subtype groups: Luminal (estrogen receptor positive and/or progesterone receptor positive, but human epidermal growth factor receptor 2 negative); human epidermal growth factor receptor 2 positive and triple negative (estrogen receptor negative, progesterone receptor negative and human epidermal growth factor receptor 2 negative). Of 524 advanced breast cancer patients, we reviewed 65 (12%) with brain metastases and records showing estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 status, as well as outcome data; there were 26 (40%) Luminal, 26 (40%) had human epidermal growth factor receptor 2 and 13 (20%) had triple negative subtypes. There was no statistical difference in the number of brain metastases among subtypes; however, rates of stereotactic radiosurgery or surgery for brain metastases differed significantly by subtype (human epidermal growth factor receptor 2: 81%, Luminal: 42% and triple negative: 47%; P = 0.03). Patients having the human epidermal growth factor receptor 2 subtype, a performance status of ≤1 and ≤4 brain metastases, who underwent systemic therapy after brain metastases and underwent stereotactic radiosurgery or surgery, were predicted to have longer overall survival after brain metastases. Multivariate analysis demonstrated that not having systemic therapy and not having the human epidermal growth factor receptor 2 subtype were independent factors associated with an increased risk of death (hazard ratio 2.4, 95% confidence interval 1.01-5.6; P = 0.05 and hazard ratio 2.9, 95% confidence interval 1.5-5.8; P = 0.003, respectively). Our study showed that local brain treatments and prognosis differed by subtype in breast cancer patients with brain metastases. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Opposing Effects of Dopamine D1- and D2-Like Agonists on Intracranial Self-Stimulation in Male Rats

    PubMed Central

    Lazenka, Matthew F.; Legakis, Luke P.; Negus, S. Stevens

    2016-01-01

    Dopamine acts through dopamine type 1 receptors (comprised of D1 and D5 subtypes) and dopamine type 2 receptors (comprised of D2, D3 and D4 subtypes). Intracranial self-stimulation (ICSS) is one experimental procedure that can be used to evaluate abuse-related effects of drugs targeting dopamine receptors. This study evaluated effects of dopamine receptor ligands on ICSS in rats using experimental procedures that have been used previously to examine abused indirect dopamine agonists such as cocaine and amphetamine. Male Sprague-Dawley rats responded under a fixed-ratio 1 schedule for electrical stimulation of the medial forebrain bundle, and frequency of stimulation varied from 56–158 Hz in 0.05 log increments during each experimental session. Drug potency and time course were determined for the D1 ligands A77636, SKF82958, SKF38393, fenoldopam and SCH39166 and the D2/3 ligands sumanirole, apomorphine, quinpirole, PD128907, pramipexole, aripiprazole, eticolopride and PG01037. The high-efficacy D1 agonists A77636 and SKF82958 produced dose-dependent, time-dependent, and abuse-related facilitation of ICSS. Lower efficacy D1 ligands and all D2/3 ligands failed to facilitate ICSS at any dose or pretreatment time. A mixture of SKF82958 and quinpirole produced a mixture of effects produced by each drug alone. Quinpirole also failed to facilitate ICSS after regimens of repeated treatment with either quinpirole or cocaine. These studies provide more evidence for divergent effects of dopamine D1- and D2-family agonists on ICSS procedure in rats and suggest that ICSS may be a useful complement to other approaches for preclinical abuse potential assessment, in part because of the reproducibility of results. PMID:26987070

  10. Evidence for Alpha Receptors in the Human Ureter

    NASA Astrophysics Data System (ADS)

    Madeb, Ralph; Knopf, Joy; Golijanin, Dragan; Bourne, Patricia; Erturk, Erdal

    2007-04-01

    An immunohistochemical and western blot expression analysis of human ureters was performed in order to characterize the alpha-1-adrenergic receptor distribution along the length of the human ureteral wall. Mapping the distribution will assist in understanding the potential role alpha -1-adrenergic receptors and their subtype density might have in the pathophysiology of ureteral colic and stone passage. Patients diagnosed with renal cancer or bladder cancer undergoing nephrectomy, nephroureterectomy, or cystectomy had ureteral specimens taken from the proximal, mid, distal and tunneled ureter. Tissues were processed for fresh frozen examination and fixed in formalin. None of the ureteral specimens were involved with cancer. Serial histologic sections and immunohistochemical studies were performed using antibodies specific for alpha-1-adrenergic receptor subtypes (alpha 1a, alpha 1b, alpha 1d). The sections were examined under a light microscope and scored as positive or negative. In order to validate and quantify the alpha receptor subtypes along the human ureter. Western blotting techniques were applied. Human ureter stained positively for alpha -1-adrenergic receptors. Immunostaining appeared red, with intense reaction in the smooth muscle of the ureter and endothelium of the neighboring blood vessels. There was differential expression between all the receptors with the highest staining for alpha-1D subtype. The highest protein expression for all three subtypes was in the renal pelvis and decreased with advancement along the ureter to the distal ureter. At the distal ureter, there was marked increase in expression as one progressed towards the ureteral orifice. The same pattern of protein expression was exhibited for all three alpha -1-adrenergic receptor subtypes. We provide preliminary evidence for the ability to detect and quantify the alpha-1-receptor subtypes along the human ureter which to the best of our knowledge has never been done with immunohistochemistry and molecular techniques. These findings may lend support to the preliminary studies of the effectiveness of alpha-receptor blockade on ureteral colic and stone passage.

  11. S2RSLDB: a comprehensive manually curated, internet-accessible database of the sigma-2 receptor selective ligands.

    PubMed

    Nastasi, Giovanni; Miceli, Carla; Pittalà, Valeria; Modica, Maria N; Prezzavento, Orazio; Romeo, Giuseppe; Rescifina, Antonio; Marrazzo, Agostino; Amata, Emanuele

    2017-01-01

    Sigma (σ) receptors are accepted as a particular receptor class consisting of two subtypes: sigma-1 (σ 1 ) and sigma-2 (σ 2 ). The two receptor subtypes have specific drug actions, pharmacological profiles and molecular characteristics. The σ 2 receptor is overexpressed in several tumor cell lines, and its ligands are currently under investigation for their role in tumor diagnosis and treatment. The σ 2 receptor structure has not been disclosed, and researchers rely on σ 2 receptor radioligand binding assay to understand the receptor's pharmacological behavior and design new lead compounds. Here we present the sigma-2 Receptor Selective Ligands Database (S2RSLDB) a manually curated database of the σ 2 receptor selective ligands containing more than 650 compounds. The database is built with chemical structure information, radioligand binding affinity data, computed physicochemical properties, and experimental radioligand binding procedures. The S2RSLDB is freely available online without account login and having a powerful search engine the user may build complex queries, sort tabulated results, generate color coded 2D and 3D graphs and download the data for additional screening. The collection here reported is extremely useful for the development of new ligands endowed of σ 2 receptor affinity, selectivity, and appropriate physicochemical properties. The database will be updated yearly and in the near future, an online submission form will be available to help with keeping the database widely spread in the research community and continually updated. The database is available at http://www.researchdsf.unict.it/S2RSLDB.

  12. The novel antidyskinetic drug sarizotan elicits different functional responses at human D2-like dopamine receptors.

    PubMed

    Kuzhikandathil, Eldo V; Bartoszyk, Gerd D

    2006-09-01

    Sarizotan (EMD 128130) is a chromane derivative that exhibits affinity at serotonin and dopamine receptors. Sarizotan effectively suppresses levodopa-induced dyskinesia in primate and rodent models of Parkinson's disease, and tardive dyskinesia in a rodent model. Results from clinical trials suggest that sarizotan significantly alleviates levodopa-induced dyskinesia. The functional effects of sarizotan on individual dopamine receptor subtypes are not known. Here we report the functional effects of sarizotan on human D2-like dopamine receptors (D2S, D2L, D3, D4.2 and D4.4) individually expressed in the AtT-20 neuroendocrine cell line. Using the coupling of D2-like dopamine receptors to G-protein coupled inward rectifier potassium channels we determined that sarizotan is a full agonist at D3 and D4.4 receptors (EC50=5.6 and 5.4 nM, respectively) but a partial agonist at D2S, D2L and D4.2 receptors (EC50=29, 23 and 4.5 nM, respectively). Consistent with its partial agonist property, sarizotan is an antagonist at D2S and D2L receptors (IC50=52 and 121 nM, respectively). Using the coupling of D2-like dopamine receptors to adenylyl cyclase we determined that sarizotan is a full agonist at D2L, D3, D4.2 and D4.4 receptors (EC50=0.51, 0.47, 0.48 and 0.23 nM, respectively) but a partial agonist at D2S receptors (EC50=0.6 nM).

  13. Synthesis and serotonergic activity of 3-[2-(pyrrolidin-1-yl)ethyl]indoles: potent agonists for the h5-HT1D receptor with high selectivity over the h5-HT1B receptor.

    PubMed

    Sternfeld, F; Guiblin, A R; Jelley, R A; Matassa, V G; Reeve, A J; Hunt, P A; Beer, M S; Heald, A; Stanton, J A; Sohal, B; Watt, A P; Street, L J

    1999-02-25

    The design, synthesis, and biological evaluation of a novel series of 3-[2-(pyrrolidin-1-yl)ethyl]indoles with excellent selectivity for h5-HT1D (formerly 5-HT1Dalpha) receptors over h5-HT1B (formerly 5-HT1Dbeta) receptors are described. Clinically effective antimigraine drugs such as Sumatriptan show little selectivity between h5-HT1D and h5-HT1B receptors. The differential expression of h5-HT1D and h5-HT1B receptors in neural and vascular tissue prompted an investigation of whether a compound selective for the h5-HT1D subtype would have the same clinical efficacy but with reduced side effects. The pyrrolidine 3b was initially identified as having 9-fold selectivity for h5-HT1D over h5-HT1B receptors. Substitution of the pyrrolidine ring of 3b with methylbenzylamine groups gave compounds with nanomolar affinity for the h5-HT1D receptor and 100-fold selectivity with respect to h5-HT1B receptors. Modification of the indole 5-substituent led to the oxazolidinones 24a,b with up to 163-fold selectivity for the h5-HT1D subtype and improved selectivity over other serotonin receptors. The compounds were shown to be full agonists by measurement of agonist-induced [35S]GTPgammaS binding in CHO cells expressed with h5-HT receptors. This study suggests that the h5-HT1D and h5-HT1B receptors can be differentiated by appropriate substitution of the ligand in the region which binds to the aspartate residue and reveals a large binding pocket in the h5-HT1D receptor domain which is absent for the h5-HT1B receptor. The compounds described herein will be important tools to delineate the role of h5-HT1D receptors in migraine.

  14. FMRP acts as a key messenger for dopamine modulation in the forebrain.

    PubMed

    Wang, Hansen; Wu, Long-Jun; Kim, Susan S; Lee, Frank J S; Gong, Bo; Toyoda, Hiroki; Ren, Ming; Shang, Yu-Ze; Xu, Hui; Liu, Fang; Zhao, Ming-Gao; Zhuo, Min

    2008-08-28

    The fragile X mental retardation protein (FMRP) is an RNA-binding protein that controls translational efficiency and regulates synaptic plasticity. Here, we report that FMRP is involved in dopamine (DA) modulation of synaptic potentiation. AMPA glutamate receptor subtype 1 (GluR1) surface expression and phosphorylation in response to D1 receptor stimulation were reduced in cultured Fmr1(-/-) prefrontal cortex (PFC) neurons. Furthermore, D1 receptor signaling was impaired, accompanied by D1 receptor hyperphosphorylation at serine sites and subcellular redistribution of G protein-coupled receptor kinase 2 (GRK2) in both PFC and striatum of Fmr1(-/-) mice. FMRP interacted with GRK2, and pharmacological inhibition of GRK2 rescued D1 receptor signaling in Fmr1(-/-) neurons. Finally, D1 receptor agonist partially rescued hyperactivity and enhanced the motor function of Fmr1(-/-) mice. Our study has identified FMRP as a key messenger for DA modulation in the forebrain and may provide insights into the cellular and molecular mechanisms underlying fragile X syndrome.

  15. The dopamine D1 receptor is expressed and facilitates relaxation in airway smooth muscle.

    PubMed

    Mizuta, Kentaro; Zhang, Yi; Xu, Dingbang; Mizuta, Fumiko; D'Ovidio, Frank; Masaki, Eiji; Emala, Charles W

    2013-09-02

    Dopamine signaling is mediated by Gs protein-coupled "D1-like" receptors (D1 and D5) and Gi-coupled "D2-like" receptors (D2-4). In asthmatic patients, inhaled dopamine induces bronchodilation. Although the Gi-coupled dopamine D2 receptor is expressed and sensitizes adenylyl cyclase activity in airway smooth muscle (ASM) cells, the Gs-coupled dopamine D1-like receptor subtypes have never been identified on these cells. Activation of Gs-coupled receptors stimulates cyclic AMP (cAMP) production through the stimulation of adenylyl cyclase, which promotes ASM relaxation. We questioned whether the dopamine D1-like receptor is expressed on ASM, and modulates its function through Gs-coupling. The mRNA and protein expression of dopamine D1-like receptor subtypes in both native human and guinea pig ASM tissue and cultured human ASM (HASM) cells was measured. To characterize the stimulation of cAMP through the dopamine D1 receptor, HASM cells were treated with dopamine or the dopamine D1-like receptor agonists (A68930 or SKF38393) before cAMP measurements. To evaluate whether the activation of dopamine D1 receptor induces ASM relaxation, guinea pig tracheal rings suspended under isometric tension in organ baths were treated with cumulatively increasing concentrations of dopamine or A68930, following an acetylcholine-induced contraction with or without the cAMP-dependent protein kinase (PKA) inhibitor Rp-cAMPS, the large-conductance calcium-activated potassium (BKCa) channel blocker iberiotoxin, or the exchange proteins directly activated by cAMP (Epac) antagonist NSC45576. Messenger RNA encoding the dopamine D1 and D5 receptors were detected in native human ASM tissue and cultured HASM cells. Immunoblots confirmed the protein expression of the dopamine D1 receptor in both native human and guinea pig ASM tissue and cultured HASM cells. The dopamine D1 receptor was also immunohistochemically localized to both human and guinea pig ASM. The dopamine D1-like receptor agonists stimulated cAMP production in HASM cells, which was reversed by the selective dopamine D1-like receptor antagonists SCH23390 or SCH39166. A68930 relaxed acetylcholine-contracted guinea pig tracheal rings, which was attenuated by Rp-cAMPS but not by iberiotoxin or NSC45576. These results demonstrate that the dopamine D1 receptors are expressed on ASM and regulate smooth muscle force via cAMP activation of PKA, and offer a novel target for therapeutic relaxation of ASM.

  16. The dopamine D1 receptor is expressed and facilitates relaxation in airway smooth muscle

    PubMed Central

    2013-01-01

    Background Dopamine signaling is mediated by Gs protein-coupled “D1-like” receptors (D1 and D5) and Gi-coupled “D2-like” receptors (D2-4). In asthmatic patients, inhaled dopamine induces bronchodilation. Although the Gi-coupled dopamine D2 receptor is expressed and sensitizes adenylyl cyclase activity in airway smooth muscle (ASM) cells, the Gs-coupled dopamine D1-like receptor subtypes have never been identified on these cells. Activation of Gs-coupled receptors stimulates cyclic AMP (cAMP) production through the stimulation of adenylyl cyclase, which promotes ASM relaxation. We questioned whether the dopamine D1-like receptor is expressed on ASM, and modulates its function through Gs-coupling. Methods The mRNA and protein expression of dopamine D1-like receptor subtypes in both native human and guinea pig ASM tissue and cultured human ASM (HASM) cells was measured. To characterize the stimulation of cAMP through the dopamine D1 receptor, HASM cells were treated with dopamine or the dopamine D1-like receptor agonists (A68930 or SKF38393) before cAMP measurements. To evaluate whether the activation of dopamine D1 receptor induces ASM relaxation, guinea pig tracheal rings suspended under isometric tension in organ baths were treated with cumulatively increasing concentrations of dopamine or A68930, following an acetylcholine-induced contraction with or without the cAMP-dependent protein kinase (PKA) inhibitor Rp-cAMPS, the large-conductance calcium-activated potassium (BKCa) channel blocker iberiotoxin, or the exchange proteins directly activated by cAMP (Epac) antagonist NSC45576. Results Messenger RNA encoding the dopamine D1 and D5 receptors were detected in native human ASM tissue and cultured HASM cells. Immunoblots confirmed the protein expression of the dopamine D1 receptor in both native human and guinea pig ASM tissue and cultured HASM cells. The dopamine D1 receptor was also immunohistochemically localized to both human and guinea pig ASM. The dopamine D1-like receptor agonists stimulated cAMP production in HASM cells, which was reversed by the selective dopamine D1-like receptor antagonists SCH23390 or SCH39166. A68930 relaxed acetylcholine-contracted guinea pig tracheal rings, which was attenuated by Rp-cAMPS but not by iberiotoxin or NSC45576. Conclusions These results demonstrate that the dopamine D1 receptors are expressed on ASM and regulate smooth muscle force via cAMP activation of PKA, and offer a novel target for therapeutic relaxation of ASM. PMID:24004608

  17. Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors.

    PubMed

    Wood, Martyn; Dubois, Vanessa; Scheller, Dieter; Gillard, Michel

    2015-02-01

    Rotigotine acts as a dopamine receptor agonist with high affinity for the dopamine D2, D3, D4 and D5 receptors but with a low affinity for the dopamine D1 receptor. We have investigated this further in radioligand binding and functional studies and compared the profile of rotigotine with that of other drugs used in the treatment of Parkinson's disease (PD). The binding of rotigotine to human dopamine D1, D2, D3, D4 and D5 receptors was determined in radioligand binding studies using [(3)H]rotigotine and compared with that of standard antagonist radioligands. Functional interactions of rotigotine with human dopamine receptors was also determined. [(3)H]rotigotine can be used as an agonist radioligand to label all dopamine receptor subtypes and this can be important to derive agonist affinity estimates. Rotigotine maintains this high affinity in functional studies at all dopamine receptors especially D1, D2 and D3 receptors and, to a lesser extent, D4 and D5 receptors. Rotigotine, like apomorphine but unlike ropinirole and pramipexole, was a potent agonist at all dopamine receptors. Rotigotine is a high-potency agonist at human dopamine D1, D2 and D3 receptors with a lower potency at D4 and D5 receptors. These studies differentiate rotigotine from conventional dopamine D2 agonists, used in the treatment of PD, such as ropinirole and pramipexole which lack activity at the D1 and D5 receptors, but resembles that of apomorphine which has greater efficacy in PD than other dopamine agonists but has suboptimal pharmacokinetic properties. © 2014 The British Pharmacological Society.

  18. Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors

    PubMed Central

    Wood, Martyn; Dubois, Vanessa; Scheller, Dieter; Gillard, Michel

    2015-01-01

    Background and Purpose Rotigotine acts as a dopamine receptor agonist with high affinity for the dopamine D2, D3, D4 and D5 receptors but with a low affinity for the dopamine D1 receptor. We have investigated this further in radioligand binding and functional studies and compared the profile of rotigotine with that of other drugs used in the treatment of Parkinson's disease (PD). Experimental Approach The binding of rotigotine to human dopamine D1, D2, D3, D4 and D5 receptors was determined in radioligand binding studies using [3H]rotigotine and compared with that of standard antagonist radioligands. Functional interactions of rotigotine with human dopamine receptors was also determined. Key Results [3H]rotigotine can be used as an agonist radioligand to label all dopamine receptor subtypes and this can be important to derive agonist affinity estimates. Rotigotine maintains this high affinity in functional studies at all dopamine receptors especially D1, D2 and D3 receptors and, to a lesser extent, D4 and D5 receptors. Rotigotine, like apomorphine but unlike ropinirole and pramipexole, was a potent agonist at all dopamine receptors. Conclusions and Implications Rotigotine is a high-potency agonist at human dopamine D1, D2 and D3 receptors with a lower potency at D4 and D5 receptors. These studies differentiate rotigotine from conventional dopamine D2 agonists, used in the treatment of PD, such as ropinirole and pramipexole which lack activity at the D1 and D5 receptors, but resembles that of apomorphine which has greater efficacy in PD than other dopamine agonists but has suboptimal pharmacokinetic properties. PMID:25339241

  19. A dopamine D2 receptor mutant capable of G protein-mediated signaling but deficient in arrestin binding.

    PubMed

    Lan, Hongxiang; Liu, Yong; Bell, Michal I; Gurevich, Vsevolod V; Neve, Kim A

    2009-01-01

    Arrestins mediate G protein-coupled receptor desensitization, internalization, and signaling. Dopamine D(2) and D(3) receptors have similar structures but distinct characteristics of interaction with arrestins. The goals of this study were to compare arrestin-binding determinants in D(2) and D(3) receptors other than phosphorylation sites and to create a D(2) receptor that is deficient in arrestin binding. We first assessed the ability of purified arrestins to bind to glutathione transferase (GST) fusion proteins containing the receptor third intracellular loops (IC3). Arrestin3 bound to IC3 of both D(2) and D(3) receptors, with the affinity and localization of the binding site indistinguishable between the receptor subtypes. Mutagenesis of the GST-IC3 fusion proteins identified an important determinant of the binding of arrestin3 in the N-terminal region of IC3. Alanine mutations of this determinant (IYIV212-215) in the full-length D(2) receptor generated a signaling-biased receptor with intact ligand binding and G-protein coupling and activation, but deficient in receptor-mediated arrestin3 translocation to the membrane, agonist-induced receptor internalization, and agonist-induced desensitization in human embryonic kidney 293 cells. This mutation also decreased arrestin-dependent activation of extracellular signal-regulated kinases. The finding that nonphosphorylated D(2)-IC3 and D(3)-IC3 have similar affinity for arrestin is consistent with previous suggestions that the differential effects of D(2) and D(3) receptor activation on membrane translocation of arrestin and receptor internalization are due, at least in part, to differential phosphorylation of the receptors. In addition, these results imply that the sequence IYIV212-215 at the N terminus of IC3 of the D(2) receptor is a key element of the arrestin binding site.

  20. The 5-HT1-like receptor mediating the increase in canine external carotid blood flow: close resemblance to the 5-HT1D subtype.

    PubMed Central

    Villalón, C M; Terrón, J A

    1994-01-01

    1. It has recently been shown that the increase in external carotid blood flow induced by 5-hydroxy-tryptamine (5-HT) in the anaesthetized dog, being mimicked by 5-carboxamidotryptamine (5-CT), inhibited by methiothepin, vagosympathectomy and sympatho-inhibitory drugs, and resistant to blockade by ritanserin and MDL 72222, is mediated by stimulation of prejunctional 5-HT1-like receptors leading to an inhibitory action on carotid sympathetic nerves; these 5-HT1-like receptors are unrelated to either the 5-HT1A, 5-HT1B or 5-HT1C (now 5-HT2C) receptor subtypes. Inasmuch as 5-CT, 5-methoxytryptamine, sumatriptan and metergoline display high affinity, amongst other 5-HT binding sites, for the 5-HT1D subtype, in the present study we have used these drugs in an attempt to determine whether the above inhibitory prejunctional 5-HT1-like receptors correlate with the 5-HT1D subtype. 2. One-minute intracarotid (i.c.) infusions of 5-HT (0.3, 1, 3 and 10 micrograms), 5-CT (0.01, 0.03, 0.1 and 0.3 micrograms), 5-methoxytryptamine (1, 3, 10 and 30 micrograms) and sumatriptan (1, 3, 10, 30 and 100 micrograms) resulted in dose-dependent increases in external carotid blood flow (without changes in mean arterial blood pressure or heart rate) with the following rank order of agonist potency: 5-CT >> 5-HT > 5-methoxytryptamine > or = sumatriptan. Interestingly, sumatriptan-induced vasodilatation was followed by a more pronounced vasoconstriction. 3. The external carotid vasodilator effects of 5-HT, 5-CT, 5-methoxytryptamine and sumatriptan were dose-dependently and specifically antagonized by metergoline (10, 30 and/or 100 micrograms kg-1, i.v.).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7812603

  1. Amygdala Infusions of an NR2B-Selective or an NR2A-Preferring NMDA Receptor Antagonist Differentially Influence Fear Conditioning and Expression in the Fear-Potentiated Startle Test

    ERIC Educational Resources Information Center

    Walker, David L.; Davis, Michael

    2008-01-01

    Within the amygdala, most N-methyl-D-aspartic acid (NMDA) receptors consist of NR1 subunits in combination with either NR2A or NR2B subunits. Because the particular subunit composition greatly influences the receptors' properties, we investigated the contribution of both subtypes to fear conditioning and expression. To do so, we infused the…

  2. Structure and Receptor Binding of the Hemagglutinin from a Human H6N1 Influenza Virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tzarum, Netanel; de Vries, Robert P.; Zhu, Xueyong

    Avian influenza viruses that cause infection and are transmissible in humans involve changes in the receptor binding site (RBS) of the viral hemagglutinin (HA) that alter receptor preference from α2-3-linked (avian-like) to α2-6-linked (human-like) sialosides. A human case of avian-origin H6N1 influenza virus was recently reported, but the molecular mechanisms contributing to it crossing the species barrier are unknown. We find that, although the H6 HA RBS contains D190V and G228S substitutions that potentially promote human receptor binding, recombinant H6 HA preferentially binds α2-3-linked sialosides, indicating no adaptation to human receptors. Crystal structures of H6 HA with avian and humanmore » receptor analogs reveal that H6 HA preferentially interacts with avian receptor analogs. Lastly, this binding mechanism differs from other HA subtypes due to a unique combination of RBS residues, highlighting additional variation in HA-receptor interactions and the challenges in predicting which influenza strains and subtypes can infect humans and cause pandemics.« less

  3. Structure and Receptor Binding of the Hemagglutinin from a Human H6N1 Influenza Virus

    DOE PAGES

    Tzarum, Netanel; de Vries, Robert P.; Zhu, Xueyong; ...

    2015-03-11

    Avian influenza viruses that cause infection and are transmissible in humans involve changes in the receptor binding site (RBS) of the viral hemagglutinin (HA) that alter receptor preference from α2-3-linked (avian-like) to α2-6-linked (human-like) sialosides. A human case of avian-origin H6N1 influenza virus was recently reported, but the molecular mechanisms contributing to it crossing the species barrier are unknown. We find that, although the H6 HA RBS contains D190V and G228S substitutions that potentially promote human receptor binding, recombinant H6 HA preferentially binds α2-3-linked sialosides, indicating no adaptation to human receptors. Crystal structures of H6 HA with avian and humanmore » receptor analogs reveal that H6 HA preferentially interacts with avian receptor analogs. Lastly, this binding mechanism differs from other HA subtypes due to a unique combination of RBS residues, highlighting additional variation in HA-receptor interactions and the challenges in predicting which influenza strains and subtypes can infect humans and cause pandemics.« less

  4. Predicting Subtype Selectivity for Adenosine Receptor Ligands with Three-Dimensional Biologically Relevant Spectrum (BRS-3D)

    NASA Astrophysics Data System (ADS)

    He, Song-Bing; Ben Hu; Kuang, Zheng-Kun; Wang, Dong; Kong, De-Xin

    2016-11-01

    Adenosine receptors (ARs) are potential therapeutic targets for Parkinson’s disease, diabetes, pain, stroke and cancers. Prediction of subtype selectivity is therefore important from both therapeutic and mechanistic perspectives. In this paper, we introduced a shape similarity profile as molecular descriptor, namely three-dimensional biologically relevant spectrum (BRS-3D), for AR selectivity prediction. Pairwise regression and discrimination models were built with the support vector machine methods. The average determination coefficient (r2) of the regression models was 0.664 (for test sets). The 2B-3 (A2B vs A3) model performed best with q2 = 0.769 for training sets (10-fold cross-validation), and r2 = 0.766, RMSE = 0.828 for test sets. The models’ robustness and stability were validated with 100 times resampling and 500 times Y-randomization. We compared the performance of BRS-3D with 3D descriptors calculated by MOE. BRS-3D performed as good as, or better than, MOE 3D descriptors. The performances of the discrimination models were also encouraging, with average accuracy (ACC) 0.912 and MCC 0.792 (test set). The 2A-3 (A2A vs A3) selectivity discrimination model (ACC = 0.882 and MCC = 0.715 for test set) outperformed an earlier reported one (ACC = 0.784). These results demonstrated that, through multiple conformation encoding, BRS-3D can be used as an effective molecular descriptor for AR subtype selectivity prediction.

  5. N-(4-(4-(2,3-Dichloro- or 2-methoxyphenyl)piperazin-1-yl)-butyl)-heterobiarylcarboxamides with Functionalized Linking Chains as High Affinity and Enantioselective D3 Receptor Antagonistsγ

    PubMed Central

    Newman, Amy Hauck; Grundt, Peter; Cyriac, George; Deschamps, Jeffrey R.; Taylor, Michelle; Kumar, Rakesh; Ho, David; Luedtke, Robert R.

    2009-01-01

    In the present report, the D3 receptor pharmacophore is modified in the 2,3-diCl-and 2-OCH3-phenyl piperazine class of compounds with the goal to improve D3 receptor affinity and selectivity. This extension of structure-activity relationships (SAR) has resulted in the identification of the first enantioselective D3 antagonists (R- and S-22) to be reported, wherein enantioselectivity is more pronounced at D3 than at D2, and that a binding region on the second extracellular loop (E2) may play a role in both enantioselectivity and D3 receptor selectivity. Moreover, we have discovered some of the most D3-selective compounds reported to date that show high affinity (Ki =1 nM) for D3 and ∼400-fold selectivity over the D2 receptor subtype. Several of these analogues showed exquisite selectivity for D3 receptors over >60 other receptors further underscoring their value as in vivo research tools. These lead compounds also have appropriate physical characteristics for in vivo exploration and therefore will be useful in determining how intrinsic activity at D3 receptors tested in vitro is related to behaviors in animal models of addiction and other neuropsychiatric disorders. PMID:19331412

  6. RANTES modulates the release of glutamate in human neocortex.

    PubMed

    Musante, Veronica; Longordo, Fabio; Neri, Elisa; Pedrazzi, Marco; Kalfas, Fotios; Severi, Paolo; Raiteri, Maurizio; Pittaluga, Anna

    2008-11-19

    The effects of the recombinant chemokine human RANTES (hRANTES) on the release of glutamate from human neocortex glutamatergic nerve endings were investigated. hRANTES facilitated the spontaneous release of d [(3)H]D-aspartate ([(3)H]DASP-) by binding Pertussis toxin-sensitive G-protein-coupled receptors (GPCRs), whose activation caused Ca(2+) mobilization from inositol trisphosphate-sensitive stores and cytosolic tyrosine kinase-mediated phosphorylations. Facilitation of release switched to inhibition when the effects of hRANTES on the 12 mM K(+)-evoked [(3)H]D-ASP exocytosis were studied. Inhibition of exocytosis relied on activation of Pertussis toxin-sensitive GPCRs negatively coupled to adenylyl cyclase. Both hRANTES effects were prevented by met-RANTES, an antagonist at the chemokine receptors (CCRs) of the CCR1, CCR3, and CCR5 subtypes. Interestingly, human neocortex glutamatergic nerve endings seem to possess all three receptor subtypes. Blockade of CCR1 and CCR5 by antibodies against the extracellular domain of CCRs prevented both the hRANTES effect on [(3)H]D-ASP release, whereas blockade of CCR3 prevented inhibition, but not facilitation, of release. The effects of RANTES on the spontaneous and the evoked release of [(3)H]D-ASP were also observed in experiments with mouse cortical synaptosomes, which may therefore represent an appropriate animal model to study RANTES-induced effects on neurotransmission. It is concluded that glutamate transmission can be modulated in opposite directions by RANTES acting at distinct CCR receptor subtypes coupled to different transduction pathways, consistent with the multiple and sometimes contrasting effects of the chemokine.

  7. Evidence for an A2/Ra adenosine receptor in the guinea-pig trachea

    PubMed Central

    Brown, C.M.; Collis, M.G.

    1982-01-01

    1 An attempt was made to determine whether the extracellular adenosine receptor that mediates relaxation in the guinea-pig trachea is of the A1/Ri or A2/Ra subtype. 2 Dose-response curves to adenosine and a number of 5′- and N6-substituted analogues were constructed for the isolated guinea-pig trachea, contracted with carbachol. 3 The 5′-substituted analogues of adenosine were the most potent compounds tested, the order of potency being 5′-N-cyclopropylcarboxamide adenosine (NCPCA) > 5′-N-ethylcarboxamide adenosine (NECA) > 2-chloroadenosine > L-N6-phenylisopropyladenosine (L-PIA) > adenosine > D-N6-phenylisopropyladenosine (D-PIA). 4 The difference in potency between the stereoisomers D- and L-PIA on the isolated trachea was at the most five fold. 5 Responses to low doses of adenosine and its analogues were attenuated after treatment with either theophylline or 8-phenyltheophylline. The responses to 2-chloroadenosine were affected to a lesser extent than were those to the other purines. 6 Adenosine transport inhibitors, dipyridamole and dilazep, potentiated responses to adenosine, did not affect those to NCPCA, NECA, L-PIA and D-PIA but significantly reduced the responses to high doses of 2-chloroadenosine. 7 Relaxations evoked by 9-β-D-xylofuranosyladenosine which can activate intracellular but not extracellular adenosine receptors, were attenuated by dipyridamole but unaffected by 8-phenyltheophylline. 8 The results support the existence of an extracellular A2/Ra subtype of adenosine receptor and an intracellular purine-sensitive site, both of which mediate relaxation. PMID:6286021

  8. Comparison of the functional potencies of ropinirole and other dopamine receptor agonists at human D2(long), D3 and D4.4 receptors expressed in Chinese hamster ovary cells

    PubMed Central

    Coldwell, Martyn C; Boyfield, Izzy; Brown, Tony; Hagan, Jim J; Middlemiss, Derek N

    1999-01-01

    The aim of the present study was to characterize functional responses to ropinirole, its major metabolites in man (SKF-104557 (4-[2-(propylamino)ethyl]-2-(3H) indolone), SKF-97930 (4-carboxy-2-(3H) indolone)) and other dopamine receptor agonists at human dopamine D2(long) (hD2), D3 (hD3) and D4.4 (hD4) receptors separately expressed in Chinese hamster ovary cells using microphysiometry.All the receptor agonists tested (ropinirole, SKF-104557, SKF-97930, bromocriptine, lisuride, pergolide, pramipexole, talipexole, dopamine) increased extracellular acidification rate in Chinese hamster ovary clones expressing the human D2, D3 or D4 receptor. The pEC50s of ropinirole at hD2, hD3 and hD4 receptors were 7.4, 8.4 and 6.8, respectively. Ropinirole is therefore at least 10 fold selective for the human dopamine D3 receptor over the other D2 receptor family members.At the hD2 and hD3 dopamine receptors all the compounds tested were full agonists as compared to quinpirole. Talipexole and the ropinirole metabolite, SKF-104557, were partial agonists at the hD4 receptor.Bromocriptine and lisuride had a slow onset of agonist action which precluded determination of EC50s.The rank order of agonist potencies was dissimilar to the rank order of radioligand binding affinities at each of the dopamine receptor subtypes. Functional selectivities of the dopamine receptor agonists, as measured in the microphysiometer, were less than radioligand binding selectivities.The results show that ropinirole is a full agonist at human D2, D3 and D4 dopamine receptors. SKF-104557 the major human metabolite of ropinirole, had similar radioligand binding affinities to, but lower functional potencies than, the parent compound. PMID:10455328

  9. 3D-QSAR and 3D-QSSR models of negative allosteric modulators facilitate the design of a novel selective antagonist of human α4β2 neuronal nicotinic acetylcholine receptors.

    PubMed

    Henderson, Brandon J; Orac, Crina M; Maciagiewicz, Iwona; Bergmeier, Stephen C; McKay, Dennis B

    2012-02-15

    Subtype selective molecules for α4β2 neuronal nicotinic acetylcholine receptors (nAChRs) have been sought as novel therapeutics for nicotine cessation. α4β2 nAChRs have been shown to be involved in mediating the addictive properties of nicotine while other subtypes (i.e., α3β4 and α7) are believed to mediate the undesired effects of potential CNS drugs. To obtain selective molecules, it is important to understand the physiochemical features of ligands that affect selectivity and potency on nAChR subtypes. Here we present novel QSAR/QSSR models for negative allosteric modulators of human α4β2 nAChRs and human α3β4 nAChRs. These models support previous homology model and site-directed mutagenesis studies that suggest a novel mechanism of antagonism. Additionally, information from the models presented in this work was used to synthesize novel molecules; which subsequently led to the discovery of a new selective antagonist of human α4β2 nAChRs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. 3D-QSAR and 3D-QSSR models of negative allosteric modulators facilitate the design of a novel selective antagonist of human α4β2 neuronal nicotinic acetylcholine receptors

    PubMed Central

    Henderson, Brandon J.; Orac, Crina M.; Maciagiewicz, Iwona; Bergmeier, Stephen C.; McKay, Dennis B.

    2011-01-01

    Subtype selective molecules for α4β2 neuronal nicotinic acetylcholine receptors (nAChRs) have been sought as novel therapeutics for nicotine cessation. α4β2 nAChRs have been shown to be involved in mediating the addictive properties of nicotine while other subtypes (i.e., α3β4 and α7) are believed to mediate the undesired effects of potential CNS drugs. To obtain selective molecules, it is important to understand the physiochemical features of ligands that affect selectivity and potency on nAChR subtypes. Here we present novel QSAR/QSSR models for negative allosteric modulators of human α4β2 nAChRs and human α3β4 nAChRs. These models support previous homology model and site-directed mutagenesis studies that suggest a novel mechanism of antagonism. Additionally, information from the models presented in this work was used to synthesize novel molecules; which subsequently led to the discovery of a new selective antagonist of human α4β2 nAChRs. PMID:22285942

  11. Oxytocin induces penile erection and yawning when injected into the bed nucleus of the stria terminalis: Involvement of glutamic acid, dopamine, and nitric oxide.

    PubMed

    Sanna, Fabrizio; Bratzu, Jessica; Argiolas, Antonio; Melis, Maria Rosaria

    2017-11-01

    Oxytocin (5-100ng), but not Arg 8 -vasopressin (100ng), injected unilaterally into the bed nucleus of the stria terminalis (BNST) induces penile erection and yawning in a dose-dependent manner in male rats. The minimal effective dose was 20ng for penile erection and 5ng for yawning. Oxytocin responses were abolished not only by the oxytocin receptor antagonist d(CH 2 ) 5 Tyr(Me) 2 -Orn 8 -vasotocin (1μg), but also by (+) MK-801 (1μg), an excitatory amino acid receptor antagonist of the N-methyl-d-aspartic acid (NMDA) subtype, SCH 23390 (1μg), a D1 receptor antagonist, but not haloperidol (1μg), a D2 receptor antagonist, and SMTC (40μg), an inhibitor of neuronal nitric oxide synthase, injected into the BNST 15min before oxytocin. Oxytocin-induced penile erection, but not yawning, was also abolished by CNQX (1μg), an excitatory amino acid receptor antagonist of the AMPA subtype. In contrast, oxytocin responses were not reduced by bicuculline (20ng), a GABA A receptor antagonist, phaclofen (5μg), a GABA B receptor antagonist, CP 376395, a CRF receptor-1 antagonist (5μg), or astressin 2B, a CRF receptor-2 antagonist (150ng). Considering the ability of NMDA (100ng) to induce penile erection and yawning when injected into the BNST and the available evidence showing possible interaction among oxytocin, glutamic acid, and dopamine in the BNST, oxytocin possibly activates glutamatergic neurotransmission in the BNST. This in turn leads to the activation of neural pathways projecting back to the paraventricular nucleus, medial preoptic area, ventral tegmental area, and/or ventral subiculum/amygdala, thereby inducing penile erection and yawning. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Dopamine D2-like receptor signaling suppresses human osteoclastogenesis.

    PubMed

    Hanami, Kentaro; Nakano, Kazuhisa; Saito, Kazuyoshi; Okada, Yosuke; Yamaoka, Kunihiro; Kubo, Satoshi; Kondo, Masahiro; Tanaka, Yoshiya

    2013-09-01

    Dopamine, a major neurotransmitter, transmits signals via five different seven-transmembrane G protein-coupled receptors termed D1 to D5. Although the relevance of neuroendocrine system to bone metabolism has been emerging, the precise effects of dopaminergic signaling upon osteoclastogenesis remain unknown. Here, we demonstrate that human monocyte-derived osteoclast precursor cells express all dopamine-receptor subtypes. Dopamine and dopamine D2-like receptor agonists such as pramipexole and quinpirole reduced the formation of TRAP-positive multi-nucleated cells, cathepsin K mRNA expression, and pit formation area in vitro. These inhibitory effects were reversed by pre-treatment with a D2-like receptor antagonist haloperidol or a Gαi inhibitor pertussis toxin, but not with the D1-like receptor antagonist SCH-23390. Dopamine and dopamine D2-like receptor agonists, but not a D1-like receptor agonist, suppressed intracellular cAMP concentration as well as RANKL-meditated induction of c-Fos and NFATc1 mRNA expression in human osteoclast precursor cells. Finally, the dopamine D2-like receptor agonist suppressed LPS-induced osteoclast formation in murine bone marrow culture ex vivo. These findings indicate that dopaminergic signaling plays an important role in bone homeostasis via direct effects upon osteoclast differentiation and further suggest that the clinical use of neuroleptics is likely to affect bone mass. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Argyreia nervosa (Burm. f.): receptor profiling of lysergic acid amide and other potential psychedelic LSD-like compounds by computational and binding assay approaches.

    PubMed

    Paulke, Alexander; Kremer, Christian; Wunder, Cora; Achenbach, Janosch; Djahanschiri, Bardya; Elias, Anderson; Schwed, J Stefan; Hübner, Harald; Gmeiner, Peter; Proschak, Ewgenij; Toennes, Stefan W; Stark, Holger

    2013-07-09

    The convolvulacea Argyreia nervosa (Burm. f.) is well known as an important medical plant in the traditional Ayurvedic system of medicine and it is used in numerous diseases (e.g. nervousness, bronchitis, tuberculosis, arthritis, and diabetes). Additionally, in the Indian state of Assam and in other regions Argyreia nervosa is part of the traditional tribal medicine (e.g. the Santali people, the Lodhas, and others). In the western hemisphere, Argyreia nervosa has been brought in attention as so called "legal high". In this context, the seeds are used as source of the psychoactive ergotalkaloid lysergic acid amide (LSA), which is considered as the main active ingredient. As the chemical structure of LSA is very similar to that of lysergic acid diethylamide (LSD), the seeds of Argyreia nervosa (Burm. f.) are often considered as natural substitute of LSD. In the present study, LSA and LSD have been compared concerning their potential pharmacological profiles based on the receptor binding affinities since our recent human study with four volunteers on p.o. application of Argyreia nervosa seeds has led to some ambiguous effects. In an initial step computer-aided in silico prediction models on receptor binding were employed to screen for serotonin, norepinephrine, dopamine, muscarine, and histamine receptor subtypes as potential targets for LSA. In addition, this screening was extended to accompany ergotalkaloids of Argyreia nervosa (Burm. f.). In a verification step, selected LSA screening results were confirmed by in vitro binding assays with some extensions to LSD. In the in silico model LSA exhibited the highest affinity with a pKi of about 8.0 at α1A, and α1B. Clear affinity with pKi>7 was predicted for 5-HT1A, 5-HT1B, 5-HT1D, 5-HT6, 5-HT7, and D2. From these receptors the 5-HT1D subtype exhibited the highest pKi with 7.98 in the prediction model. From the other ergotalkaloids, agroclavine and festuclavine also seemed to be highly affine to the 5-HT1D-receptor with pKi>8. In general, the ergotalkaloids of Argyreia nervosa seem to prefer serotonin and dopamine receptors (pKi>7). However, with exception of ergometrine/ergometrinine only for 5-HT3A, and histamine H2 and H4 no affinities were predicted. Compared to LSD, LSA exhibited lower binding affinities in the in vitro binding assays for all tested receptor subtypes. However, with a pKi of 7.99, 7.56, and 7.21 a clear affinity for 5-HT1A, 5-HT2, and α2 could be demonstrated. For DA receptor subtypes and the α1-receptor the pKi ranged from 6.05 to 6.85. Since the psychedelic activity of LSA in the recent human study was weak and although LSA from Argyreia nervosa is often considered as natural exchange for LSD, LSA should not be regarded as LSD-like psychedelic drug. However, vegetative side effects and psychotropic effects may be triggered by serotonin or dopamine receptor subtypes. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  14. Differential actions of antiparkinson agents at multiple classes of monoaminergic receptor. III. Agonist and antagonist properties at serotonin, 5-HT(1) and 5-HT(2), receptor subtypes.

    PubMed

    Newman-Tancredi, Adrian; Cussac, Didier; Quentric, Yann; Touzard, Manuelle; Verrièle, Laurence; Carpentier, Nathalie; Millan, Mark J

    2002-11-01

    Although certain antiparkinson agents interact with serotonin (5-HT) receptors, little information is available concerning functional actions. Herein, we characterized efficacies of apomorphine, bromocriptine, cabergoline, lisuride, piribedil, pergolide, roxindole, and terguride at human (h)5-HT(1A), h5-HT(1B), and h5-HT(1D) receptors [guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS) binding], and at h5-HT(2A), h5-HT(2B), and h5-HT(2C) receptors (depletion of membrane-bound [(3)H]phosphatydilinositol). All drugs stimulated h5-HT(1A) receptors with efficacies (compared with 5-HT, 100%) ranging from modest (apomorphine, 35%) to high (cabergoline, 93%). At h5-HT(1B) receptors, efficacies varied from mild (terguride, 37%) to marked (cabergoline, 102%) and potencies were modest (pEC(50) values of 5.8-7.6): h5-HT(1D) sites were activated with a similar range of efficacies and greater potency (7.1-8.5). Piribedil and apomorphine were inactive at h5-HT(1B) and h5-HT(1D) receptors. At h5-HT(2A) receptors, terguride, lisuride, bromocriptine, cabergoline, and pergolide displayed potent (7.6-8.8) agonist properties (49-103%), whereas apomorphine and roxindole were antagonists and piribedil was inactive. Only pergolide (113%/8.2) and cabergoline (123%/8.6) displayed pronounced agonist properties at h5-HT(2B) receptors. At 5-HT(2C) receptors, lisuride, bromocriptine, pergolide, and cabergoline were efficacious (75-96%) agonists, apomorphine and terguride were antagonists, and piribedil was inactive. MDL100,907 and SB242,084, selective antagonists at 5-HT(2A) and 5-HT(2C) receptors, respectively, abolished these actions of pergolide, cabergoline, and bromocriptine. In conclusion, antiparkinson agents display markedly different patterns of agonist and antagonist properties at multiple 5-HT receptor subtypes. Although all show modest (agonist) activity at 5-HT(1A) sites, their contrasting actions at 5-HT(2A) and 5-HT(2C) sites may be of particular significance to their functional profiles in vivo.

  15. 3D-QSAR comparative molecular field analysis on opioid receptor antagonists: pooling data from different studies.

    PubMed

    Peng, Youyi; Keenan, Susan M; Zhang, Qiang; Kholodovych, Vladyslav; Welsh, William J

    2005-03-10

    Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were constructed using comparative molecular field analysis (CoMFA) on a series of opioid receptor antagonists. To obtain statistically significant and robust CoMFA models, a sizable data set of naltrindole and naltrexone analogues was assembled by pooling biological and structural data from independent studies. A process of "leave one data set out", similar to the traditional "leave one out" cross-validation procedure employed in partial least squares (PLS) analysis, was utilized to study the feasibility of pooling data in the present case. These studies indicate that our approach yields statistically significant and highly predictive CoMFA models from the pooled data set of delta, mu, and kappa opioid receptor antagonists. All models showed excellent internal predictability and self-consistency: q(2) = 0.69/r(2) = 0.91 (delta), q(2) = 0.67/r(2) = 0.92 (mu), and q(2) = 0.60/r(2) = 0.96 (kappa). The CoMFA models were further validated using two separate test sets: one test set was selected randomly from the pooled data set, while the other test set was retrieved from other published sources. The overall excellent agreement between CoMFA-predicted and experimental binding affinities for a structurally diverse array of ligands across all three opioid receptor subtypes gives testimony to the superb predictive power of these models. CoMFA field analysis demonstrated that the variations in binding affinity of opioid antagonists are dominated by steric rather than electrostatic interactions with the three opioid receptor binding sites. The CoMFA steric-electrostatic contour maps corresponding to the delta, mu, and kappa opioid receptor subtypes reflected the characteristic similarities and differences in the familiar "message-address" concept of opioid receptor ligands. Structural modifications to increase selectivity for the delta over mu and kappa opioid receptors have been predicted on the basis of the CoMFA contour maps. The structure-activity relationships (SARs) together with the CoMFA models should find utility for the rational design of subtype-selective opioid receptor antagonists.

  16. Development of a human vasopressin V1a-receptor antagonist from an evolutionary-related insect neuropeptide

    NASA Astrophysics Data System (ADS)

    di Giglio, Maria Giulia; Muttenthaler, Markus; Harpsøe, Kasper; Liutkeviciute, Zita; Keov, Peter; Eder, Thomas; Rattei, Thomas; Arrowsmith, Sarah; Wray, Susan; Marek, Ales; Elbert, Tomas; Alewood, Paul F.; Gloriam, David E.; Gruber, Christian W.

    2017-02-01

    Characterisation of G protein-coupled receptors (GPCR) relies on the availability of a toolbox of ligands that selectively modulate different functional states of the receptors. To uncover such molecules, we explored a unique strategy for ligand discovery that takes advantage of the evolutionary conservation of the 600-million-year-old oxytocin/vasopressin signalling system. We isolated the insect oxytocin/vasopressin orthologue inotocin from the black garden ant (Lasius niger), identified and cloned its cognate receptor and determined its pharmacological properties on the insect and human oxytocin/vasopressin receptors. Subsequently, we identified a functional dichotomy: inotocin activated the insect inotocin and the human vasopressin V1b receptors, but inhibited the human V1aR. Replacement of Arg8 of inotocin by D-Arg8 led to a potent, stable and competitive V1aR-antagonist ([D-Arg8]-inotocin) with a 3,000-fold binding selectivity for the human V1aR over the other three subtypes, OTR, V1bR and V2R. The Arg8/D-Arg8 ligand-pair was further investigated to gain novel insights into the oxytocin/vasopressin peptide-receptor interaction, which led to the identification of key residues of the receptors that are important for ligand functionality and selectivity. These observations could play an important role for development of oxytocin/vasopressin receptor modulators that would enable clear distinction of the physiological and pathological responses of the individual receptor subtypes.

  17. International Union of Pharmacology LVIII: Update on the P2Y G Protein-Coupled Nucleotide Receptors: From Molecular Mechanisms and Pathophysiology to Therapy

    PubMed Central

    ABBRACCHIO, MARIA P.; BURNSTOCK, GEOFFREY; BOEYNAEMS, JEAN-MARIE; BARNARD, ERIC A.; BOYER, JOSÉ L.; KENNEDY, CHARLES; KNIGHT, GILLIAN E.; FUMAGALLI, MARTA; GACHET, CHRISTIAN; JACOBSON, KENNETH A.; WEISMAN, GARY A.

    2012-01-01

    There have been many advances in our knowledge about different aspects of P2Y receptor signaling since the last review published by our International Union of Pharmacology subcommittee. More receptor subtypes have been cloned and characterized and most orphan receptors deorphanized, so that it is now possible to provide a basis for a future subdivision of P2Y receptor subtypes. More is known about the functional elements of the P2Y receptor molecules and the signaling pathways involved, including interactions with ion channels. There have been substantial developments in the design of selective agonists and antagonists to some of the P2Y receptor subtypes. There are new findings about the mechanisms underlying nucleotide release and ectoenzymatic nucleotide breakdown. Interactions between P2Y receptors and receptors to other signaling molecules have been explored as well as P2Y-mediated control of gene transcription. The distribution and roles of P2Y receptor subtypes in many different cell types are better understood and P2Y receptor-related compounds are being explored for therapeutic purposes. These and other advances are discussed in the present review. PMID:16968944

  18. Dopamine D3/D2 Receptor Antagonist PF-4363467 Attenuates Opioid Drug-Seeking Behavior without Concomitant D2 Side Effects.

    PubMed

    Wager, Travis T; Chappie, Thomas; Horton, David; Chandrasekaran, Ramalakshmi Y; Samas, Brian; Dunn-Sims, Elizabeth R; Hsu, Cathleen; Nawreen, Nawshaba; Vanase-Frawley, Michelle A; O'Connor, Rebecca E; Schmidt, Christopher J; Dlugolenski, Keith; Stratman, Nancy C; Majchrzak, Mark J; Kormos, Bethany L; Nguyen, David P; Sawant-Basak, Aarti; Mead, Andy N

    2017-01-18

    Dopamine receptor antagonism is a compelling molecular target for the treatment of a range of psychiatric disorders, including substance use disorders. From our corporate compound file, we identified a structurally unique D3 receptor (D3R) antagonist scaffold, 1. Through a hybrid approach, we merged key pharmacophore elements from 1 and D3 agonist 2 to yield the novel D3R/D2R antagonist PF-4363467 (3). Compound 3 was designed to possess CNS drug-like properties as defined by its CNS MPO desirability score (≥4/6). In addition to good physicochemical properties, 3 exhibited low nanomolar affinity for the D3R (D3 K i = 3.1 nM), good subtype selectivity over D2R (D2 K i = 692 nM), and high selectivity for D3R versus other biogenic amine receptors. In vivo, 3 dose-dependently attenuated opioid self-administration and opioid drug-seeking behavior in a rat operant reinstatement model using animals trained to self-administer fentanyl. Further, traditional extrapyramidal symptoms (EPS), adverse side effects arising from D2R antagonism, were not observed despite high D2 receptor occupancy (RO) in rodents, suggesting that compound 3 has a unique in vivo profile. Collectively, our data support further investigation of dual D3R and D2R antagonists for the treatment of drug addiction.

  19. Naftopidil for the treatment of urinary symptoms in patients with benign prostatic hyperplasia

    PubMed Central

    Masumori, Naoya

    2011-01-01

    Naftopidil, approved only in Japan, is an α1-adrenergic receptor antagonist (α1-blocker) used to treat lower urinary tract symptoms (LUTS) suggestive of benign prostatic hyperplasia (BPH). Different from tamsulosin hydrochloride and silodosin, in that it has higher and extremely higher affinity respectively, for the α1A-adrenergic receptor subtype than for the α1D type, naftopidil has distinct characteristics because it has a three times greater affinity for the α1D-adrenergic receptor subtype than for the α1A subtype. Although well-designed large-scale randomized controlled studies are lacking and the optimal dosage of naftopidil is not always completely determined, previous reports from Japan have shown that naftopidil has superior efficacy to a placebo and comparable efficacy to other α1-blockers such as tamsulosin. On the other hand, the incidences of ejaculatory disorders and intraoperative floppy iris syndrome induced by naftopidil may be lower than for tamsulosin and silodosin having high affinity for the α1A-adrenergic receptor subtype. However, it remains unknown if the efficacy and safety of naftopidil in Japanese is applicable to white, black and Hispanic men having LUTS/BPH in western countries. PMID:21753885

  20. Structural basis for ligand recognition at the benzodiazepine binding site of GABAA alpha 3 receptor, and pharmacophore-based virtual screening approach.

    PubMed

    Vijayan, R S K; Ghoshal, Nanda

    2008-10-01

    Given the heterogeneity of GABA(A) receptor, the pharmacological significance of identifying subtype selective modulators is increasingly being recognized. Thus, drugs selective for GABA(A) alpha(3) receptors are expected to display fewer side effects than the drugs presently in clinical use. Hence we carried out 3D QSAR (three-dimensional quantitative structure-activity relationship) studies on a series of novel GABA(A) alpha(3) subtype selective modulators to gain more insight into subtype affinity. To identify the 3D functional attributes required for subtype selectivity, a chemical feature-based pharmacophore, primarily based on selective ligands representing diverse structural classes was generated. The obtained pseudo receptor model of the benzodiazepine binding site revealed a binding mode akin to "Message-Address" concept. Scaffold hopping was carried out across multi-conformational May Bridge database for the identification of novel chemotypes. Further a focused data reduction approach was employed to choose a subset of enriched compounds based on "Drug likeness" and "Similarity-based" methods. These results taken together could provide impetus for rational design and optimization of more selective and high affinity leads with a potential to have decreased adverse effects.

  1. The three subtypes of atrial natriuretic peptide (ANP) receptors are expressed in the rat adrenal gland.

    PubMed

    Grandclément, B; Ronsin, B; Morel, G

    1997-03-01

    Atrial natriuretic peptide (ANP) actions are mediated by highly selective and specific receptors. Three subtypes have been characterized and cloned: ANP receptor-A (or GC-A), -B (or GC-B) and -C (the so-called clearance receptor). In rat adrenal gland, the mRNA for each subtype was detected using 35S-dUTP or digoxigenin-11-dUTP specific labeled probes, and in situ hybridization at light and electron microscopic levels respectively. The three subtypes were expressed the most abundantly in the zona glomerulosa. The amount of GC-A mRNA expression, quantified using macro-autoradiography and densitometry, was higher than the amounts of GC-B mRNA and ANPR-C mRNA both in zona glomerulosa and medullary of adrenal gland. At electron microscopic level, the three subtypes of ANPR were revealed in glomerulosa cells. A noticeable signal was also present in the medullary area, especially for GC-A mRNA, in adrenaline-containing chromaffin cells. No signal was detected in noradrenaline-containing chromaffin cells. The subcellular localization of the three mRNAs is similar: in the cytoplasmic matrix and in the euchromatin of the nucleus in each cell of glomerulosa, and in the same compartments of the adrenaline-containing chromaffin cells. These data indicate that the adrenal gland is an important target tissue for ANP action both in glomerulosa cells and adrenaline-containing chromaffin cells. The mRNA expression levels were different for each ANPR subtype.

  2. Adenosine receptors regulate gap junction coupling of the human cerebral microvascular endothelial cells hCMEC/D3 by Ca2+ influx through cyclic nucleotide-gated channels.

    PubMed

    Bader, Almke; Bintig, Willem; Begandt, Daniela; Klett, Anne; Siller, Ina G; Gregor, Carola; Schaarschmidt, Frank; Weksler, Babette; Romero, Ignacio; Couraud, Pierre-Olivier; Hell, Stefan W; Ngezahayo, Anaclet

    2017-04-15

    Gap junction channels are essential for the formation and regulation of physiological units in tissues by allowing the lateral cell-to-cell diffusion of ions, metabolites and second messengers. Stimulation of the adenosine receptor subtype A 2B increases the gap junction coupling in the human blood-brain barrier endothelial cell line hCMEC/D3. Although the increased gap junction coupling is cAMP-dependent, neither the protein kinase A nor the exchange protein directly activated by cAMP were involved in this increase. We found that cAMP activates cyclic nucleotide-gated (CNG) channels and thereby induces a Ca 2+ influx, which leads to the increase in gap junction coupling. The report identifies CNG channels as a possible physiological link between adenosine receptors and the regulation of gap junction channels in endothelial cells of the blood-brain barrier. The human cerebral microvascular endothelial cell line hCMEC/D3 was used to characterize the physiological link between adenosine receptors and the gap junction coupling in endothelial cells of the blood-brain barrier. Expressed adenosine receptor subtypes and connexin (Cx) isoforms were identified by RT-PCR. Scrape loading/dye transfer was used to evaluate the impact of the A 2A and A 2B adenosine receptor subtype agonist 2-phenylaminoadenosine (2-PAA) on the gap junction coupling. We found that 2-PAA stimulated cAMP synthesis and enhanced gap junction coupling in a concentration-dependent manner. This enhancement was accompanied by an increase in gap junction plaques formed by Cx43. Inhibition of protein kinase A did not affect the 2-PAA-related enhancement of gap junction coupling. In contrast, the cyclic nucleotide-gated (CNG) channel inhibitor l-cis-diltiazem, as well as the chelation of intracellular Ca 2+ with BAPTA, or the absence of external Ca 2+ , suppressed the 2-PAA-related enhancement of gap junction coupling. Moreover, we observed a 2-PAA-dependent activation of CNG channels by a combination of electrophysiology and pharmacology. In conclusion, the stimulation of adenosine receptors in hCMEC/D3 cells induces a Ca 2+ influx by opening CNG channels in a cAMP-dependent manner. Ca 2+ in turn induces the formation of new gap junction plaques and a consecutive sustained enhancement of gap junction coupling. The report identifies CNG channels as a physiological link that integrates gap junction coupling into the adenosine receptor-dependent signalling of endothelial cells of the blood-brain barrier. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.

  3. Immunohistochemical Localization of AT1a, AT1b, and AT2 Angiotensin II Receptor Subtypes in the Rat Adrenal, Pituitary, and Brain with a Perspective Commentary

    PubMed Central

    Premer, Courtney; Lamondin, Courtney; Mitzey, Ann; Speth, Robert C.; Brownfield, Mark S.

    2013-01-01

    Angiotensin II increases blood pressure and stimulates thirst and sodium appetite in the brain. It also stimulates secretion of aldosterone from the adrenal zona glomerulosa and epinephrine from the adrenal medulla. The rat has 3 subtypes of angiotensin II receptors: AT1a, AT1b, and AT2. mRNAs for all three subtypes occur in the adrenal and brain. To immunohistochemically differentiate these receptor subtypes, rabbits were immunized with C-terminal fragments of these subtypes to generate receptor subtype-specific antibodies. Immunofluorescence revealed AT1a and AT2 receptors in adrenal zona glomerulosa and medulla. AT1b immunofluorescence was present in the zona glomerulosa, but not the medulla. Ultrastructural immunogold labeling for the AT1a receptor in glomerulosa and medullary cells localized it to plasma membrane, endocytic vesicles, multivesicular bodies, and the nucleus. AT1b and AT2, but not AT1a, immunofluorescence was observed in the anterior pituitary. Stellate cells were AT1b positive while ovoid cells were AT2 positive. In the brain, neurons were AT1a, AT1b, and AT2 positive, but glia was only AT1b positive. Highest levels of AT1a, AT1b, and AT2 receptor immunofluorescence were in the subfornical organ, median eminence, area postrema, paraventricular nucleus, and solitary tract nucleus. These studies complement those employing different techniques to characterize Ang II receptors. PMID:23573410

  4. Lorcaserin and pimavanserin: emerging selectivity of serotonin receptor subtype-targeted drugs.

    PubMed

    Meltzer, Herbert Y; Roth, Bryan L

    2013-12-01

    Serotonin (5-hydroxytryptamine, or 5-HT) receptors mediate a plethora of physiological phenomena in the brain and the periphery. Additionally, serotonergic dysfunction has been implicated in nearly every neuropsychiatric disorder. The effects of serotonin are mediated by fourteen GPCRs. Both the therapeutic actions and side effects of commonly prescribed drugs are frequently due to nonspecific actions on various 5-HT receptor subtypes. For more than 20 years, the search for clinically efficacious drugs that selectively target 5-HT receptor subtypes has been only occasionally successful. This review provides an overview of 5-HT receptor pharmacology and discusses two recent 5-HT receptor subtype-selective drugs, lorcaserin and pimavanserin, which target the 5HT2C and 5HT2A receptors and provide new treatments for obesity and Parkinson's disease psychosis, respectively.

  5. Regulation of Brain Muscarinic Receptors by Protein Kinase C

    DTIC Science & Technology

    1991-06-21

    esters or to high concentrations of muscarinic agonists. Neuronal mouse neuroblastoma cells maintained in culture (clone N1E - 115 ) were used as a...E.E. El-Fakahany: Inhibition of Cyclic AMP Formation in N1E - 115 Neuroblastoma Cells is Mediated by a Noncardiac M2 Muscarinic Receptor Subtype...Receptor-Mediated Second Messenger Responses in N1E - 115 Neuroblastoma Cells. Journal of Neurochemistry. 53, 1300-1308, 1989. 15. McKinney, M., D

  6. G protein-coupled receptor transmembrane binding pockets and their applications in GPCR research and drug discovery: a survey.

    PubMed

    Kratochwil, Nicole A; Gatti-McArthur, Silvia; Hoener, Marius C; Lindemann, Lothar; Christ, Andreas D; Green, Luke G; Guba, Wolfgang; Martin, Rainer E; Malherbe, Pari; Porter, Richard H P; Slack, Jay P; Winnig, Marcel; Dehmlow, Henrietta; Grether, Uwe; Hertel, Cornelia; Narquizian, Robert; Panousis, Constantinos G; Kolczewski, Sabine; Steward, Lucinda

    2011-01-01

    G protein-coupled receptors (GPCRs) share a common architecture consisting of seven transmembrane (TM) domains. Various lines of evidence suggest that this fold provides a generic binding pocket within the TM region for hosting agonists, antagonists, and allosteric modulators. Hence, an automated method was developed that allows a fast analysis and comparison of these generic ligand binding pockets across the entire GPCR family by providing the relevant information for all GPCRs in the same format. This methodology compiles amino acids lining the TM binding pocket including parts of the ECL2 loop in a so-called 1D ligand binding pocket vector and translates these 1D vectors in a second step into 3D receptor pharmacophore models. It aims to support various aspects of GPCR drug discovery in the pharmaceutical industry. Applications of pharmacophore similarity analysis of these 1D LPVs include definition of receptor subfamilies, prediction of species differences within subfamilies in regard to in vitro pharmacology and identification of nearest neighbors for GPCRs of interest to generate starting points for GPCR lead identification programs. These aspects of GPCR research are exemplified in the field of melanopsins, trace amine-associated receptors and somatostatin receptor subtype 5. In addition, it is demonstrated how 3D pharmacophore models of the LPVs can support the prediction of amino acids involved in ligand recognition, the understanding of mutational data in a 3D context and the elucidation of binding modes for GPCR ligands and their evaluation. Furthermore, guidance through 3D receptor pharmacophore modeling for the synthesis of subtype-specific GPCR ligands will be reported. Illustrative examples are taken from the GPCR family class C, metabotropic glutamate receptors 1 and 5 and sweet taste receptors, and from the GPCR class A, e.g. nicotinic acid and 5-hydroxytryptamine 5A receptor. © 2011 Bentham Science Publishers

  7. Mapping the central effects of (±)-ketamine and traxoprodil using pharmacological magnetic resonance imaging in awake rats.

    PubMed

    Tang, Haiying; Kukral, Daniel; Li, Yu-Wen; Fronheiser, Matthew; Malone, Harold; Pena, Adrienne; Pieschl, Rick; Sidik, Kurex; Tobon, Gabriel; Chow, Patrick L; Bristow, Linda J; Hayes, Wendy; Luo, Feng

    2018-02-01

    Major depressive disorder is a leading cause of disability globally. Improvements in the efficacy of antidepressant therapy are needed as a high proportion (>40%) of individuals with major depressive disorder fail to respond adequately to current treatments. The non-selective N-methyl-D-aspartate receptor channel blocker, (±)-ketamine, has been reported to produce a rapid and long-lasting antidepressant response in treatment-resistant major depressive disorder patients, which provides a unique opportunity for investigation of mechanisms that mediate its therapeutic effect. Efforts have also focused on the development of selective N-methyl-D-aspartate receptor subtype 2B antagonists which may retain antidepressant activity but have lower potential for dissociative/psychotomimetic effects. In the present study, we examined the central nervous system effects of acute, intravenous administration of (±)-ketamine or the N-methyl-D-aspartate receptor subtype 2B antagonist, traxoprodil, in awake rats using pharmacological magnetic resonance imaging. The study contained five treatment groups: vehicle, 3 mg/kg (±)-ketamine, and three doses of traxoprodil (0.3 mg/kg, 5 mg/kg, and 15 mg/kg). Non-linear model fitting was performed on the temporal hemodynamic pharmacological magnetic resonance imaging data to generate brain activation maps as well as regional responses based on blood oxygen level dependent signal changes for group analysis. Traxoprodil at 5 mg/kg and 15 mg/kg produced a dose-dependent pharmacological magnetic resonance imaging signal in rat forebrain regions with both doses achieving >80% N-methyl-D-aspartate receptor subtype 2B occupancy determined by ex vivo [ 3 H]Ro 25-6981 binding. The middle dose of traxoprodil (5 mg/kg) generated region-specific activations in medial prefrontal cortex, ventral orbital cortex, and anterior cingulate cortex whereas the high dose (15 mg/kg) produced a widespread pharmacological magnetic resonance imaging response in both cortical and subcortical brain regions which was similar to that produced by (±)-ketamine (3 mg/kg, intravenous).

  8. Dopamine D3 and D2 Receptor Mechanisms in the Abuse-Related Behavioral Effects of Cocaine: Studies with Preferential Antagonists in Squirrel Monkeys

    PubMed Central

    Grundt, Peter; Cao, Jianjing; Platt, Donna M.; Newman, Amy Hauck; Spealman, Roger D.

    2010-01-01

    Dopamine (DA) D3 and D2 receptor mechanisms are implicated in cocaine's abuse-related behavioral effects, but the relative contribution of the two receptor subtypes is only partially characterized. This study investigated the role of D3 and D2 subtype mechanisms by determining the degree to which the D3-preferring antagonist PG01037 [N-{4-[4-(2,3-dichlorophenyl)-piperazin- 1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide HCl] and the D2-preferring antagonist L-741626 [3-[4-(4-chlorophenyl)-4- hydroxypiperidin-1-yl]methyl-1H-indole] attenuated several behavioral effects of cocaine in squirrel monkeys. Quantitative observational studies established doses of each antagonist that did not produce untoward effects, which were used in subsequent comparisons. In addition, the ability of the D3-preferring agonist PD128907 [(R-(+)-trans-3,4a,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano[4,3-b]-1,4-oxazin-9-ol)] and the D2-preferring agonist sumanirole [(R)-5,6-dihydro-5-(methylamino)-4H- imidazo[4,5,1-ij]quinolin-2(1H)-one(Z)-2-butenedioate] to reproduce cocaine's discriminative stimulus (DS) and priming effects were compared. In monkeys trained to discriminate cocaine from vehicle, both DA antagonists attenuated and both DA agonists partially reproduced cocaine's DS effects. PG01037 also selectively attenuated the cocaine-like DS effects of PD128907, whereas L-741626 attenuated the cocaine-like DS effects of both agonists. In self-administration studies, L-741626 nonselectively reduced cocaine- and food-maintained responding, whereas PG01037 was ineffective against either reinforcer. In studies involving reinstatement of extinguished cocaine seeking, both antagonists attenuated cocaine-induced reinstatement of responding, and both agonists induced at least partial reinstatement of cocaine seeking. L-741626 also attenuated sumanirole-induced, but not PD128907-induced, reinstatement of responding, whereas PG01037 was ineffective against either DA agonist. The results are consistent with a role for D3 and D2 receptor mechanisms in cocaine's DS effects and cocaine-induced reinstatement of drug seeking, but provide no evidence for a major role of D3 receptors in the direct reinforcing effects of cocaine. PMID:20494958

  9. Heterodimerization with beta2-adrenergic receptors promotes surface expression and functional activity of alpha1D-adrenergic receptors.

    PubMed

    Uberti, Michelle A; Hague, Chris; Oller, Heide; Minneman, Kenneth P; Hall, Randy A

    2005-04-01

    The alpha1D-adrenergic receptor (alpha1D-AR) is a G protein-coupled receptor (GPCR) that is poorly trafficked to the cell surface and largely nonfunctional when heterologously expressed by itself in a variety of cell types. We screened a library of approximately 30 other group I GPCRs in a quantitative luminometer assay for the ability to promote alpha1D-AR cell surface expression. Strikingly, these screens revealed only two receptors capable of inducing robust increases in the amount of alpha1D-AR at the cell surface: alpha1B-AR and beta2-AR. Confocal imaging confirmed that coexpression with beta2-AR resulted in translocation of alpha1D-AR from intracellular sites to the plasma membrane. Additionally, coimmunoprecipitation studies demonstrated that alpha1D-AR and beta2-AR specifically interact to form heterodimers when coexpressed in HEK-293 cells. Ligand binding studies revealed an increase in total alpha1D-AR binding sites upon coexpression with beta2-AR, but no apparent effect on the pharmacological properties of the receptors. In functional studies, coexpression with beta2-AR significantly enhanced the coupling of alpha1D-AR to norepinephrine-stimulated Ca2+ mobilization. Heterodimerization of beta2-AR with alpha1D-AR also conferred the ability of alpha1D-AR to cointernalize upon beta2-AR agonist stimulation, revealing a novel mechanism by which these different adrenergic receptor subtypes may regulate each other's activity. These findings demonstrate that the selective association of alpha1D-AR with other receptors is crucial for receptor surface expression and function and also shed light on a novel mechanism of cross talk between alpha1- and beta2-ARs that is mediated through heterodimerization and cross-internalization.

  10. Association Between Imaging Characteristics and Different Molecular Subtypes of Breast Cancer.

    PubMed

    Wu, Mingxiang; Ma, Jie

    2017-04-01

    Breast cancer can be divided into four major molecular subtypes based on the expression of hormone receptor (estrogen receptor and progesterone receptor), human epidermal growth factor receptor 2, HER2 status, and molecular proliferation rate (Ki67). In this study, we sought to investigate the association between breast cancer subtype and radiological findings in the Chinese population. Medical records of 300 consecutive invasive breast cancer patients were reviewed from the database: the Breast Imaging Reporting and Data System. The imaging characteristics of the lesions were evaluated. The molecular subtypes of breast cancer were classified into four types: luminal A, luminal B, HER2 overexpressed (HER2), and basal-like breast cancer (BLBC). Univariate and multivariate logistic regression analyses were performed to assess the association between the subtype (dependent variable) and mammography or 15 magnetic resonance imaging (MRI) indicators (independent variables). Luminal A and B subtypes were commonly associated with "clustered calcification distribution," "nipple invasion," or "skin invasion" (P <0.05). The BLBC subtype was more commonly associated with "rim enhancement" and persistent inflow type enhancement in delayed phase (P <0.05). HER2 overexpressed cancers showed association with persistent enhancement in the delayed phase on MRI and "clustered calcification distribution" on mammography (P <0.05). Certain radiological features are strongly associated with the molecular subtype and hormone receptor status of breast tumor, which are potentially useful tools in the diagnosis and subtyping of breast cancer. Copyright © 2017 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  11. Characterization of kinin receptors by bioassays.

    PubMed

    Gobeil, F; Regoli, D

    1994-08-01

    1. Using the classical pharmacological criteria recommended by Schild, namely the order of potency of selective agonists (e.g., bradykinin, desArg9-bradykinin, [Hyp3]BK and [Aib7]BK) and the apparent affinity of competitive antagonists (e.g., DArg[Hyp3,DPhe7,Leu8]BK and WIN 64338), we have attempted to characterize B2 receptor subtypes. It has been shown that vascular tissues (e.g., dog carotid and renal arteries, rabbit jugular vein and rabbit aorta) are very sensitive to kinin agonists and antagonists (pD2 and pA2 values for BK and HOE 140 on B2 receptors are 8.5-10.1 and 9.2-9.4, respectively, and for desArg9BK and desArg9[Leu8]BK on B1 receptors they are 7.3-8.6 and 7.3-7.8, respectively). Mechanisms of action of kinins differ between pharmacological preparations. Kinin may act directly on the smooth muscle (e.g., rabbit jugular vein and rabbit aorta) as well as indirectly through other endogenous mediators such as nitric oxide (EDRF) (e.g., dog carotid and renal arteries) and prostaglandins (e.g., dog renal artery). 2. Pharmacological analysis of rabbit jugular vein (RJV) and guinea pig ileum (GPI) has revealed different sensitivities to certain synthetic analogs of BK and to competitive B2 receptor antagonists between the two tissues. 3. Agonist order of potency ([Hyp3]BK > BK > [Aib7]BK) obtained for RJV differed from that obtained for GPI (BK > or = [Aib7]BK > [Hyp3]BK). Competitive antagonists such as DArg[Hyp3, DPhe7, Leu8]BK and WIN 64338 discriminate in favor of B2A (RJV) and B2B (GPI) receptor subtypes, respectively. These data demonstrate the existence of B2 receptor subtypes. Correlation between data obtained in the present study and those reported for binding to the human B2 receptor support the view that the human receptor is similar to that of the rabbit.

  12. Structure-based prediction of subtype selectivity of histamine H3 receptor selective antagonists in clinical trials.

    PubMed

    Kim, Soo-Kyung; Fristrup, Peter; Abrol, Ravinder; Goddard, William A

    2011-12-27

    Histamine receptors (HRs) are excellent drug targets for the treatment of diseases, such as schizophrenia, psychosis, depression, migraine, allergies, asthma, ulcers, and hypertension. Among them, the human H(3) histamine receptor (hH(3)HR) antagonists have been proposed for specific therapeutic applications, including treatment of Alzheimer's disease, attention deficit hyperactivity disorder (ADHD), epilepsy, and obesity. However, many of these drug candidates cause undesired side effects through the cross-reactivity with other histamine receptor subtypes. In order to develop improved selectivity and activity for such treatments, it would be useful to have the three-dimensional structures for all four HRs. We report here the predicted structures of four HR subtypes (H(1), H(2), H(3), and H(4)) using the GEnSeMBLE (GPCR ensemble of structures in membrane bilayer environment) Monte Carlo protocol, sampling ∼35 million combinations of helix packings to predict the 10 most stable packings for each of the four subtypes. Then we used these 10 best protein structures with the DarwinDock Monte Carlo protocol to sample ∼50 000 × 10(20) poses to predict the optimum ligand-protein structures for various agonists and antagonists. We find that E206(5.46) contributes most in binding H(3) selective agonists (5, 6, 7) in agreement with experimental mutation studies. We also find that conserved E5.46/S5.43 in both of hH(3)HR and hH(4)HR are involved in H(3)/ H(4) subtype selectivity. In addition, we find that M378(6.55) in hH(3)HR provides additional hydrophobic interactions different from hH(4)HR (the corresponding amino acid of T323(6.55) in hH(4)HR) to provide additional subtype bias. From these studies, we developed a pharmacophore model based on our predictions for known hH(3)HR selective antagonists in clinical study [ABT-239 1, GSK-189,254 2, PF-3654746 3, and BF2.649 (tiprolisant) 4] that suggests critical selectivity directing elements are: the basic proton interacting with D114(3.32), the spacer, the aromatic ring substituted with the hydrophilic or lipophilic groups interacting with lipophilic pockets in transmembranes (TMs) 3-5-6 and the aliphatic ring located in TMs 2-3-7. These 3D structures for all four HRs should help guide the rational design of novel drugs for the subtype selective antagonists and agonists with reduced side effects.

  13. Opioid-receptor subtype agonist-induced enhancements of sucrose intake are dependent upon sucrose concentration.

    PubMed

    Ruegg, H; Yu, W Z; Bodnar, R J

    1997-07-01

    Selective mu ([D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO)), delta1 ([D-Pen2, D-Pen5]-enkephalin (DPDPE)), delta2 ([D-Ala2, Glu4]-Deltorphin (Delt II)), kappa1 (U50488H) and kappa3 (naloxone benzoylhydrazone (NalBzOH)) opioid agonists each stimulate food intake in rats. Whereas studies with selective opioid antagonists implicate mu and kappa1 receptors in the mediation of sucrose intake, studies with selective opioid agonists implicate mu and delta receptors in the mediation of saccharin intake. The present study determined if specific delta1, delta2, kappa1, kappa3 and mu opioid-receptor subtype agonists produced similar alterations in sucrose intake as a function of sucrose concentration (0.5%, 2.5%, 10%) across a 1-h time-course. Each of these agonists significantly increased sucrose intake with variations in pattern, magnitude, and consistency as a function of sucrose concentration. Whereas the mu opioid agonist, DAMGO, and the delta1 opioid agonist, DPDPE, each enhanced sucrose intake at higher (2.5%, 10%), but not lower (0.5%), concentrations, the delta2 opioid agonist, Delt II, increased sucrose intake at lower (0.5%, 2.5%), but not higher (10%), concentrations. Kappa opioid agonists produced less consistent effects. The kappa1 opioid agonist, U50488H, increased sucrose intake at high (10%) concentrations and decreased sucrose intake at low (0.5%) concentrations, and the kappa3 opioid agonist, NalBzOH, inconsistently increased sucrose intake at the 0.5% (20 microg) and 10% (1 microg) concentrations. Thus, these data further implicate mu, delta1, and delta2 opioid mediation of palatable intake, particularly of its orosensory characteristics.

  14. Role of dopamine D2 receptors in optimizing choice strategy in a dynamic and uncertain environment

    PubMed Central

    Kwak, Shinae; Huh, Namjung; Seo, Ji-Seon; Lee, Jung-Eun; Han, Pyung-Lim; Jung, Min W.

    2014-01-01

    In order to investigate roles of dopamine receptor subtypes in reward-based learning, we examined choice behavior of dopamine D1 and D2 receptor-knockout (D1R-KO and D2R-KO, respectively) mice in an instrumental learning task with progressively increasing reversal frequency and a dynamic two-armed bandit task. Performance of D2R-KO mice was progressively impaired in the former as the frequency of reversal increased and profoundly impaired in the latter even with prolonged training, whereas D1R-KO mice showed relatively minor performance deficits. Choice behavior in the dynamic two-armed bandit task was well explained by a hybrid model including win-stay-lose-switch and reinforcement learning terms. A model-based analysis revealed increased win-stay, but impaired value updating and decreased value-dependent action selection in D2R-KO mice, which were detrimental to maximizing rewards in the dynamic two-armed bandit task. These results suggest an important role of dopamine D2 receptors in learning from past choice outcomes for rapid adjustment of choice behavior in a dynamic and uncertain environment. PMID:25389395

  15. Important roles of P2Y receptors in the inflammation and cancer of digestive system.

    PubMed

    Wan, Han-Xing; Hu, Jian-Hong; Xie, Rei; Yang, Shi-Ming; Dong, Hui

    2016-05-10

    Purinergic signaling is important for many biological processes in humans. Purinoceptors P2Y are widely distributed in human digestive system and different subtypes of P2Y receptors mediate different physiological functions from metabolism, proliferation, differentiation to apoptosis etc. The P2Y receptors are essential in many gastrointestinal functions and also involve in the occurrence of some digestive diseases. Since different subtypes of P2Y receptors are present on the same cell of digestive organs, varying subtypes of P2Y receptors may have opposite or synergetic functions on the same cell. Recently, growing lines of evidence strongly suggest the involvement of P2Y receptors in the pathogenesis of several digestive diseases. In this review, we will focus on their important roles in the development of digestive inflammation and cancer. We anticipate that as the special subtypes of P2Y receptors are studied in depth, specific modulators for them will have good potentials to become promising new drugs to treat human digestive diseases in the near future.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allescher, H.D.; Ahmad, S.; Classen, M.

    Receptor binding of the opioid receptor antagonist, ({sup 3}H)diprenorphine, which has a similar affinity to the various opioid receptor subtypes, was characterized in subcellular fractions derived from either longitudinal or circular smooth muscle of the canine small intestine with their plexuses (myenteric plexus and deep muscular plexus, respectively) attached. The distribution of opioid binding activity showed a good correlation in the different fractions with the binding of the neuronal marker ({sup 3}H)saxitoxin but no correlation to the smooth muscle plasma membrane marker 5'-nucleotidase. The saturation data (Kd = 0.12 +/- 0.04 nM and maximum binding = 400 +/- 20 fmol/mg)more » and the data from kinetic experiments (Kd = 0.08 nmol) in the myenteric plexus were in good agreement with results obtained previously from the circular muscle/deep muscular plexus preparation. Competition experiments using selective drugs for mu (morphiceptin-analog (N-MePhe3-D-Pro4)-morphiceptin), delta (D-Pen2,5-enkephalin) and kappa (dynorphin 1-13, U50488-H) ligands showed the existence of all three receptor subtypes. The existence of kappa receptors was confirmed in saturation experiments using ({sup 3}H) ethylketocycloazocine as labeled ligand. Two putative opioid agonists, with effects on gastrointestinal motility, trimebutine and JO-1196 (fedotozin), were also examined. Trimebutine (Ki = 0.18 microM), Des-Met-trimebutine (Ki = 0.72 microM) and Jo-1196 (Ki = 0.19 microM) displaced specific opiate binding. The relative affinity for the opioid receptor subtypes was mu = 0.44, delta = 0.30 and kappa = 0.26 for trimebutine and mu = 0.25, delta = 0.22 and kappa = 0.52 for Jo-1196.« less

  17. K+ channel TASK-1 knockout mice show enhanced sensitivities to ataxic and hypnotic effects of GABA(A) receptor ligands.

    PubMed

    Linden, Anni-Maija; Aller, M Isabel; Leppä, Elli; Rosenberg, Per H; Wisden, William; Korpi, Esa R

    2008-10-01

    TASK two-pore-domain leak K(+) channels occur throughout the brain. However, TASK-1 and TASK-3 knockout (KO) mice have few neurological impairments and only mildly reduced sensitivities to inhalational anesthetics, contrasting with the anticipated functions and importance of these channels. TASK-1/-3 channel expression can compensate for the absence of GABA(A) receptors in GABA(A) alpha6 KO mice. To investigate the converse, we analyzed the behavior of TASK-1 and -3 KO mice after administering drugs with preferential efficacies at GABA(A) receptor subtypes: benzodiazepines (diazepam and flurazepam, active at alpha1betagamma2, alpha2betagamma2, alpha3betagamma2, and alpha5betagamma2 subtypes), zolpidem (alpha1betagamma2 subtype), propofol (beta2-3-containing receptors), gaboxadol (alpha4betadelta and alpha6betadelta subtypes), pregnanolone, and pentobarbital (many subtypes). TASK-1 KO mice showed increased motor impairment in rotarod and beam-walking tests after diazepam and flurazepam administration but not after zolpidem. They also showed prolonged loss of righting reflex induced by propofol and pentobarbital. Autoradiography indicated no change in GABA(A) receptor ligand binding levels. These altered behavioral responses to GABAergic drugs suggest functional up-regulation of alpha2beta2/3gamma2 and alpha3beta2/3gamma2 receptor subtypes in TASK-1 KO mice. In addition, female, but not male, TASK-1 KO mice were more sensitive to gaboxadol, suggesting an increased influence of alpha4betadelta or alpha6betadelta subtypes. The benzodiazepine sensitivity of TASK-3 KO mice was marginally increased. Our results underline that TASK-1 channels perform such key functions in the brain that compensation is needed for their absence. Furthermore, because inhalation anesthetics act partially through GABA(A) receptors, the up-regulation of GABA(A) receptor function in TASK-1 KO mice might mask TASK-1 channel's significance as a target for inhalation anesthetics.

  18. Adenosine receptors regulate gap junction coupling of the human cerebral microvascular endothelial cells hCMEC/D3 by Ca2+ influx through cyclic nucleotide‐gated channels

    PubMed Central

    Bader, Almke; Bintig, Willem; Begandt, Daniela; Klett, Anne; Siller, Ina G.; Gregor, Carola; Schaarschmidt, Frank; Weksler, Babette; Romero, Ignacio; Couraud, Pierre‐Olivier; Hell, Stefan W.

    2017-01-01

    Key points Gap junction channels are essential for the formation and regulation of physiological units in tissues by allowing the lateral cell‐to‐cell diffusion of ions, metabolites and second messengers.Stimulation of the adenosine receptor subtype A2B increases the gap junction coupling in the human blood–brain barrier endothelial cell line hCMEC/D3.Although the increased gap junction coupling is cAMP‐dependent, neither the protein kinase A nor the exchange protein directly activated by cAMP were involved in this increase.We found that cAMP activates cyclic nucleotide‐gated (CNG) channels and thereby induces a Ca2+ influx, which leads to the increase in gap junction coupling.The report identifies CNG channels as a possible physiological link between adenosine receptors and the regulation of gap junction channels in endothelial cells of the blood–brain barrier. Abstract The human cerebral microvascular endothelial cell line hCMEC/D3 was used to characterize the physiological link between adenosine receptors and the gap junction coupling in endothelial cells of the blood–brain barrier. Expressed adenosine receptor subtypes and connexin (Cx) isoforms were identified by RT‐PCR. Scrape loading/dye transfer was used to evaluate the impact of the A2A and A2B adenosine receptor subtype agonist 2‐phenylaminoadenosine (2‐PAA) on the gap junction coupling. We found that 2‐PAA stimulated cAMP synthesis and enhanced gap junction coupling in a concentration‐dependent manner. This enhancement was accompanied by an increase in gap junction plaques formed by Cx43. Inhibition of protein kinase A did not affect the 2‐PAA‐related enhancement of gap junction coupling. In contrast, the cyclic nucleotide‐gated (CNG) channel inhibitor l‐cis‐diltiazem, as well as the chelation of intracellular Ca2+ with BAPTA, or the absence of external Ca2+, suppressed the 2‐PAA‐related enhancement of gap junction coupling. Moreover, we observed a 2‐PAA‐dependent activation of CNG channels by a combination of electrophysiology and pharmacology. In conclusion, the stimulation of adenosine receptors in hCMEC/D3 cells induces a Ca2+ influx by opening CNG channels in a cAMP‐dependent manner. Ca2+ in turn induces the formation of new gap junction plaques and a consecutive sustained enhancement of gap junction coupling. The report identifies CNG channels as a physiological link that integrates gap junction coupling into the adenosine receptor‐dependent signalling of endothelial cells of the blood–brain barrier. PMID:28075020

  19. Striatal D1- and D2-type dopamine receptors are linked to motor response inhibition in human subjects.

    PubMed

    Robertson, Chelsea L; Ishibashi, Kenji; Mandelkern, Mark A; Brown, Amira K; Ghahremani, Dara G; Sabb, Fred; Bilder, Robert; Cannon, Tyrone; Borg, Jacqueline; London, Edythe D

    2015-04-15

    Motor response inhibition is mediated by neural circuits involving dopaminergic transmission; however, the relative contributions of dopaminergic signaling via D1- and D2-type receptors are unclear. Although evidence supports dissociable contributions of D1- and D2-type receptors to response inhibition in rats and associations of D2-type receptors to response inhibition in humans, the relationship between D1-type receptors and response inhibition has not been evaluated in humans. Here, we tested whether individual differences in striatal D1- and D2-type receptors are related to response inhibition in human subjects, possibly in opposing ways. Thirty-one volunteers participated. Response inhibition was indexed by stop-signal reaction time on the stop-signal task and commission errors on the continuous performance task, and tested for association with striatal D1- and D2-type receptor availability [binding potential referred to nondisplaceable uptake (BPND)], measured using positron emission tomography with [(11)C]NNC-112 and [(18)F]fallypride, respectively. Stop-signal reaction time was negatively correlated with D1- and D2-type BPND in whole striatum, with significant relationships involving the dorsal striatum, but not the ventral striatum, and no significant correlations involving the continuous performance task. The results indicate that dopamine D1- and D2-type receptors are associated with response inhibition, and identify the dorsal striatum as an important locus of dopaminergic control in stopping. Moreover, the similar contribution of both receptor subtypes suggests the importance of a relative balance between phasic and tonic dopaminergic activity subserved by D1- and D2-type receptors, respectively, in support of response inhibition. The results also suggest that the stop-signal task and the continuous performance task use different neurochemical mechanisms subserving motor response inhibition. Copyright © 2015 the authors 0270-6474/15/355990-08$15.00/0.

  20. Spinophilin Is Indispensable for the α2B Adrenergic Receptor-Elicited Hypertensive Response.

    PubMed

    Che, Pulin; Chen, Yunjia; Lu, Roujian; Peng, Ning; Gannon, Mary; Wyss, J Michael; Jiao, Kai; Wang, Qin

    2015-01-01

    The α2 adrenergic receptor (AR) subtypes are important for blood pressure control. When activated, the α2A subtype elicits a hypotensive response whereas the α2B subtype mediates a hypertensive effect that counteracts the hypotensive response by the α2A subtype. We have previously shown that spinophilin attenuates the α2AAR-dependent hypotensive response; in spinophilin null mice, this response is highly potentiated. In this study, we demonstrate that spinophilin impedes arrestin-dependent phosphorylation and desensitization of the α2BAR subtype by competing against arrestin binding to this receptor subtype. The Del301-303 α2BAR, a human variation that shows impaired phosphorylation and desensitization and is linked to hypertension in certain populations, exhibits preferential interaction with spinophilin over arrestin. Furthermore, Del301-303 α2BAR-induced ERK signaling is quickly desensitized in cells without spinophilin expression, showing a profile similar to that induced by the wild type receptor in these cells. Together, these data suggest a critical role of spinophilin in sustaining α2BAR signaling. Consistent with this notion, our in vivo study reveals that the α2BAR-elicited hypertensive response is diminished in spinophilin deficient mice. In arrestin 3 deficient mice, where the receptor has a stronger binding to spinophilin, the same hypertensive response is enhanced. These data suggest that interaction with spinophilin is indispensable for the α2BAR to elicit the hypertensive response. This is opposite of the negative role of spinophilin in regulating α2AAR-mediated hypotensive response, suggesting that spinophilin regulation of these closely related receptor subtypes can result in distinct functional outcomes in vivo. Thus, spinophilin may represent a useful therapeutic target for treatment of hypertension.

  1. Selective Vulnerability of Striatal D2 versus D1 Dopamine Receptor-Expressing Medium Spiny Neurons in HIV-1 Tat Transgenic Male Mice.

    PubMed

    Schier, Christina J; Marks, William D; Paris, Jason J; Barbour, Aaron J; McLane, Virginia D; Maragos, William F; McQuiston, A Rory; Knapp, Pamela E; Hauser, Kurt F

    2017-06-07

    Despite marked regional differences in HIV susceptibility within the CNS, there has been surprisingly little exploration into the differential vulnerability among neuron types and the circuits they underlie. The dorsal striatum is especially susceptible, harboring high viral loads and displaying marked neuropathology, with motor impairment a frequent manifestation of chronic infection. However, little is known about the response of individual striatal neuron types to HIV or how this disrupts function. Therefore, we investigated the morphological and electrophysiological effects of HIV-1 trans -activator of transcription (Tat) in dopamine subtype 1 (D1) and dopamine subtype 2 (D2) receptor-expressing striatal medium spiny neurons (MSNs) by breeding transgenic Tat-expressing mice to Drd1a -tdTomato- or Drd2 -eGFP-reporter mice. An additional goal was to examine neuronal vulnerability early during the degenerative process to gain insight into key events underlying the neuropathogenesis. In D2 MSNs, exposure to HIV-1 Tat reduced dendritic spine density significantly, increased dendritic damage (characterized by swellings/varicosities), and dysregulated neuronal excitability (decreased firing at 200-300 pA and increased firing rates at 450 pA), whereas insignificant morphologic and electrophysiological consequences were observed in Tat-exposed D1 MSNs. These changes were concomitant with an increased anxiety-like behavioral profile (lower latencies to enter a dark chamber in a light-dark transition task, a greater frequency of light-dark transitions, and reduced rearing time in an open field), whereas locomotor behavior was unaffected by 2 weeks of Tat induction. Our findings suggest that D2 MSNs and a specific subset of neural circuits within the dorsal striatum are preferentially vulnerable to HIV-1. SIGNIFICANCE STATEMENT Despite combination antiretroviral therapy (cART), neurocognitive disorders afflict 30-50% of HIV-infected individuals and synaptodendritic injury remains evident in specific brain regions such as the dorsal striatum. A possible explanation for the sustained neuronal injury is that the neurotoxic HIV-1 regulatory protein trans -activator of transcription (Tat) continues to be expressed in virally suppressed patients on cART. Using inducible Tat-expressing transgenic mice, we found that dopamine subtype 2 (D2) receptor-expressing medium spiny neurons (MSNs) are selectively vulnerable to Tat exposure compared with D1 receptor-expressing MSNs. This includes Tat-induced reductions in D2 MSN dendritic spine density, increased dendritic damage, and disruptions in neuronal excitability, which coincide with elevated anxiety-like behavior. These data suggest that D2 MSNs and specific circuits within the basal ganglia are preferentially vulnerable to HIV-1. Copyright © 2017 the authors 0270-6474/17/375759-12$15.00/0.

  2. Pharmacological activities of Vitex agnus-castus extracts in vitro.

    PubMed

    Meier, B; Berger, D; Hoberg, E; Sticher, O; Schaffner, W

    2000-10-01

    The pharmacological effects of ethanolic Vitex agnus-castus fruit-extracts (especially Ze 440) and various extract fractions of different polarities were evaluated both by radioligand binding studies and by superfusion experiments. A relative potent binding inhibition was observed for dopamine D2 and opioid (micro and kappa subtype) receptors with IC50 values of the native extract between 20 and 70 mg/mL. Binding, neither to the histamine H1, benzodiazepine and OFQ receptor, nor to the binding-site of the serotonin (5-HT) transporter, was significantly inhibited. The lipophilic fractions contained the diterpenes rotun-difuran and 6beta,7beta-diacetoxy-13-hydroxy-labda-8,14-dien . They exhibited inhibitory actions on dopamine D2 receptor binding. While binding inhibition to mu and kappa opioid receptors was most pronounced in lipophilic fractions, binding to delta opioid receptors was inhibited mainly by a aqueous fraction. Standardised Ze 440 extracts of different batches were of constant pharmacological quality according to their potential to inhibit the binding to D2 receptors. In superfusion experiments, the aqueous fraction of a methanolic extract inhibited the release of acetylcholine in a concentration-dependent manner. In addition, the potent D2 receptor antagonist spiperone antagonised the effect of the extract suggesting a dopaminergic action mediated by D2 receptor activation. Our results indicate a dopaminergic effect of Vitex agnus-castus extracts and suggest additional pharmacological actions via opioid receptors.

  3. G protein γ (Gγ) subtype dependent targeting of GRK2 to M3 receptor by Gβγ.

    PubMed

    Samaradivakara, Saroopa; Kankanamge, Dinesh; Senarath, Kanishka; Ratnayake, Kasun; Karunarathne, Ajith

    2018-06-11

    Interactions of cytosolic G protein coupled receptor kinase 2 (GRK2) with activated G protein coupled receptors (GPCRs) induce receptor phosphorylation and desensitization. GRK2 is recruited to active M3-muscarinic receptors (M3R) with the participation of the receptor, Gαq and Gβγ. Since we have shown that signaling efficacy of Gβγ is governed by its Gγ subtype identity, the present study examined whether recruitment of GRK2 to M3R is also Gγ subtype dependent. To capture the dynamics of GRK2-recruitment concurrently with GPCR-G protein activation, we employed live cell confocal imaging and a novel assay based on Gβγ translocation. Data show that M3R activation-induced GRK2 recruitment is Gγ subtype dependent in which Gβγ dimers with low PM-affinity Gγ9 exhibited a two-fold higher GRK2-recruitment compared to high PM affinity Gγ3 expressing cells. Since 12-mammalian Gγ types exhibit a cell and tissue specific expressions and the PM-affinity of a Gγ is linked to its subtype identity, our results indicate a mechanism by which Gγ profile of a cell controls GRK2 signaling and GPCR desensitization. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Feeding condition and the relative contribution of different dopamine receptor subtypes to the discriminative stimulus effects of cocaine in rats.

    PubMed

    Baladi, Michelle G; Newman, Amy H; France, Charles P

    2014-02-01

    The contribution of dopamine receptor subtypes in mediating the discriminative stimulus effects of cocaine is not fully established. Many drug discrimination studies use food to maintain responding, necessitating food restriction, which can alter drug effects. This study established stimulus control with cocaine (10 mg/kg) in free-feeding and food-restricted rats responding under a schedule of stimulus shock termination (SST) and in food-restricted rats responding under a schedule of food presentation to examine whether feeding condition or the reinforcer used to maintain responding impacts the effects of cocaine. Dopamine receptor agonists and antagonists were examined for their ability to mimic or attenuate, respectively, the effects of cocaine. Apomorphine, quinpirole, and lisuride occasioned >90 % responding on the cocaine-associated lever in free-feeding rats responding under a schedule of SST; apomorphine, but not quinpirole or lisuride, occasioned >90 % responding on the cocaine lever in food-restricted rats responding under a schedule of SST. In food-restricted rats responding for food these drugs occasioned little cocaine lever responding and were comparatively more potent in decreasing responding. In free-feeding rats, the effects of cocaine were attenuated by the D2/D3 receptor antagonist raclopride and the D3 receptor-selective antagonist PG01037. In food-restricted rats, raclopride and the D2 receptor-selective antagonist L-741,626 attenuated the effects of cocaine. Raclopride antagonized quinpirole in all groups while PG01037 antagonized quinpirole only in free-feeding rats. These results demonstrate significant differences in the discriminative stimulus of cocaine that are due to feeding conditions and not to the use of different reinforcers across procedures.

  5. Feeding condition and the relative contribution of different dopamine receptor subtypes to the discriminative stimulus effects of cocaine in rats

    PubMed Central

    Baladi, Michelle G; Newman, Amy H; France, Charles P

    2013-01-01

    Rationale The contribution of dopamine receptor subtypes in mediating the discriminative stimulus effects of cocaine is not fully established. Many drug discrimination studies use food to maintain responding, necessitating food restriction, which can alter drug effects. Objective This study established stimulus control with cocaine (10 mg/kg) in free-feeding and food-restricted rats responding under a schedule of stimulus shock termination (SST) and in food-restricted rats responding under a schedule of food presentation to examine whether feeding condition or the reinforcer used to maintain responding impacts the effects of cocaine. Method Dopamine receptor agonists and antagonists were examined for their ability to mimic or attenuate, respectively, the effects of cocaine. Result Apomorphine, quinpirole, and lisuride occasioned >90% responding on the cocaine-associated lever in free-feeding rats responding under a schedule of SST; apomorphine, but not quinpirole or lisuride, occasioned >90% responding on the cocaine lever in food-restricted rats responding under a schedule of SST. In food-restricted rats responding for food these drugs occasioned little cocaine lever responding and were comparatively more potent in decreasing responding. In free-feeding rats, the effects of cocaine were attenuated by the D2/D3 receptor antagonist raclopride and the D3 receptor-selective antagonist PG01037. In food-restricted rats, raclopride and the D2 receptor-selective antagonist L-741,626 attenuated the effects of cocaine. Raclopride antagonized quinpirole in all groups while PG01037 antagonized quinpirole only in free-feeding rats. Conclusion These results demonstrate significant differences in the discriminative stimulus of cocaine that are due to feeding conditions and not to the use of different reinforcers across procedures. PMID:24030470

  6. Effects of dopamine D1-like and D2-like antagonists on cocaine discrimination in muscarinic receptor knockout mice.

    PubMed

    Thomsen, Morgane; Caine, Simon Barak

    2016-04-05

    Muscarinic and dopamine brain systems interact intimately, and muscarinic receptor ligands, like dopamine ligands, can modulate the reinforcing and discriminative stimulus (S(D)) effects of cocaine. To enlighten the dopamine/muscarinic interactions as they pertain to the S(D) effects of cocaine, we evaluated whether muscarinic M1, M2 or M4 receptors are necessary for dopamine D1 and/or D2 antagonist mediated modulation of the S(D) effects of cocaine. Knockout mice lacking M1, M2, or M4 receptors, as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline in a food-reinforced drug discrimination procedure. Effects of pretreatments with the dopamine D1 antagonist SCH 23390 and the dopamine D2 antagonist eticlopride were evaluated. In intact mice, both SCH 23390 and eticlopride attenuated the cocaine discriminative stimulus effect, as expected. SCH 23390 similarly attenuated the cocaine discriminative stimulus effect in M1 knockout mice, but not in mice lacking M2 or M4 receptors. The effects of eticlopride were comparable in each knockout strain. These findings demonstrate differences in the way that D1 and D2 antagonists modulate the S(D) effects of cocaine, D1 modulation being at least partially dependent upon activity at the inhibitory M2/M4 muscarinic subtypes, while D2 modulation appeared independent of these systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Nedd4 is a Specific E3 Ubiquitin Ligase for the NMDA Receptor Subunit GluN2D

    PubMed Central

    Gautam, Vivek; Trinidad, Jonathan C.; Rimerman, Ronald A.; Costa, Blaise M.; Burlingame, Alma L.; Monaghan, Daniel T.

    2013-01-01

    NMDA receptors are a family of glutamate-gated ion channels that regulate various CNS functions such as synaptic plasticity and learning. However hypo-or hyper-activation of NMDA receptors is critically involved in many neurological and psychiatric conditions such as pain, stroke, epilepsy, neurodegeneration, schizophrenia, and depression. Thus, it is important to identify mechanisms (such as by targeted ubiquitination) that regulate the levels of individual subtypes of NMDA receptors. In this study, we used a series of tagged, carboxy terminal constructs of GluN2D to identify associating proteins from rat brain. Of seven different GluN2D C-terminal fragments used as bait, only the construct containing amino acids 983-1097 associated with an E3 ligase, Nedd4. A direct interaction between GluN2D and Nedd4 was confirmed both in vivo and in vitro. This association is mediated by an interaction between GluN2D's C-terminal PPXY motif and the 2nd and 3rd WW domains of Nedd4. Of the four GluN2 subunits, Nedd4 directly interacted with GluN2D and also weakly with GluN2A. Nedd4 coexpression with GluN2D enhances GluN2D ubiquitination and reduces GluN1/GluN2D NMDA receptor responses. These results identify Nedd4 as a novel binding partner for GluN2D and suggest a mechanism for the regulation of NMDA receptors that contains GluN2D subunit through ubiquitination-dependent downregulation. PMID:23639431

  8. In Vitro and In Vivo Identification of Novel Positive Allosteric Modulators of the Human Dopamine D2 and D3 Receptor.

    PubMed

    Wood, Martyn; Ates, Ali; Andre, Veronique Marie; Michel, Anne; Barnaby, Robert; Gillard, Michel

    2016-02-01

    Agonists at dopamine D2 and D3 receptors are important therapeutic agents in the treatment of Parkinson's disease. Compared with the use of agonists, allosteric potentiators offer potential advantages such as temporal, regional, and phasic potentiation of natural signaling, and that of receptor subtype selectivity. We report the identification of a stereoselective interaction of a benzothiazol racemic compound that acts as a positive allosteric modulator (PAM) of the rat and human dopamine D2 and D3 receptors. The R isomer did not directly stimulate the dopamine D2 receptor but potentiated the effects of dopamine. In contrast the S isomer attenuated the effects of the PAM and the effects of dopamine. In radioligand binding studies, these compounds do not compete for binding of orthosteric ligands, but indeed the R isomer increased the number of high-affinity sites for [(3)H]-dopamine without affecting K(d). We went on to identify a more potent PAM for use in native receptor systems. This compound potentiated the effects of D2/D3 signaling in vitro in electrophysiologic studies on dissociated striatal neurons and in vivo on the effects of L-dopa in the 6OHDA (6-hydroxydopamine) contralateral turning model. These PAMs lacked activity at a wide variety of receptors, lacked PAM activity at related Gi-coupled G protein-coupled receptors, and lacked activity at D1 receptors. However, the PAMs did potentiate [(3)H]-dopamine binding at both D2 and D3 receptors. Together, these studies show that we have identified PAMs of the D2 and D3 receptors both in vitro and in vivo. Such compounds may have utility in the treatment of hypodopaminergic function. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Selective increases in serotonin 5-HT1B/1D and 5-HT2A/2C binding sites in adult rat basal ganglia following lesions of serotonergic neurons.

    PubMed

    Compan, V; Segu, L; Buhot, M C; Daszuta, A

    1998-05-18

    Quantitative autoradiography was used to examine possible adaptive changes in serotonin 5-HT1B/1D and 5-HT2A/2C receptor binding sites in adult rat basal ganglia, after partial or severe lesions of serotonergic neurons produced by intraraphe injections of variable amounts of 5,7-dihydroxytryptamine. In controls, the 5-HT1B/1D sites labeled with S-CM-G[125I]TNH2 were evenly distributed in the core and the shell of the nucleus accumbens. The density of 5-HT1B/1D sites was higher in the ventral than dorsal part of the striatum and no regional differences were detected along the rostrocaudal axis of the structure. The 5-HT2A/2C sites labeled with [125I]DOI were preferentially distributed in the mediodorsal striatum and higher densities were detected in the shell than core of the nucleus accumbens. Following 5,7-dihydroxytryptamine injections, there were no changes in binding of either receptor subtype after partial lesions entailing 80-90% 5-HT depletions. After severe 5-HT depletions (over 95%), large increases in 5-HT1B/1D binding were observed in the substantia nigra (78%), but no changes took place in the globus pallidus. Increases in 5-HT1B/1D binding were also detected in the shell of the nucleus accumbens (27%). Similar sized increases in 5-HT2A/2C binding (22%) were restricted to the medial striatum. The present results suggest a preferential association between 5-HT1B/1D receptors and the striatonigral neurons containing substance P, as indicated by the striatal distribution of these receptors and their selective increases in the substantia nigra after severe 5-HT deprivation. We recently proposed a similar relationship between the 5-HT4 receptors and the striatopallidal neurons containing met-enkephalin. Moreover, the increases in 5-HT1B/1D binding in the substantia nigra and in the shell of the nucleus accumbens reinforce the view of an implication of this receptor subtype in motor functions. In contrast, the prominent increases in 5-HT2A/2C binding after severe 5-HT deprivation as restricted to the medial region of the striatum and suggest up-regulation of most probably 5-HT2C receptors in a region implicated in cognitive functions. Copyright 1998 Elsevier Science B. V.

  10. Receptors for bradykinin and related kinins: a critical analysis.

    PubMed

    Regoli, D; Jukic, D; Gobeil, F; Rhaleb, N E

    1993-08-01

    Kinins exert a variety of biological actions and have been implicated in the pathogenesis of inflammation, pain, asthma, and other diseases. Kinins act through specific receptors that are widespread and belong to two major categories, B1 and B2. B2 has been cloned and shown to be of the rhodopsin type, consisting of seven hydrophobic membrane domains connected by extracellular and intracellular loops. Recent pharmacological findings from various laboratories suggest the existence of new receptor types, which have been named B3, B4, and B5. These findings are analysed critically, especially with respect to the criteria that have been used for affirming the existence of new receptor entities. The analysis is restricted to data obtained in isolated organs, almost exclusively smooth muscle preparations. Criteria for receptor characterization and classification are the order of potency of agonists and the apparent affinities of antagonists. The analysis reveals that receptors for bradykinin and related kinins are of two types, B1 and B2. B1 mediates the rapid acute response (smooth muscle contraction or relaxation) as well as some effects occurring more slowly (e.g., collagen synthesis). B1 receptor functions have been shown to be modulated by interleukins. B2 receptors are responsible for most of the kinins' biological effects, including arterial vasodilatation, plasma extravasation, venoconstriction, activation of sensory fibers (e.g., fibers for pain), and stimulation of the release of prostaglandins, endothelium-dependent relaxing factor (from endothelia), noradrenaline (from nerve terminals and adrenals), and other endogenous agents. The pharmacological characteristics of the receptor sites (B2) mediating this array of biological effects show differences between species, and two B2 receptor subtypes are proposed, namely B2A (rabbit, dog, and possibly man) and B2B (guinea pig, hamster, rat). B2A and B2B receptor subtypes have been characterized by using fairly selective agonists and competitive antagonists (e.g., D-Arg[Hyp3, D-Phe7,Leu8]BK). Noncompetitive antagonists (non-equilibrium), such as HOE 140, do not discriminate between B2A and B2B subtypes. Species differences cannot account for the multiplicity of receptors that have been proposed for rat vas deferens, pre- and post-junctional sites, and rat uterus, guinea pig ileum, and rat blood pressure. The existence of hypothetical new receptor sites was based on data obtained with partial agonists and have not been substantiated by data obtained with potent pure antagonists. The B3 receptor, proposed to explain the unusual behaviour of the guinea pig tracheal response to kinins, has to be carefully reconsidered after the finding that HOE 140 acts as a pure antagonist on this tissue and shows a fairly high affinity for the tracheal site.(ABSTRACT TRUNCATED AT 400 WORDS)

  11. Fyn kinase-mediated phosphorylation of NMDA receptor NR2B subunit at Tyr1472 is essential for maintenance of neuropathic pain.

    PubMed

    Abe, Tetsuya; Matsumura, Shinji; Katano, Tayo; Mabuchi, Tamaki; Takagi, Kunio; Xu, Li; Yamamoto, Akitsugu; Hattori, Kotaro; Yagi, Takeshi; Watanabe, Masahiko; Nakazawa, Takanobu; Yamamoto, Tadashi; Mishina, Masayoshi; Nakai, Yoshihide; Ito, Seiji

    2005-09-01

    Despite abundant evidence implicating the importance of N-methyl-D-aspartate (NMDA) receptors in the spinal cord for pain transmission, the signal transduction coupled to NMDA receptor activation is largely unknown for the neuropathic pain state that lasts over periods of weeks. To address this, we prepared mice with neuropathic pain by transection of spinal nerve L5. Wild-type, NR2A-deficient, and NR2D-deficient mice developed neuropathic pain; in addition, phosphorylation of NR2B subunits of NMDA receptors at Tyr1472 was observed in the superficial dorsal horn of the spinal cord 1 week after nerve injury. Neuropathic pain and NR2B phosphorylation at Tyr1472 were attenuated by the NR2B-selective antagonist CP-101,606 and disappeared in mice lacking Fyn kinase, a Src-family tyrosine kinase. Concomitant with the NR2B phosphorylation, an increase in neuronal nitric oxide synthase activity was visualized in the superficial dorsal horn of neuropathic pain mice by NADPH diaphorase histochemistry. Electron microscopy showed that the phosphorylated NR2B was localized at the postsynaptic density in the spinal cord of mice with neuropathic pain. Indomethacin, an inhibitor of prostaglandin (PG) synthesis, and PGE receptor subtype EP1-selective antagonist reduced the NR2B phosphorylation in these mice. Conversely, EP1-selective agonist stimulated Fyn kinase-dependent nitric oxide formation in the spinal cord. The present study demonstrates that Tyr1472 phosphorylation of NR2B subunits by Fyn kinase may have dual roles in the retention of NMDA receptors in the postsynaptic density and in activation of nitric oxide synthase, and suggests that PGE2 is involved in the maintenance of neuropathic pain via the EP1 subtype.

  12. Regional expression of prostaglandin E2 and F2alpha receptors in human myometrium, amnion, and choriodecidua with advancing gestation and labor.

    PubMed

    Grigsby, Peta L; Sooranna, Suren R; Adu-Amankwa, Bernice; Pitzer, Brad; Brockman, Diane E; Johnson, Mark R; Myatt, Leslie

    2006-08-01

    The change from uterine quiescence to enhanced contractile activity may be due to the differential expression of prostaglandin receptors within the myometrium and fetal membranes, in a temporal and topographically distinct manner. To address this question, we determined the localization and expression of the PGE2 receptor subtypes (PTGER1-4) and the PGF2alpha receptor (PTGFR) in paired upper and lower segment myometrium, amnion, and choriodecidual samples throughout human pregnancy, with and without labor. All receptor subtypes were found throughout the muscle layers in both the upper and lower uterine segments, colocalizing with alpha smooth muscle actin. A change in intracellular localization was observed at term labor, where PTGER1 and PTGER4 were predominately associated with the nucleus. Minimal changes in the expression of the PGE2 and PGF2alpha receptor subtypes were observed with gestational age, labor, or between the upper and lower myometrial segments. Receptor expression in maternal and fetal tissues differed between the receptor subtypes; PTGER1 and PTGER4 were predominately expressed in the fetal membranes, PTGER2 was greatest in the myometrium, whereas PTGER3 and PTGFR were similarly expressed in the myometrium and fetal membranes. Myometrial activation through the prostaglandin receptors is perhaps more subtle and may be mediated by a balance between one or several of the prostaglandin receptor subtypes together with other known contraction associated proteins. Lack of coordination in receptor expression between the myometrium and fetal membranes may indicate different regulatory mechanisms between these tissues, or it may suggest a function for these receptors in the amnion and choriodecidua that is independent of that seen in the myometrium.

  13. Characterization of the tachykinin NK2 receptor in the human bronchus: influence of amastatin-sensitive metabolic pathways.

    PubMed Central

    Astolfi, M.; Treggiari, S.; Giachetti, A.; Meini, S.; Maggi, C. A.; Manzini, S.

    1994-01-01

    1. The aim of this study was to characterize the tachykinin NK2 receptor subtype mediating the spasmogenic response in the human isolated bronchus. The motor response to neurokinin A (NKA) and the selective NK2 agonist [beta Ala8]NKA(4-10), as well as the antagonistic effects of cyclic (L659,877) and linear (MEN 10376) peptide NK2 antagonists were assessed in the presence or absence of amastatin (an inhibitor of aminopeptidases A and M). 2. NKA was more potent than [beta Ala8]NKA(4-10) in eliciting bronchoconstriction (pD2 being 7,43 and 6,87 respectively). In the presence of amastatin (1 microM), the estimated affinity of [beta Ala8]NKA(4-10), but not that of NKA, was significantly increased to yield a pD2 of 7,44. 3. L659,877 and MEN 10376 inhibited [beta Ala8]NKA(4-10)-induced contraction with similar affinities; pA2 values were 5.7 +/- 0.22 and 6.3 +/- 0.32, respectively. Amastatin (1 microM) increased the potency of MEN 10376 to 7.28 +/- 0.46, whereas that of L659,877 was unaffected. 4. In the presence of amastatin the pseudopeptide MDL 28,564 behaved as a partial agonist. 5. We conclude that the NK2 receptor subtype present in the human bronchus has properties similar to those described for the circular muscle of the human colon and thus may be classified as a 'NK2A' subtype. We show that the apparent potency of peptides, bearing N-terminal acidic residues, is influenced by an amastatin-sensitive peptidase, possibly aminopeptidase A. PMID:8004400

  14. Characterization of the tachykinin NK2 receptor in the human bronchus: influence of amastatin-sensitive metabolic pathways.

    PubMed

    Astolfi, M; Treggiari, S; Giachetti, A; Meini, S; Maggi, C A; Manzini, S

    1994-02-01

    1. The aim of this study was to characterize the tachykinin NK2 receptor subtype mediating the spasmogenic response in the human isolated bronchus. The motor response to neurokinin A (NKA) and the selective NK2 agonist [beta Ala8]NKA(4-10), as well as the antagonistic effects of cyclic (L659,877) and linear (MEN 10376) peptide NK2 antagonists were assessed in the presence or absence of amastatin (an inhibitor of aminopeptidases A and M). 2. NKA was more potent than [beta Ala8]NKA(4-10) in eliciting bronchoconstriction (pD2 being 7,43 and 6,87 respectively). In the presence of amastatin (1 microM), the estimated affinity of [beta Ala8]NKA(4-10), but not that of NKA, was significantly increased to yield a pD2 of 7,44. 3. L659,877 and MEN 10376 inhibited [beta Ala8]NKA(4-10)-induced contraction with similar affinities; pA2 values were 5.7 +/- 0.22 and 6.3 +/- 0.32, respectively. Amastatin (1 microM) increased the potency of MEN 10376 to 7.28 +/- 0.46, whereas that of L659,877 was unaffected. 4. In the presence of amastatin the pseudopeptide MDL 28,564 behaved as a partial agonist. 5. We conclude that the NK2 receptor subtype present in the human bronchus has properties similar to those described for the circular muscle of the human colon and thus may be classified as a 'NK2A' subtype. We show that the apparent potency of peptides, bearing N-terminal acidic residues, is influenced by an amastatin-sensitive peptidase, possibly aminopeptidase A.

  15. Differential effects of central injections of D1 and D2 receptor agonists and antagonists on male sexual behavior in Japanese quail.

    PubMed

    Kleitz-Nelson, H K; Cornil, C A; Balthazart, J; Ball, G F

    2010-07-01

    A key brain site in the control of male sexual behavior is the medial pre-optic area (mPOA) where dopamine stimulates both D1 and D2 receptor subtypes. Research completed to date in Japanese quail has only utilized systemic injections and therefore much is unknown about the specific role played by dopamine in the brain and mPOA in particular. The present study investigated the role of D1 and D2 receptors on male sexual behavior by examining how intracerebroventricular injections and microinjections into the mPOA of D1 and D2 agonists and antagonists influenced appetitive and consummatory aspects of sexual behavior in male quail. Experiments 1 and 2 investigated the effects of intracerebroventricular injections at three doses of D1 or D2 agonists and antagonists. The results indicated that D1 receptors facilitated consummatory male sexual behavior, whereas D2 receptors inhibited both appetitive and consummatory behaviors. Experiment 3 examined the effects of the same compounds specifically injected in the mPOA and showed that, in this region, both receptors stimulated male sexual behaviors. Together, these data indicated that the stimulatory action of dopamine in the mPOA may require a combined activation of D1 and D2 receptors. Finally, the regulation of male sexual behavior by centrally infused dopaminergic compounds in a species lacking an intromittent organ suggested that dopamine action on male sexual behavior does not simply reflect the modulation of genital reflexes due to general arousal, but relates to the central control of sexual motivation. Together, these data support the claim that dopamine specifically regulates male sexual behavior.

  16. Differential effects of central injections of D1 and D2 receptor agonists and antagonists on male sexual behavior in Japanese quail

    PubMed Central

    Kleitz-Nelson, H.K.; Cornil, C.A.; Balthazart, J.; Ball, G.F.

    2010-01-01

    A key brain site in the control of male sexual behavior is the medial preoptic area (mPOA) where dopamine stimulates both D1 and D2 receptor subtypes. Research completed to date in Japanese quail has only utilized systemic injections, so much is unknown about the specific role played by dopamine in the brain and mPOA in particular. The present study investigates the role of D1 and D2 receptors on male sexual behavior by examining how intracerebroventricular (ICV) injections and microinjections into the mPOA of D1 and D2 agonists and antagonists influence appetitive and consummatory aspects of sexual behavior in male quail. Experiments 1 and 2 investigate the effects of ICV injections at three doses of D1 or D2 agonists and antagonists. Results indicate that D1 receptors facilitate consummatory male sexual behavior while D2 receptors inhibit both appetitive and consummatory behaviors. Experiment 3 examines the effects of the same compounds specifically injected in the mPOA and shows that in this region, both receptors stimulate male sexual behaviors. Together, these data indicate that the stimulatory action of dopamine in the mPOA may require a combined activation of D1 and D2 receptors. Finally, the regulation of male sexual behavior by centrally infused dopaminergic compounds in a species lacking an intromittent organ suggests that dopamine action on male sexual behavior does not simply reflect the modulation of genital reflexes due to general arousal, but relates to the central control of sexual motivation. Together, these data support the claim that dopamine specifically regulates male sexual behavior. PMID:20597974

  17. Pharmacological characterization of nucleotide P2Y receptors on endothelial cells of the mouse aorta

    PubMed Central

    Guns, Pieter-Jan D F; Korda, András; Crauwels, Herta M; Van Assche, Tim; Robaye, Bernard; Boeynaems, Jean-Marie; Bult, Hidde

    2005-01-01

    Nucleotides regulate various effects including vascular tone. This study was aimed to characterize P2Y receptors on endothelial cells of the aorta of C57BL6 mice. Five adjacent segments (width 2 mm) of the thoracic aorta were mounted in organ baths to measure isometric force development. Nucleotides evoked complete (adenosine 5′ triphosphate (ATP), uridine 5′ triphosphate (UTP), uridine 5′ diphosphate (UDP); >90%) or partial (adenosine 5′ diphosphate (ADP)) relaxation of phenylephrine precontracted thoracic aortic rings of C57BL6 mice. Relaxation was abolished by removal of the endothelium and was strongly suppressed (>90%) by inhibitors of nitric oxide synthesis. The rank order of potency was: UDP∼UTP∼ADP>adenosine 5′-[γ-thio] triphosphate (ATPγS)>ATP, with respective pD2 values of 6.31, 6.24, 6.22, 5.82 and 5.40. These results are compatible with the presence of P2Y1 (ADP>ATP), P2Y2 or P2Y4 (ATP and UTP) and P2Y6 (UDP) receptors. P2Y4 receptors were not involved, since P2Y4-deficient mice displayed unaltered responses to ATP and UTP. The purinergic receptor antagonist suramin exerted surmountable antagonism for all agonists. Its apparent pKb for ATP (4.53±0.07) was compatible with literature, but the pKb for UTP (5.19±0.03) was significantly higher. This discrepancy suggests that UTP activates supplementary non-P2Y2 receptor subtype(s). Further, pyridoxal-phosphate-6-azophenyl-2′-4′-disulphonic acid (PPADS) showed surmountable (UTP, UDP), nonsurmountable (ADP) or no antagonism (ATP). Finally, 2′-deoxy-N6-methyladenosine3′,5′-bisphosphate (MRS2179) inhibited ADP-evoked relaxation only. Taken together, these results point to the presence of functional P2Y1 (ADP), P2Y2 (ATP, UTP) and P2Y6 (UDP) receptors on murine aorta endothelial cells. The identity of the receptor(s) mediating the action of UTP is not fully clear and other P2Y subtypes might be involved in UTP-evoked vasodilatation. PMID:15997227

  18. Potentiation of GluN2C/D NMDA receptor subtypes in the amygdala facilitates the retention of fear and extinction learning in mice.

    PubMed

    Ogden, Kevin K; Khatri, Alpa; Traynelis, Stephen F; Heldt, Scott A

    2014-02-01

    NMDA receptors are glutamate receptor ion channels that contribute to synaptic plasticity and are important for many forms of learning and memory. In the amygdala, NMDA receptors are critical for the acquisition, retention, and extinction of classically conditioned fear responses. Although the GluN2B subunit has been implicated in both the acquisition and extinction of conditioned fear, GluN2C-knockout mice show reduced conditioned fear responses. Moreover, D-cycloserine (DCS), which facilitates fear extinction, selectively enhances the activity of GluN2C-containing NMDA receptors. To further define the contribution of GluN2C receptors to fear learning, we infused the GluN2C/GluN2D-selective potentiator CIQ bilaterally into the basolateral amygdala (3, 10, or 30 μg/side) following either fear conditioning or fear extinction training. CIQ both increased the expression of conditioned fear 24 h later and enhanced the extinction of the previously conditioned fear response. These results support a critical role for GluN2C receptors in the amygdala in the consolidation of learned fear responses and suggest that increased activity of GluN2C receptors may underlie the therapeutic actions of DCS.

  19. Bidirectional modulation of visual plasticity by cholinergic receptor subtypes in the frog optic tectum

    PubMed Central

    Yu, Chuan-Jiang; Butt, Christopher M.; Debski, Elizabeth A.

    2008-01-01

    Cholinergic input to the optic tectum is necessary for visual map maintenance. To understand why, we examined the effects of activation of the different cholinergic receptor subtypes in tectal brain slices and determined whether the retinotectal map was affected by manipulations of their activity in vivo. Both α-bungarotoxin sensitive and insensitive nicotinic receptor agonists increased spontaneous postsynaptic currents (sPSCs) in a subpopulation of patch-clamped tectal cells; application of subtype selective receptor antagonists reduced nicotine-induced increases in sPSCs. Activation of α-bungarotoxin insensitive nicotinic receptors also induced substantial inward current in some cells. Muscarinic receptor mediated outward current responses were blocked by the M2-like muscarinic receptor antagonists himbacine or AF-DX 384 and mimicked by application of the M2-like agonist oxotremorine. A less frequently observed muscarinic response involving a change in sPSC frequency appeared to be mediated by M1-like muscarinic receptors. In separate experiments, pharmacological manipulation of cholinergic receptor subtype activation led to changes in the activity-dependent visual map created in the tectum by retinal ganglion cell terminals. Chronic exposure of the tectum to either α-bungarotoxin insensitive, α-bungarotoxin sensitive or M1-like receptor antagonists resulted in map disruption. However, treatment with the M2-like receptor antagonist, AF-DX 384, compressed the map. We conclude that nicotinic or M1-like muscarinic receptors control input to tectal cells while α-bungarotoxin insensitive nicotinic receptors and M2-like muscarinic receptors change tectal cell responses to that input. Blockade of the different cholinergic receptor subtypes can have opposing effects on map topography that are consistent with expected effects on tectal cell activity levels. PMID:12670313

  20. Molecular basis for subtype-specificity and high-affinity zinc inhibition in the GluN1-GluN2A NMDA receptor amino terminal domain

    PubMed Central

    Romero-Hernandez, Annabel; Simorowski, Noriko; Karakas, Erkan

    2016-01-01

    Summary Zinc is vastly present in the mammalian brain and controls functions of various cell surface receptors to regulate neurotransmission. A distinctive characteristic of N-methyl-D-aspartate (NMDA) receptors containing a GluN2A subunit is that their ion channel activity is allosterically inhibited by a nano-molar concentration of zinc that binds to an extracellular domain called an amino terminal domain (ATD). Despite physiological importance, the molecular mechanism underlying the high-affinity zinc inhibition has been incomplete due to lack of a GluN2A ATD structure. Here we show the first crystal structures of the heterodimeric GluN1-GluN2A ATD, which provide the complete map of the high-affinity zinc binding site and reveals distinctive features from the ATD of the GluN1-GluN2B subtype. Perturbation of hydrogen bond networks at the hinge of the GluN2A bi-lobe structure affects both zinc inhibition and open probability supporting the general model where the bi-lobe motion in ATD regulates the channel activity in NMDA receptors. PMID:27916457

  1. Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES✩

    PubMed Central

    Weltzin, Maegan M; Huang, Yanzhou; Schulte, Marvin K

    2013-01-01

    A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5–10 mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2− interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors. PMID:22732654

  2. Allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors by HEPES.

    PubMed

    Weltzin, Maegan M; Huang, Yanzhou; Schulte, Marvin K

    2014-06-05

    A number of new positive allosteric modulators (PAMs) have been reported that enhance responses of neuronal alpha7 and alpha4beta2 nicotinic acetylcholine receptor subtypes to orthosteric ligands. PAMs represent promising new leads for the development of therapeutic agents for disorders involving alterations in nicotinic neurotransmission including Autism, Alzheimer's and Parkinson's disease. During our recent studies of alpha4beta2 PAMs, we identified a novel effect of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES). The effects of HEPES were evaluated in a phosphate buffered recording solution using two-electrode voltage clamp techniques and alpha4beta2 and alpha7 nicotinic acetylcholine receptor subtypes expressed in Xenopus laevis oocytes. Acetylcholine induced responses of high-sensitivity alpha4beta2 receptors were potentiated 190% by co-exposure to HEPES. Responses were inhibited at higher concentrations (bell-shaped concentration/response curve). Coincidentally, at concentrations of HEPES typically used in oocyte recording (5-10mM), the potentiating effects of HEPES are matched by its inhibitory effects, thus producing no net effect. Mutagenesis results suggest HEPES potentiates the high-sensitivity stoichiometry of the alpha4beta2 receptors through action at the beta2+/beta2- interface and is dependent on residue beta2D218. HEPES did not potentiate low-sensitivity alpha4beta2 receptors and did not produce any observable effect on acetylcholine induced responses on alpha7 nicotinic acetylcholine receptors. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Actions of subtype-specific purinergic ligands on rat spiral ganglion neurons.

    PubMed

    Ito, Ken; Iwasaki, Shinichi; Kondo, Kenji; Dulon, Didier; Kaga, Kimitaka

    2004-08-01

    In a previous study we showed that, in rat spiral ganglion neurons (SGNs), the adenosine 5'-triphosphate (ATP)-evoked currents were a combination of the activation of ionotropic receptors (the first fast current) and the activation of metabotropic receptors which secondarily opened non-selective cation channels. These two conductances imply the involvement of different receptor subtypes. In the present study, we tested three subtype-specific purinergic ligands: alpha,beta-methylene ATP (a;pha,beta-meATP) for P2X receptors, uridine 5'-triphosphate (UTP) for P2Y receptors and 2'-3'-O-(4-benzoylbenzoyl) ATP (Bz-ATP) for P2Z (P2X(7)) receptors. Application of 100 microM alpha,beta-meATP did not trigger any significant change in membrane conductance, while the SGNs were responsive to ATP. Pressure application of UTP (100 microM, 1 s) evoked an inward current averaging 344+/-169 pA at a holding potential of -50 mV. The conductance developed after a latency averaging 1.5+/-0.6 s, took 4-6 s to peak and reversed slowly within 15-30 s. The current-voltage curve reversed near 0 mV, suggesting a non-selective cation conductance, like the second component of the ATP conductance. Bz-ATP evoked an inward current which developed without latency, was sustained during ligand application and was rapidly inactivated at the end of application: the same characteristics as the first component of the ATP-evoked current. The Bz-ATP conductance reversed around -10 mV, indicating also a non-selective cation conductance. These results suggest that, in SGNs, ATP acts via two different receptor subtypes, ionotropic P2Z receptors and metabotropic P2Y receptors, and that these two receptor subtypes can assume different physiological roles.

  4. Co-agonists differentially tune GluN2B-NMDA receptor trafficking at hippocampal synapses

    PubMed Central

    Ferreira, Joana S; Papouin, Thomas; Ladépêche, Laurent; Yao, Andrea; Langlais, Valentin C; Bouchet, Delphine; Dulong, Jérôme; Mothet, Jean-Pierre; Sacchi, Silvia; Pollegioni, Loredano; Paoletti, Pierre; Oliet, Stéphane Henri Richard; Groc, Laurent

    2017-01-01

    The subunit composition of synaptic NMDA receptors (NMDAR), such as the relative content of GluN2A- and GluN2B-containing receptors, greatly influences the glutamate synaptic transmission. Receptor co-agonists, glycine and D-serine, have intriguingly emerged as potential regulators of the receptor trafficking in addition to their requirement for its activation. Using a combination of single-molecule imaging, biochemistry and electrophysiology, we show that glycine and D-serine relative availability at rat hippocampal glutamatergic synapses regulate the trafficking and synaptic content of NMDAR subtypes. Acute manipulations of co-agonist levels, both ex vivo and in vitro, unveil that D-serine alter the membrane dynamics and content of GluN2B-NMDAR, but not GluN2A-NMDAR, at synapses through a process requiring PDZ binding scaffold partners. In addition, using FRET-based FLIM approach, we demonstrate that D-serine rapidly induces a conformational change of the GluN1 subunit intracellular C-terminus domain. Together our data fuels the view that the extracellular microenvironment regulates synaptic NMDAR signaling. DOI: http://dx.doi.org/10.7554/eLife.25492.001 PMID:28598327

  5. Dopaminergic Modulation of Risky Decision-Making

    PubMed Central

    Simon, Nicholas W.; Montgomery, Karienn S.; Beas, Blanca S.; Mitchell, Marci R.; LaSarge, Candi L.; Mendez, Ian A.; Bañuelos, Cristina; Vokes, Colin M.; Taylor, Aaron B.; Haberman, Rebecca P.; Bizon, Jennifer L.; Setlow, Barry

    2012-01-01

    Many psychiatric disorders are characterized by abnormal risky decision-making and dysregulated dopamine receptor expression. The current study was designed to determine how different dopamine receptor subtypes modulate risk-taking in young adult rats, using a “Risky Decision-making Task” that involves choices between small “safe” rewards and large “risky” rewards accompanied by adverse consequences. Rats showed considerable, stable individual differences in risk preference in the task, which were not related to multiple measures of reward motivation, anxiety, or pain sensitivity. Systemic activation of D2-like receptors robustly attenuated risk-taking, whereas drugs acting on D1-like receptors had no effect. Systemic amphetamine also reduced risk-taking, an effect which was attenuated by D2-like (but not D1-like) receptor blockade. Dopamine receptor mRNA expression was evaluated in a separate cohort of drug-naive rats characterized in the task. D1 mRNA expression in both nucleus accumbens shell and insular cortex was positively associated with risk-taking, while D2 mRNA expression in orbitofrontal and medial prefrontal cortex predicted risk preference in opposing nonlinear patterns. Additionally, lower levels of D2 mRNA in dorsal striatum were associated with greater risk-taking. These data strongly implicate dopamine signaling in prefrontal corticalstriatal circuitry in modulating decision-making processes involving integration of reward information with risks of adverse consequences. PMID:22131407

  6. Association of Hormone-Related Characteristics and Breast Cancer Risk by Estrogen Receptor/Progesterone Receptor Status in the Shanghai Breast Cancer Study

    PubMed Central

    Bao, Ping-Ping; Shu, Xiao Ou; Gao, Yu-Tang; Zheng, Ying; Cai, Hui; Deming, Sandra L.; Ruan, Zhi-Xian; Gu, Kai; Lu, Wei; Zheng, Wei

    2011-01-01

    Etiologic differences between subtypes of breast cancer defined by estrogen receptor (ER) and progesterone receptor (PR) status are not well understood. The authors evaluated associations of hormone-related factors with breast cancer subtypes in a population-based case-control study involving 1,409 ER-positive (ER+)/PR-positive (PR+) cases, 712 ER-negative (ER−)/PR-negative (PR−) cases, 301 ER+/PR− cases, 254 ER−/PR+ cases, and 3,474 controls aged 20–70 years in Shanghai, China (phase I, 1996–1998; phase II, 2002–2005). Polytomous logistic regression and Wald tests for heterogeneity across subtypes were conducted. Breast cancer risks associated with age at menarche, age at menopause, breastfeeding, age at first livebirth, waist-to-hip ratio, and oral contraceptive use did not differ by hormone receptor status. Among postmenopausal women, higher parity (≥2 children vs. 1) was associated with reduced risk (odds ratio (OR) = 0.69, 95% confidence interval (CI): 0.52, 0.91) and higher body mass index (BMI; weight (kg)/height (m)2) with increased risk (highest quartile: OR = 2.40, 95% CI: 1.65, 3.47) of the ER+/PR+ subtype but was unrelated to the ER−/PR− subtype (for parity, Pheterogeneity = 0.02; for BMI, Pheterogeneity < 0.01). Hormone replacement therapy (OR = 2.25, 95% CI: 1.40, 3.62) and alcohol consumption (OR = 1.59, 95% CI: 1.01, 2.51) appeared to be preferentially associated with the ER+/PR− subtype. These findings indicate that BMI, parity, hormone replacement therapy, and alcohol consumption may play different roles in subtypes of breast cancer. More research is needed to better understand the etiology of 2 relatively rare subtypes, ER+/PR− tumors and ER−/PR+ tumors. PMID:21768404

  7. Histamine receptors in human detrusor smooth muscle cells: physiological properties and immunohistochemical representation of subtypes.

    PubMed

    Neuhaus, Jochen; Weimann, Annett; Stolzenburg, Jens-Uwe; Dawood, Waled; Schwalenberg, Thilo; Dorschner, Wolfgang

    2006-06-01

    The potent inflammatory mediator histamine is released from activated mast cells in interstitial cystitis (IC). Here, we report on the histamine receptor subtypes involved in the intracellular calcium response of cultured smooth muscle cells (cSMC). Fura-2 was used to monitor the calcium response in cSMC, cultured from human detrusor biopsies. The distribution of histamine receptor subtypes was addressed by immunocytochemistry in situ and in vitro. Histamine stimulated a maximum of 92% of the cells (n=335), being more effective than carbachol (70%, n=920). HTMT (H1R-agonist), dimaprit (H2R) and MTH (H3R) lead to significant lower numbers of reacting cells (60, 48 and 54%). Histamine receptor immunoreactivity (H1R, H2R, H3R, H4R) was found in situ and in vitro. Histamine-induced calcium increase is mediated by distinct histamine receptors. Thus, pre-therapeutic evaluation of histamine receptor expression in IC patients may help to optimize therapy by using a patient-specific cocktail of subtype-specific histamine receptor antagonists.

  8. Serotonin Receptor Binding Characteristics of Geissoschizine Methyl Ether, an Indole Alkaloid in Uncaria Hook

    PubMed Central

    Ikarashi, Yasushi; Sekiguchi, Kyoji; Mizoguchi, Kazushige

    2018-01-01

    Background: Geissoschizine methyl ether (GM) is one of the indole alkaloids in Uncaria hook, and an active ingredient of yokukansan (YKS) that improves behavioral and psychological symp-toms of dementia (BPSD) in patients with several types of dementia. The pharmacological action of GM has been related to various serotonin (5-HT) receptor subtypes. Objective: The aim of this article is to review the binding characteristics of GM to the 5-HT receptor sub-types in the brains using our own data and previous findings. Methods: Competitive receptor-binding and agonist/antagonist activity assays for several 5-HT receptor subtypes were performed. Moreover, the articles describing pharmacokinetics and brain distribution of GM were searched in PubMed. Results: GM bound the following 5-HT receptor subtypes: 5-HT1A, 5-HT1B, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT4, 5-HT5A, 5-HT6, and 5-HT7. Among these receptors, GM had partial agonistic activity for 5-HT1A receptors and antagonistic activity for 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT7 receptors. Also, GM was me-tabolized by various CYP isoforms, mainly CYP3A4. Parent/unchanged GM was detected in both the blood and brain of rats after oral administration of YKS. In the brains, GM was presumed to bind to 5-HT1A, 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT7 receptors on neuron-like large cells mainly in the frontal cor-tex. Conclusion: These results suggest that GM is a pharmacologically important alkaloid that regulates vari-ous serotonergic activities or functions by binding to multiple 5-HT receptor subtypes. Thus, this review provides recent 5-HT receptor-related evidence that GM is partly responsible for pharmacological effects of YKS. PMID:28322152

  9. Purinergic Signalling: Therapeutic Developments

    PubMed Central

    Burnstock, Geoffrey

    2017-01-01

    Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990’s when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson’s disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer. PMID:28993732

  10. Association study between schizophrenia and dopamine D3 receptor gene polymorphism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Toshihisa; Takahashi, Makoto; Maeda, Masaya

    Crocq et al. reported the existence of an association between schizophrenia and homozygosity of a BalI polymorphism in the first exon of the dopamine D3 receptor (DRD3) gene. In response to this report, further studies were conducted; however, these studies yielded conflicting results. In the present study, we examined 100 unrelated Japanese schizophrenics and 100 normal controls to determine any association between this polymorphism and schizophrenia. Results suggest that neither allele nor genotype frequencies of the DRD3 gene in the schizophrenics as a whole are significantly different from those of the controls. Further, we found no association between any allelemore » or genotype and any clinical subtype based on family history of schizophrenia and age-at-onset. A significantly high frequency of homozygosity of a dopamine D3 receptor gene allele was not observed in the schizophrenics as a whole, or in clinical subtypes. Our results suggest that an association between the dopamine D3 receptor gene and schizophrenia is unlikely to exist. 26 refs., 1 tab.« less

  11. Molecular recognition at adenine nucleotide (P2) receptors in platelets.

    PubMed

    Jacobson, Kenneth A; Mamedova, Liaman; Joshi, Bhalchandra V; Besada, Pedro; Costanzi, Stefano

    2005-04-01

    Transmembrane signaling through P2Y receptors for extracellular nucleotides controls a diverse array of cellular processes, including thrombosis. Selective agonists and antagonists of the two P2Y receptors present on the platelet surface-the G (q)-coupled P2Y (1) subtype and the G (i)-coupled P2Y (12) subtype-are now known. High-affinity antagonists of each have been developed from nucleotide structures. The (N)-methanocarba bisphosphate derivatives MRS2279 and MRS2500 are potent and selective P2Y (1) receptor antagonists. The carbocyclic nucleoside AZD6140 is an uncharged, orally active P2Y (12) receptor antagonist of nM affinity. Another nucleotide receptor on the platelet surface, the P2X (1) receptor, the activation of which may also be proaggregatory, especially under conditions of high shear stress, has high-affinity ligands, although high selectivity has not yet been achieved. Although alpha,beta-methylene-adenosine triphosphate (ATP) is the classic agonist for the P2X (1) receptor, where it causes rapid desensitization, the agonist BzATP is among the most potent in activating this subtype. The aromatic sulfonates NF279 and NF449 are potent antagonists of the P2X (1) receptor. The structures of the two platelet P2Y receptors have been modeled, based on a rhodopsin template, to explain the basis for nucleotide recognition within the putative transmembrane binding sites. The P2Y (1) receptor model, especially, has been exploited in the design and optimization of antagonists targeted to interact selectively with that subtype.

  12. N-methyl-D-aspartate receptors and large conductance calcium-sensitive potassium channels inhibit the release of opioid peptides that induce mu-opioid receptor internalization in the rat spinal cord.

    PubMed

    Song, B; Marvizón, J C G

    2005-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the mu-opioid receptor, we measured mu-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced mu-opioid receptor internalization in half of the mu-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-D-aspartate (IC50=2 microM), and N-methyl-D-aspartate antagonists prevented this effect. mu-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-D-aspartate receptor activation. N-methyl-D-aspartate did not affect mu-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-D-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-D-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase mu-opioid receptor internalization in the absence of N-methyl-D-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked mu-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-D-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since mu-opioid receptors in the dorsal horn mediate analgesia, inhibition of spinal opioid release could contribute to the hyperalgesic actions of spinal N-methyl-D-aspartate receptors.

  13. N-METHYL-d-ASPARTATE RECEPTORS AND LARGE CONDUCTANCE CALCIUM-SENSITIVE POTASSIUM CHANNELS INHIBIT THE RELEASE OF OPIOID PEPTIDES THAT INDUCE μ-OPIOID RECEPTOR INTERNALIZATION IN THE RAT SPINAL CORD

    PubMed Central

    SONG, B.; MARVIZÓN, J. C. G.

    2006-01-01

    Endogenous opioids in the spinal cord play an important role in nociception, but the mechanisms that control their release are poorly understood. To simultaneously detect all opioids able to activate the μ-opioid receptor, we measured μ-opioid receptor internalization in rat spinal cord slices stimulated electrically or chemically to evoke opioid release. Electrical stimulation of the dorsal horn in the presence of peptidase inhibitors produced μ-opioid receptor internalization in half of the μ-opioid receptor neurons. This internalization was rapidly abolished by N-methyl-d-aspartate (IC50=2 μM), and N-methyl-d-aspartate antagonists prevented this effect. μ-Opioid receptor internalization evoked by high K+ or veratridine was also inhibited by N-methyl-d-aspartate receptor activation. N-methyl-d-aspartate did not affect μ-opioid receptor internalization induced by exogenous endomorphins, confirming that the effect of N-methyl-d-aspartate was on opioid release. We hypothesized that this inhibition was mediated by large conductance Ca2+-sensitive K+ channels BK(Ca2+). Indeed, inhibition by N-methyl-d-aspartate was prevented by tetraethylammonium and by the selective BK(Ca2+) blockers paxilline, penitrem A and verruculogen. Paxilline did not increase μ-opioid receptor internalization in the absence of N-methyl-d-aspartate, indicating that it does not produce an increase in opioid release unrelated to the inhibition by N-methyl-d-aspartate. The BK(Ca2+) involved appears to be a subtype with slow association kinetics for iberiotoxin, which was effective only with long incubations. The BK(Ca2+) opener NS-1619 also inhibited the evoked μ-opioid receptor internalization, and iberiotoxin prevented this effect. We concluded that Ca2+ influx through N-methyl-d-aspartate receptors causes the opening of BK(Ca2+) and hyperpolarization in opioid-containing dorsal horn neurons, resulting in the inhibition of opioid release. Since μ-opioid receptors in the dorsal horn mediate analgesia, inhibition of spinal opioid release could contribute to the hyperalgesic actions of spinal N-methyl-d-aspartate receptors. PMID:16203108

  14. Existence of three subtypes of bradykinin B2 receptors in guinea pig.

    PubMed

    Seguin, L; Widdowson, P S; Giesen-Crouse, E

    1992-12-01

    We describe the binding of [3H]bradykinin to homogenates of guinea pig brain, lung, and ileum. Analysis of [3H]bradykinin binding kinetics in guinea pig brain, lung, and ileum suggests the existence of two binding sites in each tissue. The finding of two binding sites for [3H]bradykinin in ileum, lung, and brain was further supported by Scatchard analysis of equilibrium binding in each tissue. [3H]Bradykinin binds to a high-affinity site in brain, lung, and ileum (KD = 70-200 pM), which constitutes approximately 20% of the bradykinin binding, and to a second, lower-affinity site (0.63-0.95 nM), which constitutes the remaining 80% of binding. Displacement studies with various bradykinin analogues led us to subdivide the high- and lower-affinity sites in each tissue and to suggest the existence of three subtypes of B2 receptors in the guinea pig, which we classify as B2a, B2b, and B2c. Binding of [3H]bradykinin is largely to a B2b receptor subtype, which constitutes the majority of binding in brain, lung, and ileum and represents the lower-affinity site in our binding studies. Receptor subtype B2c constitutes approximately 20% of binding sites in the brain and lung and is equivalent to the high-affinity site in brain and lung. We suggest that a third subtype of B2 receptor (high-affinity site in ileum), B2a, is found only in the ileum. All three subtypes of B2 receptors display a high affinity for bradykinin, whereas they show different affinities for various bradykinin analogues displaying agonist or antagonist activities.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Pharmacological characterization of extracellular acidification rate responses in human D2(long), D3 and D4.4 receptors expressed in Chinese hamster ovary cells

    PubMed Central

    Coldwell, M C; Boyfield, I; Brown, A M; Stemp, G; Middlemiss, D N

    1999-01-01

    This study characterized pharmacologically the functional responses to agonists at human dopamine D2(long) (hD2), D3 (hD3) and D4.4 (hD4) zreceptors separately expressed in cloned cells using the cytosensor microphysiometer. Dopaminergic receptor agonists caused increases in extracellular acidification rate in adherent Chinese hamster ovary (CHO) clones expressing hD2, hD3 or hD4 receptors. Acidification rate responses to agonists in other cell lines expressing these receptors were smaller than those in adherent CHO cells. The time courses and maximum increases in acidification rate of the agonist responses in adherent CHO cells were different between the three dopamine receptor clones. Responses were blocked by pretreatment of cells with pertussis toxin or amiloride analogues. Most agonists had full intrinsic activity at each of the dopamine receptor subtypes, as compared to quinpirole, however both enantiomers of UH-232 and (−)3-PPP were partial agonists in this assay system. The functional potency of full agonists at each of the three receptors expressed in CHO cells was either higher than, or similar to, the apparent inhibition constants (Ki) determined in [125I]-iodosulpride competition binding studies. Functional selectivities of the agonists were less than radioligand binding selectivities. The rank orders of agonist potencies and selectivities were similar, but not identical, to the rank orders of radioligand binding affinities and selectivities. The dopamine receptor antagonists, iodosulpride and clozapine, had no effect on basal acidification rates but inhibited acidification responses in CHO cells to quinpirole in an apparently competitive manner. Antagonist potencies closely matched their radioligand binding affinities in these cells. PMID:10455259

  16. Pharmacological modulation of abnormal involuntary DOI-induced head twitch response in male DBA/2J mice: I. Effects of D2/D3 and D2 dopamine receptor selective compounds.

    PubMed

    Rangel-Barajas, Claudia; Malik, Maninder; Vangveravong, Suwanna; Mach, Robert H; Luedtke, Robert R

    2014-08-01

    Because of the complexity and heterogeneity of human neuropsychiatric disorders, it has been difficult to identify animal models that mimic the symptoms of these neuropathologies and can be used to screen for antipsychotic agents. For this study we selected the murine 5HT2A/2C receptor agonist-induced head twitch response (HTR) induced by the administration of 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), which has been proposed as an animal model of symptoms associated with a variety of behavioral and psychiatric conditions. We investigated the DOI-induced HTR in male DBA/2J mice using a panel of D2-like (D2, D3 and D4) and D2 dopamine receptor selective compounds. When DBA/2J mice were administered a daily dose of DOI (5 mg/kg), tolerance to the DOI occurs. However, administrations of the same dose of DOI every other day (48 h) or on a weekly basis did not lead to tolerance and the ability to induce tolerance after daily administration of DOI remains intact after repeated weekly administration of DOI. Subsequently, a panel of D2-like dopamine receptor antagonists was found to effectively inhibit the DOI-induced HTR in DBA/2J mice. However, the benzamide eticlopride, which is a high affinity D2-like antagonist, was a notable exception. SV 293, SV-III-130s and N-methylbenperidol, which exhibit a high affinity for D2 versus the D3 dopamine receptor subtypes (60- to 100-fold binding selectivity), were also found to inhibit the HTR in DBA/2J mice. This observation suggests a functional interaction between dopaminergic and serotonergic systems through D2 dopamine receptors and the 5-HT2A serotonin receptors in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Novel selective human melanocortin-3 receptor ligands: Use of the 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one (Aba) scaffold

    PubMed Central

    Ballet, Steven; Mayorov, Alexander V.; Cai, Minying; Tymecka, Dagmara; Chandler, Kevin B.; Palmer, Erin S.; Van Rompaey, Karolien; Misicka, Aleksandra; Tourwé, Dirk; Hruby, Victor J.

    2008-01-01

    In search of new selective antagonists and/or agonists for the human melanocortin receptor subtypes hMC1R to hMC5R to elucidate the specific biological roles of each GPCR, we modified the structures of the superagonist MT-II (Ac-Nle-c[Asp-His-D-Phe-Arg-Trp-Lys]-NH2) and the hMC3R/hMC4R antagonist SHU9119 (Ac-Nle-c[Asp-His-D-Nal(2′)-Arg-Trp-Lys]-NH2) by replacing the His-D-Phe and His-D-Nal(2′) fragments in MT-II and SHU9119, respectively, with Aba-Xxx (4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one-Xxx) dipeptidomimetics (Xxx = D-Phe/pCl-D-Phe/D-Nal(2′)). Employment of the Aba mimetic yielded novel selective high affinity hMC3R and hMC3R/hMC5R antagonists. PMID:17314042

  18. Dopamine antagonists during parturition disrupt maternal care and the retention of maternal behavior in rats.

    PubMed

    Byrnes, Elizabeth M; Rigero, Beth A; Bridges, Robert S

    2002-11-01

    Brief contact with pups at parturition enables the female rat to establish and retain the full repertoire of maternal behaviors, allowing her to respond rapidly to pups in the future. To determine whether the dopamine system is involved in the retention of maternal behavior, females were continuously infused with dopamine antagonists during the periparturitional period and then allowed either a brief interaction period with pups (3 h) or no interaction with pups (pups removed as they were born). Females were exposed to either the D1-like antagonist SCH 23390 (0.1 or 1.0 mg/kg/day) or the D2-like antagonist clebopride (0.5 or 1.0 mg/kg/day). The high dose of either DA antagonist resulted in significant attenuation of maternal care immediately postpartum. When tested for the retention of maternal behavior 7 days later, however, only the females exposed to the D2 antagonist displayed a delayed response to shown full maternal behavior (FMB) towards donor pups. Thus, while both dopamine receptor subtypes appear necessary for the full and rapid expression of maternal behavior during the early postpartum period, only the D2 receptor subtype appears to be involved in the retention of this behavior.

  19. Agonists and antagonists acting at P2X receptors: selectivity profiles and functional implications.

    PubMed

    Lambrecht, G

    2000-11-01

    P2X receptors are nucleotide-gated cation channels composed of homomeric or heteromeric assemblies of three subunits. In the past 7 years, an extended series (P2X1-7) of P2X subunits has been cloned from vertebrate tissues. In this rapidly expanding field, one of the main current challenges is to relate the cloned P2X receptor subtypes to the diverse physiological responses mediated by the native P2X receptors. However, the paucity of useful ligands, especially subtype-selective agonists and antagonists as well as radioligands, acts as a considerable impediment to progress. Most of the ligands available are highly limited in terms of their kinetics of action, receptor-affinity, subtype-selectivity and P2X receptor-specificity. Their suspected ability to be a substrate for ecto-nucleotidases or to inhibit these enzymes also complicates their use. A number of new antagonists at P2X receptors have recently been described which to some degree are more potent and more selective than earlier antagonists like suramin or pyridoxal-5'-phosphate-6-azophenyl 2',4'-disulfonate (PPADS). This work moves us closer to the ideal goal of classifying the recombinant and native P2X receptor subtypes on the basis of antagonist profiles. This review begins with a brief account of the current status of P2X receptors. It then focuses on the pharmacological properties of a series of key P2 receptor agonists and antagonists and will finish with the discussion of some related therapeutic possibilities.

  20. Regulation of IP 3 Receptors by IP 3 and Ca 2+

    NASA Astrophysics Data System (ADS)

    Taylor, Colin W.; Swatton, Jane E.

    Inositol 1,4,5-trisphosphate ( IP 3) receptors are intracellular Ca 2+ channels that mediate release of Ca 2+ from intracellular stores. The channels are oligomeric assemblies of four subunits, each of which has an N-terminal IP 3-binding domain and each of which contributes to formation of the Ca 2+ channel. In mammals, three different genes encode IP 3 receptors subunits and the type 1 receptor (and perhaps the type 2 receptor) is also expressed as splice variants. Further diversity arises from assembly of the receptor in hetero- and homo-tetrameric channels. The subtypes differ in their expression and regulation, but they share the key property of being regulated by both IP3 and cytosolic Ca 2+. All three mammalian IP 3 subtypes, and probably also the IP 3 receptors expressed in invertebrates, are biphasically regulated by cytosolic Ca2+, although the underlying mechanisms appear to differ between subtypes. The interactions between IP 3 and Ca 2+ in controlling IP 3 receptor gating, and the physiological significance of such regulation will be reviewed.

  1. Behavior of a cloned murine interferon alpha/beta receptor expressed in homospecific or heterospecific background.

    PubMed

    Uzé, G; Lutfalla, G; Bandu, M T; Proudhon, D; Mogensen, K E

    1992-05-15

    A murine interferon (IFN) alpha/beta receptor was cloned from the IFN-sensitive L1210 cell line on the basis of its homology with the human receptor. A combination of methods that includes the screening of random-primed and oligo(dT)-primed cDNA libraries and polymerase chain reactions with a single-side specificity was used. At the amino acid level, the murine IFN-alpha/beta shows 46% identity with its human counterpart. Both human WISH cells presenting a low sensitivity to mouse IFN and a murine L1210 mutant subline that does not express the receptor have been stably transfected with the murine IFN-alpha/beta receptor. Whereas transfected human cells became sensitive to a limited number of mouse IFN-alpha/beta subtypes, the transfected murine L1210 mutant was found to be fully complemented and became sensitive to all mouse IFN-alpha/beta subtypes tested, including those that were not active on transfected human cells. These results strongly suggest that the receptor described here is implicated in the mediation of the activities of all murine IFN-alpha/beta subtypes.

  2. Synthesis, radiolabeling, and preliminary biological evaluation of [3H]-1-[(S)-N,O-bis-(isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-(o-tolyl)-piperazine, a potent antagonist radioligand for the P2X7 receptor.

    PubMed

    Romagnoli, Romeo; Baraldi, Pier Giovanni; Pavani, Maria Giovanna; Tabrizi, Mojgan Aghazadeh; Moorman, Allan R; Di Virgilio, Francesco; Cattabriga, Elena; Pancaldi, Cecilia; Gessi, Stefania; Borea, Pier Andrea

    2004-11-15

    The design, synthesis, and preliminary biological evaluation of the first potent radioligand antagonist for the P2X(7) receptor, named [(3)H]-1-[(S)-N,O-bis-(isoquinolinesulfonyl)-N-methyl-tyrosyl]-4-(o-tolyl)-piperazine (compound 13), are reported. This compound bound to human P2X(7) receptors expressed in HEK transfected cells with K(D) and B(max) value of 3.46+/-0.1 nM and 727+/-73 fmol/mg of protein, respectively. The high affinity and facile labeling makes it a promising radioligand for a further characterization of P2X(7) receptor subtype.

  3. α2A- and α2C-Adrenoceptors as Potential Targets for Dopamine and Dopamine Receptor Ligands.

    PubMed

    Sánchez-Soto, Marta; Casadó-Anguera, Verònica; Yano, Hideaki; Bender, Brian Joseph; Cai, Ning-Sheng; Moreno, Estefanía; Canela, Enric I; Cortés, Antoni; Meiler, Jens; Casadó, Vicent; Ferré, Sergi

    2018-03-18

    The poor norepinephrine innervation and high density of Gi/o-coupled α 2A - and α 2C -adrenoceptors in the striatum and the dense striatal dopamine innervation have prompted the possibility that dopamine could be an effective adrenoceptor ligand. Nevertheless, the reported adrenoceptor agonistic properties of dopamine are still inconclusive. In this study, we analyzed the binding of norepinephrine, dopamine, and several compounds reported as selective dopamine D 2 -like receptor ligands, such as the D 3 receptor agonist 7-OH-PIPAT and the D 4 receptor agonist RO-105824, to α 2 -adrenoceptors in cortical and striatal tissue, which express α 2A -adrenoceptors and both α 2A - and α 2C -adrenoceptors, respectively. The affinity of dopamine for α 2 -adrenoceptors was found to be similar to that for D 1 -like and D 2 -like receptors. Moreover, the exogenous dopamine receptor ligands also showed high affinity for α 2A - and α 2C -adrenoceptors. Their ability to activate Gi/o proteins through α 2A - and α 2C -adrenoceptors was also analyzed in transfected cells with bioluminescent resonance energy transfer techniques. The relative ligand potencies and efficacies were dependent on the Gi/o protein subtype. Furthermore, dopamine binding to α 2 -adrenoceptors was functional, inducing changes in dynamic mass redistribution, adenylyl cyclase activity, and ERK1/2 phosphorylation. Binding events were further studied with computer modeling of ligand docking. Docking of dopamine at α 2A - and α 2C -adrenoceptors was nearly identical to its binding to the crystallized D 3 receptor. Therefore, we provide conclusive evidence that α 2A - and α 2C -adrenoceptors are functional receptors for norepinephrine, dopamine, and other previously assumed selective D 2 -like receptor ligands, which calls for revisiting previous studies with those ligands.

  4. Effects of structural modifications of N-CPM-normorphine derivatives on agonist and antagonist activities in isolated organs.

    PubMed

    Riba, P; Tóth, Z; Hosztafi, S; Friedmann, T; Fürst, S

    2003-01-01

    The agonistic and antagonistic properties of N-cyclopropylmethyl (N-CPM) morphine derivatives were observed in mouse vas deferens (MVD), longitudinal muscle of guinea pig ileum (GPI) and rabbit vas deferens (LVD). In MVD the K(e) values of the titled compounds (N-CPM-morphine, N-CPM-isomorphine, N-CPM-dihydromorphine, N-CPM-dihydroisomorpPhine, N-CPM-dihydromorphone and naltrexone) were measured for mu-, kappa- and delta-receptors using normorphine, ethylketocyclazocine (EKC) and D-Pen2-D-Pen5-enkephaline (DPDPE) as selective agonists on the receptors, respectively. For mu-receptors of MVD the tested compounds showed similar affinity. For kappa-receptors the non-iso-6-OH derivatives possessed much less affinity than the iso-derivatives. Similar difference could be observed for delta-receptors. The agonistic activities of these compounds in MVD were observed to be between 0-20% of the inhibition of muscle contractions. In GPI the compounds except naltrexone possessed strong agonistic activities effectively antagonized by nor-binaltorphimine (nor-BNI) (K(e) of nor-BNI was 0.23 nM) suggesting that they were strong kappa-receptor agonists. We investigated these agents in LVD too, which contains kappa-receptors, but they did not produce any agonist potencies. It raises the possibility that the kappa-receptor subtypes of LVD and MVD are different from the kappa-receptor subtype of GPI or the vasa deferentia contain much fewer kappa-receptors than GPI and the intrinsic activities of these compounds are too small to reach the 50% inhibition of the contractions.

  5. 8-(2-Furyl)adenine derivatives as A₂A adenosine receptor ligands.

    PubMed

    Dal Ben, Diego; Buccioni, Michela; Lambertucci, Catia; Thomas, Ajiroghene; Klotz, Karl-Norbert; Federico, Stephanie; Cacciari, Barbara; Spalluto, Giampiero; Volpini, Rosaria

    2013-01-01

    Selective adenosine receptor modulators are potential tools for numerous therapeutic applications, including cardiovascular, inflammatory, and neurodegenerative diseases. In this work, the synthesis and biological evaluation at the four human adenosine receptor subtypes of a series of 9-substituted 8-(2-furyl)adenine derivatives are reported. Results show that 8-(2-furyl)-9-methyladenine is endowed with high affinity at the A₂A subtype. Further modification of this compound with introduction of arylacetyl or arylcarbamoyl groups in N(6)-position takes to different effects on the A₂A affinity and in particular on the selectivity versus the other three adenosine receptor subtypes. A molecular modelling analysis at three different A₂A receptor crystal structures provides an interpretation of the obtained biological results. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. Expression profiling of G-protein-coupled receptors in human urothelium and related cell lines.

    PubMed

    Ochodnický, Peter; Humphreys, Sian; Eccles, Rachel; Poljakovic, Mirjana; Wiklund, Peter; Michel, Martin C

    2012-09-01

    What's known on the subject? and What does the study add? Urothelium emerged as a crucial integrator of sensory inputs and outputs in the bladder wall, and urothelial G-protein-coupled receptors (GPCRs) may represent plausible targets for treatment of various bladder pathologies. Urothelial cell lines provide a useful tool to study urothelial receptor function, but their validity as models for native human urothelium remains unclear. We characterize the mRNA expression of genes coding for GPCRs in human freshly isolated urothelium and compare the expression pattern with those in human urothelial cell lines. To characterize the mRNA expression pattern of genes coding for G-protein-coupled receptors (GPCRs) in human freshly isolated urothelium. To compare GPCR expression in human urothelium-derived cell lines to explore the suitability of these cell lines as model systems to study urothelial function. Native human urothelium (commercially sourced) and human urothelium-derived non-cancer (UROtsa and TERT-NHUC) and cancer (J82) cell lines were used. For mRNA expression profiling we used custom-designed real-time polymerase chain reaction array for 40 receptors and several related genes. Native urothelium expressed a wide variety of GPCRs, including α(1A), α(1D) and all subtypes of α(2) and β adrenoceptors. In addition, M(2) and M(3) cholinergic muscarinic receptors, angiotensin II AT(1) receptor, serotonin 5-HT(2A) receptor and all subtypes of bradykinin, endothelin, cannabinoid, tachykinin and sphingosine-1-phosphate receptors were detected. Nerve growth factor and both its low- and high-affinity receptors were also expressed in urothelium. In all cell lines expression of most GPCRs was markedly downregulated, with few exceptions. In UROtsa cells, but much less in other cell lines, the expression of β(2) adrenoceptors, M(3) muscarinic receptors, B(1) and B(2) bradykinin receptors, ET(B) endothelin receptors and several subtypes of sphingosine-1-phosphate receptors was largely retained. Human urothelium expresses a wide range of receptors which enables sensing and integration of various extracellular signals. Human urothelium-derived cell lines, especially UROtsa cells, show comparable mRNA expression to native tissue for several physiologically relevant GPCRs, but lose expression of many other receptors. The use of cell lines as model systems of human urothelium requires careful validation of suitability for the genes of interest. © 2012 BJU INTERNATIONAL.

  7. The metabotropic P2Y4 receptor participates in the commitment to differentiation and cell death of human neuroblastoma SH-SY5Y cells.

    PubMed

    Cavaliere, Fabio; Nestola, Valeria; Amadio, Susanna; D'Ambrosi, Nadia; Angelini, Daniela F; Sancesario, Giuseppe; Bernardi, Giorgio; Volonté, Cinzia

    2005-02-01

    Extracellular nucleotides exert a variety of biological actions through different subtypes of P2 receptors. Here we characterized in the human neuroblastoma SH-SY5Y cells the simultaneous presence of various P2 receptors, belonging to the P2X ionotropic and P2Y metabotropic families. Western blot analysis detected the P2X1,2,4,5,6,7 and P2Y1,2,4,6, but not the P2X3 and P2Y12 receptors. We then investigated which biological effects were mediated by the P2Y4 subtype and its physiological pyrimidine agonist UTP. We found that neuronal differentiation of the SH-SY5Y cells with dibutiryl-cAMP increased the expression of the P2Y4 protein and that UTP itself was able to positively interfere with neuritogenesis. Moreover, transient transfection and activation of P2Y4 also facilitated neuritogenesis in SH-SY5Y cells, as detected by morphological phase contrast analysis and confocal examination of neurofilament proteins NFL. This was concurrent with increased transcription of immediate-early genes linked to differentiation such as cdk-5 and NeuroD6, and activity of AP-1 transcription family members such as c-fos, fos-B, and jun-D. Nevertheless, a prolonged activation of the P2Y4 receptor by UTP also induced cell death, both in naive, differentiated, and P2Y4-transfected SH-SY5Y cells, as measured by direct count of intact nuclei and cytofluorimetric analysis of damaged DNA. Taken together, our data indicate that the high expression and activation of the P2Y4 receptor participates in the neuronal differentiation and commitment to death of SH-SY5Y cells.

  8. Role of dopamine D4 receptors in copulatory behavior: Studies with selective D4 agonists and antagonists in male rats.

    PubMed

    Sanna, Fabrizio; Contini, Andrea; Melis, Maria Rosaria; Argiolas, Antonio

    2015-10-01

    Dopamine influences the anticipatory and consummatory phases of sexual behavior, by acting on receptors of the D2 family (D2, D3 and D4) and in particular of the D2 subtype, although evidence for a role of D4 receptors in erectile function and copulatory behavior is also available. In order to clarify such a role of D4 receptors, the effect of selective D4 receptor agonists and antagonists on copulatory behavior of sexually potent male rats in classic copulation tests with a receptive female, was compared with that of apomorphine and haloperidol, a classic dopamine receptor agonist and antagonist, respectively. PD-168,077 (0.05-0.2mg/kg) and ABT-724 (0.01-0.04mg/kg), two selective D4 receptor agonists, given subcutaneously, improved dose-dependently copulatory behavior as shown by the decrease of mount frequency and post ejaculatory interval induced by PD-168,077, and of mount frequency, ejaculation latency, post ejaculatory and inter intromission intervals induced by ABT-724, and by the increase of ejaculation frequency and copulatory efficacy induced by both drugs. Conversely, L-745,870 (1-5mg/kg), a selective D4 receptor antagonist, given intraperitoneally, impaired dose-dependently copulatory behavior, as shown by the increase in intromission and ejaculation latencies, mount frequency, post ejaculatory interval and the decrease in ejaculation frequency and copulatory efficacy induced by this drug. L-745,870 (5mg/kg) administered before PD-168,077 (0.2mg/kg) or ABT-724 (0.04mg/kg), also abolished completely the facilitatory effects of both PD-168,077 and ABT-724 on sexual behavior. These results confirm the involvement of D4 receptors in specific aspects of male rat copulatory behavior that overlap only partially with those influenced by apomorphine and haloperidol. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Molecular evidence and clinical importance of β-arrestins expression in patients with acromegaly.

    PubMed

    Coelho, Maria Caroline Alves; Vasquez, Marina Lipkin; Wildemberg, Luiz Eduardo; Vázquez-Borrego, Mari C; Bitana, Luciana; Camacho, Aline Helen da Silva; Silva, Débora; Ogino, Liana Lumi; Ventura, Nina; Chimelli, Leila; Luque, Raul M; Kasuki, Leandro; Gadelha, Mônica R

    2018-04-01

    β-arrestins seem to have a role in endocytosis and desensitization of somatostatin receptor subtype 2 (sst2) and could be associated with the responsiveness to somatostatin receptor ligands (SRL) in patients with acromegaly. To investigate the in vivo correlation between β-arrestins 1 and 2 with sst2, sst5 and dopamine receptor subtype 2 (D2) expressions, and the association of β-arrestins with response to first-generation SRL and invasiveness in somatotropinomas. β-arrestins 1 and 2, sst2, sst5 and D2 mRNA expressions were evaluated by quantitative real-time RT-PCR on tumoral tissue of 96 patients. Moreover, sst2 and sst5 protein expressions were also evaluated in 40 somatotropinomas by immunohistochemistry. Response to SRL, defined as GH <1 μg/l and normal IGF-I levels, was assessed in 40 patients. The Knosp-Steiner criteria were used to define invasiveness. Median β-arrestin 1, β-arrestin 2, sst2, sst5 and D2 mRNA copy numbers were 478; 9375; 731; 156; and 3989, respectively. There was a positive correlation between β-arrestins 1 and 2 (R = 0.444, P < 0.001). However, no correlation between β-arrestins and sst2, sst5 (mRNA and protein levels) or D2 was found. No association was found between β-arrestins expression and SRL responsiveness or tumour invasiveness. Although previous data suggest a putative correlation between β-arrestins and sst2, our data clearly indicated that no association existed between β-arrestins and sst2, sst5 or D2 expression, nor with response to SRL or tumour invasiveness. Therefore, further studies are required to clarify whether β-arrestins have a role in the response to treatment with SRL in acromegaly. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  10. High expression of dopamine receptor subtype 2 in a large series of neuroendocrine tumors.

    PubMed

    Grossrubatscher, Erika; Veronese, Silvio; Ciaramella, Paolo Dalino; Pugliese, Raffaele; Boniardi, Marco; De Carlis, Luciano; Torre, Massimo; Ravini, Mario; Gambacorta, Marcello; Loli, Paola

    2008-12-01

    To evaluate by immumohistochemistry the presence of DR subtype 2 (D2R) in well differentiated NETs of different sites and in normal islet cells. Recent data in vitro and in vivo support that dopaminergic drugs might exert an inhibitory effect on hormone secretion and, possibly, on tumor growth in neuroendocrine tumors (NET)s. Their potential therapeutic role needs the demonstration of dopamine receptors (DR) in tumor cells. Little is known on the expression of DR in NETs. 85% of samples (100% of bronchial carcinoids and 93% of islet cell tumors) showed positivity for D2R; intensity of immunoreaction in NETs was similar or higher than in pituitary (54% and respectively 31% of cases). D2R positivity in more than 70% of tumor cells was observed in 46% of samples. Same intensity of D2R-immunoreactivity was found in pituitary and normal islet cells. No differences in D2R expression were recorded on considering tumor grading, size, proliferative activity, presence of metastases, endocrine activity and gender. A significant difference (62.5% vs 96.4%, p = 0.039) was observed in the prevalence of D2R expression between patients with more aggressive tumors and patients without recurrence/progression of disease during follow-up. 46 NET samples from 44 patients and normal endocrine pancreatic tissue were studied. D2R-staining was performed on NETs and compared with six non-secreting pituitary adenomas and related to clinical-pathological data. The present data demonstrate a high expression of D2R in NETs; this finding is of clinical relevance in view of the potential role of dopaminergic drugs in inhibiting secretion and/or cell proliferation in NETs.

  11. Development of molecular tools based on the dopamine D3 receptor ligand FAUC 329 showing inhibiting effects on drug and food maintained behavior.

    PubMed

    Stößel, Anne; Brox, Regine; Purkayastha, Nirupam; Hübner, Harald; Hocke, Carsten; Prante, Olaf; Gmeiner, Peter

    2017-07-01

    Dopamine D 3 receptor-mediated networks have been associated with a wide range of neuropsychiatric diseases, drug addiction and food maintained behavior, which makes D 3 a highly promising biological target. The previously described dopamine D 3 receptor ligand FAUC 329 (1) showed protective effects against dopamine depletion in a MPTP mouse model of Parkinson's disease. We used the radioligand [ 18 F]2, a [ 18 F]fluoroethoxy substituted analog of the lead compound 1 as a molecular tool for visualization of D 3 -rich brain regions including the islands of Calleja. Furthermore, structural modifications are reported leading to the pyrimidylpiperazine derivatives 3 and 9 displaying superior subtype selectivity and preference over serotonergic receptors. Evaluation of the lead compound 1 on cocaine-seeking behavior in non-human primates showed a substantial reduction in cocaine self-administration behavior and food intake. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Muscarinic acetylcholine receptor subtype 4 is essential for cholinergic stimulation of duodenal bicarbonate secretion in mice - relationship to D cell/somatostatin.

    PubMed

    Takeuchi, K; Kita, K; Takahashi, K; Aihara, E; Hayashi, S

    2015-06-01

    We investigated the roles of muscarinic (M) acetylcholine receptor subtype in the cholinergic stimulation of duodenal HCO3(-) secretion using knockout (KO) mice. Wild-type and M1-M5 KO C57BL/6J mice were used. The duodenal mucosa was mounted on an Ussing chamber, and HCO3(-) secretion was measured at pH 7.0 using a pH-stat method in vitro. Carbachol (CCh) or other agents were added to the serosal side. CCh dose-dependently stimulated HCO3(-) secretion in wild-type mice, and this effect was completely inhibited in the presence of atropine. The HCO3(-) response to CCh in wild-type mice was also inhibited by pirenzepine (M1 antagonist), 4DAMP (M3 antagonist), and tropicamide (M4 antagonist), but not by methoctramine (M2 antagonist). CCh stimulated HCO3(-) secretion in M2 and M5 KO animals as effectively as in WT mice; however, this stimulatory effect was significantly attenuated in M1, M3, and M4 KO mice. The decrease observed in the CCh-stimulated HCO3(-) response in M4 KO mice was reversed by the co-application of CYN154806, a somatostatin receptor type 2 (SST2) antagonist. Octreotide (a somatostatin analogue) decreased the basal and CCh-stimulated secretion of HCO3(-) in wild-type mice. The co-localized expression of somatostatin and M4 receptors was confirmed immunohistologically in the duodenum. We concluded that the duodenal HCO3(-) response to CCh was directly mediated by M1/M3 receptors and indirectly modified by M4 receptors. The activation of M4 receptors was assumed to inhibit the release of somatostatin from D cells and potentiate the HCO3(-) response by removing the negative influence of somatostatin via the activation of SST2 receptors.

  13. Differences in TGF-β1 signaling and clinicopathologic characteristics of histologic subtypes of gastric cancer.

    PubMed

    Pak, Kyung Ho; Kim, Dong Hoon; Kim, Hyunki; Lee, Do Hyung; Cheong, Jae-Ho

    2016-02-04

    Aberrant TGF-β1 signaling is suggested to be involved in gastric carcinogenesis. However, the role of TGF-β1 in intestinal-type [i-GC] and diffuse-type [d-GC] gastric cancer remains largely unknown. In this study, we evaluated the expression of TGF-β1 signaling molecules and compared the clinicopathological features of i-GC and d-GC. Patients (n=365, consecutive) who underwent curative gastrectomy for gastric adenocarcinoma in 2005 were enrolled. We performed immunohistochemical staining of TGF-β1, TGF-β1 receptor-2 (TβR2), Smad4, p-ERK1/2, TGF-activated kinase (TAK)1, and p-Akt in 68 paraffin-embedded tumor blocks (33 i-GC and 35 d-GC), scored the expression according to the extent of staining, and evaluated differences between the histologic subtypes. Patients with d-GC differed from those with i-GC as follows: younger and more likely to be female; more aggressive stage; higher recurrence rate. The expression of TGF-β1 and TβR2 was higher in i-GC (P = 0.05 and P <0.001, respectively). The expression of Smad4, a representative molecule of the Smad-dependent pathway, was decreased in both subtypes. TAK1 and p-Akt, two major molecules involved in the Smad-independent pathway, were over-expressed (69 ~87% of cases stained), without a statistically significant difference between i-GC and d-GC. Of note, the expression of p-ERK1/2, a Smad-independent pathway, was significantly increased in i-GC (P = 0.008). The clinicopathological characteristics vary in different histologic gastric cancer subtypes. Although TGF-β1 signaling in gastric cancer cells appears hyper-activated in i-GC compared to d-GC, the Smad-dependent pathway seems down-regulated while the Smad-independent pathway seems up-regulated in both histologic subtypes.

  14. Breast Cancer Subtype is Associated With Axillary Lymph Node Metastasis

    PubMed Central

    He, Zhen-Yu; Wu, San-Gang; Yang, Qi; Sun, Jia-Yuan; Li, Feng-Yan; Lin, Qin; Lin, Huan-Xin

    2015-01-01

    Abstract The purpose of this study was to assess whether breast cancer subtype (BCS) as determined by estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 can predict the axillary lymph node metastasis in breast cancer. Patients who received breast conserving surgery or mastectomy and axillary lymph node dissection were identified from 2 cancer centers. The associations between clinicopathological variables and axillary lymph node involvement were evaluated in univariate and multivariate regression analyses. A total of 3471 patients met the inclusion criteria, and 53.0% had axillary lymph node metastases at diagnosis. Patients with hormone receptor (HR)−/human epidermal growth factor receptor 2 (HER2)− subtype had a higher grade disease and the lowest rate of lymphovascular invasion. Univariate and multivariable logistic regression analyses showed that BCS was significantly associated with lymph node involvement. Patients with the HR−/HER2− subtype had the lowest odds of having nodal positivity than those with other BCSs. HR+/HER2− (odds ratio [OR] 1.651, 95% confidence interval [CI]: 1.349–2.021, P < 0.001), HR+/HER2+ (OR 1.958, 95%CI 1.542–2.486, P < 0.001), and HR−/HER2+ (OR 1.525, 95%CI 1.181–1.970, P < 0.001) tumors had higher risk of nodal positivity than the HR−/HER2− subtype. The other independent predictors of nodal metastases included tumor size, tumor grade, and lymphovascular invasion. Breast cancer subtype can predict the presence of axillary lymph node metastasis in breast cancer. HR−/HER2− is associated with a reduced risk of axillary lymph node metastasis compared to other BCSs. Our findings may play an important role in guiding axillary treatment considerations if further confirmed in larger sample size studies. PMID:26632910

  15. Species differences in the localization and number of CNS beta adrenergic receptors: Rat versus guinea pig

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booze, R.M.; Crisostomo, E.A.; Davis, J.N.

    1989-06-01

    The localization and number of beta adrenergic receptors were directly compared in the brains of rats and guinea pigs. The time course of association and saturability of (125I)cyanopindolol (CYP) binding to slide-mounted tissue sections was similar in rats (Kd = 17 pM) and guinea pigs (Kd = 20 pM). The beta-1 and beta-2 receptor subtypes were examined through the use of highly selective unlabeled receptor antagonists, ICI 118,551 (50 nM) and ICI 89,406 (70 nM). Dramatic species differences between rats and guinea pigs were observed in the neuroanatomical regional localization of the beta adrenergic receptor subtypes. For example, in themore » thalamus prominent beta-1 and beta-2 receptor populations were identified in the rat; however, the entire thalamus of the guinea pig had few, if any, beta adrenergic receptors of either subtype. Hippocampal area CA1 had high levels of beta-2 adrenergic receptors in both rats and guinea pigs but was accompanied by a widespread distribution of beta-2 adrenergic receptors only in rats. Quantitative autoradiographic analyses of 25 selected neuroanatomical regions (1) confirmed the qualitative differences in CNS beta adrenergic receptor localization, (2) determined that guinea pigs had significantly lower levels of beta adrenergic receptors than rats and (3) indicated a differential pattern of receptor subtypes between the two species. Knowledge of species differences in receptor patterns may be useful in designing effective experiments as well as in exploring the relationships between receptor and innervation patterns. Collectively, these data suggest caution be used in extrapolation of the relationships of neurotransmitters and receptors from studies of a single species.« less

  16. α1b-Adrenergic Receptor Localization and Relationship to the D1-Dopamine Receptor in the Rat Nucleus Accumbens.

    PubMed

    Mitrano, Darlene A; Jackson, Kelsey; Finley, Samantha; Seeley, Allison

    2018-02-10

    The α1-adrenergic receptors (α1ARs) have been implicated in numerous actions of the brain, including attention and wakefulness. Additionally, they have been identified as contributing to disorders of the brain, such as drug addiction, and recent work has shown a role of these receptors in relapse to psychostimulants. While some functionality is known, the actual subcellular localization of the subtypes of the α1ARs remains to be elucidated. Further, their anatomical relationship to receptors for other neurotransmitters, such as dopamine (DA), remains unclear. Therefore, using immunohistochemistry and electron microscopy techniques, this study describes the subcellular localization of the α1b-adrenergic receptor (α1bAR), the subtype most tied to relapse behaviors, as well as its relationship to the D1-dopamine receptor (D1R) in both the shell and core of the rat nucleus accumbens (NAc). Overall, α1bARs were found in unmyelinated axons and axon terminals with some labeling in dendrites. In accordance with other studies of the striatum, the D1R was found mainly in dendrites and spines; therefore, colocalization of the D1R with the α1bAR was rare postsynaptically. However, in the NAc shell, when the receptors were co-expressed in the same neuronal elements there was a trend for both receptors to be found on the plasma membrane, as opposed to the intracellular compartment. This study provides valuable anatomical information about the α1bAR and its relationship to the D1R and the regulation of DA and norepinephrine (NE) neurotransmission in the brain which have been examined previously. Published by Elsevier Ltd.

  17. The effects of dopamine receptor 1 and 2 agonists and antagonists on sexual and aggressive behaviors in male green anoles.

    PubMed

    Smith, Alexandra N; Kabelik, David

    2017-01-01

    The propensity to exhibit social behaviors during interactions with same-sex and opposite-sex conspecifics is modulated by various neurotransmitters, including dopamine. Dopamine is a conserved neurotransmitter among vertebrates and dopaminergic receptors are also highly conserved among taxa. Activation of D1 and D2 dopamine receptor subtypes has been shown to modulate social behaviors, especially in mammalian and avian studies. However, the specific behavioral functions of these receptors vary across taxa. In reptiles there have been few studies examining the relationship between dopaminergic receptors and social behaviors. We therefore examined the effects of D1 and D2 agonists and antagonists on sexual and aggressive behaviors in the male green anole lizard (Anolis carolinensis). Treatment with high doses of both D1 and D2 agonists was found to impair both sexual and aggressive behaviors. However, the D1 agonist treatment was also found to impair motor function, suggesting that those effects were likely nonspecific. Lower doses of both agonists and antagonists failed to affect social behaviors. These findings provide some evidence for D2 receptor regulation of social behaviors, but in contrast with previous research, these effects are all inhibitory and no effects were found for manipulations of D1 receptors. A potential reason for the lack of more widespread effects on social behaviors using moderate or low drug doses is that systemic injection of drugs resulted in effects throughout the whole brain, thus affecting counteracting circuits which negated one another, making measurable changes in behavioral output difficult to detect. Future studies should administer drugs directly into brain regions known to regulate sexual and aggressive behaviors.

  18. Synthesis, molecular properties estimations, and dual dopamine D2 and D3 receptor activities of Benzthiazole-based ligands.

    NASA Astrophysics Data System (ADS)

    Schübler, Moritz; Sadek, Bassem; Kottke, Tim; Weizel, Lilia; Stark, Holger

    2017-09-01

    Neurleptic drugs, e.g. aripiprazole, targeting the dopamine D2s and D3 receptors (D2sR and D3R) in the central nervous system are widely used in the treatment of several psychotic and neurodegenerative diseases. Therefore, a new series of benz[d]thiazole-based ligands (1-18) was synthesized by applying the bioisosteric approach derived from the selective D3Rs ligand BP-897 and its structurally related benz[d]imidazole derivatives. Herein, introduction of the benz[d]thiazole moiety was well tolerated by D2sR and D3R binding sites leading to antagonist affinities in the low nanomolar concentration range at both receptor subtypes. Further exploration of different substitution patterns at the benz[d]thiazole heterocycle and the basic 4-phenylpiperazine resulted in the discovery of high dually acting D2sR and D3R ligands. Moreover, the methoxy substitution at 2-position of 4-phenylpiperazine resulted in significantly (22-fold) increased D2sR binding affinity as compared to the parent ligand BP-897, and improved physicochemical and drug-likeness properties of ligands 1-9. However, the latter structural modifications failed to improve the drug-able properties in ligands having un-substituted 4-phenylpiperazine analogues (10-18). Accordingly, compound 7 showed in addition to high dual affinity at the D2sR and D3R (Ki (hD2SR) = 2.8 ± 0.8 nM; Ki (hD3R) = 3.0 ± 1.6 nM), promising clogS, clogP, LE (hD2sR, hD3R), LipE (hD2sR, hD3R), and drug-likeness score values of -4.7, 4.2, (0.4, 0.4), (4.4, 4.3), and 0.7, respectively. Also, the deaminated analogue 8 (Ki (hD2SR) = 3.2 ± 0.4 nM; Ki (hD3R) = 8.5 ± 2.2 nM) revealed clogS, clogP, LE (hD2sR, hD3R), LipE (hD2sR, hD3R) and drug-likeness score values of -4.7, 4.2, (0.4, 0.4), (3.9, 3.5), and 0.4, respectively. The results observed for the newly developed benz[d]thiazole-based ligands 1-18 provide clues for the diversity in structure activity relationships (SARs) at the D2sR and D3R subtypes.

  19. Occurrence of breast cancer subtypes in adolescent and young adult women

    PubMed Central

    2012-01-01

    Introduction Breast cancers are increasingly recognized as heterogeneous based on expression of receptors for estrogen (ER), progesterone (PR), and human epidermal growth factor receptor 2 (HER2). Triple-negative tumors (ER-/PR-/HER2-) have been reported to be more common among younger women, but occurrence of the spectrum of breast cancer subtypes in adolescent and young adult (AYA) women aged between 15 and 39 years is otherwise poorly understood. Methods Data regarding all 5,605 AYA breast cancers diagnosed in California during the period 2005 to 2009, including ER and PR status (referred to jointly as hormone receptor (HR) status) and HER2 status, was obtained from the population-based California Cancer Registry. Incidence rates were calculated by subtype (triple-negative; HR+/HER2-; HR+/HER2+; HR-/HER2+), and logistic regression was used to evaluate differences in subtype characteristics by age group. Results AYAs had higher proportions of HR+/HER2+, triple-negative and HR-/HER2+ breast cancer subtypes and higher proportions of patients of non-White race/ethnicity than did older women. AYAs also were more likely to be diagnosed with stage III/IV disease and high-grade tumors than were older women. Rates of HR+/HER2- and triple-negative subtypes in AYAs varied substantially by race/ethnicity. Conclusions The distribution of breast cancer subtypes among AYAs varies from that observed in older women, and varies further by race/ethnicity. Observed subtype distributions may explain the poorer breast cancer survival previously observed among AYAs. PMID:22452927

  20. α(2) noradrenergic receptor suppressed CaMKII signaling in spinal dorsal horn of mice with inflammatory pain.

    PubMed

    Wang, Xin-Tai; Lian, Xia; Xu, Ying-Ming; Suo, Zhan-Wei; Yang, Xian; Hu, Xiao-Dong

    2014-02-05

    Intrathecal application of α2 noradrenergic receptor agonists effectively alleviates the pathological pain induced by peripheral tissue injury. However, the spinal antinociceptive mechanisms of α2 noradrenergic receptors remain to be characterized. The present study performed immunohistochemistry and western blot to elucidate the signaling pathway initiated by α2 noradrenergic receptors in spinal dorsal horn of mice, and identified calcium/calmodulin-dependent protein kinase II (CaMKII) as an important target for noradrenergic suppression of inflammatory pain. Our data showed that intraplantar injection of Complete Freund's Adjuvant (CFA) substantially enhanced CaMKII autophosphorylation at Threonine 286, which could be abolished by intrathecal administration of α2 noradrenergic receptor agonist clonidine. Gi protein-coupled α2 noradrenergic receptor might inhibit cAMP-dependent protein kinase (PKA) to disturb CaMKII signaling. We found that pharmacological activation of PKA in intact mice also enhanced spinal CaMKII autophosphorylation level, which was completely antagonized by clonidine. Moreover, direct PKA inhibition in CFA-injected mice mimicked the suppressive effect of α2 noradrenergic receptors on CaMKII. PKA inhibition has been shown to downregulate CaMKII by enhancing protein phosphatase activity. Consistent with this notion, spinal treatment with protein phosphatase inhibitor okadaic acid ruled out clonidine-mediated CaMKII dephosphorylation in CFA-injected mice. Through PKA/protein phosphatase/CaMKII pathway, clonidine noticeably decreased CFA-evoked phosphorylation of N-methyl-d-aspartate subtype glutamate receptor GluN1 and GluN2B subunit as well as α-amino-3-hydroxy-5-methylisoxazole-4-propionic Acid subtype glutamate receptor GluA1 subunit. These data suggested that interference with CaMKII signaling might represent an important mechanism underlying noradrenergic suppression of inflammatory pain. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. A new class of pyrazolo[5,1-c][1,2,4]triazines as γ-aminobutyric type A (GABAA) receptor subtype ligand: synthesis and pharmacological evaluation.

    PubMed

    Guerrini, Gabriella; Ciciani, Giovanna; Daniele, Simona; Martini, Claudia; Costagli, Camilla; Guarino, Chiara; Selleri, Silvia

    2018-05-15

    A comparison between compounds with pyrazolo[1,5-a]pyrimidine structure (series 4-6) and pyrazolo[5,1-c][1,2,4]triazine core (series 9) as ligands at GABA A -receptor subtype, was evaluated. Moreover, for pyrazolotriazine derivatives having binding recognition, the interaction on recombinant rat α(1-3,5) GABA A receptor subtypes, was performed. Among these latter, emerge compounds 9c, 9k, 9l, 9m and 9n as α1-selective and 9h as α2-selective ligands. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Flexible synthesis of poison-frog alkaloids of the 5,8-disubstituted indolizidine-class. II: Synthesis of (-)-209B, (-)-231C, (-)-233D, (-)-235B", (-)-221I, and an epimer of 193E and pharmacological effects at neuronal nicotinic acetylcholine receptors.

    PubMed

    Kobayashi, Soushi; Toyooka, Naoki; Zhou, Dejun; Tsuneki, Hiroshi; Wada, Tsutomu; Sasaoka, Toshiyasu; Sakai, Hideki; Nemoto, Hideo; Garraffo, H Martin; Spande, Thomas F; Daly, John W

    2007-01-01

    The 5,8-disubstituted indolizidines constitute the largest class of poison-frog alkaloids. Some alkaloids have been shown to act as noncompetitive blockers at nicotinic acetylcholine receptors but the proposed structures and the biological activities of most of the 5,8-disubstituted indolizidines have not been determined because of limited supplies of the natural products. We have therefore conducted experiments to confirm proposed structures and determine biological activities using synthetic compounds. Recently, we reported that one of this class of alkaloids, (-)-235B', acts as a noncompetitive antagonist for α4β2 nicotinic receptors, and its sensitivity is comparable to that of the classical competitive antagonist for this receptor, dihydro-β-erythroidine. The enantioselective syntheses of (-)-209B, (-)-231C, (-)-233D, (-)-235B", (-)-221I, and what proved to be an epimer of natural 193E, starting from common chiral lactams have been achieved. When we performed electrophysiological recordings to examine the effects of the synthetic alkaloids on two major subtypes of nicotinic receptors (α4β2 and α7) expressed in Xenopus laevis oocytes, (-)-231C effectively blocked α4β2 receptor responses (IC(50 )value, 1.5 μM) with a 7.0-fold higher potency than for blockade of α7 receptor responses. In contrast, synthetic (-)-221I and (-)-epi-193E were more potent in blocking α7 receptor responses (IC(50 )value, 4.4 μM and 9.1 μM, respectively) than α4β2 receptor responses (5.3-fold and 2.0-fold, respectively). We achieved the total synthesis of (-)-209B, (-)-231C, (-)-233D, (-)-235B", (-)-221I, and an epimer of 193E starting from common chiral lactams, and the absolute stereochemistry of natural (-)-233D was determined. Furthermore, the relative stereochemistry of (-)-231C and (-)-221I was also determined. The present asymmetric synthesis of the proposed structure for 193E revealed that the C-8 configuration of natural 193E should be revised. The selectivity for α4β2 and α7 nicotinic receptors differed markedly for the 5,8-disubstituted indolizidines tested, and thus it appears that the nature of the side chains in these indolizidines is crucial with regard to subtype-selectivity.

  3. Dopamine D3 Receptor Availability Is Associated with Inflexible Decision Making.

    PubMed

    Groman, Stephanie M; Smith, Nathaniel J; Petrullli, J Ryan; Massi, Bart; Chen, Lihui; Ropchan, Jim; Huang, Yiyun; Lee, Daeyeol; Morris, Evan D; Taylor, Jane R

    2016-06-22

    Dopamine D2/3 receptor signaling is critical for flexible adaptive behavior; however, it is unclear whether D2, D3, or both receptor subtypes modulate precise signals of feedback and reward history that underlie optimal decision making. Here, PET with the radioligand [(11)C]-(+)-PHNO was used to quantify individual differences in putative D3 receptor availability in rodents trained on a novel three-choice spatial acquisition and reversal-learning task with probabilistic reinforcement. Binding of [(11)C]-(+)-PHNO in the midbrain was negatively related to the ability of rats to adapt to changes in rewarded locations, but not to the initial learning. Computational modeling of choice behavior in the reversal phase indicated that [(11)C]-(+)-PHNO binding in the midbrain was related to the learning rate and sensitivity to positive, but not negative, feedback. Administration of a D3-preferring agonist likewise impaired reversal performance by reducing the learning rate and sensitivity to positive feedback. These results demonstrate a previously unrecognized role for D3 receptors in select aspects of reinforcement learning and suggest that individual variation in midbrain D3 receptors influences flexible behavior. Our combined neuroimaging, behavioral, pharmacological, and computational approach implicates the dopamine D3 receptor in decision-making processes that are altered in psychiatric disorders. Flexible decision-making behavior is dependent upon dopamine D2/3 signaling in corticostriatal brain regions. However, the role of D3 receptors in adaptive, goal-directed behavior has not been thoroughly investigated. By combining PET imaging with the D3-preferring radioligand [(11)C]-(+)-PHNO, pharmacology, a novel three-choice probabilistic discrimination and reversal task and computational modeling of behavior in rats, we report that naturally occurring variation in [(11)C]-(+)-PHNO receptor availability relates to specific aspects of flexible decision making. We confirm these relationships using a D3-preferring agonist, thus identifying a unique role of midbrain D3 receptors in decision-making processes. Copyright © 2016 the authors 0270-6474/16/366732-10$15.00/0.

  4. Opiate and N-methyl-D-aspartate receptors in form-deprivation myopia.

    PubMed

    Fischer, A J; Seltner, R L; Stell, W K

    1998-01-01

    Pharmacological studies have implicated retinal opiate pathways in the visual regulation of ocular growth. However, the effects of opiate receptor subtype-specific compounds on form-deprivation myopia (FDM) are inconsistent (Seltner et al., 1997), and may be mediated by non-opiate receptors. The purpose of this study was to test whether opiate receptor-inactive (D-) enantiomers elicit the same FDM-suppressing effect as their opiate receptor-active (L-) counterparts. Since some opiates are thought to act at NMDA receptors, we also tested whether NMDA receptor agonists and antagonists influence ocular growth or FDM. We found that both L- and D- enantiomers of morphine-like compounds (dextrorphanol and levorphanol, and D- and L-naloxone) were equally effective in blocking FDM. The NMDA receptor antagonists dextromethorphan, MK801, and AP5 also suppressed FDM. A single toxic dose of NMDA, that destroys many subtypes of amacrine cells (including those that synthesize the opioid peptide enkephalin), induced myopia and ocular enlargement in ungoggled eyes, and eliminated the ability of form-deprivation to enhance ocular growth. The NR-1 subunit of the NMDA receptor was localized to a narrowly stratified, intense stratum at approximately 50% depth in the inner plexiform layer, diffusely throughout the proximal inner plexiform layer, and to many somata in the amacrine and ganglion cell layers. These observations suggest that most effects of opiate receptor ligands on FDM in the chick are mediated by non-opiate receptors, which are likely to include NMDA receptors. NMDA as an excitotoxin transiently enhances ocular growth, but thereafter disables retinal mechanisms that promote emmetropization and FDM. These observations are consistent with a prominent role for pathways utilizing NMDA receptors in FDM and ocular growth-control.

  5. The effect of distant metastases sites on survival in de novo stage-IV breast cancer: A SEER database analysis.

    PubMed

    Wu, San-Gang; Li, Hui; Tang, Li-Ying; Sun, Jia-Yuan; Zhang, Wen-Wen; Li, Feng-Yan; Chen, Yong-Xiong; He, Zhen-Yu

    2017-06-01

    To investigate the effect of distant metastases sites on survival in patients with de novo stage-IV breast cancer. From 2010 to 2013, patients with a diagnosis of de novo stage-IV breast cancer were identified using the Surveillance, Epidemiology, and End Results database. Univariate and multivariate Cox regression analyses were performed to analyze the effect of distant metastases sites on breast cancer-specific survival and overall survival. A total of 7575 patients were identified. The most common metastatic sites were bone, followed by lung, liver, and brain. Patients with hormone receptor+/human epidermal growth factor receptor 2- and hormone receptor+/human epidermal growth factor receptor 2+ status were more prone to bone metastases. Lung and brain metastases were common in hormone receptor-/human epidermal growth factor receptor 2+ and hormone receptor-/human epidermal growth factor receptor 2- subtypes, and patients with hormone receptor+/ human epidermal growth factor receptor 2+ and hormone receptor-/human epidermal growth factor receptor 2+ subtypes were more prone to liver metastases. Patients with liver and brain metastases had unfavorable prognosis for breast cancer-specific survival and overall survival, whereas bone and lung metastases had no effect on patient survival in multivariate analyses. The hormone receptor-/human epidermal growth factor receptor 2- subtype conferred a significantly poorer outcome in terms of breast cancer-specific survival and overall survival. hormone receptor+/human epidermal growth factor receptor 2+ disease was associated with the best prognosis in terms of breast cancer-specific survival and overall survival. Patients with liver and brain metastases were more likely to experience poor prognosis for breast cancer-specific survival and overall survival by various breast cancer subtypes. Distant metastases sites have differential impact on clinical outcomes in stage-IV breast cancer. Follow-up screening for brain and liver metastases might be effective in improving breast cancer-specific survival and overall survival.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, M.E.; Khachaturian, H.; Watson, S.J.

    Using adjacent section autoradiography-immunocytochemistry, the distribution of (TH)naloxone binding sites was studied in relation to neuronal systems containing (Leu)enkephalin, dynorphin A, or beta-endorphin immunoreactivity in rat brain. Brain sections from formaldehyde-perfused rats show robust specific binding of (TH)naloxone, the pharmacological (mu-like) properties of which appear unaltered. In contrast, specific binding of the delta ligand (TH)D-Ala2,D-Leu5-enkephalin was virtually totally eliminated as a result of formaldehyde perfusion. Using adjacent section analysis, the authors have noted associations between (TH)naloxone binding sites and one, two, or all three opioid systems in different brain regions; however, in some areas, no apparent relationship could be observed.more » Within regions, the relationship was complex. The complexity of the association between (TH)naloxone binding sites and the multiple opioid systems, and previous reports of co-localization of mu and kappa receptors in rat brain, are inconsistent with a simple-one-to-one relationship between a given opioid precursor and opioid receptor subtype. Instead, since differential processing of the three precursors gives rise to peptides of varying receptor subtype potencies and selectivities, the multiple peptide-receptor relationships may point to a key role of post-translational processing in determining the physiological consequences of opioid neurotransmission.« less

  7. Pharmacological rescue of Ras signaling, GluA1-dependent synaptic plasticity, and learning deficits in a fragile X model.

    PubMed

    Lim, Chae-Seok; Hoang, Elizabeth T; Viar, Kenneth E; Stornetta, Ruth L; Scott, Michael M; Zhu, J Julius

    2014-02-01

    Fragile X syndrome, caused by the loss of Fmr1 gene function, is the most common form of inherited mental retardation, with no effective treatment. Using a tractable animal model, we investigated mechanisms of action of a few FDA-approved psychoactive drugs that modestly benefit the cognitive performance in fragile X patients. Here we report that compounds activating serotonin (5HT) subtype 2B receptors (5HT2B-Rs) or dopamine (DA) subtype 1-like receptors (D1-Rs) and/or those inhibiting 5HT2A-Rs or D2-Rs moderately enhance Ras-PI3K/PKB signaling input, GluA1-dependent synaptic plasticity, and learning in Fmr1 knockout mice. Unexpectedly, combinations of these 5HT and DA compounds at low doses synergistically stimulate Ras-PI3K/PKB signal transduction and GluA1-dependent synaptic plasticity and remarkably restore normal learning in Fmr1 knockout mice without causing anxiety-related side effects. These findings suggest that properly dosed and combined FDA-approved psychoactive drugs may effectively treat the cognitive impairment associated with fragile X syndrome.

  8. Pharmacological identification of cholinergic receptor subtypes on Drosophila melanogaster larval heart.

    PubMed

    Malloy, Cole A; Ritter, Kyle; Robinson, Jonathan; English, Connor; Cooper, Robin L

    2016-01-01

    The Drosophila melanogaster heart is a popular model in which to study cardiac physiology and development. Progress has been made in understanding the role of endogenous compounds in regulating cardiac function in this model. It is well characterized that common neurotransmitters act on many peripheral and non-neuronal tissues as they flow through the hemolymph of insects. Many of these neuromodulators, including acetylcholine (ACh), have been shown to act directly on the D. melanogaster larval heart. ACh is a primary neurotransmitter in the central nervous system (CNS) of vertebrates and at the neuromuscular junctions on skeletal and cardiac tissue. In insects, ACh is the primary excitatory neurotransmitter of sensory neurons and is also prominent in the CNS. A full understanding regarding the regulation of the Drosophila cardiac physiology by the cholinergic system remains poorly understood. Here we use semi-intact D. melanogaster larvae to study the pharmacological profile of cholinergic receptor subtypes, nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs), in modulating heart rate (HR). Cholinergic receptor agonists, nicotine and muscarine both increase HR, while nAChR agonist clothianidin exhibits no significant effect when exposed to an open preparation at concentrations as low as 100 nM. In addition, both nAChR and mAChR antagonists increase HR as well but also display capabilities of blocking agonist actions. These results provide evidence that both of these receptor subtypes display functional significance in regulating the larval heart's pacemaker activity.

  9. Muscarinic receptor subtype selectivity of novel heterocyclic QNB analogues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgold, J.; Cohen, V.I.; Paek, R.

    1991-01-01

    In an effort at synthesizing centrally-active subtype-selective antimuscarinic agents, the authors derivatized QNB (quinuclidinyl benzilate), a potent muscarinic antagonist, by replacing one of the phenyl groups with less lipophilic heterocyclic moieties. The displacement of ({sup 3}H)-N-methyl scopolamine binding by these novel compounds to membranes from cells expressing ml - m4 receptor subtypes was determined. Most of the novel 4-bromo-QNB analogues were potent and slightly selective for ml receptors. The 2-thienyl derivative was the most potent, exhibiting a 2-fold greater potency than BrQNB at ml receptors, and a 4-fold greater potency than BrQNB at ml receptors, and a 4-fold greater potencymore » at m2 receptors. This compound was also considerably less lipophilic than BrQNB as determined from its retention time on C18 reverse phase HPLC. This compound may therefore be useful both for pharmacological studies and as a candidate for a radioiodinated SPECT imaging agent for ml muscarinic receptors in human brain.« less

  10. Purinergic P2X receptors: structural models and analysis of ligand-target interaction.

    PubMed

    Dal Ben, Diego; Buccioni, Michela; Lambertucci, Catia; Marucci, Gabriella; Thomas, Ajiroghene; Volpini, Rosaria

    2015-01-07

    The purinergic P2X receptors are ligand-gated cation channels activated by the endogenous ligand ATP. They assemble as homo- or heterotrimers from seven cloned subtypes (P2X1-7) and all trimer subunits present a common topology consisting in intracellular N- and C- termini, two transmembrane domains and a large extracellular domain. These membrane proteins are present in virtually all mammalian tissues and regulate a large variety of responses in physio- and pathological conditions. The development of ligands that selectively activate or block specific P2X receptor subtypes hence represents a promising strategy to obtain novel pharmacological tools for the treatment of pain, cancer, inflammation, and neurological, cardiovascular, and endocrine diseases. The publication of the crystal structures of zebrafish P2X4 receptor in inactive and ATP-bound active forms provided structural data for the analysis of the receptor structure, the interpretation of mutagenesis data, and the depiction of ligand binding and receptor activation mechanism. In addition, the availability of ATP-competitive ligands presenting selectivity for P2X receptor subtypes supports the design of new potent and selective ligands with possibly improved pharmacokinetic profiles, with the final aim to obtain new drugs. This study describes molecular modelling studies performed to develop structural models of the human and rat P2X receptors in inactive and active states. These models allowed to analyse the role of some non-conserved residues at ATP binding site and to study the receptor interaction with some non-specific or subtype selective agonists and antagonists. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Age-Specific Incidence of Breast Cancer Subtypes: Understanding the Black–White Crossover

    PubMed Central

    2012-01-01

    Background Breast cancer incidence is higher among black women than white women before age 40 years, but higher among white women than black women after age 40 years (black–white crossover). We used newly available population-based data to examine whether the age-specific incidences of breast cancer subtypes vary by race and ethnicity. Methods We classified 91908 invasive breast cancers diagnosed in California between January 1, 2006, and December 31, 2009, by subtype based on tumor expression of estrogen receptor (ER) and progesterone receptor (PR)—together referred to as hormone receptor (HR)—and human epidermal growth factor receptor 2 (HER2). Breast cancer subtypes were classified as ER or PR positive and HER2 negative (HR+/HER2−), ER or PR positive and HER2 positive (HR+/HER2+), ER and PR negative and HER2 positive (HR−/HER2+), and ER, PR, and HER2 negative (triple-negative). We calculated and compared age-specific incidence rates, incidence rate ratios, and 95% confidence intervals by subtype and race (black, white, Hispanic, and Asian). All P values are two-sided. Results We did not observe an age-related black–white crossover in incidence for any molecular subtype of breast cancer. Compared with white women, black women had statistically significantly higher rates of triple-negative breast cancer at all ages but statistically significantly lower rates of HR+/HER2− breast cancers after age 35 years (all P < .05). The age-specific incidence of HR+/HER2+ and HR−/HER2+ subtypes did not vary markedly between white and black women. Conclusions The black–white crossover in breast cancer incidence occurs only when all breast cancer subtypes are combined and relates largely to higher rates of triple-negative breast cancers and lower rates of HR+/HER2− breast cancers in black vs white women. PMID:22773826

  12. Modulation of the adaptive response to stress by brain activation of selective somatostatin receptor subtypes.

    PubMed

    Stengel, Andreas; Rivier, Jean; Taché, Yvette

    2013-04-01

    Somatostatin-14 was discovered in 1973 in the hypothalamus as a peptide inhibiting growth hormone release. Somatostatin interacts with five receptor subtypes (sst(1-5)) which are widely distributed in the brain with a distinct, but overlapping, expression pattern. During the last few years, the development of highly selective peptide agonists and antagonists provided new insight to characterize the role of somatostatin receptor subtypes in the pleiotropic actions of somatostatin. Recent evidence in rodents indicates that the activation of selective somatostatin receptor subtypes in the brain blunts stress-corticotropin-releasing factor (CRF) related ACTH release (sst2/5), sympathetic-adrenal activaton (sst5), stimulation of colonic motility (sst1), delayed gastric emptying (sst5), suppression of food intake (sst2) and the anxiogenic-like (sst2) response. These findings suggest that brain somatostatin signaling pathways may play an important role in dampening CRF-mediated endocrine, sympathetic, behavioral and visceral responses to stress. Published by Elsevier Inc.

  13. Control of glycinergic input to spinal dorsal horn neurons by distinct muscarinic receptor subtypes revealed using knockout mice.

    PubMed

    Zhang, Hong-Mei; Zhou, Hong-Yi; Chen, Shao-Rui; Gautam, Dinesh; Wess, Jürgen; Pan, Hui-Lin

    2007-12-01

    Muscarinic acetylcholine receptors (mAChRs) play an important role in the tonic regulation of nociceptive transmission in the spinal cord. However, how mAChR subtypes contribute to the regulation of synaptic glycine release is unknown. To determine their role, glycinergic spontaneous inhibitory postsynaptic currents (sIPSCs) were recorded in lamina II neurons by using whole-cell recordings in spinal cord slices of wild-type (WT) and mAChR subtype knockout (KO) mice. In WT mice, the mAChR agonist oxotremorine-M dose-dependently decreased the frequency of sIPSCs in most neurons, but it had variable effects in other neurons. In contrast, in M3-KO mice, oxotremorine-M consistently decreased the glycinergic sIPSC frequency in all neurons tested, and in M2/M4 double-KO mice, it always increased the sIPSC frequency. In M2/M4 double-KO mice, the potentiating effect of oxotremorine-M was attenuated by higher concentrations in some neurons through activation of GABA(B) receptors. In pertussis toxin-treated WT mice, oxotremorine-M also consistently increased the sIPSC frequency. In M2-KO and M4-KO mice, the effect of oxotremorine-M on sIPSCs was divergent because of the opposing functions of the M3 subtype and the M2 and M4 subtypes. This study demonstrates that stimulation of the M2 and M4 subtypes inhibits glycinergic inputs to spinal dorsal horn neurons of mice, whereas stimulation of the M3 subtype potentiates synaptic glycine release. Furthermore, GABA(B) receptors are involved in the feedback regulation of glycinergic synaptic transmission in the spinal cord. This study revealed distinct functions of mAChR subtypes in controlling glycinergic input to spinal dorsal horn neurons.

  14. Phase I trial on sms-D70 somatostatin analogue in advanced prostate and renal cell cancer.

    PubMed

    Joensuu, T K; Nilsson, S; Holmberg, A R; Márquez, M; Tenhunen, M; Saarto, T; Joensuu, H

    2004-12-01

    Plasma concentrations and tolerability of a novel somatostatin analogue sms-D70 were studied in patients with metastatic hormone-resistant prostate cancer (HRPC) or metastatic renal cell cancer. To overcome the limitations of the octapeptides having affinity only to somatostatin receptor subtypes 2 and 5, HRPC expressing mainly somatostatin receptors 1 and 4, a somatostatin derivative based on the natural somatostatin having affinity to all five somatostatin receptor subtypes, was developed. The in vivo stability of this dextran-conjugated derivative, somatostatin-D70, was confirmed previously in animal studies, and the nanomolar "panaffinity" has been shown in in vitro receptor binding studies on cell lines transfected with the somatostatin receptor genes. Sms-D70 was given with subcutaneous injection once a week at dose levels of 5, 10, 20, 35, and 50 mg. For pharmacokinetic studies, sms-D70 was labeled with 131I. Fourteen patients were treated, of whom 10 had prostate and 4 renal cell cancer. The kinetic data revealed high stability with a long half-life in the blood. The drug was well tolerated, and no grade 4 (WHO) toxicity was observed. The maximal tolerated dose could not be established due to the lack of dose-limiting toxicities. Objective PSA responses were not recorded in these heavily treated patients, but subjective stabilization of pain was observed and urinary symptoms were alleviated in four patients. Three patients with metastatic HRPC received 5-10-mg intravenous injections of sms-D70 once weekly for 4-14 months on a compassionate use basis. In all cases, serum PSA values decreased more than 50% from the pretreatment level, but these results are difficult to interpret due to concomitant treatments given to these patients. In conclusion, sms-D70 was well tolerated in the treatment of metastatic prostate and renal cell cancer, but no responses were found in these heavily treated patients.

  15. Dopamine D1 and μ-opioid receptor antagonism blocks anticipatory 50 kHz ultrasonic vocalizations induced by palatable food cues in Wistar rats.

    PubMed

    Buck, Cara L; Vendruscolo, Leandro F; Koob, George F; George, Olivier

    2014-03-01

    Fifty kilohertz ultrasonic vocalizations (USVs) have been sometimes shown to reflect positive affective-like states in rats. Rewarding events, such as access to palatable food or drugs of abuse, increase the number of anticipatory 50-kHz USVs. However, little is known about the predictability of USVs, subtypes of USVs involved, and underlying neurobiological mechanisms. We examined whether cue-induced anticipatory 50-kHz USVs predict palatable food intake and tested the effects of dopamine D1 and μ-opioid receptor antagonism on anticipatory USVs. Food-restricted rats received repeated sessions of a 2-min cue light immediately followed by a 5-min access to palatable food. Ultrasonic vocalizations were recorded during cue presentation. After 24 pairing sessions, the rats were pretreated with the D1 receptor antagonist SCH 23390 (5, 10, and 20 μg/kg) and μ-opioid receptor antagonist naltrexone (0.03, 0.06, 0.13, 0.25, 0.5, and 1 mg/kg) in a Latin-square design, and USVs were recorded during cue presentation. Rats emitted 50-kHz USVs during cue presentation, and the number of USVs increased across sessions with robust and stable interindividual differences. Escalation in USVs was subtype-dependent, with nontrill calls significantly increasing over time. Palatable food intake was positively correlated with anticipatory 50-kHz USVs. Moreover, anticipatory USVs were dose-dependently prevented by antagonism of D1 and μ-opioid receptors. These findings demonstrate that anticipatory 50-kHz USVs represent a stable phenotype of increased motivation for food, and dopamine and opioid systems appear to mediate anticipatory 50-kHz USVs.

  16. Learning and Memory Impairments in a Congenic C57BL/6 Strain of Mice That Lacks the M2 Muscarinic Acetylcholine Receptor Subtype

    PubMed Central

    Bainbridge, Natalie K.; Koselke, Lisa R.; Jeon, Jongrye; Bailey, Kathleen R.; Wess, Jürgen; Crawley, Jacqueline N.; Wrenn, Craige C.

    2009-01-01

    The neurotransmitter acetylcholine is an important modulator of cognitive functions including attention, learning, and memory. The actions of acetylcholine are mediated by five distinct muscarinic acetylcholine receptor subtypes (M1-M5). The lack of drugs with a high degree of selectivity for these subtypes has impeded the determination of which subtypes mediate which components of cholinergic neurotransmission relevant to cognitive abilities. The present study examined the behavioral functions of the M2 muscarinic receptor subtype by utilizing congenic C57BL/6 mice possessing a null-mutation in the M2 muscarinic receptor gene (M2−/− mice). Comprehensive assessment of general health and neurological function found no major differences between M2−/− and wild-type (M2+/+) mice. In tests of learning and memory, M2−/− mice were impaired in the acquisition (trials to criterion), but not the retention (72 hr) of a passive avoidance task. In a novel open field, M2−/− mice were impaired in between-sessions, but not within-session habituation. In a holeboard test of spatial memory, M2−/− mice committed more errors in working memory than M2+/+ mice. Reference memory did not differ between the genotypes. M2−/− mice showed no impairments in either cued or contextual fear conditioning. These findings replicate and extend earlier findings in a hybrid strain and solidify the interpretation that the M2 receptor plays a critical role in specific components of cognitive abilities. PMID:18346798

  17. Dopamine inhibits reproduction in female zebrafish (Danio rerio) via three pituitary D2 receptor subtypes.

    PubMed

    Fontaine, Romain; Affaticati, Pierre; Yamamoto, Kei; Jolly, Cécile; Bureau, Charlotte; Baloche, Sylvie; Gonnet, Françoise; Vernier, Philippe; Dufour, Sylvie; Pasqualini, Catherine

    2013-02-01

    In many teleosts, the stimulatory control of gonadotrope axis by GnRH is opposed by an inhibitory control by dopamine (DA). The functional importance of this inhibitory pathway differs widely from one teleostean species to another. The zebrafish (Danio rerio) is a teleost fish that has become increasingly popular as an experimental vertebrate model. However, the role of DA in the neuroendocrine control of its reproduction has never been studied. Here the authors evaluated in sexually regressed female zebrafish the effects of in vivo treatments with a DA D2 receptor (D2-R) antagonist domperidone, or a GnRH agonist, alone and in combination, on the pituitary level of FSHβ and LHβ transcripts, the gonadosomatic index, and the ovarian histology. Only the double treatment with GnRH agonist and domperidone could induce an increase in the expression of LHβ, in the gonadosomatic index, and a stimulation of ovarian vitellogenesis, indicating that removal of dopaminergic inhibition is required for the stimulatory action of GnRH and reactivation of ovarian function to occur. Using double immunofluorescent staining on pituitary, the authors showed in this species the innervation of LH cells by tyrosine-hydroxylase immunoreactive fibers. Finally, using in situ hybridization and immunofluorescence, the authors showed that the three subtypes of zebrafish DA D2-R (D2a, D2b, and D2c) were expressed in LH-producing cells, suggesting that they all may be involved in mediating this inhibition. These results show for the first time that, in zebrafish, DA has a direct and potent inhibitory action capable of opposing the stimulatory effect of GnRH in the neuroendocrine control of reproduction.

  18. Behavior of a cloned murine interferon alpha/beta receptor expressed in homospecific or heterospecific background.

    PubMed Central

    Uzé, G; Lutfalla, G; Bandu, M T; Proudhon, D; Mogensen, K E

    1992-01-01

    A murine interferon (IFN) alpha/beta receptor was cloned from the IFN-sensitive L1210 cell line on the basis of its homology with the human receptor. A combination of methods that includes the screening of random-primed and oligo(dT)-primed cDNA libraries and polymerase chain reactions with a single-side specificity was used. At the amino acid level, the murine IFN-alpha/beta shows 46% identity with its human counterpart. Both human WISH cells presenting a low sensitivity to mouse IFN and a murine L1210 mutant subline that does not express the receptor have been stably transfected with the murine IFN-alpha/beta receptor. Whereas transfected human cells became sensitive to a limited number of mouse IFN-alpha/beta subtypes, the transfected murine L1210 mutant was found to be fully complemented and became sensitive to all mouse IFN-alpha/beta subtypes tested, including those that were not active on transfected human cells. These results strongly suggest that the receptor described here is implicated in the mediation of the activities of all murine IFN-alpha/beta subtypes. Images PMID:1533935

  19. The 5-HT{sub 2A} serotoninergic receptor is expressed in the MCF-7 human breast cancer cell line and reveals a mitogenic effect of serotonin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonier, Brigitte; Arseneault, Madeleine; Institut National de la Recherche Scientifique-Institut Armand-Frappier, Montreal, Que.

    2006-05-19

    Serotonin (5-hydroxytryptamine, 5-HT) has been described as a mitogen in a variety of cell types and carcinomas. It exerts its mitogenic effect by interacting with a wide range of 5-HT receptor types. Certain studies suggest that some selective serotonin re-uptake inhibitors promote breast cancer in animals and humans. This study attempts to clarify the role of serotonin in promoting the growth of neoplastic mammary cells. Expression of the 5-HT{sub 2A} serotoninergic receptor subtype in MCF-7 cells was determined by RT-PCR, Western blotting, and immunofluorescence analysis. The mitogenic effect of 5-HT on MCF-7 cells was determined by means of the MTTmore » proliferation assay. We have demonstrated that the 5-HT{sub 2A} receptor subtype is fully expressed in the MCF-7 human breast cancer cell line, in terms of encoding mRNA and receptor protein. Automated sequencing has confirmed that the 5-HT{sub 2A} receptor present in this cell line is identical to the 5-HT{sub 2A} receptor found in human platelets and in human cerebral cortex. Furthermore, this receptor was found by immunofluorescence to be on the plasma membrane. MTT proliferation assays revealed that 5-HT and DOI, a selective 5-HT{sub 2A} receptor subtype agonist, stimulated MCF-7 cell. These results indicate that 5-HT plays a mitogenic role in neoplastic mammary cells. Our data also indicate that 5-HT exerts this positive growth effect on MCF-7 cells through, in part, the 5-HT{sub 2A} receptor subtype, which is fully expressed in this cell line.« less

  20. Tamoxifen therapy improves overall survival in luminal A subtype of ductal carcinoma in situ: a study based on nationwide Korean Breast Cancer Registry database.

    PubMed

    Hwang, Ki-Tae; Kim, Eun-Kyu; Jung, Sung Hoo; Lee, Eun Sook; Kim, Seung Il; Lee, Seokwon; Park, Heung Kyu; Kim, Jongjin; Oh, Sohee; Kim, Young A

    2018-06-01

    To determine the prognostic role of tamoxifen therapy for patients with ductal carcinoma in situ (DCIS) according to molecular subtypes. Data of 14,944 patients with DCIS were analyzed. Molecular subtypes were classified into four categories based on expression of estrogen receptor (ER)/progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). Kaplan-Meier estimator was used for overall survival analysis while Cox proportional hazards model was used for univariate and multivariate analyses. Luminal A subtype (ER/PR+, HER2-) showed higher (P = .009) survival rate than triple-negative (TN) subtype. Tamoxifen therapy group showed superior (P < .001) survival than no-tamoxifen therapy group. It had survival benefit only for luminal A subtype (P = .001). Tamoxifen therapy resulted in higher survival rate in subgroups with positive ER (P = .006), positive PR (P = .009), and negative HER2 (P < .001). In luminal A subtype, tamoxifen therapy showed lower hazard ratio (HR) compared to no-tamoxifen therapy (HR, 0.420; 95% CI 0.250-0.705; P = .001). Tamoxifen therapy was a significant independent factor by multivariate analysis (HR, 0.538; 95% CI 0.306-0.946; P = .031) as well as univariate analysis. Tamoxifen therapy group showed superior prognosis than the no-tamoxifen therapy group. Its prognostic influence was only effective for luminal A subtype. Patients with luminal A subtype showed higher survival rate than those with TN subtype. Active tamoxifen therapy is recommended for DCIS patients with luminal A subtype, and routine tests for ER, PR, and HER2 should be considered for DCIS.

  1. Botulinum neurotoxin D-C uses synaptotagmin I and II as receptors, and human synaptotagmin II is not an effective receptor for type B, D-C and G toxins.

    PubMed

    Peng, Lisheng; Berntsson, Ronnie P-A; Tepp, William H; Pitkin, Rose M; Johnson, Eric A; Stenmark, Pål; Dong, Min

    2012-07-01

    Botulinum neurotoxins (BoNTs) are classified into seven types (A-G), but multiple subtype and mosaic toxins exist. These subtype and mosaic toxins share a high sequence identity, and presumably the same receptors and substrates with their parental toxins. Here, we report that a mosaic toxin, type D-C (BoNT/D-C), uses different receptors from its parental toxin BoNT/C. BoNT/D-C, but not BoNT/C, binds directly to the luminal domains of synaptic vesicle proteins synaptotagmin (Syt) I and II, and requires expression of SytI/II to enter neurons. The SytII luminal fragment containing the toxin-binding site can block the entry of BoNT/D-C into neurons and reduce its toxicity in vivo in mice. We also found that gangliosides increase binding of BoNT/D-C to SytI/II and enhance the ability of the SytII luminal fragment to block BoNT/D-C entry into neurons. These data establish SytI/II, in conjunction with gangliosides, as the receptors for BoNT/D-C, and indicate that BoNT/D-C is functionally distinct from BoNT/C. We further found that BoNT/D-C recognizes the same binding site on SytI/II where BoNT/B and G also bind, but utilizes a receptor-binding interface that is distinct from BoNT/B and G. Finally, we also report that human and chimpanzee SytII has diminished binding and function as the receptor for BoNT/B, D-C and G owing to a single residue change from rodent SytII within the toxin binding site, potentially reducing the potency of these BoNTs in humans and chimpanzees.

  2. Novel oxotremorine-related heterocyclic derivatives: Synthesis and in vitro pharmacology at the muscarinic receptor subtypes.

    PubMed

    Dallanoce, Clelia; De Amici, Marco; Barocelli, Elisabetta; Bertoni, Simona; Roth, Bryan L; Ernsberger, Paul; De Micheli, Carlo

    2007-12-15

    A set of novel heterocyclic ligands (6-27) structurally related to Oxotremorine 2 was designed, synthesized and tested at muscarinic receptor subtypes (mAChRs). In the binding experiments at cloned human receptors (hm1-5), compounds 7 and 15 evidenced a remarkable affinity and selectivity for the hm2 subtype. The in vitro functional assays, performed on a selected group of derivatives at M(1), M(2), and M(3) tissue preparations, singled out the 3-butynyloxy-5-methylisoxazole trimethylammonium salt 7 as a potent unselective muscarinic agonist [pEC(50): 7.40 (M(1)), 8.18 (M(2)), and 8.14 (M(3))], whereas its 5-phenyl analogue 12 behaved as a muscarinic antagonist, slightly selective for the M(1) subtype [pK(B): 6.88 (M(1)), 5.95 (M(2)), 5.53 (M(3))]. Moreover, the functional data put in evidence that the presence of the piperidine ring may generate a functional selectivity, e.g., an M(1) antagonist/M(2) partial agonist/M(3) full agonist profile (compound 21), at variance with the corresponding quaternary ammonium salt (compound 22) which behaved as a muscarinic agonist at all M(1-3) receptors, with an appreciable selectivity for the cardiac M(2) receptors.

  3. [18F]Fluorophenylazocarboxylates: Design and Synthesis of Potential Radioligands for Dopamine D3 and μ-Opioid Receptor

    PubMed Central

    2017-01-01

    18F-Labeled building blocks from the type of [18F]fluorophenylazocarboxylic-tert-butyl esters offer a rapid, mild, and reliable method for the 18F-fluoroarylation of biomolecules. Two series of azocarboxamides were synthesized as potential radioligands for dopamine D3 and the μ-opioid receptor, revealing compounds 3d and 3e with single-digit and sub-nanomolar affinity for the D3 receptor and compound 4c with only micromolar affinity for the μ-opioid receptor, but enhanced selectivity for the μ-subtype in comparison to the lead compound AH-7921. A “minimalist procedure” without the use of a cryptand and base for the preparation of 4-[18F]fluorophenylazocarboxylic-tert-butyl ester [18F]2a was established, together with the radiosynthesis of methyl-, methoxy-, and phenyl-substituted derivatives ([18F]2b–f). With the substituted [18F]fluorophenylazocarbylates in hand, two prototype azocarboxylates radioligands were synthesized by 18F-fluoroarylation, namely the methoxy azocarboxamide [18F]3d as the D3 receptor radioligand and [18F]4a as a prototype structure of the μ-opioid receptor radioligand. By introducing the new series of [18F]fluorophenylazocarboxylic-tert-butyl esters, the method of 18F-fluoroarylation was significantly expanded, thereby demonstrating the versatility of 18F-labeled phenylazocarboxylates for the design of potential radiotracers for positron emission tomography . PMID:29479577

  4. US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status.

    PubMed

    Howlader, Nadia; Altekruse, Sean F; Li, Christopher I; Chen, Vivien W; Clarke, Christina A; Ries, Lynn A G; Cronin, Kathleen A

    2014-04-28

    In 2010, Surveillance, Epidemiology, and End Results (SEER) registries began collecting human epidermal growth factor 2 (HER2) receptor status for breast cancer cases. Breast cancer subtypes defined by joint hormone receptor (HR; estrogen receptor [ER] and progesterone receptor [PR]) and HER2 status were assessed across the 28% of the US population that is covered by SEER registries. Age-specific incidence rates by subtype were calculated for non-Hispanic (NH) white, NH black, NH Asian Pacific Islander (API), and Hispanic women. Joint HR/HER2 status distributions by age, race/ethnicity, county-level poverty, registry, stage, Bloom-Richardson grade, tumor size, and nodal status were evaluated using multivariable adjusted polytomous logistic regression. All statistical tests were two-sided. Among case patients with known HR/HER2 status, 36810 (72.7%) were found to be HR(+)/HER2(-), 6193 (12.2%) were triple-negative (HR(-)/HER2(-)), 5240 (10.3%) were HR(+)/HER2(+), and 2328 (4.6%) were HR(-)/HER2(+); 6912 (12%) had unknown HR/HER2 status. NH white women had the highest incidence rate of the HR(+)/HER2(-) subtype, and NH black women had the highest rate of the triple-negative subtype. Compared with women with the HR(+)/HER2(-) subtype, triple-negative patients were more likely to be NH black and Hispanic; HR(+)/HER2(+) patients were more likely to be NH API; and HR(-)/HER2(+) patients were more likely to be NH black, NH API, and Hispanic. Patients with triple-negative, HR(+)/HER2(+), and HR(-)/HER2(+) breast cancer were 10% to 30% less likely to be diagnosed at older ages compared with HR(+)/HER2(-) patients and 6.4-fold to 20.0-fold more likely to present with high-grade disease. In the future, SEER data can be used to monitor clinical outcomes in women diagnosed with different molecular subtypes of breast cancer for a large portion (approximately 28%) of the US population. Published by Oxford University Press 2014.

  5. Dopamine D2 receptor-mediated G-protein activation in rat striatum: functional autoradiography and influence of unilateral 6-hydroxydopamine lesions of the substantia nigra.

    PubMed

    Newman-Tancredi, A; Cussac, D; Brocco, M; Rivet, J M; Chaput, C; Touzard, M; Pasteau, V; Millan, M J

    2001-11-30

    Unilateral 6-hydroxydopamine (6-OHDA) lesions of substantia nigra pars compacta (SNPC) neurons in rats induce behavioural hypersensitivity to dopaminergic agonists. However, the role of specific dopamine receptors is unclear, and potential alterations in their transduction mechanisms remain to be evaluated. The present study addressed these issues employing the dopaminergic agonist, quinelorane, which efficaciously stimulated G-protein activation (as assessed by [35S]GTPgammaS binding) at cloned hD2 (and hD3) receptors. At rat striatal membranes, dopamine stimulated [35S]GTPgammaS binding by 1.9-fold over basal, but its actions were only partially reversed by the selective D2/D3 receptor antagonist, raclopride, indicating the involvement of other receptor subtypes. In contrast, quinelorane-induced stimulation (48% of the effect of dopamine) was abolished by raclopride, and by the D2 receptor antagonist, L741,626. Further, novel antagonists selective for D3 and D4 receptors, S33084 and S18126, respectively, blocked the actions of quinelorane at concentrations corresponding to their affinities for D2 receptors. Quinelorane potently induced contralateral rotation in unilaterally 6-OHDA-lesioned rats, an effect abolished by raclopride and L741,626, but not by D3 and D4 receptor-selective doses of S33084 and S18126, respectively. In functional ([35S]GTPgammaS) autoradiography experiments, quinelorane stimulated G-protein activation in caudate putamen and, to a lesser extent, in nucleus accumbens and cingulate cortex of naive rats. In unilaterally SNPC-lesioned rats, quinelorane-induced G-protein activation in the caudate putamen on the non-lesioned side was similar to that seen in naive animals (approximately 50% stimulation), but significantly greater on the lesioned side (approximately 80%). This increase was both pharmacologically and regionally specific since it was reversed by raclopride, and was not observed in nucleus accumbens or cingulate cortex. In conclusion, the present data indicate that, in rat striatum, the actions of quinelorane are mediated primarily by D2 receptors, and suggest that behavioural hypersensitivity to this agonist, induced by unilateral SNPC lesions, is associated with an increase in D2, but not D3 or D4, receptor-mediated G-protein activation.

  6. The adrenergic receptor subtypes present in frog (Rana esculenta) skin.

    PubMed

    Bellantuono, Vito; Cassano, Giuseppe; Lippe, Claudio

    2008-08-01

    Frog skin transports ions and water under hormonal control. In spite of the fundamental role played by adrenergic stimulation in maintaining the water balance of the organism, the receptor subtype(s) present in the skin have not been identified yet. We measured the increase in short-circuit current (ISC, an estimate of ion transport) induced by cirazoline, clonidine, xamoterol, formoterol, or BRL 37344, in order to verify the presence of alpha1, alpha2, beta1, beta2, or beta3 receptor subtypes, respectively. Only after treatment with formoterol, BRL 37344 and, to a lesser extent, cirazoline was measured a significant increase in ISC (57%, 33.2%, and 4.7%, respectively). The formoterol and BRL 37344 concentrations producing half-maximal effect (EC50) were 1.12 and 70.1 nM, respectively. Moreover, the formoterol effect was inhibited by treatment with ICI 118551 (antagonist of beta2 receptors) while SR 59230A (antagonist of beta3 receptors) had no effect; opposite findings were obtained when the BRL 37344 stimulation was investigated. Finally, by measuring the transepithelial fluxes of 22Na+ and 36Cl-, we demonstrated that Na+ absorption is increased by activation of beta2 and beta3 and is cAMP-sensitive, whereas the Cl- secretion is only increased by activation of beta2 receptors and is cAMP- and calmodulin-sensitive.

  7. Design and synthesis of N-(3,3-diphenylpropenyl)alkanamides as a novel class of high-affinity MT2-selective melatonin receptor ligands.

    PubMed

    Bedini, Annalida; Spadoni, Gilberto; Gatti, Giuseppe; Lucarini, Simone; Tarzia, Giorgio; Rivara, Silvia; Lorenzi, Simone; Lodola, Alessio; Mor, Marco; Lucini, Valeria; Pannacci, Marilou; Scaglione, Francesco

    2006-12-14

    A novel series of melatonin receptor ligands was discovered by opening the cyclic scaffolds of known classes of high affinity melatonin receptor antagonists, while retaining the pharmacophore elements postulated by previously described 3D-QSAR and receptor models. Compounds belonging to the classes of 2,3- and [3,3-diphenylprop(en)yl]alkanamides and of o- or [(m-benzyl)phenyl]ethyl-alkanamides were synthesized and tested on MT(1) and MT(2) receptors. The class of 3,3-diphenyl-propenyl-alkanamides was the most interesting one, with compounds having MT(2) receptor affinity similar to that of MLT, remarkable MT(2) selectivity, and partial agonist or antagonist behavior. In particular, the (E)-m-methoxy cyclobutanecarboxamido derivative 18f and the di-(m-methoxy) acetamido one, 18g, have sub-nM affinity for the MT(2) subtype, with more than 100-fold selectivity over MT(1), 18f being an antagonist and 18g a partial agonist on GTPgammaS test. Docking of 18g into a previously developed MT(2) receptor model showed a binding scheme consistent with that of other antagonists. The MT(2) expected binding affinities of the new compounds were calculated by a previously developed 3D-QSAR CoMFA model, giving satisfactory predictions.

  8. Effects of nucleotides on [3H]bradykinin binding in guinea pig: further evidence for multiple B2 receptor subtypes.

    PubMed

    Seguin, L; Widdowson, P S

    1993-02-01

    We have suggested recently the existence of three subtypes of B2 bradykinin receptors in tissues of guinea pigs. We have classified these B2 bradykinin receptors into B2a, B2b, and B2c subtypes depending on their affinity for various bradykinin antagonists. Because the actions of bradykinin in different cell systems appear to be both dependent on and independent of G proteins, we sought to determine whether the binding of [3H]bradykinin to the B2 subtypes is sensitive to guanine nucleotides and, therefore, possibly coupled to G proteins. In the ileum, where we have demonstrated B2a and B2b subtypes, specific [3H]bradykinin binding was reduced with GDP (100 microM) and the nonmetabolized analogue of GTP, guanyl-5'-yl-imidodiphosphate (GppNHp; 100 microM). Competition studies with bradykinin and with [Hyp3]bradykinin, which shows approximately 20-fold greater selectivity for the B2a subtype than bradykinin, were performed in the presence or absence of GppNHp (100 microM). The competition experiments demonstrated that binding to the B2a subtype, which has higher affinity for [Hyp3]bradykinin and bradykinin than the B2b subtype, was lost in the presence of GppNHp, whereas binding to the B2b subtype was unaffected. In contrast, GppNHp (100 microM) and GDP (100 microM) failed to alter specific [3H]bradykinin binding to B2b and B2c subtypes in lung. [3H]Bradykinin binding was unaffected by AMP, ADP, ATP, and GMP (100 microM each). Based on this evidence, we suggest that the B2a bradykinin subtype is coupled to G proteins. The B2b and B2c subtypes are either not coupled to G proteins, or may be coupled to the Go-type GTP binding proteins, which have been suggested to be less sensitive to guanine nucleotides.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Pirenzepine binding to membrane-bound, solubilized and purified muscarinic receptor subtypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgold, J.

    1986-05-01

    Muscarinic receptors were purified to near-homogeneity from bovine cortex, an area rich in the putative M1 subtype, and from bovine pons/medulla, an area rich in the putative M2 subtype. In both cases, the receptors were solubilized in digitonin and purified over an affinity column. Both the cortical and pons/medulla preparations yielded receptor proteins of 70,000 daltons. Pirenzepine binding was deduced from its competition with /sup 3/H-N-methyl scopolamine. The binding of pirenzepine to membrane-bound receptors from cortex was best described by a two site model, with approximately half the sites having a Ki of 6.4 x 10/sup -9/ M and themore » remaining sites having a Ki of 3.5 x 10/sup -7/ M. Membrane-bound receptors from pons/medulla bound pirenzepine according to a one-site model with a Ki of 1.1 x 10/sup -7/ M. After solubilization the two-site binding of cortical receptors became a one-site binding, Ki = 1.1 x 10/sup -7/M. This value was still five-fold lower than that of soluble receptors from pons/medulla. After purification however the affinity of pirenzepine for the pons/medulla receptor increased so that the two putative subtypes bound pirenzepine with approximately the same affinity. These findings suggest that the different pirenzepine binding characteristics used to define muscarinic receptor subtypes are not inherent in the receptor protein itself but may be due to coupling factors associated with the receptor.« less

  10. A Review of the Updated Pharmacophore for the Alpha 5 GABA(A) Benzodiazepine Receptor Model

    PubMed Central

    Clayton, Terry; Poe, Michael M.; Rallapalli, Sundari; Biawat, Poonam; Savić, Miroslav M.; Rowlett, James K.; Gallos, George; Emala, Charles W.; Kaczorowski, Catherine C.; Stafford, Douglas C.; Arnold, Leggy A.; Cook, James M.

    2015-01-01

    An updated model of the GABA(A) benzodiazepine receptor pharmacophore of the α5-BzR/GABA(A) subtype has been constructed prompted by the synthesis of subtype selective ligands in light of the recent developments in both ligand synthesis, behavioral studies, and molecular modeling studies of the binding site itself. A number of BzR/GABA(A) α5 subtype selective compounds were synthesized, notably α5-subtype selective inverse agonist PWZ-029 (1) which is active in enhancing cognition in both rodents and primates. In addition, a chiral positive allosteric modulator (PAM), SH-053-2′F-R-CH3 (2), has been shown to reverse the deleterious effects in the MAM-model of schizophrenia as well as alleviate constriction in airway smooth muscle. Presented here is an updated model of the pharmacophore for α5β2γ2 Bz/GABA(A) receptors, including a rendering of PWZ-029 docked within the α5-binding pocket showing specific interactions of the molecule with the receptor. Differences in the included volume as compared to α1β2γ2, α2β2γ2, and α3β2γ2 will be illustrated for clarity. These new models enhance the ability to understand structural characteristics of ligands which act as agonists, antagonists, or inverse agonists at the Bz BS of GABA(A) receptors. PMID:26682068

  11. Classics in Neuroimaging: The Serotonergic 2A Receptor System-from Discovery to Modern Molecular Imaging.

    PubMed

    T L'Estrade, Elina; Hansen, Hanne D; Erlandsson, Maria; Ohlsson, Tomas G; Knudsen, Gitte M; Herth, Matthias M

    2018-06-20

    Already in 1953, Woolley and Shaw speculated that serotonin could be involved in a range of central nervous system (CNS) disorders. Lysergic acid diethylamide (LSD) displayed an important role in this respect. It was used not only to antagonize biological effects of serotonin and to study the system itself, but also to identify serotonergic subtype receptors. The 5-HT 2A receptor was discovered in the 1970s and identified as the responsible receptor mediating psychedelic effects of LSD. The development of positron emission tomography (PET) allowed to study this receptor system in vivo. Parameters such as abundance of 5-HT 2A neuroreceptors or receptor occupancy can be determined using PET. As such, the development of 5-HT 2A receptor tracers started immediately after the introduction of PET in the mid-1970s. In this Viewpoint, we provide a historical overview from the discovery of serotonin to the identification of the 5-HT 2A receptor subtype and the subsequent development of 5-HT 2A receptor subtype specific PET tracers over the last four decades. We emphasize the interplay between pharmacology, medicinal chemistry, radiochemistry, and nuclear medicine that is important while developing a PET tracer. Moreover, we highlight selected examples applying 5-HT 2A receptor PET tracers within neurological diseases and drug occupancy studies.

  12. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolevsky, Alexander I.; Rosconi, Michael P.; Gouaux, Eric

    2010-02-02

    Ionotropic glutamate receptors mediate most excitatory neurotransmission in the central nervous system and function by opening a transmembrane ion channel upon binding of glutamate. Despite their crucial role in neurobiology, the architecture and atomic structure of an intact ionotropic glutamate receptor are unknown. Here we report the crystal structure of the {alpha}-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-sensitive, homotetrameric, rat GluA2 receptor at 3.6 {angstrom} resolution in complex with a competitive antagonist. The receptor harbours an overall axis of two-fold symmetry with the extracellular domains organized as pairs of local dimers and with the ion channel domain exhibiting four-fold symmetry. A symmetry mismatchmore » between the extracellular and ion channel domains is mediated by two pairs of conformationally distinct subunits, A/C and B/D. Therefore, the stereochemical manner in which the A/C subunits are coupled to the ion channel gate is different from the B/D subunits. Guided by the GluA2 structure and site-directed cysteine mutagenesis, we suggest that GluN1 and GluN2A NMDA (N-methyl-D-aspartate) receptors have a similar architecture, with subunits arranged in a 1-2-1-2 pattern. We exploit the GluA2 structure to develop mechanisms of ion channel activation, desensitization and inhibition by non-competitive antagonists and pore blockers.« less

  13. Identification and pathogenomic analysis of an Escherichia coli strain producing a novel Shiga toxin 2 subtype

    USDA-ARS?s Scientific Manuscript database

    Shiga toxin (Stx) is the key virulent factor in Shiga toxin-producing Escherichia coli (STEC). To date, three Stx1 subtypes and Seven Stx2 subtypes have been described in E. coli, which were found to differ in receptor preference and toxin potency. Here, we identified a novel Stx2 subtype designated...

  14. Asian ethnicity and breast cancer subtypes: a study from the California Cancer Registry.

    PubMed

    Telli, Melinda L; Chang, Ellen T; Kurian, Allison W; Keegan, Theresa H M; McClure, Laura A; Lichtensztajn, Daphne; Ford, James M; Gomez, Scarlett L

    2011-06-01

    The distribution of breast cancer molecular subtypes has been shown to vary by race/ethnicity, highlighting the importance of host factors in breast tumor biology. We undertook the current analysis to determine population-based distributions of breast cancer subtypes among six ethnic Asian groups in California. We defined immunohistochemical (IHC) surrogates for each breast cancer subtype among Chinese, Japanese, Filipina, Korean, Vietnamese, and South Asian patients diagnosed with incident, primary, invasive breast cancer between 2002 and 2007 in the California Cancer Registry as: hormone receptor-positive (HR+)/HER2- [estrogen receptor-positive (ER+) and/or progesterone receptor-positive (PR+), human epidermal growth factor receptor 2-negative (HER2-)], triple-negative (ER-, PR-, and HER2-), and HER2-positive (ER±, PR±, and HER2+). We calculated frequencies of breast cancer subtypes among Asian ethnic groups and evaluated their associations with clinical and demographic factors. Complete IHC data were available for 8,140 Asian women. Compared to non-Hispanic White women, Korean [odds ratio (OR) = 1.8, 95% confidence interval (CI) = 1.5-2.2], Filipina (OR = 1.3, 95% CI = 1.2-1.5), Vietnamese (OR = 1.3, 95% CI = 1.1-1.6), and Chinese (OR = 1.1, 95% CI = 1.0-1.3) women had a significantly increased risk of being diagnosed with HER2-positive breast cancer subtypes after adjusting for age, stage, grade, socioeconomic status, histology, diagnosis year, nativity, and hospital ownership status. We report a significant ethnic disparity in HER2-positive breast cancer in a large population-based cohort enriched for Asian-Americans. Given the poor prognosis and high treatment costs of HER2-positive breast cancer, our results have implications for healthcare resource utilization, cancer biology, and clinical care.

  15. Muscarinic receptor M1 and M2 subtypes in the human eye: QNB, pirenzipine, oxotremorine, and AFDX-116 in vitro autoradiography.

    PubMed Central

    Gupta, N; McAllister, R; Drance, S M; Rootman, J; Cynader, M S

    1994-01-01

    Muscarinic cholinergic agents are used to lower intraocular pressure in the medical management of glaucoma and subtypes of muscarinic receptors have now been recognised in many tissues including the eye. To localise muscarinic receptors and their M1 and M2 subtypes in the human eye, in vitro ligand binding and autoradiographic techniques with densitometric quantitation on postmortem eye sections were used. As ligands, [3H] quinuclydinyl benzylate (QNB) (non-subtype specific muscarinic antagonist), [3H]pirenzipine (M1 antagonist), [3H]oxotremorine (M2 muscarinic agonist), [3H]AFDX-116(11[(2[diethylaminomethyl]1-piperidinyl)acetyl]5 , 11dihydro-6H-pyrido [2,3b][1,4]benzodiazepine-6-one) (M2 antagonist) were studied. Specific binding sites for QNB, pirenzipine, and AFDX-116 were localised in the entire ciliary muscle, the iris, and ciliary epithelium. [3H]oxotremorine localised only in the longitudinal portion of the ciliary muscle, and additionally, was not localised in the iris or ciliary epithelium. These results suggest that oxotremorine, by binding selectively to receptors on the longitudinal ciliary muscle and inducing its contraction, may modulate outflow facility independently from accommodation and miosis. Images PMID:7918268

  16. Incidence and risk factors for breast cancer subtypes in three distinct South-East Asian ethnic groups: Chinese, Malay and natives of Sarawak, Malaysia.

    PubMed

    Devi, C R Beena; Tang, Tieng Swee; Corbex, Marilys

    2012-12-15

    We determined the incidences of the estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) subtypes among breast cancer cases in Sarawak, Malaysia and their correlation with various risk factors in the three ethnic groups: Chinese, Malay and native. Subtype status was ascertained for 1,034 cases of female breast cancer (93% of all cases diagnosed since 2003), and the age-standardized incidence rates (ASRs) of each subtype were inferred. Case-case comparisons across subtypes were performed for reproductive risk factors. We found 48% luminal A (ER+/PR+/HER2-), 29% triple-negative (ER-/PR-/HER2-), 12% triple-positive (ER+/PR+/HER2+) and 11% HER2-overexpressing (ER-/PR-/HER2+) subtypes, with ASRs of 10.6, 6.0, 2.8 and 2.8 per 100,000, respectively. The proportions of subtypes and ASRs differed significantly by ethnic groups: HER2-positive cases were more frequent in Malays (29%; 95% CI [23;35]) than Chinese (22%; [19;26] and natives (21%; [16;26]); triple-negative cases were less frequent among Chinese (23%; [20;27]) than Malays (33%; [27;39]) and natives (37%; [31;43]). The results of the case-case comparison were in accordance with those observed in western case series. Some uncommon associations, such as between triple-negative subtype and older age at menopause (OR, 1.59; p < 0.05), were found. The triple-negative and HER2+ subtypes predominate in our region, with significant differences among ethnic groups. Our results support the idea that the risk factors for different subtypes vary markedly. Westernized populations are more likely to have factors that increase the risk for the luminal A type, while risk factors for the triple-negative type are more frequent in local populations. Copyright © 2012 UICC.

  17. An Inotropic Action Caused by Muscarinic Receptor Subtype 3 in Canine Cardiac Purkinje Fibers

    PubMed Central

    Urushidani, Tetsuro; Tachibana, Shigehiro

    2013-01-01

    Objective. The objective of this study was to investigate the inotropic mechanisms and the related muscarinic receptor subtype of acetylcholine (ACh) in canine cardiac Purkinje fibers. Materials and Methods. Isolated Purkinje fiber bundles were used for the measurement of contraction. The receptor subtype was determined using PCR and real-time PCR methods. Results. ACh evoked a biphasic response with a transient negative inotropic effect followed by a positive inotropic effect in a concentration-dependent manner. The biphasic inotropic actions of ACh were inhibited by the pretreatment with atropine. Caffeine inhibited the positive inotropic effect of ACh. ACh increased inositol-1,4,5-trisphosphate content in the Purkinje fibers, which was abolished by atropine. Muscarinic subtypes 2 (M2) and 3 (M3) mRNAs were detected in the canine Purkinje fibers albeit the amount of M3 mRNA was smaller than M2 mRNA. M1 mRNA was not detected. Conclusion. These results suggest that the positive inotropic action of ACh may be mediated by the activation of IP3 receptors through the stimulation of M3 receptors in the canine cardiac Purkinje fibers. PMID:24260719

  18. Peroxisome Proliferator-Activated Receptor Subtype- and Cell-Type-Specific Activation of Genomic Target Genes upon Adenoviral Transgene Delivery

    PubMed Central

    Nielsen, Ronni; Grøntved, Lars; Stunnenberg, Hendrik G.; Mandrup, Susanne

    2006-01-01

    Investigations of the molecular events involved in activation of genomic target genes by peroxisome proliferator-activated receptors (PPARs) have been hampered by the inability to establish a clean on/off state of the receptor in living cells. Here we show that the combination of adenoviral delivery and chromatin immunoprecipitation (ChIP) is ideal for dissecting these mechanisms. Adenoviral delivery of PPARs leads to a rapid and synchronous expression of the PPAR subtypes, establishment of transcriptional active complexes at genomic loci, and immediate activation of even silent target genes. We demonstrate that PPARγ2 possesses considerable ligand-dependent as well as independent transactivation potential and that agonists increase the occupancy of PPARγ2/retinoid X receptor at PPAR response elements. Intriguingly, by direct comparison of the PPARs (α, γ, and β/δ), we show that the subtypes have very different abilities to gain access to target sites and that in general the genomic occupancy correlates with the ability to activate the corresponding target gene. In addition, the specificity and potency of activation by PPAR subtypes are highly dependent on the cell type. Thus, PPAR subtype-specific activation of genomic target genes involves an intricate interplay between the properties of the subtype- and cell-type-specific settings at the individual target loci. PMID:16847324

  19. In vitro effects of bethanechol on specimens of intestinal smooth muscle obtained from the duodenum and jejunum of healthy dairy cows

    PubMed Central

    Pfeiffer, Julia B. R.; Mevissen, Meike; Steiner, Adrian; Portier, Christopher J.; Meylan, Mireille

    2009-01-01

    Objective To describe the in vitro effects of bethanechol on contractility of smooth muscle preparations from the small intestines of healthy cows and define the muscarinic receptor subtypes involved in mediating contraction. Sample Population Tissue samples from the duodenum and jejunum collected immediately after slaughter of 40 healthy cows. Procedures Cumulative concentration-response curves were determined for the muscarinic receptor agonist bethanechol with or without prior incubation with subtype-specific receptor antagonists in an organ bath. Effects of bethanechol and antagonists and the influence of intestinal location on basal tone, maximal amplitude (Amax), and area under the curve (AUC) were evaluated. Results Bethanechol induced a significant, concentration-dependent increase in all preparations and variables. The effect of bethanechol was more pronounced in jejunal than in duodenal samples and in circular than in longitudinal preparations. Significant inhibition of the effects of bethanechol was observed after prior incubation with muscarinic receptor subtype M3 antagonists (more commonly for basal tone than for Amax and AUC). The M2 receptor antagonists partly inhibited the response to bethanechol, especially for basal tone. The M3 receptor antagonists were generally more potent than the M2 receptor antagonists. In a protection experiment, an M3 receptor antagonist was less potent than when used in combination with an M2 receptor antagonist. Receptor antagonists for M1 and M4 did not affect contractility variables. Conclusions and Clinical Relevance Bethanechol acting on muscarinic receptor subtypes M2 and M3 may be of clinical use as a prokinetic drug for motility disorders of the duodenum and jejunum in dairy cows. PMID:17331022

  20. Subtype-specific control of P2X receptor channel signaling by ATP and Mg2+.

    PubMed

    Li, Mufeng; Silberberg, Shai D; Swartz, Kenton J

    2013-09-03

    The identity and forms of activating ligands for ion channels are fundamental to their physiological roles in rapid electrical signaling. P2X receptor channels are ATP-activated cation channels that serve important roles in sensory signaling and inflammation, yet the active forms of the nucleotide are unknown. In physiological solutions, ATP is ionized and primarily found in complex with Mg(2+). Here we investigated the active forms of ATP and found that the action of MgATP(2-) and ATP(4-) differs between subtypes of P2X receptors. The slowly desensitizing P2X2 receptor can be activated by free ATP, but MgATP(2-) promotes opening with very low efficacy. In contrast, both free ATP and MgATP(2-) robustly open the rapidly desensitizing P2X3 subtype. A further distinction between these two subtypes is the ability of Mg(2+) to regulate P2X3 through a distinct allosteric mechanism. Importantly, heteromeric P2X2/3 channels present in sensory neurons exhibit a hybrid phenotype, characterized by robust activation by MgATP(2-) and weak regulation by Mg(2+). These results reveal the existence of two classes of homomeric P2X receptors with differential sensitivity to MgATP(2-) and regulation by Mg(2+), and demonstrate that both restraining mechanisms can be disengaged in heteromeric channels to form fast and sensitive ATP signaling pathways in sensory neurons.

  1. Subtype-specific control of P2X receptor channel signaling by ATP and Mg2+

    PubMed Central

    Li, Mufeng; Silberberg, Shai D.; Swartz, Kenton J.

    2013-01-01

    The identity and forms of activating ligands for ion channels are fundamental to their physiological roles in rapid electrical signaling. P2X receptor channels are ATP-activated cation channels that serve important roles in sensory signaling and inflammation, yet the active forms of the nucleotide are unknown. In physiological solutions, ATP is ionized and primarily found in complex with Mg2+. Here we investigated the active forms of ATP and found that the action of MgATP2− and ATP4− differs between subtypes of P2X receptors. The slowly desensitizing P2X2 receptor can be activated by free ATP, but MgATP2− promotes opening with very low efficacy. In contrast, both free ATP and MgATP2− robustly open the rapidly desensitizing P2X3 subtype. A further distinction between these two subtypes is the ability of Mg2+ to regulate P2X3 through a distinct allosteric mechanism. Importantly, heteromeric P2X2/3 channels present in sensory neurons exhibit a hybrid phenotype, characterized by robust activation by MgATP2− and weak regulation by Mg2+. These results reveal the existence of two classes of homomeric P2X receptors with differential sensitivity to MgATP2− and regulation by Mg2+, and demonstrate that both restraining mechanisms can be disengaged in heteromeric channels to form fast and sensitive ATP signaling pathways in sensory neurons. PMID:23959888

  2. The adenosine A2A antagonist MSX-3 reverses the effort-related effects of dopamine blockade: differential interaction with D1 and D2 family antagonists.

    PubMed

    Worden, Lila T; Shahriari, Mona; Farrar, Andrew M; Sink, Kelly S; Hockemeyer, Jörg; Müller, Christa E; Salamone, John D

    2009-04-01

    Brain dopamine (DA) participates in the modulation of instrumental behavior, including aspects of behavioral activation and effort-related choice behavior. Rats with impaired DA transmission reallocate their behavior away from food-seeking behaviors that have high response requirements, and instead select less effortful alternatives. Although accumbens DA is considered a critical component of the brain circuitry regulating effort-related choice behavior, emerging evidence demonstrates a role for adenosine A(2A) receptors. Adenosine A(2A) receptor antagonism has been shown to reverse the effects of DA antagonism. The present experiments were conducted to determine if this effect was dependent upon the subtype of DA receptor that was antagonized to produce the changes in effort-related choice. The adenosine A(2A) receptor antagonist MSX-3 (0.5-2.0 mg/kg IP) was assessed for its ability to reverse the effects of the D1 family antagonist SCH39166 (ecopipam; 0.2 mg/kg IP) and the D2 family antagonist eticlopride (0.08 mg/kg IP), using a concurrent lever pressing/chow feeding procedure. MSX-3 produced a substantial dose-related reversal of the effects of eticlopride on lever pressing and chow intake. At the highest dose of MSX-3, there was a complete reversal of the effects of eticlopride on lever pressing. In contrast, MSX-3 produced only a minimal attenuation of the effects of SCH39166, as measured by regression and effect size analyses. The greater ability of MSX-3 to reverse the effects of D2 vs. D1 blockade may be related to the colocalization of D2 and adenosine A(2A) receptors on the same population of striatal neurons.

  3. Systematic Analysis of Primary Sequence Domain Segments for the Discrimination Between Class C GPCR Subtypes.

    PubMed

    König, Caroline; Alquézar, René; Vellido, Alfredo; Giraldo, Jesús

    2018-03-01

    G-protein-coupled receptors (GPCRs) are a large and diverse super-family of eukaryotic cell membrane proteins that play an important physiological role as transmitters of extracellular signal. In this paper, we investigate Class C, a member of this super-family that has attracted much attention in pharmacology. The limited knowledge about the complete 3D crystal structure of Class C receptors makes necessary the use of their primary amino acid sequences for analytical purposes. Here, we provide a systematic analysis of distinct receptor sequence segments with regard to their ability to differentiate between seven class C GPCR subtypes according to their topological location in the extracellular, transmembrane, or intracellular domains. We build on the results from the previous research that provided preliminary evidence of the potential use of separated domains of complete class C GPCR sequences as the basis for subtype classification. The use of the extracellular N-terminus domain alone was shown to result in a minor decrease in subtype discrimination in comparison with the complete sequence, despite discarding much of the sequence information. In this paper, we describe the use of Support Vector Machine-based classification models to evaluate the subtype-discriminating capacity of the specific topological sequence segments.

  4. Temporal profiling of orexin receptor-arrestin-ubiquitin complexes reveals differences between receptor subtypes.

    PubMed

    Dalrymple, Matthew B; Jaeger, Werner C; Eidne, Karin A; Pfleger, Kevin D G

    2011-05-13

    Orexin G protein-coupled receptors (OxRs) and their cognate agonists have been implicated in a number of disorders since their recent discovery, ranging from narcolepsy to formation of addictive behavior. Bioluminescence resonance energy transfer assays of agonist-occupied OxRs provided evidence for a strong dose-dependent interaction with both trafficking proteins β-arrestin 1 and 2 that required unusually high agonist concentrations compared with inositol phosphate signaling. This appears to be reflected in functional differences in potency with respect to orexin A (OxA) and OxR2-dependent ERK1/2 phosphorylation after 90 min compared with 2 min, potentially consistent with β-arrestin-mediated versus G protein-mediated signaling, respectively. Furthermore, extended bioluminescence resonance energy transfer kinetic data monitoring OxA-dependent receptor-β-arrestin and β-arrestin-ubiquitin proximity suggested subtype-specific differences in receptor trafficking, with OxR2 activation resulting in more sustained receptor-β-arrestin-ubiquitin complex formation than elicited by OxR1 activation. Enzyme-linked immunosorbent assay (ELISA) data also revealed that OxR1 underwent significantly more rapid recycling compared with OxR2. Finally, we have observed sustained OxA-dependent ERK1/2 phosphorylation in the presence of OxR2 compared with OxR1. Although both OxR subtypes could be classified as class B receptors for β-arrestin usage based on the initial strength of interaction with both β-arrestins, our temporal profiling revealed tangible differences between OxR subtypes. Consequently, OxR1 appears to fit uneasily into the commonly used β-arrestin classification scheme. More importantly, it is hoped that this improved profiling capability, enabling the subtleties of protein complex formation, stability, and duration to be assessed in live cells, will help unlock the therapeutic potential of targeting these receptors.

  5. Receptor-specific modulation of risk-based decision making by nucleus accumbens dopamine.

    PubMed

    Stopper, Colin M; Khayambashi, Shahin; Floresco, Stan B

    2013-04-01

    The nucleus accumbens (NAc) serves as an integral node within cortico-limbic circuitry that regulates various forms of cost-benefit decision making. The dopamine (DA) system has also been implicated in enabling organisms to overcome a variety of costs to obtain more valuable rewards. However, it remains unclear how DA activity within the NAc may regulate decision making involving reward uncertainty. This study investigated the contribution of different DA receptor subtypes in the NAc to risk-based decision making, assessed with a probabilistic discounting task. In well-trained rats, D1 receptor blockade with SCH 23,390 decreased preference for larger, uncertain rewards, which was associated with enhanced negative-feedback sensitivity (ie, an increased tendency to select a smaller/certain option after an unrewarded risky choice). Treatment with a D1 agonist (SKF 81,297) optimized decision making, increasing choice of the risky option when reward probability was high, and decreasing preference under low probability conditions. In stark contrast, neither blockade of NAc D2 receptors with eticlopride, nor stimulation of these receptors with quinpirole or bromocriptine influenced risky choice. In comparison, infusion of the D3-preferring agonist PD 128,907 decreased reward sensitivity and risky choice. Collectively, these results show that mesoaccumbens DA refines risk-reward decision biases via dissociable mechanisms recruiting D1 and D3, but not D2 receptors. D1 receptor activity mitigates the effect of reward omissions on subsequent choices to promote selection of reward options that may have greater long-term utility, whereas excessive D3 receptor activity blunts the impact that larger/uncertain rewards have in promoting riskier choices.

  6. Dopamine receptor D5 deficiency results in a selective reduction of hippocampal NMDA receptor subunit NR2B expression and impaired memory.

    PubMed

    Moraga-Amaro, Rodrigo; González, Hugo; Ugalde, Valentina; Donoso-Ramos, Juan Pablo; Quintana-Donoso, Daisy; Lara, Marcelo; Morales, Bernardo; Rojas, Patricio; Pacheco, Rodrigo; Stehberg, Jimmy

    2016-04-01

    Pharmacological evidence associates type I dopamine receptors, including subtypes D1 and D5, with learning and memory. Analyses using genetic approaches have determined the relative contribution of dopamine receptor D1 (D1R) in cognitive tasks. However, the lack of drugs that can discriminate between D1R and D5R has made the pharmacological distinction between the two receptors difficult. Here, we aimed to determine the role of D5R in learning and memory. In this study we tested D5R knockout mice and wild-type littermates in a battery of behavioral tests, including memory, attention, locomotion, anxiety and motivational evaluations. Our results show that genetic deficiency of D5R significantly impairs performance in the Morris water maze paradigm, object location and object recognition memory, indicating a relevant role for D5R in spatial memory and recognition memory. Moreover, the lack of D5R resulted in decreased exploration and locomotion. In contrast, D5R deficiency had no impact on working memory, anxiety and depressive-like behavior, measured using the spontaneous alternation, open-field, tail suspension test, and forced swimming test. Electrophysiological analyses performed on hippocampal slices showed impairment in long-term-potentiation in mice lacking D5R. Further analyses at the molecular level showed that genetic deficiency of D5R results in a strong and selective reduction in the expression of the NMDA receptor subunit NR2B in the hippocampus. These findings demonstrate the relevant contribution of D5R in memory and suggest a functional interaction of D5R with hippocampal glutamatergic pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Discrimination of putative M1 and M2 muscarinic receptor subtypes in rat brain by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, A.B.; Creese, I.

    1986-03-01

    The EC/sub 50/ of EEDQ for the inhibition of (/sup 3/H)(-)QNB binding in vitro was approximately 3 fold lower for homogenates of hippocampus than brainstem (containing predominantly putative M/sub 1/ and M/sub 2/ muscarinic receptor subtypes respectively). Furthermore, the time-dependent loss of (/sup 3/H)(-)QNB binding produced by 100 ..mu..M EEDQ was faster in homogenates of hippocampus than brainstem. Administration of EEDQ (20 mg/kg i.p.) irreversibly reduced the Bmax of (/sup 3/H)(-)QNB binding by 56% and 34% in hippocampus and brainstem respectively. Pirenzepine competition for the remaining (/sup 3/H)(-)QNB binding sites following in vitro and in vivo treatment with EEDQ revealedmore » a significant increase in the proportion of (/sup 3/H)(-)QNB binding sites having low affinity for pirenzepine (M/sub 2/ receptors), indicating that the high affinity pirenzepine binding sites (M/sub 1/ receptors) were selectively and irreversibly lost. Thus, EEDQ discriminates the same putative M/sub 1/ and M/sub 2/ muscarinic receptor subtypes that are discriminated by pirenzepine. The reduction of (/sup 3/H)(-)QNB binding could be prevented both in vitro and in vivo by atropine or scopolamine. These data may indicate differences in the accessibility of these putative receptor subtypes to EEDQ or, alternatively, differences in the availability of carboxyl groups able to interact with EEDQ at the ligand recognition site of M/sub 1/ and M/sub 2/ muscarinic receptors.« less

  8. Effects of the NMDA receptor antagonist, D-CPPene, on sensitization to the operant decrement produced by naloxone in morphine-treated rats.

    PubMed

    Bespalov, A Y; Medvedev, I O; Sukhotina, I A; Zvartau, E E

    2001-04-01

    Sensitization to the rate-decreasing effects of opioid antagonists induced by acute pretreatment with opioid agonists has been suggested to reflect initial changes in opioid systems that underlie physical dependence. Glutamate receptors are implicated in the development and expression of opioid dependence, and antagonists acting at the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors have been shown repeatedly to attenuate the severity of opioid withdrawal. The present study evaluated the ability of a competitive NMDA receptor antagonist, D-CPPene (SDZ EAA 494; 3-(2-carboxypiperazin-4-yl)-1-propenyl-1-phosphonic acid), to affect morphine-induced sensitization to naloxone in rats trained to lever-press on a multiple-trial, fixed-ratio 10 schedule of food reinforcement. D-CPPene (0.3-3 mg/kg) was administered either 4 h or 30 min prior to the test session. Morphine (10 mg/kg) or its vehicle was administered 4 h before naloxone challenge (0.3-3 mg/kg). D-CPPene failed to prevent morphine-induced potentiation of the naloxone-produced decrement in operant performance. Thus, these results suggest that agonist-induced sensitization to behavioral effects of opioid antagonists may be insensitive to NMDA receptor blockade.

  9. Receptor mimicry by antibody F045–092 facilitates universal binding to the H3 subtype of influenza virus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Peter S.; Ohshima, Nobuko; Stanfield, Robyn L.

    Influenza viruses present a significant health challenge each year, as in the H3N2 epidemic of 2012–2013. Here we describe an antibody, F045–092, that possesses broadly neutralizing activity against the entire H3 subtype and accommodates the natural variation and additional glycosylation in all strains tested from 1963 to 2011. Crystal structures of F045–092 in complex with HAs from 1975 and 2011 H3N2 viruses reveal the structural basis for its neutralization breadth through insertion of its 23-residue HCDR3 into the receptor-binding site that involves striking receptor mimicry. F045–092 extends its recognition to divergent subtypes, including H1, H2 and H13, using the enhancedmore » avidity of its IgG to overcome lower-affinity Fab binding, as observed with other antibodies that target the receptor-binding site. This unprecedented level of antibody cross-reactivity against the H3 subtype can potentially inform on development of a pan-H3 vaccine or small-molecule therapeutics.« less

  10. CRF19_cpx is an Evolutionary fit HIV-1 Variant Strongly Associated With Rapid Progression to AIDS in Cuba

    PubMed Central

    Kouri, Vivian; Khouri, Ricardo; Alemán‬, Yoan; Abrahantes, Yeissel; Vercauteren, Jurgen; Pineda-Peña, Andrea-Clemencia; Theys, Kristof; Megens, Sarah; Moutschen, Michel; Pfeifer, Nico; Van Weyenbergh, Johan; Pérez, Ana B.; Pérez, Jorge; Pérez, Lissette; Van Laethem, Kristel; Vandamme, Anne-Mieke

    2015-01-01

    Background Clinicians reported an increasing trend of rapid progression (RP) (AIDS within 3 years of infection) in Cuba. Methods Recently infected patients were prospectively sampled, 52 RP at AIDS diagnosis (AIDS-RP) and 21 without AIDS in the same time frame (non-AIDS). 22 patients were sampled at AIDS diagnosis (chronic-AIDS) retrospectively assessed as > 3 years infected. Clinical, demographic, virological, epidemiological and immunological data were collected. Pol and env sequences were used for subtyping, transmission cluster analysis, and prediction of resistance, co-receptor use and evolutionary fitness. Host, immunological and viral predictors of RP were explored through data mining. Findings Subtyping revealed 26 subtype B strains, 6 C, 6 CRF18_cpx, 9 CRF19_cpx, 29 BG-recombinants and other subtypes/URFs. All patients infected with CRF19 belonged to the AIDS-RP group. Data mining identified CRF19, oral candidiasis and RANTES levels as the strongest predictors of AIDS-RP. CRF19 was more frequently predicted to use the CXCR4 co-receptor, had higher fitness scores in the protease region, and patients had higher viral load at diagnosis. Interpretation CRF19 is a recombinant of subtype D (C-part of Gag, PR, RT and nef), subtype A (N-part of Gag, Integrase, Env) and subtype G (Vif, Vpr, Vpu and C-part of Env). Since subtypes D and A have been associated with respectively faster and slower disease progression, our findings might indicate a fit PR driving high viral load, which in combination with co-infections may boost RANTES levels and thus CXCR4 use, potentially explaining the fast progression. We propose that CRF19 is evolutionary very fit and causing rapid progression to AIDS in many newly infected patients in Cuba. PMID:26137563

  11. CRF19_cpx is an Evolutionary fit HIV-1 Variant Strongly Associated With Rapid Progression to AIDS in Cuba.

    PubMed

    Kouri, Vivian; Khouri, Ricardo; Alemán, Yoan; Abrahantes, Yeissel; Vercauteren, Jurgen; Pineda-Peña, Andrea-Clemencia; Theys, Kristof; Megens, Sarah; Moutschen, Michel; Pfeifer, Nico; Van Weyenbergh, Johan; Pérez, Ana B; Pérez, Jorge; Pérez, Lissette; Van Laethem, Kristel; Vandamme, Anne-Mieke

    2015-03-01

    Clinicians reported an increasing trend of rapid progression (RP) (AIDS within 3 years of infection) in Cuba. Recently infected patients were prospectively sampled, 52 RP at AIDS diagnosis (AIDS-RP) and 21 without AIDS in the same time frame (non-AIDS). 22 patients were sampled at AIDS diagnosis (chronic-AIDS) retrospectively assessed as > 3 years infected. Clinical, demographic, virological, epidemiological and immunological data were collected. Pol and env sequences were used for subtyping, transmission cluster analysis, and prediction of resistance, co-receptor use and evolutionary fitness. Host, immunological and viral predictors of RP were explored through data mining. Subtyping revealed 26 subtype B strains, 6 C, 6 CRF18_cpx, 9 CRF19_cpx, 29 BG-recombinants and other subtypes/URFs. All patients infected with CRF19 belonged to the AIDS-RP group. Data mining identified CRF19, oral candidiasis and RANTES levels as the strongest predictors of AIDS-RP. CRF19 was more frequently predicted to use the CXCR4 co-receptor, had higher fitness scores in the protease region, and patients had higher viral load at diagnosis. CRF19 is a recombinant of subtype D (C-part of Gag, PR, RT and nef), subtype A (N-part of Gag, Integrase, Env) and subtype G (Vif, Vpr, Vpu and C-part of Env). Since subtypes D and A have been associated with respectively faster and slower disease progression, our findings might indicate a fit PR driving high viral load, which in combination with co-infections may boost RANTES levels and thus CXCR4 use, potentially explaining the fast progression. We propose that CRF19 is evolutionary very fit and causing rapid progression to AIDS in many newly infected patients in Cuba.

  12. Cockroach GABAB receptor subtypes: molecular characterization, pharmacological properties and tissue distribution.

    PubMed

    Blankenburg, S; Balfanz, S; Hayashi, Y; Shigenobu, S; Miura, T; Baumann, O; Baumann, A; Blenau, W

    2015-01-01

    γ-aminobutyric acid (GABA) is the predominant inhibitory neurotransmitter in the central nervous system (CNS). Its effects are mediated by either ionotropic GABAA receptors or metabotropic GABAB receptors. GABAB receptors regulate, via Gi/o G-proteins, ion channels, and adenylyl cyclases. In humans, GABAB receptor subtypes are involved in the etiology of neurologic and psychiatric disorders. In arthropods, however, these members of the G-protein-coupled receptor family are only inadequately characterized. Interestingly, physiological data have revealed important functions of GABAB receptors in the American cockroach, Periplaneta americana. We have cloned cDNAs coding for putative GABAB receptor subtypes 1 and 2 of P. americana (PeaGB1 and PeaGB2). When both receptor proteins are co-expressed in mammalian cells, activation of the receptor heteromer with GABA leads to a dose-dependent decrease in cAMP production. The pharmacological profile differs from that of mammalian and Drosophila GABAB receptors. Western blot analyses with polyclonal antibodies have revealed the expression of PeaGB1 and PeaGB2 in the CNS of the American cockroach. In addition to the widespread distribution in the brain, PeaGB1 is expressed in salivary glands and male accessory glands. Notably, PeaGB1-like immunoreactivity has been detected in the GABAergic salivary neuron 2, suggesting that GABAB receptors act as autoreceptors in this neuron. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Sphingosine-1-Phosphate Receptor Subtype 3: A Novel Therapeutic Target of K-Ras Mutant Driven Non-Small Cell Lung Carcinoma

    DTIC Science & Technology

    2015-10-01

    Breeding of LSL K-RasG12D transgenic mice (Projective: months 5-8; Actual: 100% completion) 2b. Nasal instillation of adenoviral particles carrying...1a. Regulatory review and approval of animal protocol (Projective: Months 1-2; Actual: 100% completion). 1b. Mice acquisition and breeding of...S1P3-/-:LSL-K-RasG12D and S1P3+/+:LSL-K-RasG12D bi- transgenic mice (Projective: Months 3-4; Actual: 100% completion). 1c. Nasal instillation of

  14. NK2 tachykinin receptors and contraction of circular muscle of the human colon: characterization of the NK2 receptor subtype.

    PubMed

    Giuliani, S; Barbanti, G; Turini, D; Quartara, L; Rovero, P; Giachetti, A; Maggi, C A

    1991-10-22

    The contractile effect of substance P, neurokinin A, receptor selective agonists for tachykinin receptors and NK2 tachykinin receptor antagonists was investigated in mucosa-free circular strips of the human isolated colon. Neurokinin A and substance P produced concentration-dependent contractions which approached 80-90% of the maximal response to carbachol. Neurokinin A was about 370 times more potent than substance P. The action of neurokinin A and substance P was not modified by peptidase inhibitors (bestatin, captopril and thiorphan, 1 microM each). The NK2 receptor selective agonist, [beta-Ala8]neurokinin A-(4-10) closely mimicked the response to neurokinin A while NK1 and NK3 receptor selective agonists were active only at microM concentrations. The pseudopeptide, MDL 28,564, which is one of the most selective NK2 ligands available, behaved as a full agonist. Responses to [beta-Ala8]neurokinin A were antagonized by NK2 receptor selective antagonists, with the rank order of potency MEN 10,376 greater than L 659,877 much greater than R 396. These data indicate that NK2 tachykinin receptors play a dominant role in determining the contraction of the circular muscle of the human colon to peptides of this family. The NK2 receptor subtype responsible for this effect belongs to the same subtype (NK2A) previously identified in the rabbit pulmonary artery and guinea-pig bronchi.

  15. Structure-Activity Relationships of Constrained Phenylethylamine Ligands for the Serotonin 5-HT2 Receptors

    PubMed Central

    Isberg, Vignir; Paine, James; Leth-Petersen, Sebastian; Kristensen, Jesper L.; Gloriam, David E.

    2013-01-01

    Serotonergic ligands have proven effective drugs in the treatment of migraine, pain, obesity, and a wide range of psychiatric and neurological disorders. There is a clinical need for more highly 5-HT2 receptor subtype-selective ligands and the most attention has been given to the phenethylamine class. Conformationally constrained phenethylamine analogs have demonstrated that for optimal activity the free lone pair electrons of the 2-oxygen must be oriented syn and the 5-oxygen lone pairs anti relative to the ethylamine moiety. Also the ethyl linker has been constrained providing information about the bioactive conformation of the amine functionality. However, combined 1,2-constriction by cyclization has only been tested with one compound. Here, we present three new 1,2-cyclized phenylethylamines, 9–11, and describe their synthetic routes. Ligand docking in the 5-HT2B crystal structure showed that the 1,2-heterocyclized compounds can be accommodated in the binding site. Conformational analysis showed that 11 can only bind in a higher-energy conformation, which would explain its absent or low affinity. The amine and 2-oxygen interactions with D3.32 and S3.36, respectively, can form but shift the placement of the core scaffold. The constraints in 9–11 resulted in docking poses with the 4-bromine in closer vicinity to 5.46, which is polar only in the human 5-HT2A subtype, for which 9–11 have the lowest affinity. The new ligands, conformational analysis and docking expand the structure-activity relationships of constrained phenethylamines and contributes towards the development of 5-HT2 receptor subtype-selective ligands. PMID:24244317

  16. Structure-activity relationships of constrained phenylethylamine ligands for the serotonin 5-HT2 receptors.

    PubMed

    Isberg, Vignir; Paine, James; Leth-Petersen, Sebastian; Kristensen, Jesper L; Gloriam, David E

    2013-01-01

    Serotonergic ligands have proven effective drugs in the treatment of migraine, pain, obesity, and a wide range of psychiatric and neurological disorders. There is a clinical need for more highly 5-HT2 receptor subtype-selective ligands and the most attention has been given to the phenethylamine class. Conformationally constrained phenethylamine analogs have demonstrated that for optimal activity the free lone pair electrons of the 2-oxygen must be oriented syn and the 5-oxygen lone pairs anti relative to the ethylamine moiety. Also the ethyl linker has been constrained providing information about the bioactive conformation of the amine functionality. However, combined 1,2-constriction by cyclization has only been tested with one compound. Here, we present three new 1,2-cyclized phenylethylamines, 9-11, and describe their synthetic routes. Ligand docking in the 5-HT2B crystal structure showed that the 1,2-heterocyclized compounds can be accommodated in the binding site. Conformational analysis showed that 11 can only bind in a higher-energy conformation, which would explain its absent or low affinity. The amine and 2-oxygen interactions with D3.32 and S3.36, respectively, can form but shift the placement of the core scaffold. The constraints in 9-11 resulted in docking poses with the 4-bromine in closer vicinity to 5.46, which is polar only in the human 5-HT2A subtype, for which 9-11 have the lowest affinity. The new ligands, conformational analysis and docking expand the structure-activity relationships of constrained phenethylamines and contributes towards the development of 5-HT2 receptor subtype-selective ligands.

  17. Identification of Dmt-D-Lys-Phe-Phe-OH as a highly antinociceptive tetrapeptide metabolite of the opioid-neurotensin hybrid peptide PK20.

    PubMed

    Kleczkowska, Patrycja; Bojnik, Engin; Leśniak, Anna; Kosson, Piotr; Van den Eynde, Isabelle; Ballet, Steven; Benyhe, Sandor; Tourwé, Dirk; Lipkowski, Andrzej W

    2013-01-01

    Recently, we presented a novel compound (PK20, Dmt-D-Lys-Phe-Phe-Lys-Lys-Pro-Phe-Tle-Leu-OH) that targets single entity opioid and neurotensin pharmacophores. This endomorphin-2-like opioid peptide was introduced as a highly active analgesic because it elicited a strong dose- and time-dependent antinociceptive response when administered centrally and peripherally. Its pain-relieving activity was observed as rapidly as 5 min after drug injection. Such promising results led us to perform further studies, such as determining the resistance to enzymatic degradation, which resulted in obtaining a very stable opioid pharmacore PK20 metabolite. The synthesis of PK20 and its N-terminal tetrapeptide fragment has been accomplished using solid phase peptide chemistry. The biological stability of peptides has been measured in human serum and analyzed by HPLC/MS. Peptides were pharmacologically characterized in in vitro MOP and DOP receptor binding as well as [(35)S]GTPγS receptor binding assays. Antinociceptive properties of compounds were measured by in vivo assays in C57Bl6 mice after intravenous or intrathecal applications. Dmt-D-Lys-Phe-Phe-OH (PK20M), an N-terminal tetrapeptide metabolite of the opioid-neurotensin hybrid peptide PK20, is characterized by a long duration of action, as demonstrated by a preserved, long-lasting analgesic effect even 2 h post-injection (average % MPE = 69.33). In rat brain membranes, PK20M efficiently displaced both the MOP and DOP receptor selective radioprobes [(3)H]DAMGO and [(3)H]DIDI (pKi of 9.52 and 7.86, respectively) and potently stimulated [(35)S]GTPγS binding, proving full agonism at both receptor types. In the [(35)S]GTPγS assay, which measured the agonist-mediated G protein activation, PK20M together with PK20 and Met-enkephalin were potent stimulators of the regulatory G proteins. The relative affinities of PK20M for the μ and δ receptor subtypes revealed μ-receptor selectivity. The novel MOP receptor selective metabolite has been shown to possess opioid subtype receptor selectivity, high potency, and effective analgesic activities as measured in various bioassays.

  18. The relaxant 5-HT receptor in the dog coronary artery smooth muscle: pharmacological resemblance to the cloned 5-ht7 receptor subtype.

    PubMed Central

    Terrón, J. A.

    1996-01-01

    1. The relaxant effect of 5-hydroxytryptamine (5-HT) in the dog isolated coronary artery deprived of endothelium is mediated by a receptor unrelated to the 5-HT1, 5-HT2, 5-HT3 or 5-HT4 types. Based upon the pharmacological characteristics of this relaxant 5-HT receptor and those reported for the new members of the 5-HT receptor family, the present study explored the possibility that the relaxant 5-HT receptor referred to above, corresponds to the cloned 5-ht7 subtype. Thus, the relaxing and/or blocking effects of several 5-HT receptor drugs as well as some typical and atypical antipsychotic drugs with high affinity for the cloned 5-ht7 receptor in precontracted ring segments were analyzed. 2. 5-HT, 5-carboxamidotryptamine (5-CT) and 5-methoxytryptamine, but not 8-OH-DPAT or sumatriptan, produced concentration-dependent relaxations in endothelium-denuded canine coronary artery rings precontracted with prostaglandin F2a (2 microM). Clozapine (1 microM) produced in some cases a small relaxing effect and antagonized 5-HT- and 5-CT-induced relaxation suggesting a partial agonist effect. In the presence of the 5-HT1D receptor antagonist, GR127935 (100 nM), the rank order of agonist potency was 5-CT > 5-HT > clozapine > or = 5-methoxytryptamine. 8-OH-DPAT and sumatriptan remained inactive as agonists. 3. In GR127935-treated preparations, methiothepin (3 nM) and mianserin (1 microM), as well as the antipsychotics, clozapine (1 microM), pimozide (300 nM), risperidone (3 nM) and spiperone (1 microM), failed to induce a significant relaxation in prostaglandin F2x-precontracted vessels, but produced significant rightward displacements of the concentration-response curves to 5-HT and 5-CT without significantly reducing the Emax. In a final set of experiments with 5-CT, metergoline (100 nM) and mesulergine (300 nM) behaved as competitive antagonists. In contrast, lisuride (3 nM) noncompetitively antagonized 5-CT-induced relaxation. The estimated affinity (apparent pKa values) of the above antagonist drugs for the relaxant 5-HT receptor significantly correlated with their reported affinity at the cloned 5-ht7 receptor. 4. Taken together, the above pharmacological data may suggest that the relaxant 5-HT receptor in the smooth muscle of the canine coronary artery is similar to the cloned 5-ht7 receptor subtype. PMID:8832067

  19. In breast cancer subtypes steroid sulfatase (STS) is associated with less aggressive tumour characteristics.

    PubMed

    McNamara, Keely M; Guestini, Fouzia; Sauer, Torill; Touma, Joel; Bukholm, Ida Rashida; Lindstrøm, Jonas C; Sasano, Hironobu; Geisler, Jürgen

    2018-05-01

    The majority of breast cancer cases are steroid dependent neoplasms, with hormonal manipulation of either CYP19/aromatase or oestrogen receptor alpha axis being the most common therapy. Alternate pathways of steroid actions are documented, but their interconnections and correlations to BC subtypes and clinical outcome could be further explored. We evaluated selected steroid receptors (Androgen Receptor, Oestrogen Receptor alpha and Beta, Glucocorticoid Receptor) and oestrogen pathways (steroid sulfatase (STS), 17β-hydroxysteroid dehydrogenase 2 (17βHSD2) and aromatase) in a cohort of 139 BC cases from Norway. Using logistic and cox regression analysis, we examined interactions between these and clinical outcomes such as distant metastasis, local relapse and survival. Our principal finding is an impact of STS expression on the risk for distant metastasis (p<0.001) and local relapses (p <0.001), HER2 subtype (p<0.015), and survival (p<0.001). The suggestion of a beneficial effect of alternative oestrogen synthesis pathways was strengthened by inverted, but non-significant findings for 17βHSD2. Increased intratumoural metabolism of oestrogens through STS is associated with significantly lower incidence of relapse and/or distant metastasis and correspondingly improved prognosis. The enrichment of STS in the HER2 overexpressing subtype is intriguing, especially given the possible role of HER-2 over-expression in endocrine resistance.

  20. Partial agonist clonidine mediates alpha(2)-AR subtypes specific regulation of cAMP accumulation in adenylyl cyclase II transfected DDT1-MF2 cells.

    PubMed

    Limon-Boulez, I; Bouet-Alard, R; Gettys, T W; Lanier, S M; Maltier, J P; Legrand, C

    2001-02-01

    alpha2-Adrenergic receptor (alpha(2)-AR) activation in the pregnant rat myometrium at midterm potentiates beta(2)-AR stimulation of adenylyl cyclase (AC) via Gbetagamma regulation of the type II isoform of adenylyl cyclase. However, at term, alpha(2)-AR activation inhibits beta(2)-AR stimulation of AC. This phenomenon is associated with changes in alpha(2)-AR subtype expression (midterm alpha(2A/D)-AR > alpha(2B)-AR; term alpha(2B) >or =alpha(2A/D)-AR), without any change in ACII mRNA, suggesting that alpha(2A/D)- and alpha(2B)-AR differentially regulate beta(2)-cAMP production. To address this issue, we have stably expressed the same density of alpha(2A/D)- or alpha(2B)-AR with AC II in DDT1-MF2 cells. Clonidine (partial agonist) increased beta(2)-AR-stimulated cAMP production in alpha(2A/D)-AR-ACII transfectants but inhibited it in alpha(2B)-AR-ACII transfectants. In contrast, epinephrine (full agonist) enhanced beta(2)-stimulated ACII in both alpha(2A)- and alpha(2B)-ACII clonal cell lines. 4-Azidoanilido-[alpha-(32)P]GTP-labeling of activated G proteins indicated that, in alpha(2B)-AR transfectants, clonidine activated only Gi(2), whereas epinephrine, the full agonist, effectively coupled to Gi(2) and Gi(3). Thus, partial and full agonists selectively activate G proteins that lead to drug specific effects on effectors. Moreover, these data indicate that Gi(3) activation is required for potentiation of beta(2)-AR stimulation of AC by alpha(2A/D) and alpha(2B)-AR in DDT1-MF2 cells. This may reflect an issue of the amount of Gbetagamma released upon receptor activation and/or betagamma composition of Gi(3) versus Gi(2).

  1. Receptor-receptor interactions within receptor mosaics. Impact on neuropsychopharmacology.

    PubMed

    Fuxe, K; Marcellino, D; Rivera, A; Diaz-Cabiale, Z; Filip, M; Gago, B; Roberts, D C S; Langel, U; Genedani, S; Ferraro, L; de la Calle, A; Narvaez, J; Tanganelli, S; Woods, A; Agnati, L F

    2008-08-01

    Future therapies for diseases associated with altered dopaminergic signaling, including Parkinson's disease, schizophrenia and drug addiction or drug dependence may substantially build on the existence of intramembrane receptor-receptor interactions within dopamine receptor containing receptor mosaics (RM; dimeric or high-order receptor oligomers) where it is believed that the dopamine D(2) receptor may operate as the 'hub receptor' within these complexes. The constitutive adenosine A(2A)/dopamine D(2) RM, located in the dorsal striato-pallidal GABA neurons, are of particular interest in view of the demonstrated antagonistic A(2A)/D(2) interaction within these heteromers; an interaction that led to the suggestion and later demonstration that A(2A) antagonists could be used as novel anti-Parkinsonian drugs. Based on the likely existence of A(2A)/D(2)/mGluR5 RM located both extrasynaptically on striato-pallidal GABA neurons and on cortico-striatal glutamate terminals, multiple receptor-receptor interactions within this RM involving synergism between A(2A)/mGluR5 to counteract D(2) signaling, has led to the proposal of using combined mGluR5 and A(2A) antagonists as a future anti-Parkinsonian treatment. Based on the same RM in the ventral striato-pallidal GABA pathways, novel strategies for the treatment of schizophrenia, building on the idea that A(2A) agonists and/or mGluR5 agonists will help reduce the increased dopaminergic signaling associated with this disease, have been suggested. Such treatment may ensure the proper glutamatergic drive from the mediodorsal thalamic nucleus to the prefrontal cortex, one which is believed to be reduced in schizophrenia due to a dominance of D(2)-like signaling in the ventral striatum. Recently, A(2A) receptors also have been shown to counteract the locomotor and sensitizing actions of cocaine and increases in A(2A) receptors have also been observed in the nucleus accumbens after extended cocaine self-administration, probably representing a compensatory up-regulation to counteract the cocaine-induced increases in dopamine D(2) and D(3) signaling. Therefore, A(2A) agonists, through antagonizing D(2) and D(3) signaling within A(2A)/D(2) and A(2A)/D(3) RM heteromers in the nucleus accumbens, may be found useful as a treatment for cocaine dependence. Furthermore, antagonistic cannabinoid CB(1)/D(2) interactions requiring A(2A) receptors have also been discovered and possibly operate in CB(1)/D(2)/A(2A) RM located principally on striatal glutamate terminals but also on some ventral striato-pallidal GABA neurons, thereby opening up a new mechanism for the integration of endocannabinoid, DA and adenosine mediated signals. Thus, A(2A), mGluR5 and/or CB(1) receptors can form integrative units with D(2) receptors within RM displaying different compositions, topography and localization. Also galaninR/5-HT(1A) RM probably participates in the transmission of the ascending 5-hydroxytryptamine neurons, where galanin receptors antagonize 5-HT(1A) recognition and signaling. Subtype specific galanin receptor antagonists may therefore represent novel antidepressant drugs. These results suggest the importance of a complete understanding of the function of these RM with regard to disease. Ultimately receptor-receptor interactions within RM that modify dopaminergic and serotonergic signaling may give new strategies for treatment of a wide range of diseases associated with altered dopaminergic and serotonergic signaling.

  2. On the role of subtype selective adenosine receptor agonists during proliferation and osteogenic differentiation of human primary bone marrow stromal cells.

    PubMed

    Costa, M Adelina; Barbosa, A; Neto, E; Sá-e-Sousa, A; Freitas, R; Neves, J M; Magalhães-Cardoso, T; Ferreirinha, F; Correia-de-Sá, P

    2011-05-01

    Purines are important modulators of bone cell biology. ATP is metabolized into adenosine by human primary osteoblast cells (HPOC); due to very low activity of adenosine deaminase, the nucleoside is the end product of the ecto-nucleotidase cascade. We, therefore, investigated the expression and function of adenosine receptor subtypes (A(1) , A(2A) , A(2B) , and A(3) ) during proliferation and osteogenic differentiation of HPOC. Adenosine A(1) (CPA), A(2A) (CGS21680C), A(2B) (NECA), and A(3) (2-Cl-IB-MECA) receptor agonists concentration-dependently increased HPOC proliferation. Agonist-induced HPOC proliferation was prevented by their selective antagonists, DPCPX, SCH442416, PSB603, and MRS1191. CPA and NECA facilitated osteogenic differentiation measured by increases in alkaline phosphatase (ALP) activity. This contrasts with the effect of CGS21680C which delayed HPOC differentiation; 2-Cl-IB-MECA was devoid of effect. Blockade of the A(2B) receptor with PSB603 prevented osteogenic differentiation by NECA. In the presence of the A(1) antagonist, DPCPX, CPA reduced ALP activity at 21 and 28 days in culture. At the same time points, blockade of A(2A) receptors with SCH442416 transformed the inhibitory effect of CGS21680C into facilitation. Inhibition of adenosine uptake with dipyridamole caused a net increase in osteogenic differentiation. The presence of all subtypes of adenosine receptors on HPOC was confirmed by immunocytochemistry. Data show that adenosine is an important regulator of osteogenic cell differentiation through the activation of subtype-specific receptors. The most abundant A(2B) receptor seems to have a consistent role in cell differentiation, which may be balanced through the relative strengths of A(1) or A(2A) receptors determining whether osteoblasts are driven into proliferation or differentiation. Copyright © 2010 Wiley-Liss, Inc.

  3. Dynamic control of glutamatergic synaptic input in the spinal cord by muscarinic receptor subtypes defined using knockout mice.

    PubMed

    Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin

    2010-12-24

    Activation of muscarinic acetylcholine receptors (mAChRs) in the spinal cord inhibits pain transmission. At least three mAChR subtypes (M(2), M(3), and M(4)) are present in the spinal dorsal horn. However, it is not clear how each mAChR subtype contributes to the regulation of glutamatergic input to dorsal horn neurons. We recorded spontaneous excitatory postsynaptic currents (sEPSCs) from lamina II neurons in spinal cord slices from wild-type (WT) and mAChR subtype knock-out (KO) mice. The mAChR agonist oxotremorine-M increased the frequency of glutamatergic sEPSCs in 68.2% neurons from WT mice and decreased the sEPSC frequency in 21.2% neurons. Oxotremorine-M also increased the sEPSC frequency in ∼50% neurons from M(3)-single KO and M(1)/M(3) double-KO mice. In addition, the M(3) antagonist J104129 did not block the stimulatory effect of oxotremorine-M in the majority of neurons from WT mice. Strikingly, in M(5)-single KO mice, oxotremorine-M increased sEPSCs in only 26.3% neurons, and J104129 abolished this effect. In M(2)/M(4) double-KO mice, but not M(2)- or M(4)-single KO mice, oxotremorine-M inhibited sEPSCs in significantly fewer neurons compared with WT mice, and blocking group II/III metabotropic glutamate receptors abolished this effect. The M(2)/M(4) antagonist himbacine either attenuated the inhibitory effect of oxotremorine-M or potentiated the stimulatory effect of oxotremorine-M in WT mice. Our study demonstrates that activation of the M(2) and M(4) receptor subtypes inhibits synaptic glutamate release to dorsal horn neurons. M(5) is the predominant receptor subtype that potentiates glutamatergic synaptic transmission in the spinal cord.

  4. Dynamic Control of Glutamatergic Synaptic Input in the Spinal Cord by Muscarinic Receptor Subtypes Defined Using Knockout Mice*

    PubMed Central

    Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin

    2010-01-01

    Activation of muscarinic acetylcholine receptors (mAChRs) in the spinal cord inhibits pain transmission. At least three mAChR subtypes (M2, M3, and M4) are present in the spinal dorsal horn. However, it is not clear how each mAChR subtype contributes to the regulation of glutamatergic input to dorsal horn neurons. We recorded spontaneous excitatory postsynaptic currents (sEPSCs) from lamina II neurons in spinal cord slices from wild-type (WT) and mAChR subtype knock-out (KO) mice. The mAChR agonist oxotremorine-M increased the frequency of glutamatergic sEPSCs in 68.2% neurons from WT mice and decreased the sEPSC frequency in 21.2% neurons. Oxotremorine-M also increased the sEPSC frequency in ∼50% neurons from M3-single KO and M1/M3 double-KO mice. In addition, the M3 antagonist J104129 did not block the stimulatory effect of oxotremorine-M in the majority of neurons from WT mice. Strikingly, in M5-single KO mice, oxotremorine-M increased sEPSCs in only 26.3% neurons, and J104129 abolished this effect. In M2/M4 double-KO mice, but not M2- or M4-single KO mice, oxotremorine-M inhibited sEPSCs in significantly fewer neurons compared with WT mice, and blocking group II/III metabotropic glutamate receptors abolished this effect. The M2/M4 antagonist himbacine either attenuated the inhibitory effect of oxotremorine-M or potentiated the stimulatory effect of oxotremorine-M in WT mice. Our study demonstrates that activation of the M2 and M4 receptor subtypes inhibits synaptic glutamate release to dorsal horn neurons. M5 is the predominant receptor subtype that potentiates glutamatergic synaptic transmission in the spinal cord. PMID:20940295

  5. Differentiation of muscarinic cholinergic receptor subtypes in human cortex and pons - Implications for anti-motion sickness therapy

    NASA Technical Reports Server (NTRS)

    Mccarthy, Bruce G.; Peroutka, Stephen J.

    1988-01-01

    Radioligand binding studies were used to analyze muscarinic cholinergic receptor subtypes in human cortex and pons. Muscarinic cholinergic receptors were labeled by H-3-quinuclidinyl benzilate (H-3-QNB). Scopolamine was equipotent in both brain regions and did not discriminate subtypes of H-3-QNB binding. By contrast, the M1 selective antagonist pirenzepine was approximately 33-fold more potent in human cortex than pons. Carbachol, a putative M2 selective agonist, was more than 100-fold more potent in human pons than cortex. These results demonstrate that the human pons contains a relatively large proportion of carbachol-sensitive muscarinic cholinergic receptors. Drugs targeted to this subpopulation of muscarinic cholinergic receptors may prove to be effective anti-motion sickness agents with less side effects than scopolamine.

  6. Identifying the receptor subtype selectivity of retinoid X and retinoic acid receptors via quantum mechanics.

    PubMed

    Tsuji, Motonori; Shudo, Koichi; Kagechika, Hiroyuki

    2017-03-01

    Understanding and identifying the receptor subtype selectivity of a ligand is an important issue in the field of drug discovery. Using a combination of classical molecular mechanics and quantum mechanical calculations, this report assesses the receptor subtype selectivity for the human retinoid X receptor (hRXR) and retinoic acid receptor (hRAR) ligand-binding domains (LBDs) complexed with retinoid ligands. The calculated energies show good correlation with the experimentally reported binding affinities. The technique proposed here is a promising method as it reveals the origin of the receptor subtype selectivity of selective ligands.

  7. Differential alterations of cortical glutamatergic binding sites in senile dementia of the Alzheimer type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chalmers, D.T.; Dewar, D.; Graham, D.I.

    1990-02-01

    Involvement of cortical glutamatergic mechanisms in senile dementia of the Alzheimer type (SDAT) has been investigated with quantitative ligand-binding autoradiography. The distribution and density of Na(+)-dependent glutamate uptake sites and glutamate receptor subtypes--kainate, quisqualate, and N-methyl-D-aspartate--were measured in adjacent sections of frontal cortex obtained postmortem from six patients with SDAT and six age-matched controls. The number of senile plaques was determined in the same brain region. Binding of D-(3H)aspartate to Na(+)-dependent uptake sites was reduced by approximately 40% throughout SDAT frontal cortex relative to controls, indicating a general loss of glutamatergic presynaptic terminals. (3H)Kainate receptor binding was significantly increased bymore » approximately 70% in deep layers of SDAT frontal cortex compared with controls, whereas this binding was unaltered in superficial laminae. There was a positive correlation (r = 0.914) between kainate binding and senile plaque number in deep cortical layers. Quisqualate receptors, as assessed by 2-amino-3-hydroxy-5-(3H)methylisoxazole-4-propionic acid binding, were unaltered in SDAT frontal cortex compared with controls. There was a small reduction (25%) in N-methyl-D-aspartate-sensitive (3H)glutamate binding only in superficial cortical layers of SDAT brains relative to control subjects. (3H)Glutamate binding in SDAT subjects was unrelated to senile plaque number in superficial cortical layers (r = 0.104). These results indicate that in the presence of cortical glutamatergic terminal loss in SDAT plastic alterations occur in some glutamate receptor subtypes but not in others.« less

  8. Increased excitability of spinal pain reflexes and altered frequency-dependent modulation in the dopamine D3-receptor knockout mouse.

    PubMed

    Keeler, Benjamin E; Baran, Christine A; Brewer, Kori L; Clemens, Stefan

    2012-12-01

    Frequency-dependent modulation and dopamine (DA) receptors strongly modulate neural circuits in the spinal cord. Of the five known DA receptor subtypes, the D3 receptor has the highest affinity to DA, and D3-mediated actions are mainly inhibitory. Using an animal model of spinal sensorimotor dysfunction, the D3 receptor knockout mouse (D3KO), we investigated the physiological consequences of D3 receptor dysfunction on pain-associated signaling pathways in the spinal cord, the initial integration site for the processing of pain signaling. In the D3KO spinal cord, inhibitory actions of DA on the proprioceptive monosynaptic stretch reflex are converted from depression to facilitation, but its effects on longer-latency and pain-associated reflex responses and the effects of FM have not been studied. Using behavioral approaches in vivo, we found that D3KO animals exhibit reduced paw withdrawal latencies to thermal pain stimulation (Hargreaves' test) over wild type (WT) controls. Electrophysiological and pharmacological approaches in the isolated spinal cord in vitro showed that constant current stimulation of dorsal roots at a pain-associated frequency was associated with a significant reduction in the frequency-dependent modulation of longer-latency reflex (LLRs) responses but not monosynaptic stretch reflexes (MSRs) in D3KO. Application of the D1 and D2 receptor agonists and the voltage-gated calcium-channel ligand, pregabalin, but not DA, was able to restore the frequency-dependent modulation of the LLR in D3KO to WT levels. Thus we demonstrate that nociception-associated LLRs and proprioceptive MSRs are differentially modulated by frequency, dopaminergics and the Ca(2+) channel ligand, pregabalin. Our data suggest a role for the DA D3 receptor in pain modulation and identify the D3KO as a possible model for increased nociception. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. GluN2C/GluN2D subunit-selective NMDA receptor potentiator CIQ reverses MK-801-induced impairment in prepulse inhibition and working memory in Y-maze test in mice

    PubMed Central

    Suryavanshi, P S; Ugale, R R; Yilmazer-Hanke, D; Stairs, D J; Dravid, S M

    2014-01-01

    Background and Purpose Despite ample evidence supporting the N-methyl-d-aspartate receptor (NMDAR) hypofunction hypothesis of schizophrenia, progress in the development of effective therapeutics based on this hypothesis has been limited. Facilitation of NMDA receptor function by co-agonists (d-serine or glycine) only partially alleviates the symptoms in schizophrenia; other means to facilitate NMDA receptors are required. NMDA receptor sub-types differ in their subunit composition, with varied GluN2 subunits (GluN2A-GluN2D) imparting different physiological, biochemical and pharmacological properties. CIQ is a positive allosteric modulator that is selective for GluN2C/GluN2D-containing NMDA receptors (Mullasseril et al.). Experimental Approach The effect of systemic administration of CIQ was tested on impairment in prepulse inhibition (PPI), hyperlocomotion and stereotypy induced by i.p. administration of MK-801 and methamphetamine. The effect of CIQ was also tested on MK-801-induced impairment in working memory in Y-maze spontaneous alternation test. Key Results We found that systemic administration of CIQ (20 mg·kg−1, i.p.) in mice reversed MK-801 (0.15 mg·kg−1, i.p.)-induced, but not methamphetamine (3 mg·kg−1, i.p.)-induced, deficit in PPI. MK-801 increased the startle amplitude to pulse alone, which was not reversed by CIQ. In contrast, methamphetamine reduced the startle amplitude to pulse alone, which was reversed by CIQ. CIQ also partially attenuated MK-801- and methamphetamine-induced hyperlocomotion and stereotyped behaviours. Additionally, CIQ reversed the MK-801-induced working memory deficit in spontaneous alternation in a Y-maze. Conclusion and Implications Together, these results suggest that facilitation of GluN2C/GluN2D-containing receptors may serve as an important therapeutic strategy for treating positive and cognitive symptoms in schizophrenia. PMID:24236947

  10. Opioid receptor subtypes: fact or artifact?

    PubMed

    Dietis, N; Rowbotham, D J; Lambert, D G

    2011-07-01

    There is a vast amount of pharmacological evidence favouring the existence of multiple subtypes of opioid receptors. In addition to the primary classification of µ (mu: MOP), δ (delta: DOP), κ (kappa: KOP) receptors, and the nociceptin/orphanin FQ peptide receptor (NOP), various groups have further classified the pharmacological µ into µ(1-3), the δ into δ(1-2)/δ(complexed/non-complexed), and the κ into κ(1-3). From an anaesthetic perspective, the suggestions that µ(1) produced analgesia and µ(2) produced respiratory depression are particularly important. However, subsequent to the formal identification of the primary opioid receptors (MOP/DOP/KOP/NOP) by cloning and the use of this information to produce knockout animals, evidence for these additional subtypes is lacking. Indeed, knockout of a single gene (and hence receptor) results in a loss of all function associated with that receptor. In the case of MOP knockout, analgesia and respiratory depression is lost. This suggests that further sub-classification of the primary types is unwise. So how can the wealth of pharmacological data be reconciled with new molecular information? In addition to some simple misclassification (κ(3) is probably NOP), there are several possibilities which include: (i) alternate splicing of a common gene product, (ii) receptor dimerization, (iii) interaction of a common gene product with other receptors/signalling molecules, or (iv) a combination of (i)-(iii). Assigning variations in ligand activity (pharmacological subtypes) to one or more of these molecular suggestions represents an interesting challenge for future opioid research.

  11. H2O2 attenuates IGF-1R tyrosine phosphorylation and its survival signaling properties in neuronal cells via NR2B containing NMDA receptor.

    PubMed

    Zeng, Zhiwen; Wang, Dejun; Gaur, Uma; Rifang, Liao; Wang, Haitao; Zheng, Wenhua

    2017-09-12

    Impairment of insulin-like growth factor I (IGF-I) signaling plays an important role in the development of neurodegeneration. In the present study, we investigated the effect of H 2 O 2 on the survival signaling of IGF-1 and its underlying mechanisms in human neuronal cells SH-SY5Y. Our results showed that IGF-1 promoted cell survival and stimulated phosphorylation of IGF-1R as well as its downstream targets like AKT and ERK1/2 in these cells. Meanwhile, these effects of IGF-1 were abolished by H 2 O 2 at 200μM concentration which did not cause any significant toxicity to cells itself in our experiments. Moreover, studies using various glutamate receptor subtype antagonists displayed that N-methyl-D -aspartate (NMDA) receptor antagonist dizocilpine maleate (MK-801) blocked the effects of H 2 O 2 , whereas other glutamate receptor subtype antagonists, such as non-NMDA receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX), metabolic glutamate receptor antagonists LY341495 and CPCCOEt, had no effect. Further studies revealed that NR2B-containing NMDARs are responsible for these effects as its effects were blocked by pharmacological inhibitor Ro25-698 or specific siRNA for NR2B, but not NR2A. Finally, our data also showed that Ca 2+ influx contributes to the effects of H 2 O 2 . Similar results were obtained in primary cultured cortical neurons. Taken together, the results from the present study suggested that H 2 O 2 attenuated IGF-1R tyrosine phosphorylation and its survival signaling properties via NR2B containing NMDA receptors and Ca 2+ influx in SH-SY5Y cells. Therefore, NMDAR antagonists, especially NR2B-selective ones, combined with IGF-1 may serve as an alternative therapeutic agent for oxidative stress related neurodegenerative disease.

  12. Effect of age and biological subtype on the risk and timing of brain metastasis in breast cancer patients.

    PubMed

    Hung, Man-Hsin; Liu, Chun-Yu; Shiau, Cheng-Ying; Hsu, Chin-Yi; Tsai, Yi-Fang; Wang, Yu-Ling; Tai, Ling-Chen; King, Kuang-Liang; Chao, Ta-Chung; Chiu, Jen-Hwey; Su, Cheng-Hsi; Lo, Su-Shun; Tzeng, Cheng-Hwai; Shyr, Yi-Ming; Tseng, Ling-Ming

    2014-01-01

    Brain metastasis is a major complication of breast cancer. This study aimed to analyze the effect of age and biological subtype on the risk and timing of brain metastasis in breast cancer patients. We identified subtypes of invasive ductal carcinoma of the breast by determining estrogen receptor, progesterone receptor and HER2 status. Time to brain metastasis according to age and cancer subtype was analyzed by Cox proportional hazard analysis. Of the 2248 eligible patients, 164 (7.3%) developed brain metastasis over a median follow-up of 54.2 months. Age 35 or younger, HER2-enriched subtype, and triple-negative breast cancer were significant risk factors of brain metastasis. Among patients aged 35 or younger, the risk of brain metastasis was independent of biological subtype (P = 0.507). Among patients aged 36-59 or >60 years, those with triple-negative or HER2-enriched subtypes had consistently increased risk of brain metastasis, as compared with those with luminal A tumors. Patients with luminal B tumors had higher risk of brain metastasis than luminal A only in patients >60 years. Breast cancer subtypes are associated with differing risks of brain metastasis among different age groups. Patients age 35 or younger are particularly at risk of brain metastasis independent of biological subtype.

  13. The purinergic receptor subtype P2Y2 mediates chemotaxis of neutrophils and fibroblasts in fibrotic lung disease

    PubMed Central

    Karmouty-Quintana, Harry; Cicko, Sanja; Ayata, Korcan; Zissel, Gernot; Goldmann, Torsten; Lungarella, Giuseppe; Ferrari, Davide; Di Virgilio, Francesco; Robaye, Bernard; Boeynaems, Jean-Marie; Blackburn, Michael R.; Idzko, Marco

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a devastating disease with few available treatment options. Recently, the involvement of purinergic receptor subtypes in the pathogenesis of different lung diseases has been demonstrated. Here we investigated the role of the purinergic receptor subtype P2Y2 in the context of fibrotic lung diseases. The concentration of different nucleotides was measured in the broncho-alveolar lavage (BAL) fluid derived from IPF patients and animals with bleomycin-induced pulmonary fibrosis. In addition expression of P2Y2 receptors by different cell types was determined. To investigate the functional relevance of P2Y2 receptors for the pathogenesis of the disease the bleomycin model of pulmonary fibrosis was used. Finally, experiments were performed in pursuit of the involved mechanisms. Compared to healthy individuals or vehicle treated animals, extracellular nucleotide levels in the BAL fluid were increased in patients with IPF and in mice after bleomycin administration, paralleled by a functional up-regulation of P2Y2R expression. Both bleomycin-induced inflammation and fibrosis were reduced in P2Y2R-deficient compared to wild type animals. Mechanistic studies demonstrated that recruitment of neutrophils into the lungs, proliferation and migration of lung fibroblasts as well as IL6 production are key P2Y2R mediated processes. Our results clearly demonstrate the involvement of P2Y2R subtypes in the pathogenesis of fibrotic lung diseases in humans and mice and hence support the development of selective P2Y2R antagonists for the treatment of IPF. PMID:28415591

  14. Down-regulation of muscarinic receptors and the m3 subtype in white-footed mice by dietary exposure to parathion

    USGS Publications Warehouse

    Jett, David A.; Hill, E.F.; Fernando, J.C.; Eldefrawi, M.E.; Eldefrawi, A.T.

    1993-01-01

    The effect of ad libitum dietary exposure (as occurs in the field) to parathion for 14 d was investigated on the muscarinic acetylcholine receptor (mAChR) in brains and submaxillary glands of adults of a field species, the white-footed mouse Peromyscus leucopus. Immunoprecipitation using subtype selective antibodies revealed that the relative ratios of the m1-m5 mAChR subtypes in Peromyscus brain were similar to those in rat brain. There was little variability in acetylcholinesterase (AChE) activity in control mice brains but large variability in 39 exposed mice, resulting from differences in food ingestion and parathion metabolism. Accordingly, data on radioligand binding to mAChRs in each mouse brain were correlated with brain AChE activity in the same mouse, and AChE inhibition served as a biomarker of exposure reflecting in situ paraoxon concentrations. Exposure to parathion for 14 d reduced maximal binding (Bmax) of [3H]quinuclidinyl benzilate ([3H]QNB), [3H]-N-methylscopolamine ([3H]NMS), and [3H]-4-diphenylacetoxy-N-methylpiperidine methiodide ([3H]-4-DAMP) by up to approximately 58% without affecting receptor affinities for these ligands. Maximal reduction in Bmax of [3H]QNB and [3H]-4-DAMP binding occurred in mice with highest AChE inhibition, while equivalent maximal reduction in Bmax of [3H]NMS occurred in mice with only approximately 10% AChE inhibition, without further change at higher parathion doses. This is believed to be due to the hydrophilicity of [3H]NMS, which limits its accessibility to internalized desensitized receptors. In submaxillary glands (mAChRs are predominantly m3 subtype), there were significant dose-dependent reductions in [3H]QNB binding and m3 mRNA levels in exposed mice, revealed by Northern blot analyses. The reduction in m3 receptors is suggested to result mostly from reduced synthesis at the transcription level, rather than from translational or posttranslational events. The data suggest that down-regulation of mAChRs occurs after dietary exposure for 14 d to sublethal concentrations of parathion in a field rodent species, and that significant though incomplete recovery in AChE and mAChRs occurs in 7 d following termination of exposure.

  15. High-Throughput Patch Clamp Screening in Human α6-Containing Nicotinic Acetylcholine Receptors

    PubMed Central

    Armstrong, Lucas C.; Kirsch, Glenn E.; Fedorov, Nikolai B.; Wu, Caiyun; Kuryshev, Yuri A.; Sewell, Abby L.; Liu, Zhiqi; Motter, Arianne L.; Leggett, Carmine S.; Orr, Michael S.

    2017-01-01

    Nicotine, the addictive component of tobacco products, is an agonist at nicotinic acetylcholine receptors (nAChRs) in the brain. The subtypes of nAChR are defined by their α- and β-subunit composition. The α6β2β3 nAChR subtype is expressed in terminals of dopaminergic neurons that project to the nucleus accumbens and striatum and modulate dopamine release in brain regions involved in nicotine addiction. Although subtype-dependent selectivity of nicotine is well documented, subtype-selective profiles of other tobacco product constituents are largely unknown and could be essential for understanding the addiction-related neurological effects of tobacco products. We describe the development and validation of a recombinant cell line expressing human α6/3β2β3V273S nAChR for screening and profiling assays in an automated patch clamp platform (IonWorks Barracuda). The cell line was pharmacologically characterized by subtype-selective and nonselective reference agonists, pore blockers, and competitive antagonists. Agonist and antagonist effects detected by the automated patch clamp approach were comparable to those obtained by conventional electrophysiological assays. A pilot screen of a library of Food and Drug Administration–approved drugs identified compounds, previously not known to modulate nAChRs, which selectively inhibited the α6/3β2β3V273S subtype. These assays provide new tools for screening and subtype-selective profiling of compounds that act at α6β2β3 nicotinic receptors. PMID:28298165

  16. Behavioral and neuroendocrine effects of the selective CRF2 receptor agonists urocortin II and urocortin III.

    PubMed

    Pelleymounter, Mary Ann; Joppa, Margaret; Ling, Nick; Foster, Alan C

    2004-04-01

    We compared the in vivo efficacy of two selective CRF2 agonists, mouse urocortin II (mUcn II) and human urocortin III (hUcn III), using food intake, anxious behavior, or ACTH release in CD-1 or Balb/c mice as indices of biological stress responses. All three peptides produced anorexia (Minimal Effective Dose (M.E.D.) for CRF and mUcn II = 0.03 nmol; M.E.D. for hUcn III = 0.3 nmol). Only mUcn II and CRF appeared to increase anxious behaviors in the elevated plus maze test (M.E.D. = 0.3 and 0.01 nmol, respectively). CRF increased the release of plasma ACTH (M.E.D. of 0.3 nmol), while mUcn II and hUcn III had no effect on ACTH release. These data suggest that the CRF2 receptor subtype plays a primary role in the activation of behavioral, but not neuroendocrine, stress responses. Copyright 2004 Elsevier Inc.

  17. Post-translational regulation of P2X receptor channels: modulation by phospholipids

    PubMed Central

    Bernier, Louis-Philippe; Ase, Ariel R.; Séguéla, Philippe

    2013-01-01

    P2X receptor channels mediate fast excitatory signaling by ATP and play major roles in sensory transduction, neuro-immune communication and inflammatory response. P2X receptors constitute a gene family of calcium-permeable ATP-gated cation channels therefore the regulation of P2X signaling is critical for both membrane potential and intracellular calcium homeostasis. Phosphoinositides (PIPn) are anionic signaling phospholipids that act as functional regulators of many types of ion channels. Direct PIPn binding was demonstrated for several ligand- or voltage-gated ion channels, however no generic motif emerged to accurately predict lipid-protein binding sites. This review presents what is currently known about the modulation of the different P2X subtypes by phospholipids and about critical determinants underlying their sensitivity to PIPn levels in the plasma membrane. All functional mammalian P2X subtypes tested, with the notable exception of P2X5, have been shown to be positively modulated by PIPn, i.e., homomeric P2X1, P2X2, P2X3, P2X4, and P2X7, as well as heteromeric P2X1/5 and P2X2/3 receptors. Based on various results reported on the aforementioned subtypes including mutagenesis of the prototypical PIPn-sensitive P2X4 and PIPn-insensitive P2X5 receptor subtypes, an increasing amount of functional, biochemical and structural evidence converges on the modulatory role of a short polybasic domain located in the proximal C-terminus of P2X subunits. This linear motif, semi-conserved in the P2X family, seems necessary and sufficient for encoding direct modulation of ATP-gated channels by PIPn. Furthermore, the physiological impact of the regulation of ionotropic purinergic responses by phospholipids on pain pathways was recently revealed in the context of native crosstalks between phospholipase C (PLC)-linked metabotropic receptors and P2X receptor channels in dorsal root ganglion sensory neurons and microglia. PMID:24324400

  18. Chronic alcohol disrupts dopamine receptor activity and the cognitive function of the medial prefrontal cortex.

    PubMed

    Trantham-Davidson, Heather; Burnett, Elizabeth J; Gass, Justin T; Lopez, Marcelo F; Mulholland, Patrick J; Centanni, Samuel W; Floresco, Stan B; Chandler, L Judson

    2014-03-05

    Dopamine (DA) receptors in the medial prefrontal cortex (mPFC) exert powerful effects on cognition by modulating the balance between excitatory and inhibitory neurotransmission. The present study examined the impact of chronic intermittent ethanol (CIE) exposure on cognitive function and DA receptor-mediated neurotransmission in the rat mPFC. Consistent with alterations in executive function in alcoholics, CIE-exposed rats exhibited deficits in behavioral flexibility in an operant set-shifting task. Since alterations in dopaminergic neurotransmission in the mPFC have been implicated in a number of behavioral disorders including addiction, studies were then performed in the adult acute slice preparation to examine changes in DA receptor function in the mPFC following CIE exposure. In slices obtained from control rats, DA receptor stimulation was observed to exert complex actions on neuronal firing and synaptic neurotransmission that were not only dependent upon the particular receptor subtype but also whether it was a pyramidal cell or a fast-spiking interneuron. In contrast to slices from control rats, there was a near complete loss of the modulatory actions of D2/D4 receptors on cell firing and neurotransmission in slices obtained immediately, 1 and 4 weeks after the last day of CIE exposure. This loss did not appear to be associated with changes in receptor expression. In contrast, CIE exposure did not alter D1 receptor function or mGluR1 modulation of firing. These studies are consistent with the suggestion that chronic alcohol exposure disrupts cognitive function at least in part through disruption of D2 and D4 receptor signaling in mPFC.

  19. Discovery and synthesis of a novel and selective drug-like P2X(1) antagonist.

    PubMed

    Jaime-Figueroa, S; Greenhouse, R; Padilla, F; Dillon, M P; Gever, J R; Ford, A P D W

    2005-07-01

    Although there is extensive literature to indicate that many different types of P2 purinoceptors are present in the lower urinary tract, the physiological role of these receptors in micturition is still uncertain. In part, this uncertainty has been caused by a lack of P2 subtype selective ligands. In this paper we report the discovery, gram scale synthesis, and binding results for 1, the first potent, drug-like, selective P2X(1) receptor antagonist described. Compound 1 was shown to be more than 30-fold selective over other purinergic receptor subtypes.

  20. Design and Synthesis of a Series of l-trans-4-Substituted Prolines as Selective Antagonists for the Ionotropic Glutamate Receptors Including Functional and X-ray Crystallographic Studies of New Subtype Selective Kainic Acid Receptor Subtype 1 (GluK1) Antagonist (2S,4R)-4-(2-Carboxyphenoxy)pyrrolidine-2-carboxylic Acid.

    PubMed

    Krogsgaard-Larsen, Niels; Delgar, Claudia G; Koch, Karina; Brown, Patricia M G E; Møller, Charlotte; Han, Liwei; Huynh, Tri H V; Hansen, Stinne W; Nielsen, Birgitte; Bowie, Derek; Pickering, Darryl S; Kastrup, Jette Sandholm; Frydenvang, Karla; Bunch, Lennart

    2017-01-12

    Ionotropic glutamate receptor antagonists are valuable tool compounds for studies of neurological pathways in the central nervous system. On the basis of rational ligand design, a new class of selective antagonists, represented by (2S,4R)-4-(2-carboxyphenoxy)pyrrolidine-2-carboxylic acid (1b), for cloned homomeric kainic acid receptors subtype 1 (GluK1) was attained (K i = 4 μM). In a functional assay, 1b displayed full antagonist activity with IC 50 = 6 ± 2 μM. A crystal structure was obtained of 1b when bound in the ligand binding domain of GluK1. A domain opening of 13-14° was seen compared to the structure with glutamate, consistent with 1b being an antagonist. A structure-activity relationship study showed that the chemical nature of the tethering atom (C, O, or S) linking the pyrrolidine ring and the phenyl ring plays a key role in the receptor selectivity profile and that substituents on the phenyl ring are well accommodated by the GluK1 receptor.

  1. Greater absolute risk for all subtypes of breast cancer in the US than Malaysia.

    PubMed

    Horne, Hisani N; Beena Devi, C R; Sung, Hyuna; Tang, Tieng Swee; Rosenberg, Philip S; Hewitt, Stephen M; Sherman, Mark E; Anderson, William F; Yang, Xiaohong R

    2015-01-01

    Hormone receptor (HR) negative breast cancers are relatively more common in low-risk than high-risk countries and/or populations. However, the absolute variations between these different populations are not well established given the limited number of cancer registries with incidence rate data by breast cancer subtype. We, therefore, used two unique population-based resources with molecular data to compare incidence rates for the 'intrinsic' breast cancer subtypes between a low-risk Asian population in Malaysia and high-risk non-Hispanic white population in the National Cancer Institute's surveillance, epidemiology, and end results 18 registries database (SEER 18). The intrinsic breast cancer subtypes were recapitulated with the joint expression of the HRs (estrogen receptor and progesterone receptor) and human epidermal growth factor receptor-2 (HER2). Invasive breast cancer incidence rates overall were fivefold greater in SEER 18 than in Malaysia. The majority of breast cancers were HR-positive in SEER 18 and HR-negative in Malaysia. Notwithstanding the greater relative distribution for HR-negative cancers in Malaysia, there was a greater absolute risk for all subtypes in SEER 18; incidence rates were nearly 7-fold higher for HR-positive and 2-fold higher for HR-negative cancers in SEER 18. Despite the well-established relative breast cancer differences between low-risk and high-risk countries and/or populations, there was a greater absolute risk for HR-positive and HR-negative subtypes in the US than Malaysia. Additional analytical studies are sorely needed to determine the factors responsible for the elevated risk of all subtypes of breast cancer in high-risk countries like the United States.

  2. The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus

    PubMed Central

    Martina, Marzia; Turcotte, Marie-Eve B; Halman, Samantha; Bergeron, Richard

    2007-01-01

    The sigma receptor (σR), once considered a subtype of the opioid receptor, is now described as a distinct pharmacological entity. Modulation of N-methyl-d-aspartate receptor (NMDAR) functions by σR-1 ligands is well documented; however, its mechanism is not fully understood. Using patch-clamp whole-cell recordings in CA1 pyramidal cells of rat hippocampus and (+)pentazocine, a high-affinity σR-1 agonist, we found that σR-1 activation potentiates NMDAR responses and long-term potentiation (LTP) by preventing a small conductance Ca2+-activated K+ current (SK channels), known to shunt NMDAR responses, to open. Therefore, the block of SK channels and the resulting increased Ca2+ influx through the NMDAR enhances NMDAR responses and LTP. These results emphasize the importance of the σR-1 as postsynaptic regulator of synaptic transmission. PMID:17068104

  3. The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus.

    PubMed

    Martina, Marzia; Turcotte, Marie-Eve B; Halman, Samantha; Bergeron, Richard

    2007-01-01

    The sigma receptor (sigmaR), once considered a subtype of the opioid receptor, is now described as a distinct pharmacological entity. Modulation of N-methyl-D-aspartate receptor (NMDAR) functions by sigmaR-1 ligands is well documented; however, its mechanism is not fully understood. Using patch-clamp whole-cell recordings in CA1 pyramidal cells of rat hippocampus and (+)pentazocine, a high-affinity sigmaR-1 agonist, we found that sigmaR-1 activation potentiates NMDAR responses and long-term potentiation (LTP) by preventing a small conductance Ca2+-activated K+ current (SK channels), known to shunt NMDAR responses, to open. Therefore, the block of SK channels and the resulting increased Ca2+ influx through the NMDAR enhances NMDAR responses and LTP. These results emphasize the importance of the sigmaR-1 as postsynaptic regulator of synaptic transmission.

  4. Function of non-visual arrestins in signaling and endocytosis of the gastrin-releasing peptide receptor (GRP receptor).

    PubMed

    Schumann, Michael; Nakagawa, Tomoo; Mantey, Samuel A; Howell, Brian; Jensen, Robert T

    2008-03-01

    Little is known about the role of arrestins in gastrointestinal hormone/neurotransmitter receptor endocytosis. With other G protein-coupled receptors, arrestins induce G protein-uncoupling and receptor endocytosis. In this study, we used arrestin wild-type and dominant-negative mutant constructs to analyze the arrestin dependence of endocytosis and desensitization of the gastrin-releasing peptide receptor (GRP-R). Co-expression of the GRP-R with wild-type arrestin2 and arrestin3 increased not only GRP-R endocytosis but also GRP-R desensitization in arrestin-overexpressing cells. Co-expression of the dominant-negative mutants V53D-arrestin2 or V54D-arrestin3 reduced GRP-R endocytosis. Notably, different trafficking routes for agonist-activated GRP-R-arrestin2 and GRP-R-arrestin3 complexes were found. Arrestin3 internalizes with GRP-R to intracellular vesicles, arrestin2 splits from the GRP-R and localizes to the cell membrane. Also, the recycling pathway of the GRP-R was different if co-expressed with arrestin2 or arrestin3. Using different GRP-R mutants, the C-terminus and the 2nd intracellular loop of the GRP-R were found to be important for the GRP-R-arrestin interaction and for the difference in GRP receptor trafficking with the two arrestin subtypes. Our results show that both non-visual arrestins play an important role in GRP-R internalization and desensitization.

  5. Synthesis and pharmacological characterization of novel N-(trans-4-(2-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)ethyl)cyclohexyl)amides as potential multireceptor atypical antipsychotics.

    PubMed

    Chen, Xiao-Wen; Sun, Yuan-Yuan; Fu, Lei; Li, Jian-Qi

    2016-11-10

    A series of novel benzisothiazolylpiperazine derivatives combining potent dopamine D2 and D3, and serotonin 5-HT1A and 5-HT2A receptor properties were synthesized and evaluated for their potential antipsychotic properties. The most-promising derivative was 9j. The unique pharmacological features of 9j were a high affinity for D2, D3, 5-HT1A, and 5-HT2A receptors, together with a 20-fold selectivity for the D3 versus D2 subtype, and a low affinity for muscarinic M1 (reducing the risk of anticholinergic side effects), and for hERG channels (reducing incidence of QT interval prolongation). In animal behavioral models, 9j inhibited the locomotor-stimulating effects of phencyclidine, blocked conditioned avoidance response, and improved the cognitive deficit in the novel object recognition tests in rats. 9j exhibited a low potential for catalepsy, consistent with results with risperidone. In addition, favorable brain penetration of 9j in rats was detected. These studies have demonstrated that 9j is a potential atypical antipsychotic candidate. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Kappa2 opioid receptor subtype binding requires the presence of the DOR-1 gene.

    PubMed

    Ansonoff, Michael A; Wen, Ting; Pintar, John E

    2010-01-01

    Over the past several years substantial evidence has documented that opioid receptor homo- and heterodimers form in cell lines expressing one or more of the opioid receptors. We used opioid receptor knockout mice to determine whether in vivo pharmacological characteristics of kappa1 and kappa2 opioid receptors changed following knockout of specific opioid receptors. Using displacement of the general opioid ligand diprenorphine, we observed that occupancy or knockout of the DOR-1 gene increases the binding density of kappa1 receptors and eliminates kappa2 receptors in crude membrane preparations while the total density of kappa opioid binding sites is unchanged. Further, the analgesic potency of U69,593 in cumulative dose response curves is enhanced in mice lacking the DOR-1 gene. These results demonstrate that the DOR-1 gene is required for the expression of the kappa2 opioid receptor subtype and are consistent with the possibility that a KOR-1/DOR-1 heterodimer mediates kappa2 pharmacology.

  7. Few residues within an extensive binding interface drive receptor interaction and determine the specificity of arrestin proteins.

    PubMed

    Vishnivetskiy, Sergey A; Gimenez, Luis E; Francis, Derek J; Hanson, Susan M; Hubbell, Wayne L; Klug, Candice S; Gurevich, Vsevolod V

    2011-07-08

    Arrestins bind active phosphorylated forms of G protein-coupled receptors, terminating G protein activation, orchestrating receptor trafficking, and redirecting signaling to alternative pathways. Visual arrestin-1 preferentially binds rhodopsin, whereas the two non-visual arrestins interact with hundreds of G protein-coupled receptor subtypes. Here we show that an extensive surface on the concave side of both arrestin-2 domains is involved in receptor binding. We also identified a small number of residues on the receptor binding surface of the N- and C-domains that largely determine the receptor specificity of arrestins. We show that alanine substitution of these residues blocks the binding of arrestin-1 to rhodopsin in vitro and of arrestin-2 and -3 to β2-adrenergic, M2 muscarinic cholinergic, and D2 dopamine receptors in intact cells, suggesting that these elements critically contribute to the energy of the interaction. Thus, in contrast to arrestin-1, where direct phosphate binding is crucial, the interaction of non-visual arrestins with their cognate receptors depends to a lesser extent on phosphate binding and more on the binding to non-phosphorylated receptor elements.

  8. Few Residues within an Extensive Binding Interface Drive Receptor Interaction and Determine the Specificity of Arrestin Proteins*

    PubMed Central

    Vishnivetskiy, Sergey A.; Gimenez, Luis E.; Francis, Derek J.; Hanson, Susan M.; Hubbell, Wayne L.; Klug, Candice S.; Gurevich, Vsevolod V.

    2011-01-01

    Arrestins bind active phosphorylated forms of G protein-coupled receptors, terminating G protein activation, orchestrating receptor trafficking, and redirecting signaling to alternative pathways. Visual arrestin-1 preferentially binds rhodopsin, whereas the two non-visual arrestins interact with hundreds of G protein-coupled receptor subtypes. Here we show that an extensive surface on the concave side of both arrestin-2 domains is involved in receptor binding. We also identified a small number of residues on the receptor binding surface of the N- and C-domains that largely determine the receptor specificity of arrestins. We show that alanine substitution of these residues blocks the binding of arrestin-1 to rhodopsin in vitro and of arrestin-2 and -3 to β2-adrenergic, M2 muscarinic cholinergic, and D2 dopamine receptors in intact cells, suggesting that these elements critically contribute to the energy of the interaction. Thus, in contrast to arrestin-1, where direct phosphate binding is crucial, the interaction of non-visual arrestins with their cognate receptors depends to a lesser extent on phosphate binding and more on the binding to non-phosphorylated receptor elements. PMID:21471193

  9. Effects of receptor-selective neurokinin agonists and a neurokinin antagonist on the electrical activity of spinal cord neurones in culture.

    PubMed

    Wienrich, M; Reuss, K; Harting, J

    1989-11-01

    1. Rat spinal cord neurones grown in tissue culture were used to examine the electrophysiological effects of the neurokin in (NK)-selective agonists (pGlu6, Pro9) substance P(6-11) (septide; NK1, 10(-6)M) and (pGlu5, MePhe8, MeGly9)SP(1-7) (DiMe-C7; NK3, 10(-6)M). In addition, the effect of the neurokinin antagonist (D-Arg1, D-Pro2, D-Trp7,9, Leu11)SP (10(-5)M) on the neurokinin-evoked responses was investigated. 2. Neurokinin-evoked responses consisted of an increase in neuronal activity with or without long-lasting (mean: 50s) depolarizations of the membrane potential of up to 25mV. The latter also occurred in the presence of tetrodotoxin (10(-7)M) (direct response). 3. In a number of spinal cord neurones (n = 17) only septide induced a membrane depolarization while DiMe-C7 elicited no response. On the other hand, in 2 neurones a response was exclusively evoked by DiMe-C7. 4. The neurokinin antagonist (D-Arg1, D-Pro2, D-Trp7,9, Leu11)SP had no effect of its own but blocked the septide- and DiMe-C7-induced depolarizations. It had no effect on the glutamate (10(-5)M)-evoked depolarization. 5. It is concluded that by the use of neurokinin receptor-selective agonists, subpopulations of spinal cord neurones in primary dissociated cell culture can be differentiated which express the NK1 or the NK3 receptor. Cells expressing only the NK1 receptor outnumber those expressing only the NK3 receptor subtype. Both receptors can be blocked by the neurokinin antagonist (D-Arg1, D-Pro2, D-Trp7,9, Leu11)SP.

  10. Emerging molecular therapeutic targets for cholangiocarcinoma.

    PubMed

    Rizvi, Sumera; Gores, Gregory J

    2017-09-01

    Cholangiocarcinomas (CCAs) are diverse epithelial tumors arising from the liver or large bile ducts with features of cholangiocyte differentiation. CCAs are classified anatomically into intrahepatic (iCCA), perihilar (pCCA), and distal CCA (dCCA). Each subtype has distinct risk factors, molecular pathogenesis, therapeutic options, and prognosis. CCA is an aggressive malignancy with a poor overall prognosis and median survival of less than 2years in patients with advanced disease. Potentially curative surgical treatment options are limited to the subset of patients with early-stage disease. Presently, the available systemic medical therapies for advanced or metastatic CCA have limited therapeutic efficacy. Molecular alterations define the differences in biological behavior of each CCA subtype. Recent comprehensive genetic analysis has better characterized the genomic and transcriptomic landscape of each CCA subtype. Promising candidates for targeted, personalized therapy have emerged, including potential driver fibroblast growth factor receptor (FGFR) gene fusions and somatic mutations in isocitrate dehydrogenase (IDH)1/2 in iCCA, protein kinase cAMP-activated catalytic subunit alpha (PRKACA) or beta (PRKACB) gene fusions in pCCA, and ELF3 mutations in dCCA/ampullary carcinoma. A precision genomic medicine approach is dependent on an enhanced understanding of driver mutations in each subtype and stratification of patients according to their genetic drivers. We review the current genomic landscape of CCA, the potentially actionable molecular aberrations in each CCA subtype, and the role of immunotherapy in CCA. Copyright © 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  11. Cerebral Artery Alpha-1 AR Subtypes: High Altitude Long-Term Acclimatization Responses

    PubMed Central

    Goyal, Ravi; Goyal, Dipali; Chu, Nina; Van Wickle, Jonathan; Longo, Lawrence D.

    2014-01-01

    In response to hypoxia and other stress, the sympathetic (adrenergic) nervous system regulates arterial contractility and blood flow, partly through differential activities of the alpha1 (α1) - adrenergic receptor (AR) subtypes (α1A-, α1B-, and α1D-AR). Thus, we tested the hypothesis that with acclimatization to long-term hypoxia (LTH), contractility of middle cerebral arteries (MCA) is regulated by changes in expression and activation of the specific α1-AR subtypes. We conducted experiments in MCA from adult normoxic sheep maintained near sea level (300 m) and those exposed to LTH (110 days at 3801 m). Following acclimatization to LTH, ovine MCA showed a 20% reduction (n = 5; P<0.05) in the maximum tension achieved by 10−5 M phenylephrine (PHE). LTH-acclimatized cerebral arteries also demonstrated a statistically significant (P<0.05) inhibition of PHE-induced contractility in the presence of specific α1-AR subtype antagonists. Importantly, compared to normoxic vessels, there was significantly greater (P<0.05) α1B-AR subtype mRNA and protein levels in LTH acclimatized MCA. Also, our results demonstrate that extracellular regulated kinase 1 and 2 (ERK1/2)-mediated negative feedback regulation of PHE-induced contractility is modulated by α1B-AR subtype. Overall, in ovine MCA, LTH produces profound effects on α1-AR subtype expression and function. PMID:25393740

  12. Cerebral artery alpha-1 AR subtypes: high altitude long-term acclimatization responses.

    PubMed

    Goyal, Ravi; Goyal, Dipali; Chu, Nina; Van Wickle, Jonathan; Longo, Lawrence D

    2014-01-01

    In response to hypoxia and other stress, the sympathetic (adrenergic) nervous system regulates arterial contractility and blood flow, partly through differential activities of the alpha1 (α1) - adrenergic receptor (AR) subtypes (α1A-, α1B-, and α1D-AR). Thus, we tested the hypothesis that with acclimatization to long-term hypoxia (LTH), contractility of middle cerebral arteries (MCA) is regulated by changes in expression and activation of the specific α1-AR subtypes. We conducted experiments in MCA from adult normoxic sheep maintained near sea level (300 m) and those exposed to LTH (110 days at 3801 m). Following acclimatization to LTH, ovine MCA showed a 20% reduction (n = 5; P<0.05) in the maximum tension achieved by 10-5 M phenylephrine (PHE). LTH-acclimatized cerebral arteries also demonstrated a statistically significant (P<0.05) inhibition of PHE-induced contractility in the presence of specific α1-AR subtype antagonists. Importantly, compared to normoxic vessels, there was significantly greater (P<0.05) α1B-AR subtype mRNA and protein levels in LTH acclimatized MCA. Also, our results demonstrate that extracellular regulated kinase 1 and 2 (ERK1/2)-mediated negative feedback regulation of PHE-induced contractility is modulated by α1B-AR subtype. Overall, in ovine MCA, LTH produces profound effects on α1-AR subtype expression and function.

  13. Predicted 25(OH)D score and colorectal cancer risk according to vitamin D receptor expression.

    PubMed

    Jung, Seungyoun; Qian, Zhi Rong; Yamauchi, Mai; Bertrand, Kimberly A; Fitzgerald, Kathryn C; Inamura, Kentaro; Kim, Sun A; Mima, Kosuke; Sukawa, Yasutaka; Zhang, Xuehong; Wang, Molin; Smith-Warner, Stephanie A; Wu, Kana; Fuchs, Charles S; Chan, Andrew T; Giovannucci, Edward L; Ng, Kimmie; Cho, Eunyoung; Ogino, Shuji; Nishihara, Reiko

    2014-08-01

    Despite accumulating evidence for the preventive effect of vitamin D on colorectal carcinogenesis, its precise mechanisms remain unclear. We hypothesized that vitamin D was associated with a lower risk of colorectal cancer with high-level vitamin D receptor (VDR) expression, but not with risk of tumor with low-level VDR expression. Among 140,418 participants followed from 1986 through 2008 in the Nurses' Health Study and the Health Professionals' Follow-up Study, we identified 1,059 incident colorectal cancer cases with tumor molecular data. The predicted 25-hydroxyvitamin D [25(OH)D] score was developed using the known determinants of plasma 25(OH)D. We estimated the HR for cancer subtypes using the duplication method Cox proportional hazards model. A higher predicted 25(OH)D score was associated with a lower risk of colorectal cancer irrespective of VDR expression level (P(heterogeneity) for subtypes = 0.75). Multivariate HRs (95% confidence intervals) comparing the highest with the lowest quintile of predicted 25(OH)D scores were 0.48 (0.30-0.78) for VDR-negative tumor and 0.56 (0.42-0.75) for VDR-positive tumor. Similarly, the significant inverse associations of the predicted 25(OH)D score with colorectal cancer risk did not significantly differ by KRAS, BRAF, or PIK3CA status (P(heterogeneity) for subtypes ≥ 0.22). A higher predicted vitamin D score was significantly associated with a lower colorectal cancer risk, regardless of VDR status and other molecular features examined. The preventive effect of vitamin D on colorectal carcinogenesis may not totally depend on tumor factors. Host factors (such as local and systemic immunity) may need to be considered. ©2014 American Association for Cancer Research.

  14. Temporal Profiling of Orexin Receptor-Arrestin-Ubiquitin Complexes Reveals Differences between Receptor Subtypes*

    PubMed Central

    Dalrymple, Matthew B.; Jaeger, Werner C.; Eidne, Karin A.; Pfleger, Kevin D. G.

    2011-01-01

    Orexin G protein-coupled receptors (OxRs) and their cognate agonists have been implicated in a number of disorders since their recent discovery, ranging from narcolepsy to formation of addictive behavior. Bioluminescence resonance energy transfer assays of agonist-occupied OxRs provided evidence for a strong dose-dependent interaction with both trafficking proteins β-arrestin 1 and 2 that required unusually high agonist concentrations compared with inositol phosphate signaling. This appears to be reflected in functional differences in potency with respect to orexin A (OxA) and OxR2-dependent ERK1/2 phosphorylation after 90 min compared with 2 min, potentially consistent with β-arrestin-mediated versus G protein-mediated signaling, respectively. Furthermore, extended bioluminescence resonance energy transfer kinetic data monitoring OxA-dependent receptor-β-arrestin and β-arrestin-ubiquitin proximity suggested subtype-specific differences in receptor trafficking, with OxR2 activation resulting in more sustained receptor-β-arrestin-ubiquitin complex formation than elicited by OxR1 activation. Enzyme-linked immunosorbent assay (ELISA) data also revealed that OxR1 underwent significantly more rapid recycling compared with OxR2. Finally, we have observed sustained OxA-dependent ERK1/2 phosphorylation in the presence of OxR2 compared with OxR1. Although both OxR subtypes could be classified as class B receptors for β-arrestin usage based on the initial strength of interaction with both β-arrestins, our temporal profiling revealed tangible differences between OxR subtypes. Consequently, OxR1 appears to fit uneasily into the commonly used β-arrestin classification scheme. More importantly, it is hoped that this improved profiling capability, enabling the subtleties of protein complex formation, stability, and duration to be assessed in live cells, will help unlock the therapeutic potential of targeting these receptors. PMID:21378163

  15. The Role of Adenosine Receptors in Psychostimulant Addiction

    PubMed Central

    Ballesteros-Yáñez, Inmaculada; Castillo, Carlos A.; Merighi, Stefania; Gessi, Stefania

    2018-01-01

    Adenosine receptors (AR) are a family of G-protein coupled receptors, comprised of four members, named A1, A2A, A2B, and A3 receptors, found widely distributed in almost all human body tissues and organs. To date, they are known to participate in a large variety of physiopathological responses, which include vasodilation, pain, and inflammation. In particular, in the central nervous system (CNS), adenosine acts as a neuromodulator, exerting different functions depending on the type of AR and consequent cellular signaling involved. In terms of molecular pathways and second messengers involved, A1 and A3 receptors inhibit adenylyl cyclase (AC), through Gi/o proteins, while A2A and A2B receptors stimulate it through Gs proteins. In the CNS, A1 receptors are widely distributed in the cortex, hippocampus, and cerebellum, A2A receptors are localized mainly in the striatum and olfactory bulb, while A2B and A3 receptors are found at low levels of expression. In addition, AR are able to form heteromers, both among themselves (e.g., A1/A2A), as well as with other subtypes (e.g., A2A/D2), opening a whole range of possibilities in the field of the pharmacology of AR. Nowadays, we know that adenosine, by acting on adenosine A1 and A2A receptors, is known to antagonistically modulate dopaminergic neurotransmission and therefore reward systems, being A1 receptors colocalized in heteromeric complexes with D1 receptors, and A2A receptors with D2 receptors. This review documents the present state of knowledge of the contribution of AR, particularly A1 and A2A, to psychostimulants-mediated effects, including locomotor activity, discrimination, seeking and reward, and discuss their therapeutic relevance to psychostimulant addiction. Studies presented in this review reinforce the potential of A1 agonists as an effective strategy to counteract psychostimulant-induced effects. Furthermore, different experimental data support the hypothesis that A2A/D2 heterodimers are partly responsible for the psychomotor and reinforcing effects of psychostimulant drugs, such as cocaine and amphetamine, and the stimulation of A2A receptor is proposed as a potential therapeutic target for the treatment of drug addiction. The overall analysis of presented data provide evidence that excitatory modulation of A1 and A2A receptors constitute promising tools to counteract psychostimulants addiction. PMID:29375384

  16. Interactions Between Vitamin D and Breast Cancer

    DTIC Science & Technology

    2010-07-01

    BCL2 VDR C CYP24A1 CYP27B1 HR SNAI2 MYC PTGS2 HPGD PTGER4 DUSP10 IL6 TGFB1 TNF D CDKN1A IGFBP3 SPP1 AR PTHLH AMH FABP5 PPARG GSTM1 GDC RTC PPC E...HR SNAI2 MYC PTGS2 HPGD PTGER4 DUSP10 IL6 TGFB1 TNF H CDKN1A IGFBP3 SPP1 AR PTHLH AMH FABP5 PPARG GSTM1 GDC RTC PPC GDC: Genomic DNA...cyclooxygenase) C07 Hs.655491 NM_000860 HPGD Hydroxyprostaglandin dehydrogenase 15-(NAD) C08 Hs.199248 NM_000958 PTGER4 Prostaglandin E receptor 4 (subtype

  17. D1-like dopamine receptors downregulate Na+-K+-ATPase activity and increase cAMP production in the posterior gills of the blue crab Callinectes sapidus

    PubMed Central

    Arnaldo, Francis B.; Villar, Van Anthony M.; Konkalmatt, Prasad R.; Owens, Shaun A.; Asico, Laureano D.; Jones, John E.; Yang, Jian; Lovett, Donald L.; Armando, Ines; Concepcion, Gisela P.

    2014-01-01

    Dopamine-mediated regulation of Na+-K+-ATPase activity in the posterior gills of some crustaceans has been reported to be involved in osmoregulation. The dopamine receptors of invertebrates are classified into three groups based on their structure and pharmacology: D1- and D2-like receptors and a distinct invertebrate receptor subtype (INDR). We tested the hypothesis that a D1-like receptor is expressed in the blue crab Callinectes sapidus and regulates Na+-K+-ATPase activity. RT-PCR, using degenerate primers, showed the presence of D1βR mRNA in the posterior gill. The blue crab posterior gills showed positive immunostaining for a dopamine D5 receptor (D5R or D1βR) antibody in the basolateral membrane and cytoplasm. Confocal microscopy showed colocalization of Na+-K+-ATPase and D1βR in the basolateral membrane. To determine the effect of D1-like receptor stimulation on Na+-K+-ATPase activity, intact crabs acclimated to low salinity for 6 days were given an intracardiac infusion of the D1-like receptor agonist fenoldopam, with or without the D1-like receptor antagonist SCH23390. Fenoldopam increased cAMP production twofold and decreased Na+-K+-ATPase activity by 50% in the posterior gills. This effect was blocked by coinfusion with SCH23390, which had no effect on Na+-K+-ATPase activity by itself. Fenoldopam minimally decreased D1βR protein expression (10%) but did not affect Na+-K+-ATPase α-subunit protein expression. This study shows the presence of functional D1βR in the posterior gills of euryhaline crabs chronically exposed to low salinity and highlights the evolutionarily conserved function of the dopamine receptors on sodium homeostasis. PMID:25080496

  18. D1-like dopamine receptors downregulate Na+-K+-ATPase activity and increase cAMP production in the posterior gills of the blue crab Callinectes sapidus.

    PubMed

    Arnaldo, Francis B; Villar, Van Anthony M; Konkalmatt, Prasad R; Owens, Shaun A; Asico, Laureano D; Jones, John E; Yang, Jian; Lovett, Donald L; Armando, Ines; Jose, Pedro A; Concepcion, Gisela P

    2014-09-15

    Dopamine-mediated regulation of Na(+)-K(+)-ATPase activity in the posterior gills of some crustaceans has been reported to be involved in osmoregulation. The dopamine receptors of invertebrates are classified into three groups based on their structure and pharmacology: D1- and D2-like receptors and a distinct invertebrate receptor subtype (INDR). We tested the hypothesis that a D1-like receptor is expressed in the blue crab Callinectes sapidus and regulates Na(+)-K(+)-ATPase activity. RT-PCR, using degenerate primers, showed the presence of D1βR mRNA in the posterior gill. The blue crab posterior gills showed positive immunostaining for a dopamine D5 receptor (D5R or D1βR) antibody in the basolateral membrane and cytoplasm. Confocal microscopy showed colocalization of Na(+)-K(+)-ATPase and D1βR in the basolateral membrane. To determine the effect of D1-like receptor stimulation on Na(+)-K(+)-ATPase activity, intact crabs acclimated to low salinity for 6 days were given an intracardiac infusion of the D1-like receptor agonist fenoldopam, with or without the D1-like receptor antagonist SCH23390. Fenoldopam increased cAMP production twofold and decreased Na(+)-K(+)-ATPase activity by 50% in the posterior gills. This effect was blocked by coinfusion with SCH23390, which had no effect on Na(+)-K(+)-ATPase activity by itself. Fenoldopam minimally decreased D1βR protein expression (10%) but did not affect Na(+)-K(+)-ATPase α-subunit protein expression. This study shows the presence of functional D1βR in the posterior gills of euryhaline crabs chronically exposed to low salinity and highlights the evolutionarily conserved function of the dopamine receptors on sodium homeostasis. Copyright © 2014 the American Physiological Society.

  19. The presence and distribution of alpha adrenergic receptors in human renal pelvis and calyces.

    PubMed

    Karabacak, Osman Raif; Yilmazer, Demet; Ozturk, Ufuk; Sener, Nevzat Can; Saltas, Hakan; Karabacak, Yurdum; Alper, Murat

    2013-10-01

    In this study, we aimed to demonstrate the presence of Alpha (α) 1 receptors and subtypes in human pelvis and calyces, because an agent to facilitate kidney stone movement and help decrease pain may be an α 1 adrenergic blocker, as used in ureteral stones. Twenty patients who applied to our clinic for renal cell carcinoma were enrolled to the study. All patients underwent radical nephrectomy. After the specimens were removed, excisional biopsies were performed on healthy pelvises and calyces. Mean α-receptor stain rates in renal pelvis were 2.65 ± 0.74, 1.35 ± 0.81 and 2.9 ± 0.30 for α 1A, 1B and 1D, respectively. For calyces, the rates are 2.40 ± 0.82, 1.50 ± 0.76 and 2.75 ± 0.44 for α 1A, 1B and 1D, respectively (Fig. 1). When the staining patterns were compared, α 1A and 1D were expressed more in both pelvis and calyces than α 1B (p < 0.05). After the demonstration of α-adrenergic receptors in pelvis and calyces of human kidney, it may be helpful in coming up with new alternative treatments for patients suffering from kidney stones.

  20. Dietary fat intake and development of specific breast cancer subtypes.

    PubMed

    Sieri, Sabina; Chiodini, Paolo; Agnoli, Claudia; Pala, Valeria; Berrino, Franco; Trichopoulou, Antonia; Benetou, Vassiliki; Vasilopoulou, Effie; Sánchez, María-José; Chirlaque, Maria-Dolores; Amiano, Pilar; Quirós, J Ramón; Ardanaz, Eva; Buckland, Genevieve; Masala, Giovanna; Panico, Salvatore; Grioni, Sara; Sacerdote, Carlotta; Tumino, Rosario; Boutron-Ruault, Marie-Christine; Clavel-Chapelon, Françoise; Fagherazzi, Guy; Peeters, Petra H M; van Gils, Carla H; Bueno-de-Mesquita, H Bas; van Kranen, Henk J; Key, Timothy J; Travis, Ruth C; Khaw, Kay Tee; Wareham, Nicholas J; Kaaks, Rudolf; Lukanova, Annekatrin; Boeing, Heiner; Schütze, Madlen; Sonestedt, Emily; Wirfält, Elisabeth; Sund, Malin; Andersson, Anne; Chajes, Veronique; Rinaldi, Sabina; Romieu, Isabelle; Weiderpass, Elisabete; Skeie, Guri; Dagrun, Engeset; Tjønneland, Anne; Halkjær, Jytte; Overvard, Kim; Merritt, Melissa A; Cox, David; Riboli, Elio; Krogh, Vittorio

    2014-04-09

    We prospectively evaluated fat intake as predictor of developing breast cancer (BC) subtypes defined by estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor 2 receptor (HER2), in a large (n = 337327) heterogeneous cohort of women, with 10062 BC case patients after 11.5 years, estimating BC hazard ratios (HRs) by Cox proportional hazard modeling. High total and saturated fat were associated with greater risk of ER(+)PR(+) disease (HR = 1.20, 95% confidence interval [CI] = 1.00 to 1.45; HR = 1.28, 95% CI = 1.09 to 1.52; highest vs lowest quintiles) but not ER(-)PR(-) disease. High saturated fat was statistically significantly associated with greater risk of HER2(-) disease. High saturated fat intake particularly increases risk of receptor-positive disease, suggesting saturated fat involvement in the etiology of this BC subtype. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. 1-[3-(4-Butylpiperidin-1-yl)propyl]-1,2,3,4-tetrahydroquinolin-2-one (77-LH-28-1) as a Model for the Rational Design of a Novel Class of Brain Penetrant Ligands with High Affinity and Selectivity for Dopamine D4 Receptor.

    PubMed

    Del Bello, Fabio; Bonifazi, Alessandro; Giorgioni, Gianfabio; Cifani, Carlo; Micioni Di Bonaventura, Maria Vittoria; Petrelli, Riccardo; Piergentili, Alessandro; Fontana, Stefano; Mammoli, Valerio; Yano, Hideaki; Matucci, Rosanna; Vistoli, Giulio; Quaglia, Wilma

    2018-04-26

    In the present article, the M 1 mAChR bitopic agonist 1-[3-(4-butylpiperidin-1-yl)propyl]-1,2,3,4-tetrahydroquinolin-2-one (77-LH-28-1, 1) has been demonstrated to show unexpected D 4 R selectivity over D 2 R and D 3 R and to behave as a D 4 R antagonist. To better understand the structural features required for the selective interaction with the D 4 R and to obtain compounds unable to activate mAChRs, the aliphatic butyl chain and the piperidine nucleus of 1 were modified, affording compounds 2-14. The 4-benzylpiperidine 9 and the 4-phenylpiperazine 12 showed high D 4 R affinity and selectivity not only over the other D 2 -like subtypes, but also over M 1 -M 5 mAChRs. Derivative 12 was also highly selective over some selected off-targets. This compound showed biased behavior, potently and partially activating G i protein and inhibiting β-arrestin2 recruitment in functional studies. Pharmacokinetic studies demonstrated that it was characterized by a relevant brain penetration. Therefore, 12 might be a useful tool to better clarify the role played by D 4 R in disorders in which this subtype is involved.

  2. Adaptive increase in D3 dopamine receptors in the brain reward circuits of human cocaine fatalities.

    PubMed

    Staley, J K; Mash, D C

    1996-10-01

    The mesolimbic dopaminergic system plays a primary role in mediating the euphoric and rewarding effects of most abused drugs. Chronic cocaine use is associated with an increase in dopamine neurotransmission resulting from the blockade of dopamine uptake and is mediated by the activation of dopamine receptors. Recent studies have suggested that the D3 receptor subtype plays a pivotal role in the reinforcing effects of cocaine. The D3 receptor-preferring agonist 7-hydroxy-N,N-di-n-propyl-2-aminotetralin (7-OH-DPAT) is a reinforcer in rhesus monkeys trained to self-administer cocaine, but not in cocainenaive monkeys. In vitro autoradiographic localization of [3H]-(+)-7-OH-DPAT binding in the human brain demonstrated that D3 receptors were prevalent and highly localized over the ventromedial sectors of the striatum. Pharmacological characterization of [3H]-(+)-7-OH-DPAT binding to the human nucleus accumbens demonstrated a rank order of potency similar to that observed for binding to the cloned D3 receptor expressed in transfected cell lines. Region-of-interest analysis of [3H]-(+)-7-OH-DPAT binding to the D3 receptor demonstrated a one- to threefold elevation in the number of binding sites over particular sectors of the striatum and substantia nigra in cocaine overdose victims as compared with age-matched and drug-free control subjects. The elevated number of [3H]-(+)-7-OH-DPAT binding sites demonstrates that adaptive changes in the D3 receptor in the reward circuitry of the brain are associated with chronic cocaine abuse. These results suggest that the D3 receptor may be a useful target for drug development of anticocaine medications.

  3. Design of ligands for the nicotinic acetylcholine receptors: the quest for selectivity.

    PubMed

    Bunnelle, William H; Dart, Michael J; Schrimpf, Michael R

    2004-01-01

    In the last decade, nicotinic acetylcholine receptors (nAChRs) have emerged as important targets for drug discovery. The therapeutic potential of nicotinic agonists depends substantially on the ability to selectively activate certain receptor subtypes that mediate beneficial effects. The design of such compounds has proceeded in spite of a general shortage of data pertaining to subtype selectivity. Medicinal chemistry efforts have been guided principally by binding affinities to the alpha4beta2 and/or alpha7 subtypes, even though these are not predictive of agonist activity at either subtype. Nevertheless, a diverse family of nAChR ligands has been developed, and several analogs with promising therapeutic potential have now advanced to human clinical trials. This paper provides an overview of the structure-affinity relationships that continue to drive development of new nAChR ligands.

  4. Effect of neonatal handling on serotonin 1A sub-type receptors in the rat hippocampus.

    PubMed

    Stamatakis, A; Mantelas, A; Papaioannou, A; Pondiki, S; Fameli, M; Stylianopoulou, F

    2006-06-19

    Serotonin 1A sub-type receptors play an important role in the etiopathogenesis of depression, which is known to occur more often in females than males. Early experiences can be a predisposing factor for depression; however, the underlying cellular processes remain unknown. In an effort to address such issues, we employed neonatal handling, an experimental model of early experience, which has been previously shown to render females more vulnerable to display enhanced depression-like behavior in response to chronic stress, while it increases the ability of males to cope. In rat pre-pubertal (30 days of age) and adult (90 days) hippocampus, of both males and females, the effect of neonatal handling on serotonin 1A sub-type receptor mRNA and protein levels was determined by in situ hybridization and immunohistochemistry, respectively, while the number of binding sites was determined by in vitro autoradiography using [(3)H]8-hydroxy-2(di-n-propylamino)tetralin as the ligand. Our results revealed a significant sex difference in serotonin 1A sub-type receptor mRNA, protein and binding sites, with females having higher levels than males. Handling resulted in statistically significant decreased numbers of cells positive for serotonin 1A sub-type receptor mRNA or protein, as well as [(3)H]8-hydroxy-2(di-n-propylamino)tetralin binding sites in the area 4 of Ammon's horn and dentate gyrus of both pre-pubertal males and females. In adult animals the number of serotonin 1A sub-type receptor mRNA positive cells was increased as a result of handling in the area 1 of Ammon's horn, area 4 of Ammon's horn and dentate gyrus of males, while it was decreased only in the area 4 of Ammon's horn of females. Furthermore, the number of serotonin sub-type 1A receptor immunopositive cells, as well as [(3)H]8-hydroxy-2(di-n-propylamino)tetralin binding sites was increased in the area 1 of Ammon's horn, area 4 of Ammon's horn and dentate gyrus of handled males, whereas it was decreased in these same brain areas in the handled females. We can thus infer that neonatal handling results in alterations in postsynaptic serotonergic neurotransmission, which may contribute to the sex dimorphic effects of handling as to the vulnerability toward depression-like behavior in response to chronic stressful stimuli.

  5. Pharmacological Properties and Discriminative Stimulus Effects of a Novel and Selective 5-HT2 Receptor Agonist AL-38022A [(S)-2-(8,9-dihydro-7H-pyrano[2,3-g]indazol-1-yl)-1-methylethylamine

    PubMed Central

    May, Jesse A.; Sharif, Najam A.; Chen, Hwang-Hsing; Liao, John C.; Kelly, Curtis R.; Glennon, Richard A.; Young, Richard; Li, Jun-Xu; Rice, Kenner C.; France, Charles P.

    2013-01-01

    AL-38022A is a novel synthetic serotonergic (5-HT) ligand that exhibited high affinity for each of the 5-HT2 receptor subtypes (Ki ≤ 2.2 nM), but a significantly lower (>100-fold less) affinity for other 5-HT receptors. In addition, AL-38022A displayed a very low affinity for a broad array of other receptors, neurotransmitter transport sites, ion channels, and second messenger elements, making it a relatively selective agent. AL-38022A potently stimulated functional responses via native and cloned rat (EC50 range: 1.9 – 22.5 nM) and human (EC50 range: 0.5 – 2.2 nM) 5-HT2 receptor subtypes including [Ca2+]i mobilization and tissue contractions with apparently similar potencies and intrinsic activities and was a full agonist at all 5-HT2 receptor subtypes. The CNS activity of AL-38022A was assessed by evaluating its discriminative stimulus effects in both a rat and a monkey drug discrimination paradigm using DOM as the training drug. AL-38022A fully generalized to the DOM stimulus in each of these studies; in monkeys MDL 100907 antagonized both DOM and AL-38022A. The pharmacological profile of AL-38022A suggests that it could be a useful tool in defining 5-HT2 receptor signaling and receptor characterization where 5-HT may function as a neurotransmitter. PMID:18718483

  6. The effects of SB 216469, an antagonist which discriminates between the alpha 1A-adrenoceptor and the human prostatic alpha 1-adrenoceptor.

    PubMed Central

    Chess-Williams, R.; Chapple, C. R.; Verfurth, F.; Noble, A. J.; Couldwell, C. J.; Michel, M. C.

    1996-01-01

    1. The affinity of the alpha 1-adrenoceptor antagonist SB 216469 (also known as REC 15/2739) has been determined at native and cloned alpha 1-adrenoceptor subtypes by radioligand binding and at functional alpha 1-adrenoceptor subtypes in isolated tissues. 2. In radioligand binding studies with [3H]-prazosin, SB 216469 had a high affinity at the alpha 1A-adrenoceptors of the rat cerebral cortex and kidney (9.5-9.8) but a lower affinity at the alpha 1B-adrenoceptors of the rat spleen and liver (7.7-8.2). 3. At cloned rat alpha 1-adrenoceptor subtypes transiently expressed in COS-1 cells and also at cloned human alpha 1-adrenoceptor subtypes stably transfected in Rat-1 cells, SB 216469 exhibited a high affinity at the alpha 1a-adrenoceptors (9.6-10.4) with a significantly lower affinity at the alpha 1b-adrenoceptor (8.0-8.4) and an intermediate affinity at the alpha 1d-adrenoceptor (8.7-9.2). 4. At functional alpha 1-adrenoceptors, SB 216469 had a similar pharmacological profile, with a high affinity at the alpha 1A-adrenoceptors of the rat vas deferens and anococcygeus muscle (pA2 = 9.5-10.0), a low affinity at the alpha 1B-adrenoceptors of the rat spleen (6.7) and guinea-pig aorta (8.0), and an intermediate affinity at the alpha 1D-adrenoceptors of the rat aorta (8.8). 5. Several recent studies have concluded that the alpha 1-adrenoceptor present in the human prostate has the pharmacological characteristics of the alpha 1A-adrenoceptor subtype. However, the affinity of SB 216469 at human prostatic alpha 1-adrenoceptors (pA2 = 8.1) determined in isolated tissue strips, was significantly lower than the values obtained at either the cloned alpha 1a-adrenoceptors (human, rat, bovine) or the native alpha 1A-adrenoceptors in radioligand binding and functional studies in the rat. 6. Our results with SB 216469, therefore, suggest that the alpha 1-adrenoceptor mediating contractile responses of the human prostate has properties which distinguish it from the cloned alpha 1a-adrenoceptor or native alpha 1A-adrenoceptor. Since it has previously been shown that the receptor is not the alpha 1B- or alpha 1D-adrenoceptor, the functional alpha 1-adrenoceptor of the human prostate may represent a novel receptor with properties which differ from any of the alpha 1-adrenoceptors currently defined by pharmacological means. PMID:8937710

  7. Impact of serotonin 2C receptor null mutation on physiology and behavior associated with nigrostriatal dopamine pathway function.

    PubMed

    Abdallah, Luna; Bonasera, Stephen J; Hopf, F Woodward; O'Dell, Laura; Giorgetti, Marco; Jongsma, Minke; Carra, Scott; Pierucci, Massimo; Di Giovanni, Giuseppe; Esposito, Ennio; Parsons, Loren H; Bonci, Antonello; Tecott, Laurence H

    2009-06-24

    The impact of serotonergic neurotransmission on brain dopaminergic pathways has substantial relevance to many neuropsychiatric disorders. A particularly prominent role has been ascribed to the inhibitory effects of serotonin 2C receptor (5-HT(2C)R) activation on physiology and behavior mediated by the mesolimbic dopaminergic pathway, particularly in the terminal region of the nucleus accumbens. The influence of this receptor subtype on functions mediated by the nigrostriatal dopaminergic pathway is less clear. Here we report that a null mutation eliminating expression of 5-HT(2C)Rs produces marked alterations in the activity and functional output of this pathway. 5-HT(2C)R mutant mice displayed increased activity of substantia nigra pars compacta (SNc) dopaminergic neurons, elevated baseline extracellular dopamine concentrations in the dorsal striatum (DSt), alterations in grooming behavior, and enhanced sensitivity to the stereotypic behavioral effects of d-amphetamine and GBR 12909. These psychostimulant responses occurred in the absence of phenotypic differences in drug-induced extracellular dopamine concentration, suggesting a phenotypic alteration in behavioral responses to released dopamine. This was further suggested by enhanced behavioral responses of mutant mice to the D(1) receptor agonist SKF 81297. Differences in DSt D(1) or D(2) receptor expression were not found, nor were differences in medium spiny neuron firing patterns or intrinsic membrane properties following dopamine stimulation. We conclude that 5-HT(2C)Rs regulate nigrostriatal dopaminergic activity and function both at SNc dopaminergic neurons and at a locus downstream of the DSt.

  8. Definition of the Cellular Mechanisms which Distinguish Between Estrogen Receptor Agonists and Antagonists

    DTIC Science & Technology

    2001-07-01

    hormones: 10-7 M 17p3- estradiol for ERa and ERI3, 10-7 M progesterone for PR-A and PR-B, 10-7 M dexamethasone for GR, 10-7 M 5ot-dihydrotestosterone...cyproterone acetate, d-Ald.: d-aldosterone, DHEA: dehydroepiandrosterone, DOC: 11-deoxycorticosterone, Dex: dexamethasone, MPA: medroxyprogesterone , OH-F...two receptors are not functionally equivalent and that tory activities by altering ER structure and indepen- each subtype plays a unique role in ER

  9. Effects of norepinephrine on alpha-subtype receptors in the feline pulmonary vascular bed.

    PubMed

    Kaye, Alan D; Hoover, Jason M; Baber, Syed R; Ibrahim, Ikhlass N; Fields, Aaron M

    2004-11-01

    To test the hypothesis that norepinephrine induces a pressor response in the pulmonary vascular bed of the cat and identify the alpha-(1)adrenoceptor subtypes involved in the mediation or modulation of these effects. Prospective vehicle controlled study. University research laboratory. Intact chest preparation, adult mongrel cats. In separate experiments, the effects of 5-methyl-urapidil, a selective alpha-(1)A-subtype adrenoceptor antagonist, chloroethylclonidine, an alpha-(1)B-subtype and -(1)D-subtype adrenoceptor antagonist, and BMY 7378, the selective alpha-(1)D-subtype adrenoceptor antagonist, were investigated on pulmonary arterial responses to norepinephrine and other agonists in the pulmonary vascular bed of the cat. The systemic pressure and lobar arterial perfusion pressure were continuously monitored, electronically averaged, and permanently recorded. In the feline pulmonary vascular bed of the isolated left lower lobe, norepinephrine induced a dose-dependent vasoconstrictor response that was not significantly altered after administration of BMY 7378. However, the responses to norepinephrine were significantly attenuated following administration of 5-methyl-urapidil and chloroethylclonidine. The results of the present study suggest that norepinephrine has potent vasopressor activity in the pulmonary vascular bed of the cat and that this response may be mediated or modulated by both alpha-(1)A-subtype and -(1)B-subtype adrenoceptor sensitive pathways.

  10. Niacin Promotes Cardiac Healing after Myocardial Infarction through Activation of the Myeloid Prostaglandin D2 Receptor Subtype 1

    PubMed Central

    Kong, Deping; Li, Juanjuan; Shen, Yujun; Liu, Guizhu; Zuo, Shengkai; Tao, Bo; Ji, Yong; Lu, Ankang; Lazarus, Michael; Breyer, Richard M.

    2017-01-01

    Niacin is a well established drug used to lower cholesterol and prevent cardiovascular disease events. However, niacin also causes cutaneous flushing side effects due to release of the proresolution mediator prostaglandin D2 (PGD2). Recent randomized clinical trials have demonstrated that addition of niacin with laropiprant [a PGD2 receptor subtype 1 (DP1) blocker] to statin-based therapies does not significantly decrease the risk of cardiovascular disease events, but increases the risk of serious adverse events. Here, we tested whether, and how, niacin beneficial effects on myocardial ischemia require the activation of the PGD2/DP1 axis. Myocardial infarction (MI) was reproduced by ligation of the left anterior descending branch of the coronary artery in mice. We found that niacin increased PGD2 release in macrophages and shifted macrophages to M2 polarization both in vitro and in vivo by activation of DP1 and accelerated inflammation resolution in zymosan-induced peritonitis in mice. Moreover, niacin treatment facilitated wound healing and improved cardiac function after MI through DP1-mediated M2 bias and timely resolution of inflammation in infarcted hearts. In addition, we found that niacin intake also stimulated M2 polarization of peripheral monocytes in humans. Collectively, niacin promoted cardiac functional recovery after ischemic myocardial infarction through DP1-mediated M2 polarization and timely resolution of inflammation in hearts. These results indicated that DP1 inhibition may attenuate the cardiovascular benefits of niacin. PMID:28057839

  11. 5-HT2A receptor activation is necessary for CO2-induced arousal

    PubMed Central

    Smith, Haleigh R.; MacAskill, Amanda; Richerson, George B.

    2015-01-01

    Hypercapnia-induced arousal from sleep is an important protective mechanism pertinent to a number of diseases. Most notably among these are the sudden infant death syndrome, obstructive sleep apnea and sudden unexpected death in epilepsy. Serotonin (5-HT) plays a significant role in hypercapnia-induced arousal. The mechanism of 5-HT's role in this protective response is unknown. Here we sought to identify the specific 5-HT receptor subtype(s) involved in this response. Wild-type mice were pretreated with antagonists against 5-HT receptor subtypes, as well as antagonists against adrenergic, cholinergic, histaminergic, dopaminergic, and orexinergic receptors before challenge with inspired CO2 or hypoxia. Antagonists of 5-HT2A receptors dose-dependently blocked CO2-induced arousal. The 5-HT2C receptor antagonist, RS-102221, and the 5-HT1A receptor agonist, 8-OH-DPAT, attenuated but did not completely block CO2-induced arousal. Blockade of non-5-HT receptors did not affect CO2-induced arousal. None of these drugs had any effect on hypoxia-induced arousal. 5-HT2 receptor agonists were given to mice in which 5-HT neurons had been genetically eliminated during embryonic life (Lmx1bf/f/p) and which are known to lack CO2-induced arousal. Application of agonists to 5-HT2A, but not 5-HT2C, receptors, dose-dependently restored CO2-induced arousal in these mice. These data identify the 5-HT2A receptor as an important mediator of CO2-induced arousal and suggest that, while 5-HT neurons can be independently activated to drive CO2-induced arousal, in the absence of 5-HT neurons and endogenous 5-HT, 5-HT receptor activation can act in a permissive fashion to facilitate CO2-induced arousal via another as yet unidentified chemosensor system. PMID:25925320

  12. Benzodiazepine-induced anxiolysis and reduction of conditioned fear are mediated by distinct GABAA receptor subtypes in mice

    PubMed Central

    Smith, Kiersten S.; Engin, Elif; Meloni, Edward G.; Rudolph, Uwe

    2012-01-01

    GABAA receptor modulating drugs such as benzodiazepines (BZs) have been used to treat anxiety disorders for over five decades. In order to determine whether the same or different GABAA receptor subtypes are necessary for the anxiolytic-like action of BZs in unconditioned anxiety and conditioned fear models, we investigated the role of different GABAA receptor subtypes by challenging wild type, α1(H101R), α2(H101R) and α3(H126R) mice bred on the C57BL/6J background with diazepam or chlordiazepoxide in the elevated plus maze and the fear-potentiated startle paradigms. Both drugs significantly increased open arm exploration in the elevated plus maze in wild type, α1(H101R) and α3(H126R), but this effect was abolished in α2(H101R) mice; these were expected results based on previous published results. In contrast, while administration of diazepam and chlordiazepoxide significantly attenuated fear-potentiated startle (FPS) in wild type mice and α3(H126R) mice, the fear-reducing effects of these drugs were absent in both α1(H101R) and α2(H101R) point mutants, indicating that both α1- and α2-containing GABAA receptors are necessary for BZs to exert their effects on conditioned fear responses.. Our findings illustrate both an overlap and a divergence between the GABAA receptor subtype requirements for the impact of BZs, specifically that both α1- and α2-containing GABAA receptors are necessary for BZs to reduce conditioned fear whereas only α2-containing GABAA receptors are needed for BZ-induced anxiolysis in unconditioned tests of anxiety. This raises the possibility that GABAergic pharmacological interventions for specific anxiety disorders can be differentially tailored. PMID:22465203

  13. The adenosine A2A antagonist MSX-3 reverses the effort-related effects of dopamine blockade: differential interaction with D1 and D2 family antagonists

    PubMed Central

    Worden, Lila T.; Shahriari, Mona; Farrar, Andrew M.; Sink, Kelly S.; Hockemeyer, Jörg; Müller, Christa E.

    2010-01-01

    Rationale Brain dopamine (DA) participates in the modulation of instrumental behavior, including aspects of behavioral activation and effort-related choice behavior. Rats with impaired DA transmission reallocate their behavior away from food-seeking behaviors that have high response requirements, and instead select less effortful alternatives. Although accumbens DA is considered a critical component of the brain circuitry regulating effort-related choice behavior, emerging evidence demonstrates a role for adenosine A2A receptors. Objective Adenosine A2A receptor antagonism has been shown to reverse the effects of DA antagonism. The present experiments were conducted to determine if this effect was dependent upon the subtype of DA receptor that was antagonized to produce the changes in effort-related choice. Materials and methods The adenosine A2A receptor antagonist MSX-3 (0.5–2.0 mg/kg IP) was assessed for its ability to reverse the effects of the D1 family antagonist SCH39166 (ecopipam; 0.2 mg/kg IP) and the D2 family antagonist eticlopride (0.08 mg/kg IP), using a concurrent lever pressing/chow feeding procedure. Results MSX-3 produced a substantial dose-related reversal of the effects of eticlopride on lever pressing and chow intake. At the highest dose of MSX-3, there was a complete reversal of the effects of eticlopride on lever pressing. In contrast, MSX-3 produced only a minimal attenuation of the effects of SCH39166, as measured by regression and effect size analyses. Conclusions The greater ability of MSX-3 to reverse the effects of D2 vs. D1 blockade may be related to the colocalization of D2 and adenosine A2A receptors on the same population of striatal neurons. PMID:19048234

  14. Muscarinic subtypes profile modulation within a series of new antagonists, bridged bicyclic derivatives of 2,2-diphenyl-[1,3]-dioxolan-4-ylmethyl-dimethylamine.

    PubMed

    Piergentili, Alessandro; Gentili, Francesco; Ghelfi, Francesca; Marucci, Gabriella; Pigini, Maria; Quaglia, Wilma; Giannella, Mario

    2003-09-01

    A set of new muscarinic antagonists, bridged bicyclic derivatives of 2,2-diphenyl-[1,3]-dioxolan-4-ylmethyl-dimethylamine (1), was synthesized and tested to evaluate their affinity and selectivity for M(1), M(2), M(3) and M(4) receptor subtypes. The conformational constraint of 1 in a bicyclic structure, and the variation in distance and stereochemistry of the active functions allowed us to modulate the selectivity of interaction with the M(1)-M(3) receptor subtypes. The most interesting compound was (cis,trans)-2-(2,2-diphenylethyl)-5-methyl-tetrahydro-[1,3]dioxolo[4,5-c]pyrrole oxalate (6), which is equipotent with Pirenzepine on rabbit vas deferens (M(1)-putative) but shows a better selectivity profile.

  15. Pharmacologic rescue of motivational deficit in an animal model of the negative symptoms of schizophrenia.

    PubMed

    Simpson, Eleanor H; Kellendonk, Christoph; Ward, Ryan D; Richards, Vanessa; Lipatova, Olga; Fairhurst, Stephen; Kandel, Eric R; Balsam, Peter D

    2011-05-15

    Deficits in incentive motivation, the energizing of behavior in pursuit of a goal, occur in many psychiatric disorders including schizophrenia. We previously reported deficits in both cognition and incentive motivation in a transgenic mouse model of increased striatal-specific dopamine D2 receptor (D2R) density (D2R-OE mice). This molecular alteration is observed in patients with schizophrenia, making D2R-OE mice a suitable system to study the cellular and molecular mechanisms of motivation and avolition, as well as a tool for testing potential therapies against motivational deficits. Behavioral studies using operant conditioning methods were performed both to further characterize the incentive motivation deficit in D2R-OE mice and test a novel pharmacological treatment target that arose from an unbiased expression study performed using gene chips and was validated by quantitative reverse transcription polymerase chain reaction, in situ hybridization, and immunohistochemistry. The reluctance of D2R-OE mice to work is due neither to intolerance for low rates of reward, decreased reactivity to reward, nor increased sensitivity to satiety or fatigue but to a difference in willingness to work for reward. As in patients with schizophrenia, this deficit was not ameliorated by D2R blockade, suggesting that reversal of the motivational deficit by switching off the transgene results from molecular changes downstream of D2R overexpression. We observed a reversible increase in serotonin subtype 2C (5-HT2C) receptor expression in D2R-OE mice. Systemic injection of a 5-HT2C receptor antagonist increased incentive motivation in D2R-OE and control mice. We propose that targeting 5-HT2C receptors may be a useful approach to modulate incentive motivation in psychiatric illness. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  16. Effect of sex steroid hormones on replication and transmission of major HIV subtypes.

    PubMed

    Ragupathy, Viswanath; Devadas, Krishnakumar; Tang, Shixing; Wood, Owen; Lee, Sherwin; Dastyer, Armeta; Wang, Xue; Dayton, Andrew; Hewlett, Indira

    2013-11-01

    The HIV epidemic is expanding worldwide with an increasing number of distinct viral subtypes and circulating recombinant forms (CRFs). Out of 34 million adults living with HIV and AIDS, women account for one half of all HIV-1 infections worldwide. These gender differences in HIV pathogenesis may be attributed to sex hormones. Little is known about the role of sex hormone effects on HIV Subtypes pathogenesis. The aim of our study was to determine sex hormone effects on replication and transmissibility of HIV subtypes. Peripheral blood mononuclear cells (PBMC) and monocyte derived dendritic cells (MDDC) from male and female donors were infected with HIV subtypes A-D and CRF02_AG, CRF01_AE, MN (lab adapted), Group-O, Group-N and HIV-2 at a concentration of 5ng/ml of p24 or p27. Virus production was evaluated by measuring p24 and p27 levels in culture supernatants. Similar experiments were carried out in the presence of physiological concentrations of sex steroid hormones. R5/X4 expressions measured by flow cytometry and transmissibility was evaluated by transfer of HIV from primary dendritic cells (DC) to autologous donor PBMC. Our results from primary PBMC and MDDC from male and female donors indicate in the absence of physiological concentrations of hormone treatment virus production was observed in three clusters; high replicating virus (subtype B and C), moderate replicative virus (subtype A, D, CRF01_AE, Group_N) and least replicative virus (strain MN). However, dose of sex steroid hormone treatment influenced HIV replication and transmission kinetics in PBMC, DCs and cell lines. Such effects were inconsistent between donors and HIV subtypes. Sex hormone effects on HIV entry receptors (CCR5/CXCR4) did not correlate with virus production. Subtypes B and C showed higher replication in PBMC from males and females and were transmitted more efficiently through DC to male and female PBMC compared with other HIV-1 subtypes, HIV-1 Group O and HIV-2. These findings are consistent with increased worldwide prevalence of subtype B and C compared to other subtypes. Sex steroid hormones had variable effect on replication or transmission of different subtypes. These findings suggest that subtype, gender and sex hormones may play a crucial role in the replication and transmission of HIV. Published by Elsevier Ltd.

  17. AMPA, NMDA and kainate glutamate receptor subunits are expressed in human peripheral blood mononuclear cells (PBMCs) where the expression of GluK4 is altered by pregnancy and GluN2D by depression in pregnant women.

    PubMed

    Bhandage, Amol K; Jin, Zhe; Hellgren, Charlotte; Korol, Sergiy V; Nowak, Krzysztof; Williamsson, Louise; Sundström-Poromaa, Inger; Birnir, Bryndis

    2017-04-15

    The amino acid glutamate opens cation permeable ion channels, the iGlu receptors. These ion channels are abundantly expressed in the mammalian brain where glutamate is the main excitatory neurotransmitter. The neurotransmitters and their receptors are being increasingly detected in the cells of immune system. Here we examined the expression of the 18 known subunits of the iGlu receptors families; α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), kainate, N-methyl-d-aspartate (NMDA) and delta in human peripheral blood mononuclear cells (PBMCs). We compared the expression of the subunits between four groups: men, non-pregnant women, healthy pregnant women and depressed pregnant women. Out of 18 subunits of the iGlu receptors, mRNAs for 11 subunits were detected in PBMCs from men and non-pregnant women; AMPA: GluA3, GluA4, kainate: GluK2, GluK4, GluK5, NMDA: GluN1, GluN2C, GluN2D, GluN3A, GluN3B, and delta: GluD1. In the healthy and the depressed pregnant women, in addition, the delta GluD2 subunit was identified. The mRNAs for GluK4, GluK5, GluN2C and GluN2D were expressed at a higher level than other subunits. Gender, pregnancy or depression during pregnancy altered the expression of GluA3, GluK4, GluN2D, GluN3B and GluD1 iGlu subunit mRNAs. The greatest changes recorded were the lower GluA3 and GluK4 mRNA levels in pregnant women and the higher GluN2D mRNA level in healthy but not in depressed pregnant women as compared to non-pregnant individuals. Using subunit specific antibodies, the GluK4, GluK5, GluN1, GluN2C and GluN2D subunit proteins were identified in the PBMCs. The results show expression of specific iGlu receptor subunit in the PBMCs and support the idea of physiology-driven changes of iGlu receptors subtypes in the immune cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The role of striatal NMDA receptors in drug addiction.

    PubMed

    Ma, Yao-Ying; Cepeda, Carlos; Cui, Cai-Lian

    2009-01-01

    The past decade has witnessed an impressive accumulation of evidence indicating that the excitatory amino acid glutamate and its receptors, in particular the N-methyl-D-aspartate (NMDA) receptor subtype, play an important role in drug addiction. Various lines of research using animal models of drug addiction have demonstrated that drug-induced craving is accompanied by significant upregulation of NR2B subunit expression. Furthermore, selective blockade of NR2B-containing NMDA receptors in the striatum, especially in the nucleus accumbens (NAc) can inhibit drug craving and reinstatement. The purpose of this review is to examine the role of striatal NMDA receptors in drug addiction. After a brief description of glutamatergic innervation and NMDA receptor subunit distribution in the striatum, we discuss potential mechanisms to explain the role of striatal NMDA receptors in drug addiction by elucidating signaling cascades involved in the regulation of subunit expression and redistribution, phosphorylation of receptor subunits, as well as activation of intracellular signals triggered by drug experience. Understanding the mechanisms regulating striatal NMDA receptor changes in drug addiction will provide more specific and rational targets to counteract the deleterious effects of drug addiction.

  19. Lorcaserin and pimavanserin: emerging selectivity of serotonin receptor subtype–targeted drugs

    PubMed Central

    Meltzer, Herbert Y.; Roth, Bryan L.

    2013-01-01

    Serotonin (5-hydroxytryptamine, or 5-HT) receptors mediate a plethora of physiological phenomena in the brain and the periphery. Additionally, serotonergic dysfunction has been implicated in nearly every neuropsychiatric disorder. The effects of serotonin are mediated by fourteen GPCRs. Both the therapeutic actions and side effects of commonly prescribed drugs are frequently due to nonspecific actions on various 5-HT receptor subtypes. For more than 20 years, the search for clinically efficacious drugs that selectively target 5-HT receptor subtypes has been only occasionally successful. This review provides an overview of 5-HT receptor pharmacology and discusses two recent 5-HT receptor subtype–selective drugs, lorcaserin and pimavanserin, which target the 5HT2C and 5HT2A receptors and provide new treatments for obesity and Parkinson’s disease psychosis, respectively. PMID:24292660

  20. Effect of bombesin receptor subtype-3 and its synthetic agonist on signaling, glucose transport and metabolism in myocytes from patients with obesity and type 2 diabetes

    PubMed Central

    GONZÁLEZ, NIEVES; MARTÍN-DUCE, ANTONIO; MARTÍNEZ-ARRIETA, FÉLIX; MORENO-VILLEGAS, ZAIDA; PORTAL-NÚÑEZ, SERGIO; SANZ, RAÚL; EGIDO, JESÚS

    2015-01-01

    Bombesin receptor subtype-3 (BRS-3) is an orphan G-protein-coupled receptor (GPCR) member of the bombesin receptor family. Several studies have suggested an association between obesity, alterations in glucose metabolism, diabetes and the BRS-3 receptor. In this study, we focused on patients simultaneously diagnosed with obesity and type 2 diabetes (OB/T2D). The analysis of BRS-3 expression in the skeletal muscle of these patients revealed a marked decrease in the expression of BRS-3 at the mRNA (23.6±1.3-fold downregulation, p<0.0001) and protein level (49±7% decrease, p<0.05) compared to the normal patients (no obesity and diabetes). Moreover, in cultured primary myocytes from patients with OB/T2D, the synthetic BRS-3 agonist, [D-Try6,β-Ala11,Phe13,Nle14]bombesin6–14, significantly increased the phosphorylation levels of mitogen-activated protein kinase (MAPK), p90RSK1, protein kinase B (PKB) and p70s6K. Specifically, the ligand at 10−11 M induced the maximal phosphorylation of MAPKs (p42, 159±15% of the control; p44, 166±11% of the control; p<0.0001) and p90RSK1 (148±2% of the control, p<0.0001). The basal phosphorylation levels of all kinases were reduced (p<0.05) in the patients with OB/T2D compared to the normal patients. Furthermore, the BRS-3 agonist stimulated glucose transport, which was already detected at 10−12 M (133±9% of the control), reached maximal levels at 10−11 M (160±9%, p<0.0001) and was maintained at up to 10−8 M (overall mean, 153±7%; p<0.007). This effect was less promiment than that attained with 10−8 M insulin (202±9%, p=0.009). The effect of the agonist on glycogen synthase a activity achieved the maximum effect at 10−11 M (165±16% of the control; p<0.0001), which did not differ from that observed with higher concentrations of the agonist. These results suggest that muscle cells isolated from patients with OB/T2D have extremely high sensitivity to the synthetic ligand, and the effects are particularly observed on MAPK and p90RSK1 phosphorylation, as well as glucose uptake. Moreover, our data indicate that BRS-3 may prove to be useful as a potential therapeutic target for the treatment of patients with OB/T2D. PMID:25653074

  1. Phosphorylation and Internalization of Lysophosphatidic Acid Receptors LPA1, LPA2, and LPA3

    PubMed Central

    Alcántara-Hernández, Rocío; Hernández-Méndez, Aurelio; Campos-Martínez, Gisselle A.; Meizoso-Huesca, Aldo; García-Sáinz, J. Adolfo

    2015-01-01

    Results The lysophosphatidic acid receptors LPA1, LPA2, and LPA3 were individually expressed in C9 cells and their signaling and regulation were studied. Agonist-activation increases intracellular calcium concentration in a concentration-dependent fashion. Phorbol myristate acetate markedly inhibited LPA1- and LPA3-mediated effect, whereas that mediated by LPA2 was only partially diminished; the actions of the phorbol ester were inhibited by bisindolylmaleimide I and by overnight incubation with the protein kinase C activator, which leads to down regulation of this protein kinase. Homologous desensitization was also observed for the three LPA receptors studied, with that of LPA2 receptors being consistently of lesser magnitude; neither inhibition nor down-regulation of protein kinase C exerted any effect on homologous desensitization. Activation of LPA1–3 receptors induced ERK 1/2 phosphorylation; this effect was markedly attenuated by inhibition of epidermal growth factor receptor tyrosine kinase activity, suggesting growth factor receptor transactivation in this effect. Lysophosphatidic acid and phorbol myristate acetate were able to induce LPA1–3 phosphorylation, in time- and concentration-dependent fashions. It was also clearly observed that agonists and protein kinase C activation induced internalization of these receptors. Phosphorylation of the LPA2 subtype required larger concentrations of these agents and its internalization was less intense than that of the other subtypes. Conclusion Our data show that these three LPA receptors are phosphoproteins whose phosphorylation state is modulated by agonist-stimulation and protein kinase C-activation and that differences in regulation and cellular localization exist, among the subtypes. PMID:26473723

  2. 4-Alkylated homoibotenic acid (HIBO) analogues: versatile pharmacological agents with diverse selectivity profiles towards metabotropic and ionotropic glutamate receptor subtypes.

    PubMed

    Madsen, Ulf; Pickering, Darryl S; Nielsen, Birgitte; Bräuner-Osborne, Hans

    2005-01-01

    4-Alkylated analogues of homoibotenic acid (HIBO) have previously shown high potency and selectivity at ionotropic and metabotropic glutamic acid receptor (iGluR and mGluR) subtypes. Compounds with different selectivity profiles are valuable pharmacological tools for neuropharmacological studies, and the series of 4-alkyl-HIBO analogues have been extended in this paper in the search for versatile agents. Pharmacological characterization of five new analogues, branched and unbranched 4-alkyl-HIBO analogues, have been carried out. The present compounds are all weak antagonists at Group I mGluRs (mGluR1 and 5) presenting only small differences in potencies (Ki values ranging from 89 to 670 microM). Affinities were studied at native and cloned iGluRs, and the compounds described show preference for the AMPA receptor subtypes GluR1 and 2 over GluR3 and 4. However, compared to previous 4-alkyl-HIBO analogues, these compounds show a remarkably high affinity for the Kain preferring subtype GluR5. The observed GluR5 affinities were either similar or higher compared to their GluR1 and 2 affinity. Isopropyl-HIBO showed the highest affinity for GluR5 (Ki=0.16 microM), and represents a unique compound with high affinity towards the three subtypes GluR1, 2 and 5. In general, these compounds represent new selectivity profiles compared to previously reported Glu receptor analogues.

  3. The dopamine D2 receptor antagonist sulpiride modulates striatal BOLD signal during the manipulation of information in working memory.

    PubMed

    Dodds, Chris M; Clark, Luke; Dove, Anja; Regenthal, Ralf; Baumann, Frank; Bullmore, Ed; Robbins, Trevor W; Müller, Ulrich

    2009-11-01

    Dopamine (DA) plays an important role in working memory. However, the precise functions supported by different DA receptor subtypes in different neural regions remain unclear. The present study used pharmacological, event-related fMRI to test the hypothesis that striatal dopamine is important for the manipulation of information in working memory. Twenty healthy human subjects were scanned twice, once after placebo and once after sulpiride 400 mg, a selective DA D2 receptor antagonist, while performing a verbal working memory task requiring different levels of manipulation. Whilst there was no overall effect of sulpiride on task-dependent activation, individual variation in sulpiride plasma levels predicted the effect of working memory manipulation on activation in the putamen, suggesting a dose-dependent effect of DA antagonism on a striatally based manipulation process. These effects occurred in the context of a drug-induced improvement in performance on trials requiring the manipulation of information in working memory but not on simple retrieval trials. No significant drug effects were observed in the prefrontal cortex. These results support models of dopamine function that posit a 'gating' function for dopamine D2 receptors in the striatum, which enables the flexible updating and manipulation of information in working memory.

  4. Identification of human somatostatin receptor 2 domains involved in internalization and signaling in QGP-1 pancreatic neuroendocrine tumor cell line.

    PubMed

    Cambiaghi, Valeria; Vitali, Eleonora; Morone, Diego; Peverelli, Erika; Spada, Anna; Mantovani, Giovanna; Lania, Andrea Gerardo

    2017-04-01

    Somatostatin exerts inhibitory effects on hormone secretion and cell proliferation via five receptor subtypes (SST1-SST5), whose internalization is regulated by β-arrestins. The receptor domains involved in these effects have been only partially elucidated. The aim of the study is to characterize the molecular mechanism and determinants responsible for somatostatin receptor 2 internalization and signaling in pancreatic neuroendocrine QGP-1 cell line, focusing on the third intracellular loop and carboxyl terminal domains. We demonstrated that in cells transfected with somatostatin receptor 2 third intracellular loop mutant, no differences in β-arrestins recruitment and receptor internalization were observed after somatostatin receptor 2 activation in comparison with cells bearing wild-type somatostatin receptor 2. Conversely, the truncated somatostatin receptor 2 failed to recruit β-arrestins and to internalize after somatostatin receptor 2 agonist (BIM23120) incubation. Moreover, the inhibitory effect of BIM23120 on cell proliferation, cyclin D1 expression, P-ERK1/2 levels, apoptosis and vascular endothelial growth factor secretion was completely lost in cells transfected with either third intracellular loop or carboxyl terminal mutants. In conclusion, we demonstrated that somatostatin receptor 2 internalization requires intact carboxyl terminal while the effects of SS on cell proliferation, angiogenesis and apoptosis mediated by somatostatin receptor 2 need the integrity of both third intracellular loop and carboxyl terminal.

  5. Pharmacological and pharmacokinetic characterization of 2-piperazine-alpha-isopropyl benzylamine derivatives as melanocortin-4 receptor antagonists.

    PubMed

    Chen, Chen; Tucci, Fabio C; Jiang, Wanlong; Tran, Joe A; Fleck, Beth A; Hoare, Sam R; Wen, Jenny; Chen, Takung; Johns, Michael; Markison, Stacy; Foster, Alan C; Marinkovic, Dragan; Chen, Caroline W; Arellano, Melissa; Harman, John; Saunders, John; Bozigian, Haig; Marks, Daniel

    2008-05-15

    A series of 2-piperazine-alpha-isopropylbenzylamine derivatives were synthesized and characterized as melanocortin-4 receptor (MC4R) antagonists. Attaching an amino acid to benzylamines 7 significantly increased their binding affinity, and the resulting compounds 8-12 bound selectively to MC4R over other melanocortin receptor subtypes and behaved as functional antagonists. These compounds were also studied for their permeability using Caco-2 cell monolayers and metabolic stability in human liver microsomes. Most compounds exhibited low permeability and high efflux ratio possibly due to their high molecular weights. They also showed moderate metabolic stability which might be associated with their moderate to high lipophilicity. Pharmacokinetic properties of these MC4R antagonists, including brain penetration, were studied in mice after oral and intravenous administrations. Two compounds identified to possess high binding affinity and selectivity, 10d and 11d, were studied in a murine cachexia model. After intraperitoneal (ip) administration of 1mg/kg dose, mice treated with 10d had significantly more food intake and weight gain than the control animals, demonstrating efficacy by blocking the MC4 receptor. Similar in vivo effects were also observed when 11d was dosed orally at 20mg/kg. These results provide further evidence that a potent and selective MC4R antagonist has potential in the treatment of cancer cachexia.

  6. Histamine influences body temperature by acting at H1 and H3 receptors on distinct populations of preoptic neurons

    PubMed Central

    Lundius, Ebba Gregorsson; Sanchez-Alavez, Manuel; Ghochani, Yasmin; Klaus, Joseph; Tabarean, Iustin V.

    2010-01-01

    The preoptic area/anterior hypothalamus (PO/AH), a region that contains neurons that control thermoregulation, is the main locus at which histamine affects body temperature. Here we report that histamine reduced the spontaneous firing rate of GABAergic preoptic neurons by activating H3 subtype histamine receptors. This effect involved a decrease in the level of phosphorylation of the extracellular signal-regulated kinase (ERK) and was not dependent on synaptic activity. Furthermore, a population of nonGABAergic neurons was depolarized and their firing rate was enhanced by histamine acting at H1 subtype receptors. In our experiments, activation of the H1R receptors was linked to the PLC pathway and Ca2+ release from intracellular stores. This depolarization persisted in TTX or when fast synaptic potentials were blocked indicating that it represents a postsynaptic effect. Single-cell reverse transcription –PCR analysis revealed expression of H3 receptors in a population of GABAergic neurons while H1 receptors were expressed in nonGABAergic cells. Histamine applied in the median preoptic nucleus induced a robust, long lasting hyperthermia effect that was mimicked by either H1 or H3 histamine receptor subtype specific agonists. Our data indicate that histamine modulates the core body temperature by acting at two distinct populations of preoptic neurons which express H1 and H3 receptor subtypes, respectively. PMID:20335473

  7. Histamine influences body temperature by acting at H1 and H3 receptors on distinct populations of preoptic neurons.

    PubMed

    Lundius, Ebba Gregorsson; Sanchez-Alavez, Manuel; Ghochani, Yasmin; Klaus, Joseph; Tabarean, Iustin V

    2010-03-24

    The preoptic area/anterior hypothalamus, a region that contains neurons that control thermoregulation, is the main locus at which histamine affects body temperature. Here we report that histamine reduced the spontaneous firing rate of GABAergic preoptic neurons by activating H3 subtype histamine receptors. This effect involved a decrease in the level of phosphorylation of the extracellular signal-regulated kinase and was not dependent on synaptic activity. Furthermore, a population of non-GABAergic neurons was depolarized, and their firing rate was enhanced by histamine acting at H1 subtype receptors. In our experiments, activation of the H1R receptors was linked to the PLC pathway and Ca(2+) release from intracellular stores. This depolarization persisted in TTX or when fast synaptic potentials were blocked, indicating that it represents a postsynaptic effect. Single-cell reverse transcription-PCR analysis revealed expression of H3 receptors in a population of GABAergic neurons, while H1 receptors were expressed in non-GABAergic cells. Histamine applied in the median preoptic nucleus induced a robust, long-lasting hyperthermia effect that was mimicked by either H1 or H3 histamine receptor subtype-specific agonists. Our data indicate that histamine modulates the core body temperature by acting at two distinct populations of preoptic neurons that express H1 and H3 receptor subtypes, respectively.

  8. Pharmacological interference with metabotropic glutamate receptor subtype 7 but not subtype 5 differentially affects within- and between-session extinction of Pavlovian conditioned fear.

    PubMed

    Toth, Iulia; Dietz, Monika; Peterlik, Daniel; Huber, Sabine E; Fendt, Markus; Neumann, Inga D; Flor, Peter J; Slattery, David A

    2012-03-01

    Fear extinction is defined as the attenuation of a conditioned-fear memory by re-exposing animals to the conditioned stimulus without the aversive stimulus. This process is known to be effectively enhanced via administration of D-cycloserine (DCS), a partial NMDA-receptor agonist. However, other glutamatergic mechanisms, such as interference with metabotropic glutamate receptor (mGluR) subtypes 5 and 7 in the extinction of aversive memories are insufficiently understood. Using the allosteric mGluR5 receptor antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP), the mGluR7 allosteric agonist N,N'-dibenzyhydryl-ethane-1,2-diamine dihydrochloride (AMN082), and DCS for comparison, we aimed to study how pharmacological blockade of mGluR5 and activation of mGluR7 influenced within- and between-session conditioned-fear extinction training and extinction retention in rats. We show that when injected before extinction training, mGluR7 activation with AMN082 enhanced freezing and thereby attenuated within-session fear extinction, whereas both DCS and the mGluR5 receptor antagonist MPEP had no effect on this process. However, these differential drug effects were not long lasting, as no difference in extinction retention were observed 24 h later. Therefore, we assessed whether the compounds affect 24 h consolidation of extinction training following incomplete extinction training (between-session extinction). Similar to DCS, AMN082- but not MPEP-treated rats showed facilitated extinction retention, as exhibited by decreased freezing. Finally, using fluoxetine, we provide evidence that the effect of AMN082 on between-session extinction retention is most likely not via increasing 5-HT transmission. These findings demonstrate that mGluR7 activation differentially modulates conditioned-fear extinction, in dependence on the protocol employed, and suggests drugs with AMN082-like mechanisms as potential add-on drugs following exposure-based psychotherapy for fear-related human disorders. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Striatal Distribution and Cytoarchitecture of Dopamine Receptor Subtype 1 and 2: Evidence from Double-Labeling Transgenic Mice

    PubMed Central

    Ren, Keke; Guo, Baolin; Dai, Chunqiu; Yao, Han; Sun, Tangna; Liu, Xia; Bai, Zhantao; Wang, Wenting; Wu, Shengxi

    2017-01-01

    As the main input nucleus of the basal ganglion, the striatum executes different functions, including motivation, reward and attention. The functions of the striatum highly rely on its subregions that receive projections from various cortical areas and the distribution of striatonigral neurons that express D1 dopamine (DA) receptors (or D1 medium-sized spiny neurons, D1 MSNs) and striatopallidal neurons that express D2 DA receptors (or D2 MSNs). Using bacterial artificial chromosome (BAC) transgenic mice, several studies have recently been performed on the spatial distribution of D1 and D2 MSNs. However, these studies mainly focused on enumeration of either D1-enhanced fluorescent protein (eGFP) or D2-eGFP in mice. In the present work, we used Drd1a-tdTamato and Drd2-eGFP double BAC transgenic mice to evaluate the spatial pattern of D1 MSNs (red fluorescence) and D2 MSNs (green fluorescence) along the rostro-caudal axis of the dorsal striatum. The dorsal striatum was divided into three subregions: rostral caudoputamen (CPr), intermediate CP (CPi), and caudal CP (CPc) across the rostral–caudal extent of the striatum. The results demonstrate that D1 and D2 MSNs were intermingled with each other in most of these regions. The cell density of D1 MSNs was slightly higher than D2 MSNs through CPr, CPi, and CPc, though it did not reach significance. However, in CPi, the ratio of D1/D2 in the ventromedial CPi group was significantly higher than those in dorsolateral, dorsomedial, and ventrolateral CPi. There was similar proportion of cells that co-expressed D1 and D2 receptors. Moreover, we demonstrated a pathway-specific activation pattern of D1 MSNs and D2 MSNs in a manic like mouse model induced by D-Amphetamine by utilizing this double transgenic mice and c-fos immunoreactivity. Our results may provide a morphological basis for the function or pathophysiology of striatonigral and striatopallidal neurons with diverse cortical inputs to the dorsal striatum. PMID:28860974

  10. Differential expression of appetite-regulating genes in avian models of anorexia and obesity.

    PubMed

    Yi, J; Yuan, J; Gilbert, E R; Siegel, P B; Cline, M A

    2017-08-01

    Chickens from lines that have been selected for low (LWS) or high (HWS) juvenile body weight for more than 57 generations provide a unique model by which to research appetite regulation. The LWS display different severities of anorexia, whereas all HWS become obese. In the present study, we measured mRNA abundance of various factors in appetite-associated nuclei in the hypothalamus. The lateral hypothalamus (LHA), paraventricular nucleus (PVN), ventromedial hypothalamus (VMH), dorsomedial nucleus (DMN) and arcuate nucleus (ARC) were collected from 5 day-old chicks that were fasted for 180 minutes or provided with continuous access to food. Fasting increased neuropeptide Y receptor subtype 1 (NPYR1) mRNA in the LHA and c-Fos in the VMH, at the same time as decreasing c-Fos in the LHA, neuropeptide Y receptor subtype 5 and ghrelin in the PVN, and neuropeptide Y receptor subtype 2 in the ARC. Fasting increased melanocortin receptor subtype 3 (MC3R) expression in the DMN and NPY in the ARC of LWS but not HWS chicks. Expression of NPY was greater in LWS than HWS in the DMN. neuropeptide Y receptor subtype 5 mRNA was greater in LWS than HWS in the LHA, PVN and ARC. Expression of orexin was greater in LWS than HWS in the LHA. There was greater expression of NPYR1, melanocortin receptor subtype 4 and cocaine- and amphetamine-regulated transcript in HWS than LWS and mesotocin in LWS than HWS in the PVN. In the ARC, agouti-related peptide and MC3R were greater in LWS than HWS and, in the VMH, orexin receptor 2 and leptin receptor were greater in LWS than HWS. Greater mesotocin in the PVN, orexin in the LHA and ORXR2 in the VMH of LWS may contribute to their increased sympathetic tone and anorexic phenotype. The results of the present study also suggest that an increased hypothalamic anorexigenic tone in the LWS over-rides orexigenic factors such as NPY and AgRP that were more highly expressed in LWS than HWS in several nuclei. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  11. Modulation of motor behavior by dopamine and the D1-like dopamine receptor AmDOP2 in the honey bee

    PubMed Central

    Mustard, Julie A.; Pham, Priscilla M.; Smith, Brian H.

    2009-01-01

    Determining the specific molecular pathways through which dopamine affects behavior has been complicated by the presence of multiple dopamine receptor subtypes that couple to different second messenger pathways. The observation of freely moving adult bees in an arena was used to investigate the role of dopamine signaling in regulating the behavior of the honey bee. Dopamine or the dopamine receptor antagonist flupenthixol was injected into the hemolymph of worker honey bees. Significant differences between treated and control bees were seen for all behaviors (walking, stopped, upside down, grooming, flying and fanning), and behavioral shifts were dependent on drug dosage and time after injection. To examine the role of dopamine signaling through a specific dopamine receptor in the brain, RNA interference was used to reduce expression levels of a D1-like receptor, AmDOP2. Injection of Amdop2 dsRNA into the mushroom bodies reduced the levels of Amdop2 mRNA and produced significant changes in the amount of time honey bees spent performing specific behaviors with reductions in time spent walking offset by increases in grooming or time spent stopped. Taken together these results establish that dopamine plays an important role in regulating motor behavior of the honey bee. PMID:19945462

  12. Modulation of motor behavior by dopamine and the D1-like dopamine receptor AmDOP2 in the honey bee.

    PubMed

    Mustard, Julie A; Pham, Priscilla M; Smith, Brian H

    2010-04-01

    Determining the specific molecular pathways through which dopamine affects behavior has been complicated by the presence of multiple dopamine receptor subtypes that couple to different second messenger pathways. The observation of freely moving adult bees in an arena was used to investigate the role of dopamine signaling in regulating the behavior of the honey bee. Dopamine or the dopamine receptor antagonist flupenthixol was injected into the hemolymph of worker honey bees. Significant differences between treated and control bees were seen for all behaviors (walking, stopped, upside down, grooming, flying and fanning), and behavioral shifts were dependent on drug dosage and time after injection. To examine the role of dopamine signaling through a specific dopamine receptor in the brain, RNA interference was used to reduce expression levels of a D1-like receptor, AmDOP2. Injection of Amdop2 dsRNA into the mushroom bodies reduced the levels of Amdop2 mRNA and produced significant changes in the amount of time honey bees spent performing specific behaviors with reductions in time spent walking offset by increases in grooming or time spent stopped. Taken together these results establish that dopamine plays an important role in regulating motor behavior of the honey bee. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  13. Evidence for functional pre-coupled complexes of receptor heteromers and adenylyl cyclase.

    PubMed

    Navarro, Gemma; Cordomí, Arnau; Casadó-Anguera, Verónica; Moreno, Estefanía; Cai, Ning-Sheng; Cortés, Antoni; Canela, Enric I; Dessauer, Carmen W; Casadó, Vicent; Pardo, Leonardo; Lluís, Carme; Ferré, Sergi

    2018-03-28

    G protein-coupled receptors (GPCRs), G proteins and adenylyl cyclase (AC) comprise one of the most studied transmembrane cell signaling pathways. However, it is unknown whether the ligand-dependent interactions between these signaling molecules are based on random collisions or the rearrangement of pre-coupled elements in a macromolecular complex. Furthermore, it remains controversial whether a GPCR homodimer coupled to a single heterotrimeric G protein constitutes a common functional unit. Using a peptide-based approach, we here report evidence for the existence of functional pre-coupled complexes of heteromers of adenosine A 2A receptor and dopamine D 2 receptor homodimers coupled to their cognate Gs and Gi proteins and to subtype 5 AC. We also demonstrate that this macromolecular complex provides the necessary frame for the canonical Gs-Gi interactions at the AC level, sustaining the ability of a Gi-coupled GPCR to counteract AC activation mediated by a Gs-coupled GPCR.

  14. Differential Regulation of Endosomal GPCR/β-Arrestin Complexes and Trafficking by MAPK*

    PubMed Central

    Khoury, Etienne; Nikolajev, Ljiljana; Simaan, May; Namkung, Yoon; Laporte, Stéphane A.

    2014-01-01

    β-Arrestins are signaling adaptors that bind to agonist-occupied G protein-coupled receptors (GPCRs) and target them for endocytosis; however, the mechanisms regulating receptor/β-arrestin complexes and trafficking in endosomes, remain ill defined. Here we show, in live cells, differential dynamic regulation of endosomal bradykinin B2 receptor (B2R) complexes with either β-arrestin-1 or -2. We find a novel role for MAPK in the B2R/β-arrestin-2 complex formation, receptor trafficking and signaling mediated by an ERK1/2 regulatory motif in the hinge domain of the rat β-arrestin-2 (PET178P), but not rat β-arrestin-1 (PER177P). While the ERK1/2 regulatory motif is conserved between rat and mouse β-arrestin-2, it is surprisingly not conserved in human β-arrestin-2 (PEK178P). However, mutation of lysine 178 to threonine is sufficient to confer MAPK sensitivity to the human β-arrestin-2. Furthermore, substitution for a phosphomimetic residue in both the rat and the human β-arrestin-2 (T/K178D) significantly stabilizes B2R/β-arrestin complexes in endosomes, delays receptor recycling to the plasma membrane and maintains intracellular MAPK signaling. Similarly, the endosomal trafficking of β2-adrenergic, angiotensin II type 1 and vasopressin V2 receptors was altered by the β-arrestin-2 T178D mutant. Our findings unveil a novel subtype specific mode of MAPK-dependent regulation of β-arrestins in intracellular trafficking and signaling of GPCRs, and suggest differential endosomal receptor/β-arrestin-2 signaling roles among species. PMID:25016018

  15. Purinergic receptor immunoreactivity in the rostral ventromedial medulla.

    PubMed

    Close, L N; Cetas, J S; Heinricher, M M; Selden, N R

    2009-01-23

    The rostral ventromedial medulla (RVM) has long been recognized to play a pivotal role in nociceptive modulation. Pro-nociception within the RVM is associated with a distinct functional class of neurons, ON-cells that begin to discharge immediately before nocifensive reflexes. Anti-nociceptive function within the RVM, including the analgesic response to opiates, is associated with another distinct class, OFF-cells, which pause immediately prior to nocifensive reflexes. A third class of RVM neurons, NEUTRAL-cells, does not alter firing in association with nocifensive reflexes. ON-, OFF- and NEUTRAL-cells show differential responsiveness to various behaviorally relevant neuromodulators, including purinergic ligands. Iontophoresis of semi-selective P2X ligands, which are associated with nociceptive transmission in the spinal cord and dorsal root ganglia, preferentially activate ON-cells. By contrast, P2Y ligands activate OFF-cells and P1 ligands suppress the firing of NEUTRAL cells. The current study investigates the distribution of P2X, P2Y and P1 receptor immunoreactivity in RVM neurons of Sprague-Dawley rats. Co-localization with tryptophan hydroxylase (TPH), a well-established marker for serotonergic neurons was also studied. Immunoreactivity for the four purinergic receptor subtypes examined was abundant in all anatomical subdivisions of the RVM. By contrast, TPH-immunoreactivity was restricted to a relatively small subset of RVM neurons concentrated in the nucleus raphe magnus and pallidus, as expected. There was a significant degree of co-localization of each purinergic receptor subtype with TPH-immunoreactivity. This co-localization was most pronounced for P2Y1 receptor immunoreactivity, although this was the least abundant among the different purinergic receptor subtypes examined. Immunoreactivity for multiple purinergic receptor subtypes was often co-localized in single neurons. These results confirm the physiological finding that purinergic receptors are widely expressed in the RVM. Purinergic neurotransmission in this region may play an important role in nociception and/or nociceptive modulation, as at other levels of the neuraxis.

  16. Opposing functions of spinal M2, M3, and M4 receptor subtypes in regulation of GABAergic inputs to dorsal horn neurons revealed by muscarinic receptor knockout mice.

    PubMed

    Zhang, Hong-Mei; Chen, Shao-Rui; Matsui, Minoru; Gautam, Dinesh; Wess, Jürgen; Pan, Hui-Lin

    2006-03-01

    Spinal muscarinic acetylcholine receptors (mAChRs) play an important role in the regulation of nociception. To determine the role of individual mAChR subtypes in control of synaptic GABA release, spontaneous inhibitory postsynaptic currents (sIPSCs) and miniature IPSCs (mIPSCs) were recorded in lamina II neurons using whole-cell recordings in spinal cord slices of wild-type and mAChR subtype knockout (KO) mice. The mAChR agonist oxotremorine-M (3-10 microM) dose-dependently decreased the frequency of GABAergic sIPSCs and mIPSCs in wild-type mice. However, in the presence of the M2 and M4 subtype-preferring antagonist himbacine, oxotremorine-M caused a large increase in the sIPSC frequency. In M3 KO and M1/M3 double-KO mice, oxotremorine-M produced a consistent decrease in the frequency of sIPSCs, and this effect was abolished by himbacine. We were surprised to find that in M2/M4 double-KO mice, oxotremorine-M consistently increased the frequency of sIPSCs and mIPSCs in all neurons tested, and this effect was completely abolished by 4-diphenylacetoxy-N-methylpiperidine methiodide, an M3 subtype-preferring antagonist. In M2 or M4 single-KO mice, oxotremorine-M produced a variable effect on sIPSCs; it increased the frequency of sIPSCs in some cells but decreased the sIPSC frequency in other neurons. Taken together, these data strongly suggest that activation of the M3 subtype increases synaptic GABA release in the spinal dorsal horn of mice. In contrast, stimulation of presynaptic M2 and M4 subtypes predominantly attenuates GABAergic inputs to dorsal horn neurons in mice, an action that is opposite to the role of M2 and M4 subtypes in the spinal cord of rats.

  17. Molecular cloning and characterization of chicken prostaglandin E receptor subtypes 2 and 4 (EP2 and EP4).

    PubMed

    Kwok, Amy Ho Yan; Wang, Yajun; Wang, Crystal Ying; Leung, Frederick C

    2008-06-01

    Prostaglandin E(2) (PGE(2)) is an important chemical mediator responsible for regulation of many vital physiological processes. Four receptor subtypes have been identified to mediate its biological actions. Among these subtypes, prostaglandin E receptor subtypes 2 and 4 (EP(2) and EP(4)), both coupled to cAMP-protein kinase A (cAMP-PKA) signaling pathway, are proposed to play crucial roles under both physiological and pathological conditions. Though both receptors were extensively studied in mammals, little is known about their functionality and expression in non-mammalian species including chicken. In present study, the full-length cDNAs for chicken EP(2) and EP(4) receptors were first cloned from adult chicken ovary and testis, respectively. Chicken EP(2) is 356 amino acids in length and shows high amino acid identity to that of human (61%), mouse (63%), and rat (61%). On the other hand, the full-length cDNA of EP(4) gene encodes a precursor of 475 amino acids with a high degree of amino acid identity to that of mammals, including human (87%), mouse (86%), rat (84%), dog (85%), and cattle (83%), and a comparatively lower sequence identity to zebrafish (52%). RT-PCR assays revealed that EP(2) mRNA was expressed in all tissues examined including the oviduct, while EP(4) expression was detected only in a few tissues. Using the pGL3-CRE-luciferase reporter system, we also demonstrated that PGE(2) could induce luciferase activity in DF-1 cells expressing EP(2) and EP(4) in dose-dependent manners (EC(50): <1 nM), confirming that both receptors could be activated by PGE(2) and functionally coupled to the cAMP-PKA signaling pathway. Together, our study establishes a molecular basis to understand the physiological roles of PGE(2) in target tissues of chicken.

  18. Preliminary Evaluation of Three-Dimensional Primary Human Hepatocyte Culture System for Assay of Drug-Metabolizing Enzyme-Inducing Potential.

    PubMed

    Arakawa, Hiroshi; Kamioka, Hiroki; Jomura, Tomoko; Koyama, Satoshi; Idota, Yoko; Yano, Kentaro; Kojima, Hajime; Ogihara, Takuo

    2017-01-01

    Drug-induced liver injury (DILI) is a common reason for withdrawal of candidate drugs from clinical trials, or of approved drugs from the market. DILI may be induced not only by intact parental drugs, but also by metabolites or intermediates, and therefore should be evaluated in the enzyme-induced state. Here, we present a protocol for assay of drug-metabolizing enzyme-inducing potential using three-dimensional (3D) primary cultures of human hepatocytes (hepatocyte spheroids). Hepatocyte spheroids could be used up to 21 d after seeding (pre-culture for 7 d and exposure to inducer for up to 14 d), based on preliminary evaluation of basal activities of CYP subtypes and mRNA expression of the corresponding transcription factor and xenobiotic receptors (aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR) and pregnane X receptor (PXR)). After 2 d exposure of hepatocyte spheroids to omeprazole, phenobarbital and rifampicin (typical inducers of CYP1A2, 2B6 and 3A4, respectively), CYP1A2, 2B6 and 3A4 mRNA expression levels were significantly increased. The mRNA induction of CYP2B6 remained reasonably stable between days 2 and 14 of exposure to inducers, while induction of both CYP1A2 and 3A4 continued to increase up to day 14. These enzyme activities were all significantly increased compared with the control until day 14. Our findings indicate that our 3D hepatocyte spheroids system would be especially suitable for long-term testing of enzyme activity induction by drugs, either to predict or to verify clinical events.

  19. Structure-based discovery of selective serotonin 5-HT(1B) receptor ligands.

    PubMed

    Rodríguez, David; Brea, José; Loza, María Isabel; Carlsson, Jens

    2014-08-05

    The development of safe and effective drugs relies on the discovery of selective ligands. Serotonin (5-hydroxytryptamine [5-HT]) G protein-coupled receptors are therapeutic targets for CNS disorders but are also associated with adverse drug effects. The determination of crystal structures for the 5-HT1B and 5-HT2B receptors provided an opportunity to identify subtype selective ligands using structure-based methods. From docking screens of 1.3 million compounds, 22 molecules were predicted to be selective for the 5-HT1B receptor over the 5-HT2B subtype, a requirement for safe serotonergic drugs. Nine compounds were experimentally verified as 5-HT1B-selective ligands, with up to 300-fold higher affinities for this subtype. Three of the ligands were agonists of the G protein pathway. Analysis of state-of-the-art homology models of the two 5-HT receptors revealed that the crystal structures were critical for predicting selective ligands. Our results demonstrate that structure-based screening can guide the discovery of ligands with specific selectivity profiles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. The orthosteric GABAA receptor ligand Thio-4-PIOL displays distinctly different functional properties at synaptic and extrasynaptic receptors

    PubMed Central

    Hoestgaard-Jensen, K; O'Connor, R M; Dalby, N O; Simonsen, C; Finger, B C; Golubeva, A; Hammer, H; Bergmann, M L; Kristiansen, U; Krogsgaard-Larsen, P; Bräuner-Osborne, H; Ebert, B; Frølund, B; Cryan, J F; Jensen, A A

    2013-01-01

    BACKGROUND AND PURPOSE Explorations into the heterogeneous population of native GABA type A receptors (GABAARs) and the physiological functions governed by the multiple GABAAR subtypes have for decades been hampered by the lack of subtype-selective ligands. EXPERIMENTAL APPROACH The functional properties of the orthosteric GABAA receptor ligand 5-(4-piperidyl)-3-isothiazolol (Thio-4-PIOL) have been investigated in vitro, ex vivo and in vivo. KEY RESULTS Thio-4-PIOL displayed substantial partial agonist activity at the human extrasynaptic GABAAR subtypes expressed in Xenopus oocytes, eliciting maximal responses of up to ∼30% of that of GABA at α5β3γ2S, α4β3δ and α6β3δ and somewhat lower efficacies at the corresponding α5β2γ2S, α4β2δ and α6β2δ subtypes (maximal responses of 4–12%). In contrast, it was an extremely low efficacious agonist at the α1β3γ2S, α1β2γ2S, α2β2γ2S, α2β3γ2S, α3β2γ2S and α3β3γ2S GABAARs (maximal responses of 0–4%). In concordance with its agonism at extrasynaptic GABAARs and its de facto antagonism at the synaptic receptors, Thio-4-PIOL elicited robust tonic currents in electrophysiological recordings on slices from rat CA1 hippocampus and ventrobasal thalamus and antagonized phasic currents in hippocampal neurons. Finally, the observed effects of Thio-4-PIOL in rat tests of anxiety, locomotion, nociception and spatial memory were overall in good agreement with its in vitro and ex vivo properties. CONCLUSION AND IMPLICATIONS The diverse signalling characteristics of Thio-4-PIOL at GABAARs represent one of the few examples of a functionally subtype-selective orthosteric GABAAR ligand reported to date. We propose that Thio-4-PIOL could be a useful pharmacological tool in future studies exploring the physiological roles of native synaptic and extrasynaptic GABAARs. PMID:23957253

  1. Clinical Overestimation of HER2 Positivity in Early Estrogen and Progesterone Receptor-Positive Breast Cancer and the Value of Molecular Subtyping Using BluePrint.

    PubMed

    Myburgh, Ettienne J; Langenhoven, Lizanne; Grant, Kathleen A; van der Merwe, Lize; Kotze, Maritha J

    2017-08-01

    Human epidermal growth factor receptor 2 (HER2) positivity is an important prognostic and predictive indicator in breast cancer. HER2 status is determined by immunohistochemistry and fluorescent in situ hybridization (FISH), which are potentially inaccurate techniques as a result of several technical factors, polysomy of chromosome 17, and amplification or overexpression of CEP17 (centromeric probe for chromosome 17) and/or HER2. In South Africa, HER2-positive tumors are excluded from a MammaPrint (MP; Agendia BV, Amsterdam, Netherlands) pretest algorithm. Clinical HER2 status has been reported to correlate poorly with molecular subtype. The aim of this study was to investigate the correlation of clinical HER2 status with BluePrint (BP) molecular subtyping. Clinico-pathologic and genomic information was extracted from a prospectively collected central MP database containing records of 256 estrogen receptor-positive and/or progesterone receptor-positive tumors. Twenty-one tumors considered HER2 positive on immunohistochemistry or FISH were identified for this study. The median age of patients was 56 years (range, 34 to 77 years), with a median tumor size of 16 mm (3 to 27 mm). Four (19%) tumors were confirmed HER2-enriched subtype, six (29%) were luminal A, and 11 (52%) were luminal B. The positive predictive values of HER2/CEP17 ratio ≥ 2 and HER2 copy number ≥ 6 were only 29% and 40%, respectively. The differences in means for HER2/CEP17 ratio were significant between BP HER2-enriched versus luminal ( P = .0249; 95% CI, 0.12 to 1.21) and MP high-risk versus low-risk tumors ( P = .0002; 95% CI, 0.40 to 1.06). Of the 21 tumors considered clinically HER2 positive, only four were HER2-enriched subtype with BP, indicating an overestimation of HER2 positivity. FISH testing has a poor positive predictive value.

  2. PAM50 Breast Cancer Subtyping by RT-qPCR and Concordance with Standard Clinical Molecular Markers

    PubMed Central

    2012-01-01

    Background Many methodologies have been used in research to identify the “intrinsic” subtypes of breast cancer commonly known as Luminal A, Luminal B, HER2-Enriched (HER2-E) and Basal-like. The PAM50 gene set is often used for gene expression-based subtyping; however, surrogate subtyping using panels of immunohistochemical (IHC) markers are still widely used clinically. Discrepancies between these methods may lead to different treatment decisions. Methods We used the PAM50 RT-qPCR assay to expression profile 814 tumors from the GEICAM/9906 phase III clinical trial that enrolled women with locally advanced primary invasive breast cancer. All samples were scored at a single site by IHC for estrogen receptor (ER), progesterone receptor (PR), and Her2/neu (HER2) protein expression. Equivocal HER2 cases were confirmed by chromogenic in situ hybridization (CISH). Single gene scores by IHC/CISH were compared with RT-qPCR continuous gene expression values and “intrinsic” subtype assignment by the PAM50. High, medium, and low expression for ESR1, PGR, ERBB2, and proliferation were selected using quartile cut-points from the continuous RT-qPCR data across the PAM50 subtype assignments. Results ESR1, PGR, and ERBB2 gene expression had high agreement with established binary IHC cut-points (area under the curve (AUC) ≥ 0.9). Estrogen receptor positivity by IHC was strongly associated with Luminal (A and B) subtypes (92%), but only 75% of ER negative tumors were classified into the HER2-E and Basal-like subtypes. Luminal A tumors more frequently expressed PR than Luminal B (94% vs 74%) and Luminal A tumors were less likely to have high proliferation (11% vs 77%). Seventy-seven percent (30/39) of ER-/HER2+ tumors by IHC were classified as the HER2-E subtype. Triple negative tumors were mainly comprised of Basal-like (57%) and HER2-E (30%) subtypes. Single gene scoring for ESR1, PGR, and ERBB2 was more prognostic than the corresponding IHC markers as shown in a multivariate analysis. Conclusions The standard immunohistochemical panel for breast cancer (ER, PR, and HER2) does not adequately identify the PAM50 gene expression subtypes. Although there is high agreement between biomarker scoring by protein immunohistochemistry and gene expression, the gene expression determinations for ESR1 and ERBB2 status was more prognostic. PMID:23035882

  3. Synthesis and Characterization of New Bivalent Agents as Melatonin- and Histamine H3-Ligands

    PubMed Central

    Pala, Daniele; Scalvini, Laura; Lodola, Alessio; Mor, Marco; Flammini, Lisa; Barocelli, Elisabetta; Lucini, Valeria; Scaglione, Francesco; Bartolucci, Silvia; Bedini, Annalida; Rivara, Silvia; Spadoni, Gilberto

    2014-01-01

    Melatonin is an endogenous molecule involved in many pathophysiological processes. In addition to the control of circadian rhythms, its antioxidant and neuroprotective properties have been widely described. Thus far, different bivalent compounds composed by a melatonin molecule linked to another neuroprotective agent were synthesized and tested for their ability to block neurodegenerative processes in vitro and in vivo. To identify a novel class of potential neuroprotective compounds, we prepared a series of bivalent ligands, in which a prototypic melatonergic ligand is connected to an imidazole-based H3 receptor antagonist through a flexible linker. Four imidazolyl-alkyloxy-anilinoethylamide derivatives, characterized by linkers of different length, were synthesized and their binding affinity for human MT1, MT2 and H3 receptor subtypes was evaluated. Among the tested compounds, 14c and 14d, bearing a pentyl and a hexyl linker, respectively, were able to bind to all receptor subtypes at micromolar concentrations and represent the first bivalent melatonergic/histaminergic ligands reported so far. These preliminary results, based on binding affinity evaluation, pave the way for the future development of new dual-acting compounds targeting both melatonin and histamine receptors, which could represent promising therapeutic agents for the treatment of neurodegenerative pathologies. PMID:25222552

  4. Pharmacological characterization of BR-A-657, a highly potent nonpeptide angiotensin II receptor antagonist.

    PubMed

    Chi, Yong Ha; Lee, Joo Han; Kim, Je Hak; Tan, Hyun Kwang; Kim, Sang Lin; Lee, Jae Yeol; Rim, Hong-Kun; Paik, Soo Heui; Lee, Kyung-Tae

    2013-01-01

    The pharmacological profile of BR-A-657, 2-n-butyl-5-dimethylamino-thiocarbonyl-methyl-6-methyl-3-{[2-(1H-tetrazole-5-yl)biphenyl-4-yl]methyl}-pyrimidin-4(3H)-one, a new nonpeptide AT1-selective angiotensin receptor antagonist, has been investigated in a variety of in vitro and in vivo experimental models. In the present study, BR-A-657 displaced [(125)I][Sar(1)-Ile(8)]angiotensin II (Ang II) from its specific binding sites to AT1 subtype receptors in membrane fractions of HEK-293 cells with an IC50 of 0.16 nM. In a functional assay using isolated rabbit thoracic aorta, BR-A-657 inhibited the contractile response to Ang II (pD'2: 9.15) with a significant reduction in the maximum. In conscious rats, BR-A-657 (0.01, 0.1, 1 mg/kg; intravenously (i.v.)) dose-dependently antagonized Ang II-induced pressor responses. In addition, BR-A-657 dose-dependently decreased mean arterial pressure in furosemide-treated rats and renal hypertensive rats. Moreover, BR-A-657 given orally at 1 and 3 mg/kg reduced blood pressure in conscious renal hypertensive rats. Taken together, these findings indicate that BR-A-657 is a potent and specific antagonist of Ang II at the AT1 receptor subtype, and reveal the molecular basis responsible for the marked lowering of blood pressure in conscious rats.

  5. Geographic differences in the distribution of molecular subtypes of breast cancer in Brazil

    PubMed Central

    2014-01-01

    Background To compare the distribution of the intrinsic molecular subtypes of breast cancer based on immunohistochemical profile in the five major geographic regions of Brazil, a country of continental dimension, with a wide racial variation of people. Methods The study was retrospective observational. We classified 5,687 invasive breast cancers by molecular subtype based on immunohistochemical expression of estrogen-receptor (ER), progesterone-receptor (PR), human epidermal growth factor receptor 2 (HER2), and Ki-67 proliferation index. Cases were classified as luminal A (ER and/or PR positive and HER2 negative, Ki-67 < 14%), luminal B (ER and/or PR positive, HER2 negative, and Ki-67 > 14%), triple-positive (ER and/or PR positive and HER2 positive), HER2-enriched (ER and PR negative, and HER2- positive), and triple-negative (TN) (ER negative, PR negative, and HER2- negative). Comparisons of the ages of patients and molecular subtypes between different geographic regions were performed. Results South and Southeast regions with a higher percentage of European ancestry and higher socioeconomic status presented with the highest proportion of luminal tumors. The North region presented with more aggressive subtypes (HER2-enriched and triple-negative), while the Central-West region predominated triple-positive carcinomas. The Northeast—a region with a high African influence—presented intermediate frequency of the different molecular subtypes. The differences persisted in subgroups of patients under and over 50 years. Conclusions The geographic regions differ according to the distribution of molecular subtypes of breast cancer. However, other differences, beside those related to African ancestry, such as socioeconomic, climatic, nutritional, and geographic, have to be considered to explain our results. The knowledge of the differences in breast cancer characteristics among the geographic regions may help to organize healthcare programs in large countries like Brazil with diverse economic and race composition among different geographic regions. PMID:25174527

  6. The effects of the selective 5-HT(2C) receptor antagonist SB 242084 on learned helplessness in male Fischer 344 rats.

    PubMed

    Strong, Paul V; Greenwood, Benjamin N; Fleshner, Monika

    2009-05-01

    Rats exposed to an uncontrollable stressor demonstrate a constellation of behaviors such as exaggerated freezing and deficits in shuttle box escape learning. These behaviors in rats have been called learned helplessness and have been argued to model human stress-related mood disorders. Learned helplessness is thought to be caused by hyperactivation of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN) and a subsequent exaggerated release of 5-HT in DRN projection sites. Blocking 5-HT(2C) receptors in the face of an increase in serotonin can alleviate anxiety behaviors in some animal models. However, specific 5-HT receptor subtypes involved in learned helplessness remain unknown. The current experiments tested the hypothesis that 5-HT(2C) receptor activation is necessary and sufficient for the expression of learned helplessness. The selective 5-HT(2C) receptor antagonist SB 242084 (1.0 mg/kg) administered i.p. to adult male Fischer 344 rats prior to shuttle box behavioral testing, but not before stress, blocked stress-induced deficits in escape learning but had no effect on the exaggerated shock-elicited freezing. The selective 5-HT(2C) receptor agonist CP-809101 was sufficient to produce learned helplessness-like behaviors in the absence of prior stress and these effects were blocked by pretreatment with SB 242084. Results implicate the 5-HT(2C) receptor subtype in mediating the shuttle box escape deficits produced by exposure to uncontrollable stress and suggest that different postsynaptic 5-HT receptor subtypes underlie the different learned helplessness behaviors.

  7. Basal Subtype of Invasive Breast Cancer Is Associated With a Higher Risk of True Recurrence After Conventional Breast-Conserving Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hattangadi-Gluth, Jona A.; Wo, Jennifer Y.; Nguyen, Paul L.

    2012-03-01

    Purpose: To determine whether breast cancer subtype is associated with patterns of ipsilateral breast tumor recurrence (IBTR), either true recurrence (TR) or elsewhere local recurrence (ELR), among women with pT1-T2 invasive breast cancer (IBC) who receive breast-conserving therapy (BCT). Methods and Materials: From Jan 1998 to Dec 2003, 1,223 women with pT1-T2N0-3 IBC were treated with BCT (lumpectomy plus whole-breast radiation). Ninety percent of patients received adjuvant systemic therapy, but none received trastuzumab. Biologic cancer subtypes were approximated by determining estrogen receptor-positive (ER+), progesterone receptor-positive (PR+), and human epidermal growth factor receptor-2-positive (HER-2+) expression, classified as luminal A (ER+ ormore » PR+ and HER-2 negative [HER-2-]), luminal B (ER+ or PR+ and HER-2+), HER-2 (ER- and PR- and HER-2+), and basal (ER- and PR- and HER-2- ) subtypes. Imaging, pathology, and operative reports were reviewed by two physicians independently, including an attending breast radiologist. Readers were blinded to subtype and outcome. TR was defined as IBTR within the same quadrant and within 3 cm of the primary tumor. All others were defined as ELR. Results: At a median follow-up of 70 months, 24 patients developed IBTR (5-year cumulative incidence of 1.6%), including 15 TR and 9 ELR patients. At 5 years, basal (4.4%) and HER-2 (9%) subtypes had a significantly higher incidence of TR than luminal B (1.2%) and luminal A (0.2%) subtypes (p < 0.0001). On multivariate analysis, basal subtype (hazard ratio [HR], 4.8, p = 0.01), younger age at diagnosis (HR, 0.97; p = 0.05), and increasing tumor size (HR, 2.1; p = 0.04) were independent predictors of TR. Only younger age (HR, 0.95; p = 0.01) significantly predicted for ELR. Conclusions: Basal and HER-2 subtypes are significantly associated with higher rates of TR among women with pT1-T2 IBC after BCT. Younger age predicts for both TR and ELR. Strategies to reduce TR in basal breast cancers, such as increased boost doses, concomitant radiation and chemotherapy, or targeted therapy agents, should be explored.« less

  8. Bombesin-like peptide receptors in human bronchial epithelial cells.

    PubMed

    Kane, M A; Toi-Scott, M; Johnson, G L; Kelley, K K; Boose, D; Escobedo-Morse, A

    1996-01-01

    Northern blot and RNAse protection assays previously failed to detect bombesin-like peptide (BLP) receptors in normal human lung tissue, but by RT/PCR cultured human bronchial epithelial (HBE) cells expressed all three BLP receptor subtypes, predominantly neuromedin B (NMB) receptor. By RT/PCR, we found expression of all three BLP receptor subtypes by human lung tissue and confirmed NMB receptor expression in six out of six HBE samples. However, transformed HBE BEAS B2B cells expressed only gastrin-releasing peptide (GRP) receptors; saturable, high-affinity (Kd = 3.5 nM) specific [125I]GRP binding confirmed functional GRP receptor, with M(r) = 75 kDa and immunologic cross-reactivity with GRP receptor from human small-cell lung carcinoma (SCLC) NCI-H345 cells. Altered regulation of BLP receptors may accompany transformation of normal lung cells to cancer.

  9. Electrophysiological effects of tachykinins and capsaicin on guinea-pig bronchial parasympathetic ganglion neurones.

    PubMed Central

    Myers, A C; Undem, B J

    1993-01-01

    1. We evaluated the effects of neurokinins, tachykinin analogues, or capsaicin on passive membrane properties of guinea-pig bronchial parasympathetic neurones using intracellular recording techniques. 2. Substance P (SP) and the tachykinin analogue, acetyl-[Arg6,Sar9,Met(O2)11]-SP(6-11) (ASMSP), at concentrations selective for the neurokinin (NK)-1 receptor subtype, depolarized the resting potential (3 and 5 mV, respectively) with no change in input resistance. Neurokinin A and beta Ala8NKA(4-10), at concentrations selective for the NK-2 receptor subtype (0.1 microM), were without effect. 3. Neurokinin B (NKB) and [Asp5,6,methyl-Phe8]SP(5-11) (senktide analogue), at concentrations selective for NK-3 receptor subtype, elicited maximum depolarizations of 16 +/- 2 mV for both agonists. The peak of the depolarization was associated with an decrease in membrane resistance (35 +/- 4 and 50 +/- 7%, respectively). 4. Capsaicin (1 microM) elicited a 3-24 mV depolarization of the resting potential of thirteen of eighteen bronchial ganglion neurones and decreased the input resistance of seven of thirteen of these neurones. The effects of capsaicin were reduced by desensitization with senktide analogue at a concentration selective for the NK-3 receptor subtype, whereas a non-peptide NK-1 receptor antagonist had no effect. 5. Using voltage clamp analysis, capsaicin and senktide analogue evoked an inward current and an increase in membrane conductance at the resting membrane potential. The reversal potential for senktide analogue was estimated to be + 4 mV. 6. These data support the hypothesis that neurokinin-containing nerve terminals are localized within guinea-pig bronchial parasympathetic ganglia and, when released, the predominant effect of the neurokinins is by activation of NK-3 receptors. PMID:7508508

  10. Functional expression of ionotropic purinergic receptors on mouse taste bud cells.

    PubMed

    Hayato, Ryotaro; Ohtubo, Yoshitaka; Yoshii, Kiyonori

    2007-10-15

    Neurotransmitter receptors on taste bud cells (TBCs) and taste nerve fibres are likely to contribute to taste transduction by mediating the interaction among TBCs and that between TBCs and taste nerve fibres. We investigated the functional expression of P2 receptor subtypes on TBCs of mouse fungiform papillae. Electrophysiological studies showed that 100 microm ATP applied to their basolateral membranes either depolarized or hyperpolarized a few cells per taste bud. Ca(2+) imaging showed that similarly applied 1 mum ATP, 30 microm BzATP (a P2X(7) agonist), or 1 microm 2MeSATP (a P2Y(1) and P2Y(11) agonist) increased intracellular Ca(2+) concentration, but 100 microm UTP (a P2Y(2) and P2Y(4) agonist) and alpha,beta-meATP (a P2X agonist except for P2X(2), P2X(4) and P2X(7)) did not. RT-PCR suggested the expression of P2X(2), P2X(4), P2X(7), P2Y(1), P2Y(13) and P2Y(14) among the seven P2X subtypes and seven P2Y subtypes examined. Immunohistostaining confirmed the expression of P2X(2). The exposure of the basolateral membranes to 3 mm ATP for 30 min caused the uptake of Lucifer Yellow CH in a few TBCs per taste bud. This was antagonized by 100 microm PPADS (a non-selective P2 blocker) and 1 microm KN-62 (a P2X(7) blocker). These results showed for the first time the functional expression of P2X(2) and P2X(7) on TBCs. The roles of P2 receptor subtypes in the taste transduction, and the renewal of TBCs, are discussed.

  11. Ovarian steroids alter dopamine receptor populations in the medial preoptic area of female rats: implications for sexual motivation, desire, and behaviour.

    PubMed

    Graham, M Dean; Gardner Gregory, James; Hussain, Dema; Brake, Wayne G; Pfaus, James G

    2015-12-01

    Dopamine (DA) transmission in the medial preoptic area (mPOA) plays a critical role in the control of appetitive sexual behaviour in the female rat. We have shown previously that a DA D1 receptor (D1R)-mediated excitatory state appears to occur in females primed with estradiol benzoate (EB) and progesterone (P), whereas a DA D2 receptor (D2R)-mediated inhibitory state appears to occur in females primed only with EB. The present experiment employed three techniques to better understand what changes occur to DA receptors (DARs) in the mPOA under different hormonal profiles. Ovariectomized females were randomly assigned to one of three steroid treatment groups: EB + P (10 and 500 μg, respectively), EB + Oil, or the control (Oil + Oil), with hormone injections administered at 48 and 4 h prior to euthanizing. First, the number of neurons in the mPOA that contained D1R or D2R was assessed using immunohistochemistry. Second, the mPOA and two control areas (the prelimbic cortex and caudate putamen) were analysed for DAR protein levels using western blot, and DAR functional binding levels using autoradiography. Ovarian steroid hormones affected the two DAR subtypes in opposite ways in the mPOA. All three techniques supported previous behavioural findings that females primed with EB have a lower D1R : D2R ratio, and thus a D2R-mediated system, and females primed with EB + P have a higher D1R : D2R ratio, and thus a D1R-mediated system. This provides strong evidence for a DA-driven pathway of female sexual motivation, desire, and behaviour that is modified by different hormone priming regimens. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  12. Neuroprotective potential of Bacopa monnieri and Bacoside A against dopamine receptor dysfunction in the cerebral cortex of neonatal hypoglycaemic rats.

    PubMed

    Thomas, Roshni Baby; Joy, Shilpa; Ajayan, M S; Paulose, C S

    2013-11-01

    Neonatal hypoglycaemia initiates a series of events leading to neuronal death, even if glucose and glycogen stores return to normal. Disturbances in the cortical dopaminergic function affect memory and cognition. We recommend Bacopa monnieri extract or Bacoside A to treat neonatal hypoglycaemia. We investigated the alterations in dopaminergic functions by studying the Dopamine D1 and D2 receptor subtypes. Receptor-binding studies revealed a significant decrease (p < 0.001) in dopamine D1 receptor number in the hypoglycaemic condition, suggesting cognitive dysfunction. cAMP content was significantly (p < 0.001) downregulated in hypoglycaemic neonatal rats indicating the reduction in cell signalling of the dopamine D1 receptors. It is attributed to the deficits in spatial learning and memory. Hypoglycaemic neonatal rats treated with Bacopa extract alone and Bacoside A ameliorated the dopaminergic and cAMP imbalance as effectively as the glucose therapy. The upregulated Bax expression in the present study indicates the high cell death in hypoglycaemic neonatal rats. Enzyme assay of SOD confirmed cortical cell death due to free radical accumulation. The gene expression of SOD in the cortex was significantly downregulated (p < 0.001). Bacopa treatment showed a significant reversal in the altered gene expression parameters (p < 0.001) of Bax and SOD. Our results suggest that in the rat experimental model of neonatal hypoglycaemia, Bacopa extract improved alterations in D1, D2 receptor expression, cAMP signalling and cell death resulting from oxidative stress. This is an important area of study given the significant motor and cognitive impairment that may arise from neonatal hypoglycaemia if proper treatment is not implemented.

  13. Male breast cancer according to tumor subtype and race: a population-based study.

    PubMed

    Chavez-Macgregor, Mariana; Clarke, Christina A; Lichtensztajn, Daphne; Hortobagyi, Gabriel N; Giordano, Sharon H

    2013-05-01

    Breast cancer occurs rarely in men. To the authors' knowledge, no population-based estimates of the incidence of human epidermal growth factor receptor 2 (HER2)-positive breast cancer or of the distribution of breast cancer subtypes among male breast cancer patients have been published to date. Therefore, the objective of the current study was to explore breast tumor subtype distribution by race/ethnicity among men in the large, ethnically diverse population of California. This study included men who were diagnosed with invasive breast cancer between 2005 and 2009 with known estrogen receptor (ER) and progesterone receptor (PR) (together, hormone receptor [HR]) status and HER2 status reported to the California Cancer Registry. Among the men with HR-positive tumors, survival probabilities between groups were compared using log-rank tests. Six hundred six patients were included. The median age at diagnosis was 68 years. Four hundred ninety-four men (81.5%) had HR-positive tumors (defined as ER-positive and/or PR-positive and HER2-negative). Ninety men (14.9%) had HER2-positive tumors, and 22 (3.6%) had triple receptor-negative (TN) tumors. Among the patients with HR-positive tumors, non-Hispanic black men and Hispanic men were more likely to have PR-negative tumors than non-Hispanic white men. No statistically significant differences in survival were observed according to tumor subtype (P = .08). Differences in survival according to race/ethnicity were observed among all patients (P = .087) and among those with HR-positive tumors (P = .0170), and non-Hispanic black men had poorer outcomes. In this large, representative cohort of men with breast cancer, the distribution of tumor subtypes was different from that reported for women and varied by patient race/ethnicity. Non-Hispanic black men were more likely to have TN tumors and ER-positive/PR-negative tumors than white men. Copyright © 2013 American Cancer Society.

  14. Opioid receptor subtypes mediating the noise-induced decreases in high-affinity choline uptake in the rat brain.

    PubMed

    Lai, H; Carino, M A

    1992-07-01

    Acute (20 min) exposure to 100-dB white noise elicits a naltrexone-sensitive decrease in sodium-dependent high-affinity choline uptake in the frontal cortex and hippocampus of the rat. In the present study, the subtypes of opioid receptors involved were investigated by pretreating rats with microinjection of specific opioid-receptor antagonists into the lateral cerebroventricle before noise exposure. We found that the noise-induced decrease in high-affinity choline uptake in the hippocampus was blocked by pretreatment with either mu-, delta-, or kappa-opioid-receptor antagonists, whereas the effect of noise on frontal cortical high-affinity choline uptake was blocked by a mu- and delta- but not by a kappa-antagonist. These data further confirm the role of endogenous opioids in mediating the effects of noise on central cholinergic activity and indicate that different neural mechanisms are involved in the effects of noise on the frontal cortical and hippocampal cholinergic systems.

  15. Enhancement of Adipocyte Browning by Angiotensin II Type 1 Receptor Blockade.

    PubMed

    Tsukuda, Kana; Mogi, Masaki; Iwanami, Jun; Kanno, Harumi; Nakaoka, Hirotomo; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Higaki, Akinori; Yamauchi, Toshifumi; Min, Li-Juan; Horiuchi, Masatsugu

    2016-01-01

    Browning of white adipose tissue (WAT) has been highlighted as a new possible therapeutic target for obesity, diabetes and lipid metabolic disorders, because WAT browning could increase energy expenditure and reduce adiposity. The new clusters of adipocytes that emerge with WAT browning have been named 'beige' or 'brite' adipocytes. Recent reports have indicated that the renin-angiotensin system (RAS) plays a role in various aspects of adipose tissue physiology and dysfunction. The biological effects of angiotensin II, a major component of RAS, are mediated by two receptor subtypes, angiotensin II type 1 receptor (AT1R) and type 2 receptor (AT2R). However, the functional roles of angiotensin II receptor subtypes in WAT browning have not been defined. Therefore, we examined whether deletion of angiotensin II receptor subtypes (AT1aR and AT2R) may affect white-to-beige fat conversion in vivo. AT1a receptor knockout (AT1aKO) mice exhibited increased appearance of multilocular lipid droplets and upregulation of thermogenic gene expression in inguinal white adipose tissue (iWAT) compared to wild-type (WT) mice. AT2 receptor-deleted mice did not show miniaturization of lipid droplets or alteration of thermogenic gene expression levels in iWAT. An in vitro experiment using adipose tissue-derived stem cells showed that deletion of the AT1a receptor resulted in suppression of adipocyte differentiation, with reduction in expression of thermogenic genes. These results indicate that deletion of the AT1a receptor might have some effects on the process of browning of WAT and that blockade of the AT1 receptor could be a therapeutic target for the treatment of metabolic disorders.

  16. Breast cancer mortality in African-American and non-Hispanic white women by molecular subtype and stage at diagnosis: a population-based study

    PubMed Central

    Tao, Li; Gomez, Scarlett Lin; Keegan, Theresa HM; Kurian, Allison W.; Clarke, Christina A.

    2015-01-01

    Background Higher breast cancer mortality rates for African-American than non-Hispanic white women are well documented; however, it remains uncertain if this disparity occurs in disease subgroups defined by tumor molecular markers and stage at diagnosis. We examined racial differences in outcome according to subtype and stage in a diverse, population-based series of 103,498 patients. Methods We obtained data for all invasive breast cancers diagnosed 1/1/2005-12/31/2012 and followed through 12/31/2012 among 93,760 non-Hispanic white and 9,738 African-American women in California. Molecular subtypes were categorized according to tumor expression of hormone receptor (HR, based on estrogen and progesterone receptors) and human epidermal growth factor receptor 2 (HER2). Cox proportional hazards models were used to calculate hazard ratios (HR) and 95% confidence intervals (CI) for breast cancer-specific mortality. Results After adjustment for patient, tumor and treatment characteristics, outcomes were comparable by race for Stage I or IV cancer regardless of subtype, and HR+/HER2+ or HR-/HER2+ cancer regardless of stage. We found substantially higher hazards of breast cancer death among African-American women with Stage II/III HR+/HER2- (HR, 1.31, 95% CI, 1.03-1.65, and HR, 1.39, 95% CI, 1.10-1.75, respectively) and Stage III triple-negative cancers relative to whites. Conclusions There are substantial racial/ethnic disparities among patients with Stages II/III HR+/HER2- and Stage III triple-negative breast cancers but not for other subtype and stage. Impact These data provide insights to assess barriers to targeted treatment (e.g. trastuzumab or endocrine therapy) of particular subtypes of breast cancer among African-American patients. PMID:25969506

  17. Breast Cancer Mortality in African-American and Non-Hispanic White Women by Molecular Subtype and Stage at Diagnosis: A Population-Based Study.

    PubMed

    Tao, Li; Gomez, Scarlett Lin; Keegan, Theresa H M; Kurian, Allison W; Clarke, Christina A

    2015-07-01

    Higher breast cancer mortality rates for African-American than non-Hispanic White women are well documented; however, it remains uncertain if this disparity occurs in disease subgroups defined by tumor molecular markers and stage at diagnosis. We examined racial differences in outcome according to subtype and stage in a diverse, population-based series of 103,498 patients. We obtained data for all invasive breast cancers diagnosed between January 1, 2005, and December 31, 2012, and followed through December 31, 2012, among 93,760 non-Hispanic White and 9,738 African-American women in California. Molecular subtypes were categorized according to tumor expression of hormone receptor (HR, based on estrogen and progesterone receptors) and human epidermal growth factor receptor 2 (HER2). Cox proportional hazards models were used to calculate relative hazard (RH) and 95% confidence intervals (CI) for breast cancer-specific mortality. After adjustment for patient, tumor, and treatment characteristics, outcomes were comparable by race for stage I or IV cancer regardless of subtype, and HR(+)/HER2(+) or HR(-)/HER2(+) cancer regardless of stage. We found substantially higher hazards of breast cancer death among African-American women with stage II/III HR(+)/HER2(-) (RH, 1.31; 95% CI, 1.03-1.65; and RH, 1.39; 95% CI, 1.10-1.75, respectively) and stage III triple-negative cancers relative to Whites. There are substantial racial/ethnic disparities among patients with stages II/III HR(+)/HER2(-) and stage III triple-negative breast cancers but not for other subtype and stage. These data provide insights to assess barriers to targeted treatment (e.g., trastuzumab or endocrine therapy) of particular subtypes of breast cancer among African-American patients. ©2015 American Association for Cancer Research.

  18. Adenosine A1-Dopamine D1 Receptor Heteromers Control the Excitability of the Spinal Motoneuron.

    PubMed

    Rivera-Oliver, Marla; Moreno, Estefanía; Álvarez-Bagnarol, Yocasta; Ayala-Santiago, Christian; Cruz-Reyes, Nicole; Molina-Castro, Gian Carlo; Clemens, Stefan; Canela, Enric I; Ferré, Sergi; Casadó, Vicent; Díaz-Ríos, Manuel

    2018-05-24

    While the role of the ascending dopaminergic system in brain function and dysfunction has been a subject of extensive research, the role of the descending dopaminergic system in spinal cord function and dysfunction is just beginning to be understood. Adenosine plays a key role in the inhibitory control of the ascending dopaminergic system, largely dependent on functional complexes of specific subtypes of adenosine and dopamine receptors. Combining a selective destabilizing peptide strategy with a proximity ligation assay and patch-clamp electrophysiology in slices from male mouse lumbar spinal cord, the present study demonstrates the existence of adenosine A 1 -dopamine D 1 receptor heteromers in the spinal motoneuron by which adenosine tonically inhibits D 1 receptor-mediated signaling. A 1 -D 1 receptor heteromers play a significant control of the motoneuron excitability, represent main targets for the excitatory effects of caffeine in the spinal cord and can constitute new targets for the pharmacological therapy after spinal cord injury, motor aging-associated disorders and restless legs syndrome.

  19. Characterization of "mini-nucleotides" as P2X receptor agonists in rat cardiomyocyte cultures. An integrated synthetic, biochemical, and theoretical study.

    PubMed

    Fischer, B; Yefidoff, R; Major, D T; Rutman-Halili, I; Shneyvays, V; Zinman, T; Jacobson, K A; Shainberg, A

    1999-07-15

    The design and synthesis of "mini-nucleotides", based on a xanthine-alkyl phosphate scaffold, are described. The physiological effects of the new compounds were evaluated in rat cardiac cell culture regarding Ca(2+) elevation and contractility. The results indicate biochemical and physiological profiles similar to those of ATP, although at higher concentrations. The biological target molecules of these "mini-nucleotides" were identified by using selective P2-R and A(1)-R antagonists and P2-R subtype selective agonists. On the basis of these results and of experiments in Ca(2+) free medium, in which [Ca(2+)](i) elevation was not observed, we concluded that interaction of the analogues is likely with P2X receptor subtypes, which causes Ca(2+) influx. Theoretical calculations analyzing electronic effects within the series of xanthine-alkyl phosphates were performed on reduced models at quantum mechanical levels. Calculated dipole moment vectors, electrostatic potential maps, and volume parameters suggest an explanation for the activity or inactivity of the synthesized derivatives and predict a putative binding site environment for the active agonists. Xanthine-alkyl phosphate analogues proved to be selective agents for activation of P2X-R subtypes, whereas ATP activated all P2-R subtypes in cardiac cells. Therefore, these analogues may serve as prototypes of selective drugs aiming at cardiac disorders mediated through P2X receptors.

  20. A Molecular Determinant of Subtype-Specific Desensitization in Ionotropic Glutamate Receptors.

    PubMed

    Alsaloum, Matthew; Kazi, Rashek; Gan, Quan; Amin, Johansen; Wollmuth, Lonnie P

    2016-03-02

    AMPA and NMDA receptors are glutamate-gated ion channels that mediate fast excitatory synaptic transmission throughout the nervous system. In the continual presence of glutamate, AMPA and NMDA receptors containing the GluN2A or GluN2B subunit enter into a nonconducting, desensitized state that can impact synaptic responses and glutamate-mediated excitotoxicity. The process of desensitization is dramatically different between subtypes, but the basis for these differences is unknown. We generated an extensive sequence alignment of ionotropic glutamate receptors (iGluRs) from diverse animal phyla and identified a highly conserved motif, which we termed the "hydrophobic box," located at the extracellular interface of transmembrane helices. A single position in the hydrophobic box differed between mammalian AMPA and NMDA receptors. Surprisingly, we find that an NMDAR-to-AMPAR exchange mutation at this position in the rat GluN2A or GluN2B subunit had a dramatic and highly specific effect on NMDAR desensitization, making it AMPAR-like. In contrast, a reverse exchange mutation in AMPARs had minimal effects on desensitization. These experiments highlight differences in desensitization between iGluR subtypes and the highly specific contribution of the GluN2 subunit to this process. Rapid communication between cells in the nervous system depends on ion channels that are directly activated by neurotransmitter molecules. Here, we studied ionotropic glutamate receptors (iGluRs), which are ion channels activated by the neurotransmitter glutamate. By comparing the sequences of a vast number of iGluR proteins from diverse animal species, assisted by available structural information, we identified a highly conserved motif. We showed that a single amino acid difference in this motif between mammalian iGluR subtypes has dramatic effects on receptor function. These results have implications in both the evolution of synaptic function, as well as the role of iGluRs in health and disease. Copyright © 2016 the authors 0270-6474/16/362617-06$15.00/0.

  1. Immunohistochemical localization and functional characterization of somatostatin receptor subtypes in a corticotropin releasing hormone-secreting adrenal phaeochromocytoma: review of the literature and report of a case

    PubMed Central

    Ruggeri, R.M.; Ferraù, F.; Campennì, A.; Simone, A.; Barresi, V.; Giuffrè, G.; Tuccari, G.; Baldari, S.; Trimarchi, F.

    2009-01-01

    Somastostatin receptors are frequently expressed in phaeochromocytoma but data on somatostatin receptor subtyping are scanty and the functional response to the somatostatin analogue octretide is still debated.We report an unusual case of pheochromocytoma, causing ectopic Cushing’s syndrome due to CRH production by the tumour cells, in a 50-yr-old woman. Abdominal computed tomography revealed an inhomogeneous, 9-cm mass in the right adrenal gland, and [111In-DTPA0] octreotide scintigraphy showed an abnormal uptake of the radiotracer in the right perirenal region, corresponding to the adrenal mass. The patient underwent laparoscopic surgery and formalin-fixed and paraffin-embedded samples were studied. The tumour was extensively characterized by immunohistochemistry and somatostatin receptor (SSTRs) subtypes expression was analyzed. Histological and immunohistochemical examination of the surgical specimens displayed a typical pheochromocytoma, which was found to be immunoreative to S-100, chromogranin A and neurofilaments. Immunostaining for SSTR subtypes showed a positive reaction for SSTR1, SSTR2A, SSTR2B, antisera on tumour cells. The intense and diffuse immunostaining for corticotropin releasing hormone (CRH) antiserum indicated that Cushing’s disease was dependent on CRH overproduction by the pheochromocytoma, in which no immunostaining for adrenocorticotropic hormone was found. Our report confirms the heterogeneity of the pattern of SSTR expression in pheochromocytomas, and provide further evidence for functional SSTR subtype SSTR2a in a subgroup of pheochromocytomas, suggesting that these tumours may represent potential target for octreotide treatment.

  2. Immunohistochemical localization and functional characterization of somatostatin receptor subtypes in a corticotropin releasing hormone- secreting adrenal phaeochromocytoma: review of the literature and report of a case.

    PubMed

    Ruggeri, Rosaria M; Ferraù, F; Campennì, A; Simone, A; Barresi, V; Giuffrè, G; Tuccari, G; Baldari, S; Trimarchi, F

    2009-01-01

    Somastostatin receptors are frequently expressed in phaeochromocytoma but data on somatostatin receptor subtyping are scanty and the functional response to the somatostatin analogue octretide is still debated.We report an unusual case of pheochro-mocytoma,causing ectopic Cushing's syndrome due to CRH production by the tumour cells, in a 50-yr-old woman. Abdominal computed tomography revealed an inhomogeneous,9-cm mass in the right adrenal gland,and [111In-DTPA0] octreotide scintigraphy showed an abnormal uptake of the radiotracer in the right perirenal region,corresponding to the adrenal mass.The patient underwent laparoscopic surgery and formalin-fixed and paraffin embedded samples were studied. The tumour was extensively characterized by immunohistochemistry and somatostatin receptor (SSTRs) subtypes expression was analyzed.Histological and immunohistochemical examination of the surgical specimens displayed a typical pheochromocytoma,which was found to be immunoreative to S-100, chromogranin A and neurofilaments. Immunostaining for SSTR subtypes showed a positive reaction for SSTR1, SSTR2A, SSTR2B, antisera on tumour cells. The intense and diffuse immunostaining for corticotropin releasing hormone (CRH) antiserum indicated that Cushing's disease was dependent on CRH overproduction by the pheochromocytoma,in which no immunostaining for adrenocorticotropic hormone was found. Our report confirms the heterogeneity of the pattern of SSTR expression in pheochromocytomas,and provide further evidence for functional SSTR subtype SSTR2a in a subgroup of pheochromocytomas,suggesting that these tumours may represent potential target for octreotide treatment.

  3. Return of D4 Dopamine Receptor Antagonists in Drug Discovery.

    PubMed

    Lindsley, Craig W; Hopkins, Corey R

    2017-09-14

    The dopamine D 4 receptor garnered a great deal of interest in the early 1990s when studies showed the atypical antipsychotic clozapine possessed higher affinity for D 4 , relative to other dopamine receptor subtypes, and that this activity might underlie the unique clinical efficacy of clozapine. Unfortunately, D 4 antagonists that were developed for schizophrenia failed in the clinic. Thus, D 4 fell out of favor as a therapeutic target, and work in this area was silent for decades. Recently, D 4 ligands with improved selectivity for D 4 against not only D 1-3,5 but also other biogenic amine targets have emerged, and D 4 is once again in the spotlight as a novel target for both addiction and Parkinson's disease (PD), as well as other emerging diseases. This report will review the historical data for D 4 , review the known D 4 ligands, and then highlight new data supporting a role for D 4 inhibition in addiction, PD, and cancer.

  4. Receptor-Defined Subtypes of Breast Cancer in Indigenous Populations in Africa: A Systematic Review and Meta-Analysis

    PubMed Central

    Eng, Amanda; McCormack, Valerie; dos-Santos-Silva, Isabel

    2014-01-01

    Background Breast cancer is the most common female cancer in Africa. Receptor-defined subtypes are a major determinant of treatment options and disease outcomes but there is considerable uncertainty regarding the frequency of poor prognosis estrogen receptor (ER) negative subtypes in Africa. We systematically reviewed publications reporting on the frequency of breast cancer receptor-defined subtypes in indigenous populations in Africa. Methods and Findings Medline, Embase, and Global Health were searched for studies published between 1st January 1980 and 15th April 2014. Reported proportions of ER positive (ER+), progesterone receptor positive (PR+), and human epidermal growth factor receptor-2 positive (HER2+) disease were extracted and 95% CI calculated. Random effects meta-analyses were used to pool estimates. Fifty-four studies from North Africa (n = 12,284 women with breast cancer) and 26 from sub-Saharan Africa (n = 4,737) were eligible. There was marked between-study heterogeneity in the ER+ estimates in both regions (I2>90%), with the majority reporting proportions between 0.40 and 0.80 in North Africa and between 0.20 and 0.70 in sub-Saharan Africa. Similarly, large between-study heterogeneity was observed for PR+ and HER2+ estimates (I2>80%, in all instances). Meta-regression analyses showed that the proportion of ER+ disease was 10% (4%–17%) lower for studies based on archived tumor blocks rather than prospectively collected specimens, and 9% (2%–17%) lower for those with ≥40% versus those with <40% grade 3 tumors. For prospectively collected samples, the pooled proportions for ER+ and triple negative tumors were 0.59 (0.56–0.62) and 0.21 (0.17–0.25), respectively, regardless of region. Limitations of the study include the lack of standardized procedures across the various studies; the low methodological quality of many studies in terms of the representativeness of their case series and the quality of the procedures for collection, fixation, and receptor testing; and the possibility that women with breast cancer may have contributed to more than one study. Conclusions The published data from the more appropriate prospectively measured specimens are consistent with the majority of breast cancers in Africa being ER+. As no single subtype dominates in the continent availability of receptor testing should be a priority, especially for young women with early stage disease where appropriate receptor-specific treatment modalities offer the greatest potential for reducing years of life lost. Please see later in the article for the Editors' Summary PMID:25202974

  5. Differential appearance of placentomes and expression of prostaglandin H synthase type 2 in placentome subtypes after betamethasone treatment of sheep late in gestation.

    PubMed

    Braun, T; Li, S; Moss, T J M; Connor, K L; Doherty, D A; Nitsos, I; Newnham, J P; Challis, J R G; Sloboda, D M

    2011-04-01

    Inappropriate fetal exposure to maternal glucocorticoid (GC) has been proposed as a mechanism for fetal programming where the effects of GC may be mediated by the placenta. However, the consequences of maternal GC on placental morphology and enzyme expression are unclear. We used betamethasone (BET) to determine effects on placentome subtype distribution and expression of prostaglandin H synthase type 2 (PGHS-2) enzyme. Pregnant sheep carrying male fetuses were randomized to receive injections of saline (n = 30) or one (104 days of gestation, (dG); n = 6), two (104, 111 dG; n = 6) or three (104, 111, 118 dG; n = 11) doses of BET (0.5 mg/kg). Placental tissue was collected prior to (75, 84, 101 dG), during (109, 116 dG) and after BET (122, 132, 146 dG). Total number of placentomes was not different between gestational ages. A- and B-subtypes were most affected by prenatal BET exposure; numbers of A-subtypes were increased and numbers of B-subtypes were decreased compared to controls at 116 dG. At term numbers of A-subtypes were lower after BET, but the weight range distribution was similar to controls. In controls, placental PGHS-2 protein levels increased with gestational age and PGHS-2 localized primarily to uninuclear trophoblast cells. After BET, PGHS-2 protein in C-subtypes at term was significantly increased compared to A-subtypes. Maternal BET treatment in late gestation affects the proportions of placentome subtypes and their differential expression of PGHS-2. Our data do not support previous hypotheses that A-subtypes develop into B-, C- and D-subtypes over the course of gestation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Impact of HIV Subtype on Performance of the Limiting Antigen-Avidity Enzyme Immunoassay, the Bio-Rad Avidity Assay, and the BED Capture Immunoassay in Rakai, Uganda

    PubMed Central

    Longosz, Andrew F.; Serwadda, David; Nalugoda, Fred; Kigozi, Godfrey; Franco, Veronica; Gray, Ronald H.; Quinn, Thomas C.; Eshleman, Susan H.

    2014-01-01

    Abstract Previous studies demonstrated that individuals with subtype D HIV infection who had been infected for 2 or more years were frequently misclassified as assay positive using cross-sectional incidence assays. Samples from 510 subjects (212 subtype A, 298 subtype D) who were infected for 2.2 to 14.5 years (median 5.4 years) and were not virally suppressed were tested using an LAg-Avidity enzyme immunoassay (LAg-Avidity EIA), Bio-Rad Avidity assay, and BED capture enzyme immunoassay (BED-CEIA). The performance of these three assays was evaluated using various assay cutoff values [LAg-Avidity EIA: <1.0 OD-n and <2.0 OD-n; Bio-Rad Avidity assay: <40% avidity index (AI) and <80% AI; BED-CEIA: <0.8 OD-n]. The mean LAg-Avidity EIA result was higher for subtype A than D (4.54±0.95 vs. 3.86±1.26, p<0.001); the mean Bio-Rad Avidity assay result was higher for subtype A than D (88.9%±12.5% vs. 75.1±30.5, p<0.001); and the mean BED-CEIA result was similar for the two subtypes (2.2±1.2 OD-n for subtype A, 2.2±1.3 OD-n for subtype D, p<0.9). The frequency of misclassification was higher for individuals with subtype D infection compared to those with subtype A infection, using either the LAg-Avidity EIA with a cutoff of <2.0 OD-n or the Bio-Rad Avidity assay with cutoffs of <40% or <80% AI. No subtype-specific differences in assay performance were observed using the BED-CEIA. Sex and age were not significantly associated with misclassification by any assay. The LAg-Avidity EIA with a cutoff <1.0 OD-n had the lowest frequency of misclassification in this Ugandan population. PMID:24083837

  7. Studies on the role of serotonin receptor subtypes in the effect of sibutramine in various feeding paradigms in rats

    PubMed Central

    Grignaschi, G; Fanelli, E; Scagnol, I; Samanin, R

    1999-01-01

    The effect of the 5-hydroxytryptamine (5-HT) and noradrenaline (NA) reuptake inhibitor sibutramine was studied in food deprived, neuropeptide Y (NPY)- or muscimol-injected rats. Sibutramine dose-dependently reduced feeding caused by food-deprivation (ED50=5.1±0.8 mg kg−1) or by NPY injection into the paraventricular nucleus of the hypothalamus (ED50=6.0±0.5 mg kg−1). The increase in food intake caused by muscimol injected into the dorsal raphe was not modified by sibutramine (1–10 mg kg−1). The hypophagic effect of 5.1 mg kg−1 sibutramine in food-deprived rats was studied in rats pretreated with different serotonin receptor antagonists. Metergoline (non-selective, 0.3 and 1.0 mg kg−1), ritanserin (5-HT2A/2C, 0.5 and 1.0 mg kg−1) and GR127935 (5-HT1B/1D, 0.5 and 1.0 mg kg−1) did not modify the hypophagic effect of sibutramine, while SB206553 (5-HT2B/2C, 5 and 10 mg kg−1) slightly but significantly reduced it (Fint(2.53)=3.4; P<0.05). The reduction in food intake caused by 6.0 mg kg−1 sibutramine in NPY-injected rats was not modified by GR127935 (1.0 mg kg−1). The results suggest that, with the possible exception of a partial involvement of 5-HT2B/2C receptors in sibutramine's hypophagia in food-deprived rats, 5-HT1 and 5-HT2 receptor subtypes do not play an important role in the hypophagic effect of sibutramine, at least in the first 2 h after injection. PMID:10455265

  8. Directly Observable Behavioral Effects of Lorcaserin in Rats.

    PubMed

    Serafine, Katherine M; Rice, Kenner C; France, Charles P

    2015-12-01

    (1R)-8-chloro-1-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine (lorcaserin) is approved by the United States Food and Drug Administration for treating obesity, and its therapeutic effects are thought to result from agonist activity at serotonin (5-HT)2C receptors. Lorcaserin has affinity for other 5-HT receptor subtypes, although its activity at those subtypes is not fully described. The current study compared the behavioral effects of lorcaserin (0.0032-32.0 mg/kg) to the effects of other 5-HT receptor selective agonists in rats (n = 8). The 5-HT2C receptor selective agonist 1-(3-chlorophenyl)piperazine (mCPP, 0.032-1.0 mg/kg) and lorcaserin induced yawning which was attenuated by the 5-HT2C receptor selective antagonist 6-chloro-5-methyl-N-(6-[(2-methylpyridin-3-yl)oxy]pydidin-3-yl)indoline-1-carboxamide (1.0 mg/kg). The 5-HT2A receptor selective agonist 2,5-dimethoxy-4-methylamphetamine (0.1-3.2 mg/kg) induced head twitching, which was attenuated by the 5-HT2A receptor selective antagonist R-(+)-2,3-dimethoxyphenyl-1-[2-(4-piperidine)-methanol] (MDL 100907, 0.01 mg/kg), lorcaserin (3.2 mg/kg), and mCPP (3.2 mg/kg). In rats pretreated with MDL 100907 (1.0 mg/kg), lorcaserin also induced head twitching. At larger doses, lorcaserin produced forepaw treading, which was attenuated by the 5-HT1A receptor selective antagonist N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-(2-pyridyl)cyclohexanecarboxamide (0.178 mg/kg). While the behavioral effects of lorcaserin in rats are consistent with it having agonist activity at 5-HT2C receptors, these data suggest that at larger doses it also has agonist activity at 5-HT2A and possibly 5-HT1A receptors. Mounting evidence suggests that 5-HT2C receptor agonists might be effective for treating drug abuse. A more complete description of the activity of lorcaserin at 5-HT receptor subtypes will facilitate a better understanding of the mechanisms that mediate its therapeutic effects. U.S. Government work not protected by U.S. copyright.

  9. Directly Observable Behavioral Effects of Lorcaserin in Rats

    PubMed Central

    Serafine, Katherine M.; Rice, Kenner C.

    2015-01-01

    (1R)-8-chloro-1-methyl-2,3,4,5-tetrahydro-1H-3-benzazepine (lorcaserin) is approved by the United States Food and Drug Administration for treating obesity, and its therapeutic effects are thought to result from agonist activity at serotonin (5-HT)2C receptors. Lorcaserin has affinity for other 5-HT receptor subtypes, although its activity at those subtypes is not fully described. The current study compared the behavioral effects of lorcaserin (0.0032–32.0 mg/kg) to the effects of other 5-HT receptor selective agonists in rats (n = 8). The 5-HT2C receptor selective agonist 1-(3-chlorophenyl)piperazine (mCPP, 0.032–1.0 mg/kg) and lorcaserin induced yawning which was attenuated by the 5-HT2C receptor selective antagonist 6-chloro-5-methyl-N-(6-[(2-methylpyridin-3-yl)oxy]pydidin-3-yl)indoline-1-carboxamide (1.0 mg/kg). The 5-HT2A receptor selective agonist 2,5-dimethoxy-4-methylamphetamine (0.1–3.2 mg/kg) induced head twitching, which was attenuated by the 5-HT2A receptor selective antagonist R-(+)-2,3-dimethoxyphenyl-1-[2-(4-piperidine)-methanol] (MDL 100907, 0.01 mg/kg), lorcaserin (3.2 mg/kg), and mCPP (3.2 mg/kg). In rats pretreated with MDL 100907 (1.0 mg/kg), lorcaserin also induced head twitching. At larger doses, lorcaserin produced forepaw treading, which was attenuated by the 5-HT1A receptor selective antagonist N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-(2-pyridyl)cyclohexanecarboxamide (0.178 mg/kg). While the behavioral effects of lorcaserin in rats are consistent with it having agonist activity at 5-HT2C receptors, these data suggest that at larger doses it also has agonist activity at 5-HT2A and possibly 5-HT1A receptors. Mounting evidence suggests that 5-HT2C receptor agonists might be effective for treating drug abuse. A more complete description of the activity of lorcaserin at 5-HT receptor subtypes will facilitate a better understanding of the mechanisms that mediate its therapeutic effects. PMID:26384326

  10. Pretreatment serum concentrations of 25-hydroxyvitamin D and breast cancer prognostic characteristics: a case-control and a case-series study.

    PubMed

    Yao, Song; Sucheston, Lara E; Millen, Amy E; Johnson, Candace S; Trump, Donald L; Nesline, Mary K; Davis, Warren; Hong, Chi-Chen; McCann, Susan E; Hwang, Helena; Kulkarni, Swati; Edge, Stephen B; O'Connor, Tracey L; Ambrosone, Christine B

    2011-02-28

    Results from epidemiologic studies on the relationship between vitamin D and breast cancer risk are inconclusive. It is possible that vitamin D may be effective in reducing risk only of specific subtypes due to disease heterogeneity. In case-control and case-series analyses, we examined serum concentrations of 25-hydroxyvitamin D (25OHD) in relation to breast cancer prognostic characteristics, including histologic grade, estrogen receptor (ER), and molecular subtypes defined by ER, progesterone receptor (PR) and HER2, among 579 women with incident breast cancer and 574 controls matched on age and time of blood draw enrolled in the Roswell Park Cancer Institute from 2003 to 2008. We found that breast cancer cases had significantly lower 25OHD concentrations than controls (adjusted mean, 22.8 versus 26.2 ng/mL, p<0.001). Among premenopausal women, 25OHD concentrations were lower in those with high- versus low-grade tumors, and ER negative versus ER positive tumors (p≤0.03). Levels were lowest among women with triple-negative cancer (17.5 ng/mL), significantly different from those with luminal A cancer (24.5 ng/mL, p = 0.002). In case-control analyses, premenopausal women with 25OHD concentrations above the median had significantly lower odds of having triple-negative cancer (OR = 0.21, 95% CI = 0.08-0.53) than those with levels below the median; and every 10 ng/mL increase in serum 25OHD concentrations was associated with a 64% lower odds of having triple-negative cancer (OR = 0.36, 95% CI = 0.22-0.56). The differential associations by tumor subtypes among premenopausal women were confirmed in case-series analyses. In our analyses, higher serum levels of 25OHD were associated with reduced risk of breast cancer, with associations strongest for high grade, ER negative or triple negative cancers in premenopausal women. With further confirmation in large prospective studies, these findings could warrant vitamin D supplementation for reducing breast cancer risk, particularly those with poor prognostic characteristics among premenopausal women.

  11. Pretreatment Serum Concentrations of 25-Hydroxyvitamin D and Breast Cancer Prognostic Characteristics: A Case-Control and a Case-Series Study

    PubMed Central

    Yao, Song; Sucheston, Lara E.; Millen, Amy E.; Johnson, Candace S.; Trump, Donald L.; Nesline, Mary K.; Davis, Warren; Hong, Chi-Chen; McCann, Susan E.; Hwang, Helena; Kulkarni, Swati; Edge, Stephen B.; O'Connor, Tracey L.; Ambrosone, Christine B.

    2011-01-01

    Background Results from epidemiologic studies on the relationship between vitamin D and breast cancer risk are inconclusive. It is possible that vitamin D may be effective in reducing risk only of specific subtypes due to disease heterogeneity. Methods and Findings In case-control and case-series analyses, we examined serum concentrations of 25-hydroxyvitamin D (25OHD) in relation to breast cancer prognostic characteristics, including histologic grade, estrogen receptor (ER), and molecular subtypes defined by ER, progesterone receptor (PR) and HER2, among 579 women with incident breast cancer and 574 controls matched on age and time of blood draw enrolled in the Roswell Park Cancer Institute from 2003 to 2008. We found that breast cancer cases had significantly lower 25OHD concentrations than controls (adjusted mean, 22.8 versus 26.2 ng/mL, p<0.001). Among premenopausal women, 25OHD concentrations were lower in those with high- versus low-grade tumors, and ER negative versus ER positive tumors (p≤0.03). Levels were lowest among women with triple-negative cancer (17.5 ng/mL), significantly different from those with luminal A cancer (24.5 ng/mL, p = 0.002). In case-control analyses, premenopausal women with 25OHD concentrations above the median had significantly lower odds of having triple-negative cancer (OR = 0.21, 95% CI = 0.08–0.53) than those with levels below the median; and every 10 ng/mL increase in serum 25OHD concentrations was associated with a 64% lower odds of having triple-negative cancer (OR = 0.36, 95% CI = 0.22–0.56). The differential associations by tumor subtypes among premenopausal women were confirmed in case-series analyses. Conclusion In our analyses, higher serum levels of 25OHD were associated with reduced risk of breast cancer, with associations strongest for high grade, ER negative or triple negative cancers in premenopausal women. With further confirmation in large prospective studies, these findings could warrant vitamin D supplementation for reducing breast cancer risk, particularly those with poor prognostic characteristics among premenopausal women. PMID:21386992

  12. Direct involvement of sigma-1 receptors in the dopamine D1 receptor-mediated effects of cocaine.

    PubMed

    Navarro, Gemma; Moreno, Estefanía; Aymerich, Marisol; Marcellino, Daniel; McCormick, Peter J; Mallol, Josefa; Cortés, Antoni; Casadó, Vicent; Canela, Enric I; Ortiz, Jordi; Fuxe, Kjell; Lluís, Carmen; Ferré, Sergi; Franco, Rafael

    2010-10-26

    It is well known that cocaine blocks the dopamine transporter. This mechanism should lead to a general increase in dopaminergic neurotransmission, and yet dopamine D(1) receptors (D(1)Rs) play a more significant role in the behavioral effects of cocaine than the other dopamine receptor subtypes. Cocaine also binds to σ-1 receptors, the physiological role of which is largely unknown. In the present study, D(1)R and σ(1)R were found to heteromerize in transfected cells, where cocaine robustly potentiated D(1)R-mediated adenylyl cyclase activation, induced MAPK activation per se and counteracted MAPK activation induced by D(1)R stimulation in a dopamine transporter-independent and σ(1)R-dependent manner. Some of these effects were also demonstrated in murine striatal slices and were absent in σ(1)R KO mice, providing evidence for the existence of σ(1)R-D(1)R heteromers in the brain. Therefore, these results provide a molecular explanation for which D(1)R plays a more significant role in the behavioral effects of cocaine, through σ(1)R-D(1)R heteromerization, and provide a unique perspective toward understanding the molecular basis of cocaine addiction.

  13. Molecular and functional properties of P2X receptors--recent progress and persisting challenges.

    PubMed

    Kaczmarek-Hájek, Karina; Lörinczi, Eva; Hausmann, Ralf; Nicke, Annette

    2012-09-01

    ATP-gated P2X receptors are trimeric ion channels that assemble as homo- or heteromers from seven cloned subunits. Transcripts and/or proteins of P2X subunits have been found in most, if not all, mammalian tissues and are being discovered in an increasing number of non-vertebrates. Both the first crystal structure of a P2X receptor and the generation of knockout (KO) mice for five of the seven cloned subtypes greatly advanced our understanding of their molecular and physiological function and their validation as drug targets. This review summarizes the current understanding of the structure and function of P2X receptors and gives an update on recent developments in the search for P2X subtype-selective ligands. It also provides an overview about the current knowledge of the regulation and modulation of P2X receptors on the cellular level and finally on their physiological roles as inferred from studies on KO mice.

  14. New analogues of oxotremorine and oxotremorine-M: estimation of their in vitro affinity and efficacy at muscarinic receptor subtypes.

    PubMed

    Barocelli, E; Ballabeni, V; Bertoni, S; Dallanoce, C; De Amici, M; De Micheli, C; Impicciatore, M

    2000-06-30

    Two subsets of tertiary amines (1a-6a) and methiodides (1b-6b) with a structural resemblance to oxotremorine and oxotremorine-M were tested at rabbit vas deferens (M1), guinea pig left atrium (M2), guinea pig ileum and urinary bladder (M3) muscarinic receptor subtypes. The pharmacological profile of the derivatives under study has been discussed by evaluating their potency, affinity and efficacy as well as the regional differences in muscarinic receptor occupancy.

  15. NeoPalAna: Neoadjuvant palbociclib, a cyclin-dependent kinase 4/6 inhibitor, and anastrozole for clinical stage 2 or 3 estrogen receptor positive breast cancer

    PubMed Central

    Ma, Cynthia X.; Gao, Feng; Luo, Jingqin; Northfelt, Donald W.; Goetz, Matthew; Forero, Andres; Hoog, Jeremy; Naughton, Michael; Ademuyiwa, Foluso; Suresh, Rama; Anderson, Karen S.; Margenthaler, Julie; Aft, Rebecca; Hobday, Timothy; Moynihan, Timothy; Gillanders, William; Cyr, Amy; Eberlein, Timothy J.; Hieken, Tina; Krontiras, Helen; Guo, Zhanfang; Lee, Michelle V.; Spies, Nicholas C.; Skidmore, Zachary L.; Griffith, Obi L.; Griffith, Malachi; Thomas, Shana; Bumb, Caroline; Vij, Kiran; Bartlett, Cynthia Huang; Koehler, Maria; Al-Kateb, Hussam; Sanati, Souzan; Ellis, Matthew J.

    2017-01-01

    Purpose Cyclin-dependent kinase (CDK) 4/6 drives cell proliferation in estrogen receptor positive (ER+) breast cancer. This single-arm phase II neoadjuvant trial (NeoPalAna) assessed the anti-proliferative activity of the CDK4/6 inhibitor palbociclib in primary breast cancer as a prelude to adjuvant studies. Experimental Design Eligible patients with clinical stage II/III ER+/HER2- breast cancer received anastrozole 1mg daily for 4 weeks (cycle 0) (with goserelin if premenopausal), followed by adding palbociclib (125mg daily on days 1-21) on cycle 1 day 1 (C1D1) for four 28-day cycles unless C1D15 Ki67>10%, in which case patients went off study due to inadequately response. Anastrozole was continued until surgery, which occurred 3-5 weeks post palbociclib exposure. Later patients received additional 10-12 days of palbociclib (Cycle 5) immediately before surgery. Serial biopsies at baseline, C1D1, C1D15, and surgery were analyzed for Ki67, gene expression and mutation profiles. The primary endpoint was Complete Cell Cycle Arrest (CCCA: central Ki67<2.7%). Results Fifty patients enrolled. The CCCA rate was significantly higher after adding palbociclib to anastrozole (C1D15 87% vs C1D1 26%, p<0.001). Palbociclib enhanced cell cycle control over anastrozole monotherapy regardless of luminal subtype (A vs B) and PIK3CA status with activity observed across a broad range of clinicopathological and mutation profiles. Ki67 recovery at surgery following palbociclib washout was suppressed by cycle 5 palbociclib. Resistance was associated with non-luminal subtypes and persistent E2F-target gene expression. Conclusions Palbociclib is an active anti-proliferative agent for early-stage breast cancer resistant to anastrozole, however, prolonged administration may be necessary to maintain its effect. PMID:28270497

  16. Adenosine A2B and A3 receptor location at the mouse neuromuscular junction.

    PubMed

    Garcia, Neus; Priego, Mercedes; Hurtado, Erica; Obis, Teresa; Santafe, Manel M; Tomàs, Marta; Lanuza, Maria Angel; Tomàs, Josep

    2014-07-01

    To date, four subtypes of adenosine receptors have been cloned (A(1)R, A(2A)R, A(2B)R, and A(3)R). In a previous study we used confocal immunocytochemistry to identify A(1)R and A(2A)R receptors at mouse neuromuscular junctions (NMJs). The data shows that these receptors are localized differently in the three cells (muscle, nerve and glia) that configure the NMJs. A(1)R localizes in the terminal teloglial Schwann cell and nerve terminal, whereas A(2A)R localizes in the postsynaptic muscle and in the axon and nerve terminal. Here, we use Western blotting to investigate the presence of A(2B)R and A(3)R receptors in striated muscle and immunohistochemistry to localize them in the three cells of the adult neuromuscular synapse. The data show that A(2B)R and A(3)R receptors are present in the nerve terminal and muscle cells at the NMJs. Neither A(2B)R nor A(3)R receptors are localized in the Schwann cells. Thus, the four subtypes of adenosine receptors are present in the motor endings. The presence of these receptors in the neuromuscular synapse allows the receptors to be involved in the modulation of transmitter release. © 2014 Anatomical Society.

  17. The T160A hemagglutinin substitution affects not only receptor binding property but also transmissibility of H5N1 clade 2.3.4 avian influenza virus in guinea pigs.

    PubMed

    Gu, Min; Li, Qunhui; Gao, Ruyi; He, Dongchang; Xu, Yunpeng; Xu, Haixu; Xu, Lijun; Wang, Xiaoquan; Hu, Jiao; Liu, Xiaowen; Hu, Shunlin; Peng, Daxin; Jiao, Xinan; Liu, Xiufan

    2017-02-06

    We generated and characterized site-directed HA mutants on the genetic backbone of H5N1 clade 2.3.4 virus preferentially binding to α-2,3 receptors in order to identify the key determinants in hemagglutinin rendering the dual affinity to both α-2,3 (avian-type) and α-2,6 (human-type) linked sialic acid receptors of the current clade 2.3.4.4 H5NX subtype avian influenza reassortants. The results show that the T160A substitution resulted in the loss of a glycosylation site at 158N and led not only to enhanced binding specificity for human-type receptors but also transmissibility among guinea pigs, which could be considered as an important molecular marker for assessing pandemic potential of H5 subtype avian influenza isolates.

  18. Age/race differences in HER2 testing and in incidence rates for breast cancer triple subtypes: a population-based study and first report.

    PubMed

    Lund, Mary Jo; Butler, Ebonee N; Hair, Brionna Y; Ward, Kevin C; Andrews, Judy H; Oprea-Ilies, Gabriella; Bayakly, A Rana; O'Regan, Ruth M; Vertino, Paula M; Eley, J William

    2010-06-01

    Although US year 2000 guidelines recommended characterizing breast cancers by human epidermal growth factor receptor 2 (HER2), national cancer registries do not collect HER2, rendering a population-based understanding of HER2 and clinical "triple subtypes" (estrogen receptor [ER] / progesterone receptor [PR] / HER2) largely unknown. We document the population-based prevalence of HER2 testing / status, triple subtypes and present the first report of subtype incidence rates. Medical records were searched for HER2 on 1842 metropolitan Atlanta females diagnosed with breast cancer during 2003-2004. HER2 testing/status and triple subtypes were analyzed by age, race/ethnicity, tumor factors, socioeconomic status, and treatment. Age-adjusted incidence rates were calculated. Over 90% of cases received HER2 testing: 12.6% were positive, 71.7% negative, and 15.7% unknown. HER2 testing compliance was significantly better for women who were younger, of Caucasian or African-American descent, or diagnosed with early stage disease. Incidence rates (per 100,000) were 21.1 for HER2+ tumors and 27.8 for triple-negative tumors, the latter differing by race (36.3 and 19.4 for black and white women, respectively). HER2 recommendations are not uniformly adhered to. Incidence rates for breast cancer triple subtypes differ by age/race. As biologic knowledge is translated into the clinical setting eg, HER2 as a biomarker, it will be incumbent upon national cancer registries to report this information. Incidence rates cautiously extrapolate to an annual burden of 3000 and 17,000 HER2+ tumors for black and white women, respectively, and triple-negative tumors among 5000 and 16,000 respectively. Testing, rate, and burden variations warrant population-based in-depth exploration and clinical translation. (c) 2010 American Cancer Society.

  19. A family of photoswitchable NMDA receptors

    PubMed Central

    Berlin, Shai; Szobota, Stephanie; Reiner, Andreas; Carroll, Elizabeth C; Kienzler, Michael A; Guyon, Alice; Xiao, Tong; Trauner, Dirk; Isacoff, Ehud Y

    2016-01-01

    NMDA receptors, which regulate synaptic strength and are implicated in learning and memory, consist of several subtypes with distinct subunit compositions and functional properties. To enable spatiotemporally defined, rapid and reproducible manipulation of function of specific subtypes, we engineered a set of photoswitchable GluN subunits ('LiGluNs'). Photo-agonism of GluN2A or GluN2B elicits an excitatory drive to hippocampal neurons that can be shaped in time to mimic synaptic activation. Photo-agonism of GluN2A at single dendritic spines evokes spine-specific calcium elevation and expansion, the morphological correlate of LTP. Photo-antagonism of GluN2A alone, or in combination with photo-antagonism of GluN1a, reversibly blocks excitatory synaptic currents, prevents the induction of long-term potentiation and prevents spine expansion. In addition, photo-antagonism in vivo disrupts synaptic pruning of developing retino-tectal projections in larval zebrafish. By providing precise and rapidly reversible optical control of NMDA receptor subtypes, LiGluNs should help unravel the contribution of specific NMDA receptors to synaptic transmission, integration and plasticity. DOI: http://dx.doi.org/10.7554/eLife.12040.001 PMID:26929991

  20. Subtype specific internalization of P2Y1 and P2Y2 receptors induced by novel adenosine 5′-O-(1-boranotriphosphate) derivatives

    PubMed Central

    Tulapurkar, M E; Laubinger, W; Nahum, V; Fischer, B; Reiser, G

    2004-01-01

    P2Y-nucleotide receptors represent important targets for drug development. The lack of stable and receptor specific agonists, however, has prevented successful therapeutic applications. A novel series of P-boronated ATP derivatives (ATP-α-B) were synthesized by substitution of a nonbridging O at Pα with a BH3 group. This introduces a chiral center, thus resulting in diastereoisomers. In addition, at C2 of the adenine ring a further substitution was made (Cl- or methylthio-). The pairs of diastereoisomers were denoted here as A and B isomers. Here, we tested the receptor subtype specificity of these analogs on HEK 293 cells stably expressing rat P2Y1 and rat P2Y2 receptors, respectively, both attached to the fluorescent marker protein GFP (rP2Y1-GFP, rP2Y2-GFP). We investigated agonist-induced receptor endocytosis, [Ca2+]i rise and arachidonic acid (AA) release. Agonist-induced endocytosis of rP2Y1-GFP was more pronounced for the A isomers than the corresponding B counterparts for all ATP-α-B analogs. Both 2-MeS-substituted diastereoisomers induced a greater degree of agonist-induced receptor endocytosis as compared to the 2-Cl-substituted derivatives. Endocytosis results are in accordance with the potency to induce Ca2+ release by these compounds in HEK 293 cells stably transfected with rP2Y1. In case of rP2Y2-GFP, the borano-nucleotides were very weak agonists in comparison to UTP and ATP in terms of Ca2+ release, AA release and in inducing receptor endocytosis. The different ATP-α-B derivatives and also the diastereoisomers were equally ineffective. Thus, the new agonists may be considered as potent and highly specific agonist drug candidates for P2Y1 receptors. The difference in activity of the ATP analogs at P2Y receptors could be used as a tool to investigate structural differences between P2Y receptor subtypes. PMID:15197109

  1. Identification of 6H1 as a P2Y purinoceptor: P2Y5.

    PubMed

    Webb, T E; Kaplan, M G; Barnard, E A

    1996-02-06

    We have determined the identity of the orphan G-protein coupled receptor cDNA, 6H1, present in activated chicken T cells, as a subtype of P2Y purinoceptor. This identification is based on first on the degree of sequence identity shared with recently cloned members of the P2Y receptor family and second on the pharmacological profile. Upon transient expression in COS-7 cells the 6H1 receptor bound the radiolabel [35S]dATP alpha S specifically and with high affinity (Kd, 10 nM). This specific binding could be competitively displaced by a range of ligands active at P2 purinoceptors, with ATP being the most active (K (i)), 116 nM). Such competition studies have established the following rank order of activity: ATP ADP 2-methylthioATP alpha, beta-methylene ATP, UTP, thus confirming 6H1 as a member of the growing family of P2Y purinoceptors. As the fifth receptor of this type to be identified we suggest that it be named P2Y5.

  2. Characterisation of the contribution of the GABA-benzodiazepine α1 receptor subtype to [11C]Ro15-4513 PET images

    PubMed Central

    Myers, James FM; Rosso, Lula; Watson, Ben J; Wilson, Sue J; Kalk, Nicola J; Clementi, Nicoletta; Brooks, David J; Nutt, David J; Turkheimer, Federico E; Lingford-Hughes, Anne R

    2012-01-01

    This positron emission tomography (PET) study aimed to further define selectivity of [11C]Ro15-4513 binding to the GABARα5 relative to the GABARα1 benzodiazepine receptor subtype. The impact of zolpidem, a GABARα1-selective agonist, on [11C]Ro15-4513, which shows selectivity for GABARα5, and the nonselective benzodiazepine ligand [11C]flumazenil binding was assessed in humans. Compartmental modelling of the kinetics of [11C]Ro15-4513 time-activity curves was used to describe distribution volume (VT) differences in regions populated by different GABA receptor subtypes. Those with low α5 were best fitted by one-tissue compartment models; and those with high α5 required a more complex model. The heterogeneity between brain regions suggested spectral analysis as a more appropriate method to quantify binding as it does not a priori specify compartments. Spectral analysis revealed that zolpidem caused a significant VT decrease (∼10%) in [11C]flumazenil, but no decrease in [11C]Ro15-4513 binding. Further analysis of [11C]Ro15-4513 kinetics revealed additional frequency components present in regions containing both α1 and α5 subtypes compared with those containing only α1. Zolpidem reduced one component (mean±s.d.: 71%±41%), presumed to reflect α1-subtype binding, but not another (13%±22%), presumed to reflect α5. The proposed method for [11C]Ro15-4513 analysis may allow more accurate selective binding assays and estimation of drug occupancy for other nonselective ligands. PMID:22214903

  3. Blockade of Cocaine or σ Receptor Agonist Self Administration by Subtype-Selective σ Receptor Antagonists

    PubMed Central

    Hiranita, Takato; Kopajtic, Theresa A.; Rice, Kenner C.; Mesangeau, Christophe; Narayanan, Sanju; Abdelazeem, Ahmed H.; McCurdy, Christopher R.

    2016-01-01

    The identification of sigma receptor (σR) subtypes has been based on radioligand binding and, despite progress with σ1R cellular function, less is known about σR subtype functions in vivo. Recent findings that cocaine self administration experience will trigger σR agonist self administration was used in this study to assess the in vivo receptor subtype specificity of the agonists (+)-pentazocine, PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], and 1,3-di-o-tolylguanidine (DTG) and several novel putative σR antagonists. Radioligand binding studies determined in vitro σR selectivity of the novel compounds, which were subsequently studied for self administration and antagonism of cocaine, (+)-pentazocine, PRE-084, or DTG self administration. Across the dose ranges studied, none of the novel compounds were self administered, nor did they alter cocaine self administration. All compounds blocked DTG self administration, with a subset also blocking (+)-pentazocine and PRE-084 self administration. The most selective of the compounds in binding σ1Rs blocked cocaine self administration when combined with a dopamine transport inhibitor, either methylphenidate or nomifensine. These drug combinations did not decrease rates of responding maintained by food reinforcement. In contrast, the most selective of the compounds in binding σ2Rs had no effect on cocaine self administration in combination with either dopamine transport inhibitor. Thus, these results identify subtype-specific in vivo antagonists, and the utility of σR agonist substitution for cocaine self administration as an assay capable of distinguishing σR subtype selectivity in vivo. These results further suggest that effectiveness of dual σR antagonism and dopamine transport inhibition in blocking cocaine self administration is specific for σ1Rs and further support this dual targeting approach to development of cocaine antagonists. PMID:27189970

  4. D-cycloserine in Schizophrenia: New Strategies for Improving Clinical Outcomes by Enhancing Plasticity

    PubMed Central

    Goff, Donald C.

    2017-01-01

    Background Dysregulation of N-methyl D-aspartate (NMDA) receptor signaling is strongly implicated in schizophrenia. Based on the ketamine model of NMDA receptor hypoactivity, therapeutic approaches designed to maintain a sustained increase in agonist activity at the glycine site of the NMDA receptor have produced promising, although inconsistent, efficacy for negative symptoms. Methods A review of the published literature on D-cycloserine (DCS) pharmacology in animal models and in clinical studies was performed. Findings relevant to DCS effects on memory and plasticity and their potential clinical application to schizophrenia were summarized. Results Studies in animals and clinical trials in patients with anxiety disorders have demonstrated that single or intermittent dosing with DCS enhances memory consolidation. Preliminary trials in patients with schizophrenia suggest that intermittent dosing with DCS may produce persistent improvement of negative symptoms and enhance learning when combined with cognitive behavioral therapy for delusions or with cognitive remediation. The pharmacology of DCS is complex, since it acts as a “super agonist” at NMDA receptors containing GluN2C subunits and, under certain conditions, it may act as an antagonist at NMDA receptors containing GluN2B subunits. Conclusions There are preliminary findings that support a role for D-cycloserine in schizophrenia as a strategy to enhance neuroplasticity and memory. However, additional studies with DCS are needed to confirm these findings. In addition, clinical trials with positive and negative allosteric modulators with greater specificity for NMDA receptor subtypes are needed to identify the optimal strategy for enhancing neuroplasticity in schizophrenia. PMID:26915421

  5. Expression and coupling of neurokinin receptor subtypes to inositol phosphate and calcium signaling pathways in human airway smooth muscle cells

    PubMed Central

    Mizuta, Kentaro; Gallos, George; Zhu, Defen; Mizuta, Fumiko; Goubaeva, Farida; Xu, Dingbang; Panettieri, Reynold A.; Yang, Jay; Emala, Charles W.

    2013-01-01

    Neuropeptide tachykinins (substance P, neurokinin A, and neurokinin B) are present in peripheral terminals of sensory nerve fibers within the respiratory tract and cause airway contractile responses and hyperresponsiveness in humans and most mammalian species. Three subtypes of neurokinin receptors (NK1R, NK2R, and NK3R) classically couple to Gq protein-mediated inositol 1,4,5-trisphosphate (IP3) synthesis and liberation of intracellular Ca2+, which initiates contraction, but their expression and calcium signaling mechanisms are incompletely understood in airway smooth muscle. All three subtypes were identified in native and cultured human airway smooth muscle (HASM) and were subsequently overexpressed in HASM cells using a human immunodeficiency virus-1-based lentivirus transduction system. Specific NKR agonists {NK1R, [Sar9,Met(O2)11]-substance P; NK2R, [β-Ala8]-neurokinin A(4–10); NK3R, senktide} stimulated inositol phosphate synthesis and increased intracellular Ca2+ concentration ([Ca2+]i) in native HASM cells and in HASM cells transfected with each NKR subtype. These effects were blocked by NKR-selective antagonists (NK1R, L-732138; NK2R, GR-159897; NK3R, SB-222200). The initial transient and sustained phases of increased [Ca2+]i were predominantly inhibited by the IP3 receptor antagonist 2-aminoethoxydiphenyl borate (2-APB) or the store-operated Ca2+ channel antagonist SKF-96365, respectively. These results show that all three subtypes of NKRs are expressed in native HASM cells and that IP3 levels are the primary mediators of NKR-stimulated initial [Ca2+]i increases, whereas store-operated Ca2+ channels mediate the sustained phase of the [Ca2+]i increase. PMID:18203813

  6. Expression and coupling of neurokinin receptor subtypes to inositol phosphate and calcium signaling pathways in human airway smooth muscle cells.

    PubMed

    Mizuta, Kentaro; Gallos, George; Zhu, Defen; Mizuta, Fumiko; Goubaeva, Farida; Xu, Dingbang; Panettieri, Reynold A; Yang, Jay; Emala, Charles W

    2008-03-01

    Neuropeptide tachykinins (substance P, neurokinin A, and neurokinin B) are present in peripheral terminals of sensory nerve fibers within the respiratory tract and cause airway contractile responses and hyperresponsiveness in humans and most mammalian species. Three subtypes of neurokinin receptors (NK1R, NK2R, and NK3R) classically couple to Gq protein-mediated inositol 1,4,5-trisphosphate (IP3) synthesis and liberation of intracellular Ca2+, which initiates contraction, but their expression and calcium signaling mechanisms are incompletely understood in airway smooth muscle. All three subtypes were identified in native and cultured human airway smooth muscle (HASM) and were subsequently overexpressed in HASM cells using a human immunodeficiency virus-1-based lentivirus transduction system. Specific NKR agonists {NK1R, [Sar9,Met(O2)11]-substance P; NK2R, [beta-Ala8]-neurokinin A(4-10); NK3R, senktide} stimulated inositol phosphate synthesis and increased intracellular Ca2+ concentration ([Ca2+]i) in native HASM cells and in HASM cells transfected with each NKR subtype. These effects were blocked by NKR-selective antagonists (NK1R, L-732138; NK2R, GR-159897; NK3R, SB-222200). The initial transient and sustained phases of increased [Ca2+]i were predominantly inhibited by the IP3 receptor antagonist 2-aminoethoxydiphenyl borate (2-APB) or the store-operated Ca2+ channel antagonist SKF-96365, respectively. These results show that all three subtypes of NKRs are expressed in native HASM cells and that IP3 levels are the primary mediators of NKR-stimulated initial [Ca2+]i increases, whereas store-operated Ca2+ channels mediate the sustained phase of the [Ca2+]i increase.

  7. Working memory span capacity improved by a D2 but not D1 receptor family agonist.

    PubMed

    Tarantino, Isadore S; Sharp, Richard F; Geyer, Mark A; Meves, Jessica M; Young, Jared W

    2011-06-01

    Patients with schizophrenia exhibit poor working memory (WM). Although several subcomponents of WM can be measured, evidence suggests the primary subcomponent affected in schizophrenia is span capacity (WMC). Indeed, the NIMH-funded MATRICS initiative recommended assaying the WMC when assessing the efficacy of a putative therapeutic for FDA approval. Although dopamine D1 receptor agonists improve delay-dependent memory in animals, evidence for improvements in WMC due to dopamine D1 receptor activation is limited. In contrast, the dopamine D2-family agonist bromocriptine improves WMC in humans. The radial arm maze (RAM) can be used to assess WMC, although complications due to ceiling effects or strategy confounds have limited its use. We describe a 12-arm RAM protocol designed to assess whether the dopamine D1-family agonist SKF 38393 (0, 1, 3, and 10 mg/kg) or bromocriptine (0, 1, 3, and 10 mg/kg) could improve WMC in C57BL/6N mice (n=12) in cross-over designs. WMC increased and strategy usage decreased with training. The dopamine D1 agonist SKF 38393 had no effect on WMC or long-term memory. Bromocriptine decreased WMC errors, without affecting long-term memory, consistent with human studies. These data confirm that WMC can be measured in mice and reveal drug effects that are consistent with reported effects in humans. Future research is warranted to identify the subtype of the D2-family of receptors responsible for the observed improvement in WMC. Finally, this RAM procedure may prove useful in developing animal models of deficient WMC to further assess putative treatments for the cognitive deficits in schizophrenia. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Expression Analysis of Dopamine Receptor Subtypes in Normal Human Pituitaries, Nonfunctioning Pituitary Adenomas and Somatotropinomas, and the Association between Dopamine and Somatostatin Receptors with Clinical Response to Octreotide-LAR in Acromegaly

    PubMed Central

    Neto, Leonardo Vieira; Machado, Evelyn de O.; Luque, Raul M.; Taboada, Giselle F.; Marcondes, Jorge B.; Chimelli, Leila M. C.; Quintella, Leonardo Pereira; Niemeyer, Paulo; de Carvalho, Denise P.; Kineman, Rhonda D.; Gadelha, Mônica R.

    2009-01-01

    Context: Dopamine receptor (DR) and somatostatin receptor subtype expression in pituitary adenomas may predict the response to postsurgical therapies. Objectives: Our objectives were to assess and compare the mRNA levels of DR1-5 and somatostatin receptors 1–5 in normal pituitaries (NPs), nonfunctioning pituitary adenomas (NFPAs), and somatotropinomas. In addition, we determined whether the level of DR expression correlates with the in vivo response to octreotide-LAR in acromegalic patients. Design and Patients: Eight NPs, 30 NFPAs, and 39 somatotropinomas were analyzed for receptor mRNA levels by real-time RT-PCR. The DR2 short variant was estimated as the DR2 long/DR2 total (DR2T). The relationship between DR expression and the postsurgical response to octreotide-LAR was assessed in 19 of the acromegalic patients. Results: DR3 was not detected. The relationship between expression levels of DR subtypes in NPs and somatotropinomas was DR2T⋙DR4≫DR5>DR1, whereas in NFPAs, DR2T⋙DR4≫DR1>DR5. The DR2 short variant was the predominant DR2 variant in the majority of samples. In acromegalics treated with octreotide-LAR, DR1 was negatively correlated with percent GH reduction (3 months: r = −0.67, P = 0.002; and 6 months: r = −0.58, P = 0.009), and DR5 was positively correlated with percent IGF-I reduction (3 months: r = 0.55, P = 0.01; and 6 months: r = 0.47, P = 0.04). Conclusions: DR2 is the predominant DR subtype in NPs, NFPAs, and somatotropinomas. The fact that DR1, DR4, and DR5 are also expressed in many adenomas tested suggests that these receptors might also play a role in the therapeutic impact of postsurgical medical therapies in patients with NFPA and acromegaly. This was supported by the finding that the in vivo response to octreotide-LAR was negatively associated with DR1 and positively associated with DR5. PMID:19293270

  9. Molecular dynamics simulations and docking studies on 3D models of the heterodimeric and homodimeric 5-HT(2A) receptor subtype.

    PubMed

    Bruno, Agostino; Beato, Claudia; Costantino, Gabriele

    2011-04-01

    G-protein coupled receptors may exist as functional homodimers, heterodimers and even as higher aggregates. In this work, we investigate the 5-HT(2A) receptor, which is a known target for antipsychotic drugs. Recently, 5-HT(2A) has been shown to form functional homodimers and heterodimers with the mGluR2 receptor. The objective of this study is to build up 3D models of the 5-HT(2A)/mGluR2 heterodimer and of the 5-HT(2A)-5-HT(2A) homodimer, and to evaluate the impact of the dimerization interface on the shape of the 5-HT(2A) binding pocket by using molecular dynamics simulations and docking studies. The heterodimer, homodimer and monomeric 5-HT(2A) receptors were simulated by molecular dynamics for 40 ns each. The trajectories were clustered and representative structures of six clusters for each system were generated. Inspection of the these representative structures clearly indicate an effect of the dimerization interface on the topology of the binding pocket. Docking studies allowed to generate receiver operating characteristic curves for a set of 5-HT(2A) ligands, indicating that different complexes prefer different classes of 5-HT(2A) ligands. This study clearly indicates that the presence of a dimerization interface must explicitly be considered when studying G-protein coupled receptors known to exist as dimers. Molecular dynamics simulation and cluster analysis are appropriate tools to study the phenomenon.

  10. [111In-DOTA]LTT-SS28, a first pansomatostatin radioligand for in vivo targeting of somatostatin receptor-positive tumors.

    PubMed

    Maina, Theodosia; Cescato, Renzo; Waser, Beatrice; Tatsi, Aikaterini; Kaloudi, Aikaterini; Krenning, Eric P; de Jong, Marion; Nock, Berthold A; Reubi, Jean Claude

    2014-08-14

    Radiolabeled pansomatostatin-like analogues are expected to enhance the diagnostic sensitivity and to expand the clinical indications of currently applied sst2-specific radioligands. In this study, we present the somatostatin mimic [DOTA]LTT-SS28 {[(DOTA)Ser1,Leu8,D-Trp22,Tyr25]SS28} and its 111In radioligand. [DOTA]LTT-SS28 exhibited a pansomatostatin-like profile binding with high affinity to all five hsst1-hsst5 subtypes (IC50 values in the lower nanomolar range). Furthermore, [DOTA]LTT-SS28 behaved as an agonist at hsst2, hsst3, and hsst5, efficiently stimulating internalization of the three receptor subtypes. Radioligand [111In-DOTA]LTT-SS28 showed good stability in the mouse bloodstream. It displayed strong and specific uptake in AR42J tumors 4 h postinjection (9.3±1.6% ID/g vs 0.3±0.0% ID/g during sst2 blockade) in mice. Significant and specific uptake was also observed in HEK293-hsst2-, HEK293-hsst3-, and HEK293-hsst5-expressing tumors (4.43±1.5, 4.88±1.1, and <3% ID/g, respectively, with values of <0.5% ID/g during receptor blockade). In conclusion, the somatostatin mimic [111In-DOTA]LTT-SS28 specifically localizes in sst2-, sst3-, and sst5-expressing xenografts in mice showing promise for multi-sst1-sst5 targeted tumor imaging.

  11. P2X and P2Y nucleotide receptors as targets in cardiovascular disease.

    PubMed

    Kennedy, Charles; Chootip, Krongkarn; Mitchell, Callum; Syed, Nawazish-i-Husain; Tengah, Asrin

    2013-03-01

    Endogenous nucleotides have widespread actions in the cardiovascular system, but it is only recently that the P2X and P2Y receptor subtypes, at which they act, have been identified and subtype-selective agonists and antagonists developed. These advances have greatly increased our understanding of the physiological and pathophysiological functions of P2X and P2Y receptors, but investigation of the clinical usefulness of selective ligands is at an early stage. Nonetheless, the evidence considered in this review demonstrates clearly that various cardiovascular disorders, including vasospasm, hypertension, congestive heart failure and cardiac damage during ischemic episodes, may be viable targets. With further development of novel, selective agonists and antagonists, our understanding will continue to improve and further therapeutic applications are likely to be discovered.

  12. Regulation of bat echolocation pulse acoustics by striatal dopamine.

    PubMed

    Tressler, Jedediah; Schwartz, Christine; Wellman, Paul; Hughes, Samuel; Smotherman, Michael

    2011-10-01

    The ability to control the bandwidth, amplitude and duration of echolocation pulses is a crucial aspect of echolocation performance but few details are known about the neural mechanisms underlying the control of these voice parameters in any mammal. The basal ganglia (BG) are a suite of forebrain nuclei centrally involved in sensory-motor control and are characterized by their dependence on dopamine. We hypothesized that pharmacological manipulation of brain dopamine levels could reveal how BG circuits might influence the acoustic structure of bat echolocation pulses. A single intraperitoneal injection of a low dose (5 mg kg(-1)) of the neurotoxin 1-methyl-4-phenylpyridine (MPTP), which selectively targets dopamine-producing cells of the substantia nigra, produced a rapid degradation in pulse acoustic structure and eliminated the bat's ability to make compensatory changes in pulse amplitude in response to background noise, i.e. the Lombard response. However, high-performance liquid chromatography (HPLC) measurements of striatal dopamine concentrations revealed that the main effect of MPTP was a fourfold increase rather than the predicted decrease in striatal dopamine levels. After first using autoradiographic methods to confirm the presence and location of D(1)- and D(2)-type dopamine receptors in the bat striatum, systemic injections of receptor subtype-specific agonists showed that MPTP's effects on pulse acoustics were mimicked by a D(2)-type dopamine receptor agonist (Quinpirole) but not by a D(1)-type dopamine receptor agonist (SKF82958). The results suggest that BG circuits have the capacity to influence echolocation pulse acoustics, particularly via D(2)-type dopamine receptor-mediated pathways, and may therefore represent an important mechanism for vocal control in bats.

  13. Regulation of bat echolocation pulse acoustics by striatal dopamine

    PubMed Central

    Tressler, Jedediah; Schwartz, Christine; Wellman, Paul; Hughes, Samuel; Smotherman, Michael

    2011-01-01

    SUMMARY The ability to control the bandwidth, amplitude and duration of echolocation pulses is a crucial aspect of echolocation performance but few details are known about the neural mechanisms underlying the control of these voice parameters in any mammal. The basal ganglia (BG) are a suite of forebrain nuclei centrally involved in sensory-motor control and are characterized by their dependence on dopamine. We hypothesized that pharmacological manipulation of brain dopamine levels could reveal how BG circuits might influence the acoustic structure of bat echolocation pulses. A single intraperitoneal injection of a low dose (5 mg kg–1) of the neurotoxin 1-methyl-4-phenylpyridine (MPTP), which selectively targets dopamine-producing cells of the substantia nigra, produced a rapid degradation in pulse acoustic structure and eliminated the bat's ability to make compensatory changes in pulse amplitude in response to background noise, i.e. the Lombard response. However, high-performance liquid chromatography (HPLC) measurements of striatal dopamine concentrations revealed that the main effect of MPTP was a fourfold increase rather than the predicted decrease in striatal dopamine levels. After first using autoradiographic methods to confirm the presence and location of D1- and D2-type dopamine receptors in the bat striatum, systemic injections of receptor subtype-specific agonists showed that MPTP's effects on pulse acoustics were mimicked by a D2-type dopamine receptor agonist (Quinpirole) but not by a D1-type dopamine receptor agonist (SKF82958). The results suggest that BG circuits have the capacity to influence echolocation pulse acoustics, particularly via D2-type dopamine receptor-mediated pathways, and may therefore represent an important mechanism for vocal control in bats. PMID:21900471

  14. Structure and Dynamics of the M3 Muscarinic Acetylcholine Receptor

    PubMed Central

    Kruse, Andrew C.; Hu, Jianxin; Pan, Albert C.; Arlow, Daniel H.; Rosenbaum, Daniel M.; Rosemond, Erica; Green, Hillary F.; Liu, Tong; Chae, Pil Seok; Dror, Ron O.; Shaw, David E.; Weis, William I.; Wess, Jurgen; Kobilka, Brian

    2012-01-01

    Acetylcholine (ACh), the first neurotransmitter to be identified1, exerts many of its physiological actions via activation of a family of G protein-coupled receptors (GPCRs) known as muscarinic ACh receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G protein coupling preference and the physiological responses they mediate.2–4 Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences.5–6 We describe here the structure of the Gq/11-coupled M3 mAChR bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the Gi/o-coupled M2 receptor, offers new possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows the first structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and raise additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer new insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors. PMID:22358844

  15. A2A Adenosine Receptor Antagonists as Therapeutic Candidates: are they still an interesting challenge?

    PubMed

    Cacciari, Barbara; Federico, Stephanie; Spalluto, Giampiero

    2018-04-22

    In the past decades, many efforts were done to develope ligands for the adenosine receptors, with the purpose to individuate agonists and antagonists affine and selective for each subtypes , named A1, A2A, A2B, and A3. These intense studies allowed a deeper and deeper knowledge of the nature and, moreover, of the pathophysiological roles of all the adenosine receptor subtypes. In particular, the involvment of the A2A adenosine receptor subtype in some physiological mechanisms in the brain, that could be related to important diseases such as the Parkinson's disease, encouraged the research in this field. Particular attention was given to the antagonists endowed with high affinity and selectivity since they could have a real employment in the treatment of Parkinson's disease, and some compounds, such as istradefylline, preladenant and tozadenant, are already studied in clinical trials. Actually, the role of A2A antagonists in Parkinson's disease is becoming contradictory due to contrasting results in the last studies, but, at the same time, new possible employments are emerging for this class of antagonists in cancer pathologies as much interesting to legitimate further efforts in the research of A2A ligands. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Somatostatin, acting at receptor subtype 1, inhibits Rho activity, the assembly of actin stress fibers, and cell migration.

    PubMed

    Buchan, Alison M J; Lin, Chin-Yu; Choi, Jimmy; Barber, Diane L

    2002-08-09

    Somatostatin regulates multiple biological functions by acting through a family of five G protein-coupled receptors, somatostatin receptors (SSTRs) 1-5. Although all five receptor subtypes inhibit adenylate cyclase activity and decrease intracellular cAMP levels, specific receptor subtypes also couple to additional signaling pathways. In CCL39 fibroblasts expressing either human SSTR1 or SSTR2, we demonstrate that activation of SSTR1 (but not SSTR2) attenuated both thrombin- and integrin-stimulated Rho-GTP complex formation. The reduction in Rho-GTP formation in the presence of somatostatin was associated with decreased translocation of Rho and LIM kinase to the plasma membrane and fewer focal contacts. Activation of Rho resulted in the formation of intracellular actin stress fibers and cell migration. In CCL39-R1 cells, somatostatin treatment prevented actin stress fiber assembly and attenuated thrombin-stimulated cell migration through Transwell membranes to basal levels. To show that native SSTR1 shares the ability to inhibit Rho activation, we demonstrated that somatostatin treatment of human umbilical vein endothelial cells attenuated thrombin-stimulated Rho-GTP accumulation. These data show for the first time that a G protein-coupled receptor, SSTR1, inhibits the activation of Rho, the assembly of focal adhesions and actin stress fibers, and cell migration.

  17. Epidemiological risk factors associated with inflammatory breast cancer subtypes.

    PubMed

    Atkinson, Rachel L; El-Zein, Randa; Valero, Vicente; Lucci, Anthony; Bevers, Therese B; Fouad, Tamer; Liao, Weiqin; Ueno, Naoto T; Woodward, Wendy A; Brewster, Abenaa M

    2016-03-01

    In this single-institution case-control study, we identified risk factors associated with inflammatory breast cancer (IBC) subtypes based on staining of estrogen receptor (ER), progesterone receptor (PR) and expression of human epidermal growth factor 2 (HER2neu) to determine distinct etiologic pathways. We identified 224 women with IBC and 396 cancer-free women seen at the MD Anderson Cancer Center. Multinomial logistic regression was used to estimate odds ratios (ORs) and 95 % confidence intervals (CIs) for associations between breast cancer risk factors and the IBC tumor subtypes: luminal (ER+ and/or PR+/HER2neu-), HER2neu+ (any ER and PR, HER2neu+), and triple-negative (ER-/PR-/HER2neu-). In multivariable analysis, compared with women age ≥26 at first pregnancy, women age <26 had a higher risk of triple-negative IBC (OR 3.32, 95% CI 1.37-8.05). Women with a history of breast-feeding had a lower risk of triple-negative (OR 0.30; 95% CI 0.15-0.62) and luminal IBC (OR 0.35, 95% CI 0.18-0.68). A history of smoking was associated with an increased risk of luminal IBC (OR 2.37; 95% CI 1.24-4.52). Compared with normal-weight women, those who were overweight or obese (body mass index ≥25 kg/m(2)) had a higher risk of all three tumor subtypes (p < 0.01 for all subtypes). Overweight or obese status is important modifiable risk factor for IBC of any subtype. Modifiable risk factors, age at first pregnancy (≥26), breast-feeding, and smoking may be associated with specific IBC subtypes. These results highlight the importance of evaluating epidemiologic risk factors for IBC for the identification of subtype-specific prevention strategies.

  18. MPX-004 and MPX-007: New Pharmacological Tools to Study the Physiology of NMDA Receptors Containing the GluN2A Subunit.

    PubMed

    Volkmann, Robert A; Fanger, Christopher M; Anderson, David R; Sirivolu, Venkata Ramana; Paschetto, Kathy; Gordon, Earl; Virginio, Caterina; Gleyzes, Melanie; Buisson, Bruno; Steidl, Esther; Mierau, Susanna B; Fagiolini, Michela; Menniti, Frank S

    2016-01-01

    GluN2A is the most abundant of the GluN2 NMDA receptor subunits in the mammalian CNS. Physiological and genetic evidence implicate GluN2A-containing receptors in susceptibility to autism, schizophrenia, childhood epilepsy and neurodevelopmental disorders such as Rett Syndrome. However, GluN2A-selective pharmacological probes to explore the therapeutic potential of targeting these receptors have been lacking. Here we disclose a novel series of pyrazine-containing GluN2A antagonists exemplified by MPX-004 (5-(((3-chloro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)pyrazine-2-carboxamide) and MPX-007 (5-(((3-fluoro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)methylpyrazine-2-carboxamide). MPX-004 and MPX-007 inhibit GluN2A-containing NMDA receptors expressed in HEK cells with IC50s of 79 nM and 27 nM, respectively. In contrast, at concentrations that completely inhibited GluN2A activity these compounds have no inhibitory effect on GluN2B or GluN2D receptor-mediated responses in similar HEK cell-based assays. Potency and selectivity were confirmed in electrophysiology assays in Xenopus oocytes expressing GluN2A-D receptor subtypes. Maximal concentrations of MPX-004 and MPX-007 inhibited ~30% of the whole-cell current in rat pyramidal neurons in primary culture and MPX-004 inhibited ~60% of the total NMDA receptor-mediated EPSP in rat hippocampal slices. GluN2A-selectivity at native receptors was confirmed by the finding that MPX-004 had no inhibitory effect on NMDA receptor mediated synaptic currents in cortical slices from GRIN2A knock out mice. Thus, MPX-004 and MPX-007 offer highly selective pharmacological tools to probe GluN2A physiology and involvement in neuropsychiatric and developmental disorders.

  19. Inhibition of Morphine Tolerance and Dependence by the NMDA Receptor Antagonist MK-801

    NASA Astrophysics Data System (ADS)

    Trujillo, Keith A.; Akil, Huda

    1991-01-01

    The N-methyl-D-aspartate (NMDA) subtype of the glutamate receptor is an important mediator of several forms of neural and behavioral plasticity. The present studies examined whether NMDA receptors might be involved in the development of opiate tolerance and dependence, two examples of behavioral plasticity. The noncompetitive NMDA receptor antagonist MK-801 attenuated the development of tolerance to the analgesic effect of morphine without affecting acute morphine analgesia. In addition, MK-801 attenuated the development of morphine dependence as assessed by naloxone-precipitated withdrawal. These results suggest that NMDA receptors may be important in the development of opiate tolerance and dependence.

  20. Muscarinic receptor immunoreactivity in the superior salivatory nucleus neurons innervating the salivary glands of the rat.

    PubMed

    Ueda, Hirotaka; Mitoh, Yoshihiro; Fujita, Masako; Kobashi, Motoi; Yamashiro, Takashi; Sugimoto, Tomosada; Ichikawa, Hiroyuki; Matsuo, Ryuji

    2011-07-15

    The superior salivatory nucleus (SSN) contains preganglionic parasympathetic neurons to the submandibular and sublingual salivary glands. Cevimeline, a muscarinic acetylcholine receptor agonist, stimulates the salivary glands and is presently used as sialogogue in the treatment of dry mouth. Since cevimeline passes through the blood-brain barrier, it is also able to act on muscarinic acetylcholine receptors in the central nervous system. Our preliminary experiment using the whole-cell patch-clamp technique has shown that cevimeline excites SSN neurons in rat brain slices, suggesting that SSN neurons have muscarinic acetylcholine receptors; however, it is unclear which subtypes of muscarinic acetylcholine receptors exist in SSN neurons. In the present study, we investigated immunohistochemically muscarinic acetylcholine receptor subtypes, M1 receptor (M1R), M2R, M3R, M4R, and M5R in SSN neurons. SSN neurons innervating the salivary glands, retrogradely labeled with a fluorescent tracer from the chorda-lingual nerve, mostly expressed M3R immunoreactivity (-ir) (92.3%) but not M1R-ir. About half of such SSN neurons also showed M2R- (40.1%), M4R- (54.0%) and M5R-ir (46.0%); therefore, it is probable that SSN neurons co-express M3R-ir with at least two of the other muscarinic receptor subtypes. This is the first report to show that SSN neurons contain muscarinic acetylcholine receptors. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  1. Pathophysiological roles of P2 receptors in glial cells.

    PubMed

    Abbracchio, Maria P; Verderio, Claudia

    2006-01-01

    Extracellular nucleotides act through specific receptors on target cells: the seven ionotropic P2X and the eight G protein-coupled P2Y receptors. All these receptors are expressed by brain astroglia and microglia. In astrocytes, P2 receptors have been implicated in short-term calcium-dependent cell-cell communication. Upon mechanical stimulation or activation by other transmitters, astrocytes release ATP and respond to ATP with a propagating wave of intracellular calcium increases, allowing a homotypic astrocyte-astrocyte communication, as well as an heterotypic signalling which also involves neurons, oligodendrocytes and microglia. Astrocytic P2 receptors also mediate reactive astrogliosis, a reaction contributing to neuronal death in neurodegenerative diseases. Signalling leading to inflammatory astrogliosis involves induction of cyclo-oxygenase 2 through stimulation of ERK1,2 and of the transcriptional factors AP-1 and NF-kappaB. Microglia also express several P2 receptors linked to intracellular calcium increases. P2 receptor subtypes are differentially regulated by typical proinflammatory signals for these cells (e.g. lipopolysaccharide), suggesting specific roles in brain immune responses. Globally, these findings highlight the roles of P2 receptors in glial cell pathophysiology suggesting a contribution to neurodegenerative diseases characterized by excessive gliosis and neuro-inflammation. They also open up the possibility of modulating brain damage by ligands selectively targeting the specific P2 receptor subtypes involved in the gliotic response.

  2. Modeling of Human Prokineticin Receptors: Interactions with Novel Small-Molecule Binders and Potential Off-Target Drugs

    PubMed Central

    Levit, Anat; Yarnitzky, Talia; Wiener, Ayana; Meidan, Rina; Niv, Masha Y.

    2011-01-01

    Background and Motivation The Prokineticin receptor (PKR) 1 and 2 subtypes are novel members of family A GPCRs, which exhibit an unusually high degree of sequence similarity. Prokineticins (PKs), their cognate ligands, are small secreted proteins of ∼80 amino acids; however, non-peptidic low-molecular weight antagonists have also been identified. PKs and their receptors play important roles under various physiological conditions such as maintaining circadian rhythm and pain perception, as well as regulating angiogenesis and modulating immunity. Identifying binding sites for known antagonists and for additional potential binders will facilitate studying and regulating these novel receptors. Blocking PKRs may serve as a therapeutic tool for various diseases, including acute pain, inflammation and cancer. Methods and Results Ligand-based pharmacophore models were derived from known antagonists, and virtual screening performed on the DrugBank dataset identified potential human PKR (hPKR) ligands with novel scaffolds. Interestingly, these included several HIV protease inhibitors for which endothelial cell dysfunction is a documented side effect. Our results suggest that the side effects might be due to inhibition of the PKR signaling pathway. Docking of known binders to a 3D homology model of hPKR1 is in agreement with the well-established canonical TM-bundle binding site of family A GPCRs. Furthermore, the docking results highlight residues that may form specific contacts with the ligands. These contacts provide structural explanation for the importance of several chemical features that were obtained from the structure-activity analysis of known binders. With the exception of a single loop residue that might be perused in the future for obtaining subtype-specific regulation, the results suggest an identical TM-bundle binding site for hPKR1 and hPKR2. In addition, analysis of the intracellular regions highlights variable regions that may provide subtype specificity. PMID:22132188

  3. Synergistic Action of Presynaptic Muscarinic Acetylcholine Receptors and Adenosine Receptors in Developmental Axonal Competition at the Neuromuscular Junction.

    PubMed

    Nadal, Laura; Garcia, Neus; Hurtado, Erica; Simó, Anna; Tomàs, Marta; Lanuza, Maria Angel; Cilleros, Victor; Tomàs, Josep Maria

    2016-01-01

    The development of the nervous system involves the initial overproduction of synapses, which promotes connectivity. Hebbian competition between axons with different activities leads to the loss of roughly half of the overproduced elements and this refines connectivity. We used quantitative immunohistochemistry to investigate, in the postnatal day 7 (P7) to P9 neuromuscular junctions, the involvement of muscarinic receptors (muscarinic acetylcholine autoreceptors and the M1, M2, and M4 subtypes) and adenosine receptors (A1 and A2A subtypes) in the control of axonal elimination after the mouse levator auris longus muscle had been exposed to selective antagonists in vivo. In a previous study we analyzed the role of each of the individual receptors. Here we investigate the additive or occlusive effects of their inhibitors and thus the existence of synergistic activity between the receptors. The main results show that the A2A, M1, M4, and A1 receptors (in this order of ability) delayed axonal elimination at P7. M4 produces some occlusion of the M1 pathway and some addition to the A1 pathway, which suggests that they cooperate. M2 receptors may modulate (by allowing a permissive action) the other receptors, mainly M4 and A1. The continued action of these receptors (now including M2 but not M4) finally promotes axonal loss at P9. All 4 receptors (M2, M1, A1, and A2A, in this order of ability) are necessary. The M4 receptor (which in itself does not affect axon loss) seems to modulate the other receptors. We found a synergistic action between the M1, A1, and A2A receptors, which show an additive effect, whereas the potent M2 effect is largely independent of the other receptors (though can be modulated by M4). At P9, there is a full mutual dependence between the A1 and A2A receptors in regulating axon loss. In summary, postnatal axonal elimination is a regulated multireceptor mechanism that involves the cooperation of several muscarinic and adenosine receptor subtypes. © 2017 S. Karger AG, Basel.

  4. Segmental transport of Ca²⁺ and Mg²⁺ along the gastrointestinal tract.

    PubMed

    Lameris, Anke L; Nevalainen, Pasi I; Reijnen, Daphne; Simons, Ellen; Eygensteyn, Jelle; Monnens, Leo; Bindels, René J M; Hoenderop, Joost G J

    2015-02-01

    Calcium (Ca(2+)) and magnesium (Mg(2+)) ions are involved in many vital physiological functions. Since dietary intake is the only source of minerals for the body, intestinal absorption is essential for normal homeostatic levels. The aim of this study was to characterize the absorption of Ca(2+) as well as Mg(2+) along the gastrointestinal tract at a molecular and functional level. In both humans and mice the Ca(2+) channel transient receptor potential vanilloid subtype 6 (TRPV6) is expressed in the proximal intestinal segments, whereas Mg(2+) channel transient receptor potential melastatin subtype 6 (TRPM6) is expressed in the distal parts of the intestine. A method was established to measure the rate of Mg(2+) absorption from the intestine in a time-dependent manner by use of (25)Mg(2+). In addition, local absorption of Ca(2+) and Mg(2+) in different segments of the intestine of mice was determined by using surgically implanted intestinal cannulas. By these methods, it was demonstrated that intestinal absorption of Mg(2+) is regulated by dietary needs in a vitamin D-independent manner. Also, it was shown that at low luminal concentrations, favoring transcellular absorption, Ca(2+) transport mainly takes place in the proximal segments of the intestine, whereas Mg(2+) absorption predominantly occurs in the distal part of the gastrointestinal tract. Vitamin D treatment of mice increased serum Mg(2+) levels and 24-h urinary Mg(2+) excretion, but not intestinal absorption of (25)Mg(2+). Segmental cannulation of the intestine and time-dependent absorption studies using (25)Mg(2+) provide new ways to study intestinal Mg(2+) absorption. Copyright © 2015 the American Physiological Society.

  5. Dizocilpine (MK-801) induces distinct changes of N-methyl-D-aspartic acid receptor subunits in parvalbumin-containing interneurons in young adult rat prefrontal cortex.

    PubMed

    Xi, Dong; Zhang, Wentong; Wang, Huai-Xing; Stradtman, George G; Gao, Wen-Jun

    2009-11-01

    N-methyl-D-aspartic acid receptor (NMDAR) hypofunction has long been implicated in schizophrenia and NMDARs on gamma-aminobutyric acid (GABA)ergic interneurons are proposed to play an essential role in the pathogenesis. However, controversial results have been reported regarding the regulation of NMDAR expression, and direct evidence of how NMDAR antagonists act on specific subpopulations of prefrontal interneurons is missing. We investigated the effects of the NMDAR antagonist dizocilpine (MK-801) on the expression of NMDAR subtypes in the identified interneurons in young adult rat prefrontal cortex (PFC) by using laser microdissection and real-time polymerase chain reaction, combined with Western blotting and immunofluorescent staining. We found that MK-801 induced distinct changes of NMDAR subunits in the parvalbumin-immunoreactive (PV-ir) interneurons vs. pyramidal neurons in the PFC circuitry. The messenger RNA (mRNA) expression of all NMDAR subtypes, including NR1 and NR2A to 2D, exhibited inverted-U dose-dependent changes in response to MK-801 treatment in the PFC. In contrast, subunit mRNAs of NMDARs in PV-ir interneurons were significantly down-regulated at low doses, unaltered at medium doses, and significantly decreased again at high doses, suggesting a biphasic dose response to MK-801. The differential effects of MK-801 in mRNA expression of NMDAR subunits were consistent with the protein expression of NR2A and NR2B subunits revealed with Western blotting and double immunofluorescent staining. These results suggest that PV-containing interneurons in the PFC exhibit a distinct responsiveness to NMDAR antagonism and that NMDA antagonist can differentially and dose-dependently regulate the functions of pyramidal neurons and GABAergic interneurons in the prefrontal cortical circuitry.

  6. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies

    PubMed Central

    Lehmann, Brian D.; Bauer, Joshua A.; Chen, Xi; Sanders, Melinda E.; Chakravarthy, A. Bapsi; Shyr, Yu; Pietenpol, Jennifer A.

    2011-01-01

    Triple-negative breast cancer (TNBC) is a highly diverse group of cancers, and subtyping is necessary to better identify molecular-based therapies. In this study, we analyzed gene expression (GE) profiles from 21 breast cancer data sets and identified 587 TNBC cases. Cluster analysis identified 6 TNBC subtypes displaying unique GE and ontologies, including 2 basal-like (BL1 and BL2), an immunomodulatory (IM), a mesenchymal (M), a mesenchymal stem–like (MSL), and a luminal androgen receptor (LAR) subtype. Further, GE analysis allowed us to identify TNBC cell line models representative of these subtypes. Predicted “driver” signaling pathways were pharmacologically targeted in these cell line models as proof of concept that analysis of distinct GE signatures can inform therapy selection. BL1 and BL2 subtypes had higher expression of cell cycle and DNA damage response genes, and representative cell lines preferentially responded to cisplatin. M and MSL subtypes were enriched in GE for epithelial-mesenchymal transition, and growth factor pathways and cell models responded to NVP-BEZ235 (a PI3K/mTOR inhibitor) and dasatinib (an abl/src inhibitor). The LAR subtype includes patients with decreased relapse-free survival and was characterized by androgen receptor (AR) signaling. LAR cell lines were uniquely sensitive to bicalutamide (an AR antagonist). These data may be useful in biomarker selection, drug discovery, and clinical trial design that will enable alignment of TNBC patients to appropriate targeted therapies. PMID:21633166

  7. Adjuvant Trastuzumab in HER2-Positive Early Breast Cancer by Age and Hormone Receptor Status: A Cost-Utility Analysis.

    PubMed

    Leung, William; Kvizhinadze, Giorgi; Nair, Nisha; Blakely, Tony

    2016-08-01

    The anti-human epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab improves outcomes in patients with node-positive HER2+ early breast cancer. Given trastuzumab's high cost, we aimed to estimate its cost-effectiveness by heterogeneity in age and estrogen receptor (ER) and progesterone receptor (PR) status, which has previously been unexplored, to assist prioritisation. A cost-utility analysis was performed using a Markov macro-simulation model, with a lifetime horizon, comparing a 12-mo regimen of trastuzumab with chemotherapy alone using the latest (2014) effectiveness measures from landmark randomised trials. A New Zealand (NZ) health system perspective was adopted, employing high-quality national administrative data. Incremental quality-adjusted life-years for trastuzumab versus chemotherapy alone are two times higher (2.33 times for the age group 50-54 y; 95% CI 2.29-2.37) for the worst prognosis (ER-/PR-) subtype compared to the best prognosis (ER+/PR+) subtype, causing incremental cost-effectiveness ratios (ICERs) for the former to be less than half those of the latter for the age groups from 25-29 to 90-94 y (0.44 times for the age group 50-54 y; 95% CI 0.43-0.45). If we were to strictly apply an arbitrary cost-effectiveness threshold equal to the NZ gross domestic product per capita (2011 purchasing power parity [PPP]-adjusted: US$30,300; €23,700; £21,200), our study suggests that trastuzumab (2011 PPP-adjusted US$45,400/€35,900/£21,900 for 1 y at formulary prices) may not be cost-effective for ER+ (which are 61% of all) node-positive HER2+ early breast cancer patients but cost-effective for ER-/PR- subtypes (37% of all cases) to age 69 y. Market entry of trastuzumab biosimilars will likely reduce the ICER to below this threshold for premenopausal ER+/PR- cancer but not for ER+/PR+ cancer. Sensitivity analysis using the best-case effectiveness measure for ER+ cancer had the same result. A key limitation was a lack of treatment-effect data by hormone receptor subtype. Heterogeneity was restricted to age and hormone receptor status; tumour size/grade heterogeneity could be explored in future work. This study highlights how cost-effectiveness can vary greatly by heterogeneity in age and hormone receptor subtype. Resource allocation and licensing of subsidised therapies such as trastuzumab should consider demographic and clinical heterogeneity; there is currently a profound disconnect between how funding decisions are made (largely agnostic to heterogeneity) and the principles of personalised medicine.

  8. GABAA receptor subtype involvement in addictive behaviour.

    PubMed

    Stephens, D N; King, S L; Lambert, J J; Belelli, D; Duka, T

    2017-01-01

    GABA A receptors form the major class of inhibitory neurotransmitter receptors in the mammalian brain. This review sets out to summarize the evidence that variations in genes encoding GABA A receptor isoforms are associated with aspects of addictive behaviour in humans, while animal models of addictive behaviour also implicate certain subtypes of GABA A receptor. In addition to outlining the evidence for the involvement of specific subtypes in addiction, we summarize the particular contributions of these isoforms in control over the functioning of brain circuits, especially the mesolimbic system, and make a first attempt to bring together evidence from several fields to understanding potential involvement of GABA A receptor subtypes in addictive behaviour. While the weight of the published literature is on alcohol dependency, the underlying principles outlined are relevant across a number of different aspects of addictive behaviour. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  9. Selective mode of action of guanidine-containing non-peptides at human NPFF receptors.

    PubMed

    Findeisen, Maria; Würker, Cäcilia; Rathmann, Daniel; Meier, René; Meiler, Jens; Olsson, Roger; Beck-Sickinger, Annette G

    2012-07-12

    The binding pocket of both NPFF receptors was investigated, focusing on subtype-selective behavior. By use of four nonpeptidic compounds and the peptide mimetics RF9 and BIBP3226, agonistic and antagonistic properties were characterized. A set of Ala receptor mutants was generated. The binding pocket was narrowed down to the upper part of transmembrane helices V, VI, VII and the extracellular loop 2. Positions 5.27 and 6.59 have been shown to have a strong impact on receptor activation and were suggested to form an acidic, negatively charged binding pocket in both NPFF receptor subtypes. Additionally, position 7.35 was identified to play an important role in functional selectivity. According to docking experiments, the aryl group of AC-216 interacts with position 7.35 in the NPFF(1) but not in the NPFF(2) receptor. These results provide distinct insights into the receptor specific binding pockets, which is necessary for the development of drugs to address the NPFF system.

  10. Selective mode of action of guanidine-containing non-peptides at human NPFF receptors

    PubMed Central

    Findeisen, Maria; Würker, Cäcilia; Rathmann, Daniel; Meier, René; Meiler, Jens; Olsson, Roger; Beck-Sickinger, Annette G.

    2012-01-01

    The binding pocket of both NPFF receptors was investigated, focusing on subtype-selective behavior. By using four non-peptidic compounds and the peptide mimetics RF9 and BIBP3226 agonistic and antagonistic properties were characterized. A set of Ala receptor mutants was generated, the binding pocket was narrowed down to the upper part of transmembrane helices V, VI, VII, and the extracellular loop 2. Positions 5.27 and 6.59 have been shown to have a strong impact on receptor activation and were suggested to form an acidic, negatively charged binding pocket in both NPFF receptor subtypes. Additionally, position 7.35 was identified to play an important role in functional selectivity. According to docking experiments, the aryl group of AC-216 interacts with position 7.35 in the NPFF1 but not in the NPFF2 receptor. These results provide distinct insights into the receptor specific binding pockets, which is necessary for the development of drugs to address the NPFF system. PMID:22708927

  11. Serotonergic modulation of the rat pup ultrasonic isolation call: studies with 5HT1 and 5HT2 subtype-selective agonists and antagonists.

    PubMed

    Winslow, J T; Insel, T R

    1991-01-01

    A modulatory role for serotonin has been described for the development and expression of the ultrasonic call of infant rat pups during brief maternal separations. In previous studies, serotonin reuptake inhibitors selectively reduced the rate of calling following acute administration to 9-11-day-old pups and a serotonin neurotoxin (MDMA) systematically disrupted the development of ultrasonic vocalizations but not other measures of motor development. In the current studies, we extended our investigations to include drugs with purported receptor subtype selectivities. Consistent with previous reports, acute administration of 5HT1A agonists buspirone and 8-OH-DPAT [+/-)-8-hydroxy-2-(di-N-propylamino)tetralin) reduced the rate of calling at doses which did not affect motor activity or core body temperature. The rate reducing effects of buspirone persisted up to 1 but not 2 h after injection. Administration of purported 5HT1B receptor agonists, CGS12066B (7-trifluoromethyl-4(4-methyl-1-piperazinyl)-pyrrolo[1,2-a] quinoxaline) and TFMPP (1-[3-fluoromethyl)phenyl]-piperazine) increased the rate of calling depending on the specificity of the drug for the 5HT1B receptor. d,l-Propranolol, a 5HT1 receptor antagonist, blocked the effects of both 8-OH-DPAT and TFMPP. m-CPP (1-(3-chlorophenyl)piperazine) and DOI [+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane), drugs with putative actions at 5HT1C and 5HT2 receptor sites both decreased calling but differed according to their effects on motor activity. Ritanserin, a 5HT2 and 5HT1C antagonist, produced a dose-related increase in call rate. A dose of ritanserin with no apparent intrinsic effects effectively antagonized DOI rate reducing effects but potentiated the rate reducing effects of m-CPP.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Stimulation of acid secretion and phosphoinositol production by rat parietal cell muscarinic M sub 2 receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfeiffer, A.; Rochlitz, H.; Herz, A.

    The muscarinic receptor system involved in hydrogen production by enriched rat gastric parietal cells was investigated. Muscarinic receptor density determined by (N-methyl-{sup 3}H)scopolamine binding was 8,100/cell. The receptor appeared to be of the M{sub 2} muscarinic receptor subtype, since it had a low affinity (K{sub d} 189 nM) for the M{sub 1} receptor antagonist pirenzepine compared with atropine. Receptor activation by carbachol rapidly augmented levels of polyphosphoinositides, indicating an activation of phospholipase C. The dose-response relations for the increase in inositol phosphates closely paralleled the binding of carbachol to muscarinic receptors. The inositol phosphate response was antagonized by pirenzepine withmore » a K{sub i} of 177 nM. the stimulation of inositol phosphate levels by carbachol correlated well with the stimulation of ({sup 14}C)aminopyrine uptake, determine as an index of acid secretion. The muscarinic agonists oxotremorine, pilocarpine, and bethanechol elicited partial increases in inositol phosphates at maximal drug concentrations, and these partial increases correlated with their ability to stimulate ({sup 14}C)aminopyrine uptake. These data indicate that inositolpolyphosphates may be a second messenger of M{sub 2} receptors stimulating acid secretion.« less

  13. [(3)H]8-Ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]-purin-5-one ([(3)H]PSB-11), a novel high-affinity antagonist radioligand for human A(3) adenosine receptors.

    PubMed

    Müller, Christa E; Diekmann, Martina; Thorand, Mark; Ozola, Vita

    2002-02-11

    This study describes the preparation and binding properties of [(3)H]PSB-11, a novel, potent, and selective antagonist radioligand for human A(3) adenosine receptors (ARs). [(3)H]PSB-11 binding to membranes of Chinese hamster ovary (CHO) cells expressing the human A(3) AR was saturable and reversible. Saturation experiments showed that [(3)H]PSB-11 labeled a single class of binding sites with high affinity (K(D)=4.9 nM) and limited capacity (B(max)=3500 fmol/mg of protein). PSB-11 is highly selective versus the other adenosine receptor subtypes. The new radioligand shows an extraordinarily low degree of non-specific binding rendering it a very useful tool for studying the (patho)physiological roles of A(3 )ARs.

  14. The G protein-coupled estrogen receptor (GPER) is expressed in two different subcellular localizations reflecting distinct tumor properties in breast cancer.

    PubMed

    Samartzis, Eleftherios P; Noske, Aurelia; Meisel, Alexander; Varga, Zsuzsanna; Fink, Daniel; Imesch, Patrick

    2014-01-01

    The G protein-coupled estrogen receptor (GPER) is a novel estrogen receptor that mediates proliferative effects induced by estrogen but also by tamoxifen. The aim of our study was to analyze the frequency of GPER in a large collective of primary invasive breast carcinomas, with special emphasis on the subcellular expression and to evaluate the association with clinicopathological parameters and patient overall survival. The tissue microarrays from formalin-fixed, paraffin embedded samples of primary invasive breast carcinomas (n = 981) were analyzed for GPER expression using immunohistochemistry. Expression data were compared to the clinicopathological parameters and overall survival. GPER localization was also analyzed in two immortalized breast cancer cell lines T47D and MCF7 by confocal immunofluorescence microscopy. A predominantly cytoplasmic GPER expression was found in 189 carcinomas (19.3%), whereas a predominantly nuclear expression was observed in 529 cases (53.9%). A simultaneous comparable positive expression of both patterns was found in 32 of 981 cases (3.2%), and negative staining was detected in 295 cases (30%). Confocal microscopy confirmed the occurrence of cytoplasmic and nuclear GPER expression in T47D and MCF7. Cytoplasmic GPER expression was significantly associated with non-ductal histologic subtypes, low tumor stage, better histologic differentiation, as well as Luminal A and B subtypes. In contrast, nuclear GPER expression was significantly associated with poorly differentiated carcinomas and the triple-negative subtype. In univariate analysis, cytoplasmic GPER expression was associated with better overall survival (p = 0.012). Our data suggest that predominantly cytoplasmic and/or nuclear GPER expression are two distinct immunohistochemical patterns in breast carcinomas and may reflect different biological features, reason why these patterns should be clearly distinguished in histological evaluations. Prospective studies will be needed to assess whether the expression status of GPER in breast carcinomas should be routinely observed by clinicians, for instance, before implementing endocrine breast cancer treatment.

  15. The G Protein-Coupled Estrogen Receptor (GPER) Is Expressed in Two Different Subcellular Localizations Reflecting Distinct Tumor Properties in Breast Cancer

    PubMed Central

    Samartzis, Eleftherios P.; Noske, Aurelia; Meisel, Alexander; Varga, Zsuzsanna; Fink, Daniel; Imesch, Patrick

    2014-01-01

    Introduction The G protein-coupled estrogen receptor (GPER) is a novel estrogen receptor that mediates proliferative effects induced by estrogen but also by tamoxifen. The aim of our study was to analyze the frequency of GPER in a large collective of primary invasive breast carcinomas, with special emphasis on the subcellular expression and to evaluate the association with clinicopathological parameters and patient overall survival. Methods The tissue microarrays from formalin-fixed, paraffin embedded samples of primary invasive breast carcinomas (n = 981) were analyzed for GPER expression using immunohistochemistry. Expression data were compared to the clinicopathological parameters and overall survival. GPER localization was also analyzed in two immortalized breast cancer cell lines T47D and MCF7 by confocal immunofluorescence microscopy. Results A predominantly cytoplasmic GPER expression was found in 189 carcinomas (19.3%), whereas a predominantly nuclear expression was observed in 529 cases (53.9%). A simultaneous comparable positive expression of both patterns was found in 32 of 981 cases (3.2%), and negative staining was detected in 295 cases (30%). Confocal microscopy confirmed the occurrence of cytoplasmic and nuclear GPER expression in T47D and MCF7. Cytoplasmic GPER expression was significantly associated with non-ductal histologic subtypes, low tumor stage, better histologic differentiation, as well as Luminal A and B subtypes. In contrast, nuclear GPER expression was significantly associated with poorly differentiated carcinomas and the triple-negative subtype. In univariate analysis, cytoplasmic GPER expression was associated with better overall survival (p = 0.012). Conclusion Our data suggest that predominantly cytoplasmic and/or nuclear GPER expression are two distinct immunohistochemical patterns in breast carcinomas and may reflect different biological features, reason why these patterns should be clearly distinguished in histological evaluations. Prospective studies will be needed to assess whether the expression status of GPER in breast carcinomas should be routinely observed by clinicians, for instance, before implementing endocrine breast cancer treatment. PMID:24421881

  16. Receptor subtypes involved in callosally-induced postsynaptic potentials in rat frontal agranular cortex in vitro.

    PubMed

    Kawaguchi, Y

    1992-01-01

    A slice preparation of rat frontal agranular cortex preserving commissural inputs has been used for intracellular recording from layer V pyramidal cells, in order to characterize the synaptic potentials induced by stimulation of the corpus callosum and to reveal the subtypes of amino acid receptors involved. Stimulation of the corpus callosum induced EPSPs followed by early IPSPs with a peak latency of 30 +/- 2 ms and late IPSPs with a peak latency of 185 +/- 18 ms. Reversal potentials for early and late IPSPs were -75 +/- 5 mV (early) and -96 +/- 5 mV (late). Late IPSPs were more dependent on extracellular K+ concentration. The early IPSPs were blocked by GABAA antagonists, bicuculline and picrotoxin, whereas the late IPSPs were reduced by the GABAB antagonist, phaclofen. CNQX (6-cyano-7-nitroquinoxaline-2,3-dione), an antagonist of non-NMDA (N-methyl-D-aspartate) receptors, suppressed both EPSPs and late IPSPs at 5 microM. Early IPSPs remained at this concentration but were suppressed by 20 microM CNQX. In Mg(2+)-free solution, EPSPs were larger and more prolonged than in control solution. These enhanced EPSPs persisted after 5 to 20 microM CNQX, but were reduced in amplitude, and their onset was delayed by 3.6 +/- 0.8 ms. The remaining EPSPs were suppressed by 50 microM APV (DL-2-amino-5-phosphono-valeric acid), an antagonist of NMDA receptors. In Mg(2+)-free solution containing 5 to 20 microM CNQX, the late IPSPs were not diminished. The remaining late IPSPs were suppressed by APV or by phaclofen.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. The N-terminal domain of GluR6-subtype glutamate receptor ion channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Janesh; Schuck, Peter; Jin, Rongsheng

    2009-09-25

    The amino-terminal domain (ATD) of glutamate receptor ion channels, which controls their selective assembly into AMPA, kainate and NMDA receptor subtypes, is also the site of action of NMDA receptor allosteric modulators. Here we report the crystal structure of the ATD from the kainate receptor GluR6. The ATD forms dimers in solution at micromolar protein concentrations and crystallizes as a dimer. Unexpectedly, each subunit adopts an intermediate extent of domain closure compared to the apo and ligand-bound complexes of LIVBP and G protein-coupled glutamate receptors (mGluRs), and the dimer assembly has a markedly different conformation from that found in mGluRs.more » This conformation is stabilized by contacts between large hydrophobic patches in the R2 domain that are absent in NMDA receptors, suggesting that the ATDs of individual glutamate receptor ion channels have evolved into functionally distinct families.« less

  18. P2X purinergic receptor ligands: recently patented compounds.

    PubMed

    Gunosewoyo, Hendra; Kassiou, Michael

    2010-05-01

    P2X channels are ionotropic purinergic receptors that are currently under scrutiny as attractive targets for novel therapeutics in areas including chronic inflammation, pain and depression. Their wide expression in the CNS, recent advances in the biochemical and pharmacological properties as well as increasing numbers of patents published in this research domain demand a review in this field. The patent literature covering novel drug-like antagonists for each P2X receptor subtype (P2X1R to P2X7R) up to December 2009 is described in this review article together with their recent highlights in pharmacology. Readers will gain an up-to-date overview of patents covering drug-like antagonists for seven P2X receptor subtypes within the last 4 years. P2X7R antagonists and other P2X inhibitors will probably be on the market for combating rheumatoid arthritis and other diseases. Some P2X7R antagonists are already in Phase I and II clinical trials.

  19. NMDA Receptor Modulators in the Treatment of Drug Addiction.

    PubMed

    Tomek, Seven E; Lacrosse, Amber L; Nemirovsky, Natali E; Olive, M Foster

    2013-02-06

    Glutamate plays a pivotal role in drug addiction, and the N-methyl-D-aspartate (NMDA) glutamate receptor subtype serves as a molecular target for several drugs of abuse. In this review, we will provide an overview of NMDA receptor structure and function, followed by a review of the mechanism of action, clinical efficacy, and side effect profile of NMDA receptor ligands that are currently in use or being explored for the treatment of drug addiction. These ligands include the NMDA receptor modulators memantine and acamprosate, as well as the partial NMDA agonist D-cycloserine. Data collected to date suggest that direct NMDA receptor modulators have relatively limited efficacy in the treatment of drug addiction, and that partial agonism of NMDA receptors may have some efficacy with regards to extinction learning during cue exposure therapy. However, the lack of consistency in results to date clearly indicates that additional studies are needed, as are studies examining novel ligands with indirect mechanisms for altering NMDA receptor function.

  20. Regular and low-dose aspirin, other non-steroidal anti-inflammatory medications and prospective risk of HER2-defined breast cancer: the California Teachers Study.

    PubMed

    Clarke, Christina A; Canchola, Alison J; Moy, Lisa M; Neuhausen, Susan L; Chung, Nadia T; Lacey, James V; Bernstein, Leslie

    2017-05-01

    Regular users of aspirin may have reduced risk of breast cancer. Few studies have addressed whether risk reduction pertains to specific breast cancer subtypes defined jointly by hormone receptor (estrogen and progesterone receptor) and human epidermal growth factor receptor 2 (HER2) expression. This study assessed the prospective risk of breast cancer (overall and by subtype) according to use of aspirin and other non-steroidal anti-inflammatory medications (NSAIDs) in a cohort of female public school professionals in California. In 1995 - 1996, participants in the California Teachers Study completed a baseline questionnaire on family history of cancer and other conditions, use of NSAIDs, menstrual and reproductive history, self-reported weight and height, living environment, diet, alcohol use, and physical activity. In 2005-2006, 57,164 participants provided some updated information, including use of NSAIDs and 1457 of these participants developed invasive breast cancer before January 2013. Multivariable Cox proportional hazards regression models provided hazard rate ratios (HRR) for the association between NSAID use and risk of invasive breast cancer as well as hormone receptor- and HER2-defined subtypes. Developing breast cancer was associated inversely with taking three or more tablets of low-dose aspirin per week (23% of participants). Among women reporting this exposure, the HRR was 0.84 (95% confidence interval (CI) 0.72-0.98) compared to those not taking NSAIDs and this was particularly evident in women with the hormone receptor-positive/HER2-negative subtype (HRR = 0.80, 95% CI 0.66-0.96). Use of three or more tablets of "other" NSAIDs was marginally associated with lower risk of breast cancer (HRR = 0.79, 95% CI 0.62-1.00). Other associations with NSAIDs were generally null. Our observation of reduced risk of breast cancer, among participants who took three or more tablets of low-dose aspirin weekly, is consistent with other reports looking at aspirin without differentiation by dose. This is the first report to suggest that the reduction in risk occurs for low-dose aspirin and not for regular-dose aspirin and only among women with the hormone receptor-positive/HER2-negative subtype. This preliminary study builds on previous knowledge and further supports the need for formal cancer chemoprevention studies of low-dose aspirin.

  1. First report on molecular breast cancer subtypes and their clinico-pathological characteristics in Eastern Morocco: series of 2260 cases.

    PubMed

    Elidrissi Errahhali, Manal; Elidrissi Errahhali, Mounia; Ouarzane, Meryem; El Harroudi, Tijani; Afqir, Said; Bellaoui, Mohammed

    2017-01-09

    Breast cancer is the most frequent malignancy among women in Eastern Morocco. In this paper, we provide the first report on molecular breast cancer subtypes in this region. This is the largest population-based study on breast cancer among Moroccan women. We analyzed 2260 breast cancer cases diagnosed at the Hassan II Regional Oncology Center between October 2005 and December 2012. Clinico-pathological and therapeutic features were studied. Molecular subtypes were determined and their associations with the clinico-pathological characteristics of the tumors were examined. The mean age at diagnosis was 48.7 years ±11.4. Invasive ductal carcinoma was the predominant histological type (77.1%), followed by lobular invasive carcinoma (15.3%). The mean size of breast tumors was 3.5 cm ± 1.96, and 84% of our patients are diagnosed with tumors of more than 2 cm. Histological grade II tumors were the most frequent (70.4%), followed by advanced histological grade (18%). Lymph node positive tumors were observed in 64.8% of cases and 29.3% of patients had distant metastasis. Most tumors were hormone receptor-positive (73%) and 28.6% were HER2 positive. 86.1% of patients with hormone receptor-positive breast cancer were given hormone therapy, while 68.9% of patients with HER2+ breast cancer received targeted therapy with Herceptin. Luminal A was the commonest molecular subtype, followed by Luminal B, Triple Negative and HER2. The highest prevalence of premenopausal patients was observed in Triple Negative subtype (72.2%), followed by HER2 (64.1%), Luminal B (62.2%), and Luminal A (55.1%). Luminal B subtype had a poorer prognosis than Luminal A. Compared with Triple Negative, HER2 subtype tend to spread more aggressively and is associated with poorer prognosis. Unlike Western countries, breast cancer occurs at an earlier age and is diagnosed at a more advanced stage in Eastern Morocco. In this region, hormone receptor-positive tumors are predominant and so the majority of breast cancer patients should benefit from hormone therapy. HER2 subtype presents an aggressive tendency, suggesting the importance of anti-HER2 therapy. This study will contribute in developing appropriate screening and cancer management strategies in Eastern Morocco.

  2. Differential Modulation of Ethanol-Induced Sedation and Hypnosis by Metabotropic Glutamate Receptor Antagonists in C57BL/6J Mice

    PubMed Central

    Sharko, Amanda C.; Hodge, Clyde W.

    2008-01-01

    Background Emerging evidence implicates metabotropic glutamate receptor (mGluR) function in the neurobiological effects of ethanol. The recent development of subtype specific mGluR antagonists has made it possible to examine the roles of specific mGluRs in biochemical and behavioral responses to ethanol. The purpose of the present study was to determine if mGluRs modulate the acute sedative-hypnotic properties of ethanol in mice. Methods C57BL / 6J mice were tested for locomotor activity (sedation) and duration of loss of the righting reflex (hypnosis) following acute systemic administration of ethanol alone or in combination with the mGluR5-selective antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP), the mGluR1-selective antagonist, 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt), or the mGluR2 / 3-selective antagonist (2S)-2-Amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495)). Results MPEP (10 and 30 mg / kg) significantly enhanced both the sedative and hypnotic effects of ethanol, while LY341495 (10 and 30 mg / kg) significantly reduced the sedative-hypnotic effects of ethanol. CPCCOEt had no effect at any concentration tested. Further loss of righting reflex experiments revealed that LY341495 (30 mg / kg) significantly reduced hypnosis induced by the gamma-aminobutyric acid type A (GABAA) positive modulators, pentobarbital (50 mg / kg) and midazolam (60 mg / kg), and the N-methyl-D-aspartate (NMDA) receptor antagonist, ketamine (150 mg / kg), while MPEP (30 mg / kg) only significantly enhanced the hypnotic properties of ketamine (150 mg / kg). Conclusions These findings suggest that specific subtypes of the metabotropic glutamate receptor differentially modulate the sedative-hypnotic properties of ethanol through separate mechanisms of action, potentially involving GABAA and NMDA receptors. PMID:18070246

  3. Probing ligand recognition of the opioid pan antagonist AT-076 at nociceptin, kappa, mu, and delta opioid receptors through structure-activity relationships.

    PubMed

    Journigan, V Blair; Polgar, Willma E; Tuan, Edward W; Lu, James; Daga, Pankaj R; Zaveri, Nurulain T

    2017-10-16

    Few opioid ligands binding to the three classic opioid receptor subtypes, mu, kappa and delta, have high affinity at the fourth opioid receptor, the nociceptin/orphanin FQ receptor (NOP). We recently reported the discovery of AT-076 (1), (R)-7-hydroxy-N-((S)-1-(4-(3-hydroxyphenyl)piperidin-1-yl)-3-methylbutan-2-yl)-1,2,3,4-tetrahydroisoquinoline-3-carboxamide, a pan antagonist with nanomolar affinity for all four subtypes. Since AT-076 binds with high affinity at all four subtypes, we conducted a structure-activity relationship (SAR) study to probe ligand recognition features important for pan opioid receptor activity, using chemical modifications of key pharmacophoric groups. SAR analysis of the resulting analogs suggests that for the NOP receptor, the entire AT-076 scaffold is crucial for high binding affinity, but the binding mode is likely different from that of NOP antagonists C-24 and SB-612111 bound in the NOP crystal structure. On the other hand, modifications of the 3-hydroxyphenyl pharmacophore, but not the 7-hydroxy Tic pharmacophore, are better tolerated at kappa and mu receptors and yield very high affinity multifunctional (e.g. 12) or highly selective (e.g. 16) kappa ligands. With the availability of the opioid receptor crystal structures, our SAR analysis of the common chemotype of AT-076 suggests rational approaches to modulate binding selectivity, enabling the design of multifunctional or selective opioid ligands from such scaffolds.

  4. Function and distribution of 5-HT2 receptors in the honeybee (Apis mellifera).

    PubMed

    Thamm, Markus; Rolke, Daniel; Jordan, Nadine; Balfanz, Sabine; Schiffer, Christian; Baumann, Arnd; Blenau, Wolfgang

    2013-01-01

    Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca(2+) imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca(2+) concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors.

  5. Function and Distribution of 5-HT2 Receptors in the Honeybee (Apis mellifera)

    PubMed Central

    Thamm, Markus; Rolke, Daniel; Jordan, Nadine; Balfanz, Sabine; Schiffer, Christian; Baumann, Arnd; Blenau, Wolfgang

    2013-01-01

    Background Serotonin plays a pivotal role in regulating and modulating physiological and behavioral processes in both vertebrates and invertebrates. In the honeybee (Apis mellifera), serotonin has been implicated in division of labor, visual processing, and learning processes. Here, we present the cloning, heterologous expression, and detailed functional and pharmacological characterization of two honeybee 5-HT2 receptors. Methods Honeybee 5-HT2 receptor cDNAs were amplified from brain cDNA. Recombinant cell lines were established constitutively expressing receptor variants. Pharmacological properties of the receptors were investigated by Ca2+ imaging experiments. Quantitative PCR was applied to explore the expression patterns of receptor mRNAs. Results The honeybee 5-HT2 receptor class consists of two subtypes, Am5-HT2α and Am5-HT2β. Each receptor gene also gives rise to alternatively spliced mRNAs that possibly code for truncated receptors. Only activation of the full-length receptors with serotonin caused an increase in the intracellular Ca2+ concentration. The effect was mimicked by the agonists 5-methoxytryptamine and 8-OH-DPAT at low micromolar concentrations. Receptor activities were blocked by established 5-HT receptor antagonists such as clozapine, methiothepin, or mianserin. High transcript numbers were detected in exocrine glands suggesting that 5-HT2 receptors participate in secretory processes in the honeybee. Conclusions This study marks the first molecular and pharmacological characterization of two 5-HT2 receptor subtypes in the same insect species. The results presented should facilitate further attempts to unravel central and peripheral effects of serotonin mediated by these receptors. PMID:24324783

  6. Interactions Between Vitamin D and Breast Cancer

    DTIC Science & Technology

    2009-09-01

    ERBB2 GRB7 B EGFR MKI67 AURKA BIRC5 CCND1 CCNA1 TP53 MMP11 CTSL2 BAX BCL2 VDR C CYP24A1 CYP27B1 HR SNAI2 MYC PTGS2 HPGD PTGER4 DUSP10 IL6 TGFB1 TNF D...BIRC5 CCND1 CCNA1 TP53 MMP11 CTSL2 BAX BCL2 VDR G CYP24A1 CYP27B1 HR SNAI2 MYC PTGS2 HPGD PTGER4 DUSP10 IL6 TGFB1 TNF H CDKN1A IGFBP3 SPP1 AR PTHLH...NAD) C08 Hs.199248 NM_000958 PTGER4 Prostaglandin E receptor 4 (subtype EP4) C09 Hs.497822 NM_007207 DUSP10 Dual specificity phosphatase 10 C10

  7. The Nigrostriatal Dopamine System and Methamphetamine: Roles for Excitotoxicity and Environmental, Metabolic and Oxidative Stress

    DTIC Science & Technology

    2005-07-01

    induced selective Biochem Behav 37:825-829 tolerance in the rat. Pharmacol Biochem Behav 39:407-413 Watson NV, Gorzalka BB (1992) Concurrent wet dog shakes...Take S, Hori T, Oomura Y (1992) In vivo measurement wet- dog shake behaviour induced by 5-hydroxytryptophan in of hypothalamic serotonin release by...or the selective D2 antagonist raclopride into the SN was used to assess the differential contributions of these two receptor subtypes on glutamate

  8. A shifted repertoire of endocannabinoid genes in the zebrafish (Danio rerio).

    PubMed

    McPartland, J M; Glass, Michelle; Matias, Isabel; Norris, Ryan W; Kilpatrick, C William

    2007-05-01

    The zebrafish has served as a model organism for developmental biology. Sequencing its genome has expanded zebrafish research into physiology and drug-development testing. Several cannabinoid pharmaceuticals are in development, but expression of endocannabinoid receptors and enzymes remains unknown in this species. We conducted a bioinformatics analysis of the zebrafish genome using 17 human endocannabinoid genes as a reference set. Putative zebrafish orthologs were identified in filtered BLAST searches as reciprocal best hits. Orthology was confirmed by three in silico methods: phylogenetic testing, synteny analysis, and functional mapping. Zebrafish expressed orthologs of cannabinoid receptor 1, transient receptor potential channel vanilloid receptor 4, GPR55 receptor, fatty acid amide hydrolase 1, monoacylglycerol lipase, NAPE-selective phospholipase D, abhydrolase domain-containing protein 4, and diacylglycerol lipase alpha and beta; and paired paralogs of cannabinoid receptor 2, fatty acid amide hydrolase 2, peroxisome proliferator-activated receptor alpha, prostaglandin-endoperoxide synthase 2, and transient receptor potential cation channel subtype A1. Functional mapping suggested the orthologs of transient receptor potential vanilloid receptor 1 and peroxisome proliferator-activated receptor gamma lack specific amino acids critical for cannabinoid ligand binding. No orthologs of N-acylethanolamine acid amidase or protein tyrosine phosphatase, non-receptor type 22 were identified. In conclusion, the zebrafish genome expresses a shifted repertoire of endocannabinoid genes. In vitro analyses are warranted before using zebrafish for cannabinoid development testing.

  9. Lysophosphatidic Acid Signals through Multiple Receptors in Osteoclasts to Elevate Cytosolic Calcium Concentration, Evoke Retraction, and Promote Cell Survival*

    PubMed Central

    Lapierre, Danielle M.; Tanabe, Natsuko; Pereverzev, Alexey; Spencer, Martha; Shugg, Ryan P. P.; Dixon, S. Jeffrey; Sims, Stephen M.

    2010-01-01

    Lysophosphatidic acid (LPA) is a bioactive phospholipid whose functions are mediated by multiple G protein-coupled receptors. We have shown that osteoblasts produce LPA, raising the possibility that it mediates intercellular signaling among osteoblasts and osteoclasts. Here we investigated the expression, signaling and function of LPA receptors in osteoclasts. Focal application of LPA elicited transient increases in cytosolic calcium concentration ([Ca2+]i), with 50% of osteoclasts responding at ∼400 nm LPA. LPA-induced elevation of [Ca2+]i was blocked by pertussis toxin or the LPA1/3 receptor antagonist VPC-32183. LPA caused sustained retraction of osteoclast lamellipodia and disrupted peripheral actin belts. Retraction was insensitive to VPC-32183 or pertussis toxin, indicating involvement of a distinct signaling pathway. In this regard, inhibition of Rho-associated kinase stimulated respreading after LPA-induced retraction. Real-time reverse transcription-PCR revealed transcripts encoding LPA1 and to a lesser extent LPA2, LPA4, and LPA5 receptor subtypes. LPA induced nuclear translocation of NFATc1 and enhanced osteoclast survival, effects that were blocked by VPC-32183 or by a specific peptide inhibitor of NFAT activation. LPA slightly reduced the resorptive activity of osteoclasts in vitro. Thus, LPA binds to at least two receptor subtypes on osteoclasts: LPA1, which couples through Gi/o to elevate [Ca2+]i, activate NFATc1, and promote survival, and a second receptor that likely couples through G12/13 and Rho to evoke and maintain retraction through reorganization of the actin cytoskeleton. These findings reveal a signaling axis in bone through which LPA, produced by osteoblasts, acts on multiple receptor subtypes to induce pleiotropic effects on osteoclast activity and function. PMID:20551326

  10. Clinical Characteristics and Prognosis of Pregnancy-Associated Breast Cancer: Poor Survival of Luminal B Subtype.

    PubMed

    Bae, Soo Youn; Jung, Seung Pil; Jung, Eun Sung; Park, Sung Min; Lee, Se Kyung; Yu, Jong Han; Lee, Jeong Eon; Kim, Seok Won; Nam, Seok Jin

    2018-06-18

    Pregnancy-associated breast cancer (PABC) is rare and is generally defined as breast cancer diagnosed during pregnancy or within 1 year of delivery. The average ages of marriage and childbearing are increasing, and PABC is expected to also increase. This study is intended to increase understanding of the characteristics of PABC. A database of 2,810 patients with breast cancer diagnosed when they were less than 40 years of age was reviewed. The clinicopathological factors and survival of PABC (40 patients) were compared to those of patients with young breast cancer (YBC, non-pregnant or over 12 months after delivery; 2,770 patients). PABC had significantly lower estrogen receptor (ER) and progesterone receptor (PR) expression (ER-positive 50.0%, PR-positive 45.0%) and higher HER2 overexpression (38.5%) than YBC. The most common subtype of PABC was triple-negative breast cancer (TNBC; 35.9%), and luminal A subtype represented only 7.7% of cases. In univariate analysis, PABC had significantly worse disease-free survival (DFS) and breast cancer-specific survival (BCSS) compared to YBC. In multivariate analysis, PABC was associated with worse BCSS (HR 4.0, 95% CI 1.2-12.9, p = 0.019) and survival, but there was no difference in DFS between PABC and YBC. In subgroup analysis by subtype, luminal B subtype of PABC showed worse DFS (HR 3.5; 95% CI 1.1-11.2, p = 0.039) and BCSS (HR 10.2, 95% CI 1.2-87.1, p = 0.035), especially with high Ki67. However, no differences were demonstrated in other subtypes. In this study, PABC showed lower expression of ER/PR, higher overexpression of HER2, fewer luminal A subtype, and more TNBC subtype compared to YBC. PABC had worse BCSS, especially luminal B subtype, compared to YBC. © 2018 S. Karger AG, Basel.

  11. Differences in acute retroviral syndrome by HIV-1 subtype in a multicentre cohort study in Africa

    PubMed Central

    Sanders, Eduard J.; Price, Matthew A.; Karita, Etienne; Kamali, Anatoli; Kilembe, William; Bekker, Linda-Gail; Lakhi, Shabir; Inambao, Mubiana; Anzala, Omu; Fast, Patricia E.; Gilmour, Jill; Powers, Kimberly A.

    2017-01-01

    Objective: Symptoms of acute retroviral syndrome (ARS) may be used to identify patients with acute HIV-1 infection who seek care. ARS symptoms in African adults differ by region. We assessed whether reporting of ARS was associated with HIV-1 subtype in a multicentre African cohort study representing countries with predominant HIV-1 subtypes A, C, and D. Methods: ARS symptoms were assessed in adults enrolling at least 6 weeks after the estimated date of infection in an acute and early HIV-1 infection cohort study. HIV-1 subtype was determined by POL genotyping. We used log-binomial regression to compare ARS symptom prevalence among those with subtype A vs. C or D, adjusting for sex, time since enrolment, and enrolment viral load. Results: Among 183 volunteers ascertained within 6 weeks after estimated date of infection, 77 (42.0%) had subtype A, 83 (45.4%) subtype C, and 23 (12.6%) subtype D infection. Individuals with subtype A were 1.40 (95% confidence interval: 1.17, 1.68) times as likely as individuals with subtypes C or D to report any ARS symptoms; each individual symptom other than rash was also more prevalent in subtype A than in subtype C or D, with prevalence ratios ranging from 1.94 (1.40, 2.70) for headache to 4.92 (2.24, 10.78) for lymphadenopathy. Conclusion: Individuals with subtype A were significantly more likely than individuals with subtypes C or D to report any ARS symptoms. HIV-1 subtypes may help explain differences in ARS that have been observed across regions in Africa, and may impact the yield of symptom-based screening strategies for acute HIV infection detection. PMID:29028659

  12. HTR2A A-1438G/T102C polymorphisms predict negative symptoms performance upon aripiprazole treatment in schizophrenic patients.

    PubMed

    Chen, Shih-Fen; Shen, Yu-Chih; Chen, Chia-Hsiang

    2009-08-01

    Aripiprazole acts as a partial agonist at dopamine D2 and D3 and serotonin 1A receptors and as an antagonist at serotonin 2A receptors (HTR2A). Since aripiprazole acts as an antagonist at HTR2A, genetic variants of HTR2A may be important in explaining variability in response to aripiprazole. This study investigated whether the efficacy of aripiprazole can be predicted by functional HTR2A A-1438G/T102C polymorphisms (rs63311/rs6313) as modified by clinical factors in Han Chinese hospitalized patients with acutely exacerbated schizophrenia. After hospitalization, the patients (n = 128) were given a 4-week course of aripiprazole. Patients were genotyped for HTR2A A-1438G/T102C polymorphisms via the restriction fragment length polymorphism method. Clinical factors such as gender, age, duration of illness, education level, diagnostic subtype, and medication dosage were noted as well. The researchers measured psychopathology biweekly, using the Positive and Negative Syndrome Scale (PANSS). A mixed model regression approach (SAS Proc MIXED) was used to analyze the effects of genetic and clinical factors on PANSS performance after aripiprazole treatment. We found that the GG/CC genotype group of HTR2A A-1438G/T102C polymorphisms predicts poor aripiprazole response specifically for negative symptoms. In addition, the clinical factors, including dosage of aripiprazole, age, duration of illness, and diagnostic subtype, were found to influence PANSS performance after aripiprazole treatment. The data suggest HTR2A A-1438G/T102C polymorphisms may predict negative symptoms performance upon aripiprazole treatment in schizophrenic patients as modified by clinical factors.

  13. Redistribution of Cerebral Blood Flow during Severe Hypovolemia and Reperfusion in a Sheep Model: Critical Role of α1-Adrenergic Signaling

    PubMed Central

    Schiffner, René; Bischoff, Sabine Juliane; Lehmann, Thomas; Rakers, Florian; Rupprecht, Sven; Reiche, Juliane; Matziolis, Georg; Schubert, Harald; Schwab, Matthias; Huber, Otmar; Schmidt, Martin

    2017-01-01

    Background: Maintenance of brain circulation during shock is sufficient to prevent subcortical injury but the cerebral cortex is not spared. This suggests area-specific regulation of cerebral blood flow (CBF) during hemorrhage. Methods: Cortical and subcortical CBF were continuously measured during blood loss (≤50%) and subsequent reperfusion using laser Doppler flowmetry. Blood gases, mean arterial blood pressure (MABP), heart rate and renal blood flow were also monitored. Urapidil was used for α1A-adrenergic receptor blockade in dosages, which did not modify the MABP-response to blood loss. Western blot and quantitative reverse transcription polymerase chain reactions were used to determine adrenergic receptor expression in brain arterioles. Results: During hypovolemia subcortical CBF was maintained at 81 ± 6% of baseline, whereas cortical CBF decreased to 40 ± 4% (p < 0.001). Reperfusion led to peak CBFs of about 70% above baseline in both brain regions. α1A-Adrenergic blockade massively reduced subcortical CBF during hemorrhage and reperfusion, and prevented hyperperfusion during reperfusion in the cortex. α1A-mRNA expression was significantly higher in the cortex, whereas α1D-mRNA expression was higher in the subcortex (p < 0.001). Conclusions: α1-Adrenergic receptors are critical for perfusion redistribution: activity of the α1A-receptor subtype is a prerequisite for redistribution of CBF, whereas the α1D-receptor subtype may determine the magnitude of redistribution responses. PMID:28492488

  14. Redistribution of Cerebral Blood Flow during Severe Hypovolemia and Reperfusion in a Sheep Model: Critical Role of α1-Adrenergic Signaling.

    PubMed

    Schiffner, René; Bischoff, Sabine Juliane; Lehmann, Thomas; Rakers, Florian; Rupprecht, Sven; Reiche, Juliane; Matziolis, Georg; Schubert, Harald; Schwab, Matthias; Huber, Otmar; Schmidt, Martin

    2017-05-11

    Maintenance of brain circulation during shock is sufficient to prevent subcortical injury but the cerebral cortex is not spared. This suggests area-specific regulation of cerebral blood flow (CBF) during hemorrhage. Cortical and subcortical CBF were continuously measured during blood loss (≤50%) and subsequent reperfusion using laser Doppler flowmetry. Blood gases, mean arterial blood pressure (MABP), heart rate and renal blood flow were also monitored. Urapidil was used for α1A-adrenergic receptor blockade in dosages, which did not modify the MABP-response to blood loss. Western blot and quantitative reverse transcription polymerase chain reactions were used to determine adrenergic receptor expression in brain arterioles. During hypovolemia subcortical CBF was maintained at 81 ± 6% of baseline, whereas cortical CBF decreased to 40 ± 4% ( p < 0.001). Reperfusion led to peak CBFs of about 70% above baseline in both brain regions. α1A-Adrenergic blockade massively reduced subcortical CBF during hemorrhage and reperfusion, and prevented hyperperfusion during reperfusion in the cortex. α1A-mRNA expression was significantly higher in the cortex, whereas α1D-mRNA expression was higher in the subcortex ( p < 0.001). α1-Adrenergic receptors are critical for perfusion redistribution: activity of the α1A-receptor subtype is a prerequisite for redistribution of CBF, whereas the α1D-receptor subtype may determine the magnitude of redistribution responses.

  15. Novel synergistic mechanism for sst2 somatostatin and TNFalpha receptors to induce apoptosis: crosstalk between NF-kappaB and JNK pathways.

    PubMed

    Guillermet-Guibert, J; Saint-Laurent, N; Davenne, L; Rochaix, P; Cuvillier, O; Culler, M D; Pradayrol, L; Buscail, L; Susini, C; Bousquet, C

    2007-02-01

    Somatostatin is a multifunctional hormone that modulates cell proliferation, differentiation and apoptosis. Mechanisms for somatostatin-induced apoptosis are at present mostly unsolved. Therefore, we investigated whether somatostatin receptor subtype 2 (sst2) induces apoptosis in the nontransformed murine fibroblastic NIH3T3 cells. Somatostatin receptor subtype 2 expression induced an executioner caspase-mediated apoptosis through a tyrosine phosphatase SHP-1 (Src homology domain phosphatase-1)-dependent stimulation of nuclear factor kappa B (NF-kappaB) activity and subsequent inhibition of the mitogen-activated protein kinase JNK. Tumor necrosis factor alpha (TNFalpha) stimulated both NF-kappaB and c-Jun NH2-terminal kinase (JNK) activities, which had opposite action on cell survival. Importantly, sst2 sensitized NIH3T3 cells to TNFalpha-induced apoptosis by (1) upregulating TNFalpha receptor protein expression, and sensitizing to TNFalpha-induced caspase-8 activation; (2) enhancing TNFalpha-mediated activation of NF-kappaB, resulting in JNK inhibition and subsequent executioner caspase activation and cell death. We have here unraveled a novel signaling mechanism for a G protein-coupled receptor, which directly triggers apoptosis and crosstalks with a death receptor to enhance death ligand-induced apoptosis.

  16. Structural basis for molecular recognition at serotonin receptors.

    PubMed

    Wang, Chong; Jiang, Yi; Ma, Jinming; Wu, Huixian; Wacker, Daniel; Katritch, Vsevolod; Han, Gye Won; Liu, Wei; Huang, Xi-Ping; Vardy, Eyal; McCorvy, John D; Gao, Xiang; Zhou, X Edward; Melcher, Karsten; Zhang, Chenghai; Bai, Fang; Yang, Huaiyu; Yang, Linlin; Jiang, Hualiang; Roth, Bryan L; Cherezov, Vadim; Stevens, Raymond C; Xu, H Eric

    2013-05-03

    Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein-coupled receptor bound to the agonist antimigraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserved in the 5-HT receptor family, clarifying the family-wide agonist activity of 5-HT. Compared with the structure of the 5-HT2B receptor, the 5-HT1B receptor displays a 3 angstrom outward shift at the extracellular end of helix V, resulting in a more open extended pocket that explains subtype selectivity. Together with docking and mutagenesis studies, these structures provide a comprehensive structural basis for understanding receptor-ligand interactions and designing subtype-selective serotonergic drugs.

  17. Differential Regulation of Cell Proliferation and Apoptosis by Melatonin Receptor Subtype-Signaling in the Adult Murine Brain.

    PubMed

    Fredrich, Michaela; Christ, Elmar; Korf, Horst-Werner

    2018-06-27


    Background/Aims: Zeitgeber time (ZT)-dependent changes in cell proliferation and apoptosis are regulated by melatonin receptor (MT)-mediated signaling in the adult hippocampus and hypothalamic-hypophyseal system. There are two G-protein-coupled MT-subtypes, MT1 and MT2. Therefore, the present study examined which MT-subtype is required for regulation of ZT-dependent changes in cell proliferation and/or apoptosis in the adult murine brain and pituitary. Adult melatonin-proficient (C3H) mice with targeted deletion of MT1 (MT1 KO) or MT2 (MT2 KO) were adapted to a 12-hour light, 12-hour dark photoperiod and sacrificed at ZT00, ZT06, ZT12, and ZT18. Immunohistochemistry for Ki67 or activated caspase-3 served to quantify proliferating and apoptotic cells in the hippocampal subgranular zone (SGZ) and granule cell layer, the hypothalamic median eminence (ME), and the hypophyseal pars tuberalis. ZT-dependent changes in cell proliferation were found exclusively in the SGZ and ME of MT1 KO mice, while apoptosis showed no ZT-dependent changes in the regions analyzed, neither in MT1 nor in MT2 KO mice. Comparison with our previous studies in C3H mice with functional MTs and MT1/2 KO mice revealed that MT2-mediated signaling is required and sufficient for ZT-dependent changes in cell proliferation in the SGZ and ME, while ZT-dependent changes in apoptosis require signaling from both MT-subtypes. Our results indicate that generation and timing of ZT-dependent changes in cell proliferation and apoptosis by melatonin require different MT-subtype-constellations and emphasize the importance to shed light on the specific function of each receptor-subtype in different tissues and physiological conditions.
    . ©2018S. Karger AG, Basel.

  18. No contractile effect for 5-HT1D and 5-HT1F receptor agonists in human and bovine cerebral arteries: similarity with human coronary artery

    PubMed Central

    Bouchelet, Isabelle; Case, Bruce; Olivier, André; Hamel, Edith

    2000-01-01

    Using subtype-selective 5-HT1 receptor agonists and/or the 5-HT1 receptor antagonist GR127935, we characterized in vitro the 5-HT receptor that mediates the contraction of human and bovine cerebral arteries. Further, we investigated which sumatriptan-sensitive receptors are present in human coronary artery by reverse-transcriptase polymerase chain reaction (RT–PCR). Agonists with affinity at the 5-HT1B receptor, such as sumatriptan, alniditan and/or IS-159, elicited dose-dependent contraction in both human and bovine cerebral arteries. They behaved as full agonists at the sumatriptan-sensitive 5-HT1 receptors in both species. In contrast, PNU-109291 and LY344864, selective agonists at 5-HT1D and 5-HT1F receptors, respectively, were devoid of any significant vasocontractile activity in cerebral arteries, or did not affect the sumatriptan-induced vasocontraction. The rank order of agonist potency was similar in both species and could be summarized as 5-HT=alniditan>sumatriptan=IS-159>>>PNU-109291=LY344864. In bovine cerebral arteries, the 5-HT1 receptor antagonist GR127935 dose-dependently inhibited the vasoconstrictions elicited by both 5-HT and sumatriptan, with respective pA2 values of 8.0 and 8.6. RT–PCR studies in human coronary arteries showed a strong signal for the 5-HT1B receptor while message for the 5-HT1F receptor was weak and less frequently detected. Expression of 5-HT1D receptor mRNA was not detected in any sample. The present results demonstrate that the triptan-induced contraction in brain vessels is mediated exclusively by the 5-HT1B receptor, which is also present in a majority of human coronary arteries. These results suggest that selective 5-HT1D and 5-HT1F receptor agonists might represent new antimigraine drugs devoid of cerebro- and cardiovascular effects. PMID:10711348

  19. Allosteric Modulation of Metabotropic Glutamate Receptors

    PubMed Central

    Sheffler, Douglas J.; Gregory, Karen J.; Rook, Jerri M.; Conn, P. Jeffrey

    2013-01-01

    The development of receptor subtype-selective ligands by targeting allosteric sites of G protein-coupled receptors (GPCRs) has proven highly successful in recent years. One GPCR family that has greatly benefited from this approach is the metabotropic glutamate receptors (mGlus). These family C GPCRs participate in the neuromodulatory actions of glutamate throughout the CNS, where they play a number of key roles in regulating synaptic transmission and neuronal excitability. A large number of mGlu subtype-selective allosteric modulators have been identified, the majority of which are thought to bind within the transmembrane regions of the receptor. These modulators can either enhance or inhibit mGlu functional responses and, together with mGlu knockout mice, have furthered the establishment of the physiologic roles of many mGlu subtypes. Numerous pharmacological and receptor mutagenesis studies have been aimed at providing a greater mechanistic understanding of the interaction of mGlu allosteric modulators with the receptor, which have revealed evidence for common allosteric binding sites across multiple mGlu subtypes and the presence for multiple allosteric sites within a single mGlu subtype. Recent data have also revealed that mGlu allosteric modulators can display functional selectivity toward particular signal transduction cascades downstream of an individual mGlu subtype. Studies continue to validate the therapeutic utility of mGlu allosteric modulators as a potential therapeutic approach for a number of disorders including anxiety, schizophrenia, Parkinson’s disease, and Fragile X syndrome. PMID:21907906

  20. An EP2 Agonist Facilitates NMDA-Induced Outward Currents and Inhibits Dendritic Beading through Activation of BK Channels in Mouse Cortical Neurons

    PubMed Central

    Hayashi, Yoshinori; Morinaga, Saori; Liu, Xia; Zhang, Jing; Wu, Zhou; Yokoyama, Takeshi; Nakanishi, Hiroshi

    2016-01-01

    Prostaglandin E2 (PGE2), a major metabolite of arachidonic acid produced by cyclooxygenase pathways, exerts its bioactive responses by activating four E-prostanoid receptor subtypes, EP1, EP2, EP3, and EP4. PGE2 enables modulating N-methyl-D-aspartate (NMDA) receptor-mediated responses. However, the effect of E-prostanoid receptor agonists on large-conductance Ca2+-activated K+ (BK) channels, which are functionally coupled with NMDA receptors, remains unclear. Here, we showed that EP2 receptor-mediated signaling pathways increased NMDA-induced outward currents (I NMDA-OUT), which are associated with the BK channel activation. Patch-clamp recordings from the acutely dissociated mouse cortical neurons revealed that an EP2 receptor agonist activated I NMDA-OUT, whereas an EP3 receptor agonist reduced it. Agonists of EP1 or EP4 receptors showed no significant effects on I NMDA-OUT. A direct perfusion of 3,5′-cyclic adenosine monophosphate (cAMP) through the patch pipette facilitated I NMDA-OUT, which was abolished by the presence of protein kinase A (PKA) inhibitor. Furthermore, facilitation of I NMDA-OUT caused by an EP2 receptor agonist was significantly suppressed by PKA inhibitor. Finally, the activation of BK channels through EP2 receptors facilitated the recovery phase of NMDA-induced dendritic beading in the primary cultured cortical neurons. These results suggest that a direct activation of BK channels by EP2 receptor-mediated signaling pathways plays neuroprotective roles in cortical neurons. PMID:27298516

  1. Is androgen receptor targeting an emerging treatment strategy for triple negative breast cancer?

    PubMed

    Anestis, Aristomenis; Karamouzis, Michalis V; Dalagiorgou, Georgia; Papavassiliou, Athanasios G

    2015-06-01

    Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype. The absence of expression and/or amplification of estrogen and progesterone receptor as well as ERBB-2 prevent the use of currently available endocrine options and/or ERBB-2-directed drugs and indicates chemotherapy as the main current therapy. TNBC represents approximately 15% of breast cancer cases with high index of heterogeneity. Here, we review the role of androgen receptor in breast carcinogenesis and its association with alterations in the expression pattern and functional roles of regulatory molecules and signal transduction pathways in TNBC. Additionally, based on the so far preclinical and clinical published data, we evaluate the perspectives for using and/or developing androgen receptor targeting strategies for specific TNBC subtypes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Characterization of bradykinin receptors in human lung fibroblasts using the binding of 3[H][Des-Arg10,Leu9]kallidin and [3H]NPC17731.

    PubMed

    Zhang, S P; Codd, E E

    1998-01-01

    Bradykinin (BK) receptors are involved in pain and inflammation. Two BK receptor subtypes, B1 and B2, have been defined based on their pharmacological properties. Both B1 and B2 receptors are G-protein coupled membrane receptors. B1 receptors are present in smooth muscle tissue, whereas B2 receptors are found in both smooth muscle tissue and neurons. [Des-Arg10,Leu9]kallidin (DALKD) is a selective B1 receptor antagonist, and NPC17731 is a selective B2 receptor antagonist. To develop binding assays for the two known BK receptor subtypes, [3H]DALKD and [3H]NPC17731 were used as selective ligands for B1 and B2 receptors respectively. Both ligands bound to the CCD-16 human lung fibroblast membranes reaching equilibrium at 25 degrees C within 30 min. Binding was stable for at least 60 min. The Kd of [3H]DALKD was 0.33 nM and Bmax was 52 fmol/mg membrane protein. The Kd of [3H]NPC17731 was 0.39 nM and Bmax was 700 fmol/mg membrane protein. Competition for [3H]DALKD binding with BK receptor agonists was in the order: [des-Arg10]KD (DAKD) > KD > [des-Arg9]BK (DABK) > BK, and competition for [3H]DALKD binding with BK receptor antagonists was in the order: DALKD > [des-Arg10]Hoe 140 (DAHoe 140) > [des-Arg9,Leu8]BK (DALBK) > NPC17731 > Hoe 140 > DNMFBK, suggesting that [3H]DALKD bound selectively to B1 receptors. By contrast, competition for [3H]NPC17731 binding by BK agonists was in the order: BK > KD > DAKD > DABK, and competition for [3H]NPC17731 binding by BK antagonists was in the order: NPC17731 = Hoe 140 > DNMFBK > DAHoe 140 > DALBK > DALKD, indicating that [3H]NPC17731 labeled B2 receptors selectively. These results demonstrate that [3H]DALKD and [3H]NPC17731 can be used with CCD-16 human lung fibroblast membranes to provide a pair of binding assays for the simultaneous evaluation of B1 and B2 BK receptor subtypes.

  3. Alpha1- and alpha2-containing GABAA receptor modulation is not necessary for benzodiazepine-induced hyperphagia.

    PubMed

    Morris, H V; Nilsson, S; Dixon, C I; Stephens, D N; Clifton, P G

    2009-06-01

    Benzodiazepines increase food intake, an effect attributed to their ability to enhance palatability. We investigated which GABA(A) receptor subtypes may be involved in mediating benzodiazepine-induced hyperphagia. The role of the alpha2 subtype was investigated by observing the effects of midazolam, on the behavioural satiety sequence in mice with targeted deletion of the alpha2 gene (alpha2 knockout). Midazolam (0.125, 0.25 and 0.5mg/kg) increased food intake and the amount of time spent feeding in alpha2 knockout mice, suggesting that BZ-induced hyperphagia does not involve alpha2-containing GABA(A) receptors. We further investigated the roles of alpha1- and alpha3-containing GABA(A) receptors in mediating BZ-induced hyperphagia. We treated alpha2(H101R) mice, in which alpha2-containing receptors are rendered benzodiazepine insensitive, with L-838417, a compound which acts as a partial agonist at alpha2-, alpha3- and alpha5-receptors but is inactive at alpha1-containing receptors. L-838417 (10 and 30 mg/kg) increased food intake and the time spent feeding in both wildtype and alpha2(H101R) mice, demonstrating that benzodiazepine-induced hyperphagia does not require alpha1- and alpha2-containing GABA(A) receptors. These observations, together with evidence against the involvement of alpha5-containing GABA(A) receptors, suggest that alpha3-containing receptors mediate BZ-induced hyperphagia in the mouse.

  4. Activation of c-jun N-terminal kinase upon influenza A virus (IAV) infection is independent of pathogen-related receptors but dependent on amino acid sequence variations of IAV NS1.

    PubMed

    Nacken, Wolfgang; Anhlan, Darisuren; Hrincius, Eike R; Mostafa, Ahmed; Wolff, Thorsten; Sadewasser, Anne; Pleschka, Stephan; Ehrhardt, Christina; Ludwig, Stephan

    2014-08-01

    A hallmark cell response to influenza A virus (IAV) infections is the phosphorylation and activation of c-jun N-terminal kinase (JNK). However, so far it is not fully clear which molecules are involved in the activation of JNK upon IAV infection. Here, we report that the transfection of influenza viral-RNA induces JNK in a retinoic acid-inducible gene I (RIG-I)-dependent manner. However, neither RIG-I-like receptors nor MyD88-dependent Toll-like receptors were found to be involved in the activation of JNK upon IAV infection. Viral JNK activation may be blocked by addition of cycloheximide and heat shock protein inhibitors during infection, suggesting that the expression of an IAV-encoded protein is responsible for JNK activation. Indeed, the overexpression of nonstructural protein 1 (NS1) of certain IAV subtypes activated JNK, whereas those of some other subtypes failed to activate JNK. Site-directed mutagenesis experiments using NS1 of the IAV H7N7, H5N1, and H3N2 subtypes identified the amino acid residue phenylalanine (F) at position 103 to be decisive for JNK activation. Cleavage- and polyadenylation-specific factor 30 (CPSF30), whose binding to NS1 is stabilized by the amino acids F103 and M106, is not involved in JNK activation. Conclusively, subtype-specific sequence variations in the IAV NS1 protein result in subtype-specific differences in JNK signaling upon IAV infection. Influenza A virus (IAV) infection leads to the activation or modulation of multiple signaling pathways. Here, we demonstrate for the first time that the c-jun N-terminal kinase (JNK), a long-known stress-activated mitogen-activated protein (MAP) kinase, is activated by RIG-I when cells are treated with IAV RNA. However, at the same time, nonstructural protein 1 (NS1) of IAV has an intrinsic JNK-activating property that is dependent on IAV subtype-specific amino acid variations around position 103. Our findings identify two different and independent pathways that result in the activation of JNK in the course of an IAV infection. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Activation of c-jun N-Terminal Kinase upon Influenza A Virus (IAV) Infection Is Independent of Pathogen-Related Receptors but Dependent on Amino Acid Sequence Variations of IAV NS1

    PubMed Central

    Nacken, Wolfgang; Anhlan, Darisuren; Hrincius, Eike R.; Mostafa, Ahmed; Wolff, Thorsten; Sadewasser, Anne; Pleschka, Stephan; Ehrhardt, Christina

    2014-01-01

    ABSTRACT A hallmark cell response to influenza A virus (IAV) infections is the phosphorylation and activation of c-jun N-terminal kinase (JNK). However, so far it is not fully clear which molecules are involved in the activation of JNK upon IAV infection. Here, we report that the transfection of influenza viral-RNA induces JNK in a retinoic acid-inducible gene I (RIG-I)-dependent manner. However, neither RIG-I-like receptors nor MyD88-dependent Toll-like receptors were found to be involved in the activation of JNK upon IAV infection. Viral JNK activation may be blocked by addition of cycloheximide and heat shock protein inhibitors during infection, suggesting that the expression of an IAV-encoded protein is responsible for JNK activation. Indeed, the overexpression of nonstructural protein 1 (NS1) of certain IAV subtypes activated JNK, whereas those of some other subtypes failed to activate JNK. Site-directed mutagenesis experiments using NS1 of the IAV H7N7, H5N1, and H3N2 subtypes identified the amino acid residue phenylalanine (F) at position 103 to be decisive for JNK activation. Cleavage- and polyadenylation-specific factor 30 (CPSF30), whose binding to NS1 is stabilized by the amino acids F103 and M106, is not involved in JNK activation. Conclusively, subtype-specific sequence variations in the IAV NS1 protein result in subtype-specific differences in JNK signaling upon IAV infection. IMPORTANCE Influenza A virus (IAV) infection leads to the activation or modulation of multiple signaling pathways. Here, we demonstrate for the first time that the c-jun N-terminal kinase (JNK), a long-known stress-activated mitogen-activated protein (MAP) kinase, is activated by RIG-I when cells are treated with IAV RNA. However, at the same time, nonstructural protein 1 (NS1) of IAV has an intrinsic JNK-activating property that is dependent on IAV subtype-specific amino acid variations around position 103. Our findings identify two different and independent pathways that result in the activation of JNK in the course of an IAV infection. PMID:24872593

  6. Glucocorticoid-induced fetal programming alters the functional complement of angiotensin receptor subtypes within the kidney.

    PubMed

    Gwathmey, TanYa M; Shaltout, Hossam A; Rose, James C; Diz, Debra I; Chappell, Mark C

    2011-03-01

    We examined the impact of fetal programming on the functional responses of renal angiotensin receptors. Fetal sheep were exposed in utero to betamethasone (BMX; 0.17 mg/kg) or control (CON) at 80 to 81 days gestation with full-term delivery. Renal nuclear and plasma membrane fractions were isolated from sheep age 1.0 to 1.5 years for receptor binding and fluorescence detection of reactive oxygen species (ROS) or nitric oxide (NO). Mean arterial blood pressure and blood pressure variability were significantly higher in the BMX-exposed adult offspring versus CON sheep. The proportion of nuclear AT(1) receptors sensitive to losartan was 2-fold higher (67 ± 6% vs 27 ± 9%; P<0.01) in BMX compared with CON. In contrast, the proportion of AT(2) sites was only one third that of controls (BMX, 25 ± 11% vs CON, 78 ± 4%; P<0.01), with a similar reduction in sites sensitive to the Ang-(1-7) antagonist D-Ala7-Ang-(1-7) with BMX exposure. Functional studies revealed that Ang II stimulated ROS to a greater extent in BMX than in CON sheep (16 ± 3% vs 6 ± 4%; P<0.05); however, NO production to Ang II was attenuated in BMX (26 ± 7% vs 82 ± 14%; P<0.05). BMX exposure was also associated with a reduction in the Ang-(1-7) NO response (75 ± 8% vs 131 ± 26%; P<0.05). We conclude that altered expression of angiotensin receptor subtypes may be one mechanism whereby functional changes in NO- and ROS-dependent signaling pathways may favor the sustained increase in blood pressure evident in fetal programming.

  7. One-pot synthesis and sigma receptor binding studies of novel spirocyclic-2,6-diketopiperazine derivatives.

    PubMed

    Ghandi, Mehdi; Sherafat, Fatemeh; Sadeghzadeh, Masoud; Alirezapour, Behrouz

    2016-06-01

    New spirocyclic-2,6-diketopiperazine derivatives containing benzylpiperidine and cycloalkane moieties were synthesized by a one-pot two-step sequential Ugi/intramolecular N-amidation process in moderate to good yields. The in vitro ligand-binding profile studies performed on the sigma-1 and sigma-2 receptors revealed that the σ1 affinities and subtype selectivities of three spirocyclic piperidine derivatives are generally comparable to those of spirocycloalkane analogues. Compared to the low σ1 affinities obtained for cycloalkyl-substituted spirocyclic-2,6-diketopiperazines with n=2, those with n=1 proved to have optimal fitting with σ2 subtype by exhibiting higher affinities. Moreover, the best binding affinity and subtype selectivity was identified for compound 3c with Kiσ1=5.9±0.5nM and Kiσ2=563±21nM as well as 95-fold σ1/σ2 selectivity ratio, respectively. Copyright © 2016. Published by Elsevier Ltd.

  8. Elevation of D4 dopamine receptor mRNA in postmortem schizophrenic brain.

    PubMed

    Stefanis, N C; Bresnick, J N; Kerwin, R W; Schofield, W N; McAllister, G

    1998-01-01

    The D4 dopamine (DA) receptor has been proposed to be a target for the development of a novel antipsychotic drug based on its pharmacological and distribution profile. There is much interest in whether D4 DA receptor levels are altered in schizophrenia, but the lack of an available receptor subtype-specific radioligand made this difficult to quantitate. In this study, we examined whether D4 mRNA levels are altered in different brain regions of schizophrenics compared to controls. Ribonuclease protection assays were carried out on total RNA samples isolated postmortem from frontal cortex and caudate brain regions of schizophrenics and matched controls. 32P-labelled RNA probes to the D4 DA receptor and to the housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase (G3PDH), were hybridised with the RNA samples, digested with ribonucleases to remove unhybridised probe, and separated on 6% sequencing gels. Densitometer analysis on the subsequent autoradiogams was used to calculate the relative optical density of D4 mRNA compared to G3PDH mRNA. Statistical analysis of the data revealed a 3-fold higher level (P<0.011) of D4 mRNA in the frontal cortex of schizophrenics compared to controls. No increase was seen in caudate. D4 receptors could play a role in mediating dopaminergic activity in frontal cortex, an activity which may be malfunctioning in schizophrenia.

  9. Imaging features of breast cancers on digital breast tomosynthesis according to molecular subtype: association with breast cancer detection.

    PubMed

    Lee, Su Hyun; Chang, Jung Min; Shin, Sung Ui; Chu, A Jung; Yi, Ann; Cho, Nariya; Moon, Woo Kyung

    2017-12-01

    To evaluate imaging features of breast cancers on digital breast tomosynthesis (DBT) according to molecular subtype and to determine whether the molecular subtype affects breast cancer detection on DBT. This was an institutional review board--approved study with a waiver of informed consent. DBT findings of 288 invasive breast cancers were reviewed according to Breast Imaging Reporting and Data System lexicon. Detectability of breast cancer was quantified by the number of readers (0-3) who correctly detected the cancer in an independent blinded review. DBT features and the cancer detectability score according to molecular subtype were compared using Fisher's exact test and analysis of variance. Of 288 invasive cancers, 194 were hormone receptor (HR)-positive, 48 were human epidermal growth factor receptor 2 (HER2) positive and 46 were triple negative breast cancers. The most common DBT findings were irregular spiculated masses for HR-positive cancer, fine pleomorphic or linear branching calcifications for HER2 positive cancer and irregular masses with circumscribed margins for triple negative breast cancers (p < 0.001). Cancer detectability on DBT was not significantly different according to molecular subtype (p = 0.213) but rather affected by tumour size, breast density and presence of mass or calcifications. Breast cancers showed different imaging features according to molecular subtype; however, it did not affect the cancer detectability on DBT. Advances in knowledge: DBT showed characteristic imaging features of breast cancers according to molecular subtype. However, cancer detectability on DBT was not affected by molecular subtype of breast cancers.

  10. The Role of mGlu Receptors in Hippocampal Plasticity Deficits in Neurological and Psychiatric Disorders: Implications for Allosteric Modulators as Novel Therapeutic Strategies

    PubMed Central

    Senter, Rebecca K.; Ghoshal, Ayan; Walker, Adam G.; Xiang, Zixiu; Niswender, Colleen M.; Conn, P. Jeffrey

    2016-01-01

    Long-term potentiation (LTP) and long-term depression (LTD) are two distinct forms of synaptic plasticity that have been extensively characterized at the Schaffer collateral-CA1 (SC-CA1) synapse and the mossy fiber (MF)-CA3 synapse within the hippocampus, and are postulated to be the molecular underpinning for several cognitive functions. Deficits in LTP and LTD have been implicated in the pathophysiology of several neurological and psychiatric disorders. Therefore, there has been a large effort focused on developing an understanding of the mechanisms underlying these forms of plasticity and novel therapeutic strategies that improve or rescue these plasticity deficits. Among many other targets, the metabotropic glutamate (mGlu) receptors show promise as novel therapeutic candidates for the treatment of these disorders. Among the eight distinct mGlu receptor subtypes (mGlu1-8), the mGlu1,2,3,5,7 subtypes are expressed throughout the hippocampus and have been shown to play important roles in the regulation of synaptic plasticity in this brain area. However, development of therapeutic agents that target these mGlu receptors has been hampered by a lack of subtype-selective compounds. Recently, discovery of allosteric modulators of mGlu receptors has provided novel ligands that are highly selective for individual mGlu receptor subtypes. The mGlu receptors modulate the multiple forms of synaptic plasticity at both SC-CA1 and MF synapses and allosteric modulators of mGlu receptors have emerged as potential therapeutic agents that may rescue plasticity deficits and improve cognitive function in patients suffering from multiple neurological and psychiatric disorders. PMID:27296640

  11. Structure and dynamics of the M3 muscarinic acetylcholine receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruse, Andrew C.; Hu, Jianxin; Pan, Albert C.

    2012-03-01

    Acetylcholine, the first neurotransmitter to be identified, exerts many of its physiological actions via activation of a family of G-protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G-protein coupling preference and the physiological responses they mediate. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences. We describe here the structure of the G{sub q/11}-coupled M3 mAChR ('M3 receptor', from rat) bound to the bronchodilator drug tiotropium and identify themore » binding mode for this clinically important drug. This structure, together with that of the G{sub i/o}-coupled M2 receptor, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.« less

  12. Prostaglandin D2 regulates human colonic ion transport via the DP1 receptor.

    PubMed

    Medani, M; Collins, D; Mohan, H M; Walsh, E; Winter, D C; Baird, A W

    2015-02-01

    Prostaglandin D2 is released by mast cells and is important in allergies. Its role in gastrointestinal function is not clearly defined. This study aimed to determine the effect of exogenous PGD2 on ion transport in ex vivo normal human colonic mucosa. Mucosal sheets were mounted in Ussing chambers and voltage clamped to zero electric potential. Ion transport was quantified as changes in short-circuit current. In separate experiments epithelial monolayers or colonic crypts, isolated by calcium chelation, were treated with PGD2 and cAMP levels determined by ELISA or calcium levels were determined by fluorimetry. PGD2 caused a sustained, concentration-dependent rise in short-circuit current by increasing chloride secretion (EC50=376nM). This effect of PGD2 is mediated by the DP1 receptor, as the selective DP1 receptor antagonist BW A686C inhibited PGD2-induced but not PGE2-induced rise in short-circuit current. PGD2 also increased intracellular cAMP in isolated colonic crypts with no measurable influence on cytosolic calcium. PGD2 induces chloride secretion in isolated human colonic mucosa in a concentration-dependent manner with concomitant elevation of cytoplasmic cAMP in epithelial cells. The involvement of DP2 receptor subtypes has not previously been considered in regulation of ion transport in human intestine. Since inflammatory stimuli may induce production of eicosanoids, selective regulation of these pathways may be pivotal in determining therapeutic strategies and in understanding disease. Copyright © 2014. Published by Elsevier Inc.

  13. The SOL-2/Neto Auxiliary Protein Modulates the Function of AMPA-Subtype Ionotropic Glutamate Receptors

    PubMed Central

    Wang, Rui; Mellem, Jerry E.; Jensen, Michael; Brockie, Penelope J.; Walker, Craig S.; Hoerndli, Frédéric J.; Madsen, David M.; Maricq, Andres V.

    2012-01-01

    Summary The neurotransmitter glutamate mediates excitatory synaptic transmission by gating ionotropic glutamate receptors (iGluRs). AMPA receptors (AMPARs), a subtype of iGluR, are strongly implicated in synaptic plasticity, learning and memory. We previously discovered two classes of AMPAR auxiliary proteins in C. elegans that modify receptor kinetics and thus change synaptic transmission. Here, we have identified another auxiliary protein, SOL-2, a CUB-domain protein that associates with both the related auxiliary subunit SOL-1 and with the GLR-1 AMPAR. In sol-2 mutants, behaviors dependent on glutamatergic transmission are disrupted, GLR-1-mediated currents are diminished, and GLR-1 desensitization and pharmacology are modified. Remarkably, a secreted variant of SOL-1 delivered in trans can rescue sol-1 mutants and this rescue depends on in cis expression of SOL-2. Finally, we demonstrate that SOL-1 and SOL-2 have an ongoing role in the adult nervous system to control AMPAR-mediated currents. PMID:22958824

  14. The SOL-2/Neto auxiliary protein modulates the function of AMPA-subtype ionotropic glutamate receptors.

    PubMed

    Wang, Rui; Mellem, Jerry E; Jensen, Michael; Brockie, Penelope J; Walker, Craig S; Hoerndli, Frédéric J; Hauth, Linda; Madsen, David M; Maricq, Andres V

    2012-09-06

    The neurotransmitter glutamate mediates excitatory synaptic transmission by gating ionotropic glutamate receptors (iGluRs). AMPA receptors (AMPARs), a subtype of iGluR, are strongly implicated in synaptic plasticity, learning, and memory. We previously discovered two classes of AMPAR auxiliary proteins in C. elegans that modify receptor kinetics and thus change synaptic transmission. Here, we have identified another auxiliary protein, SOL-2, a CUB-domain protein that associates with both the related auxiliary subunit SOL-1 and with the GLR-1 AMPAR. In sol-2 mutants, behaviors dependent on glutamatergic transmission are disrupted, GLR-1-mediated currents are diminished, and GLR-1 desensitization and pharmacology are modified. Remarkably, a secreted variant of SOL-1 delivered in trans can rescue sol-1 mutants, and this rescue depends on in cis expression of SOL-2. Finally, we demonstrate that SOL-1 and SOL-2 have an ongoing role in the adult nervous system to control AMPAR-mediated currents. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Racial Differences in PAM50 Subtypes in the Carolina Breast Cancer Study.

    PubMed

    Troester, Melissa A; Sun, Xuezheng; Allott, Emma H; Geradts, Joseph; Cohen, Stephanie M; Tse, Chiu-Kit; Kirk, Erin L; Thorne, Leigh B; Mathews, Michelle; Li, Yan; Hu, Zhiyuan; Robinson, Whitney R; Hoadley, Katherine A; Olopade, Olufunmilayo I; Reeder-Hayes, Katherine E; Earp, H Shelton; Olshan, Andrew F; Carey, Lisa A; Perou, Charles M

    2018-02-01

    African American breast cancer patients have lower frequency of hormone receptor-positive (HR+)/human epidermal growth factor receptor 2 (HER2)-negative disease and higher subtype-specific mortality. Racial differences in molecular subtype within clinically defined subgroups are not well understood. Using data and biospecimens from the population-based Carolina Breast Cancer Study (CBCS) Phase 3 (2008-2013), we classified 980 invasive breast cancers using RNA expression-based PAM50 subtype and recurrence (ROR) score that reflects proliferation and tumor size. Molecular subtypes (Luminal A, Luminal B, HER2-enriched, and Basal-like) and ROR scores (high vs low/medium) were compared by race (blacks vs whites) and age (≤50 years vs > 50 years) using chi-square tests and analysis of variance tests. Black women of all ages had a statistically significantly lower frequency of Luminal A breast cancer (25.4% and 33.6% in blacks vs 42.8% and 52.1% in whites; younger and older, respectively). All other subtype frequencies were higher in black women (case-only odds ratio [OR] = 3.11, 95% confidence interval [CI] = 2.22 to 4.37, for Basal-like; OR = 1.45, 95% CI = 1.02 to 2.06, for Luminal B; OR = 2.04, 95% CI = 1.33 to 3.13, for HER2-enriched). Among clinically HR+/HER2- cases, Luminal A subtype was less common and ROR scores were statistically significantly higher among black women. Multigene assays highlight racial disparities in tumor subtype distribution that persist even in clinically defined subgroups. Differences in tumor biology (eg, HER2-enriched status) may be targetable to reduce disparities among clinically ER+/HER2- cases. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  16. Muscarinic receptor subtypes involved in urothelium-derived relaxatory effects in the inflamed rat urinary bladder.

    PubMed

    Andersson, M; Aronsson, P; Doufish, D; Lampert, A; Tobin, G

    2012-09-25

    Functional studies have shown altered cholinergic mechanisms in the inflamed bladder, which partly depend on muscarinic receptor-induced release of nitric oxide (NO). The current study aimed to characterize which muscarinic receptor subtypes that are involved in the regulation of the nitrergic effects in the bladder cholinergic response during cystitis. For this purpose, in vitro examinations of carbachol-evoked contractions of inflamed and normal bladder preparations were performed. The effects of antagonists with different selectivity for the receptor subtypes were assessed on intact and urothelium-denuded bladder preparations. In preparations from cyclophosphamide (CYP; in order to induce cystitis) pre-treated rats, the response to carbachol was about 75% of that of normal preparations. Removal of the urothelium or administration of a nitric oxide synthase inhibitor re-established the responses in the inflamed preparations. Administration of 4-diphenylacetoxy-N-methylpiperidine (4-DAMP) inhibited the carbachol-induced contractile responses of preparations from CYP pre-treated rats less potently than controls. Pirenzepine and p-fluoro-hexahydro-sila-diphenidol (pFHHSiD) affected the carbachol-induced contractile responses to similar extents in preparations of CYP pre-treated and control rats. However, the Schild slopes for the three antagonists were all significantly different from unity in the preparations from CYP pre-treated rats. Again, L-NNA or removal of the urothelium eliminated any difference compared to normal preparations. This study confirms that muscarinic receptor stimulation in the inflamed rat urinary bladder induces urothelial release of NO, which counteracts detrusor contraction. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Assessment of association of D3 dopamine receptor MscI polymorphism with schizophrenia: Analysis of symptom ratings, family history, age at onset, and movement disorders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaitonde, E.J.; Mollon, J.D.; McKenna, P.J.

    Several studies have reported an association between schizophrenia and homozygosity for the MscI restriction site in exon 1 of the D3 dopamine receptor gene, but other studies have failed to find this association. Recent reports have suggested that the association is most salient in male patients with a family history of schizophrenia. We examined this restriction site in a group of schizophrenic patients (n = 84) and in normal controls (n = 77). Patients were subdivided according to demographic and clinical features, particular attention being paid to movement disorders. No significant difference in allelic or genotypic distribution was seen betweenmore » the two groups. No association was seen between homozygosity and a positive family history, age at onset of illness, clinical subtype, negative symptom score, or movement disorder scores. 33 refs., 2 tabs.« less

  18. Solution conformation of a neuronal nicotinic acetylcholine receptor antagonist {alpha}-conotoxin OmIA that discriminates {alpha}3 vs. {alpha}6 nAChR subtypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Seung-Wook; Kim, Do-Hyoung; Olivera, Baldomero M.

    2006-06-23

    {alpha}-Conotoxin OmIA from Conus omaria is the only {alpha}-conotoxin that shows a {approx}20-fold higher affinity to the {alpha}3{beta}2 over the {alpha}6{beta}2 subtype of nicotinic acetylcholine receptor. We have determined a three-dimensional structure of {alpha}-conotoxin OmIA by nuclear magnetic resonance spectroscopy. {alpha}-Conotoxin OmIA has an '{omega}-shaped' overall topology with His{sup 5}-Asn{sup 12} forming an {alpha}-helix. Structural features of {alpha}-conotoxin OmIA responsible for its selectivity are suggested by comparing its surface characteristics with other functionally related {alpha}4/7 subfamily conotoxins. Reduced size of the hydrophilic area in {alpha}-conotoxin OmIA seems to be associated with the reduced affinity towards the {alpha}6{beta}2 nAChR subtype.

  19. Medicinal chemistry of P2X receptors: allosteric modulators.

    PubMed

    Müller, Christa E

    2015-01-01

    P2X receptors are trimeric ligand-gated ion channels whose potential as novel drug targets for a number of diseases has been recognized. They are mainly involved in inflammatory processes, including neuroinflammation, and pain sensation. The orthosteric binding site is lined by basic amino acid residues that bind the negatively charged agonist ATP. Therefore it is not easy to develop orthosteric ligands that possess drug-like properties for such a highly polar binding site. However, ligand-gated ion channels offer multiple additional binding sites for allosteric ligands, positive or negative allosteric modulators enhancing or blocking receptor function. So far, the P2X3 (and P2X2/3), as well as the P2X7 receptor subtype have been the main focus of drug development efforts. A number of potent and selective allosteric antagonists have been developed to block these receptors. We start to see the development of novel allosteric ligands also for the other P2X receptor subtypes, P2X1, P2X2 and especially P2X4. The times when only poor, non-selective, non-drug-like tools for studying P2X receptor function were available have been overcome. The first clinical studies with allosteric P2X3 and P2X7 antagonists suggest that P2X therapeutics may soon become a reality.

  20. Expression and sub-cellular localization of an epigenetic regulator, co-activator arginine methyltransferase 1 (CARM1), is associated with specific breast cancer subtypes and ethnicity

    PubMed Central

    2013-01-01

    Background Co-Activator Arginine Methyltransferase 1(CARM1) is an Estrogen Receptor (ER) cofactor that remodels chromatin for gene regulation via methylation of Histone3. We investigated CARM1 levels and localization across breast cancer tumors in a cohort of patients of either European or African ancestry. Methods We analyzed CARM1 levels using tissue microarrays with over 800 histological samples from 549 female cancer patients from the US and Nigeria, Africa. We assessed associations between CARM1 expression localized to the nucleus and cytoplasm for 11 distinct variables, including; ER status, Progesterone Receptor status, molecular subtypes, ethnicity, HER2+ status, other clinical variables and survival. Results We found that levels of cytoplasmic CARM1 are distinct among tumor sub-types and increased levels are associated with ER-negative (ER-) status. Higher nuclear CARM1 levels are associated with HER2 receptor status. EGFR expression also correlates with localization of CARM1 into the cytoplasm. This suggests there are distinct functions of CARM1 among molecular tumor types. Our data reveals a basal-like subtype association with CARM1, possibly due to expression of Epidermal Growth Factor Receptor (EGFR). Lastly, increased cytoplasmic CARM1, relative to nuclear levels, appear to be associated with self-identified African ethnicity and this result is being further investigated using quantified genetic ancestry measures. Conclusions Although it is known to be an ER cofactor in breast cancer, CARM1 expression levels are independent of ER. CARM1 has distinct functions among molecular subtypes, as is indicative of its sub-cellular localization and it may function in subtype etiology. These sub-cellular localization patterns, indicate a novel role beyond its ER cofactor function in breast cancer. Differential localization among ethnic groups may be due to ancestry-specific polymorphisms which alter the gene product. PMID:23663560

  1. Blockade of Cocaine or σ Receptor Agonist Self Administration by Subtype-Selective σ Receptor Antagonists.

    PubMed

    Katz, Jonathan L; Hiranita, Takato; Kopajtic, Theresa A; Rice, Kenner C; Mesangeau, Christophe; Narayanan, Sanju; Abdelazeem, Ahmed H; McCurdy, Christopher R

    2016-07-01

    The identification of sigma receptor (σR) subtypes has been based on radioligand binding and, despite progress with σ1R cellular function, less is known about σR subtype functions in vivo. Recent findings that cocaine self administration experience will trigger σR agonist self administration was used in this study to assess the in vivo receptor subtype specificity of the agonists (+)-pentazocine, PRE-084 [2-(4-morpholinethyl) 1-phenylcyclohexanecarboxylate hydrochloride], and 1,3-di-o-tolylguanidine (DTG) and several novel putative σR antagonists. Radioligand binding studies determined in vitro σR selectivity of the novel compounds, which were subsequently studied for self administration and antagonism of cocaine, (+)-pentazocine, PRE-084, or DTG self administration. Across the dose ranges studied, none of the novel compounds were self administered, nor did they alter cocaine self administration. All compounds blocked DTG self administration, with a subset also blocking (+)-pentazocine and PRE-084 self administration. The most selective of the compounds in binding σ1Rs blocked cocaine self administration when combined with a dopamine transport inhibitor, either methylphenidate or nomifensine. These drug combinations did not decrease rates of responding maintained by food reinforcement. In contrast, the most selective of the compounds in binding σ2Rs had no effect on cocaine self administration in combination with either dopamine transport inhibitor. Thus, these results identify subtype-specific in vivo antagonists, and the utility of σR agonist substitution for cocaine self administration as an assay capable of distinguishing σR subtype selectivity in vivo. These results further suggest that effectiveness of dual σR antagonism and dopamine transport inhibition in blocking cocaine self administration is specific for σ1Rs and further support this dual targeting approach to development of cocaine antagonists. U.S. Government work not protected by U.S. copyright.

  2. Asparagine, valine, and threonine in the third extracellular loop of muscarinic receptor have essential roles in the positive cooperativity of strychnine-like allosteric modulators.

    PubMed

    Jakubík, J; Krejcí, A; Dolezal, V

    2005-05-01

    We have investigated allosteric interactions of four closely related strychnine-like substances: Wieland-Gumlich aldehyde (WGA), propargyl Wieland-Gumlich aldehyde, strychnine, and brucine with N-methylscopolamine (NMS) on M(3) subtype of muscarinic receptor genetically modified in the second or the third extracellular loop to corresponding loops of M(2) subtype (M(3)o2 and M(3)o3 chimera). The M(3)o2 chimeric receptor The exhibited no change in either affinity of strychnine, brucine, and WGA or in cooperativity of brucine or WGA, whereas both parameters for propargyl-WGA changed. In contrast, there was a change in affinity of all tested modulators (except for brucine) and in their cooperativity in the M(3)o3 chimera. Directions of affinity changes in both chimeras were always toward values of the donor M(2) subtype, but changes in cooperativity were variable. Compared with the native M(3) receptor, strychnine displayed a slight increase in positive cooperativity and propargyl-WGA a robust decrease in negative cooperativity at M(3)o2 chimera. Similar changes were found in the M(3)o3 chimera. Interestingly, cooperativity of brucine and WGA at the M(3)o3 chimera changed from negative to positive. This is the first evidence of constitution of positive cooperativity of WGA by switching sequences of two parental receptors, both exhibiting negative cooperativity. Gradual replacement of individual amino acids revealed that only three residues (NVT of the o3 loop of the M(2) receptor) are involved in this effect. Data suggest that these amino acids are essential for propagation of a conformation change resulting in positive cooperativity induced by these modulators.

  3. NK-2 is the predominant tachykinin receptor subtype in the swine ureter.

    PubMed

    Jerde, T J; Saban, R; Bjorling, D E; Nakada, S Y

    1999-02-01

    To determine which of the known tachykinin receptor subtypes is predominant in the swine ureter. Ureters from adult pigs were harvested, cut into longitudinal strips and placed in 10 mL tissue baths containing Krebs buffer, under 4 g of initial tension. The magnitude and frequency of contractions were recorded. Tissues were incubated with 1 micromol/L solutions of peptidase inhibitors (phosphoramidon and captopril) for 1 h to inhibit degradation of peptides and treated with either CP 96,345 (NK-1 receptor antagonist), SR 48,968 (NK-2 receptor antagonist) or saline (control). Concentration-response curves to the tachykinins substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) were determined. Ureteric segments showed a concentration-dependent response to all tachykinins; NKA stimulated increased contractions at a lower concentration than either SP or NKB (P<0.05). This was reflected by the difference in the effective concentration required to obtain half the maximal response (EC50 ) for each of the peptides. The mean (sd) EC50 values were (micromol/L): NKA, 0.2 (0.02); SP, 3.5 (0.7); and NKB, 4.5 (1.7). In addition, the selective NK-2 antagonist (SR 48,968) significantly reduced contractile responses to all peptides, as indicated by a 10-fold rightward shift of the concentration-response curves (P<0. 05), whereas the NK-1 antagonist (CP 96,345) had no significant effect. These results indicate that NK-2 is the predominant tachykinin receptor subtype responsible for contraction of ureteric smooth muscle. The use of mediators which act on NK-2 receptors may have clinical applications for the treatment of ureteric disease.

  4. Negative Allosteric Modulators Selective for The NR2B Subtype of The NMDA Receptor Impair Cognition in Multiple Domains

    PubMed Central

    Weed, Michael R; Bookbinder, Mark; Polino, Joseph; Keavy, Deborah; Cardinal, Rudolf N; Simmermacher-Mayer, Jean; Cometa, Fu-ni L; King, Dalton; Thangathirupathy, Srinivasan; Macor, John E; Bristow, Linda J

    2016-01-01

    Antidepressant activity of N-methyl-D-aspartate (NMDA) receptor antagonists and negative allosteric modulators (NAMs) has led to increased investigation of their behavioral pharmacology. NMDA antagonists, such as ketamine, impair cognition in multiple species and in multiple cognitive domains. However, studies with NR2B subtype-selective NAMs have reported mixed results in rodents including increased impulsivity, no effect on cognition, impairment or even improvement of some cognitive tasks. To date, the effects of NR2B-selective NAMs on cognitive tests have not been reported in nonhuman primates. The current study evaluated two selective NR2B NAMs, CP101,606 and BMT-108908, along with the nonselective NMDA antagonists, ketamine and AZD6765, in the nonhuman primate Cambridge Neuropsychological Test Automated Battery (CANTAB) list-based delayed match to sample (list-DMS) task. Ketamine and the two NMDA NR2B NAMs produced selective impairments in memory in the list-DMS task. AZD6765 impaired performance in a non-specific manner. In a separate cohort, CP101,606 impaired performance of the nonhuman primate CANTAB visuo-spatial Paired Associates Learning (vsPAL) task with a selective impairment at more difficult conditions. The results of these studies clearly show that systemic administration of a selective NR2B NAM can cause transient cognitive impairment in multiple cognitive domains. PMID:26105137

  5. Induction of cyclooxygenase-2 expression by prostaglandin E2 stimulation of the prostanoid EP4 receptor via coupling to Gαi and transactivation of the epidermal growth factor receptor in HCA-7 human colon cancer cells.

    PubMed

    Yoshida, Kenji; Fujino, Hiromichi; Otake, Sho; Seira, Naofumi; Regan, John W; Murayama, Toshihiko

    2013-10-15

    Increased expressions of cyclooxygenase-2 (COX-2) and its downstream metabolite, prostaglandin E2 (PGE2), are well documented events in the development of colorectal cancer. Interestingly, PGE2 itself can induce the expression of COX-2 thereby creating the potential for positive feedback. Although evidence for such a positive feedback has been previously described, the specific E-type prostanoid (EP) receptor subtype that mediates this response, as well as the relevant signaling pathways, remain unclear. We now report that the PGE2 stimulated induction of COX-2 expression in human colon cancer HCA-7 cells is mediated by activation of the prostanoid EP4 receptor subtype and is followed by coupling of the receptor to Gαi and the activation of phosphatidylinositol 3-kinase. Subsequent activation of metalloproteinases releases membrane bound heparin-binding epidermal growth factor-like growth factor resulting in the transactivation of epidermal growth factor receptors and the activation of the extracellular signal-regulated kinases and induction of COX-2 expression. This induction of COX-2 expression by PGE2 stimulation of the prostanoid EP4 receptor may underlie the upregulation of COX-2 during colorectal cancer and appears to be an early event in the process of tumorigenesis. © 2013 Elsevier B.V. All rights reserved.

  6. Expression of messenger molecules and receptors in rat and human sphenopalatine ganglion indicating therapeutic targets.

    PubMed

    Steinberg, Anna; Frederiksen, Simona D; Blixt, Frank W; Warfvinge, Karin; Edvinsson, Lars

    2016-12-01

    Migraine and Cluster Headache (CH) are two primary headaches with severe disease burden. The disease expression and the mechanisms involved are poorly known. In some attacks of migraine and in most attacks of CH, there is a release of vasoactive intestinal peptide (VIP) originating from parasympathetic cranial ganglia such as the sphenopalatine ganglion (SPG). Patients suffering from these diseases are often deprived of effective drugs. The aim of the study was to examine the localization of the botulinum toxin receptor element synaptic vesicle glycoprotein 2A (SV-2A) and the vesicular docking protein synaptosomal-associated protein 25 (SNAP25) in human and rat SPG. Additionally the expression of the neurotransmitters pituitary adenylate cyclase activating polypeptide (PACAP-38), nitric oxide synthase (nNOS), VIP and 5-hydroxttryptamine subtype receptors (5-HT1B,1D,1F) were examined. SPG from adult male rats and from humans, the later removed at autopsy, were prepared for immunohistochemistry using specific antibodies against neurotransmitters, 5-HT1B,1D,1F receptors, and botulinum toxin receptor elements. We found that the selected neurotransmitters and 5-HT receptors were expressed in rat and human SPG. In addition, we found SV2-A and SNAP25 expression in both rat and human SPG. We report that all three 5-HT receptors studied occur in neurons and satellite glial cells (SGCs) of the SPG. 5-HT1B receptors were in addition found in the walls of intraganglionic blood vessels. Recent focus on the SPG has emphasized the role of parasympathetic mechanisms in the pathophysiology of mainly CH. The development of next generation's drugs and treatment of cranial parasympathetic symptoms, mediated through the SPG, can be modulated by treatment with BoNT-A and 5-HT receptor agonists.

  7. Elevated Dopamine D2/3 Receptor Availability in Obese Individuals: A PET Imaging Study with [11C](+)PHNO.

    PubMed

    Gaiser, Edward C; Gallezot, Jean-Dominique; Worhunsky, Patrick D; Jastreboff, Ania M; Pittman, Brian; Kantrovitz, Lauren; Angarita, Gustavo A; Cosgrove, Kelly P; Potenza, Marc N; Malison, Robert T; Carson, Richard E; Matuskey, David

    2016-12-01

    Most prior work with positron emission tomography (PET) dopamine subtype 2/3 receptor (D 2/3 R) non-selective antagonist tracers suggests that obese (OB) individuals exhibit lower D 2/3 Rs when compared with normal weight (NW) individuals. A D 3 -preferring D 2/3 R agonist tracer, [ 11 C](+)PHNO, has demonstrated that body mass index (BMI) was positively associated with D 2/3 R availability within striatal reward regions. To date, OB individuals have not been studied with [ 11 C](+)PHNO. We assessed D 2/3 R availability in striatal and extrastriatal reward regions in 14 OB and 14 age- and gender-matched NW individuals with [ 11 C](+)PHNO PET utilizing a high-resolution research tomograph. Additionally, in regions where group D 2/3 R differences were observed, secondary analyses of 42 individuals that constituted an overweight cohort was done to study the linear association between BMI and D 2/3 R availability in those respective regions. A group-by-brain region interaction effect (F 7, 182 =2.08, p=0.047) was observed. Post hoc analyses revealed that OB individuals exhibited higher tracer binding in D 3 -rich regions: the substantia nigra/ventral tegmental area (SN/VTA) (+20%; p=0.02), ventral striatum (VST) (+14%; p<0.01), and pallidum (+11%; p=0.02). BMI was also positively associated with D 2/3 R availability in the SN/VTA (r=0.34, p=0.03), VST (r=0.36, p=0.02), and pallidum (r=0.30, p=0.05) across all subjects. These data suggest that individuals who are obese have higher D 2/3 R availability in brain reward regions densely populated with D 3 Rs, potentially identifying a novel pharmacologic target for the treatment of obesity.

  8. Muscarinic Stimulation Facilitates Sarcoplasmic Reticulum Ca Release by Modulating Ryanodine Receptor 2 Phosphorylation Through Protein Kinase G and Ca/Calmodulin-Dependent Protein Kinase II.

    PubMed

    Ho, Hsiang-Ting; Belevych, Andriy E; Liu, Bin; Bonilla, Ingrid M; Radwański, Przemysław B; Kubasov, Igor V; Valdivia, Héctor H; Schober, Karsten; Carnes, Cynthia A; Györke, Sándor

    2016-11-01

    Although the effects and the underlying mechanism of sympathetic stimulation on cardiac Ca handling are relatively well established both in health and disease, the modes of action and mechanisms of parasympathetic modulation are poorly defined. Here, we demonstrate that parasympathetic stimulation initiates a novel mode of excitation-contraction coupling that enhances the efficiency of cardiac sarcoplasmic reticulum Ca store utilization. This efficient mode of excitation-contraction coupling involves reciprocal changes in the phosphorylation of ryanodine receptor 2 at Ser-2808 and Ser-2814. Specifically, Ser-2808 phosphorylation was mediated by muscarinic receptor subtype 2 and activation of PKG (protein kinase G), whereas dephosphorylation of Ser-2814 involved activation of muscarinic receptor subtype 3 and decreased reactive oxygen species-dependent activation of CaMKII (Ca/calmodulin-dependent protein kinase II). The overall effect of these changes in phosphorylation of ryanodine receptor 2 is an increase in systolic Ca release at the low sarcoplasmic reticulum Ca content and a paradoxical reduction in aberrant Ca leak. Accordingly, cholinergic stimulation of cardiomyocytes isolated from failing hearts improved Ca cycling efficiency by restoring altered ryanodine receptor 2 phosphorylation balance. © 2016 American Heart Association, Inc.

  9. Ventricular, but not atrial, M2-muscarinic receptors increase in the canine pacing-overdrive model of heart failure.

    PubMed

    Wilkinson, M; Giles, A; Armour, J A; Cardinal, R

    1996-01-01

    To investigate the effects of heart failure induced by chronic rapid ventricular pacing (six weeks) on canine atrial and ventricular muscarinic receptors. Dogs (n = 4) were fitted with a bipolar pacing electrode connected to a Medtronic pacemaker set at 240 stimuli/min. Pacing was maintained for six weeks. Tissue samples obtained from the left atrium and ventral wall of the left ventricle were frozen at -70 degrees C. Control tissue was obtained from normal dogs (n = 6) following anesthesia and thoracotomy. M2-muscarinic receptors were characterized and quantified in tissue micropunches using the hydrophilic ligand [3H] N-methyl-scopolamine (NMS). Cardiac tissue bound [3H] NMS with the specificity of an M2 subtype. Tachycardia-induced heart failure did not affect atrial muscarinic receptors but signify left ventricular myocytes (control 160.0 +/- 10.0 fmol/mg protein versus heart failure 245.0 +/- 25.0 fmol/mg protein; P < 0.01). Canine ventricular muscarinic receptors display a specificity for the M2 subtype. In contrast to previous work, tachycardia-induced heart failure was accompanied by an increase (+ 53%) in ventricular, but not atrial, M2 receptors compared with normal dogs.

  10. Both retinoic-acid-receptor- and retinoid-X-receptor-dependent signalling pathways mediate the induction of the brown-adipose-tissue-uncoupling-protein-1 gene by retinoids.

    PubMed Central

    Alvarez, R; Checa, M; Brun, S; Viñas, O; Mampel, T; Iglesias, R; Giralt, M; Villarroya, F

    2000-01-01

    The intracellular pathways and receptors mediating the effects of retinoic acid (RA) on the brown-fat-uncoupling-protein-1 gene (ucp-1) have been analysed. RA activates transcription of ucp-1 and the RA receptor (RAR) is known to be involved in this effect. However, co-transfection of an expression vector for retinoid-X receptor (RXR) increases the action of 9-cis RA but not the effects of all-trans RA on the ucp-1 promoter in brown adipocytes. Either RAR-specific ¿p-[(E)-2-(5,6,7,8,-tetrahydro-5,5,8, 8-tetramethyl-2-naphthalenyl)-1-propenyl]benzoic acid¿ or RXR-specific [isopropyl-(E,E)-(R,S)-11-methoxy-3,7, 11-trimethyldodeca-2,4-dienoate, or methoprene] synthetic compounds increase the expression of UCP-1 mRNA and the activity of chloramphenicol acetyltransferase expression vectors driven by the ucp-1 promoter. The RXR-mediated action of 9-cis RA requires the upstream enhancer region at -2469/-2318 in ucp-1. During brown-adipocyte differentiation RXRalpha and RXRgamma mRNA expression is induced in parallel with UCP-1 mRNA, whereas the mRNA for the three RAR subtypes, alpha, beta and gamma, decreases. Co-transfection of murine expression vectors for the different RAR and RXR subtypes indicates that RARalpha and RARbeta as well as RXRalpha are the major retinoid-receptor subtypes capable of mediating the responsiveness of ucp-1 to retinoids. It is concluded that the effects of retinoids on ucp-1 transcription involve both RAR- and RXR-dependent signalling pathways. The responsiveness of brown adipose tissue to retinoids in vivo relies on a complex combination of the capacity of RAR and RXR subtypes to mediate ucp-1 induction and their distinct expression in the differentiated brown adipocyte. PMID:10600643

  11. In vivo and in vitro response to octreotide LAR in a TSH-secreting adenoma: characterization of somatostatin receptor expression and role of subtype 5.

    PubMed

    Gatto, Federico; Barbieri, Federica; Castelletti, Lara; Arvigo, Marica; Pattarozzi, Alessandra; Annunziata, Francesca; Saveanu, Alexandru; Minuto, Francesco; Castellan, Lucio; Zona, Gianluigi; Florio, Tullio; Ferone, Diego

    2011-06-01

    Thyrotropin-secreting pituitary adenomas (TSHomas) are a rare cause of hyperthyroidism and account for less than 2% of pituitary adenomas. Medical therapy with somatostatin analogues (SSAs) effectively reduces TSH secretion in approximately 80% of patients and induces shrinkage in about 45% of tumors. According with previous data, resistance to SSA treatment might be due to heterogeneity in somatostatin receptors (SSTRs) expression. We report the case of TSHoma in a 41-year-old man treated with octreotide LAR that caused a dramatic decrease of TSH and thyroid hormones and tumor shrinkage already after 3 months of pre-surgical therapy. In search of potential molecular determinants of octreotide effectiveness, we measured, in primary cultures from this tumor, SSTR and dopamine D2 receptor (D2R) expression, and octreotide and/or cabergoline effects on TSH secretion and cell proliferation. SSTR5 and D2R expression was higher than SSTR2. Octreotide significantly inhibited TSH secretion more effectively than cabergoline (P<0.001), whereas the combined treatment was comparable with cabergoline alone. Similarly, octreotide resulted more effective than cabergoline on cell proliferation, while the combination did not show any additive or synergistic effects. In conclusion, the significant antisecretive and antiproliferative effect of octreotide in this patient might be related to the high expression of SSTR5, in the presence of SSTR2. After reviewing the literature, indeed, in line with previous observations, we hypothesize that SSTR5/SSTR2 ratio in TSHomas may represent a useful marker in predicting the outcome of therapy with SSAs. The role of D2R should be further explored considering that the presence of D2R can influence SSTRs functionality. © Springer Science+Business Media, LLC 2010

  12. HIV-1 subtypes D and F are prevalent in Guinea Conakry.

    PubMed

    Freimanis, G L; Loua, A; Allain, J P

    2012-04-01

    Limited data is available upon the distribution of different HIV-1/2 genotypes in the blood donor population from Guinea Conakry. To investigate the prevalence of HIV-1/2 subtypes in asymptomatic blood donors in Guinea Conakry, in order to update knowledge of HIV-1/2 epidemiology within this country. Samples from 104 blood donors seropositive for HIV-1/2 were tested for HIV-1 by real-time RT-PCR. Those negative for HIV-1 were tested with HIV-2 nested RT-PCR. Positive samples were further amplified in the HIV-1 gag and pol regions and sequenced. Subtypes were determined by phylogenetic analysis on amplicon sequences. 61 samples were positive by HIV-1 real-time RT-PCR. Of the 43 negative, 2 (4.6%) were positive for HIV-2. 52/61 (85.3%) samples were positive by nested RT-PCR. Of the 52, 43 (70.5%) and 31(59.6%) sequences were obtained in the gag and pol regions, respectively; 23 for both regions. HIV-1 subtype distribution was 1 B (2.1%), 8 F (17%), 8 D (17%) and 28 CRF02_AG (59.6%) with 2 unclassified recombinants (4.3%). Unique clusters for subtype D and F distinguished Guinea from HIV-1 subtype distribution in neighboring countries. Subtype F and subtype D strains, uncommon in West Africa, are a substantial part of HIV-1 epidemiology in Guinea. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Trace metals in the brain: allosteric modulators of ligand-gated receptor channels, the case of ATP-gated P2X receptors.

    PubMed

    Huidobro-Toro, J Pablo; Lorca, Ramón A; Coddou, Claudio

    2008-03-01

    Zinc and copper are indispensable trace metals for life with a recognized role as catalysts in enzyme actions. We now review evidence supporting the role of trace metals as novel allosteric modulators of ionotropic receptors: a new and fundamental physiological role for zinc and copper in neuronal and brain excitability. The review is focussed on ionotropic receptor channels including nucleotide receptors, in particular the P2X receptor family. Since zinc and copper are stored within synaptic vesicles in selected brain regions, and released to the synaptic cleft upon electrical nerve ending depolarization, it is plausible that zinc and copper reach concentrations in the synapse that profoundly affect ligand-gated ionic channels, including the ATP-gated currents of P2X receptors. The identification of key P2X receptor amino acids that act as ligands for trace metal coordination, carves the structural determinants underlying the allosteric nature of the trace metal modulation. The recognition that the identified key residues such as histidines, aspartic and glutamic acids or cysteines in the extracellular domain are different for each P2X receptor subtype and may be different for each metal, highlights the notion that each P2X receptor subtype evolved independent strategies for metal coordination, which form upon the proper three-dimensional folding of the receptor channels. The understanding of the molecular mechanism of allosteric modulation of ligand-operated ionic channels by trace metals is a new contribution to metallo-neurobiology.

  14. Adjuvant Trastuzumab in HER2-Positive Early Breast Cancer by Age and Hormone Receptor Status: A Cost-Utility Analysis

    PubMed Central

    Leung, William; Kvizhinadze, Giorgi; Nair, Nisha; Blakely, Tony

    2016-01-01

    Background The anti–human epidermal growth factor receptor 2 (HER2) monoclonal antibody trastuzumab improves outcomes in patients with node-positive HER2+ early breast cancer. Given trastuzumab’s high cost, we aimed to estimate its cost-effectiveness by heterogeneity in age and estrogen receptor (ER) and progesterone receptor (PR) status, which has previously been unexplored, to assist prioritisation. Methods and Findings A cost-utility analysis was performed using a Markov macro-simulation model, with a lifetime horizon, comparing a 12-mo regimen of trastuzumab with chemotherapy alone using the latest (2014) effectiveness measures from landmark randomised trials. A New Zealand (NZ) health system perspective was adopted, employing high-quality national administrative data. Incremental quality-adjusted life-years for trastuzumab versus chemotherapy alone are two times higher (2.33 times for the age group 50–54 y; 95% CI 2.29–2.37) for the worst prognosis (ER−/PR−) subtype compared to the best prognosis (ER+/PR+) subtype, causing incremental cost-effectiveness ratios (ICERs) for the former to be less than half those of the latter for the age groups from 25–29 to 90–94 y (0.44 times for the age group 50–54 y; 95% CI 0.43–0.45). If we were to strictly apply an arbitrary cost-effectiveness threshold equal to the NZ gross domestic product per capita (2011 purchasing power parity [PPP]–adjusted: US$30,300; €23,700; £21,200), our study suggests that trastuzumab (2011 PPP-adjusted US$45,400/€35,900/£21,900 for 1 y at formulary prices) may not be cost-effective for ER+ (which are 61% of all) node-positive HER2+ early breast cancer patients but cost-effective for ER−/PR− subtypes (37% of all cases) to age 69 y. Market entry of trastuzumab biosimilars will likely reduce the ICER to below this threshold for premenopausal ER+/PR− cancer but not for ER+/PR+ cancer. Sensitivity analysis using the best-case effectiveness measure for ER+ cancer had the same result. A key limitation was a lack of treatment-effect data by hormone receptor subtype. Heterogeneity was restricted to age and hormone receptor status; tumour size/grade heterogeneity could be explored in future work. Conclusions This study highlights how cost-effectiveness can vary greatly by heterogeneity in age and hormone receptor subtype. Resource allocation and licensing of subsidised therapies such as trastuzumab should consider demographic and clinical heterogeneity; there is currently a profound disconnect between how funding decisions are made (largely agnostic to heterogeneity) and the principles of personalised medicine. PMID:27504960

  15. Plasma Membrane Cholesterol as a Regulator of Human and Rodent P2X7 Receptor Activation and Sensitization*

    PubMed Central

    Robinson, Lucy E.; Shridar, Mitesh; Smith, Philip; Murrell-Lagnado, Ruth D.

    2014-01-01

    P2X7 receptors are nonselective cation channels gated by high extracellular ATP, but with sustained activation, receptor sensitization occurs, whereby the intrinsic pore dilates, making the cell permeable to large organic cations, which eventually leads to cell death. P2X7 receptors associate with cholesterol-rich lipid rafts, but it is unclear how this affects the properties of the receptor channel. Here we show that pore-forming properties of human and rodent P2X7 receptors are sensitive to perturbations of cholesterol levels. Acute depletion of cholesterol with 5 mm methyl-β-cyclodextrin (MCD) caused a substantial increase in the rate of agonist-evoked pore formation, as measured by the uptake of ethidium dye, whereas cholesterol loading inhibited this process. Patch clamp analysis of P2X7 receptor currents carried by Na+ and N-methyl-d-glucamine (NMDG+) showed enhanced activation and current facilitation following cholesterol depletion. This contrasts with the inhibitory effect of methyl-β-cyclodextrin reported for other P2X subtypes. Mutational analysis suggests the involvement of an N-terminal region and a proximal C-terminal region that comprises multiple cholesterol recognition amino acid consensus (CRAC) motifs, in the cholesterol sensitivity of channel gating. These results reveal cholesterol as a negative regulator of P2X7 receptor pore formation, protecting cells from P2X7-mediated cell death. PMID:25281740

  16. Chemosensitivity and Endocrine Sensitivity in Clinical Luminal Breast Cancer Patients in the Prospective Neoadjuvant Breast Registry Symphony Trial (NBRST) Predicted by Molecular Subtyping.

    PubMed

    Whitworth, Pat; Beitsch, Peter; Mislowsky, Angela; Pellicane, James V; Nash, Charles; Murray, Mary; Lee, Laura A; Dul, Carrie L; Rotkis, Michael; Baron, Paul; Stork-Sloots, Lisette; de Snoo, Femke A; Beatty, Jennifer

    2017-03-01

    Hormone receptor-positive (HR+) tumors have heterogeneous biology and present a challenge for determining optimal treatment. In the Neoadjuvant Breast Registry Symphony Trial (NBRST) patients were classified according to MammaPrint/BluePrint subtyping to provide insight into the response to neoadjuvant endocrine therapy (NET) or neoadjuvant chemotherapy (NCT). The purpose of this predefined substudy was to compare MammaPrint/BluePrint with conventional 'clinical' immunohistochemistry/fluorescence in situ hybridization (IHC/FISH) subtyping in 'clinical luminal' [HR+/human epidermal growth factor receptor 2-negative (HER2-)] breast cancer patients to predict treatment sensitivity. NBRST IHC/FISH HR+/HER2- breast cancer patients (n = 474) were classified into four molecular subgroups by MammaPrint/BluePrint subtyping: Luminal A, Luminal B, HER2, and Basal type. Pathological complete response (pCR) rates were compared with conventional IHC/FISH subtype. The overall pCR rate for 'clinical luminal' patients to NCT was 11 %; however, 87 of these 474 patients were reclassified as Basal type by BluePrint, with a high pCR rate of 32 %. The MammaPrint index was highly associated with the likelihood of pCR (p < 0.001). Fifty-three patients with BluePrint Luminal tumors received NET with an aromatase inhibitor and 36 (68 %) had a clinical response. With BluePrint subtyping, 18 % of clinical 'luminal' patients are classified in a different subgroup, compared with conventional assessment, and these patients have a significantly higher response rate to NCT compared with BluePrint Luminal patients. MammaPrint/BluePrint subtyping can help allocate effective treatment to appropriate patients. In addition, accurate identification of subtype biology is important in the interpretation of neoadjuvant treatment response since lack of pCR in luminal patients does not portend the worse prognosis associated with residual disease in Basal and HER2 subtypes.

  17. P2 receptor signaling in neurons and glial cells of the central nervous system.

    PubMed

    Köles, Laszlo; Leichsenring, Anna; Rubini, Patrizia; Illes, Peter

    2011-01-01

    Purine and pyrimidine nucleotides are extracellular signaling molecules in the central nervous system (CNS) leaving the intracellular space of various CNS cell types via nonexocytotic mechanisms. In addition, ATP is a neuro-and gliotransmitter released by exocytosis from neurons and neuroglia. These nucleotides activate P2 receptors of the P2X (ligand-gated cationic channels) and P2Y (G protein-coupled receptors) types. In mammalians, seven P2X and eight P2Y receptor subunits occur; three P2X subtypes form homomeric or heteromeric P2X receptors. P2Y subtypes may also hetero-oligomerize with each other as well as with other G protein-coupled receptors. P2X receptors are able to physically associate with various types of ligand-gated ion channels and thereby to interact with them. The P2 receptor homomers or heteromers exhibit specific sensitivities against pharmacological ligands and have preferential functional roles. They may be situated at both presynaptic (nerve terminals) and postsynaptic (somatodendritic) sites of neurons, where they modulate either transmitter release or the postsynaptic sensitivity to neurotransmitters. P2 receptors exist at neuroglia (e.g., astrocytes, oligodendrocytes) and microglia in the CNS. The neuroglial P2 receptors subserve the neuron-glia cross talk especially via their end-feets projecting to neighboring synapses. In addition, glial networks are able to communicate through coordinated oscillations of their intracellular Ca(2+) over considerable distances. P2 receptors are involved in the physiological regulation of CNS functions as well as in its pathophysiological dysregulation. Normal (motivation, reward, embryonic and postnatal development, neuroregeneration) and abnormal regulatory mechanisms (pain, neuroinflammation, neurodegeneration, epilepsy) are important examples for the significance of P2 receptor-mediated/modulated processes. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Determinants of glycan receptor specificity of H2N2 influenza A virus hemagglutinin.

    PubMed

    Viswanathan, Karthik; Koh, Xiaoying; Chandrasekaran, Aarthi; Pappas, Claudia; Raman, Rahul; Srinivasan, Aravind; Shriver, Zachary; Tumpey, Terrence M; Sasisekharan, Ram

    2010-10-29

    The H2N2 subtype of influenza A virus was responsible for the Asian pandemic of 1957-58. However, unlike other subtypes that have caused pandemics such as H1N1 and H3N2, which continue to circulate among humans, H2N2 stopped circulating in the human population in 1968. Strains of H2 subtype still continue to circulate in birds and occasionally pigs and could be reintroduced into the human population through antigenic drift or shift. Such an event is a potential global health concern because of the waning population immunity to H2 hemagglutinin (HA). The first step in such a cross-species transmission and human adaptation of influenza A virus is the ability for its surface glycoprotein HA to bind to glycan receptors expressed in the human upper respiratory epithelia. Recent structural and biochemical studies have focused on understanding the glycan receptor binding specificity of the 1957-58 pandemic H2N2 HA. However, there has been considerable HA sequence divergence in the recent avian-adapted H2 strains from the pandemic H2N2 strain. Using a combination of structural modeling, quantitative glycan binding and human respiratory tissue binding methods, we systematically identify mutations in the HA from a recent avian-adapted H2N2 strain (A/Chicken/PA/2004) that make its quantitative glycan receptor binding affinity (defined using an apparent binding constant) comparable to that of a prototypic pandemic H2N2 (A/Albany/6/58) HA.

  19. Determinants of Glycan Receptor Specificity of H2N2 Influenza A Virus Hemagglutinin

    PubMed Central

    Chandrasekaran, Aarthi; Pappas, Claudia; Raman, Rahul; Srinivasan, Aravind; Shriver, Zachary; Tumpey, Terrence M.; Sasisekharan, Ram

    2010-01-01

    The H2N2 subtype of influenza A virus was responsible for the Asian pandemic of 1957-58. However, unlike other subtypes that have caused pandemics such as H1N1 and H3N2, which continue to circulate among humans, H2N2 stopped circulating in the human population in 1968. Strains of H2 subtype still continue to circulate in birds and occasionally pigs and could be reintroduced into the human population through antigenic drift or shift. Such an event is a potential global health concern because of the waning population immunity to H2 hemagglutinin (HA). The first step in such a cross-species transmission and human adaptation of influenza A virus is the ability for its surface glycoprotein HA to bind to glycan receptors expressed in the human upper respiratory epithelia. Recent structural and biochemical studies have focused on understanding the glycan receptor binding specificity of the 1957-58 pandemic H2N2 HA. However, there has been considerable HA sequence divergence in the recent avian-adapted H2 strains from the pandemic H2N2 strain. Using a combination of structural modeling, quantitative glycan binding and human respiratory tissue binding methods, we systematically identify mutations in the HA from a recent avian-adapted H2N2 strain (A/Chicken/PA/2004) that make its quantitative glycan receptor binding affinity (defined using an apparent binding constant) comparable to that of a prototypic pandemic H2N2 (A/Albany/6/58) HA. PMID:21060797

  20. Human α1β3γ2L gamma-aminobutyric acid type A receptors: High-level production and purification in a functional state.

    PubMed

    Dostalova, Zuzana; Zhou, Xiaojuan; Liu, Aiping; Zhang, Xi; Zhang, Yinghui; Desai, Rooma; Forman, Stuart A; Miller, Keith W

    2014-02-01

    Gamma-aminobutyric acid type A receptors (GABA(A)Rs) are the most important inhibitory chloride ion channels in the central nervous system and are major targets for a wide variety of drugs. The subunit compositions of GABA(A)Rs determine their function and pharmacological profile. GABAA Rs are heteropentamers of subunits, and (α1)2 (β3)2 (γ2L)1 is a common subtype. Biochemical and biophysical studies of GABA(A)Rs require larger quantities of receptors of defined subunit composition than are currently available. We previously reported high-level production of active human α1β3 GABA(A)R using tetracycline-inducible stable HEK293 cells. Here we extend the strategy to receptors containing three different subunits. We constructed a stable tetracycline-inducible HEK293-TetR cell line expressing human (N)-FLAG-α1β3γ2L-(C)-(GGS)3 GK-1D4 GABA(A)R. These cells achieved expression levels of 70-90 pmol [(3)H]muscimol binding sites/15-cm plate at a specific activity of 15-30 pmol/mg of membrane protein. Incorporation of the γ2 subunit was confirmed by the ratio of [(3)H]flunitrazepam to [(3)H]muscimol binding sites and sensitivity of GABA-induced currents to benzodiazepines and zinc. The α1β3γ2L GABA(A)Rs were solubilized in dodecyl-D-maltoside, purified by anti-FLAG affinity chromatography and reconstituted in CHAPS/asolectin at an overall yield of ∼ 30%. Typical purifications yielded 1.0-1.5 nmoles of [(3)H]muscimol binding sites/60 plates. Receptors with similar properties could be purified by 1D4 affinity chromatography with lower overall yield. The composition of the purified, reconstituted receptors was confirmed by ligand binding, Western blot, and proteomics. Allosteric interactions between etomidate and [(3)H]muscimol binding were maintained in the purified state. © 2013 The Protein Society.

  1. [The potential of group II metabotropic glutamate receptor antagonists as a novel antidepressant].

    PubMed

    Chaki, Shigeyuki

    2012-08-01

    Recently, abnormalities of glutamatergic transmission have been implicated in the pathophysiology of depression. Moreover, both ketamine, an NMDA receptor antagonist, and riluzole, a modulator of glutamatergic, transmission have been reported to be effective for the treatment of patients with treatment-refractory depression. Based on these findings, extensive studies to develop agents acting on glutamatergic transmission have been conducted. Glutamate receptors are divided into two main subtypes, ionotropic glutamate receptors and metabotropic glutamate (mGlu) receptors, both of which have subtypes. Of these, much attention has been paid to mGlu2/3 receptors. mGlu2/3 receptor antagonists such as MGS0039 and LY341495 have been reported to exert antidepressant effects in animal models of depression including the forced swim test, tail suspension test, learned helplessness paradigm, olfactory bulmectomy model and isolation rearing model, and to enhance serotonin release in the prefrontal cortex and dopamine release in the nucleus accumbens. Moreover, activation of AMPA receptor and mTOR signaling have been suggested to be involved in the antidepressant effects of mGlu2/3 receptor antagonists, as demonstrated in the actions of ketamine. Thus, mGlu2/3 receptor antagonists may share some neural networks with ketamine in exerting their antidepressant effects. In addition, the potential of other agents targeting glutamatergic transmission for novel antidepressants is being investigated.

  2. Identification of novel thiazolo[5,4-d]pyrimidine derivatives as human A1 and A2A adenosine receptor antagonists/inverse agonists.

    PubMed

    Varano, Flavia; Catarzi, Daniela; Falsini, Matteo; Vincenzi, Fabrizio; Pasquini, Silvia; Varani, Katia; Colotta, Vittoria

    2018-07-23

    In this study a new set of thiazolo[5,4-d]pyrimidine derivatives was synthesized. These derivatives bear different substituents at positions 2 and 5 of the thiazolopyrimidine core while maintaining a free amino group at position-7. The new compounds were tested for their affinity and potency at human (h) A 1 , A 2A , A 2B and A 3 adenosine receptors expressed in CHO cells. The results reveal that the higher affinity of these new set of thiazolopyrimidines is toward the hA 1 and hA 2A adenosine receptors subtypes and is tuned by the substitution pattern at both the 2 and 5 positions of the thiazolopyrimidine nucleus. Functional studies evidenced that the compounds behaved as dual A 1 /A 2A antagonists/inverse agonists. Compound 3, bearing a 5-((2-methoxyphenyl) methylamino) group and a phenyl moiety at position 2, displayed the highest affinity (hA 1 K i  = 10.2 nM; hA 2A K i  = 4.72 nM) and behaved as a potent A 1 /A 2A antagonist/inverse agonist (hA 1 IC 50  = 13.4 nM; hA 2A IC 50  = 5.34 nM). Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. The Role of Adenosine A2A Receptor, CYP450s, and PPARs in the Regulation of Vascular Tone

    PubMed Central

    Khayat, Maan T.

    2017-01-01

    Adenosine is an endogenous mediator involved in a myriad of physiologic functions, including vascular tone regulation. It is also implicated in some pathologic conditions. Four distinct receptor subtypes mediate the effects of adenosine, such as its role in the regulation of the vascular tone. Vascular tone regulation is a complex and continuous process which involves many mechanisms and mediators that are not fully disclosed. The vascular endothelium plays a pivotal role in regulating blood flow to and from all body organs. Also, the vascular endothelium is not merely a physical barrier; it is a complex tissue with numerous functions. Among adenosine receptors, A2A receptor subtype (A2AAR) stands out as the primary receptor responsible for the vasodilatory effects of adenosine. This review focuses on important effectors of the vascular endothelium, including adenosine, adenosine receptors, EETs (epoxyeicosatrienoic acids), HETEs (hydroxyeicosatetraenoic acids), PPARs (peroxisome proliferator-activated receptors), and KATP channels. Given the impact of vascular tone regulation in cardiovascular physiology and pathophysiology, better understanding of the mechanisms affecting it could have a significant potential for developing therapeutic agents for cardiovascular diseases. PMID:28884118

  4. Effect of MR Imaging Contrast Thresholds on Prediction of Neoadjuvant Chemotherapy Response in Breast Cancer Subtypes: A Subgroup Analysis of the ACRIN 6657/I-SPY 1 TRIAL

    PubMed Central

    Li, Wen; Arasu, Vignesh; Newitt, David C.; Jones, Ella F.; Wilmes, Lisa; Gibbs, Jessica; Kornak, John; Joe, Bonnie N.; Esserman, Laura J.; Hylton, Nola M.

    2016-01-01

    Functional tumor volume (FTV) measurements by dynamic contrast-enhanced magnetic resonance imaging can predict treatment outcomes for women receiving neoadjuvant chemotherapy for breast cancer. Here, we explore whether the contrast thresholds used to define FTV could be adjusted by breast cancer subtype to improve predictive performance. Absolute FTV and percent change in FTV (ΔFTV) at sequential time-points during treatment were calculated and investigated as predictors of pathologic complete response at surgery. Early percent enhancement threshold (PEt) and signal enhancement ratio threshold (SERt) were varied. The predictive performance of resulting FTV predictors was evaluated using the area under the receiver operating characteristic curve. A total number of 116 patients were studied both as a full cohort and in the following groups defined by hormone receptor (HR) and HER2 receptor subtype: 45 HR+/HER2−, 39 HER2+, and 30 triple negatives. High AUCs were found at different ranges of PEt and SERt levels in different subtypes. Findings from this study suggest that the predictive performance to treatment response by MRI varies by contrast thresholds, and that pathologic complete response prediction may be improved through subtype-specific contrast enhancement thresholds. A validation study is underway with a larger patient population. PMID:28066808

  5. Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity.

    PubMed

    Sonsalla, P K; Nicklas, W J; Heikkila, R E

    1989-01-20

    The systemic administration of either methamphetamine or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) to experimental animals produces degenerative changes in nigrostriatal dopaminergic neurons or their axon terminals. This study was conducted to determine if excitatory amino acids, which appear to be involved in various neurodegenerative disorders, might also contribute to the dopaminergic neurotoxicity produced in mice by either methamphetamine or MPTP. MK-801, phencyclidine, and ketamine, noncompetitive antagonists of one subtype of excitatory amino acid receptor, the N-methyl-D-aspartate receptor, provided substantial protection against neurotoxicity produced by methamphetamine but not that produced by MPTP. These findings indicate that excitatory amino acids play an important role in the nigrostriatal dopaminergic damage induced by methamphetamine.

  6. Natural compounds interacting with nicotinic acetylcholine receptors: from low-molecular weight ones to peptides and proteins.

    PubMed

    Kudryavtsev, Denis; Shelukhina, Irina; Vulfius, Catherine; Makarieva, Tatyana; Stonik, Valentin; Zhmak, Maxim; Ivanov, Igor; Kasheverov, Igor; Utkin, Yuri; Tsetlin, Victor

    2015-05-14

    Nicotinic acetylcholine receptors (nAChRs) fulfill a variety of functions making identification and analysis of nAChR subtypes a challenging task. Traditional instruments for nAChR research are d-tubocurarine, snake venom protein α-bungarotoxin (α-Bgt), and α-conotoxins, neurotoxic peptides from Conus snails. Various new compounds of different structural classes also interacting with nAChRs have been recently identified. Among the low-molecular weight compounds are alkaloids pibocin, varacin and makaluvamines C and G. 6-Bromohypaphorine from the mollusk Hermissenda crassicornis does not bind to Torpedo nAChR but behaves as an agonist on human α7 nAChR. To get more selective α-conotoxins, computer modeling of their complexes with acetylcholine-binding proteins and distinct nAChRs was used. Several novel three-finger neurotoxins targeting nAChRs were described and α-Bgt inhibition of GABA-A receptors was discovered. Information on the mechanisms of nAChR interactions with the three-finger proteins of the Ly6 family was found. Snake venom phospholipases A2 were recently found to inhibit different nAChR subtypes. Blocking of nAChRs in Lymnaea stagnalis neurons was shown for venom C-type lectin-like proteins, appearing to be the largest molecules capable to interact with the receptor. A huge nAChR molecule sensible to conformational rearrangements accommodates diverse binding sites recognizable by structurally very different compounds.

  7. Natural Compounds Interacting with Nicotinic Acetylcholine Receptors: From Low-Molecular Weight Ones to Peptides and Proteins

    PubMed Central

    Kudryavtsev, Denis; Shelukhina, Irina; Vulfius, Catherine; Makarieva, Tatyana; Stonik, Valentin; Zhmak, Maxim; Ivanov, Igor; Kasheverov, Igor; Utkin, Yuri; Tsetlin, Victor

    2015-01-01

    Nicotinic acetylcholine receptors (nAChRs) fulfill a variety of functions making identification and analysis of nAChR subtypes a challenging task. Traditional instruments for nAChR research are d-tubocurarine, snake venom protein α-bungarotoxin (α-Bgt), and α-conotoxins, neurotoxic peptides from Conus snails. Various new compounds of different structural classes also interacting with nAChRs have been recently identified. Among the low-molecular weight compounds are alkaloids pibocin, varacin and makaluvamines C and G. 6-Bromohypaphorine from the mollusk Hermissenda crassicornis does not bind to Torpedo nAChR but behaves as an agonist on human α7 nAChR. To get more selective α-conotoxins, computer modeling of their complexes with acetylcholine-binding proteins and distinct nAChRs was used. Several novel three-finger neurotoxins targeting nAChRs were described and α-Bgt inhibition of GABA-A receptors was discovered. Information on the mechanisms of nAChR interactions with the three-finger proteins of the Ly6 family was found. Snake venom phospholipases A2 were recently found to inhibit different nAChR subtypes. Blocking of nAChRs in Lymnaea stagnalis neurons was shown for venom C-type lectin-like proteins, appearing to be the largest molecules capable to interact with the receptor. A huge nAChR molecule sensible to conformational rearrangements accommodates diverse binding sites recognizable by structurally very different compounds. PMID:26008231

  8. Phenotypic Variability in a Family with Acrodysostosis Type 2 Caused by a Novel PDE4D Mutation Affecting the Serine Target of Protein Kinase-A Phosphorylation

    PubMed Central

    Hoppmann, Julia; Gesing, Julia; Silve, Caroline; Leroy, Chrystel; Bertsche, Astrid; Hirsch, Franz Wolfgang; Kiess, Wieland; Pfäffle, Roland; Schuster, Volker

    2017-01-01

    Acrodysostosis is a very rare congenital multisystem condition characterized by skeletal dysplasia with severe brachydactyly, midfacial hypoplasia, and short stature, varying degrees of intellectual disability, and possible resistance to multiple G protein-coupled receptor signalling hormones. Two distinct subtypes are differentiated: acrodysostosis type 1 resulting from defects in protein kinase type 1-α regulatory subunit and acrodysostosis type 2 caused by mutations in phosphodiesterase 4D (PDE4D). Most cases are sporadic. We report on a rare multigenerational familial case of acrodysostosis type 2 due to a novel autosomal dominantly inherited PDE4D mutation. A 3.5-year-old boy presented with short stature, midfacial hypoplasia, severe brachydactyly, developmental delay, and behavioural problems. Laboratory investigations revealed mild thyrotropin resistance. His mother shared some characteristic features, such as midfacial hypoplasia and severe brachydactyly, but did not show short stature, intellectual disability or hormonal resistance. Genetic analysis identified the identical, novel heterozygous missense mutation of the PDE4D gene c.569C>T (p.Ser190Phe) in both patients. This case illustrates the significant phenotypic variability of acrodysostosis even within one family with identical mutations. Hence, a specific clinical diagnosis of acrodysostosis remains challenging because of great interindividual variability and a substantial overlap of the two subtypes as well as with other related Gsα-cAMP-signalling-linked disorders. PMID:28515031

  9. Agonist-induced glycogenolysis in rabbit retinal slices and cultures.

    PubMed Central

    Ghazi, H.; Osborne, N. N.

    1989-01-01

    1. The effects of different putative retinal transmitters and/or modulators on glycogenolysis in rabbit retinal slices and in retinal Müller cell cultures were examined. 2. Incubation of rabbit retinal slices or primary retinal cultures (either 3-5 day-old or 25-30 day-old) in a buffer solution containing [3H]-glucose resulted in the accumulation of newly synthesized [3H]-glycogen. 3. Noradrenaline (NA), isoprenaline, vasoactive intestinal peptide (VIP), 5-hydroxytryptamine (5-HT) and 8-hydroxy-dipropylaminetetralin (8-OH-DPAT) stimulated the hydrolysis of this newly formed 3H-polymer. The potency order of maximal stimulations was: VIP greater than NA greater than isoprenaline greater than 5-HT greater than 8-OH-DPAT. 4. The putative retinal transmitters, dopamine, gamma-aminobutyric acid (GABA), glycine and taurine and the muscarinic agonist carbachol (CCh) had no effect on [3H]-glycogen content. 5. The glycogenolytic effects of NA/isoprenaline and 5-HT/8-OH-DPAT appear to be mediated by beta-adrenoceptors and 5-HT1 receptors (possibly 5-HT1A), respectively while the VIP-induced response involved another receptor subtype. 6. Agonists which mediated [3H]-glycogen hydrolysis also stimulated an increase in adenosine 3':5'-cyclic monophosphate (cyclic AMP) formation. Both responses are blocked to a similar extent by the same antagonists and so are probably mediated via the same receptor subtypes. Moreover, dibutyryl cyclic AMP (db cyclic AMP) promoted tritiated glycogen breakdown in the three retinal preparations. 7. Not all receptors linked to cyclic AMP production however promote glycogenolysis. Dopamine and apomorphine stimulated cyclic AMP formation via D1-receptors without influencing glycogenolysis. These receptors are exclusively associated with neurones. PMID:2568145

  10. Prostaglandin E2 modulates dendritic cell function via EP2 and EP4 receptor subtypes.

    PubMed

    Harizi, Hedi; Grosset, Christophe; Gualde, Norbert

    2003-06-01

    We have reported previously that PGE(2) inhibits dendritic cells (DC) functions. Because E prostanoid receptor (EPR) subtypes involved in this action are unknown, expression and functions of these receptors were examined in DC. Western blot and flow cytometry analyses showed that all EPRs were coexpressed in DC. In a dose-dependent manner, lipopolysaccharide (LPS) enhanced EP(2)R/EP(4)R but not EP(1)R/EP(3)R expressions. NS-398, a cyclooxygenase (COX)-2-selective inhibitor, suppressed LPS-enhanced EP(2)R/EP(4)R expression, suggesting that COX-2-issued prostaglandin E(2) (PGE(2)) modulates DC function through stimulation of specific EPR subtypes. Using selective agonists, we found that butaprost, an EP(2)R agonist, and PGE(1) alcohol, an EP(2)R and EP(2)R/EP(4)R agonist, inhibited major histocompatibility complex class II expression and enhanced interleukin-10 production from DC. However, no effect was observed with sulprostone and 17-phenyl-omega-trinor-PGE(2), selective agonists for EP(1)R and EP(1)R/EP(3)R, respectively. Treatment of DC with dibutyryl cyclic adenosine monophosphate (cAMP), an analog of cAMP, mimics PGE(2)-induced, inhibitory effects. Taken together, our data demonstrate that EP(2)R/EP(4)R are efficient for mediating PGE(2)-induced modulation of DC functions.

  11. Fractionating spatial memory with glutamate receptor subunit-knockout mice.

    PubMed

    Bannerman, David M

    2009-12-01

    In recent years, the contribution that different glutamate receptor subtypes and subunits make to spatial learning and memory has been studied extensively using genetically modified mice in which key proteins are knocked out. This has revealed dissociations between different aspects of spatial memory that were not previously apparent from lesion studies. For example, studies with GluA1 AMPAR [AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor] subunit-knockout mice have revealed the presence of a GluA1-dependent, non-associative short-term memory mechanism that is important for performance on spatial working memory tasks, and a GluA1-independent, long-term associative memory mechanism which underlies performance on spatial reference memory tasks. Within this framework we have also studied the contributions of different GluN2-containing NMDARs [NMDA (N-methyl-D-aspartate) receptors] to spatial memory. Studies with GluN2 NMDAR mutants have revealed different contributions from GluN2A- and GluN2B-containing NMDARs to spatial learning. Furthermore, comparison of forebrain- and hippocampus-specific GluN2B-knockout mice has demonstrated that both hippocampal and extra-hippocampal NMDARs make important contributions to spatial memory performance.

  12. Differential Expression of Glutamate Receptors in Avian Neural Pathways for Learned Vocalization

    PubMed Central

    WADA, KAZUHIRO; SAKAGUCHI, HIRONOBU; JARVIS, ERICH D.; HAGIWARA, MASATOSHI

    2008-01-01

    Learned vocalization, the substrate for human language, is a rare trait. It is found in three distantly related groups of birds—parrots, hummingbirds, and songbirds. These three groups contain cerebral vocal nuclei for learned vocalization not found in their more closely related vocal nonlearning relatives. Here, we cloned 21 receptor subunits/subtypes of all four glutamate receptor families (AMPA, kainate, NMDA, and metabotropic) and examined their expression in vocal nuclei of songbirds. We also examined expression of a subset of these receptors in vocal nuclei of hummingbirds and parrots, as well as in the brains of dove species as examples of close vocal nonlearning relatives. Among the 21 subunits/subtypes, 19 showed higher and/or lower prominent differential expression in songbird vocal nuclei relative to the surrounding brain subdivisions in which the vocal nuclei are located. This included relatively lower levels of all four AMPA subunits in lMAN, strikingly higher levels of the kainite subunit GluR5 in the robust nucleus of the arcopallium (RA), higher and lower levels respectively of the NMDA subunits NR2A and NR2B in most vocal nuclei and lower levels of the metabotropic group I subtypes (mGluR1 and -5) in most vocal nuclei and the group II subtype (mGluR2), showing a unique expression pattern of very low levels in RA and very high levels in HVC. The splice variants of AMPA subunits showed further differential expression in vocal nuclei. Some of the receptor subunits/subtypes also showed differential expression in hummingbird and parrot vocal nuclei. The magnitude of differential expression in vocal nuclei of all three vocal learners was unique compared with the smaller magnitude of differences found for nonvocal areas of vocal learners and vocal nonlearners. Our results suggest that evolution of vocal learning was accompanied by differential expression of a conserved gene family for synaptic transmission and plasticity in vocal nuclei. They also suggest that neural activity and signal transduction in vocal nuclei of vocal learners will be different relative to the surrounding brain areas. PMID:15236466

  13. Non-selectivity of new bradykinin antagonists for B1 receptors.

    PubMed

    Rhaleb, N E; Gobeil, F; Regoli, D

    1992-01-01

    Two new B1 receptor antagonists, [Hyp3,Thi5,DTic7,Oic8]desArg9-BK and DArg[Hyp3,Thi5,DTic7,Oic8]desArg9-BK were tested in vitro on the rabbit jugular vein and the guinea pig ileum (preparations containing B2 receptors) and on the rabbit aorta (preparation containing B1 receptors) for pharmacological characterization. The results indicate that both compounds are antagonists on both B1 and B2 receptors, are competitive and discriminate between B2A and B2B receptor subtypes.

  14. High Concentrations of Tranexamic Acid Inhibit Ionotropic Glutamate Receptors.

    PubMed

    Lecker, Irene; Wang, Dian-Shi; Kaneshwaran, Kirusanthy; Mazer, C David; Orser, Beverley A

    2017-07-01

    The antifibrinolytic drug tranexamic acid is structurally similar to the amino acid glycine and may cause seizures and myoclonus by acting as a competitive antagonist of glycine receptors. Glycine is an obligatory co-agonist of the N-methyl-D-aspartate (NMDA) subtype of glutamate receptors. Thus, it is plausible that tranexamic acid inhibits NMDA receptors by acting as a competitive antagonist at the glycine binding site. The aim of this study was to determine whether tranexamic acid inhibits NMDA receptors, as well as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate subtypes of ionotropic glutamate receptors. Tranexamic acid modulation of NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and kainate receptors was studied using whole cell voltage-clamp recordings of current from cultured mouse hippocampal neurons. Tranexamic acid rapidly and reversibly inhibited NMDA receptors (half maximal inhibitory concentration = 241 ± 45 mM, mean ± SD; 95% CI, 200 to 281; n = 5) and shifted the glycine concentration-response curve for NMDA-evoked current to the right. Tranexamic acid also inhibited α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (half maximal inhibitory concentration = 231 ± 91 mM; 95% CI, 148 to 314; n = 5 to 6) and kainate receptors (half maximal inhibitory concentration = 90 ± 24 mM; 95% CI, 68 to 112; n = 5). Tranexamic acid inhibits NMDA receptors likely by reducing the binding of the co-agonist glycine and also inhibits α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid and kainate receptors. Receptor blockade occurs at high millimolar concentrations of tranexamic acid, similar to the concentrations that occur after topical application to peripheral tissues. Glutamate receptors in tissues including bone, heart, and nerves play various physiologic roles, and tranexamic acid inhibition of these receptors may contribute to adverse drug effects.

  15. Function of brain α2B-adrenergic receptor characterized with subtype-selective α2B antagonist and KO mice.

    PubMed

    Luhrs, Lauren; Manlapaz, Cynthia; Kedzie, Karen; Rao, Sandhya; Cabrera-Ghayouri, Sara; Donello, John; Gil, Daniel

    2016-12-17

    Noradrenergic signaling, through the α 2A and α 2C adrenergic receptors modulates the cognitive and behavioral symptoms of disorders such as schizophrenia, attention deficit hyperactivity disorder (ADHD), and addiction. However, it is unknown whether the α 2B receptor has any significant role in CNS function. The present study elucidates the potential role of the α 2B receptor in CNS function via the discovery and use of the first subtype-selective α 2B antagonist (AGN-209419), and behavioral analyses of α-receptor knockout (KO) mice. Using AGN-209419 as radioligand, α 2B receptor binding sites were identified within the olfactory bulb, cortex, thalamus, cerebellum, and striatum. Based on the observed expression patterns of α 2 subtypes in the brain, we compared α 2B KO, α 2A KO and α 2C KO mice behavioral phenotypes with their respective wild-type lines in anxiety (plus maze), compulsive (marble burying), and sensorimotor (prepulse inhibition) tasks. α 2B KO mice exhibited increased marble burying and α 2C KO mice exhibited an increased startle response to a pulse stimulus, but otherwise intact prepulse inhibition. To further explore compulsive behavior, we evaluated novelty-induced locomotor hyperactivity and found that α 2B KO and α 2C KO mice exhibited increased locomotion in the open field. Interestingly, when challenged with amphetamine, α 2C KO mice increased activity at lower doses relative to either α 2A KO or WT mice. However, α 2B KO mice exhibited stereotypy at doses of amphetamine that were only locomotor stimulatory to all other genotypes. Following co-administration of AGN-209419 with low-dose amphetamine in WT mice, stereotypy was observed, mimicking the α 2B KO phenotype. These findings suggest that the α 2B receptor is involved in CNS behaviors associated with sensorimotor gating and compulsivity, and may be therapeutically relevant for disorders such as schizophrenia, ADHD, post-traumatic stress disorder, addiction, and obsessive compulsive disorder. Copyright © 2016. Published by Elsevier Ltd.

  16. Quantification of mu and non-mu opiate receptors in temporal lobe epilepsy using positron emission tomography.

    PubMed

    Mayberg, H S; Sadzot, B; Meltzer, C C; Fisher, R S; Lesser, R P; Dannals, R F; Lever, J R; Wilson, A A; Ravert, H T; Wagner, H N

    1991-07-01

    Alterations in a variety of neurotransmitter systems have been identified in experimental models of epilepsy and in brain tissue from patients with intractable temporal lobe seizures. The availability of new high-affinity radioligands permits the study of some neuroreceptors in vivo with positron emission tomography (PET). We previously characterized the in vivo binding of 11C-carfentanil, a potent and selective mu opiate receptor agonist, and described increases in 11C-carfentanil binding in the temporal neocortex of patients with unilateral temporal lobe epilepsy. These studies have been extended to 11C-diprenorphine, which labels mu, kappa, and delta opiate receptor subtypes. Paired measurements of opiate receptor binding were performed with PET using 11C-carfentanil and 11C-diprenorphine in patients with unilateral temporal lobe seizures. Carfentanil binding, reflecting changes in mu opiate receptors, was increased in the temporal neocortex and decreased in the amygdala on the side of the epileptic focus. Diprenorphine binding, reflecting mu as well as non-mu opiate subtypes, was not significantly different among regions in the focus and nonfocus temporal lobes. Regional glucose metabolism, measured using 18F-2-fluoro-2-deoxyglucose, was decreased in the mesial and lateral aspects of the temporal lobe ipsilateral to the epileptogenic focus. The variation in pattern of carfentanil and diprenorphine binding supports a differential regulation of opiate subtypes in unilateral temporal lobe epilepsy.

  17. Characterization of opioid receptors that modulate nociceptive neurotransmission in the trigeminocervical complex

    PubMed Central

    Storer, R J; Akerman, S; Goadsby, P J

    2003-01-01

    Opioid agonists have been used for many years to treat all forms of headache, including migraine. We sought to characterize opioid receptors involved in craniovascular nociceptive pathways by in vivo microiontophoresis of μ-receptor agonists and antagonists onto neurons in the trigeminocervical complex of the cat. Cats were anaesthetized with α-chloralose 60 mg kg−1, i.p. and 20 mg kg−1, i.v. supplements after induction and surgical preparation using halothane. Units were identified in the trigeminocervical complex responding to supramaximal electrical stimulation of the superior sagittal sinus, and extracellular recordings of activity made. Seven- or nine-barrelled glass micropipettes incorporating tungsten recording electrodes in their centre barrels were used for microiontophoresis of test substances onto cell bodies. Superior sagittal sinus (SSS)-linked cells whose firing was evoked by microiontophoretic application of L-glutamate (n=8 cells) were reversibly inhibited by microiontophoresis of H2N-Tyr-D-Ala-Gly-N-Me-Phe-Gly-ol (DAMGO) (n=12), a selective μ-receptor agonist, in a dose dependent manner, but not by control ejection of sodium or chloride ions from a barrel containing saline. The inhibition by DAMGO of SSS-linked neurons activated with L-glutamate could be antagonized by microiontophoresis of selective μ-receptor antagonists D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP) or D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2 (CTAP), or both, in all cells tested (n=4 and 6, respectively). Local iontophoresis of DAMGO during stimulation of the superior sagittal sinus resulted in a reduction in SSS-evoked activity. This effect was substantially reversed 10 min after cessation of iontophoresis. The effect of DAMGO was markedly inhibited by co-iontophoresis of CTAP. Thus, we found that μ-receptors modulate nociceptive input to the trigeminocervical complex. Characterizing the sub-types of opioid receptors that influence trigeminovascular nociceptive transmission is an important component to understanding the pharmacology of this synapse, which is pivotal in primary neurovascular headache. PMID:12540522

  18. Molecular cloning, molecular evolution and gene expression of cDNAs encoding thyrotropin-releasing hormone receptor subtypes in a teleost, the sockeye salmon (Oncorhynchus nerka).

    PubMed

    Saito, Yuichi; Mekuchi, Miyuki; Kobayashi, Noriaki; Kimura, Makoto; Aoki, Yasuhiro; Masuda, Tomohiro; Azuma, Teruo; Fukami, Motohiro; Iigo, Masayuki; Yanagisawa, Tadashi

    2011-11-01

    Molecular cloning of thyrotropin-releasing hormone receptors (TRHR) was performed in a teleost, the sockeye salmon (Oncorhynchus nerka). Four different TRHR cDNAs were cloned and named TRHR1, TRHR2a, TRHR2b and TRHR3 based on their similarity to known TRHR subtypes in vertebrates. Important residues for TRH binding were conserved in deduced amino acid sequences of the three TRHR subtypes except for the TRHR2b. Seven transmembrane domains were predicted for TRHR1, TRHR2a and TRHR3 proteins but only five for TRHR2b which appears to be truncated. In silico database analysis identified putative TRHR sequences including invertebrate TRHR and reptilian, avian and mammalian TRHR3. Phylogenetic analyses predicted the molecular evolution of TRHR in vertebrates: from the common ancestral TRHR (i.e. invertebrate TRHR), the TRHR2 subtype diverged first and then TRHR1 and TRHR3 diverged. Reverse transcription-polymerase chain reaction analyses revealed TRHR1 transcripts in the brain (hypothalamus), retina, pituitary gland and large intestine; TRHR2a in the brain (telencephalon and hypothalamus); and TRHR3 in the brain (olfactory bulbs) and retina. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Benzodiazepines modulate the A2 adenosine binding sites on 108CC15 neuroblastoma X glioma hybrid cells.

    PubMed Central

    Snell, C. R.; Snell, P. H.

    1984-01-01

    We have demonstrated high affinity diazepam binding sites of the Ro5-4864 benzodiazepine receptor subtype on 108CC15 neuroblastoma X glioma hybrid cells. These cells were previously shown to have purinoceptors of the A2 adenosine subtype and we have now found that [3H]-adenosine can be displaced from this binding site by the benzodiazepines and related compounds that can also bind to the Ro5-4864 site. Diazepam was found to have no intrinsic activity at the A2-receptor as measured by the stimulation of adenosine 3':5'-cyclic monophosphate (cyclic AMP) production in this cell line. At concentrations sufficient to compete for the A2-receptor, diazepam was shown to facilitate, by approximately 2 fold, the stimulation of cyclic AMP by adenosine. These effects are not due to inhibition of adenosine uptake or phosphodiesterase activity, but are probably a consequence of modulation of the coupling of the A2-receptor to cyclic AMP production in this hybrid cell line. PMID:6150742

  20. Neonatal seizures alter NMDA glutamate receptor GluN2A and 3A subunit expression and function in hippocampal CA1 neurons

    PubMed Central

    Zhou, Chengwen; Sun, Hongyu; Klein, Peter M.; Jensen, Frances E.

    2015-01-01

    Neonatal seizures are commonly caused by hypoxic and/or ischemic injury during birth and can lead to long-term epilepsy and cognitive deficits. In a rodent hypoxic seizure (HS) model, we have previously demonstrated a critical role for seizure-induced enhancement of the AMPA subtype of glutamate receptor (GluA) in epileptogenesis and cognitive consequences, in part due to GluA maturational upregulation of expression. Similarly, as the expression and function of the N-Methyl-D-aspartate (NMDA) subtype of glutamate receptor (GluN) is also developmentally controlled, we examined how early life seizures during the critical period of synaptogenesis could modify GluN development and function. In a postnatal day (P)10 rat model of neonatal seizures, we found that seizures could alter GluN2/3 subunit composition of GluNs and physiological function of synaptic GluNs. In hippocampal slices removed from rats within 48–96 h following seizures, the amplitudes of synaptic GluN-mediated evoked excitatory postsynaptic currents (eEPSCs) were elevated in CA1 pyramidal neurons. Moreover, GluN eEPSCs showed a decreased sensitivity to GluN2B selective antagonists and decreased Mg2+ sensitivity at negative holding potentials, indicating a higher proportion of GluN2A and GluN3A subunit function, respectively. These physiological findings were accompanied by a concurrent increase in GluN2A phosphorylation and GluN3A protein. These results suggest that altered GluN function and expression could potentially contribute to future epileptogenesis following neonatal seizures, and may represent potential therapeutic targets for the blockade of future epileptogenesis in the developing brain. PMID:26441533

  1. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haga, Kazuko; Kruse, Andrew C.; Asada, Hidetsugu

    2012-03-15

    The parasympathetic branch of the autonomic nervous system regulates the activity of multiple organ systems. Muscarinic receptors are G-protein-coupled receptors that mediate the response to acetylcholine released from parasympathetic nerves. Their role in the unconscious regulation of organ and central nervous system function makes them potential therapeutic targets for a broad spectrum of diseases. The M2 muscarinic acetylcholine receptor (M2 receptor) is essential for the physiological control of cardiovascular function through activation of G-protein-coupled inwardly rectifying potassium channels, and is of particular interest because of its extensive pharmacological characterization with both orthosteric and allosteric ligands. Here we report the structuremore » of the antagonist-bound human M2 receptor, the first human acetylcholine receptor to be characterized structurally, to our knowledge. The antagonist 3-quinuclidinyl-benzilate binds in the middle of a long aqueous channel extending approximately two-thirds through the membrane. The orthosteric binding pocket is formed by amino acids that are identical in all five muscarinic receptor subtypes, and shares structural homology with other functionally unrelated acetylcholine binding proteins from different species. A layer of tyrosine residues forms an aromatic cap restricting dissociation of the bound ligand. A binding site for allosteric ligands has been mapped to residues at the entrance to the binding pocket near this aromatic cap. The structure of the M2 receptor provides insights into the challenges of developing subtype-selective ligands for muscarinic receptors and their propensity for allosteric regulation.« less

  2. Neuromodulation by Mg2+ and polyamines of excitatory amino acid currents in rodent neurones in culture.

    PubMed

    Kumamoto, E

    1996-12-01

    Excitatory amino-acid currents in rodent central neurones are mediated by the activation of glutamate receptors. Ionotropic types of the receptors are divided into alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA), kainate and N-methyl-D-aspartate (NMDA) receptors, and the former two are collectively called non-NMDA receptors. The NMDA receptor is modulated by a number of endogenous neuromodulators including Mg2+, polyamines, glycine and protons in extracellular solutions. Although it has been generally thought that each of the neuromodulators acts on a distinct site in the NMDA receptor, recent studies have revealed that these actions may be not necessarily independent of each other. The NMDA receptor response is not only inhibited but also potentiated by Mg2+, and the latter action is due to an interaction of a Mg2+ site with either glycine- or proton-binding site. In the presence of polyamines, a tonic inhibition by protons of the NMDA receptor response is relieved, resulting in a potentiation of the response. Alternatively, it has been recently revealed that there are some subtypes of non-NMDA receptors which are negatively modulated by polyamines in either extra- or intra cellular solutions. The difference in polyamine sensitivity among non-NMDA receptors is attributed to a distinction in their constituted subunits. The inhibition of non-NMDA receptor by intracellular polyamines results in inward rectification of the current-voltage relation which is not seen for polyamine-insensitive ones. This polyamine action is not mimicked by intracellular Mg2+.

  3. Ocular Purine Receptors as Drug Targets in the Eye

    PubMed Central

    Civan, Mortimer M.

    2016-01-01

    Abstract Agonists and antagonists of various subtypes of G protein coupled adenosine receptors (ARs), P2Y receptors (P2YRs), and ATP-gated P2X receptor ion channels (P2XRs) are under consideration as agents for the treatment of ocular diseases, including glaucoma and dry eye. Numerous nucleoside and nonnucleoside modulators of the receptors are available as research tools and potential therapeutic molecules. Three of the 4 subtypes of ARs have been exploited with clinical candidate molecules for treatment of the eye: A1, A2A, and A3. An A1AR agonist is in clinical trials for glaucoma, A2AAR reduces neuroinflammation, A3AR protects retinal ganglion cells from apoptosis, and both A3AR agonists and antagonists had been reported to lower intraocular pressure (IOP). Extracellular concentrations of endogenous nucleotides, including dinucleoside polyphosphates, are increased in pathological states, activating P2Y and P2XRs throughout the eye. P2YR agonists, including P2Y2 and P2Y6, lower IOP. Antagonists of the P2X7R prevent the ATP-induced neuronal apoptosis in the retina. Thus, modulators of the purinome in the eye might be a source of new therapies for ocular diseases. PMID:27574786

  4. Ocular Purine Receptors as Drug Targets in the Eye.

    PubMed

    Jacobson, Kenneth A; Civan, Mortimer M

    2016-10-01

    Agonists and antagonists of various subtypes of G protein coupled adenosine receptors (ARs), P2Y receptors (P2YRs), and ATP-gated P2X receptor ion channels (P2XRs) are under consideration as agents for the treatment of ocular diseases, including glaucoma and dry eye. Numerous nucleoside and nonnucleoside modulators of the receptors are available as research tools and potential therapeutic molecules. Three of the 4 subtypes of ARs have been exploited with clinical candidate molecules for treatment of the eye: A 1 , A 2A , and A 3 . An A 1 AR agonist is in clinical trials for glaucoma, A 2A AR reduces neuroinflammation, A 3 AR protects retinal ganglion cells from apoptosis, and both A 3 AR agonists and antagonists had been reported to lower intraocular pressure (IOP). Extracellular concentrations of endogenous nucleotides, including dinucleoside polyphosphates, are increased in pathological states, activating P2Y and P2XRs throughout the eye. P2YR agonists, including P2Y 2 and P2Y 6 , lower IOP. Antagonists of the P2X7R prevent the ATP-induced neuronal apoptosis in the retina. Thus, modulators of the purinome in the eye might be a source of new therapies for ocular diseases.

  5. Oxytocin receptor mRNA expression in rat brain: implications for behavioral integration and reproductive success.

    PubMed

    Ostrowski, N L

    1998-11-01

    The nonapeptide, oxytocin (OT), has been implicated in a wide range of physiological, behavioral and pharmacological effects related to learning and memory, parturition and lactation, maternal and sexual behavior, and the formation of social attachments. Specific G-protein linked membrane bound OT receptors mediate OTs effects. The unavailability of highly selective pharmacological ligands that discriminate the OT receptor from the highly homologous vasopressin receptors (V1a, V1b and V2 subtypes) has made it difficult to confirm specific effects of oxytocin, particularly in brain regions where OT and multiple AVP receptor subtypes may be coexpressed. Here, data on the oxytocin receptor (OTR) messenger ribonucleic acid (mRNA) localization in brain are presented in the context of a model that proposes a reproductive state-dependent role for steroid-hormone restructuring of neural circuits, and a role for oxytocin in the integration of neural transmission in pathways subserving: (1) steroid-sensitive reproductive behaviors; (2) learning; and (3) reinforcement. It is hypothesized that social attachments emerge as a consequence of a conditioned association between OT-related activity in these pathways and the eliciting stimulus.

  6. Treatment-Resistant Major Depression: Rationale for NMDA Receptors as Targets and Nitrous Oxide as Therapy

    PubMed Central

    Zorumski, Charles F.; Nagele, Peter; Mennerick, Steven; Conway, Charles R.

    2015-01-01

    Major depressive disorder (MDD) remains a huge personal and societal encumbrance. Particularly burdensome is a virulent subtype of MDD, treatment resistant major depression (TMRD), which afflicts 15–30% of MDD patients. There has been recent interest in N-methyl-d-aspartate receptors (NMDARs) as targets for treatment of MDD and perhaps TMRD. To date, most pre-clinical and clinical studies have focused on ketamine, although psychotomimetic and other side effects may limit ketamine’s utility. These considerations prompted a recent promising pilot clinical trial of nitrous oxide, an NMDAR antagonist that acts through a mechanism distinct from that of ketamine, in patients with severe TRMD. In this paper, we review the clinical picture of TRMD as a subtype of MDD, the evolution of ketamine as a fast-acting antidepressant, and clinical and basic science studies supporting the possible use of nitrous oxide as a rapid antidepressant. PMID:26696909

  7. Anxiety and Depression: Mouse Genetics and Pharmacological Approaches to the Role of GABAA Receptor Subtypes

    PubMed Central

    Smith, Kiersten S.; Rudolph, Uwe

    2012-01-01

    GABAA receptors mediate fast synaptic inhibitory neurotransmission throughout the central nervous system. Recent work indicates a role for GABAA receptors in physiologically modulating anxiety and depression levels. In this review, we summarize research that led to the identification of the essential role of GABAA receptors in counteracting trait anxiety and depression-related behaviors, and research aimed at identifying individual GABAA receptor subtypes involved in physiological and pharmacological modulation of emotions. PMID:21810433

  8. ROLE OF ESTROGEN RECEPTOR-α ON FOOD DEMAND ELASTICITY

    PubMed Central

    Minervini, Vanessa; Rowland, Neil E.; Robertson, Kimberly L.; Foster, Thomas C.

    2016-01-01

    Estrogens have been shown to have an inhibitory effect on food intake under free-feeding conditions, yet the effects of estrogens on food-maintained operant responding have been studied to a much lesser extent and, thus, are not well understood. Therefore, the purpose of the present experiment was to use a behavioral economics paradigm to assess differences in demand elasticity between mice with knockout of the estrogen receptor subtype α, knockout of subtype β, and their wild type controls. The mice responded in a closed economy, and the price of food was increased by increasing the fixed-ratio response requirement every four sessions. Overall, we found that mice with the knockout of receptor subtype α had the most elastic demand functions. Therefore, under these conditions, estrogens increased food seeking via activation of the receptor subtype α. The results were inconsistent with those reported by previous studies that employed free-feeding conditions. PMID:25869426

  9. Putative therapeutic targets for symptom subtypes of adult ADHD: D4 receptor agonism and COMT inhibition improve attention and response inhibition in a novel translational animal model.

    PubMed

    Tomlinson, Anneka; Grayson, Ben; Marsh, Samuel; Hayward, Andrew; Marshall, Kay M; Neill, Joanna C

    2015-04-01

    Prefrontal cortical dopamine plays an important role in cognitive control, specifically in attention and response inhibition; the core deficits in ADHD. We have previously shown that methylphenidate and atomoxetine differentially improve these deficits dependent on baseline performance. The present study extends this work to investigate the effects of putative therapeutic targets in our model. A selective dopamine D4 receptor agonist (A-412997) and the catechol-O-methyl-transferase (COMT) inhibitor; tolcapone, were investigated in the combined subtype of adult ADHD (ADHD-C). Adult female rats were trained to criterion in the 5C-CPT (5-Choice Continuous Performance Task) and then separated into subgroups according to baseline levels of sustained attention, vigilance, and response disinhibition. The subgroups included: high-attentive (HA) and low-attentive with high response disinhibition (ADHD-C). The ADHD-C subgroup was selected to represent the combined subtype of adult ADHD. Effects of tolcapone (3.0, 10.0, 15.0mg/kg) and A-412997 (0.1, 0.3, 1.0µmol/kg) were tested by increasing the variable inter-trial-interval (ITI) duration in the 5C-CPT. Tolcapone (15mg/kg) significantly increased sustained attention, vigilance and response inhibition in ADHD-C animals, and impaired attention in HA animals. A-412997 (1.0µmol/kg) significantly increased vigilance and response inhibition in ADHD-C animals only, with no effect in HA animals. This is the first study to use the translational 5C-CPT to model the adult ADHD-C subtype in rats and to study new targets in this model. Both tolcapone and A-412997 increased vigilance and response inhibition in the ADHD-C subgroup. D4 and COMT are emerging as important potential therapeutic targets in adult ADHD that warrant further investigation. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  10. Phrenic motoneuron expression of serotonergic and glutamatergic receptors following upper cervical spinal cord injury

    PubMed Central

    Mantilla, Carlos B.; Bailey, Jeffrey P.; Zhan, Wen-Zhi; Sieck, Gary C.

    2012-01-01

    Following cervical spinal cord injury at C2 (SH hemisection model) there is progressive recovery of phrenic activity. Neuroplasticity in the postsynaptic expression of neurotransmitter receptors may contribute to functional recovery. Phrenic motoneurons express multiple serotonergic (5-HTR) and glutamatergic (GluR) receptors, but the timing and possible role of these different neurotransmitter receptor subtypes in the neuroplasticity following SH are not clear. The current study was designed to test the hypothesis that there is an increased expression of serotonergic and glutamatergic neurotransmitter receptors within phrenic motoneurons after SH. In adult male rats, phrenic motoneurons were labeled retrogradely by intrapleural injection of Alexa 488-conjugated cholera toxin B. In thin (10 μm) frozen sections of the spinal cord, fluorescently-labeled phrenic motoneurons were visualized for laser capture microdissection (LCM). Using quantitative real-time RT-PCR in LCM samples, the time course of changes in 5-HTR and GluR mRNA expression was determined in phrenic motoneurons up to 21 days post-SH. Expression of 5-HTR subtypes 1b, 2a and 2c and GluR subtypes AMPA, NMDA, mGluR1 and mGluR5 was evident in phrenic motoneurons from control and SH rats. Phrenic motoneuron expression of 5-HTR2a increased ~8-fold (relative to control) at 14 days post-SH, whereas NMDA expression increased ~16-fold by 21-days post-SH. There were no other significant changes in receptor expression at any time post-SH. This is the first study to systematically document changes in motoneuron expression of multiple neurotransmitter receptors involved in regulation of motoneuron excitability. By providing information on the neuroplasticity of receptors expressed in a motoneuron pool that is inactivated by a higher-level spinal cord injury, appropriate pharmacological targets can be identified to alter motoneuron excitability. PMID:22227062

  11. Disease-modifying effect of atipamezole in a model of post-traumatic epilepsy.

    PubMed

    Nissinen, Jari; Andrade, Pedro; Natunen, Teemu; Hiltunen, Mikko; Malm, Tarja; Kanninen, Katja; Soares, Joana I; Shatillo, Olena; Sallinen, Jukka; Ndode-Ekane, Xavier Ekolle; Pitkänen, Asla

    2017-10-01

    Treatment of TBI remains a major unmet medical need, with 2.5 million new cases of traumatic brain injury (TBI) each year in Europe and 1.5 million in the USA. This single-center proof-of-concept preclinical study tested the hypothesis that pharmacologic neurostimulation with proconvulsants, either atipamezole, a selective α 2 -adrenoceptor antagonist, or the cannabinoid receptor 1 antagonist SR141716A, as monotherapy would improve functional recovery after TBI. A total of 404 adult Sprague-Dawley male rats were randomized into two groups: sham-injured or lateral fluid-percussion-induced TBI. The rats were treated with atipamezole (started at 30min or 7 d after TBI) or SR141716A (2min or 30min post-TBI) for up to 9 wk. Total follow-up time was 14 wk after treatment initiation. Outcome measures included motor (composite neuroscore, beam-walking) and cognitive performance (Morris water-maze), seizure susceptibility, spontaneous seizures, and cortical and hippocampal pathology. All injured rats exhibited similar impairment in the neuroscore and beam-walking tests at 2 d post-TBI. Atipamezole treatment initiated at either 30min or 7 d post-TBI and continued for 9 wk via subcutaneous osmotic minipumps improved performance in both the neuroscore and beam-walking tests, but not in the Morris water-maze spatial learning and memory test. Atipamezole treatment initiated at 7 d post-TBI also reduced seizure susceptibility in the pentylenetetrazol test 14 wk after treatment initiation, although it did not prevent the development of epilepsy. SR141716A administered as a single dose at 2min post-TBI or initiated at 30min post-TBI and continued for 9 wk had no recovery-enhancing or antiepileptogenic effects. Mechanistic studies to assess the α 2 -adrenoceptor subtype specificity of the disease-modifying effects of atipametzole revealed that genetic ablation of α 2A -noradrenergic receptor function in Adra2A mice carrying an N79P point mutation had antiepileptogenic effects after TBI. On the other hand, blockade of α 2C -adrenoceptors using the receptor subtype-specific antagonist ORM-12741 had no favorable effects on the post-TBI outcome. Finally, to assess whether regulation of the post-injury inflammatory response by atipametzole in glial cells contributed to a favorable outcome, we investigated the effect of atipamezole on spontaneous and/or lipopolysaccharide-stimulated astroglial or microglial cytokine release in vitro. We observed no effect. Our data demonstrate that a 9-wk administration of α2A-noradrenergic antagonist, atipamezole, is recovery-enhancing after TBI. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Muscarinic acetylcholine receptor subtype expression in avian vestibular hair cells, nerve terminals and ganglion cells.

    PubMed

    Li, G Q; Kevetter, G A; Leonard, R B; Prusak, D J; Wood, T G; Correia, M J

    2007-04-25

    Muscarinic acetylcholine receptors (mAChRs) are widely expressed in the CNS and peripheral nervous system and play an important role in modulating the cell activity and function. We have shown that the cholinergic agonist carbachol reduces the pigeon's inwardly rectifying potassium channel (pKir2.1) ionic currents in native vestibular hair cells. We have cloned and sequenced pigeon mAChR subtypes M2-M5 and we have studied the expression of all five mAChR subtypes (M1-M5) in the pigeon vestibular end organs (semicircular canal ampullary cristae and utricular maculae), vestibular nerve fibers and the vestibular (Scarpa's) ganglion using tissue immunohistochemistry (IH), dissociated single cell immunocytochemistry (IC) and Western blotting (WB). We found that vestibular hair cells, nerve fibers and ganglion cells each expressed all five (M1-M5) mAChR subtypes. Two of the three odd-numbered mAChRs (M1, M5) were present on the hair cell cilia, supporting cells and nerve terminals. And all three odd numbered mAChRs (M1, M3 and M5) were expressed on cuticular plates, myelin sheaths and Schwann cells. Even-numbered mAChRs were seen on the nerve terminals. M2 was also shown on the cuticular plates and supporting cells. Vestibular efferent fibers and terminals were not identified in our studies. Results from WB of the dissociated vestibular epithelia, nerve fibers and vestibular ganglia were consistent with the results from IH and IC. Our findings suggest that there is considerable co-expression of the subtypes on the neural elements of the labyrinth. Further electrophysiological and pharmacological studies should delineate the mechanisms of action of muscarinic acetylcholine receptors on structures in the labyrinth.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zukin, R.S.; Eghbali, M.; Olive, D.

    {kappa} opioid receptors ({kappa} receptors) have been characterized in homogenates of guinea pig and rat brain under in vitro binding conditions. {kappa} receptors were labeled by using the tritiated prototypic {kappa} opioid ethylketocyclazocine under conditions in which {mu} and {delta} opioid binding was suppressed. In the case of guinea pig brain membranes, a single population of high-affinity {kappa} opioid receptor sites was observed. In contrast, in the case of rat brain, two populations of {kappa} sites were observed. To test the hypothesis that the high- and low-affinity {kappa} sites represent two distinct {kappa} receptor subtypes, a series of opioids weremore » tested for their abilities to compete for binding to the two sites. U-69,593 and Cambridge 20 selectively displaced the high-affinity {kappa} site in both guinea pig and rat tissue, but were inactive at the rat-brain low-affinity site. Other {kappa} opioid drugs competed for binding to both sites, but with different rank orders of potency. Quantitative light microscopy in vitro autoradiography was used to visualize the neuroanatomical pattern of {kappa} receptors in rat and guinea pig brain. The distribution patterns of the two {kappa} receptor subtypes of rat brain were clearly different. Collectively, these data provide direct evidence for the presence of two {kappa} receptor subtypes; the U-69,593-sensitive, high-affinity {kappa}{sub 1} site predominates in guinea pig brain, and the U-69,593-insensitive, low-affinity {kappa}{sub 2} site predominates in rat brain.« less

  14. Selective targeting of G-protein-coupled receptor subtypes with venom peptides.

    PubMed

    Näreoja, K; Näsman, J

    2012-02-01

    The G-protein-coupled receptor (GPCR) family is one of the largest gene superfamilies with approx. 370 members responding to endogenous ligands in humans and a roughly equal amount of receptors sensitive to external stimuli from the surrounding. A number of receptors from this superfamily are well recognized targets for medical treatment of various disease conditions, whereas for many others the potential medical benefit of interference is still obscure. A general problem associated with GPCR research and therapeutics is the insufficient specificity of available ligands to differentiate between closely homologous receptor subtypes. In this context, venom peptides could make a significant contribution to the development of more specific drugs. Venoms from certain animals specialized in biochemical hunting contain a mixture of molecules that are directed towards a variety of membrane proteins. Peptide toxins isolated from these mixtures usually exhibit high specificity for their targets. Muscarinic toxins found from mamba snakes attracted much attention during the 1990s. These are 65-66 amino acid long peptides with a structural three-finger folding similar to the α-neurotoxins and they target the muscarinic acetylcholine receptors in a subtype-selective manner. Recently, several members of the three-finger toxins from mamba snakes as well as conotoxins from marine cone snails have been shown to selectively interact with subtypes of adrenergic receptors. In this review, we will discuss the GPCR-directed peptide toxins found from different venoms and how some of these can be useful in exploring specific roles of receptor subtypes. © 2011 The Authors. Acta Physiologica © 2011 Scandinavian Physiological Society.

  15. Ionotropic glutamate receptor GluR2/3-immunoreactive neurons in the cat, rabbit, and hamster superficial superior colliculus.

    PubMed

    Park, Won-Mee; Kim, Min-Jeong; Jeon, Chang-Jin

    2004-06-01

    Ionotropic glutamate receptor (GluR) subtypes occur in various types of cells in the central nervous system. We studied the distribution of AMPA glutamate receptor subtype GluR2/3 in the superficial layers of cat, rabbit, and hamster superior colliculus (SC) with antibody immunocytochemistry and the effect of enucleation on this distribution. Furthermore, we compared this labeling to that of calbindin D28K and parvalbumin. Anti-GluR2/3-immunoreactive (IR) cells formed a dense band of labeled cells within the lower superficial gray layer (SGL) and upper optic layer (OL) in the cat SC. By contrast, GluR2/3-IR cells formed a dense band within the upper OL in the rabbit and within the OL in the hamster SC. Calbindin D28K-IR cells are located in three layers in the SC: one within the zonal layer (ZL) and the upper SGL in all three animals, a second within the lower OL and upper IGL in the cat, within the IGL in the rabbit and within the OL in the hamster, and a third within the deep gray layer (DGL) in all three animals. Many parvalbumin-IR neurons were found within the lower SGL and upper OL. Thus, the GluR2/3-IR band was sandwiched between the first and second layers of calbindin D28K-IR cells in the cat and rabbit SC while the distribution of GluR2/3-IR cells in the hamster matches the second layer of calbindin D28K-IR cells. The patterned distribution of GluR2/3-IR cells overlapped the tier of parvalbumin-IR neurons in cat, but only partially overlapped in hamster and rabbit. Two-color immunofluorescence revealed that more than half (55.1%) of the GluR2/3-IR cells in the hamster SC expressed calbindin D28K. By contrast, only 9.9% of GluR2/3-IR cells expressed calbindin D28K in the cat. Double-labeled cells were not found in the rabbit SC. Some (4.8%) GluR2/3-IR cells in the cat SC also expressed parvalbumin, while no GluR2/3-IR cells in rabbit and hamster SC expressed parvalbumin. In this dense band of GluR2/3, the majority of labeled cells were small to medium-sized round/oval or stellate cells. Immunoreactivity for the GluR2/3 was clearly reduced in the contralateral SC following unilateral enucleation in the hamster. By contrast, enucleation appeared to have had no effect on the GluR2/3 immunoreactivity in the cat and rabbit SC. The results indicate that neurons in the mammalian SC express GluR2/3 in specific layers, which does not correlate with the expression of calbindin D28K and parvalbumin among the animals.

  16. A network-based, integrative study to identify core biological pathways that drive breast cancer clinical subtypes

    PubMed Central

    Dutta, B; Pusztai, L; Qi, Y; André, F; Lazar, V; Bianchini, G; Ueno, N; Agarwal, R; Wang, B; Shiang, C Y; Hortobagyi, G N; Mills, G B; Symmans, W F; Balázsi, G

    2012-01-01

    Background: The rapid collection of diverse genome-scale data raises the urgent need to integrate and utilise these resources for biological discovery or biomedical applications. For example, diverse transcriptomic and gene copy number variation data are currently collected for various cancers, but relatively few current methods are capable to utilise the emerging information. Methods: We developed and tested a data-integration method to identify gene networks that drive the biology of breast cancer clinical subtypes. The method simultaneously overlays gene expression and gene copy number data on protein–protein interaction, transcriptional-regulatory and signalling networks by identifying coincident genomic and transcriptional disturbances in local network neighborhoods. Results: We identified distinct driver-networks for each of the three common clinical breast cancer subtypes: oestrogen receptor (ER)+, human epidermal growth factor receptor 2 (HER2)+, and triple receptor-negative breast cancers (TNBC) from patient and cell line data sets. Driver-networks inferred from independent datasets were significantly reproducible. We also confirmed the functional relevance of a subset of randomly selected driver-network members for TNBC in gene knockdown experiments in vitro. We found that TNBC driver-network members genes have increased functional specificity to TNBC cell lines and higher functional sensitivity compared with genes selected by differential expression alone. Conclusion: Clinical subtype-specific driver-networks identified through data integration are reproducible and functionally important. PMID:22343619

  17. Muscarinic acetylcholine receptor M1 and M3 subtypes mediate acetylcholine-induced endothelium-independent vasodilatation in rat mesenteric arteries.

    PubMed

    Tangsucharit, Panot; Takatori, Shingo; Zamami, Yoshito; Goda, Mitsuhiro; Pakdeechote, Poungrat; Kawasaki, Hiromu; Takayama, Fusako

    2016-01-01

    The present study investigated pharmacological characterizations of muscarinic acetylcholine receptor (AChR) subtypes involving ACh-induced endothelium-independent vasodilatation in rat mesenteric arteries. Changes in perfusion pressure to periarterial nerve stimulation and ACh were measured before and after the perfusion of Krebs solution containing muscarinic receptor antagonists. Distributions of muscarinic AChR subtypes in mesenteric arteries with an intact endothelium were studied using Western blotting. The expression level of M1 and M3 was significantly greater than that of M2. Endothelium removal significantly decreased expression levels of M2 and M3, but not M1. In perfused mesenteric vascular beds with intact endothelium and active tone, exogenous ACh (1, 10, and 100 nmol) produced concentration-dependent and long-lasting vasodilatations. In endothelium-denuded preparations, relaxation to ACh (1 nmol) disappeared, but ACh at 10 and 100 nmol caused long-lasting vasodilatations, which were markedly blocked by the treatment of pirenzepine (M1 antagonist) or 4-DAMP (M1 and M3 antagonist) plus hexamethonium (nicotinic AChR antagonist), but not methoctramine (M2 and M4 antagonist). These results suggest that muscarinic AChR subtypes, mainly M1, distribute throughout the rat mesenteric arteries, and that activation of M1 and/or M3 which may be located on CGRPergic nerves releases CGRP, causing an endothelium-independent vasodilatation. Copyright © 2015 Japanese Pharmacological Society. Production and hosting by Elsevier B.V. All rights reserved.

  18. Increased cyclic guanosine monophosphate production and overexpression of atrial natriuretic peptide A-receptor mRNA in spontaneously hypertensive rats.

    PubMed

    Tremblay, J; Huot, C; Willenbrock, R C; Bayard, F; Gossard, F; Fujio, N; Koch, C; Kuchel, O; Debinski, W; Hamet, P

    1993-11-01

    Atrial natriuretic peptide (ANP) specifically stimulates particulate guanylate cyclase, and cyclic guanosine monophosphate (cGMP) has been recognized as its second messenger. Spontaneously hypertensive rats (SHR) have elevated plasma ANP levels, but manifest an exaggerated natriuretic and diuretic response to exogenous ANP when compared to normotensive strains. In isolated glomeruli, the maximal cGMP response to ANP corresponds to a 12- to 14-fold increase over basal levels in normotensive strains (Wistar 13 +/- 2; Wistar-Kyoto 12 +/- 2; Sprague-Dawley 14 +/- 2) while a maximal 33 +/- 3-fold elevation occurs in SHR (P < 0.001). This hyperresponsiveness of cGMP is reproducible in intact glomeruli from SHR from various commercial sources. Furthermore, this abnormality develops early in life, even before hypertension is clearly established, and persists despite pharmacological modulation of blood pressure, indicating that it is a primary event in hypertension. In vitro studies have revealed a higher particulate guanylate cyclase activity in membranes from glomeruli and other tissues from SHR. This increase is not accounted for by different patterns of ANP binding to its receptor subtypes between normotensive and hypertensive strains, as assessed by competitive displacement with C-ANP102-121, an analog which selectively binds to one ANP receptor subtype. The hyperactivity of particulate guanylate cyclase in SHR and its behavior under basal, ligand (ANP), and detergent-enhanced conditions could be attributed either to increased expression or augmented sensitivity of the enzyme. Radiation-inactivation analysis does not evoke a disturbance in the size of regulatory elements normally repressing enzymatic activity, while the expression of particulate guanylate cyclase gene using mutated standard of A- and B-receptors partial cDNAs, quantified by polymerase chain reaction (PCR) transcript titration assay, manifests a selective increase of one guanylate cyclase subtype. Our data suggest that in hypertension, genetic overexpression of the ANP A-receptor subtype is related to the exaggerated biological response to ANP in this disease.

  19. Molecular analysis of nicotinic receptor expression in autism.

    PubMed

    Martin-Ruiz, C M; Lee, M; Perry, R H; Baumann, M; Court, J A; Perry, E K

    2004-04-07

    Autism is a developmental disorder of unknown aetiopathology and lacking any specific pharmacological therapeutic intervention. Neurotransmitters such as serotonin, gamma-aminobutyric acid (GABA) and acetylcholine have been implicated. Abnormalities in nicotinic acetylcholine receptors have been identified including cortical loss of binding to the alpha4/beta2 subtype and increase in cerebellar alpha7 binding. Receptor expression (mRNA) has not so far been systematically examined. This study aims to further explore the role of nicotinic receptors in autism by analysing nicotinic receptor subunit mRNA in conjunction with protein levels and receptor binding in different brain areas. Quantitative RT-PCR for alpha4, alpha7 and beta2 subunit mRNA expression levels; alpha3, alpha4, alpha7 and beta2 subunit protein expression immunochemistry and specific radioligand receptor binding were performed in adult autism and control brain samples from cerebral cortex and cerebellum. Alpha4 and beta2 protein expression and receptor binding density as well as alpha4 mRNA levels were lower in parietal cortex in autism, while alpha7 did not change for any of these parameters. In cerebellum, alpha4 mRNA expression was increased, whereas subunit protein and receptor levels were decreased. Alpha7 receptor binding in cerebellum was increased alongside non-significant elevations in mRNA and protein expression levels. No significant changes were found for beta2 in cerebellum. The data obtained, using complementary measures of receptor expression, indicate that reduced gene expression of the alpha4beta2 nicotinic receptor in the cerebral cortex is a major feature of the neurochemical pathology of autism, whilst post-transcriptional abnormalities of both this and the alpha7 subtype are apparent in the cerebellum. The findings point to dendritic and/or synaptic nicotinic receptor abnormalities that may relate to disruptions in cerebral circuitry development.

  20. Anti-Hebbian long-term potentiation in the hippocampal feedback inhibitory circuit.

    PubMed

    Lamsa, Karri P; Heeroma, Joost H; Somogyi, Peter; Rusakov, Dmitri A; Kullmann, Dimitri M

    2007-03-02

    Long-term potentiation (LTP), which approximates Hebb's postulate of associative learning, typically requires depolarization-dependent glutamate receptors of the NMDA (N-methyl-D-aspartate) subtype. However, in some neurons, LTP depends instead on calcium-permeable AMPA-type receptors. This is paradoxical because intracellular polyamines block such receptors during depolarization. We report that LTP at synapses on hippocampal interneurons mediating feedback inhibition is "anti-Hebbian":Itis induced by presynaptic activity but prevented by postsynaptic depolarization. Anti-Hebbian LTP may occur in interneurons that are silent during periods of intense pyramidal cell firing, such as sharp waves, and lead to their altered activation during theta activity.

  1. Structures of Receptor Complexes of a North American H7N2 Influenza Hemagglutinin with a Loop Deletion in the Receptor Binding Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hua; Chen, Li-Mei; Carney, Paul J.

    2012-02-21

    Human infections with subtype H7 avian influenza viruses have been reported as early as 1979. In 1996, a genetically stable 24-nucleotide deletion emerged in North American H7 influenza virus hemagglutinins, resulting in an eight amino acid deletion in the receptor-binding site. The continuous circulation of these viruses in live bird markets, as well as its documented ability to infect humans, raises the question of how these viruses achieve structural stability and functionality. Here we report a detailed molecular analysis of the receptor binding site of the North American lineage subtype H7N2 virus A/New York/107/2003 (NY107), including complexes with an avianmore » receptor analog (3'-sialyl-N-acetyllactosamine, 3'SLN) and two human receptor analogs (6'-sialyl-N-acetyllactosamine, 6'SLN; sialyllacto-N-tetraose b, LSTb). Structural results suggest a novel mechanism by which residues Arg220 and Arg229 (H3 numbering) are used to compensate for the deletion of the 220-loop and form interactions with the receptor analogs. Glycan microarray results reveal that NY107 maintains an avian-type ({alpha}2-3) receptor binding profile, with only moderate binding to human-type ({alpha}2-6) receptor. Thus despite its dramatically altered receptor binding site, this HA maintains functionality and confirms a need for continued influenza virus surveillance of avian and other animal reservoirs to define their zoonotic potential.« less

  2. The effect of the sigma-1 receptor selective compound LS-1-137 on the DOI-induced head twitch response in mice.

    PubMed

    Malik, Maninder; Rangel-Barajas, Claudia; Mach, Robert H; Luedtke, Robert R

    2016-09-01

    Several receptor mediated pathways have been shown to modulate the murine head twitch response (HTR). However, the role of sigma receptors in the murine (±)-2,5-dimethoxy-4-iodoamphetamine (DOI)-induced HTR has not been previously investigated. We examined the ability of LS-1-137, a novel sigma-1 vs. sigma-2 receptor selective phenylacetamide, to modulate the DOI-induced HTR in DBA/2J mice. We also assessed the in vivo efficacy of reference sigma-1 receptor antagonists and agonists PRE-084 and PPCC. The effect of the sigma-2 receptor selective antagonist RHM-1-86 was also examined. Rotarod analysis was performed to monitor motor coordination after LS-1-137 administration. Radioligand binding techniques were used to determine the affinity of LS-1-137 at 5-HT2A and 5-HT2C receptors. LS-1-137 and the sigma-1 receptor antagonists haloperidol and BD 1047 were able to attenuate a DOI-induced HTR, indicating that LS-1-137 was acting in vivo as a sigma-1 receptor antagonist. LS-1-137 did not compromise rotarod performance within a dose range capable of attenuating the effects of DOI. Radioligand binding studies indicate that LS-1-137 exhibits low affinity binding at both 5-HT2A and 5-HT2C receptors. Based upon the results from these and our previous studies, LS-1-137 is a neuroprotective agent that attenuates the murine DOI-induced HTR independent of activity at 5-HT2 receptor subtypes, D2-like dopamine receptors, sigma-2 receptors and NMDA receptors. LS-1-137 appears to act as a sigma-1 receptor antagonist to inhibit the DOI-induced HTR. Therefore, the DOI-induced HTR can be used to assess the in vivo efficacy of sigma-1 receptor selective compounds. Copyright © 2016. Published by Elsevier Inc.

  3. Characterization of a Novel Small Molecule Subtype Specific Estrogen-Related Receptor α Antagonist in MCF-7 Breast Cancer Cells

    PubMed Central

    Chisamore, Michael J.; Cunningham, Michael E.; Flores, Osvaldo; Wilkinson, Hilary A.; Chen, J. Don

    2009-01-01

    Background The orphan nuclear receptor estrogen-related receptor α (ERRα) is a member of the nuclear receptor superfamily. It was identified through a search for genes encoding proteins related to estrogen receptor α (ERα). An endogenous ligand has not been found. Novel ERRα antagonists that are highly specific for binding to the ligand binding domain (LBD) of ERRα have been recently reported. Research suggests that ERRα may be a novel drug target to treat breast cancer and/or metabolic disorders and this has led to an effort to characterize the mechanisms of action of N-[(2Z)-3-(4,5-dihydro-1,3-thiazol-2-yl)-1,3-thiazolidin-2-yl idene]-5H dibenzo[a,d][7]annulen-5-amine, a novel ERRα specific antagonist. Methodology/Principal Findings We demonstrate this ERRα ligand inhibits ERRα transcriptional activity in MCF-7 cells by luciferase assay but does not affect mRNA levels measured by real-time RT-PCR. Also, ERα (ESR1) mRNA levels were not affected upon treatment with the ERRα antagonist, but other ERRα (ESRRA) target genes such as pS2 (TFF1), osteopontin (SPP1), and aromatase (CYP19A1) mRNA levels decreased. In vitro, the ERRα antagonist prevents the constitutive interaction between ERRα and nuclear receptor coactivators. Furthermore, we use Western blots to demonstrate ERRα protein degradation via the ubiquitin proteasome pathway is increased by the ERRα-subtype specific antagonist. We demonstrate by chromatin immunoprecipitation (ChIP) that the interaction between ACADM, ESRRA, and TFF1 endogenous gene promoters and ERRα protein is decreased when cells are treated with the ligand. Knocking-down ERRα (shRNA) led to similar genomic effects seen when MCF-7 cells were treated with our ERRα antagonist. Conclusions/Significance We report the mechanism of action of a novel ERRα specific antagonist that inhibits transcriptional activity of ERRα, disrupts the constitutive interaction between ERRα and nuclear coactivators, and induces proteasome-dependent ERRα protein degradation. Additionally, we confirmed that knocking-down ERRα lead to similar genomic effects demonstrated in vitro when treated with the ERRα specific antagonist. PMID:19462000

  4. Regulation and Functional Implications of Opioid Receptor Splicing in Opioid Pharmacology and HIV Pathogenesis

    PubMed Central

    Regan, Patrick M.; Langford, T. Dianne; Khalili, Kamel

    2015-01-01

    Despite the identification and characterization of four opioid receptor subtypes and the genes from which they are encoded, pharmacological data does not conform to the predications of a four opioid receptor model. Instead, current studies of opioid pharmacology suggest the existence of additional receptor subtypes; however, no additional opioid receptor subtype has been identified to date. It is now understood that this discrepancy is due to the generation of multiple isoforms of opioid receptor subtypes. While several mechanisms are utilized to generate these isoforms, the primary mechanism involves alternative splicing of the pre-mRNA transcript. Extensive alternative splicing patterns for opioid receptors have since been identified and discrepancies in opioid pharmacology are now partially attributed to variable expression of these isoforms. Recent studies have been successful in characterizing the localization of these isoforms as well as their specificity in ligand binding; however, the regulation of opioid receptor splicing specificity is poorly characterized. Furthermore, the functional significance of individual receptor isoforms and the extent to which opioid- and/or HIV-mediated changes in the opioid receptor isoform profile contributes to altered opioid pharmacology or the well-known physiological role of opioids in the exacerbation of HIV neurocognitive dysfunction is unknown. As such, the current review details constitutive splicing mechanisms as well as the specific architecture of opioid receptor genes, transcripts, and receptors in order to highlight the current understanding of opioid receptor isoforms, potential mechanisms of their regulation and signaling, and their functional significance in both opioid pharmacology and HIV-associated neuropathology. PMID:26529364

  5. Acetylcholinesterase Inhibitors and Drugs Acting on Muscarinic Receptors- Potential Crosstalk of Cholinergic Mechanisms During Pharmacological Treatment

    PubMed Central

    Soukup, Ondrej; Winder, Michael; Killi, Uday Kumar; Wsol, Vladimir; Jun, Daniel; Kuca, Kamil; Tobin, Gunnar

    2017-01-01

    Background Pharmaceuticals with targets in the cholinergic transmission have been used for decades and are still fundamental treatments in many diseases and conditions today. Both the transmission and the effects of the somatomotoric and the parasympathetic nervous systems may be targeted by such treatments. Irrespective of the knowledge that the effects of neuronal signalling in the nervous systems may include a number of different receptor subtypes of both the nicotinic and the muscarinic receptors, this complexity is generally overlooked when assessing the mechanisms of action of pharmaceuticals. Methods We have search of bibliographic databases for peer-reviewed research literature focused on the cholinergic system. Also, we have taken advantage of our expertise in this field to deduce the conclusions of this study. Results Presently, the life cycle of acetylcholine, muscarinic receptors and their effects are reviewed in the major organ systems of the body. Neuronal and non-neuronal sources of acetylcholine are elucidated. Examples of pharmaceuticals, in particular cholinesterase inhibitors, affecting these systems are discussed. The review focuses on salivary glands, the respiratory tract and the lower urinary tract, since the complexity of the interplay of different muscarinic receptor subtypes is of significance for physiological, pharmacological and toxicological effects in these organs. Conclusion Most pharmaceuticals targeting muscarinic receptors are employed at such large doses that no selectivity can be expected. However, some differences in the adverse effect profile of muscarinic antagonists may still be explained by the variation of expression of muscarinic receptor subtypes in different organs. However, a complex pattern of interactions between muscarinic receptor subtypes occurs and needs to be considered when searching for selective pharmaceuticals. In the development of new entities for the treatment of for instance pesticide intoxication, the muscarinic receptor selectivity needs to be considered. Reactivators generally have a muscarinic M2 receptor acting profile. Such a blockade may engrave the situation since it may enlarge the effect of the muscarinic M3 receptor effect. This may explain why respiratory arrest is the major cause for deaths by esterase blocking. PMID:27281175

  6. A chimeric virus created by DNA shuffling of the capsid genes of different subtypes of porcine circovirus type 2 (PCV2) in the backbone of the non-pathogenic PCV1 induces protective immunity against the predominant PCV2b and the emerging PCV2d in pigs.

    PubMed

    Matzinger, Shannon R; Opriessnig, Tanja; Xiao, Chao-Ting; Catanzaro, Nicholas; Beach, Nathan M; Slade, David E; Nitzel, Gregory P; Meng, Xiang-Jin

    2016-11-01

    Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-associated disease (PCVAD). Available commercial vaccines all target PCV2a subtype, although the circulating predominant subtype worldwide is PCV2b, and the emerging PCV2d subtype is also increasingly associated with PCVAD. Here we molecularly bred genetically-divergent strains representing PCV2a, PCV2b, PCV2c, PCV2d, and "divergent PCV2a" subtypes by DNA-shuffling of the capsid genes to produce a chimeric virus representing PCV2 global genetic diversity. When placed in the PCV2a backbone, one chimeric virus (PCV2-3cl14) induced higher neutralizing antibody titers against different PCV2 subtypes. Subsequently, a candidate vaccine (PCV1-3cl14) was produced by cloning the shuffled 3cl14 capsid into the backbone of the non-pathogenic PCV1. A vaccine efficacy study revealed that chimeric virus PCV1-3cl14 induces protective immunity against challenge with PCV2b or PCV2d in pigs. The chimeric PCV1-3cl14 virus is a strong candidate for a novel vaccine in pigs infected with variable PCV2 strains. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Discovery of a new class of ionotropic glutamate receptor antagonists by the rational design of (2S,3R)-3-(3-carboxyphenyl)-pyrrolidine-2-carboxylic acid.

    PubMed

    Larsen, Ann M; Venskutonytė, Raminta; Valadés, Elena Antón; Nielsen, Birgitte; Pickering, Darryl S; Bunch, Lennart

    2011-02-16

    The kainic acid (KA) receptors belong to the class of glutamate (Glu) receptors in the brain and constitute a promising target for the treatment of neurological and/or psychiatric diseases such as schizophrenia, major depression, and epilepsy. Five KA subtypes have been identified and named GluK1-5. In this article, we present the discovery of (2S,3R)-3-(3-carboxyphenyl)-pyrrolidine-2-carboxylic acid (1) based on a rational design process. Target compound 1 was synthesized by a stereoselective strategy in 10 steps from commercially available starting materials. Binding affinities of 1 at native ionotropic Glu receptors were determined to be in the micromolar range (AMPA, 51 μM; KA, 22 μM; NMDA 6 μM), with the highest affinity for cloned homomeric KA receptor subtypes GluK1,3 (3.0 and 8.1 μM, respectively). Functional characterization of 1 by two electrode voltage clamp (TEVC) electrophysiology at a nondesensitizing mutant of GluK1 showed full competitive antagonistic behavior with a K(b) of 11.4 μM.

  8. P2Y6 Receptor Activation Promotes Inflammation and Tissue Remodeling in Pulmonary Fibrosis

    PubMed Central

    Müller, Tobias; Fay, Susanne; Vieira, Rodolfo Paula; Karmouty-Quintana, Harry; Cicko, Sanja; Ayata, Cemil Korcan; Zissel, Gernot; Goldmann, Torsten; Lungarella, Giuseppe; Ferrari, Davide; Di Virgilio, Francesco; Robaye, Bernard; Boeynaems, Jean-Marie; Lazarowski, Eduardo R.; Blackburn, Michael R.; Idzko, Marco

    2017-01-01

    Idiopathic pulmonary fibrosis (IPF) is a disease with a poor prognosis and very few available treatment options. The involvement of the purinergic receptor subtypes P2Y2 and P2X7 in fibrotic lung disease has been demonstrated recently. In this study, we investigated the role of P2Y6 receptors in the pathogenesis of IPF in humans and in the animal model of bleomycin-induced lung injury. P2Y6R expression was upregulated in lung structural cells but not in bronchoalveolar lavage (BAL) cells derived from IPF patients as well as in animals following bleomycin administration. Furthermore, BAL fluid levels of the P2Y6R agonist uridine-5′-diphosphate were elevated in animals with bleomycin-induced pulmonary fibrosis. Inflammation and fibrosis following bleomycin administration were reduced in P2Y6R-deficient compared to wild-type animals confirming the pathophysiological relevance of P2Y6R subtypes for fibrotic lung diseases. Experiments with bone marrow chimeras revealed the importance of P2Y6R expression on lung structural cells for pulmonary inflammation and fibrosis. Similar effects were obtained when animals were treated with the P2Y6R antagonist MRS2578. In vitro studies demonstrated that proliferation and secretion of the pro-inflammatory/pro-fibrotic cytokine IL-6 by lung fibroblasts are P2Y6R-mediated processes. In summary, our results clearly demonstrate the involvement of P2Y6R subtypes in the pathogenesis of pulmonary fibrosis. Thus, blocking pulmonary P2Y6 receptors might be a new target for the treatment of IPF. PMID:28878780

  9. [Correlations between apparent diffusion coefficient in diffusion?weighted magnetic resonance imaging and molecular subtypes of invasive breast cancer masses].

    PubMed

    Shang, Liu-Tong; Yang, Jia-Fei; Lu, Jing; Wang, Ting-Ting; Zhou, Ying; Xing, Xin-Bo; Wang, Xin-Kun; Yang, Shu-Hui; Hu, Ming-Yan

    2017-10-20

    To study the correlation of apparent diffusion coefficient (ADC) measured by diffusion-weighted magnetic resonance imaging (MRI) with the molecular subtypes and biological prognostic factors of invasive breast cancer masses. Breast MRI data (including dynamic enhanced and diffusion-weighted imaging) were collected from 64 patients with pathologically confirmed invasive breast cancer masses (a total of 69 lesions). The mean ADC values of the lesions were calculated and their correlations were analyzed with the 5 molecular subtypes of invasive breast cancer and the biological prognostic factors including estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor 2 (HER2), and Ki-67 index. The ADC values did not differ significantly among the 5 molecular subtypes of invasive breast cancer masses (P>0.05) or among lesions with different ER, PR, or HER2 status (P>0.05). The mean ADC values were significantly higher in Ki-67-positive lesions than in the negative lesions (P=0.023 and negatively correlated with the expressions of Ki-67 (r=-0.249). ADC value can not be used to identify the molecular subtypes of invasive breast cancer masses or to evaluate the biological prognosis of the lesions, but its correlation with Ki-67 expression may help in prognostic evaluation and guiding clinical therapy of the tumors.

  10. Detection of angiotensin II binding to single adrenal zona glomerulosa cells by confocal Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    McCoy, Michael J.; Habermann, Timothy J.; Hanke, Craig J.; Adar, Fran; Campbell, William B.; Nithipatikom, Kasem

    1999-04-01

    We developed a confocal Raman microspectroscopic technique to study ligand-receptor bindings in single cells using Raman-labeled ligands and surface-enhanced Raman scattering (SERS). The adrenal zona glomerulosa (ZG) cells were used as a model in this study. ZG cells have a high density of angiotensin II (AII) receptors on the cellular membrane. There are two identified subtypes of AII receptors,namely AT1 and AT2 receptors. AII is a peptidic hormone, which upon binding to its receptors, stimulates the release of aldosterone from ZG cells. The cellular localization of these receptors subtypes was detected in single ZG cells by using immunocomplexation of receptors with specific antibodies and confocal Raman microspectroscopy. In the binding study, we used biotin-labeled AII to bind to its receptors in ZG cells. Then, avidin and Raman-labeled AII. The binding was measure directly on the single ZG cells. The results showed that the binding was displaced with unlabeled AII and specific AII antagonists. This is a rapid and sensitive technique for detection of cellular ligand bindings as well as antagonists screening in drug discovery.

  11. Design, synthesis, and action of oxotremorine-related hybrid-type allosteric modulators of muscarinic acetylcholine receptors.

    PubMed

    Disingrini, Teresa; Muth, Mathias; Dallanoce, Clelia; Barocelli, Elisabetta; Bertoni, Simona; Kellershohn, Kerstin; Mohr, Klaus; De Amici, Marco; Holzgrabe, Ulrike

    2006-01-12

    A novel series of muscarinic receptor ligands of the hexamethonio-type was prepared which contained, on one side, the phthalimidopropane or 1,8-naphthalimido-2,2-dimethylpropane moiety typical for subtype selective allosteric antagonists and, on the other, the acetylenic fragment typical for the nonselective orthosteric muscarinic agonists oxotremorine, oxotremorine-M, and related muscarinic agonists. Binding experiments in M(2) receptors using [(3)H]N-methylscopolamine as an orthosteric probe proved an allosteric action of both groups of hybrids, 7a-10a and 8b-10b. The difference in activity between a-group and b-group hybrids corresponded with the activity difference between the allosteric parent compounds. In M(1)-M(3) muscarinic isolated organ preparations, most of the hybrids behaved as subtype selective antagonists. [(35)S]GTPgammaS binding assays using human M(2) receptors overexpressed in CHO cells revealed that a weak intrinsic efficacy was preserved in 8b-10b. Thus, attaching muscarinic allosteric antagonist moieties to orthosteric muscarinic agonists may lead to hybrid compounds in which functions of both components are mixed.

  12. Synthesis, Biophysical, and Pharmacological Evaluation of the Melanocortin Agonist AST3-88: Modifications of Peptide Backbone at Trp 7 Position Lead to a Potent, Selective, and Stable Ligand of the Melanocortin 4 Receptor (MC4R)

    PubMed Central

    2015-01-01

    The melanocortin-3 (MC3R) and melanocortin-4 (MC4R) receptors are expressed in the brain and are implicated in the regulation of food intake and energy homeostasis. The endogenous agonist ligands for these receptors (α-, β-, γ-MSH and ACTH) are linear peptides with limited receptor subtype selectivity and metabolic stability, thus minimizing their use as probes to characterize the overlapping pharmacological and physiological functions of the melanocortin receptor subtypes. In the present study, an engineered template, in which the peptide backbone was modified by a heterocyclic reverse turn mimetic at the Trp7 residue, was synthesized using solid phase peptide synthesis and characterized by a β-galactosidase cAMP based reporter gene assay. The functional assay identified a ∼5 nM mouse MC4R agonist (AST3-88) with more than 50-fold selectivity over the mMC3R. Biophysical studies (2D 1H NMR spectroscopy and molecular dynamics) of AST3-88 identified a type VIII β-turn secondary structure spanning the pharmacophore domain stabilized by the intramolecular interactions between the side chains of the His and Trp residues. Enzymatic studies of AST3-88 revealed enhanced stability of AST3-88 over the α-MSH endogenous peptide in rat serum. Upon central administration of AST3-88 into rats, a decreased food intake response was observed. This is the first study to probe the in vivo physiological activity of this engineered peptide-heterocycle template. These findings advance the present knowledge of pharmacophore design for potent, selective, and metabolically stable melanocortin ligands. PMID:25141170

  13. Ipsilateral feeding-specific circuits between the nucleus accumbens shell and the lateral hypothalamus: regulation by glutamate and GABA receptor subtypes.

    PubMed

    Urstadt, Kevin R; Kally, Peter; Zaidi, Sana F; Stanley, B Glenn

    2013-04-01

    The nucleus accumbens shell (AcbSh) and the lateral hypothalamus (LH) are both involved in the control of food intake. Activation of GABA(A) receptors or blockade of AMPA and kainate receptors within the AcbSh induces feeding, as does blockade of GABA(A) receptors or activation of NMDA receptors in the LH. Further, evidence suggests that feeding induced via the AcbSh can be suppressed by LH inhibition. However, it is unclear if this suppression is specific to feeding. Adult male Sprague-Dawley rats with 3 intracranial guide cannulas, one unilaterally into the AcbSh and two bilaterally into the LH, were used to explore this issue. DNQX (1.25 μg) or muscimol (100 ng) infused into the AcbSh unilaterally elicited feeding, and this elicited intake was suppressed by bilateral LH injection of d-AP5 (2 μg) or muscimol (25 ng). The effectiveness of d-AP5 or muscimol infusion into either the LH site ipsilateral or contralateral to the AcbSh injection was compared. Ipsilateral LH injection of d-AP5 or muscimol was significantly more effective than contralateral injection in suppressing food intake initiated by AcbSh injection of DNQX or muscimol. These results add to the prior evidence that inhibition of the LH through pharmacological modulation of NMDA or GABA(A) receptors specifically suppresses feeding initiated by AcbSh inhibition, and that these two regions communicate via an ipsilateral circuit to specifically regulate feeding. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Differential regulation of primary afferent input to spinal cord by muscarinic receptor subtypes delineated using knockout mice.

    PubMed

    Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin

    2014-05-16

    Stimulation of muscarinic acetylcholine receptors (mAChRs) inhibits nociceptive transmission at the spinal level. However, it is unclear how each mAChR subtype regulates excitatory synaptic input from primary afferents. Here we examined excitatory postsynaptic currents (EPSCs) of dorsal horn neurons evoked by dorsal root stimulation in spinal cord slices from wild-type and mAChR subtype knock-out (KO) mice. In wild-type mice, mAChR activation with oxotremorine-M decreased the amplitude of monosynaptic EPSCs in ∼67% of neurons but increased it in ∼10% of neurons. The inhibitory effect of oxotremorine-M was attenuated by the M2/M4 antagonist himbacine in the majority of neurons, and the remaining inhibition was abolished by group II/III metabotropic glutamate receptor (mGluR) antagonists in wild-type mice. In M2/M4 double-KO mice, oxotremorine-M inhibited monosynaptic EPSCs in significantly fewer neurons (∼26%) and increased EPSCs in significantly more neurons (33%) compared with wild-type mice. Blocking group II/III mGluRs eliminated the inhibitory effect of oxotremorine-M in M2/M4 double-KO mice. In M2 single-KO and M4 single-KO mice, himbacine still significantly reduced the inhibitory effect of oxotremorine-M. However, the inhibitory and potentiating effects of oxotremorine-M on EPSCs in M3 single-KO and M1/M3 double-KO mice were similar to those in wild-type mice. In M5 single-KO mice, oxotremorine-M failed to potentiate evoked EPSCs, and its inhibitory effect was abolished by himbacine. These findings indicate that activation of presynaptic M2 and M4 subtypes reduces glutamate release from primary afferents. Activation of the M5 subtype either directly increases primary afferent input or inhibits it through indirectly stimulating group II/III mGluRs. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Differential Regulation of Primary Afferent Input to Spinal Cord by Muscarinic Receptor Subtypes Delineated Using Knockout Mice*

    PubMed Central

    Chen, Shao-Rui; Chen, Hong; Yuan, Wei-Xiu; Wess, Jürgen; Pan, Hui-Lin

    2014-01-01

    Stimulation of muscarinic acetylcholine receptors (mAChRs) inhibits nociceptive transmission at the spinal level. However, it is unclear how each mAChR subtype regulates excitatory synaptic input from primary afferents. Here we examined excitatory postsynaptic currents (EPSCs) of dorsal horn neurons evoked by dorsal root stimulation in spinal cord slices from wild-type and mAChR subtype knock-out (KO) mice. In wild-type mice, mAChR activation with oxotremorine-M decreased the amplitude of monosynaptic EPSCs in ∼67% of neurons but increased it in ∼10% of neurons. The inhibitory effect of oxotremorine-M was attenuated by the M2/M4 antagonist himbacine in the majority of neurons, and the remaining inhibition was abolished by group II/III metabotropic glutamate receptor (mGluR) antagonists in wild-type mice. In M2/M4 double-KO mice, oxotremorine-M inhibited monosynaptic EPSCs in significantly fewer neurons (∼26%) and increased EPSCs in significantly more neurons (33%) compared with wild-type mice. Blocking group II/III mGluRs eliminated the inhibitory effect of oxotremorine-M in M2/M4 double-KO mice. In M2 single-KO and M4 single-KO mice, himbacine still significantly reduced the inhibitory effect of oxotremorine-M. However, the inhibitory and potentiating effects of oxotremorine-M on EPSCs in M3 single-KO and M1/M3 double-KO mice were similar to those in wild-type mice. In M5 single-KO mice, oxotremorine-M failed to potentiate evoked EPSCs, and its inhibitory effect was abolished by himbacine. These findings indicate that activation of presynaptic M2 and M4 subtypes reduces glutamate release from primary afferents. Activation of the M5 subtype either directly increases primary afferent input or inhibits it through indirectly stimulating group II/III mGluRs. PMID:24695732

  16. Multiple receptor subtypes mediate the effects of serotonin on rat subfornical organ neurons

    NASA Technical Reports Server (NTRS)

    Scrogin, K. E.; Johnson, A. K.; Schmid, H. A.

    1998-01-01

    The subfornical organ (SFO) receives significant serotonergic innervation. However, few reports have examined the functional effects of serotonin on SFO neurons. This study characterized the effects of serotonin on spontaneously firing SFO neurons in the rat brain slice. Of 31 neurons tested, 80% responded to serotonin (1-100 microM) with either an increase (n = 15) or decrease (n = 10) in spontaneous activity. Responses to serotonin were dose dependent and persisted after synaptic blockade. Excitatory responses could also be mimicked by the 5-hydroxytryptamine (5-HT)2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI; 1-10 microM) and could be blocked by the 5-HT2A/2C-receptor antagonist LY-53,857 (10 microM). LY-53,857 unmasked inhibitory responses to serotonin in 56% of serotonin-excited cells tested. Serotonin-inhibited cells were also inhibited by the 5-HT1A-receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 1-10 microM; n = 7). The data indicate that SFO neurons are responsive to serotonin via postsynaptic activation of multiple receptor subtypes. The results suggest that excitatory responses to serotonin are mediated by 5-HT2A or 5-HT2C receptors and that inhibitory responses may be mediated by 5-HT1A receptors. In addition, similar percentages of serotonin-excited and -inhibited cells were also sensitive to ANG II. As such the functional relationship between serotonin and ANG II in the SFO remains unclear.

  17. Multiple receptor subtypes mediate the effects of serotonin on rat subfornical organ neurons.

    PubMed

    Scrogin, K E; Johnson, A K; Schmid, H A

    1998-12-01

    The subfornical organ (SFO) receives significant serotonergic innervation. However, few reports have examined the functional effects of serotonin on SFO neurons. This study characterized the effects of serotonin on spontaneously firing SFO neurons in the rat brain slice. Of 31 neurons tested, 80% responded to serotonin (1-100 microM) with either an increase (n = 15) or decrease (n = 10) in spontaneous activity. Responses to serotonin were dose dependent and persisted after synaptic blockade. Excitatory responses could also be mimicked by the 5-hydroxytryptamine (5-HT)2A/2C receptor agonist 2,5-dimethoxy-4-iodoamphetamine (DOI; 1-10 microM) and could be blocked by the 5-HT2A/2C-receptor antagonist LY-53,857 (10 microM). LY-53,857 unmasked inhibitory responses to serotonin in 56% of serotonin-excited cells tested. Serotonin-inhibited cells were also inhibited by the 5-HT1A-receptor agonist 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 1-10 microM; n = 7). The data indicate that SFO neurons are responsive to serotonin via postsynaptic activation of multiple receptor subtypes. The results suggest that excitatory responses to serotonin are mediated by 5-HT2A or 5-HT2C receptors and that inhibitory responses may be mediated by 5-HT1A receptors. In addition, similar percentages of serotonin-excited and -inhibited cells were also sensitive to ANG II. As such the functional relationship between serotonin and ANG II in the SFO remains unclear.

  18. Tarantula huwentoxin-IV inhibits neuronal sodium channels by binding to receptor site 4 and trapping the domain ii voltage sensor in the closed configuration.

    PubMed

    Xiao, Yucheng; Bingham, Jon-Paul; Zhu, Weiguo; Moczydlowski, Edward; Liang, Songping; Cummins, Theodore R

    2008-10-03

    Peptide toxins with high affinity, divergent pharmacological functions, and isoform-specific selectivity are powerful tools for investigating the structure-function relationships of voltage-gated sodium channels (VGSCs). Although a number of interesting inhibitors have been reported from tarantula venoms, little is known about the mechanism for their interaction with VGSCs. We show that huwentoxin-IV (HWTX-IV), a 35-residue peptide from tarantula Ornithoctonus huwena venom, preferentially inhibits neuronal VGSC subtypes rNav1.2, rNav1.3, and hNav1.7 compared with muscle subtypes rNav1.4 and hNav1.5. Of the five VGSCs examined, hNav1.7 was most sensitive to HWTX-IV (IC(50) approximately 26 nM). Following application of 1 microm HWTX-IV, hNav1.7 currents could only be elicited with extreme depolarizations (>+100 mV). Recovery of hNav1.7 channels from HWTX-IV inhibition could be induced by extreme depolarizations or moderate depolarizations lasting several minutes. Site-directed mutagenesis analysis indicated that the toxin docked at neurotoxin receptor site 4 located at the extracellular S3-S4 linker of domain II. Mutations E818Q and D816N in hNav1.7 decreased toxin affinity for hNav1.7 by approximately 300-fold, whereas the reverse mutations in rNav1.4 (N655D/Q657E) and the corresponding mutations in hNav1.5 (R812D/S814E) greatly increased the sensitivity of the muscle VGSCs to HWTX-IV. Our data identify a novel mechanism for sodium channel inhibition by tarantula toxins involving binding to neurotoxin receptor site 4. In contrast to scorpion beta-toxins that trap the IIS4 voltage sensor in an outward configuration, we propose that HWTX-IV traps the voltage sensor of domain II in the inward, closed configuration.

  19. Role of gamma-aminobutyric acid type A (GABAA) receptor subtypes in acute benzodiazepine physical dependence-like effects: evidence from squirrel monkeys responding under a schedule of food presentation

    PubMed Central

    Fischer, Bradford D.; Teixeira, Laura P.; van Linn, Michael L.; Namjoshi, Ojas A.; Cook, James M.; Rowlett, James K.

    2013-01-01

    Rationale Assays of schedule-controlled responding can be used to characterize the pharmacology of benzodiazepines and other GABAA receptor modulators, and are sensitive to changes in drug effects that are related to physical dependence. Objective The present study used this approach to investigate the role of GABAA receptor subtypes in mediating dependence-like effects following benzodiazepine administration. Methods Squirrel monkeys (n=6) were trained on a fixed-ratio schedule of food reinforcement. Initially, the response rate-decreasing effects of chlordiazepoxide (0.1–10 mg/kg; nonselective GABAA receptor agonist), zolpidem (0.032–1.0 mg/kg; α1 subunit-containing GABAA subtype-preferring agonist) and HZ-166 (0.1–10 mg/kg; functionally selective α2 and α3 subunit-containing GABAA receptor agonist) were assessed. Next, acute dependence-like effects following single injections of chlordiazepoxide, zolpidem and HZ-166 were assessed with flumazenil (0.1–3.2 mg/kg; nonselective GABAA receptor antagonist). Finally, acute dependence-like effects following zolpidem administration were assessed with βCCt and 3-PBC (0.1–3.2 mg/kg and 0.32–10 mg/kg, respectively; α1 subunit-containing GABAA receptor antagonists). Results Chlordiazepoxide, zolpidem and HZ-166 produced dose- and time-dependent decreases in response rates, whereas flumazenil, βCCt and 3-PBC were ineffective. After the drug effects waned, flumazenil produced dose-dependent decreases in response rates following administration of 10 mg/kg chlordiazepoxide and 1.0 mg/kg zolpidem, but not following any dose of HZ-166. Further, both βCCt and 3-PBC produced dose-dependent decreases in response rates when administered after 1.0 mg/kg zolpidem. Conclusions These data raise the possibility that α1 subunit-containing GABAA receptors play a major role in physical dependence-related behaviors following a single injection of a benzodiazepine. PMID:23354533

  20. Role of gamma-aminobutyric acid type A (GABAA) receptor subtypes in acute benzodiazepine physical dependence-like effects: evidence from squirrel monkeys responding under a schedule of food presentation.

    PubMed

    Fischer, Bradford D; Teixeira, Laura P; van Linn, Michael L; Namjoshi, Ojas A; Cook, James M; Rowlett, James K

    2013-05-01

    Assays of schedule-controlled responding can be used to characterize the pharmacology of benzodiazepines and other GABAA receptor modulators, and are sensitive to changes in drug effects that are related to physical dependence. The present study used this approach to investigate the role of GABAA receptor subtypes in mediating dependence-like effects following benzodiazepine administration. Squirrel monkeys (n = 6) were trained on a fixed-ratio schedule of food reinforcement. Initially, the response rate-decreasing effects of chlordiazepoxide (0.1-10 mg/kg; nonselective GABAA receptor agonist), zolpidem (0.032-1.0 mg/kg; α1 subunit-containing GABAA subtype-preferring agonist), and HZ-166 (0.1-10 mg/kg; functionally selective α2 and α3 subunit-containing GABAA receptor agonist) were assessed. Next, acute dependence-like effects following single injections of chlordiazepoxide, zolpidem, and HZ-166 were assessed with flumazenil (0.1-3.2 mg/kg; nonselective GABAA receptor antagonist). Finally, acute dependence-like effects following zolpidem administration were assessed with βCCt and 3-PBC (0.1-3.2 mg/kg and 0.32-10 mg/kg, respectively; α1 subunit-containing GABAA receptor antagonists). Chlordiazepoxide, zolpidem, and HZ-166 produced dose- and time-dependent decreases in response rates, whereas flumazenil, βCCT, and 3-PBC were ineffective. After the drug effects waned, flumazenil produced dose-dependent decreases in response rates following administration of 10 mg/kg chlordiazepoxide and 1.0 mg/kg zolpidem, but not following any dose of HZ-166. Further, both βCCT and 3-PBC produced dose-dependent decreases in response rates when administered after 1.0 mg/kg zolpidem. These data raise the possibility that α1 subunit-containing GABAA receptors play a major role in physical dependence-related behaviors following a single injection of a benzodiazepine.

Top