Sample records for d4 specific binding

  1. Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schormann, Norbert; Banerjee, Surajit; Ricciardi, Robert

    Background: Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized. Results: This manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This alsomore » represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. In comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in other organisms. Conclusion: The first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.« less

  2. Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA glycosylase

    DOE PAGES

    Schormann, Norbert; Banerjee, Surajit; Ricciardi, Robert; ...

    2015-06-02

    Background: Uracil-DNA glycosylases are evolutionarily conserved DNA repair enzymes. However, vaccinia virus uracil-DNA glycosylase (known as D4), also serves as an intrinsic and essential component of the processive DNA polymerase complex during DNA replication. In this complex D4 binds to a unique poxvirus specific protein A20 which tethers it to the DNA polymerase. At the replication fork the DNA scanning and repair function of D4 is coupled with DNA replication. So far, DNA-binding to D4 has not been structurally characterized. Results: This manuscript describes the first structure of a DNA-complex of a uracil-DNA glycosylase from the poxvirus family. This alsomore » represents the first structure of a uracil DNA glycosylase in complex with an undamaged DNA. In the asymmetric unit two D4 subunits bind simultaneously to complementary strands of the DNA double helix. Each D4 subunit interacts mainly with the central region of one strand. DNA binds to the opposite side of the A20-binding surface on D4. In comparison of the present structure with the structure of uracil-containing DNA-bound human uracil-DNA glycosylase suggests that for DNA binding and uracil removal D4 employs a unique set of residues and motifs that are highly conserved within the poxvirus family but different in other organisms. Conclusion: The first structure of D4 bound to a truly non-specific undamaged double-stranded DNA suggests that initial binding of DNA may involve multiple non-specific interactions between the protein and the phosphate backbone.« less

  3. Carbohydrate Recognition by an Architecturally Complex α-N-Acetylglucosaminidase from Clostridium perfringens

    PubMed Central

    Ficko-Blean, Elizabeth; Stuart, Christopher P.; Suits, Michael D.; Cid, Melissa; Tessier, Matthew; Woods, Robert J.; Boraston, Alisdair B.

    2012-01-01

    CpGH89 is a large multimodular enzyme produced by the human and animal pathogen Clostridium perfringens. The catalytic activity of this exo-α-d-N-acetylglucosaminidase is directed towards a rare carbohydrate motif, N-acetyl-β-d-glucosamine-α-1,4-d-galactose, which is displayed on the class III mucins deep within the gastric mucosa. In addition to the family 89 glycoside hydrolase catalytic module this enzyme has six modules that share sequence similarity to the family 32 carbohydrate-binding modules (CBM32s), suggesting the enzyme has considerable capacity to adhere to carbohydrates. Here we suggest that two of the modules, CBM32-1 and CBM32-6, are not functional as carbohydrate-binding modules (CBMs) and demonstrate that three of the CBMs, CBM32-3, CBM32-4, and CBM32-5, are indeed capable of binding carbohydrates. CBM32-3 and CBM32-4 have a novel binding specificity for N-acetyl-β-d-glucosamine-α-1,4-d-galactose, which thus complements the specificity of the catalytic module. The X-ray crystal structure of CBM32-4 in complex with this disaccharide reveals a mode of recognition that is based primarily on accommodation of the unique bent shape of this sugar. In contrast, as revealed by a series of X-ray crystal structures and quantitative binding studies, CBM32-5 displays the structural and functional features of galactose binding that is commonly associated with CBM family 32. The functional CBM32s that CpGH89 contains suggest the possibility for multivalent binding events and the partitioning of this enzyme to highly specific regions within the gastrointestinal tract. PMID:22479408

  4. New GlcNAc/GalNAc-specific lectin from the ascidian Didemnum ternatanum.

    PubMed

    Molchanova, Valentina; Chikalovets, Irina; Li, Wei; Kobelev, Stanislav; Kozyrevskaya, Svetlana; Bogdanovich, Raisa; Howard, Eric; Belogortseva, Natalia

    2005-05-25

    Previously we isolated GlcNAc-specific lectin (DTL) from the ascidian Didemnum ternatanum by affinity chromatography on cross-linked ovalbumin. Here we report the purification and characterization of new D-GlcNAc/D-GalNAc-specific lectin DTL-A from the same ascidian. This lectin was isolated from non-bound cross-linked ovalbumin fraction and further was purified by gel filtration on Sepharose CL-4B, affinity chromatography on GlcNAc-agarose and gel filtration on Superdex 200. SDS-polyacrylamide gel electrophoresis and gel filtration of purified lectin on Sepharose CL-4B indicates that it exists as large aggregates in the native state. Investigations of the carbohydrate specificity of DTL-A by enzyme-linked lectin assay suggest the multi-specificity of this lectin. DTL-A binds BSM, asialo-BSM as well as heparin and dextran sulfate. The binding of DTL-A to BSM was inhibited by monosaccharides D-GlcNAc and D-GalNAc, their alpha- but not beta-anomers. Among polysaccharides and glycoconjugates, DTL-A binding to BSM was effectively inhibited by BSM, asialo-BSM, pronase-treated BSM and synthetic alpha-D-GalNAc-PAA. Fetuin and asialofetuin showed a much lower inhibitory potency, heparin and dextran sulfate were noninhibitory. On the other hand, DTL-A binding to heparin was effectively inhibited by dextran sulfate, fucoidan, whereas BSM showed insignificantly inhibitory effect. DTL-A binding to heparin was not inhibited by D-GlcNAc and D-GalNAc.

  5. DNA binding specificity of the basic-helix-loop-helix protein MASH-1.

    PubMed

    Meierhan, D; el-Ariss, C; Neuenschwander, M; Sieber, M; Stackhouse, J F; Allemann, R K

    1995-09-05

    Despite the high degree of sequence similarity in their basic-helix-loop-helix (BHLH) domains, MASH-1 and MyoD are involved in different biological processes. In order to define possible differences between the DNA binding specificities of these two proteins, we investigated the DNA binding properties of MASH-1 by circular dichroism spectroscopy and by electrophoretic mobility shift assays (EMSA). Upon binding to DNA, the BHLH domain of MASH-1 underwent a conformational change from a mainly unfolded to a largely alpha-helical form, and surprisingly, this change was independent of the specific DNA sequence. The same conformational transition could be induced by the addition of 20% 2,2,2-trifluoroethanol. The apparent dissociation constants (KD) of the complexes of full-length MASH-1 with various oligonucleotides were determined from half-saturation points in EMSAs. MASH-1 bound as a dimer to DNA sequences containing an E-box with high affinity KD = 1.4-4.1 x 10(-14) M2). However, the specificity of DNA binding was low. The dissociation constant for the complex between MASH-1 and the highest affinity E-box sequence (KD = 1.4 x 10(-14) M2) was only a factor of 10 smaller than for completely unrelated DNA sequences (KD = approximately 1 x 10(-13) M2). The DNA binding specificity of MASH-1 was not significantly increased by the formation of an heterodimer with the ubiquitous E12 protein. MASH-1 and MyoD displayed similar binding site preferences, suggesting that their different target gene specificities cannot be explained solely by differential DNA binding. An explanation for these findings is provided on the basis of the known crystal structure of the BHLH domain of MyoD.

  6. Specific ganglioside binding to receptor sites on T lymphocytes that couple to ganglioside-induced decrease of CD4 expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, W.J.; Offner, H.; Vandenbark, A.A.

    1989-01-01

    The binding of different gangliosides to rat T-helper lymphocytes was characterized under conditions that decrease CD4 expression on different mammalian T-helper lymphoctyes. Saturation binding by monosialylated ({sub 3}H)-GM{sub 1} to rat T-lymphocytes was time- and temperature-dependent, had a dissociation constant (K{sub D}) of 2.2 {plus minus} 1.4 {mu}M and a binding capacity near 2 fmoles/cell. Competitive inhibition of ({sup 3}H)- GM{sub 1} binding demonstrated a structural-activity related to the number of unconstrained sialic acid moieties on GM{sub 1}-congeneric gangliosides. A comparison between the results of these binding studies and gangliosides-induced decrease of CD4 expression demonstrated that every aspect of ({supmore » 3}H)-GM{sub 1} binding concurs with ganglioside modulation of CD4 expression. It is concluded that the specific decrease of CD4 expression induced by pretreatment with gangliosides involves the initial process of gangliosides binding to specific sites on CD4{sup {double dagger}} T-helper lymphocytes.« less

  7. Ammonium Ion Binding to DNA G-Quadruplexes: Do Electrospray Mass Spectra Faithfully Reflect the Solution-Phase Species?

    NASA Astrophysics Data System (ADS)

    Balthasart, Françoise; Plavec, Janez; Gabelica, Valérie

    2013-01-01

    G-quadruplex nucleic acids can bind ammonium ions in solution, and these complexes can be detected by electrospray mass spectrometry (ESI-MS). However, because ammonium ions are volatile, the extent to which ESI-MS quantitatively could provide an accurate reflection of such solution-phase equilibria is unclear. Here we studied five G-quadruplexes having known solution-phase structure and ammonium ion binding constants: the bimolecular G-quadruplexes (dG4T4G4)2, (dG4T3G4)2, and (dG3T4G4)2, and the intramolecular G-quadruplexes dG4(T4G4)3 and dG2T2G2TGTG2T2G2 (thrombin binding aptamer). We found that not all mass spectrometers are equally suited to reflect the solution phase species. Ion activation can occur in the electrospray source, or in a high-pressure traveling wave ion mobility cell. When the softest instrumental conditions are used, ammonium ions bound between G-quartets, but also additional ammonium ions bound at specific sites outside the external G-quartets, can be observed. However, even specifically bound ammonium ions are in some instances too labile to be fully retained in the gas phase structures, and although the ammonium ion distribution observed by ESI-MS shows biases at specific stoichiometries, the relative abundances in solution are not always faithfully reflected. Ion mobility spectrometry results show that all inter-quartet ammonium ions are necessary to preserve the G-quadruplex fold in the gas phase. Ion mobility experiments, therefore, help assign the number of inner ammonium ions in the solution phase structure.[Figure not available: see fulltext.

  8. Evidence that forskolin binds to the glucose transporter of human erythrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavis, V.R.; Lee, D.P.; Shenolikar, S.

    1987-10-25

    Binding of (4-/sup 3/H)cytochalasin B and (12-/sup 3/H)forskolin to human erythrocyte membranes was measured by a centrifugation method. Glucose-displaceable binding of cytochalasin B was saturable, with KD = 0.11 microM, and maximum binding approximately 550 pmol/mg of protein. Forskolin inhibited the glucose-displaceable binding of cytochalasin B in an apparently competitive manner, with K1 = 3 microM. Glucose-displaceable binding of (12-/sup 3/H)forskolin was also saturable, with KD = 2.6 microM and maximum binding approximately equal to 400 pmol/mg of protein. The following compounds inhibited binding of (12-/sup 3/H)forskolin and (4-/sup 3/H)cytochalasin B equivalently, with relative potencies parallel to their reported affinitiesmore » for the glucose transport system: cytochalasins A and D, dihydrocytochalasin B, L-rhamnose, L-glucose, D-galactose, D-mannose, D-glucose, 2-deoxy-D-glucose, 3-O-methyl-D-glucose, phloretin, and phlorizin. A water-soluble derivative of forskolin, 7-hemisuccinyl-7-desacetylforskolin, displaced equivalent amounts of (4-/sup 3/H)cytochalasin B or (12-/sup 3/H)forskolin. Rabbit erythrocyte membranes, which are deficient in glucose transporter, did not bind either (4-/sup 3/H)cytochalasin B or (12-/sup 3/H)forskolin in a glucose-displaceable manner. These results indicate that forskolin, in concentrations routinely employed for stimulation of adenylate cyclase, binds to the glucose transporter. Endogenous ligands with similar specificities could be important modulators of cellular metabolism.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dissanayake, V.U.; Hughes, J.; Hunter, J.C.

    The specific binding of the selective {mu}-, {delta}-, and {kappa}-opioid ligands (3H)(D-Ala2,MePhe4,Gly-ol5)enkephalin ((3H) DAGOL), (3H)(D-Pen2,D-Pen5)enkephalin ((3H)DPDPE), and (3H)U69593, respectively, to crude membranes of the guinea pig and rat whole kidney, kidney cortex, and kidney medulla was investigated. In addition, the distribution of specific 3H-opioid binding sites in the guinea pig and rat kidney was visualized by autoradiography. Homogenate binding and autoradiography demonstrated the absence of {mu}- and {kappa}-opioid binding sites in the guinea pig kidney. No opioid binding sites were demonstrable in the rat kidney. In the guinea pig whole kidney, cortex, and medulla, saturation studies demonstrated that (3H)DPDPE boundmore » with high affinity (KD = 2.6-3.5 nM) to an apparently homogeneous population of binding sites (Bmax = 8.4-30 fmol/mg of protein). Competition studies using several opioid compounds confirmed the nature of the {delta}-opioid binding site. Autoradiography experiments demonstrated that specific (3H)DPDPE binding sites were distributed radially in regions of the inner and outer medulla and at the corticomedullary junction of the guinea pig kidney. Computer-assisted image analysis of saturation data yielded KD values (4.5-5.0 nM) that were in good agreement with those obtained from the homogenate binding studies. Further investigation of the {delta}-opioid binding site in medulla homogenates, using agonist ((3H)DPDPE) and antagonist ((3H)diprenorphine) binding in the presence of Na+, Mg2+, and nucleotides, suggested that the {delta}-opioid site is linked to a second messenger system via a GTP-binding protein. Further studies are required to establish the precise localization of the {delta} binding site in the guinea pig kidney and to determine the nature of the second messenger linked to the GTP-binding protein in the medulla.« less

  10. Human basic fibroblast growth factor fused with Kringle4 peptide binds to a fibrin scaffold and enhances angiogenesis.

    PubMed

    Zhao, Wenxue; Han, Qianqian; Lin, Hang; Sun, Wenjie; Gao, Yuan; Zhao, Yannan; Wang, Bin; Wang, Xia; Chen, Bing; Xiao, Zhifeng; Dai, Jianwu

    2009-05-01

    Appropriate three-dimensional (3D) scaffolds and signal molecules could accelerate tissue regeneration and wound repair. In this work, we targeted human basic fibroblast growth factor (bFGF), a potent angiogenic factor, to a fibrin scaffold to improve therapeutic angiogenesis. We fused bFGF to the Kringle4 domain (K4), a fibrin-binding peptide from human plasminogen, to endow bFGF with specific fibrin-binding ability. The recombinant K4bFGF bound specifically to the fibrin scaffold so that K4bFGF was delivered in a site-specific manner, and the fibrin scaffold provided 3D support for cell migration and proliferation. Subcutaneous implantation of the fibrin scaffolds bound with K4bFGF but not with bFGF induced neovascularization. Immunohistochemical analysis showed significantly more proliferation cells in the fibrin scaffolds incorporated with K4bFGF than in those with bFGF. Moreover, the regenerative tissues were integrated well with the fibrin scaffolds, suggesting its good biocompatibility. In summary, targeted delivery of K4bFGF could potentially improve therapeutic angiogenesis.

  11. Structural insights into the difference in substrate recognition of two mannoside phosphorylases from two GH130 subfamilies.

    PubMed

    Ye, Yuxin; Saburi, Wataru; Odaka, Rei; Kato, Koji; Sakurai, Naofumi; Komoda, Keisuke; Nishimoto, Mamoru; Kitaoka, Motomitsu; Mori, Haruhide; Yao, Min

    2016-03-01

    In Ruminococcus albus, 4-O-β-D-mannosyl-D-glucose phosphorylase (RaMP1) and β-(1,4)-mannooligosaccharide phosphorylase (RaMP2) belong to two subfamilies of glycoside hydrolase family 130. The two enzymes phosphorolyze β-mannosidic linkages at the nonreducing ends of their substrates, and have substantially diverse substrate specificity. The differences in their mechanism of substrate binding have not yet been fully clarified. In the present study, we report the crystal structures of RaMP1 with/without 4-O-β-D-mannosyl-d-glucose and RaMP2 with/without β-(1→4)-mannobiose. The structures of the two enzymes differ at the +1 subsite of the substrate-binding pocket. Three loops are proposed to determine the different substrate specificities. One of these loops is contributed from the adjacent molecule of the oligomer structure. In RaMP1, His245 of loop 3 forms a hydrogen-bond network with the substrate through a water molecule, and is indispensible for substrate binding. © 2016 Federation of European Biochemical Societies.

  12. Monoclonal antibodies to human vitamin D-binding protein.

    PubMed Central

    Pierce, E A; Dame, M C; Bouillon, R; Van Baelen, H; DeLuca, H F

    1985-01-01

    Monoclonal antibodies to vitamin D-binding protein isolated from human serum have been produced. The antibodies obtained have been shown to be specific for human vitamin D-binding protein by three independent assays. The antibodies recognize human vitamin D-binding protein specifically in an enzyme-linked immunosorbent assay. Human vitamin D-binding protein is detected specifically in both pure and crude samples by a radiometric immunosorbent assay (RISA) and by an immunoprecipitation assay. The anti-human vitamin D-binding protein antibodies cross-react with monkey and pig vitamin D-binding protein, but not with vitamin D-binding protein from rat, mouse, or chicken, as determined by the RISA and immunoprecipitation assays. Images PMID:3936035

  13. Synthesis of molecularly imprinted organic-inorganic hybrid azobenzene materials by sol-gel for radiation induced selective recognition of 2,4-dichlorophenoxyacetic acid

    NASA Astrophysics Data System (ADS)

    Shuai Jiang, Guang; An Zhong, Shi; Chen, Lan; Blakey, Idriss; Whitaker, Andrew

    2011-02-01

    A novel photoresponsive functional monomer bearing a siloxane polymerisable group and azobenzene moieties was synthesized. This monomer was then used to prepare photoresponsive molecularly imprinted polymers (MIP), which have specific binding sites for 2,4-dichlorophenoxyacetic acid (2,4-D) through hydrogen bonding moieties. The binding affinity of the imprinted recognition sites was switchable by alternate irradiations with ultraviolet and visible light, suggesting that azobenzene groups located inside the binding sites could be used as chemical sensors and the trans-cis isomerization could regulate the affinity for the 2,4-D. In addition, the concentration of the 2,4-D was able to be quantified by monitoring the trans-to-cis photoisomerization rate constant.

  14. Direct interplay between two candidate genes in FSHD muscular dystrophy

    PubMed Central

    Ferri, Giulia; Huichalaf, Claudia H.; Caccia, Roberta; Gabellini, Davide

    2015-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common neuromuscular disorders. The major form of the disease (FSHD1) is linked to decrease in copy number of a 3.3-kb tandem repeated macrosatellite (D4Z4), located on chromosome 4q35. D4Z4 deletion alters chromatin structure of the locus leading to aberrant expression of nearby 4q35 genes. Given the high variability in disease onset and progression, multiple factors could contribute to the pathogenesis of FSHD. Among the FSHD candidate genes are double homeobox 4 (DUX4), encoded by the most telomeric D4Z4 unit, and FSHD region gene 1 (FRG1). DUX4 is a sequence-specific transcription factor. Here, we located putative DUX4 binding sites in the human FRG1 genomic area and we show specific DUX4 association to these regions. We found also that ectopically expressed DUX4 up-regulates the endogenous human FRG1 gene in healthy muscle cells, while DUX4 knockdown leads to a decrease in FRG1 expression in FSHD muscle cells. Moreover, DUX4 binds directly and specifically to its binding site located in the human FRG1 gene and transactivates constructs containing FRG1 genomic regions. Intriguingly, the mouse Frg1 genomic area lacks DUX4 binding sites and DUX4 is unable to activate the endogenous mouse Frg1 gene providing a possible explanation for the lack of muscle phenotype in DUX4 transgenic mice. Altogether, our results demonstrate that FRG1 is a direct DUX4 transcriptional target uncovering a novel regulatory circuit contributing to FSHD. PMID:25326393

  15. A novel type of peptidoglycan-binding domain highly specific for amidated D-Asp cross-bridge, identified in Lactobacillus casei bacteriophage endolysins.

    PubMed

    Regulski, Krzysztof; Courtin, Pascal; Kulakauskas, Saulius; Chapot-Chartier, Marie-Pierre

    2013-07-12

    Peptidoglycan hydrolases (PGHs) are responsible for bacterial cell lysis. Most PGHs have a modular structure comprising a catalytic domain and a cell wall-binding domain (CWBD). PGHs of bacteriophage origin, called endolysins, are involved in bacterial lysis at the end of the infection cycle. We have characterized two endolysins, Lc-Lys and Lc-Lys-2, identified in prophages present in the genome of Lactobacillus casei BL23. These two enzymes have different catalytic domains but similar putative C-terminal CWBDs. By analyzing purified peptidoglycan (PG) degradation products, we showed that Lc-Lys is an N-acetylmuramoyl-L-alanine amidase, whereas Lc-Lys-2 is a γ-D-glutamyl-L-lysyl endopeptidase. Remarkably, both lysins were able to lyse only Gram-positive bacterial strains that possess PG with D-Ala(4)→D-Asx-L-Lys(3) in their cross-bridge, such as Lactococcus casei, Lactococcus lactis, and Enterococcus faecium. By testing a panel of L. lactis cell wall mutants, we observed that Lc-Lys and Lc-Lys-2 were not able to lyse mutants with a modified PG cross-bridge, constituting D-Ala(4)→L-Ala-(L-Ala/L-Ser)-L-Lys(3); moreover, they do not lyse the L. lactis mutant containing only the nonamidated D-Asp cross-bridge, i.e. D-Ala(4)→D-Asp-L-Lys(3). In contrast, Lc-Lys could lyse the ampicillin-resistant E. faecium mutant with 3→3 L-Lys(3)-D-Asn-L-Lys(3) bridges replacing the wild-type 4→3 D-Ala(4)-D-Asn-L-Lys(3) bridges. We showed that the C-terminal CWBD of Lc-Lys binds PG containing mainly D-Asn but not PG with only the nonamidated D-Asp-containing cross-bridge, indicating that the CWBD confers to Lc-Lys its narrow specificity. In conclusion, the CWBD characterized in this study is a novel type of PG-binding domain targeting specifically the D-Asn interpeptide bridge of PG.

  16. Periplasmic binding protein-based detection of maltose using liposomes: a new class of biorecognition elements in competitive assays.

    PubMed

    Edwards, Katie A; Baeumner, Antje J

    2013-03-05

    A periplasmic binding protein (PBP) was investigated as a novel binding species in a similar manner to an antibody in a competitive enzyme linked immunosorbent assay (ELISA), resulting in a highly sensitive and specific assay utilizing liposome-based signal amplification. PBPs are located at high concentrations (10(-4) M) between the inner and outer membranes of gram negative bacteria and are involved in the uptake of solutes and chemotaxis of bacteria toward nutrient sources. Previous sensors relying on PBPs took advantage of the change in local environment or proximity of site-specific fluorophore labels resulting from the significant conformational shift of these proteins' two globular domains upon target binding. Here, rather than monitoring conformational shifts, we have instead utilized the maltose binding protein (MBP) in lieu of an antibody in an ELISA. To our knowledge, this is the first PBP-based sensor without the requirement for engineering site-specific modifications within the protein. MBP conjugated fluorescent dye-encapsulating liposomes served to provide recognition and signal amplification in a competitive assay for maltose using amylose magnetic beads in a microtiter plate-based format. The development of appropriate binding buffers and competitive surfaces are described, with general observations expected to extend to PBPs for other analytes. The resulting assay was specific for d-(+)-maltose versus other sugar analogs including d-(+)-raffinose, sucrose, d-trehalose, d-(+)-xylose, d-fructose, 1-thio-β-d-glucose sodium salt, d-(+)-galactose, sorbitol, glycerol, and dextrose. Cross-reactivity with d-lactose and d-(+)-glucose occurred only at concentrations >10(4)-fold greater than d-(+)-maltose. The limit of detection was 78 nM with a dynamic range covering over 3 orders of magnitude. Accurate detection of maltose as an active ingredient in a pharmaceutical preparation was demonstrated. This method offers a significant improvement over existing enzymatic detection approaches that cannot discriminate between maltose and glucose and over existing fluorescence resonance energy transfer (FRET)-based detection methods that are sensitivity limited. In addition, it opens up a new strategy for the development of biosensors to difficult analytes refractory to immunological detection.

  17. Molecular determinants of ligand binding modes in the histamine H(4) receptor: linking ligand-based three-dimensional quantitative structure-activity relationship (3D-QSAR) models to in silico guided receptor mutagenesis studies.

    PubMed

    Istyastono, Enade P; Nijmeijer, Saskia; Lim, Herman D; van de Stolpe, Andrea; Roumen, Luc; Kooistra, Albert J; Vischer, Henry F; de Esch, Iwan J P; Leurs, Rob; de Graaf, Chris

    2011-12-08

    The histamine H(4) receptor (H(4)R) is a G protein-coupled receptor (GPCR) that plays an important role in inflammation. Similar to the homologous histamine H(3) receptor (H(3)R), two acidic residues in the H(4)R binding pocket, D(3.32) and E(5.46), act as essential hydrogen bond acceptors of positively ionizable hydrogen bond donors in H(4)R ligands. Given the symmetric distribution of these complementary pharmacophore features in H(4)R and its ligands, different alternative ligand binding mode hypotheses have been proposed. The current study focuses on the elucidation of the molecular determinants of H(4)R-ligand binding modes by combining (3D) quantitative structure-activity relationship (QSAR), protein homology modeling, molecular dynamics simulations, and site-directed mutagenesis studies. We have designed and synthesized a series of clobenpropit (N-(4-chlorobenzyl)-S-[3-(4(5)-imidazolyl)propyl]isothiourea) derivatives to investigate H(4)R-ligand interactions and ligand binding orientations. Interestingly, our studies indicate that clobenpropit (2) itself can bind to H(4)R in two distinct binding modes, while the addition of a cyclohexyl group to the clobenpropit isothiourea moiety allows VUF5228 (5) to adopt only one specific binding mode in the H(4)R binding pocket. Our ligand-steered, experimentally supported protein modeling method gives new insights into ligand recognition by H(4)R and can be used as a general approach to elucidate the structure of protein-ligand complexes.

  18. Targeting lysine specific demethylase 4A (KDM4A) tandem TUDOR domain - A fragment based approach.

    PubMed

    Upadhyay, Anup K; Judge, Russell A; Li, Leiming; Pithawalla, Ron; Simanis, Justin; Bodelle, Pierre M; Marin, Violeta L; Henry, Rodger F; Petros, Andrew M; Sun, Chaohong

    2018-06-01

    The tandem TUDOR domains present in the non-catalytic C-terminal half of the KDM4A, 4B and 4C enzymes play important roles in regulating their chromatin localizations and substrate specificities. They achieve this regulatory role by binding to different tri-methylated lysine residues on histone H3 (H3-K4me3, H3-K23me3) and histone H4 (H4-K20me3) depending upon the specific chromatin environment. In this work, we have used a 2D-NMR based fragment screening approach to identify a novel fragment (1a), which binds to the KDM4A-TUDOR domain and shows modest competition with H3-K4me3 binding in biochemical as well as in vitro cell based assays. A co-crystal structure of KDM4A TUDOR domain in complex with 1a shows that the fragment binds stereo-specifically to the methyl lysine binding pocket forming a network of strong hydrogen bonds and hydrophobic interactions. We anticipate that the fragment 1a can be further developed into a novel allosteric inhibitor of the KDM4 family of enzymes through targeting their C-terminal tandem TUDOR domain. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Murine Anti-vaccinia Virus D8 Antibodies Target Different Epitopes and Differ in Their Ability to Block D8 Binding to CS-E

    PubMed Central

    Matho, Michael H.; de Val, Natalia; Miller, Gregory M.; Brown, Joshua; Schlossman, Andrew; Meng, Xiangzhi; Crotty, Shane; Peters, Bjoern; Xiang, Yan; Hsieh-Wilson, Linda C.; Ward, Andrew B.; Zajonc, Dirk M.

    2014-01-01

    The IMV envelope protein D8 is an adhesion molecule and a major immunodominant antigen of vaccinia virus (VACV). Here we identified the optimal D8 ligand to be chondroitin sulfate E (CS-E). CS-E is characterized by a disaccharide moiety with two sulfated hydroxyl groups at positions 4′ and 6′ of GalNAc. To study the role of antibodies in preventing D8 adhesion to CS-E, we have used a panel of murine monoclonal antibodies, and tested their ability to compete with CS-E for D8 binding. Among four antibody specificity groups, MAbs of one group (group IV) fully abrogated CS-E binding, while MAbs of a second group (group III) displayed widely varying levels of CS-E blocking. Using EM, we identified the binding site for each antibody specificity group on D8. Recombinant D8 forms a hexameric arrangement, mediated by self-association of a small C-terminal domain of D8. We propose a model in which D8 oligomerization on the IMV would allow VACV to adhere to heterogeneous population of CS, including CS-C and potentially CS-A, while overall increasing binding efficiency to CS-E. PMID:25474621

  20. Murine anti-vaccinia virus D8 antibodies target different epitopes and differ in their ability to block D8 binding to CS-E.

    PubMed

    Matho, Michael H; de Val, Natalia; Miller, Gregory M; Brown, Joshua; Schlossman, Andrew; Meng, Xiangzhi; Crotty, Shane; Peters, Bjoern; Xiang, Yan; Hsieh-Wilson, Linda C; Ward, Andrew B; Zajonc, Dirk M

    2014-12-01

    The IMV envelope protein D8 is an adhesion molecule and a major immunodominant antigen of vaccinia virus (VACV). Here we identified the optimal D8 ligand to be chondroitin sulfate E (CS-E). CS-E is characterized by a disaccharide moiety with two sulfated hydroxyl groups at positions 4' and 6' of GalNAc. To study the role of antibodies in preventing D8 adhesion to CS-E, we have used a panel of murine monoclonal antibodies, and tested their ability to compete with CS-E for D8 binding. Among four antibody specificity groups, MAbs of one group (group IV) fully abrogated CS-E binding, while MAbs of a second group (group III) displayed widely varying levels of CS-E blocking. Using EM, we identified the binding site for each antibody specificity group on D8. Recombinant D8 forms a hexameric arrangement, mediated by self-association of a small C-terminal domain of D8. We propose a model in which D8 oligomerization on the IMV would allow VACV to adhere to heterogeneous population of CS, including CS-C and potentially CS-A, while overall increasing binding efficiency to CS-E.

  1. Effects of the Hydroxyl Group on Phenyl Based Ligand/ERRγ Protein Binding

    PubMed Central

    2015-01-01

    Bisphenol-A (4,4′-dihydroxy-2,2-diphenylpropane, BPA, or BPA-A) and its derivatives, when exposed to humans, may affect functions of multiple organs by specific binding to the human estrogen-related receptor γ (ERRγ). We carried out atomistic molecular dynamics (MD) simulations of three ligand compounds including BPA-A, 4-α-cumylphenol (BPA-C), and 2,2-diphenylpropane (BPA-D) binding to the ligand binding domain (LBD) of a human ERRγ to study the structures and energies associated with the binding. We used the implicit Molecular Mechanics/Poisson–Boltzmann Surface Area (MM/PBSA) method to estimate the free energies of binding for the phenyl based compound/ERRγ systems. The addition of hydroxyl groups to the aromatic ring had only a minor effect on binding structures and a significant effect on ligand/protein binding energy in an aqueous solution. Free binding energies of BPA-D to the ERRγ were found to be considerably less than those of BPA-A and BPA-C to the ERRγ. These results are well correlated with those from experiments where no binding affinities were determined in the BPA-D/ERRγ complex. No conformational change was observed for the helix 12 (H-12) of ERRγ upon binding of these compounds preserving an active transcriptional conformation state. PMID:25098505

  2. Rapidly Evolving Toll-3/4 Genes Encode Male-Specific Toll-Like Receptors in Drosophila.

    PubMed

    Levin, Tera C; Malik, Harmit S

    2017-09-01

    Animal Toll-like receptors (TLRs) have evolved through a pattern of duplication and divergence. Whereas mammalian TLRs directly recognize microbial ligands, Drosophila Tolls bind endogenous ligands downstream of both developmental and immune signaling cascades. Here, we find that most Toll genes in Drosophila evolve slowly with little gene turnover (gains/losses), consistent with their important roles in development and indirect roles in microbial recognition. In contrast, we find that the Toll-3/4 genes have experienced an unusually rapid rate of gene gains and losses, resulting in lineage-specific Toll-3/4s and vastly different gene repertoires among Drosophila species, from zero copies (e.g., D. mojavensis) to nineteen copies (e.g., D. willistoni). In D. willistoni, we find strong evidence for positive selection in Toll-3/4 genes, localized specifically to an extracellular region predicted to overlap with the binding site of Spätzle, the only known ligand of insect Tolls. However, because Spätzle genes are not experiencing similar selective pressures, we hypothesize that Toll-3/4s may be rapidly evolving because they bind to a different ligand, akin to TLRs outside of insects. We further find that most Drosophila Toll-3/4 genes are either weakly expressed or expressed exclusively in males, specifically in the germline. Unlike other Toll genes in D. melanogaster, Toll-3, and Toll-4 have apparently escaped from essential developmental roles, as knockdowns have no substantial effects on viability or male fertility. Based on these findings, we propose that the Toll-3/4 genes represent an exceptionally rapidly evolving lineage of Drosophila Toll genes, which play an unusual, as-yet-undiscovered role in the male germline. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Rapidly Evolving Toll-3/4 Genes Encode Male-Specific Toll-Like Receptors in Drosophila

    PubMed Central

    Levin, Tera C.; Malik, Harmit S.

    2017-01-01

    Abstract Animal Toll-like receptors (TLRs) have evolved through a pattern of duplication and divergence. Whereas mammalian TLRs directly recognize microbial ligands, Drosophila Tolls bind endogenous ligands downstream of both developmental and immune signaling cascades. Here, we find that most Toll genes in Drosophila evolve slowly with little gene turnover (gains/losses), consistent with their important roles in development and indirect roles in microbial recognition. In contrast, we find that the Toll-3/4 genes have experienced an unusually rapid rate of gene gains and losses, resulting in lineage-specific Toll-3/4s and vastly different gene repertoires among Drosophila species, from zero copies (e.g., D. mojavensis) to nineteen copies (e.g., D. willistoni). In D. willistoni, we find strong evidence for positive selection in Toll-3/4 genes, localized specifically to an extracellular region predicted to overlap with the binding site of Spätzle, the only known ligand of insect Tolls. However, because Spätzle genes are not experiencing similar selective pressures, we hypothesize that Toll-3/4s may be rapidly evolving because they bind to a different ligand, akin to TLRs outside of insects. We further find that most Drosophila Toll-3/4 genes are either weakly expressed or expressed exclusively in males, specifically in the germline. Unlike other Toll genes in D. melanogaster, Toll-3, and Toll-4 have apparently escaped from essential developmental roles, as knockdowns have no substantial effects on viability or male fertility. Based on these findings, we propose that the Toll-3/4 genes represent an exceptionally rapidly evolving lineage of Drosophila Toll genes, which play an unusual, as-yet-undiscovered role in the male germline. PMID:28541576

  4. IgE binding to peanut allergens is inhibited by combined D-aspartic and D-glutamic acids.

    PubMed

    Chung, Si-Yin; Reed, Shawndrika

    2015-01-01

    The objective of this study was to determine if D-amino acids (D-aas) bind and inhibit immunoglobulin E (IgE) binding to peanut allergens. D-aas such as D-Asp (aspartic acid), D-Glu (glutamic acid), combined D-[Asp/Glu] and others were each prepared in a cocktail of 9 other D-aas, along with L-amino acids (L-aas) and controls. Each sample was mixed with a pooled plasma from peanut-allergic donors, and tested by ELISA (enzyme-linked immunosorbent assay) and Western blots for IgE binding to peanut allergens. Results showed that D-[Asp/Glu] (4 mg/ml) inhibited IgE binding (75%) while D-Glu, D-Asp and other D-aas had no inhibitory effect. A higher inhibition was seen with D-[Asp/Glu] than with L-[Asp/Glu]. We concluded that IgE was specific for D-[Asp/Glu], not D-Asp or D-Glu, and that D-[Asp/Glu] was more reactive than was L-[Asp/Glu] in IgE inhibition. The finding indicates that D-[Asp/Glu] may have the potential for removing IgE or reducing IgE binding to peanut allergens in vitro. Published by Elsevier Ltd.

  5. Structural and functional analysis of cyclin D1 reveals p27 and substrate inhibitor binding requirements.

    PubMed

    Liu, Shu; Bolger, Joshua K; Kirkland, Lindsay O; Premnath, Padmavathy N; McInnes, Campbell

    2010-12-17

    An alternative strategy for inhibition of the cyclin dependent kinases (CDKs) in antitumor drug discovery is afforded through the substrate recruitment site on the cyclin positive regulatory subunit. Critical CDK substrates such as the Rb and E2F families must undergo cyclin groove binding before phosphorylation, and hence inhibitors of this interaction also block substrate specific kinase activity. This approach offers the potential to generate highly selective and cell cycle specific CDK inhibitors and to reduce the inhibition of transcription mediated through CDK7 and 9, commonly observed with ATP competitive compounds. While highly potent peptide and small molecule inhibitors of CDK2/cyclin A, E substrate recruitment have been reported, little information has been generated on the determinants of inhibitor binding to the cyclin groove of the CDK4/cyclin D1 complex. CDK4/cyclin D is a validated anticancer drug target and continues to be widely pursued in the development of new therapeutics based on cell cycle blockade. We have therefore investigated the structural basis for peptide binding to its cyclin groove and have examined the features contributing to potency and selectivity of inhibitors. Peptidic inhibitors of CDK4/cyclin D of pRb phosphorylation have been synthesized, and their complexes with CDK4/cyclin D1 crystal structures have been generated. Based on available structural information, comparisons of the cyclin grooves of cyclin A2 and D1 are presented and provide insights into the determinants for peptide binding and the basis for differential binding and inhibition. In addition, a complex structure has been generated in order to model the interactions of the CDKI, p27(KIP)¹, with cyclin D1. This information has been used to shed light onto the endogenous inhibition of CDK4 and also to identify unique aspects of cyclin D1 that can be exploited in the design of cyclin groove based CDK inhibitors. Peptidic and nonpeptidic compounds have been synthesized in order to explore structure-activity relationship for binding to the cyclin D1 groove, which to date has not been carried out in a systematic fashion. Collectively, the data presented provide new insights into how compounds can be developed that function as chemical biology probes to determine the cellular and antitumor effects of CDK inhibition. Furthermore, such compounds will serve as templates for structure-guided efforts to develop potential therapeutics based on selective inhibition of CDK4/cyclin D activity.

  6. Structural and functional insight into the carbohydrate receptor binding of F4 fimbriae-producing enterotoxigenic Escherichia coli.

    PubMed

    Moonens, Kristof; Van den Broeck, Imke; De Kerpel, Maia; Deboeck, Francine; Raymaekers, Hanne; Remaut, Han; De Greve, Henri

    2015-03-27

    Enterotoxigenic Escherichia coli (ETEC) strains are important causes of intestinal disease in humans and lead to severe production losses in animal farming. A range of fimbrial adhesins in ETEC strains determines host and tissue tropism. ETEC strains expressing F4 fimbriae are associated with neonatal and post-weaning diarrhea in piglets. Three naturally occurring variants of F4 fimbriae (F4ab, F4ac, and F4ad) exist that differ in the primary sequence of their major adhesive subunit FaeG, and each features a related yet distinct receptor binding profile. Here the x-ray structure of FaeGad bound to lactose provides the first structural insight into the receptor specificity and mode of binding by the poly-adhesive F4 fimbriae. A small D'-D″-α1-α2 subdomain grafted on the immunoglobulin-like core of FaeG hosts the carbohydrate binding site. Two short amino acid stretches Phe(150)-Glu(152) and Val(166)-Glu(170) of FaeGad bind the terminal galactose in the lactosyl unit and provide affinity and specificity to the interaction. A hemagglutination-based assay with E. coli expressing mutant F4ad fimbriae confirmed the elucidated co-complex structure. Interestingly, the crucial D'-α1 loop that borders the FaeGad binding site adopts a different conformation in the two other FaeG variants and hints at a heterogeneous binding pocket among the FaeG serotypes. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Association of dopamine D(3) receptors with actin-binding protein 280 (ABP-280).

    PubMed

    Li, Ming; Li, Chuanyu; Weingarten, Paul; Bunzow, James R; Grandy, David K; Zhou, Qun Yong

    2002-03-01

    Proteins that bind to G protein-coupled receptors have been identified as regulators of receptor localization and signaling. In our previous studies, a cytoskeletal protein, actin-binding protein 280 (ABP-280), was found to associate with the third cytoplasmic loop of dopamine D(2) receptors. In this study, we demonstrate that ABP-280 also interacts with dopamine D(3) receptors, but not with D(4) receptors. Similar to the dopamine D(2) receptor, the D(3)/ABP-280 association is of signaling importance. In human melanoma M2 cells lacking ABP-280, D(3) receptors were unable to inhibit forskolin-stimulated cyclic AMP (cAMP) production significantly. D(4) receptors, however, exhibited a similar degree of inhibition of forskolin-stimulated cAMP production in ABP-280-deficient M2 cells and ABP-280-replent M2 subclones (A7 cells). Further experiments revealed that the D(3)/ABP-280 interaction was critically dependent upon a 36 amino acid carboxyl domain of the D(3) receptor third loop, which is conserved in the D(2) receptor but not in the D(4) receptor. Our results demonstrate a subtype-specific regulation of dopamine D(2)-family receptor signaling by the cytoskeletal protein ABP-280.

  8. Pneumococcal polysaccharides complexed with C3d bind to human B lymphocytes via complement receptor type 2.

    PubMed Central

    Griffioen, A W; Rijkers, G T; Janssens-Korpela, P; Zegers, B J

    1991-01-01

    The immunoregulatory function of the complement system has been the focus of many investigations. In particular, fragments of complement factor C3 have been shown to play a role in B-lymphocyte activation and proliferation, lymphokine production, and the generation of in vitro antibody production. Purified pneumococcal polysaccharides (PS) can induce direct activation of C3 via the alternative pathway. Using sera of C1q-deficient patients and healthy subjects, we demonstrated that C3d, a split product of C3 that is generated after degradation of iC3b, can be bound to PS antigens. The binding of C3d to PS can occur in the absence of specific antibodies. Subsequently, we showed that PS complexed with C3d can be recognized by complement receptor type 2 that is expressed on B cells. Treatment of B cells with a monoclonal antibody recognizing the C3d-binding site of complement receptor type 2 reduces the binding of PS-C3d to the cells. In addition, we showed that PS4 complexed with C3d exerted an increased immunogenicity compared with free PS4. Our results show that the complement system plays a role in the activation of PS-specific B cells, carrying membrane receptors for C3d. Consequently, the complement system plays a regulatory role in the antibody response to T-cell-independent type 2 antigens such as PS. PMID:1826897

  9. Mechanistic insight into ligand binding to G-quadruplex DNA

    PubMed Central

    Di Leva, Francesco Saverio; Novellino, Ettore; Cavalli, Andrea; Parrinello, Michele; Limongelli, Vittorio

    2014-01-01

    Specific guanine-rich regions in human genome can form higher-order DNA structures called G-quadruplexes, which regulate many relevant biological processes. For instance, the formation of G-quadruplex at telomeres can alter cellular functions, inducing apoptosis. Thus, developing small molecules that are able to bind and stabilize the telomeric G-quadruplexes represents an attractive strategy for antitumor therapy. An example is 3-(benzo[d]thiazol-2-yl)-7-hydroxy-8-((4-(2-hydroxyethyl)piperazin-1-yl)methyl)-2H-chromen-2-one (compound 1), recently identified as potent ligand of the G-quadruplex [d(TGGGGT)]4 with promising in vitro antitumor activity. The experimental observations are suggestive of a complex binding mechanism that, despite efforts, has defied full characterization. Here, we provide through metadynamics simulations a comprehensive understanding of the binding mechanism of 1 to the G-quadruplex [d(TGGGGT)]4. In our calculations, the ligand explores all the available binding sites on the DNA structure and the free-energy landscape of the whole binding process is computed. We have thus disclosed a peculiar hopping binding mechanism whereas 1 is able to bind both to the groove and to the 3’ end of the G-quadruplex. Our results fully explain the available experimental data, rendering our approach of great value for further ligand/DNA studies. PMID:24753420

  10. Improving binding mode and binding affinity predictions of docking by ligand-based search of protein conformations: evaluation in D3R grand challenge 2015

    NASA Astrophysics Data System (ADS)

    Xu, Xianjin; Yan, Chengfei; Zou, Xiaoqin

    2017-08-01

    The growing number of protein-ligand complex structures, particularly the structures of proteins co-bound with different ligands, in the Protein Data Bank helps us tackle two major challenges in molecular docking studies: the protein flexibility and the scoring function. Here, we introduced a systematic strategy by using the information embedded in the known protein-ligand complex structures to improve both binding mode and binding affinity predictions. Specifically, a ligand similarity calculation method was employed to search a receptor structure with a bound ligand sharing high similarity with the query ligand for the docking use. The strategy was applied to the two datasets (HSP90 and MAP4K4) in recent D3R Grand Challenge 2015. In addition, for the HSP90 dataset, a system-specific scoring function (ITScore2_hsp90) was generated by recalibrating our statistical potential-based scoring function (ITScore2) using the known protein-ligand complex structures and the statistical mechanics-based iterative method. For the HSP90 dataset, better performances were achieved for both binding mode and binding affinity predictions comparing with the original ITScore2 and with ensemble docking. For the MAP4K4 dataset, although there were only eight known protein-ligand complex structures, our docking strategy achieved a comparable performance with ensemble docking. Our method for receptor conformational selection and iterative method for the development of system-specific statistical potential-based scoring functions can be easily applied to other protein targets that have a number of protein-ligand complex structures available to improve predictions on binding.

  11. Isolation and characterization of an RNA aptamer for the HPV-16 E7 oncoprotein.

    PubMed

    Toscano-Garibay, Julia D; Benítez-Hess, María L; Alvarez-Salas, Luis M

    2011-02-01

    Cervical cancer is a common neoplastic disease affecting women worldwide. Expression of human papillomavirus type 16 (HPV-16) E6/E7 genes is frequently associated with cervical cancer, representing ideal targets for diagnostic and therapeutic strategies. Aptamers are oligonucleotide ligands capable of binding with high affinity and specificity to relevant markers in therapeutics and disease detection. The aim of the study was to isolate an RNA aptamer specific for the HPV-16 E7 protein. Aptamers were selected from a randomized oligonucleotide library using a modified SELEX method and recombinant HPV-16 E7 protein. Isolated aptamers were cloned and sequenced for in silico analysis. Interaction and electromobility shift assays (EMSA) were performed to establish aptamer specificity and affinity for E7. RNase footprinting and serial deletions of the aptamer and the E7 protein were made to characterize the aptamer-protein complex. Sandwich slot-blot assays were used for K(D) determination. After several rounds of SELEX, an aptamer (G5α3N.4) exhibited specificity for E7 using cell-free and protein extracts. G5α3N.4 binding yielded a K(D) comparable to aptamers directed to other small targets. Enzymatic and genetic analysis of G5α3N.4 binding showed a secondary structure with two stem-loop domains joined by single-stranded region contacting E7 in a clamp-like manner. The G5α3N.4 aptamer also produced specific complexes in HPV-positive cervical carcinoma cells. The affinity and specificity of G5α3N.4 binding domains for the HPV-16 E7 protein may be used for the detection of papillomavirus infection and cervical cancer. Copyright © 2011 IMSS. Published by Elsevier Inc. All rights reserved.

  12. Coating of Dacron vascular grafts with an ionic polyurethane: a novel sealant with protein binding properties.

    PubMed

    Phaneuf, M D; Dempsey, D J; Bide, M J; Quist, W C; LoGerfo, F W

    2001-03-01

    The purpose of this study was to develop a novel sealant that would seal prosthetic vascular graft interstices and be accessible for protein binding. Crimped knitted Dacron vascular grafts were cleaned (CNTRL) and hydrolyzed in boiling sodium hydroxide (HYD). These HYD grafts were sealed using an 11% solids solution of a polyether-based urethane with carboxylic acid groups (PEU-D) via a novel technique that employs both trans-wall and luminal perfusion. Carboxylic acid content, determined via methylene blue dye uptake, was 2.3- and 4.2-fold greater in PEU-D segments (1.0+/-0.27 nmol/mg) as compared to HYD and CNTRL segments, respectively. Water permeation through PEU-D graft (1.1+/-2 ml/cm2 min(-1)) was comparable to collagen-impregnated Dacron (9.8+/-10 ml/cm2 min(-1)). Non-specific 125I-albumin (125I-Alb) binding to PEU-D segments (18+/-3 ng/mg) was significantly lower than HYD and CNTRL segments. 125I-Alb linkage to PEU-D using the crosslinker EDC resulted in 5.7-fold greater binding (103+/-2 ng/mg) than non-specific PEU-D controls. However, covalent linkage of 125I-Alb to PEU-D was 4.9- and 5.9-fold less than CNTRL and HYD segments with EDC, respectively. Thus, ionic polyurethane can be applied to a pre-formed vascular graft, seal the interstices and create "anchor" sites for protein attachment.

  13. Studies of the TLR4-associated protein MD-2 using yeast-display and mutational analyses

    PubMed Central

    Mattis, Daiva M.; Chervin, Adam; Ranoa, Diana; Kelley, Stacy; Tapping, Richard; Kranz, David M.

    2015-01-01

    Bacterial lipopolysaccharide (LPS) activates the innate immune system by forming a complex with myeloid differentiation factor 2 (MD-2) and Toll-like receptor 4 (TLR4), which is present on antigen presenting cells. MD-2 plays an essential role in this activation of the innate immune system as a member of the ternary complex, TLR4:MD-2:LPS. With the goal of further understanding the molecular details of the interaction of MD-2 with LPS and TLR4, and possibly toward engineering dominant negative regulators of the MD-2 protein, here we subjected MD-2 to a mutational analysis using yeast display. The approach included generation of site-directed alanine mutants, and ligand-driven selections of MD-2 mutant libraries. Our findings showed that: 1) proline mutations in the F119-K132 loop that binds LPS were strongly selected for enhanced yeast surface stability, 2) there was a preference for positive-charged side chains (R/K) at residue 120 for LPS binding, and negative-charged side chains (D/E) for TLR4 binding, 3) aromatic residues were strongly preferred at F119 and F121 for LPS binding, and 4) an MD-2 mutant (T84N/D101A/S118A/S120D/K122P) exhibited increased binding to TLR4 but decreased binding to LPS. These studies revealed the impact of specific residues and regions of MD-2 on the binding of LPS and TLR4, and they provide a framework for further directed evolution of the MD-2 protein. PMID:26320630

  14. Divergent Requirement of Fc-Fcγ Receptor Interactions for In Vivo Protection against Influenza Viruses by Two Pan-H5 Hemagglutinin Antibodies

    PubMed Central

    Wang, Shuangshuang; Ren, Huanhuan; Jiang, Wenbo; Chen, Honglin; Hu, Hongxing; Chen, Zhiwei

    2017-01-01

    ABSTRACT Recent studies have shown that Fc-Fcγ receptor (FcγR) interactions are required for in vivo protection against influenza viruses by broadly reactive anti-hemagglutinin (HA) stem, but not virus strain-specific, anti-receptor binding site (RBS), antibodies (Abs). Since only a few Abs recognizing epitopes in the head region but outside the RBS have been tested against single-challenge virus strains, it remains unknown whether Fc-FcγR interactions are required for in vivo protection by Abs recognizing epitopes outside the RBS and whether the requirement is virus strain specific or epitope specific. In the present study, we therefore investigated the requirements for in vivo protection using two pan-H5 Abs, 65C6 and 100F4. We generated chimeric Abs, 65C6/IgG2a and 100F4/IgG2a, which preferentially engage activating FcγRs, and isogenic forms, 65C6/D265A and 100F4/D265A, which do not bind FcγR. Virus neutralizing activity, binding, antibody-dependent cellular cytotoxicity (ADCC), and in vivo protection of these Abs were compared using three H5 strains, A/Shenzhen/406H/2006 (SZ06), A/chicken/Shanxi/2/2006 (SX06), and A/chicken/Netherlands/14015526/2014 (NE14). We found that all four chimeric Abs bound and neutralized the SZ06 and NE14 strains but poorly inhibited the SX06 strain. 65C6/IgG2a and 100F4/IgG2a, but not 65C6/D265A and 100F4/D265A, mediated ADCC against target cells expressing HA derived from all three virus strains. Interestingly, both 65C6/IgG2a and 65C6/D265A demonstrated comparable protection against all three virus strains in vivo; however, 100F4/IgG2a, but not 100F4/D265A, showed in vivo protection. Thus, we conclude that Fc-FcγR interactions are required for in vivo protection by 100F4, but not by 65C6, and therefore, protection is not virus strain specific but epitope specific. IMPORTANCE Abs play an important role in immune protection against influenza virus infection. Fc-FcγR interactions are required for in vivo protection by broadly neutralizing antistem, but not by virus strain-specific, anti-receptor binding site (RBS), Abs. Whether such interactions are necessary for protection by Abs that recognize epitopes outside RBS is not fully understood. In the present study, we investigated in vivo protection mechanisms against three H5 strains by two pan-H5 Abs, 65C6 and 100F4. We show that although these two Abs have similar neutralizing, binding, and ADCC activities against all three H5 strains in vitro, they have divergent requirements for Fc-FcγR interactions to protect against the three H5 strains in vivo. The Fc-FcγR interactions are required for in vivo protection by 100F4, but not by 65C6. Thus, we conclude that Fc-FcγR interactions for in vivo protection by pan-H5 Abs is not strain specific, but epitope specific. PMID:28331095

  15. Divergent Requirement of Fc-Fcγ Receptor Interactions for In Vivo Protection against Influenza Viruses by Two Pan-H5 Hemagglutinin Antibodies.

    PubMed

    Wang, Shuangshuang; Ren, Huanhuan; Jiang, Wenbo; Chen, Honglin; Hu, Hongxing; Chen, Zhiwei; Zhou, Paul

    2017-06-01

    Recent studies have shown that Fc-Fcγ receptor (FcγR) interactions are required for in vivo protection against influenza viruses by broadly reactive anti-hemagglutinin (HA) stem, but not virus strain-specific, anti-receptor binding site (RBS), antibodies (Abs). Since only a few Abs recognizing epitopes in the head region but outside the RBS have been tested against single-challenge virus strains, it remains unknown whether Fc-FcγR interactions are required for in vivo protection by Abs recognizing epitopes outside the RBS and whether the requirement is virus strain specific or epitope specific. In the present study, we therefore investigated the requirements for in vivo protection using two pan-H5 Abs, 65C6 and 100F4. We generated chimeric Abs, 65C6/IgG2a and 100F4/IgG2a, which preferentially engage activating FcγRs, and isogenic forms, 65C6/D265A and 100F4/D265A, which do not bind FcγR. Virus neutralizing activity, binding, antibody-dependent cellular cytotoxicity (ADCC), and in vivo protection of these Abs were compared using three H5 strains, A/Shenzhen/406H/2006 (SZ06), A/chicken/Shanxi/2/2006 (SX06), and A/chicken/Netherlands/14015526/2014 (NE14). We found that all four chimeric Abs bound and neutralized the SZ06 and NE14 strains but poorly inhibited the SX06 strain. 65C6/IgG2a and 100F4/IgG2a, but not 65C6/D265A and 100F4/D265A, mediated ADCC against target cells expressing HA derived from all three virus strains. Interestingly, both 65C6/IgG2a and 65C6/D265A demonstrated comparable protection against all three virus strains in vivo ; however, 100F4/IgG2a, but not 100F4/D265A, showed in vivo protection. Thus, we conclude that Fc-FcγR interactions are required for in vivo protection by 100F4, but not by 65C6, and therefore, protection is not virus strain specific but epitope specific. IMPORTANCE Abs play an important role in immune protection against influenza virus infection. Fc-FcγR interactions are required for in vivo protection by broadly neutralizing antistem, but not by virus strain-specific, anti-receptor binding site (RBS), Abs. Whether such interactions are necessary for protection by Abs that recognize epitopes outside RBS is not fully understood. In the present study, we investigated in vivo protection mechanisms against three H5 strains by two pan-H5 Abs, 65C6 and 100F4. We show that although these two Abs have similar neutralizing, binding, and ADCC activities against all three H5 strains in vitro , they have divergent requirements for Fc-FcγR interactions to protect against the three H5 strains in vivo The Fc-FcγR interactions are required for in vivo protection by 100F4, but not by 65C6. Thus, we conclude that Fc-FcγR interactions for in vivo protection by pan-H5 Abs is not strain specific, but epitope specific. Copyright © 2017 American Society for Microbiology.

  16. Synthesis, crystal structure and investigation of mononuclear copper(II) and zinc(II) complexes of a new carboxylate rich tripodal ligand and their interaction with carbohydrates in alkaline aqueous solution

    PubMed Central

    Stewart, Christopher D.; Pedraza, Mayra; Arman, Hadi; Fan, Hua-Jun; Schilling, Eduardo Luiz; Szpoganicz, Bruno; Musie, Ghezai T.

    2016-01-01

    A new carboxylate rich asymmetric tripodal ligand, N-[2-carboxybenzomethyl]-N-[carboxymethyl]-β-alanine (H3camb), and its di-copper(II), (NH4)2[1]2, and di-zinc(II), ((CH3)4 N)2[2]2, complexes have been synthesized as carbohydrate binding models in aqueous solutions. The ligand and complexes have been fully characterized using several techniques, including single crystal X-ray diffraction. The interactions of (NH4)2[1]2 and ((CH3)4 N)2[2]2 with D-glucose, D-mannose, D-xylose and xylitol in aqueous alkaline media were investigated using UV–Vis and 13C-NMR spectroscopic techniques, respectively. The molar conductance, NMR and ESI–MS studies indicate that the complexes dissociate in solution to produce the respective complex anions, 1− and 2−. Complexes 1− and 2− showed chelating ability towards the naturally abundant and biologically relevant sugars, D-glucose, D-mannose, D-xylose, and xylitol. The complex ions bind to one molar equivalent of the sugars, even in the presence of stoichiometric excess of the substrates, in solution. Experimentally obtained spectroscopic data and computational results suggest that the substrates bind to the metal center in a bidentate fashion. Apparent binding constant values, pKapp, between the complexes and the substrates were determined and a specific mode of substrate binding is proposed. The pKapp and relativistic density functional theory (DFT) calculated Gibbs free energy values indicate that D-mannose displayed the strongest interaction with the complexes. Syntheses, characterizations, detailed substrate binding studies using spectroscopic techniques, single crystal X-ray diffraction and geometry optimizations of the complex-substrates with DFT calculations are also reported. PMID:25969174

  17. One base pair change abolishes the T cell-restricted activity of a kB-like proto-enhancer element from the interleukin 2 promoter.

    PubMed Central

    Briegel, K; Hentsch, B; Pfeuffer, I; Serfling, E

    1991-01-01

    The inducible, T cell-specific enhancers of murine and human Interleukin 2 (Il-2) genes contain the kB-like sequence GGGATTTCACC as an essential cis-acting enhancer motif. When cloned in multiple copies this so-called TCEd (distal T cell element) acts as an inducible proto-enhancer element in E14 T lymphoma cells, but not in HeLa cells. In extracts of induced, Il-2 secreting El4 cells three individual protein factors bind to TCEd DNA. The binding of the most prominent factor, named TCF-1 (T cell factor 1), is correlated with the proto-enhancer activity of TCEd. TCF-1 consists of two polypeptides of about 50 kD and 105 kD; the former seems to be related to the 50 kD polypeptide of NF-kB. Purified NF-kB is also able to bind to the TCEd, but TCF-1 binds stronger than NF-kB to TCEd DNA. The conversion of the TCEd to a 'perfect' NF-kB binding site leads to a tighter binding of NF-kB to TCEd DNA and, as a functional consequence, to the activity of the 'converted' TCEd motifs in HeLa cells. Thus, the substitution of the underlined A residue to a C within the GGGATTTCACC motif abolishes its T cell-restricted activity and leads to its functioning in both El4 cells and HeLa cells. These results indicate that lymphocyte-specific factors binding to the TCEd are involved in the control of T cell specific-transcription of the Il-2 gene. Images PMID:1945879

  18. Structure of the mouse galectin-4 N-terminal carbohydrate-recognition domain reveals the mechanism of oligosaccharide recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krejciríková, Veronika; Pachl, Petr; Fábry, Milan

    2011-11-18

    Galectin-4, a member of the tandem-repeat subfamily of galectins, participates in cell-membrane interactions and plays an important role in cell adhesion and modulation of immunity and malignity. The oligosaccharide specificity of the mouse galectin-4 carbohydrate-recognition domains (CRDs) has been reported previously. In this work, the structure and binding properties of the N-terminal domain CRD1 were further investigated and the crystal structure of CRD1 in complex with lactose was determined at 2.1 {angstrom} resolution. The lactose-binding affinity was characterized by fluorescence measurements and two lactose-binding sites were identified: a high-affinity site with a K{sub d} value in the micromolar range (K{submore » d1} = 600 {+-} 70 {mu}M) and a low-affinity site with K{sub d2} = 28 {+-} 10 mM.« less

  19. Poxvirus uracil-DNA glycosylase-An unusual member of the family I uracil-DNA glycosylases: Poxvirus Uracil-DNA Glycosylase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schormann, Norbert; Zhukovskaya, Natalia; Bedwell, Gregory

    We report that uracil-DNA glycosylases are ubiquitous enzymes, which play a key role repairing damages in DNA and in maintaining genomic integrity by catalyzing the first step in the base excision repair pathway. Within the superfamily of uracil-DNA glycosylases family I enzymes or UNGs are specific for recognizing and removing uracil from DNA. These enzymes feature conserved structural folds, active site residues and use common motifs for DNA binding, uracil recognition and catalysis. Within this family the enzymes of poxviruses are unique and most remarkable in terms of amino acid sequences, characteristic motifs and more importantly for their novel non-enzymaticmore » function in DNA replication. UNG of vaccinia virus, also known as D4, is the most extensively characterized UNG of the poxvirus family. D4 forms an unusual heterodimeric processivity factor by attaching to a poxvirus-specific protein A20, which also binds to the DNA polymerase E9 and recruits other proteins necessary for replication. D4 is thus integrated in the DNA polymerase complex, and its DNA-binding and DNA scanning abilities couple DNA processivity and DNA base excision repair at the replication fork. In conclusion, the adaptations necessary for taking on the new function are reflected in the amino acid sequence and the three-dimensional structure of D4. We provide an overview of the current state of the knowledge on the structure-function relationship of D4.« less

  20. The sorption properties of polymers with molecular imprints of 2,4-dichlorophenoxyacetic acid synthesized by various methods

    NASA Astrophysics Data System (ADS)

    Dmitrienko, S. G.; Popov, S. A.; Chumichkina, Yu. A.; Zolotov, Yu. A.

    2011-03-01

    New sorbents, polymers with molecular imprints of 2,4-dichlorophenoxyacetic acid (2,4-D), were prepared on the basis of acrylamide. The sorbents were synthesized by thermal polymerization methods with and without the use of ultrasound, photopolymerization, and suspension polymerization. The specific surface area of the products was estimated and their sorption properties were studied. Polymers with molecular imprints prepared by thermal polymerization with the use of ultrasound and by suspension polymerization showed the best ability to repeatedly bind 2,4-D. The selectivity of polymers was estimated for the example of structurally related compounds. It was shown that the method of synthesis decisively influenced not only the ability of sorbents to repeatedly bind 2,4-D but also their selectivity.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bidlack, J.M.; Frey, D.K.; Seyed-Mozaffari, A.

    The binding properties of 14{beta}-(bromoacetamido)morphine (BAM) and the ability of BAM to irreversibly inhibit opioid binding to rat brain membranes were examined to characterize the affinity and selectivity of BAM as an irreversible affinity ligand for opioid receptors. BAM had the same receptor selectivity as morphine, with a 3-5-fold decrease in affinity for the different types of opioid receptors. When brain membranes were incubated with BAM, followed by extensive washing, opioid binding was restored to control levels. However, when membranes were incubated with dithiothreitol (DTT), followed by BAM, and subsequently washed, 90% of the 0.25 nM ({sup 3}H)(D-Ala{sup 2},(Me)Phe{sup 4},Gly(ol){supmore » 5})enkephalin (DAGO) binding was irreversibly inhibited as a result of the specific alkylation of a sulfhydryl group at the {mu} binding site. This inhibition was dependent on the concentrations of both DTT and BAM. The {mu} receptor specificity of BAM alkylation was demonstrated by the ability of BAM alkylated membranes to still bind the {delta}-selective peptide ({sup 3}H)(D-penicillamine{sup 2},D-penicillamine{sup 5})enkephalin (DPDPE) and (-)-({sup 3}H)bremazocine in the presence of {mu} and {delta} blockers, selective for {kappa} binding sites. Morphine and naloxone partially protected the binding site from alkylation with BAM, while ligands that did not bind to the {mu}s site did not afford protection. These studies have demonstrated that when a disulfide bond at or near {mu} opioid binding sites was reduced, BAM could then alkylate this site, resulting in the specific irreversible labeling of {mu} opioid receptors.« less

  2. Identification of a New Functional Domain in Angiopoietin-like 3 (ANGPTL3) and Angiopoietin-like 4 (ANGPTL4) Involved in Binding and Inhibition of Lipoprotein Lipase (LPL)S⃞

    PubMed Central

    Lee, E-Chiang; Desai, Urvi; Gololobov, Gennady; Hong, Seokjoo; Feng, Xiao; Yu, Xuan-Chuan; Gay, Jason; Wilganowski, Nat; Gao, Cuihua; Du, Ling-Ling; Chen, Joan; Hu, Yi; Zhao, Sharon; Kirkpatrick, Laura; Schneider, Matthias; Zambrowicz, Brian P.; Landes, Greg; Powell, David R.; Sonnenburg, William K.

    2009-01-01

    Angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4) are secreted proteins that regulate triglyceride (TG) metabolism in part by inhibiting lipoprotein lipase (LPL). Recently, we showed that treatment of wild-type mice with monoclonal antibody (mAb) 14D12, specific for ANGPTL4, recapitulated the Angptl4 knock-out (-/-) mouse phenotype of reduced serum TG levels. In the present study, we mapped the region of mouse ANGPTL4 recognized by mAb 14D12 to amino acids Gln29–His53, which we designate as specific epitope 1 (SE1). The 14D12 mAb prevented binding of ANGPTL4 with LPL, consistent with its ability to neutralize the LPL-inhibitory activity of ANGPTL4. Alignment of all angiopoietin family members revealed that a sequence similar to ANGPTL4 SE1 was present only in ANGPTL3, corresponding to amino acids Glu32–His55. We produced a mouse mAb against this SE1-like region in ANGPTL3. This mAb, designated 5.50.3, inhibited the binding of ANGPTL3 to LPL and neutralized ANGPTL3-mediated inhibition of LPL activity in vitro. Treatment of wild-type as well as hyperlipidemic mice with mAb 5.50.3 resulted in reduced serum TG levels, recapitulating the lipid phenotype found in Angptl3-/- mice. These results show that the SE1 region of ANGPTL3 and ANGPTL4 functions as a domain important for binding LPL and inhibiting its activity in vitro and in vivo. Moreover, these results demonstrate that therapeutic antibodies that neutralize ANGPTL4 and ANGPTL3 may be useful for treatment of some forms of hyperlipidemia. PMID:19318355

  3. Various cross-reactivity of the grass pollen group 4 allergens: crystallographic study of the Bermuda grass isoallergen Cyn d 4.

    PubMed

    Huang, Tse-Hao; Peng, Ho-Jen; Su, Song-Nan; Liaw, Shwu-Huey

    2012-10-01

    The structure of Cyn d 4, the group 4 allergen from Bermuda grass, is reported at 2.15 Å resolution and is the first crystal structure of a naturally isolated pollen allergen. A conserved N-terminal segment that is only present in the large isoallergens forms extensive interactions with surrounding residues and hence greatly enhances the structural stability of the protein. Cyn d 4 contains an FAD cofactor that is covalently linked to His88 and Cys152. To date, all identified bicovalent flavoproteins are oxidases and their substrates are either sugars or secondary metabolites. A deep large hydrophobic substrate-binding cleft is present. Thus, Cyn d 4 may be an oxidase that is involved in the biosynthesis of a pollen-specific metabolite. Cyn d 4 shares ~70% sequence identity with the Pooideae group 4 allergens. Various cross-reactivities between grass pollen group 4 allergens have previously been demonstrated using sera from allergic patients. The protein surface displays an unusually large number of positively charged clusters, reflecting the high pI of ~10. 38 decapeptides that cover the solvent-accessible sequences did not show any significant IgE-binding activity using sera with high Cyn d 4 reactivity from four patients, suggesting that the IgE epitopes of Cyn d 4 are predominantly conformational in nature. Several group 4 structures were then modelled and their potential cross-reactive and species-specific IgE epitopes were proposed.

  4. The StarD4 subfamily of steroidogenic acute regulatory-related lipid transfer (START) domain proteins: new players in cholesterol metabolism

    PubMed Central

    Calderon-Dominguez, Maria; Gil, Gregorio; Medina, Miguel Angel; Pandak, William M.; Rodríguez-Agudo, Daniel

    2014-01-01

    Cholesterol levels in the body are maintained through the coordinated regulation of its uptake, synthesis, distribution, storage and efflux. However, the way cholesterol is sorted within cells remains poorly defined. The discovery of the newly described StarD4 subfamily, part of the steroidogenic acute regulatory lipid transfer (START) domain family of proteins, affords an opportunity for the study of intracellular cholesterol movement, metabolism and its disorders. The three members of this intracelular subfamily of proteins (StarD4, StarD5 and StarD6) have a similar lipid binding pocket specific for sterols (cholesterol in particular), but differing regulation and localization. The ability to bind and transport cholesterol through a non-vesicular mean suggests that they play a previously unappreciated role in cholesterol homeostasis. PMID:24440759

  5. Glucose-Specific Polymer Hydrogels—A Reassessment

    PubMed Central

    Fazal, Furqan M.; Hansen, David E.

    2007-01-01

    Polymer hydrogels synthesized by crosslinking poly(allylamine hydrochloride) with (±)-epichlorohydrin in the presence of D-glucose-6-phosphate monobarium salt do not show imprinting on the molecular level. A series of hydrogels were prepared using the following five templates: D-glucose-6-phosphate monobarium salt, D-glucose, L-glucose, barium hydrogen phosphate (BaHPO4), and D-gluconamide; a hydrogel was also prepared in the absence of a template. For all six hydrogels, batch binding studies were conducted with D-glucose, L-glucose, D-fructose and D-gluconamide. The extent of analyte sugar binding was determined using 1H-NMR. Each hydrogel shows approximately the same relative binding affinity for the different sugar derivatives, and none displays selectivity for either glucose enantiomer. The results of the binding studies correlate with the octanol-water partition coefficients of the sugars, indicative that differential solubilities in the bulk polymer account for the binding affinities observed. Thus, in contrast to templated hydrogels prepared using methacrylate- or acrylamide-based reagents, true imprinting does not occur in this novel, crosslinked-poly(allylamine hydrochloride) system. PMID:17035016

  6. Glucose-specific poly(allylamine) hydrogels--a reassessment.

    PubMed

    Fazal, Furqan M; Hansen, David E

    2007-01-01

    Polymer hydrogels synthesized by crosslinking poly(allylamine hydrochloride) with (+/-)-epichlorohydrin in the presence of d-glucose-6-phosphate monobarium salt do not show imprinting on the molecular level. A series of hydrogels was prepared using the following five templates: d-glucose-6-phosphate monobarium salt, d-glucose, l-glucose, barium hydrogen phosphate (BaHPO(4)), and d-gluconamide; a hydrogel was also prepared in the absence of a template. For all six hydrogels, batch binding studies were conducted with d-glucose, l-glucose, d-fructose, and d-gluconamide. The extent of analyte sugar binding was determined using (1)H NMR. Each hydrogel shows approximately the same relative binding affinity for the different sugar derivatives, and none displays selectivity for either glucose enantiomer. The results of the binding studies correlate with the octanol-water partition coefficients of the sugars, indicative that differential solubilities in the bulk polymer account for the binding affinities observed. Thus, in contrast to templated hydrogels prepared using methacrylate- or acrylamide-based reagents, true imprinting does not occur in this novel, crosslinked-poly(allylamine hydrochloride) system.

  7. Reaction of the isosteric methylenephosphonate analog of alpha-D-glucose 1-phosphate with phosphoglucomutase. Induced-fit specificity revisited.

    PubMed

    Ray, W J; Post, C B; Puvathingal, J M

    1993-01-12

    The phospho form of phosphoglucomutase reacts with the isosteric methylenephosphonate analog of alpha-D-glucose 1-phosphate to produce the corresponding analog of alpha-D-glucose 1,6-bisphosphate plus the dephosphoenzyme. In a coupled reaction, kcat/Km = 1.7 x 10(3) M-1 s-1, which is about 2 x 10(-5) times that for the corresponding reaction with alpha-D-glucose 1-phosphate. The decrease in kcat/Km is divided more or less evenly between less efficient PO3- transfer and decreased binding, although smaller phosphates and phosphonates bind approximately equally. There is a much smaller difference in the binding of glucose 1-methylenephosphonate 6-phosphate and glucose 1,6-bisphosphate to the dephosphoenzyme: the binding ratio is < 1:35 when the glucose ring is oriented similarly. Preferred binding patterns for a number of substrates/inhibitors, studied by 31P NMR and UV-difference spectroscopy, suggest that in the ground state the phosphonate group is tolerated to a much greater extent at the catalytic subsite than at the phosphate-binding subsite, where binding specificity appears to be directed toward a tetrahedral-PO3(2-) group attached to a bridging atom that can act as a hydrogen-bond acceptor. Binding specificity at the catalytic subsite apparently is directed toward a different array, possibly (-O...PO3...O-)2-. Some of these results are considered in terms of a modified version of the "induced fit" concept of enzymic specificity, which is reexamined in view of implied thermodynamic restrictions. The internal rearrangement whereby the positions of the anionic groups of the phosphate/phosphonate are exchanged is compared with the analogous rearrangements involving glucose 1,6-bisphosphate and 1,4-butanediol bisphosphate. The supplementary material describes a three-step synthesis of 1-deoxy-alpha-D-glucose 1-methylenephosphonate together with a procedure for phosphorylating the phosphonate to produce an analog of alpha-D-glucose 1,6-bisphosphate and also describes a facile procedure for the qualitative conversion of organic phosphonates to inorganic phosphate.

  8. Computer-aided rational design of novel EBF analogues with an aromatic ring.

    PubMed

    Wang, Shanshan; Sun, Yufeng; Du, Shaoqing; Qin, Yaoguo; Duan, Hongxia; Yang, Xinling

    2016-06-01

    Odorant binding proteins (OBPs) are important in insect olfactory recognition. These proteins bind specifically to insect semiochemicals and induce their seeking, mating, and alarm behaviors. Molecular docking and molecular dynamics simulations were performed to provide computational insight into the interaction mode between AgamOBP7 and novel (E)-β-farnesene (EBF) analogues with an aromatic ring. The ligand-binding cavity in OBP7 was found to be mostly hydrophobic due to the presence of several nonpolar residues. The interactions between the EBF analogues and the hydrophobic residues in the binding cavity increased in strength as the distance between them decreased. The EBF analogues with an N-methyl formamide or ester linkage had higher docking scores than those with an amide linkage. Moreover, delocalized π-π and electrostatic interactions were found to contribute significantly to the binding between the ligand benzene ring and nearby protein residues. To design new compounds with higher activity, four EBF analogues D1-D4 with a benzene ring were synthesized and evaluated based on their docking scores and binding affinities. D2, which had an N-methyl formamide group linkage, exhibited stronger binding than D1, which had an amide linkage. D4 exhibited particularly strong binding due to multiple hydrophobic interactions with the protein. This study provides crucial foundations for designing novel EBF analogues based on the OBP structure. Graphical abstract The design strategy of new EBF analogues based on the OBP7 structure.

  9. New perspective on glycoside hydrolase binding to lignin from pretreated corn stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yarbrough, John M.; Mittal, Ashutosh; Mansfield, Elisabeth

    Background: Non-specific binding of cellulases to lignin has been implicated as a major factor in the loss of cellulase activity during biomass conversion to sugars. It is believed that this binding may strongly impact process economics through loss of enzyme activities during hydrolysis and enzyme recycling scenarios. The current model suggests glycoside hydrolase activities are lost though non-specific/non-productive binding of carbohydrate-binding domains to lignin, limiting catalytic site access to the carbohydrate components of the cell wall. Results: In this study, we compared component enzyme affinities of a commercial Trichoderma reesei cellulase formulation, Cellic CTec2, towards extracted corn stover lignin usingmore » sodium dodecyl sulfate-polyacrylamide gel electrophoresis and p-nitrophenyl substrate activities to monitor component binding, activity loss, and total protein binding. Protein binding was strongly affected by pH and ionic strength. β-D-glucosidases and xylanases, which do not have carbohydrate-binding modules (CBMs) and are basic proteins, demonstrated the strongest binding at low ionic strength, suggesting that CBMs are not the dominant factor in enzyme adsorption to lignin. Despite strong adsorption to insoluble lignin, β-D-glucosidase and xylanase activities remained high, with process yields decreasing only 4–15 % depending on lignin concentration. Conclusion: We propose that specific enzyme adsorption to lignin from a mixture of biomass-hydrolyzing enzymes is a competitive affinity where β-D-glucosidases and xylanases can displace CBM interactions with lignin. Process parameters, such as temperature, pH, and salt concentration influence the individual enzymes’ affinity for lignin, and both hydrophobic and electrostatic interactions are responsible for this binding phenomenon. Moreover, our results suggest that concern regarding loss of critical cell wall degrading enzymes to lignin adsorption may be unwarranted when complex enzyme mixtures are used to digest biomass.« less

  10. New perspective on glycoside hydrolase binding to lignin from pretreated corn stover

    DOE PAGES

    Yarbrough, John M.; Mittal, Ashutosh; Mansfield, Elisabeth; ...

    2015-12-18

    Background: Non-specific binding of cellulases to lignin has been implicated as a major factor in the loss of cellulase activity during biomass conversion to sugars. It is believed that this binding may strongly impact process economics through loss of enzyme activities during hydrolysis and enzyme recycling scenarios. The current model suggests glycoside hydrolase activities are lost though non-specific/non-productive binding of carbohydrate-binding domains to lignin, limiting catalytic site access to the carbohydrate components of the cell wall. Results: In this study, we compared component enzyme affinities of a commercial Trichoderma reesei cellulase formulation, Cellic CTec2, towards extracted corn stover lignin usingmore » sodium dodecyl sulfate-polyacrylamide gel electrophoresis and p-nitrophenyl substrate activities to monitor component binding, activity loss, and total protein binding. Protein binding was strongly affected by pH and ionic strength. β-D-glucosidases and xylanases, which do not have carbohydrate-binding modules (CBMs) and are basic proteins, demonstrated the strongest binding at low ionic strength, suggesting that CBMs are not the dominant factor in enzyme adsorption to lignin. Despite strong adsorption to insoluble lignin, β-D-glucosidase and xylanase activities remained high, with process yields decreasing only 4–15 % depending on lignin concentration. Conclusion: We propose that specific enzyme adsorption to lignin from a mixture of biomass-hydrolyzing enzymes is a competitive affinity where β-D-glucosidases and xylanases can displace CBM interactions with lignin. Process parameters, such as temperature, pH, and salt concentration influence the individual enzymes’ affinity for lignin, and both hydrophobic and electrostatic interactions are responsible for this binding phenomenon. Moreover, our results suggest that concern regarding loss of critical cell wall degrading enzymes to lignin adsorption may be unwarranted when complex enzyme mixtures are used to digest biomass.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knapp, R.J.; Sharma, S.D.; Toth, G.

    (D-Pen2,4{prime}-125I-Phe4,D-Pen5)enkephalin ((125I)DPDPE) is a highly selective radioligand for the delta opioid receptor with a specific activity (2200 Ci/mmol) that is over 50-fold greater than that of tritium-labeled DPDPE analogs. (125I)DPDPE binds to a single site in rat brain membranes with an equilibrium dissociation constant (Kd) value of 421 {plus minus} 67 pM and a receptor density (Bmax) value of 36.4 {plus minus} 2.7 fmol/mg protein. The high affinity of this site for delta opioid receptor ligands and its low affinity for mu or kappa receptor-selective ligands are consistent with its being a delta opioid receptor. The distribution of these sitesmore » in rat brain, observed by receptor autoradiography, is also consistent with that of delta opioid receptors. Association and dissociation binding kinetics of 1.0 nM (125I) DPDPE are monophasic at 25 degrees C. The association rate (k + 1 = 5.80 {plus minus} 0.88 {times} 10(7) M-1 min-1) is about 20- and 7-fold greater than that measured for 1.0 nM (3H) DPDPE and 0.8 nM (3H) (D-Pen2,4{prime}-Cl-Phe4, D-Pen5)enkephalin, respectively. The dissociation rate of (125I)DPDPE (0.917 {plus minus} 0.117 {times} 10(-2) min-1) measured at 1.0 nM is about 3-fold faster than is observed for either of the other DPDPE analogs. The rapid binding kinetics of (125I)DPDPE is advantageous because binding equilibrium is achieved with much shorter incubation times than are required for other cyclic enkephalin analogs. This, in addition to its much higher specific activity, makes (125I)DPDPE a valuable new radioligand for studies of delta opioid receptors.« less

  12. Lectins discriminate between pathogenic and nonpathogenic South American trypanosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Miranda Santos, I.K.; Pereira, M.E.

    1984-09-01

    Cell surface carbohydrates of Trypanosoma cruzi, Trypanosoma rangeli, and Trypanosoma conorhini were analyzed by a micro-agglutination assay employing 27 highly purified lectins and by binding assays using various /sup 125/I-labeled lectins. The following seven lectins discriminated between the trypanosomes: 1) tomato lectin (an N-acetyl-D-glucosamine-binding protein), both in purified form and as crude tomato juice; 2) Bauhinea purpurea and Sophora japonica lectins (both N-acetyl-D-galactosamine-binding proteins), which selectively agglutinated T. cruzi; 3) Vicia villosa (an N-acetyl-D-galactosamine-binding protein) which was specific for T. rangeli; 4) peanut lectin (a D-galactose-binding protein) both in purified form and as crude saline extract; and 5) Ulex europaeusmore » and Lotus tetragonolobus (both L-fucose-binding proteins) lectins which reacted only with T. conorhini. Binding studies with 125I-labeled lectins were performed to find whether unagglutinated cells of the three different species of trypanosomes might have receptors for these lectins, in which case absence of agglutination could be due to a peculiar arrangement of the receptors. These assays essentially confirmed the agglutination experiments.« less

  13. Specificity determinants in the interaction of apolipoprotein(a) kringles with tetranectin and LDL.

    PubMed

    Caterer, Nigel R; Graversen, Jonas H; Jacobsen, Christian; Moestrup, Søren K; Sigurskjold, Bent W; Etzerodt, Michael; Thøgersen, Hans C

    2002-11-01

    Lipoprotein(a) is composed of low density lipoprotein and apolipoprotein(a). Apolipoprotein(a) has evolved from plasminogen and contains 10 different plasminogen kringle 4 homologous domains [KIV(1-110)]. Previous studies indicated that lipoprotein(a) non-covalently binds the N-terminal region of lipoprotein B100 and the plasminogen kringle 4 binding plasma protein tetranectin. In this study recombinant KIV(2), KIV(7) and KIV(10) derived from apolipoprotein(a) were produced in E. coli and the binding to tetranectin and low density lipoprotein was examined. Only KIV(10) bound to tetranectin and binding was similar to that of plasminogen kringle 4 to tetranectin. Only KIV(7) bound to LDL. In order to identify the residues responsible for the difference in specificity between KIV(7) and KIV(10), a number of surface-exposed residues located around the lysine binding clefts were exchanged. Ligand binding analysis of these derivatives showed that Y62, and to a minor extent W32 and E56, of KIV(7) are important for LDL binding to KIV(7), whereas R32 and D56 of KIV(10) are required for tetranectin binding of KIV(10).

  14. The oligomerization state determines regulatory properties and inhibitor sensitivity of type 4 cAMP-specific phosphodiesterases.

    PubMed

    Richter, Wito; Conti, Marco

    2004-07-16

    PDE4 splice variants are classified into long and short forms depending on the presence or absence of two unique N-terminal domains termed upstream conserved regions 1 and 2 (UCR1 and -2). We have shown previously that the UCR module mediates dimerization of PDE4 long forms, whereas short forms, which lack UCR1, behave as monomers. In the present study, we demonstrate that dimerization is an essential structural element that determines the regulatory properties and inhibitor sensitivities of PDE4 enzymes. Comparing the properties of the dimeric wild type PDE4D3 with several monomeric mutant PDE4D3 constructs revealed that disruption of dimerization ablates the activation of PDE4 long forms by either protein kinase A phosphorylation or phosphatidic acid binding. Moreover, the analysis of heterodimers consisting of a catalytically active and a catalytically inactive PDE4D3 subunit indicates that protein kinase A phosphorylation of both subunits is essential to fully activate PDE4 enzymes. In addition to affecting enzyme regulation, disruption of dimerization reduces the sensitivity of the enzymes toward the prototypical PDE4 inhibitor rolipram. Parallel binding assays indicated that this shift in rolipram sensitivity is likely mediated by a decrease in the number of inhibitor binding sites in the high affinity rolipram binding state. Thus, although dimerization is not a requirement for high affinity rolipram binding, it functions to stabilize PDE4 long forms in their high affinity rolipram binding conformation. Taken together, our data indicate that dimerization defines the properties of PDE4 enzymes and suggest a common structural and functional organization for all PDEs.

  15. Conformational Rearrangement Within the Soluble Domains of the CD4 Receptor is Ligand-Specific

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashish,F.; Juncadella, I.; Garg, R.

    2008-01-01

    Ligand binding induces shape changes within the four modular ectodomains (D1-D4) of the CD4 receptor, an important receptor in immune signaling. Small angle x-ray scattering (SAXS) on both a two-domain and a four-domain construct of the soluble CD4 (sCD4) is consistent with known crystal structures demonstrating a bilobal and a semi-extended tetralobal Z conformation in solution, respectively. Detection of conformational changes within sCD4 as a result of ligand binding was followed by SAXS on sCD4 bound to two different glycoprotein ligands: the tick saliva immunosuppressor Salp15 and the HIV-1 envelope protein gp120. Ab initio modeling of these data showed thatmore » both Salp15 and gp120 bind to the D1 domain of sCD4 and yet induce drastically different structural rearrangements. Upon binding, Salp15 primarily distorts the characteristic lobal architecture of the sCD4 without significantly altering the semi-extended shape of the sCD4 receptor. In sharp contrast, the interaction of gp120 with sCD4 induces a shape change within sCD4 that can be described as a Z-to-U bi-fold closure of the four domains across its flexible D2-D3 linker. Placement of known crystal structures within the boundaries of the SAXS-derived models suggests that the ligand-induced shape changes could be a result of conformational changes within this D2-D3 linker. Functionally, the observed shape changes in CD4 receptor causes dissociation of lymphocyte kinase from the cytoplasmic domain of Salp15-bound CD4 and facilitates an interaction between the exposed V3 loops of CD4-bound gp120 molecule to the extracellular loops of its co-receptor, a step essential for HIV-1 viral entry.« less

  16. Estrogen receptor-independent catechol estrogen binding activity: protein binding studies in wild-type, Estrogen receptor-alpha KO, and aromatase KO mice tissues.

    PubMed

    Philips, Brian J; Ansell, Pete J; Newton, Leslie G; Harada, Nobuhiro; Honda, Shin-Ichiro; Ganjam, Venkataseshu K; Rottinghaus, George E; Welshons, Wade V; Lubahn, Dennis B

    2004-06-01

    Primary evidence for novel estrogen signaling pathways is based upon well-documented estrogenic responses not inhibited by estrogen receptor antagonists. In addition to 17beta-E2, the catechol estrogen 4-hydroxyestradiol (4OHE2) has been shown to elicit biological responses independent of classical estrogen receptors in estrogen receptor-alpha knockout (ERalphaKO) mice. Consequently, our research was designed to biochemically characterize the protein(s) that could be mediating the biological effects of catechol estrogens using enzymatically synthesized, radiolabeled 4-hydroxyestrone (4OHE1) and 4OHE2. Scatchard analyses identified a single class of high-affinity (K(d) approximately 1.6 nM), saturable cytosolic binding sites in several ERalphaKO estrogen-responsive tissues. Specific catechol estrogen binding was competitively inhibited by unlabeled catechol estrogens, but not by 17beta-E2 or the estrogen receptor antagonist ICI 182,780. Tissue distribution studies indicated significant binding differences both within and among various tissues in wild-type, ERalphaKO, and aromatase knockout female mice. Ligand metabolism experiments revealed extensive metabolism of labeled catechol estrogen, suggesting that catechol estrogen metabolites were responsible for the specific binding. Collectively, our data provide compelling evidence for the interaction of catechol estrogen metabolites with a novel binding protein that exhibits high affinity, specificity, and selective tissue distribution. The extensive biochemical characterization of this binding protein indicates that this protein may be a receptor, and thus may mediate ERalpha/beta-independent effects of catechol estrogens and their metabolites.

  17. Measurement of free glucocorticoids: quantifying corticosteroid-binding globulin binding affinity and its variation within and among mammalian species.

    PubMed

    Delehanty, Brendan; Hossain, Sabrina; Jen, Chao Ching; Crawshaw, Graham J; Boonstra, Rudy

    2015-01-01

    Plasma glucocorticoids (GCs) are commonly used as measures of stress in wildlife. A great deal of evidence indicates that only free GC (GC not bound by the specific binding protein, corticosteroid-binding globulin, CBG) leaves the circulation and exerts biological effects on GC-sensitive tissues. Free hormone concentrations are difficult to measure directly, so researchers estimate free GC using two measures: the binding affinity and the binding capacity in plasma. We provide an inexpensive saturation binding method for calculating the binding affinity (equilibrium dissociation constant, K d) of CBG that can be run without specialized laboratory equipment. Given that other plasma proteins, such as albumin, also bind GCs, the method compensates for this non-specific binding. Separation of bound GC from free GC was achieved with dextran-coated charcoal. The method provides repeatable estimates (12% coefficient of variation in the red squirrel, Tamiasciurus hudsonicus), and there is little evidence of inter-individual variation in K d (range 2.0-7.3 nM for 16 Richardson's ground squirrels, Urocitellus richardsonii). The K d values of 28 mammalian species we assessed were mostly clustered around a median of 4 nM, but five species had values between 13 and 61 nM. This pattern may be distinct from birds, for which published values are more tightly distributed (1.5-5.1 nM). The charcoal separation method provides a reliable and robust method for measuring the K d in a wide range of species. It uses basic laboratory equipment to provide rapid results at very low cost. Given the importance of CBG in regulating the biological activity of GCs, this method is a useful tool for physiological ecologists.

  18. Molecular recognition of live methicillin-resistant staphylococcus aureus cells using DNA aptamers.

    PubMed

    Turek, Diane; Van Simaeys, Dimitri; Johnson, Judith; Ocsoy, Ismail; Tan, Weihong

    2013-01-01

    To generate DNA-aptamers binding to Methicillin-resistant Staphylococcus aureus (MRSA) . The Cell-Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technology was used to run the selection against MRSA bacteria and develop target-specific aptamers. MRSA bacteria were targeted while Enterococcus faecalis bacteria were used for counter selection during that process. Binding assays to determine the right aptamer candidates as well as binding assays on clinical samples were performed through flow cytometry and analyzed using the FlowJo software. The characterization of the aptamers was done by determination of their K d values and determined by analysis of flow data at different aptamer concentration using SigmaPlot. Finally, the recognition of the complex Gold-nanoparticle-aptamer to the bacteria cells was observed using transmission electron microscopy (TEM). During the cell-SELEX selection process, 17 rounds were necessary to generate enrichment of the pool. While the selection was run using fixed cells, it was shown that the binding of the pools with live cells was giving similar results. After sequencing and analysis of the two last pools, four sequences were identified to be aptamer candidates. The characterization of those aptamers showed that based on their K d values, DTMRSA4 presented the best binding with a K d value of 94.61 ± 18.82 nmol/L. A total of ten clinical samples of MRSA , S. aureus and Enterococcus faecalis were obtained to test those aptamers and determine their binding on a panel of samples. DTMRSA1 and DTMRSA3 showed the best results regarding their specificity to MRSA , DTMRSA1 being the most specific of all. Finally, those aptamers were coupled with gold-nanoparticle and their binding to MRSA cells was visualized through TEM showing that adduction of nanoparticles on the aptamers did not change their binding property. A total of four aptamers that bind to MRSA were obtained with K d values ranking from 94 to 200 nmol/L.

  19. A specific l-tri-iodothyronine-binding protein in the cytosol fraction of human breast adipose tissue

    PubMed Central

    Rao, Marie Luise; Rao, Govind S.

    1982-01-01

    1. Binding of l-tri-[125I]iodothyronine to the cytosol fraction of normal human female breast adipose tissue was investigated by the charcoal adsorption method. Equilibrium of binding was reached after 120s at 25°C. 2. The l-tri-[125I]iodothyronine-binding component is a protein; this was confirmed by experiments in which binding was totally lost after heating the cytosol fraction for 10min at 100°C and in which binding was diminished after treatment with proteolytic enzymes and with thiol-group-blocking reagents. The binding protein was stable at −38°C for several months. 3. It displayed saturability, high affinity (apparent Kd 3.28nm) and a single class of binding sites. 4. High specificity for l-tri-iodothyronine and l-3,5-di-iodo-3′-isopropylthyronine was observed, whereas other iodothyronines were less effective in displacing l-tri-[125I]-iodothyronine from its binding site. 5. The binding of the hormone by the cytosol fraction did not show a pH optimum. 6. When cytosol fractions of adipose tissue from different females were subjected to radioimmunoassay for the determination of thyroxine-binding globulin a value of 0.304±0.11μg/mg of cytosol protein (mean±s.d., n=4) was obtained; the mean concentration in plasma was 0.309±0.07μg/mg of plasma protein (mean±s.d., n=3). 7. The Ka value of 6.3×108m−1 of l-tri-[125I]iodothyronine for binding to plasma, the similar thermalinactivation profiles of binding and the reactivity to thiol-group-blocking reagents were some properties common between the binding components from the cytosol fraction and plasma. 8. These results suggest that the cytosol fraction of human female breast adipose tissue contains thyroxine-binding globulin; the protein that binds l-tri-[125I]iodothyronine with high affinity and specificity appears to be similar to thyroxine-binding globulin. PMID:6289813

  20. A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors.

    PubMed

    de Vries, Robert P; Tzarum, Netanel; Peng, Wenjie; Thompson, Andrew J; Ambepitiya Wickramasinghe, Iresha N; de la Pena, Alba T Torrents; van Breemen, Marielle J; Bouwman, Kim M; Zhu, Xueyong; McBride, Ryan; Yu, Wenli; Sanders, Rogier W; Verheije, Monique H; Wilson, Ian A; Paulson, James C

    2017-09-01

    In June 2013, the first case of human infection with an avian H6N1 virus was reported in a Taiwanese woman. Although this was a single non-fatal case, the virus continues to circulate in Taiwanese poultry. As with any emerging avian virus that infects humans, there is concern that acquisition of human-type receptor specificity could enable transmission in the human population. Despite mutations in the receptor-binding pocket of the human H6N1 isolate, it has retained avian-type (NeuAcα2-3Gal) receptor specificity. However, we show here that a single nucleotide substitution, resulting in a change from Gly to Asp at position 225 (G225D), completely switches specificity to human-type (NeuAcα2-6Gal) receptors. Significantly, G225D H6 loses binding to chicken trachea epithelium and is now able to bind to human tracheal tissue. Structural analysis reveals that Asp225 directly interacts with the penultimate Gal of the human-type receptor, stabilizing human receptor binding. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  1. Fluorine-18 Labeling of the HER2-Targeting Single-Domain Antibody 2Rs15d Using a Residualizing Label and Preclinical Evaluation.

    PubMed

    Zhou, Zhengyuan; Vaidyanathan, Ganesan; McDougald, Darryl; Kang, Choong Mo; Balyasnikova, Irina; Devoogdt, Nick; Ta, Angeline N; McNaughton, Brian R; Zalutsky, Michael R

    2017-12-01

    Our previous studies with F-18-labeled anti-HER2 single-domain antibodies (sdAbs) utilized 5F7, which binds to the same epitope on HER2 as trastuzumab, complicating its use for positron emission tomography (PET) imaging of patients undergoing trastuzumab therapy. On the other hand, sdAb 2Rs15d binds to a different epitope on HER2 and thus might be a preferable vector for imaging in these patients. The aim of this study was to evaluate the tumor targeting of F-18 -labeled 2Rs15d in HER2-expressing breast carcinoma cells and xenografts. sdAb 2Rs15d was labeled with the residualizing labels N-succinimidyl 3-((4-(4-[ 18 F]fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(guanidinomethyl)benzoate ([ 18 F]RL-I) and N-succinimidyl 4-guanidinomethyl-3-[ 125 I]iodobenzoate ([ 125 I]SGMIB), and the purity and HER2-specific binding affinity and immunoreactivity were assessed after labeling. The biodistribution of I-125- and F-18-labeled 2Rs15d was determined in SCID mice bearing subcutaneous BT474M1 xenografts. MicroPET/x-ray computed tomograph (CT) imaging of [ 18 F]RL-I-2Rs15d was performed in this model and compared to that of nonspecific sdAb [ 18 F]RL-I-R3B23. MicroPET/CT imaging was also done in an intracranial HER2-positive breast cancer brain metastasis model after administration of 2Rs15d-, 5F7-, and R3B23-[ 18 F]RL-I conjugates. [ 18 F]RL-I was conjugated to 2Rs15d in 40.8 ± 9.1 % yield and with a radiochemical purity of 97-100 %. Its immunoreactive fraction (IRF) and affinity for HER2-specific binding were 79.2 ± 5.4 % and 7.1 ± 0.4 nM, respectively. [ 125 I]SGMIB was conjugated to 2Rs15d in 58.4 ± 8.2 % yield and with a radiochemical purity of 95-99 %; its IRF and affinity for HER2-specific binding were 79.0 ± 12.9 % and 4.5 ± 0.8 nM, respectively. Internalized radioactivity in BT474M1 cells in vitro for [ 18 F]RL-I-2Rs15d was 43.7 ± 3.6, 36.5 ± 2.6, and 21.7 ± 1.2 % of initially bound radioactivity at 1, 2, and 4 h, respectively, and was similar to that seen for [ 125 I]SGMIB-2Rs15d. Uptake of [ 18 F]RL-I-2Rs15d in subcutaneous xenografts was 16-20 %ID/g over 1-3 h. Subcutaneous tumor could be clearly delineated by microPET/CT imaging with [ 18 F]RL-I-2Rs15d but not with [ 18 F]RL-I-R3B23. Intracranial breast cancer brain metastases could be visualized after intravenous administration of both [ 18 F]RL-I-2Rs15d and [ 18 F]RL-I-5F7. Although radiolabeled 2Rs15d conjugates exhibited lower tumor cell retention both in vitro and in vivo than that observed previously for 5F7, given that it binds to a different epitope on HER2 from those targeted by the clinically utilized HER2-targeted therapeutic antibodies trastuzumab and pertuzumab, F-18-labeled 2Rs15d has potential for assessing HER2 status by PET imaging after trastuzumab and/or pertuzumab therapy.

  2. HMG-D is an architecture-specific protein that preferentially binds to DNA containing the dinucleotide TG.

    PubMed Central

    Churchill, M E; Jones, D N; Glaser, T; Hefner, H; Searles, M A; Travers, A A

    1995-01-01

    The high mobility group (HMG) protein HMG-D from Drosophila melanogaster is a highly abundant chromosomal protein that is closely related to the vertebrate HMG domain proteins HMG1 and HMG2. In general, chromosomal HMG domain proteins lack sequence specificity. However, using both NMR spectroscopy and standard biochemical techniques we show that binding of HMG-D to a single DNA site is sequence selective. The preferred duplex DNA binding site comprises at least 5 bp and contains the deformable dinucleotide TG embedded in A/T-rich sequences. The TG motif constitutes a common core element in the binding sites of the well-characterized sequence-specific HMG domain proteins. We show that a conserved aromatic residue in helix 1 of the HMG domain may be involved in recognition of this core sequence. In common with other HMG domain proteins HMG-D binds preferentially to DNA sites that are stably bent and underwound, therefore HMG-D can be considered an architecture-specific protein. Finally, we show that HMG-D bends DNA and may confer a superhelical DNA conformation at a natural DNA binding site in the Drosophila fushi tarazu scaffold-associated region. Images PMID:7720717

  3. The role of water molecules in stereoselectivity of glucose/galactose-binding protein

    NASA Astrophysics Data System (ADS)

    Kim, Minsup; Cho, Art E.

    2016-11-01

    Using molecular dynamics (MD) simulation methods, we attempted to explain the experimental results on ligand specificity of glucose/galactose-binding protein (GGBP) to β-D-glucose and β-D-galactose. For the simulation, a three-dimensional structure of GGBP was prepared, and homology modeling was performed to generate variant structures of GGBP with mutations at Asp14. Then, docking was carried out to find a reasonable β-D-glucose and β-D-galactose binding conformations with GGBP. Subsequent molecular dynamics simulations of β-D-glucose-GGBP and β-D-galactose-GGBP complexes and estimation of the orientation and stability of water molecules at the binding site revealed how water molecules influence ligand specificity. In our simulation, water molecules mediated interactions of β-D-glucose or β-D-galactose with residue 14 of GGBP. In this mechanism, the Phe16Ala mutant leaves both sugar molecules free to move, and the specific role of water molecules were eliminated, while the wild type, Asp14Asn mutant, and Asp14Glu mutant make hydrogen bond interactions with β-D-glucose more favorable. Our results demonstrate that bound water molecules at the binding site of GGBP are related to localized conformational change, contributing to ligand specificity of GGBP for β-D-glucose over β-D-galactose.

  4. Characterization and autoradiographic localization of neurotensin binding sites in human sigmoid colon.

    PubMed

    Azriel, Y; Burcher, E

    2001-06-01

    Radioiodinated neurotensin ((125)I-NT) was used to characterize and localize NT binding sites in normal human sigmoid colon. Specimens were obtained from patients (30-77 years old) undergoing resection for colon carcinoma. Specific binding of (125)I-NT to sigmoid circular muscle membranes was enhanced by o-phenanthroline (1 mM) but other peptidase inhibitors were ineffective. (125)I-NT bound to a high-affinity site of K(d) = 0.88 +/- 0.09 nM and B(max) = 4.03 +/- 0.66 fmol/mg of wet weight tissue (n = 14), although in the majority of patients another site, of low but variable affinity, could also be detected. Specific binding of 50 pM (125)I-NT was inhibited by NT(8-13) > NT > SR142948A > or = neuromedin N > or = SR48692, consistent with binding to the NT1 receptor. In autoradiographic studies, dense specific binding of (125)I-NT was seen over myenteric and submucosal ganglia, moderate binding over circular muscle, and sparse binding over longitudinal muscle and taenia coli. Levocabastine, which has affinity for the NT2 receptor, did not inhibit specific binding of (125)I-NT in membrane competition or autoradiographic studies. NT contracted sigmoid colon circular muscle strips with a pD(2) value of 6.8 +/- 0.2 nM (n = 25). The contractile responses to NT were significantly potentiated in the presence of tetrodotoxin (1 microM), indicating a neural component. Results from functional studies support actions for NT on both muscle and enteric neurons, consistent with the presence of NT receptors on circular muscle and ganglia of human sigmoid colon. The lack of inhibition by levocabastine suggests that the second binding site detected does not correspond to the NT2 receptor.

  5. Cyclo[n]pyrroles: Size and Site Specific Binding to G-Quadruplexes

    PubMed Central

    Baker, Erin Shammel; Lee, Jeong T.

    2014-01-01

    Inhibiting the enzyme telomerase by stabilizing the G-quadruplex has potential in anticancer drug design. Diprotonated cyclo[n]pyrroles represent a set of expanded porphyrin analogues with structures similar to telomestatin, a natural product known to bind to and stabilize G-quadruplexes. As a first step towards testing whether cyclo[n]pyrroles display a similar function, a series of diprotonated cyclo[n]pyrroles (where n = 6, 7 and 8) was each added to the human telomere repeat sequence d(T2AG3)4 and examined with mass spectrometry, ion mobility and molecular dynamics calculations. Nano-ESI-MS indicated that the smaller the cyclo[n]pyrrole, the stronger it binds to the telomeric sequence. It was also found that cyclo[6]pyrrole bound to d(T2AG3)4 better than octaethylporphyrin, a finding rationalized by cyclo[6]pyrrole having a +2 charge, while octaethylporphyrin bears no charge. Ion mobility measurements were used to measure the collision cross section of each d(T2AG3)4/cyclo[n]pyrrole complex. Only one peak was observed in the arrival time distributions for all complexes and the experimental cross sections indicated that only structures with d(T2AG3)4 in an antiparallel G-quadruplex arrangement and each cyclo[n]pyrrole externally stacked below the G-quartets occur under these experimental conditions. When the cyclo[n]pyrroles were intercalated or nonspecifically bound to the quadruplex or if different conformations than antiparallel were considered for d(T2AG3)4, the theoretical cross sections did not match experiment. On this basis, it is inferred that 1) external stacking represents the dominant binding mode for the interaction of cyclo[n]pyrroles with d(T2AG3)4 and 2) the overall size and charge of the cyclo[n]pyrroles play important roles in defining the binding strength. PMID:16492050

  6. Structure of D-AKAP2:PKA RI complex: Insights into AKAP specificity and selectivity

    PubMed Central

    Sarma, Ganapathy N.; Kinderman, Francis S.; Kim, Choel; von Daake, Sventja; Chen, Lirong; Wang, Bi-Cheng; Taylor, Susan S.

    2011-01-01

    Summary A-kinase anchoring proteins (AKAPs) regulate cyclic AMP-dependent protein kinase (PKA) signaling in space and time. Dual-specific AKAP 2 (D-AKAP2) binds to the dimerization/docking (D/D) domain of both RI and RII regulatory subunits of PKA with high affinity. Here, we have determined the structures of the RIα D/D domain alone and in complex with D-AKAP2. The D/D domain presents an extensive surface for binding through a well-formed N-termina helix and this surface restricts the diversity of AKAPs that can interact. The structures also underscore the importance of a redox-sensitive disulfide in affecting AKAP binding. An unexpected shift in the helical register of D-AKAP2 compared to the RIIα:D-AKAP2 complex structure makes the mode of binding to RIα novel. Finally, the comparison allows us to deduce a molecular explanation for the sequence and spatial determinants of AKAP specificity. PMID:20159461

  7. Thermodynamic characterization of binding Oxytricha nova single strand telomere DNA with the alpha protein N-terminal domain.

    PubMed

    Buczek, Pawel; Horvath, Martin P

    2006-06-23

    The Oxytricha nova telemere binding protein alpha subunit binds single strand DNA and participates in a nucleoprotein complex that protects the very ends of chromosomes. To understand how the N-terminal, DNA binding domain of alpha interacts with DNA we measured the stoichiometry, enthalpy (DeltaH), entropy (DeltaS), and dissociation constant (K(D-DNA)) for binding telomere DNA fragments at different temperatures and salt concentrations using native gel electrophoresis and isothermal titration calorimetry (ITC). About 85% of the total free energy of binding corresponded with non-electrostatic interactions for all DNAs. Telomere DNA fragments d(T(2)G(4)), d(T(4)G(4)), d(G(3)T(4)G(4)), and d(G(4)T(4)G(4)) each formed monovalent protein complexes. In the case of d(T(4)G(4)T(4)G(4)), which has two tandemly repeated d(TTTTTGGGG) telomere motifs, two binding sites were observed. The high-affinity "A site" has a dissociation constant, K(D-DNA(A)) = 13(+/-4) nM, while the low-affinity "B site" is characterized by K(D-DNA(B)) = 5600(+/-600) nM at 25 degrees C. Nucleotide substitution variants verified that the A site corresponds principally with the 3'-terminal portion of d(T(4)G(4)T(4)G(4)). The relative contributions of entropy (DeltaS) and enthalpy (DeltaH) for binding reactions were DNA length-dependent as was heat capacity (DeltaCp). These trends with respect to DNA length likely reflect structural transitions in the DNA molecule that are coupled with DNA-protein association. Results presented here are important for understanding early intermediates and subsequent stages in the assembly of the full telomere nucleoprotein complex and how binding events can prepare the telomere DNA for extension by telomerase, a critical event in telomere biology.

  8. Modification of Herbicide Binding to Photosystem II in Two Biotypes of Senecio vulgaris L

    PubMed Central

    Pfister, Klaus; Radosevich, Steven R.; Arntzen, Charles J.

    1979-01-01

    The present study compares the binding and inhibitory activity of two photosystem II inhibitors: 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron [DCMU]) and 2-chloro-4-(ethylamine)-6-(isopropyl amine)-S-triazene (atrazine). Chloroplasts isolated from naturally occurring triazine-susceptible and triazine-resistant biotypes of common groundsel (Senecio vulgaris L.) showed the following characteristics. (a) Diuron strongly inhibited photosynthetic electron transport from H2O to 2,6-dichlorophenolindophenol in both biotypes. Strong inhibition by atrazine was observed only with the susceptible chloroplasts. (b) Hill plots of electron transport inhibition data indicate a noncooperative binding of one inhibitor molecule at the site of action for both diuron and atrazine. (c) Susceptible chloroplasts show a strong diuron and atrazine binding (14C-radiolabel assays) with binding constants (K) of 1.4 × 10−8 molar and 4 × 10−8 molar, respectively. In the resistant chloroplasts the diuron binding was slightly decreased (K = 5 × 10−8 molar), whereas no specific atrazine binding was detected. (d) In susceptible chloroplasts, competitive binding between radioactively labeled diuron and non-labeled atrazine was observed. This competition was absent in the resistant chloroplasts. We conclude that triazine resistance of both intact plants and isolated chloroplasts of Senecio vulgaris L. is based upon a minor modification of the protein in the photosystem II complex which is responsible for herbicide binding. This change results in a specific loss of atrazine (triazine)-binding capacity. PMID:16661120

  9. Fatty Acid Binding Proteins Expressed at the Human Blood-Brain Barrier Bind Drugs in an Isoform-Specific Manner.

    PubMed

    Lee, Gordon S; Kappler, Katharina; Porter, Christopher J H; Scanlon, Martin J; Nicolazzo, Joseph A

    2015-10-01

    To examine the expression of fatty acid binding proteins (FABPs) at the human blood-brain barrier (BBB) and to assess their ability to bind lipophilic drugs. mRNA and protein expression of FABP subtypes in immortalized human brain endothelial (hCMEC/D3) cells were examined by RT-qPCR and Western blot, respectively. FABPs that were found in hCMEC/D3 cells (hFABPs) were recombinantly expressed and purified from Escherichia coli C41(DE3) cells. Drug binding to these hFABPs was assessed using a fluorescence assay, which measured the ability of a panel of lipophilic drugs to displace the fluorescent probe compound 1-anilinonaphthalene-8-sulfonic acid (ANS). hFABP3, 4 and 5 were expressed in hCMEC/D3 cells at the mRNA and protein level. The competitive ANS displacement assay demonstrated that, in general, glitazones preferentially bound to hFABP5 (Ki: 1.0-28 μM) and fibrates and fenamates preferentially bound to hFABP4 (Ki: 0.100-17 μM). In general, lipophilic drugs appeared to show weaker affinities for hFABP3 relative to hFABP4 and hFABP5. No clear correlation was observed between the molecular structure or physicochemical properties of the drugs and their ability to displace ANS from hFABP3, 4 and 5. hFABP3, 4 and 5 are expressed at the human BBB and bind differentially to a diverse range of lipophilic drugs. The unique expression and binding patterns of hFABPs at the BBB may therefore influence drug disposition into the brain.

  10. Valproic acid-inducible Arl4D and cytohesin-2/ARNO, acting through the downstream Arf6, regulate neurite outgrowth in N1E-115 cells.

    PubMed

    Yamauchi, Junji; Miyamoto, Yuki; Torii, Tomohiro; Mizutani, Reiko; Nakamura, Kazuaki; Sanbe, Atsushi; Koide, Hiroshi; Kusakawa, Shinji; Tanoue, Akito

    2009-07-15

    The mood-stabilizing agent valproic acid (VPA) potently promotes neuronal differentiation. As yet, however, little is known about the underlying molecular mechanism. Here, we show that VPA upregulates cytohesin-2 and mediates neurite outgrowth in N1E-115 neuroblastoma cells. Cytohesin-2 is the guanine-nucleotide exchange factor (GEF) for small GTPases of the Arf family; it regulates many aspects of cellular functions including morphological changes. Treatment with the specific cytohesin family inhibitor SecinH3 or knockdown of cytohesin-2 with its siRNA results in blunted induction of neurite outgrowth in N1E-115 cells. The outgrowth is specifically inhibited by siRNA knockdown of Arf6, but not by that of Arf1. Furthermore, VPA upregulates Arl4D, an Arf-like small GTPase that has recently been identified as the regulator that binds to cytohesin-2. Arl4D knockdown displays an inhibitory effect on neurite outgrowth resulting from VPA, while expression of constitutively active Arl4D induces outgrowth. We also demonstrate that the addition of cell-permeable peptide, coupling the cytohesin-2-binding region of Arl4D into cells, reduces the effect of VPA. Thus, Arl4D is a previously unknown regulator of neurite formation through cytohesin-2 and Arf6, providing another example that the functional interaction of two different small GTPases controls an important cellular function.

  11. A chirality change in XPC- and Sfi1-derived peptides affects their affinity for centrin.

    PubMed

    Grecu, Dora; Irudayaraj, Victor Paul Raj; Martinez-Sanz, Juan; Mallet, Jean-Maurice; Assairi, Liliane

    2016-04-01

    The Ca(2+)-binding protein centrin binds to a hydrophobic motif (W(1)xxL(4)xxxL(8)) included in the sequence of several cellular targets: XPC (xeroderma pigmentosum group C protein), Sfi1 (suppressor of fermentation-induced loss of stress resistance protein1), and Sac3 [the central component of the transcription and mRNA export (TREX-2) complex]. However, centrin binding occurs in a reversed orientation (L(8)xxxL(4)xxW(1)) for Sfi1 and Sac3 compared with XPC. Because D-peptides have been investigated for future therapeutic use, we analyzed their centrin-binding properties. Their affinity for centrin was measured using isothermal titration calorimetry. The chirality change in the target-derived peptides affected their ability to bind centrin in a specific manner depending on the sequence orientation of the centrin-binding motif. In contrast to L-XPC-P10, D-XPC-P10 bound C-HsCen1 in a Ca(2+)-dependent manner and to a lesser extent. D-XPC-P10 exhibited a reduced affinity for C-HsCen1 (Ka=0.064 × 10(6) M(-1)) by a factor of 2000 compared with L-XPC-P10 (Ka=132 × 10(6) M(-1)). D-peptides have a lower affinity than L-peptides for centrin, and the strength of this affinity depends on the sequence orientation of the target-derived peptides. The residual affinity observed for D-XPC suggests that the use of d-peptides represents a promising strategy for inhibiting centrin binding to its targets. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. beta. -Adrenoceptors in human tracheal smooth muscle: characteristics of binding and relaxation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van Koppen, C.J.; Hermanussen, M.W.; Verrijp, K.N.

    1987-06-29

    Specific binding of (/sup 125/I)-(-)-cyanopindolol to human tracheal smooth muscle membranes was saturable, stereo-selective and of high affinity (K/sub d/ = 5.3 +/- 0.9 pmol/l and R/sub T/ = 78 +/- 7 fmol/g tissue). The ..beta../sub 1/-selective antagonists atenolol and LK 203-030 inhibited specific (/sup 125/I)-(-)-cyanopindolol binding according to a one binding site model with low affinity in nearly all subjects, pointing to a homogeneous BETA/sub 2/-adrenoceptor population. In one subject using LK 203-030 a small ..beta../sub 1/-adrenoceptor subpopulation could be demonstrated. The beta-mimetics isoprenaline, fenoterol, salbutamol and terbutaline recognized high and low affinity agonist binding sites. Isoprenaline's pK/sub H/-more » and pK/sub L/-values for the high and low affinity sites were 8.0 +/- 0.2 and 5.9 +/- 0.3 respectively. In functional experiments isoprenaline relaxed tracheal smooth muscle strips having intrinsic tone with a pD/sub 2/-value of 6.63 +/- 0.19. 32 references, 4 figures, 2 tables.« less

  13. Monoclonal and anti-idiotypic anti-EBV/C3d receptor antibodies detect two binding sites, one for EBV and one for C3d on glycoprotein 140, the EBV/C3dR, expressed on human B lymphocytes.

    PubMed

    Barel, M; Fiandino, A; Delcayre, A X; Lyamani, F; Frade, R

    1988-09-01

    Glycoprotein (gp) 140, the EBV/C3dR of B lymphocytes, is a membrane site involved in human cell regulation. To analyze the specificities of the binding sites for EBV and for C3d on the gp 140 molecule, two distinct approaches were used. First, anti-EBV/C3dR mAb were prepared against highly purified EBV/C3dR. Nine anti-EBV/C3dR mAb were obtained. Four of these anti-EBV/C3dR mAb inhibited C3d binding but not EBV binding on gp 140, whereas four others exerted an inverse effect. These differences could not be due to differences in isotype, antibody concentration, affinity constant, and number of molecules bound on cell surface, as these parameters were identical for the nine used mAb. Second, polyclonal anti-idiotypic antibodies (Ab2) were prepared against F(ab)'2 fragments of polyclonal anti-EBV/C3dR (Ab1). Ab2 recognized the variable portion of Ab1 as controlled by immunoblotting experiments. Ab2, which did not react with the cell surface, inhibited Ab1 binding on Raji cells. Ab2 mimicked the EBV/C3dR by its properties to bind to particle-bound C3d and EBV, preventing their binding on Raji cell surface. C3d binding specificities contained in Ab2 were isolated by affinity chromatography on C3b/C3bi-Sepharose. These specificities, being the internal image of C3d binding site of EBV/C3dR, reacted with Ab1 and inhibited particle-bound C3d binding on Raji cells but did not react with EBV. Taken together, these data support strongly that gp 140, the EBV/C3dR, carried two distinct binding sites, one for EBV and one for C3d.

  14. Mature parasite-infected erythrocyte surface antigen (MESA) of Plasmodium falciparum binds to the 30-kDa domain of protein 4.1 in malaria-infected red blood cells.

    PubMed

    Waller, Karena L; Nunomura, Wataru; An, Xiuli; Cooke, Brian M; Mohandas, Narla; Coppel, Ross L

    2003-09-01

    The Plasmodium falciparum mature parasite-infected erythrocyte surface antigen (MESA) is exported from the parasite to the infected red blood cell (IRBC) membrane skeleton, where it binds to protein 4.1 (4.1R) via a 19-residue MESA sequence. Using purified RBC 4.1R and recombinant 4.1R fragments, we show MESA binds the 30-kDa region of RBC 4.1R, specifically to a 51-residue region encoded by exon 10 of the 4.1R gene. The 3D structure of this region reveals that the MESA binding site overlaps the region of 4.1R involved in the p55, glycophorin C, and 4.1R ternary complex. Further binding studies using p55, 4.1R, and MESA showed competition between p55 and MESA for 4.1R, implying that MESA bound at the IRBC membrane skeleton may modulate normal 4.1R and p55 interactions in vivo. Definition of minimal binding domains involved in critical protein interactions in IRBCs may aid the development of novel therapies for falciparum malaria.

  15. Selection and identification of a DNA aptamer targeted to Vibrio parahemolyticus.

    PubMed

    Duan, Nuo; Wu, Shijia; Chen, Xiujuan; Huang, Yukun; Wang, Zhouping

    2012-04-25

    A whole-bacterium systemic evolution of ligands by exponential enrichment (SELEX) method was applied to a combinatorial library of FAM-labeled single-stranded DNA molecules to identify DNA aptamers demonstrating specific binding to Vibrio parahemolyticus . FAM-labeled aptamer sequences with high binding affinity to V. parahemolyticus were identified by flow cytometric analysis. Aptamer A3P, which showed a particularly high binding affinity in preliminary studies, was chosen for further characterization. This aptamer displayed a dissociation constant (K(d)) of 16.88 ± 1.92 nM. Binding assays to assess the specificity of aptamer A3P showed a high binding affinity (76%) for V. parahemolyticus and a low apparent binding affinity (4%) for other bacteria. Whole-bacterium SELEX is a promising technique for the design of aptamer-based molecular probes for microbial pathogens that does not require the labor-intensive steps of isolating and purifying complex markers or targets.

  16. Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site.

    PubMed

    Mazhab-Jafari, Mohammad T; Marshall, Christopher B; Smith, Matthew J; Gasmi-Seabrook, Geneviève M C; Stathopulos, Peter B; Inagaki, Fuyuhiko; Kay, Lewis E; Neel, Benjamin G; Ikura, Mitsuhiko

    2015-05-26

    K-RAS4B (Kirsten rat sarcoma viral oncogene homolog 4B) is a prenylated, membrane-associated GTPase protein that is a critical switch for the propagation of growth factor signaling pathways to diverse effector proteins, including rapidly accelerated fibrosarcoma (RAF) kinases and RAS-related protein guanine nucleotide dissociation stimulator (RALGDS) proteins. Gain-of-function KRAS mutations occur frequently in human cancers and predict poor clinical outcome, whereas germ-line mutations are associated with developmental syndromes. However, it is not known how these mutations affect K-RAS association with biological membranes or whether this impacts signal transduction. Here, we used solution NMR studies of K-RAS4B tethered to nanodiscs to investigate lipid bilayer-anchored K-RAS4B and its interactions with effector protein RAS-binding domains (RBDs). Unexpectedly, we found that the effector-binding region of activated K-RAS4B is occluded by interaction with the membrane in one of the NMR-observable, and thus highly populated, conformational states. Binding of the RAF isoform ARAF and RALGDS RBDs induced marked reorientation of K-RAS4B from the occluded state to RBD-specific effector-bound states. Importantly, we found that two Noonan syndrome-associated mutations, K5N and D153V, which do not affect the GTPase cycle, relieve the occluded orientation by directly altering the electrostatics of two membrane interaction surfaces. Similarly, the most frequent KRAS oncogenic mutation G12D also drives K-RAS4B toward an exposed configuration. Further, the D153V and G12D mutations increase the rate of association of ARAF-RBD with lipid bilayer-tethered K-RAS4B. We revealed a mechanism of K-RAS4B autoinhibition by membrane sequestration of its effector-binding site, which can be disrupted by disease-associated mutations. Stabilizing the autoinhibitory interactions between K-RAS4B and the membrane could be an attractive target for anticancer drug discovery.

  17. Substrate Specificity and Inhibitor Sensitivity of Plant UDP-Sugar Producing Pyrophosphorylases.

    PubMed

    Decker, Daniel; Kleczkowski, Leszek A

    2017-01-01

    UDP-sugars are essential precursors for glycosylation reactions producing cell wall polysaccharides, sucrose, glycoproteins, glycolipids, etc. Primary mechanisms of UDP sugar formation involve the action of at least three distinct pyrophosphorylases using UTP and sugar-1-P as substrates. Here, substrate specificities of barley and Arabidopsis (two isozymes) UDP-glucose pyrophosphorylases (UGPase), Arabidopsis UDP-sugar pyrophosphorylase (USPase) and Arabidopsis UDP- N -acetyl glucosamine pyrophosphorylase2 (UAGPase2) were investigated using a range of sugar-1-phosphates and nucleoside-triphosphates as substrates. Whereas all the enzymes preferentially used UTP as nucleotide donor, they differed in their specificity for sugar-1-P. UGPases had high activity with D-Glc-1-P, but could also react with Fru-1-P and Fru-2-P ( K m values over 10 mM). Contrary to an earlier report, their activity with Gal-1-P was extremely low. USPase reacted with a range of sugar-1-phosphates, including D-Glc-1-P, D-Gal-1-P, D-GalA-1-P ( K m of 1.3 mM), β-L-Ara-1-P and α-D-Fuc-1-P ( K m of 3.4 mM), but not β-L-Fuc-1-P. In contrast, UAGPase2 reacted only with D-GlcNAc-1-P, D-GalNAc-1-P ( K m of 1 mM) and, to some extent, D-Glc-1-P ( K m of 3.2 mM). Generally, different conformations/substituents at C2, C4, and C5 of the pyranose ring of a sugar were crucial determinants of substrate specificity of a given pyrophosphorylase. Homology models of UDP-sugar binding to UGPase, USPase and UAGPase2 revealed more common amino acids for UDP binding than for sugar binding, reflecting differences in substrate specificity of these proteins. UAGPase2 was inhibited by a salicylate derivative that was earlier shown to affect UGPase and USPase activities, consistent with a common structural architecture of the three pyrophosphorylases. The results are discussed with respect to the role of the pyrophosphorylases in sugar activation for glycosylated end-products.

  18. Substrate Specificity and Inhibitor Sensitivity of Plant UDP-Sugar Producing Pyrophosphorylases

    PubMed Central

    Decker, Daniel; Kleczkowski, Leszek A.

    2017-01-01

    UDP-sugars are essential precursors for glycosylation reactions producing cell wall polysaccharides, sucrose, glycoproteins, glycolipids, etc. Primary mechanisms of UDP sugar formation involve the action of at least three distinct pyrophosphorylases using UTP and sugar-1-P as substrates. Here, substrate specificities of barley and Arabidopsis (two isozymes) UDP-glucose pyrophosphorylases (UGPase), Arabidopsis UDP-sugar pyrophosphorylase (USPase) and Arabidopsis UDP-N-acetyl glucosamine pyrophosphorylase2 (UAGPase2) were investigated using a range of sugar-1-phosphates and nucleoside-triphosphates as substrates. Whereas all the enzymes preferentially used UTP as nucleotide donor, they differed in their specificity for sugar-1-P. UGPases had high activity with D-Glc-1-P, but could also react with Fru-1-P and Fru-2-P (Km values over 10 mM). Contrary to an earlier report, their activity with Gal-1-P was extremely low. USPase reacted with a range of sugar-1-phosphates, including D-Glc-1-P, D-Gal-1-P, D-GalA-1-P (Km of 1.3 mM), β-L-Ara-1-P and α-D-Fuc-1-P (Km of 3.4 mM), but not β-L-Fuc-1-P. In contrast, UAGPase2 reacted only with D-GlcNAc-1-P, D-GalNAc-1-P (Km of 1 mM) and, to some extent, D-Glc-1-P (Km of 3.2 mM). Generally, different conformations/substituents at C2, C4, and C5 of the pyranose ring of a sugar were crucial determinants of substrate specificity of a given pyrophosphorylase. Homology models of UDP-sugar binding to UGPase, USPase and UAGPase2 revealed more common amino acids for UDP binding than for sugar binding, reflecting differences in substrate specificity of these proteins. UAGPase2 was inhibited by a salicylate derivative that was earlier shown to affect UGPase and USPase activities, consistent with a common structural architecture of the three pyrophosphorylases. The results are discussed with respect to the role of the pyrophosphorylases in sugar activation for glycosylated end-products. PMID:28970843

  19. Stabilization of coiled-coil peptide domains by introduction of trifluoroleucine.

    PubMed

    Tang, Y; Ghirlanda, G; Vaidehi, N; Kua, J; Mainz, D T; Goddard III, W A; DeGrado, W F; Tirrell, D A

    2001-03-06

    Substitution of leucine residues by 5,5,5-trifluoroleucine at the d-positions of the leucine zipper peptide GCN4-p1d increases the thermal stability of the coiled-coil structure. The midpoint thermal unfolding temperature of the fluorinated peptide is elevated by 13 degrees C at 30 microM peptide concentration. The modified peptide is more resistant to chaotropic denaturants, and the free energy of folding of the fluorinated peptide is 0.5-1.2 kcal/mol larger than that of the hydrogenated form. A similarly fluorinated form of the DNA-binding peptide GCN4-bZip binds to target DNA sequences with affinity and specificity identical to those of the hydrogenated form, while demonstrating enhanced thermal stability. Molecular dynamics simulation on the fluorinated GCN4-p1d peptide using the Surface Generalized Born implicit solvation model revealed that the coiled-coil binding energy is 55% more favorable upon fluorination. These results suggest that fluorination of hydrophobic substructures in peptides and proteins may provide new means of increasing protein stability, enhancing protein assembly, and strengthening receptor-ligand interactions.

  20. Development of an immunoassay for determination of 2,4-dichlorophenoxyacetic acid (2,4-D) based upon the recombinant Fab fragment of 2,4-D specific antibody

    NASA Astrophysics Data System (ADS)

    Nguyen, Van C.; Nguyen, Thi D. T.; Dau, Hung A.; Tham, Thu N.; Quyen, Dinh T.; Bachmman, Till; Schmid, Rolf D.

    2001-09-01

    To develop an immunoassay and further an immunosensor for 2,4-D based upon recombinant antibody, the Fab fragments of 2,4-D specific antibody were expressed in E. coli. Western blotting analysis of the periplasmic cell fractions shown that under the non-reducing condition only a single protein band at a molecular mass of 45-kDa, corresponding to the whole Fab fragment was detected. Antigen binding activity for 2,4-D was found only in the extract of cells bearing the 2,4-D plasmid. An immunoassay based on the competitive reaction of 2,4-D and enzyme tracer with 2,4-D Fab fragments immobilized on micro titer plates via rabbit anti-mouse IgC was developed. Using this assay, 2,4-D could be detected at concentration range of 0.5 (mu) g/1 to 10(mu) g/1. The center point of the 2,4-D test was found at a concentration of 5 (mu) g/l. The assay was applied for detection of 2,4-D in spiked orange samples, resulting in recovery rate of 90 percent. The immunoassay could be applied to monitor human exposure to 2,4-D from contamination in fruit samples.

  1. Staphylococcal enterotoxins bind H-2Db molecules on macrophages

    NASA Technical Reports Server (NTRS)

    Beharka, A. A.; Iandolo, J. J.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1995-01-01

    We screened a panel of monoclonal antibodies against selected macrophage cell surface molecules for their ability to inhibit enterotoxin binding to major histocompatibility complex class II-negative C2D (H-2b) macrophages. Two monoclonal antibodies, HB36 and TIB126, that are specific for the alpha 2 domain of major histocompatibility complex class I, blocked staphylococcal enterotoxins A and B (SEA and SEB, respectively) binding to C2D macrophages in a specific and concentration-dependent manner. Inhibitory activities were haplotype-specific in that SEA and SEB binding to H-2k or H-2d macrophages was not inhibited by either monoclonal antibody. HB36, but not TIB126, inhibited enterotoxin-induced secretion of cytokines by H-2b macrophages. Lastly, passive protection of D-galactosamine-sensitized C2D mice by injection with HB36 antibody prevented SEB-induced death. Therefore, SEA and SEB binding to the alpha 2 domain of the H-2Db molecule induces biological activity and has physiological consequences.

  2. Structural insight into the TFIIE–TFIIH interaction: TFIIE and p53 share the binding region on TFIIH

    PubMed Central

    Okuda, Masahiko; Tanaka, Aki; Satoh, Manami; Mizuta, Shoko; Takazawa, Manabu; Ohkuma, Yoshiaki; Nishimura, Yoshifumi

    2008-01-01

    RNA polymerase II and general transcription factors (GTFs) assemble on a promoter to form a transcription preinitiation complex (PIC). Among the GTFs, TFIIE recruits TFIIH to complete the PIC formation and regulates enzymatic activities of TFIIH. However, the mode of binding between TFIIE and TFIIH is poorly understood. Here, we demonstrate the specific binding of the C-terminal acidic domain (AC-D) of the human TFIIEα subunit to the pleckstrin homology domain (PH-D) of the human TFIIH p62 subunit and describe the solution structures of the free and PH-D-bound forms of AC-D. Although the flexible N-terminal acidic tail from AC-D wraps around PH-D, the core domain of AC-D also interacts with PH-D. AC-D employs an entirely novel binding mode, which differs from the amphipathic helix method used by many transcriptional activators. So the binding surface between PH-D and AC-D is much broader than the specific binding surface between PH-D and the p53 acidic fragments. From our in vitro studies, we demonstrate that this interaction could be a switch to replace p53 with TFIIE on TFIIH in transcription. PMID:18354501

  3. (+)-3-( sup 123 I)Iodo-MK-801: Synthesis and characterization of binding to the N-methyl-D-aspartate receptor complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ransom, R.W.; Wai-si Eng; Burns, H.D.

    1990-01-01

    Synthetic methods have been established for preparing high specific activity (+)-3-({sup 123}I)Iodo-MK-801 in high radiochemical yield. The binding of the radiotracer to rat cortical membranes has been examine to assess its potential use as an in vivo imaging agent for the N-methyl-D-aspartate (NMDA) receptor-ion channel complex. Under the conditions of the assay, specific (+)-3-({sup 123}I)Iodo-MK-801 binding to membrane homogenates represented greater than 95% of the total binding. Several structurally distinct, noncompetitive NMDA receptor antagonists inhibited binding with potencies in accordance with their reported inhibitory activity at the receptor complex. The concentration of ({plus minus})-3-Iodo-MK-801 required to inhibit 50% of (+)-3-({supmore » 123}I)Iodo-MK-801 binding (IC{sub 50}) was 3.4 nM when using a low ionic strength assay buffer and 5.5 nM in a physiological buffer. In a thoroughly washed membrane preparation, (+)-3-({sup 123}I)Iodo-MK-801 binding was enhanced by L-glutamate and glycine at concentrations known to activate the NMDA receptor. The results indicate that (+)-3-({sup 123}I)Iodo-MK-801 specifically labels the NMDA receptor complex in rat brain membranes and the retention of high affinity under near physiological assay conditions suggests that it may be useful as a SPECT imaging agent for the receptor in vivo.« less

  4. High-affinity receptors for bombesin-like peptides in normal guinea pig lung membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lach, E.; Trifilieff, A.; Landry, Y.

    1991-01-01

    The binding of the radiolabeled bombesin analogue ({sup 125}I-Tyr{sup 4})bombesin to guinea-pig lung membranes was investigated. Binding of ({sup 125}I-Tyr{sup 4})bombesin was specific, saturable, reversible and linearly related to the protein concentration. Scatchard analysis of equilibrium binding data at 25C indicated the presence of a single class of non-interacting binding sites for bombesin (B{sub max} = 7.7 fmol/mg protein). The value of the equilibrium dissociation constant (K{sub D} = 90 pM) agrees with a high-affinity binding site. Bombesin and structurally related peptides such as ({sup 125}I-Tyr{sup 4})bombesin, neuromedin B and neuromedin C inhibited the binding of ({sup 125}I-Tyr{sup 4})bombesin inmore » an order of potencies as follows: ({sup 125}I-Tyr{sup 4})bombesin {gt} bombesin {ge} neuromedin C {much gt} neuromedin B. These results indicate that guinea-pig lung membranes possess a single class of bombesin receptors with a high affinity for bombesin and a lower one for neuromedin B.« less

  5. Solution structure, mutagenesis, and NH exchange studies of the MutT enzyme-Mg 2+-8-oxo-dGMP complex

    NASA Astrophysics Data System (ADS)

    Massiah, M. A.; Saraswat, V.; Azurmendi, H. F.; Mildvan, A. S.

    2004-08-01

    The MutT pyrophosphohydrolase from E. coli (129 residues) catalyzes the hydrolysis of nucleoside triphosphates (NTP), including 8-oxo-dGTP, by substitution at Pβ, to yield NMP and pyrophosphate. The product, 8-oxo-dGMP is an unusually tight binding, slowly exchanging inhibitor with a KD=52 nM, (Δ G°=-9.8 kcal/mol) which is 6.1 kcal/mol tighter than the binding of dGMP (Δ G°=-3.7 kcal/mol). The higher affinity for 8-oxo-dGMP results from a more favorable Δ Hbinding (-32 kcal/mol) despite an unfavorable - TΔ S° binding (+22 kcal/mol). The solution structure of the MutT-Mg 2+-8-oxo-dGMP complex shows a narrowed, hydrophobic nucleotide-binding cleft with Asn-119 and Arg-78 among the few polar residues. The N119A, N119D, R78K and R78A single mutations, and the R78K+N119A double mutant all showed largely intact active sites, on the basis of small changes in the kinetic parameters of dGTP hydrolysis and in 1H- 15N HSQC spectra. However, the N119A mutation profoundly weakened the active site binding of 8-oxo-dGMP by 4.3 kcal/mol (1650-fold). The N119D mutation also weakened 8-oxo-dGMP binding but only by 2.1 kcal/mol (37-fold), suggesting that Asn-119 functioned both as a hydrogen bond donor to C8O, and a hydrogen bond acceptor from N7H of 8-oxo-dGMP, while aspartate at position -119 functioned as an acceptor of a single hydrogen bond. Much smaller weakening effects (0.3-0.4 kcal/mol) on the binding of dGMP and dAMP were found, indicating specific hydrogen bonding of Asn-119 to 8-oxo-dGMP. While formation of the wild type MutT-Mg 2+-8-oxo-dGMP complex slowed the backbone NH exchange rates of 45 residues distributed throughout the protein, the same complex of the N119A mutant slowed the exchange rates of only 11 residues at or near the active site, indicating an increase in conformational flexibility of the N119A mutant. The R78K and R78A mutations weakened the binding of 8-oxo-dGMP by 1.7 and 1.1 kcal/mol, respectively, indicating a lesser role of Arg-78 than of Asn-119 in the selective binding of 8-oxo-dGMP, likely donating a single hydrogen bond to its C6O. The R78K+N119A double mutant weakened the binding of 8-oxo-dGMP ( KIslope=3.1 mM) by 6.5±0.2 kcal/mol which overlaps, within error with the sum of the effects of the two single mutants (6.0±0.3 kcal/mol). Such additive effects of the two single mutants in the double mutant are most simply explained by the independent functioning of Asn-119 and Arg-78 in the binding of 8-oxo-dGMP. Independent functioning of these two residues in nucleotide binding is consistent with their locations in the MutT-Mg 2+-8-oxo-dGMP complex, on opposite sides of the active site cleft, with a distance of 8.4±0.5 Å between their side chain nitrogens.

  6. The PBX1 lupus susceptibility gene regulates CD44 expression

    PubMed Central

    Niu, Yuxin; Sengupta, Mayami; Titov, Anton A.; Choi, Seung-Chul; Morel, Laurence

    2017-01-01

    PBX1-d is novel splice isoform of pre-B-cell leukemia homeobox 1 (PBX1) that lacks its DNA-binding and Hox-binding domains, and functions as a dominant negative. We have shown that PBX1-d expression in CD4+ T cells is associated with systemic lupus erythematosus (SLE) in a mouse model as well as in human subjects. More specifically, PBX1-d expression leads to the production of autoreactive activated CD4+ T cells, a reduced frequency and function of Foxp3+ regulatory T (Treg) cells and an expansion of follicular helper T (Tfh) cells. Very little is known about the function of PBX1 in T cells, except that it directly regulates the expression of miRNAs associated with Treg and Tfh homeostasis. In the present study, we show that PBX1 directly regulated the expression of CD44, a marker of T cell activation. Two PBX1 binding sites in the promoter directly regulated CD44 expression, with PBX1-d driving a higher expression than the normal isoform PBX1-b. In addition, mutations in each of the two binding sites had different effects of PBX1-b and PBX1-d. Finally, we showed that an enhanced recruitment of co-factor MEIS by PBX1-d over PBX1-b, while there was no difference for co-factor PREP1 recruitment. Therefore, this study demonstrates that the lupus-associated PBX1-d isoform directly transactivates CD44, a marker of CD44 activation and memory, and that it has different DNA binding and co-factor recruitment relative to the normal isoform. Taken together, these results confirm that PBX1 directly regulates genes related to T cell activation and show that the lupus-associated isoform PBX1-d has unique molecular functions. PMID:28257976

  7. Thermodynamic Characterization of Binding Oxytricha nova Single Strand Telomere DNA with the Alpha Protein N-terminal Domain

    PubMed Central

    Buczek, Pawel; Horvath, Martin P.

    2010-01-01

    The Oxytricha nova telomere binding protein alpha subunit binds single strand DNA and participates in a nucleoprotein complex that protects the very ends of chromosomes. To understand how the N-terminal, DNA binding domain of alpha interacts with DNA we measured the stoichiometry, enthalpy (ΔH), entropy (ΔS), and dissociation constant (KD-DNA) for binding telomere DNA fragments at different temperatures and salt concentrations using native gel electrophoresis and isothermal titration calorimetry (ITC). About 85% of the total free energy of binding corresponded with non-electrostatic interactions for all DNAs. Telomere DNA fragments d(T2G4), d(T4G4), d(G3T4G4), and d(G4T4G4) each formed monovalent protein complexes. In the case of d(T4G4T4G4), which has two tandemly repeated d(TTTTTGGGG) telomere motifs, two binding sites were observed. The high-affinity “A site” has a dissociation constant, KD-DNA(A)=13(±4) nM, while the low-affinity “B site” is characterized by KD-DNA(B)=5600(±600) nM at 25 °C. Nucleotide substitution variants verified that the A site corresponds principally with the 3′-terminal portion of d(T4G4T4G4). The relative contributions of entropy (ΔS) and enthalpy (ΔH) for binding reactions were DNA length-dependent as was heat capacity (ΔCp). These trends with respect to DNA length likely reflect structural transitions in the DNA molecule that are coupled with DNA–protein association. Results presented here are important for understanding early intermediates and subsequent stages in the assembly of the full telomere nucleoprotein complex and how binding events can prepare the telomere DNA for extension by telomerase, a critical event in telomere biology. PMID:16678852

  8. Platelet GpIbα Binding to von Willebrand Factor Under Fluid Shear: Contributions of the D'D3‐Domain, A1‐Domain Flanking Peptide and O‐Linked Glycans

    PubMed Central

    Madabhushi, Sri R.; Zhang, Changjie; Kelkar, Anju; Dayananda, Kannayakanahalli M.; Neelamegham, Sriram

    2014-01-01

    Background Von Willebrand Factor (VWF) A1‐domain binding to platelet receptor GpIbα is an important fluid‐shear dependent interaction that regulates both soluble VWF binding to platelets, and platelet tethering onto immobilized VWF. We evaluated the roles of different structural elements at the N‐terminus of the A1‐domain in regulating shear dependent platelet binding. Specifically, the focus was on the VWF D′D3‐domain, A1‐domain N‐terminal flanking peptide (NFP), and O‐glycans on this peptide. Methods and Results Full‐length dimeric VWF (ΔPro‐VWF), dimeric VWF lacking the D′D3 domain (ΔD′D3‐VWF), and ΔD′D3‐VWF variants lacking either the NFP (ΔD′D3NFP─‐VWF) or just O‐glycans on this peptide (ΔD′D3OG─‐VWF) were expressed. Monomeric VWF‐A1 and D′D3‐A1 were also produced. In ELISA, the apparent dissociation constant (KD) of soluble ΔPro‐VWF binding to immobilized GpIbα (KD≈100 nmol/L) was 50‐ to 100‐fold higher than other proteins lacking the D′D3 domain (KD~0.7 to 2.5 nmol/L). Additionally, in surface plasmon resonance studies, the on‐rate of D′D3‐A1 binding to immobilized GpIbα (kon=1.8±0.4×104 (mol/L)−1·s−1; KD=1.7 μmol/L) was reduced compared with the single VWF‐A1 domain (kon=5.1±0.4×104 (mol/L)−1·s−1; KD=1.2 μmol/L). Thus, VWF‐D′D3 primarily controls soluble VWF binding to GpIbα. In contrast, upon VWF immobilization, all molecular features regulated A1‐GpIbα binding. Here, in ELISA, the number of apparent A1‐domain sites available for binding GpIbα on ΔPro‐VWF was ≈50% that of the ΔD′D3‐VWF variants. In microfluidics based platelet adhesion measurements on immobilized VWF and thrombus formation assays on collagen, human platelet recruitment varied as ΔPro‐VWF<ΔD′D3‐VWF<ΔD′D3NFP─‐VWF<ΔD′D3OG─‐VWF. Conclusions Whereas VWF‐D′D3 is the major regulator of soluble VWF binding to platelet GpIbα, both the D′D3‐domain and N‐terminal peptide regulate platelet translocation and thrombus formation. PMID:25341886

  9. X-ray structures of the Pseudomonas cichorii D-tagatose 3-epimerase mutant form C66S recognizing deoxy sugars as substrates.

    PubMed

    Yoshida, Hiromi; Yoshihara, Akihide; Ishii, Tomohiko; Izumori, Ken; Kamitori, Shigehiro

    2016-12-01

    Pseudomonas cichorii D-tagatose 3-epimerase (PcDTE), which has a broad substrate specificity, efficiently catalyzes the epimerization of not only D-tagatose to D-sorbose but also D-fructose to D-psicose (D-allulose) and also recognizes the deoxy sugars as substrates. In an attempt to elucidate the substrate recognition and catalytic reaction mechanisms of PcDTE for deoxy sugars, the X-ray structures of the PcDTE mutant form with the replacement of Cys66 by Ser (PcDTE_C66S) in complexes with deoxy sugars were determined. These X-ray structures showed that substrate recognition by the enzyme at the 1-, 2-, and 3-positions is responsible for enzymatic activity and that substrate-enzyme interactions at the 4-, 5-, and 6-positions are not essential for the catalytic reaction of the enzyme leading to the broad substrate specificity of PcDTE. They also showed that the epimerization site of 1-deoxy 3-keto D-galactitol is shifted from C3 to C4 and that 1-deoxy sugars may bind to the catalytic site in the inhibitor-binding mode. The hydrophobic groove that acts as an accessible surface for substrate binding is formed through the dimerization of PcDTE. In PcDTE_C66S/deoxy sugar complex structures, bound ligand molecules in both the linear and ring forms were detected in the hydrophobic groove, while bound ligand molecules in the catalytic site were in the linear form. This result suggests that the sugar-ring opening of a substrate may occur in the hydrophobic groove and also that the narrow channel of the passageway to the catalytic site allows a substrate in the linear form to pass through.

  10. Human PDE4D isoform composition is deregulated in primary prostate cancer and indicative for disease progression and development of distant metastases

    PubMed Central

    Böttcher, René; Dulla, Kalyan; van Strijp, Dianne; Dits, Natasja; Verhoef, Esther I.; Baillie, George S.; van Leenders, Geert J.L.H.; Houslay, Miles D.; Jenster, Guido; Hoffmann, Ralf

    2016-01-01

    Phosphodiesterase 4D7 was recently shown to be specifically over-expressed in localized prostate cancer, raising the question as to which regulatory mechanisms are involved and whether other isoforms of this gene family (PDE4D) are affected under the same conditions. We investigated PDE4D isoform composition in prostatic tissues using a total of seven independent expression datasets and also included data on DNA methylation, copy number and AR and ERG binding in PDE4D promoters to gain insight into their effect on PDE4D transcription. We show that expression of PDE4D isoforms is consistently altered in primary human prostate cancer compared to benign tissue, with PDE4D7 being up-regulated while PDE4D5 and PDE4D9 are down-regulated. Disease progression is marked by an overall down-regulation of long PDE4D isoforms, while short isoforms (PDE4D1/2) appear to be relatively unaffected. While these alterations seem to be independent of copy number alterations in the PDE4D locus and driven by AR and ERG binding, we also observed increased DNA methylation in the promoter region of PDE4D5, indicating a long lasting alteration of the isoform composition in prostate cancer tissues. We propose two independent metrics that may serve as diagnostic and prognostic markers for prostate disease: (PDE4D7 - PDE4D5) provides an effective means for distinguishing PCa from normal adjacent prostate, whereas PDE4D1/2 - (PDE4D5 + PDE4D7 + PDE4D9) offers strong prognostic potential to detect aggressive forms of PCa and is associated with metastasis free survival. Overall, our findings highlight the relevance of PDE4D as prostate cancer biomarker and potential drug target. PMID:27683107

  11. Purification and characterization of rat liver nuclear thyroid hormone receptors.

    PubMed Central

    Ichikawa, K; DeGroot, L J

    1987-01-01

    Nuclear thyroid hormone receptor was purified to 904 pmol of L-3,5,3'-triiodothyronine (T3) binding capacity per mg of protein with 2.5-5.2% recovery by sequentially using hydroxylapatite column chromatography, ammonium sulfate precipitation, Sephadex G-150 gel filtration, DNA-cellulose column chromatography, DEAE-Sephadex column chromatography, and heparin-Sepharose column chromatography. Assuming that one T3 molecule binds to the 49,000-Da unit of the receptor, we reproducibly obtained 6.4-14.7 micrograms of receptor protein with 4.2-4.9% purity from 4-5 kg of rat liver. Elution of receptor from the heparin-Sepharose column was performed using 10 mM pyridoxal 5'-phosphate, which was observed to diminish binding of receptor to heparin-Sepharose or DNA-cellulose. This effect was specific for pyridoxal 5'-phosphate, since related compounds were not effective. Purified receptor bound T3 with high affinity (6.0 X 10(9) liter/mol), and the order of affinity of iodothyronine analogues to purified receptor was identical to that observed with crude receptor preparations [3,5,3'-triiodothyroacetic acid greater than L-T3 greater than D-3,5,3'-triiodothyronine (D-T3) greater than L-thyroxine greater than D-thyroxine]. Purified receptor had a sedimentation coefficient of 3.4 S, Stokes radius of 34 A, and calculated molecular mass of 49,000. Among several bands identified by silver staining after electrophoresis in NaDodSO4/polyacrylamide gels, one 49,000-Da protein showed photoaffinity labeling with [125I]thyroxine that was displaceable with excess unlabeled T3. The tryptic fragment and endogenous proteinase-digested fragment of the affinity-labeled receptor showed saturable binding in 27,000-Da and 36,000-Da peptides, respectively. These molecular masses are in agreement with estimates from gel filtration and gradient sedimentation, indicating that affinity labeling occurred at the hormone binding domain of nuclear thyroid hormone receptor. This procedure reproducibly provides classical native rat liver T3 nuclear receptor in useful quantity and purity and of the highest specific activity so far reported. Images PMID:3472213

  12. Hydrophobic Peptides Affect Binding of Calmodulin and Ca2+ as Explored by H/D Amide Exchange and Mass Spectrometry

    PubMed Central

    Sperry, Justin B.; Huang, Richard Y-C.; Zhu, Mei M.; Rempel, Don L.; Gross, Michael L.

    2010-01-01

    Calmodulin (CaM), a ubiquitous intracellular sensor protein, binds Ca2+ and interacts with various targets as part of signal transduction. Using hydrogen/deuterium exchange (H/DX) and a high resolution PLIMSTEX (Protein-Ligand Interactions by Mass Spectrometry, Titration, and H/D Exchange) protocol, we examined five different states of calmodulin: calcium-free, calcium-loaded, and three states of calcium-loaded in the presence of either melittin, mastoparan, or skeletal myosin light-chain kinase (MLCK). When CaM binds Ca2+, the extent of HDX decreased, consistent with the protein becoming stabilized upon binding. Furthermore, Ca2+-saturated calmodulin exhibits increased protection when bound to the peptides, forming high affinity complexes. The protocol reveals significant changes in EF hands 1, 3, and 4 with saturating levels of Ca2+. Titration of the protein using PLIMSTEX provides the binding affinity of Ca2+ to calmodulin within previously reported values. The affinities of calmodulin to Ca2+ increase by factors of 300 and 1000 in the presence of melittin and mastoparan, respectively. A modified PLIMSTEX protocol whereby the protein is digested to component peptides gives a region-specific titration. The titration data taken in this way show a decrease in the root mean square fit of the residuals, indicating a better fit of the data. The global H/D exchange results and those obtained in a region-specific way provide new insight into the Ca2+-binding properties of this well-studied protein. PMID:21765646

  13. An antibody to the lutheran glycoprotein (Lu) recognizing the LU4 blood type variant inhibits cell adhesion to laminin α5.

    PubMed

    Kikkawa, Yamato; Miwa, Takahiro; Tohara, Yukiko; Hamakubo, Takayuki; Nomizu, Motoyoshi

    2011-01-01

    The Lutheran blood group glycoprotein (Lu), an Ig superfamily (IgSF) transmembrane receptor, is also known as basal cell adhesion molecule (B-CAM). Lu/B-CAM is a specific receptor for laminin α5, a major component of basement membranes in various tissues. Previous reports have shown that Lu/B-CAM binding to laminin α5 contributes to sickle cell vaso-occlusion. However, as there are no useful tools such as function-blocking antibodies or drugs, it is unclear how epithelial and sickled red blood cells adhere to laminin α5 via Lu/B-CAM. In this study, we discovered a function-blocking antibody that inhibits Lu binding to laminin α5 using a unique binding assay on tissue sections. To characterize the function-blocking antibody, we identified the site on Lu/B-CAM recognized by this antibody. The extracellular domain of Lu/B-CAM contains five IgSF domains, D1-D2-D3-D4-D5. The antibody epitope was localized to D2, but not to the D3 domain containing the major part of the laminin α5 binding site. Furthermore, mutagenesis studies showed that Arg(175), the LU4 blood group antigenic site, was crucial for forming the epitope and the antibody bound sufficiently close to sterically hinder the interaction with α5. Cell adhesion assay using the antibody also showed that Lu/B-CAM serves as a secondary receptor for the adhesion of carcinoma cells to laminin α5. This function-blocking antibody against Lu/B-CAM should be useful for not only investigating cell adhesion to laminin α5 but also for developing drugs to inhibit sickle cell vaso-occlusion.

  14. Multispectroscopic methods reveal different modes of interaction of anti cancer drug mitoxantrone with Poly(dG-dC).Poly(dG-dC) and Poly(dA-dT).Poly(dA-dT).

    PubMed

    Awasthi, Pamita; Dogra, Shilpa; Barthwal, Ritu

    2013-10-05

    The interaction of mitoxantrone with alternating Poly(dG-dC).Poly(dG-dC) and Poly(dA-dT).Poly(dA-dT) duplex has been studied by absorption, fluorescence and Circular Dichroism (CD) spectroscopy at Drug to Phosphate base pair ratios D/P=20.0-0.04. Binding to GC polymer occurs in two distinct modes: partial stacking characterized by red shifts of 18-23nm at D/P=0.2-0.8 and external binding at D/P=1.0-20.0 whereas that to AT polymer occurs externally in the entire range of D/P. The binding constant and number of binding sites is 3.7×10(5)M(-1), 0.3 and 1.3× 10(4)M(-1), 1.5 in GC and AT polymers, respectively at low D/P ratios. CD binding isotherms show breakpoints at D/P=0.1, 0.5 and 0.25, 0.5 in GC and AT polymers, respectively. The intrinsic CD bands indicate that the distortions in GC polymer are significantly higher than that in AT polymer. Docking studies show partial insertion of mitoxantrone rings between to GC base pairs in alternating GC polymer. Side chains of mitoxantrone interact specifically with base pairs and DNA backbone. The studies are relevant to the understanding of suppression or inhibition of DNA cleavage on formation of ternary complex with topoisomerase-II enzyme and hence the anti cancer action. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Prediction of 3- to 5-Month Outcomes from Signs of Acute Bilirubin Toxicity in Newborn Infants.

    PubMed

    El Houchi, Salma Z; Iskander, Iman; Gamaleldin, Rasha; El Shenawy, Amira; Seoud, Iman; Abou-Youssef, Hazem; Wennberg, Richard P

    2017-04-01

    To evaluate the ability of the bilirubin-induced neurologic dysfunction (BIND) score to predict residual neurologic and auditory disability and to document the relationship of BIND score to total serum bilirubin (TSB) concentration. The BIND score (assessing mental status, muscle tone, and cry patterns) was obtained serially at 6- to 8-hour intervals in 220 near-term and full-term infants with severe hyperbilirubinemia. Neurologic and/or auditory outcomes at 3-5 months of age were correlated with the highest calculated BIND score. The BIND score was also correlated with TSB. Follow-up neurologic and auditory examinations were performed for 145/202 (72%) surviving infants. All infants with severe acute bilirubin encephalopathy (BIND scores 7-9) either died or suffered residual neurologic and auditory impairment. Of 24 cases with moderate encephalopathy (BIND 4-6), 15 (62.5%) resolved following aggressive intervention and were normal at follow-up. Three of 73 infants with mild encephalopathy (BIND scores 1-3) but severe jaundice (TSB ranging 33.5-38 mg/dL; 573-650 µmol/L) had residual neurologic and/or auditory impairment. A BIND score ≥4 had a specificity of 87.3% and a sensitivity of 97.4% for predicting poor neurologic outcomes (receiver operating characteristic analysis). BIND scores trended higher with severe hyperbilirubinemia (r 2  = 0.54, P < .005), but 5/39 (13%) infants with TSB ≥36.5 mg/dL (624 µmol/L) had BIND scores ≤3, and normal outcomes at 3-5 months. The BIND score can be used to evaluate the severity of acute bilirubin encephalopathy and predict residual neurologic and hearing dysfunction. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Visualization of the Drosophila dKeap1-CncC interaction on chromatin illumines cooperative, xenobiotic-specific gene activation

    PubMed Central

    Deng, Huai; Kerppola, Tom K.

    2014-01-01

    Interactions among transcription factors control their physiological functions by regulating their binding specificities and transcriptional activities. We implement a strategy to visualize directly the genomic loci that are bound by multi-protein complexes in single cells in Drosophila. This method is based on bimolecular fluorescence complementation (BiFC) analysis of protein interactions on polytene chromosomes. Drosophila Keap1 (dKeap1)-CncC complexes localized to the nucleus and bound chromatin loci that were not bound preferentially by dKeap1 or CncC when they were expressed separately. dKeap1 and CncC binding at these loci was enhanced by phenobarbital, but not by tert-butylhydroquinone (tBHQ) or paraquat. Endogenous dKeap1 and CncC activated transcription of the Jheh (Jheh1, Jheh2, Jheh3) and dKeap1 genes at these loci, whereas CncC alone activated other xenobiotic response genes. Ectopic dKeap1 expression increased CncC binding at the Jheh and dKeap1 gene loci and activated their transcription, whereas dKeap1 inhibited CncC binding at other xenobiotic response gene loci and suppressed their transcription. The combinatorial chromatin-binding specificities and transcriptional activities of dKeap1-CncC complexes mediated the selective activation of different sets of genes by different xenobiotic compounds, in part through feed-forward activation of dKeap1 transcription. PMID:25063457

  17. Nucleic acid sequences encoding D1 and D1/D2 domains of human coxsackievirus and adenovirus receptor (CAR)

    DOEpatents

    Freimuth, Paul I.

    2010-04-06

    The invention provides recombinant human CAR (coxsackievirus and adenovirus receptor) polypeptides which bind adenovirus. Specifically, polypeptides corresponding to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2 are provided. In another aspect, the invention provides nucleic acid sequences encoding these domains and expression vectors for producing the domains and bacterial cells containing such vectors. The invention also includes an isolated fusion protein comprised of the D1 polypeptide fused to a polypeptide which facilitates folding of D1 when expressed in bacteria. The functional D1 domain finds application in a therapeutic method for treating a patient infected with a CAR D1-binding virus, and also in a method for identifying an antiviral compound which interferes with viral attachment. The invention also provides a method for specifically targeting a cell for infection by a virus which binds to D1.

  18. Development of a novel method to determine the concentration of heavy metal cations: application of the specific interaction between heavy metal cation and mismatch DNA base pair.

    PubMed

    Kozasa, Tetsuo; Miyakawa, Yukako; Fukushi, Miyako; Ono, Akira; Torigoe, Hidetaka

    2009-01-01

    We have already found that Hg(II) cation specifically binds to T:T mismatch base pair in heteroduplex DNA, which increases the melting temperature of heteroduplex DNA involving T:T mismatch base pair by about 4 degrees C. We have also found that Ag(I) cation specifically binds to C:C mismatch base pair in heteroduplex DNA, which increases the melting temperature of heteroduplex DNA involving C:C mismatch base pair by about 4 degrees C. Using the specific interaction, we developed a novel sensor to determine the concentration of each of Hg(II) and Ag(I) cation. The sensor is composed of a dye-labelled T-rich or C-rich DNA oligonucleotide, F2T6W2D: 5'-Fam-T(2)CT(2)CT(2)C(4)T(2)GT(2)GT(2)-Dabcyl-3' or F2C6W2D: 5'-Fam-C(2)TC(2)TC(2)T(4)C(2)AC(2)AC(2)-Dabcyl-3', where 6-carboxyfluorescein (Fam) is a fluorophore and Dabcyl is a quencher. The addition of Hg(II) cation decreased the intensity of Fam emission of F2T6W2D at 520 nm in a concentration-dependent manner. Also, the addition of Ag(I) cation decreased the intensity of Fam emission of F2C6W2D at 520 nm in a concentration-dependent manner. We conclude that, using the novel sensor developed in this study, the concentration of each of Hg(II) and Ag(I) cation can be determined from the intensity of Fam emission at 520 nm.

  19. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing.

    PubMed

    Patil, Rohan; Das, Suranjana; Stanley, Ashley; Yadav, Lumbani; Sudhakar, Akulapalli; Varma, Ashok K

    2010-08-16

    Weak intermolecular interactions such as hydrogen bonding and hydrophobic interactions are key players in stabilizing energetically-favored ligands, in an open conformational environment of protein structures. However, it is still poorly understood how the binding parameters associated with these interactions facilitate a drug-lead to recognize a specific target and improve drugs efficacy. To understand this, comprehensive analysis of hydrophobic interactions, hydrogen bonding and binding affinity have been analyzed at the interface of c-Src and c-Abl kinases and 4-amino substituted 1H-pyrazolo [3, 4-d] pyrimidine compounds. In-silico docking studies were performed, using Discovery Studio software modules LigandFit, CDOCKER and ZDOCK, to investigate the role of ligand binding affinity at the hydrophobic pocket of c-Src and c-Abl kinase. Hydrophobic and hydrogen bonding interactions of docked molecules were compared using LigPlot program. Furthermore, 3D-QSAR and MFA calculations were scrutinized to quantify the role of weak interactions in binding affinity and drug efficacy. The in-silico method has enabled us to reveal that a multi-targeted small molecule binds with low affinity to its respective targets. But its binding affinity can be altered by integrating the conformationally favored functional groups at the active site of the ligand-target interface. Docking studies of 4-amino-substituted molecules at the bioactive cascade of the c-Src and c-Abl have concluded that 3D structural folding at the protein-ligand groove is also a hallmark for molecular recognition of multi-targeted compounds and for predicting their biological activity. The results presented here demonstrate that hydrogen bonding and optimized hydrophobic interactions both stabilize the ligands at the target site, and help alter binding affinity and drug efficacy.

  20. Optimized Hydrophobic Interactions and Hydrogen Bonding at the Target-Ligand Interface Leads the Pathways of Drug-Designing

    PubMed Central

    Stanley, Ashley; Yadav, Lumbani; Sudhakar, Akulapalli; Varma, Ashok K.

    2010-01-01

    Background Weak intermolecular interactions such as hydrogen bonding and hydrophobic interactions are key players in stabilizing energetically-favored ligands, in an open conformational environment of protein structures. However, it is still poorly understood how the binding parameters associated with these interactions facilitate a drug-lead to recognize a specific target and improve drugs efficacy. To understand this, comprehensive analysis of hydrophobic interactions, hydrogen bonding and binding affinity have been analyzed at the interface of c-Src and c-Abl kinases and 4-amino substituted 1H-pyrazolo [3, 4-d] pyrimidine compounds. Methodology In-silico docking studies were performed, using Discovery Studio software modules LigandFit, CDOCKER and ZDOCK, to investigate the role of ligand binding affinity at the hydrophobic pocket of c-Src and c-Abl kinase. Hydrophobic and hydrogen bonding interactions of docked molecules were compared using LigPlot program. Furthermore, 3D-QSAR and MFA calculations were scrutinized to quantify the role of weak interactions in binding affinity and drug efficacy. Conclusions The in-silico method has enabled us to reveal that a multi-targeted small molecule binds with low affinity to its respective targets. But its binding affinity can be altered by integrating the conformationally favored functional groups at the active site of the ligand-target interface. Docking studies of 4-amino-substituted molecules at the bioactive cascade of the c-Src and c-Abl have concluded that 3D structural folding at the protein-ligand groove is also a hallmark for molecular recognition of multi-targeted compounds and for predicting their biological activity. The results presented here demonstrate that hydrogen bonding and optimized hydrophobic interactions both stabilize the ligands at the target site, and help alter binding affinity and drug efficacy. PMID:20808434

  1. Lack of effect of reserpine-induced dopamine depletion on the binding of the dopamine-D3 selective radioligand, [11C]RGH-1756.

    PubMed

    Sóvágó, Judit; Farde, Lars; Halldin, Christer; Schukin, Evgenij; Schou, Magnus; Laszlovszky, István; Kiss, Béla; Gulyás, Balázs

    2005-10-15

    The effect of reserpine induced dopamine depletion on the binding of the putative dopamine-D3 receptor ligand, [(11)C]RGH-1756 was examined in the monkey brain with positron emission tomography (PET). In a previous series of experiments, we have made an attempt to selectively label D3 receptors in the monkey brain using [(11)C]RGH-1756. Despite high selectivity and affinity of RGH-1756 in vitro, [(11)C]RGH-1756 displayed only low specific binding to D3 receptors in vivo. The aim of the present study was to examine whether low specific binding of [(11)C]RGH-1756 is caused by insufficient in vivo affinity of the ligand, or by high physiological occupancy of D3 receptors by endogenous dopamine (DA). PET experiments were performed in three monkeys under baseline conditions and after administration of reserpine (0.5 mg/kg). The results of the baseline measurements corresponded well to our earlier observations with [(11)C]RGH-1756. Reserpine caused no evident change in the regional distribution of [(11)C]RGH-1756 in the monkey brain, and no conspicuous regional accumulation of activity could be observed. After reserpine treatment there was no evident increase of specific binding and binding potential (BP) of [(11)C]RGH-1756. The lack of increased [(11)C]RGH-1756 binding after reserpine treatment indicates that competition with endogenous DA is not the predominant reason for the failure of the radioligand to label D3 receptors. Therefore, the low binding of [(11)C]RGH-1756 could largely be explained by the need for very high affinity of radioligand for D3 receptors in vivo, to obtain a suitable signal for the minute densities of D3 receptors expressed in the primate brain.

  2. Prediction of striatal D2 receptor binding by DRD2/ANKK1 TaqIA allele status

    PubMed Central

    Eisenstein, Sarah A.; Bogdan, Ryan; Love-Gregory, Latisha; Corral-Frías, Nadia S.; Koller, Jonathan M.; Black, Kevin J.; Moerlein, Stephen M.; Perlmutter, Joel S.; Barch, Deanna M.; Hershey, Tamara

    2016-01-01

    In humans, the A1 (T) allele of the dopamine (DA) D2 receptor/ankyrin repeat and kinase domain containing 1 (DRD2/ANKK1) TaqIA (rs1800497) single nucleotide polymorphism has been associated with reduced striatal DA D2/D3 receptor (D2/D3R) availability. However, radioligands used to estimate D2/D3R are displaceable by endogenous DA and are non-selective for D2R, leaving the relationship between TaqIA genotype and D2R specific binding uncertain. Using the positron emission tomography (PET) radioligand, (N‐[11C]methyl)benperidol ([11C]NMB), which is highly selective for D2R over D3R and is not displaceable by endogenous DA, the current study examined whether DRD2/ANKK1 TaqIA genotype predicts D2R specific binding in 2 independent samples. Sample 1 (n = 39) was composed of obese and non-obese adults; sample 2 (n = 18) was composed of healthy controls, unmedicated individuals with schizophrenia, and siblings of individuals with schizophrenia. Across both samples, A1 allele carriers (A1+) had 5-12% less striatal D2R specific binding relative to individuals homozygous for the A2 allele (A1−), regardless of body mass index or diagnostic group. This reduction is comparable to previous PET studies of D2/D3R availability (10-14%). The pooled effect size for the difference in total striatal D2R binding between A1+ and A1− was large (0.84). In summary, in line with studies using displaceable D2/D3R radioligands, our results indicate that DRD2/ANKK1 TaqIA allele status predicts striatal D2R specific binding as measured by D2R-selective [11C]NMB. These findings support the hypothesis that DRD2/ANKK1 TaqIA allele status may modify D2R, perhaps conferring risk for certain disease states. GRAPHICAL ABSTRACT We investigated the difference in striatal dopamine D2 receptor binding, as measured by PET with (N-[11C]methyl)benperidol ([11C]NMB), between A1 allele carriers (A1+) and individuals homozygous for the A2 allele (A1−) of the DRD2/ANKK1 TaqIA single nucleotide polymorphism. In Study 1, A1+ had 5-12% less striatal [11C]NMB binding than A1−. PMID:27241797

  3. Three-dimensional structure-activity relationship modeling of cocaine binding to two monoclonal antibodies by comparative molecular field analysis.

    PubMed

    Paula, Stefan; Tabet, Michael R; Keenan, Susan M; Welsh, William J; Ball, W James

    2003-01-17

    Successful immunotherapy of cocaine addiction and overdoses requires cocaine-binding antibodies with specific properties, such as high affinity and selectivity for cocaine. We have determined the affinities of two cocaine-binding murine monoclonal antibodies (mAb: clones 3P1A6 and MM0240PA) for cocaine and its metabolites by [3H]-radioligand binding assays. mAb 3P1A6 (K(d) = 0.22 nM) displayed a 50-fold higher affinity for cocaine than mAb MM0240PA (K(d) = 11 nM) and also had a greater specificity for cocaine. For the systematic exploration of both antibodies' binding specificities, we used a set of approximately 35 cocaine analogues as structural probes by determining their relative binding affinities (RBAs) using an enzyme-linked immunosorbent competition assay. Three-dimensional quantitative structure-activity relationship (3D-QSAR) models on the basis of comparative molecular field analysis (CoMFA) techniques correlated the binding data with structural features of the ligands. The analysis indicated that despite the mAbs' differing specificities for cocaine, the relative contributions of the steric (approximately 80%) and electrostatic (approximately 20%) field interactions to ligand-binding were similar. Generated three-dimensional CoMFA contour plots then located the specific regions about cocaine where the ligand/receptor interactions occurred. While the overall binding patterns of the two mAbs had many features in common, distinct differences were observed about the phenyl ring and the methylester group of cocaine. Furthermore, using previously published data, a 3D-QSAR model was developed for cocaine binding to the dopamine reuptake transporter (DAT) that was compared to the mAb models. Although the relative steric and electrostatic field contributions were similar to those of the mAbs, the DAT cocaine-binding site showed a preference for negatively charged ligands. Besides establishing molecular level insight into the interactions that govern cocaine binding specificity by biopolymers, the three-dimensional images obtained reflect the properties of the mAbs binding pockets and provide the initial information needed for the possible design of novel antibodies with properties optimized for immunotherapy. Copyright 2003 Elsevier Science Ltd.

  4. [(3)H]8-Ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]-purin-5-one ([(3)H]PSB-11), a novel high-affinity antagonist radioligand for human A(3) adenosine receptors.

    PubMed

    Müller, Christa E; Diekmann, Martina; Thorand, Mark; Ozola, Vita

    2002-02-11

    This study describes the preparation and binding properties of [(3)H]PSB-11, a novel, potent, and selective antagonist radioligand for human A(3) adenosine receptors (ARs). [(3)H]PSB-11 binding to membranes of Chinese hamster ovary (CHO) cells expressing the human A(3) AR was saturable and reversible. Saturation experiments showed that [(3)H]PSB-11 labeled a single class of binding sites with high affinity (K(D)=4.9 nM) and limited capacity (B(max)=3500 fmol/mg of protein). PSB-11 is highly selective versus the other adenosine receptor subtypes. The new radioligand shows an extraordinarily low degree of non-specific binding rendering it a very useful tool for studying the (patho)physiological roles of A(3 )ARs.

  5. EAST Organizes Drosophila Insulator Proteins in the Interchromosomal Nuclear Compartment and Modulates CP190 Binding to Chromatin

    PubMed Central

    Golovnin, Anton; Melnikova, Larisa; Shapovalov, Igor; Kostyuchenko, Margarita; Georgiev, Pavel

    2015-01-01

    Recent data suggest that insulators organize chromatin architecture in the nucleus. The best studied Drosophila insulator proteins, dCTCF (a homolog of the vertebrate insulator protein CTCF) and Su(Hw), are DNA-binding zinc finger proteins. Different isoforms of the BTB-containing protein Mod(mdg4) interact with Su(Hw) and dCTCF. The CP190 protein is a cofactor for the dCTCF and Su(Hw) insulators. CP190 is required for the functional activity of insulator proteins and is involved in the aggregation of the insulator proteins into specific structures named nuclear speckles. Here, we have shown that the nuclear distribution of CP190 is dependent on the level of EAST protein, an essential component of the interchromatin compartment. EAST interacts with CP190 and Mod(mdg4)-67.2 proteins in vitro and in vivo. Over-expression of EAST in S2 cells leads to an extrusion of the CP190 from the insulator bodies containing Su(Hw), Mod(mdg4)-67.2, and dCTCF. In consistent with the role of the insulator bodies in assembly of protein complexes, EAST over-expression led to a striking decrease of the CP190 binding with the dCTCF and Su(Hw) dependent insulators and promoters. These results suggest that EAST is involved in the regulation of CP190 nuclear localization. PMID:26489095

  6. Tuning the specificity of a Two-in-One Fab against three angiogenic antigens by fully utilizing the information of deep mutational scanning.

    PubMed

    Koenig, Patrick; Sanowar, Sarah; Lee, Chingwei V; Fuh, Germaine

    Monoclonal antibodies developed for therapeutic or diagnostic purposes need to demonstrate highly defined binding specificity profiles. Engineering of an antibody to enhance or reduce binding to related antigens is often needed to achieve the desired biologic activity without safety concern. Here, we describe a deep sequencing-aided engineering strategy to fine-tune the specificity of an angiopoietin-2 (Ang2)/vascular endothelial growth factor (VEGF) dual action Fab, 5A12.1 for the treatment of age-related macular degeneration. This antibody utilizes overlapping complementarity-determining region (CDR) sites for dual Ang2/VEGF interaction with K D in the sub-nanomolar range. However, it also exhibits significant (K D of 4 nM) binding to angiopoietin-1, which has high sequence identity with Ang2. We generated a large phage-displayed library of 5A12.1 Fab variants with all possible single mutations in the 6 CDRs. By tracking the change of prevalence of each mutation during various selection conditions, we identified 35 mutations predicted to decrease the affinity for Ang1 while maintaining the affinity for Ang2 and VEGF. We confirmed the specificity profiles for 25 of these single mutations as Fab protein. Structural analysis showed that some of the Fab mutations cluster near a potential Ang1/2 epitope residue that differs in the 2 proteins, while others are up to 15 Å away from the antigen-binding site and likely influence the binding interaction remotely. The approach presented here provides a robust and efficient method for specificity engineering that does not require prior knowledge of the antigen antibody interaction and can be broadly applied to antibody specificity engineering projects.

  7. Characterization of glucagon-like peptide-1 receptor-binding determinants.

    PubMed

    Xiao, Q; Jeng, W; Wheeler, M B

    2000-12-01

    Glucagon-like peptide 1 (GLP-1) is a potent insulinotropic hormone currently under study as a therapeutic agent for type 2 diabetes. Since an understanding of the molecular mechanisms leading to high-affinity receptor (R) binding and activation may facilitate the development of more potent GLP-1R agonists, we have localized specific regions of GLP-1R required for binding. The purified N-terminal fragment (hereafter referred to as NT) of the GLP-1R produced in either insect (Sf9) or mammalian (COS-7) cells was shown to bind GLP-1. The physical interaction of NT with GLP-1 was first demonstrated by cross-linking ((125)I-GLP-1/NT complex band at approximately 28 kDa) and secondly by attachment to Ni(2+)-NTA beads. The GLP-1R NT protein attached to beads bound GLP-1, but with lower affinity (inhibitory concentration (IC(50)): 4.5 x 10(-7) M) than wild-type (WT) GLP-1R (IC(50): 5.2 x 10(-9)M). The low affinity of GLP-1R NT suggested that other receptor domains may contribute to GLP-1 binding. This was supported by studies using chimeric glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 receptors. GIP(1-151)/GLP-1R, but not GIP(1-222)/GLP-1R, exhibited specific GLP-1 binding and GLP-1-induced cAMP production, suggesting that the region encompassing transmembrane (TM) domain 1 through to TM3 was required for binding. Since it was hypothesized that certain charged or polar amino acids in this region might be involved in binding, these residues (TM2-TM3) were analyzed by substitution mutagenesis. Five mutants (K197A, D198A, K202A, D215A, R227A) displayed remarkably reduced binding affinity. These studies indicate that the NT domain of the GLP-1R is able to bind GLP-1, but charged residues concentrated at the distal TM2/extracellular loop-1 (EC1) interface (K197, D198, K202) and in EC1 (D215 and R227) probably contribute to the binding determinants of the GLP-1R.

  8. Structural basis of respiratory syncytial virus subtype-dependent neutralization by an antibody targeting the fusion glycoprotein.

    PubMed

    Tian, Daiyin; Battles, Michael B; Moin, Syed M; Chen, Man; Modjarrad, Kayvon; Kumar, Azad; Kanekiyo, Masaru; Graepel, Kevin W; Taher, Noor M; Hotard, Anne L; Moore, Martin L; Zhao, Min; Zheng, Zi-Zheng; Xia, Ning-Shao; McLellan, Jason S; Graham, Barney S

    2017-11-30

    A licensed vaccine for respiratory syncytial virus (RSV) is unavailable, and passive prophylaxis with the antibody palivizumab is restricted to high-risk infants. Recently isolated antibodies 5C4 and D25 are substantially more potent than palivizumab, and a derivative of D25 is in clinical trials. Here we show that unlike D25, 5C4 preferentially neutralizes subtype A viruses. The crystal structure of 5C4 bound to the RSV fusion (F) protein reveals that the overall binding mode of 5C4 is similar to that of D25, but their angles of approach are substantially different. Mutagenesis and virological studies demonstrate that RSV F residue 201 is largely responsible for the subtype specificity of 5C4. These results improve our understanding of subtype-specific immunity and the neutralization breadth requirements of next-generation antibodies, and thereby contribute to the design of broadly protective RSV vaccines.

  9. Characterization of a novel non-peptide vasopressin V1 receptor antagonist (OPC-21268) in the rat.

    PubMed

    Burrell, L M; Phillips, P A; Stephenson, J; Risvanis, J; Hutchins, A M; Johnston, C I

    1993-08-01

    A non-peptide, orally effective, vasopressin (AVP) V1 receptor antagonist 1-(1-[4-(3-acetylaminopropoxy) benzoyl]-4-piperidyl)-3,4-dihydro-2(1H)-quinolinone (OPC-21268) has recently been described. This paper reports the in-vitro and in-vivo characterization of OPC-21268 binding to vasopressin receptors in rat liver and kidney. OPC-21268 caused a concentration-dependent displacement of the selective V1 receptor antagonist radioligand, 125I-labelled [d(CH2)5,sarcosine7]AVP to V1 receptors in both rat liver and kidney medulla membranes. The concentration of OPC-21268 that displaced 50% of specific AVP binding (IC50) was 40 +/- 3 nmol/l for liver V1 and 15 +/- 2 nmol/l for kidney V1 receptors (mean +/- S.E.M.; n = 3). OPC-21268 had little effect on the selective V2 antagonist radioligand [3H]desGly-NH2(9)]d(CH2)5,D-Ile2,Ile4] AVP binding to V2 receptors in renal medulla membranes (IC50 > 0.1 mmol/l). After oral administration to rats, OPC-21268 was an effective V1 antagonist in a time- and dose-dependent manner. Binding kinetic studies showed that OPC-21268 acted as a competitive antagonist at the liver V1 receptor in vitro and in vivo, in addition to its in-vitro competitive effects at the renal V1 receptor. OPC-21268 shows promise as an orally active V1 antagonist.

  10. Differential 14-3-3 affinity capture reveals new downstream targets of phosphatidylinositol 3-kinase signaling.

    PubMed

    Dubois, Fanny; Vandermoere, Franck; Gernez, Aurélie; Murphy, Jane; Toth, Rachel; Chen, Shuai; Geraghty, Kathryn M; Morrice, Nick A; MacKintosh, Carol

    2009-11-01

    We devised a strategy of 14-3-3 affinity capture and release, isotope differential (d(0)/d(4)) dimethyl labeling of tryptic digests, and phosphopeptide characterization to identify novel targets of insulin/IGF1/phosphatidylinositol 3-kinase signaling. Notably four known insulin-regulated proteins (PFK-2, PRAS40, AS160, and MYO1C) had high d(0)/d(4) values meaning that they were more highly represented among 14-3-3-binding proteins from insulin-stimulated than unstimulated cells. Among novel candidates, insulin receptor substrate 2, the proapoptotic CCDC6, E3 ubiquitin ligase ZNRF2, and signaling adapter SASH1 were confirmed to bind to 14-3-3s in response to IGF1/phosphatidylinositol 3-kinase signaling. Insulin receptor substrate 2, ZNRF2, and SASH1 were also regulated by phorbol ester via p90RSK, whereas CCDC6 and PRAS40 were not. In contrast, the actin-associated protein vasodilator-stimulated phosphoprotein and lipolysis-stimulated lipoprotein receptor, which had low d(0)/d(4) scores, bound 14-3-3s irrespective of IGF1 and phorbol ester. Phosphorylated Ser(19) of ZNRF2 (RTRAYpS(19)GS), phospho-Ser(90) of SASH1 (RKRRVpS(90)QD), and phospho- Ser(493) of lipolysis-stimulated lipoprotein receptor (RPRARpS(493)LD) provide one of the 14-3-3-binding sites on each of these proteins. Differential 14-3-3 capture provides a powerful approach to defining downstream regulatory mechanisms for specific signaling pathways.

  11. Differential 14-3-3 Affinity Capture Reveals New Downstream Targets of Phosphatidylinositol 3-Kinase Signaling*

    PubMed Central

    Dubois, Fanny; Vandermoere, Franck; Gernez, Aurélie; Murphy, Jane; Toth, Rachel; Chen, Shuai; Geraghty, Kathryn M.; Morrice, Nick A.; MacKintosh, Carol

    2009-01-01

    We devised a strategy of 14-3-3 affinity capture and release, isotope differential (d0/d4) dimethyl labeling of tryptic digests, and phosphopeptide characterization to identify novel targets of insulin/IGF1/phosphatidylinositol 3-kinase signaling. Notably four known insulin-regulated proteins (PFK-2, PRAS40, AS160, and MYO1C) had high d0/d4 values meaning that they were more highly represented among 14-3-3-binding proteins from insulin-stimulated than unstimulated cells. Among novel candidates, insulin receptor substrate 2, the proapoptotic CCDC6, E3 ubiquitin ligase ZNRF2, and signaling adapter SASH1 were confirmed to bind to 14-3-3s in response to IGF1/phosphatidylinositol 3-kinase signaling. Insulin receptor substrate 2, ZNRF2, and SASH1 were also regulated by phorbol ester via p90RSK, whereas CCDC6 and PRAS40 were not. In contrast, the actin-associated protein vasodilator-stimulated phosphoprotein and lipolysis-stimulated lipoprotein receptor, which had low d0/d4 scores, bound 14-3-3s irrespective of IGF1 and phorbol ester. Phosphorylated Ser19 of ZNRF2 (RTRAYpS19GS), phospho-Ser90 of SASH1 (RKRRVpS90QD), and phospho- Ser493 of lipolysis-stimulated lipoprotein receptor (RPRARpS493LD) provide one of the 14-3-3-binding sites on each of these proteins. Differential 14-3-3 capture provides a powerful approach to defining downstream regulatory mechanisms for specific signaling pathways. PMID:19648646

  12. Preparation of fluorescent tocopherols for use in protein binding and localization with the alpha-tocopherol transfer protein.

    PubMed

    Nava, Phillip; Cecchini, Matt; Chirico, Sara; Gordon, Heather; Morley, Samantha; Manor, Danny; Atkinson, Jeffrey

    2006-06-01

    Sixteen fluorescent analogues of the lipid-soluble antioxidant vitamin alpha-tocopherol were prepared incorporating fluorophores at the terminus of omega-functionalized 2-n-alkyl-substituted chromanols (1a-d and 4a-d) that match the methylation pattern of alpha-tocopherol, the most biologically active form of vitamin E. The fluorophores used include 9-anthroyloxy (AO), 7-nitrobenz-2-oxa-1,3-diazole (NBD), N-methyl anthranilamide (NMA), and dansyl (DAN). The compounds were designed to function as fluorescent reporter ligands for protein-binding and lipid transfer assays. The fluorophores were chosen to maximize the fluorescence changes observed upon moving from an aqueous environment (low fluorescence intensity) to an hydrophobic environment such as a protein's binding site (high fluorescence intensity). Compounds 9d (anthroyloxy) and 10d (nitrobenzoxadiazole), having a C9-carbon chain between the chromanol and the fluorophore, were shown to bind specifically and reversibly to recombinant human tocopherol transfer protein (alpha-TTP) with dissociation constants of approximately 280 and 60 nM, respectively, as compared to 25 nM for the natural ligand 2R,4'R,8'R-alpha-tocopherol. Thus, compounds have been prepared that allow the investigation of the rate of alpha-TTP-mediated inter-membrane transfer of alpha-tocopherol and to investigate the mechanism of alpha-TTP function at membranes of different composition.

  13. Cell-specific targeting by heterobivalent ligands.

    PubMed

    Josan, Jatinder S; Handl, Heather L; Sankaranarayanan, Rajesh; Xu, Liping; Lynch, Ronald M; Vagner, Josef; Mash, Eugene A; Hruby, Victor J; Gillies, Robert J

    2011-07-20

    Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach--to specifically target combinations of cell-surface receptors using heteromultivalent ligands ("receptor combination approach"). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle(4), dPhe(7)]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20-50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH(2). Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging.

  14. Mass-action equilibrium and non-specific interactions in protein binding networks

    NASA Astrophysics Data System (ADS)

    Maslov, Sergei

    2009-03-01

    Large-scale protein binding networks serve as a paradigm of complex properties of living cells. These networks are naturally weighted with edges characterized by binding strength and protein-nodes -- by their concentrations. However, the state-of-the-art high-throughput experimental techniques generate just a binary (yes or no) information about individual interactions. As a result, most of the previous research concentrated just on topology of these networks. In a series of recent publications [1-4] my collaborators and I went beyond purely topological studies and calculated the mass-action equilibrium of a genome-wide binding network using experimentally determined protein concentrations, localizations, and reliable binding interactions in baker's yeast. We then studied how this equilibrium responds to large perturbations [1-2] and noise [3] in concentrations of proteins. We demonstrated that the change in the equilibrium concentration of a protein exponentially decays (and sign-alternates) with its network distance away from the perturbed node. This explains why, despite a globally connected topology, individual functional modules in such networks are able to operate fairly independently. In a separate study [4] we quantified the interplay between specific and non-specific binding interactions under crowded conditions inside living cells. We show how the need to limit the waste of resources constrains the number of types and concentrations of proteins that are present at the same time and at the same place in yeast cells. [1] S Maslov, I. Ispolatov, PNAS 104:13655 (2007). [2] S. Maslov, K. Sneppen, I. Ispolatov, New J. of Phys. 9: 273 (2007). [3] K-K. Yan, D. Walker, S. Maslov, PRL accepted (2008). [4] J. Zhang, S. Maslov, and E. I. Shakhnovich, Mol Syst Biol 4, 210 (2008).

  15. The hydrophobic region of the DmsA twin-arginine leader peptide determines specificity with chaperone DmsD.

    PubMed

    Winstone, Tara M L; Tran, Vy A; Turner, Raymond J

    2013-10-29

    The system specific chaperone DmsD plays a role in the maturation of the catalytic subunit of dimethyl sulfoxide (DMSO) reductase, DmsA. Pre-DmsA contains a 45-amino acid twin-arginine leader peptide that is important for targeting and translocation of folded and cofactor-loaded DmsA by the twin-arginine translocase. DmsD has previously been shown to interact with the complete twin-arginine leader peptide of DmsA. In this study, isothermal titration calorimetry was used to investigate the thermodynamics of binding between synthetic peptides composed of different portions of the DmsA leader peptide and DmsD. Only those peptides that included the complete and contiguous hydrophobic region of the DmsA leader sequence were able to bind DmsD with a 1:1 stoichiometry. Each of the peptides that were able to bind DmsD also showed some α-helical structure as indicated by circular dichroism spectroscopy. Differential scanning calorimetry revealed that DmsD gained very little thermal stability upon binding any of the DmsA leader peptides tested. Together, these results suggest that a portion of the hydrophobic region of the DmsA leader peptide determines the specificity of binding and may produce helical properties upon binding to DmsD. Overall, this study demonstrates that the recognition of the DmsA twin-arginine leader sequence by the DmsD chaperone shows unexpected rules and confirms further that the biochemistry of the interaction of the chaperone with their leaders demonstrates differences in their molecular interactions.

  16. Calorimetric study of mutant human lysozymes with partially introduced Ca2+ binding sites and its efficient refolding system from inclusion bodies.

    PubMed

    Koshiba, T; Tsumoto, K; Masaki, K; Kawano, K; Nitta, K; Kumagai, I

    1998-08-01

    During the process of evolution, ancestral lysozymes evolved into calcium-binding lysozymes by acquiring three critical aspartate residues at positions 86, 91 and 92. To investigate the process of the acquisition of calcium-binding ability, two of the aspartates were partially introduced into human lysozyme at positions 86, 91 and 92. These mutants (HLQ86D, HLA92D and HLQ86D/D91Q/A92D), having two critical aspartates in calcium-binding sites, were expressed in Escherichia coli as non-active inclusion bodies. For the preparation of lysozyme samples, a refolding system using thioredoxin was established. This system allowed for effective refolding of wild-type and mutant lysozymes, and 100% of activity was recovered within 4 days. The calcium ion dependence of the melting temperature (Tm) of wild-type and mutant lysozymes was investigated by differential scanning calorimetry at pH 4.5. The Tm values of wild-type, HLQ86D and HLA92D mutants were not dependent on calcium ion concentration. However, the Tm of HLQ86D/D91Q/A92D was 4 degrees higher in the presence of 50 mM CaCl2 than in its absence, and the calcium-binding constant of this mutant was estimated to be 2.25(+/-0.25)x10(2) M(-1) at pH 4.5. Moreover, the calcium-binding ability of this mutant was confirmed by the result using Sephadex G-25 gel chromatography. These results indicate that it is indispensable to have at least two aspartates at positions 86 and 92 for acquisition of calcium-binding ability. The process of the acquisition of calcium-binding site during evolution of calcium-binding lysozyme is discussed.

  17. Recombinant soluble adenovirus receptor

    DOEpatents

    Freimuth, Paul I.

    2002-01-01

    Disclosed are isolated polypeptides from human CAR (coxsackievirus and adenovirus receptor) protein which bind adenovirus. Specifically disclosed are amino acid sequences which corresponds to adenovirus binding domain D1 and the entire extracellular domain of human CAR protein comprising D1 and D2. In other aspects, the disclosure relates to nucleic acid sequences encoding these domains as well as expression vectors which encode the domains and bacterial cells containing such vectors. Also disclosed is an isolated fusion protein comprised of the D1 polypeptide sequence fused to a polypeptide sequence which facilitates folding of D1 into a functional, soluble domain when expressed in bacteria. The functional D1 domain finds application for example in a therapeutic method for treating a patient infected with a virus which binds to D1, and also in a method for identifying an antiviral compound which interferes with viral attachment. Also included is a method for specifically targeting a cell for infection by a virus which binds to D1.

  18. Differential manipulation of arrestin-3 binding to basal and agonist-activated G protein-coupled receptors.

    PubMed

    Prokop, Susanne; Perry, Nicole A; Vishnivetskiy, Sergey A; Toth, Andras D; Inoue, Asuka; Milligan, Graeme; Iverson, Tina M; Hunyady, Laszlo; Gurevich, Vsevolod V

    2017-08-01

    Non-visual arrestins interact with hundreds of different G protein-coupled receptors (GPCRs). Here we show that by introducing mutations into elements that directly bind receptors, the specificity of arrestin-3 can be altered. Several mutations in the two parts of the central "crest" of the arrestin molecule, middle-loop and C-loop, enhanced or reduced arrestin-3 interactions with several GPCRs in receptor subtype and functional state-specific manner. For example, the Lys139Ile substitution in the middle-loop dramatically enhanced the binding to inactive M 2 muscarinic receptor, so that agonist activation of the M 2 did not further increase arrestin-3 binding. Thus, the Lys139Ile mutation made arrestin-3 essentially an activation-independent binding partner of M 2 , whereas its interactions with other receptors, including the β 2 -adrenergic receptor and the D 1 and D 2 dopamine receptors, retained normal activation dependence. In contrast, the Ala248Val mutation enhanced agonist-induced arrestin-3 binding to the β 2 -adrenergic and D 2 dopamine receptors, while reducing its interaction with the D 1 dopamine receptor. These mutations represent the first example of altering arrestin specificity via enhancement of the arrestin-receptor interactions rather than selective reduction of the binding to certain subtypes. Copyright © 2017. Published by Elsevier Inc.

  19. Crystal structures of the catalytic domains of pseudouridine synthases RluC and RluD from Escherichia coli.

    PubMed

    Mizutani, Kenji; Machida, Yoshitaka; Unzai, Satoru; Park, Sam-Yong; Tame, Jeremy R H

    2004-04-20

    The most frequent modification of RNA, the conversion of uridine bases to pseudouridines, is found in all living organisms and often in highly conserved locations in ribosomal and transfer RNA. RluC and RluD are homologous enzymes which each convert three specific uridine bases in Escherichia coli ribosomal 23S RNA to pseudouridine: bases 955, 2504, and 2580 in the case of RluC and 1911, 1915, and 1917 in the case of RluD. Both have an N-terminal S4 RNA binding domain. While the loss of RluC has little phenotypic effect, loss of RluD results in a much reduced growth rate. We have determined the crystal structures of the catalytic domain of RluC, and full-length RluD. The S4 domain of RluD appears to be highly flexible or unfolded and is completely invisible in the electron density map. Despite the conserved topology shared by the two proteins, the surface shape and charge distribution are very different. The models suggest significant differences in substrate binding by different pseudouridine synthases.

  20. Inhibition of /sup 3/H-leukotriene D4 binding to guinea pig lung receptors by the novel leukotriene antagonist ICI 198,615

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aharony, D.; Falcone, R.C.; Krell, R.D.

    1987-12-01

    The specific binding of (/sup 3/H)5(S)hydroxy-6(R)-S-cysteinylglycyl -7(E),9(E),11(Z),14(Z)-eicosatetraenoic acid ((/sup 3/H)LTD4) to receptors on guinea pig lung parenchymal membranes and its inhibition by ICI 198,615, a representative example of a new class of leukotriene antagonists, was characterized by a receptor-ligand binding assay. (/sup 3/H)LTD4 bound specifically and rapidly (Kon = 0.29 +/- 0.6 nM-1.min-1) reaching equilibrium within 15 min. The rate of binding was greatly inhibited in the presence of ICI 198,615. Excess LTD4 or ICI 198,615 slowly (t1/2 = 20 min) dissociated about 70% of the receptor-bound (/sup 3/H)LTD4, whereas in combination with GTP analogs, both induced a rapid (t1/2more » less than 5 min) and full dissociation. Equilibrium saturation analysis of (/sup 3/H)LTD4 binding demonstrated a saturable (Bmax = 1014 +/- 174 fmol/mg) and high affinity (Kd = 0.43 +/- 0.09 nM) binding site. A high degree of stereoselectivity was demonstrated with inhibition of binding by the stereoisomers of LTD4: S,R much greater than R,R greater than R,S much greater than S,S. The rank order for inhibition of binding by peptide leukotriene was: LTD4 greater than 5(S)-hydroxy-6(R)-S-cysteinyl-7(E),9(E),11(Z),14(Z)-eicosatetraenoic acid much greater than 5(S)hydroxy-6(R)-S-glutathionyl-7(E),9(E),11(Z),14(Z)-eicosatetraenoic acid (potency ratios were: 1:4:590). In competition assays, ICI 198,615 competitively inhibited binding of (/sup 3/H)LTD4 (Ki = 0.27 +/- 0.16 nM) and was 2300-fold and 3100-fold more potent than LY171883 or FPL55712. These data, together with results obtained previously in functional receptor assays, illustrate that this new class of leukotriene antagonists are the most potent and selective competitive antagonists of LTD4 receptors yet described.« less

  1. Probing the recognition surface of a DNA triplex: binding studies with intercalator-neomycin conjugates.

    PubMed

    Xue, Liang; Xi, Hongjuan; Kumar, Sunil; Gray, David; Davis, Erik; Hamilton, Paris; Skriba, Michael; Arya, Dev P

    2010-07-06

    Thermodynamic studies on the interactions between intercalator-neomycin conjugates and a DNA polynucleotide triplex [poly(dA).2poly(dT)] were conducted. To draw a complete picture of such interactions, naphthalene diimide-neomycin (3) and anthraquinone-neomycin (4) conjugates were synthesized and used together with two other analogues, previously synthesized pyrene-neomycin (1) and BQQ-neomycin (2) conjugates, in our investigations. A combination of experiments, including UV denaturation, circular dichroism (CD) titration, differential scanning calorimetry (DSC), and isothermal titration calorimetry (ITC), revealed that all four conjugates (1-4) stabilized poly(dA).2poly(dT) much more than its parent compound, neomycin. UV melting experiments clearly showed that the temperature (T(m3-->2)) at which poly(dA).2poly(dT) dissociated into poly(dA).poly(dT) and poly(dT) increased dramatically (>12 degrees C) in the presence of intercalator-neomycin conjugates (1-4) even at a very low concentration (2 muM). In contrast to intercalator-neomycin conjugates, the increment of T(m3-->2) of poly(dA).2poly(dT) induced by neomycin was negligible under the same conditions. The binding preference of intercalator-neomycin conjugates (1-4) to poly(dA).2poly(dT) was also confirmed by competition dialysis and a fluorescent intercalator displacement assay. Circular dichroism titration studies revealed that compounds 1-4 had slightly larger binding site size ( approximately 7-7.5) with poly(dA).2poly(dT) as compared to neomycin ( approximately 6.5). The thermodynamic parameters of these intercalator-neomycin conjugates with poly(dA).2poly(dT) were derived from an integrated van't Hoff equation using the T(m3-->2) values, the binding site size numbers, and other parameters obtained from DSC and ITC. The binding affinity of all tested ligands with poly(dA).2poly(dT) increased in the following order: neomycin < 1 < 3 < 4 < 2. Among them, the binding constant [(2.7 +/- 0.3) x 10(8) M(-1)] of 2 with poly(dA).2poly(dT) was the highest, almost 1000-fold greater than that of neomycin. The binding of compounds 1-4 with poly(dA).2poly(dT) was mostly enthalpy-driven and gave negative DeltaC(p) values. The results described here suggest that the binding affinity of intercalator-neomycin conjugates for poly(dA).2poly(dT) increases as a function of the surface area of the intercalator moiety.

  2. The 13-kD FK506 Binding Protein, FKBP13, Interacts with a Novel Homologue of the Erythrocyte Membrane Cytoskeletal Protein 4.1

    PubMed Central

    Walensky, Loren D.; Gascard, Philippe; Field, Michael E.; Blackshaw, Seth; Conboy, John G.; Mohandas, Narla; Snyder, Solomon H.

    1998-01-01

    We have identified a novel generally expressed homologue of the erythrocyte membrane cytoskeletal protein 4.1, named 4.1G, based on the interaction of its COOH-terminal domain (CTD) with the immunophilin FKBP13. The 129-amino acid peptide, designated 4.1G–CTD, is the first known physiologic binding target of FKBP13. FKBP13 is a 13-kD protein originally identified by its high affinity binding to the immunosuppressant drugs FK506 and rapamycin (Jin, Y., M.W. Albers, W.S. Lane, B.E. Bierer, and S.J. Burakoff. 1991. Proc. Natl. Acad. Sci. USA. 88:6677– 6681); it is a membrane-associated protein thought to function as an ER chaperone (Bush, K.T., B.A. Henrickson, and S.K. Nigam. 1994. Biochem. J. [Tokyo]. 303:705–708). We report the specific association of FKBP13 with 4.1G–CTD based on yeast two-hybrid, in vitro binding and coimmunoprecipitation experiments. The histidyl-proline moiety of 4.1G–CTD is required for FKBP13 binding, as indicated by yeast experiments with truncated and mutated 4.1G–CTD constructs. In situ hybridization studies reveal cellular colocalizations for FKBP13 and 4.1G–CTD throughout the body during development, supporting a physiologic role for the interaction. Interestingly, FKBP13 cofractionates with the red blood cell homologue of 4.1 (4.1R) in ghosts, inside-out vesicles, and Triton shell preparations. The identification of FKBP13 in erythrocytes, which lack ER, suggests that FKBP13 may additionally function as a component of membrane cytoskeletal scaffolds. PMID:9531554

  3. AKAP18:PKA-RIIα structure reveals crucial anchor points for recognition of regulatory subunits of PKA

    PubMed Central

    Götz, Frank; Roske, Yvette; Schulz, Maike Svenja; Autenrieth, Karolin; Bertinetti, Daniela; Faelber, Katja; Zühlke, Kerstin; Kreuchwig, Annika; Kennedy, Eileen J.; Krause, Gerd; Daumke, Oliver; Herberg, Friedrich W.; Heinemann, Udo; Klussmann, Enno

    2016-01-01

    A-kinase anchoring proteins (AKAPs) interact with the dimerization/docking (D/D) domains of regulatory subunits of the ubiquitous protein kinase A (PKA). AKAPs tether PKA to defined cellular compartments establishing distinct pools to increase the specificity of PKA signalling. Here, we elucidated the structure of an extended PKA-binding domain of AKAP18β bound to the D/D domain of the regulatory RIIα subunits of PKA. We identified three hydrophilic anchor points in AKAP18β outside the core PKA-binding domain, which mediate contacts with the D/D domain. Such anchor points are conserved within AKAPs that bind regulatory RII subunits of PKA. We derived a different set of anchor points in AKAPs binding regulatory RI subunits of PKA. In vitro and cell-based experiments confirm the relevance of these sites for the interaction of RII subunits with AKAP18 and of RI subunits with the RI-specific smAKAP. Thus we report a novel mechanism governing interactions of AKAPs with PKA. The sequence specificity of each AKAP around the anchor points and the requirement of these points for the tight binding of PKA allow the development of selective inhibitors to unequivocally ascribe cellular functions to the AKAP18-PKA and other AKAP-PKA interactions. PMID:27102985

  4. Neuronal Calcium Sensor-1 Binds the D2 Dopamine Receptor and G-protein-coupled Receptor Kinase 1 (GRK1) Peptides Using Different Modes of Interactions.

    PubMed

    Pandalaneni, Sravan; Karuppiah, Vijaykumar; Saleem, Muhammad; Haynes, Lee P; Burgoyne, Robert D; Mayans, Olga; Derrick, Jeremy P; Lian, Lu-Yun

    2015-07-24

    Neuronal calcium sensor-1 (NCS-1) is the primordial member of the neuronal calcium sensor family of EF-hand Ca(2+)-binding proteins. It interacts with both the G-protein-coupled receptor (GPCR) dopamine D2 receptor (D2R), regulating its internalization and surface expression, and the cognate kinases GRK1 and GRK2. Determination of the crystal structures of Ca(2+)/NCS-1 alone and in complex with peptides derived from D2R and GRK1 reveals that the differential recognition is facilitated by the conformational flexibility of the C-lobe-binding site. We find that two copies of the D2R peptide bind within the hydrophobic crevice on Ca(2+)/NCS-1, but only one copy of the GRK1 peptide binds. The different binding modes are made possible by the C-lobe-binding site of NCS-1, which adopts alternative conformations in each complex. C-terminal residues Ser-178-Val-190 act in concert with the flexible EF3/EF4 loop region to effectively form different peptide-binding sites. In the Ca(2+)/NCS-1·D2R peptide complex, the C-terminal region adopts a 310 helix-turn-310 helix, whereas in the GRK1 peptide complex it forms an α-helix. Removal of Ser-178-Val-190 generated a C-terminal truncation mutant that formed a dimer, indicating that the NCS-1 C-terminal region prevents NCS-1 oligomerization. We propose that the flexible nature of the C-terminal region is essential to allow it to modulate its protein-binding sites and adapt its conformation to accommodate both ligands. This appears to be driven by the variability of the conformation of the C-lobe-binding site, which has ramifications for the target specificity and diversity of NCS-1. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Neuronal Calcium Sensor-1 Binds the D2 Dopamine Receptor and G-protein-coupled Receptor Kinase 1 (GRK1) Peptides Using Different Modes of Interactions*

    PubMed Central

    Pandalaneni, Sravan; Karuppiah, Vijaykumar; Saleem, Muhammad; Haynes, Lee P.; Burgoyne, Robert D.; Mayans, Olga; Derrick, Jeremy P.; Lian, Lu-Yun

    2015-01-01

    Neuronal calcium sensor-1 (NCS-1) is the primordial member of the neuronal calcium sensor family of EF-hand Ca2+-binding proteins. It interacts with both the G-protein-coupled receptor (GPCR) dopamine D2 receptor (D2R), regulating its internalization and surface expression, and the cognate kinases GRK1 and GRK2. Determination of the crystal structures of Ca2+/NCS-1 alone and in complex with peptides derived from D2R and GRK1 reveals that the differential recognition is facilitated by the conformational flexibility of the C-lobe-binding site. We find that two copies of the D2R peptide bind within the hydrophobic crevice on Ca2+/NCS-1, but only one copy of the GRK1 peptide binds. The different binding modes are made possible by the C-lobe-binding site of NCS-1, which adopts alternative conformations in each complex. C-terminal residues Ser-178–Val-190 act in concert with the flexible EF3/EF4 loop region to effectively form different peptide-binding sites. In the Ca2+/NCS-1·D2R peptide complex, the C-terminal region adopts a 310 helix-turn-310 helix, whereas in the GRK1 peptide complex it forms an α-helix. Removal of Ser-178–Val-190 generated a C-terminal truncation mutant that formed a dimer, indicating that the NCS-1 C-terminal region prevents NCS-1 oligomerization. We propose that the flexible nature of the C-terminal region is essential to allow it to modulate its protein-binding sites and adapt its conformation to accommodate both ligands. This appears to be driven by the variability of the conformation of the C-lobe-binding site, which has ramifications for the target specificity and diversity of NCS-1. PMID:25979333

  6. Physical interaction of human T-cell leukemia virus type 1 Tax with cyclin-dependent kinase 4 stimulates the phosphorylation of retinoblastoma protein.

    PubMed

    Haller, Kerstin; Wu, Yalin; Derow, Elisabeth; Schmitt, Iris; Jeang, Kuan-Teh; Grassmann, Ralph

    2002-05-01

    The Tax oncoprotein of human T-cell leukemia virus type 1 (HTLV-1) induces leukemia in transgenic mice and permanent T-cell growth in vitro. In transformed lymphocytes, it acts as an essential growth factor. Tax stimulates the cell cycle in the G(1) phase by activating the cyclin-dependent kinase (CDK) CDK4 and CDK6 holoenzyme complexes. Here we show that Tax directly interacts with CDK4. This binding to CDK4 was specific, since Tax did not bind to either CDK2 or CDK1. The interaction with CDK4/cyclin D complexes was observed in vitro, in transfected fibroblasts, in HTLV-1-infected T cells, and in adult T-cell leukemia-derived cultures. Binding studies with several point and deletion mutants indicated that the N terminus of Tax mediates the interaction with CDK4. The Tax/CDK complex represented an active holoenzyme which capably phosphorylates the Rb protein in vitro and is resistant to repression by the inhibitor p21(CIP). Binding-deficient Tax mutants failed to activate CDK4, indicating that direct association with Tax is required for enhanced kinase activity. Tax also increased the association of CDK4 with its positive cyclin regulatory subunit. Thus, protein-protein contact between Tax and the components of the cyclin D/CDK complexes provides a further mechanistic explanation for the mitogenic and immortalizing effects of this HTLV-1 oncoprotein.

  7. Physical Interaction of Human T-Cell Leukemia Virus Type 1 Tax with Cyclin-Dependent Kinase 4 Stimulates the Phosphorylation of Retinoblastoma Protein

    PubMed Central

    Haller, Kerstin; Wu, Yalin; Derow, Elisabeth; Schmitt, Iris; Jeang, Kuan-Teh; Grassmann, Ralph

    2002-01-01

    The Tax oncoprotein of human T-cell leukemia virus type 1 (HTLV-1) induces leukemia in transgenic mice and permanent T-cell growth in vitro. In transformed lymphocytes, it acts as an essential growth factor. Tax stimulates the cell cycle in the G1 phase by activating the cyclin-dependent kinase (CDK) CDK4 and CDK6 holoenzyme complexes. Here we show that Tax directly interacts with CDK4. This binding to CDK4 was specific, since Tax did not bind to either CDK2 or CDK1. The interaction with CDK4/cyclin D complexes was observed in vitro, in transfected fibroblasts, in HTLV-1-infected T cells, and in adult T-cell leukemia-derived cultures. Binding studies with several point and deletion mutants indicated that the N terminus of Tax mediates the interaction with CDK4. The Tax/CDK complex represented an active holoenzyme which capably phosphorylates the Rb protein in vitro and is resistant to repression by the inhibitor p21CIP. Binding-deficient Tax mutants failed to activate CDK4, indicating that direct association with Tax is required for enhanced kinase activity. Tax also increased the association of CDK4 with its positive cyclin regulatory subunit. Thus, protein-protein contact between Tax and the components of the cyclin D/CDK complexes provides a further mechanistic explanation for the mitogenic and immortalizing effects of this HTLV-1 oncoprotein. PMID:11971966

  8. Binding of anticancer drug daunomycin to a TGGGGT G-quadruplex DNA probed by all-atom molecular dynamics simulations: additional pure groove binding mode and implications on designing more selective G-quadruplex ligands.

    PubMed

    Shen, Zhanhang; Mulholland, Kelly A; Zheng, Yujun; Wu, Chun

    2017-09-01

    DNA G-quadruplex structures are emerging cancer-specific targets for chemotherapeutics. Ligands that bind to and stabilize DNA G-quadruplexes have the potential to be anti-cancer drugs. Lack of binding selectivity to DNA G-quadruplex over DNA duplex remains a major challenge when attempting to develop G-quadruplex ligands into successful anti-cancer drugs. Thorough understanding of the binding nature of existing non-selective ligands that bind to both DNA quadruplex and DNA duplex will help to address this challenge. Daunomycin and doxorubicin, two commonly used anticancer drugs, are examples of non-selective DNA ligands. In this study, we extended our early all-atom binding simulation studies between doxorubicin and a DNA duplex (d(CGATCG) 2 ) to probe the binding between daunomycin and a parallel DNA quadruplex (d(TGGGGT) 4 ) and DNA duplex. In addition to the end stacking mode, which mimics the mode in the crystal structure, a pure groove binding mode was observed in our free binding simulations. The dynamic and energetic properties of these two binding modes are thoroughly examined, and a detailed comparison is made between DNA quadruplex binding modes and DNA duplex binding modes. Implications on the design of more selective DNA quadruplex ligands are also discussed. Graphical abstract Top stacking and groov binding modes from the MD simulations.

  9. A novel C-type lectin from the sea cucumber Apostichopus japonicus (AjCTL-2) with preferential binding of d-galactose.

    PubMed

    Wang, Hui; Xue, Zhuang; Liu, Zhaoqun; Wang, Weilin; Wang, Feifei; Wang, Ying; Wang, Lingling; Song, Linsheng

    2018-05-15

    C-type lectins (CTLs) are Ca 2+ dependent carbohydrate-binding proteins that share structural homology in their carbohydrate-recognition domains (CRDs). In the present study, a novel CTL was identified from sea cucumber Apostichopus japonicus (named as AjCTL-2). The deduced amino acid sequence of AjCTL-2 was homologous to CTLs from other animals with the identities ranging from 33% to 40%. It contained a canonical signal peptide at the N-terminus, a low density lipoprotein receptor class A (LDLa), a C1r/C1s/Uegf/bone morphogenetic protein 1 (CUB), and a CRD with two motifs Glu-Pro-Asn (EPN) and Trp-Asn-Asp (WND) in Ca 2+ binding site 2. The mRNA transcripts of AjCTL-2 were extensively expressed in all the tested tissues including respiratory tree, muscle, gut, coelomocyte, tube-foot, body wall and gonad, and the highest expression level of AjCTL-2 in coelomocyte was about 4.2-fold (p < 0.05) of that in body wall. The mRNA expression level of AjCTL-2 in coelomocyte increased significantly after Vibrio splendidus stimulation, and dramatically peaked at 12 h, which was 206.4-fold (p < 0.05) of that in control group. AjCTL-2 protein was mainly detected in cytoplasm of coelomocyte by immunofluorescence. The recombinant AjCTL-2 (rAjCTL-2) displayed binding activity to d-galactose independent of Ca 2+ , while the binding activity to other tested pathogen-associated molecular patterns (PAMPs) including lipopolysaccharide (LPS), peptidoglycan (PGN), and mannose (Man) could not be detected. Surface plasmon resonance (SPR) analysis further revealed the high binding specificity and moderate binding affinity of rAjCTL-2 to d-galactose (KD = 4.093 × 10 -6  M). After rAjCTL-2 was blocked by its polyclonal antibody, the binding activity to d-galactose could not be detected by using a blocking ELISA (B-ELISA). Moreover, rAjCTL-2 could bind various microorganisms including V. splendidus, V. anguillarum, Staphylococcus aureus, Bifidobacterium breve and Yarrowia lipolytica with the strongest binding activity to B. breve. These results collectively suggested that AjCTL-2 was a member of CTL superfamily (CTLs) with preferential binding of d-galactose and participated in the immune response of sea cucumber. Copyright © 2018. Published by Elsevier Ltd.

  10. Metal selectivity of the E. coli nickel metallochaperone, SlyD

    PubMed Central

    Kaluarachchi, Harini; Siebel, Judith F.; Kaluarachchi-Duffy, Supipi; Krecisz, Sandra; Sutherland, Duncan E. K.; Stillman, Martin J.; Zamble, Deborah B.

    2012-01-01

    SlyD is a Ni(II)-binding protein that contributes to nickel homeostasis in Escherichia coli. The C-terminal domain of SlyD contains a rich variety of metal-binding amino acids, suggesting broader metal-binding capabilities, and previous work demonstrated that the protein can coordinate several types of first row transition metals. However, the binding of SlyD to metals other than Ni(II) has not been previously characterized. To further our understanding of the in vitro metal-binding activity of SlyD and how it correlates with the in vivo function of this protein, the interactions between SlyD and the series of biologically relevant transition metals Mn(II), Fe(II), Co(II), Cu(I) and Zn(II) were examined by using a combination of optical spectroscopy and mass spectrometry. SlyD binding to Mn(II) or to Fe(II) ions was not detected but the protein coordinates multiple ions of Co(II), Zn(II) and Cu(I) with appreciable affinities (KD ≤ nM), highlighting the promiscuous nature of this protein. The order of affinities of SlyD for the metals examined is Mn(II), Fe(II) < Co(II) < Ni(II) ~ Zn(II) ≪ Cu(I). Although the purified protein is unable to overcome the large thermodynamic preference for Cu(I) and exclude Zn(II) chelation in the presence of Ni(II), in vivo studies reveal a Ni(II)-specific function for the protein. Furthermore, these latter experiments support a specific role for SlyD as a [NiFe]-hydrogenase enzyme maturation factor. The implications of the divergence between the metal selectivity of SlyD in vitro and the specific activity in vivo are discussed. PMID:22047179

  11. The PBX1 lupus susceptibility gene regulates CD44 expression.

    PubMed

    Niu, Yuxin; Sengupta, Mayami; Titov, Anton A; Choi, Seung-Chul; Morel, Laurence

    2017-05-01

    PBX1-d is novel splice isoform of pre-B-cell leukemia homeobox 1 (PBX1) that lacks its DNA-binding and Hox-binding domains, and functions as a dominant negative. We have shown that PBX1-d expression in CD4 + T cells is associated with systemic lupus erythematosus (SLE) in a mouse model as well as in human subjects. More specifically, PBX1-d expression leads to the production of autoreactive activated CD4+ T cells, a reduced frequency and function of Foxp3+ regulatory T (Treg) cells and an expansion of follicular helper T (Tfh) cells. Very little is known about the function of PBX1 in T cells, except that it directly regulates the expression of miRNAs associated with Treg and Tfh homeostasis. In the present study, we show that PBX1 directly regulated the expression of CD44, a marker of T cell activation. Two PBX1 binding sites in the promoter directly regulated CD44 expression, with PBX1-d driving a higher expression than the normal isoform PBX1-b. In addition, mutations in each of the two binding sites had different effects of PBX1-b and PBX1-d. Finally, we showed that an enhanced recruitment of co-factor MEIS by PBX1-d over PBX1-b, while there was no difference for co-factor PREP1 recruitment. Therefore, this study demonstrates that the lupus-associated PBX1-d isoform directly transactivates CD44, a marker of CD44 activation and memory, and that it has different DNA binding and co-factor recruitment relative to the normal isoform. Taken together, these results confirm that PBX1 directly regulates genes related to T cell activation and shows that the lupus-associated isoform PBX1-d has unique molecular functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The role of glutamic or aspartic acid in position four of the epitope binding motif and thyrotropin receptor-extracellular domain epitope selection in Graves' disease.

    PubMed

    Inaba, Hidefumi; Martin, William; Ardito, Matt; De Groot, Anne Searls; De Groot, Leslie J

    2010-06-01

    Development of Graves' disease (GD) is related to HLA-DRB1*0301 (DR3),and more specifically to arginine at position 74 of the DRB1 molecule. The extracellular domain (ECD) of human TSH receptor (hTSH-R) contains the target antigen. We analyzed the relation between hTSH-R-ECD peptides and DR molecules to determine whether aspartic acid (D) or glutamic acid (E) at position four in the binding motif influenced selection of functional epitopes. Peptide epitopes from TSH-R-ECD with D or E in position four (D/E+) had higher affinity for binding to DR3 than peptides without D/E (D/E-) (IC(50) 29.3 vs. 61.4, P = 0.0024). HLA-DR7, negatively correlated with GD, and DRB1*0302 (HLA-DR18), not associated with GD, had different profiles of epitope binding. Toxic GD patients who are DR3+ had higher responses to D/E+ peptides than D/E- peptides (stimulation index 1.42 vs. 1.22, P = 0.028). All DR3+ GD patients (toxic + euthyroid) had higher responses, with borderline significance (Sl; 1.32 vs. 1.18, P = 0.051). Splenocytes of DR3 transgenic mice immunized to TSH-R-ECD responded to D/E+ peptides more than D/E- peptides (stimulation index 1.95 vs. 1.69, P = 0.036). Seven of nine hTSH-R-ECD peptide epitopes reported to be reactive with GD patients' peripheral blood mononuclear cells contain binding motifs with D/E at position four. TSH-R-ECD epitopes with D/E in position four of the binding motif bind more strongly to DRB1*0301 than epitopes that are D/E- and are more stimulatory to GD patients' peripheral blood mononuclear cells and to splenocytes from mice immunized to hTSH-R. These epitopes appear important in immunogenicity to TSH-R due to their favored binding to HLA-DR3, thus increasing presentation to T cells.

  13. Evidence that family 35 carbohydrate binding modules display conserved specificity but divergent function

    PubMed Central

    Montanier, Cedric; van Bueren, Alicia Lammerts; Dumon, Claire; Flint, James E.; Correia, Marcia A.; Prates, Jose A.; Firbank, Susan J.; Lewis, Richard J.; Grondin, Gilles G.; Ghinet, Mariana G.; Gloster, Tracey M.; Herve, Cecile; Knox, J. Paul; Talbot, Brian G.; Turkenburg, Johan P.; Kerovuo, Janne; Brzezinski, Ryszard; Fontes, Carlos M. G. A.; Davies, Gideon J.; Boraston, Alisdair B.; Gilbert, Harry J.

    2009-01-01

    Enzymes that hydrolyze complex carbohydrates play important roles in numerous biological processes that result in the maintenance of marine and terrestrial life. These enzymes often contain noncatalytic carbohydrate binding modules (CBMs) that have important substrate-targeting functions. In general, there is a tight correlation between the ligands recognized by bacterial CBMs and the substrate specificity of the appended catalytic modules. Through high-resolution structural studies, we demonstrate that the architecture of the ligand binding sites of 4 distinct family 35 CBMs (CBM35s), appended to 3 plant cell wall hydrolases and the exo-β-d-glucosaminidase CsxA, which contributes to the detoxification and metabolism of an antibacterial fungal polysaccharide, is highly conserved and imparts specificity for glucuronic acid and/or Δ4,5-anhydrogalaturonic acid (Δ4,5-GalA). Δ4,5-GalA is released from pectin by the action of pectate lyases and as such acts as a signature molecule for plant cell wall degradation. Thus, the CBM35s appended to the 3 plant cell wall hydrolases, rather than targeting the substrates of the cognate catalytic modules, direct their appended enzymes to regions of the plant that are being actively degraded. Significantly, the CBM35 component of CsxA anchors the enzyme to the bacterial cell wall via its capacity to bind uronic acid sugars. This latter observation reveals an unusual mechanism for bacterial cell wall enzyme attachment. This report shows that the biological role of CBM35s is not dictated solely by their carbohydrate specificities but also by the context of their target ligands. PMID:19218457

  14. Structure–function characterization of three human antibodies targeting the vaccinia virus adhesion molecule D8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matho, Michael H.; Schlossman, Andrew; Gilchuk, Iuliia M.

    Vaccinia virus (VACV) envelope protein D8 is one of three glycosaminoglycan adhesion molecules and binds to the linear polysaccharide chondroitin sulfate (CS). D8 is also a target for neutralizing antibody responses that are elicited by the smallpox vaccine, which has enabled the first eradication of a human viral pathogen and is a useful model for studying antibody responses. However, to date, VACV epitopes targeted by human antibodies have not been characterized at atomic resolution. Here in this paper, we characterized the binding properties of several human anti-D8 antibodies and determined the crystal structures of three VACV-mAb variants, VACV-66, VACV-138, andmore » VACV-304, separately bound to D8. Although all these antibodies bound D8 with high affinity and were moderately neutralizing in the presence of complement, VACV-138 and VACV-304 also fully blocked D8 binding to CS-A, the low affinity ligand for D8. VACV-138 also abrogated D8 binding to the high-affinity ligand CS-E, but we observed residual CS-E binding was observed in the presence of VACV-304. Analysis of the VACV-138– and VACV-304–binding sites along the CS-binding crevice of D8, combined with different efficiencies of blocking D8 adhesion to CS-A and CS-E allowed us to propose that D8 has a high- and low-affinity CS-binding region within its central crevice. The crevice is amenable to protein engineering to further enhance both specificity and affinity of binding to CS-E. Finally, a wild-type D8 tetramer specifically bound to structures within the developing glomeruli of the kidney, which express CS-E. We propose that through structure-based protein engineering, an improved D8 tetramer could be used as a potential diagnostic tool to detect expression of CS-E, which is a possible biomarker for ovarian cancer.« less

  15. Structure–function characterization of three human antibodies targeting the vaccinia virus adhesion molecule D8

    DOE PAGES

    Matho, Michael H.; Schlossman, Andrew; Gilchuk, Iuliia M.; ...

    2017-11-09

    Vaccinia virus (VACV) envelope protein D8 is one of three glycosaminoglycan adhesion molecules and binds to the linear polysaccharide chondroitin sulfate (CS). D8 is also a target for neutralizing antibody responses that are elicited by the smallpox vaccine, which has enabled the first eradication of a human viral pathogen and is a useful model for studying antibody responses. However, to date, VACV epitopes targeted by human antibodies have not been characterized at atomic resolution. Here in this paper, we characterized the binding properties of several human anti-D8 antibodies and determined the crystal structures of three VACV-mAb variants, VACV-66, VACV-138, andmore » VACV-304, separately bound to D8. Although all these antibodies bound D8 with high affinity and were moderately neutralizing in the presence of complement, VACV-138 and VACV-304 also fully blocked D8 binding to CS-A, the low affinity ligand for D8. VACV-138 also abrogated D8 binding to the high-affinity ligand CS-E, but we observed residual CS-E binding was observed in the presence of VACV-304. Analysis of the VACV-138– and VACV-304–binding sites along the CS-binding crevice of D8, combined with different efficiencies of blocking D8 adhesion to CS-A and CS-E allowed us to propose that D8 has a high- and low-affinity CS-binding region within its central crevice. The crevice is amenable to protein engineering to further enhance both specificity and affinity of binding to CS-E. Finally, a wild-type D8 tetramer specifically bound to structures within the developing glomeruli of the kidney, which express CS-E. We propose that through structure-based protein engineering, an improved D8 tetramer could be used as a potential diagnostic tool to detect expression of CS-E, which is a possible biomarker for ovarian cancer.« less

  16. Analysis of binding site for the novel small-molecule TLR4 signal transduction inhibitor TAK-242 and its therapeutic effect on mouse sepsis model

    PubMed Central

    Takashima, K; Matsunaga, N; Yoshimatsu, M; Hazeki, K; Kaisho, T; Uekata, M; Hazeki, O; Akira, S; Iizawa, Y; Ii, M

    2009-01-01

    Background and purpose: TAK-242, a novel synthetic small-molecule, suppresses production of multiple cytokines by inhibiting Toll-like receptor (TLR) 4 signalling. In this study, we investigated the target molecule of TAK-242 and examined its therapeutic effect in a mouse sepsis model. Experimental approach: Binding assay with [3H]-TAK-242 and nuclear factor-κB reporter assay were used to identify the target molecule and binding site of TAK-242. Bacillus calmette guerin (BCG)-primed mouse sepsis model using live Escherichia coli was used to estimate the efficacy of TAK-242 in sepsis. Key results: TAK-242 strongly bound to TLR4, but binding to TLR2, 3, 5, 9, TLR-related adaptor molecules and MD-2 was either not observed or marginal. Mutational analysis using TLR4 mutants indicated that TAK-242 inhibits TLR4 signalling by binding to Cys747 in the intracellular domain of TLR4. TAK-242 inhibited MyD88-independent pathway as well as MyD88-dependent pathway and its inhibitory effect was largely unaffected by lipopolysaccharide (LPS) concentration and types of TLR4 ligands. TAK-242 had no effect on the LPS-induced conformational change of TLR4-MD-2 and TLR4 homodimerization. In mouse sepsis model, although TAK-242 alone did not affect bacterial counts in blood, if co-administered with ceftazidime it inhibited the increases in serum cytokine levels and improved survival of mice. Conclusions and implications: TAK-242 suppressed TLR4 signalling by binding directly to a specific amino acid Cys747 in the intracellular domain of TLR4. When co-administered with antibiotics, TAK-242 showed potent therapeutic effects in an E. coli-induced sepsis model using BCG-primed mice. Thus, TAK-242 may be a promising therapeutic agent for sepsis. PMID:19563534

  17. Heterogeneous RNA-binding protein M4 is a receptor for carcinoembryonic antigen in Kupffer cells.

    PubMed

    Bajenova, O V; Zimmer, R; Stolper, E; Salisbury-Rowswell, J; Nanji, A; Thomas, P

    2001-08-17

    Here we report the isolation of the recombinant cDNA clone from rat macrophages, Kupffer cells (KC) that encodes a protein interacting with carcinoembryonic antigen (CEA). To isolate and identify the CEA receptor gene we used two approaches: screening of a KC cDNA library with a specific antibody and the yeast two-hybrid system for protein interaction using as a bait the N-terminal part of the CEA encoding the binding site. Both techniques resulted in the identification of the rat heterogeneous RNA-binding protein (hnRNP) M4 gene. The rat ortholog cDNA sequence has not been previously described. The open reading frame for this gene contains a 2351-base pair sequence with the polyadenylation signal AATAAA and a termination poly(A) tail. The mRNA shows ubiquitous tissue expression as a 2.4-kilobase transcript. The deduced amino acid sequence comprised a 78-kDa membrane protein with 3 putative RNA-binding domains, arginine/methionine/glutamine-rich C terminus and 3 potential membrane spanning regions. When hnRNP M4 protein is expressed in pGEX4T-3 vector system in Escherichia coli it binds (125)I-labeled CEA in a Ca(2+)-dependent fashion. Transfection of rat hnRNP M4 cDNA into a non-CEA binding mouse macrophage cell line p388D1 resulted in CEA binding. These data provide evidence for a new function of hnRNP M4 protein as a CEA-binding protein in Kupffer cells.

  18. Free energy force field (FEFF) 3D-QSAR analysis of a set of Plasmodium falciparum dihydrofolate reductase inhibitors

    NASA Astrophysics Data System (ADS)

    Santos-Filho, Osvaldo A.; Mishra, Rama K.; Hopfinger, A. J.

    2001-09-01

    Free energy force field (FEFF) 3D-QSAR analysis was used to construct ligand-receptor binding models for a set of 18 structurally diverse antifolates including pyrimethamine, cycloguanil, methotrexate, aminopterin and trimethoprim, and 13 pyrrolo[2,3-d]pyrimidines. The molecular target (`receptor') used was a 3D-homology model of a specific mutant type of Plasmodium falciparum (Pf) dihydrofolate reductase (DHFR). The dependent variable of the 3D-QSAR models is the IC50 inhibition constant for the specific mutant type of PfDHFR. The independent variables of the 3D-QSAR models (the descriptors) are scaled energy terms of a modified first-generation AMBER force field combined with a hydration shell aqueous solvation model and a collection of 2D-QSAR descriptors often used in QSAR studies. Multiple temperature molecular dynamics simulation (MDS) and the genetic function approximation (GFA) were employed using partial least square (PLS) and multidimensional linear regressions as the fitting functions to develop FEFF 3D-QSAR models for the binding process. The significant FEFF energy terms in the best 3D-QSAR models include energy contributions of the direct ligand-receptor interaction. Some changes in conformational energy terms of the ligand due to binding to the enzyme are also found to be important descriptors. The FEFF 3D-QSAR models indicate some structural features perhaps relevant to the mechanism of resistance of the PfDHFR to current antimalarials. The FEFF 3D-QSAR models are also compared to receptor-independent (RI) 4D-QSAR models developed in an earlier study and subsequently refined using recently developed generalized alignment rules.

  19. Tachykinin receptors in the small intestine of the cane toad (Bufo marinus): a radioligand binding and functional study.

    PubMed

    Burcher, E; Warner, F J

    1998-06-01

    In this study, we have used radioligand binding and functional techniques to investigate tachykinin receptors in the small intestine of the cane toad Bufo marinus. The radioligand [125I]Bolton-Hunter [Sar9,Met(O2)11]substance P (selective at mammalian NK-1 receptors) showed no specific binding. Specific binding of [125I]Bolton-Hunter substance P ([125I]BHSP) was saturable, of high affinity (Kd 0.3 nM) and was inhibited by SP (IC50 0.64 nM) > ranakinin approximately neurokinin A (NKA) > or = SP(5-11) > or = neuropeptide gamma > or = scyliorhinin II > scyliorhinin I > or = [Sar9]-SP > or = neurokinin B approximately physalaemin approximately carassin > SP(7-11) approximately eledoisin > or = SP(4-11) approximately SP(6-11). Binding was also inhibited by Gpp[NH]p > or = GTPgammaS > App[NH]p, indicating a G-protein coupled receptor. The order of potency of tachykinins and analogues in contracting the isolated lower small intestine was carassin (EC50 1.4 nM) > eledoisin approximately SP > or = physalaemin > or = ranakinin > SP(6-11) > scyliorhinin II > or = neuropeptide gamma > neurokinin B approximately NKA approximately scyliorhinin I > or = SP(4-11) > or = SP(5-11) > [Sar9]SP > SP(7-11). In both studies, the selective mammalian NK-1, NK-2 and NK-3 receptor agonists [Sar9,Met(O2)11]SP, [Lys5,Me-Leu9,Nle10]NKA(4-10) and senktide were weak or ineffective. There was a strong positive correlation between the pD2 and pIC50 values for mammalian tachykinins and analogues (r = 0.907), but not for the non-mammalian tachykinins, which were all full agonists but variable binding competitors. [Sar9,Met(O2)11]-SP(pD2 5.7) was approximately 25-fold less potent as an agonist than [Sar9]SP, which was itself 25-fold weaker than SP. Responses to SP were significantly reduced (n = 8, P<0.001) by the antagonist [D-Arg1,D-Trp7,9,Leu11]-SP (spantide; 1 microM). Highly selective NK-1 receptor antagonists including CP 99994 and GR 82334 (both 1 microM) were ineffective in both functional and binding studies. Tetrodotoxin (1 microM) did not inhibit contractile responses to SP, NKA and senktide. In summary, this study has shown the presence of one or more tachykinin receptor in the toad intestine. The binding site recognised by [125I]BHSP prefers SP and ranakinin. This toad "NK-1-like receptor" differs from the mammalian NK-1 receptor in having a low affinity for all mammalian NK-1 selective ligands, including antagonists. For some non-mammalian peptides, their high potency as contractile agonists relative to their poor binding affinity suggests the existence of other tachykinin receptors in the toad small intestine.

  20. Prospective evaluation of shape similarity based pose prediction method in D3R Grand Challenge 2015

    NASA Astrophysics Data System (ADS)

    Kumar, Ashutosh; Zhang, Kam Y. J.

    2016-09-01

    Evaluation of ligand three-dimensional (3D) shape similarity is one of the commonly used approaches to identify ligands similar to one or more known active compounds from a library of small molecules. Apart from using ligand shape similarity as a virtual screening tool, its role in pose prediction and pose scoring has also been reported. We have recently developed a method that utilizes ligand 3D shape similarity with known crystallographic ligands to predict binding poses of query ligands. Here, we report the prospective evaluation of our pose prediction method through the participation in drug design data resource (D3R) Grand Challenge 2015. Our pose prediction method was used to predict binding poses of heat shock protein 90 (HSP90) and mitogen activated protein kinase kinase kinase kinase (MAP4K4) ligands and it was able to predict the pose within 2 Å root mean square deviation (RMSD) either as the top pose or among the best of five poses in a majority of cases. Specifically for HSP90 protein, a median RMSD of 0.73 and 0.68 Å was obtained for the top and the best of five predictions respectively. For MAP4K4 target, although the median RMSD for our top prediction was only 2.87 Å but the median RMSD of 1.67 Å for the best of five predictions was well within the limit for successful prediction. Furthermore, the performance of our pose prediction method for HSP90 and MAP4K4 ligands was always among the top five groups. Particularly, for MAP4K4 protein our pose prediction method was ranked number one both in terms of mean and median RMSD when the best of five predictions were considered. Overall, our D3R Grand Challenge 2015 results demonstrated that ligand 3D shape similarity with the crystal ligand is sufficient to predict binding poses of new ligands with acceptable accuracy.

  1. Characterization of a monoclonal antibody that specifically inhibits triosephosphate isomerase activity of Taenia solium.

    PubMed

    Víctor, Sanabria-Ayala; Yolanda, Medina-Flores; Araceli, Zavala-Carballo; Lucía, Jiménez; Abraham, Landa

    2013-08-01

    In the present study, we obtained and characterized partially a monoclonal antibody (4H11D10B11 mAb) against triosephosphate isomerase from Taenia solium (TTPI). This antibody recognized the enzyme by both ELISA and western blot and was able to inhibit its enzymatic activity in 74%. Moreover, the antigen-binding fragments (Fabs), products of digestion of the monoclonal antibody with papain, retained almost the same inhibitory effect. We determined the binding site by ELISA; synthetic peptides containing sequences from different non-conserved regions of the TTPI were confronted to the 4H11D10B11 mAb. The epitope recognized by the monoclonal antibody was located on peptide TTPI-56 (ATPAQAQEVHKVVRDWIRKHVDAGIADKARI), and an analysis of mimotopes, obtained with the 4H11D10B11 mAb, suggests that the epitope spans the sequence WIRKHVDAGIAD, residues 193-204 of the enzyme. This epitope is located within helix 6, next to loop 6, an essential active loop during catalysis. The antibody did not recognize triosephosphate isomerase from man and pig, definitive and intermediary hosts of T. solium, respectively. Furthermore, it did not bind to the catalytic site, since kinetic analysis demonstrated that inhibition had a non-competitive profile. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. DNA binding studies of a new dicationic porphyrin. Insights into interligand interactions.

    PubMed

    Shelton, Alexander H; Rodger, Alison; McMillin, David R

    2007-08-07

    Cationic porphyrins have an affinity for DNA and potential for applications in the fields of photodynamic therapy and cellular imaging. This report describes a new dicationic porphyrin, 5,15-dimethyl-10,20-di(N-methylpyridinium-4-yl)porphyrin, abbreviated H2tMe2D4. Although tetrasubstituted, H2tMe2D4 presents modest steric requirements and forms in reasonable yield by a "2+2" synthetic method. Accordingly, studies of the zinc(II)- and copper(II)-containing derivatives, Zn(tMe2D4) and Cu(tMe2D4), have also been possible. Methods used to characterize DNA-binding motifs include absorption, emission, linear, and circular dichroism spectroscopies, as well as viscometry. An unusually detailed picture of porphyrin uptake emerges. As the ratio of DNA to porphyrin increases during a typical titration, H2tMe2D4 or Cu(tMe2D4) initially aggregates on the host and then shifts to intercalative binding at close quarters before finally dispersing into non-interacting intercalation sites of the host. Emission studies of the copper(II) porphyrin have been very valuable. The existence of a measurable signal is diagnostic of intercalative binding, and the saturation behavior establishes that internalization typically monopolizes approximately three base pairs. In the moderate loading regime, emission data are most telling because dipole-dipole interactions between near-neighbor porphyrins tend to confuse other spectroscopic assays. The third ligand, Zn(tMe2D4), behaves differently in that the uptake is a strictly cooperative process. The mode of binding also varies with the base content of the DNA host. When the DNA is rich in A=T base pairs, the porphyrin remains five-coordinate and binds externally; however, Zn(tMe2D4) loses its axial ligand and binds by intercalation if the host contains only G[triple bond]C base pairs.

  3. Pharmacophore screening of the protein data bank for specific binding site chemistry.

    PubMed

    Campagna-Slater, Valérie; Arrowsmith, Andrew G; Zhao, Yong; Schapira, Matthieu

    2010-03-22

    A simple computational approach was developed to screen the Protein Data Bank (PDB) for putative pockets possessing a specific binding site chemistry and geometry. The method employs two commonly used 3D screening technologies, namely identification of cavities in protein structures and pharmacophore screening of chemical libraries. For each protein structure, a pocket finding algorithm is used to extract potential binding sites containing the correct types of residues, which are then stored in a large SDF-formatted virtual library; pharmacophore filters describing the desired binding site chemistry and geometry are then applied to screen this virtual library and identify pockets matching the specified structural chemistry. As an example, this approach was used to screen all human protein structures in the PDB and identify sites having chemistry similar to that of known methyl-lysine binding domains that recognize chromatin methylation marks. The selected genes include known readers of the histone code as well as novel binding pockets that may be involved in epigenetic signaling. Putative allosteric sites were identified on the structures of TP53BP1, L3MBTL3, CHEK1, KDM4A, and CREBBP.

  4. Dynamics of 1α,25-dihydroxyvitamin D3-dependent chromatin accessibility of early vitamin D receptor target genes.

    PubMed

    Seuter, Sabine; Pehkonen, Petri; Heikkinen, Sami; Carlberg, Carsten

    2013-12-01

    The signaling cascade of the transcription factor vitamin D receptor (VDR) is triggered by its specific ligand 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3). In this study we demonstrate that in THP-1 human monocytic leukemia cells 87.4% of the 1034 most prominent genome-wide VDR binding sites co-localize with loci of open chromatin. At 165 of them 1α,25(OH)2D3 strongly increases chromatin accessibility and has at further 217 sites weaker effects. Interestingly, VDR binding sites in 1α,25(OH)2D3-responsive chromatin regions are far more often composed of direct repeats with 3 intervening nucleotides (DR3s) than those in ligand insensitive regions. DR3-containing VDR sites are enriched in the neighborhood of genes that are involved in controling cellular growth, while non-DR3 VDR binding is often found close to genes related to immunity. At the example of six early VDR target genes we show that the slope of their 1α,25(OH)2D3-induced transcription correlates with the basal chromatin accessibility of their major VDR binding regions. However, the chromatin loci controlling these genes are indistinguishable in their VDR association kinetics. Taken together, ligand responsive chromatin loci represent dynamically regulated contact points of VDR with the genome, from where it controls early 1α,25(OH)2D3 target genes. © 2013.

  5. Solubilization of phencyclidine receptors from rat cerebral cortex in an active ligand binding site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McVittie, L.D.; Sibley, D.R.

    1989-01-01

    A phencyclidine (PCP) receptor binding site has been solubilized in an active ligand-binding state from rat cerebral cortical membranes with sodium deoxycholate. Optimal receptor solubilization occurs at a detergent/protein ratio of 0.5 (w/w); for 5 mg protein/ml solubilized with 0.25% sodium deoxycholate, about 60% of the protein and 25% of the receptor is solubilized. Specific binding of either (/sup 3/H)-N-(1-(2-thienyl)cyclohexyl)piperidine ((/sup 3/H)TCP) or (/sup 3/H)MK-801 is measurable by filtration through Sephadex G-50 columns or glass fiber filters; more than 60% of the binding activity is stable after 48 h at 4/degrees/C. In the presence of detergent, (/sup 3/H)TCP binding exhibitsmore » a K/sub d/ of 250 nM, a B/sub max/ of 0.56 pmol/mg protein, and a pharmacological profile consistent with that of the membrane-bound PCP receptor, although most drugs bind with affinities 2 to 8 fold lower than in membranes. Upon reduction of detergent concentration, binding parameters approximate those for the membrane-bound receptor (/sup 3/H)TCP binding: K/sub d/ = 48 nM, M/sub max/ = 1.13 pmol/mg protein.« less

  6. Use of an Enzyme-Linked Lectinsorbent Assay To Monitor the Shift in Polysaccharide Composition in Bacterial Biofilms

    PubMed Central

    Leriche, V.; Sibille, P.; Carpentier, B.

    2000-01-01

    An enzyme-linked lectinsorbent assay (ELLA) was developed for quantification and characterization of extracellular polysaccharides produced by 1- and 4-day biofilms of 10 bacterial strains isolated from food industry premises. Peroxidase-labeled concanavalin A (ConA) and wheat germ agglutinin (WGA) were used, as they specifically bind to saccharide residues most frequently encountered in biofilms matrices: d-glucose or d-mannose for ConA and N-acetyl-d-glucosamine or N-acetylneuraminic acid for WGA. The ELLA applied to 1- and 4-day biofilms colonizing wells of microtiter plates was able to detect that for Stenotrophomonas maltophilia and to a lesser extent Staphylococcus sciuri, the increase in production of exopolysaccharides over time was not the same for sugars binding with ConA and those binding with WGA. Differences in extracellular polysaccharides produced were observed among strains belonging to the same species. These results demonstrate that ELLA is a useful tool not only for rapid characterization of biofilm extracellular polysaccharides but also, in studies of individual strains, for detection of changes over time in the proportion of the exopolysaccharidic component within the polymeric matrix. PMID:10788349

  7. Progesterone receptor membrane component-1 (PGRMC1) is the mediator of progesterone's antiapoptotic action in spontaneously immortalized granulosa cells as revealed by PGRMC1 small interfering ribonucleic acid treatment and functional analysis of PGRMC1 mutations.

    PubMed

    Peluso, John J; Romak, Jonathan; Liu, Xiufang

    2008-02-01

    Progesterone (P4) receptor membrane component-1 (PGRMC1) and its binding partner, plasminogen activator inhibitor 1 RNA binding protein (PAIRBP1) are thought to form a complex that functions as membrane receptor for P4. The present investigations confirm PGRMC1's role in this membrane receptor complex by demonstrating that depleting PGMRC1 with PGRMC1 small interfering RNA results in a 60% decline in [(3)H]P4 binding and the loss of P4's antiapoptotic action. Studies conducted on partially purified GFP-PGRMC1 fusion protein indicate that [(3)H]P4 specifically binds to PGRMC1 at a single site with an apparent K(d) of about 35 nm. In addition, experiments using various deletion mutations reveal that the entire PGRMC1 molecule is required for maximal [(3)H]P4 binding and P4 responsiveness. Analysis of the binding data also suggests that the P4 binding site is within a segment of PGRMC1 that is composed of the transmembrane domain and the initial segment of the C terminus. Interestingly, PAIRBP1 appears to bind to the C terminus between amino acids 70-130, which is distal to the putative P4 binding site. Taken together, these data provide compelling evidence that PGRMC1 is the P4 binding protein that mediates P4's antiapoptotic action. Moreover, the deletion mutation studies indicate that each domain of PGRMC1 plays an essential role in modulating PGRMC1's capacity to both bind and respond to P4. Additional studies are required to more precisely delineate the role of each PGRMC1 domain in transducing P4's antiapoptotic action.

  8. Influence of drug binding on DNA hydration: acoustic and densimetric characterizations of netropsin binding to the poly(dAdT).poly(dAdT) and poly(dA).poly(dT) duplexes and the poly(dT).poly(dA).poly(dT) triplex at 25 degrees C.

    PubMed

    Chalikian, T V; Plum, G E; Sarvazyan, A P; Breslauer, K J

    1994-07-26

    We use high-precision acoustic and densimetric techniques to determine, at 25 degrees C, the changes in volume, delta V, and adiabatic compressibility, delta Ks, that accompany the binding of netropsin to the poly(dAdT).poly(dAdT) and poly(dA).poly(dT) duplexes, as well as to the poly(dT).poly(dA).poly(dT) triplex. We find that netropsin binding to the heteropolymeric poly(dAdT).poly(dAdT) duplex is accompanied by negative changes in volume, delta V, and small positive changes in compressibility, delta Ks. By contrast, netropsin binding to the homopolymeric poly(dA).poly(dT) duplex is accompanied by large positive changes in both volume, delta V, and compressibility, delta Ks. Furthermore, netropsin binding to the poly(dT).poly(dA).poly(dT) triplex causes changes in both volume and compressibility that are nearly twice as large as those observed when netropsin binds to the poly(dA).poly(dT) duplex. We interpret these macroscopic data in terms of binding-induced microscopic changes in the hydration of the DNA structures and the drug. Specifically, we find that netropsin binding induces the release of approximately 22 waters from the hydration shell of the poly(dAdT).poly(dAdT) heteropolymeric duplex, approximately 40 waters from the hydration shell of the poly(dA).poly(dT) homopolymeric duplex, and about 53 waters from the hydration shell of the poly(dA).poly(dT), induces the release of 18 more water molecules than netropsin binding to the heteropolymeric duplex, poly(dAdT).poly(dAdT). On the basis of apparent molar volume, phi V, and apparent molar adiabatic compressibility, phi Ks, values for the initial drug-free and final drug-bound states of the two all-AT duplexes, we propose that the larger dehydration of the poly(dA).poly(dT) duplex reflects, in part, the formation of a less hydrated poly(dA).poly(dT)-netropsin complex compared with the corresponding poly(dAdT).poly(dAdT)-netropsin complex. In conjunction with our previously published entropy data [Marky, L. A., & Breslauer, K. J. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 4359-4363], we calculate that each water of hydration released to the bulk solvent by ligand binding contributes 1.6 cal K-1 mol-1 to the entropy of binding. This value corresponds to the average difference between the partial molar entropy of water in the bulk state and water in the hydration shells of the two all-AT duplexes. When netropsin binds to the poly(dT).poly(dA).poly(dT) triplex, the changes in both volume and compressibility suggest that the binding event induces more dehydration of the triplex than of the duplex state. Specifically, we calculate that netropsin binding to the poly(dT).poly(dA).poly(dT) triplex causes the release of 13 more waters than netropsin binding to the poly(dA).poly(dT) duplex.(ABSTRACT TRUNCATED AT 400 WORDS)

  9. Direct trans-activation of the human cyclin D2 gene by the oncogene product Tax of human T-cell leukemia virus type I.

    PubMed

    Huang, Y; Ohtani, K; Iwanaga, R; Matsumura, Y; Nakamura, M

    2001-03-01

    Cyclins are one of the pivotal determinants regulating cell cycle progression. We previously reported that the trans-activator Tax of human T-cell leukemia virus type I (HTLV-I) induces endogenous cyclin D2 expression along with cell cycle progression in a resting human T-cell line, Kit 225, suggesting a role of cyclin D2 in Tax-mediated cell cycle progression. The cyclin D2 gene has a typical E2F binding element, raising the possibility that induction of cyclin D2 expression is a consequence of cell cycle progression. In this study, we examined the role and molecular mechanism of induction of the endogenous human cyclin D2 gene by Tax. Introduction of p19(INK4d), a cyclin dependent kinase (CDK) inhibitor of the INK4 family specific for D-type CDK, inhibited Tax-mediated activation of E2F, indicating requirement of D-type CDK in Tax-mediated activation of E2F. Previously indicated E2F binding element and two NF-kappaB-like binding elements in the 1.6 kbp cyclin D2 promoter fragment had little, if any, effect on responsiveness to Tax. We found that trans-activation of the cyclin D2 promoter by Tax was mainly mediated by a newly identified NF-kappaB-like element with auxiliary contribution of a CRE-like element residing in sequences downstream of -444 which were by themselves sufficient for trans-activation by Tax. These results indicate that Tax directly trans-activates the cyclin D2 gene, resulting in growth promotion and perhaps leukemogenesis through activation of D-type CDK.

  10. In vitro and in vivo binding of (E)- and (Z)-N-(iodoallyl)spiperone to dopamine D sub 2 and serotonin 5-HT sub 2 neuroreceptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lever, J.R.; Scheffel, U.A.; Stathis, M.

    1990-01-01

    Apparent affinities (K{sub i}) of (E)- and (Z)-N-(iodoallyl)spiperone ((E)- and (Z)- NIASP) for dopamine D{sub 2} and serotonin 5-HT{sub 2} receptors were determined in competition binding assays. (Z)-NIASP (K{sub i} 0.35 nM, D{sub 2}; K{sub i} 1.75 nM, 5-HT{sub 2}) proved slightly more potent and selective for D{sub 2} sites in vitro than (E)-NIASP (K{sub i} 0.72 nM, D{sub 2}; K{sub i} 1.14 nM, 5-HT{sub 2}). In vivo, radioiodinated (E)- and (Z)-({sup 125}I)-NIASP showed regional distributions in mouse brain which are consonant with prolonged binding to dopamine D{sub 2} receptors accompanied by a minor serotonergic component of shorter duration. Stereoselective,more » dose-dependent blockade of (E)-({sup 125}I)-NIASP uptake was found for drugs binding to dopamine D{sub 2} sites, while drugs selective for serotonin 5-HT{sub 2}, {alpha}{sub 1}-adrenergic and dopamine D{sub 1} receptors did not inhibit radioligand binding 2 hr postinjection. Specific binding in striatal tissue was essentially irreversible over the time course of the study, and (E)-({sup 125}I)-NIASP gave a striatal to cerebellar tissue radioactivity concentration of 16.9 to 1 at 6 hr postinjection. Thus, (E)-({sup 125}I)-NIASP binds with high selectivity and specificity to dopamine D{sub 2} sites in vivo.« less

  11. Tactics for preclinical validation of receptor-binding radiotracers

    PubMed Central

    Lever, Susan Z.; Fan, Kuo-Hsien; Lever, John R.

    2016-01-01

    Introduction Aspects of radiopharmaceutical development are illustrated through preclinical studies of [125I]-(E)-1-(2-(2,3-dihydrobenzofuran-5-yl)ethyl)-4-(iodoallyl)piperazine ([125I]-E-IA- BF-PE-PIPZE), a radioligand for sigma-1 (σ1) receptors, coupled with examples from the recent literature. Findings are compared to those previously observed for [125I]-(E)-1-(2-(2,3-dimethoxy-5-yl)ethyl)-4-(iodoallyl)piperazine ([125I]-E-IA-DM-PE-PIPZE). Methods Syntheses of E-IA-BF-PE-PIPZE and [125I]-E-IA-BF-PE-PIPZE were accomplished by standard methods. In vitro receptor binding studies and autoradiography were performed, and binding potential was predicted. Measurements of lipophilicity and protein binding were obtained. In vivo studies were conducted in mice to evaluate radioligand stability, as well as specific binding to σ1 sites in brain, brain regions and peripheral organs in the presence and absence of potential blockers. Results E-IA-BF-PE-PIPZE exhibited high affinity and selectivity for σ1 receptors (Ki = 0.43 ± 0.03 nM, σ2 / σ1 = 173). [125I]-E-IA-BF-PE-PIPZE was prepared in good yield and purity, with high specific activity. Radioligand binding provided dissociation (koff) and association (kon) rate constants, along with a measured Kd of 0.24 ± 0.01 nM and Bmax of 472 ± 13 fmol / mg protein. The radioligand proved suitable for quantitative autoradiography in vitro using brain sections. Moderate lipophilicity, Log D7.4 2.69 ± 0.28, was determined, and protein binding was 71 ± 0.3%. In vivo, high initial whole brain uptake, > 6% injected dose / g, cleared slowly over 24 h. Specific binding represented 75% to 93% of total binding from 15 min to 24 h. Findings were confirmed and extended by regional brain biodistribution. Radiometabolites were not observed in brain (1%). Conclusions Substitution of dihydrobenzofuranylethyl for dimethoxyphenethyl increased radioligand affinity for σ1 receptors by 16-fold. While high specific binding to σ1 receptors was observed for both radioligands in vivo, [125I]-E-IA-BF-PE-PIPZE displayed much slower clearance kinetics than [125I]-E-IA-DM-PE-PIPZE. Thus, minor structural modifications of σ1 receptor radioligands lead to major differences in binding properties in vitro and in vivo. PMID:27755986

  12. TCTEX1D4, a novel protein phosphatase 1 interactor: connecting the phosphatase to the microtubule network

    PubMed Central

    Korrodi-Gregório, Luís; Vieira, Sandra I.; Esteves, Sara L. C.; Silva, Joana V.; Freitas, Maria João; Brauns, Ann-Kristin; Luers, Georg; Abrantes, Joana; Esteves, Pedro J.; da Cruz e Silva, Odete A. B.; Fardilha, Margarida; da Cruz e Silva, Edgar F.

    2013-01-01

    Summary Reversible phosphorylation plays an important role as a mechanism of intracellular control in eukaryotes. PPP1, a major eukaryotic Ser/Thr-protein phosphatase, acquires its specificity by interacting with different protein regulators, also known as PPP1 interacting proteins (PIPs). In the present work we characterized a physiologically relevant PIP in testis. Using a yeast two-hybrid screen with a human testis cDNA library, we identified a novel PIP of PPP1CC2 isoform, the T-complex testis expressed protein 1 domain containing 4 (TCTEX1D4) that has recently been described as a Tctex1 dynein light chain family member. The overlay assays confirm that TCTEX1D4 interacts with the different spliced isoforms of PPP1CC. Also, the binding domain occurs in the N-terminus, where a consensus PPP1 binding motif (PPP1BM) RVSF is present. The distribution of TCTEX1D4 in testis suggests its involvement in distinct functions, such as TGFβ signaling at the blood–testis barrier and acrosome cap formation. Immunofluorescence in human ejaculated sperm shows that TCTEX1D4 is present in the flagellum and in the acrosome region of the head. Moreover, TCTEX1D4 and PPP1 co-localize in the microtubule organizing center (MTOC) and microtubules in cell cultures. Importantly, the TCTEX1D4 PPP1BM seems to be relevant for complex formation, for PPP1 retention in the MTOC and movement along microtubules. These novel results open new avenues to possible roles of this dynein, together with PPP1. In essence TCTEX1D4/PPP1C complex appears to be involved in microtubule dynamics, sperm motility, acrosome reaction and in the regulation of the blood–testis barrier. PMID:23789093

  13. MinD-dependent conformational changes in MinE required for the Min oscillator to spatially regulate cytokinesis

    PubMed Central

    Park, Kyung-Tae; Wu, Wei; Battaile, Kevin P.; Lovell, Scott; Holyoak, Todd; Lutkenhaus, Joe

    2011-01-01

    Summary MinD recruits MinE to the membrane leading to a coupled oscillation required for spatial regulation of the cytokinetic Z ring in E. coli. How these proteins interact, however, is not clear since the MinD binding regions of MinE are sequestered within a 6-stranded β-sheet and masked by N-terminal helices. Here, minE mutations are isolated that restore interaction to some MinD and MinE mutants. These mutations alter the MinE structure releasing the MinD binding regions and N-terminal helices that bind MinD and the membrane, respectively. Crystallization of MinD-MinE complexes reveals a 4-stranded β-sheet MinE dimer with the released β strands (MinD binding regions) converted to α-helices bound to MinD dimers. These results suggest a 6 stranded, β-sheet dimer of MinE ‘senses’ MinD and switches to a 4-stranded β-sheet dimer that binds MinD and contributes to membrane binding. Also, the results indicate how MinE persists at the MinD-membrane surface. PMID:21816275

  14. Histone deacetylase and GATA-binding factor 6 regulate arterial remodeling in angiotensin II-induced hypertension.

    PubMed

    Kim, Gwi Ran; Cho, Soo-Na; Kim, Hyung-Seok; Yu, Seon Young; Choi, Sin Young; Ryu, Yuhee; Lin, Ming Quan; Jin, Li; Kee, Hae Jin; Jeong, Myung Ho

    2016-11-01

    Histone deacetylase (HDAC) inhibitors have been reported to improve essential and secondary hypertension. However, the specific HDAC that might serve as a therapeutic target and the associated upstream and downstream molecules involved in regulating hypertension remain unknown. Our study was aimed at investigating whether a selective inhibitor of class II HDAC (MC1568) modulates hypertension, elucidating the underlying mechanism. Hypertension was established by administering angiotensin II (Ang II) to mice before treatment with MC1568. SBP was measured. Treatment with MC1568 reduced elevated SBP; attenuated arterial remodeling in the kidney's small arteries and thoracic aorta; and inhibited cell cycle regulatory gene expression, vascular smooth muscle cell (VSMC) proliferation, DNA synthesis, and VSMC hypertrophy in vivo and in vitro. Ang II enhanced the expression of phosphorylated HDAC4 and GATA-binding factor 6 (GATA6) proteins, which were specifically localized in the cytoplasm of cells in the arteries of kidneys and in aortas. Forced expression and knockdown of HDAC4 increased and decreased, respectively, the proliferation and expression of cell cycle genes in VSMCs. GATA6, a newly described binding partner of HDAC4, markedly enhanced the size and number of VSMCs. Calcium/calmodulin-dependent kinase IIα (CaMKIIα), but not HDAC4, translocated from the nucleus to the cytoplasm in response to Ang II. CaMKIIα and protein kinase D1 were associated with VSMC hypertrophy and hyperplasia via direct interaction with HDAC4. MC1568 treatment weakened the association between HDAC4 and CaMKIIα. These results suggest that class II HDAC inhibition attenuates hypertension by negatively regulating VSMC hypertrophy and hyperplasia via the CaMKIIα/protein kinase D1/HDAC4/GATA6 pathway.

  15. 3- and 4-O-sulfoconjugated and methylated dopamine: highly reduced binding affinity to dopamine D2 receptors in rat striatal membranes.

    PubMed

    Werle, E; Lenz, T; Strobel, G; Weicker, H

    1988-07-01

    The binding properties of 3- and 4-O-sulfo-conjugated dopamine (DA-3-O-S, DA-4-O-S) as well as 3-O-methylated dopamine (MT) to rat striatal dopamine D2 receptors were investigated. 3H-spiperone was used as a radioligand in the binding studies. In saturation binding experiments (+)butaclamol, which has been reported to bind to dopaminergic D2 and serotoninergic 5HT2 receptors, was used in conjunction with ketanserin and sulpiride, which preferentially label 5HT2 and D2 receptors, respectively, in order to discriminate between 3H-spiperone binding to D2 and to 5HT2 receptors. Under our particular membrane preparation and assay conditions, 3H-spiperone binds to D2 and 5HT2 receptors with a maximal binding capacity (Bmax) of 340 fmol/mg protein in proportions of about 75%:25% with similar dissociation constants KD (35 pmol/l; 43 pmol/l). This result was verified by the biphasic competition curve of ketanserin, which revealed about 20% high (KD = 24 nmol/l) and 80% low (KD = 420 nmol/l) affinity binding sites corresponding to 5HT2 and D2 receptors, respectively. Therefore, all further competition experiments at a tracer concentration of 50 pmol/l were performed in the presence of 0.1 mumol/l ketanserin to mask the 5HT2 receptors. DA competition curves were best fitted assuming two binding sites, with high (KH = 0.12 mumol/l) and low (KL = 18 mumol/l) affinity, present in a ratio of 3:1. The high affinity binding sites were interconvertible by 100 mumol/l guanyl-5-yl imidodiphosphate [Gpp(NH)p], resulting in a homogenous affinity state of DA receptors (KD = 2.8 mumol/l).2+ off

  16. Co-option of the bZIP transcription factor Vrille as the activator of Doublesex1 in environmental sex determination of the crustacean Daphnia magna.

    PubMed

    Mohamad Ishak, Nur Syafiqah; Nong, Quang Dang; Matsuura, Tomoaki; Kato, Yasuhiko; Watanabe, Hajime

    2017-11-01

    Divergence of upstream regulatory pathways of the transcription factor Doublesex (Dsx) serves as a basis for evolution of sex-determining mechanisms in animals. However, little is known about the regulation of Dsx in environmental sex determination. In the crustacean Daphnia magna, environmental sex determination is implemented by male-specific expression of the Dsx ortholog, Dsx1. Transcriptional regulation of Dsx1 comprises at least three phases during embryogenesis: non-sex-specific initiation, male-specific up-regulation, and its maintenance. Herein, we demonstrate that the male-specific up-regulation is controlled by the bZIP transcription factor, Vrille (Vri), an ortholog of the circadian clock genes-Drosophila Vri and mammalian E4BP4/NFIL3. Sequence analysis of the Dsx1 promoter/enhancer revealed a conserved element among two Daphnia species (D. magna and D. pulex), which contains a potential enhancer harboring a consensus Vri binding site overlapped with a consensus Dsx binding site. Besides non-sex-specific expression of Vri in late embryos, we found male-specific expression in early gastrula before the Dsx1 up-regulation phase begins. Knockdown of Vri in male embryos showed reduction of Dsx1 expression. In addition, transient overexpression of Vri in early female embryos up-regulated the expression of Dsx1 and induced male-specific trait. Targeted mutagenesis using CRISPR/Cas9 disrupted the enhancer on genome in males, which led to the reduction of Dsx1 expression. These results indicate that Vri was co-opted as a transcriptional activator of Dsx1 in environmental sex determination of D. magna. The data suggests the remarkably plastic nature of gene regulatory network in sex determination.

  17. Co-option of the bZIP transcription factor Vrille as the activator of Doublesex1 in environmental sex determination of the crustacean Daphnia magna

    PubMed Central

    Nong, Quang Dang; Matsuura, Tomoaki; Watanabe, Hajime

    2017-01-01

    Divergence of upstream regulatory pathways of the transcription factor Doublesex (Dsx) serves as a basis for evolution of sex-determining mechanisms in animals. However, little is known about the regulation of Dsx in environmental sex determination. In the crustacean Daphnia magna, environmental sex determination is implemented by male-specific expression of the Dsx ortholog, Dsx1. Transcriptional regulation of Dsx1 comprises at least three phases during embryogenesis: non-sex-specific initiation, male-specific up-regulation, and its maintenance. Herein, we demonstrate that the male-specific up-regulation is controlled by the bZIP transcription factor, Vrille (Vri), an ortholog of the circadian clock genes—Drosophila Vri and mammalian E4BP4/NFIL3. Sequence analysis of the Dsx1 promoter/enhancer revealed a conserved element among two Daphnia species (D. magna and D. pulex), which contains a potential enhancer harboring a consensus Vri binding site overlapped with a consensus Dsx binding site. Besides non-sex-specific expression of Vri in late embryos, we found male-specific expression in early gastrula before the Dsx1 up-regulation phase begins. Knockdown of Vri in male embryos showed reduction of Dsx1 expression. In addition, transient overexpression of Vri in early female embryos up-regulated the expression of Dsx1 and induced male-specific trait. Targeted mutagenesis using CRISPR/Cas9 disrupted the enhancer on genome in males, which led to the reduction of Dsx1 expression. These results indicate that Vri was co-opted as a transcriptional activator of Dsx1 in environmental sex determination of D. magna. The data suggests the remarkably plastic nature of gene regulatory network in sex determination. PMID:29095827

  18. Flagellar Cap Protein FliD Mediates Adherence of Atypical Enteropathogenic Escherichia coli to Enterocyte Microvilli

    PubMed Central

    Sampaio, Suely C. F.; Luiz, Wilson B.; Vieira, Mônica A. M.; Ferreira, Rita C. C.; Garcia, Bruna G.; Sinigaglia-Coimbra, Rita; Sampaio, Jorge L. M.; Ferreira, Luís C. S.

    2016-01-01

    The expression of flagella correlates with different aspects of bacterial pathogenicity, ranging from adherence to host cells to activation of inflammatory responses by the innate immune system. In the present study, we investigated the role of flagella in the adherence of an atypical enteropathogenic Escherichia coli (aEPEC) strain (serotype O51:H40) to human enterocytes. Accordingly, isogenic mutants deficient in flagellin (FliC), the flagellar structural subunit; the flagellar cap protein (FliD); or the MotAB proteins, involved in the control of flagellar motion, were generated and tested for binding to differentiated Caco-2 cells. Binding of the aEPEC strain to enterocytes was significantly impaired in strains with the fliC and fliD genes deleted, both of which could not form flagella on the bacterial surface. A nonmotile but flagellated MotAB mutant also showed impaired adhesion to Caco-2 cells. In accordance with these observations, adhesion of aEPEC strain 1711-4 to Caco-2 cells was drastically reduced after the treatment of Caco-2 cells with purified FliD. In addition, incubation of aEPEC bacteria with specific anti-FliD serum impaired binding to Caco-2 cells. Finally, incubation of Caco-2 cells with purified FliD, followed by immunolabeling, showed that the protein was specifically bound to the microvillus tips of differentiated Caco-2 cells. The aEPEC FliD or anti-FliD serum also reduced the adherence of prototype typical enteropathogenic, enterohemorrhagic, and enterotoxigenic E. coli strains to Caco-2 cells. In conclusion, our findings further strengthened the role of flagella in the adherence of aEPEC to human enterocytes and disclosed the relevant structural and functional involvement of FliD in the adhesion process. PMID:26831466

  19. Enterolactone glucuronide and β-glucuronidase in antibody directed enzyme prodrug therapy for targeted prostate cancer cell treatment.

    PubMed

    Di, Yunyun; Ji, Shaoping; Wolf, Philipp; Krol, Ed S; Alcorn, Jane

    2017-08-01

    Evidence from preclinical and animal studies demonstrated an anticancer effect of flaxseed lignans, particularly enterolactone (ENL), against prostate cancer. However, extensive first-pass metabolism following oral lignan consumption results in their systemic availability primarily as glucuronic acid conjugates (ENL-Gluc) and their modest in vivo effects. To overcome the unfavorable pharmacokinetics and improve their effectiveness in prostate cancer, antibody-directed enzyme prodrug therapy (ADEPT) might offer a novel strategy to allow for restricted activation of ENL from circulating ENL-Gluc within the tumor environment. The anti-prostate-specific membrane antigen (PSMA) antibody D7 was fused with human β-glucuronidase (hβG) via a flexible linker. The binding property of the fusion construct, D7-hβG, against purified or cell surface PSMA was determined by flow cytometry and Octet Red 384 system, respectively, with a binding rate constant, K d, of 2.5 nM. The enzymatic activity of D7-hβG was first tested using the probe, 4-methylumbelliferone glucuronide. A 3.8-fold greater fluorescence intensity was observed at pH 4.5 at 2 h compared with pH 7.4. The ability of D7-hβG to activate ENL from ENL-Gluc was tested and detected using LC-MS/MS. Enhanced generation of ENL was observed with increasing ENL-Gluc concentrations and reached 3613.2 ng/mL following incubation with 100 μM ENL-Gluc at pH 4.5 for 0.5 h. D7-hβG also decreased docetaxel IC 50 value from 23 nM to 14.9 nM in C4-2 cells. These results confirmed the binding and activity of D7-hβG and additional in vitro investigation is needed to support the future possibility of introducing this ADEPT system to animal models.

  20. Structure of Simian Immunodeficiency Virus Envelope Spikes Bound with CD4 and Monoclonal Antibody 36D5.

    PubMed

    Hu, Guiqing; Liu, Jun; Roux, Kenneth H; Taylor, Kenneth A

    2017-08-15

    The human immunodeficiency virus type 1 (HIV-1)/simian immunodeficiency virus (SIV) envelope spike (Env) mediates viral entry into host cells. The V3 loop of the gp120 component of the Env trimer contributes to the coreceptor binding site and is a target for neutralizing antibodies. We used cryo-electron tomography to visualize the binding of CD4 and the V3 loop monoclonal antibody (MAb) 36D5 to gp120 of the SIV Env trimer. Our results show that 36D5 binds gp120 at the base of the V3 loop and suggest that the antibody exerts its neutralization effect by blocking the coreceptor binding site. The antibody does this without altering the dynamics of the spike motion between closed and open states when CD4 is bound. The interaction between 36D5 and SIV gp120 is similar to the interaction between some broadly neutralizing anti-V3 loop antibodies and HIV-1 gp120. Two conformations of gp120 bound with CD4 are revealed, suggesting an intrinsic dynamic nature of the liganded Env trimer. CD4 binding substantially increases the binding of 36D5 to gp120 in the intact Env trimer, consistent with CD4-induced changes in the conformation of gp120 and the antibody binding site. Binding by MAb 36D5 does not substantially alter the proportions of the two CD4-bound conformations. The position of MAb 36D5 at the V3 base changes little between conformations, indicating that the V3 base serves as a pivot point during the transition between these two states. IMPORTANCE Glycoprotein spikes on the surfaces of SIV and HIV are the sole targets available to the immune system for antibody neutralization. Spikes evade the immune system by a combination of a thick layer of polysaccharide on the surface (the glycan shield) and movement between spike domains that masks the epitope conformation. Using SIV virions whose spikes were "decorated" with the primary cellular receptor (CD4) and an antibody (36D5) at part of the coreceptor binding site, we visualized multiple conformations trapped by the rapid freezing step, which were separated using statistical analysis. Our results show that the CD4-induced conformational dynamics of the spike enhances binding of the antibody. Copyright © 2017 American Society for Microbiology.

  1. Lectin-Like Bacteriocins from Pseudomonas spp. Utilise D-Rhamnose Containing Lipopolysaccharide as a Cellular Receptor

    PubMed Central

    Josts, Inokentijs; Roszak, Aleksander W.; Waløen, Kai I.; Cogdell, Richard J.; Milner, Joel; Evans, Tom; Kelly, Sharon; Tucker, Nicholas P.; Byron, Olwyn; Smith, Brian; Walker, Daniel

    2014-01-01

    Lectin-like bacteriocins consist of tandem monocot mannose-binding domains and display a genus-specific killing activity. Here we show that pyocin L1, a novel member of this family from Pseudomonas aeruginosa, targets susceptible strains of this species through recognition of the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide that is predominantly a homopolymer of d-rhamnose. Structural and biophysical analyses show that recognition of CPA occurs through the C-terminal carbohydrate-binding domain of pyocin L1 and that this interaction is a prerequisite for bactericidal activity. Further to this, we show that the previously described lectin-like bacteriocin putidacin L1 shows a similar carbohydrate-binding specificity, indicating that oligosaccharides containing d-rhamnose and not d-mannose, as was previously thought, are the physiologically relevant ligands for this group of bacteriocins. The widespread inclusion of d-rhamnose in the lipopolysaccharide of members of the genus Pseudomonas explains the unusual genus-specific activity of the lectin-like bacteriocins. PMID:24516380

  2. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site.

    PubMed

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S; Mkhize, Nonhlanhla N; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D; Labuschagne, Phillip; Louder, Mark K; Bailer, Robert T; Abdool Karim, Salim S; Mascola, John R; Williamson, Carolyn; Moore, Penny L; Kwong, Peter D; Morris, Lynn

    2016-11-15

    All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. The conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site remain elusive. Studies have shown that strain-specific antibodies can evolve into broadly neutralizing antibodies or in some cases act as helper lineages. Therefore, characterizing the epitopes of strain-specific antibodies may help to inform the design of HIV-1 immunogens to elicit broadly neutralizing antibodies. In this study, we isolate a narrowly neutralizing N276 glycan-dependent antibody and use X-ray crystallography and viral deep sequencing to describe how gp120 lacking glycans in V5 might have elicited these early glycan-dependent CD4 binding site antibodies. These data highlight how glycan holes can play a role in the elicitation of B-cell lineages targeting the CD4 binding site. Copyright © 2016 Wibmer et al.

  3. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S.

    ABSTRACT All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report themore » isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. IMPORTANCEThe conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site remain elusive. Studies have shown that strain-specific antibodies can evolve into broadly neutralizing antibodies or in some cases act as helper lineages. Therefore, characterizing the epitopes of strain-specific antibodies may help to inform the design of HIV-1 immunogens to elicit broadly neutralizing antibodies. In this study, we isolate a narrowly neutralizing N276 glycan-dependent antibody and use X-ray crystallography and viral deep sequencing to describe how gp120 lacking glycans in V5 might have elicited these early glycan-dependent CD4 binding site antibodies. These data highlight how glycan holes can play a role in the elicitation of B-cell lineages targeting the CD4 binding site.« less

  4. Structure of an N276-Dependent HIV-1 Neutralizing Antibody Targeting a Rare V5 Glycan Hole Adjacent to the CD4 Binding Site

    PubMed Central

    Wibmer, Constantinos Kurt; Gorman, Jason; Anthony, Colin S.; Mkhize, Nonhlanhla N.; Druz, Aliaksandr; York, Talita; Schmidt, Stephen D.; Labuschagne, Phillip; Louder, Mark K.; Bailer, Robert T.; Abdool Karim, Salim S.; Mascola, John R.; Williamson, Carolyn; Moore, Penny L.

    2016-01-01

    ABSTRACT All HIV-1-infected individuals develop strain-specific neutralizing antibodies to their infecting virus, which in some cases mature into broadly neutralizing antibodies. Defining the epitopes of strain-specific antibodies that overlap conserved sites of vulnerability might provide mechanistic insights into how broadly neutralizing antibodies arise. We previously described an HIV-1 clade C-infected donor, CAP257, who developed broadly neutralizing plasma antibodies targeting an N276 glycan-dependent epitope in the CD4 binding site. The initial CD4 binding site response potently neutralized the heterologous tier 2 clade B viral strain RHPA, which was used to design resurfaced gp120 antigens for single-B-cell sorting. Here we report the isolation and structural characterization of CAP257-RH1, an N276 glycan-dependent CD4 binding site antibody representative of the early CD4 binding site plasma response in donor CAP257. The cocrystal structure of CAP257-RH1 bound to RHPA gp120 revealed critical interactions with the N276 glycan, loop D, and V5, but not with aspartic acid 368, similarly to HJ16 and 179NC75. The CAP257-RH1 monoclonal antibody was derived from the immunoglobulin-variable IGHV3-33 and IGLV3-10 genes and neutralized RHPA but not the transmitted/founder virus from donor CAP257. Its narrow neutralization breadth was attributed to a binding angle that was incompatible with glycosylated V5 loops present in almost all HIV-1 strains, including the CAP257 transmitted/founder virus. Deep sequencing of autologous CAP257 viruses, however, revealed minority variants early in infection that lacked V5 glycans. These glycan-free V5 loops are unusual holes in the glycan shield that may have been necessary for initiating this N276 glycan-dependent CD4 binding site B-cell lineage. IMPORTANCE The conserved CD4 binding site on gp120 is a major target for HIV-1 vaccine design, but key events in the elicitation and maturation of different antibody lineages to this site remain elusive. Studies have shown that strain-specific antibodies can evolve into broadly neutralizing antibodies or in some cases act as helper lineages. Therefore, characterizing the epitopes of strain-specific antibodies may help to inform the design of HIV-1 immunogens to elicit broadly neutralizing antibodies. In this study, we isolate a narrowly neutralizing N276 glycan-dependent antibody and use X-ray crystallography and viral deep sequencing to describe how gp120 lacking glycans in V5 might have elicited these early glycan-dependent CD4 binding site antibodies. These data highlight how glycan holes can play a role in the elicitation of B-cell lineages targeting the CD4 binding site. PMID:27581986

  5. Quantitation of specific binding ratio in 123I-FP-CIT SPECT: accurate processing strategy for cerebral ventricular enlargement with use of 3D-striatal digital brain phantom.

    PubMed

    Furuta, Akihiro; Onishi, Hideo; Amijima, Hizuru

    2018-06-01

    This study aimed to evaluate the effect of ventricular enlargement on the specific binding ratio (SBR) and to validate the cerebrospinal fluid (CSF)-Mask algorithm for quantitative SBR assessment of 123 I-FP-CIT single-photon emission computed tomography (SPECT) images with the use of a 3D-striatum digital brain (SDB) phantom. Ventricular enlargement was simulated by three-dimensional extensions in a 3D-SDB phantom comprising segments representing the striatum, ventricle, brain parenchyma, and skull bone. The Evans Index (EI) was measured in 3D-SDB phantom images of an enlarged ventricle. Projection data sets were generated from the 3D-SDB phantoms with blurring, scatter, and attenuation. Images were reconstructed using the ordered subset expectation maximization (OSEM) algorithm and corrected for attenuation, scatter, and resolution recovery. We bundled DaTView (Southampton method) with the CSF-Mask processing software for SBR. We assessed SBR with the use of various coefficients (f factor) of the CSF-Mask. Specific binding ratios of 1, 2, 3, 4, and 5 corresponded to SDB phantom simulations with true values. Measured SBRs > 50% that were underestimated with EI increased compared with the true SBR and this trend was outstanding at low SBR. The CSF-Mask improved 20% underestimates and brought the measured SBR closer to the true values at an f factor of 1.0 despite an increase in EI. We connected the linear regression function (y = - 3.53x + 1.95; r = 0.95) with the EI and f factor using root-mean-square error. Processing with CSF-Mask generates accurate quantitative SBR from dopamine transporter SPECT images of patients with ventricular enlargement.

  6. Crystal Structure of the Vaccinia Virus DNA Polymerase Holoenzyme Subunit D4 in Complex with the A20 N-Terminal Domain

    PubMed Central

    Contesto-Richefeu, Céline; Tarbouriech, Nicolas; Brazzolotto, Xavier; Betzi, Stéphane; Morelli, Xavier; Burmeister, Wim P.; Iseni, Frédéric

    2014-01-01

    Vaccinia virus polymerase holoenzyme is composed of the DNA polymerase E9, the uracil-DNA glycosylase D4 and A20, a protein with no known enzymatic activity. The D4/A20 heterodimer is the DNA polymerase co-factor whose function is essential for processive DNA synthesis. Genetic and biochemical data have established that residues located in the N-terminus of A20 are critical for binding to D4. However, no information regarding the residues of D4 involved in A20 binding is yet available. We expressed and purified the complex formed by D4 and the first 50 amino acids of A20 (D4/A201–50). We showed that whereas D4 forms homodimers in solution when expressed alone, D4/A201–50 clearly behaves as a heterodimer. The crystal structure of D4/A201–50 solved at 1.85 Å resolution reveals that the D4/A20 interface (including residues 167 to 180 and 191 to 206 of D4) partially overlaps the previously described D4/D4 dimer interface. A201–50 binding to D4 is mediated by an α-helical domain with important leucine residues located at the very N-terminal end of A20 and a second stretch of residues containing Trp43 involved in stacking interactions with Arg167 and Pro173 of D4. Point mutations of the latter residues disturb D4/A201–50 formation and reduce significantly thermal stability of the complex. Interestingly, small molecule docking with anti-poxvirus inhibitors selected to interfere with D4/A20 binding could reproduce several key features of the D4/A201–50 interaction. Finally, we propose a model of D4/A201–50 in complex with DNA and discuss a number of mutants described in the literature, which affect DNA synthesis. Overall, our data give new insights into the assembly of the poxvirus DNA polymerase cofactor and may be useful for the design and rational improvement of antivirals targeting the D4/A20 interface. PMID:24603707

  7. The influence of surface integrin binding patterns on specific biomaterial-cell interactions

    NASA Astrophysics Data System (ADS)

    Beranek, Maggi Marie

    As the future of biomaterials progresses toward bioactivity, the biomaterial surface must control non-specific protein adsorption and encourage selective protein and cell adsorption. Integrins alphavbeta3, alpha 1beta1, alpha5beta1 and alpha Mbeta2 are expressed on cells involved in endothelialization, inflammation, and intimal hyperplasia. These cellular events play a vital role in biomaterial biocompatibility, especially in the vascular environment. The overall hypothesis of these studies is that biomaterial surfaces exhibit selective integrin binding, which then specifies differential cell binding. To test this hypothesis, four specific aims were developed. The first aim was designed to determine whether metal and polymeric biomaterials exhibit selective integrin binding. The tested materials included 316L stainless steel, nitinol, gold, Elgiloy RTM, poly(D, L-lactide-co-glycolide), polycarbonate urethane and expanded polytetrafluoroethylene. Discrete integrin binding patterns were detected microscopically using integrin specific fluorescent antibodies. Stainless steel exhibited high level integrin alpha1beta 1 and low level integrin alphaMbeta2 binding pattern. This suggests that this metal surface should selectively encourage endothelial cell to inflammatory cell binding. In contrast, gold bound ten times the amount of integrin alphaMbeta2 compared to integrin alpha1beta1, which should encourage inflammatory cell adhesion. The 65/35 poly(D, L-lactide-co-glycolide) was the only polymeric biomaterial tested that had integrin binding levels comparable to metal biomaterials. Based on these observations, a combinational biomaterial with a surface pattern of 65/35 poly(D, L-lactide-co-glycolide) dots on a 316L stainless steel background was created. A pattern of high level integrin alpha1beta1 binding and low level integrin alpha Mbeta2 binding on this combinational surface indicates that this surface should selectively favor endothelial cell binding. In the second aim, the response of surface-bound integrins to flow-related shear stress was examined. Based on fluorescent analysis, total alphavbeta 3, alpha1beta1, and alpha5beta 1 appeared to increase on stainless steel after 90-minute low shear stress exposure, whereas only alpha5beta1 appeared to increase when exposed to high shear. 65/35 poly(D, L-lactide-co-glycolide) exhibited increased total binding of alpha5beta1 and alphaMbeta2, when exposed to either shear stress level. Exposure to either shear stress regimen appeared to increase binding of all integrins on the combinational surface. These responses to shear stress suggest differential integrin binding affinity compared to stainless steel. Using antibodies specific to the integrin subunits, the apparent increase in surface-bound integrins was found to be related to a surface disassociation of alpha and beta subunits. The third aim evaluated human aortic endothelial cells and acute monocytic leukemia cells (THP-1) cell binding to the tested biomaterial surfaces under both static and flow conditions. Both stainless steel and the combinational surface had increased endothelial cell binding compared to monocyte attachment. Pre-incubation of the surface with the specific integrins significantly inhibited human aortic endothelial cell binding. Aim four was designed to investigate the influence of surface bound integrins on human aortic endothelial cell migration under shear stress. If biomaterial surface integrin binding patterns are specific, then pre-bound surface integrins should competitively inhibit binding of cellular integrins to the surface. Cell migration distance on to alphavbeta3, alpha 1beta1, and alpha5beta1 pre-incubated stainless steel was decreased ten-fold, and decreased by three-fold on both 65/35 poly(D, L-lactide-coglycolide) and combinational surfaces compared to the respective bare surfaces. In contrast, migration distance on to alphaMbeta2 pre-coated stainless steel and combinational surface was decreased by only sixty percent and only fifty percent on alphaMbeta2 precoated 65/35 poly(D, L -lactide-co-glycolide). These results suggested that surface binding sites are selective and critical in governing endothelial cell migration. In conclusion, these results support the hypothesis that a surface that encourages specific integrin binding would promote differential cell binding. The novel integrin binding model used in this investigation may be a methodology that can be employed to evaluate potential vascular biomaterials.

  8. Sequence specificity of mutagen-nucleic acid complexes in solution: intercalation and mutagen-base pair overlap geometries for proflavine binding to dC-dC-dG-dG and dG-dG-dC-dC self-complementary duplexes.

    PubMed

    Patel, D J; Canuel, L L

    1977-07-01

    The complex formed between the mutagen proflavine and the dC-dC-dG-dG and dG-dG-dC-dC self-complementary tetranucleotide duplexes has been monitored by proton high resolution nuclear magnetic resonance spectroscopy in 0.1 M phosphate solution at high nucleotide/drug ratios. The large upfield shifts (0.5 to 0.85 ppm) observed at all the proflavine ring nonexchangeable protons on complex formation are consistent with intercalation of the mutagen between base pairs of the tetranucleotide duplex. We have proposed an approximate overlap geometry between the proflavine ring and nearest neighbor base pairs at the intercalation site from a comparison between experimental shifts and those calculated for various stacking orientations. We have compared the binding of actinomycin D, propidium diiodide, and proflavine to self-complementary tetranucleotide sequences dC-dC-dG-dG and dG-dG-dC-dC by UV absorbance changes in the drug bands between 400 and 500 nm. Actinomycin D exhibits a pronounced specificity for sequences with dG-dC sites (dG-dG-dC-dC), while propidium diiodide and proflavine exhibit a specificity for sequences with dC-dG sites (dC-dC-dG-dG). Actinomycin D binds more strongly than propidium diiodide and proflavine to dC-dG-dC-dG (contains dC-dG and dG-dC binding sites), indicative of the additional stabilization from hydrogen bonding and hydrophobic interactions between the pentapeptide lactone rings of actinomycin D and the base pair edges and sugar-phosphate backbone of the tetranucleotide duplex.

  9. Sequence specificity of mutagen-nucleic acid complexes in solution: Intercalation and mutagen-base pair overlap geometries for proflavine binding to dC-dC-dG-dG and dG-dG-dC-dC self-complementary duplexes

    PubMed Central

    Patel, Dinshaw J.; Canuel, Lita L.

    1977-01-01

    The complex formed between the mutagen proflavine and the dC-dC-dG-dG and dG-dG-dC-dC self-complementary tetranucleotide duplexes has been monitored by proton high resolution nuclear magnetic resonance spectroscopy in 0.1 M phosphate solution at high nucleotide/drug ratios. The large upfield shifts (0.5 to 0.85 ppm) observed at all the proflavine ring nonexchangeable protons on complex formation are consistent with intercalation of the mutagen between base pairs of the tetranucleotide duplex. We have proposed an approximate overlap geometry between the proflavine ring and nearest neighbor base pairs at the intercalation site from a comparison between experimental shifts and those calculated for various stacking orientations. We have compared the binding of actinomycin D, propidium diiodide, and proflavine to self-complementary tetranucleotide sequences dC-dC-dG-dG and dG-dG-dC-dC by UV absorbance changes in the drug bands between 400 and 500 nm. Actinomycin D exhibits a pronounced specificity for sequences with dG-dC sites (dG-dG-dC-dC), while propidium diiodide and proflavine exhibit a specificity for sequences with dC-dG sites (dC-dC-dG-dG). Actinomycin D binds more strongly than propidium diiodide and proflavine to dC-dG-dC-dG (contains dC-dG and dG-dC binding sites), indicative of the additional stabilization from hydrogen bonding and hydrophobic interactions between the pentapeptide lactone rings of actinomycin D and the base pair edges and sugar-phosphate backbone of the tetranucleotide duplex. PMID:268613

  10. Structure-function analysis of the extracellular domains of the Duffy antigen/receptor for chemokines: characterization of antibody and chemokine binding sites.

    PubMed

    Tournamille, Christophe; Filipe, Anne; Wasniowska, Kazimiera; Gane, Pierre; Lisowska, Elwira; Cartron, Jean-Pierre; Colin, Yves; Le Van Kim, Caroline

    2003-09-01

    The Duffy antigen/receptor for chemokines (DARC), a seven-transmembrane glycoprotein carrying the Duffy (Fy) blood group, acts as a widely expressed promiscuous chemokine receptor. In a structure-function study, we analysed the binding of chemokines and anti-Fy monoclonal antibodies (mAbs) to K562 cells expressing 39 mutant forms of DARC with alanine substitutions spread out on the four extracellular domains (ECDs). Using synthetic peptides, we defined previously the Fy6 epitope (22-FEDVW-26), and we characterized the Fya epitope as the linear sequence 41-YGANLE-46. In agreement with these results, mutations of F22-E23, V25 and Y41, G42, N44, L45 on ECD1 abolished the binding of anti-Fy6 and anti-Fya mAbs to K562 cells respectively, Anti-Fy3 binding was abolished by D58-D59 (ECD1), R124 (ECD2), D263 and D283 (ECD4) substitutions. Mutations of C51 (ECD1), C129 (ECD2), C195 (ECD3) and C276 (ECD4 severely reduced anti-Fy3 and CXC-chemokine ligand 8 (CXCL-8) binding. CXCL-8 binding was also abrogated by mutations of F22-E23, P50 (ECD1) and D263, R267, D283 (ECD4). These results defined the Fya epitope and suggested that (1) two disulphide bridges are involved in the creation of an active chemokine binding pocket; (2) a limited number of amino acids in ECDs 1-4 participate in CXCL-8 binding; and (3) Fy3 is a conformation-dependent epitope involving all ECDs. We also showed that N-glycosylation of DARC occurred on N16SS and did not influence antibody and chemokine binding.

  11. Multi-Mode Binding of Cellobiohydrolase Cel7A from Trichoderma reesei to Cellulose

    PubMed Central

    Jalak, Jürgen; Väljamäe, Priit

    2014-01-01

    Enzymatic hydrolysis of recalcitrant polysaccharides like cellulose takes place on the solid-liquid interface. Therefore the adsorption of enzymes to the solid surface is a pre-requisite for catalysis. Here we used enzymatic activity measurements with fluorescent model-substrate 4-methyl-umbelliferyl-β-D-lactoside for sensitive monitoring of the binding of cellobiohydrolase TrCel7A from Trichoderma reesei to bacterial cellulose (BC). The binding at low nanomolar free TrCel7A concentrations was exclusively active site mediated and was consistent with Langmuir's one binding site model with K d and A max values of 2.9 nM and 126 nmol/g BC, respectively. This is the strongest binding observed with non-complexed cellulases and apparently represents the productive binding of TrCel7A to cellulose chain ends on the hydrophobic face of BC microfibril. With increasing free TrCel7A concentrations the isotherm gradually deviated from the Langmuir's one binding site model. This was caused by the increasing contribution of lower affinity binding modes that included both active site mediated binding and non-productive binding with active site free from cellulose chain. The binding of TrCel7A to BC was found to be only partially reversible. Furthermore, the isotherm was dependent on the concentration of BC with more efficient binding observed at lower BC concentrations. The phenomenon can be ascribed to the BC concentration dependent aggregation of BC microfibrils with concomitant reduction of specific surface area. PMID:25265511

  12. Mechanisms of zinc binding to the solute-binding protein AztC and transfer from the metallochaperone AztD.

    PubMed

    Neupane, Durga P; Avalos, Dante; Fullam, Stephanie; Roychowdhury, Hridindu; Yukl, Erik T

    2017-10-20

    Bacteria can acquire the essential metal zinc from extremely zinc-limited environments by using ATP-binding cassette (ABC) transporters. These transporters are critical virulence factors, relying on specific and high-affinity binding of zinc by a periplasmic solute-binding protein (SBP). As such, the mechanisms of zinc binding and release among bacterial SBPs are of considerable interest as antibacterial drug targets. Zinc SBPs are characterized by a flexible loop near the high-affinity zinc-binding site. The function of this structure is not always clear, and its flexibility has thus far prevented structural characterization by X-ray crystallography. Here, we present intact structures for the zinc-specific SBP AztC from the bacterium Paracoccus denitrificans in the zinc-bound and apo-states. A comparison of these structures revealed that zinc loss prompts significant structural rearrangements, mediated by the formation of a sodium-binding site in the apo-structure. We further show that the AztC flexible loop has no impact on zinc-binding affinity, stoichiometry, or protein structure, yet is essential for zinc transfer from the metallochaperone AztD. We also found that 3 His residues in the loop appear to temporarily coordinate zinc and then convey it to the high-affinity binding site. Thus, mutation of any of these residues to Ala abrogated zinc transfer from AztD. Our structural and mechanistic findings conclusively identify a role for the AztC flexible loop in zinc acquisition from the metallochaperone AztD, yielding critical insights into metal binding by AztC from both solution and AztD. These proteins are highly conserved in human pathogens, making this work potentially useful for the development of novel antibiotics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Site Specific Discrete PEGylation of 124I-Labeled mCC49 Fab′ Fragments Improves Tumor MicroPET/CT Imaging in Mice

    PubMed Central

    Ding, Haiming; Carlton, Michelle M.; Povoski, Stephen P.; Milum, Keisha; Kumar, Krishan; Kothandaraman, Shankaran; Hinkle, George H.; Colcher, David; Brody, Rich; Davis, Paul D.; Pokora, Alex; Phelps, Mitchell; Martin, Edward W.; Tweedle, Michael F.

    2014-01-01

    The tumor-associated glycoprotein-72 (TAG-72) antigen is highly overexpressed in various human adenocarcinomas and anti-TAG-72 monoclonal antibodies, and fragments are therefore useful as pharmaceutical targeting vectors. In this study, we investigated the effects of site-specific PEGylation with MW 2–4 kDa discrete, branched PEGylation reagents on mCC49 Fab′ (MW 50 kDa) via in vitro TAG72 binding, and in vivo blood clearance kinetics, biodistribution, and mouse tumor microPET/CT imaging. mCC49Fab′ (Fab′-NEM) was conjugated at a hinge region cysteine with maleimide-dPEG12-(dPEG24COOH)3 acid (Mal-dPEG-A), maleimide-dPEG12-(dPEG12COOH)3 acid (Mal-dPEG-B), or maleimide-dPEG12-(m-dPEG24)3 (Mal-dPEG-C), and then radiolabeled with iodine-124 (124I) in vitro radioligand binding assays and in vivo studies used TAG-72 expressing LS174T human colon carcinoma cells and xenograft mouse tumors. Conjugation of mCC49Fab′ with Mal-dPEG-A (Fab′-A) reduced the binding affinity of the non PEGylated Fab′ by 30%; however, in vivo, Fab′-A significantly lengthened the blood retention vs Fab′-NEM (47.5 vs 28.1%/ID at 1 h, 25.1 vs 8.4%/ID at 5 h, p < 0.01), showed excellent tumor to background, better microPET/CT images due to higher tumor accumulation, and increased tumor concentration in excised tissues at 72 h by 130% (5.09 ± 0.83 vs 3.83 ± 1.50%ID/g, p < 0.05). Despite the strong similarity of the three PEGylation reagents, PEGylation with Mal-dPEG-B or -C reduced the in vitro binding affinity of Fab′-NEM by 70%, blood retention, microPET/CT imaging tumor signal intensity, and residual 72 h tumor concentration by 49% (3.83 ± 1.50 vs 1.97 ± 0.29%ID/g, p < 0.05) and 63% (3.83 ± 1.50 vs 1.42 ± 0.35%ID/g, p < 0.05), respectively. We conclude that remarkably subtle changes in the structure of the PEGylation reagent can create significantly altered biologic behavior. Further study is warranted of conjugates of the triple branched, negatively charged Mal-dPEG-A. PMID:24175669

  14. Sliding of proteins non-specifically bound to DNA: Brownian dynamics studies with coarse-grained protein and DNA models.

    PubMed

    Ando, Tadashi; Skolnick, Jeffrey

    2014-12-01

    DNA binding proteins efficiently search for their cognitive sites on long genomic DNA by combining 3D diffusion and 1D diffusion (sliding) along the DNA. Recent experimental results and theoretical analyses revealed that the proteins show a rotation-coupled sliding along DNA helical pitch. Here, we performed Brownian dynamics simulations using newly developed coarse-grained protein and DNA models for evaluating how hydrodynamic interactions between the protein and DNA molecules, binding affinity of the protein to DNA, and DNA fluctuations affect the one dimensional diffusion of the protein on the DNA. Our results indicate that intermolecular hydrodynamic interactions reduce 1D diffusivity by 30%. On the other hand, structural fluctuations of DNA give rise to steric collisions between the CG-proteins and DNA, resulting in faster 1D sliding of the protein. Proteins with low binding affinities consistent with experimental estimates of non-specific DNA binding show hopping along the CG-DNA. This hopping significantly increases sliding speed. These simulation studies provide additional insights into the mechanism of how DNA binding proteins find their target sites on the genome.

  15. Structural studies of human histone deacetylase 8 and its site-specific variants complexed with substrate and inhibitors.

    PubMed

    Dowling, Daniel P; Gantt, Stephanie L; Gattis, Samuel G; Fierke, Carol A; Christianson, David W

    2008-12-23

    Metal-dependent histone deacetylases (HDACs) require Zn(2+) or Fe(2+) to regulate the acetylation of lysine residues in histones and other proteins in eukaryotic cells. Isozyme HDAC8 is perhaps the archetypical member of the class I HDAC family and serves as a paradigm for studying structure-function relationships. Here, we report the structures of HDAC8 complexes with trichostatin A and 3-(1-methyl-4-phenylacetyl-1H-2-pyrrolyl)-N-hydroxy-2-propenamide (APHA) in a new crystal form. The structure of the APHA complex reveals that the hydroxamate CO group accepts a hydrogen bond from Y306 but does not coordinate to Zn(2+) with favorable geometry, perhaps due to the constraints of its extended pi system. Additionally, since APHA binds to only two of the three protein molecules in the asymmetric unit of this complex, the structure of the third monomer represents the first structure of HDAC8 in the unliganded state. Comparison of unliganded and liganded structures illustrates ligand-induced conformational changes in the L2 loop that likely accompany substrate binding and catalysis. Furthermore, these structures, along with those of the D101N, D101E, D101A, and D101L variants, support the proposal that D101 is critical for the function of the L2 loop. However, amino acid substitutions for D101 can also trigger conformational changes of Y111 and W141 that perturb the substrate binding site. Finally, the structure of H143A HDAC8 complexed with an intact acetylated tetrapeptide substrate molecule confirms the importance of D101 for substrate binding and reveals how Y306 and the active site zinc ion together bind and activate the scissile amide linkage of acetyllysine.

  16. Effective Mass Theory of 2D Excitons Revisited

    NASA Astrophysics Data System (ADS)

    Gonzalez, Joseph; Oleynik, Ivan

    Two-dimensional (2D) semiconducting materials possess an exceptionally unique set of electronic and excitonic properties due to the combined effects of quantum and dielectric confinement. Reliable determination of exciton binding energies from both first-principles many-body perturbation theory (GW/BSE) and experiment is very challenging due to the enormous computational expense as well as the tremendous technical difficulties in experiment.. Very recently, effective mass theories of 2D excitons have been developed as an attractive alternative for inexpensive and accurate evaluation of the exciton binding energies. In this presentation, we evaluate two effective mass theory approaches by Velizhanin et al and Olsen et al in predicting exciton binding energies across a wide range of 2D materials. We specifically analyze the trends related to the varying screening lengths and exciton effective masses. We also extended the effective mass theory of 2D excitons to include effects of electron and hole mass anisotropies (mx ≠ my) , the latter showing a substantial influence on exciton binding energies. The recent predictions of exciton binding energies being independent of the exciton effective mass and a linear correlation with the band gap of a specific material are also critically reexamined.

  17. von Willebrand factor (VWF) propeptide binding to VWF D'D3 domain attenuates platelet activation and adhesion.

    PubMed

    Madabhushi, Sri R; Shang, Chengwei; Dayananda, Kannayakanahalli M; Rittenhouse-Olson, Kate; Murphy, Mary; Ryan, Thomas E; Montgomery, Robert R; Neelamegham, Sriram

    2012-05-17

    Noncovalent association between the von Willebrand factor (VWF) propeptide (VWFpp) and mature VWF aids N-terminal multimerization and protein compartmentalization in storage granules. This association is currently thought to dissipate after secretion into blood. In the present study, we examined this proposition by quantifying the affinity and kinetics of VWFpp binding to mature VWF using surface plasmon resonance and by developing novel anti-VWF D'D3 mAbs. Our results show that the only binding site for VWFpp in mature VWF is in its D'D3 domain. At pH 6.2 and 10mM Ca(2+), conditions mimicking intracellular compartments, VWFpp-VWF binding occurs with high affinity (K(D) = 0.2nM, k(off) = 8 × 10(-5) s(-1)). Significant, albeit weaker, binding (K(D) = 25nM, k(off) = 4 × 10(-3) s(-1)) occurs under physiologic conditions of pH 7.4 and 2.5mM Ca(2+). This interaction was also observed in human plasma (K(D) = 50nM). The addition of recombinant VWFpp in both flow-chamber-based platelet adhesion assays and viscometer-based shear-induced platelet aggregation and activation studies reduced platelet adhesion and activation partially. Anti-D'D3 mAb DD3.1, which blocks VWFpp binding to VWF-D'D3, also abrogated platelet adhesion, as shown by shear-induced platelet aggregation and activation studies. Our data demonstrate that VWFpp binding to mature VWF occurs in the circulation, which can regulate the hemostatic potential of VWF by reducing VWF binding to platelet GpIbα.

  18. Three-dimensional quantitative structure-activity relationship modeling of cocaine binding by a novel human monoclonal antibody.

    PubMed

    Paula, Stefan; Tabet, Michael R; Farr, Carol D; Norman, Andrew B; Ball, W James

    2004-01-01

    Human monoclonal antibodies (mAbs) designed for immunotherapy have a high potential for avoiding the complications that may result from human immune system responses to the introduction of nonhuman mAbs into patients. This study presents a characterization of cocaine/antibody interactions that determine the binding properties of the novel human sequence mAb 2E2 using three-dimensional quantitative structure-activity relationship (3D-QSAR) methodology. We have experimentally determined the binding affinities of mAb 2E2 for cocaine and 38 cocaine analogues. The K(d) of mAb 2E2 for cocaine was 4 nM, indicating a high affinity. Also, mAb 2E2 displayed good cocaine specificity, as reflected in its 10-, 1500-, and 25000-fold lower binding affinities for the three physiologically relevant cocaine metabolites benzoylecgonine, ecgonine methyl ester, and ecgonine, respectively. 3D-QSAR models of cocaine binding were developed by comparative molecular similarity index analysis (CoMSIA). A model of high statistical quality was generated showing that cocaine binds to mAb 2E2 in a sterically restricted binding site that leaves the methyl group attached to the ring nitrogen of cocaine solvent-exposed. The methyl ester group of cocaine appears to engage in attractive van der Waals interactions with mAb 2E2, whereas the phenyl group contributes to the binding primarily via hydrophobic interactions. The model further indicated that an increase in partial positive charge near the nitrogen proton and methyl ester carbonyl group enhances binding affinity and that the ester oxygen likely forms an intermolecular hydrogen bond with mAb 2E2. Overall, the cocaine binding properties of mAb 2E2 support its clinical potential for development as a treatment of cocaine overdose and addiction.

  19. Specific high-affinity binding sites for a synthetic gliadin heptapeptide of human peripheral blood lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Payan, D.G.; Horvath, K.; Graf, L.

    1987-03-23

    The synthetic peptide containing residues 43-49 of ..cap alpha..-gliadin, the major protein component of gluten, has previously been shown to inhibit the production of lymphokine activities by mononuclear leukocytes. The authors demonstrate using radiolabeled ..cap alpha..-gliadin(43-49) that human peripheral blood lymphocytes express approximately 20,000-25,000 surface receptors for this peptide, with a dissociation constant (K/sub D/) of 20 nM. In addition, binding is inhibited by naloxone and an enkephalin analog, thus confirming the functional correlate which demonstrates inhibition by these agents of ..cap alpha..-gliadin(43-49) functional effects. Furthermore, B-lymphocytes bind specifically a greater amount of (/sup 125/I)..cap alpha..-gliadin(43-49) than T-lymphocytes. The lymphocytemore » ..cap alpha..-gliadin(43-49) receptor may play an important role in mediating the immunological response to ..cap alpha..-gliadin. 16 references, 4 figures.« less

  20. Structure and Active Stie Residues of Pg1D, an N-Acetyltransferase from the Bacillosamine Synthetic Pathway Required for N-Glycan Synthesis in Campylobacter jejuni

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rangarajan,E.; Ruane, K.; Sulea, T.

    2008-01-01

    Campylobacter jejuni is highly unusual among bacteria in forming N-linked glycoproteins. The heptasaccharide produced by its pgl system is attached to protein Asn through its terminal 2, 4-diacetamido-2, 4,6-trideoxy-d-Glc (QuiNAc4NAc or N, N'-diacetylbacillosamine) moiety. The crucial, last part of this sugar's synthesis is the acetylation of UDP-2-acetamido-4-amino-2, 4,6-trideoxy-d-Glc by the enzyme PglD, with acetyl-CoA as a cosubstrate. We have determined the crystal structures of PglD in CoA-bound and unbound forms, refined to 1.8 and 1.75 Angstroms resolution, respectively. PglD is a trimer of subunits each comprised of two domains, an N-terminal {alpha}/{beta}-domain and a C-terminal left-handed {beta}-helix. Few structural differencesmore » accompany CoA binding, except in the C-terminal region following the {beta}-helix (residues 189-195), which adopts an extended structure in the unbound form and folds to extend the {beta}-helix upon binding CoA. Computational molecular docking suggests a different mode of nucleotide-sugar binding with respect to the acetyl-CoA donor, with the molecules arranged in an 'L-shape', compared with the 'in-line' orientation in related enzymes. Modeling indicates that the oxyanion intermediate would be stabilized by the NH group of Gly143', with His125' the most likely residue to function as a general base, removing H+ from the amino group prior to nucleophilic attack at the carbonyl carbon of acetyl-CoA. Site-specific mutations of active site residues confirmed the importance of His125', Glu124', and Asn118. We conclude that Asn118 exerts its function by stabilizing the intricate hydrogen bonding network within the active site and that Glu124' may function to increase the pKa of the putative general base, His125'.« less

  1. [177Lu]pentixather: Comprehensive Preclinical Characterization of a First CXCR4-directed Endoradiotherapeutic Agent

    PubMed Central

    Schottelius, Margret; Osl, Theresa; Poschenrieder, Andreas; Hoffmann, Frauke; Beykan, Seval; Hänscheid, Heribert; Schirbel, Andreas; Buck, Andreas K.; Kropf, Saskia; Schwaiger, Markus; Keller, Ulrich; Lassmann, Michael; Wester, Hans-Jürgen

    2017-01-01

    Purpose: Based on the clinical relevance of the chemokine receptor 4 (CXCR4) as a molecular target in cancer and on the success of [68Ga]pentixafor as an imaging probe for high-contrast visualization of CXCR4-expression, the spectrum of clinical CXCR4-targeting was expanded towards peptide receptor radionuclide therapy (PRRT) by the development of [177Lu]pentixather. Experimental design: CXCR4 affinity, binding specificity, hCXCR4 selectivity and internalization efficiency of [177Lu]pentixather were evaluated using different human and murine cancer cell lines. Biodistribution studies (1, 6, 48, 96h and 7d p.i.) and in vivo metabolite analyses were performed using Daudi-lymphoma bearing SCID mice. Extrapolated organ doses were cross-validated with human dosimetry (pre-therapeutic and during [177Lu]pentixather PRRT) in a patient with multiple myeloma (MM). Results: [177Lu]pentixather binds with high affinity, specificity and selectivity to hCXCR4 and shows excellent in vivo stability. Consequently, and supported by >96% plasma protein binding and a logP=-1.76, delaying whole-body clearance of [177Lu]pentixather, tumor accumulation was high and persistent, both in the Daudi model and the MM patient. Tumor/background ratios (7d p.i.) in mice were 499±202, 33±7, 4.0±0.8 and 116±22 for blood, intestine, kidney and muscle, respectively. In the patient, high tumor/kidney and tumor/liver dose ratios of 3.1 and 6.4 were observed during [177Lu]pentixather PRRT (7.8 GBq), with the kidneys being the dose-limiting organs. Conclusions: [177Lu]pentixather shows excellent in vivo CXCR4-targeting characteristics and a suitable pharmacokinetic profile, leading to high tumor uptake and retention and thus high radiation doses to tumor tissue during PRRT, suggesting high clinical potential of this [68Ga]pentixafor/[177Lu]pentixather based CXCR4-targeted theranostic concept. PMID:28744319

  2. Specific and Reversible Immobilization of Proteins Tagged to the Affinity Polypeptide C-LytA on Functionalized Graphite Electrodes

    PubMed Central

    Bello-Gil, Daniel; Maestro, Beatriz; Fonseca, Jennifer; Feliu, Juan M.; Climent, Víctor; Sanz, Jesús M.

    2014-01-01

    We have developed a general method for the specific and reversible immobilization of proteins fused to the choline-binding module C-LytA on functionalized graphite electrodes. Graphite electrode surfaces were modified by diazonium chemistry to introduce carboxylic groups that were subsequently used to anchor mixed self-assembled monolayers consisting of N,N-diethylethylenediamine groups, acting as choline analogs, and ethanolamine groups as spacers. The ability of the prepared electrodes to specifically bind C-LytA-tagged recombinant proteins was tested with a C-LytA-β-galactosidase fusion protein. The binding, activity and stability of the immobilized protein was evaluated by electrochemically monitoring the formation of an electroactive product in the enzymatic hydrolysis of the synthetic substrate 4-aminophenyl β-D-galactopyranoside. The hybrid protein was immobilized in an specific and reversible way, while retaining the catalytic activity. Moreover, these functionalized electrodes were shown to be highly stable and reusable. The method developed here can be envisaged as a general, immobilization procedure on the protein biosensor field. PMID:24498237

  3. Specific and reversible immobilization of proteins tagged to the affinity polypeptide C-LytA on functionalized graphite electrodes.

    PubMed

    Bello-Gil, Daniel; Maestro, Beatriz; Fonseca, Jennifer; Feliu, Juan M; Climent, Víctor; Sanz, Jesús M

    2014-01-01

    We have developed a general method for the specific and reversible immobilization of proteins fused to the choline-binding module C-LytA on functionalized graphite electrodes. Graphite electrode surfaces were modified by diazonium chemistry to introduce carboxylic groups that were subsequently used to anchor mixed self-assembled monolayers consisting of N,N-diethylethylenediamine groups, acting as choline analogs, and ethanolamine groups as spacers. The ability of the prepared electrodes to specifically bind C-LytA-tagged recombinant proteins was tested with a C-LytA-β-galactosidase fusion protein. The binding, activity and stability of the immobilized protein was evaluated by electrochemically monitoring the formation of an electroactive product in the enzymatic hydrolysis of the synthetic substrate 4-aminophenyl β-D-galactopyranoside. The hybrid protein was immobilized in an specific and reversible way, while retaining the catalytic activity. Moreover, these functionalized electrodes were shown to be highly stable and reusable. The method developed here can be envisaged as a general, immobilization procedure on the protein biosensor field.

  4. TRF1 and TRF2 use different mechanisms to find telomeric DNA but share a novel mechanism to search for protein partners at telomeres.

    PubMed

    Lin, Jiangguo; Countryman, Preston; Buncher, Noah; Kaur, Parminder; E, Longjiang; Zhang, Yiyun; Gibson, Greg; You, Changjiang; Watkins, Simon C; Piehler, Jacob; Opresko, Patricia L; Kad, Neil M; Wang, Hong

    2014-02-01

    Human telomeres are maintained by the shelterin protein complex in which TRF1 and TRF2 bind directly to duplex telomeric DNA. How these proteins find telomeric sequences among a genome of billions of base pairs and how they find protein partners to form the shelterin complex remains uncertain. Using single-molecule fluorescence imaging of quantum dot-labeled TRF1 and TRF2, we study how these proteins locate TTAGGG repeats on DNA tightropes. By virtue of its basic domain TRF2 performs an extensive 1D search on nontelomeric DNA, whereas TRF1's 1D search is limited. Unlike the stable and static associations observed for other proteins at specific binding sites, TRF proteins possess reduced binding stability marked by transient binding (∼ 9-17 s) and slow 1D diffusion on specific telomeric regions. These slow diffusion constants yield activation energy barriers to sliding ∼ 2.8-3.6 κ(B)T greater than those for nontelomeric DNA. We propose that the TRF proteins use 1D sliding to find protein partners and assemble the shelterin complex, which in turn stabilizes the interaction with specific telomeric DNA. This 'tag-team proofreading' represents a more general mechanism to ensure a specific set of proteins interact with each other on long repetitive specific DNA sequences without requiring external energy sources.

  5. Native Electrospray Ionization Mass Spectrometry Reveals Multiple Facets of Aptamer-Ligand Interactions: From Mechanism to Binding Constants.

    PubMed

    Gülbakan, Basri; Barylyuk, Konstantin; Schneider, Petra; Pillong, Max; Schneider, Gisbert; Zenobi, Renato

    2018-06-20

    Aptamers are oligonucleotide receptors obtained through an iterative selection process from random-sequence libraries. Though many aptamers for a broad range of targets with high affinity and selectivity have been generated, a lack of high-resolution structural data and the limitations of currently available biophysical tools greatly impede understanding of the mechanisms of aptamer-ligand interactions. Here we demonstrate that an approach based on native electrospray ionization mass spectrometry (ESI-MS) can be successfully applied to characterize aptamer-ligand complexes in all details. We studied an adenosine-binding aptamer (ABA), a l-argininamide-binding aptamer (LABA), and a cocaine-binding aptamer (CBA) and their noncovalent interactions with ligands by native ESI-MS and complemented these measurements by ion mobility spectrometry (IMS), isothermal titration calorimetry (ITC), and circular dichroism (CD) spectroscopy. The ligand selectivity of the aptamers and the respective complex stoichiometry could be determined by the native ESI-MS approach. The ESI-MS data can also help refining the binding model for aptamer-ligand complexes and deliver accurate aptamer-ligand binding affinities for specific and nonspecific binding events. For specific ligands, we found K d1 = 69.7 μM and K d2 = 5.3 μM for ABA (two binding sites); K d1 = 22.04 μM for LABA; and K d1 = 8.5 μM for CBA.

  6. Contrasting roles for MyoD in organizing myogenic promoter structures during embryonic skeletal muscle development.

    PubMed

    Cho, Ok Hyun; Mallappa, Chandrashekara; Hernández-Hernández, J Manuel; Rivera-Pérez, Jaime A; Imbalzano, Anthony N

    2015-01-01

    Among the complexities of skeletal muscle differentiation is a temporal distinction in the onset of expression of different lineage-specific genes. The lineage-determining factor MyoD is bound to myogenic genes at the onset of differentiation whether gene activation is immediate or delayed. How temporal regulation of differentiation-specific genes is established remains unclear. Using embryonic tissue, we addressed the molecular differences in the organization of the myogenin and muscle creatine kinase (MCK) gene promoters by examining regulatory factor binding as a function of both time and spatial organization during somitogenesis. At the myogenin promoter, binding of the homeodomain factor Pbx1 coincided with H3 hyperacetylation and was followed by binding of co-activators that modulate chromatin structure. MyoD and myogenin binding occurred subsequently, demonstrating that Pbx1 facilitates chromatin remodeling and modification before myogenic regulatory factor binding. At the same time, the MCK promoter was bound by HDAC2 and MyoD, and activating histone marks were largely absent. The association of HDAC2 and MyoD was confirmed by co-immunoprecipitation, proximity ligation assay (PLA), and sequential ChIP. MyoD differentially promotes activated and repressed chromatin structures at myogenic genes early after the onset of skeletal muscle differentiation in the developing mouse embryo. © 2014 Wiley Periodicals, Inc.

  7. Specific receptor for inositol-1,4,5-trisphosphate in permeabilized rabbit neutrophils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradford, P.G.; Spat, A.; Rubin, R.P.

    1986-03-05

    Neutrophil chemotaxis and degranulation are resultant, in part, from the mobilization of intracellular calcium by inositol-1,4,5-trisphosphate ((1,4,5)IP/sub 3/), one of the products of chemoattractant-stimulated phospholipase C activity. High specific activity (ca. 40 Ci/mmol) (/sup 32/P)(1,4,5)IP/sub 3/ was prepared from (..gamma..-/sup 32/P)ATP-labeled human erythrocyte ghosts and was used in binding assays with saponin-permeabilized rabbit peritoneal neutrophils. At 4/sup 0/C and in the presence of inhibitors of the IP/sub 3/ 5-phosphomonoesterase, (/sup 32/P)(1,4,5)IP/sub 3/ rapidly associated with a specific binding component which saturated within 60s. Nonspecific binding, taken as the residual binding in the presence of 10 ..mu..M (1,4,5)IP/sub 3/, was 15%more » of the total. No specific binding was detected using intact cells. The specific binding to permeable cells was reversible (t/sup 1/2/ approx. 60s) and could be inhibited in a dose-dependent manner by (1,4,5)IP/sub 3/ (EC/sub 50/ = 30 nM) and by other calcium mobilizing inositol phosphates ((2,4,5)IP/sub 3/) but not by inactive analogs ((1,4)IP/sub 2/, (4,5)IP/sub 2/, (1)IP). The dose-responses of (1,4,5)IP/sub 3/ and (2,4,5)IP/sub 3/ in inhibiting (/sup 32/P)(1,4,5)IP/sub 3/ specific binding correlated well with their abilities to release Ca/sup 2 +/ from nonmitochondrial vesicular stores in the same preparation of cells, suggesting that the authors have identified the physiological receptor for (1,4,5)IP/sub 3/.« less

  8. Further evaluation of the tropane analogs of haloperidol.

    PubMed

    Sampson, Dinithia; Bricker, Barbara; Zhu, Xue Y; Peprah, Kwakye; Lamango, Nazarius S; Setola, Vincent; Roth, Bryan L; Ablordeppey, Seth Y

    2014-09-01

    Previous work from our labs has indicated that a tropane analog of haloperidol with potent D2 binding but designed to avoid the formation of MPP(+)-like metabolites, such as 4-(4-chlorophenyl)-1-(4-(4-fluorophenyl)-4-oxobutyl)pyridin-1-ium (BCPP(+)) still produced catalepsy, suggesting a strong role for the D2 receptor in the production of catalepsy in rats, and hence EPS in humans. This study tested the hypothesis that further modifications of the tropane analog to produce compounds with less potent binding to the D2 receptor than haloperidol, would produce less catalepsy. These tests have now revealed that while haloperidol produced maximum catalepsy, these compounds produced moderate to low levels of catalepsy. Compound 9, with the least binding affinity to the D2R, produced the least catalepsy and highest Minimum Adverse Effective Dose (MAED) of the analogs tested regardless of their affinities at other receptors including the 5-HT1AR. These observations support the hypothesis that moderation of the D2 binding of the tropane analogs could reduce catalepsy potential in rats and consequently EPS in man. Published by Elsevier Ltd.

  9. Synthesis and characterization of an 111In-labeled peptide for the in vivo localization of human cancers expressing the urokinase-type plasminogen activator receptor (uPAR)

    PubMed Central

    Liu, Dijie; Overbey, Douglas; Watkinson, Lisa; Giblin, Michael F.

    2009-01-01

    This study describes the synthesis and preliminary biologic evaluation of an 111Inlabeled peptide antagonist of the urokinase-type plasminogen activator receptor (uPAR) as a potential probe for assessing metastatic potential of human breast cancer in vivo. The peptide (NAc-dD-CHA-F-dS-dR-Y-L-W-S-βAla)2-K-K(DOTA)-NH2 was synthesized and conjugated with the DOTA chelating moiety via conventional Solid-Phase Peptide Synthesis (SPPS), purified by reversed-phase HPLC, and characterized by MALDI-TOF MS and receptor binding assay. In vitro receptor binding studies demonstrated an IC50 of 240 ± 125 nM for the peptide, compared with IC50’s of 0.44 ± 0.02 and 0.75 ± 0.01 nM for the amino terminal fragment (ATF) of the urokinase-type plasminogen activator (uPA) and full-length uPA, respectively. In vivo biodistribution studies were carried out using SCID mice bearing MDA-MB-231 human breast cancer xenografts. Biodistribution data was collected at 1, 4, and 24 hr post-injection of 111In-DOTA-peptide, and compared with data obtained using a scrambled control peptide, as well as with data obtained using wild-type ATF radiolabeled with I-125. Biodistribution studies showed rapid elimination of the 111In-labeled peptide from the blood pool, with 0.12 ± 0.06% ID/g remaining in blood at 4 hr pi. Elimination was seen primarily via the renal/urinary route, with 83.9 ± 2.2%ID in the urine at the same timepoint. Tumor uptake at this time was 0.53 ± 0.11%ID/g, resulting in tumor: blood and tumor: muscle ratios of 4.2 and 9.4, respectively. Uptake in tumor was significantly higher than that obtained using a scrambled control peptide that showed no specific binding to uPAR (p < 0.05). In vitro and ex vivo results both suggested that the magnitude of tumor-specific binding was reduced in this model by endogenous expression of uPA. The results indicate that radiolabeled peptide uPAR antagonists may find application in the imaging and therapy of uPAR-expressing breast cancers in vivo. PMID:19354275

  10. Bartonella henselae trimeric autotransporter adhesin BadA expression interferes with effector translocation by the VirB/D4 type IV secretion system.

    PubMed

    Lu, Yun-Yueh; Franz, Bettina; Truttmann, Matthias C; Riess, Tanja; Gay-Fraret, Jérémie; Faustmann, Marco; Kempf, Volkhard A J; Dehio, Christoph

    2013-05-01

    The Gram-negative, zoonotic pathogen Bartonella henselae is the aetiological agent of cat scratch disease, bacillary angiomatosis and peliosis hepatis in humans. Two pathogenicity factors of B. henselae - each displaying multiple functions in host cell interaction - have been characterized in greater detail: the trimeric autotransporter Bartonella adhesin A (BadA) and the type IV secretion system VirB/D4 (VirB/D4 T4SS). BadA mediates, e.g. binding to fibronectin (Fn), adherence to endothelial cells (ECs) and secretion of vascular endothelial growth factor (VEGF). VirB/D4 translocates several Bartonella effector proteins (Beps) into the cytoplasm of infected ECs, resulting, e.g. in uptake of bacterial aggregates via the invasome structure, inhibition of apoptosis and activation of a proangiogenic phenotype. Despite this knowledge of the individual activities of BadA or VirB/D4 it is unknown whether these major virulence factors affect each other in their specific activities. In this study, expression and function of BadA and VirB/D4 were analysed in a variety of clinical B. henselae isolates. Data revealed that most isolates have lost expression of either BadA or VirB/D4 during in vitro passages. However, the phenotypic effects of coexpression of both virulence factors was studied in one clinical isolate that was found to stably coexpress BadA and VirB/D4, as well as by ectopic expression of BadA in a strain expressing VirB/D4 but not BadA. BadA, which forms a dense layer on the bacterial surface, negatively affected VirB/D4-dependent Bep translocation and invasome formation by likely preventing close contact between the bacterial cell envelope and the host cell membrane. In contrast, BadA-dependent Fn binding, adhesion to ECs and VEGF secretion were not affected by a functional VirB/D4 T4SS. The obtained data imply that the essential virulence factors BadA and VirB/D4 are likely differentially expressed during different stages of the infection cycle of Bartonella. © 2012 Blackwell Publishing Ltd.

  11. Fluorescence correlation spectroscopy as a sensitive and useful tool for revealing potential overlaps between the epitopes of monoclonal antibodies on viral particles.

    PubMed

    Richert, Ludovic; Humbert, Nicolas; Larquet, Eric; Girerd-Chambaz, Yves; Manin, Catherine; Ronzon, Frédéric; Mély, Yves

    2016-10-01

    Although the enzyme-linked immunosorbent assay (ELISA) is well established for quantitating epitopes on inactivated virions used as vaccines, it is less suited for detecting potential overlaps between the epitopes recognized by different antibodies raised against the virions. We used fluorescent correlation spectroscopy (FCS) to detect the potential overlaps between 3 monoclonal antibodies (mAbs 4B7-1H8-2E10, 1E3-3G4, 4H8-3A12-2D3) selected for their ability to specifically recognize poliovirus type 3. Competition of the Alexa488-labeled mAbs with non-labeled mAbs revealed that mAbs 4B7-1H8-2E10 and 4H8-3A12-2D3 compete strongly for their binding sites on the virions, suggesting an important overlap of their epitopes. This was confirmed by the cryo-electron microscopy (cryo EM) structure of the poliovirus type 3 complexed with the corresponding antigen-binding fragments (Fabs) of the mAbs, which revealed that Fabs 4B7-1H8-2E10 and 4H8-3A12-2D3 epitopes share common amino acids. In contrast, a less efficient competition between mAb 1E3-3G4 and mAb 4H8-3A12-2D3 was observed by FCS, and there was no competition between mAbs 1E3-3G4 and 4B7-1H8-2E10. The Fab 1E3-3G4 epitope was found by cryoEM to be close to but distinct from the epitopes of both Fabs 4H8-3A12-2D3 and 4B7-1H8-2E10. Therefore, the FCS data additionally suggest that mAbs 4H8-3A12-2D3 and 4B7-1H8-2E10 bind in a different orientation to their epitopes, so that only the former sterically clashes with the mAb 1E3-3G4 bound to its epitope. Our results demonstrate that FCS can be a highly sensitive and useful tool for assessing the potential overlap of mAbs on viral particles.

  12. Autoinhibition of Munc18-1 modulates synaptobrevin binding and helps to enable Munc13-dependent regulation of membrane fusion.

    PubMed

    Sitarska, Ewa; Xu, Junjie; Park, Seungmee; Liu, Xiaoxia; Quade, Bradley; Stepien, Karolina; Sugita, Kyoko; Brautigam, Chad A; Sugita, Shuzo; Rizo, Josep

    2017-05-06

    Munc18-1 orchestrates SNARE complex assembly together with Munc13-1 to mediate neurotransmitter release. Munc18-1 binds to synaptobrevin, but the relevance of this interaction and its relation to Munc13 function are unclear. NMR experiments now show that Munc18-1 binds specifically and non-specifically to synaptobrevin. Specific binding is inhibited by a L348R mutation in Munc18-1 and enhanced by a D326K mutation designed to disrupt the 'furled conformation' of a Munc18-1 loop. Correspondingly, the activity of Munc18-1 in reconstitution assays that require Munc18-1 and Munc13-1 for membrane fusion is stimulated by the D326K mutation and inhibited by the L348R mutation. Moreover, the D326K mutation allows Munc13-1-independent fusion and leads to a gain-of-function in rescue experiments in Caenorhabditis elegans unc-18 nulls. Together with previous studies, our data support a model whereby Munc18-1 acts as a template for SNARE complex assembly, and autoinhibition of synaptobrevin binding contributes to enabling regulation of neurotransmitter release by Munc13-1.

  13. Synergistic use of compound properties and docking scores in neural network modeling of CYP2D6 binding: predicting affinity and conformational sampling.

    PubMed

    Bazeley, Peter S; Prithivi, Sridevi; Struble, Craig A; Povinelli, Richard J; Sem, Daniel S

    2006-01-01

    Cytochrome P450 2D6 (CYP2D6) is used to develop an approach for predicting affinity and relevant binding conformation(s) for highly flexible binding sites. The approach combines the use of docking scores and compound properties as attributes in building a neural network (NN) model. It begins by identifying segments of CYP2D6 that are important for binding specificity, based on structural variability among diverse CYP enzymes. A family of distinct, low-energy conformations of CYP2D6 are generated using simulated annealing (SA) and a collection of 82 compounds with known CYP2D6 affinities are docked. Interestingly, docking poses are observed on the backside of the heme as well as in the known active site. Docking scores for the active site binders, along with compound-specific attributes, are used to train a neural network model to properly bin compounds as strong binders, moderate binders, or nonbinders. Attribute selection is used to preselect the most important scores and compound-specific attributes for the model. A prediction accuracy of 85+/-6% is achieved. Dominant attributes include docking scores for three of the 20 conformations in the ensemble as well as the compound's formal charge, number of aromatic rings, and AlogP. Although compound properties were highly predictive attributes (12% improvement over baseline) in the NN-based prediction of CYP2D6 binders, their combined use with docking score attributes is synergistic (net increase of 23% above baseline). Beyond prediction of affinity, attribute selection provides a way to identify the most relevant protein conformation(s), in terms of binding competence. In the case of CYP2D6, three out of the ensemble of 20 SA-generated structures are found to be the most predictive for binding.

  14. A parallel panning scheme used for selection of a GluA4-specific Fab targeting the ligand-binding domain.

    PubMed

    Clausen, Rasmus P; Mohr, Andreas Ø; Riise, Erik; Jensen, Anders A; Gill, Avinash; Madden, Dean R; Kastrup, Jette S; Skottrup, Peter D

    2016-11-01

    A method for development of murine Fab fragments towards extracellular domains of a surface receptor is presented. The GluA4 ionotropic glutamate receptor is used as a model system. Recombinant GluA4 ectodomain comprising both the N-terminal domain (NTD) and the ligand-binding domain (LBD) in one molecule was used for immunization. A Fab-phage library was constructed and a parallel panning approach enabled selection of murine Fab fragments towards either intact ectodomain or the isolated LBD of the GluA4 receptor. One LBD-Fab (FabL9) showed exclusive selectivity for the GluA4 LBD, over a panel of LBDs from GluA2, GluK1, GluK2 and GluD2. Soluble FabL9 was produced in amounts suitable for characterization. Competitive ELISA and rat-brain immunoprecipitation experiments confirmed that the FabL9 epitope is conserved in the LBD and in the intact native receptor. By an alignment of GluA2 and GluA4, the likely binding epitope for FabL9 was predicted. This study demonstrates a simple approach for development of antibody fragments towards specific sub-domains of a large ligand-gated ion channel, and this method could be utilized for all multi-domain surface receptors where antibody domain-selectivity may be desirable. Furthermore, we present for the first time a GluA4 subtype-specific murine Fab fragment targeting the LBD of the receptor. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Development of Lipid-based Nanoparticles for in vivo Targeted Delivery of Imaging Agents into Breast Cancer Cells

    DTIC Science & Technology

    2010-04-01

    Fab to recognize pOV8-K b proteins on the surface of live cells, mouse lym phoma cell line EL4 was pulse d with either cognate (pOV8) or irrelevant...120 0.5 3 M FI Time, hour M FI Figure 11. Binding specificity of Pyro-NP-Fab. EL4 cells sensitized with peptide pOV8 ( ) but not with VSV

  16. ATP binding by the P-loop NTPase OsYchF1 (an unconventional G protein) contributes to biotic but not abiotic stress responses

    PubMed Central

    Cheung, Ming-Yan; Li, Xiaorong; Miao, Rui; Fong, Yu-Hang; Li, Kwan-Pok; Yung, Yuk-Lin; Yu, Mei-Hui; Wong, Kam-Bo; Lam, Hon-Ming

    2016-01-01

    G proteins are involved in almost all aspects of the cellular regulatory pathways through their ability to bind and hydrolyze GTP. The YchF subfamily, interestingly, possesses the unique ability to bind both ATP and GTP, and is possibly an ancestral form of G proteins based on phylogenetic studies and is present in all kingdoms of life. However, the biological significance of such a relaxed ligand specificity has long eluded researchers. Here, we have elucidated the different conformational changes caused by the binding of a YchF homolog in rice (OsYchF1) to ATP versus GTP by X-ray crystallography. Furthermore, by comparing the 3D relationships of the ligand position and the various amino acid residues at the binding sites in the crystal structures of the apo-bound and ligand-bound versions, a mechanism for the protein’s ability to bind both ligands is revealed. Mutation of the noncanonical G4 motif of the OsYchF1 to the canonical sequence for GTP specificity precludes the binding/hydrolysis of ATP and prevents OsYchF1 from functioning as a negative regulator of plant-defense responses, while retaining its ability to bind/hydrolyze GTP and its function as a negative regulator of abiotic stress responses, demonstrating the specific role of ATP-binding/hydrolysis in disease resistance. This discovery will have a significant impact on our understanding of the structure–function relationships of the YchF subfamily of G proteins in all kingdoms of life. PMID:26912459

  17. Vasculature-Specific Adenovirus Vectors for Gene Therapy of Prostate Cancer

    DTIC Science & Technology

    2008-02-01

    Renata Pasqualini (University of Texas M.D. Anderson Cancer Center). This assay showed excellent binding of the wt fiber to sCAR and no binding...Bernasconi, R. Kain, D. Rajotte, S. Krajewski, H. M. Ellerby, D. E. Bredesen, R. Pasqualini , and E. Ruoslahti. 2002. Targeting the prostate for...D. Bucana, E. Koivunen, D. Cahill, P. Troncoso, K. A. Baggerly, R. D. Pentz, K. A. Do, C. J. Logothetis, and R. Pasqualini . 2002. Steps toward

  18. Structural and functional characterization of cargo-binding sites on the μ4-subunit of adaptor protein complex 4.

    PubMed

    Ross, Breyan H; Lin, Yimo; Corales, Esteban A; Burgos, Patricia V; Mardones, Gonzalo A

    2014-01-01

    Adaptor protein (AP) complexes facilitate protein trafficking by playing key roles in the selection of cargo molecules to be sorted in post-Golgi compartments. Four AP complexes (AP-1 to AP-4) contain a medium-sized subunit (μ1-μ4) that recognizes YXXØ-sequences (Ø is a bulky hydrophobic residue), which are sorting signals in transmembrane proteins. A conserved, canonical region in μ subunits mediates recognition of YXXØ-signals by means of a critical aspartic acid. Recently we found that a non-canonical YXXØ-signal on the cytosolic tail of the Alzheimer's disease amyloid precursor protein (APP) binds to a distinct region of the μ4 subunit of the AP-4 complex. In this study we aimed to determine the functionality of both binding sites of μ4 on the recognition of the non-canonical YXXØ-signal of APP. We found that substitutions in either binding site abrogated the interaction with the APP-tail in yeast-two hybrid experiments. Further characterization by isothermal titration calorimetry showed instead loss of binding to the APP signal with only the substitution R283D at the non-canonical site, in contrast to a decrease in binding affinity with the substitution D190A at the canonical site. We solved the crystal structure of the C-terminal domain of the D190A mutant bound to this non-canonical YXXØ-signal. This structure showed no significant difference compared to that of wild-type μ4. Both differential scanning fluorimetry and limited proteolysis analyses demonstrated that the D190A substitution rendered μ4 less stable, suggesting an explanation for its lower binding affinity to the APP signal. Finally, in contrast to overexpression of the D190A mutant, and acting in a dominant-negative manner, overexpression of μ4 with either a F255A or a R283D substitution at the non-canonical site halted APP transport at the Golgi apparatus. Together, our analyses support that the functional recognition of the non-canonical YXXØ-signal of APP is limited to the non-canonical site of μ4.

  19. Structural and Functional Characterization of Cargo-Binding Sites on the μ4-Subunit of Adaptor Protein Complex 4

    PubMed Central

    Ross, Breyan H.; Lin, Yimo; Corales, Esteban A.; Burgos, Patricia V.; Mardones, Gonzalo A.

    2014-01-01

    Adaptor protein (AP) complexes facilitate protein trafficking by playing key roles in the selection of cargo molecules to be sorted in post-Golgi compartments. Four AP complexes (AP-1 to AP-4) contain a medium-sized subunit (μ1-μ4) that recognizes YXXØ-sequences (Ø is a bulky hydrophobic residue), which are sorting signals in transmembrane proteins. A conserved, canonical region in μ subunits mediates recognition of YXXØ-signals by means of a critical aspartic acid. Recently we found that a non-canonical YXXØ-signal on the cytosolic tail of the Alzheimer's disease amyloid precursor protein (APP) binds to a distinct region of the μ4 subunit of the AP-4 complex. In this study we aimed to determine the functionality of both binding sites of μ4 on the recognition of the non-canonical YXXØ-signal of APP. We found that substitutions in either binding site abrogated the interaction with the APP-tail in yeast-two hybrid experiments. Further characterization by isothermal titration calorimetry showed instead loss of binding to the APP signal with only the substitution R283D at the non-canonical site, in contrast to a decrease in binding affinity with the substitution D190A at the canonical site. We solved the crystal structure of the C-terminal domain of the D190A mutant bound to this non-canonical YXXØ-signal. This structure showed no significant difference compared to that of wild-type μ4. Both differential scanning fluorimetry and limited proteolysis analyses demonstrated that the D190A substitution rendered μ4 less stable, suggesting an explanation for its lower binding affinity to the APP signal. Finally, in contrast to overexpression of the D190A mutant, and acting in a dominant-negative manner, overexpression of μ4 with either a F255A or a R283D substitution at the non-canonical site halted APP transport at the Golgi apparatus. Together, our analyses support that the functional recognition of the non-canonical YXXØ-signal of APP is limited to the non-canonical site of μ4. PMID:24498434

  20. Recombinant Collagenlike Proteins

    NASA Technical Reports Server (NTRS)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  1. Highly Pathogenic Influenza A(H5Nx) Viruses with Altered H5 Receptor-Binding Specificity

    PubMed Central

    Guo, Hongbo; de Vries, Erik; McBride, Ryan; Dekkers, Jojanneke; Peng, Wenjie; Bouwman, Kim M.; Nycholat, Corwin; Verheije, M. Helene; Paulson, James C.; van Kuppeveld, Frank J.M.

    2017-01-01

    Emergence and intercontinental spread of highly pathogenic avian influenza A(H5Nx) virus clade 2.3.4.4 is unprecedented. H5N8 and H5N2 viruses have caused major economic losses in the poultry industry in Europe and North America, and lethal human infections with H5N6 virus have occurred in Asia. Knowledge of the evolution of receptor-binding specificity of these viruses, which might affect host range, is urgently needed. We report that emergence of these viruses is accompanied by a change in receptor-binding specificity. In contrast to ancestral clade 2.3.4 H5 proteins, novel clade 2.3.4.4 H5 proteins bind to fucosylated sialosides because of substitutions K222Q and S227R, which are unique for highly pathogenic influenza virus H5 proteins. North American clade 2.3.4.4 virus isolates have retained only the K222Q substitution but still bind fucosylated sialosides. Altered receptor-binding specificity of virus clade 2.3.4.4 H5 proteins might have contributed to emergence and spread of H5Nx viruses. PMID:27869615

  2. Flow cytometric analysis of lectin binding to in vitro-cultured Perkinsus marinus surface carbohydrates

    USGS Publications Warehouse

    Gauthier, J.D.; Jenkins, J.A.; La Peyre, Jerome F.

    2004-01-01

    Parasite surface glycoconjugates are frequently involved in cellular recognition and colonization of the host. This study reports on the identification of Perkinsus marinus surface carbohydrates by flow cytometric analyses of fluorescein isothiocyanate-conjugated lectin binding. Lectin-binding specificity was confirmed by sugar inhibition and Kolmogorov-Smirnov statistics. Clear, measurable fluorescence peaks were discriminated, and no parasite autofluorescence was observed. Parasites (GTLA-5 and Perkinsus-1 strains) harvested during log and stationary phases of growth in a protein-free medium reacted strongly with concanavalin A and wheat germ agglutinin, which bind to glucose-mannose and N-acetyl-D-glucosamine (GlcNAc) moieties, respectively. Both P. marinus strains bound with lower intensity to Maclura pomifera agglutinin, Bauhinia purpurea agglutinin, soybean agglutinin (N-acetyl-D-galactosamine-specific lectins), peanut agglutinin (PNA) (terminal galactose specific), and Griffonia simplicifolia II (GlcNAc specific). Only background fluorescence levels were detected with Ulex europaeus agglutinin I (L-fucose specific) and Limulus polyphemus agglutinin (sialic acid specific). The lectin-binding profiles were similar for the 2 strains except for a greater relative binding intensity of PNA for Perkinsus-1 and an overall greater lectin-binding capacity of Perkinsus-1 compared with GTLA-5. Growth stage comparisons revealed increased lectin-binding intensities during stationary phase compared with log phase of growth. This is the first report of the identification of surface glycoconjugates on a Perkinsus spp. by flow cytometry and the first to demonstrate that differential surface sugar expression is growth phase and strain dependent. ?? American Society of Parasitologists 2004.

  3. Ligand-mediated protein degradation reveals functional conservation among sequence variants of the CUL4-type E3 ligase substrate receptor cereblon.

    PubMed

    Akuffo, Afua A; Alontaga, Aileen Y; Metcalf, Rainer; Beatty, Matthew S; Becker, Andreas; McDaniel, Jessica M; Hesterberg, Rebecca S; Goodheart, William E; Gunawan, Steven; Ayaz, Muhammad; Yang, Yan; Karim, Md Rezaul; Orobello, Morgan E; Daniel, Kenyon; Guida, Wayne; Yoder, Jeffrey A; Rajadhyaksha, Anjali M; Schönbrunn, Ernst; Lawrence, Harshani R; Lawrence, Nicholas J; Epling-Burnette, Pearlie K

    2018-04-20

    Upon binding to thalidomide and other immunomodulatory drugs, the E3 ligase substrate receptor cereblon (CRBN) promotes proteosomal destruction by engaging the DDB1-CUL4A-Roc1-RBX1 E3 ubiquitin ligase in human cells but not in mouse cells, suggesting that sequence variations in CRBN may cause its inactivation. Therapeutically, CRBN engagers have the potential for broad applications in cancer and immune therapy by specifically reducing protein expression through targeted ubiquitin-mediated degradation. To examine the effects of defined sequence changes on CRBN's activity, we performed a comprehensive study using complementary theoretical, biophysical, and biological assays aimed at understanding CRBN's nonprimate sequence variations. With a series of recombinant thalidomide-binding domain (TBD) proteins, we show that CRBN sequence variants retain their drug-binding properties to both classical immunomodulatory drugs and dBET1, a chemical compound and targeting ligand designed to degrade bromodomain-containing 4 (BRD4) via a CRBN-dependent mechanism. We further show that dBET1 stimulates CRBN's E3 ubiquitin-conjugating function and degrades BRD4 in both mouse and human cells. This insight paves the way for studies of CRBN-dependent proteasome-targeting molecules in nonprimate models and provides a new understanding of CRBN's substrate-recruiting function. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Evolution of a Histone H4-K16 Acetyl-Specific DNA Aptamer

    PubMed Central

    Williams, Berea A. R.; Lin, Liyun; Lindsay, Stuart M.; Chaput, John C.

    2009-01-01

    We report the in vitro selection of DNA aptamers that bind to histone H4 proteins acetylated at lysine 16. The best aptamer identified in this selection binds to the target protein with a Kd of 21 nM, and discriminates against both the non-acetylated protein and histone H4 proteins acetylated at lysine 8. Comparative binding assays performed with a chip-quality antibody reveal that this aptamer binds to the acetylated histone target with similar affinity to a commercial antibody, but shows significantly greater specificity (15-fold versus 2,400-fold) for the target molecule. This result demonstrates that aptamers that are both modification and location specific can be generated to bind specific protein post-translational modifications. PMID:19385619

  5. Effects of mutation at the D-JH junction on affinity, specificity, and idiotypy of anti-progesterone antibody DB3.

    PubMed

    He, Mingyue; Hamon, Maureen; Liu, Hong; Corper, Adam L; Taussig, Michael J

    2006-09-01

    The crystal structures of the Fab' fragment of the anti-progesterone monoclonal antibody DB3 and its complexes with steroid haptens have shown that the D-JH junctional residue TrpH100 is a key contributor to binding site interactions with ligands. The indole group of TrpH100 also undergoes a significant conformational change between the bound and unliganded states, effectively opening and closing the combining site pocket. In order to explore the effect of substitutions at this position on steroid recognition, we have carried out mutagenesis on a construct encoding a three-domain single-chain fragment (VH/K) of DB3 expressed in Escherichia coli. TrpH100 was replaced by 13 different amino acids or deleted, and the functional and antigenic properties of the mutated fragments were analyzed. Most substitutions, including small, hydrophobic, hydrophilic, neutral, and negatively charged side chains, were reduced or abolished binding to free progesterone, although binding to progesterone-BSA was partially retained. The reduction in antigen binding was paralleled by alteration of the idiotype associated with the DB3 combining site. In contrast, the replacement of TrpH100 by Arg produced a mutant that retained wild-type antibody affinity and idiotype, but with altered specificity. Significant changes in this mutant included increased relative affinities of 10(4)-fold for progesterone-3-carboxymethyloxime and 10-fold for aetiocholanolone. Our results demonstrate an essential role for the junctional residue H100 in determining steroid-binding specificity and combining site idiotype and show that these properties can be changed by a single amino acid substitution at this position.

  6. Radioiodination and preclinical evaluation of 4-benzyl-1-(3-[125I]-iodobenzylsulfonyl)piperidine as a breast tumor imaging tracer in mouse.

    PubMed

    Sadeghzadeh, Masoud; Alirezapour, Behrouz; Charkhlooie, Ghorban Ali; Baghery, Maryam Keshavarz; Khorouti, Amir

    2017-05-01

    4-Benzyl-1-(3-iodobenzylsulfonyl)piperidine, 4-B-IBSP, has shown high-binding affinity to both sigma (σ) receptors in our previous work. In current study, radiolabeling and preclinical evaluation of 4-benzyl-1-(3-[ 125 I]-iodobenzylsulfonyl)piperidine, 4-B-[ 125 I]IBSP, in human ductal breast carcinoma (T47D) cells and in breast adenocarcinoma-bearing BALB/c mice are described. Radioiodination of this new σ ligand was performed by a palladium-catalyzed stannylation approach followed by oxidative iododestannylation reaction using Iodo-Gen. Competition-binding assays for binding of 4-B-[ 125 I]IBSP to guinea pig brain membranes and to T47D cells were performed with known σ ligands. The selectivity and binding characteristics (B max and K d ) were analyzed. In vitro stability and in vivo blood metabolism studies were also evaluated. Moreover, biodistribution studies were performed in normal and into the tumor-bearing mice at interval time points post-injection (p.i.). Both in vitro and in vivo blockade experiments were done in the presence of the σ receptors blocking agents. Radioiodinated ligand was obtained in high yield and high specific activity. The σ inhibition constants (K i , nM) for 4-(3-iodobenzyl)-1-(benzylsulfonyl)piperazine (4-IBBSPz), (+)-pentazocine, haloperidol, DTG, and 4-B-IBSP were 1.37 ± 0.19, 3.90 ± 0.77, 2.69 ± 0.33, 30.62 ± 2.01, and 0.61 ± 0.05, respectively. 4-B-[ 125 I]IBSP bound to σ receptor sites preferably to very high-affinity binding sites on T47D cells. The radioligand showed acceptable in vitro and in vivo stabilities in the blood pool. However, in vivo biodistribution studies in normal Swiss albino mice revealed fast clearance of 4-B-[ 125 I]IBSP from blood and the other normal organs. Biodistribution experiments of 4-B-[ 125 I]IBSP in breast adenocarcinoma tumor-bearing BALB/c mice showed a relatively high tumor uptake at 30 min p.i. (4.13 ± 0.95) that reaches to 1.57 ± 0.24 even after 240 min p.i. A pre-injection of 4-B-IBSP and haloperidol with 4-B-[ 125 I]IBSP resulted in 36-57% decrease in activity in the tumor, liver, and brain at 60 min p.i. The high affinity of 4-B-[ 125 I]IBSP to σ receptor-binding sites, its relatively high uptake, and preferential retention in the tumor as well as an increasing trend observed in the tumor to blood and in the tumor to muscle ratios suggests that an iodine-123 labeled counterpart, 4-B-[ 123 I]IBSP, would be a promising σ radioligand for pursuing further studies to assess its potential for breast tumors imaging with SPECT.

  7. n-Dodecyl β-D-maltoside specifically competes with general anesthetics for anesthetic binding sites.

    PubMed

    Xu, Longhe; Matsunaga, Felipe; Xi, Jin; Li, Min; Ma, Jingyuan; Liu, Renyu

    2014-01-01

    We recently demonstrated that the anionic detergent sodium dodecyl sulfate (SDS) specifically interacts with the anesthetic binding site in horse spleen apoferritin, a soluble protein which models anesthetic binding sites in receptors. This raises the possibility of other detergents similarly interacting with and occluding such sites from anesthetics, thereby preventing the proper identification of novel anesthetic binding sites. n-Dodecyl β-D-maltoside (DDM) is a non-ionic detergent commonly used during protein-anesthetic studies because of its mild and non-denaturing properties. In this study, we demonstrate that SDS and DDM occupy anesthetic binding sites in the model proteins human serum albumin (HSA) and horse spleen apoferritin and thereby inhibit the binding of the general anesthetics propofol and isoflurane. DDM specifically interacts with HSA (Kd = 40 μM) with a lower affinity than SDS (Kd = 2 μM). DDM exerts all these effects while not perturbing the native structures of either model protein. Computational calculations corroborated the experimental results by demonstrating that the binding sites for DDM and both anesthetics on the model proteins overlapped. Collectively, our results indicate that DDM and SDS specifically interact with anesthetic binding sites and may thus prevent the identification of novel anesthetic sites. Special precaution should be taken when undertaking and interpreting results from protein-anesthetic investigations utilizing detergents like SDS and DDM.

  8. Removal of either N-glycan site from the envelope receptor binding domain of Moloney and Friend but not AKV mouse ecotropic gammaretroviruses alters receptor usage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoper, Ryan C.; Ferrarone, John; Yan Yuhe

    2009-09-01

    Three N-linked glycosylation sites were removed from the envelope glycoproteins of Friend, Moloney, and AKV mouse ecotropic gammaretroviruses: gs1 and gs2, in the receptor binding domain; and gs8, in a region implicated in post-binding cell fusion. Mutants were tested for their ability to infect rodent cells expressing 4 CAT-1 receptor variants. Three mutants (Mo-gs1, Mo-gs2, and Fr-gs1) infect NIH 3T3 and rat XC cells, but are severely restricted in Mus dunni cells and Lec8, a Chinese hamster cell line susceptible to ecotropic virus. This restriction is reproduced in ferret cells expressing M. dunni dCAT-1, but not in cells expressing NIHmore » 3T3 mCAT-1. Virus binding assays, pseudotype assays, and the use of glycosylation inhibitors further suggest that restriction is primarily due to receptor polymorphism and, in M. dunni cells, to glycosylation of cellular proteins. Virus envelope glycan size or type does not affect infectivity. Thus, host range variation due to N-glycan deletion is receptor variant-specific, cell-specific, virus type-specific, and glycan site-specific.« less

  9. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Su-Chang; Lo, Yu-Chih; Wu, Hao

    2010-08-23

    MyD88, IRAK4 and IRAK2 are critical signalling mediators of the TLR/IL1-R superfamily. Here we report the crystal structure of the MyD88-IRAK4-IRAK2 death domain (DD) complex, which surprisingly reveals a left-handed helical oligomer that consists of 6 MyD88, 4 IRAK4 and 4 IRAK2 DDs. Assembly of this helical signalling tower is hierarchical, in which MyD88 recruits IRAK4 and the MyD88-IRAK4 complex recruits the IRAK4 substrates IRAK2 or the related IRAK1. Formation of these Myddosome complexes brings the kinase domains of IRAKs into proximity for phosphorylation and activation. Composite binding sites are required for recruitment of the individual DDs in the complex,more » which are confirmed by mutagenesis and previously identified signalling mutations. Specificities in Myddosome formation are dictated by both molecular complementarity and correspondence of surface electrostatics. The MyD88-IRAK4-IRAK2 complex provides a template for Toll signalling in Drosophila and an elegant mechanism for versatile assembly and regulation of DD complexes in signal transduction.« less

  10. Characterization of the functional role of Asp141, Asp194, and Asp464 residues in the Mn2+-L-malate binding of pigeon liver malic enzyme.

    PubMed

    Chou, W Y; Chang, H P; Huang, C H; Kuo, C C; Tong, L; Chang, G G

    2000-02-01

    Pigeon liver malic enzyme was inactivated and cleaved at Asp141, Asp194, and Asp464 by the Cu2+-ascorbate system in acidic environment. Site-specific mutagenesis was performed at these putative metal-binding sites. Three point mutants, D141N, D194N, and D464N; three double mutants, D(141,194)N, D(194,464)N, and D(141,464)N; and a triple mutant, D(141,194,464)N; as well as the wild-type malic enzyme (WT) were successfully cloned and expressed in Escherichia coli cells. All recombinant enzymes, except the triple mutant, were purified to apparent homogeneity by successive Q-Sepharose and adenosine-2',5'-bisphosphate-agarose columns. The mutants showed similar apparent Km,NADP values to that of the WT. The Km,Mal value was increased in the D141N and D194N mutants. The Km,Mn value, on the other hand, was increased only in the D141N mutant by 14-fold, corresponding to approximately 1.6 kcal/mol for the Asp141-Mn2+ binding energy. Substrate inhibition by L-malate was only observed in WT, D464N, and D(141,464)N. Initial velocity experiments were performed to derive the various kinetic parameters. The possible interactions between Asp141, Asp194, and Asp464 were analyzed by the double-mutation cycles and triple-mutation box. There are synergistic weakening interactions between Asp141 and Asp194 in the metal binding that impel the D(141,194)N double mutant to an overall specificity constant [k(cat)/(Kd,Mn Km,Mal Km,NADP)] at least four orders of magnitude smaller than the WT value. This difference corresponds to an increase of 6.38 kcal/mol energy barrier for the catalytic efficiency. Mutation at Asp464, on the other hand, has partial additivity on the mutations at Asp141 and Asp194. The overall specificity constants for the double mutants D(194,464)N and D(141,464)N or the triple mutant D(141,194,464)N were decreased by only 10- to 100-fold compared to the WT. These results strongly suggest the involvement of Asp141 in the Mn2+-L-malate binding for the pigeon liver malic enzyme. The Asp194 and Asp464, which may be oxidized by nonspecific binding of Cu2+, are involved in the Mn2+-L-malate binding or catalysis indirectly by modulating the binding affinity of Asp141 with the Mn2+.

  11. Selectivity of recombinant human leukotriene D(4), leukotriene B(4), and lipoxin A(4) receptors with aspirin-triggered 15-epi-LXA(4) and regulation of vascular and inflammatory responses.

    PubMed

    Gronert, K; Martinsson-Niskanen, T; Ravasi, S; Chiang, N; Serhan, C N

    2001-01-01

    Aspirin-triggered lipoxin A(4) (ATL, 15-epi-LXA(4)) and leukotriene D(4) (LTD(4)) possess opposing vascular actions mediated via receptors distinct from the LXA(4) receptor (ALX) that is involved in leukocyte trafficking. Here, we identified these receptors by nucleotide sequencing and demonstrate that LTD(4) receptor (CysLT(1)) is induced in human vascular endothelia by interleukin-1beta. Recombinant CysLT(1) receptor gave stereospecific binding with both [(3)H]-LTD(4) and a novel labeled mimetic of ATL ([(3)H]-ATLa) that was displaced with LTD(4) and ATLa ( approximately IC(50) 0.2 to 0.9 nmol/L), but not with a bioinactive ATL isomer. The clinically used CysLT(1) receptor antagonist, Singulair, showed a lower rank order for competition with [(3)H]-ATLa (IC(50) approximately 8.3 nmol/L). In contrast, LTD(4) was an ineffective competitive ligand for recombinant ALX receptor with [(3)H]-ATLa, and ATLa did not compete for [(3)H]-LTB(4) binding with recombinant LTB(4) receptor. Endogenous murine CysLT(1) receptors also gave specific [(3)H]-ATLa binding that was displaced with essentially equal affinity by LTD(4) or ATLa. Systemic ATLa proved to be a potent inhibitor (>50%) of CysLT(1)-mediated vascular leakage in murine skin (200 microg/kg) in addition to its ability to block polymorphonuclear leukocyte recruitment to dorsal air pouch (4 microg/kg). These results indicate that ATL and LTD(4) bind and compete with equal affinity at CysLT(1), providing a molecular basis for aspirin-triggered LXs serving as a local damper of both vascular CysLT(1) signals as well as ALX receptor-regulated polymorphonuclear leukocyte traffic.

  12. Concerted formation of macromolecular Suppressor–mutator transposition complexes

    PubMed Central

    Raina, Ramesh; Schläppi, Michael; Karunanandaa, Balasulojini; Elhofy, Adam; Fedoroff, Nina

    1998-01-01

    Transposition of the maize Suppressor–mutator (Spm) transposon requires two element-encoded proteins, TnpA and TnpD. Although there are multiple TnpA binding sites near each element end, binding of TnpA to DNA is not cooperative, and the binding affinity is not markedly affected by the number of binding sites per DNA fragment. However, intermolecular complexes form cooperatively between DNA fragments with three or more TnpA binding sites. TnpD, itself not a sequence-specific DNA-binding protein, binds to TnpA and stabilizes the TnpA–DNA complex. The high redundancy of TnpA binding sites at both element ends and the protein–protein interactions between DNA-bound TnpA complexes and between these and TnpD imply a concerted transition of the element from a linear to a protein crosslinked transposition complex within a very narrow protein concentration range. PMID:9671711

  13. Binding of [3H]MSX-2 (3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargylxanthine) to rat striatal membranes--a new, selective antagonist radioligand for A(2A) adenosine receptors.

    PubMed

    Müller, C E; Maurinsh, J; Sauer, R

    2000-01-01

    The present study describes the preparation and binding properties of a new, potent, and selective A(2A) adenosine receptor (AR) antagonist radioligand, [3H]3-(3-hydroxypropyl)-7-methyl-8-(m-methoxystyryl)-1-propargy lxanth ine ([3H]MSX-2). [3H]MSX-2 binding to rat striatal membranes was saturable and reversible. Saturation experiments showed that [3H]MSX-2 labeled a single class of binding sites with high affinity (K(d)=8.0 nM) and limited capacity (B(max)=1.16 fmol.mg(-1) of protein). The presence of 100 microM GTP, or 10 mM magnesium chloride, respectively, had no effect on [3H]MSX-2 binding. AR agonists competed with the binding of 1 nM [3H]MSX-2 with the following order of potency: 5'-N-ethylcarboxamidoadenosine (NECA)>2-[4-(carboxyethyl)phenylethylamino]-5'-N-ethylcarboxami doaden osine (CGS-21680)>2-chloroadenosine (2-CADO)>N(6)-cyclopentyladenosine (CPA). AR antagonists showed the following order of potency: 8-(m-bromostyryl)-3, 7-dimethyl-1-propargylxanthine (BS-DMPX)>1, 3-dipropyl-8-cyclopentylxanthine (DPCPX)>(R)-5, 6-dimethyl-7-(1-phenylethyl)-2-(4-pyridyl)-7H-pyrrolo[2, 3-d]pyrimidine-4-amine (SH-128)>3,7-dimethyl-1-propargylxanthine (DMPX)>caffeine. The K(i) values for antagonists were in accordance with data from binding studies with the agonist radioligand [3H]CGS21680, while agonist affinities were 3-7-fold lower. [3H]MSX-2 is a highly selective A(2A) AR antagonist radioligand exhibiting a selectivity of at least two orders of magnitude versus all other AR subtypes. The new radioligand shows high specific radioactivity (85 Ci/mmol, 3150 GBq/mmol) and acceptable nonspecific binding at rat striatal membranes of 20-30%, at 1 nM.

  14. Biopanning and characterization of peptides with Fe3O4 nanoparticles-binding capability via phage display random peptide library technique.

    PubMed

    You, Fei; Yin, Guangfu; Pu, Ximing; Li, Yucan; Hu, Yang; Huang, Zhongbin; Liao, Xiaoming; Yao, Yadong; Chen, Xianchun

    2016-05-01

    Functionalization of inorganic nanoparticles (NPs) play an important role in biomedical applications. A proper functionalization of NPs can improve biocompatibility, avoid a loss of bioactivity, and further endow NPs with unique performances. Modification with vairous specific binding biomolecules from random biological libraries has been explored. In this work, two 7-mer peptides with sequences of HYIDFRW and TVNFKLY were selected from a phage display random peptide library by using ferromagnetic NPs as targets, and were verified to display strong binding affinity to Fe3O4 NPs. Fourier transform infrared spectrometry, fluorescence microscopy, thermal analysis and X-ray photoelectron spectroscopy confirmed the presence of peptides on the surface of Fe3O4 NPs. Sequence analyses revealed that the probable binding mechanism between the peptide and Fe3O4 NPs might be driven by Pearson hard acid-hard base specific interaction and hydrogen bonds, accompanied with hydrophilic interactions and non-specific electrostatic attractions. The cell viability assay indicated a good cytocompatibility of peptide-bound Fe3O4 NPs. Furthermore, TVNFKLY peptide and an ovarian tumor cell A2780 specific binding peptide (QQTNWSL) were conjugated to afford a liner 14-mer peptide (QQTNWSLTVNFKLY). The binding and targeting studies showed that 14-mer peptide was able to retain both the strong binding ability to Fe3O4 NPs and the specific binding ability to A2780 cells. The results suggested that the Fe3O4-binding peptides would be of great potential in the functionalization of Fe3O4 NPs for the tumor-targeted drug delivery and magnetic hyperthermia. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Functional Roles of the Non-Catalytic Calcium-Binding Sites in the N-Terminal Domain of Human Peptidylarginine Deiminase 4

    PubMed Central

    Liu, Yi-Liang; Tsai, I-Chen; Chang, Chia-Wei; Liao, Ya-Fan; Liu, Guang-Yaw; Hung, Hui-Chih

    2013-01-01

    This study investigated the functional roles of the N-terminal Ca2+ ion-binding sites, in terms of enzyme catalysis and stability, of peptidylarginine deiminase 4 (PAD4). Amino acid residues located in the N-terminal Ca2+-binding site of PAD4 were mutated to disrupt the binding of Ca2+ ions. Kinetic data suggest that Asp155, Asp157 and Asp179, which directly coordinate Ca3 and Ca4, are essential for catalysis in PAD4. For D155A, D157A and D179A, the k cat/K m,BAEE values were 0.02, 0.63 and 0.01 s−1mM−1 (20.8 s−1mM−1 for WT), respectively. Asn153 and Asp176 are directly coordinated with Ca3 and indirectly coordinated with Ca5 via a water molecule. However, N153A displayed low enzymatic activity with a k cat value of 0.3 s−1 (13.3 s−1 for wild-type), whereas D176A retained some catalytic power with a k cat of 9.7 s−1. Asp168 is the direct ligand for Ca5, and Ca5 coordination by Glu252 is mediated by two water molecules. However, mutation of these two residues to Ala did not cause a reduction in the k cat/K m,BAEE values, which indicates that the binding of Ca5 may not be required for PAD4 enzymatic activity. The possible conformational changes of these PAD4 mutants were examined. Thermal stability analysis of the PAD4 mutants in the absence or presence of Ca2+ indicated that the conformational stability of the enzyme is highly dependent on Ca2+ ions. In addition, the results of urea-induced denaturation for the N153, D155, D157 and D179 series mutants further suggest that the binding of Ca2+ ions in the N-terminal Ca2+-binding site stabilizes the overall conformational stability of PAD4. Therefore, our data strongly suggest that the N-terminal Ca2+ ions play critical roles in the full activation of the PAD4 enzyme. PMID:23382808

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiberi, M.; Magnan, J.

    The binding characteristics of selective and nonselective opioids have been studied in whole guinea pig spinal cord, using a computer fitting method to analyze the data obtained from saturation and competition studies. The delineation of specific binding sites labeled by the mu-selective opioid (3H)D-Ala2,MePhe4,Gly-ol5-enkephalin (Kd = 2.58 nM, R = 4.52 pmol/g of tissue) and by the delta-selective opioid (3H)D-Pen2, D-Pen5-enkephalin (Kd = 2.02 nM, R = 1.47 pmol/g of tissue) suggests the presence of mu and delta-receptors in the spinal cord tissue. The presence of kappa receptors was probed by the kappa-selective opioid (3H)U69593 (Kd = 3.31 nM, Rmore » = 2.00 pmol/g of tissue). The pharmacological characterization of the sites labeled by (3H)U69593 confirms the assumption that this ligand discriminates kappa receptors in guinea pig spinal cord. The benzomorphan (3H)ethylketazocine labels a population of receptors with one homogeneous affinity state (Kd = 0.65 nM, R = 7.39 pmol/g of tissue). The total binding capacity of this ligand was not different from the sum of the binding capacities of mu, delta-, and kappa-selective ligands. Under mu- and delta-suppressed conditions, (3H)ethylketazocine still binds to receptors with one homogeneous affinity state (Kd = 0.45 nM, R = 1.69 pmol/g of tissue). Competition studies performed against the binding of (3H)ethylketazocine under these experimental conditions reveal that the pharmacological profile of the radiolabeled receptors is similar to the profile of the kappa receptors labeled with (3H)U69593. Saturation studies using the nonselective opioid (3H)bremazocine demonstrate that this ligand binds to spinal cord membranes with heterogeneous affinities (Kd1 = 0.28 nM, R1 = 7.91 pmol/g of tissue; Kd2 = 3.24 nM, R2 = 11.2 pmol/g of tissue).« less

  17. Diarylsulfonamides and their bioisosteres as dual inhibitors of alkaline phosphatase and carbonic anhydrase: Structure activity relationship and molecular modelling studies.

    PubMed

    Al-Rashida, Mariya; Ejaz, Syeda Abida; Ali, Sharafat; Shaukat, Aisha; Hamayoun, Mehwish; Ahmed, Maqsood; Iqbal, Jamshed

    2015-05-15

    The effect of bioisosteric replacement of carboxamide linking group with sulfonamide linking group, on alkaline phosphatase (AP) and carbonic anhydrase (CA) inhibition activity of aromatic benzenesulfonamides was investigated. A series of carboxamide linked aromatic benzenesulfonamides 1a-1c, 2a-2d and their sulfonamide linked bioisosteres 3a-3d, 4a-4d was synthesized and evaluated for inhibitory activity against bovine tissue non-specific alkaline phosphatase (TNAP), intestinal alkaline phosphatase (IAP) and bCA II. A significant increase in CA inhibition activity was observed upon bioisosteric replacement of carboxamide linking group with a sulfonamide group. Some of these compounds were identified as highly potent and selective AP inhibitors. Compounds 1b, 2b, 3d, 4d 5b and 5c were found to be selective bTNAP inhibitors, whereas compounds 1a, 1c, 2a, 2c, 2d, 3a, 3c, 4a, 4b, 4c, 5a were found to be selective bIAP inhibitors. For most active AP inhibitor 3b, detailed kinetic studies indicated a competitive mode of inhibition against tissue non-specific alkaline phosphatase (TNAP) and non-competitive mode of inhibition against intestinal alkaline phosphatase (IAP). Molecular docking studies were carried out to rationalize important binding site interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Mapping of IgE and IgG4 antibody-binding epitopes in Cyn d 1, the major allergen of Bermuda grass pollen.

    PubMed

    Yuan, Han-Chih; Wu, Keh-Gong; Chen, Chun-Jen; Su, Song-Nan; Shen, Horng-Der; Chen, Yann-Jang; Peng, Ho-Jen

    2012-01-01

    Bermuda grass pollen (BGP) is an important seasonal aeroallergen worldwide which induces allergic disorders such as allergic rhinitis, conjunctivitis and asthma. Cyn d 1 is the major allergen of BGP. This study is aimed to map human IgE and IgG(4) antibody-binding sequential epitopes on Cyn d 1 by dot immunoblotting. Synthetic peptides (10-mers; 5 overlapping residues) spanning the full length of Cyn d 1 were used for dot immunoblotting to map human IgE and IgG(1-4) antibody-binding regions with sera from BGP-allergic patients. Synthetic peptides with more overlapping residues were used for further mapping. Essential amino acids in each epitope were examined by single amino acid substitution with alanine. Peptides with sequence polymorphism of epitopes of Cyn d 1 were also synthesized to extrapolate their differences in binding capability. Four major IgE-binding epitopes (peptides 15(-1), 21, 33(-2) and 35(+1), corresponding to amino acids 70-79, 101-110, 159-167 and 172-181) and 5 major IgG(4)-binding epitopes (peptides 15(-1), 30(-2), 33(-2), 35(+1) and 39, corresponding to amino acids 70-79, 144-153, 159-167, 172-181 and 192-200) were identified. They are all located on the surface of the simulated Cyn d 1 molecule, and three of them are major epitopes for both IgE and IgG(4). Their critical amino acids were all characterized. Major epitopes for human IgG(1) to IgG(4) are almost identical. This is the first study to map the sequential epitopes for human IgE and IgG(4) subclasses in Cyn d 1. It will be helpful for future development in immunotherapy and diagnosis. Copyright © 2011 S. Karger AG, Basel.

  19. Acidic Residues in the Hfq Chaperone Increase the Selectivity of sRNA Binding and Annealing.

    PubMed

    Panja, Subrata; Santiago-Frangos, Andrew; Schu, Daniel J; Gottesman, Susan; Woodson, Sarah A

    2015-11-06

    Hfq facilitates gene regulation by small non-coding RNAs (sRNAs), thereby affecting bacterial attributes such as biofilm formation and virulence. Escherichia coli Hfq recognizes specific U-rich and AAN motifs in sRNAs and target mRNAs, after which an arginine patch on the rim promotes base pairing between their complementary sequences. In the cell, Hfq must discriminate between many similar RNAs. Here, we report that acidic amino acids lining the sRNA binding channel between the inner pore and rim of the Hfq hexamer contribute to the selectivity of Hfq's chaperone activity. RNase footprinting, in vitro binding and stopped-flow fluorescence annealing assays showed that alanine substitution of D9, E18 or E37 strengthened RNA interactions with the rim of Hfq and increased annealing of non-specific or U-tailed RNA oligomers. Although the mutants were less able than wild-type Hfq to anneal sRNAs with wild-type rpoS mRNA, the D9A mutation bypassed recruitment of Hfq to an (AAN)4 motif in rpoS, both in vitro and in vivo. These results suggest that acidic residues normally modulate access of RNAs to the arginine patch. We propose that this selectivity limits indiscriminate target selection by E. coli Hfq and enforces binding modes that favor genuine sRNA and mRNA pairs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Crystal Structure of the Neutralizing Llama VHH D7 and Its Mode of HIV-1 gp120 Interaction

    PubMed Central

    Hinz, Andreas; Lutje Hulsik, David; Forsman, Anna; Koh, Willie Wee-Lee; Belrhali, Hassan; Gorlani, Andrea; de Haard, Hans; Weiss, Robin A.; Verrips, Theo; Weissenhorn, Winfried

    2010-01-01

    HIV-1 entry into host cells is mediated by the sequential binding of the envelope glycoprotein gp120 to CD4 and a chemokine receptor. Antibodies binding to epitopes overlapping the CD4-binding site on gp120 are potent inhibitors of HIV entry, such as the llama heavy chain antibody fragment VHH D7, which has cross-clade neutralizing properties and competes with CD4 and mAb b12 for high affinity binding to gp120. We report the crystal structure of the D7 VHH at 1.5 Å resolution, which reveals the molecular details of the complementarity determining regions (CDR) and substantial flexibility of CDR3 that could facilitate an induced fit interaction with gp120. Structural comparison of CDRs from other CD4 binding site antibodies suggests diverse modes of interaction. Mutational analysis identified CDR3 as a key component of gp120 interaction as determined by surface plasmon resonance. A decrease in affinity is directly coupled to the neutralization efficiency since mutations that decrease gp120 interaction increase the IC50 required for HIV-1 IIIB neutralization. Thus the structural study identifies the long CDR3 of D7 as the key determinant of interaction and HIV-1 neutralization. Furthermore, our data confirm that the structural plasticity of gp120 can accommodate multiple modes of antibody binding within the CD4 binding site. PMID:20463957

  1. Comprehensive Analysis of Contributions from Protein Conformational Stability and Major Histocompatibility Complex Class II-Peptide Binding Affinity to CD4+ Epitope Immunogenicity in HIV-1 Envelope Glycoprotein

    PubMed Central

    Li, Tingfeng; Steede, N. Kalaya; Nguyen, Hong-Nam P.; Freytag, Lucy C.; McLachlan, James B.; Mettu, Ramgopal R.; Robinson, James E.

    2014-01-01

    ABSTRACT Helper T-cell epitope dominance in human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is not adequately explained by peptide binding to major histocompatibility complex (MHC) proteins. Antigen processing potentially influences epitope dominance, but few, if any, studies have attempted to reconcile the influences of antigen processing and MHC protein binding for all helper T-cell epitopes of an antigen. Epitopes of gp120 identified in both humans and mice occur on the C-terminal flanks of flexible segments that are likely to be proteolytic cleavage sites. In this study, the influence of gp120 conformation on the dominance pattern in gp120 from HIV strain 89.6 was examined in CBA mice, whose MHC class II protein has one of the most well defined peptide-binding preferences. Only one of six dominant epitopes contained the most conserved element of the I-Ak binding motif, an aspartic acid. Destabilization of the gp120 conformation by deletion of single disulfide bonds preferentially enhanced responses to the cryptic I-Ak motif-containing sequences, as reported by T-cell proliferation or cytokine secretion. Conversely, inclusion of CpG in the adjuvant with gp120 enhanced responses to the dominant CD4+ T-cell epitopes. The gp120 destabilization affected secretion of some cytokines more than others, suggesting that antigen conformation could modulate T-cell functions through mechanisms of antigen processing. IMPORTANCE CD4+ helper T cells play an essential role in protection against HIV and other pathogens. Thus, the sites of helper T-cell recognition, the dominant epitopes, are targets for vaccine design; and the corresponding T cells may provide markers for monitoring infection and immunity. However, T-cell epitopes are difficult to identify and predict. It is also unclear whether CD4+ T cells specific for one epitope are more protective than T cells specific for other epitopes. This work shows that the three-dimensional (3D) structure of an HIV protein partially determines which epitopes are dominant, most likely by controlling the breakdown of HIV into peptides. Moreover, some types of signals from CD4+ T cells are affected by the HIV protein 3D structure; and thus the protectiveness of a particular peptide vaccine could be related to its location in the 3D structure. PMID:24920818

  2. Guanine nucleotide regulatory protein co-purifies with the D/sub 2/-dopamine receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Senogles, S.E.; Caron, M.G.

    1986-05-01

    The D/sub 2/-dopamine receptor from bovine anterior pituitary was purified approx.1000 fold by affinity chromatography on CMOS-Sepharose. Reconstitution of the affinity-purified receptor into phospholipid vesicles revealed the presence of high and low affinity agonist sites as detected by N-n-propylnorapomorphine (NPA) competition experiments with /sup 3/H-spiperone. High affinity agonist binding could be converted to the low affinity form by guanine nucleotides, indicating the presence of an endogenous guanine nucleotide binding protein (N protein) in the affinity-purified D/sub 2/ receptor preparations. Furthermore, this preparation contained an agonist-sensitive GTPase activity which was stimulated 2-3 fold over basal by 10 ..mu..M NPA. /sup 35/S-GTP..gamma..Smore » binding to these preparations revealed a stoichiometry of 0.4-0.7 mole N protein/mole receptor, suggesting the N protein may be specifically coupled with the purified D/sub 2/-dopamine receptor and not present as a contaminant. Pertussis toxin treatment of the affinity purified receptor preparations prevented high affinity agonist binding, as well as agonist stimulation of the GTPase activity, presumably by inactivating the associated N protein. Pertussis toxin lead to the ADP-ribosylation of a protein of 39-40K on SDS-PAGE. These findings indicate that an endogenous N protein, N/sub i/ or N/sub o/, co-purifies with the D/sub 2/-dopamine receptor which may reflect a precoupling of this receptor with an N protein within the membranes.« less

  3. Dipetalodipin, a Novel Multifunctional Salivary Lipocalin That Inhibits Platelet Aggregation, Vasoconstriction, and Angiogenesis through Unique Binding Specificity for TXA2, PGF2α, and 15(S)-HETE*

    PubMed Central

    Assumpção, Teresa C. F.; Alvarenga, Patricia H.; Ribeiro, José M. C.; Andersen, John F.; Francischetti, Ivo M. B.

    2010-01-01

    Dipetalodipin (DPTL) is an 18 kDa protein cloned from salivary glands of the triatomine Dipetalogaster maxima. DPTL belongs to the lipocalin superfamily and has strong sequence similarity to pallidipin, a salivary inhibitor of collagen-induced platelet aggregation. DPTL expressed in Escherichia coli was found to inhibit platelet aggregation by collagen, U-46619, or arachidonic acid without affecting aggregation induced by ADP, convulxin, PMA, and ristocetin. An assay based on incubation of DPTL with small molecules (e.g. prostanoids, leukotrienes, lipids, biogenic amines) followed by chromatography, mass spectrometry, and isothermal titration calorimetry showed that DPTL binds with high affinity to carbocyclic TXA2, TXA2 mimetic (U-46619), TXB2, PGH2 mimetic (U-51605), PGD2, PGJ2, and PGF2α. It also interacts with 15(S)-HETE, being the first lipocalin described to date to bind to a derivative of 15-lipoxygenase. Binding was not observed to other prostaglandins (e.g. PGE1, PGE2, 8-iso-PGF2α, prostacyclin), leukotrienes (e.g,. LTB4, LTC4, LTD4, LTE4), HETEs (e.g. 5(S)-HETE, 12(S)-HETE, 20-HETE), lipids (e.g. arachidonic acid, PAF), and biogenic amines (e.g. ADP, serotonin, epinephrine, norepinephrine, histamine). Consistent with its binding specificity, DPTL prevents contraction of rat uterus stimulated by PGF2α and induces relaxation of aorta previously contracted with U-46619. Moreover, it inhibits angiogenesis mediated by 15(S)-HETE and did not enhance inhibition of collagen-induced platelet aggregation by SQ29548 (TXA2 antagonist) and indomethacin. A 3-D model for DPTL and pallidipin is presented that indicates the presence of a conserved Arg39 and Gln135 in the binding pocket of both lipocalins. Results suggest that DPTL blocks platelet aggregation, vasoconstriction, and angiogenesis through binding to distinct eicosanoids involved in inflammation. PMID:20889972

  4. Development of melanoma-targeted polymer micelles by conjugation of a melanocortin 1 receptor (MC1R) specific ligand.

    PubMed

    Barkey, Natalie M; Tafreshi, Narges K; Josan, Jatinder S; De Silva, Channa R; Sill, Kevin N; Hruby, Victor J; Gillies, Robert J; Morse, David L; Vagner, Josef

    2011-12-08

    The incidence of malignant melanoma is rising faster than that of any other cancer in the United States. Because of its high expression on the surface of melanomas, MC1R has been investigated as a target for selective imaging and therapeutic agents against melanoma. Eight ligands were screened against cell lines engineered to overexpress MC1R, MC4R, or MC5R. Of these, compound 1 (4-phenylbutyryl-His-dPhe-Arg-Trp-NH(2)) exhibited high (0.2 nM) binding affinity for MC1R and low (high nanomolar) affinities for MC4R and MC5R. Functionalization of the ligand at the C-terminus with an alkyne for use in Cu-catalyzed click chemistry was shown not to affect the binding affinity. Finally, formation of the targeted polymer, as well as the targeted micelle formulation, also resulted in constructs with low nanomolar binding affinity.

  5. Molecular docking performance evaluated on the D3R Grand Challenge 2015 drug-like ligand datasets

    NASA Astrophysics Data System (ADS)

    Selwa, Edithe; Martiny, Virginie Y.; Iorga, Bogdan I.

    2016-09-01

    The D3R Grand Challenge 2015 was focused on two protein targets: Heat Shock Protein 90 (HSP90) and Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4). We used a protocol involving a preliminary analysis of the available data in PDB and PubChem BioAssay, and then a docking/scoring step using more computationally demanding parameters that were required to provide more reliable predictions. We could evidence that different docking software and scoring functions can behave differently on individual ligand datasets, and that the flexibility of specific binding site residues is a crucial element to provide good predictions.

  6. Perfringolysin O Theta Toxin as a Tool to Monitor the Distribution and Inhomogeneity of Cholesterol in Cellular Membranes

    PubMed Central

    Maekawa, Masashi; Yang, Yanbo; Fairn, Gregory D.

    2016-01-01

    Cholesterol is an essential structural component of cellular membranes in eukaryotes. Cholesterol in the exofacial leaflet of the plasma membrane is thought to form membrane nanodomains with sphingolipids and specific proteins. Additionally, cholesterol is found in the intracellular membranes of endosomes and has crucial functions in membrane trafficking. Furthermore, cellular cholesterol homeostasis and regulation of de novo synthesis rely on transport via both vesicular and non-vesicular pathways. Thus, the ability to visualize and detect intracellular cholesterol, especially in the plasma membrane, is critical to understanding the complex biology associated with cholesterol and the nanodomains. Perfringolysin O (PFO) theta toxin is one of the toxins secreted by the anaerobic bacteria Clostridium perfringens and this toxin forms pores in the plasma membrane that causes cell lysis. It is well understood that PFO recognizes and binds to cholesterol in the exofacial leaflets of the plasma membrane, and domain 4 of PFO (D4) is sufficient for the binding of cholesterol. Recent studies have taken advantage of this high-affinity cholesterol-binding domain to create a variety of cholesterol biosensors by using a non-toxic PFO or the D4 in isolation. This review highlights the characteristics and usefulness of, and the principal findings related to, these PFO-derived cholesterol biosensors. PMID:27005662

  7. Perfringolysin O Theta Toxin as a Tool to Monitor the Distribution and Inhomogeneity of Cholesterol in Cellular Membranes.

    PubMed

    Maekawa, Masashi; Yang, Yanbo; Fairn, Gregory D

    2016-03-08

    Cholesterol is an essential structural component of cellular membranes in eukaryotes. Cholesterol in the exofacial leaflet of the plasma membrane is thought to form membrane nanodomains with sphingolipids and specific proteins. Additionally, cholesterol is found in the intracellular membranes of endosomes and has crucial functions in membrane trafficking. Furthermore, cellular cholesterol homeostasis and regulation of de novo synthesis rely on transport via both vesicular and non-vesicular pathways. Thus, the ability to visualize and detect intracellular cholesterol, especially in the plasma membrane, is critical to understanding the complex biology associated with cholesterol and the nanodomains. Perfringolysin O (PFO) theta toxin is one of the toxins secreted by the anaerobic bacteria Clostridium perfringens and this toxin forms pores in the plasma membrane that causes cell lysis. It is well understood that PFO recognizes and binds to cholesterol in the exofacial leaflets of the plasma membrane, and domain 4 of PFO (D4) is sufficient for the binding of cholesterol. Recent studies have taken advantage of this high-affinity cholesterol-binding domain to create a variety of cholesterol biosensors by using a non-toxic PFO or the D4 in isolation. This review highlights the characteristics and usefulness of, and the principal findings related to, these PFO-derived cholesterol biosensors.

  8. Surface expression of heterogeneous nuclear RNA binding protein M4 on Kupffer cell relates to its function as a carcinoembryonic antigen receptor.

    PubMed

    Bajenova, Olga; Stolper, Eugenia; Gapon, Svetlana; Sundina, Natalia; Zimmer, Regis; Thomas, Peter

    2003-11-15

    Elevated concentrations of carcinoembryonic antigen (CEA) in the blood are associated with the development of hepatic metastases from colorectal cancers. Clearance of circulating CEA occurs through endocytosis by liver macrophages, Kupffer cells. Previously we identified heterogeneous nuclear ribonucleoproteins M4 (hnRNP M4) as a receptor (CEAR) for CEA. HnRNP M4 has two isoform proteins (p80, p76), the full-length hnRNP M4 (CEARL) and a truncated form (CEARS) with a deletion of 39 amino acids between RNA binding domains 1 and 2, generated by alternative splicing. The present study was undertaken to clarify any isoform-specific differences in terms of their function as CEA receptor and localization. We develop anti-CEAR isoform-specific antibodies and show that both CEAR splicing isoforms are expressed on the surface of Kupffer cells and can function as CEA receptor. Alternatively, in P388D1 macrophages CEARS protein has nuclear and CEARL has cytoplasmic localization. In MIP101 colon cancer and HeLa cells the CEARS protein is localized to the nucleus and CEARL to the cytoplasm. These findings imply that different functions are assigned to CEAR isoforms depending on the cell type. The search of 39 amino acids deleted region against the Prosite data base revealed the presence of N-myristylation signal PGGPGMITIP that may be involved in protein targeting to the plasma membrane. Overall, this report demonstrates that the cellular distribution, level of expression, and relative amount of CEARL and CEARS isoforms determine specificity for CEA binding and the expression of alternative spliced forms of CEAR is regulated in a tissue-specific manner.

  9. Structural modeling of glucanase-substrate complexes suggests a conserved tyrosine is involved in carbohydrate recognition in plant 1,3-1,4-β- d-glucanases

    NASA Astrophysics Data System (ADS)

    Tsai, Li-Chu; Chen, Yi-Ning; Shyur, Lie-Fen

    2008-12-01

    Glycosyl hydrolase family 16 (GHF16) truncated Fibrobacter succinogenes (TFs) and GHF17 barley 1,3-1,4-β- d-glucanases (β-glucanases) possess different structural folds, β-jellyroll and (β/α)8, although they both catalyze the specific hydrolysis of β-1,4 glycosidic bonds adjacent to β-1,3 linkages in mixed β-1,3 and β-1,4 β- d-glucans or lichenan. Differences in the active site region residues of TFs β-glucanase and barley β-glucanase create binding site topographies that require different substrate conformations. In contrast to barley β-glucanase, TFs β-glucanase possesses a unique and compact active site. The structural analysis results suggest that the tyrosine residue, which is conserved in all known 1,3-1,4-β- d-glucanases, is involved in the recognition of mixed β-1,3 and β-1,4 linked polysaccharide.

  10. Streptococcus mutans SpaP binds to RadD of Fusobacterium nucleatum ssp. polymorphum.

    PubMed

    Guo, Lihong; Shokeen, Bhumika; He, Xuesong; Shi, Wenyuan; Lux, Renate

    2017-10-01

    Adhesin-mediated bacterial interspecies interactions are important elements in oral biofilm formation. They often occur on a species-specific level, which could determine health or disease association of a biofilm community. Among the key players involved in these processes are the ubiquitous fusobacteria that have been recognized for their ability to interact with numerous different binding partners. Fusobacterial interactions with Streptococcus mutans, an important oral cariogenic pathogen, have previously been described but most studies focused on binding to non-mutans streptococci and specific cognate adhesin pairs remain to be identified. Here, we demonstrated differential binding of oral fusobacteria to S. mutans. Screening of existing mutant derivatives indicated SpaP as the major S. mutans adhesin specific for binding to Fusobacterium nucleatum ssp. polymorphum but none of the other oral fusobacteria tested. We inactivated RadD, a known adhesin of F. nucleatum ssp. nucleatum for interaction with a number of gram-positive species, in F. nucleatum ssp. polymorphum and used a Lactococcus lactis heterologous SpaP expression system to demonstrate SpaP interaction with RadD of F. nucleatum ssp. polymorphum. This is a novel function for SpaP, which has mainly been characterized as an adhesin for binding to host proteins including salivary glycoproteins. In conclusion, we describe an additional role for SpaP as adhesin in interspecies adherence with RadD-SpaP as the interacting adhesin pair for binding between S. mutans and F. nucleatum ssp. polymorphum. Furthermore, S. mutans attachment to oral fusobacteria appears to involve species- and subspecies-dependent adhesin interactions. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Insulin, Central Dopamine D2 Receptors, and Monetary Reward Discounting in Obesity

    PubMed Central

    Eisenstein, Sarah A.; Gredysa, Danuta M.; Antenor–Dorsey, Jo Ann; Green, Leonard; Arbeláez, Ana Maria; Koller, Jonathan M.; Black, Kevin J.; Perlmutter, Joel S.; Moerlein, Stephen M.; Hershey, Tamara

    2015-01-01

    Animal research finds that insulin regulates dopamine signaling and reward behavior, but similar research in humans is lacking. We investigated whether individual differences in body mass index, percent body fat, pancreatic β-cell function, and dopamine D2 receptor binding were related to reward discounting in obese and non-obese adult men and women. Obese (n = 27; body mass index>30) and non-obese (n = 20; body mass index<30) adults were assessed for percent body fat with dual-energy X-ray absorptiometry and for β-cell function using disposition index. Choice of larger, but delayed or less certain, monetary rewards relative to immediate, certain smaller monetary rewards was measured using delayed and probabilistic reward discounting tasks. Positron emission tomography using a non-displaceable D2-specific radioligand, [11C](N-methyl)benperidol quantified striatal D2 receptor binding. Groups differed in body mass index, percent body fat, and disposition index, but not in striatal D2 receptor specific binding or reward discounting. Higher percent body fat in non-obese women related to preference for a smaller, certain reward over a larger, less likely one (greater probabilistic discounting). Lower β-cell function in the total sample and lower insulin sensitivity in obese related to stronger preference for an immediate and smaller monetary reward over delayed receipt of a larger one (greater delay discounting). In obese adults, higher striatal D2 receptor binding related to greater delay discounting. Interestingly, striatal D2 receptor binding was not significantly related to body mass index, percent body fat, or β-cell function in either group. Our findings indicate that individual differences in percent body fat, β-cell function, and striatal D2 receptor binding may each contribute to altered reward discounting behavior in non-obese and obese individuals. These results raise interesting questions about whether and how striatal D2 receptor binding and metabolic factors, including β-cell function, interact to affect reward discounting in humans. PMID:26192187

  12. Insulin, Central Dopamine D2 Receptors, and Monetary Reward Discounting in Obesity.

    PubMed

    Eisenstein, Sarah A; Gredysa, Danuta M; Antenor-Dorsey, Jo Ann; Green, Leonard; Arbeláez, Ana Maria; Koller, Jonathan M; Black, Kevin J; Perlmutter, Joel S; Moerlein, Stephen M; Hershey, Tamara

    2015-01-01

    Animal research finds that insulin regulates dopamine signaling and reward behavior, but similar research in humans is lacking. We investigated whether individual differences in body mass index, percent body fat, pancreatic β-cell function, and dopamine D2 receptor binding were related to reward discounting in obese and non-obese adult men and women. Obese (n = 27; body mass index>30) and non-obese (n = 20; body mass index<30) adults were assessed for percent body fat with dual-energy X-ray absorptiometry and for β-cell function using disposition index. Choice of larger, but delayed or less certain, monetary rewards relative to immediate, certain smaller monetary rewards was measured using delayed and probabilistic reward discounting tasks. Positron emission tomography using a non-displaceable D2-specific radioligand, [11C](N-methyl)benperidol quantified striatal D2 receptor binding. Groups differed in body mass index, percent body fat, and disposition index, but not in striatal D2 receptor specific binding or reward discounting. Higher percent body fat in non-obese women related to preference for a smaller, certain reward over a larger, less likely one (greater probabilistic discounting). Lower β-cell function in the total sample and lower insulin sensitivity in obese related to stronger preference for an immediate and smaller monetary reward over delayed receipt of a larger one (greater delay discounting). In obese adults, higher striatal D2 receptor binding related to greater delay discounting. Interestingly, striatal D2 receptor binding was not significantly related to body mass index, percent body fat, or β-cell function in either group. Our findings indicate that individual differences in percent body fat, β-cell function, and striatal D2 receptor binding may each contribute to altered reward discounting behavior in non-obese and obese individuals. These results raise interesting questions about whether and how striatal D2 receptor binding and metabolic factors, including β-cell function, interact to affect reward discounting in humans.

  13. Triggering the Electrolyte-Gated Organic Field-Effect Transistor output characteristics through gate functionalization using diazonium chemistry: Application to biodetection of 2,4-dichlorophenoxyacetic acid.

    PubMed

    Nguyen, T T K; Nguyen, T N; Anquetin, G; Reisberg, S; Noël, V; Mattana, G; Touzeau, J; Barbault, F; Pham, M C; Piro, B

    2018-08-15

    We investigated an Electrolyte-Gated Organic Field-Effect transistor based on poly(N-alkyldiketopyrrolo-pyrrole dithienylthieno[3,2-b]thiophene) as organic semiconductor whose gate electrode was functionalized by electrografting a functional diazonium salt capable to bind an antibody specific to 2,4-dichlorophenoxyacetic acid (2,4-D), an herbicide well-known to be a soil and water pollutant. Molecular docking computations were performed to design the functional diazonium salt to rationalize the antibody capture on the gate surface. Sensing of 2,4-D was performed through a displacement immunoassay. The limit of detection was estimated at around 2.5 fM. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Structure and binding energy of the H2S dimer at the CCSD(T) complete basis set limit.

    PubMed

    Lemke, Kono H

    2017-06-21

    This study presents results for the binding energy and geometry of the H 2 S dimer which have been computed using Møller-Plesset perturbation theory (MP2, MP4) and coupled cluster (CCSD, CCSD(T)) calculations with basis sets up to aug-cc-pV5Z. Estimates of D e , E ZPE , D o , and dimer geometry have been obtained at each level of theory by taking advantage of the systematic convergence behavior toward the complete basis set (CBS) limit. The CBS limit binding energy values of D e are 1.91 (MP2), 1.75 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD[T]). The most accurate values for the equilibrium S-S distance r SS (without counterpoise correction) are 4.080 (MP2/aug-cc-pV5Z), 4.131 (MP4/aug-cc-pVQZ), 4.225 (CCSD/aug-cc-pVQZ), and 4.146 Å (CCSD(T)/aug-cc-pVQZ). This study also evaluates the effect of counterpoise correction on the H 2 S dimer geometry and binding energy. As regards the structure of (H 2 S) 2 , MPn, CCSD, and CCSD(T) level values of r SS , obtained by performing geometry optimizations on the counterpoise-corrected potential energy surface, converge systematically to CBS limit values of 4.099 (MP2), 4.146 (MP4), 4.233 (CCSD), and 4.167 Å (CCSD(T)). The corresponding CBS limit values of the equilibrium binding energy D e are 1.88 (MP2), 1.76 (MP4), 1.41 (CCSD), and 1.69 kcal/mol (CCSD(T)), the latter in excellent agreement with the measured binding energy value of 1.68 ± 0.02 kcal/mol reported by Ciaffoni et al. [Appl. Phys. B 92, 627 (2008)]. Combining CBS electronic binding energies D e with E ZPE predicted by CCSD(T) vibrational second-order perturbation theory calculations yields D o = 1.08 kcal/mol, which is around 0.6 kcal/mol smaller than the measured value of 1.7 ± 0.3 kcal/mol. Overall, the results presented here demonstrate that the application of high level calculations, in particular CCSD(T), in combination with augmented correlation consistent basis sets provides valuable insight into the structure and energetics of the hydrogen sulfide dimer.

  15. Functional evaluation of carbohydrate-centred glycoclusters by enzyme-linked lectin assay: ligands for concanavalin A.

    PubMed

    Köhn, Maja; Benito, Juan M; Ortiz Mellet, Carmen; Lindhorst, Thisbe K; García Fernández, José M

    2004-06-07

    The affinities of the mannose-specific lectin concanavalin A (Con A) towards D-glucose-centred mannosyl clusters differing in the anomeric configuration of the monosaccharide core, nature of the bridging functional groups and valency, have been measured by a competitive enzyme-linked lectin assay. Pentavalent thioether-linked ligands (5 and 7) were prepared by radical addition of 2,3,4,6-tetra-O-acetyl-1-thio-alpha-D-mannopyranose to the corresponding penta-O-allyl-alpha- or -beta-D-glucopyranose, followed by deacetylation. The distinct reactivity of the anomeric position in the D-glucose scaffold was exploited in the preparation of a tetravalent cluster (10) that keeps a reactive aglyconic group for further manipulation, including incorporation of a reporter group or attachment to a solid support. Hydroboration of the double bonds in the penta-O-allyl-alpha-D-glucopyranose derivative and replacement of the hydroxy groups with amine moieties gave a suitable precursor for the preparation of pentavalent and 15-valent mannosides through the thiourea-bridging reaction (17 and 20, respectively). The diastereomeric 1-thiomannose-coated clusters 5 and 7 were demonstrated to be potent ligands for Con A, with IC(50) values for the inhibition of the Con A-yeast mannan association indicative of 6.4- and 5.5-fold increases in binding affinity (valency-corrected values), respectively, relative to the value for methyl alpha-D-mannopyranoside. The tetravalent cluster 10 exhibited a valency-corrected relative lectin-binding potency virtually identical to that of the homologous pentavalent mannoside 7. In sharp contrast, replacement of the 1-thiomannose wedges of 5 with alpha-D-mannopyranosylthioureido units (17) virtually abolished any multivalent or statistic effects, with a dramatic decrease of binding affinity. The 15-valent ligand 20, possessing classical O-glycosidic linkages, exhibited a twofold increase in lectin affinity relative to the penta-O-(thioglycoside) 5; it is less efficient based on the number of mannose units. The results illustrate the potential of carbohydrates as polyfunctional platforms for glycocluster construction and underline the importance of careful design of the overall architecture in optimising glycocluster recognition by specific lectins.

  16. Measuring Positive Cooperativity Using the Direct ESI-MS Assay. Cholera Toxin B Subunit Homopentamer Binding to GM1 Pentasaccharide

    NASA Astrophysics Data System (ADS)

    Lin, Hong; Kitova, Elena N.; Klassen, John S.

    2014-01-01

    Direct electrospray ionization mass spectrometry (ESI-MS) assay was used to investigate the stepwise binding of the GM1 pentasaccharide β- D-Gal p-(1→3)-β-D-Gal pNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β- D-Gal p-(1→4)-β-D-Glc p (GM1os) to the cholera toxin B subunit homopentamer (CTB5) and to establish conclusively whether GM1os binding is cooperative. Apparent association constants were measured for the stepwise addition of one to five GM1os to CTB5 at pH 6.9 and 22 °C. The intrinsic association constant, which was established from the apparent association constant for the addition of a single GM1os to CTB5, was found to be (3.2 ± 0.2) × 106 M-1. This is in reasonable agreement with the reported value of (6.4 ± 0.3) × 106 M-1, which was measured at pH 7.4 and 25 °C using isothermal titration calorimetry (ITC). Analysis of the apparent association constants provides direct and unambiguous evidence that GM1os binding exhibits small positive cooperativity. Binding was found to be sensitive to the number of ligand-bound nearest neighbor subunits, with the affinities enhanced by a factor of 1.7 and 2.9 when binding occurs next to one or two ligand-bound subunits, respectively. These findings, which provide quantitative support for the binding model proposed by Homans and coworkers [14], highlight the unique strengths of the direct ESI-MS assay for measuring cooperative ligand binding.

  17. Stereocontrolled dopamine receptor binding and subtype selectivity of clebopride analogues synthesized from aspartic acid.

    PubMed

    Einsiedel, Jürgen; Weber, Klaus; Thomas, Christoph; Lehmann, Thomas; Hübner, Harald; Gmeiner, Peter

    2003-10-06

    Employing the achiral 4-aminopiperidine derivative clebopride as a lead compound, chiral analogues were developed displaying dopamine receptor binding profiles that proved to be strongly dependent on the stereochemistry. Compared to the D1 receptor, the test compounds showed high selectivity for the D2-like subtypes including D2(long), D2(short), D3 and D4. The highest D4 and D3 affinities were observed for the cis-3-amino-4-methylpyrrolidines 3e and the enantiomer ent3e resulting in K(i) values of 0.23 and 1.8 nM, respectively. The benzamides of type 3 and 5 were synthesized in enantiopure form starting from (S)-aspartic acid and its unnatural optical antipode.

  18. On the mechanism of peptidoglycan binding and cleavage by the endo-specific lytic transglycosylase MltE from Escherichia coli.

    PubMed

    Fibriansah, Guntur; Gliubich, Francesca I; Thunnissen, Andy-Mark W H

    2012-11-13

    The lytic transglycosylase MltE from Escherichia coli is a periplasmic, outer membrane-attached enzyme that cleaves the β-1,4-glycosidic bonds between N-acetylmuramic acid and N-acetylglucosamine residues in the cell wall peptidoglycan, producing 1,6-anhydromuropeptides. Here we report three crystal structures of MltE: in a substrate-free state, in a binary complex with chitopentaose, and in a ternary complex with the glycopeptide inhibitor bulgecin A and the murodipeptide N-acetylglucosaminyl-N-acetylmuramyl-l-Ala-d-Glu. The substrate-bound structures allowed a detailed analysis of the saccharide-binding interactions in six subsites of the peptidoglycan-binding groove (subsites -4 to +2) and, combined with site-directed mutagenesis analysis, confirmed the role of Glu64 as catalytic acid/base. The structures permitted the precise modeling of a short glycan strand of eight saccharide residues, providing evidence for two additional subsites (+3 and +4) and revealing the productive conformational state of the substrate at subsites -1 and +1, where the glycosidic bond is cleaved. Full accessibility of the peptidoglycan-binding groove and preferential binding of an N-acetylmuramic acid residue in a (4)C(1) chair conformation at subsite +2 explain why MltE shows only endo- and no exo-specific activity toward glycan strands. The results further indicate that catalysis of glycosidic bond cleavage by MltE proceeds via distortion toward a sofa-like conformation of the N-acetylmuramic acid sugar ring at subsite -1 and by anchimeric assistance of the sugar's N-acetyl group, as shown previously for the lytic transglycosylases Slt70 and MltB.

  19. Occurrence and characterization of plum pox virus strain D isolates from European Russia and Crimea.

    PubMed

    Chirkov, Sergei; Ivanov, Peter; Sheveleva, Anna; Kudryavtseva, Anna; Prikhodko, Yuri; Mitrofanova, Irina

    2016-02-01

    Numerous plum pox virus (PPV) strain D isolates have been found in geographically distant regions of European Russia and the Crimean peninsula on different stone fruit hosts. Phylogenetic analysis of their partial and complete genomes suggests multiple introductions of PPV-D into Russia. Distinct natural isolates from Prunus tomentosa were found to bear unique amino acid substitutions in the N-terminus of the coat protein (CP) that may contribute to the adaptation of PPV-D to this host. Serological analysis using the PPV-D-specific monoclonal antibody 4DG5 provided further evidence that mutations at positions 58 and 59 of the CP are crucial for antibody binding.

  20. Pharmacological characterization of extracellular acidification rate responses in human D2(long), D3 and D4.4 receptors expressed in Chinese hamster ovary cells

    PubMed Central

    Coldwell, M C; Boyfield, I; Brown, A M; Stemp, G; Middlemiss, D N

    1999-01-01

    This study characterized pharmacologically the functional responses to agonists at human dopamine D2(long) (hD2), D3 (hD3) and D4.4 (hD4) zreceptors separately expressed in cloned cells using the cytosensor microphysiometer. Dopaminergic receptor agonists caused increases in extracellular acidification rate in adherent Chinese hamster ovary (CHO) clones expressing hD2, hD3 or hD4 receptors. Acidification rate responses to agonists in other cell lines expressing these receptors were smaller than those in adherent CHO cells. The time courses and maximum increases in acidification rate of the agonist responses in adherent CHO cells were different between the three dopamine receptor clones. Responses were blocked by pretreatment of cells with pertussis toxin or amiloride analogues. Most agonists had full intrinsic activity at each of the dopamine receptor subtypes, as compared to quinpirole, however both enantiomers of UH-232 and (−)3-PPP were partial agonists in this assay system. The functional potency of full agonists at each of the three receptors expressed in CHO cells was either higher than, or similar to, the apparent inhibition constants (Ki) determined in [125I]-iodosulpride competition binding studies. Functional selectivities of the agonists were less than radioligand binding selectivities. The rank orders of agonist potencies and selectivities were similar, but not identical, to the rank orders of radioligand binding affinities and selectivities. The dopamine receptor antagonists, iodosulpride and clozapine, had no effect on basal acidification rates but inhibited acidification responses in CHO cells to quinpirole in an apparently competitive manner. Antagonist potencies closely matched their radioligand binding affinities in these cells. PMID:10455259

  1. Development of two fluorine-18 labeled PET radioligands targeting PDE10A and in vivo PET evaluation in nonhuman primates.

    PubMed

    Stepanov, Vladimir; Takano, Akihiro; Nakao, Ryuji; Amini, Nahid; Miura, Shotaro; Hasui, Tomoaki; Kimura, Haruhide; Taniguchi, Takahiko; Halldin, Christer

    2018-02-01

    Phosphodiesterase 10A (PDE10A) is a member of the PDE enzyme family that degrades cyclic adenosine and guanosine monophosphates (cAMP and cGMP). Based on the successful development of [ 11 C]T-773 as PDE10A positron emission tomography (PET) radioligand, in this study our aim was to develop and evaluate fluorine-18 analogs of [ 11 C]T-773. [ 18 F]FM-T-773-d 2 and [ 18 F]FE-T-773-d 4 were synthesized from the same precursor used for 11 C-labeling of T-773 in a two-step approach via 18 F-fluoromethylation and 18 F-fluoroethylation, respectively, using corresponding deuterated synthons. A total of 12 PET measurements were performed in seven non-human primates. First, baseline PET measurements were performed using High Resolution Research Tomograph system with both [ 18 F]FM-T-773-d 2 and [ 18 F]FE-T-773-d 4 ; the uptake in whole brain and separate brain regions, as well as the specific binding and tissue ratio between putamen and cerebellum, was examined. Second, baseline and pretreatment PET measurements using MP-10 as the blocker were performed for [ 18 F]FM-T-773-d 2 including arterial blood sampling with radiometabolite analysis in four NHPs. Both [ 18 F]FM-T-773-d 2 and [ 18 F]FE-T-773-d 4 were successfully radiolabeled with an average molar activity of 293 ± 114 GBq/μmol (n=8) for [ 18 F]FM-T-773-d 2 and 209 ± 26 GBq/μmol (n=4) for [ 18 F]FE-T-773-d 4 , and a radiochemical yield of 10% (EOB, n=12, range 3%-16%). Both radioligands displayed high brain uptake (~5.5% of injected radioactivity for [ 18 F]FM-T-773-d 2 and ~3.5% for [ 18 F]FE-T-773-d 4 at the peak) and a fast washout. Specific binding reached maximum within 30 min for [ 18 F]FM-T-773-d 2 and after approximately 45 min for [ 18 F]FE-T-773-d 4 . [ 18 F]FM-T-773-d 2 data fitted well with kinetic compartment models. BP ND values obtained indirectly through compartment models were correlated well with those obtained by SRTM. BP ND calculated with SRTM was 1.0-1.7 in the putamen. The occupancy with 1.8 mg/kg of MP-10 was approximately 60%. [ 18 F]FM-T-773-d 2 and [ 18 F]FE-T-773-d 4 were developed as fluorine-18 PET radioligands for PDE10A, with the [ 18 F]FM-T-773-d 2 being the more promising PET radioligand warranting further evaluation. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Tetanus Neurotoxin Neutralizing Antibodies Screened from a Human Immune scFv Antibody Phage Display Library.

    PubMed

    Wang, Han; Yu, Rui; Fang, Ting; Yu, Ting; Chi, Xiangyang; Zhang, Xiaopeng; Liu, Shuling; Fu, Ling; Yu, Changming; Chen, Wei

    2016-09-11

    Tetanus neurotoxin (TeNT) produced by Clostridium tetani is one of the most poisonous protein substances. Neutralizing antibodies against TeNT can effectively prevent and cure toxicosis. Using purified Hc fragments of TeNT (TeNT-Hc) as an antigen, three specific neutralizing antibody clones recognizing different epitopes were selected from a human immune scFv antibody phage display library. The three antibodies (2-7G, 2-2D, and S-4-7H) can effectively inhibit the binding between TeNT-Hc and differentiated PC-12 cells in vitro. Moreover, 2-7G inhibited TeNT-Hc binding to the receptor via carbohydrate-binding sites of the W pocket while 2-2D and S-4-7H inhibited binding of the R pocket. Although no single mAb completely protected mice from the toxin, they could both prolong survival when challenged with 20 LD50s (50% of the lethal dose) of TeNT. When used together, the mAbs completely neutralized 1000 LD50s/mg Ab, indicating their high neutralizing potency in vivo. Antibodies recognizing different carbohydrate-binding pockets could have higher synergistic toxin neutralization activities than those that recognize the same pockets. These results could lead to further production of neutralizing antibody drugs against TeNT and indicate that using TeNT-Hc as an antigen for screening human antibodies for TeNT intoxication therapy from human immune antibody library was convenient and effective.

  3. Fixation of Oligosaccharides to a Surface May Increase the Susceptibility to Human Parainfluenza Virus 1, 2, or 3 Hemagglutinin-Neuraminidase▿†

    PubMed Central

    Tappert, Mary M.; Smith, David F.; Air, Gillian M.

    2011-01-01

    The hemagglutinin-neuraminidase (HN) protein of human parainfluenza viruses (hPIVs) both binds (H) and cleaves (N) oligosaccharides that contain N-acetylneuraminic acid (Neu5Ac). H is thought to correspond to receptor binding and N to receptor-destroying activity. At present, N′s role in infection remains unclear: does it destroy only receptors, or are there other targets? We previously demonstrated that hPIV1 and 3 HNs bind to oligosaccharides containing the motif Neu5Acα2-3Galβ1-4GlcNAc (M. Amonsen, D. F. Smith, R. D. Cummings, and G. M. Air, J. Virol. 81:8341–8345, 2007). In the present study, we tested the binding specificity of hPIV2 on the Consortium for Functional Glycomics' glycan array and found that hPIV2 binds to oligosaccharides containing the same motif. We determined the specificities of N on red blood cells, soluble small-molecule and glycoprotein substrates, and the glycan array and compared them to the specificities of H. hPIV2 and -3, but not hPIV1, cleaved their ligands on red blood cells. hPIV1, -2, and -3 cleaved their NeuAcα2-3 ligands on the glycan array; hPIV2 and -3 also cleaved NeuAcα2-6 ligands bound by influenza A virus. While all three HNs exhibited similar affinities for all cleavable soluble substrates, their activities were 5- to 10-fold higher on small molecules than on glycoproteins. In addition, some soluble glycoproteins were not cleaved, despite containing oligosaccharides that were cleaved on the glycan array. We conclude that the susceptibility of an oligosaccharide substrate to N increases when the substrate is fixed to a surface. These findings suggest that HN may undergo a conformational change that activates N upon receptor binding at a cell surface. PMID:21917945

  4. Binding of novel fullerene inhibitors to HIV-1 protease: insight through molecular dynamics and molecular mechanics Poisson-Boltzmann surface area calculations

    NASA Astrophysics Data System (ADS)

    Tzoupis, Haralambos; Leonis, Georgios; Durdagi, Serdar; Mouchlis, Varnavas; Mavromoustakos, Thomas; Papadopoulos, Manthos G.

    2011-10-01

    The objectives of this study include the design of a series of novel fullerene-based inhibitors for HIV-1 protease (HIV-1 PR), by employing two strategies that can also be applied to the design of inhibitors for any other target. Additionally, the interactions which contribute to the observed exceptionally high binding free energies were analyzed. In particular, we investigated: (1) hydrogen bonding (H-bond) interactions between specific fullerene derivatives and the protease, (2) the regions of HIV-1 PR that play a significant role in binding, (3) protease changes upon binding and (4) various contributions to the binding free energy, in order to identify the most significant of them. This study has been performed by employing a docking technique, two 3D-QSAR models, molecular dynamics (MD) simulations and the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method. Our computed binding free energies are in satisfactory agreement with the experimental results. The suitability of specific fullerene derivatives as drug candidates was further enhanced, after ADMET (absorption, distribution, metabolism, excretion and toxicity) properties have been estimated to be promising. The outcomes of this study revealed important protein-ligand interaction patterns that may lead towards the development of novel, potent HIV-1 PR inhibitors.

  5. Nickel binding and [NiFe]-hydrogenase maturation by the metallochaperone SlyD with a single metal-binding site in Escherichia coli.

    PubMed

    Kaluarachchi, Harini; Altenstein, Matthias; Sugumar, Sonia R; Balbach, Jochen; Zamble, Deborah B; Haupt, Caroline

    2012-03-16

    SlyD (sensitive to lysis D) is a nickel metallochaperone involved in the maturation of [NiFe]-hydrogenases in Escherichia coli (E. coli) and specifically contributes to the nickel delivery step during enzyme biosynthesis. This protein contains a C-terminal metal-binding domain that is rich in potential metal-binding residues that enable SlyD to bind multiple nickel ions with high affinity. The SlyD homolog from Thermus thermophilus does not contain the extended cysteine- and histidine-rich C-terminal tail of the E. coli protein, yet it binds a single Ni(II) ion tightly. To investigate whether a single metal-binding motif can functionally replace the full-length domain, we generated a truncation of E. coli SlyD, SlyD155. Ni(II) binding to SlyD155 was investigated by using isothermal titration calorimetry, NMR and electrospray ionization mass spectrometry measurements. This in vitro characterization revealed that SlyD155 contains a single metal-binding motif with high affinity for nickel. Structural characterization by X-ray absorption spectroscopy and NMR indicated that nickel was coordinated in an octahedral geometry with at least two histidines as ligands. Heterodimerization between SlyD and another hydrogenase accessory protein, HypB, is essential for optimal hydrogenase maturation and was confirmed for SlyD155 via cross-linking experiments and NMR titrations, as were conserved chaperone and peptidyl-prolyl isomerase activities. Although these properties of SlyD are preserved in the truncated version, it does not modulate nickel binding to HypB in vitro or contribute to the maturation of [NiFe]-hydrogenases in vivo, unlike the full-length protein. This study highlights the importance of the unusual metal-binding domain of E. coli SlyD in hydrogenase biogenesis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Characterization of cogon grass (Imperata cylindrica) pollen extract and preliminary analysis of grass group 1, 4 and 5 homologues using monoclonal antibodies to Phleum pratense.

    PubMed

    Kumar, L; Sridhara, S; Singh, B P; Gangal, S V

    1998-11-01

    Previous studies have established the role of Imperata cylindrica (Ic) pollen in type I allergic disorders. However, no systematic information is available on the allergen composition of Ic pollen extract. To characterize the IgE-binding proteins of Ic pollen extract and to detect the presence of grass group 1, 4 and 5 allergen homologues, if any. Pollen extract of Ic was analyzed by in vivo and in vitro procedures such as intradermal tests (ID), enzyme-linked immunosorbent assay (ELISA), ELISA-inhibition, thin-layer isoelectric focusing (TLIEF), sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. Dot blot assay was carried out to check the presence of well-known group 1, 4, and 5 allergen homologues in Ic pollen extract. Out of 303 respiratory allergies patients skin-tested, 27 showed sensitivity to Ic pollen extract. Specific IgE levels were elevated in all 15 serum samples tested. The extract prepared for this study was found to be highly potent since it required only 400 ng of homologous proteins for 50% inhibition of binding in ELISA inhibition assays. TLIEF of Ic pollen extract showed 44 silver-stained bands (pI 3.5-7.0) while SDS-PAGE resolved it into 24 Coomassie-Brilliant-Blue-stained bands (MW 100-10 kD). Immunoblotting with individual patient sera recognized 7 major IgE-binding bands (MW 85, 62, 57, 43, 40, 28 and 16 kD) in Ic pollen extract. A panel of monoclonal antibodies, specific to group 1, 4 and 5 allergens from Phleum pratense pollen extract identified group 5 and group 4 homologues in Ic pollen extract. Ic pollen extract was characterized for the protein profile by TLIEF and SDS-PAGE. IgE reactivity was determined by ELISA and immunoblot. Monoclonal antibodies to group 5 and group 4 allergens reacted weakly showing that this pollen contains group 5 and group 4 homologous allergens.

  7. Structure-Function Analysis of the Drosophila melanogaster Caudal Transcription Factor Provides Insights into Core Promoter-preferential Activation.

    PubMed

    Shir-Shapira, Hila; Sharabany, Julia; Filderman, Matan; Ideses, Diana; Ovadia-Shochat, Avital; Mannervik, Mattias; Juven-Gershon, Tamar

    2015-07-10

    Regulation of RNA polymerase II transcription is critical for the proper development, differentiation, and growth of an organism. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters encompass the RNA start site and consist of functional elements such as the TATA box, initiator, and downstream core promoter element (DPE), which confer specific properties to the core promoter. We have previously discovered that Drosophila Caudal, which is a master regulator of genes involved in development and differentiation, is a DPE-specific transcriptional activator. Here, we show that the mouse Caudal-related homeobox (Cdx) proteins (mCdx1, mCdx2, and mCdx4) are also preferential core promoter transcriptional activators. To elucidate the mechanism that enables Caudal to preferentially activate DPE transcription, we performed structure-function analysis. Using a systematic series of deletion mutants (all containing the intact DNA-binding homeodomain) we discovered that the C-terminal region of Caudal contributes to the preferential activation of the fushi tarazu (ftz) Caudal target gene. Furthermore, the region containing both the homeodomain and the C terminus of Caudal was sufficient to confer core promoter-preferential activation to the heterologous GAL4 DNA-binding domain. Importantly, we discovered that Drosophila CREB-binding protein (dCBP) is a co-activator for Caudal-regulated activation of ftz. Strikingly, dCBP conferred the ability to preferentially activate the DPE-dependent ftz reporter to mini-Caudal proteins that were unable to preferentially activate ftz transcription themselves. Taken together, it is the unique combination of dCBP and Caudal that enables the co-activation of ftz in a core promoter-preferential manner. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. DNA Recognition by a σ 54 Transcriptional Activator from Aquifex aeolicus

    DOE PAGES

    Vidangos, Natasha K.; Heideker, Johanna; Lyubimov, Artem; ...

    2014-08-23

    Transcription initiation by bacterial σ 54-polymerase requires the action of a transcriptional activator protein. Activators bind sequence-specifically upstream of the transcription initiation site via a DNA-binding domain. The structurally characterized DNA-binding domains from activators all belong to the Factor for Inversion Stimulation (Fis) family of helix-turn-helix DNA-binding proteins. We report here structures of the free and DNA-bound forms of the DNA-binding domain of NtrC4 (4DBD) from Aquifex aeolicus, a member of the NtrC family of σ 54 activators. Two NtrC4 binding sites were identified upstream (-145 and -85 base pairs) from the start of the lpxC gene, which is responsiblemore » for the first committed step in Lipid A biosynthesis. This is the first experimental evidence for σ 54 regulation in lpxC expression. 4DBD was crystallized both without DNA and in complex with the -145 binding site. The structures, together with biochemical data, indicate that NtrC4 binds to DNA in a manner that is similar to that of its close homologue, Fis. Ultimately, the greater sequence specificity for the binding of 4DBD relative to Fis seems to arise from a larger number of base specific contacts contributing to affinity than for Fis.« less

  9. 1,25-Dihydroxycholecalciferol (calcitriol) modifies uptake and release of 25-hydroxycholecalciferol in skeletal muscle cells in culture.

    PubMed

    Abboud, M; Rybchyn, M S; Ning, Y J; Brennan-Speranza, T C; Girgis, C M; Gunton, J E; Fraser, D R; Mason, R S

    2018-03-01

    The major circulating metabolite of vitamin D 3 , 25-hydroxycholecalciferol [25(OH)D], has a remarkably long half-life in blood for a (seco)steroid. Data from our studies and others are consistent with the hypothesis that there is a role for skeletal muscle in the maintenance of vitamin D status. Muscle cells internalise vitamin D-binding protein (DBP) from the circulation by means of a megalin/cubilin plasma membrane transport mechanism. The internalised DBP molecules then bind to actin and thus provide an intracellular array of high affinity binding sites for its specific ligand, 25(OH)D. There is evidence that the residence time for DBP in muscle cells is short and that it undergoes proteolytic degradation, releasing bound 25(OH)D. The processes of internalisation of DBP and its intracellular residence time, bound to actin, appear to be regulated. To explore whether 1,25-dihydroxycholecalciferol (calcitriol) has any effect on this process, cell cultures of myotubes and primary skeletal muscle fibers were incubated in a medium containing 10 -10 M calcitriol but with no added DBP. After 3h pre-incubation with calcitriol, the net uptake of 25(OH)D by these calcitriol-treated cells over a further 4h was significantly greater than that in vehicle-treated control cells. This was accompanied by a significant increase in intracellular DBP protein. However, after 16h of pre-incubation with calcitriol, the muscle cells showed a significantly depressed ability to accumulate 25(OH)D compared to control cells over a further 4 or 16hours. These effects of pre-incubation with calcitriol were abolished in fibers from VDR-knockout mice. The effect was also abolished by the addition of 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS), which inhibits chloride channel opening. Incubation of C2 myotubes with calcitriol also significantly reduced retention of previously accumulated 25(OH)D after 4 or 8h. It is concluded from these in vitro studies that calcitriol can modify the DBP-dependent uptake and release of 25(OH)D by skeletal muscle cells in a manner that suggests some inducible change in the function of these cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Mouse Dux is myotoxic and shares partial functional homology with its human paralog DUX4

    PubMed Central

    Eidahl, Jocelyn O.; Giesige, Carlee R.; Domire, Jacqueline S.; Wallace, Lindsay M.; Fowler, Allison M.; Guckes, Susan M.; Garwick-Coppens, Sara E.; Labhart, Paul

    2016-01-01

    Abstract D4Z4 repeats are present in at least 11 different mammalian species, including humans and mice. Each repeat contains an open reading frame encoding a double homeodomain (DUX) family transcription factor. Aberrant expression of the D4Z4 ORF called DUX4 is associated with the pathogenesis of Facioscapulohumeral muscular dystrophy (FSHD). DUX4 is toxic to numerous cell types of different species, and over-expression caused dysmorphism and developmental arrest in frogs and zebrafish, embryonic lethality in transgenic mice, and lesions in mouse muscle. Because DUX4 is a primate-specific gene, questions have been raised about the biological relevance of over-expressing it in non-primate models, as DUX4 toxicity could be related to non-specific cellular stress induced by over-expressing a DUX family transcription factor in organisms that did not co-evolve its regulated transcriptional networks. We assessed toxic phenotypes of DUX family genes, including DUX4, DUX1, DUX5, DUXA, DUX4-s, Dux-bl and mouse Dux. We found that DUX proteins were not universally toxic, and only the mouse Dux gene caused similar toxic phenotypes as human DUX4. Using RNA-seq, we found that 80% of genes upregulated by Dux were similarly increased in DUX4-expressing cells. Moreover, 43% of Dux-responsive genes contained ChIP-seq binding sites for both Dux and DUX4, and both proteins had similar consensus binding site sequences. These results suggested DUX4 and Dux may regulate some common pathways, and despite diverging from a common progenitor under different selective pressures for millions of years, the two genes maintain partial functional homology. PMID:28173143

  11. Investigation of the effect of mutations of rat albumin on the binding affinity to the alpha(4)beta(1) integrin antagonist, 4-[1-[3-chloro-4-[N'-(2-methylphenyl)ureido]phenylacetyl]-(4S)-fluoro-(2S)-pyrrolidine-2-yl]methoxybenzoic acid (D01-4582), using recombinant rat albumins.

    PubMed

    Ito, Takashi; Takahashi, Masayuki; Okazaki, Osamu; Sugiyama, Yuichi

    2010-08-02

    The authors reported previously rat strain differences in plasma protein binding to alpha(4)beta(1) antagonist D01-4582, resulting in a great strain difference in its pharmacokinetics (19-fold differences in the AUC). The previous study suggested that amino acid changes of V238L and/or T293I in albumin reduced the binding affinity. In order to elucidate the relative significance of these mutations, an expression system was developed to obtain recombinant rat albumins (rRSA) using Pichia pastoris, followed by a binding analysis of four rRSAs by the ultracentrifugation method. The equilibrium dissociation constant (K(d)) of wild-type rRSA was 210 nM, while K(d) of rRSA that carried both V238L and T293I mutations was 974 nM. K(d) of artificial rRSA that carried only V238L was 426 nM, and K(d) of artificial rRSA that carried only T293I was 191 nM. These results suggested that V238L would be more important in the alteration of K(d). However, since none of the single mutations were sufficient to explain the reduction of affinity, the possibility was also suggested that T293I interacted cooperatively to reduce the binding affinity of rat albumin to D01-4582. Further investigation is required to elucidate the mechanism of the possible cooperative interaction.

  12. Drosophila myeloid leukemia factor acts with DREF to activate the JNK signaling pathway

    PubMed Central

    Yanai, H; Yoshioka, Y; Yoshida, H; Nakao, Y; Plessis, A; Yamaguchi, M

    2014-01-01

    Drosophila myelodysplasia/myeloid leukemia factor (dMLF), a homolog of human MLF1, oncogene was first identified by yeast two-hybrid screen using the DNA replication-related element-binding factor (DREF) as bait. DREF is a transcription factor that regulates proliferation-related genes in Drosophila. It is known that overexpression of dMLF in the wing imaginal discs through the engrailed-GAL4 driver causes an atrophied wing phenotype associated with the induction of apoptosis. However, the precise mechanisms involved have yet to be clarified. Here, we found the atrophied phenotype to be suppressed by loss-of-function mutation of Drosophila Jun N-terminal kinase (JNK), basket (bsk). Overexpression of dMLF induced ectopic JNK activation in the wing disc monitored with the puckered-lacZ reporter line, resulting in induction of apoptosis. The DREF-binding consensus DRE sequence could be shown to exist in the bsk promoter. Chromatin immunoprecipitation assays in S2 cells with anti-dMLF IgG and quantitative real-time PCR revealed that dMLF binds specifically to the bsk promoter region containing the DRE sequence. Furthermore, using a transient luciferase expression assay, we provide evidence that knockdown of dMLF reduced bsk gene promoter activity in S2 cells. Finally, we show that dMLF interacts with DREF in vivo. Altogether, these data indicate that dMLF acts with DREF to stimulate the bsk promoter and consequently activates the JNK pathway to promote apoptosis. PMID:24752236

  13. Drosophila myeloid leukemia factor acts with DREF to activate the JNK signaling pathway.

    PubMed

    Yanai, H; Yoshioka, Y; Yoshida, H; Nakao, Y; Plessis, A; Yamaguchi, M

    2014-04-21

    Drosophila myelodysplasia/myeloid leukemia factor (dMLF), a homolog of human MLF1, oncogene was first identified by yeast two-hybrid screen using the DNA replication-related element-binding factor (DREF) as bait. DREF is a transcription factor that regulates proliferation-related genes in Drosophila. It is known that overexpression of dMLF in the wing imaginal discs through the engrailed-GAL4 driver causes an atrophied wing phenotype associated with the induction of apoptosis. However, the precise mechanisms involved have yet to be clarified. Here, we found the atrophied phenotype to be suppressed by loss-of-function mutation of Drosophila Jun N-terminal kinase (JNK), basket (bsk). Overexpression of dMLF induced ectopic JNK activation in the wing disc monitored with the puckered-lacZ reporter line, resulting in induction of apoptosis. The DREF-binding consensus DRE sequence could be shown to exist in the bsk promoter. Chromatin immunoprecipitation assays in S2 cells with anti-dMLF IgG and quantitative real-time PCR revealed that dMLF binds specifically to the bsk promoter region containing the DRE sequence. Furthermore, using a transient luciferase expression assay, we provide evidence that knockdown of dMLF reduced bsk gene promoter activity in S2 cells. Finally, we show that dMLF interacts with DREF in vivo. Altogether, these data indicate that dMLF acts with DREF to stimulate the bsk promoter and consequently activates the JNK pathway to promote apoptosis.

  14. Structural analysis of Arabidopsis thaliana nucleoside diphosphate kinase-2 for phytochrome-mediated light signaling.

    PubMed

    Im, Young Jun; Kim, Jeong-Il; Shen, Yu; Na, Young; Han, Yun-Jeong; Kim, Seong-Hee; Song, Pill-Soon; Eom, Soo Hyun

    2004-10-22

    In plants, nucleoside diphosphate kinases (NDPKs) play a key role in the signaling of both stress and light. However, little is known about the structural elements involved in their function. Of the three NDPKs (NDPK1-NDPK3) expressed in Arabidopsis thaliana, NDPK2 is involved in phytochrome-mediated signal transduction. In this study, we found that the binding of dNDP or NTP to NDPK2 strengthens the interaction significantly between activated phytochrome and NDPK2. To better understand the structural basis of the phytochrome-NDPK2 interaction, we determined the X-ray structures of NDPK1, NDPK2, and dGTP-bound NDPK2 from A.thaliana at 1.8A, 2.6A, and 2.4A, respectively. The structures showed that nucleotide binding caused a slight conformational change in NDPK2 that was confined to helices alphaA and alpha2. This suggests that the presence of nucleotide in the active site and/or the evoked conformational change contributes to the recognition of NDPK2 by activated phytochrome. In vitro binding assays showed that only NDPK2 interacted specifically with the phytochrome and the C-terminal regulatory domain of phytochrome is involved in the interaction. A domain swap experiment between NDPK1 and NDPK2 showed that the variable C-terminal region of NDPK2 is important for the activation by phytochrome. The structure of Arabidopsis NDPK1 and NDPK2 showed that the isoforms share common electrostatic surfaces at the nucleotide-binding site, but the variable C-terminal regions have distinct electrostatic charge distributions. These findings suggest that the binding of nucleotide to NDPK2 plays a regulatory role in phytochrome signaling and that the C-terminal extension of NDPK2 provides a potential binding surface for the specific interaction with phytochromes.

  15. Crystal structures of Salmonella typhimurium propionate kinase and its complex with Ap4A: evidence for a novel Ap4A synthetic activity.

    PubMed

    Simanshu, Dhirendra K; Savithri, H S; Murthy, M R N

    2008-03-01

    Propionate kinase catalyses the last step in the anaerobic breakdown of L-threonine to propionate in which propionyl phosphate and ADP are converted to propionate and ATP. Here we report the structures of propionate kinase (TdcD) in the native form as well as in complex with diadenosine 5',5'''-P1,P4-tetraphosphate (Ap4A) by X-ray crystallography. Structure of TdcD obtained after cocrystallization with ATP showed Ap4A bound to the active site pocket suggesting the presence of Ap4A synthetic activity in TdcD. Binding of Ap4A to the enzyme was confirmed by the structure determination of a TdcD-Ap4A complex obtained after cocrystallization of TdcD with commercially available Ap4A. Mass spectroscopic studies provided further evidence for the formation of Ap4A by propionate kinase in the presence of ATP. In the TdcD-Ap4A complex structure, Ap4A is present in an extended conformation with one adenosine moiety present in the nucleotide binding site and other in the proposed propionate binding site. These observations tend to support direct in-line transfer of phosphoryl group during the kinase reaction. 2007 Wiley-Liss, Inc.

  16. Large-scale turnover of functional transcription factor bindingsites in Drosophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, Alan M.; Pollard, Daniel A.; Nix, David A.

    2006-07-14

    The gain and loss of functional transcription-factor bindingsites has been proposed as a major source of evolutionary change incis-regulatory DNA and gene expression. We have developed an evolutionarymodel to study binding site turnover that uses multiple sequencealignments to assess the evolutionary constraint on individual bindingsites, and to map gain and loss events along a phylogenetic tree. Weapply this model to study the evolutionary dynamics of binding sites ofthe Drosophila melanogaster transcription factor Zeste, using genome-widein vivo (ChIP-chip) binding data to identify functional Zeste bindingsites, and the genome sequences of D. melanogaster, D. simulans, D.erecta and D. yakuba to study theirmore » evolution. We estimate that more than5 percent of functional Zeste binding sites in D. melanogaster weregained along the D. melanogaster lineage or lost along one of the otherlineages. We find that Zeste bound regions have a reduced rate of bindingsite loss and an increased rate of binding site gain relative to flankingsequences. Finally, we show that binding site gains and losses areasymmetrically distributed with respect to D. melanogaster, consistentwith lineage-specific acquisition and loss of Zeste-responsive regulatoryelements.« less

  17. Lectin-mediated binding and sialoglycans of porcine surfactant protein D synergistically neutralize influenza A virus.

    PubMed

    van Eijk, Martin; Rynkiewicz, Michael J; Khatri, Kshitij; Leymarie, Nancy; Zaia, Joseph; White, Mitchell R; Hartshorn, Kevan L; Cafarella, Tanya R; Van Die, Irma; Hessing, Martin; Seaton, Barbara A; Haagsman, Henk P

    2018-05-16

    Innate immunity is critical in the early containment of influenza A virus (IAV) infection, and surfactant protein D (SP-D) plays a crucial role in the pulmonary defense against IAV. In pigs, which are important intermediate hosts during the generation of pandemic IAVs, SP-D uses its unique carbohydrate recognition domain (CRD) to interact with IAV. An N-linked CRD-glycosylation provides interactions with the sialic acid binding site of IAV, and a tripeptide loop at the lectin binding site facilitates enhanced interactions with IAV glycans. Here, to investigate both mechanisms of IAV neutralization in greater detail, we produced an N-glycosylated neckCRD fragment of porcine SP-D (RpNCRD) in HEK293 cells. X-ray crystallography disclosed that the N-glycan did not alter the CRD backbone structure including the lectin site conformation, but revealed a potential second non-lectin binding site for glycans. IAV hemagglutination inhibition, IAV aggregation and neutralization of IAV infection studies showed that RpNCRD, unlike the human analogue RhNCRD, exhibits potent neutralizing activity against pandemic A/Aichi/68 (H3N2), enabled by both porcine-specific structural features of its CRD. MS analysis revealed an N-glycan site-occupancy of >98% at Asn303 of RpNCRD with complex-type, heterogeneously branched and predominantly α(2,3) sialylated oligosaccharides. Glycan binding array data characterized both RpNCRD and RhNCRD as mannose-type lectins. RpNCRD also bound LewisY structures whereas RhNCRD bound polylactosamine-containing glycans. Presence of the N-glycan in the CRD increases the glycan binding specificity of RpNCRD. These insights increase our understanding of porcine-specific innate defense against pandemic IAV and may inform  the design of  recombinant SP-D-based antiviral drugs. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Structural basis of unique ligand specificity of KAI2-like protein from parasitic weed Striga hermonthica.

    PubMed

    Xu, Yuqun; Miyakawa, Takuya; Nakamura, Hidemitsu; Nakamura, Akira; Imamura, Yusaku; Asami, Tadao; Tanokura, Masaru

    2016-08-10

    The perception of two plant germination inducers, karrikins and strigolactones, are mediated by the proteins KAI2 and D14. Recently, KAI2-type proteins from parasitic weeds, which are possibly related to seed germination induced by strigolactone, have been classified into three clades characterized by different responses to karrikin/strigolactone. Here we characterized a karrikin-binding protein in Striga (ShKAI2iB) that belongs to intermediate-evolving KAI2 and provided the structural bases for its karrikin-binding specificity. Binding assays showed that ShKAI2iB bound karrikins but not strigolactone, differing from other KAI2 and D14. The crystal structures of ShKAI2iB and ShKAI2iB-karrikin complex revealed obvious structural differences in a helix located at the entry of its ligand-binding cavity. This results in a smaller closed pocket, which is also the major cause of ShKAI2iB's specificity of binding karrikin. Our structural study also revealed that a few non-conserved amino acids led to the distinct ligand-binding profile of ShKAI2iB, suggesting that the evolution of KAI2 resulted in its diverse functions.

  19. A single mutation in Taiwanese H6N1 influenza hemagglutinin switches binding to human-type receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Vries, Robert P.; Tzarum, Netanel; Peng, Wenjie

    In June 2013, the first case of human infection with an avian H6N1 virus was reported in a Taiwanese woman. Although this was a single non-fatal case, the virus continues to circulate in Taiwanese poultry. As with any emerging avian virus that infects humans, there is concern that acquisition of human-type receptor specificity could enable transmission in the human population. Despite mutations in the receptor-binding pocket of the human H6N1 isolate, it has retained avian-type (NeuAcα2-3Gal) receptor specificity. However, we show here that a single nucleotide substitution, resulting in a change from Gly to Asp at position 225 (G225D), completelymore » switches specificity to human-type (NeuAcα2-6Gal) receptors. Significantly, G225D H6 loses binding to chicken trachea epithelium and is now able to bind to human tracheal tissue. Structural analysis reveals that Asp225 directly interacts with the penultimate Gal of the human-type receptor, stabilizing human receptor binding.« less

  20. Interaction of SR 33557 with skeletal muscle calcium channel blocker receptors in the baboon: characterization of its binding sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sol-Rolland, J.; Joseph, M.; Rinaldi-Carmona, M.

    1991-05-01

    A procedure for the isolation of primate skeletal microsomal membranes was initiated. Membranes exhibited specific enzymatic markers such as 5'-nucleotidase, Ca{sup 2}{sup +},Mg({sup 2}{sup +})-adenosine triphosphatase and an ATP-dependent calcium uptake. Baboon skeletal microsomes bound specifically with high-affinity potent Ca{sup 2}{sup +} channel blockers such as dihydropyridine, phenylalkylamine and benzothiazepine derivatives. Scatchard analysis of equilibrium binding assays with ({sup 3}H)(+)-PN 200-110, ({sup 3}H)(-)-desmethoxyverapamil (( {sup 3}H)(-)-D888) and ({sup 3}H)-d-cis-dilitiazem were consistent with a single class of binding sites for the three radioligands. The pharmacological profile of SR 33557, an original compound with calcium antagonist properties, was investigated using radioligand bindingmore » studies. SR 33557 totally inhibited the specific binding of the three main classes of Ca{sup 2}{sup +} channel effectors and interacted allosterically with them. In addition, SR 33557 bound with high affinity to a homogeneous population of binding sites in baboon skeletal muscle.« less

  1. The analysis with monoclonal antibodies of the heterogeneity of Ia glycoproteins on chronic lymphocytic leukemia cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Addis, J.B.; Tisch, R.; Falk, J.A.

    The accessible Ia molecules on the surface of chronic lymphocytic leukemia (CLL) cells were quantitated in the cellular radioimmunoassay with saturating concentrations of monoclonal antibodies. Monoclonal antibody 21w4, like DA/2 antibody, recognizes monomorphic determinants of human Ia antigens.The amount of 21w4 or DA/2 bound to CLL cells derived from eight patients (varying from 2.6 to 13.9 x 10/sup 5/ molecules/cell) appears to be the maximum observed with the antibodies studied. Two other antibodies, 18d5 and 21r5, although also directed at nonpolymorphic Ia determinants, bind differentially to CLL cells, with the ratios of 21r5/21w4 and 18d5/21w4 varying from 0.08 to 0.90.more » Sequential immunoprecipitation studies have established that the four epitopes 18d5, 21r5, 21w4, and DA/2 were present on the same molecules. All Ia molecules express 21w4 and DA/2 epitopes, whereas only certain subsets of Ia molecules carry accessible 21r5 or 18d5 epitopes. Competitive binding studies showed that the epitopes recognized by the four monoclonal antibodies were different. Monoclonal antibodies 21r5 and 21w4 did not inhibit each other's binding. Furthermore, binding of 21w4 to CLL cells potentiated the binding of /sup 125/I-21r5 IgG to the same cells, suggesting that binding of 21w4 antibody induces a conformational change in the molecule that renders 21r5 epitopes more accessible.« less

  2. Functional Targets of the Monogenic Diabetes Transcription Factors HNF-1α and HNF-4α Are Highly Conserved Between Mice and Humans

    PubMed Central

    Boj, Sylvia F.; Servitja, Joan Marc; Martin, David; Rios, Martin; Talianidis, Iannis; Guigo, Roderic; Ferrer, Jorge

    2009-01-01

    OBJECTIVE The evolutionary conservation of transcriptional mechanisms has been widely exploited to understand human biology and disease. Recent findings, however, unexpectedly showed that the transcriptional regulators hepatocyte nuclear factor (HNF)-1α and -4α rarely bind to the same genes in mice and humans, leading to the proposal that tissue-specific transcriptional regulation has undergone extensive divergence in the two species. Such observations have major implications for the use of mouse models to understand HNF-1α– and HNF-4α–deficient diabetes. However, the significance of studies that assess binding without considering regulatory function is poorly understood. RESEARCH DESIGN AND METHODS We compared previously reported mouse and human HNF-1α and HNF-4α binding studies with independent binding experiments. We also integrated binding studies with mouse and human loss-of-function gene expression datasets. RESULTS First, we confirmed the existence of species-specific HNF-1α and -4α binding, yet observed incomplete detection of binding in the different datasets, causing an underestimation of binding conservation. Second, only a minor fraction of HNF-1α– and HNF-4α–bound genes were downregulated in the absence of these regulators. This subset of functional targets did not show evidence for evolutionary divergence of binding or binding sequence motifs. Finally, we observed differences between conserved and species-specific binding properties. For example, conserved binding was more frequently located near transcriptional start sites and was more likely to involve multiple binding events in the same gene. CONCLUSIONS Despite evolutionary changes in binding, essential direct transcriptional functions of HNF-1α and -4α are largely conserved between mice and humans. PMID:19188435

  3. Nitric oxide/cGMP pathway signaling actively down-regulates α4β1-integrin affinity: an unexpected mechanism for inducing cell de-adhesion.

    PubMed

    Chigaev, Alexandre; Smagley, Yelena; Sklar, Larry A

    2011-05-17

    Integrin activation in response to inside-out signaling serves as the basis for rapid leukocyte arrest on endothelium, migration, and mobilization of immune cells. Integrin-dependent adhesion is controlled by the conformational state of the molecule, which is regulated by seven-transmembrane Guanine nucleotide binding Protein-Coupled Receptors (GPCRs). α4β1-integrin (CD49d/CD29, Very Late Antigen-4, VLA-4) is expressed on leukocytes, hematopoietic progenitors, stem cells, hematopoietic cancer cells, and others. VLA-4 conformation is rapidly up-regulated by inside-out signaling through Gαi-coupled GPCRs and down-regulated by Gαs-coupled GPCRs. However, other signaling pathways, which include nitric oxide-dependent signaling, have been implicated in the regulation of cell adhesion. The goal of the current report was to study the effect of nitric oxide/cGMP signaling pathway on VLA-4 conformational regulation. Using fluorescent ligand binding to evaluate the integrin activation state on live cells in real-time, we show that several small molecules, which specifically modulate nitric oxide/cGMP signaling pathway, as well as a cell permeable cGMP analog, can rapidly down-modulate binding of a VLA-4 specific ligand on cells pre-activated through three Gαi-coupled receptors: wild type CXCR4, CXCR2 (IL-8RB), and a non-desensitizing mutant of formyl peptide receptor (FPR ΔST). Upon signaling, we detected rapid changes in the ligand dissociation rate. The dissociation rate after inside-out integrin de-activation was similar to the rate for resting cells. In a VLA-4/VCAM-1-specific myeloid cell adhesion system, inhibition of the VLA-4 affinity change by nitric oxide had a statistically significant effect on real-time cell aggregation. We conclude that nitric oxide/cGMP signaling pathway can rapidly down-modulate the affinity state of the VLA-4 binding pocket, especially under the condition of sustained Gαi-coupled GPCR signaling, generated by a non-desensitizing receptor mutant. This suggests a fundamental role of this pathway in de-activation of integrin-dependent cell adhesion.

  4. Current drug treatments targeting dopamine D3 receptor.

    PubMed

    Leggio, Gian Marco; Bucolo, Claudio; Platania, Chiara Bianca Maria; Salomone, Salvatore; Drago, Filippo

    2016-09-01

    Dopamine receptors (DR) have been extensively studied, but only in recent years they became object of investigation to elucidate the specific role of different subtypes (D1R, D2R, D3R, D4R, D5R) in neural transmission and circuitry. D1-like receptors (D1R and D5R) and D2-like receptors (D2R, D2R and D4R) differ in signal transduction, binding profile, localization in the central nervous system and physiological effects. D3R is involved in a number of pathological conditions, including schizophrenia, Parkinson's disease, addiction, anxiety, depression and glaucoma. Development of selective D3R ligands has been so far challenging, due to the high sequence identity and homology shared by D2R and D3R. As a consequence, despite a rational design of selective DR ligands has been carried out, none of currently available medicines selectively target a given D2-like receptor subtype. The availability of the D3R ligand [(11)C]-(+)-PHNO for positron emission tomography studies in animal models as well as in humans, allows researchers to estimate the expression of D3R in vivo; displacement of [(11)C]-(+)-PHNO binding by concurrent drug treatments is used to estimate the in vivo occupancy of D3R. Here we provide an overview of studies indicating D3R as a target for pharmacological therapy, and a review of market approved drugs endowed with significant affinity at D3R that are used to treat disorders where D3R plays a relevant role. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Biological Insights of the Dopaminergic Stabilizer ACR16 at the Binding Pocket of Dopamine D2 Receptor.

    PubMed

    Ekhteiari Salmas, Ramin; Seeman, Philip; Aksoydan, Busecan; Stein, Matthias; Yurtsever, Mine; Durdagi, Serdar

    2017-04-19

    The dopamine D2 receptor (D2R) plays an important part in the human central nervous system and it is considered to be a focal target of antipsychotic agents. It is structurally modeled in active and inactive states, in which homodimerization reaction of the D2R monomers is also applied. The ASP2314 (also known as ACR16) ligand, a D2R stabilizer, is used in tests to evaluate how dimerization and conformational changes may alter the ligand binding space and to provide information on alterations in inhibitory mechanisms upon activation. The administration of the D2R agonist ligand ACR16 [ 3 H](+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9-ol ((+)PHNO) revealed K i values of 32 nM for the D2 high R and 52 μM for the D2 low R. The calculated binding affinities of ACR16 with post processing molecular dynamics (MD) simulations analyses using MM/PBSA for the monomeric and homodimeric forms of the D2 high R were -9.46 and -8.39 kcal/mol, respectively. The data suggests that the dimerization of the D2R leads negative cooperativity for ACR16 binding. The dimerization reaction of the D2 high R is energetically favorable by -22.95 kcal/mol. The dimerization reaction structurally and thermodynamically stabilizes the D2 high R conformation, which may be due to the intermolecular forces formed between the TM4 of each monomer, and the result strongly demonstrates dimerization essential for activation of the D2R.

  6. Comparison of the functional potencies of ropinirole and other dopamine receptor agonists at human D2(long), D3 and D4.4 receptors expressed in Chinese hamster ovary cells

    PubMed Central

    Coldwell, Martyn C; Boyfield, Izzy; Brown, Tony; Hagan, Jim J; Middlemiss, Derek N

    1999-01-01

    The aim of the present study was to characterize functional responses to ropinirole, its major metabolites in man (SKF-104557 (4-[2-(propylamino)ethyl]-2-(3H) indolone), SKF-97930 (4-carboxy-2-(3H) indolone)) and other dopamine receptor agonists at human dopamine D2(long) (hD2), D3 (hD3) and D4.4 (hD4) receptors separately expressed in Chinese hamster ovary cells using microphysiometry.All the receptor agonists tested (ropinirole, SKF-104557, SKF-97930, bromocriptine, lisuride, pergolide, pramipexole, talipexole, dopamine) increased extracellular acidification rate in Chinese hamster ovary clones expressing the human D2, D3 or D4 receptor. The pEC50s of ropinirole at hD2, hD3 and hD4 receptors were 7.4, 8.4 and 6.8, respectively. Ropinirole is therefore at least 10 fold selective for the human dopamine D3 receptor over the other D2 receptor family members.At the hD2 and hD3 dopamine receptors all the compounds tested were full agonists as compared to quinpirole. Talipexole and the ropinirole metabolite, SKF-104557, were partial agonists at the hD4 receptor.Bromocriptine and lisuride had a slow onset of agonist action which precluded determination of EC50s.The rank order of agonist potencies was dissimilar to the rank order of radioligand binding affinities at each of the dopamine receptor subtypes. Functional selectivities of the dopamine receptor agonists, as measured in the microphysiometer, were less than radioligand binding selectivities.The results show that ropinirole is a full agonist at human D2, D3 and D4 dopamine receptors. SKF-104557 the major human metabolite of ropinirole, had similar radioligand binding affinities to, but lower functional potencies than, the parent compound. PMID:10455328

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Xiaoyong; Cai, Cuizan; Xiao, Fei

    Highlights: • A specific aFGF-binding peptide AP8 was identified from a phage display library. • AP8 could inhibit aFGF-stimulated cell proliferation in a dose-dependent manner. • AP8 arrested the cell cycle at the G0/G1 phase by suppressing Cyclin D1. • AP8 could block the activation of Erk1/2 and Akt kinase. • AP8 counteracted proliferation and cell cycle via influencing PA2G4 and PCNA. - Abstract: It has been reported that acidic fibroblast growth factor (aFGF) is expressed in breast cancer and via interactions with fibroblast growth factor receptors (FGFRs) to promote the stage and grade of the disease. Thus, aFGF/FGFRs havemore » been considered essential targets in breast cancer therapy. We identified a specific aFGF-binding peptide (AGNWTPI, named AP8) from a phage display heptapeptide library with aFGF after four rounds of biopanning. The peptide AP8 contained two (TP) amino acids identical and showed high homology to the peptides of the 182–188 (GTPNPTL) site of high-affinity aFGF receptor FGFR1. Functional analyses indicated that AP8 specifically competed with the corresponding phage clone A8 for binding to aFGF. In addition, AP8 could inhibit aFGF-stimulated cell proliferation, arrested the cell cycle at the G0/G1 phase by increasing PA2G4 and suppressing Cyclin D1 and PCNA, and blocked the aFGF-induced activation of Erk1/2 and Akt kinase in both breast cancer cells and vascular endothelial cells. Therefore, these results indicate that peptide AP8, acting as an aFGF antagonist, is a promising therapeutic agent for the treatment of breast cancer.« less

  8. Purification and characterization of Lep d I, a major allergen from the mite Lepidoglyphus destructor.

    PubMed

    Ventas, P; Carreira, J; Polo, F

    1992-04-01

    A major allergen of the storage mite Lepidoglyphus destructor (Lep d I) has been purified by affinity chromatography using an anti-Lep d I monoclonal antibody. The purity of the protein obtained by this procedure was assessed by reverse-phase HPLC. Lep d I displayed a molecular weight of 14 kD on SDS-PAGE under non-reducing conditions, and 16 kD in the presence of a reducing agent. Analytical IEF revealed a little charge microheterogeneity, showing three bands with pIs 7.6-7.8. Purified Lep d I retained IgE-binding ability, as proved by immunoblotting experiments after SDS-PAGE and RAST with individual sera from L. destructor-sensitive patients. Results from the latter technique demonstrated that 87% of L. destructor-allergic patients had specific IgE to Lep d I, and a good correlation between IgE reactivity with L. destructor extract and Lep d I was found. In addition, RAST inhibition experiments showed that IgE-binding sites on Lep d I are major L. destructor-allergenic determinants, since Lep d I could inhibit up to 75% the binding of specific IgE to L. destructor extract; on the other hand, Lep d I did not cross-react with D. pteronyssinus allergens.

  9. Aspartic acid 405 contributes to the substrate specificity of aminopeptidase B.

    PubMed

    Fukasawa, Kayoko M; Hirose, Junzo; Hata, Toshiyuki; Ono, Yukio

    2006-09-26

    Aminopeptidase B (EC 3.4.11.6, ApB) specifically cleaves in vitro the N-terminal Arg or Lys residue from peptides and synthetic derivatives. Ap B was shown to have a consensus sequence found in the metallopeptidase family. We determined the putative zinc binding residues (His324, His328, and Glu347) and the essential Glu325 residue for the enzyme using site-directed mutagenesis (Fukasawa, K. M., et al. (1999) Biochem. J. 339, 497-502). To identify the residues binding to the amino-terminal basic amino acid of the substrate, rat cDNA encoding ApB was cloned into pGEX-4T-3 so that recombinant protein was expressed as a GST fusion protein. Twelve acidic amino acid residues (Glu or Asp) in ApB were replaced with a Gln or Asn using site-directed mutagenesis. These mutants were isolated to characterize the kinetic parameters of enzyme activity toward Arg-NA and compare them to those of the wild-type ApB. The catalytic efficiency (kcat/Km) of the mutant D405N was 1.7 x 10(4) M(-1) s(-1), markedly decreased compared with that of the wild-type ApB (6.2 x 10(5) M(-1) s(-1)). The replacement of Asp405 with an Asn residue resulted in the change of substrate specificity such that the specific activity of the mutant D405N toward Lys-NA was twice that toward Arg-NA (in the case of wild-type ApB; 0.4). Moreover, when Asp405 was replaced with an Ala residue, the kcat/Km ratio was 1000-fold lower than that of the wild-type ApB for hydrolysis of Arg-NA; in contrast, in the hydrolysis of Tyr-NA, the kcat/Km ratios of the wild-type (1.1 x 10(4) M(-1) s(-1)) and the mutated (8.2 x 10(3) M(-1) s(-1)) enzymes were similar. Furthermore, the replacement of Asp-405 with a Glu residue led to the reduction of the kcat/Km ratio for the hydrolysis of Arg-NA by a factor of 6 and an increase of that for the hydrolysis of Lys-NA. Then the kcat/Km ratio of the D405E mutant for the hydrolysis of Lys-NA was higher than that for the hydrolysis of Arg-NA as opposed to that of wild-type ApB. These data strongly suggest that the Asp 405 residue is involved in substrate binding via an interaction with the P1 amino group of the substrate's side chain.

  10. Crystal structure and mutational analysis of aminoacylhistidine dipeptidase from Vibrio alginolyticus reveal a new architecture of M20 metallopeptidases.

    PubMed

    Chang, Chin-Yuan; Hsieh, Yin-Cheng; Wang, Ting-Yi; Chen, Yi-Chin; Wang, Yu-Kuo; Chiang, Ting-Wei; Chen, Yi-Ju; Chang, Cheng-Hsiang; Chen, Chun-Jung; Wu, Tung-Kung

    2010-12-10

    Aminoacylhistidine dipeptidases (PepD, EC 3.4.13.3) belong to the family of M20 metallopeptidases from the metallopeptidase H clan that catalyze a broad range of dipeptide and tripeptide substrates, including L-carnosine and L-homocarnosine. Homocarnosine has been suggested as a precursor for the neurotransmitter γ-aminobutyric acid (GABA) and may mediate the antiseizure effects of GABAergic therapies. Here, we report the crystal structure of PepD from Vibrio alginolyticus and the results of mutational analysis of substrate-binding residues in the C-terminal as well as substrate specificity of the PepD catalytic domain-alone truncated protein PepD(CAT). The structure of PepD was found to exist as a homodimer, in which each monomer comprises a catalytic domain containing two zinc ions at the active site center for its hydrolytic function and a lid domain utilizing hydrogen bonds between helices to form the dimer interface. Although the PepD is structurally similar to PepV, which exists as a monomer, putative substrate-binding residues reside in different topological regions of the polypeptide chain. In addition, the lid domain of the PepD contains an "extra" domain not observed in related M20 family metallopeptidases with a dimeric structure. Mutational assays confirmed both the putative di-zinc allocations and the architecture of substrate recognition. In addition, the catalytic domain-alone truncated PepD(CAT) exhibited substrate specificity to l-homocarnosine compared with that of the wild-type PepD, indicating a potential value in applications of PepD(CAT) for GABAergic therapies or neuroprotection.

  11. Structural changes in calcium-binding allergens: use of circular dichroism to study binding characteristics.

    PubMed

    Hebenstreit, D; Ferreira, F

    2005-09-01

    Several studies showed that calcium-binding proteins have a fixed place in the spectrum of allergenic substances. Often the binding of a calcium ion induces conformational changes and affects immunoglobulin E-binding to the allergen. Hence, the quantitative characterization of the binding to calcium is of importance to understand both the biologic and allergenic activity of these proteins. In the present study we describe a procedure for determining the stoichiometry and dissociation constant (K(D)) of calcium-binding allergens using circular dichroism (CD) techniques. For the experiments, we used recombinant Bet v 4, a two EF-hand allergen from birch pollen. Solutions of Bet v 4 were titrated with calcium and the change in molar ellipticity at 222 nm was monitored with a CD spectropolarimeter. The determination of the binding stoichiometry as well as of the K(D) for one EF-hand (4 microM) demonstrated the applicability of the method. CD-monitored calcium-titration of protein solutions represents a fast and easy method for determining the binding characteristics of calcium-binding allergens.

  12. Desleucyl-Oritavancin with a Damaged d-Ala-d-Ala Binding Site Inhibits the Transpeptidation Step of Cell-Wall Biosynthesis in Whole Cells of Staphylococcus aureus.

    PubMed

    Kim, Sung Joon; Singh, Manmilan; Sharif, Shasad; Schaefer, Jacob

    2017-03-14

    We have used solid-state nuclear magnetic resonance to characterize the exact nature of the dual mode of action of oritavancin in preventing cell-wall assembly in Staphylococcus aureus. Measurements performed on whole cells labeled selectively in vivo have established that des-N-methylleucyl-N-4-(4-fluorophenyl)benzyl-chloroeremomycin, an Edman degradation product of [ 19 F]oritavancin, which has a damaged d-Ala-d-Ala binding aglycon, is a potent inhibitor of the transpeptidase activity of cell-wall biosynthesis. The desleucyl drug binds to partially cross-linked peptidoglycan by a cleft formed between the drug aglycon and its biphenyl hydrophobic side chain. This type of binding site is present in other oritavancin-like glycopeptides, which suggests that for these drugs a similar transpeptidase inhibition occurs.

  13. Affinity and specificity of interactions between Nedd4 isoforms and the epithelial Na+ channel.

    PubMed

    Henry, Pauline C; Kanelis, Voula; O'Brien, M Christine; Kim, Brian; Gautschi, Ivan; Forman-Kay, Julie; Schild, Laurent; Rotin, Daniela

    2003-05-30

    The epithelial Na+ channel (alphabetagammaENaC) regulates salt and fluid homeostasis and blood pressure. Each ENaC subunit contains a PY motif (PPXY) that binds to the WW domains of Nedd4, a Hect family ubiquitin ligase containing 3-4 WW domains and usually a C2 domain. It has been proposed that Nedd4-2, but not Nedd4-1, isoforms can bind to and suppress ENaC activity. Here we challenge this notion and show that, instead, the presence of a unique WW domain (WW3*) in either Nedd4-2 or Nedd4-1 determines high affinity interactions and the ability to suppress ENaC. WW3* from either Nedd4-2 or Nedd4-1 binds ENaC-PY motifs equally well (e.g. Kd approximately 10 microm for alpha- or betaENaC, 3-6-fold higher affinity than WW4), as determined by intrinsic tryptophan fluorescence. Moreover, dNedd4-1, which naturally contains a WW3* instead of WW2, is able to suppress ENaC function equally well as Nedd4-2. Homology models of the WW3*.betaENaC-PY complex revealed that a Pro and Ala conserved in all WW3*, but not other Nedd4-WW domains, help form the binding pocket for PY motif prolines. Extensive contacts are formed between the betaENaC-PY motif and the Pro in WW3*, and the small Ala creates a large pocket to accommodate the peptide. Indeed, mutating the conserved Pro and Ala in WW3* reduces binding affinity 2-3-fold. Additionally, we demonstrate that mutations in PY motif residues that form contacts with the WW domain based on our previously solved structure either abolish or severely reduce binding affinity to the WW domain and that the extent of binding correlates with the level of ENaC suppression. Independently, we show that a peptide encompassing the PY motif of sgk1, previously proposed to bind to Nedd4-2 and alter its ability to regulate ENaC, does not bind (or binds poorly) the WW domains of Nedd4-2. Collectively, these results suggest that high affinity of WW domain-PY-motif interactions rather than affiliation with Nedd4-1/Nedd-2 is critical for ENaC suppression by Nedd4 proteins.

  14. AKAP3 Selectively Binds PDE4A Isoforms in Bovine Spermatozoa1

    PubMed Central

    Bajpai, Malini; Fiedler, Sarah E.; Huang, Zaohua; Vijayaraghavan, Srinivasan; Olson, Gary E.; Livera, Gabriel; Conti, Marco; Carr, Daniel W.

    2006-01-01

    Cyclic AMP plays an important role in regulating sperm motility and acrosome reaction through activation of cAMP-dependent protein kinase A (PKA). Phosphodiesterases (PDEs) modulate the levels of cyclic nucleotides by catalyzing their degradation. Although PDE inhibitors specific to PDE1 and PDE4 are known to alter sperm motility and capacitation in humans, little is known about the role or subcellular distribution of PDEs in spermatozoa. The localization of PKA is regulated by A-kinase anchoring proteins (AKAPs), which may also control the intracellular distribution of PDE. The present study was undertaken to investigate the role and localization of PDE4 during sperm capacitation. Addition of Rolipram or RS25344, PDE4-specific inhibitors significantly increased the progressive motility of bovine spermatozoa. Immunolocalization techniques detected both PDE4A and AKAP3 (formerly known as AKAP110) in the principal piece of bovine spermatozoa. The PDE4A5 isoform was detected primarily in the Triton X-100-soluble fraction of caudal epididymal spermatozoa. However, in ejaculated spermatozoa it was seen primarily in the SDS-soluble fraction, indicating a shift in PDE4A5 localization into insoluble organelles during sperm capacitation. AKAP3 was detected only in the SDS-soluble fraction of both caudal and ejaculated sperm. Immunoprecipitation experiments using COS cells cotransfected with AKAP3 and either Pde4a5 or Pde4d provide evidence that PDE4A5 but not PDE4D interacts with AKAP3. Pulldown assays using sperm cell lysates confirm this interaction in vitro. These data suggest that AKAP3 binds both PKA and PDE4A and functions as a scaffolding protein in spermatozoa to regulate local cAMP concentrations and modulate sperm functions. PMID:16177223

  15. Comprehensive meta-analysis of Signal Transducers and Activators of Transcription (STAT) genomic binding patterns discerns cell-specific cis-regulatory modules

    PubMed Central

    2013-01-01

    Background Cytokine-activated transcription factors from the STAT (Signal Transducers and Activators of Transcription) family control common and context-specific genetic programs. It is not clear to what extent cell-specific features determine the binding capacity of seven STAT members and to what degree they share genetic targets. Molecular insight into the biology of STATs was gained from a meta-analysis of 29 available ChIP-seq data sets covering genome-wide occupancy of STATs 1, 3, 4, 5A, 5B and 6 in several cell types. Results We determined that the genomic binding capacity of STATs is primarily defined by the cell type and to a lesser extent by individual family members. For example, the overlap of shared binding sites between STATs 3 and 5 in T cells is greater than that between STAT5 in T cells and non-T cells. Even for the top 1,000 highly enriched STAT binding sites, ~15% of STAT5 binding sites in mouse female liver are shared by other STATs in different cell types while in T cells ~90% of STAT5 binding sites are co-occupied by STAT3, STAT4 and STAT6. In addition, we identified 116 cis-regulatory modules (CRM), which are recognized by all STAT members across cell types defining a common JAK-STAT signature. Lastly, in liver STAT5 binding significantly coincides with binding of the cell-specific transcription factors HNF4A, FOXA1 and FOXA2 and is associated with cell-type specific gene transcription. Conclusions Our results suggest that genomic binding of STATs is primarily determined by the cell type and further specificity is achieved in part by juxtaposed binding of cell-specific transcription factors. PMID:23324445

  16. The GRP1 PH domain, like the AKT1 PH domain, possesses a sentry glutamate residue essential for specific targeting to plasma membrane PI(3,4,5)P(3).

    PubMed

    Pilling, Carissa; Landgraf, Kyle E; Falke, Joseph J

    2011-11-15

    During the appearance of the signaling lipid PI(3,4,5)P(3), an important subset of pleckstrin homology (PH) domains target signaling proteins to the plasma membrane. To ensure proper pathway regulation, such PI(3,4,5)P(3)-specific PH domains must exclude the more prevalant, constitutive plasma membrane lipid PI(4,5)P(2) and bind the rare PI(3,4,5)P(3) target lipid with sufficiently high affinity. Our previous study of the E17K mutant of the protein kinase B (AKT1) PH domain, together with evidence from Carpten et al. [Carpten, J. D., et al. (2007) Nature 448, 439-444], revealed that the native AKT1 E17 residue serves as a sentry glutamate that excludes PI(4,5)P(2), thereby playing an essential role in specific PI(3,4,5)P(3) targeting [Landgraf, K. E., et al. (2008) Biochemistry 47, 12260-12269]. The sentry glutamate hypothesis proposes that an analogous sentry glutamate residue is a widespread feature of PI(3,4,5)P(3)-specific PH domains, and that charge reversal mutation at the sentry glutamate position will yield both increased PI(4,5)P(2) affinity and constitutive plasma membrane targeting. To test this hypothesis, we investigated the E345 residue, a putative sentry glutamate, of the general receptor for phosphoinositides 1 (GRP1) PH domain. The results show that incorporation of the E345K charge reversal mutation into the GRP1 PH domain enhances PI(4,5)P(2) affinity 8-fold and yields constitutive plasma membrane targeting in cells, reminiscent of the effects of the E17K mutation in the AKT1 PH domain. Hydrolysis of plasma membrane PI(4,5)P(2) releases the E345K GRP1 PH domain into the cytoplasm, and the efficiency of this release increases when Arf6 binding is disrupted. Overall, the findings provide strong support for the sentry glutamate hypothesis and suggest that the GRP1 E345K mutation will be linked to changes in cell physiology and human pathologies, as demonstrated for AKT1 E17K [Carpten, J. D., et al. (2007) Nature 448, 439-444; Lindhurst, M. J., et al. (2011) N. Engl. J. Med. 365, 611-619]. Analysis of available PH domain structures suggests that a lone glutamate residue (or, in some cases, an aspartate) is a common, perhaps ubiquitous, feature of PI(3,4,5)P(3)-specific binding pockets that functions to lower PI(4,5)P(2) affinity.

  17. Phe783, Thr797, and Asp804 in transmembrane hairpin M5-M6 of Na+,K+-ATPase play a key role in ouabain binding.

    PubMed

    Qiu, Li Yan; Koenderink, Jan B; Swarts, Herman G P; Willems, Peter H G M; De Pont, Jan Joep H H M

    2003-11-21

    Ouabain is a glycoside that binds to and inhibits the action of Na+,K+-ATPase. Little is known, however, about the specific requirements of the protein surface for glycoside binding. Using chimeras of gastric H+,K+-ATPase and Na+,K+-ATPase, we demonstrated previously that the combined presence of transmembrane hairpins M3-M4 and M5-M6 of Na+,K+-ATPase in a backbone of H+,K+-ATPase (HN34/56) is both required and sufficient for high affinity ouabain binding. Since replacement of transmembrane hairpin M3-M4 by the N terminus up to transmembrane segment 3 (HNN3/56) resulted in a low affinity ouabain binding, hairpin M5-M6 seems to be essential for ouabain binding. To assess which residues of M5-M6 are required for ouabain action, we divided this transmembrane hairpin in seven parts and individually replaced these parts by the corresponding sequences of H+,K+-ATPase in chimera HN34/56. Three of these chimeras failed to bind ouabain following expression in Xenopus laevis oocytes. Altogether, these three chimeras contained 7 amino acids that were specific for Na+,K+-ATPase. Individual replacement of these 7 amino acids by the corresponding amino acids in H+,K+-ATPase revealed a dramatic loss of ouabain binding for F783Y, T797C, and D804E. As a proof of principle, the Na+,K+-ATPase equivalents of these 3 amino acids were introduced in different combinations in chimera HN34. The presence of all 3 amino acids appeared to be required for ouabain action. Docking of ouabain onto a three-dimensional-model of Na+,K+-ATPase suggests that Asp804, in contrast to Phe783 and Thr797, does not actually form part of the ouabain-binding pocket. Most likely, the presence of this amino acid is required for adopting of the proper conformation for ouabain binding.

  18. Pharmacological evaluation of an [(123)I] labelled imidazopyridine-3-acetamide for the study of benzodiazepine receptors.

    PubMed

    Mattner, Filomena; Mardon, Karine; Loc'h, Christian; Katsifis, Andrew

    2006-06-13

    In vitro binding of the iodinated imidazopyridine, N',N'-dimethyl-6-methyl-(4'-[(123)I]iodophenyl)imidazo[1,2-a]pyridine-3-acetamide [(123)I]IZOL to benzodiazepine binding sites on brain cortex, adrenal and kidney membranes is reported. Saturation experiments showed that [(123)I]IZOL, bound to a single class of binding site (n(H)=0.99) on adrenal and kidney mitochondrial membranes with a moderate affinity (K(d)=30 nM). The density of binding sites was 22+/-6 and 1.2+/-0.4 pmol/mg protein on adrenal and kidney membranes, respectively. No specific binding was observed in mitochondrial-synaptosomal membranes of brain cortex. In biodistribution studies in rats, the highest uptake of [(123)I]IZOL was found 30 min post injection in adrenals (7.5% ID/g), followed by heart, kidney, lung (1% ID/g) and brain (0.12% ID/g), consistent with the distribution of peripheral benzodiazepine binding sites. Pre-administration of unlabelled IZOL and the specific PBBS drugs, PK 11195 and Ro 5-4864 significantly reduced the uptake of [(123)I]IZOL by 30% (p<0.05) in olfactory bulbs and by 51-86% (p<0.01) in kidney, lungs, heart and adrenals, while it increased by 30% to 50% (p<0.01) in the rest of the brain and the blood. Diazepam, a mixed CBR-PBBS drug, inhibited the uptake in kidney, lungs, heart, adrenals and olfactory bulbs by 32% to 44% (p<0.01) but with no effect on brain uptake and in blood concentration. Flumazenil, a central benzodiazepine drug and haloperidol (dopamine antagonist/sigma receptor drug) displayed no effect in [(123)I]IZOL in peripheral organs and in the brain. [(123)I]IZOL may deserve further development for imaging selectively peripheral benzodiazepine binding sites.

  19. Discovery of a cAMP Deaminase That Quenches Cyclic AMP-Dependent Regulation

    PubMed Central

    Goble, Alissa M.; Feng, Youjun; Raushel, Frank M.; Cronan, John E.

    2013-01-01

    An enzyme of unknown function within the amidohydrolase superfamily was discovered to catalyze the hydrolysis of the universal second messenger, cyclic-3’, 5’-adenosine monophosphate (cAMP). The enzyme, which we have named CadD, is encoded by the human pathogenic bacterium Leptospira interrogans. Although CadD is annotated as an adenosine deaminase, the protein specifically deaminates cAMP to cyclic-3’, 5’-inosine monophosphate (cIMP) with a kcat/Km of 2.7 ± 0.4 × 105 M−1 s−1 and has no activity on adenosine, adenine, or 5’-adenosine monophosphate (AMP). This is the first identification of a deaminase specific for cAMP. Expression of CadD in Escherichia coli mimics the loss of adenylate cyclase in that it blocks growth on carbon sources that require the cAMP-CRP transcriptional activator complex for expression of the cognate genes. The cIMP reaction product cannot replace cAMP as the ligand for CRP binding to DNA in vitro and cIMP is a very poor competitor of cAMP activation of CRP for DNA binding. Transcriptional analyses indicate that CadD expression represses expression of several cAMP-CRP dependent genes. CadD adds a new activity to the cAMP metabolic network and may be a useful tool in intracellular study of cAMP-dependent processes. PMID:24074367

  20. Synthesis, biological evaluation, and automated docking of constrained analogues of the opioid peptide H-Dmt-D-Ala-Phe-Gly-NH₂ using the 4- or 5-methyl substituted 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one scaffold.

    PubMed

    De Wachter, Rien; de Graaf, Chris; Keresztes, Atilla; Vandormael, Bart; Ballet, Steven; Tóth, Géza; Rognan, Didier; Tourwé, Dirk

    2011-10-13

    The Phe(3) residue of the N-terminal tetrapeptide of dermorphin (H-Dmt-d-Ala-Phe-Gly-NH(2)) was conformationally constrained using 4- or 5-methyl-substituted 4-amino-1,2,4,5-tetrahydro-2-benzazepin-3-one (Aba) stereoisomeric scaffolds. Several of the synthesized peptides were determined to be high affinity agonists for the μ opioid receptor (OPRM) with selectivity over the δ opioid receptor (OPRD). Interesting effects of the Aba configuration on ligand binding affinity were observed. H-Dmt-d-Ala-erythro-(4S,5S)-5-Me-Aba-Gly-NH(2)9 and H-Dmt-threo-(4R,5S)-5-Me-Aba-Gly-NH(2)12 exhibited subnanomolar affinity for OPRM, while they possess an opposite absolute configuration at position 4 of the Aba ring. However, in the 4-methyl substituted analogues, H-Dmt-d-Ala-(4R)-Me-Aba-Gly-NH(2)14 was significantly more potent than the (4S)-derivative 13. These unexpected results were rationalized using the binding poses predicted by molecular docking simulations. Interestingly, H-Dmt-d-Ala-(4R)-Me-Aba-Gly-NH(2)14 is proposed to bind in a different mode compared with the other analogues. Moreover, in contrast to Ac-4-Me-Aba-NH-Me, which adopts a β-turn in solution and in the crystal structure, the binding mode of this analogue suggests an alternative receptor-bound conformation.

  1. WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy) Phenyl m-Hydroxybenzoate) Inhibits GLUT1-mediated Sugar Transport by Binding Reversibly at the Exofacial Sugar Binding Site.

    PubMed

    Ojelabi, Ogooluwa A; Lloyd, Kenneth P; Simon, Andrew H; De Zutter, Julie K; Carruthers, Anthony

    2016-12-23

    WZB117 (2-fluoro-6-(m-hydroxybenzoyloxy) phenyl m-hydroxybenzoate) inhibits passive sugar transport in human erythrocytes and cancer cell lines and, by limiting glycolysis, inhibits tumor growth in mice. This study explores how WZB117 inhibits the erythrocyte sugar transporter glucose transport protein 1 (GLUT1) and examines the transporter isoform specificity of inhibition. WZB117 reversibly and competitively inhibits erythrocyte 3-O-methylglucose (3MG) uptake with K i (app) = 6 μm but is a noncompetitive inhibitor of sugar exit. Cytochalasin B (CB) is a reversible, noncompetitive inhibitor of 3MG uptake with K i (app) = 0.3 μm but is a competitive inhibitor of sugar exit indicating that WZB117 and CB bind at exofacial and endofacial sugar binding sites, respectively. WZB117 inhibition of GLUTs expressed in HEK293 cells follows the order of potency: insulin-regulated GLUT4 ≫ GLUT1 ≈ neuronal GLUT3. This may explain WZB117-induced murine lipodystrophy. Molecular docking suggests the following. 1) The WZB117 binding envelopes of exofacial GLUT1 and GLUT4 conformers differ significantly. 2) GLUT1 and GLUT4 exofacial conformers present multiple, adjacent glucose binding sites that overlap with WZB117 binding envelopes. 3) The GLUT1 exofacial conformer lacks a CB binding site. 4) The inward GLUT1 conformer presents overlapping endofacial WZB117, d-glucose, and CB binding envelopes. Interrogating the GLUT1 mechanism using WZB117 reveals that subsaturating WZB117 and CB stimulate erythrocyte 3MG uptake. Extracellular WZB117 does not affect CB binding to GLUT1, but intracellular WZB117 inhibits CB binding. These findings are incompatible with the alternating conformer carrier for glucose transport but are consistent with either a multisubunit, allosteric transporter, or a transporter in which each subunit presents multiple, interacting ligand binding sites. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy) Phenyl m-Hydroxybenzoate) Inhibits GLUT1-mediated Sugar Transport by Binding Reversibly at the Exofacial Sugar Binding Site*

    PubMed Central

    Ojelabi, Ogooluwa A.; Lloyd, Kenneth P.; Simon, Andrew H.; De Zutter, Julie K.; Carruthers, Anthony

    2016-01-01

    WZB117 (2-fluoro-6-(m-hydroxybenzoyloxy) phenyl m-hydroxybenzoate) inhibits passive sugar transport in human erythrocytes and cancer cell lines and, by limiting glycolysis, inhibits tumor growth in mice. This study explores how WZB117 inhibits the erythrocyte sugar transporter glucose transport protein 1 (GLUT1) and examines the transporter isoform specificity of inhibition. WZB117 reversibly and competitively inhibits erythrocyte 3-O-methylglucose (3MG) uptake with Ki(app) = 6 μm but is a noncompetitive inhibitor of sugar exit. Cytochalasin B (CB) is a reversible, noncompetitive inhibitor of 3MG uptake with Ki(app) = 0.3 μm but is a competitive inhibitor of sugar exit indicating that WZB117 and CB bind at exofacial and endofacial sugar binding sites, respectively. WZB117 inhibition of GLUTs expressed in HEK293 cells follows the order of potency: insulin-regulated GLUT4 ≫ GLUT1 ≈ neuronal GLUT3. This may explain WZB117-induced murine lipodystrophy. Molecular docking suggests the following. 1) The WZB117 binding envelopes of exofacial GLUT1 and GLUT4 conformers differ significantly. 2) GLUT1 and GLUT4 exofacial conformers present multiple, adjacent glucose binding sites that overlap with WZB117 binding envelopes. 3) The GLUT1 exofacial conformer lacks a CB binding site. 4) The inward GLUT1 conformer presents overlapping endofacial WZB117, d-glucose, and CB binding envelopes. Interrogating the GLUT1 mechanism using WZB117 reveals that subsaturating WZB117 and CB stimulate erythrocyte 3MG uptake. Extracellular WZB117 does not affect CB binding to GLUT1, but intracellular WZB117 inhibits CB binding. These findings are incompatible with the alternating conformer carrier for glucose transport but are consistent with either a multisubunit, allosteric transporter, or a transporter in which each subunit presents multiple, interacting ligand binding sites. PMID:27836974

  3. N-retinylidene-phosphatidylethanolamine is the preferred retinoid substrate for the photoreceptor-specific ABC transporter ABCA4 (ABCR).

    PubMed

    Beharry, Seelochan; Zhong, Ming; Molday, Robert S

    2004-12-24

    ABCA4, a member of the family of ATP binding cassette (ABC) proteins found in rod and cone photoreceptors, has been implicated in the transport of retinoid compounds across the outer segment disk membrane following the photoactivation of rhodopsin. Mutations in the ABCA4 gene are responsible for Stargardt macular dystrophy and related retinal degenerative diseases that cause a loss in vision. To identify the retinoid substrate that interacts with ABCA4, we have isolated ABCA4 from rod outer segment disk membranes on an immunoaffinity matrix and analyzed retinoid compounds that bind to ABCA4 using high performance liquid chromatography and radiolabeling methods. When all-trans-retinal was added to ABCA4 in the presence of phosphatidylethanolamine, approximately 0.9 mol of N-retinylidene-phosphatidylethanolamine and 0.3 mol of all-trans-retinal were bound per mol of ABCA4 with an apparent K(d) of 2-5 microm. ATP and GTP released these retinoids from ABCA4, whereas ADP, GDP, and nonhydrolyzable derivatives, adenosine 5'-(beta,gamma-imido)triphosphate and guanosine 5'-(beta,gamma-imido)triphosphate, were ineffective. One mole of N-retinyl-phosphatidylethanolamine, the reduced form of N-retinylidene-phosphatidylethanolamine, bound per mol of ABCA4, whereas 0.3 mol of all-trans-retinal were bound in the absence of phosphatidylethanolamine. No binding of all-trans-retinol to ABCA4 was observed. Our results indicate that ABCA4 preferentially binds N-retinylidene-phosphatidylethanolamine with high affinity in the absence of ATP. Our studies further suggest that ATP binding and hydrolysis induces a protein conformational change that causes N-retinylidene-phosphatidylethanolamine to dissociate from ABCA4.

  4. STARD4 Membrane Interactions and Sterol Binding

    PubMed Central

    2016-01-01

    The steroidogenic acute regulatory protein-related lipid transfer (START) domain family is defined by a conserved 210-amino acid sequence that folds into an α/β helix-grip structure. Members of this protein family bind a variety of ligands, including cholesterol, phospholipids, sphingolipids, and bile acids, with putative roles in nonvesicular lipid transport, metabolism, and cell signaling. Among the soluble START proteins, STARD4 is expressed in most tissues and has previously been shown to transfer sterol, but the molecular mechanisms of membrane interaction and sterol binding remain unclear. In this work, we use biochemical techniques to characterize regions of STARD4 and determine their role in membrane interaction and sterol binding. Our results show that STARD4 interacts with anionic membranes through a surface-exposed basic patch and that introducing a mutation (L124D) into the Omega-1 (Ω1) loop, which covers the sterol binding pocket, attenuates sterol transfer activity. To gain insight into the attenuating mechanism of the L124D mutation, we conducted structural and biophysical studies of wild-type and L124D STARD4. These studies show that the L124D mutation reduces the conformational flexibility of the protein, resulting in a diminished level of membrane interaction and sterol transfer. These studies also reveal that the C-terminal α-helix, and not the Ω1 loop, partitions into the membrane bilayer. On the basis of these observations, we propose a model of STARD4 membrane interaction and sterol binding and release that requires dynamic movement of both the Ω1 loop and membrane insertion of the C-terminal α-helix. PMID:26168008

  5. Structural and computational analysis of peptide recognition mechanism of class-C type penicillin binding protein, alkaline D-peptidase from Bacillus cereus DF4-B

    PubMed Central

    Nakano, Shogo; Okazaki, Seiji; Ishitsubo, Erika; Kawahara, Nobuhiro; Komeda, Hidenobu; Tokiwa, Hiroaki; Asano, Yasuhisa

    2015-01-01

    Alkaline D-peptidase from Bacillus cereus DF4-B, called ADP, is a D-stereospecific endopeptidase reacting with oligopeptides containing D-phenylalanine (D-Phe) at N-terminal penultimate residue. ADP has attracted increasing attention because it is useful as a catalyst for synthesis of D-Phe oligopeptides or, with the help of substrate mimetics, L-amino acid peptides and proteins. Structure and functional analysis of ADP is expected to elucidate molecular mechanism of ADP. In this study, the crystal structure of ADP (apo) form was determined at 2.1 Å resolution. The fold of ADP is similar to that of the class C penicillin-binding proteins of type-AmpH. Docking simulations and fragment molecular orbital analyses of two peptides, (D-Phe)4 and (D-Phe)2-(L-Phe)2, with the putative substrate binding sites of ADP indicated that the P1 residue of the peptide interacts with hydrophobic residues at the S1 site of ADP. Furthermore, molecular dynamics simulation of ADP for 50 nsec suggested that the ADP forms large cavity at the active site. Formation of the cavity suggested that the ADP has open state in the solution. For the ADP, having the open state is convenient to bind the peptides having bulky side chain, such as (D-Phe)4. Taken together, we predicted peptide recognition mechanism of ADP. PMID:26370172

  6. ATP Binding to p97/VCP D1 Domain Regulates Selective Recruitment of Adaptors to Its Proximal N-Domain

    PubMed Central

    Chia, Wei Sheng; Chia, Diana Xueqi; Rao, Feng; Bar Nun, Shoshana; Geifman Shochat, Susana

    2012-01-01

    p97/Valosin-containing protein (VCP) is a member of the AAA-ATPase family involved in many cellular processes including cell division, intracellular trafficking and extraction of misfolded proteins in endoplasmic reticulum-associated degradation (ERAD). It is a homohexamer with each subunit containing two tandem D1 and D2 ATPase domains and N- and C-terminal regions that function as adaptor protein binding domains. p97/VCP is directed to its many different functional pathways by associating with various adaptor proteins. The regulation of the recruitment of the adaptor proteins remains unclear. Two adaptor proteins, Ufd1/Npl4 and p47, which bind exclusively to the p97/VCP N-domain and direct p97/VCP to either ERAD-related processes or homotypic fusion of Golgi fragments, were studied here. Surface plasmon resonance biosensor-based assays allowed the study of binding kinetics in real time. In competition experiments, it was observed that in the presence of ATP, Ufd1/Npl4 was able to compete more effectively with p47 for binding to p97/VCP. By using non-hydrolysable ATP analogues and the hexameric truncated p97/N-D1 fragment, it was shown that binding rather than hydrolysis of ATP to the proximal D1 domain strengthened the Ufd1/Npl4 association with the N-domain, thus regulating the recruitment of either Ufd1/Npl4 or p47. This novel role of ATP and an assigned function to the D1 AAA-ATPase domain link the multiple functions of p97/VCP to the metabolic status of the cell. PMID:23226521

  7. ATP binding to p97/VCP D1 domain regulates selective recruitment of adaptors to its proximal N-domain.

    PubMed

    Chia, Wei Sheng; Chia, Diana Xueqi; Rao, Feng; Bar Nun, Shoshana; Geifman Shochat, Susana

    2012-01-01

    p97/Valosin-containing protein (VCP) is a member of the AAA-ATPase family involved in many cellular processes including cell division, intracellular trafficking and extraction of misfolded proteins in endoplasmic reticulum-associated degradation (ERAD). It is a homohexamer with each subunit containing two tandem D1 and D2 ATPase domains and N- and C-terminal regions that function as adaptor protein binding domains. p97/VCP is directed to its many different functional pathways by associating with various adaptor proteins. The regulation of the recruitment of the adaptor proteins remains unclear. Two adaptor proteins, Ufd1/Npl4 and p47, which bind exclusively to the p97/VCP N-domain and direct p97/VCP to either ERAD-related processes or homotypic fusion of Golgi fragments, were studied here. Surface plasmon resonance biosensor-based assays allowed the study of binding kinetics in real time. In competition experiments, it was observed that in the presence of ATP, Ufd1/Npl4 was able to compete more effectively with p47 for binding to p97/VCP. By using non-hydrolysable ATP analogues and the hexameric truncated p97/N-D1 fragment, it was shown that binding rather than hydrolysis of ATP to the proximal D1 domain strengthened the Ufd1/Npl4 association with the N-domain, thus regulating the recruitment of either Ufd1/Npl4 or p47. This novel role of ATP and an assigned function to the D1 AAA-ATPase domain link the multiple functions of p97/VCP to the metabolic status of the cell.

  8. Importance of the Extracellular Loop 4 in the Human Serotonin Transporter for Inhibitor Binding and Substrate Translocation*

    PubMed Central

    Rannversson, Hafsteinn; Wilson, Pamela; Kristensen, Kristina Birch; Sinning, Steffen; Kristensen, Anders Skov; Strømgaard, Kristian; Andersen, Jacob

    2015-01-01

    The serotonin transporter (SERT) terminates serotonergic neurotransmission by performing reuptake of released serotonin, and SERT is the primary target for antidepressants. SERT mediates the reuptake of serotonin through an alternating access mechanism, implying that a central substrate site is connected to both sides of the membrane by permeation pathways, of which only one is accessible at a time. The coordinated conformational changes in SERT associated with substrate translocation are not fully understood. Here, we have identified a Leu to Glu mutation at position 406 (L406E) in the extracellular loop 4 (EL4) of human SERT, which induced a remarkable gain-of-potency (up to >40-fold) for a range of SERT inhibitors. The effects were highly specific for L406E relative to six other mutations in the same position, including the closely related L406D mutation, showing that the effects induced by L406E are not simply charge-related effects. Leu406 is located >10 Å from the central inhibitor binding site indicating that the mutation affects inhibitor binding in an indirect manner. We found that L406E decreased accessibility to a residue in the cytoplasmic pathway. The shift in equilibrium to favor a more outward-facing conformation of SERT can explain the reduced turnover rate and increased association rate of inhibitor binding we found for L406E. Together, our findings show that EL4 allosterically can modulate inhibitor binding within the central binding site, and substantiates that EL4 has an important role in controlling the conformational equilibrium of human SERT. PMID:25903124

  9. The Platelet Function Defect of Cardiopulmonary Bypass.

    DTIC Science & Technology

    1992-11-24

    K complex, not to uncomplexed GPIb or GPDC.31 FMC25 (provided by Dr. Berndt) is directed against GPK .32-33 A panel of platelet GPIIb-IIIa-specific...on GPIb (Fig 2, panel B), GPK (Fig 2, panel C), or the GPIb-K complex (Fig 2, panel D). 14 In addition, we examined the ristocetin-induced binding...on GPIb (6D1), the thrombin binding site on GPIb (TM60), GPK (FMC25), and the GPIb-K complex (AK1). Panel E: ristocetin-induced binding of exogenous

  10. Amyloid-β peptide-specific DARPins as a novel class of potential therapeutics for Alzheimer disease.

    PubMed

    Hanenberg, Michael; McAfoose, Jordan; Kulic, Luka; Welt, Tobias; Wirth, Fabian; Parizek, Petra; Strobel, Lisa; Cattepoel, Susann; Späni, Claudia; Derungs, Rebecca; Maier, Marcel; Plückthun, Andreas; Nitsch, Roger M

    2014-09-26

    Passive immunization with anti-amyloid-β peptide (Aβ) antibodies is effective in animal models of Alzheimer disease. With the advent of efficient in vitro selection technologies, the novel class of designed ankyrin repeat proteins (DARPins) presents an attractive alternative to the immunoglobulin scaffold. DARPins are small and highly stable proteins with a compact modular architecture ideal for high affinity protein-protein interactions. In this report, we describe the selection, binding profile, and epitope analysis of Aβ-specific DARPins. We further showed their ability to delay Aβ aggregation and prevent Aβ-mediated neurotoxicity in vitro. To demonstrate their therapeutic potential in vivo, mono- and trivalent Aβ-specific DARPins (D23 and 3×D23) were infused intracerebroventricularly into the brains of 11-month-old Tg2576 mice over 4 weeks. Both D23 and 3×D23 treatments were shown to result in improved cognitive performance and reduced soluble Aβ levels. These findings demonstrate the therapeutic potential of Aβ-specific DARPins for the treatment of Alzheimer disease. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Structural basis of semaphorin–plexin signalling

    PubMed Central

    Janssen, Bert J. C.; Robinson, Ross A.; Pérez-Brangulí, Francesc; Bell, Christian H.; Mitchell, Kevin J.; Siebold, Christian; Jones, E. Yvonne

    2013-01-01

    Cell-cell signalling of semaphorin ligands through interaction with plexin receptors is important for the homeostasis and morphogenesis of many tissues and is widely studied for its role in neural connectivity, cancer, cell migration and immune responses1. SEMA4D and Sema6A exemplify two diverse vertebrate, membrane-spanning semaphorin classes (4 and 6) that are capable of direct signalling through members of the two largest plexin classes, B and A, respectively2,3. In the absence of any structural information on the plexin ectodomain or its interaction with semaphorins the extracellular specificity and mechanism controlling plexin signalling has remained unresolved. Here we present crystal structures of cognate complexes of the semaphorin-binding regions of plexins B1 and A2 with semaphorin ectodomains (human PLXNB11–2–SEMA4Decto and murine PlxnA21–4–Sema6Aecto), plus unliganded structures of PlxnA21–4 and Sema6Aecto. These structures, together with biophysical and cellular assays of wild-type and mutant proteins, reveal that semaphorin dimers independently bind two plexin molecules and that signalling is critically dependent on the avidity of the resulting bivalent 2:2 complex (monomeric semaphorin binds plexin but fails to trigger signalling). In combination, our data favour a cell-cell signalling mechanism involving semaphorin-stabilized plexin dimerization, possibly followed by clustering, which is consistent with previous functional data. Furthermore, the shared generic architecture of the complexes, formed through conserved contacts of the amino-terminal seven-bladed β-propeller (sema) domains of both semaphorin and plexin, suggests that a common mode of interaction triggers all semaphorin–plexin based signalling, while distinct insertions within or between blades of the sema domains determine binding specificity. PMID:20877282

  12. The histidine phosphocarrier protein, HPr, binds to the highly thermostable regulator of sigma D protein, Rsd, and its isolated helical fragments.

    PubMed

    Neira, José L; Hornos, Felipe; Cozza, Concetta; Cámara-Artigas, Ana; Abián, Olga; Velázquez-Campoy, Adrián

    2018-02-01

    The phosphotransferase system (PTS) controls the preferential use of sugars in bacteria and it is also involved in other processes, such as chemotaxis. It is formed by a protein cascade in which the first two proteins are general (namely, EI and HPr) and the others are sugar-specific permeases. The Rsd protein binds specifically to the RNA polymerase (RNAP) σ 70 factor. We first characterized the conformational stability of Escherichia coli Rsd. And second, we delineated the binding regions of Streptomyces coelicolor, HPr sc , and E. coli Rsd, by using fragments derived from each protein. To that end, we used several biophysical probes, namely, fluorescence, CD, NMR, ITC and BLI. Rsd had a free energy of unfolding of 15 kcal mol -1 at 25 °C, and a thermal denaturation midpoint of 103 °C at pH 6.5. The affinity between Rsd and HPr sc was 2 μM. Interestingly enough, the isolated helical-peptides, comprising the third (RsdH3) and fourth (RsdH4) Rsd helices, also interacted with HPr sc in a specific manner, and with affinities similar to that of the whole Rsd. Moreover, the isolated peptide of HPr sc , HPr 9-30 , comprising the active site, His15, also was bound to intact Rsd with similar affinity. Therefore, binding between Rsd and HPr sc was modulated by the two helices H3 and H4 of Rsd, and the regions around the active site of HPr sc . This implies that specific fragments of Rsd and HPr sc can be used to interfere with other protein-protein interactions (PPIs) of each other protein. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Development of the fluorescent biosensor hCalmodulin (hCaM)L39C-monobromobimane(mBBr)/V91C-mBBr, a novel tool for discovering new calmodulin inhibitors and detecting calcium.

    PubMed

    Gonzalez-Andrade, Martin; Rivera-Chavez, Jose; Sosa-Peinado, Alejandro; Figueroa, Mario; Rodriguez-Sotres, Rogelio; Mata, Rachel

    2011-06-09

    A novel, sensible, and specific fluorescent biosensor of human calmodulin (hCaM), namely hCaM L39C-mBBr/V91C-mBBr, was constructed. The biosensor was useful for detecting ligands with opposing fluorescent signals, calcium ions (Ca(2+)) and CaM inhibitors in solution. Thus, the device was successfully applied to analyze the allosteric effect of Ca(2+) on trifluoroperazine (TFP) binding to CaM (Ca(2+)K(d) = 0.24 μM ± 0.03 with a stoichiometry 4.10 ± 0.15; TFPK(d) ∼ 5.74-0.53 μM depending on the degree of saturation of Ca(2+), with a stoichiometry of 2:1). In addition, it was suitable for discovering additional xanthones (5, 6, and 8) with anti-CaM properties from the fungus Emericella 25379. The affinity of 1-5, 7, and 8 for the complex (Ca(2+))(4)-CaM was excellent because their experimental K(d)s were in the nM range (4-498 nM). Docking analysis predicted that 1-8 bind to CaM at sites I, III, and IV as does TFP.

  14. Conformational Changes in IpaD from Shigella flexneri Upon Binding Bile Salts Provide Insight into the Second Step of Type III Secretion†

    PubMed Central

    Dickenson, Nicholas E.; Zhang, Lingling; Epler, Chelsea R.; Adam, Philip R.; Picking, Wendy L.; Picking, William D.

    2011-01-01

    Shigella flexneri uses its type III secretion apparatus (TTSA) to inject host-altering proteins into targeted eukaryotic cells. The TTSA is composed of a basal body and an exposed needle with invasion plasmid antigen D (IpaD) forming a tip complex that controls secretion. The bile salt deoxycholate (DOC) stimulates recruitment of the translocator protein IpaB into the maturing TTSA needle tip complex. This process appears to be triggered by a direct interaction between DOC and IpaD. Fluorescence spectroscopy and NMR spectroscopy are used here to confirm the DOC-IpaD interaction and to reveal that IpaD conformational changes upon DOC binding trigger the appearance of IpaB at the needle tip. Förster resonance energy transfer between specific sites on IpaD was used here to identify changes in distances between IpaD domains as a result of DOC binding. To further explore the effects of DOC binding on IpaD structure, NMR chemical shift mapping was employed. The environments of residues within the proposed DOC binding site and additional residues within the “distal” globular domain were perturbed upon DOC binding, further indicating that conformational changes occur within IpaD upon DOC binding. These events are proposed to be responsible for the recruitment of IpaB at the TTSA needle tip. Mutation analyses combined with additional spectroscopic analyses confirms that conformational changes in IpaD induced by DOC binding contribute to the recruitment of IpaB to the S. flexneri TTSA needle tip. These findings lay the foundation for determining how environmental factors promote TTSA needle tip maturation prior to host cell contact. PMID:21126091

  15. Specific Amyloid Binding of Polybasic Peptides In Vivo Is Retained by β-Sheet Conformers but Lost in the Disrupted Coil and All D-Amino Acid Variants.

    PubMed

    Wall, Jonathan S; Williams, Angela; Richey, Tina; Stuckey, Alan; Wooliver, Craig; Christopher Scott, J; Donnell, Robert; Martin, Emily B; Kennel, Stephen J

    2017-10-01

    The heparin-reactive, helical peptide p5 is an effective amyloid imaging agent in mice with systemic amyloidosis. Analogs of p5 with modified secondary structure characteristics exhibited altered binding to heparin, synthetic amyloid fibrils, and amyloid extracts in vitro. Herein, we further study the effects of peptide helicity and chirality on specific amyloid binding using a mouse model of systemic inflammation-associated (AA) amyloidosis. Peptides with disrupted helical structure [p5 (coil) and p5 (Pro3) ], with an extended sheet conformation [p5 (sheet) ] or an all-D enantiomer [p5 (D) ], were chemically synthesized, radioiodinated, and their biodistribution studied in WT mice as well as transgenic animals with severe systemic AA amyloidosis. Peptide binding was assessed qualitatively by using small animal single-photon emission computed tomography/x-ray computed tomography imaging and microautoradiography and quantitatively using tissue counting. Peptides with reduced helical propensity, p5 (coil) and p5 (Pro3) , exhibited significantly reduced binding to AA amyloid-laden organs. In contrast, peptide p5 (D) was retained by non-amyloid-related ligands in the liver and kidneys of both WT and AA mice, but it also bound AA amyloid in the spleen. The p5 (sheet) peptide specifically bound AA amyloid in vivo and was not retained by healthy tissues in WT animals. Modification of amyloid-targeting peptides using D-amino acids should be performed cautiously due to the introduction of unexpected secondary pharmacologic effects. Peptides that adopt a helical structure, to align charged amino acid side chains along one face, exhibit specific reactivity with amyloid; however, polybasic peptides with a propensity for β-sheet conformation are also amyloid-reactive and may yield a novel class of amyloid-targeting agents for imaging and therapy.

  16. The role of receptor topology in the vitamin D3 uptake and Ca{sup 2+} response systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrill, Gene A., E-mail: gene.morrill@einstein.yu.edu; Kostellow, Adele B.; Gupta, Raj K.

    The steroid hormone, vitamin D{sub 3}, regulates gene transcription via at least two receptors and initiates putative rapid response systems at the plasma membrane. The vitamin D receptor (VDR) binds vitamin D{sub 3} and a second receptor, importin-4, imports the VDR-vitamin D{sub 3} complex into the nucleus via nuclear pores. Here we present evidence that the Homo sapiens VDR homodimer contains two transmembrane (TM) helices ({sup 327}E – D{sup 342}), two TM “half-helix” ({sup 264}K − N{sup 276}), one or more large channels, and 16 cholesterol binding (CRAC/CARC) domains. The importin-4 monomer exhibits 3 pore-lining regions ({sup 226}E – L{supmore » 251}; {sup 768}V – G{sup 783}; {sup 876}S – A{sup 891}) and 16 CRAC/CARC domains. The MEMSAT algorithm indicates that VDR and importin-4 may not be restricted to cytoplasm and nucleus. VDR homodimer TM helix-topology predicts insertion into the plasma membrane, with two 84 residue C-terminal regions being extracellular. Similarly, MEMSAT predicts importin-4 insertion into the plasma membrane with 226 residue extracellular N-terminal regions and 96 residue C-terminal extracellular loops; with the pore-lining regions contributing gated Ca{sup 2+} channels. The PoreWalker algorithm indicates that, of the 427 residues in each VDR monomer, 91 line the largest channel, including two vitamin D{sub 3} binding sites and residues from both the TM helix and “half-helix”. Cholesterol-binding domains also extend into the channel within the ligand binding region. Programmed changes in bound cholesterol may regulate both membrane Ca{sup 2+} response systems and vitamin D{sub 3} uptake as well as receptor internalization by the endomembrane system culminating in uptake of the vitamin D{sub 3}-VDR-importin-4 complex into the nucleus.« less

  17. Nucleic acid is a novel ligand for innate, immune pattern recognition collectins surfactant proteins A and D and mannose-binding lectin.

    PubMed

    Palaniyar, Nades; Nadesalingam, Jeya; Clark, Howard; Shih, Michael J; Dodds, Alister W; Reid, Kenneth B M

    2004-07-30

    Collectins are a family of innate immune proteins that contain fibrillar collagen-like regions and globular carbohydrate recognition domains (CRDs). The CRDs of these proteins recognize various microbial surface-specific carbohydrate patterns, particularly hexoses. We hypothesized that collectins, such as pulmonary surfactant proteins (SPs) SP-A and SP-D and serum protein mannose-binding lectin, could recognize nucleic acids, pentose-based anionic phosphate polymers. Here we show that collectins bind DNA from a variety of origins, including bacteria, mice, and synthetic oligonucleotides. Pentoses, such as arabinose, ribose, and deoxyribose, inhibit the interaction between SP-D and mannan, one of the well-studied hexose ligands for SP-D, and biologically relevant d-forms of the pentoses are better competitors than the l-forms. In addition, DNA and RNA polymer-related compounds, such as nucleotide diphosphates and triphosphates, also inhibit the carbohydrate binding ability of SP-D, or approximately 60 kDa trimeric recombinant fragments of SP-D that are composed of the alpha-helical coiled-coil neck region and three CRDs (SP-D(n/CRD)) or SP-D(n/CRD) with eight GXY repeats (SPD(GXY)(8)(n/CRD)). Direct binding and competition studies suggest that collectins bind nucleic acid via their CRDs as well as by their collagen-like regions, and that SP-D binds DNA more effectively than do SP-A and mannose-binding lectin at physiological salt conditions. Furthermore, the SP-D(GXY)(8)(n/CRD) fragments co-localize with DNA, and the protein competes the interaction between propidium iodide, a DNA-binding dye, and apoptotic cells. In conclusion, we show that collectins are a new class of proteins that bind free DNA and the DNA present on apoptotic cells by both their globular CRDs and collagen-like regions. Collectins may therefore play an important role in decreasing the inflammation caused by DNA in lungs and other tissues.

  18. Reduced striatal D2 receptor binding in myoclonus-dystonia.

    PubMed

    Beukers, R J; Booij, J; Weisscher, N; Zijlstra, F; van Amelsvoort, T A M J; Tijssen, M A J

    2009-02-01

    To study striatal dopamine D(2) receptor availability in DYT11 mutation carriers of the autosomal dominantly inherited disorder myoclonus-dystonia (M-D). Fifteen DYT11 mutation carriers (11 clinically affected) and 15 age- and sex-matched controls were studied using (123)I-IBZM SPECT. Specific striatal binding ratios were calculated using standard templates for striatum and occipital areas. Multivariate analysis with corrections for ageing and smoking showed significantly lower specific striatal to occipital IBZM uptake ratios (SORs) both in the left and right striatum in clinically affected patients and also in all DYT11 mutation carriers compared to control subjects. Our findings are consistent with the theory of reduced dopamine D(2) receptor (D2R) availability in dystonia, although the possibility of increased endogenous dopamine, and consequently, competitive D2R occupancy cannot be ruled out.

  19. CTCF Binding Sites in the Herpes Simplex Virus 1 Genome Display Site-Specific CTCF Occupation, Protein Recruitment, and Insulator Function.

    PubMed

    Washington, Shannan D; Musarrat, Farhana; Ertel, Monica K; Backes, Gregory L; Neumann, Donna M

    2018-04-15

    There are seven conserved CTCF binding domains in the herpes simplex virus 1 (HSV-1) genome. These binding sites individually flank the latency-associated transcript (LAT) and the immediate early (IE) gene regions, suggesting that CTCF insulators differentially control transcriptional domains in HSV-1 latency. In this work, we show that two CTCF binding motifs in HSV-1 display enhancer blocking in a cell-type-specific manner. We found that CTCF binding to the latent HSV-1 genome was LAT dependent and that the quantity of bound CTCF was site specific. Following reactivation, CTCF eviction was dynamic, suggesting that each CTCF site was independently regulated. We explored whether CTCF sites recruit the polycomb-repressive complex 2 (PRC2) to establish repressive domains through a CTCF-Suz12 interaction and found that Suz12 colocalized to the CTCF insulators flanking the ICP0 and ICP4 regions and, conversely, was removed at early times postreactivation. Collectively, these data support the idea that CTCF sites in HSV-1 are independently regulated and may contribute to lytic-latent HSV-1 control in a site-specific manner. IMPORTANCE The role of chromatin insulators in DNA viruses is an area of interest. It has been shown in several beta- and gammaherpesviruses that insulators likely control the lytic transcriptional profile through protein recruitment and through the formation of three-dimensional (3D) chromatin loops. The ability of insulators to regulate alphaherpesviruses has been understudied to date. The alphaherpesvirus HSV-1 has seven conserved insulator binding motifs that flank regions of the genome known to contribute to the establishment of latency. Our work presented here contributes to the understanding of how insulators control transcription of HSV-1. Copyright © 2018 American Society for Microbiology.

  20. Characterization of soluble glycoprotein D-mediated herpes simplex virus type 1 infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsvitov, Marianna; Frampton, Arthur R.; Shah, Waris A.

    2007-04-10

    Herpes simplex virus type 1 (HSV-1) entry into permissive cells involves attachment to cell-surface glycosaminoglycans (GAGs) and fusion of the virus envelope with the cell membrane triggered by the binding of glycoprotein D (gD) to cognate receptors. In this study, we characterized the observation that soluble forms of the gD ectodomain (sgD) can mediate entry of gD-deficient HSV-1. We examined the efficiency and receptor specificity of this activity and used sequential incubation protocols to determine the order and stability of the initial interactions required for entry. Surprisingly, virus binding to GAGs did not increase the efficiency of sgD-mediated entry andmore » gD-deficient virus was capable of attaching to GAG-deficient cells in the absence of sgD. These observations suggested a novel binding interaction that may play a role in normal HSV infection.« less

  1. Probing the General Time Scale Question of Boronic Acid Binding with Sugars in Aqueous Solution at Physiological pH

    PubMed Central

    Ni, Nanting; Laughlin, Sarah; Wang, Yingji; Feng, You; Zheng, Yujun

    2012-01-01

    The boronic acid group is widely used in chemosensor design due to its ability to reversibly bind diol-containing compounds. The thermodynamic properties of the boronic acid-diol binding process have been investigated extensively. However, there are few studies of the kinetic properties of such binding processes. In this report, stopped-flow method was used for the first time to study the kinetic properties of the binding between three model arylboronic acids, 4-, 5-, and 8-isoquinolinylboronic acids, and various sugars. With all the boronic acid-diol pair sexamined, reactions were complete within seconds. The kon values with various sugars follow the order of D-fructose >D-tagatose>D-mannose >D-glucose. This trend tracks the thermodynamic binding affinities for these sugars and demonstrates that the “on” rate is the key factor determining the binding constant. PMID:22464680

  2. Biological Evaluation of 99mTc-HYNIC-EDDA/tricine-(Ser)-D4 Peptide for Tumor Targeting.

    PubMed

    Kazemi, Ziba; Zahmatkesh, Mona Haddad; Abedi, Seyed Mohammad; Hosseinimehr, Seyed Jalal

    2017-08-24

    D4 small peptide (Leu-Ala-Arg-Leu-Leu-Thr) was selected as an appropriate agent for specific targeting of epidermal growth factor receptor (EGFR). The aim of study was to investigate the 99mTc-labeled D4 peptide for non-small cell lung tumor targeting. HYNIC-(Ser)3-D4 peptide was labeled with 99mTc using mixture of tricine and ethylenediamine diacetic acid (EDDA) as co-ligands. The in vitro cellular uptake of radiolabeled peptide was evaluated by blocking test on human non-small cell lung cancer (A-549) cell line and its biodistribution was evaluated in A-549 xenografted nude mice. This conjugated peptide was labeled with 99mTc in high radiochemical purity and it was highly stable in buffer and serum. The un-blocked to blocked cellular radioactivity ratio was 4- fold that showed a specific binding of this radiolabeled peptide on A-549 cell. Animal biodistribution in A-549 xenografted nude mice showed rapid clearance from blood and other non-target organs. Tumor uptake values as %ID/g (percentage of injection dose per gram of tissue) were 2.47% and 1.30% at 1 and 4 h after injection. This study showed the 99mTc-EDDA/tricine-HYNIC-(Ser)3-D4 peptide had tumor targeting on the non-small cell lung tumor. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Inhibition of kinesin-driven microtubule motility by monoclonal antibodies to kinesin heavy chains

    PubMed Central

    1988-01-01

    We have prepared and characterized seven mouse monoclonal antibodies (SUK 1-7) to the 130-kD heavy chain of sea urchin egg kinesin. On immunoblots, SUK 3 and SUK 4 cross-reacted with Drosophila embryo 116- kD heavy chains, and SUK 4, SUK 5, SUK 6, and SUK 7 bound to the 120-kD heavy chains of bovine brain kinesin. Three out of seven monoclonal antikinesins (SUK 4, SUK 6, and SUK 7) caused a dose-dependent inhibition of sea urchin egg kinesin-induced microtubule translocation, whereas the other four monoclonal antibodies had no detectable effect on this motility. The inhibitory monoclonal antibodies (SUK 4, SUK 6, and SUK 7) appear to bind to spatially related sites on an ATP- sensitive microtubule binding 45-kD chymotryptic fragment of the 130-kD heavy chain, whereas SUK 2 binds to a spatially distinct site. None of the monoclonal antikinesins inhibited the microtubule activated MgATPase activity of kinesin, suggesting that SUK 4, SUK 6, and SUK 7 uncouple this MgATPase activity from motility. PMID:2974459

  4. Dopamine D2 receptor-mediated G-protein activation in rat striatum: functional autoradiography and influence of unilateral 6-hydroxydopamine lesions of the substantia nigra.

    PubMed

    Newman-Tancredi, A; Cussac, D; Brocco, M; Rivet, J M; Chaput, C; Touzard, M; Pasteau, V; Millan, M J

    2001-11-30

    Unilateral 6-hydroxydopamine (6-OHDA) lesions of substantia nigra pars compacta (SNPC) neurons in rats induce behavioural hypersensitivity to dopaminergic agonists. However, the role of specific dopamine receptors is unclear, and potential alterations in their transduction mechanisms remain to be evaluated. The present study addressed these issues employing the dopaminergic agonist, quinelorane, which efficaciously stimulated G-protein activation (as assessed by [35S]GTPgammaS binding) at cloned hD2 (and hD3) receptors. At rat striatal membranes, dopamine stimulated [35S]GTPgammaS binding by 1.9-fold over basal, but its actions were only partially reversed by the selective D2/D3 receptor antagonist, raclopride, indicating the involvement of other receptor subtypes. In contrast, quinelorane-induced stimulation (48% of the effect of dopamine) was abolished by raclopride, and by the D2 receptor antagonist, L741,626. Further, novel antagonists selective for D3 and D4 receptors, S33084 and S18126, respectively, blocked the actions of quinelorane at concentrations corresponding to their affinities for D2 receptors. Quinelorane potently induced contralateral rotation in unilaterally 6-OHDA-lesioned rats, an effect abolished by raclopride and L741,626, but not by D3 and D4 receptor-selective doses of S33084 and S18126, respectively. In functional ([35S]GTPgammaS) autoradiography experiments, quinelorane stimulated G-protein activation in caudate putamen and, to a lesser extent, in nucleus accumbens and cingulate cortex of naive rats. In unilaterally SNPC-lesioned rats, quinelorane-induced G-protein activation in the caudate putamen on the non-lesioned side was similar to that seen in naive animals (approximately 50% stimulation), but significantly greater on the lesioned side (approximately 80%). This increase was both pharmacologically and regionally specific since it was reversed by raclopride, and was not observed in nucleus accumbens or cingulate cortex. In conclusion, the present data indicate that, in rat striatum, the actions of quinelorane are mediated primarily by D2 receptors, and suggest that behavioural hypersensitivity to this agonist, induced by unilateral SNPC lesions, is associated with an increase in D2, but not D3 or D4, receptor-mediated G-protein activation.

  5. Retinoid Binding Properties of Nucleotide Binding Domain 1 of the Stargardt Disease-associated ATP Binding Cassette (ABC) Transporter, ABCA4*

    PubMed Central

    Biswas-Fiss, Esther E.; Affet, Stephanie; Ha, Malissa; Biswas, Subhasis B.

    2012-01-01

    The retina-specific ATP binding cassette transporter, ABCA4 protein, is associated with a broad range of inherited macular degenerations, including Stargardt disease, autosomal recessive cone rod dystrophy, and fundus flavimaculatus. In order to understand its role in retinal transport in rod out segment discs, we have investigated the interactions of the soluble domains of ABCA4 with both 11-cis- and all-trans-retinal. Using fluorescence anisotropy-based binding analysis and recombinant polypeptides derived from the amino acid sequences of the four soluble domains of ABCA4, we demonstrated that the nucleotide binding domain 1 (NBD1) specifically bound 11-cis-retinal. Its affinity for all-trans-retinal was markedly reduced. Stargardt disease-associated mutations in this domain resulted in attenuation of 11-cis-retinal binding. Significant differences in 11-cis-retinal binding affinities were observed between NBD1 and other cytoplasmic and lumenal domains of ABCA4. The results suggest a possible role of ABCA4 and, in particular, the NBD1 domain in 11-cis-retinal binding. These results also correlate well with a recent report on the in vivo role of ABCA4 in 11-cis-retinal transport. PMID:23144455

  6. High prevalence of vitamin D deficiency among women of child-bearing age in Lahore Pakistan, associating with lack of sun exposure and illiteracy.

    PubMed

    Junaid, Kashaf; Rehman, Abdul; Jolliffe, David A; Wood, Kristie; Martineau, Adrian R

    2015-10-12

    Vitamin D status is a key determinant of maternal and neonatal health. Deficiency has been reported to be common in Pakistani women, but information regarding environmental and genetic determinants of vitamin D status is lacking in this population. We conducted a cross-sectional study among three groups of healthy women living in Lahore, Pakistan: university students, students or employees of Medrasas or Islamic Institutes, and employees working in office, hospital or domestic settings. Multivariate analysis was performed to identify environmental and genetic determinants of vitamin D status: polymorphisms in genes encoding the vitamin D receptor, vitamin D 25-hydroxylase enzyme CYP2R1 and vitamin D binding protein [DBP] were investigated. We also conducted analyses to identify determinants of body ache and bone pain in this population, and to determine the sensitivity and specificity of testing for hypocalcaemia and raised serum alkaline phosphatase to screen for vitamin D deficiency. Of 215 participants, 156 (73 %) were vitamin D deficient (serum 25[OH]D <50 nmol/L). Risk of vitamin D deficiency was independently associated with illiteracy (adjusted OR 4.0, 95 % CI 1.03-15.52, P = 0.04), <30 min sun exposure per day (adjusted OR 2.13, 95 % CI 1.08-4.19, P = 0.02), sampling in January to March (adjusted OR 2.38, 95 % CI 1.20-4.70), P = 0.01) and lack of regular intake of multivitamins (adjusted OR 2.61, 95 % CI 1.32-5.16, p = 0.005). Participants with the GG genotype of the rs4588 polymorphism in the gene encoding vitamin D binding protein tended to have lower 25(OH)D concentrations than those with GT/TT genotypes (95 % CI for difference 22.7 to -0.13 nmol/L, P = 0.053). Vitamin D deficiency was independently associated with increased risk of body ache or bone pain (adjusted OR 4.43, 95 % CI 2.07 to 9.49, P = 0.001). Hypocalcaemia (serum calcium concentration ≤9.5 mg/dL) and raised alkaline phosphatase concentration (≥280 IU/L) had low sensitivity and very low specificity for identification of vitamin D deficiency. Vitamin D deficiency is common among healthy women of child-bearing age in Lahore, Pakistan: illiteracy, decreased sun exposure and lack of multivitamin intake are risk factors.

  7. Synthesis and characterization of time-resolved fluorescence probes for evaluation of competitive binding to melanocortin receptors.

    PubMed

    Alleti, Ramesh; Vagner, Josef; Dehigaspitiya, Dilani Chathurika; Moberg, Valerie E; Elshan, N G R D; Tafreshi, Narges K; Brabez, Nabila; Weber, Craig S; Lynch, Ronald M; Hruby, Victor J; Gillies, Robert J; Morse, David L; Mash, Eugene A

    2013-09-01

    Probes for use in time-resolved fluorescence competitive binding assays at melanocortin receptors based on the parental ligands MSH(4), MSH(7), and NDP-α-MSH were prepared by solid phase synthesis methods, purified, and characterized. The saturation binding of these probes was studied using HEK-293 cells engineered to overexpress the human melanocortin 4 receptor (hMC4R) as well as the human cholecystokinin 2 receptor (hCCK2R). The ratios of non-specific binding to total binding approached unity at high concentrations for each probe. At low probe concentrations, receptor-mediated binding and uptake was discernable, and so probe concentrations were kept as low as possible in determining Kd values. The Eu-DTPA-PEGO-MSH(4) probe exhibited low specific binding relative to non-specific binding, even at low nanomolar concentrations, and was deemed unsuitable for use in competition binding assays. The Eu-DTPA-PEGO probes based on MSH(7) and NDP-α-MSH exhibited Kd values of 27±3.9nM and 4.2±0.48nM, respectively, for binding with hMC4R. These probes were employed in competitive binding assays to characterize the interactions of hMC4R with monovalent and divalent MSH(4), MSH(7), and NDP-α-MSH constructs derived from squalene. Results from assays with both probes reflected only statistical enhancements, suggesting improper ligand spacing on the squalene scaffold for the divalent constructs. The Ki values from competitive binding assays that employed the MSH(7)-based probe were generally lower than the Ki values obtained when the probe based on NDP-α-MSH was employed, which is consistent with the greater potency of the latter probe. The probe based on MSH(7) was also competed with monovalent, divalent, and trivalent MSH(4) constructs that previously demonstrated multivalent binding in competitive binding assays against a variant of the probe based on NDP-α-MSH. Results from these assays confirm multivalent binding, but suggest a more modest increase in avidity for these MSH(4) constructs than was previously reported. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Alternative mannosylation method for nanomaterials: application to oxidized debris-free multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    de Sousa, Marcelo; Martinez, Diego Stéfani Teodoro; Alves, Oswaldo Luiz

    2016-06-01

    Mannosylation is a method commonly used to deliver nanomaterials to specific organs and tissues via cellular macrophage uptake. In this work, for the first time, we proposed a method that involves the binding of d-mannose to ethylenediamine to form mannosylated ethylenediamine, which is then coupled to oxidized and purified multiwalled carbon nanotubes. The advantage of this approach is that mannosylated ethylenediamine precipitates in methanol, which greatly facilitates the separation of this product in the synthesis process. Carbon nanotubes were oxidized using concentrated H2SO4 and HNO3 by conventional reflux method. However, during this oxidation process, carbon nanotubes generated carboxylated carbonaceous fragments (oxidation debris). These by-products were removed from the oxidized carbon nanotubes to ensure that the functionalization would occur only on the carbon nanotube surface. The coupling of mannosylated ethylenediamine to debris-free carbon nanotubes was accomplished using n-(3-dimethylaminopropyl)-n-ethylcarbodiimide and n-hydroxysuccinimide. Deconvoluted N1s spectra obtained from X-ray photoelectron spectroscopy gave binding energies of 399.8 and 401.7 eV, which we attributed to the amide and amine groups, respectively, of carbon nanotubes functionalized with mannosylated ethylenediamine. Deconvoluted O1s spectra showed a binding energy of 532.4 eV, which we suggest is caused by an overlap in the binding energies of the aliphatic CO groups of d-mannose and the O=C group of the amide bond. The functionalization degree was approximately 3.4 %, according to the thermogravimetric analysis. Scanning electron microscopy demonstrated that an extended carbon nanotube morphology was preserved following the oxidation, purification, and functionalization steps.

  9. Specific Roles of NMDA Receptor Subunits in Mental Disorders.

    PubMed

    Yamamoto, H; Hagino, Y; Kasai, S; Ikeda, K

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptor plays important roles in learning and memory. NMDA receptors are a tetramer that consists of two glycine-binding subunits GluN1, two glutamate-binding subunits (i.e., GluN2A, GluN2B, GluN2C, and GluN2D), a combination of a GluN2 subunit and glycine-binding GluN3 subunit (i.e., GluN3A or GluN3B), or two GluN3 subunits. Recent studies revealed that the specific expression and distribution of each subunit are deeply involved in neural excitability, plasticity, and synaptic deficits. The present article summarizes reports on the dysfunction of NMDA receptors and responsible subunits in various neurological and psychiatric disorders, including schizophrenia, autoimmune-induced glutamatergic receptor dysfunction, mood disorders, and autism. A key role for the GluN2D subunit in NMDA receptor antagonist-induced psychosis has been recently revealed.

  10. Association of the macrophage activating factor (MAF) precursor activity with polymorphism in vitamin D-binding protein.

    PubMed

    Nagasawa, Hideko; Sasaki, Hideyuki; Uto, Yoshihiro; Kubo, Shinichi; Hori, Hitoshi

    2004-01-01

    Serum vitamin D-binding protein (Gc protein or DBP) is a highly expressed polymorphic protein, which is a precursor of the inflammation-primed macrophage activating factor, GcMAF, by a cascade of carbohydrate processing reactions. In order to elucidate the relationship between Gc polymorphism and GcMAF precursor activity, we estimated the phagocytic ability of three homotypes of Gc protein, Gc1F-1F, Gc1S-1S and Gc2-2, through processing of their carbohydrate moiety. We performed Gc typing of human serum samples by isoelectric focusing (IEF). Gc protein from human serum was purified by affinity chromatography with 25-hydroxyvitamin D3-sepharose. A phagocytosis assay of Gc proteins, modified using beta-glycosidase and sialidase, was carried out. The Gc1F-1F phenotype was revealed to possess Galbeta1-4GalNAc linkage by the analysis of GcMAF precursor activity using beta1-4 linkage-specific galactosidase from jack bean. The GcMAF precursor activity of the Gc1F-1F phenotype was highest among three Gc homotypes. The Gc polymorphism and carbohydrate diversity of Gc protein are significant for its pleiotropic effects.

  11. Evidence for a modulatory effect of sulbutiamine on glutamatergic and dopaminergic cortical transmissions in the rat brain.

    PubMed

    Trovero, F; Gobbi, M; Weil-Fuggaza, J; Besson, M J; Brochet, D; Pirot, S

    2000-09-29

    Chronic treatment of rats by sulbutiamine induced no change in density of N-methyl-D-aspartate (NMDA) and (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in the cingular cortex, but a significant decrease of the kainate binding sites, as measured by quantitative autoradiography. In the same treated animals, an increase of D1 dopaminergic (DA) binding sites was measured both in the prefrontal and the cingular cortex, while no modification of the D2 binding sites was detected. Furthermore, an acute sulbutiamine administration induced a decrease of kainate binding sites but no change of the density of D1 and D2 DA receptors. Acute sulbutiamine injection led to a decrease of the DA levels in the prefrontal cortex and 3,4-dihydroxyphenylacetic acid levels in both the cingular and the prefrontal cortex. These observations are discussed in terms of a modulatory effect of sulbutiamine on both dopaminergic and glutamatergic cortical transmissions.

  12. Interaction of D-LSD with binding sites in brain: a study in vivo and in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ebersole, B.L.J.

    The localization of (/sup 3/H)-d-lysergic acid diethylamide ((/sup 3/H)LSD) binding sites in the mouse brain was compared in vivo and in vitro. Radioautography of brain sections incubated with (/sup 3/H)LSD in vitro revealed substantial specific (/sup 3/H)LSD binding in cortical layers III-IV and areas CA1 and dentate gyrus in hippocampus. In contrast, in brain sections from animals that received (/sup 3/H)LSD in vivo, binding in hippocampus was scant and diffuse, although the pattern of labeling in cortex was similar to that seen in vitro. The low specific binding in hippocampus relative to cortex was confirmed by homogenate filtration studies ofmore » brain areas from mice that received injections of (/sup 3/H)LSD. Time-course studies established that peak specific binding at ten minutes was the same in cortex and hippocampus. At all times, binding in hippocampus was about one-third of that in cortex; in contrast, the concentration of free (/sup 3/H)LSD did not vary between regions. This finding was unexpected, because binding studies in vitro in membrane preparations indicated that the density and affinity of (/sup 3/H)LSD binding sites were similar in both brain regions. Saturation binding studies in vivo showed that the lower amount of (/sup 3/H)LSD binding in hippocampus was attributable to a lower density of sites labeled by (/sup 3/H)LSD. The pharmacological identify of (/sub 3/H)LSD binding sites in vivo may be relevant to the hallucinogenic properties of LSD and of other related hallucinogens.« less

  13. Glucostatic regulation of (+)-(/sup 3/H)amphetamine binding in the hypothalamus: correlation with Na/sup +/, K/sup +/-ATPase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angel, I.; Hauger, R.L.; Luu, M.D.

    1985-09-01

    Preincubation of rat hypothalamic slices in glucose-free Krebs-Ringer buffer (37/sup 0/C) resulted in a time-dependent decrease in specific (+)-(/sup 3/H)amphetamine binding in the crude synaptosomal fraction prepared from these slices. The addition of D-glucose resulted in a dose- and time-dependent stimulation of (+)-(/sup 3/H)amphetamine binding, whereas incubations with L-glucose, 2-deoxy-D-glucose, or 3-O-methyl-D-glucose failed to increase the number of (+)-(/sup 3/H)amphetamine binding sites. Ouabain potently inhibited the glucose-induced stimulation of (+)-(/sup 3/H)amphetamine binding, suggesting the involvement of Na/sup +/, K/sup +/-ATPase. Preincubation of hypothalamic slices with glucose also resulted in an increase in Na/sup +/,K/sup +/-ATPase activity and the number ofmore » specific high-affinity binding sites for (/sup 3/H)ouabain, and a good correlation was observed between the glucose-stimulated increase in (+)-(/sup 3/H)amphetamine and (/sup 3/H)ouabain binding. These data suggest that the (+)-(/sup 3/H)amphetamine binding site in hypothalamus, previously linked to the anorectic actions of various phenylethylamines, is regulated both in vitro and in vivo by physiological concentrations of glucose. Glucose and amphetamine appear to interact at common sites in the hypothalamus to stimulate Na/sup +/,K/sup +/-ATPase activity, and the latter may be involved in the glucostatic regulation of appetite.« less

  14. Cytometer on a chip

    NASA Technical Reports Server (NTRS)

    Lynes, Michael A. (Inventor); Fernandez, Salvador M. (Inventor)

    2010-01-01

    An assay technique for label-free, highly parallel, qualitative and quantitative detection of specific cell populations in a sample and for assessing cell functional status, cell-cell interactions and cellular responses to drugs, environmental toxins, bacteria, viruses and other factors that may affect cell function. The technique includes a) creating a first array of binding regions in a predetermined spatial pattern on a sensor surface capable of specifically binding the cells to be assayed; b) creating a second set of binding regions in specific spatial patterns relative to the first set designed to efficiently capture potential secreted or released products from cells captured on the first set of binding regions; c) contacting the sensor surface with the sample, and d) simultaneously monitoring the optical properties of all the binding regions of the sensor surface to determine the presence and concentration of specific cell populations in the sample and their functional status by detecting released or secreted bioproducts.

  15. Structural basis of unique ligand specificity of KAI2-like protein from parasitic weed Striga hermonthica

    PubMed Central

    Xu, Yuqun; Miyakawa, Takuya; Nakamura, Hidemitsu; Nakamura, Akira; Imamura, Yusaku; Asami, Tadao; Tanokura, Masaru

    2016-01-01

    The perception of two plant germination inducers, karrikins and strigolactones, are mediated by the proteins KAI2 and D14. Recently, KAI2-type proteins from parasitic weeds, which are possibly related to seed germination induced by strigolactone, have been classified into three clades characterized by different responses to karrikin/strigolactone. Here we characterized a karrikin-binding protein in Striga (ShKAI2iB) that belongs to intermediate-evolving KAI2 and provided the structural bases for its karrikin-binding specificity. Binding assays showed that ShKAI2iB bound karrikins but not strigolactone, differing from other KAI2 and D14. The crystal structures of ShKAI2iB and ShKAI2iB-karrikin complex revealed obvious structural differences in a helix located at the entry of its ligand-binding cavity. This results in a smaller closed pocket, which is also the major cause of ShKAI2iB’s specificity of binding karrikin. Our structural study also revealed that a few non-conserved amino acids led to the distinct ligand-binding profile of ShKAI2iB, suggesting that the evolution of KAI2 resulted in its diverse functions. PMID:27507097

  16. Synthesis and characterization of a Eu-DTPA-PEGO-MSH(4) derivative for evaluation of binding of multivalent molecules to melanocortin receptors.

    PubMed

    Xu, Liping; Vagner, Josef; Alleti, Ramesh; Rao, Venkataramanarao; Jagadish, Bhumasamudram; Morse, David L; Hruby, Victor J; Gillies, Robert J; Mash, Eugene A

    2010-04-15

    A labeled variant of MSH(4), a tetrapeptide that binds to the human melanocortin 4 receptor (hMC4R) with low microM affinity, was prepared by solid-phase synthesis methods, purified, and characterized. The labeled ligand, Eu-DTPA-PEGO-His-dPhe-Arg-Trp-NH(2), exhibited a K(d) for hMC4R of 9.1+/-1.4 microM, approximately 10-fold lower affinity than the parental ligand. The labeled MSH(4) derivative was employed in a competitive binding assay to characterize the interactions of hMC4R with monovalent and divalent MSH(4) constructs derived from squalene. The results were compared with results from a similar assay that employed a more potent labeled ligand, Eu-DTPA-NDP-alpha-MSH. While results from the latter assay reflected only statistical effects, results from the former assay reflected a mixture of statistical, proximity, and/or cooperative binding effects. Copyright 2010 Elsevier Ltd. All rights reserved.

  17. Charged groups at binding interfaces of the PsbO subunit of photosystem II: A combined bioinformatics and simulation study.

    PubMed

    Del Val, Coral; Bondar, Ana-Nicoleta

    2017-06-01

    PsbO is an extrinsic subunit of photosystem II engaged in complex binding interactions within photosystem II. At the interface between PsbO, D1 and D2 subunits of photosystem II, a cluster of charged and polar groups of PsbO is part of an extended hydrogen-bond network thought to participate in proton transfer. The precise role of specific amino acid residues at this complex binding interface remains a key open question. Here, we address this question by carrying out extensive bioinformatics analyses and molecular dynamics simulations of PsbO proteins with mutations at the binding interface. We find that PsbO proteins from cyanobacteria vs. plants have specific preferences for the number and composition of charged amino acid residues that may ensure that PsbO proteins avoid aggregation and expose long unstructured loops for binding to photosystem II. A cluster of conserved charged groups with dynamic hydrogen bonds provides PsbO with structural plasticity at the binding interface with photosystem II. Copyright © 2017. Published by Elsevier B.V.

  18. Mechanistic investigations into the species differences in pinometostat clearance: impact of binding to alpha-1-acid glycoprotein and permeability-limited hepatic uptake.

    PubMed

    Smith, Sherri A; Gagnon, Sandra; Waters, Nigel J

    2017-03-01

    1. The plasma clearance of the first-in-class DOT1L inhibitor, EPZ-5676 (pinometostat), was shown to be markedly lower in human compared to the preclinical species, mouse, rat and dog. 2. This led to vertical allometry where various interspecies scaling methods were applied to the data, with fold-errors between 4 and 13. We had previously reported the elimination and metabolic pathways of EPZ-5676 were similar across species. Therefore, the aim of this work was to explore the mechanistic basis for the species difference in clearance for EPZ-5676, focusing on other aspects of disposition. 3. The protein binding of EPZ-5676 in human plasma demonstrated a non-linear relationship suggesting saturable binding at physiologically relevant concentrations. Saturation of protein binding was not observed in plasma from preclinical species. Kinetic determinations using purified serum albumin and alpha-1-acid glycoprotein (AAG) confirmed that EPZ-5676 is a high affinity ligand for AAG with a dissociation constant (K d ) of 0.24 μM. 4. Permeability limited uptake was also considered since hepatocyte CL int was much lower in human relative to preclinical species. Passive unbound CL int for EPZ-5676 was estimated using a correlation analysis of logD and data previously reported on seven drugs in sandwich cultured human hepatocytes. 5. Incorporation of AAG binding and permeability limited hepatic uptake into the well-stirred liver model gave rise to a predicted clearance for EPZ-5676 within 2-fold of the observed value of 1.4 mL min -1  kg -1 . This analysis suggests that the marked species difference in EPZ-5676 clearance is driven by high affinity binding to human AAG as well as species-specific hepatic uptake invoking the role of transporters.

  19. Positron emission tomographic evaluation of the putative dopamine-D3 receptor ligand, [11C]RGH-1756 in the monkey brain.

    PubMed

    Sóvágó, Judit; Farde, Lars; Halldin, Christer; Langer, Oliver; Laszlovszky, István; Kiss, Béla; Gulyás, Balázs

    2004-10-01

    The dopamine-D3 receptor is of special interest due to its postulated role in the pathophysiology and treatment of schizophrenia and Parkinson's Disease. Increasing evidences support the assumption that the D3 receptors are occupied to a high degree by dopamine at physiological conditions. Research on the functional role of the D3 receptors in brain has however been hampered by the lack of D3 selective ligands. In the present Positron Emission Tomography (PET) study the binding of the novel, putative dopamine-D3 receptor ligand, [11C]RGH-1756 was characterized in the cynomolgus monkey brain. [11C]RGH-1756 was rather homogenously distributed in brain and the regional binding potential (BP) values ranged between 0.17 and 0.48. Pretreatment with unlabelled RGH-1756 decreased radioligand binding to the level of the cerebellum in most brain areas. The regional BP values were lower after intravenous injection of a higher mass of RGH-1756, indicating saturable binding of [11C]RGH-1756. The D2/D3 antagonist raclopride partly inhibited the binding of [11C]RGH-1756 in several brain areas, including the striatum, mesencephalon and neocortex, whereas the 5HT(1A) antagonist WAY-100635 had no evident effect on [11C]RGH-1756 binding. Despite the promising binding characteristics of RGH-1756 in vitro the present PET-study indicates that [11C]RGH-1756 provides a low signal for specific binding to the D3 receptor in vivo. One explanation is that the favorable binding characteristics of RGH-1756 in vitro are not manifested in vivo. Alternatively, the results may support the hypothesis that the dopamine-D3 receptors are indeed occupied to a high extent by dopamine in vivo and thus not available for radioligand binding.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, Ellen Y.T.; Liu, Wei; Zhao, Qiang

    Dopamine modulates movement, cognition, and emotion through activation of dopamine G protein-coupled receptors in the brain. The crystal structure of the human dopamine D3 receptor (D3R) in complex with the small molecule D2R/D3R-specific antagonist eticlopride reveals important features of the ligand binding pocket and extracellular loops. On the intracellular side of the receptor, a locked conformation of the ionic lock and two distinctly different conformations of intracellular loop 2 are observed. Docking of R-22, a D3R-selective antagonist, reveals an extracellular extension of the eticlopride binding site that comprises a second binding pocket for the aryl amide of R-22, which differsmore » between the highly homologous D2R and D3R. This difference provides direction to the design of D3R-selective agents for treating drug abuse and other neuropsychiatric indications.« less

  1. A method to identify and characterize Z-DNA binding proteins using a linear oligodeoxynucleotide

    NASA Technical Reports Server (NTRS)

    Herbert, A. G.; Rich, A.

    1993-01-01

    An oligodeoxynucleotide that readily flips to the Z-DNA conformation in 10mM MgCl2 was produced by using Klenow enzyme to incorporate 5-bromodeoxycytosine and deoxyguanosine into a (dC-dG)22 template. During synthesis the oligomer can be labeled with 32P to high specific activity. The labeled oligodeoxynucleotide can be used in bandshift experiment to detect proteins that bind Z-DNA. This allows the binding specificity of such proteins to be determined with high reliability using unlabeled linear and supercoiled DNA competitors. In addition, because the radioactive oligodeoxynucleotide contains bromine atoms, DNA-protein complexes can be readily crosslinked using UV light. This allows an estimate to be made of the molecular weight of the proteins that bind to the radioactive probe. Both techniques are demonstrated using a goat polyclonal anti-Z-DNA antiserum.

  2. The hydrophobic repeated domain of the Clostridium cellulovorans cellulose-binding protein (CbpA) has specific interactions with endoglucanases.

    PubMed Central

    Takagi, M; Hashida, S; Goldstein, M A; Doi, R H

    1993-01-01

    We overexpressed one of the hydrophobic repeated domains (HBDs) (110 amino acid residues) of the cellulose-binding protein (CbpA) from Clostridium cellulovorans by making a hybrid protein with the Escherichia coli maltose-binding protein (MalE). The HBD was purified to homogeneity, and interactions between the HBD and endoglucanases were analyzed by a novel interaction Western blotting (immunoblotting) method. The HBD had specific interactions with endoglucanases (EngB and EngD) from C. cellulovorans. These results indicated that the HBD was an endoglucanase binding site of CbpA. Images PMID:8226657

  3. Structure-based Understanding of Binding Affinity and Mode ...

    EPA Pesticide Factsheets

    The flexible hydrophobic ligand binding pocket (LBP) of estrogen receptor α (ERα) allows the binding of a wide variety of endocrine disruptors. Upon ligand binding, the LBP reshapes around the contours of the ligand and stabilizes the complex by complementary hydrophobic interactions and specific hydrogen bonds with the ligand. Here we present a framework for quantitative analysis of the steric and electronic features of the human ERα-ligand complex using three dimensional (3D) protein-ligand interaction description combined with 3D-QSAR approach. An empirical hydrophobicity density field is applied to account for hydrophobic contacts of ligand within the LBP. The obtained 3D-QSAR model revealed that hydrophobic contacts primarily determine binding affinity and govern binding mode with hydrogen bonds. Several residues of the LBP appear to be quite flexible and adopt a spectrum of conformations in various ERα-ligand complexes, in particular His524. The 3D-QSAR was combined with molecular docking based on three receptor conformations to accommodate receptor flexibility. The model indicates that the dynamic character of the LBP allows accommodation and stable binding of structurally diverse ligands, and proper representation of the protein flexibility is critical for reasonable description of binding of the ligands. Our results provide a quantitative and mechanistic understanding of binding affinity and mode of ERα agonists and antagonists that may be applicab

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fedynyshyn, J.P.

    The opioid binding characteristics of the rat (PAG) and the signal transduction mechanisms of the opioid receptors were examined with in vitro radioligand binding, GTPase, adenylyl cyclase, and inositol phosphate assays. The nonselective ligand {sup 3}H-ethylketocyclazocine (EKC), the {mu} and {delta} selective ligand {sup 3}H-(D-Ala{sup 2}, D-Leu{sup 5}) enkephalin (DADLE), the {mu} selective ligand {sup 3}H-(D-Ala{sup 2}, N-methyl Phe{sup 4}, Glyol{sup 5}) enkephalin (DAGO), and the {delta} selective ligand {sup 3}H-(D-Pen{sup 2}, D-Pen{sup 5}) enkephalin (DPDPE) were separately used as tracer ligands to label opioid binding sites in rat PAG enriched P{sub 2} membrane in competition with unlabeled DADLE, DAGO,more » DPDPE, or the {kappa} selective ligand trans-3,4-dichloro-N-(2-(1-pyrrolidinyl)cyclohexyl)benzeneacetamide, methane sulfonate, hydrate (U50, 488H). Only {mu} selective high affinity opioid binding was observed. No high affinity {delta} or {kappa} selective binding was detected. {sup 3}H-DAGO was used as a tracer ligand to label {mu} selective high affinity opioid binding sites in PAG enriched P{sub 2} membrane in competition with unlabeled {beta}-endorphin, dynorphin A (1-17), BAM-18, methionine enkephalin, dynorphin A (1-8), and leucine enkephalin. Of these endogenous opioid peptides only those with previously reported high affinity {mu} type opioid binding activity competed with {sup 3}H-DAGO for binding sites in rat PAG enriched P{sub 2} membrane with affinities similar to that of unlabeled DAGO.« less

  5. 1,2,3,4-Tetrahydroisoquinolines as inhibitors of HIV-1 integrase and human LEDGF/p75 interaction.

    PubMed

    George, Anu; Gopi Krishna Reddy, Alavala; Satyanarayana, Gedu; Raghavendra, Nidhanapati K

    2018-06-01

    Alkaloids are a class of organic compounds with a wide range of biological properties, including anti-HIV activity. The 1,2,3,4-tetrahydroisoquinoline is a ubiquitous structural motif of many alkaloids. Using a short and an efficient route for synthesis, a series of 1,2,3,4-tetrahydroisoquinolines/isoquinolines was developed. These compounds have been analysed for their ability to inhibit an important interaction between HIV-1 integrase enzyme (IN) and human LEDGF/p75 protein (p75) which assists in the viral integration into the active genes. A lead compound 6d is found to inhibit the LEDGF/p75-IN interaction in vitro with an IC 50 of ~10 μm. Molecular docking analysis of the isoquinoline 6d reveals its interactions with the LEDGF/p75-binding residues of IN. Based on an order of addition experiment, the binding of 6d or LEDGF/p75 to IN is shown to be mutually exclusive. Also, the activity of 6d in vitro is found to be unaffected by the presence of a non-specific DNA. As reported earlier for the inhibitors of LEDGF/p75-IN interaction, 6d exhibits a potent inhibition of both the early and late stages of HIV-1 replication. Compound 6d differing from the known inhibitors in the chemical moieties and interactions with CCD could potentially be explored further for developing small molecule inhibitors of LEDGF/p75-IN interaction having a higher potency. © 2018 John Wiley & Sons A/S.

  6. A rigorous multiple independent binding site model for determining cell-based equilibrium dissociation constants.

    PubMed

    Drake, Andrew W; Klakamp, Scott L

    2007-01-10

    A new 4-parameter nonlinear equation based on the standard multiple independent binding site model (MIBS) is presented for fitting cell-based ligand titration data in order to calculate the ligand/cell receptor equilibrium dissociation constant and the number of receptors/cell. The most commonly used linear (Scatchard Plot) or nonlinear 2-parameter model (a single binding site model found in commercial programs like Prism(R)) used for analysis of ligand/receptor binding data assumes only the K(D) influences the shape of the titration curve. We demonstrate using simulated data sets that, depending upon the cell surface receptor expression level, the number of cells titrated, and the magnitude of the K(D) being measured, this assumption of always being under K(D)-controlled conditions can be erroneous and can lead to unreliable estimates for the binding parameters. We also compare and contrast the fitting of simulated data sets to the commonly used cell-based binding equation versus our more rigorous 4-parameter nonlinear MIBS model. It is shown through these simulations that the new 4-parameter MIBS model, when used for cell-based titrations under optimal conditions, yields highly accurate estimates of all binding parameters and hence should be the preferred model to fit cell-based experimental nonlinear titration data.

  7. Detection of cholesterol-rich microdomains in the inner leaflet of the plasma membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayashi, Masami; Shimada, Yukiko; Inomata, Mitsushi

    2006-12-22

    The C-terminal domain (D4) of perfringolysin O binds selectively to cholesterol in cholesterol-rich microdomains. To address the issue of whether cholesterol-rich microdomains exist in the inner leaflet of the plasma membrane, we expressed D4 as a fusion protein with EGFP in MEF cells. More than half of the EGFP-D4 expressed in stable cell clones was bound to membranes in raft fractions. Depletion of membrane cholesterol with {beta}-cyclodextrin reduced the amount of EGFP-D4 localized in raft fractions, confirming EGFP-D4 binding to cholesterol-rich microdomains. Subfractionation of the raft fractions showed most of the EGFP-D4 bound to the plasma membrane rather than tomore » intracellular membranes. Taken together, these results strongly suggest the existence of cholesterol-rich microdomains in the inner leaflet of the plasma membrane.« less

  8. Ulex europaeus agglutinin-I binds to developing gastrin cells.

    PubMed

    Ge, Z H; Blom, J; Larsson, L I

    1998-03-01

    We have previously reported that antropyloric gastrin (G) and somatostatin (D) cells derive from precursor (G/D) cells that coexpress both hormones. We have now analyzed this endocrine cell pedigree for binding of Ulex europaeus agglutinin-I (UEA-I), which previously has been reported to represent a useful marker for cell differentiation. Subpopulations of G/D, D, and G cells were all found to express UEA-I binding. Labelling with bromodeoxyuridine showed that UEA-I positive G cells possessed a higher labelling index than UEA-I negative G cells. These data suggest that the UEA-I positive G cells represent maturing cells still involved in DNA synthesis and cell division. Electron microscopically, specific UEA-I binding sites were localized to the secretory granules and the apical cell membrane of G cells. We conclude that UEA-I represents a differentiation marker for G cells. Moreover, the presence of UEA-I binding sites in these cells may be relevant for Helicobacter pylori-mediated disturbances of gastric acid secretion and gastrin hypersecretion.

  9. Vitamin D Receptor (VDR) Regulation of Voltage-Gated Chloride Channels by Ligands Preferring a VDR-Alternative Pocket (VDR-AP)

    PubMed Central

    Menegaz, Danusa; Mizwicki, Mathew T.; Barrientos-Duran, Antonio; Chen, Ning; Henry, Helen L.

    2011-01-01

    We have postulated that the vitamin D receptor (VDR) contains two overlapping ligand binding sites, a genomic pocket and an alternative pocket (AP), that mediate regulation of gene transcription and rapid responses, respectively. Flexible VDR + ligand docking calculations predict that the major blood metabolite, 25(OH)-vitamin D3 (25D3), and curcumin (CM) bind more selectively to the VDR-AP when compared with the seco-steroid hormone 1α,25(OH)2-vitamin D3 (1,25D3). In VDR wild-type-transfected COS-1 cells and TM4 Sertoli cells, 1,25D3, 25D3, and CM each trigger voltage-gated, outwardly rectifying chloride channel (ORCC) currents that can be blocked by the VDR antagonist 1β,25(OH)2-vitamin D3 and the chloride channel antagonist (4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid). VDR mutational analysis in transfected COS-1 cells demonstrate the DNA-binding domain is not, but the ligand binding and hinge domains of the VDR are, required for 1,25D3 and 25D3 to activate the ORCC. Dose-response studies demonstrate that 25D3 and 1,25D3 are approximately equipotent in stimulating ORCC rapid responses, whereas 1 nm 1,25D3 was 1000-fold more potent than 25D3 and CM in stimulating gene expression. The VDR-AP agonist effects of 1,25D3, 25D3, and low-dose CM are lost after pretreatment of TM4 cells with VDR small interfering RNA. Collectively, these results are consistent with an essential role for the VDR-AP in initiating the signaling required for rapid opening of ORCC. The fact that 25D3 is equipotent to 1,25D3 in opening ORCC suggests that reconsideration of the ability of 25D3 to generate biological responses in vivo may be in order. PMID:21659475

  10. Biochemistry of terminal deoxynucleotidyltransferase. Identification and unity of ribo- and deoxyribonucleoside triphosphate binding site in terminal deoxynucleotidyltransferase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandey, V.N.; Modak, M.J.

    Terminal deoxynucleotidyltransferase is the only DNA polymerase that is strongly inhibited in the presence of ATP. We have labeled calf terminal deoxynucleotidyltransferase with (/sup 32/P)ATP in order to identify its binding site in terminal deoxynucleotidyltransferase. The specificity of ATP cross-linking to terminal deoxynucleotidyltransferase is shown by the competitive inhibition of the overall cross-linking reaction by deoxynucleoside triphosphates, as well as the ATP analogs Ap4A and Ap5A. Tryptic peptide mapping of (/sup 32/P)ATP-labeled enzyme revealed a peptide fraction that contained the majority of cross-linked ATP. The properties, chromatographic characteristics, amino acid composition, and sequence analysis of this peptide fraction were identicalmore » with those found associated with dTTP cross-linked terminal deoxynucleotidyl-transferase peptide. The involvement of the same 2 cysteine residues in the crosslinking of both nucleotides further confirmed the unity of the ATP and dTTP binding domain that contains residues 224-237 in the primary amino acid sequence of calf terminal deoxynucleotidyltransferase.« less

  11. An Unusual Role for a Mobile Flavin in StaC-like Indolocarbazole Biosynthetic Enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, Peter J.; Ryan, Katherine S.; Hamill, Michael J.

    2012-10-09

    The indolocarbazole biosynthetic enzymes StaC, InkE, RebC, and AtmC mediate the degree of oxidation of chromopyrrolic acid on route to the natural products staurosporine, K252a, rebeccamycin, and AT2433-A1, respectively. Here, we show that StaC and InkE, which mediate a net 4-electron oxidation, bind FAD with a micromolar K{sub d}, whereas RebC and AtmC, which mediate a net 8-electron oxidation, bind FAD with a nanomolar K{sub d} while displaying the same FAD redox properties. We further create RebC-10x, a RebC protein with ten StaC-like amino acid substitutions outside of previously characterized FAD-binding motifs and the complementary StaC-10x. We find that thesemore » mutations mediate both FAD affinity and product specificity, with RebC-10x displaying higher StaC activity than StaC itself. X-ray structures of this StaC catalyst identify the substrate of StaC as 7-carboxy-K252c and suggest a unique mechanism for this FAD-dependent enzyme.« less

  12. Binding of Human GII.4 Norovirus Virus-Like Particles to Carbohydrates of Romaine Lettuce Leaf Cell Wall Materials

    PubMed Central

    Esseili, Malak A.

    2012-01-01

    Norovirus (NoV) genogroup II genotype 4 (GII.4) strains are the dominant cause of the majority of food-borne outbreaks, including those that involve leafy greens, such as lettuce. Since human NoVs use carbohydrates of histo-blood group antigens as receptors/coreceptors, we examined the role of carbohydrates in the attachment of NoV to lettuce leaves by using virus-like particles (VLPs) of a human NoV/GII.4 strain. Immunofluorescence analysis showed that the VLPs attached to the leaf surface, especially to cut edges, stomata, and along minor veins. Binding was quantified using enzyme-linked immunosorbent assay (ELISA) performed on cell wall materials (CWM) from innermost younger leaves and outermost lamina of older leaves. The binding to CWM of older leaves was significantly (P < 0.05) higher (1.5- to 2-fold) than that to CWM of younger leaves. Disrupting the carbohydrates of CWM or porcine gastric mucin (PGM) (a carbohydrate control) using 100 mM sodium periodate (NaIO4) significantly decreased the binding an average of 17% in younger leaves, 43% in older leaves, and 92% for PGM. In addition, lectins recognizing GalNAc, GlcNAc, and sialic acid at 100 μg/ml significantly decreased the binding an average of 41%, 33%, and 20% on CWM of older leaves but had no effect on younger leaves. Lectins recognizing α-d-Gal, α-d-Man/α-d-Glc, and α-l-Fuc showed significant inhibition on CWM of older leaves as well as that of younger leaves. All lectins, except for the lectin recognizing α-d-Gal, significantly inhibited NoV VLP binding to PGM. Collectively, our results indicate that NoV VLPs bind to lettuce CWM by utilizing multiple carbohydrate moieties. This binding may enhance virus persistence on the leaf surface and prevent effective decontamination. PMID:22138991

  13. G-quadruplex induced stabilization by 2′-deoxy-2′-fluoro-d-arabinonucleic acids (2′F-ANA)

    PubMed Central

    Peng, Chang Geng; Damha, Masad J.

    2007-01-01

    The impact of 2′-deoxy-2′-fluoroarabinonucleotide residues (2′F-araN) on different G-quadruplexes derived from a thrombin-binding DNA aptamer d(G2T2G2TGTG2T2G2), an anti-HIV phosphorothioate aptamer PS-d(T2G4T2) and a DNA telomeric sequence d(G4T4G4) via UV thermal melting (Tm) and circular dichroism (CD) experiments has been investigated. Generally, replacement of deoxyguanosines that adopt the anti conformation (anti-guanines) with 2′F-araG can stabilize G-quartets and maintain the quadruplex conformation, while replacement of syn-guanines with 2′F-araG is not favored and results in a dramatic switch to an alternative quadruplex conformation. It was found that incorporation of 2′F-araG or T residues into a thrombin-binding DNA G-quadruplex stabilizes the complex (ΔTm up to ∼+3°C/2′F-araN modification); 2′F-araN units also increased the half-life in 10% fetal bovine serum (FBS) up to 48-fold. Two modified thrombin-binding aptamers (PG13 and PG14) show an approximately 4-fold increase in binding affinity to thrombin, as assessed via a nitrocellulose filter binding assay, both with increased thermal stability (∼1°C/2′F-ANA modification increase in Tm) and nuclease resistance (4–7-fold) as well. Therefore, the 2′-deoxy-2′-fluoro-d-arabinonucleic acid (2′F-ANA) modification is well suited to tune (and improve) the physicochemical and biological properties of naturally occurring DNA G-quartets. PMID:17636049

  14. Characterization of the high affinity binding of epsilon toxin from Clostridium perfringens to the renal system.

    PubMed

    Dorca-Arévalo, Jonatan; Martín-Satué, Mireia; Blasi, Juan

    2012-05-25

    Epsilon toxin (ε-toxin), produced by Clostridium perfringens types B and D, causes fatal enterotoxaemia in livestock. In the renal system, the toxin binds to target cells before oligomerization, pore formation and cell death. Still, there is little information about the cellular and molecular mechanism involved in the initial steps of the cytotoxic action of ε-toxin, including the specific binding to the target sensitive cells. In the present report, the binding step of ε-toxin to the MDCK cell line is characterized by means of an ELISA-based binding assay with recombinant ε-toxin-green fluorescence protein (ε-toxin-GFP) and ε-prototoxin-GFP. In addition, different treatments with Pronase E, detergents, N-glycosidase F and beta-elimination on MDCK cells and renal cryosections have been performed to further characterize the ε-toxin binding. The ELISA assays revealed a single binding site with a similar dissociation constant (K(d)) for ε-toxin-GFP and ε-prototoxin-GFP, but a three-fold increase in B(max) levels in the case of ε-toxin-GFP. Double staining on kidney cryoslices with lectins and ε-prototoxin-GFP revealed specific binding to distal and collecting tubule cells. In addition, experiments on kidney and bladder cryoslices demonstrated the specific binding to distal tubule of a range of mammalian renal systems. Pronase E and beta-elimination treatments on kidney cryoslices and MDCK cells revealed that the binding of ε-toxin in renal system is mediated by a O-glycoprotein. Detergent treatments revealed that the integrity of the plasma membrane is required for the binding of ε-toxin to its receptor. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Release of specific proteins from nuclei of HL-60 and MOLT-4 cells by antitumor drugs having affinity to nucleic acids.

    PubMed

    Lassota, P; Melamed, M R; Darzynkiewicz, Z

    The binding sites for mitoxantrone (MIT), Ametantrone (AMT), doxorubicin (DOX), actinomycin D (AMD) and ethidium bromide (EB) in nuclei from exponentially growing and differentiating human promyelocytic HL-60 and lymphocytic leukemic MOLT-4 cells were studied by gel electrophoresis of proteins selectively released during titration of these nuclei with the drugs. Each drug at different drug: DNA binding ratios resulted in a characteristic pattern of protein elution and/or retention. For example, in nuclei from exponentially growing HL-60 cells, MIT affected 44 nuclear proteins that were different from those affected by EB; of these 29 were progressively released at increasing MIT:DNA ratios, 11 were transiently released (i.e. only at a low MIT:DNA ratio) and 4 entrapped. Patterns of proteins displaced from nuclei of exponentially growing HL-60 cells differed from those of cells undergoing myeloid differentiation as well as from those of exponentially growing MOLT-4 cells. The first effects were seen at a binding density of approximately one drug molecule per 10-50 base pairs of DNA. The observed selective displacement of proteins may reflect drug-altered affinity of the binding sites for those proteins, for example due to a change of nucleic acid or protein conformation upon binding the ligand. The data show that the binding site(s) for each of the ligands studied is different and the differences correlate with variability in chemical structure between the ligands. The nature of the drug-affected proteins may provide clues regarding antitumor or cytotoxic mechanisms of drug action.

  16. Molecular basis for allosteric specificity regulation in class Ia ribonucleotide reductase from Escherichia coli

    PubMed Central

    Zimanyi, Christina M; Chen, Percival Yang-Ting; Kang, Gyunghoon; Funk, Michael A; Drennan, Catherine L

    2016-01-01

    Ribonucleotide reductase (RNR) converts ribonucleotides to deoxyribonucleotides, a reaction that is essential for DNA biosynthesis and repair. This enzyme is responsible for reducing all four ribonucleotide substrates, with specificity regulated by the binding of an effector to a distal allosteric site. In all characterized RNRs, the binding of effector dATP alters the active site to select for pyrimidines over purines, whereas effectors dGTP and TTP select for substrates ADP and GDP, respectively. Here, we have determined structures of Escherichia coli class Ia RNR with all four substrate/specificity effector-pairs bound (CDP/dATP, UDP/dATP, ADP/dGTP, GDP/TTP) that reveal the conformational rearrangements responsible for this remarkable allostery. These structures delineate how RNR ‘reads’ the base of each effector and communicates substrate preference to the active site by forming differential hydrogen bonds, thereby maintaining the proper balance of deoxynucleotides in the cell. DOI: http://dx.doi.org/10.7554/eLife.07141.001 PMID:26754917

  17. RNA-dependent chromatin localization of KDM4D lysine demethylase promotes H3K9me3 demethylation

    PubMed Central

    Zoabi, Muhammad; Nadar-Ponniah, Prathamesh T.; Khoury-Haddad, Hanan; Usaj, Marko; Budowski-Tal, Inbal; Haran, Tali; Henn, Arnon; Mandel-Gutfreund, Yael; Ayoub, Nabieh

    2014-01-01

    The JmjC-containing lysine demethylase, KDM4D, demethylates di-and tri-methylation of histone H3 on lysine 9 (H3K9me3). How KDM4D is recruited to chromatin and recognizes its histone substrates remains unknown. Here, we show that KDM4D binds RNA independently of its demethylase activity. We mapped two non-canonical RNA binding domains: the first is within the N-terminal spanning amino acids 115 to 236, and the second is within the C-terminal spanning amino acids 348 to 523 of KDM4D. We also demonstrate that RNA interactions with KDM4D N-terminal region are critical for its association with chromatin and subsequently for demethylating H3K9me3 in cells. This study implicates, for the first time, RNA molecules in regulating the levels of H3K9 methylation by affecting KDM4D association with chromatin. PMID:25378304

  18. Strong Enrichment of Aromatic Residues in Binding Sites from a Charge-neutralized Hyperthermostable Sso7d Scaffold Library*

    PubMed Central

    Kiefer, Jonathan D.; Srinivas, Raja R.; Lobner, Elisabeth; Tisdale, Alison W.; Mehta, Naveen K.; Yang, Nicole J.; Tidor, Bruce; Wittrup, K. Dane

    2016-01-01

    The Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus is an attractive binding scaffold because of its small size (7 kDa), high thermal stability (Tm of 98 °C), and absence of cysteines and glycosylation sites. However, as a DNA-binding protein, Sso7d is highly positively charged, introducing a strong specificity constraint for binding epitopes and leading to nonspecific interaction with mammalian cell membranes. In the present study, we report charge-neutralized variants of Sso7d that maintain high thermal stability. Yeast-displayed libraries that were based on this reduced charge Sso7d (rcSso7d) scaffold yielded binders with low nanomolar affinities against mouse serum albumin and several epitopes on human epidermal growth factor receptor. Importantly, starting from a charge-neutralized scaffold facilitated evolutionary adaptation of binders to differentially charged epitopes on mouse serum albumin and human epidermal growth factor receptor, respectively. Interestingly, the distribution of amino acids in the small and rigid binding surface of enriched rcSso7d-based binders is very different from that generally found in more flexible antibody complementarity-determining region loops but resembles the composition of antibody-binding energetic hot spots. Particularly striking was a strong enrichment of the aromatic residues Trp, Tyr, and Phe in rcSso7d-based binders. This suggests that the rigidity and small size of this scaffold determines the unusual amino acid composition of its binding sites, mimicking the energetic core of antibody paratopes. Despite the high frequency of aromatic residues, these rcSso7d-based binders are highly expressed, thermostable, and monomeric, suggesting that the hyperstability of the starting scaffold and the rigidness of the binding surface confer a high tolerance to mutation. PMID:27582495

  19. Subfamily-specific adaptations in the structures of two penicillin-binding proteins from Mycobacterium tuberculosis

    DOE PAGES

    Prigozhin, Daniil M.; Krieger, Inna V.; Huizar, John P.; ...

    2014-12-31

    Beta-lactam antibiotics target penicillin-binding proteins including several enzyme classes essential for bacterial cell-wall homeostasis. To better understand the functional and inhibitor-binding specificities of penicillin-binding proteins from the pathogen, Mycobacterium tuberculosis, we carried out structural and phylogenetic analysis of two predicted D,D-carboxypeptidases, Rv2911 and Rv3330. Optimization of Rv2911 for crystallization using directed evolution and the GFP folding reporter method yielded a soluble quadruple mutant. Structures of optimized Rv2911 bound to phenylmethylsulfonyl fluoride and Rv3330 bound to meropenem show that, in contrast to the nonspecific inhibitor, meropenem forms an extended interaction with the enzyme along a conserved surface. Phylogenetic analysis shows thatmore » Rv2911 and Rv3330 belong to different clades that emerged in Actinobacteria and are not represented in model organisms such as Escherichia coli and Bacillus subtilis. Clade-specific adaptations allow these enzymes to fulfill distinct physiological roles despite strict conservation of core catalytic residues. The characteristic differences include potential protein-protein interaction surfaces and specificity-determining residues surrounding the catalytic site. Overall, these structural insights lay the groundwork to develop improved beta-lactam therapeutics for tuberculosis.« less

  20. Subfamily-specific adaptations in the structures of two penicillin-binding proteins from Mycobacterium tuberculosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prigozhin, Daniil M.; Krieger, Inna V.; Huizar, John P.

    Beta-lactam antibiotics target penicillin-binding proteins including several enzyme classes essential for bacterial cell-wall homeostasis. To better understand the functional and inhibitor-binding specificities of penicillin-binding proteins from the pathogen, Mycobacterium tuberculosis, we carried out structural and phylogenetic analysis of two predicted D,D-carboxypeptidases, Rv2911 and Rv3330. Optimization of Rv2911 for crystallization using directed evolution and the GFP folding reporter method yielded a soluble quadruple mutant. Structures of optimized Rv2911 bound to phenylmethylsulfonyl fluoride and Rv3330 bound to meropenem show that, in contrast to the nonspecific inhibitor, meropenem forms an extended interaction with the enzyme along a conserved surface. Phylogenetic analysis shows thatmore » Rv2911 and Rv3330 belong to different clades that emerged in Actinobacteria and are not represented in model organisms such as Escherichia coli and Bacillus subtilis. Clade-specific adaptations allow these enzymes to fulfill distinct physiological roles despite strict conservation of core catalytic residues. The characteristic differences include potential protein-protein interaction surfaces and specificity-determining residues surrounding the catalytic site. Overall, these structural insights lay the groundwork to develop improved beta-lactam therapeutics for tuberculosis.« less

  1. Alpha-crystallins are involved in specific interactions with the murine gamma D/E/F-crystallin-encoding gene.

    PubMed

    Pietrowski, D; Durante, M J; Liebstein, A; Schmitt-John, T; Werner, T; Graw, J

    1994-07-08

    The promoter of the murine gamma E-crystallin (gamma E-Cry) encoding gene (gamma E-cry) was analyzed for specific interactions with lenticular proteins in a gel-retardation assay. A 21-bp fragment immediately downstream of the transcription initiation site (DOTIS) is demonstrated to be responsible for specific interactions with lens extracts. The DOTIS-binding protein(s) accept only the sense DNA strand as target; anti-sense or double-stranded DNA do not interact with these proteins. The DOTIS sequence element is highly conserved among the murine gamma D-, gamma E- and gamma F-cry and is present at comparable positions in the orthologous rat genes. Only a weak or even no protein-binding activity is observed if a few particular bases are changed, as in the rat gamma A-, gamma C- and gamma E-cry elements. DOTIS-binding proteins were found in commercially available bovine alpha-Cry preparations. The essential participation of alpha-Cry in the DNA-binding protein complex was confirmed using alpha-Cry-specific monoclonal antibody. The results reported here point to a novel function of alpha-Cry besides the structural properties in the lens.

  2. Potential role of TBC1D4 in enhanced post-exercise insulin action in human skeletal muscle.

    PubMed

    Treebak, J T; Frøsig, C; Pehmøller, C; Chen, S; Maarbjerg, S J; Brandt, N; MacKintosh, C; Zierath, J R; Hardie, D G; Kiens, B; Richter, E A; Pilegaard, H; Wojtaszewski, J F P

    2009-05-01

    TBC1 domain family, member 4 (TBC1D4; also known as AS160) is a cellular signalling intermediate to glucose transport regulated by insulin-dependent and -independent mechanisms. Skeletal muscle insulin sensitivity is increased after acute exercise by an unknown mechanism that does not involve modulation at proximal insulin signalling intermediates. We hypothesised that signalling through TBC1D4 is involved in this effect of exercise as it is a common signalling element for insulin and exercise. Insulin-regulated glucose metabolism was evaluated in 12 healthy moderately trained young men 4 h after one-legged exercise at basal and during a euglycaemic-hyperinsulinaemic clamp. Vastus lateralis biopsies were taken before and immediately after the clamp. Insulin stimulation increased glucose uptake in both legs, with greater effects (approximately 80%, p < 0.01) in the previously exercised leg. TBC1D4 phosphorylation, assessed using the phospho-AKT (protein kinase B)substrate antibody and phospho- and site-specific antibodies targeting six phosphorylation sites on TBC1D4, increased at similar degrees to insulin stimulation in the previously exercised and rested legs (p < 0.01). However, TBC1D4 phosphorylation on Ser-318, Ser-341, Ser-588 and Ser-751 was higher in the previously exercised leg, both in the absence and in the presence of insulin (p < 0.01; Ser-588, p = 0.09; observed power = 0.39). 14-3-3 binding capacity for TBC1D4 increased equally (p < 0.01) in both legs during insulin stimulation. We provide evidence for site-specific phosphorylation of TBC1D4 in human skeletal muscle in response to physiological hyperinsulinaemia. The data support the idea that TBC1D4 is a nexus for insulin- and exercise-responsive signals that may mediate increased insulin action after exercise.

  3. Comparison of Genome-Wide Binding of MyoD in Normal Human Myogenic Cells and Rhabdomyosarcomas Identifies Regional and Local Suppression of Promyogenic Transcription Factors

    PubMed Central

    MacQuarrie, Kyle L.; Yao, Zizhen; Fong, Abraham P.; Diede, Scott J.; Rudzinski, Erin R.; Hawkins, Douglas S.

    2013-01-01

    Rhabdomyosarcoma is a pediatric tumor of skeletal muscle that expresses the myogenic basic helix-loop-helix protein MyoD but fails to undergo terminal differentiation. Prior work has determined that DNA binding by MyoD occurs in the tumor cells, but myogenic targets fail to activate. Using MyoD chromatin immunoprecipitation coupled to high-throughput sequencing and gene expression analysis in both primary human muscle cells and RD rhabdomyosarcoma cells, we demonstrate that MyoD binds in a similar genome-wide pattern in both tumor and normal cells but binds poorly at a subset of myogenic genes that fail to activate in the tumor cells. Binding differences are found both across genomic regions and locally at specific sites that are associated with binding motifs for RUNX1, MEF2C, JDP2, and NFIC. These factors are expressed at lower levels in RD cells than muscle cells and rescue myogenesis when expressed in RD cells. MEF2C is located in a genomic region that exhibits poor MyoD binding in RD cells, whereas JDP2 exhibits local DNA hypermethylation in its promoter in both RD cells and primary tumor samples. These results demonstrate that regional and local silencing of differentiation factors contributes to the differentiation defect in rhabdomyosarcomas. PMID:23230269

  4. Determination of the specificity of monoclonal antibodies against Schistosoma mansoni CAA glycoprotein antigen using neoglycoconjugate variants.

    PubMed

    Carvalho de Souza, Adriana; van Remoortere, Alexandra; Hokke, Cornelis H; Deelder, André M; Vliegenthart, Johannes F G; Kamerling, Johannis P

    2005-09-01

    The immunogenic O-glycan of circulating anodic antigen (CAA) is a high-molecular-mass polysaccharide with the unique -->6)-[beta-D-GlcpA-(1-->3)]-beta-D-GalpNAc-(1--> repeating unit. To obtain information at the molecular level about the specificity of monoclonal antibodies against CAA, the immunoreactivity of two series of bovine serum albumin-coupled synthetic oligosaccharides related to the CAA O-glycan was monitored using ELISA and surface plasmon resonance spectroscopy. The importance of the axial hydroxyl group of beta-D-GalpNAc for antibody binding was investigated using the following series of analogues: beta-D-GlcpA-(1-->3)-beta-D-GlcpNAc-(1-->O); beta-D-GlcpNAc-(1-->6)-[beta-D-GlcpA-(1-->3)]-beta-D-GlcpNAc-(1-->O); and beta-D-GlcpA-(1-->3)-beta-D-GlcpNAc-(1-->6)-[beta-D-GlcpA-(1-->3)]-beta-D-GlcpNAc-(1-->O). In the second series of analogues, beta-D-Glcp6S-(1-->3)-beta-D-GalpNAc-(1-->O), beta-D-GalpNAc-(1-->6)-[beta-D-Glcp6S-(1-->3)]-beta-D-GalpNAc-(1-->O), and beta-D-Glcp6S-(1-->3)-beta-D-Gal-pNAc-(1-->6)-[beta-D-Glcp6S-(1-->3)]-beta-D-GalpNAc-(1-->O), the native beta-D-GlcpA moiety was replaced by beta-D-Glcp6S to evaluate the influence of the nature of the charge on antibody recognition. Comparison of the immunoreactivity of these series with that measured for conjugates containing corresponding synthetic CAA fragments showed that the antibody binding levels can be correlated to the antibody specificity to CAA fragments. For the most reactive antibodies, the structural changes chosen (beta-D-GalpNAc replaced by beta-D-GlcpNAc, and beta-D-GlcpA replaced by beta-D-Glcp6S) completely eradicated the binding.

  5. Direct binding of the N-terminus of HTLV-1 tax oncoprotein to cyclin-dependent kinase 4 is a dominant path to stimulate the kinase activity.

    PubMed

    Li, Junan; Li, Hongyuan; Tsai, Ming-Daw

    2003-06-10

    The involvement of Tax oncoprotein in the INK4-CDK4/6-Rb pathway has been regarded as a key factor for immortalization and transformation of human T-cell leukemia virus 1 (HTLV-1) infected cells. In both p16 -/- and +/+ cells, expression of Tax has been correlated with an increase in CDK4 activity, which subsequently increases the phosphorylation of Rb and drives the infected cells into cell cycle progression. In relation to these effects, Tax has been shown to interact with two components of the INK4-CDK4/6-Rb pathway, p16 and cyclin D(s). While Tax competes with CDK4 for p16 binding, thus suppressing p16 inhibition of CDK4, Tax also binds to cyclin D(s) with concomitant increases in both CDK4 activity and the phosphorylation of cyclin D(s). Here we show that both Tax and residues 1-40 of the N-terminus of Tax, Tax40N, bind to and activate CDK4 in vitro. In the presence of INK4 proteins, binding of Tax and Tax40N to CDK4 counteracts against the inhibition of p16 and p18 and acts as the major path to regulate Tax-mediated activation of CDK4. We also report that Tax40N retains the transactivation ability. These results of in vitro studies demonstrate a potentially novel, p16-independent route to regulate CDK4 activity by the Tax oncoprotein in HTLV-1 infected cells.

  6. Z-DNA binding protein from chicken blood nuclei

    NASA Technical Reports Server (NTRS)

    Herbert, A. G.; Spitzner, J. R.; Lowenhaupt, K.; Rich, A.

    1993-01-01

    A protein (Z alpha) that appears to be highly specific for the left-handed Z-DNA conformer has been identified in chicken blood nuclear extracts. Z alpha activity is measured in a band-shift assay by using a radioactive probe consisting of a (dC-dG)35 oligomer that has 50% of the deoxycytosines replaced with 5-bromodeoxycytosine. In the presence of 10 mM Mg2+, the probe converts to the Z-DNA conformation and is bound by Z alpha. The binding of Z alpha to the radioactive probe is specifically blocked by competition with linear poly(dC-dG) stabilized in the Z-DNA form by chemical bromination but not by B-form poly(dC-dG) or boiled salmon-sperm DNA. In addition, the binding activity of Z alpha is competitively blocked by supercoiled plasmids containing a Z-DNA insert but not by either the linearized plasmid or by an equivalent amount of the parental supercoiled plasmid without the Z-DNA-forming insert. Z alpha can be crosslinked to the 32P-labeled brominated probe with UV light, allowing us to estimate that the minimal molecular mass of Z alpha is 39 kDa.

  7. CAPILLARY ELECTROPHORESIS IMMUNOASSAY FOR 2,4-DICHLOROPHENOXYACETIC ACID

    EPA Science Inventory

    A capillary electrophoresis (CE) immunoassay format for 2,4-dichlorophenoxyacetic acid (2,4-D) is demonstrated. A fluorescent labeled 2,4-D analog competes with the analyte of interest for a finite number of binding sites provided by anti-2,4-D monoclonal antibodies. CE then pr...

  8. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe

    PubMed Central

    Zhu, Lei; Guo, Ning; Li, Quanzheng; Ma, Ying; Jacboson, Orit; Lee, Seulki; Choi, Hak Soo; Mansfield, James R.; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    Purpose: The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/64Cu dual-labeled cyclic RGD peptide. Methods: The integrin αvβ3 binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD) method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data. Results: The dual-labeled probe 64Cu-RGD-C(DOTA)-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp) derived from dynamic optical imaging (1.762 ± 0.020) is comparable to that from dynamic PET (1.752 ± 0.026). Conclusion: The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models. PMID:22916074

  9. Dynamic PET and Optical Imaging and Compartment Modeling using a Dual-labeled Cyclic RGD Peptide Probe.

    PubMed

    Zhu, Lei; Guo, Ning; Li, Quanzheng; Ma, Ying; Jacboson, Orit; Lee, Seulki; Choi, Hak Soo; Mansfield, James R; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    The aim of this study is to determine if dynamic optical imaging could provide comparable kinetic parameters to that of dynamic PET imaging by a near-infrared dye/(64)Cu dual-labeled cyclic RGD peptide. The integrin α(v)β(3) binding RGD peptide was conjugated with a macrocyclic chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for copper labeling and PET imaging and a near-infrared dye ZW-1 for optical imaging. The in vitro biological activity of RGD-C(DOTA)-ZW-1 was characterized by cell staining and receptor binding assay. Sixty-min dynamic PET and optical imaging were acquired on a MDA-MB-435 tumor model. Singular value decomposition (SVD) method was applied to compute the dynamic optical signal from the two-dimensional optical projection images. Compartment models were used to quantitatively analyze and compare the dynamic optical and PET data. The dual-labeled probe (64)Cu-RGD-C(DOTA)-ZW-1 showed integrin specific binding in vitro and in vivo. The binding potential (Bp) derived from dynamic optical imaging (1.762 ± 0.020) is comparable to that from dynamic PET (1.752 ± 0.026). The signal un-mixing process using SVD improved the accuracy of kinetic modeling of 2D dynamic optical data. Our results demonstrate that 2D dynamic optical imaging with SVD analysis could achieve comparable quantitative results as dynamic PET imaging in preclinical xenograft models.

  10. A randomized, open-label, crossover study comparing the effects of oral versus transdermal estrogen therapy on serum androgens, thyroid hormones, and adrenal hormones in naturally menopausal women.

    PubMed

    Shifren, Jan L; Desindes, Sophie; McIlwain, Marilyn; Doros, Gheorghe; Mazer, Norman A

    2007-01-01

    To compare the changes induced by oral versus transdermal estrogen therapy on the total and free serum concentrations of testosterone (T), thyroxine (T4), and cortisol (C) and the concentrations of their serum binding globulins sex hormone-binding globulin, thyroxine-binding globulin, and cortisol-binding globulin in naturally menopausal women. Randomized, open-label, crossover. Interventions included a 6-week withdrawal from previous hormone therapy (baseline), followed in randomized order by 12 weeks of oral conjugated equine estrogens (CEE) (0.625 mg/d) and 12 weeks of transdermal estradiol (TD E2) (0.05 mg/d), with oral micronized progesterone (100 mg/d) given continuously during both transdermal estrogen therapy regimens. Twenty-seven women were enrolled in the study, and 25 completed both treatment periods. The mean(SD) percentage changes from baseline of sex hormone-binding globulin, total T, and free T with oral CEE were +132.1% (74.5%), +16.4% (43.8%), and -32.7% (25.9%), respectively, versus +12.0% (25.1%), +1.2% (43.7%), and +1.0% (45.0%) with TD E2. The mean (SD) percentage changes of thyroxine-binding globulin, total T4, and free T4 with oral CEE were +39.9% (20.1%), +28.4% (29.2%), and -10.4% (22.3%), respectively, versus +0.4% (11.1%), -0.7% (16.5%), and +0.2% (26.6%) with TD E2. The mean (SD) percentage changes of cortisol-binding globulin, total C, and free C with oral CEE were +18.0% (19.5%), +29.2% (46.3%), and +50.4% (126.5%), respectively, versus -2.2% (11.3%), -6.7% (30.8%), and +1.8% (77.1%) with TD E2. Concentrations of all hormones and binding globulins were significantly different (P < or = 0.003) during administration of oral versus transdermal estrogen therapy, except for free T4 and free C. Compared with oral CEE, TD E2 exerts minimal effects on the total and free concentrations of T, T4, and C and their binding proteins.

  11. Basis of altered RNA-binding specificity by PUF proteins revealed by crystal structures of yeast Puf4p

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Matthew T.; Higgin, Joshua J.; Hall, Traci M.Tanaka

    2008-06-06

    Pumilio/FBF (PUF) family proteins are found in eukaryotic organisms and regulate gene expression post-transcriptionally by binding to sequences in the 3' untranslated region of target transcripts. PUF proteins contain an RNA binding domain that typically comprises eight {alpha}-helical repeats, each of which recognizes one RNA base. Some PUF proteins, including yeast Puf4p, have altered RNA binding specificity and use their eight repeats to bind to RNA sequences with nine or ten bases. Here we report the crystal structures of Puf4p alone and in complex with a 9-nucleotide (nt) target RNA sequence, revealing that Puf4p accommodates an 'extra' nucleotide by modestmore » adaptations allowing one base to be turned away from the RNA binding surface. Using structural information and sequence comparisons, we created a mutant Puf4p protein that preferentially binds to an 8-nt target RNA sequence over a 9-nt sequence and restores binding of each protein repeat to one RNA base.« less

  12. Calorimetric and spectroscopic studies of aminoglycoside binding to AT-rich DNA triple helices

    PubMed Central

    Xi, Hongjuan; Kumar, Sunil; Dosen-Micovic, Ljiljana; Arya, Dev P.

    2013-01-01

    Calorimetric and fluorescence techniques were used to characterize the binding of aminoglycosides-neomycin, paromomycin, and ribostamycin, with 5′-dA12-x-dT12-x-dT12-3′ intramolecular DNA triplex (x = hexaethylene glycol) and poly(dA).2poly(dT) triplex. Our results demonstrate the following features: (1) UV thermal analysis reveals that the Tm for triplex decreases with increasing pH value in the presence of neomycin, while the Tm for the duplex remains unchanged. (2) The binding affinity of neomycin decreases with increased pH, although there is an increase in observed binding enthalpy. (3) ITC studies conducted in two buffers (sodium cacodylate and MOPS) yield the number of protonated drug amino groups (Δn) as 0.29 and 0.40 for neomycin and paromomycin interaction with 5′-dA12-x-dT12-x-dT12-3′, respectively. (4) The specific heat capacity change (ΔCp) determined by ITC studies is negative, with more negative values at lower salt concentrations. From 100 mM to 250 mM KCl, the ΔCp ranges from −402 to −60 cal/(mol K) for neomycin. At pH 5.5, a more positive ΔCp is observed, with a value of −98 cal/(mol K) at 100 mM KCl. ΔCp is not significantly affected by ionic strength. (5) Salt dependence studies reveal that there are at least three amino groups of neomycin participating in the electrostatic interactions with the triplex. (6) FID studies using thiazole orange were used to derive the AC50 (aminoglycoside concentration needed to displace 50% of the dye from the triplex) values. Neomycin shows a seven fold higher affinity than paromomycin and eleven fold higher affinity than ribostamycin at pH 6.8. (7) Modeling studies, consistent with UV and ITC results, show the importance of an additional positive charge in triplex recognition by neomycin. The modeling and thermodynamic studies indicate that neomycin binding to the DNA triplex depends upon significant contributions from charge as well as shape complementarity of the drug to the DNA triplex Watson–Hoogsteen groove. PMID:20167243

  13. Trim25 Is an RNA-Specific Activator of Lin28a/TuT4-Mediated Uridylation.

    PubMed

    Choudhury, Nila Roy; Nowak, Jakub S; Zuo, Juan; Rappsilber, Juri; Spoel, Steven H; Michlewski, Gracjan

    2014-11-20

    RNA binding proteins have thousands of cellular RNA targets and often exhibit opposite or passive molecular functions. Lin28a is a conserved RNA binding protein involved in pluripotency and tumorigenesis that was previously shown to trigger TuT4-mediated pre-let-7 uridylation, inhibiting its processing and targeting it for degradation. Surprisingly, despite binding to other pre-microRNAs (pre-miRNAs), only pre-let-7 is efficiently uridylated by TuT4. Thus, we hypothesized the existence of substrate-specific cofactors that stimulate Lin28a-mediated pre-let-7 uridylation or restrict its functionality on non-let-7 pre-miRNAs. Through RNA pull-downs coupled with quantitative mass spectrometry, we identified the E3 ligase Trim25 as an RNA-specific cofactor for Lin28a/TuT4-mediated uridylation. We show that Trim25 binds to the conserved terminal loop (CTL) of pre-let-7 and activates TuT4, allowing for more efficient Lin28a-mediated uridylation. These findings reveal that protein-modifying enzymes, only recently shown to bind RNA, can guide the function of canonical ribonucleoprotein (RNP) complexes in cis, thereby providing an additional level of specificity.

  14. Induction of G-quadruplex DNA structure by Zn(II) 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin.

    PubMed

    Bhattacharjee, Amlan J; Ahluwalia, Karan; Taylor, Scott; Jin, Ou; Nicoludis, John M; Buscaglia, Robert; Brad Chaires, J; Kornfilt, David J P; Marquardt, David G S; Yatsunyk, Liliya A

    2011-08-01

    G-quadruplexes (GQ) are formed by the association of guanine-rich stretches of DNA. Certain small molecules can influence kinetics and thermodynamics of this association. Understanding the mechanism of ligand-assisted GQ folding is necessary for the design of more efficient cancer therapeutics. The oligonucleotide d(TAGGG)(2) forms parallel bimolecular GQ in the presence of ≥66 mM K(+); GQs are not formed under Na(+), Li(+) or low K(+) conditions. The thermodynamic parameters for GQ folding at 60 μM oligonucleotide and 100 mM KCl are ΔH = -35 ± 2 kcal mol(-1) and ΔG(310) = -1.4 kcal mol(-1). Quadruplex [d(TAGGG)(2)](2) binds 2-3 K(+) ions with K(d) of 0.5 ± 0.2 mM. Our work addresses the question of whether metal free 5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin (TMPyP4) and its Zn(II), Cu(II), and Pt(II) derivatives are capable of facilitating GQ folding of d(TAGGG)(2) from single stranded, or binding to preformed GQ, using UV-vis and circular dichroism (CD) spectroscopies. ZnTMPyP4 is unique among other porphyrins in its ability to induce GQ structure of d(TAGGG)(2), which also requires at least a low amount of potassium. ZnTMPyP4 binds with 2:1 stoichiometry possibly in an end-stacking mode with a ~10(6) M(-1) binding constant, determined through UV-vis and ITC titrations. This process is entropically driven and has ΔG(298) of -8.0 kcal mol(-1). TMPyP4 binds with 3:1 stoichiometry and K(a) of ~10(6) M(-1). ZnTMPyP4 and TMPyP4 are efficient stabilizers of [d(TAGGG)(2)](2) displaying ΔT(1/2) of 13.5 and 13.8 °C, respectively, at 1:2 GQ to porphyrin ratio; CuTMPyP4 shows a much weaker effect (ΔT(1/2) = 4.7 °C) and PtTMPyP4 is weakly destabilizing (ΔT(1/2) = -2.9 °C). The selectivity of ZnTMPyP4 for GQ versus dsDNA is comparable to that of TMPyP4. The ability of ZnTMPyP4 to bind and stabilize GQ, to induce GQ formation, and speed up its folding may suggest an important biological activity for this molecule. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  15. Platinum(II)-dendrimer conjugates: synthesis and investigations on cytotoxicity, cellular distribution, platinum release, DNA, and protein binding.

    PubMed

    Kapp, Timo; Dullin, Anja; Gust, Ronald

    2010-02-17

    A set of polyamidoamine dendrimers were modified in such a way that they are able to act as carrier and drug delivery systems for cytostatics. The terminal binding of the non-proteinogenic D,L-2,3-diaminopropionic acid allowed the attachment of the cytotoxic PtX(2) moiety (X = Cl, I: A(PtI(2))(2), A(PtCl(2))(2), B(PtI(2))(2), B(PtCl(2))(2)), while the 2-carboxypentanedioic acid acted as leaving group for [meso-1,2-bis(4-fluorophenyl)ethylenediamine]platinum(II) ((m-4F-Pt)(3)C, (m-4F-Pt)(3)D). Poly(ethylene glycol) chains at C(PtI(2))(3) and C(PtCl(2))(3) as well as (m-4F-Pt)(3)C and (m-4F-Pt)(3)D mediated sufficient water solubility. Additional dansyl residues (B(PtI(2))(2) and (m-4F-Pt)(3)D) made a simultaneous determination of platinum (graphite furnace atomic absorption spectroscopy (GF-AAS)) and dendrimer (fluorimetry) possible. The ethylenediamine-terminated dendrimers were typically accumulated into MCF-7 cells in clathrin-dependent pathways and targeted the platinum moieties to the nuclear compartment. The highest intracellular platinum concentration and DNA binding caused the dendrimers A(PtX(2))(2) and B(PtX(2))(2). A coordinative DNA binding, however, is very unlikely because of low cytotoxic effects. (m-4F-Pt)(3)C and (m-4F-Pt)(3)D are labile conjugates and liberated the m-4F-Pt moiety in biological systems. The effects of these dendrimers were similar to that of the reference compounds m-4F-PtCl(2) and m-4F-Pt(H(2)O)(2).

  16. Many Routes to an Antibody Heavy-Chain CDR3: Necessary, Yet Insufficient, for Specific Binding

    DOE PAGES

    D'Angelo, Sara; Ferrara, Fortunato; Naranjo, Leslie; ...

    2018-03-08

    Because of its great potential for diversity, the immunoglobulin heavy-chain complementarity-determining region 3 (HCDR3) is taken as an antibody molecule’s most important component in conferring binding activity and specificity. For this reason, HCDR3s have been used as unique identifiers to investigate adaptive immune responses in vivo and to characterize in vitro selection outputs where display systems were employed. Here, we show that many different HCDR3s can be identified within a target-specific antibody population after in vitro selection. For each identified HCDR3, a number of different antibodies bearing differences elsewhere can be found. In such selected populations, all antibodies with themore » same HCDR3 recognize the target, albeit at different affinities. In contrast, within unselected populations, the majority of antibodies with the same HCDR3 sequence do not bind the target. In one HCDR3 examined in depth, all target-specific antibodies were derived from the same VDJ rearrangement, while non-binding antibodies with the same HCDR3 were derived from many different V and D gene rearrangements. Careful examination of previously published in vivo datasets reveals that HCDR3s shared between, and within, different individuals can also originate from rearrangements of different V and D genes, with up to 26 different rearrangements yielding the same identical HCDR3 sequence. On the basis of these observations, we conclude that the same HCDR3 can be generated by many different rearrangements, but that specific target binding is an outcome of unique rearrangements and VL pairing: the HCDR3 is necessary, albeit insufficient, for specific antibody binding.« less

  17. Many Routes to an Antibody Heavy-Chain CDR3: Necessary, Yet Insufficient, for Specific Binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Angelo, Sara; Ferrara, Fortunato; Naranjo, Leslie

    Because of its great potential for diversity, the immunoglobulin heavy-chain complementarity-determining region 3 (HCDR3) is taken as an antibody molecule’s most important component in conferring binding activity and specificity. For this reason, HCDR3s have been used as unique identifiers to investigate adaptive immune responses in vivo and to characterize in vitro selection outputs where display systems were employed. Here, we show that many different HCDR3s can be identified within a target-specific antibody population after in vitro selection. For each identified HCDR3, a number of different antibodies bearing differences elsewhere can be found. In such selected populations, all antibodies with themore » same HCDR3 recognize the target, albeit at different affinities. In contrast, within unselected populations, the majority of antibodies with the same HCDR3 sequence do not bind the target. In one HCDR3 examined in depth, all target-specific antibodies were derived from the same VDJ rearrangement, while non-binding antibodies with the same HCDR3 were derived from many different V and D gene rearrangements. Careful examination of previously published in vivo datasets reveals that HCDR3s shared between, and within, different individuals can also originate from rearrangements of different V and D genes, with up to 26 different rearrangements yielding the same identical HCDR3 sequence. On the basis of these observations, we conclude that the same HCDR3 can be generated by many different rearrangements, but that specific target binding is an outcome of unique rearrangements and VL pairing: the HCDR3 is necessary, albeit insufficient, for specific antibody binding.« less

  18. Lactose-installed poly(ethylene glycol)-poly(d,l-lactide) block copolymer micelles exhibit fast-rate binding and high affinity toward a protein bed simulating a cell surface. A surface plasmon resonance study.

    PubMed

    Jule, Eduardo; Nagasaki, Yukio; Kataoka, Kazunori

    2003-01-01

    Lactose molecules were installed on the surface of poly(ethylene glycol)-poly(d,l-lactide) (PEG-PLA) block copolymer micelles in the scope of seeking specific recognition by cell surface receptors at hepatic sites. This, in turn, is expected to result in the formation of a complex displaying prolonged retention times and thus enhanced cellular internalization by receptor-mediated endocytosis. The so-obtained particles based on a block copolymer of molecular weight 9400 g/mol (4900/4500 g/mol for the PEG and PLA blocks, respectively) were found to have an average hydrodynamic diameter of 31.8 nm, as measured by dynamic light scattering. Further, the particle size distribution (micro(2)/Gamma(2)) was found to be lower than 0.08. Lactose-PEG-PLA micelles (Lac-micelles) were then injected over a gold surface containing Ricinus communis agglutinin lectins simulating the aforementioned glycoreceptors, and their interaction was studied by surface plasmon resonance. Then, a kinetic evaluation was carried out, by fitting the observed data mathematically. It appears that Lac-micelles bind in a multivalent manner to the lectin protein bed, which logically results in low dissociation constants. Micelles bearing a ligand density of 80% (Lac-micelles 80%: 80 lactose molecules per 100 copolymer chains) exhibit fast association phases (k(a1) = 3.2 x 10(4) M(-)(1) s(-)(1)), but also extremely slow dissociation phases (k(d1) = 1.3 x 10(-)(4) s(-)(1)). Recorded sensorgrams were fitted with a trivalent model, conveying a calculated equilibrium dissociation constant (K(D1) = k(d1)/k(a1)) of about 4 nM. The importance of cooperative binding was also assessed, by preparing Lac-micelles bearing different ligand densities, and by discussing the influence of the latter on kinetic constants. Interestingly enough, whereas Lac-micelles 80% bind in a trivalent manner to the protein bed, Lac-micelles 20% are still capable of forming bivalent complexes with the same protein bed (K(D1) = 1360 nM). Therefore, despite enhanced kinetic values brought about by a supplementary bond, lower ligand densities appear to be more effective on a molecular basis.

  19. Mechanism of inhibition of mammalian tumor and other thymidylate synthases by N sup 4 -hydroxy-dCMP, N sup 4 -hydroxy-5-fluoro-dCMP, and related analogues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rode, W.; Zielinski, Z.; Dzik, J.M.

    1990-12-01

    N{sup 4}-Hydroxy-dCMP (N{sup 4}-OH-dCMP), N{sup 4}-methoxy-dCMP (N{sup 4}-OMe-dCMP), and their 5-fluoro congeners were all slow-binding inhibitors of Ehrlich carcinoma thymidylate synthase (TS), competitive with respect to dUMP, and had differing kinetic constants describing interactions with the two TS binding sites. N{sup 4}-OH-dCMP was not a substrate and its inactivation of TS was methylenetetrahydrofolate-dependent, hence mechanism-based. K{sub i} values for N{sup 4}-OH-dCMP and its 5-fluoro analogue were in the range 10{sup {minus}7}-10{sup {minus}8} M, 2-3 orders of magnitude higher for the corresponding N{sup 4}-OMe analogues. The 5-methyl analogue of N{sup 4}-OHdCMP was 10{sup 4}-fold less potent, pointing to the anti rotamermore » of the imino form of exocyclic N{sup 4}-OH, relative to the ring N(3), as the active species. This is consistent with weaker slow-binding inhibition of the altered enzyme from 5-FdUrd-resistant, relative to parent, L1210 cells by both FdUMP and N{sup 4}-OH-dCMP, suggesting interaction of both N{sup 4}-OH and C(5)-F groups with the same region of the active center. Kinetic studies with purified enzyme from five sources, viz., Ehrlich carcinoma, L1210 parental, and 5-FdUrd-resistant cells, regenerating rat liver, and the tapeworm Hymenolepis diminuta, demonstrated that addition of a 5-fluoro substituent to N{sup 4}-OH-dCMP increased its affinity from 2- to 20-fold for the enzyme from different sources. With the Ehrlich and tapeworm enzymes, N{sup 4}-OH-FdCMP and FdUMP were almost equally effective inhibitors.« less

  20. Sleep Deprivation Decreases [11C]Raclopride’s Binding to Dopamine D2/D3 Receptors in the Human Brain

    PubMed Central

    Volkow, Nora D.; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S.; Logan, Jean; Wong, Christopher; Ma, Jim; Pradhan, Kith; Tomasi, Dardo; Thanos, Peter K.; Ferré, Sergi; Jayne, Millard

    2009-01-01

    Sleep deprivation can markedly impair human performance contributing to accidents and poor productivity. The mechanisms underlying this impairment are not well understood but brain dopamine systems have been implicated. Here we test whether one night of sleep deprivation changes dopamine brain activity. We studied fifteen healthy subjects using positron emission tomography and [11C]raclopride (dopamine D2/3 receptor radioligand) and [11C]cocaine (dopamine transporter radioligand). Subjects were tested twice; after one night of rested sleep and after on night of sleep deprivation. [11C]Raclopride’s specific binding in striatum and thalamus were significantly reduced after sleep deprivation and the magnitude of this reduction correlated with increases in fatigue (tiredness and sleepiness) and with deterioration in cognitive performance (visual attention and working memory). In contrast sleep deprivation did not affect the specific binding of [11C]cocaine in striatum. Since [11C]raclopride competes with endogenous dopamine for binding to D2/D3 receptors, we interpret the decreases in binding to reflect dopamine increases with sleep deprivation. However, we can not rule out the possibility that decreased [11C]raclopride binding reflects decreases in receptor levels or affinity. Sleep deprivation did not affect dopamine transporters (target for most wake-promoting medications) and thus dopamine increases are likely to reflect increases in dopamine cell firing and/or release rather than decreases in dopamine reuptake. Inasmuch as dopamine-enhancing drugs increase wakefulness we postulate that dopamine increases after sleep deprivation is a mechanism by which the brain maintains arousal as the drive to sleep increases but one that is insufficient to counteract behavioral and cognitive impairment. PMID:18716203

  1. Human α1β3γ2L gamma-aminobutyric acid type A receptors: High-level production and purification in a functional state.

    PubMed

    Dostalova, Zuzana; Zhou, Xiaojuan; Liu, Aiping; Zhang, Xi; Zhang, Yinghui; Desai, Rooma; Forman, Stuart A; Miller, Keith W

    2014-02-01

    Gamma-aminobutyric acid type A receptors (GABA(A)Rs) are the most important inhibitory chloride ion channels in the central nervous system and are major targets for a wide variety of drugs. The subunit compositions of GABA(A)Rs determine their function and pharmacological profile. GABAA Rs are heteropentamers of subunits, and (α1)2 (β3)2 (γ2L)1 is a common subtype. Biochemical and biophysical studies of GABA(A)Rs require larger quantities of receptors of defined subunit composition than are currently available. We previously reported high-level production of active human α1β3 GABA(A)R using tetracycline-inducible stable HEK293 cells. Here we extend the strategy to receptors containing three different subunits. We constructed a stable tetracycline-inducible HEK293-TetR cell line expressing human (N)-FLAG-α1β3γ2L-(C)-(GGS)3 GK-1D4 GABA(A)R. These cells achieved expression levels of 70-90 pmol [(3)H]muscimol binding sites/15-cm plate at a specific activity of 15-30 pmol/mg of membrane protein. Incorporation of the γ2 subunit was confirmed by the ratio of [(3)H]flunitrazepam to [(3)H]muscimol binding sites and sensitivity of GABA-induced currents to benzodiazepines and zinc. The α1β3γ2L GABA(A)Rs were solubilized in dodecyl-D-maltoside, purified by anti-FLAG affinity chromatography and reconstituted in CHAPS/asolectin at an overall yield of ∼ 30%. Typical purifications yielded 1.0-1.5 nmoles of [(3)H]muscimol binding sites/60 plates. Receptors with similar properties could be purified by 1D4 affinity chromatography with lower overall yield. The composition of the purified, reconstituted receptors was confirmed by ligand binding, Western blot, and proteomics. Allosteric interactions between etomidate and [(3)H]muscimol binding were maintained in the purified state. © 2013 The Protein Society.

  2. The Plasmodium falciparum exported protein PF3D7_0402000 binds to erythrocyte ankyrin and band 4.1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shakya, Bikash; Penn, Wesley D.; Nakayasu, Ernesto S.

    Plasmodium falciparum extensively modifies the infected red blood cell (RBC), resulting in changes in deformability, shape and surface properties. These alterations suggest that the RBC cytoskeleton is a major target for modification during infection. However, the molecular mechanisms leading to these changes are largely unknown. To begin to address this question, we screened for exported P. falciparum proteins that bound to the erythrocyte cytoskeleton proteins ankyrin 1 (ANK1) and band 4.1 (4.1R), which form critical interactions with other cytoskeletal proteins that contribute to the deformability and stability of RBCs. Yeast two-hybrid screens with ANK1 and 4.1R identified eight interactions withmore » P. falciparum exported proteins, including an interaction between 4.1R and PF3D7_0402000 (PFD0090c). This interaction was first identified in a large-scale screen (Vignali et al., Malaria J, 7:211, 2008), which also reported an interaction between PF3D7_0402000 and ANK1. We confirmed the interactions of PF3D7_0402000 with 4.1R and ANK1 in pair-wise yeast two-hybrid and co-precipitation assays. In both cases, an intact PHIST domain in PF3D7_0402000 was required for binding. Complex purification followed by mass spectrometry analysis provided additional support for the interaction of PF3D7_0402000 with ANK1 and 4.1R. RBC ghost cells loaded with maltose-binding protein (MBP)-PF3D7_0402000 passed through a metal microsphere column less efficiently than mock- or MBP-loaded controls, consistent with an effect of PF3D7_0402000 on RBC rigidity or membrane stability. This study confirmed the interaction of PF3D7_0402000 with 4.1R in multiple independent assays, provided the first evidence that PF3D7_0402000 also binds to ANK1, and suggested that PF3D7_0402000 affects deformability or membrane stability of uninfected RBC ghosts.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukeman, S.; Fanestil, D.

    Although the PBS has been identified in many organs, its function and cellular location are speculative. Using rapid filtration, binding of (/sup 3/H)RO 5-4864 (*RO) (.75 nM) was assessed in four subcellular fractions (.3 mg/ml) derived from depapillated rat kidney by differential centrifugation: N (450g x 2 min), O (13,000 x 10), P (105,000 x 30), and S. The binding distribution was: N-18%, O-74%, P-6%, and S-2%. Marker enzyme analysis revealed that O was enriched in mitochondria (M), lysosomes (L), peroxisomes (P), and endoplasmic reticulum (ER), but not plasma membrane, and that N contained small amounts (10-15%) of markers formore » the above. Repeated washing of O removed ER enzymes but preserved *RO binding. O was further fractionated with centrifugation (57,000g x 4 hr) on a linear sucrose gradient (18-65%); *RO binding then comigrated with M but not P and L markers. Centrifugation of isolated M (5500 x 10 min) on another linear sucrose gradient (37-65%) gave low and high density bands, which contained 65% and 35% of *RO binding activity, resp. *RO binding in O was specific, saturable, reversible, and inhibited by diuretics. Inhibitors with the highest potency were indacrinone (K/sub d/ = 35 ..mu..M), hydrochlorothiazide (100 ..mu..M), and ethacrynic acid (325 ..mu..M). Low potency inhibitors (K/sub d/ greater than or equal to 1 mM) included amiloride, triamterene, furosemide, bumetanide, and ozolinone.« less

  4. Factor VII and protein C are phosphatidic acid-binding proteins.

    PubMed

    Tavoosi, Narjes; Smith, Stephanie A; Davis-Harrison, Rebecca L; Morrissey, James H

    2013-08-20

    Seven proteins in the human blood clotting cascade bind, via their GLA (γ-carboxyglutamate-rich) domains, to membranes containing exposed phosphatidylserine (PS), although with membrane binding affinities that vary by 3 orders of magnitude. Here we employed nanodiscs of defined phospholipid composition to quantify the phospholipid binding specificities of these seven clotting proteins. All bound preferentially to nanobilayers in which PS headgroups contained l-serine versus d-serine. Surprisingly, however, nanobilayers containing phosphatidic acid (PA) bound substantially more of two of these proteins, factor VIIa and activated protein C, than did equivalent bilayers containing PS. Consistent with this finding, liposomes containing PA supported higher proteolytic activity by factor VIIa and activated protein C toward their natural substrates (factors X and Va, respectively) than did PS-containing liposomes. Moreover, treating activated human platelets with phospholipase D enhanced the rates of factor X activation by factor VIIa in the presence of soluble tissue factor. We hypothesize that factor VII and protein C bind preferentially to the monoester phosphate of PA because of its accessibility and higher negative charge compared with the diester phosphates of most other phospholipids. We further found that phosphatidylinositol 4-phosphate, which contains a monoester phosphate attached to its myo-inositol headgroup, also supported enhanced enzymatic activity of factor VIIa and activated protein C. We conclude that factor VII and protein C bind preferentially to monoester phosphates, which may have implications for the function of these proteases in vivo.

  5. Overcoming Antigenic Diversity by Enhancing the Immunogenicity of Conserved Epitopes on the Malaria Vaccine Candidate Apical Membrane Antigen-1

    PubMed Central

    Dutta, Sheetij; Dlugosz, Lisa S.; Drew, Damien R.; Ge, Xiopeng; Ababacar, Diouf; Rovira, Yazmin I.; Moch, J. Kathleen; Shi, Meng; Long, Carole A.; Foley, Michael; Beeson, James G.; Anders, Robin F.; Miura, Kazutoyo; Haynes, J. David; Batchelor, Adrian H.

    2013-01-01

    Malaria vaccine candidate Apical Membrane Antigen-1 (AMA1) induces protection, but only against parasite strains that are closely related to the vaccine. Overcoming the AMA1 diversity problem will require an understanding of the structural basis of cross-strain invasion inhibition. A vaccine containing four diverse allelic proteins 3D7, FVO, HB3 and W2mef (AMA1 Quadvax or QV) elicited polyclonal rabbit antibodies that similarly inhibited the invasion of four vaccine and 22 non-vaccine strains of P. falciparum. Comparing polyclonal anti-QV with antibodies against a strain-specific, monovalent, 3D7 AMA1 vaccine revealed that QV induced higher levels of broadly inhibitory antibodies which were associated with increased conserved face and domain-3 responses and reduced domain-2 response. Inhibitory monoclonal antibodies (mAb) raised against the QV reacted with a novel cross-reactive epitope at the rim of the hydrophobic trough on domain-1; this epitope mapped to the conserved face of AMA1 and it encompassed the 1e-loop. MAbs binding to the 1e-loop region (1B10, 4E8 and 4E11) were ∼10-fold more potent than previously characterized AMA1-inhibitory mAbs and a mode of action of these 1e-loop mAbs was the inhibition of AMA1 binding to its ligand RON2. Unlike the epitope of a previously characterized 3D7-specific mAb, 1F9, the 1e-loop inhibitory epitope was partially conserved across strains. Another novel mAb, 1E10, which bound to domain-3, was broadly inhibitory and it blocked the proteolytic processing of AMA1. By itself mAb 1E10 was weakly inhibitory but it synergized with a previously characterized, strain-transcending mAb, 4G2, which binds close to the hydrophobic trough on the conserved face and inhibits RON2 binding to AMA1. Novel inhibition susceptible regions and epitopes, identified here, can form the basis for improving the antigenic breadth and inhibitory response of AMA1 vaccines. Vaccination with a few diverse antigenic proteins could provide universal coverage by redirecting the immune response towards conserved epitopes. PMID:24385910

  6. Hydrogen/Deuterium Exchange Reflects Binding of Human Centrin 2 to Ca2+ and Xeroderma Pigmentosum Group C Peptide: An Example of EX1 Kinetics

    PubMed Central

    Sperry, Justin B.; Ryan, Zachary C.; Kumar, Rajiv; Gross, Michael L.

    2012-01-01

    Xeroderma pigmentosum (XP) is a genetic disease affecting 1 in 10,000-100,000 and predisposes people to early-age skin cancer, a disease that is increasing. Those with XP have decreased ability to repair UV-induced DNA damage, leading to increased susceptibility of cancerous non-melanomas and melanomas. A vital, heterotrimeric protein complex is linked to the nucleotide excision repair pathway for the damaged DNA. The complex consists of XPC protein, human centrin 2, and RAD23B. One of the members, human centrin 2, is a ubiquitous, acidic, Ca2+-binding protein belonging to the calmodulin superfamily. The XPC protein contains a sequence motif specific for binding to human centrin 2. We report here the Ca2+-binding properties of human centrin 2 and its interaction with the XPC peptide motif. We utilized a region-specific H/D exchange protocol to localize the interaction of the XPC peptide with the C-terminal domain of centrin, the binding of which is different than that of calmodulin complexes. The binding dynamics of human centrin 2 to the XPC peptide in the absence and presence of Ca2+ are revealed by the observation of EX1 H/D exchange regime, indicating that a locally unfolded population exists in solution and undergoes fast H/D exchange. PMID:23439742

  7. Isolation by cell-column chromatography of immunoglobulins specific for cell surface carbohydrates

    PubMed Central

    1977-01-01

    A new method of affinity chromatography using glutaraldehyde-fixed cells immobilized on Sephadex beads has been used to isolate immunoglobulins (Ig's) specific for cell surface glycoproteins. Ig's that specifically bound and agglutinated the same cells as those originally fixed on the columns were isolated from nonimmune sera of various species. Periodate treatment of the cell-columns and the free cells destroyed their ability to bind the Ig's, and the binding of the Ig's to untreated cells was inhibited by monosaccharides such as D- galactose and sialic acid. The binding of antibodies directed against cell surfaces obtained by immunizing animals with the same mouse tumor cell lines used on the columns (P388 and EL4) was not inhibited by various saccharides. Surface glycoproteins obtained from the mouse tumor cells by immunoprecipitation with the column-isolated Ig's yielded specific electrophoretic patterns that differed from those obtained using Ig's from the sera of rabbits immunized with the tumor cells. The data suggest that the Ig's isolated by cell-column chromatography were directed against carbohydrates, probably those in terminal positions of the polysaccharide portions of the tumor cell surface glycoproteins. Column-isolated Ig's specific for carbohydrates were also useful in studies of cell interactions in nonmammalian systems including Dictyostelium discoideum and Saccharomyces cerevisiae. The cell-column method appears to be adaptable to the isolation of a variety of molecules in addition to antibodies. PMID:833547

  8. Epitope mapping of monoclonal antibody HPT-101: a study combining dynamic force spectroscopy, ELISA and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Stangner, Tim; Angioletti-Uberti, Stefano; Knappe, Daniel; Singer, David; Wagner, Carolin; Hoffmann, Ralf; Kremer, Friedrich

    2015-12-01

    By combining enzyme-linked immunosorbent assay (ELISA) and optical tweezers-assisted dynamic force spectroscopy (DFS), we identify for the first time the binding epitope of the phosphorylation-specific monoclonal antibody (mAb) HPT-101 to the Alzheimer's disease relevant peptide tau[pThr231/pSer235] on the level of single amino acids. In particular, seven tau isoforms are synthesized by replacing binding relevant amino acids by a neutral alanine (alanine scanning). From the binding between mAb HPT-101 and the alanine-scan derivatives, we extract specific binding parameters such as bond lifetime {τ }0, binding length {x}{ts}, free energy of activation {{Δ }}G (DFS) and affinity constant {K}{{a}} (ELISA, DFS). Based on these quantities, we propose criteria to identify essential, secondary and non-essential amino acids, being representative of the antibody binding epitope. The obtained results are found to be in full accord for both experimental techniques. In order to elucidate the microscopic origin of the change in binding parameters, we perform molecular dynamics (MD) simulations of the free epitope in solution for both its parent and modified form. By taking the end-to-end distance {d}{{E}-{{E}}} and the distance between the α-carbons {d}{{C}-{{C}}} of the phosphorylated residues as gauging parameters, we measure how the structure of the epitope depends on the type of substitution. In particular, whereas {d}{{C}-{{C}}} is sometimes conserved between the parent and modified form, {d}{{E}-{{E}}} strongly changes depending on the type of substitution, correlating well with the experimental data. These results are highly significant, offering a detailed microscopic picture of molecular recognition.

  9. The First Negative Allosteric Modulator for Dopamine D2 and D3 Receptors, SB269652 May Lead to a New Generation of Antipsychotic Drugs.

    PubMed

    Rossi, Mario; Fasciani, Irene; Marampon, Francesco; Maggio, Roberto; Scarselli, Marco

    2017-06-01

    D 2 and D 3 dopamine receptors belong to the largest family of cell surface proteins in eukaryotes, the G protein-coupled receptors (GPCRs). Considering their crucial physiologic functions and their relatively accessible cellular locations, GPCRs represent one of the most important classes of therapeutic targets. Until recently, the only strategy to develop drugs regulating GPCR activity was through the identification of compounds that directly acted on the orthosteric sites for endogenous ligands. However, many efforts have recently been made to identify small molecules that are able to interact with allosteric sites. These sites are less well-conserved, therefore allosteric ligands have greater selectivity on the specific receptor. Strikingly, the use of allosteric modulators can provide specific advantages, such as an increased selectivity for GPCR subunits and the ability to introduce specific beneficial therapeutic effects without disrupting the integrity of complex physiologically regulated networks. In 2010, our group unexpectedly found that N -[(1r,4r)-4-[2-(7-cyano-1,2,3,4-tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-1H-indole-2-carboxamide (SB269652), a compound supposed to interact with the orthosteric binding site of dopamine receptors, was actually a negative allosteric modulator of D 2 - and D 3 -receptor dimers, thus identifying the first allosteric small molecule acting on these important therapeutic targets. This review addresses the progress in understanding the molecular mechanisms of interaction between the negative modulator SB269652 and D 2 and D 3 dopamine receptor monomers and dimers, and surveys the prospects for developing new dopamine receptor allosteric drugs with SB269652 as the leading compound. U.S. Government work not protected by U.S. copyright.

  10. Structural Basis for Activation of the Receptor Tyrosine Kinase KIT by Stem Cell Factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuzawa,S.; Opatowsky, Y.; Zhang, Z.

    2007-01-01

    Stem Cell Factor (SCF) initiates its multiple cellular responses by binding to the ectodomain of KIT, resulting in tyrosine kinase activation. We describe the crystal structure of the entire ectodomain of KIT before and after SCF stimulation. The structures show that KIT dimerization is driven by SCF binding whose sole role is to bring two KIT molecules together. Receptor dimerization is followed by conformational changes that enable lateral interactions between membrane proximal Ig-like domains D4 and D5 of two KIT molecules. Experiments with cultured cells show that KIT activation is compromised by point mutations in amino acids critical for D4-D4more » interaction. Moreover, a variety of oncogenic mutations are mapped to the D5-D5 interface. Since key hallmarks of KIT structures, ligand-induced receptor dimerization, and the critical residues in the D4-D4 interface, are conserved in other receptors, the mechanism of KIT stimulation unveiled in this report may apply for other receptor activation.« less

  11. BuD, a helix–loop–helix DNA-binding domain for genome modification

    PubMed Central

    Stella, Stefano; Molina, Rafael; López-Méndez, Blanca; Juillerat, Alexandre; Bertonati, Claudia; Daboussi, Fayza; Campos-Olivas, Ramon; Duchateau, Phillippe; Montoya, Guillermo

    2014-01-01

    DNA editing offers new possibilities in synthetic biology and biomedicine for modulation or modification of cellular functions to organisms. However, inaccuracy in this process may lead to genome damage. To address this important problem, a strategy allowing specific gene modification has been achieved through the addition, removal or exchange of DNA sequences using customized proteins and the endogenous DNA-repair machinery. Therefore, the engineering of specific protein–DNA interactions in protein scaffolds is key to providing ‘toolkits’ for precise genome modification or regulation of gene expression. In a search for putative DNA-binding domains, BurrH, a protein that recognizes a 19 bp DNA target, was identified. Here, its apo and DNA-bound crystal structures are reported, revealing a central region containing 19 repeats of a helix–loop–helix modular domain (BurrH domain; BuD), which identifies the DNA target by a single residue-to-nucleotide code, thus facilitating its redesign for gene targeting. New DNA-binding specificities have been engineered in this template, showing that BuD-derived nucleases (BuDNs) induce high levels of gene targeting in a locus of the human haemoglobin β (HBB) gene close to mutations responsible for sickle-cell anaemia. Hence, the unique combination of high efficiency and specificity of the BuD arrays can push forward diverse genome-modification approaches for cell or organism redesign, opening new avenues for gene editing. PMID:25004980

  12. In vitro evidence of efficacy and safety of a polymerized cat dander extract for allergen immunotherapy.

    PubMed

    Morales, María; Gallego, Mayte; Iraola, Victor; Taulés, Marta; de Oliveira, Eliandre; Moya, Raquel; Carnés, Jerónimo

    2017-02-24

    Allergy to cat epithelia is highly prevalent, being the major recommendation for allergy sufferers its avoidance. However, this is not always feasible. Allergen specific immunotherapy is therefore recommended for these patients. The use of polymerized allergen extracts, allergoids, would allow to achieve the high allergen doses suggested to be effective while maintaining safety. Cat native extract and its depigmented allergoid were manufactured and biochemically and immunochemically characterized. Protein and chromatographic profiles showed significant modification of the depigmented allergoid with respect to its corresponding native extract. However, the presence of different allergens (Fel d 1, Fel d 2, Fel d 3, Fel d 4 and Fel d 7) was confirmed in the allergoid. Differences in IgE-binding capacity were observed as loss of biological potency and lower stability of the IgE-allergen complex on surface plasmon resonance. The allergoid induced production of IgG antibodies able to block IgE-binding to native extract. Finally, studies carried out with peripheral-blood mononuclear cells from cat allergic patients showed that the allergoid induced IFN-γ and IL-10 production similar to that induced by native extract. Cat depigmented allergoid induced production of cytokines involved in a Th1 and Treg response, was able to induce production of IgG-antibodies that blocks IgE-binding to cat native extract, and showed reduced interaction with IgE, suggesting greater safety than native extract while maintaining in vitro efficacy.

  13. Generation and characterization of ABT-981, a dual variable domain immunoglobulin (DVD-Ig(TM)) molecule that specifically and potently neutralizes both IL-1α and IL-1β.

    PubMed

    Lacy, Susan E; Wu, Chengbin; Ambrosi, Dominic J; Hsieh, Chung-Ming; Bose, Sahana; Miller, Renee; Conlon, Donna M; Tarcsa, Edit; Chari, Ravi; Ghayur, Tariq; Kamath, Rajesh V

    2015-01-01

    Interleukin-1 (IL-1) cytokines such as IL-1α, IL-1β, and IL-1Ra contribute to immune regulation and inflammatory processes by exerting a wide range of cellular responses, including expression of cytokines and chemokines, matrix metalloproteinases, and nitric oxide synthetase. IL-1α and IL-1β bind to IL-1R1 complexed to the IL-1 receptor accessory protein and induce similar physiological effects. Preclinical and clinical studies provide significant evidence for the role of IL-1 in the pathogenesis of osteoarthritis (OA), including cartilage degradation, bone sclerosis, and synovial proliferation. Here, we describe the generation and characterization of ABT-981, a dual variable domain immunoglobulin (DVD-Ig) of the IgG1/k subtype that specifically and potently neutralizes IL-1α and IL-1β. In ABT-981, the IL-1β variable domain resides in the outer domain of the DVD-Ig, whereas the IL-1α variable domain is located in the inner position. ABT-981 specifically binds to IL-1α and IL-1β, and is physically capable of binding 2 human IL-1α and 2 human IL-1β molecules simultaneously. Single-dose intravenous and subcutaneous pharmacokinetics studies indicate that ABT-981 has a half-life of 8.0 to 10.4 d in cynomolgus monkey and 10.0 to 20.3 d in rodents. ABT-981 exhibits suitable drug-like-properties including affinity, potency, specificity, half-life, and stability for evaluation in human clinical trials. ABT-981 offers an exciting new approach for the treatment of OA, potentially addressing both disease modification and symptom relief as a disease-modifying OA drug.

  14. IgG Donor-Specific Anti-Human HLA Antibody Subclasses and Kidney Allograft Antibody-Mediated Injury.

    PubMed

    Lefaucheur, Carmen; Viglietti, Denis; Bentlejewski, Carol; Duong van Huyen, Jean-Paul; Vernerey, Dewi; Aubert, Olivier; Verine, Jérôme; Jouven, Xavier; Legendre, Christophe; Glotz, Denis; Loupy, Alexandre; Zeevi, Adriana

    2016-01-01

    Antibodies may have different pathogenicities according to IgG subclass. We investigated the association between IgG subclasses of circulating anti-human HLA antibodies and antibody-mediated kidney allograft injury. Among 635 consecutive kidney transplantations performed between 2008 and 2010, we enrolled 125 patients with donor-specific anti-human HLA antibodies (DSA) detected in the first year post-transplant. We assessed DSA characteristics, including specificity, HLA class specificity, mean fluorescence intensity (MFI), C1q-binding, and IgG subclass, and graft injury phenotype at the time of sera evaluation. Overall, 51 (40.8%) patients had acute antibody-mediated rejection (aABMR), 36 (28.8%) patients had subclinical ABMR (sABMR), and 38 (30.4%) patients were ABMR-free. The MFI of the immunodominant DSA (iDSA, the DSA with the highest MFI level) was 6724±464, and 41.6% of patients had iDSA showing C1q positivity. The distribution of iDSA IgG1-4 subclasses among the population was 75.2%, 44.0%, 28.0%, and 26.4%, respectively. An unsupervised principal component analysis integrating iDSA IgG subclasses revealed aABMR was mainly driven by IgG3 iDSA, whereas sABMR was driven by IgG4 iDSA. IgG3 iDSA was associated with a shorter time to rejection (P<0.001), increased microcirculation injury (P=0.002), and C4d capillary deposition (P<0.001). IgG4 iDSA was associated with later allograft injury with increased allograft glomerulopathy and interstitial fibrosis/tubular atrophy lesions (P<0.001 for all comparisons). Integrating iDSA HLA class specificity, MFI level, C1q-binding status, and IgG subclasses in a Cox survival model revealed IgG3 iDSA and C1q-binding iDSA were strongly and independently associated with allograft failure. These results suggest IgG iDSA subclasses identify distinct phenotypes of kidney allograft antibody-mediated injury. Copyright © 2016 by the American Society of Nephrology.

  15. Analysis of various types of single-polypeptide-chain (sc) heterodimeric A{sub 2A}R/D{sub 2}R complexes and their allosteric receptor–receptor interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamiya, Toshio, E-mail: kamiya@z2.keio.jp; Department of Neurology, Tokyo Metropolitan Institute for Neuroscience, 2-6 Musashidai, Fuchu, Tokyo 183-8526; Cell Biology Laboratory, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502

    Highlights: • Various scA{sub 2A}R/D{sub 2}R constructs, with spacers between the two receptors, were created. • Using whole cell binding assay, constructs were examined for their binding activity. • Although the apparent ratio of A{sub 2A}R to D{sub 2}R binding sites should be 1, neither was 1. • Counter agonist-independent binding cooperativity occurred in context of scA{sub 2A}R/D{sub 2}R. - Abstract: Adenosine A{sub 2A} receptor (A{sub 2A}R) heteromerizes with dopamine D{sub 2} receptor (D{sub 2}R). However, these class A G protein-coupled receptor (GPCR) dimers are not fully formed, but depend on the equilibrium between monomer and dimer. In order tomore » stimulate the heteromerization, we have previously shown a successful design for a fusion receptor, single-polypeptide-chain (sc) heterodimeric A{sub 2A}R/D{sub 2}R complex. Here, using whole cell binding assay, six more different scA{sub 2A}R/D{sub 2}R constructs were examined. Not only in scA{sub 2A}R/D{sub 2}R ‘liberated’ with longer spacers between the two receptors, which confer the same configuration as the prototype, the A{sub 2A}R-odr4TM-D{sub 2L}R, but differ in size (Forms 1–3), but also in scA{sub 2A}R/D{sub 2L}R (Form 6) fused with a transmembrane (TM) of another type II TM protein, instead of odr4TM, neither of their fixed stoichiometry (the apparent ratios of A{sub 2A}R to D{sub 2}R binding sites) was 1, suggesting their compact folding. This suggests that type II TM, either odr4 or another, facilitates the equilibrial process of the dimer formation between A{sub 2A}R and D{sub 2L}R, resulting in the higher-order oligomer formation from monomer of scA{sub 2A}R/D{sub 2L}R itself. Also, in the reverse type scA{sub 2A}R/D{sub 2L}R, i.e., the D{sub 2L}R-odr4TM-A{sub 2A}R, counter agonist-independent binding cooperativity (cooperative folding) was found to occur (Forms 4 and 5). In this way, the scA{sub 2A}R/D{sub 2L}R system has unveiled the cellular phenomenon as a snapshot of the molecular behavior in A{sub 2A}R/D{sub 2L}R dimer. Thus, these results indicate that the various designed types of functional A{sub 2A}R/D{sub 2}R exist even in living cells and that this fusion expression system would be useful to analyze as a model of the interaction between class A GPCRs.« less

  16. High-affinity dopamine D2/D3 PET radioligands 18F-fallypride and 11C-FLB457: A comparison of kinetics in extrastriatal regions using a multiple-injection protocol

    PubMed Central

    Vandehey, Nicholas T; Moirano, Jeffrey M; Converse, Alexander K; Holden, James E; Mukherjee, Jogesh; Murali, Dhanabalan; Nickles, R Jerry; Davidson, Richard J; Schneider, Mary L; Christian, Bradley T

    2010-01-01

    18F-Fallypride and 11C-FLB457 are commonly used PET radioligands for imaging extrastriatal dopamine D2/D3 receptors, but differences in their in vivo kinetics may affect the sensitivity for measuring subtle changes in receptor binding. Focusing on regions of low binding, a direct comparison of the kinetics of 18F-fallypride and 11C-FLB457 was made using a MI protocol. Injection protocols were designed to estimate K1, k2, fNDkon, Bmax, and koff in the midbrain and cortical regions of the rhesus monkey. 11C-FLB457 cleared from the arterial plasma faster and yielded a ND space distribution volume (K1/k2) that is three times higher than 18F-fallypride, primarily due to a slower k2 (FAL:FLB; k2=0.54 min−1:0.18 min−1). The dissociation rate constant, koff, was slower for 11C-FLB457, resulting in a lower KDapp than 18F-fallypride (FAL:FLB; 0.39 nM:0.13 nM). Specific D2/D3 binding could be detected in the cerebellum for 11C-FLB457 but not 18F-fallypride. Both radioligands can be used to image extrastriatal D2/D3 receptors, with 11C-FLB457 providing greater sensitivity to subtle changes in low-receptor-density cortical regions and 18F-fallypride being more sensitive to endogenous dopamine displacement in medium-to-high-receptor-density regions. In the presence of specific D2/D3 binding in the cerebellum, reference region analysis methods will give a greater bias in BPND with 11C-FLB457 than with 18F-fallypride. PMID:20040928

  17. Cations Stiffen Actin Filaments by Adhering a Key Structural Element to Adjacent Subunits

    PubMed Central

    2016-01-01

    Ions regulate the assembly and mechanical properties of actin filaments. Recent work using structural bioinformatics and site-specific mutagenesis favors the existence of two discrete and specific divalent cation binding sites on actin filaments, positioned in the long axis between actin subunits. Cation binding at one site drives polymerization, while the other modulates filament stiffness and plays a role in filament severing by the regulatory protein, cofilin. Existing structural methods have not been able to resolve filament-associated cations, and so in this work we turn to molecular dynamics simulations to suggest a candidate binding pocket geometry for each site and to elucidate the mechanism by which occupancy of the “stiffness site” affects filament mechanical properties. Incorporating a magnesium ion in the “polymerization site” does not seem to require any large-scale change to an actin subunit’s conformation. Binding of a magnesium ion in the “stiffness site” adheres the actin DNase-binding loop (D-loop) to its long-axis neighbor, which increases the filament torsional stiffness and bending persistence length. Our analysis shows that bound D-loops occupy a smaller region of accessible conformational space. Cation occupancy buries key conserved residues of the D-loop, restricting accessibility to regulatory proteins and enzymes that target these amino acids. PMID:27146246

  18. Derivatives of dibenzothiophene for PET imaging of α7-Nicotinic Acetylcholine Receptors

    PubMed Central

    Gao, Yongjun; Kellar, Kenneth J.; Yasuda, Robert P.; Tran, Thao; Xiao, Yingxian; Dannals, Robert F.; Horti, Andrew G.

    2013-01-01

    A new series of derivatives of 3-(1,4-diazabicyclo[3.2.2]nonan-4-yl)dibenzo[b,d]thiophene 5,5-dioxide with high binding affinities and selectivity for α7-nicotinic acetylcholine receptors (α7-nAChRs) (Ki = 0.4 – 20 nM) has been synthesized for PET imaging of α7-nAChRs. Two radiolabeled members of the series [18F]7a (Ki = 0.4 nM) and [18F]7c (Ki = 1.3 nM) were synthesized. [18F]7a and [18F]7c readily entered the mouse brain and specifically labeled α7-nAChRs. The α7-nAChR selective ligand 1 (SSR180711) blocked the binding of [18F]7a in the mouse brain in a dose-dependent manner. The mouse blocking studies with non-α7-nAChR CNS drugs demonstrated that [18F]7a is highly α7-nAChR selective. In agreement with its binding affinity the binding potential of [18F]7a (BPND = 5.3 – 8.0) in control mice is superior to previous α7-nAChR PET radioligands. Thus, [18F]7a displays excellent imaging properties in mice and has been chosen for further evaluation as a potential PET radioligand for imaging of α7-nAChR in non-human primates. PMID:24050653

  19. Photoaffinity labelling and solubilization on the central 5-HT1A receptor binding site.

    PubMed

    Gozlan, H; Emerit, M B; el Mestikawy, S; Cossery, J M; Marquet, A; Besselievre, R; Hamon, M

    1987-01-01

    Two complementary approaches, covalent labelling and solubilization, have been used to study the biochemical properties of the central 5-HT1A receptor binding site. We have first designed a photoaffinity ligand containing the structure of 8-OH-DPAT, a potent and specific agonist of 5-HT1A sites. Thus, 8-methoxy-2[N-n-propyl,N-3-(2-nitro-4-azido-phenyl)- aminopropyl]aminotetralin or 8-methoxy-3'-NAP-amino-PAT, was found to displace, in the dark, [3H]8-OH-DPAT from 5-HT1A sites in rat hippocampal membranes with an IC50 of 6.6 nM. Under two cumulative UV irradiations (366 nm, for 20 min at 4 degrees C), 8-methoxy-3-'-NAP-amino-PAT (30 nM) blocked irreversibly 55-60% of 5-HT1A binding sites. This blockade was specific of 5-HT1A sites since the other serotoninergic sites, 5-HT1B, 5-HT2 and also the presynaptic 5-HT3 sites were not affected by the treatment. In addition, the binding of [3H]Spiperone and [3H]7-OH-DPAT to striatal dopamine sites remained unchanged under similar photolysis conditions. The tritiated derivative of the photoaffinity ligand (92 Ci/mmol) was then synthesized for the identification of the covalently bound protein(s). SDS-PAGE of solubilized membranes irradiated in the presence of 20 nM 3H-8-methoxy-3'-NAP-amino-PAT allowed the detection of a 63 kD protein whose labelling appeared specific. Thus, 3H-incorporation into the 63 kD band could be prevented by microM concentrations of 5-HT, 8-OH-DPAT and other selective 5-HT1A ligands such as isapirone. In contrast, the 5-HT2 antagonist ketanserin, norepinephrine and dopamine-related ligands (including 7-OH-DPAT) were ineffective. Direct solubilization of 5-HT1A receptor binding sites was also attempted from rat hippocampal membranes. The best results were obtained using CHAPS (10 mM) plus NaCl (0.2 M), which led to 50% recovery of 5-HT1A sites in the 100,000 g supernatant. The pharmacological properties and sensitivity to N-ethyl-maleimide and GppNHp of soluble sites appeared near identical to those of membrane-bound 5-HT1A sites.

  20. Structural basis for genome wide recognition of 5-bp GC motifs by SMAD transcription factors.

    PubMed

    Martin-Malpartida, Pau; Batet, Marta; Kaczmarska, Zuzanna; Freier, Regina; Gomes, Tiago; Aragón, Eric; Zou, Yilong; Wang, Qiong; Xi, Qiaoran; Ruiz, Lidia; Vea, Angela; Márquez, José A; Massagué, Joan; Macias, Maria J

    2017-12-12

    Smad transcription factors activated by TGF-β or by BMP receptors form trimeric complexes with Smad4 to target specific genes for cell fate regulation. The CAGAC motif has been considered as the main binding element for Smad2/3/4, whereas Smad1/5/8 have been thought to preferentially bind GC-rich elements. However, chromatin immunoprecipitation analysis in embryonic stem cells showed extensive binding of Smad2/3/4 to GC-rich cis-regulatory elements. Here, we present the structural basis for specific binding of Smad3 and Smad4 to GC-rich motifs in the goosecoid promoter, a nodal-regulated differentiation gene. The structures revealed a 5-bp consensus sequence GGC(GC)|(CG) as the binding site for both TGF-β and BMP-activated Smads and for Smad4. These 5GC motifs are highly represented as clusters in Smad-bound regions genome-wide. Our results provide a basis for understanding the functional adaptability of Smads in different cellular contexts, and their dependence on lineage-determining transcription factors to target specific genes in TGF-β and BMP pathways.

  1. Specific strychnine binding sites on acrosome-associated membranes of golden hamster spermatozoa.

    PubMed

    Llanos, Miguel N; Ronco, Ana M; Aguirre, María C

    2003-06-27

    This study demonstrates for the first time, that membrane vesicles originated from the hamster sperm head after the occurrence of the acrosome reaction, possess specific strychnine binding sites. [3H]Strychnine binding was saturable and reversible, being displaced by unlabeled strychnine (IC(50)=26.7+/-2.3 microM). Kinetic analysis revealed one binding site with K(d)=120nM and B(max)=142fmol/10(6) spermatozoa. Glycine receptor agonists beta-alanine and taurine inhibited strychnine binding by 20-30%. Surprisingly, glycine stimulated binding by about 40-50%. Results obtained in this study strongly suggest the presence of glycine receptors-with distinctive kinetic properties on the periacrosomal plasma membrane of hamster spermatozoa. Localization of this receptor fits well with its previously proposed role in acrosomal exocytosis during mammalian fertilization.

  2. A mutagenesis study of a catalytic antibody

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, D.Y.; Prudent, J.R.; Baldwin, E.P.

    1991-01-01

    The authors have generated seven site-specific mutations in the genes encoding the variable region of the heavy chain domain (V{sub H}) of the phosphocholine-binding antibody S107.S107 is a member of a family of well-characterized highly homologous antibodies that bind phosphorylcholine mono- and diesters. Two of these antibodies, MOPC-167 and T15, have previously been shown to catalyze the hydrolysis of 4-nitrophenyl N-trimethylammonioethyl carbonate. Two conserved heavy-chain residues, Tyr-33 and Arg-52, were postulated to be involved in binding and hydrolysis of 4-nitrophenylcholine carbonate esters. To more precisely define the catalytic roles of these residues, three Arg-52 mutants (R52K, R52Q, R52C) and fourmore » Tyr-33 mutants (Y33H, Y33F, Y33E, Y33D) of antibody S107 were generated. The genes encoding the V{sub H} binding domain of S107 were inserted into plasmid pUC-fl, and in vitro mutagenesis was performed. These results not only demonstrate the importance of electrostatic interactions in catalysis by antibody S107 but also show that catalytic side chains can be introduced into antibodies to enhance their catalytic efficiency.« less

  3. Structure and stability of fluorine-substituted benzene-argon complexes: The decisive role of exchange-repulsion and dispersion interactions

    NASA Astrophysics Data System (ADS)

    Tarakeshwar, P.; Kim, Kwang S.; Kraka, Elfi; Cremer, Dieter

    2001-10-01

    The van der Waals complexes benzene-argon (BAr), fluorobenzene-argon (FAr), p-difluorobenzene-argon (DAr) are investigated at the second-order Møller-Plesset (MP2) level of theory using the 6-31+G(d), cc-pVDZ, aug-cc-pVTZ, and [7s4p2d1f/4s3p1d/3s1p] basis sets. Geometries, binding energies, harmonic vibrational frequencies, and density distribution are calculated where basis set superposition errors are corrected with the counterpoise method. Binding energies turn out to be almost identical (MP2/[7s4p2d1f/4s3p1d/3s1p]: 408, 409, 408 cm-1) for BAr, FAr, and DAr. Vibrationally corrected binding energies (357, 351, 364 cm-1) agree well with experimental values (340, 344, and 339 cm-1). Symmetry adapted perturbation theory (SAPT) is used to decompose binding energies and to examine the influence of attractive and repulsive components. Fluorine substituents lead to a contraction of the π density of the benzene ring, thus reducing the destabilizing exchange-repulsion and exchange-induction effects. At the same time, both the polarizing power and the polarizability of the π-density of the benzene derivative decreases thus reducing stabilizing induction and dispersion interactions. Stabilizing and destabilizing interactions largely cancel each other out to give comparable binding energies. The equilibrium geometry of the Ar complex is also a result of the decisive influence of exchange-repulsion and dispersive interactions.

  4. Catfish (Clarias batrachus) serum lectin recognizes polyvalent Tn [alpha-D-GalpNAc1-Ser/Thr], Talpha [beta-D-Galp-(1-->3)-alpha-D-GalpNAc1-Ser/Thr], and II [beta-D-Galp(1-->4)-beta-D-GlcpNAc1-] mammalian glycotopes.

    PubMed

    Singha, Biswajit; Adhya, Mausumi; Chatterjee, Bishnu P

    2008-09-22

    A new calcium dependent GalNAc/Gal specific lectin was isolated from the serum of Indian catfish, Clarias batrachus and designated as C. batrachus lectin (CBL). It is a disulfide-linked homodecameric lectin of 74.65kDa subunits and the oligomeric form is essential for its activity. Binding specificity of CBL was investigated by enzyme-linked lectin-sorbent assay using a series of simple sugars, polysaccharides, and glycoproteins. GalNAc was more potent inhibitor than Gal; and alpha glycosides of both were more inhibitory than their beta counterparts. CBL showed maximum affinity for human tumor-associated Tn-antigens (GalNAcalpha1-Ser/Thr) at the molecular level and was 3.5 times higher than GalNAc. CBL interacted strongly with polyvalent Tn and Talpha (Galbeta1,3GalNAcalpha1-) as well as multivalent-II (Galbeta1,4GlcNAcbeta1-) antigens containing glycoproteins and intensity of inhibition was 10(3)-10(5) times more than monovalent ones. The overall specificity of CBL lies in the order of polyvalent Tn, Talpha and II>monovalent Tn > or = Me-alphaGalNAc>monovalent Talpha> Me-betaGalNAc>Me-alphaGal>monovalent T>GalNAc>monovalent F>monovalent II>Me-betaGal>Gal.

  5. [3H]aniracetam binds to specific recognition sites in brain membranes.

    PubMed

    Fallarino, F; Genazzani, A A; Silla, S; L'Episcopo, M R; Camici, O; Corazzi, L; Nicoletti, F; Fioretti, M C

    1995-08-01

    [3H]Aniracetam bound to specific and saturable recognition sites in membranes prepared from discrete regions of rat brain. In crude membrane preparation from rat cerebral cortex, specific binding was Na+ independent, was still largely detectable at low temperature (4 degrees C), and underwent rapid dissociation. Scatchard analysis of [3H]aniracetam binding revealed a single population of sites with an apparent KD value of approximately 70 nM and a maximal density of 3.5 pmol/mg of protein. Specifically bound [3H]aniracetam was not displaced by various metabolites of aniracetam, nor by other pyrrolidinone-containing nootropic drugs such as piracetam or oxiracetam. Subcellular distribution studies showed that a high percentage of specific [3H]aniracetam binding was present in purified synaptosomes or mitochondria, whereas specific binding was low in the myelin fraction. The possibility that at least some [3H]aniracetam binding sites are associated with glutamate receptors is supported by the evidence that specific binding was abolished when membranes were preincubated at 37 degrees C under fast shaking (a procedure that substantially reduced the amount of glutamate trapped in the membranes) and could be restored after addition of either glutamate or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) but not kainate. The action of AMPA was antagonized by DNQX, which also reduced specific [3H]aniracetam binding in unwashed membranes. High levels of [3H]aniracetam binding were detected in hippocampal, cortical, or cerebellar membranes, which contain a high density of excitatory amino acid receptors.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Structure of the Mycobacterium tuberculosis D-Alanine:D-Alanine Ligase, a Target of the Antituberculosis Drug D-Cycloserine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruning, John B.; Murillo, Ana C.; Chacon, Ofelia

    D-Alanine:D-alanine ligase (EC 6.3.2.4; Ddl) catalyzes the ATP-driven ligation of two D-alanine (D-Ala) molecules to form the D-alanyl:D-alanine dipeptide. This molecule is a key building block in peptidoglycan biosynthesis, making Ddl an attractive target for drug development. D-Cycloserine (DCS), an analog of D-Ala and a prototype Ddl inhibitor, has shown promise for the treatment of tuberculosis. Here, we report the crystal structure of Mycobacterium tuberculosis Ddl at a resolution of 2.1 {angstrom}. This structure indicates that Ddl is a dimer and consists of three discrete domains; the ligand binding cavity is at the intersection of all three domains and conjoinedmore » by several loop regions. The M. tuberculosis apo Ddl structure shows a novel conformation that has not yet been observed in Ddl enzymes from other species. The nucleotide and D-alanine binding pockets are flexible, requiring significant structural rearrangement of the bordering regions for entry and binding of both ATP and D-Ala molecules. Solution affinity and kinetic studies showed that DCS interacts with Ddl in a manner similar to that observed for D-Ala. Each ligand binds to two binding sites that have significant differences in affinity, with the first binding site exhibiting high affinity. DCS inhibits the enzyme, with a 50% inhibitory concentration (IC{sub 50}) of 0.37 mM under standard assay conditions, implicating a preferential and weak inhibition at the second, lower-affinity binding site. Moreover, DCS binding is tighter at higher ATP concentrations. The crystal structure illustrates potential drugable sites that may result in the development of more-effective Ddl inhibitors.« less

  7. Controllable activation of nanoscale dynamics in a disordered protein alters binding kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callaway, David J. E.; Matsui, Tsutomu; Weiss, Thomas

    The phosphorylation of specific residues in a flexible disordered activation loop yields precise control of signal transduction. One paradigm is the phosphorylation of S339/S340 in the intrinsically disordered tail of the multi-domain scaffolding protein NHERF1, which affects the intracellular localization and trafficking of NHERF1 assembled signaling complexes. Using neutron spin echo spectroscopy (NSE), we show salt-concentration-dependent excitation of nanoscale motion at the tip of the C-terminal tail in the phosphomimic S339D/S340D mutant. The “tip of the whip” that is unleashed is near the S339/S340 phosphorylation site and flanks the hydrophobic Ezrin-binding motif. The kinetic association rate constant of the bindingmore » of the S339D/S340D mutant to the FERM domain of Ezrin is sensitive to buffer salt concentration, correlating with the excited nanoscale dynamics. The results suggest that electrostatics modulates the activation of nanoscale dynamics of an intrinsically disordered protein, controlling the binding kinetics of signaling partners. Furthermore NSE can pinpoint the nanoscale dynamics changes in a highly specific manner.« less

  8. Controllable activation of nanoscale dynamics in a disordered protein alters binding kinetics

    DOE PAGES

    Callaway, David J. E.; Matsui, Tsutomu; Weiss, Thomas; ...

    2017-03-08

    The phosphorylation of specific residues in a flexible disordered activation loop yields precise control of signal transduction. One paradigm is the phosphorylation of S339/S340 in the intrinsically disordered tail of the multi-domain scaffolding protein NHERF1, which affects the intracellular localization and trafficking of NHERF1 assembled signaling complexes. Using neutron spin echo spectroscopy (NSE), we show salt-concentration-dependent excitation of nanoscale motion at the tip of the C-terminal tail in the phosphomimic S339D/S340D mutant. The “tip of the whip” that is unleashed is near the S339/S340 phosphorylation site and flanks the hydrophobic Ezrin-binding motif. The kinetic association rate constant of the bindingmore » of the S339D/S340D mutant to the FERM domain of Ezrin is sensitive to buffer salt concentration, correlating with the excited nanoscale dynamics. The results suggest that electrostatics modulates the activation of nanoscale dynamics of an intrinsically disordered protein, controlling the binding kinetics of signaling partners. Furthermore NSE can pinpoint the nanoscale dynamics changes in a highly specific manner.« less

  9. A structural-alphabet-based strategy for finding structural motifs across protein families

    PubMed Central

    Wu, Chih Yuan; Chen, Yao Chi; Lim, Carmay

    2010-01-01

    Proteins with insignificant sequence and overall structure similarity may still share locally conserved contiguous structural segments; i.e. structural/3D motifs. Most methods for finding 3D motifs require a known motif to search for other similar structures or functionally/structurally crucial residues. Here, without requiring a query motif or essential residues, a fully automated method for discovering 3D motifs of various sizes across protein families with different folds based on a 16-letter structural alphabet is presented. It was applied to structurally non-redundant proteins bound to DNA, RNA, obligate/non-obligate proteins as well as free DNA-binding proteins (DBPs) and proteins with known structures but unknown function. Its usefulness was illustrated by analyzing the 3D motifs found in DBPs. A non-specific motif was found with a ‘corner’ architecture that confers a stable scaffold and enables diverse interactions, making it suitable for binding not only DNA but also RNA and proteins. Furthermore, DNA-specific motifs present ‘only’ in DBPs were discovered. The motifs found can provide useful guidelines in detecting binding sites and computational protein redesign. PMID:20525797

  10. Evidence of extensive diversity in bacterial adherence mechanisms that exploit unanticipated stainless steel surface structural complexity for biofilm formation.

    PubMed

    Davis, Elisabeth M; Li, Dongyang; Shahrooei, Mohammad; Yu, Bin; Muruve, Daniel; Irvin, Randall T

    2013-04-01

    Three protease-resistant bioorganic 304 stainless steel surfaces were created through the reaction of synthetic peptides consisting of the D-enantiomeric isomer (D-K122-4), the retro-inverso D-enantiomeric isomer (RI-K122-4), and a combination of the two peptides (D+RI) of the Pseudomonas aeruginosa PilA receptor binding domain with steel surfaces. The peptides used to produce the new materials differ only in handedness of their three-dimensional structure, but they reacted with the steel to yield materials that differed in their surface electron work function (EWF) while displaying an identical chemical composition and equivalent surface adhesive force properties. These surfaces allowed for an assessment of the relative role of surface EWF in initial biofilm formation. We examined the ability of various bacteria (selected strains of Listeria monocytogenes, L. innocua, Staphylococcus aureus and S. epidermidis) to initiate biofilm formation. The D-K1224 generated surface displayed the lowest EWF (classically associated with greater molecular interactions and more extensive biofilm formation) but was observed to be least effectively colonized by bacteria (>50% decrease in bacterial adherence of all strains). The highest surface EWF with the lowest surface free energy (RI-K122-4 generated) was more extensively colonized by bacteria, with the binding of some strains being equivalent to unmodified steel. The D+RI generated surface was least effective in minimizing biofilm formation, where some strains displayed enhanced bacterial colonization. Fluorescent microscopy revealed that the D and RI peptides displayed similar but clearly different binding patterns, suggesting that the peptides recognized different sites on the steel, and that differential binding of the peptides to the steel surfaces influences the binding of different bacterial strains and species. We have demonstrated that stainless steel surfaces can be easily modified by peptides to generate surfaces with new physiochemical properties. The D-K122-4-modified surface substantially decreases biofilm formation compared to the RI-K122-4 and D+RI surfaces. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Crystal structure of Helicobacter pylori pseudaminic acid biosynthesis N-acetyltransferase PseH: implications for substrate specificity and catalysis.

    PubMed

    Ud-Din, Abu I; Liu, Yu C; Roujeinikova, Anna

    2015-01-01

    Helicobacter pylori infection is the common cause of gastroduodenal diseases linked to a higher risk of the development of gastric cancer. Persistent infection requires functional flagella that are heavily glycosylated with 5,7-diacetamido-3,5,7,9-tetradeoxy-L-glycero-L-manno-nonulosonic acid (pseudaminic acid). Pseudaminic acid biosynthesis protein H (PseH) catalyzes the third step in its biosynthetic pathway, producing UDP-2,4-diacetamido-2,4,6-trideoxy-β-L-altropyranose. It belongs to the GCN5-related N-acetyltransferase (GNAT) superfamily. The crystal structure of the PseH complex with cofactor acetyl-CoA has been determined at 2.3 Å resolution. This is the first crystal structure of the GNAT superfamily member with specificity to UDP-4-amino-4,6-dideoxy-β-L-AltNAc. PseH is a homodimer in the crystal, each subunit of which has a central twisted β-sheet flanked by five α-helices and is structurally homologous to those of other GNAT superfamily enzymes. Interestingly, PseH is more similar to the GNAT enzymes that utilize amino acid sulfamoyl adenosine or protein as a substrate than a different GNAT-superfamily bacterial nucleotide-sugar N-acetyltransferase of the known structure, WecD. Analysis of the complex of PseH with acetyl-CoA revealed the location of the cofactor-binding site between the splayed strands β4 and β5. The structure of PseH, together with the conservation of the active-site general acid among GNAT superfamily transferases, are consistent with a common catalytic mechanism for this enzyme that involves direct acetyl transfer from AcCoA without an acetylated enzyme intermediate. Based on structural homology with microcin C7 acetyltransferase MccE and WecD, the Michaelis complex can be modeled. The model suggests that the nucleotide- and 4-amino-4,6-dideoxy-β-L-AltNAc-binding pockets form extensive interactions with the substrate and are thus the most significant determinants of substrate specificity. A hydrophobic pocket accommodating the 6'-methyl group of the altrose dictates preference to the methyl over the hydroxyl group and thus to contributes to substrate specificity of PseH.

  12. Induction of alloantigen-specific hyporesponsiveness in human T lymphocytes by blocking interaction of CD28 with its natural ligand B7/BB1

    PubMed Central

    1993-01-01

    The specificity of T lymphocyte activation is determined by engagement of the T cell receptor (TCR) by peptide/major histocompatibility complexes expressed on the antigen-presenting cell (APC). Lacking costimulation by accessory molecules on the APC, T cell proliferation does not occur and unresponsiveness to subsequent antigenic stimulus is induced. The B7/BB1 receptor on APCs binds CD28 and CTLA-4 on T cells, and provides a costimulus for T cell proliferation. Here, we show that prolonged, specific T cell hyporesponsiveness to antigenic restimulation is achieved by blocking the interaction between CD28 and B7/BB1 in human mixed leukocyte culture (MLC). Secondary T cell proliferative responses to specific alloantigen were inhibited by addition to the primary culture of monovalent Fab fragments of anti- CD28 monoclonal antibody (mAb) 9.3, which block interaction of CD28 with B7/BB1 without activating T cells. Hypo-responsiveness was also induced in MLC by CTLA4Ig, a chimeric immunoglobulin fusion protein incorporating the extracellular domain of CTLA-4 with high binding avidity for B7/BB1. Cells previously primed could also be made hyporesponsive, if exposed to alloantigen in the presence of CTLA4Ig. Maximal hyporesponsiveness was achieved in MLC after 2 d of incubation with CTLA4Ig, and was maintained for at least 27 d after removal of CTLA4Ig. Accumulation of interleukin 2 (IL-2) and interferon gamma but not IL-4 mRNA was blocked by CTLA4Ig in T cells stimulated by alloantigen. Antigen-specific responses could be restored by addition of exogenous IL-2 at the time of the secondary stimulation. Addition to primary cultures of the intact bivalent anti-CD28 mAb 9.3, or B7/BB1+ transfected CHO cells or exogenous IL-2, abrogated induction of hyporesponsiveness by CTLA4Ig. These data indicate that interaction of CD28 with B7/BB1 during TCR engagement with antigen is required to maintain T cell competence and that blocking such interaction can result in a state of T cell hyporesponsiveness. PMID:7678111

  13. Effect of N-benzoyl-D-phenylalanine and metformin on insulin receptors in neonatal streptozotocin-induced diabetic rats: studies on insulin binding to erythrocytes.

    PubMed

    Ashokkumar, N; Pari, L; Rao, Ch Appa

    2006-07-01

    In the present study, we focused on the insulin-receptor binding in circulating erythrocytes of N-benzoyl-D-phenylalanine (NBDP) and metformin in neonatal streptozotocin (nSTZ)-induced male Wistar rats. We measured blood levels of glucose and plasma insulin and the binding of insulin to cell-membrane ER receptors in NBDP and metformin-treated diabetic rats. The mean specific binding of insulin to ER was significantly lower in diabetic control rats (DC) (53.0 +/- 3.1%) than in NBDP (62.0 +/- 3.1%), metformin (66.0 +/- 3.3%) and NBDP and metformin combination-treated (72.0 +/- 4.2%) diabetic rats, resulting in a significant decrease in plasma insulin. Scatchard plot analysis demonstrated that the decrease in insulin binding was accounted for by a lower number of insulin receptor sites per cell in DC rats when compared with NBDP and metformin-treated rats. High-affinity (Kd1), low-affinity (Kd2), and kinetic analysis revealed an increase in the average receptor affinity in ER from NBDP and metformin-treated diabetic rats having NBDP 2.0 +/- 0.10 x 10(-10) M(-1) (Kd1); 12.0 +/- 0.85 x 10(-8) M(-1) (Kd2), Metformin 2.1 +/- 0.15 x 10(-10) M(-1) (Kd1); 15.0 +/- 0.80 x 10(-8) M(-1) (Kd2), NBDP and metformin 2.7 +/- 0.10 x 10(-10) M(-1) (Kd1); 20.0 +/- 1.2 x 10(-8) M(-1) (Kd2) compared with 0.9 +/- 0.06 x 10(-10) M(-1) (Kd1); 6.0 +/- 0.30 x 10(-8) M(-1) (Kd2) in DC rats. The results suggest an acute alteration in the number of insulin receptors on ER membranes in nSTZ induced diabetic control rats. Treatment with NBDP along with metformin significantly improved specific insulin binding, with receptor number and affinity binding reaching almost normal non-diabetic levels. The data presented here show that NBDP along with metformin increase total ER membrane insulin binding sites with a concomitant significant increase in plasma insulin.

  14. Evaluation of potential endocrine activity of 2,4-dichlorophenoxyacetic acid using in vitro assays.

    PubMed

    Coady, Katherine K; Kan, H Lynn; Schisler, Melissa R; Gollapudi, B Bhaskar; Neal, Barbara; Williams, Amy; LeBaron, Matthew J

    2014-08-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was evaluated in five in vitro screening assays to assess the potential for interaction with the androgen, estrogen and steroidogenesis pathways in the endocrine system. The assays were conducted to meet the requirements of the in vitro component of Tier 1 of the United States Environmental Protection Agency's Endocrine Disruptor Screening Program (EDSP), and included assays for estrogen receptor (ER) binding (rat uterine cytosol ER binding assay), ER-mediated transcriptional activation (HeLa-9903-ERα transactivation assay), androgen receptor (AR) binding (rat prostate cytosol AR binding assay), aromatase enzymatic activity inhibition (recombinant human CYP19 aromatase inhibition assay), and interference with steroidogenesis (H295R steroidogenesis assay). Results from these five assays demonstrated that 2,4-D does not have the potential to interact in vitro with the estrogen, androgen, or steroidogenesis pathways. These in vitro data are consistent with a corresponding lack of endocrine effects observed in apical in vivo animal studies, and thus provide important supporting data valuable in a comprehensive weight of evidence evaluation indicating a low potential of 2,4-D to interact with the endocrine system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Mononuclear zinc(II) complexes of 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols: Synthesis, structural characterization, DNA binding and cheminuclease activities

    NASA Astrophysics Data System (ADS)

    Ravichandran, J.; Gurumoorthy, P.; Karthick, C.; Kalilur Rahiman, A.

    2014-03-01

    Four new zinc(II) complexes [Zn(HL1-4)Cl2] (1-4), where HL1-4 = 2-((2-(piperazin-1-yl)ethylimino)methyl)-4-substituted phenols, have been isolated and fully characterized using various spectro-analytical techniques. The X-ray crystal structure of complex 4 shows the distorted trigonal-bipyramidal coordination geometry around zinc(II) ion. The crystal packing is stabilized by intermolecular NH⋯O hydrogen bonding interaction. The complexes display no d-d electronic band in the visible region due to d10 electronic configuration of zinc(II) ion. The electrochemical properties of the synthesized ligands and their complexes exhibit similar voltammogram at reduction potential due to electrochemically innocent Zn(II) ion, which evidenced that the electron transfer is due to the nature of the ligand. Binding interaction of complexes with calf thymus DNA was studied by UV-Vis absorption titration, viscometric titration and cyclic voltammetry. All complexes bind with CT DNA by intercalation, giving the binding affinity in the order of 2 > 1 ≫ 3 > 4. The prominent cheminuclease activity of complexes on plasmid DNA (pBR322 DNA) was observed in the absence and presence of H2O2. Oxidative pathway reveals that the underlying mechanism involves hydroxyl radical.

  16. Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors.

    PubMed

    Wood, Martyn; Dubois, Vanessa; Scheller, Dieter; Gillard, Michel

    2015-02-01

    Rotigotine acts as a dopamine receptor agonist with high affinity for the dopamine D2, D3, D4 and D5 receptors but with a low affinity for the dopamine D1 receptor. We have investigated this further in radioligand binding and functional studies and compared the profile of rotigotine with that of other drugs used in the treatment of Parkinson's disease (PD). The binding of rotigotine to human dopamine D1, D2, D3, D4 and D5 receptors was determined in radioligand binding studies using [(3)H]rotigotine and compared with that of standard antagonist radioligands. Functional interactions of rotigotine with human dopamine receptors was also determined. [(3)H]rotigotine can be used as an agonist radioligand to label all dopamine receptor subtypes and this can be important to derive agonist affinity estimates. Rotigotine maintains this high affinity in functional studies at all dopamine receptors especially D1, D2 and D3 receptors and, to a lesser extent, D4 and D5 receptors. Rotigotine, like apomorphine but unlike ropinirole and pramipexole, was a potent agonist at all dopamine receptors. Rotigotine is a high-potency agonist at human dopamine D1, D2 and D3 receptors with a lower potency at D4 and D5 receptors. These studies differentiate rotigotine from conventional dopamine D2 agonists, used in the treatment of PD, such as ropinirole and pramipexole which lack activity at the D1 and D5 receptors, but resembles that of apomorphine which has greater efficacy in PD than other dopamine agonists but has suboptimal pharmacokinetic properties. © 2014 The British Pharmacological Society.

  17. Rotigotine is a potent agonist at dopamine D1 receptors as well as at dopamine D2 and D3 receptors

    PubMed Central

    Wood, Martyn; Dubois, Vanessa; Scheller, Dieter; Gillard, Michel

    2015-01-01

    Background and Purpose Rotigotine acts as a dopamine receptor agonist with high affinity for the dopamine D2, D3, D4 and D5 receptors but with a low affinity for the dopamine D1 receptor. We have investigated this further in radioligand binding and functional studies and compared the profile of rotigotine with that of other drugs used in the treatment of Parkinson's disease (PD). Experimental Approach The binding of rotigotine to human dopamine D1, D2, D3, D4 and D5 receptors was determined in radioligand binding studies using [3H]rotigotine and compared with that of standard antagonist radioligands. Functional interactions of rotigotine with human dopamine receptors was also determined. Key Results [3H]rotigotine can be used as an agonist radioligand to label all dopamine receptor subtypes and this can be important to derive agonist affinity estimates. Rotigotine maintains this high affinity in functional studies at all dopamine receptors especially D1, D2 and D3 receptors and, to a lesser extent, D4 and D5 receptors. Rotigotine, like apomorphine but unlike ropinirole and pramipexole, was a potent agonist at all dopamine receptors. Conclusions and Implications Rotigotine is a high-potency agonist at human dopamine D1, D2 and D3 receptors with a lower potency at D4 and D5 receptors. These studies differentiate rotigotine from conventional dopamine D2 agonists, used in the treatment of PD, such as ropinirole and pramipexole which lack activity at the D1 and D5 receptors, but resembles that of apomorphine which has greater efficacy in PD than other dopamine agonists but has suboptimal pharmacokinetic properties. PMID:25339241

  18. Quantitative interdependence of coeffectors, CcpA and cre in carbon catabolite regulation of Bacillus subtilis.

    PubMed

    Seidel, Gerald; Diel, Marco; Fuchsbauer, Norbert; Hillen, Wolfgang

    2005-05-01

    The phosphoproteins HPrSerP and CrhP are the main effectors for CcpA-mediated carbon catabolite regulation (CCR) in Bacillus subtilis. Complexes of CcpA with HPrSerP or CrhP regulate genes by binding to the catabolite responsive elements (cre). We present a quantitative analysis of HPrSerP and CrhP interaction with CcpA by surface plasmon resonance (SPR) revealing small and similar equilibrium constants of 4.8 +/- 0.4 microm for HPrSerP-CcpA and 19.1 +/- 2.5 microm for CrhP-CcpA complex dissociation. Forty millimolar fructose-1,6-bisphosphate (FBP) or glucose-6-phosphate (Glc6-P) increases the affinity of HPrSerP to CcpA at least twofold, but have no effect on CrhP-CcpA binding. Saturation of binding of CcpA to cre as studied by fluorescence and SPR is dependent on 50 microm of HPrSerP or > 200 microm CrhP. The rate constants of HPrSerP-CcpA-cre complex formation are k(a) = 3 +/- 1 x 10(6) m(-1).s(-1) and k(d) = 2.0 +/- 0.4 x 10(-3).s(-1), resulting in a K(D) of 0.6 +/- 0.3 nm. FBP and Glc6-P stimulate CcpA-HPrSerP but not CcpA-CrhP binding to cre. Maximal HPrSerP-CcpA-cre complex formation in the presence of 10 mm FBP requires about 10-fold less HPrSerP. These data suggest a specific role for FBP and Glc6-P in enhancing only HPrSerP-mediated CCR.

  19. Photoaffinity labeling the substance P receptor using a derivative of substance P containing para-benzoylphenylalanine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, N.D.; White, C.F.; Leeman, S.E.

    A novel photoreactive substance P (SP) analogue has been synthesized by solid-phase peptide synthesis methodology to incorporate the amino acid p-benzoyl-L-phenylalanine (L-Phe(pBz)) in place of the Phe{sup 8} residue of SP. (Phe{sup 8}(OpBz))SP was equipotent with SP in competing for SP binding sites on rat submaxillary gland membranes and had potent sialagogic activity in vivo. In the absence of light, the {sup 125}I-labeled Bolton-Hunter conjugate of (Phe{sup 8}(pBz))SP bound in a saturable and reversible manner to an apparently homogeneous class of binding sites with an affinity K{sub D} = 0.4 nM. The binding of {sup 125}I-(Phe{sup 8}(pBz))SP was inhibited competitivelymore » by various tachykinin peptides and analogues with the appropriate specificity for SP/NK-1 receptors. Upon photolysis, up to 70{percent} of the specifically bound {sup 125}I-(Phe{sup 8}(pBz))SP underwent covalent linkage to two polypeptides of M{sub r} = 53 000 and 46 000, identified by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Quantitative analysis of the inhibitory effects of SP and related peptides on {sup 125}I-(Phe{sup 8}(pBz))SP photoincorporation indicated that the binding sites of the two photolabeled polypeptides have the same peptide specificity, namely, that typical of NK-1-type SP receptors. Further information on the relationship between the two labeled SP binding sites was provided by enzymatic digestion studies. The highly specific and remarkably efficient photolabeling achieved with {sup 125}I-(Phe{sup 8}(pBz))SP suggests that this photoaffinity probe will be of considerable value for the characterization of the molecular structure of the SP receptor.« less

  20. Free energy simulations and MM-PBSA analyses on the affinity and specificity of steroid binding to antiestradiol antibody.

    PubMed

    Laitinen, Tuomo; Kankare, Jussi A; Peräkylä, Mikael

    2004-04-01

    Antiestradiol antibody 57-2 binds 17beta-estradiol (E2) with moderately high affinity (K(a) = 5 x 10(8) M(-1)). The structurally related natural estrogens estrone and estriol as well synthetic 17-deoxy-estradiol and 17alpha-estradiol are bound to the antibody with 3.7-4.9 kcal mol(-1) lower binding free energies than E2. Free energy perturbation (FEP) simulations and the molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) method were applied to investigate the factors responsible for the relatively low cross-reactivity of the antibody with these four steroids, differing from E2 by the substituents of the steroid D-ring. In addition, computational alanine scanning of the binding site residues was carried out with the MM-PBSA method. Both the FEP and MM-PBSA methods reproduced the experimental relative affinities of the five steroids in good agreement with experiment. On the basis of FEP simulations, the number of hydrogen bonds formed between the antibody and steroids, which varied from 0 to 3 in the steroids studied, determined directly the magnitude of the steroid-antibody interaction free energies. One hydrogen bond was calculated to contribute about 3 kcal mol(-1) to the interaction energy. Because the relative binding free energies of estrone (two antibody-steroid hydrogen bonds), estriol (three hydrogen bonds), 17-deoxy-estradiol (no hydrogen bonds), and 17alpha-estradiol (two hydrogen bonds) are close to each other and clearly lower than that of E2 (three hydrogen bonds), the water-steroid interactions lost upon binding to the antibody make an important contribution to the binding free energies. The MM-PBSA calculations showed that the binding of steroids to the antiestradiol antibody is driven by van der Waals interactions, whereas specificity is solely due to electrostatic interactions. In addition, binding of steroids to the antiestradiol antibody 57-2 was compared to the binding to the antiprogesterone antibody DB3 and antitestosterone antibody 3-C4F5, studied earlier with the MM-PBSA method. Copyright 2004 Wiley-Liss, Inc.

  1. Binding of nucleotides by T4 DNA ligase and T4 RNA ligase: optical absorbance and fluorescence studies.

    PubMed Central

    Cherepanov, A V; de Vries, S

    2001-01-01

    The interaction of nucleotides with T4 DNA and RNA ligases has been characterized using ultraviolet visible (UV-VIS) absorbance and fluorescence spectroscopy. Both enzymes bind nucleotides with the K(d) between 0.1 and 20 microM. Nucleotide binding results in a decrease of absorbance at 260 nm due to pi-stacking with an aromatic residue, possibly phenylalanine, and causes red-shifting of the absorbance maximum due to hydrogen bonding with the exocyclic amino group. T4 DNA ligase is shown to have, besides the catalytic ATP binding site, another noncovalent nucleotide binding site. ATP bound there alters the pi-stacking of the nucleotide in the catalytic site, increasing its optical extinction. The K(d) for the noncovalent site is approximately 1000-fold higher than for the catalytic site. Nucleotides quench the protein fluorescence showing that a tryptophan residue is located in the active site of the ligase. The decrease of absorbance around 298 nm suggests that the hydrogen bonding interactions of this tryptophan residue are weakened in the ligase-nucleotide complex. The excitation/emission properties of T4 RNA ligase indicate that its ATP binding pocket is in contact with solvent, which is excluded upon binding of the nucleotide. Overall, the spectroscopic analysis reveals important similarities between T4 ligases and related nucleotidyltransferases, despite the low sequence similarity. PMID:11721015

  2. Genome-wide association study identifies nine novel loci for 2D:4D finger ratio, a putative retrospective biomarker of testosterone exposure in utero

    PubMed Central

    Warrington, Nicole M; Shevroja, Enisa; Hemani, Gibran; Hysi, Pirro G; Jiang, Yunxuan; Auton, Adam; Boer, Cindy G; Mangino, Massimo; Wang, Carol A; Kemp, John P; McMahon, George; Medina-Gomez, Carolina; Hickey, Martha; Trajanoska, Katerina; Wolke, Dieter; Ikram, M Arfan; Montgomery, Grant W; Felix, Janine F; Wright, Margaret J; Mackey, David A; Jaddoe, Vincent W; Martin, Nicholas G; Tung, Joyce Y; Davey Smith, George; Pennell, Craig E; Spector, Tim D; van Meurs, Joyce; Rivadeneira, Fernando; Medland, Sarah E; Evans, David M

    2018-01-01

    Abstract The ratio of the length of the index finger to that of the ring finger (2D:4D) is sexually dimorphic and is commonly used as a non-invasive biomarker of prenatal androgen exposure. Most association studies of 2D:4D ratio with a diverse range of sex-specific traits have typically involved small sample sizes and have been difficult to replicate, raising questions around the utility and precise meaning of the measure. In the largest genome-wide association meta-analysis of 2D:4D ratio to date (N = 15 661, with replication N = 75 821), we identified 11 loci (9 novel) explaining 3.8% of the variance in mean 2D:4D ratio. We also found weak evidence for association (β = 0.06; P = 0.02) between 2D:4D ratio and sensitivity to testosterone [length of the CAG microsatellite repeat in the androgen receptor (AR) gene] in females only. Furthermore, genetic variants associated with (adult) testosterone levels and/or sex hormone-binding globulin were not associated with 2D:4D ratio in our sample. Although we were unable to find strong evidence from our genetic study to support the hypothesis that 2D:4D ratio is a direct biomarker of prenatal exposure to androgens in healthy individuals, our findings do not explicitly exclude this possibility, and pathways involving testosterone may become apparent as the size of the discovery sample increases further. Our findings provide new insight into the underlying biology shaping 2D:4D variation in the general population. PMID:29659830

  3. Evidence for a single class of somatostatin receptors in ground squirrel cerebral cortex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krantic, S.; Petrovic, V.M.; Quirion, R.

    1989-01-01

    In the present study we characterized high-affinity somatostatin (SRIF) binding sites (Kd = 2.06 +/- 0.32 nM and Bmax = 295 +/- 28 fmol/mg protein) in cerebral cortex membrane preparations of European ground squirrel using /sup 125/I-(Tyr0-D-Trp8)-SRIF14 as a radioligand. The inhibition of radioligand specific binding by SRIF14, as well as by its agonists (SRIF28, Tyr0-D-Trp8-SRIF14, SMS 201 995) was complete and monophasic, thus revealing a single population of somatostatinergic binding sites. Radioautographic analysis of /sup 125/I-(Tyr0-D-Trp8)-SRIF14 labeled brain sections confirmed the results of our biochemical study. The homogeneity of SRIF binding sites in the ground squirrel neocortex was notmore » dependent on the animal's life-cycle phase.« less

  4. A mutant of the major apple allergen, Mal d 1, demonstrating hypo-allergenicity in the target organ by double-blind placebo-controlled food challenge.

    PubMed

    Bolhaar, S T H P; Zuidmeer, L; Ma, Y; Ferreira, F; Bruijnzeel-Koomen, C A F M; Hoffmann-Sommergruber, K; van Ree, R; Knulst, A C

    2005-12-01

    Allergen-specific immunotherapy for food allergy has been hindered by severe side-effects in the past. Well-characterized hypo-allergenic recombinant food allergens potentially offer a safe solution. To demonstrate hypo-allergenicity of a mutated major food allergen from apple, Mal d 1, in vitro and in vivo. A mutant of the major apple allergen, Mal d 1, was obtained by site-directed mutagenesis exchanging five amino acid residues. Fourteen patients with combined birch pollen-related apple allergy were included in the study. Hypo-allergenicity of the mutant rMal d 1 (rMal d 1mut) compared with rMal d 1 was assessed by in vitro methods, i.e. RAST (inhibition), immunoblotting and basophil histamine release (BHR) and in vivo by skin prick test and double-blind placebo-controlled food challenge (DBPCFC). RAST analysis (n = 14) revealed that IgE reactivity to rMal d 1mut was twofold lower than that of the wild-type molecule (95% confidence interval (CI): 1.7-2.4). RAST inhibition (n = 6) showed a 7.8-fold decrease in IgE-binding potency (95% CI: 3.0-12.6). In contrast to this moderate decrease in IgE-binding potency, the biological activity of rMal d 1mut assessed by SPT and BHR decreased 10-200-fold. Hypo-allergenicity was confirmed by DBPCFC (n = 2) with both recombinant molecules. A moderate decrease in IgE-binding potency translates into a potent inhibition of biological activity. This is the first study that confirms by DBPCFC that a mutated recombinant major food allergen is clinically hypo-allergenic. This paves the way towards safer immunotherapy for the treatment of food-allergic patients.

  5. Correlation between CD16a binding and immuno effector functionality of an antigen specific immunoglobulin Fc fragment (Fcab).

    PubMed

    Kainer, Manuela; Antes, Bernhard; Wiederkum, Susanne; Wozniak-Knopp, Gordana; Bauer, Anton; Rüker, Florian; Woisetschläger, Max

    2012-10-15

    Antigen binding immunoglobulin Fc fragments (Fcab) are generated by engineering loop regions in the CH3 domain of human IgG1 Fc. Variants of an Fcab specific for Her-2 were designed to display either enhanced (S239D:A330L:I332E) or diminished (L234A:L235A) binding affinities to the Fc receptor CD16a based on mutations described previously. The two mutant Fcab proteins demonstrated the expected modulation of CD16a binding. Interaction with recombinant or cell surface expressed Her-2 was unaffected in both mutants compared to the parental Fcab. Binding affinities for CD16a correlated with the ADCC-potencies of the Fcab variants. Additional studies indicated that the L234A:L235A variant Fcab had equivalent structural features as the unmodified Fcab since their DSC profiles were similar and antigen binding after re-folding upon partial heat denaturation had not changed. Introduction of the S239D:A330L:I332E mutations resulted in a significant reduction of the CH2 domain melting temperature, a moderate decrease of the thermal transition of the CH3 domain and lower antigen binding after thermal stress compared to the parental Fcab. We conclude that the known correlation between CD16a binding affinity and ADCC potency is also valid in Fcab proteins and that antigen specific Fcab molecules can be further engineered for fine tuning of immuno effector functions. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Ligand specificities and structural requirements of two Tachypleus plasma lectins for bacterial trapping

    PubMed Central

    2005-01-01

    TPL (Tachypleus plasma lectin)-1 was purified by using a Sepharose column and TPL-2 was purified from an LPS–Sepharose (LPS coupled to Sepharose matrix) affinity column, as described previously [Chiou, Chen, Y.-W., Chen, S.-C., Chao and Liu (2000) J. Biol. Chem. 275, 1630–1634] and the corresponding genes were cloned [Chen, Yen, Yeh, Huang and Liu (2001) J. Biol. Chem. 276, 9631–9639]. In the present study, TPL-1 and -2 were produced in yeast, and the recombinant proteins secreted into the media were purified and characterized. The proteins show specific PGN (peptidoglycan)- and LPS-binding activity, suggesting a role in trapping Gram-positive and Gram-negative bacteria respectively in innate immunity. Using BIAcore® assays, the dissociation constant for the TPL-1–PGN complex was measured as 8×10−8 M. Replacement of Asn74, the N-glycosylation site of TPL-1, with Asp abolishes the PGN-binding affinity, whereas the unglycosylated TPL-2 N3D mutant retains LPS-binding activity. DTT (dithiothreitol) treatment to break disulphide linkages abrogates TPL-2 activity but does not interfere with TPL-1 function. Cys4 in TPL-2 may form an intermolecular disulphide bond, which is essential for activity. As a result, the TPL-2 C4S mutant is inactive and is eluted as a monomer on a non-reducing gel. TPL-2 C6S is active and forms a non-covalently linked dimer. A model describing TPL-2 binding with LPS is proposed. These two plasma lectins that have different ligand specificities can be used for the detection and discrimination of bacteria and removal of endotoxins. PMID:16229681

  7. The yeast transcription elongation factor Spt4/5 is a sequence‐specific RNA binding protein

    PubMed Central

    Blythe, Amanda J.; Yazar‐Klosinski, Berra; Webster, Michael W.; Chen, Eefei; Vandevenne, Marylène; Bendak, Katerina; Mackay, Joel P.; Hartzog, Grant A.

    2016-01-01

    Abstract The heterodimeric transcription elongation factor Spt4/Spt5 (Spt4/5) tightly associates with RNAPII to regulate both transcriptional elongation and co‐transcriptional pre‐mRNA processing; however, the mechanisms by which Spt4/5 acts are poorly understood. Recent studies of the human and Drosophila Spt4/5 complexes indicate that they can bind nucleic acids in vitro. We demonstrate here that yeast Spt4/5 can bind in a sequence‐specific manner to single stranded RNA containing AAN repeats. Furthermore, we show that the major protein determinants for RNA‐binding are Spt4 together with the NGN domain of Spt5 and that the KOW domains are not required for RNA recognition. These findings attribute a new function to a domain of Spt4/5 that associates directly with RNAPII, making significant steps towards elucidating the mechanism behind transcriptional control by Spt4/5. PMID:27376968

  8. The I binding specificity of human VH 4-34 (VH 4-21) encoded antibodies is determined by both VH framework region 1 and complementarity determining region 3.

    PubMed

    Li, Y; Spellerberg, M B; Stevenson, F K; Capra, J D; Potter, K N

    1996-03-01

    Essentially all cold agglutinins (CA) with red blood cell I/i specificity isolated from patients with CA disease stemming from lymphoproliferative disorders utilize the VH 4-34 (VH 4-21) gene segment. This near universality of the restricted use of a single gene segment is substantially greater than that demonstrated for other autoantibodies. The monoclonal antibody 9G4 exclusively binds VH 4-34 encoded antibodies and serves as a marker for the VH 4-34 gene segment. Previous studies form our laboratory localized the 9G4 reactive area to framework region 1 (FR1). In the present study, the relative roles of VH FR1, heavy (H) chain complementarity determining region 3 (CDRH 3) and the light (L) chain in I antigen binding were investigated. Mutants containing FR1 sequences from the other VH families, CDRH 3 exchanges, and combinatorial antibodies involving L chain interchanges were produced in the baculovirus system and tested in an I binding assay. The data indicate that FR1 of the VH 4-34 gene segment and the CDRH 3 are essential for the interaction between CA and the I antigen, with the CDRH 3 being fundamental in determining the fine specificity of antigen binding (I versus i). Mutants with substantially altered CDRH 1 and CDRH 2 regions bind I as long as the FR1 is VH 4-34 encoded and the CDRH 3 has a permissive sequence. Light chain swaps indicate that even though antigen binding is predominantly mediated by the H chain, the association with antigen can be abrogated by an incompatible L chain. The necessity for VH 4-34 FR1 explains the almost exclusive use of the VH 4-34 gene segment in cold agglutinins. We hypothesize that, as a general phenomenon, the H chain FR1 of many antibodies may be important in providing the contact required for the close association of antibody with antigen, while the CDRH 3 dictates the fine specificity and strenght of binding.

  9. Desformylflustrabromine (dFBr) and [3H]dFBr-Labeled Binding Sites in a Nicotinic Acetylcholine Receptor

    PubMed Central

    Hamouda, Ayman K.; Wang, Ze-Jun; Stewart, Deirdre S.; Jain, Atul D.; Glennon, Richard A.

    2015-01-01

    Desformylflustrabromine (dFBr) is a positive allosteric modulator (PAM) of α4β2 and α2β2 nAChRs that, at concentrations >1 µM, also inhibits these receptors and α7 nAChRs. However, its interactions with muscle-type nAChRs have not been characterized, and the locations of its binding site(s) in any nAChR are not known. We report here that dFBr inhibits human muscle (αβεδ) and Torpedo (αβγδ) nAChR expressed in Xenopus oocytes with IC50 values of ∼1 μM. dFBr also inhibited the equilibrium binding of ion channel blockers to Torpedo nAChRs with higher affinity in the nAChR desensitized state ([3H]phencyclidine; IC50 = 4 μM) than in the resting state ([3H]tetracaine; IC50 = 60 μM), whereas it bound with only very low affinity to the ACh binding sites ([3H]ACh, IC50 = 1 mM). Upon irradiation at 312 nm, [3H]dFBr photoincorporated into amino acids within the Torpedo nAChR ion channel with the efficiency of photoincorporation enhanced in the presence of agonist and the agonist-enhanced photolabeling inhibitable by phencyclidine. In the presence of agonist, [3H]dFBr also photolabeled amino acids in the nAChR extracellular domain within binding pockets identified previously for the nonselective nAChR PAMs galantamine and physostigmine at the canonical α-γ interface containing the transmitter binding sites and at the noncanonical δ-β subunit interface. These results establish that dFBr inhibits muscle-type nAChR by binding in the ion channel and that [3H]dFBr is a photoaffinity probe with broad amino acid side chain reactivity. PMID:25870334

  10. Starch Catabolism by a Prominent Human Gut Symbiont Is Directed by the Recognition of Amylose Helices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koropatkin, Nicole M.; Martens, Eric C.; Gordon, Jeffrey I.

    2009-01-12

    The human gut microbiota performs functions that are not encoded in our Homo sapiens genome, including the processing of otherwise undigestible dietary polysaccharides. Defining the structures of proteins involved in the import and degradation of specific glycans by saccharolytic bacteria complements genomic analysis of the nutrient-processing capabilities of gut communities. Here, we describe the atomic structure of one such protein, SusD, required for starch binding and utilization by Bacteroides thetaiotaomicron, a prominent adaptive forager of glycans in the distal human gut microbiota. The binding pocket of this unique {alpha}-helical protein contains an arc of aromatic residues that complements the naturalmore » helical structure of starch and imposes this conformation on bound maltoheptaose. Furthermore, SusD binds cyclic oligosaccharides with higher affinity than linear forms. The structures of several SusD/oligosaccharide complexes reveal an inherent ligand recognition plasticity dominated by the three-dimensional conformation of the oligosaccharides rather than specific interactions with the composite sugars.« less

  11. IgE and allergen-specific immunotherapy-induced IgG4 recognize similar epitopes of Bet v 1, the major allergen of birch pollen.

    PubMed

    Groh, N; von Loetzen, C S; Subbarayal, B; Möbs, C; Vogel, L; Hoffmann, A; Fötisch, K; Koutsouridou, A; Randow, S; Völker, E; Seutter von Loetzen, A; Rösch, P; Vieths, S; Pfützner, W; Bohle, B; Schiller, D

    2017-05-01

    Allergen-specific immunotherapy (AIT) with birch pollen generates Bet v 1-specific immunoglobulin (Ig)G 4 which blocks IgE-mediated hypersensitivity mechanisms. Whether IgG 4 specific for Bet v 1a competes with IgE for identical epitopes or whether novel epitope specificities of IgG 4 antibodies are developed is under debate. We sought to analyze the epitope specificities of IgE and IgG 4 antibodies from sera of patients who received AIT. 15 sera of patients (13/15 received AIT) with Bet v 1a-specific IgE and IgG 4 were analyzed. The structural arrangements of recombinant (r)Bet v 1a and rBet v 1a _11x , modified in five potential epitopes, were analyzed by circular dichroism and nuclear magnetic resonance spectroscopy. IgE binding to Bet v 1 was assessed by ELISA and mediator release assays. Competitive binding of monoclonal antibodies specific for Bet v 1a and serum IgE/IgG 4 to rBet v 1a and serum antibody binding to a non-allergenic Bet v 1-type model protein presenting an individual epitope for IgE was analyzed in ELISA and western blot. rBet v 1a _11x had a Bet v 1a - similar secondary and tertiary structure. Monomeric dispersion of rBet v 1a _11x was concentration and buffer-dependent. Up to 1500-fold increase in the EC 50 for IgE-mediated mediator release induced by rBet v 1a _11x was determined. The reduction of IgE and IgG 4 binding to rBet v 1a _11x was comparable in 67% (10/15) of sera. Bet v 1a-specific monoclonal antibodies inhibited binding of serum IgE and IgG 4 to 66.1% and 64.9%, respectively. Serum IgE and IgG 4 bound specifically to an individual epitope presented by our model protein in 33% (5/15) of sera. Patients receiving AIT develop Bet v 1a-specific IgG 4 which competes with IgE for partly identical or largely overlapping epitopes. The similarities of epitopes for IgE and IgG 4 might stimulate the development of epitope-specific diagnostics and therapeutics. © 2016 John Wiley & Sons Ltd.

  12. Conformation-dependent epitopes recognized by prion protein antibodies probed using mutational scanning and deep sequencing.

    PubMed

    Doolan, Kyle M; Colby, David W

    2015-01-30

    Prion diseases are caused by a structural rearrangement of the cellular prion protein, PrP(C), into a disease-associated conformation, PrP(Sc), which may be distinguished from one another using conformation-specific antibodies. We used mutational scanning by cell-surface display to screen 1341 PrP single point mutants for attenuated interaction with four anti-PrP antibodies, including several with conformational specificity. Single-molecule real-time gene sequencing was used to quantify enrichment of mutants, returning 26,000 high-quality full-length reads for each screened population on average. Relative enrichment of mutants correlated to the magnitude of the change in binding affinity. Mutations that diminished binding of the antibody ICSM18 represented the core of contact residues in the published crystal structure of its complex. A similarly located binding site was identified for D18, comprising discontinuous residues in helix 1 of PrP, brought into close proximity to one another only when the alpha helix is intact. The specificity of these antibodies for the normal form of PrP likely arises from loss of this conformational feature after conversion to the disease-associated form. Intriguingly, 6H4 binding was found to depend on interaction with the same residues, among others, suggesting that its ability to recognize both forms of PrP depends on a structural rearrangement of the antigen. The application of mutational scanning and deep sequencing provides residue-level resolution of positions in the protein-protein interaction interface that are critical for binding, as well as a quantitative measure of the impact of mutations on binding affinity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Analysis of Qa-1bPeptide Binding Specificity and the Capacity of Cd94/Nkg2a to Discriminate between Qa-1–Peptide Complexes

    PubMed Central

    Kraft, Jennifer R.; Vance, Russell E.; Pohl, Jan; Martin, Amy M.; Raulet, David H.; Jensen, Peter E.

    2000-01-01

    The major histocompatibility complex class Ib protein, Qa-1b, serves as a ligand for murine CD94/NKG2A natural killer (NK) cell inhibitory receptors. The Qa-1b peptide-binding site is predominantly occupied by a single nonameric peptide, Qa-1 determinant modifier (Qdm), derived from the leader sequence of H-2D and L molecules. Five anchor residues were identified in this study by measuring the peptide-binding affinities of substituted Qdm peptides in experiments with purified recombinant Qa-1b. A candidate peptide-binding motif was determined by sequence analysis of peptides eluted from Qa-1 that had been folded in the presence of random peptide libraries or pools of Qdm derivatives randomized at specific anchor positions. The results indicate that Qa-1b can bind a diverse repertoire of peptides but that Qdm has an optimal primary structure for binding Qa-1b. Flow cytometry experiments with Qa-1b tetramers and NK target cell lysis assays demonstrated that CD94/NKG2A discriminates between Qa-1b complexes containing peptides with substitutions at nonanchor positions P4, P5, or P8. Our findings suggest that it may be difficult for viruses to generate decoy peptides that mimic Qdm and raise the possibility that competitive replacement of Qdm with other peptides may provide a novel mechanism for activation of NK cells. PMID:10974028

  14. Mechanism of Mediator recruitment by tandem Gcn4 activation domains and three Gal11 activator-binding domains.

    PubMed

    Herbig, Eric; Warfield, Linda; Fish, Lisa; Fishburn, James; Knutson, Bruce A; Moorefield, Beth; Pacheco, Derek; Hahn, Steven

    2010-05-01

    Targets of the tandem Gcn4 acidic activation domains in transcription preinitiation complexes were identified by site-specific cross-linking. The individual Gcn4 activation domains cross-link to three common targets, Gal11/Med15, Taf12, and Tra1, which are subunits of four conserved coactivator complexes, Mediator, SAGA, TFIID, and NuA4. The Gcn4 N-terminal activation domain also cross-links to the Mediator subunit Sin4/Med16. The contribution of the two Gcn4 activation domains to transcription was gene specific and varied from synergistic to less than additive. Gcn4-dependent genes had a requirement for Gal11 ranging from 10-fold dependence to complete Gal11 independence, while the Gcn4-Taf12 interaction did not significantly contribute to the expression of any gene studied. Complementary methods identified three conserved Gal11 activator-binding domains that bind each Gcn4 activation domain with micromolar affinity. These Gal11 activator-binding domains contribute additively to transcription activation and Mediator recruitment at Gcn4- and Gal11-dependent genes. Although we found that the conserved Gal11 KIX domain contributes to Gal11 function, we found no evidence of specific Gcn4-KIX interaction and conclude that the Gal11 KIX domain does not function by specific interaction with Gcn4. Our combined results show gene-specific coactivator requirements, a surprising redundancy in activator-target interactions, and an activator-coactivator interaction mediated by multiple low-affinity protein-protein interactions.

  15. Cell-type-specific profiling of protein-DNA interactions without cell isolation using targeted DamID with next-generation sequencing.

    PubMed

    Marshall, Owen J; Southall, Tony D; Cheetham, Seth W; Brand, Andrea H

    2016-09-01

    This protocol is an extension to: Nat. Protoc. 2, 1467-1478 (2007); doi:10.1038/nprot.2007.148; published online 7 June 2007The ability to profile transcription and chromatin binding in a cell-type-specific manner is a powerful aid to understanding cell-fate specification and cellular function in multicellular organisms. We recently developed targeted DamID (TaDa) to enable genome-wide, cell-type-specific profiling of DNA- and chromatin-binding proteins in vivo without cell isolation. As a protocol extension, this article describes substantial modifications to an existing protocol, and it offers additional applications. TaDa builds upon DamID, a technique for detecting genome-wide DNA-binding profiles of proteins, by coupling it with the GAL4 system in Drosophila to enable both temporal and spatial resolution. TaDa ensures that Dam-fusion proteins are expressed at very low levels, thus avoiding toxicity and potential artifacts from overexpression. The modifications to the core DamID technique presented here also increase the speed of sample processing and throughput, and adapt the method to next-generation sequencing technology. TaDa is robust, reproducible and highly sensitive. Compared with other methods for cell-type-specific profiling, the technique requires no cell-sorting, cross-linking or antisera, and binding profiles can be generated from as few as 10,000 total induced cells. By profiling the genome-wide binding of RNA polymerase II (Pol II), TaDa can also identify transcribed genes in a cell-type-specific manner. Here we describe a detailed protocol for carrying out TaDa experiments and preparing the material for next-generation sequencing. Although we developed TaDa in Drosophila, it should be easily adapted to other organisms with an inducible expression system. Once transgenic animals are obtained, the entire experimental procedure-from collecting tissue samples to generating sequencing libraries-can be accomplished within 5 d.

  16. Distinctive Klf4 mutants determine preference for DNA methylation status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashimoto, Hideharu; Wang, Dongxue; Steves, Alyse N.

    Reprogramming of mammalian genome methylation is critically important but poorly understood. Klf4, a transcription factor directing reprogramming, contains a DNA binding domain with three consecutive C2H2 zinc fingers. Klf4 recognizes CpG or TpG within a specific sequence. Mouse Klf4 DNA binding domain has roughly equal affinity for methylated CpG or TpG, and slightly lower affinity for unmodified CpG. The structural basis for this key preference is unclear, though the side chain of Glu446 is known to contact the methyl group of 5-methylcytosine (5mC) or thymine (5-methyluracil). We examined the role of Glu446 by mutagenesis. Substituting Glu446 with aspartate (E446D) resultedmore » in preference for unmodified cytosine, due to decreased affinity for 5mC. In contrast, substituting Glu446 with proline (E446P) increased affinity for 5mC by two orders of magnitude. Structural analysis revealed hydrophobic interaction between the proline's aliphatic cyclic structure and the 5-methyl group of the pyrimidine (5mC or T). As in wild-type Klf4 (E446), the proline at position 446 does not interact directly with either the 5mC N4 nitrogen or the thymine O4 oxygen. In contrast, the unmethylated cytosine's exocyclic N4 amino group (NH2) and its ring carbon C5 atom hydrogen bond directly with the aspartate carboxylate of the E446D variant. Both of these interactions would provide a preference for cytosine over thymine, and the latter one could explain the E446D preference for unmethylated cytosine. Finally, we evaluated the ability of these Klf4 mutants to regulate transcription of methylated and unmethylated promoters in a luciferase reporter assay.« less

  17. Trim25 Is an RNA-Specific Activator of Lin28a/TuT4-Mediated Uridylation

    PubMed Central

    Choudhury, Nila Roy; Nowak, Jakub S.; Zuo, Juan; Rappsilber, Juri; Spoel, Steven H.; Michlewski, Gracjan

    2014-01-01

    Summary RNA binding proteins have thousands of cellular RNA targets and often exhibit opposite or passive molecular functions. Lin28a is a conserved RNA binding protein involved in pluripotency and tumorigenesis that was previously shown to trigger TuT4-mediated pre-let-7 uridylation, inhibiting its processing and targeting it for degradation. Surprisingly, despite binding to other pre-microRNAs (pre-miRNAs), only pre-let-7 is efficiently uridylated by TuT4. Thus, we hypothesized the existence of substrate-specific cofactors that stimulate Lin28a-mediated pre-let-7 uridylation or restrict its functionality on non-let-7 pre-miRNAs. Through RNA pull-downs coupled with quantitative mass spectrometry, we identified the E3 ligase Trim25 as an RNA-specific cofactor for Lin28a/TuT4-mediated uridylation. We show that Trim25 binds to the conserved terminal loop (CTL) of pre-let-7 and activates TuT4, allowing for more efficient Lin28a-mediated uridylation. These findings reveal that protein-modifying enzymes, only recently shown to bind RNA, can guide the function of canonical ribonucleoprotein (RNP) complexes in cis, thereby providing an additional level of specificity. PMID:25457611

  18. Structure-affinity relationships for the binding of actinomycin D to DNA

    NASA Astrophysics Data System (ADS)

    Gallego, José; Ortiz, Angel R.; de Pascual-Teresa, Beatriz; Gago, Federico

    1997-03-01

    Molecular models of the complexes between actinomycin D and 14 different DNA hexamers were built based on the X-ray crystal structure of the actinomycin-d(GAAGCTTC)2 complex. The DNA sequences included the canonical GpC binding step flanked by different base pairs, nonclassical binding sites such as GpG and GpT, and sites containing 2,6-diamino- purine. A good correlation was found between the intermolecular interaction energies calculated for the refined complexes and the relative preferences of actinomycin binding to standard and modified DNA. A detailed energy decomposition into van der Waals and electrostatic components for the interactions between the DNA base pairs and either the chromophore or the peptidic part of the antibiotic was performed for each complex. The resulting energy matrix was then subjected to principal component analysis, which showed that actinomycin D discriminates among different DNA sequences by an interplay of hydrogen bonding and stacking interactions. The structure-affinity relationships for this important antitumor drug are thus rationalized and may be used to advantage in the design of novel sequence-specific DNA-binding agents.

  19. Crystal structure of RlmAI: Implications for understanding the 23S rRNA G745/G748-methylation at the macrolide antibiotic-binding site

    PubMed Central

    Das, Kalyan; Acton, Thomas; Chiang, Yiwen; Shih, Lydia; Arnold, Eddy; Montelione, Gaetano T.

    2004-01-01

    The RlmA class of enzymes (RlmAI and RlmAII) catalyzes N1-methylation of a guanine base (G745 in Gram-negative and G748 in Gram-positive bacteria) of hairpin 35 of 23S rRNA. We have determined the crystal structure of Escherichia coli RlmAI at 2.8-Å resolution, providing 3D structure information for the RlmA class of RNA methyltransferases. The dimeric protein structure exhibits features that provide new insights into its molecular function. Each RlmAI molecule has a Zn-binding domain, responsible for specific recognition and binding of its rRNA substrate, and a methyltransferase domain. The asymmetric RlmAI dimer observed in the crystal structure has a well defined W-shaped RNA-binding cleft. Two S-adenosyl-l-methionine substrate molecules are located at the two valleys of the W-shaped RNA-binding cleft. The unique shape of the RNA-binding cleft, different from that of known RNA-binding proteins, is highly specific and structurally complements the 3D structure of hairpin 35 of bacterial 23S rRNA. Apart from the hairpin 35, parts of hairpins 33 and 34 also interact with the RlmAI dimer. PMID:14999102

  20. Comparison of phosphodiesterase 10A, dopamine receptors D1 and D2 and dopamine transporter ligand binding in the striatum of the R6/2 and BACHD mouse models of Huntington's disease.

    PubMed

    Miller, Silke; Hill Della Puppa, Geraldine; Reidling, Jack; Marcora, Edoardo; Thompson, Leslie M; Treanor, James

    2014-01-01

    Phosphodiesterase 10A (PDE10A) is expressed at high levels in the striatum and has been proposed both as a biomarker for Huntington's disease pathology and as a target for intervention. PDE10A radiotracers have been successfully used to measure changes in binding density in Huntington's disease patients, but little is known about PDE10A binding in mouse models that are used extensively to model pathology and test therapeutic interventions. Our study investigated changes in PDE10A binding using the selective tracer 3H-7980 at specific ages of two Huntington's disease transgenic mouse models: R6/2, a short-lived model carrying exon-1 of mutant HTT and BACHD, a longer-lived model carrying full-length mutant HTT. PDE10A binding was compared to binding of known markers of striatal atrophy in Huntington's disease, e.g. dopamine transporter (DAT) and dopamine receptors D1 and D2. We found that in the R6/2 model at 6 weeks of age, mice showed high variability of binding, however binding of all ligands was significantly decreased at 8 and 12 weeks of age. In contrast, no changes were detectable in the BACHD model at 8, 10 or 12 month of age. These findings suggest that radiotracer binding of PDE10A, DAT, D1 and D2 receptor in the R6/2 model may be a good indicator of striatal pathological changes that are observed in Huntington's disease patients, and that the first 12 months in the BACHD model may be more reflective of early stages of the disease.

  1. Binding of (/sup 3/H)Forskolin to rat brain membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seamon, K.B.; Vaillancourt, R.; Edwards, M.

    1984-08-01

    (12-/sup 3/H)Forskolin (27 Ci/mmol) has been used to study binding sites in rat brain tissue by using both centrifugation and filtration assays. The binding isotherm measured in the presence of 5 mM MgCl/sub 2/ by using the centrifugation assay is described best by a two-site model: K/sub d1/ = 15 nM, B/sub max/sub 1// (maximal binding) = 270 fmol/mg of protein; K/sub d2/ = 1.1 ..mu..M; B/sub max/sub 2// = 4.2 pmol/mg of protein. Only the high-affinity binding sites are detected when the binding is determined by using a filtration assay; K/sub d/ = 26 nM, B/sub max/ = 400more » fmol/mg of protein. Analogs of forskolin that do not activate adenylate cyclase (EC 4.6.1.1) do not compete effectively for (/sup 3/H)forskolin binding sites. Analogs of forskolin that are less potent than forskolin in activating adenylate cyclase are also less potent in competing for forskolin binding sites. The presence of 5 mM MgCl/sub 2/ or MnCl/sub 2/ was found to enhance binding. In the presence of 1 mM EDTA the amount of high-affinity binding is reduced to 110 fmol/mg of protein with no change in K/sub d/. There is no effect of CaCl/sub 2/ (20 mM) or NaCl (100 mM) on the binding. No high-affinity binding can be detected in membranes from ram sperm, which contains an adenylate cyclase that is not activated by forskolin. It is proposed that the high-affinity binding sites for forskolin are associated with the activated complex of catalytic subunit and stimulatory guanine nucleotide binding protein. 23 references, 5 figures, 2 tables.« less

  2. Photoactivable analogs for labeling 25-hydroxyvitamin D3 serum binding protein and for 1,25-dihydroxyvitamin D3 intestinal receptor protein

    NASA Technical Reports Server (NTRS)

    Kutner, A.; Link, R. P.; Schnoes, H. K.; DeLuca, H. F.

    1986-01-01

    3-Azidobenzoates and 3-azidonitrobenzoates of 25-hydroxyvitamin D3 as well as 3-deoxy-3-azido-25-hydroxyvitamin D3 and 3-deoxy-3-azido-1,25-dihydroxyvitamin D3 were prepared as photoaffinity labels for vitamin D serum binding protein and 1,25-dihydroxyvitamin D3 intestinal receptor protein. The compounds prepared were easily activated by short- or long-wavelength uv light, as monitored by uv and ir spectrometry. The efficacy of the compounds to compete with 25-hydroxyvitamin D3 or 1,25-dihydroxyvitamin D3 for the binding site of serum binding protein and receptor, respectively, was studied to evaluate the vitamin D label with the highest affinity for the protein. The presence of an azidobenzoate or azidonitrobenzoate substituent at the C-3 position of 25-OH-D3 significantly decreased (10(4)- to 10(6)-fold) the binding activity. However, the labels containing the azido substituent attached directly to the vitamin D skeleton at the C-3 position showed a high affinity, only 20- to 150-fold lower than that of the parent compounds with their respective proteins. Therefore, 3-deoxy-3-azidovitamins present potential ligands for photolabeling of vitamin D proteins and for studying the structures of the protein active sites.

  3. Stereoselective L-(3H)quinuclidinyl benzilate-binding sites in nervous tissue of Aplysia californica: evidence for muscarinic receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, T.F.; Mpitsos, G.J.; Siebenaller, J.F.

    The muscarinic antagonist L-(/sup 3/H)quinuclidinyl benzilate (L-(/sup 3/H)QNB) binds with a high affinity (Kd = 0.77 nM) to a single population of specific sites (Bmax = 47 fmol/mg of protein) in nervous tissue of the gastropod mollusc, Aplysia. The specific L-(/sup 3/H)QNB binding is displaced stereoselectively by the enantiomers of benzetimide, dexetimide, and levetimide. The pharmacologically active enantiomer, dexetimide, is more potent than levetimide as an inhibitor of L-(/sup 3/H)QNB binding. Moreover, the muscarinic cholinergic ligands, scopolamine, atropine, oxotremorine, and pilocarpine are effective inhibitors of the specific L-(/sup 3/H)QNB binding, whereas nicotinic receptor antagonists, decamethonium and d-tubocurarine, are considerably lessmore » effective. These pharmacological characteristics of the L-(/sup 3/H)QNB-binding site provide evidence for classical muscarinic receptors in Aplysia nervous tissue. The physiological relevance of the dexetimide-displaceable L-(/sup 3/H)QNB-binding site was supported by the demonstration of the sensitivity of the specific binding to thermal denaturation. Specific binding of L-(/sup 3/H)QNB was also detected in nervous tissue of another marine gastropod, Pleurobranchaea californica. The characteristics of the Aplysia L-(/sup 3/H)QNB-binding site are in accordance with studies of numerous vertebrate and invertebrate tissues indicating that the muscarinic cholinergic receptor site has been highly conserved through evolution.« less

  4. CCL22-specific Antibodies Reveal That Engagement of Two Distinct Binding Domains on CCL22 Is Required for CCR4-mediated Function.

    PubMed

    Santulli-Marotto, Sandra; Wheeler, John; Lacy, Eilyn R; Boakye, Ken; Luongo, Jennifer; Wu, Sheng-Jiun; Ryan, Mary

    2015-12-01

    CCL22 inactivation in vivo occurs by cleavage at the N-terminus; however, it is unclear whether this encompasses the entire site of CCR4 interaction. CCL17 also binds CCR4 and its function requires binding via two discrete binding sites. Using monoclonal antibodies (MAbs), we report that there are two separate sites on CCL22 that are required for CCR4-mediated function. The CCL22-specific antibodies bind with affinities of 632 ± 297 pM (MC2B7) and 308 ± 43 pM (MAB4391) and neither exhibited detectable binding to CCL17. Both antibodies are comparable in their ability to inhibit CCL22-mediated calcium mobilization; however, competition binding studies demonstrate that MC2B7 and MAB4391 bind to distinct epitopes on CCL22. Both antibodies inhibit function through CCR4, which is demonstrated by loss of β-arrestin recruitment in a reporter cell line. In both assays, blocking either site independently abolished CCL22 function, suggesting that concurrent engagement of both sites with CCR4 is necessary for function. This is the first demonstration that CCL22 has two distinct binding sites that are required for CCR4 function. These antibodies are valuable tools for better understanding the interaction and function of CCL22 and CCR4 and will potentially help further understanding of the differential outcomes of CCL17 and CCL22 interaction with CCR4.

  5. Structure of adenovirus bound to cellular receptor car

    DOEpatents

    Freimuth, Paul I.

    2004-05-18

    Disclosed is a mutant adenovirus which has a genome comprising one or more mutations in sequences which encode the fiber protein knob domain wherein the mutation causes the encoded viral particle to have significantly weakened binding affinity for CARD1 relative to wild-type adenovirus. Such mutations may be in sequences which encode either the AB loop, or the HI loop of the fiber protein knob domain. Specific residues and mutations are described. Also disclosed is a method for generating a mutant adenovirus which is characterized by a receptor binding affinity or specificity which differs substantially from wild type. In the method, residues of the adenovirus fiber protein knob domain which are predicted to alter D1 binding when mutated, are identified from the crystal structure coordinates of the AD12knob:CAR-D1 complex. A mutation which alters one or more of the identified residues is introduced into the genome of the adenovirus to generate a mutant adenovirus. Whether or not the mutant produced exhibits altered adenovirus-CAR binding properties is then determined.

  6. An Exquisitely Specific PDZ/Target Recognition Revealed by the Structure of INAD PDZ3 in Complex with TRP Channel Tail.

    PubMed

    Ye, Fei; Liu, Wei; Shang, Yuan; Zhang, Mingjie

    2016-03-01

    The vast majority of PDZ domains are known to bind to a few C-terminal tail residues of target proteins with modest binding affinities and specificities. Such promiscuous PDZ/target interactions are not compatible with highly specific physiological functions of PDZ domain proteins and their targets. Here, we report an unexpected PDZ/target binding occurring between the scaffold protein inactivation no afterpotential D (INAD) and transient receptor potential (TRP) channel in Drosophila photoreceptors. The C-terminal 15 residues of TRP are required for the specific interaction with INAD PDZ3. The INAD PDZ3/TRP peptide complex structure reveals that only the extreme C-terminal Leu of TRP binds to the canonical αB/βB groove of INAD PDZ3. The rest of the TRP peptide, by forming a β hairpin structure, binds to a surface away from the αB/βB groove of PDZ3 and contributes to the majority of the binding energy. Thus, the INAD PDZ3/TRP channel interaction is exquisitely specific and represents a new mode of PDZ/target recognitions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Kinetic characterization and radiation-target sizing of the glucose transporter in cardiac sarcolemmal vesicles.

    PubMed

    Dale, W E; Tsai, Y S; Jung, C Y; Hale, C C; Rovetto, M J; Kim, H D; Yung, C Y

    1988-08-18

    Stereospecific glucose transport was assayed and characterized in bovine cardiac sarcolemmal vesicles. Sarcolemmal vesicles were incubated with D-[3H]glucose or L-[3H]glucose at 25 degrees C. The reaction was terminated by rapid addition of 4 mM HgCl2 and vesicles were immediately collected on glass fiber filters for quantification of accumulated [3H]glucose. Non-specific diffusion of L-[3H]glucose was never more than 11% of total D-[3H]glucose transport into the vesicles. Stereospecific uptake of D-[3H]glucose reached a maximum level by 20 s. Cytochalasin B (50 microM) inhibited specific transport of D-[3H]glucose to the level of that for non-specific diffusion. The vesicles exhibited saturable transport (Km = 9.3 mM; Vmax = 2.6 nmol/mg per s) and the transporter turnover number was 197 glucose molecules per transporter per s. The molecular sizes of the cytochalasin B binding protein and the D-glucose transport protein in sarcolemmal vesicles were estimated by radiation inactivation. These values were 77 and 101 kDa, respectively, and by the Wilcoxen Rank Sum Test were not significantly different from each other.

  8. Predominant nonproductive substrate binding by fungal cellobiohydrolase I and implications for activity improvement.

    PubMed

    Rabinovich, Mikhail L; Melnik, Maria S; Herner, Mikhail L; Voznyi, Yakov V; Vasilchenko, Lilia G

    2018-05-21

    Enzymatic conversion of the most abundant renewable source of organic compounds, cellulose to fermentable sugars is attractive for production of green fuels and chemicals. The major component of industrial enzyme systems, cellobiohydrolase I from Hypocrea jecorina (Trichoderma reesei) (HjCel7A) processively splits disaccharide units from the reducing ends of tightly packed cellulose chains. HjCel7A consists of a catalytic domain (CD) and a carbohydrate-binding module (CBM) separated by a linker peptide. A tunnel-shaped substrate-binding site in the CD includes 9 subsites for β-D-glucose units, 7 of which (-7 to -1) precede the catalytic center. Low catalytic activity of Cel7A is the bottleneck and the primary target for improvement. Here it is shown for the first time that, in spite of much lower apparent k cat of HjCel7A at the hydrolysis of β-1,4-glucosidic linkages in the fluorogenic cellotetra- and -pentaose compared to the structurally related endoglucanase I (HjCel7B), the specificity constants (catalytic efficiency) k cat /K m for both enzymes are almost equal in these reactions. The observed activity difference appears from strong nonproductive substrate binding by HjCel7A, particularly significant for MU-β-cellotetraose (MUG 4 ). Interaction of substrates with the subsites -6 and -5 proximal to the non-conserved Gln101 residue in HjCel7A decreases K m,ap by >1500 times. HjCel7A can be nonproductively bound onto cellulose surface with K d ∼2-9 nM via CBM and CD that captures 6 terminal glucose units of cellulose chain. Decomposition of this nonproductive complex can determine the rate of cellulose conversion. MUG 4 is a promising substrate to select active cellobiohydrolase I variants with reduced nonproductive substrate binding. This article is protected by copyright. All rights reserved.

  9. Measurements of nonlinear Hall-driven reconnection in the reversed field pinch

    NASA Astrophysics Data System (ADS)

    Tharp, Timothy D.

    Complex organisms are able to develop because of the complex regulatory systems that control their gene expression. The first step in this regulation, transcription initiation, is controlled by transcription factors. Transcription factors are modular proteins composed of two distinct domains, the DNA binding domain and the regulatory domain. These molecules are involved in a plethora of important biological processes including embryogenesis, development, cell health, and cancer. Tissue enriched transcription factors Nkx-2.5 and Gata4 are involved in cardiac development and cardiac health. In this thesis the DNA binding specificity of Nkx-2.5 will be analyzed using a high throughput double stranded DNA platform called Cognate Site Identifier (CSI) arrays (Chapter 2). The full DNA binding specificity of Nkx-2.5 and Nkx-2.5 mutants will be visualized using Sequence Specificity Landscapes (SSLs). In Chapter 3, the definition of binding specificity will be investigated by evaluating a number of different DNA binding folds by CSI and SSLs. CSI and SSLs will also be used to evaluate different pyrrole/imidazole hairpin polyamides in order to better characterize these small molecule DNA binding domains. CSI and SSL data will be applied to the genome in order to explain the biological function an artificial transcription factor. Chapter 4 will discuss the mechanism of nonspecific DNA binding. The historical means of predicting DNA binding will be challenged by utilizing high throughput experiments. The effect of salt concentration on both specific and nonspecific binding will also be investigated. Finally, in Chapter 5, a generation of Protein DNA Dimerizer will be discussed. A PDD that regulates transcription on genomic DNA by binding cooperatively with the heart IF Gata4 will be characterized. These studies provide understanding of, and a means to control, how transcription factors sample the endless sea of DNA in the genome in order to regulate gene expression with such wonderful specificity.

  10. Plasma Levels of Fatty Acid-Binding Protein 4, Retinol-Binding Protein 4, High-Molecular Weight Adiponectin, and Cardiovascular Mortality among Men with Type 2 Diabetes: A 22-Year Prospective Study

    PubMed Central

    Liu, Gang; Ding, Ming; Chiuve, Stephanie E.; Rimm, Eric B.; Franks, Paul W.; Meigs, James B.; Hu, Frank B.; Sun, Qi

    2016-01-01

    Objective To examine select adipokines, including fatty acid-binding protein 4 (FABP4), retinol-binding protein 4 (RBP4), and high-molecular weight (HMW) adiponectin in relation to cardiovascular disease (CVD) mortality among patients with type 2 diabetes (T2D). Approach and Results Plasma levels of FABP4, RBP4, and HMW adiponectin were measured in 950 men with T2D in the Health Professionals Follow-up Study. After an average of 22 years of follow up (1993–2015), 580 deaths occurred, of whom 220 died of CVD. After multivariate adjustment for covariates, higher levels of FABP4 were significantly associated with a higher CVD mortality: comparing extreme tertiles, the hazard ratio (HR) and 95% confidence interval (CI) of CVD mortality was 1.78 (1.22, 2.59; P trend=0.001). A positive association was also observed for HMW adiponectin: the HR (95% CI) was 2.07 (1.42, 3.06; P trend=0.0002), comparing extreme tertiles, whereas higher RBP4 levels were non-significantly associated with a decreased CVD mortality with an HR (95% CI) of 0.73 (0.50, 1.07; P trend=0.09). A Mendelian randomization (MR) analysis suggested that the causal relationships of HMW adiponectin and RBP4 would be directionally opposite to those observed based on the biomarkers, although none of the MR associations achieved statistical significance. Conclusions These data suggest that higher levels of FABP4 and HMW adiponectin are associated with elevated CVD mortality among men with T2D. Biological mechanisms underlying these observations deserve elucidation, but the associations of HMW adiponectin may partially reflect altered adipose tissue functionality among T2D patients. PMID:27609367

  11. Molecular architecture of an N-formyltransferase from Salmonella enterica O60.

    PubMed

    Woodford, Colin R; Thoden, James B; Holden, Hazel M

    2017-12-01

    N-formylated sugars are found on the lipopolysaccharides of various pathogenic Gram negative bacteria including Campylobacter jejuni 81116, Francisella tularensis, Providencia alcalifaciens O30, and Providencia alcalifaciens O40. The last step in the biosynthetic pathways for these unusual sugars is catalyzed by N-formyltransferases that utilize N 10 -formyltetrahydrofolate as the carbon source. The substrates are dTDP-linked amino sugars with the functional groups installed at either the C-3' or C-4' positions of the pyranosyl rings. Here we describe a structural and enzymological investigation of the putative N-formyltransferase, FdtF, from Salmonella enterica O60. In keeping with its proposed role in the organism, the kinetic data reveal that the enzyme is more active with dTDP-3-amino-3,6-dideoxy-d-galactose than with dTDP-3-amino-3,6-dideoxy-d-glucose. The structural data demonstrate that the enzyme contains, in addition to the canonical N-formyltransferase fold, an ankyrin repeat moiety that houses a second dTDP-sugar binding pocket. This is only the second time an ankyrin repeat has been shown to be involved in small molecule binding. The research described herein represents the first structural analysis of a sugar N-formyltransferase that specifically functions on dTDP-3-amino-3,6-dideoxy-d-galactose in vivo and thus adds to our understanding of these intriguing enzymes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Domain-specific phosphomimetic mutation allows dissection of different protein kinase C (PKC) isotype-triggered activities of the RNA binding protein HuR.

    PubMed

    Schulz, Sebastian; Doller, Anke; Pendini, Nicole R; Wilce, Jacqueline A; Pfeilschifter, Josef; Eberhardt, Wolfgang

    2013-12-01

    The ubiquitous mRNA binding protein human antigen R (HuR) participates in the post-transcriptional regulation of many AU-rich element (ARE)-bearing mRNAs. Previously, by using in vitro kinase assay, we have identified serines (Ser) 158, 221 and 318 as targets of protein kinase C (PKC)-triggered phosphorylation. In this study, we tested whether GFP- or GST-tagged HuR constructs bearing a phosphomimetic Ser (S)-to-Asp (D) substitution at the different PKC target sites, would affect different HuR functions including HuR nucleo-cytoplasmic redistribution and binding to different types of ARE-containing mRNAs. The phosphomimetic GFP-tagged HuR protein bearing a phosphomimetic substitution in the hinge region of HuR (HuR-S221D) showed an increased cytoplasmic abundance when compared to wild-type HuR. Conversely, data from in vitro kinase assay and electrophoretic mobility shift assay (EMSA), implicates that phosphorylation at Ser 221 is not relevant for mRNA binding of HuR. Quantification of in vitro binding affinities of GST-tagged wild-type HuR and corresponding HuR proteins bearing a phosphomimetic substitution in either RRM2 (HuR-S158D) or in RRM3 (HuR-S318D) by microscale thermophoresis (MST) indicates a specific binding of wild-type HuR to type I, II or type III-ARE-oligonucleotides in the high nanomolar range. Interestingly, phosphomimetic mutation at position 158 or 318 had a negative influence on HuR binding to type I- and type II-ARE-mRNAs whereas it significantly enhanced HuR affinity to a type III-ARE substrate. Our data suggest that differential phosphorylation of HuR by PKCs at different HuR domains coordinates subcellular HuR distribution and leads to a preferential binding to U-rich bearing target mRNA. © 2013.

  13. Identification and Characterization of a Broadly Cross-Reactive HIV-1 Human Monoclonal Antibody That Binds to Both gp120 and gp41

    PubMed Central

    Zhang, Mei-Yun; Yuan, Tingting; Li, Jingjing; Rosa Borges, Andrew; Watkins, Jennifer D.; Guenaga, Javier; Yang, Zheng; Wang, Yanping; Wilson, Richard; Li, Yuxing; Polonis, Victoria R.; Pincus, Seth H.; Ruprecht, Ruth M.; Dimitrov, Dimiter S.

    2012-01-01

    Identification of broadly cross-reactive HIV-1-neutralizing antibodies (bnAbs) may assist vaccine immunogen design. Here we report a novel human monoclonal antibody (mAb), designated m43, which co-targets the gp120 and gp41 subunits of the HIV-1 envelope glycoprotein (Env). M43 bound to recombinant gp140 s from various primary isolates, to membrane-associated Envs on transfected cells and HIV-1 infected cells, as well as to recombinant gp120 s and gp41 fusion intermediate structures containing N-trimer structure, but did not bind to denatured recombinant gp140 s and the CD4 binding site (CD4bs) mutant, gp120 D368R, suggesting that the m43 epitope is conformational and overlaps the CD4bs on gp120 and the N-trimer structure on gp41. M43 neutralized 34% of the HIV-1 primary isolates from different clades and all the SHIVs tested in assays based on infection of peripheral blood mononuclear cells (PBMCs) by replication-competent virus, but was less potent in cell line-based pseudovirus assays. In contrast to CD4, m43 did not induce Env conformational changes upon binding leading to exposure of the coreceptor binding site, enhanced binding of mAbs 2F5 and 4E10 specific for the membrane proximal external region (MPER) of gp41 Envs, or increased gp120 shedding. The overall modest neutralization activity of m43 is likely due to the limited binding of m43 to functional Envs which could be increased by antibody engineering if needed. M43 may represent a new class of bnAbs targeting conformational epitopes overlapping structures on both gp120 and gp41. Its novel epitope and possibly new mechanism(s) of neutralization could helpdesign improved vaccine immunogens and candidate therapeutics. PMID:22970187

  14. Chimeras of Bet v 1 and Api g 1 reveal heterogeneous IgE responses in patients with birch pollen allergy

    PubMed Central

    Gepp, Barbara; Lengger, Nina; Bublin, Merima; Hemmer, Wolfgang; Breiteneder, Heimo; Radauer, Christian

    2014-01-01

    Background Characterization of IgE-binding epitopes of allergens and determination of their patient-specific relevance is crucial for the diagnosis and treatment of allergy. Objective We sought to assess the contribution of specific surface areas of the major birch pollen allergen Bet v 1.0101 to binding IgE of individual patients. Methods Four distinct areas of Bet v 1 representing in total 81% of its surface were grafted onto the scaffold of its homolog, Api g 1.0101, to yield the chimeras Api-Bet-1 to Api-Bet-4. The chimeras were expressed in Escherichia coli and purified. IgE binding of 64 sera from Bet v 1–sensitized subjects with birch pollen allergy was determined by using direct ELISA. Specificity was assessed by means of inhibition ELISA. Results rApi g 1.0101, Api-Bet-1, Api-Bet-2, Api-Bet-3, and Api-Bet-4 bound IgE from 44%, 89%, 80%, 78%, and 48% of the patients, respectively. By comparing the amount of IgE binding to the chimeras and to rApi g 1.0101, 81%, 70%, 75%, and 45% of the patients showed significantly enhanced IgE binding to Api-Bet-1, Api-Bet-2, Api-Bet-3, and Api-Bet-4, respectively. The minority (8%) of the sera revealed enhanced IgE binding exclusively to a single chimera, whereas 31% showed increased IgE binding to all 4 chimeras compared with rApi g 1.0101. The chimeras inhibited up to 70% of IgE binding to rBet v 1.0101, confirming the specific IgE recognition of the grafted regions. Conclusion The Bet v 1–specific IgE response is polyclonal, and epitopes are spread across the entire Bet v 1 surface. Furthermore, the IgE recognition profile of Bet v 1 is highly patient specific. PMID:24529686

  15. Chimeras of Bet v 1 and Api g 1 reveal heterogeneous IgE responses in patients with birch pollen allergy.

    PubMed

    Gepp, Barbara; Lengger, Nina; Bublin, Merima; Hemmer, Wolfgang; Breiteneder, Heimo; Radauer, Christian

    2014-07-01

    Characterization of IgE-binding epitopes of allergens and determination of their patient-specific relevance is crucial for the diagnosis and treatment of allergy. We sought to assess the contribution of specific surface areas of the major birch pollen allergen Bet v 1.0101 to binding IgE of individual patients. Four distinct areas of Bet v 1 representing in total 81% of its surface were grafted onto the scaffold of its homolog, Api g 1.0101, to yield the chimeras Api-Bet-1 to Api-Bet-4. The chimeras were expressed in Escherichia coli and purified. IgE binding of 64 sera from Bet v 1-sensitized subjects with birch pollen allergy was determined by using direct ELISA. Specificity was assessed by means of inhibition ELISA. rApi g 1.0101, Api-Bet-1, Api-Bet-2, Api-Bet-3, and Api-Bet-4 bound IgE from 44%, 89%, 80%, 78%, and 48% of the patients, respectively. By comparing the amount of IgE binding to the chimeras and to rApi g 1.0101, 81%, 70%, 75%, and 45% of the patients showed significantly enhanced IgE binding to Api-Bet-1, Api-Bet-2, Api-Bet-3, and Api-Bet-4, respectively. The minority (8%) of the sera revealed enhanced IgE binding exclusively to a single chimera, whereas 31% showed increased IgE binding to all 4 chimeras compared with rApi g 1.0101. The chimeras inhibited up to 70% of IgE binding to rBet v 1.0101, confirming the specific IgE recognition of the grafted regions. The Bet v 1-specific IgE response is polyclonal, and epitopes are spread across the entire Bet v 1 surface. Furthermore, the IgE recognition profile of Bet v 1 is highly patient specific. Copyright © 2014 The Authors. Published by Mosby, Inc. All rights reserved.

  16. sigma opiates and certain antipsychotic drugs mutually inhibit (+)-(/sup 3/H)SKF 10,047 and (/sup 3/H)haloperidol binding in guinea pig brain membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tam, S.W.; Cook, L.

    1984-09-01

    The relationship between binding of antipsychotic drugs and sigma psychotomimetic opiates to binding sites for the sigma agonist (+)-(/sup 3/H)SKF 10,047 (N-allylnormetazocine) and to dopamine D/sub 2/ sites was investigated. In guinea pig brain membranes, (+)-(/sup 3/H)SKF 10,047 bound to single class of sites with a K/sub d/ of 4 x 10/sup -8/ M and a B/sub max/ of 333 fmol/mg of protein. This binding was different from ..mu.., kappa, or delta opiate receptor binding. It was inhibited by opiates that produce psychotomimetic activities but not by opiates that lack such activities. Some antipsychotic drugs inhibited (+)-(/sup 3/H)SKF 10,047 bindingmore » with high to moderate affinities in the following order of potency: haloperidol > perphenazine > fluphenazine > acetophenazine > trifluoperazine > molindone greater than or equal to pimozide greater than or equal to thioridazine greater than or equal to chlorpromazine greater than or equal to triflupromazine. However, there were other antipsychotic drugs such as spiperone and clozapine that showed low affinity for the (+)-(/sup 3/H)SKF 10,047 binding sites. Affinities of antipsychotic drugs for (+)-(/sup 3/H)SKF 10,047 binding sites did not correlate with those for (/sup 3/H)spiperone (dopamine D/sub 2/) sites. (/sup 3/H)-Haloperidol binding in whole brain membranes was also inhibited by the sigma opiates pentazocine, cyclazocine, and (+)-(/sup 3/H)SKF 10,047. In the striatum, about half of the saturable (/sup 3/H)haloperidol binding was to (/sup 3/H)spiperone (D/sub 2/) sites and the other half was to sites similar to (+)-(/sup 3/H)SKF 10,047 binding sites. 15 references, 4 figures, 1 table.« less

  17. Effects of asparagine mutagenesis of conserved aspartic acids in helix two (D2.50) and three (D3.32) of M1 – M4 muscarinic receptors on the irreversible binding of nitrogen mustard analogs of acetylcholine and McN-A-343

    PubMed Central

    Suga, Hinako; Ehlert, Frederick J.

    2013-01-01

    We investigated how asparagine mutagenesis of conserved aspartic acids in helix two (D2.50) and three (D3.32) of M1 – M4 muscarinic receptors alters the irreversible binding of acetylcholine mustard and BR384 (4-[(2-bromoethyl)methyl-amino]-2-butynyl N-(3-chlorophenyl)carbamate), a nitrogen mustard derivative of McN-A-343 ([4-[[N-(3-chlorophenyl)carbamoyl]oxy]-2-butynyl] trimethylammonium chloride). The D2.50N mutation moderately increased the affinity of the aziridinium ions of acetylcholine mustard and BR384 for M2 – M4 receptors and had little effect on the rate constant for receptor alkylation. The D3.32N mutation greatly reduced the rate constant for receptor alkylation by acetylcholine mustard, but not by BR384, although the affinity of BR384 was reduced. The combination of both mutations (D2.50N/D3.32N) substantially reduced the rate constant for receptor alkylation by BR384 relative to wild type and mutant D2.50N and D3.32N receptors. The change in binding affinity caused by the mutations suggests that the D2.50N mutation alters the interaction of acetylcholine mustard with D3.32 of M1 and M3 receptors, but not that of the M4 receptor. BR384 exhibited the converse relationship. The simplest explanation is that acetylcholine mustard and BR384 alkylate at least two residues on M1 – M4 receptors and that the D2.50N mutation alters the rate of alkylation of D3.32 relative to another residue, perhaps D2.50 itself. PMID:23826889

  18. Specific threonine-4 phosphorylation and function of RNA polymerase II CTD during M phase progression

    PubMed Central

    Hintermair, Corinna; Voß, Kirsten; Forné, Ignasi; Heidemann, Martin; Flatley, Andrew; Kremmer, Elisabeth; Imhof, Axel; Eick, Dirk

    2016-01-01

    Dynamic phosphorylation of Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 heptad-repeats in the C-terminal domain (CTD) of the large subunit coordinates progression of RNA polymerase (Pol) II through the transcription cycle. Here, we describe an M phase-specific form of Pol II phosphorylated at Thr4, but not at Tyr1, Ser2, Ser5, and Ser7 residues. Thr4 phosphorylated Pol II binds to centrosomes and midbody and interacts with the Thr4-specific Polo-like kinase 1. Binding of Pol II to centrosomes does not require the CTD but may involve subunits of the non-canonical R2TP-Prefoldin-like complex, which bind to and co-localize with Pol II at centrosomes. CTD Thr4 mutants, but not Ser2 and Ser5 mutants, display severe mitosis and cytokinesis defects characterized by multipolar spindles and polyploid cells. We conclude that proper M phase progression of cells requires binding of Pol II to centrosomes to facilitate regulation of mitosis and cytokinesis in a CTD Thr4-P dependent manner. PMID:27264542

  19. Specific threonine-4 phosphorylation and function of RNA polymerase II CTD during M phase progression.

    PubMed

    Hintermair, Corinna; Voß, Kirsten; Forné, Ignasi; Heidemann, Martin; Flatley, Andrew; Kremmer, Elisabeth; Imhof, Axel; Eick, Dirk

    2016-06-06

    Dynamic phosphorylation of Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7 heptad-repeats in the C-terminal domain (CTD) of the large subunit coordinates progression of RNA polymerase (Pol) II through the transcription cycle. Here, we describe an M phase-specific form of Pol II phosphorylated at Thr4, but not at Tyr1, Ser2, Ser5, and Ser7 residues. Thr4 phosphorylated Pol II binds to centrosomes and midbody and interacts with the Thr4-specific Polo-like kinase 1. Binding of Pol II to centrosomes does not require the CTD but may involve subunits of the non-canonical R2TP-Prefoldin-like complex, which bind to and co-localize with Pol II at centrosomes. CTD Thr4 mutants, but not Ser2 and Ser5 mutants, display severe mitosis and cytokinesis defects characterized by multipolar spindles and polyploid cells. We conclude that proper M phase progression of cells requires binding of Pol II to centrosomes to facilitate regulation of mitosis and cytokinesis in a CTD Thr4-P dependent manner.

  20. Identification of novel rabbit hemorrhagic disease virus B-cell epitopes and their interaction with host histo-blood group antigens.

    PubMed

    Song, Yanhua; Wang, Fang; Fan, Zhiyu; Hu, Bo; Liu, Xing; Wei, Houjun; Xue, Jiabin; Xu, Weizhong; Qiu, Rulong

    2016-02-01

    Rabbit haemorrhagic disease, caused by rabbit hemorrhagic disease virus (RHDV), results in the death of millions of adult rabbits worldwide, with a mortality rate that exceeds 90%. The sole capsid protein, VP60, is divided into shell (S) and protruding (P) domains, and the more exposed P domain likely contains determinants for cell attachment and antigenic diversity. Nine mAbs against VP60 were screened and identified. To map antigenic epitopes, a set of partially overlapping and consecutive truncated proteins spanning VP60 were expressed. The minimal determinants of the linear B-cell epitopes of VP60 in the P domain, N(326)PISQV(331), D(338)MSFV(342) and K(562)STLVFNL(569), were recognized by one (5H3), four (1B8, 3D11, 4C2 and 4G2) and four mAbs (1D4, 3F7, 5G2 and 6B2), respectively. Sequence alignment showed epitope D(338)MSFV(342) was conserved among all RHDV isolates. Epitopes N(326)PISQV(331) and K(562)STLVFNL(569) were highly conserved among RHDV G1-G6 and variable in RHDV2 strains. Previous studies demonstrated that native viral particles and virus-like particles (VLPs) of RHDV specifically bound to synthetic blood group H type 2 oligosaccharides. We established an oligosaccharide-based assay to analyse the binding of VP60 and epitopes to histo-blood group antigens (HBGAs). Results showed VP60 and its epitopes (aa 326-331 and 338-342) in the P2 subdomain could significantly bind to blood group H type 2. Furthermore, mAbs 1B8 and 5H3 could block RHDV VLP binding to synthetic H type 2. Collectively, these two epitopes might play a key role in the antigenic structure of VP60 and interaction of RHDV and HBGA.

  1. The heterodimeric structure of heterogeneous nuclear ribonucleoprotein C1/C2 dictates 1,25-dihydroxyvitamin D-directed transcriptional events in osteoblasts.

    PubMed

    Lisse, Thomas S; Vadivel, Kanagasabai; Bajaj, S Paul; Chun, Rene F; Hewison, Martin; Adams, John S

    2014-01-01

    Heterogeneous nuclear ribonucleoprotein (hnRNP) C plays a key role in RNA processing. More recently hnRNP C has also been shown to function as a DNA binding protein exerting a dominant-negative effect on transcriptional responses to the vitamin D hormone,1,25-dihydroxyvitamin D (1,25(OH) 2 D), via interaction in cis with vitamin D response elements (VDREs). The physiologically active form of human hnRNPC is a tetramer of hnRNPC1 (huC1) and C2 (huC2) subunits known to be critical for specific RNA binding activity in vivo , yet the requirement for heterodimerization of huC1 and C2 in DNA binding and downstream action is not well understood. While over-expression of either huC1 or huC2 alone in mouse osteoblastic cells did not suppress 1,25(OH) 2 D-induced transcription, over-expression of huC1 and huC2 in combination using a bone-specific polycistronic vector successfully suppressed 1,25(OH) 2 D-mediated induction of osteoblast target gene expression. Over-expression of either huC1 or huC2 in human osteoblasts was sufficient to confer suppression of 1,25(OH) 2 D-mediated transcription, indicating the ability of transfected huC1 and huC2 to successfully engage as heterodimerization partners with endogenously expressed huC1 and huC2. The failure of the chimeric combination of mouse and human hnRNPCs to impair 1,25(OH) 2 D-driven gene expression in mouse cells was structurally predicted, owing to the absence of the last helix in the leucine zipper (LZ) heterodimerization domain of hnRNPC gene product in lower species, including the mouse. These results confirm that species-specific heterodimerization of hnRNPC1 and hnRNPC2 is a necessary prerequisite for DNA binding and down-regulation of 1,25(OH) 2 D-VDR-VDRE-directed gene transactivation in osteoblasts.

  2. Computational studies of novel chymase inhibitors against cardiovascular and allergic diseases: mechanism and inhibition.

    PubMed

    Arooj, Mahreen; Thangapandian, Sundarapandian; John, Shalini; Hwang, Swan; Park, Jong K; Lee, Keun W

    2012-12-01

    To provide a new idea for drug design, a computational investigation is performed on chymase and its novel 1,4-diazepane-2,5-diones inhibitors that explores the crucial molecular features contributing to binding specificity. Molecular docking studies of inhibitors within the active site of chymase were carried out to rationalize the inhibitory properties of these compounds and understand their inhibition mechanism. The density functional theory method was used to optimize molecular structures with the subsequent analysis of highest occupied molecular orbital, lowest unoccupied molecular orbital, and molecular electrostatic potential maps, which revealed that negative potentials near 1,4-diazepane-2,5-diones ring are essential for effective binding of inhibitors at active site of enzyme. The Bayesian model with receiver operating curve statistic of 0.82 also identified arylsulfonyl and aminocarbonyl as the molecular features favoring and not favoring inhibition of chymase, respectively. Moreover, genetic function approximation was applied to construct 3D quantitative structure-activity relationships models. Two models (genetic function approximation model 1 r(2) = 0.812 and genetic function approximation model 2 r(2) = 0.783) performed better in terms of correlation coefficients and cross-validation analysis. In general, this study is used as example to illustrate how combinational use of 2D/3D quantitative structure-activity relationships modeling techniques, molecular docking, frontier molecular orbital density fields (highest occupied molecular orbital and lowest unoccupied molecular orbital), and molecular electrostatic potential analysis may be useful to gain an insight into the binding mechanism between enzyme and its inhibitors. © 2012 John Wiley & Sons A/S.

  3. A high ratio of IC31® adjuvant to antigen is necessary for H4 TB vaccine immunomodulation

    PubMed Central

    Aboutorabian, Sepideh; Hakimi, Jalil; Boudet, Florence; Montano, Sandrine; Dookie, Annie; Roque, Cristopher; Ausar, Salvador F; Rahman, Nausheen; Brookes, Roger H

    2015-01-01

    A tuberculosis (TB) vaccine consisting of a recombinant fusion protein (H4) and a novel TLR9 adjuvant (IC31) is in clinical development. To better understand the H4-IC31 ratio, we measured the binding capacity of IC31 for H4 protein and immunized mice with formulations that contained limiting to excess ratios of IC31 to H4. An immunomodulated H4-specific IFNγ response was only observed when IC31 was present in excess of H4. Since TLR expression is species-specific and the vaccine is intended to boost BCG-primed immunity, we questioned whether data in mice would translate to humans. To address this question, we used the fresh human Whole Blood (hWB) recovered from BCG-vaccinated subjects to screen H4-IC31 formulations. We found IC31 modulation in hWB to be quite distinct from the TLR4-Adjuvant. Unlike TLR4-Adjuvant, IC31 formulations did not induce the pro-inflammatory cytokine TNFα, but modulated a robust H4-specific IFNγ response after 12 d of culture. We then re-stimulated the fresh hWB of 5 BCG-primed subjects with formulations that had excess or limiting IC31 binding for H4 protein and again found that an immunomodulated H4-specific IFNγ response needed an excess of IC31. Finally, we monitored the zeta (ζ) potential of H4-IC31 formulations and found that the overall charge of H4-IC31 particles changes from negative to positive once IC31 is in greater than 9-fold excess. Using two diverse yet mutually supportive approaches, we confirm the need for an excess of IC31 adjuvant in H4 TB vaccine formulations and suggest surface potential may be an important factor. PMID:25997147

  4. A high ratio of IC31(®) adjuvant to antigen is necessary for H4 TB vaccine immunomodulation.

    PubMed

    Aboutorabian, Sepideh; Hakimi, Jalil; Boudet, Florence; Montano, Sandrine; Dookie, Annie; Roque, Cristopher; Ausar, Salvador F; Rahman, Nausheen; Brookes, Roger H

    2015-01-01

    A tuberculosis (TB) vaccine consisting of a recombinant fusion protein (H4) and a novel TLR9 adjuvant (IC31) is in clinical development. To better understand the H4-IC31 ratio, we measured the binding capacity of IC31 for H4 protein and immunized mice with formulations that contained limiting to excess ratios of IC31 to H4. An immunomodulated H4-specific IFNγ response was only observed when IC31 was present in excess of H4. Since TLR expression is species-specific and the vaccine is intended to boost BCG-primed immunity, we questioned whether data in mice would translate to humans. To address this question, we used the fresh human Whole Blood (hWB) recovered from BCG-vaccinated subjects to screen H4-IC31 formulations. We found IC31 modulation in hWB to be quite distinct from the TLR4-Adjuvant. Unlike TLR4-Adjuvant, IC31 formulations did not induce the pro-inflammatory cytokine TNFα, but modulated a robust H4-specific IFNγ response after 12 d of culture. We then re-stimulated the fresh hWB of 5 BCG-primed subjects with formulations that had excess or limiting IC31 binding for H4 protein and again found that an immunomodulated H4-specific IFNγ response needed an excess of IC31. Finally, we monitored the zeta (ζ) potential of H4-IC31 formulations and found that the overall charge of H4-IC31 particles changes from negative to positive once IC31 is in greater than 9-fold excess. Using two diverse yet mutually supportive approaches, we confirm the need for an excess of IC31 adjuvant in H4 TB vaccine formulations and suggest surface potential may be an important factor.

  5. Thioredoxin System from Deinococcus radiodurans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obiero, Josiah; Pittet, Vanessa; Bonderoff, Sara A.

    2010-05-03

    This paper describes the cloning, purification, and characterization of thioredoxin (Trx) and thioredoxin reductase (TrxR) and the structure determination of TrxR from the ionizing radiation-tolerant bacterium Deinococcus radiodurans strain R1. The genes from D. radiodurans encoding Trx and TrxR were amplified by PCR, inserted into a pET expression vector, and overexpressed in Escherichia coli. The overexpressed proteins were purified by metal affinity chromatography, and their activity was demonstrated using well-established assays of insulin precipitation (for Trx), 5,5{prime}-dithiobis(2-nitrobenzoic acid) (DTNB) reduction, and insulin reduction (for TrxR). In addition, the crystal structure of oxidized TrxR was determined at 1.9-{angstrom} resolution. The overallmore » structure was found to be very similar to that of E. coli TrxR and homodimeric with both NADPH- and flavin adenine dinucleotide (FAD)-binding domains containing variants of the canonical nucleotide binding fold, the Rossmann fold. The K{sub m} (5.7 {micro}M) of D. radiodurans TrxR for D. radiodurans Trx was determined and is about twofold higher than that of the E. coli thioredoxin system. However, D. radiodurans TrxR has a much lower affinity for E. coli Trx (K{sub m}, 44.4 {micro}M). Subtle differences in the surface charge and shape of the Trx binding site on TrxR may account for the differences in recognition. Because it has been suggested that TrxR from D. radiodurans may have dual cofactor specificity (can utilize both NADH and NADPH), D. radiodurans TrxR was tested for its ability to utilize NADH as well. Our results show that D. radiodurans TrxR can utilize only NADPH for activity.« less

  6. Monoclonal Antibodies, Derived from Humans Vaccinated with the RV144 HIV Vaccine Containing the HVEM Binding Domain of Herpes Simplex Virus (HSV) Glycoprotein D, Neutralize HSV Infection, Mediate Antibody-Dependent Cellular Cytotoxicity, and Protect Mice from Ocular Challenge with HSV-1.

    PubMed

    Wang, Kening; Tomaras, Georgia D; Jegaskanda, Sinthujan; Moody, M Anthony; Liao, Hua-Xin; Goodman, Kyle N; Berman, Phillip W; Rerks-Ngarm, Supachai; Pitisuttithum, Punnee; Nitayapan, Sorachai; Kaewkungwal, Jaranit; Haynes, Barton F; Cohen, Jeffrey I

    2017-10-01

    The RV144 HIV vaccine trial included a recombinant HIV glycoprotein 120 (gp120) construct fused to a small portion of herpes simplex virus 1 (HSV-1) glycoprotein D (gD) so that the first 40 amino acids of gp120 were replaced by the signal sequence and the first 27 amino acids of the mature form of gD. This region of gD contains most of the binding site for HVEM, an HSV receptor important for virus infection of epithelial cells and lymphocytes. RV144 induced antibodies to HIV that were partially protective against infection, as well as antibodies to HSV. We derived monoclonal antibodies (MAbs) from peripheral blood B cells of recipients of the RV144 HIV vaccine and showed that these antibodies neutralized HSV-1 infection in cells expressing HVEM, but not the other major virus receptor, nectin-1. The MAbs mediated antibody-dependent cellular cytotoxicity (ADCC), and mice that received the MAbs and were then challenged by corneal inoculation with HSV-1 had reduced eye disease, shedding, and latent infection. To our knowledge, this is the first description of MAbs derived from human recipients of a vaccine that specifically target the HVEM binding site of gD. In summary, we found that monoclonal antibodies derived from humans vaccinated with the HVEM binding domain of HSV-1 gD (i) neutralized HSV-1 infection in a cell receptor-specific manner, (ii) mediated ADCC, and (iii) reduced ocular disease in virus-infected mice. IMPORTANCE Herpes simplex virus 1 (HSV-1) causes cold sores and neonatal herpes and is a leading cause of blindness. Despite many trials, no HSV vaccine has been approved. Nectin-1 and HVEM are the two major cellular receptors for HSV. These receptors are expressed at different levels in various tissues, and the role of each receptor in HSV pathogenesis is not well understood. We derived human monoclonal antibodies from persons who received the HIV RV144 vaccine that contained the HVEM binding domain of HSV-1 gD fused to HIV gp120. These antibodies were able to specifically neutralize HSV-1 infection in vitro via HVEM. Furthermore, we showed for the first time that HVEM-specific HSV-1 neutralizing antibodies protect mice from HSV-1 eye disease, indicating the critical role of HVEM in HSV-1 ocular infection. Copyright © 2017 American Society for Microbiology.

  7. Cur l 3, a major allergen of Curvularia lunata-derived short synthetic peptides, shows promise for successful immunotherapy.

    PubMed

    Sharma, Vidhu; Singh, Bhanu Pratap; Arora, Naveen

    2011-12-01

    Allergens with reduced IgE binding and intact T cell reactivity are required for safety and efficacy of immunotherapy (IT). Curvularia lunata is an important fungus for respiratory allergic disorders having cross-reactive and specific allergens. Previously, we have identified major allergens-namely, Cur l 1 (31 kD, serine protease), Cur l 2 (48 kD, enolase), and Cur l 3 (12 kD, cytochrome c)-from this fungus. Furthermore, Cur l 3 epitope-peptide, P6, showed immunogenicity and higher IgE binding, where cysteine and histidine were observed to be vital for IgE binding. Thus, this peptide and three derivatives with reduced IgE binding were selected for analysis in mice. In the present study, the effect of IT was assessed with Cur l 3, P6, its derivatives (P6.1-6.3), and P10 in a mouse model of allergy. IT with P6.2 and P10 reduced IgE and IgG1 levels significantly (P < 0.05), with increase in IgG2a levels as compared to other antigens. There was a significant reduction of IL-4 level associated with increased IFN-γ after IT. Airway inflammation was reduced significantly in terms of eosinophil counts in lung tissue and bronchoalveolar lavage fluid. IT with P6 and P6.2 induced significantly higher IL-10 secretion than baseline after 40 days of treatment. Generally, the effect of IT was more pronounced after 40 days than after 10 days of treatment. In summary, the modified peptide, P6.2, with reduced IgE binding, but intact immunogenicity, showed promise for successful IT.

  8. Strong Enrichment of Aromatic Residues in Binding Sites from a Charge-neutralized Hyperthermostable Sso7d Scaffold Library.

    PubMed

    Traxlmayr, Michael W; Kiefer, Jonathan D; Srinivas, Raja R; Lobner, Elisabeth; Tisdale, Alison W; Mehta, Naveen K; Yang, Nicole J; Tidor, Bruce; Wittrup, K Dane

    2016-10-21

    The Sso7d protein from the hyperthermophilic archaeon Sulfolobus solfataricus is an attractive binding scaffold because of its small size (7 kDa), high thermal stability (T m of 98 °C), and absence of cysteines and glycosylation sites. However, as a DNA-binding protein, Sso7d is highly positively charged, introducing a strong specificity constraint for binding epitopes and leading to nonspecific interaction with mammalian cell membranes. In the present study, we report charge-neutralized variants of Sso7d that maintain high thermal stability. Yeast-displayed libraries that were based on this reduced charge Sso7d (rcSso7d) scaffold yielded binders with low nanomolar affinities against mouse serum albumin and several epitopes on human epidermal growth factor receptor. Importantly, starting from a charge-neutralized scaffold facilitated evolutionary adaptation of binders to differentially charged epitopes on mouse serum albumin and human epidermal growth factor receptor, respectively. Interestingly, the distribution of amino acids in the small and rigid binding surface of enriched rcSso7d-based binders is very different from that generally found in more flexible antibody complementarity-determining region loops but resembles the composition of antibody-binding energetic hot spots. Particularly striking was a strong enrichment of the aromatic residues Trp, Tyr, and Phe in rcSso7d-based binders. This suggests that the rigidity and small size of this scaffold determines the unusual amino acid composition of its binding sites, mimicking the energetic core of antibody paratopes. Despite the high frequency of aromatic residues, these rcSso7d-based binders are highly expressed, thermostable, and monomeric, suggesting that the hyperstability of the starting scaffold and the rigidness of the binding surface confer a high tolerance to mutation. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Characterization of recombinant yellow fever-dengue vaccine viruses with human monoclonal antibodies targeting key conformational epitopes.

    PubMed

    Lecouturier, Valerie; Berry, Catherine; Saulnier, Aure; Naville, Sophie; Manin, Catherine; Girerd-Chambaz, Yves; Crowe, James E; Jackson, Nicholas; Guy, Bruno

    2018-04-26

    The recombinant yellow fever-17D-dengue virus, live, attenuated, tetravalent dengue vaccine (CYD-TDV) is licensed in several dengue-endemic countries. Although the vaccine provides protection against dengue, the level of protection differs by serotype and warrants further investigation. We characterized the antigenic properties of each vaccine virus serotype using highly neutralizing human monoclonal antibodies (hmAbs) that bind quaternary structure-dependent epitopes. Specifically, we monitored the binding of dengue virus-1 (DENV-1; 1F4), DENV-2 (2D22) or DENV-3 (5J7) serotype-specific or DENV-1-4 cross-reactive (1C19) hmAbs to the four chimeric yellow fever-dengue vaccine viruses (CYD-1-4) included in phase III vaccine formulations using a range of biochemical and functional assays (dot blot, ELISA, surface plasmon resonance and plaque reduction neutralization assays). In addition, we used the "classic" live, attenuated DENV-2 vaccine serotype, immature CYD-2 viruses and DENV-2 virus-like particles as control antigens for anti-serotype-2 reactivity. The CYD vaccine serotypes were recognized by each hmAbs with the expected specificity, moreover, surface plasmon resonance indicated a high functional affinity interaction with the CYD serotypes. In addition, the hmAbs provided similar protection against CYD and wild-type dengue viruses in the in vitro neutralization assay. Overall, these findings demonstrate that the four CYD viruses used in clinical trials display key conformational and functional epitopes targeted by serotype-specific and/or cross-reactive neutralizing human antibodies. More specifically, we showed that CYD-2 displays serotype- specific epitopes present only on the mature virus. This indicates that the CYD-TDV has the ability to elicit antibody specificities which are similar to those induced by the wild type DENV. Future investigations will be needed to address the nature of CYD-TDV-induced responses after vaccine administration, and how these laboratory markers relate to vaccine efficacy and safety. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Study of the Mn-binding sites in photosystem II using antibodies raised against lumenal regions of the D1 and D2 reaction center proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalmasso, Enrique Agustin

    The experiments discussed in this thesis focus on identifying the protein segments or specific amino acids which provide ligands to the Mn cluster of photosystem II (PS II). This Mn cluster plays a central role in the oxygen-evolving complex (OEC) of PS II. The Mn cluster is thought to be bound by lumenal regions of the PS II reaction center proteins known as D1 and D2. First, several peptides were synthesized which correspond to specific lumenal segments of the D1 and D2 proteins. Next, polyclonal antibodies were successfully elicited using three of these peptides. The peptides recognized by these antibodiesmore » correspond to protein segments of the spinach reaction center proteins: Ile-321 to Ala-344 of D1 (D1-a), Asp-319 to Arg-334 of D1 (D1-b), and Val-300 to Asn-319 of D2 (D2-a). These antibodies were then used in assays which were developed to structurally or functionally probe the potential Mn-binding regions of the D1 and D2 proteins.« less

  11. Distinctive interactions of the Arabidopsis homolog of the 30 kD subunit of the cleavage and polyadenylation specificity factor (AtCPSF30) with other polyadenylation factor subunits

    USDA-ARS?s Scientific Manuscript database

    Background: The Arabidopsis ortholog of the 30 kD subunit of the mammalian Cleavage and Polyadenylation Specificity Factor (AtCPSF30) is an RNA-binding endonuclease that is associated with other Arabidopsis CPSF subunits (orthologs of the 160, 100, and 73 kD subunits of CPSF). In order to better u...

  12. Understanding Insulin Endocrinology in Decapod Crustacea: Molecular Modelling Characterization of an Insulin-Binding Protein and Insulin-Like Peptides in the Eastern Spiny Lobster, Sagmariasus verreauxi.

    PubMed

    Chandler, Jennifer C; Gandhi, Neha S; Mancera, Ricardo L; Smith, Greg; Elizur, Abigail; Ventura, Tomer

    2017-08-23

    The insulin signalling system is one of the most conserved endocrine systems of Animalia from mollusc to man. In decapod Crustacea , such as the Eastern spiny lobster, Sagmariasus verreauxi (Sv) and the red-claw crayfish, Cherax quadricarinatus (Cq), insulin endocrinology governs male sexual differentiation through the action of a male-specific, insulin-like androgenic gland peptide (IAG). To understand the bioactivity of IAG it is necessary to consider its bio-regulators such as the insulin-like growth factor binding protein (IGFBP). This work has employed various molecular modelling approaches to represent S. verreauxi IGFBP and IAG, along with additional Sv-ILP ligands, in order to characterise their binding interactions. Firstly, we present Sv- and Cq-ILP2: neuroendocrine factors that share closest homology with Drosophila ILP8 (Dilp8). We then describe the binding interaction of the N-terminal domain of Sv-IGFBP and each ILP through a synergy of computational analyses. In-depth interaction mapping and computational alanine scanning of IGFBP_N' highlight the conserved involvement of the hotspot residues Q 67 , G 70 , D 71 , S 72 , G 91 , G 92 , T 93 and D 94 . The significance of the negatively charged residues D 71 and D 94 was then further exemplified by structural electrostatics. The functional importance of the negative surface charge of IGFBP is exemplified in the complementary electropositive charge on the reciprocal binding interface of all three ILP ligands. When examined, this electrostatic complementarity is the inverse of vertebrate homologues; such physicochemical divergences elucidate towards ligand-binding specificity between Phyla.

  13. Synthesis and anion binding studies of tris(3-aminopropyl)amine-based tripodal urea and thiourea receptors: Proton transfer-induced selectivity for hydrogen sulfate over sulfate.

    PubMed

    Khansari, Maryam Emami; Johnson, Corey R; Basaran, Ismet; Nafis, Aemal; Wang, Jing; Leszczynski, Jerzy; Hossain, Md Alamgir

    2015-01-01

    Tris(3-aminopropyl)amine-based tripodal urea and thiourea receptors, tris([(4-cyanophenyl)amino]propyl)urea ( L1 ) and tris([(4-cyanophenyl)amino]propyl)thiourea ( L2 ), have been synthesized and their anion binding properties have been investigated for halides and oxoanions. As investigated by 1 H NMR titrations, each receptor binds an anion with a 1:1 stoichiometry via hydrogen-bonding interactions (NH⋯anion), showing the binding trend in the order of F - > H 2 PO 4 - > HCO 3 - > HSO 4 - > CH 3 COO - > SO 4 2- > Cl - > Br - > I in DMSO- d 6 . The interactions of the receptors were further studied by 2D NOESY, showing the loss of NOESY contacts of two NH resonances for the complexes of F - , H 2 PO 4 - , HCO 3 - , HSO 4 - or CH 3 COO - due to the strong NH⋯anion interactions. The observed higher binding affinity for HSO 4 - than SO 4 2- is attributed to the proton transfer from HSO 4 - to the central nitrogen of L1 or L2 which was also supported by the DFT calculations, leading to the secondary acid-base interactions. The thiourea receptor L2 has a general trend to show a higher affinity for an anion as compared to the urea receptor L1 for the corresponding anion in DMSO- d 6 . In addition, the compound L2 has been exploited for its extraction properties for fluoride in water using a liquid-liquid extraction technique, and the results indicate that the receptor effectively extracts fluoride from water showing ca. 99% efficiency (based on L2 ).

  14. Pharmacologically relevant receptor binding characteristics and 5alpha-reductase inhibitory activity of free Fatty acids contained in saw palmetto extract.

    PubMed

    Abe, Masayuki; Ito, Yoshihiko; Oyunzul, Luvsandorj; Oki-Fujino, Tomomi; Yamada, Shizuo

    2009-04-01

    Saw palmetto extract (SPE), used widely for the treatment of benign prostatic hyperplasia (BPH) has been shown to bind alpha(1)-adrenergic, muscarinic and 1,4-dihydropyridine (1,4-DHP) calcium channel antagonist receptors. Major constituents of SPE are lauric acid, oleic acid, myristic acid, palmitic acid and linoleic acid. The aim of this study was to investigate binding affinities of these fatty acids for pharmacologically relevant (alpha(1)-adrenergic, muscarinic and 1,4-DHP) receptors. The fatty acids inhibited specific [(3)H]prazosin binding in rat brain in a concentration-dependent manner with IC(50) values of 23.8 to 136 microg/ml, and specific (+)-[(3)H]PN 200-110 binding with IC(50) values of 24.5 to 79.5 microg/ml. Also, lauric acid, oleic acid, myristic acid and linoleic acid inhibited specific [(3)H]N-methylscopolamine ([(3)H]NMS) binding in rat brain with IC(50) values of 56.4 to 169 microg/ml. Palmitic acid had no effect on specific [(3)H]NMS binding. The affinity of oleic acid, myristic acid and linoleic acid for each receptor was greater than the affinity of SPE. Scatchard analysis revealed that oleic acid and lauric acid caused a significant decrease in the maximal number of binding sites (B(max)) for [(3)H]prazosin, [(3)H]NMS and (+)-[(3)H]PN 200-110. The results suggest that lauric acid and oleic acid bind noncompetitively to alpha(1)-adrenergic, muscarinic and 1,4-DHP calcium channel antagonist receptors. We developed a novel and convenient method of determining 5alpha-reductase activity using LC/MS. With this method, SPE was shown to inhibit 5alpha-reductase activity in rat liver with an IC(50) of 101 microg/ml. Similarly, all the fatty acids except palmitic acid inhibited 5alpha-reductase activity, with IC(50) values of 42.1 to 67.6 microg/ml. In conclusion, lauric acid, oleic acid, myristic acid, and linoleic acid, major constituents of SPE, exerted binding activities of alpha(1)-adrenergic, muscarinic and 1,4-DHP receptors and inhibited 5alpha-reductase activity.

  15. Clinical and immunobiochemical characterization of airborne Delonix regia (Gulmohar tree) pollen and cross-reactivity studies with Peltophorum pterocarpum pollen: 2 dominant avenue trees from eastern India.

    PubMed

    Mandal, Jyotshna; Manna, Prasenjit; Chakraborty, Pampa; Roy, Indrani; Gupta-Bhattacharya, Swati

    2009-12-01

    Delonix regia and Peltophorum pterocarpum pollen are important aeroallergens for type 1 hypersensitivity in the tropics. The IgE-binding proteins of D regia and their cross-allergenity with P pterocarpum pollen have not been evaluated. To isolate and characterize the IgE-binding proteins of D regia pollen for the first time and to investigate the cross-allergenity with P pterocarpum pollen belonging to the same family (Leguminosae). Allergenic activities were determined by in vivo and in vitro analyses. Pollen extract was fractionated by a combination of 2 columns (diethyl amino ethyl Sephadex and Sephacryl S-200). Protein components were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, periodic acid-Schiff staining, and immunoblotting. In vitro inhibition tests were performed to evaluate the cross-reactivity. The skin prick test results of the patients with respiratory allergies in Calcutta, India, showed 31.1% positivity with D regia pollen. Nine IgE-reactive protein components were found in the crude extract. An optimum IgE-reactive fraction was resolved into 4 subfractions. Subfraction A, which showed maximum IgE reactivity, contained 2 (96- and 66-kDa) IgE-reactive protein components. The 66-kDa component was found to be glycoprotein. Remarkable cross-reactivity between D regia and P pterocarpum pollen was found on IgE enzyme-linked immunosorbent assay inhibition and dot blotting. Shared IgE-binding components (66, 56, 32, 28, 25, and 23 kDa) were observed between D regia and P pterocarpum pollen extracts, whereas the 96- and 43-kDa components were specific to D regia. The purification of the IgE-binding proteins and the identification of the shared/cross-reactive proteins in these taxonomically related pollen members should be helpful for the diagnosis and therapy of patients susceptible to these pollens.

  16. Intracellular interaction of EBV/C3d receptor (CR2) with p68, a calcium-binding protein present in normal but not in transformed B lymphocytes.

    PubMed

    Barel, M; Gauffre, A; Lyamani, F; Fiandino, A; Hermann, J; Frade, R

    1991-08-15

    To analyze direct intracellular interactions of CR2 in normal human B lymphocytes, we used polyclonal anti-Id anti-CR2 antibodies (Ab2) prepared against the highly purified CR2 molecule (gp140) as original immunogen. We previously demonstrated that this Ab2 contained specificities that mimicked extracellular and intracellular domains of CR2 and was helpful for identifying CR2-specific ligands. Indeed, some Ab2 specificities recognized human C3d and EBV, two extracellular CR2 ligands. In addition, other Ab2 specificities interacted directly, as CR2, with the intracellular p53 antioncoprotein that is expressed in transformed cells and not in normal cells. We demonstrate herein that Ab2 detected in normal B lymphocytes a 68-kDa protein, p68, that was not expressed in transformed B cells. p68 was localized in purified plasma membranes and cytosol fractions. Direct interaction of purified CR2 with purified p68 was demonstrated. Competitive studies supported that CR2 and Ab2 interacted with identical sites on p68. These interactions were calcium dependent. p68 was identified as a calcium-binding protein by its ability to be solubilized from B lymphocyte membranes by EGTA, a calcium-chelating agent, to bind specifically on phenothiazine-Sepharose in a calcium-dependent interaction, and to be recognized by specific antibodies directed against human p68, a calcium-binding protein of the annexin VI family. Thus, demonstration of different intracellular interactions of CR2 with distinct regulatory proteins, such as p53, the antioncoprotein, and p68, a calcium-binding protein, supports involvement of two regulatory pathways of signal transduction through CR2, depending on the normal or transformed state of human B lymphocytes.

  17. Modification of cocaine self-administration by buspirone (buspar®): potential involvement of D3 and D4 dopamine receptors

    PubMed Central

    Bergman, Jack; Roof, Rebecca A.; Furman, Cheryse A.; Conroy, Jennie L.; Mello, Nancy K.; Sibley, David R.; Skolnick, Phil

    2016-01-01

    Converging lines of evidence indicate that elevations in synaptic dopamine levels play a pivotal role in the reinforcing effects of cocaine, which are associated with its abuse liability. This evidence has led to the exploration of dopamine receptor blockers as pharmacotherapy for cocaine addiction. While neither D1 nor D2 receptor antagonists have proven effective, medications acting at two other potential targets, D3 and D4 receptors, have yet to be explored for this indication in the clinic. Buspirone, a 5-HT1A partial agonist approved for the treatment of anxiety, has been reported to also bind with high affinity to D3 and D4 receptors. In view of this biochemical profile, the present research was conducted to examine both the functional effects of buspirone on these receptors and, in non-human primates, its ability to modify the reinforcing effects of i.v. cocaine in a behaviourally selective manner. Radioligand binding studies confirmed that buspirone binds with high affinity to recombinant human D3 and D4 receptors (~98 and ~29 nM respectively). Live cell functional assays also revealed that buspirone, and its metabolites, function as antagonists at both D3 and D4 receptors. In behavioural studies, doses of buspirone that had inconsistent effects on food-maintained responding (0.1 or 0.3 mg/kg i.m.) produced a marked downward shift in the dose–effect function for cocaine-maintained behaviour, reflecting substantial decreases in self-administration of one or more unit doses of i.v. cocaine in each subject. These results support the further evaluation of buspirone as a candidate medication for the management of cocaine addiction. PMID:22827916

  18. Four nucleocytoplasmic-shuttling proteins and p53 interact specifically with the YB-NLS and are involved in anticancer reagent-induced nuclear localization of YB-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanaka, Toru; Ohashi, Sachiyo; Kobayashi, Shunsuke

    In cancer cells, anticancer reagents often trigger nuclear accumulation of YB-1, which participates in the progression of cancer malignancy. YB-1 has a non-canonical nuclear localization signal (YB-NLS). Here we found that four nucleocytoplasmic-shuttling RNA-binding proteins and p53 interact specifically with the YB-NLS and co-accumulate with YB-1 in the nucleus of actinomycin D-treated cells. To elucidate the roles of these YB-NLS-binding proteins, we performed a dominant-negative experiment in which a large excess of YB-NLS interacts with the YB-NLS-binding proteins, and showed inhibitory effects on actinomycin D-induced nuclear transport of endogenous YB-1 and subsequent MDR1 gene expression. Furthermore, the YB-NLS-expressing cells weremore » also found to show increased drug sensitivity. Our results suggest that these YB-NLS-associating proteins are key factors for nuclear translocation/accumulation of YB-1 in cancer cells. - Highlights: • Four nucleocytoplasmic-shuttling proteins and p53 associate with YB-NLS. • They showed nuclear co-accumulation with YB-1 in actinomycin D-treated cells. • Overexpression of YB-NLS was carried out to take YB-NLS-binding proteins from YB-1. • YB-NLS inhibited actinomycin D-induced nuclear localization of endogenous YB-1. • YB-NLS suppressed actinomycin D-induced expression of MDR1.« less

  19. Structural basis for the recruitment and activation of the Legionella phospholipase VipD by the host GTPase Rab5

    PubMed Central

    Lucas, María; Gaspar, Andrew H.; Pallara, Chiara; Rojas, Adriana Lucely; Fernández-Recio, Juan; Machner, Matthias P.; Hierro, Aitor

    2014-01-01

    A challenge for microbial pathogens is to assure that their translocated effector proteins target only the correct host cell compartment during infection. The Legionella pneumophila effector vacuolar protein sorting inhibitor protein D (VipD) localizes to early endosomal membranes and alters their lipid and protein composition, thereby protecting the pathogen from endosomal fusion. This process requires the phospholipase A1 (PLA1) activity of VipD that is triggered specifically on VipD binding to the host cell GTPase Rab5, a key regulator of endosomes. Here, we present the crystal structure of VipD in complex with constitutively active Rab5 and reveal the molecular mechanism underlying PLA1 activation. An active site-obstructing loop that originates from the C-terminal domain of VipD is repositioned on Rab5 binding, thereby exposing the catalytic pocket within the N-terminal PLA1 domain. Substitution of amino acid residues located within the VipD–Rab5 interface prevented Rab5 binding and PLA1 activation and caused a failure of VipD mutant proteins to target to Rab5-enriched endosomal structures within cells. Experimental and computational analyses confirmed an extended VipD-binding interface on Rab5, explaining why this L. pneumophila effector can compete with cellular ligands for Rab5 binding. Together, our data explain how the catalytic activity of a microbial effector can be precisely linked to its subcellular localization. PMID:25114243

  20. Emotional Eating Phenotype is Associated with Central Dopamine D2 Receptor Binding Independent of Body Mass Index

    PubMed Central

    Eisenstein, Sarah A.; Bischoff, Allison N.; Gredysa, Danuta M.; Antenor-Dorsey, Jo Ann V.; Koller, Jonathan M.; Al-Lozi, Amal; Pepino, Marta Y.; Klein, Samuel; Perlmutter, Joel S.; Moerlein, Stephen M.; Black, Kevin J.; Hershey, Tamara

    2015-01-01

    PET studies have provided mixed evidence regarding central D2/D3 dopamine receptor binding and its relationship with obesity as measured by body mass index (BMI). Other aspects of obesity may be more tightly coupled to the dopaminergic system. We characterized obesity-associated behaviors and determined if these related to central D2 receptor (D2R) specific binding independent of BMI. Twenty-two obese and 17 normal-weight participants completed eating- and reward-related questionnaires and underwent PET scans using the D2R-selective and nondisplaceable radioligand (N-[11C]methyl)benperidol. Questionnaires were grouped by domain (eating related to emotion, eating related to reward, non-eating behavior motivated by reward or sensitivity to punishment). Normalized, summed scores for each domain were compared between obese and normal-weight groups and correlated with striatal and midbrain D2R binding. Compared to normal-weight individuals, the obese group self-reported higher rates of eating related to both emotion and reward (p < 0.001), greater sensitivity to punishment (p = 0.06), and lower non-food reward behavior (p < 0.01). Across normal-weight and obese participants, self-reported emotional eating and non-food reward behavior positively correlated with striatal (p < 0.05) and midbrain (p < 0.05) D2R binding, respectively. In conclusion, an emotional eating phenotype may reflect altered central D2R function better than other commonly used obesity-related measures such as BMI. PMID:26066863

  1. The Mannitol Operon Repressor MTIR belongs to a new class of transcription regulators in bacteria.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, K.; Borovilos, M.; Zhou, M

    2009-12-25

    Many bacteria express phosphoenolpyruvate-dependent phosphotransferase systems (PTS). The mannitol-specific PTS catalyze the uptake and phosphorylation of d-mannitol. The uptake system comprises several genes encoded in the single operon. The expression of the mannitol operon is regulated by a proposed transcriptional factor, mannitol operon repressor (MtlR) that was first studied in Escherichia coli. Here we report the first crystal structures of MtlR from Vibrio parahemeolyticus (Vp-MtlR) and its homolog YggD protein from Shigella flexneri (Sf-YggD). MtlR and YggD belong to the same protein family (Pfam05068). Although Vp-MtlR and Sf-YggD share low sequence identity (22%), their overall structures are very similar, representingmore » a novel all {alpha}-helical fold, and indicate similar function. However, their lack of any known DNA-binding structural motifs and their unfavorable electrostatic properties imply that MtlR/YggD are unlikely to bind a specific DNA operator directly as proposed earlier. This structural observation is further corroborated by in vitro DNA-binding studies of E. coli MtlR (Ec-MtlR), which detected no interaction of Ec-MtlR with the well characterized mannitol operator/promoter region. Therefore, MtlR/YggD belongs to a new class of transcription factors in bacteria that may regulate gene expression indirectly as a part of a larger transcriptional complex.« less

  2. H3K4me3 induces allosteric conformational changes in the DNA-binding and catalytic regions of the V(D)J recombinase

    PubMed Central

    Bettridge, John; Na, Chan Hyun; Desiderio, Stephen

    2017-01-01

    V(D)J recombination is initiated by the recombination-activating gene (RAG) recombinase, consisting of RAG-1 and RAG-2 subunits. The susceptibility of gene segments to cleavage by RAG is associated with histone modifications characteristic of active chromatin, including trimethylation of histone H3 at lysine 4 (H3K4me3). Binding of H3K4me3 by a plant homeodomain (PHD) in RAG-2 stimulates substrate binding and catalysis, which are functions of RAG-1. This has suggested an allosteric mechanism in which information regarding occupancy of the RAG-2 PHD is transmitted to RAG-1. To determine whether the conformational distribution of RAG is altered by H3K4me3, we mapped changes in solvent accessibility of cysteine thiols by differential isotopic chemical footprinting. Binding of H3K4me3 to the RAG-2 PHD induces conformational changes in RAG-1 within a DNA-binding domain and in the ZnH2 domain, which acts as a scaffold for the catalytic center. Thus, engagement of H3K4me3 by the RAG-2 PHD is associated with dynamic conformational changes in RAG-1, consistent with allosteric control by active chromatin. PMID:28174273

  3. Recognition and Binding of Human Telomeric G-Quadruplex DNA by Unfolding Protein 1

    PubMed Central

    2015-01-01

    The specific recognition by proteins of G-quadruplex structures provides evidence of a functional role for in vivo G-quadruplex structures. As previously reported, the ribonucleoprotein, hnRNP Al, and it is proteolytic derivative, unwinding protein 1 (UP1), bind to and destabilize G-quadruplex structures formed by the human telomeric repeat d(TTAGGG)n. UP1 has been proposed to be involved in the recruitment of telomerase to telomeres for chain extension. In this study, a detailed thermodynamic characterization of the binding of UP1 to a human telomeric repeat sequence, the d[AGGG(TTAGGG)3] G-quadruplex, is presented and reveals key insights into the UP1-induced unfolding of the G-quadruplex structure. The UP1–G-quadruplex interactions are shown to be enthalpically driven, exhibiting large negative enthalpy changes for the formation of both the Na+ and K+ G-quadruplex–UP1 complexes (ΔH values of −43 and −19 kcal/mol, respectively). These data reveal three distinct enthalpic contributions from the interactions of UP1 with the Na+ form of G-quadruplex DNA. The initial interaction is characterized by a binding affinity of 8.5 × 108 M–1 (strand), 200 times stronger than the binding of UP1 to a single-stranded DNA with a comparable but non-quadruplex-forming sequence [4.1 × 106 M–1 (strand)]. Circular dichroism spectroscopy reveals the Na+ form of the G-quadruplex to be completely unfolded by UP1 at a binding ratio of 2:1 (UP1:G-quadruplex DNA). The data presented here demonstrate that the favorable energetics of the initial binding event are closely coupled with and drive the unfolding of the G-quadruplex structure. PMID:24831962

  4. A Single Mutation in the Glycophorin A Binding Site of Hepatitis A Virus Enhances Virus Clearance from the Blood and Results in a Lower Fitness Variant

    PubMed Central

    Costafreda, M. Isabel; Ribes, Enric; Franch, Àngels; Bosch, Albert

    2012-01-01

    Hepatitis A virus (HAV) has previously been reported to bind to human red blood cells through interaction with glycophorin A. Residue K221 of VP1 and the surrounding VP3 residues are involved in such an interaction. This capsid region is specifically recognized by the monoclonal antibody H7C27. A monoclonal antibody-resistant mutant with the mutation G1217D has been isolated. In the present study, the G1217D mutant was characterized physically and biologically in comparison with the parental HM175 43c strain. The G1217D mutant is more sensitive to acid pH and binds more efficiently to human and rat erythrocytes than the parental 43c strain. In a rat model, it is eliminated from serum more rapidly and consequently reaches the liver with a certain delay compared to the parental 43c strain. In competition experiments performed in vivo in the rat model, the G1217D mutant was efficiently outcompeted by the parental 43c strain. Only in the presence of antibodies reacting specifically with the parental 43c strain could the G1217D mutant outcompete the parental 43c strain in serum, although the latter still showed a remarkable ability to reach the liver. Altogether, these results indicate that the G1217D mutation induces a low fitness phenotype which could explain the lack of natural antigenic variants of the glycophorin A binding site. PMID:22593170

  5. Synthetic Ubiquinones Specifically Bind to Mitochondrial Voltage-Dependent Anion Channel 1 (VDAC1) in Saccharomyces cerevisiae Mitochondria.

    PubMed

    Murai, Masatoshi; Okuda, Ayaka; Yamamoto, Takenori; Shinohara, Yasuo; Miyoshi, Hideto

    2017-01-31

    The role of the voltage-dependent anion channel (VDAC) as a metabolic gate of the mitochondrial outer membrane has been firmly established; however, its involvement in the regulation of mitochondrial permeability transition (PT) remains extremely controversial. Although some low-molecular-weight chemicals have been proposed to modulate the regulatory role of VDAC in the induction of PT, direct binding between these chemicals and VDAC has not yet been demonstrated. In the present study, we investigated whether the ubiquinone molecule directly binds to VDAC in Saccharomyces cerevisiae mitochondria through a photoaffinity labeling technique using two photoreactive ubiquinones (PUQ-1 and PUQ-2). The results of the labeling experiments demonstrated that PUQ-1 and PUQ-2 specifically bind to VDAC1 and that the labeled position is located in the C-terminal region Phe221-Lys234, connecting the 15th and 16th β-strand sheets. Mutations introduced in this region (R224A, Y225A, D228A, and Y225A/D228A) hardly affected the binding affinity of PUQ-1. PUQ-1 and PUQ-2 both significantly suppressed the Ca 2+ -induced mitochondrial PT (monitored by mitochondrial swelling) at the one digit μM level. Thus, the results of the present study provided, for the first time to our knowledge, direct evidence indicating that the ubiquinone molecule specifically binds to VDAC1 through its quinone-head ring.

  6. Characterizing low affinity epibatidine binding to α4β2 nicotinic acetylcholine receptors with ligand depletion and nonspecific binding

    PubMed Central

    2011-01-01

    Background Along with high affinity binding of epibatidine (Kd1≈10 pM) to α4β2 nicotinic acetylcholine receptor (nAChR), low affinity binding of epibatidine (Kd2≈1-10 nM) to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4β2 nAChR. The binding behavior of epibatidine and α4β2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [3H]epibatidine and α4β2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites. Results Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4β2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [3H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4β2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4β2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [3H]epibatidine binding after adding a large concentration of cold competitor. Fourth, nonspecific binding of a heterologous competitor changed estimates of high and low inhibition constants but did not change the ratio of those estimates. Conclusions Investigating the low affinity site of α4β2 nAChR with equilibrium binding when ligand depletion and nonspecific binding are present likely needs special attention to experimental design and data interpretation beyond fitting total binding data. Manipulation of maximum ligand and receptor concentrations and intentionally increasing ligand depletion are potentially helpful approaches. PMID:22112852

  7. Painting of fourth and chromosome-wide regulation of the 4th chromosome in Drosophila melanogaster.

    PubMed

    Johansson, Anna-Mia; Stenberg, Per; Bernhardsson, Carolina; Larsson, Jan

    2007-05-02

    Drosophila melanogaster exhibits two expression-regulating systems that target whole, specific chromosomes: the dosage compensation system whereby the male-specific lethal complex doubles transcription of genes on the male X-chromosome and the chromosome 4-specific protein Painting of fourth, POF. POF is the first example of an autosome-specific protein and its presence raises the question of the universality of chromosome-specific regulation. Here we show that POF and heterochromatin protein 1 (HP1) are involved in the global regulation of the 4th chromosome. Contrary to previous conclusions, Pof is not essential for survival of diplo-4th karyotype flies. However, Pof is essential for survival of haplo-4th individuals and expression of chromosome 4 genes in diplo-4th individuals is decreased in the absence of Pof. Mapping of POF using chromatin immunoprecipitation suggested that it binds within genes. Furthermore, we show that POF binding is dependent on heterochromatin and that POF and HP1 bind interdependently to the 4th chromosome. We propose a balancing mechanism involving POF and HP1 that provides a feedback system for fine-tuning expression status of genes on the 4th chromosome.

  8. Painting of fourth and chromosome-wide regulation of the 4th chromosome in Drosophila melanogaster

    PubMed Central

    Johansson, Anna-Mia; Stenberg, Per; Bernhardsson, Carolina; Larsson, Jan

    2007-01-01

    Drosophila melanogaster exhibits two expression-regulating systems that target whole, specific chromosomes: the dosage compensation system whereby the male-specific lethal complex doubles transcription of genes on the male X-chromosome and the chromosome 4-specific protein Painting of fourth, POF. POF is the first example of an autosome-specific protein and its presence raises the question of the universality of chromosome-specific regulation. Here we show that POF and heterochromatin protein 1 (HP1) are involved in the global regulation of the 4th chromosome. Contrary to previous conclusions, Pof is not essential for survival of diplo-4th karyotype flies. However, Pof is essential for survival of haplo-4th individuals and expression of chromosome 4 genes in diplo-4th individuals is decreased in the absence of Pof. Mapping of POF using chromatin immunoprecipitation suggested that it binds within genes. Furthermore, we show that POF binding is dependent on heterochromatin and that POF and HP1 bind interdependently to the 4th chromosome. We propose a balancing mechanism involving POF and HP1 that provides a feedback system for fine-tuning expression status of genes on the 4th chromosome. PMID:17318176

  9. Nedd4 is a Specific E3 Ubiquitin Ligase for the NMDA Receptor Subunit GluN2D

    PubMed Central

    Gautam, Vivek; Trinidad, Jonathan C.; Rimerman, Ronald A.; Costa, Blaise M.; Burlingame, Alma L.; Monaghan, Daniel T.

    2013-01-01

    NMDA receptors are a family of glutamate-gated ion channels that regulate various CNS functions such as synaptic plasticity and learning. However hypo-or hyper-activation of NMDA receptors is critically involved in many neurological and psychiatric conditions such as pain, stroke, epilepsy, neurodegeneration, schizophrenia, and depression. Thus, it is important to identify mechanisms (such as by targeted ubiquitination) that regulate the levels of individual subtypes of NMDA receptors. In this study, we used a series of tagged, carboxy terminal constructs of GluN2D to identify associating proteins from rat brain. Of seven different GluN2D C-terminal fragments used as bait, only the construct containing amino acids 983-1097 associated with an E3 ligase, Nedd4. A direct interaction between GluN2D and Nedd4 was confirmed both in vivo and in vitro. This association is mediated by an interaction between GluN2D's C-terminal PPXY motif and the 2nd and 3rd WW domains of Nedd4. Of the four GluN2 subunits, Nedd4 directly interacted with GluN2D and also weakly with GluN2A. Nedd4 coexpression with GluN2D enhances GluN2D ubiquitination and reduces GluN1/GluN2D NMDA receptor responses. These results identify Nedd4 as a novel binding partner for GluN2D and suggest a mechanism for the regulation of NMDA receptors that contains GluN2D subunit through ubiquitination-dependent downregulation. PMID:23639431

  10. Determinants of the Differential Antizyme-Binding Affinity of Ornithine Decarboxylase

    PubMed Central

    Liu, Yen-Chin; Hsu, Den-Hua; Huang, Chi-Liang; Liu, Yi-Liang; Liu, Guang-Yaw; Hung, Hui-Chih

    2011-01-01

    Ornithine decarboxylase (ODC) is a ubiquitous enzyme that is conserved in all species from bacteria to humans. Mammalian ODC is degraded by the proteasome in a ubiquitin-independent manner by direct binding to the antizyme (AZ). In contrast, Trypanosoma brucei ODC has a low binding affinity toward AZ. In this study, we identified key amino acid residues that govern the differential AZ binding affinity of human and Trypanosoma brucei ODC. Multiple sequence alignments of the ODC putative AZ-binding site highlights several key amino acid residues that are different between the human and Trypanosoma brucei ODC protein sequences, including residue 119, 124,125, 129, 136, 137 and 140 (the numbers is for human ODC). We generated a septuple human ODC mutant protein where these seven bases were mutated to match the Trypanosoma brucei ODC protein sequence. The septuple mutant protein was much less sensitive to AZ inhibition compared to the WT protein, suggesting that these amino acid residues play a role in human ODC-AZ binding. Additional experiments with sextuple mutants suggest that residue 137 plays a direct role in AZ binding, and residues 119 and 140 play secondary roles in AZ binding. The dissociation constants were also calculated to quantify the affinity of the ODC-AZ binding interaction. The K d value for the wild type ODC protein-AZ heterodimer ([ODC_WT]-AZ) is approximately 0.22 μM, while the K d value for the septuple mutant-AZ heterodimer ([ODC_7M]-AZ) is approximately 12.4 μM. The greater than 50-fold increase in [ODC_7M]-AZ binding affinity shows that the ODC-7M enzyme has a much lower binding affinity toward AZ. For the mutant proteins ODC_7M(-Q119H) and ODC_7M(-V137D), the K d was 1.4 and 1.2 μM, respectively. These affinities are 6-fold higher than the WT_ODC K d, which suggests that residues 119 and 137 play a role in AZ binding. PMID:22073206

  11. Advances in alfalfa mosaic virus-mediated expression of anthrax antigen in planta

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brodzik, R.; Bandurska, K.; Deka, D.

    2005-12-16

    Plant viruses show great potential for production of pharmaceuticals in plants. Such viruses can harbor a small antigenic peptide(s) as a part of their coat proteins (CP) and elicit an antigen-specific immune response. Here, we report the high yield and consistency in production of recombinant alfalfa mosaic virus (AlMV) particles for specific presentation of the small loop 15 amino acid epitope from domain-4 of the Bacillus anthracis protective antigen (PA-D4s). The epitope was inserted immediately after the first 25 N-terminal amino acids of AlMV CP to retain genome activation and binding of CP to viral RNAs. Recombinant AlMV particles weremore » efficiently produced in tobacco, easily purified for immunological analysis, and exhibited extended stability and systemic proliferation in planta. Intraperitional injections of mice with recombinant plant virus particles harboring the PA-D4s epitope elicited a distinct immune response. Western blotting and ELISA analysis showed that sera from immunized mice recognized both native PA antigen and the AlMV CP.« less

  12. Direct photoaffinity labeling of an allosteric site on subunit protein M1 of mouse ribonucleotide reductase by dTTP.

    PubMed Central

    Eriksson, S; Caras, I W; Martin, D W

    1982-01-01

    The protein M1 subunit of ribonucleotide reductase contains at least two allosteric nucleotide binding sites that control the capacity of the enzyme to reduce ribonucleotides to the deoxyribonucleotides required for DNA synthesis. Direct photoaffinity labeling of partially purified protein M1 from mouse T-lymphoma (S49) cells was observed after UV irradiation in the presence of dTTP at 0 degrees C. The relative molar incorporation of nucleotide per subunit was 4-8%. Competition experiments showed that the dTTP was bound to an allosteric domain genetically and kinetically defined as the substrate specificity site of the enzyme. An altered protein M1 isolated from a thymidine-resistant mutant cell line showed significantly decreased photoincorporation of dTTP, consistent with the fact that its CDP reductase activity is resistant to feedback inhibition by dTTP. Specific photolabeling of several other proteins with pyrimidine and purine nucleotides was also found, indicating the general usefulness of direct photoaffinity labeling in the study of enzymes involved in nucleotide and nucleic acid metabolism. Images PMID:7033963

  13. Understanding the recognition mechanisms of Zα domain of human editing enzyme ADAR1 (hZα(ADAR1)) and various Z-DNAs from molecular dynamics simulation.

    PubMed

    Wang, Qianqian; Li, Lanlan; Wang, Xiaoting; Liu, Huanxiang; Yao, Xiaojun

    2014-11-01

    The Z-DNA-binding domain of human double-stranded RNA adenosine deaminase I (hZαADAR1) can specifically recognize the left-handed Z-DNA which preferentially occurs at alternating purine-pyrimidine repeats, especially the CG-repeats. The interactions of hZαADAR1 and Z-DNAs in different sequence contexts can affect many important biological functions including gene regulation and chromatin remodeling. Therefore it is of great necessity to fully understand their recognition mechanisms. However, most existing studies are aimed at the standard CG-repeat Z-DNA rather than the non-CG-repeats, and whether the molecular basis of hZαADAR1 binding to various Z-DNAs are identical or not is still unclear on the atomic level. Here, based on the recently determined crystal structures of three representative non-CG-repeat Z-DNAs (d(CACGTG)2, d(CGTACG)2 and d(CGGCCG)2) in complex with hZαADAR1, 40 ns molecular dynamics simulation together with binding free energy calculation were performed for each system. For comparison, the standard CG-repeat Z-DNA (d(CGCGCG)2) complexed with hZαADAR1 was also simulated. The consistent results demonstrate that nonpolar interaction is the driving force during the protein-DNA binding process, and that polar interaction mainly from helix α3 also provides important contributions. Five common hot-spot residues were identified, namely Lys169, Lys170, Asn173, Arg174 and Tyr177. Hydrogen bond analysis coupled with surface charge distribution further reveal the interfacial information between hZαADAR1 and Z-DNA in detail. All of the analysis illustrate that four complexes share the common key features and the similar binding modes irrespective of Z-DNA sequences, suggesting that Z-DNA recognition by hZαADAR1 is conformation-specific rather than sequence-specific. Additionally, by analyzing the conformational changes of hZαADAR1, we found that the binding of Z-DNA could effectively stabilize hZαADAR1 protein. Our study can provide some valuable information for better understanding the binding mechanism between hZαADAR1 or even other Z-DNA-binding protein and Z-DNA.

  14. Peptide-nucleic acids (PNAs) with pyrimido[4,5-d]pyrimidine-2,4,5,7-(1H,3H,6H,8H)-tetraone (PPT) as a universal base: their synthesis and binding affinity for oligodeoxyribonucleotides.

    PubMed

    Hirano, Taisuke; Kuroda, Kenji; Kataoka, Masanori; Hayakawa, Yoshihiro

    2009-07-21

    Peptide-nucleic acids (PNAs) including pyrimido[4,5-d]pyrimidine-2,4,5,7-(1H,3H,6H,8H)-tetraone (PPT) as a nucleobase were synthesized, and their binding affinity for the complementary oligodeoxyribonucleotides was investigated. We found that PNAs with one or two PPT(s) and natural nucleobases (i.e., adenine, cytosine, guanine, or thymine) have excellent binding affinity for oligodeoxyribonucleotides with complementary bases at the positions facing the natural nucleobases, and with adenine, cytosine, guanine, and thymine at the positions opposite PPT in PNAs. The binding affinity of the PPT-containing PNA is higher than or comparable to that of a PNA consisting of all complementary natural nucleobases, viz. a PNA with a suitable natural nucleobase in place of PPT in the PPT-containing PNA. Consequently, it was concluded that PPT serves as a useful universal base that can recognize all natural nucleobases.

  15. Functional defect of variants in the adenosine triphosphate-binding sites of ABCB4 and their rescue by the cystic fibrosis transmembrane conductance regulator potentiator, ivacaftor (VX-770).

    PubMed

    Delaunay, Jean-Louis; Bruneau, Alix; Hoffmann, Brice; Durand-Schneider, Anne-Marie; Barbu, Véronique; Jacquemin, Emmanuel; Maurice, Michèle; Housset, Chantal; Callebaut, Isabelle; Aït-Slimane, Tounsia

    2017-02-01

    ABCB4 (MDR3) is an adenosine triphosphate (ATP)-binding cassette (ABC) transporter expressed at the canalicular membrane of hepatocytes, where it mediates phosphatidylcholine (PC) secretion. Variations in the ABCB4 gene are responsible for several biliary diseases, including progressive familial intrahepatic cholestasis type 3 (PFIC3), a rare disease that can be lethal in the absence of liver transplantation. In this study, we investigated the effect and potential rescue of ABCB4 missense variations that reside in the highly conserved motifs of ABC transporters, involved in ATP binding. Five disease-causing variations in these motifs have been identified in ABCB4 (G535D, G536R, S1076C, S1176L, and G1178S), three of which are homologous to the gating mutations of cystic fibrosis transmembrane conductance regulator (CFTR or ABCC7; i.e., G551D, S1251N, and G1349D), that were previously shown to be function defective and corrected by ivacaftor (VX-770; Kalydeco), a clinically approved CFTR potentiator. Three-dimensional structural modeling predicted that all five ABCB4 variants would disrupt critical interactions in the binding of ATP and thereby impair ATP-induced nucleotide-binding domain dimerization and ABCB4 function. This prediction was confirmed by expression in cell models, which showed that the ABCB4 mutants were normally processed and targeted to the plasma membrane, whereas their PC secretion activity was dramatically decreased. As also hypothesized on the basis of molecular modeling, PC secretion activity of the mutants was rescued by the CFTR potentiator, ivacaftor (VX-770). Disease-causing variations in the ATP-binding sites of ABCB4 cause defects in PC secretion, which can be rescued by ivacaftor. These results provide the first experimental evidence that ivacaftor is a potential therapy for selected patients who harbor mutations in the ATP-binding sites of ABCB4. (Hepatology 2017;65:560-570). © 2016 by the American Association for the Study of Liver Diseases.

  16. E2F1 induces p19INK4d, a protein involved in the DNA damage response, following UV irradiation.

    PubMed

    Carcagno, Abel L; Giono, Luciana E; Marazita, Mariela C; Castillo, Daniela S; Pregi, Nicolás; Cánepa, Eduardo T

    2012-07-01

    Central to the maintenance of genomic integrity is the cellular DNA damage response. Depending on the type of genotoxic stress and through the activation of multiple signaling cascades, it can lead to cell cycle arrest, DNA repair, senescence, and apoptosis. p19INK4d, a member of the INK4 family of CDK inhibitors, plays a dual role in the DNA damage response, inhibiting cell proliferation and promoting DNA repair. Consistently, p19INK4d has been reported to become upregulated in response to UV irradiation and a great variety of genotoxic agents. Here, this induction is shown to result from a transcriptional stimulatory mechanism that can occur at every phase of the cell cycle except during mitosis. Moreover, evidence is presented that demonstrates that E2F1 is involved in the induction of p19INK4d following UV treatment, as it is prevented by E2F1 protein ablation and DNA-binding inhibition. Specific inhibition of this regulation using triplex-forming oligonucleotides that target the E2F response elements present in the p19INK4d promoter also block p19INK4d upregulation and sensitize cells to DNA damage. These results constitute the first description of a mechanism for the induction of p19INK4d in response to UV irradiation and demonstrate the physiological relevance of this regulation following DNA damage.

  17. Specific phospholipid binding to Na,K-ATPase at two distinct sites.

    PubMed

    Habeck, Michael; Kapri-Pardes, Einat; Sharon, Michal; Karlish, Steven J D

    2017-03-14

    Membrane protein function can be affected by the physical state of the lipid bilayer and specific lipid-protein interactions. For Na,K-ATPase, bilayer properties can modulate pump activity, and, as observed in crystal structures, several lipids are bound within the transmembrane domain. Furthermore, Na,K-ATPase activity depends on phosphatidylserine (PS) and cholesterol, which stabilize the protein, and polyunsaturated phosphatidylcholine (PC) or phosphatidylethanolamine (PE), known to stimulate Na,K-ATPase activity. Based on lipid structural specificity and kinetic mechanisms, specific interactions of both PS and PC/PE have been inferred. Nevertheless, specific binding sites have not been identified definitively. We address this question with native mass spectrometry (MS) and site-directed mutagenesis. Native MS shows directly that one molecule each of 18:0/18:1 PS and 18:0/20:4 PC can bind specifically to purified human Na,K-ATPase (α 1 β 1 ). By replacing lysine residues at proposed phospholipid-binding sites with glutamines, the two sites have been identified. Mutations in the cytoplasmic αL8-9 loop destabilize the protein but do not affect Na,K-ATPase activity, whereas mutations in transmembrane helices (TM), αTM2 and αTM4, abolish the stimulation of activity by 18:0/20:4 PC but do not affect stability. When these data are linked to crystal structures, the underlying mechanism of PS and PC/PE effects emerges. PS (and cholesterol) bind between αTM 8, 9, 10, near the FXYD subunit, and maintain topological integrity of the labile C terminus of the α subunit (site A). PC/PE binds between αTM2, 4, 6, and 9 and accelerates the rate-limiting E 1 P-E 2 P conformational transition (site B). We discuss the potential physiological implications.

  18. Organometallic DNA-B12 Conjugates as Potential Oligonucleotide Vectors: Synthesis and Structural and Binding Studies with Human Cobalamin-Transport Proteins.

    PubMed

    Mutti, Elena; Hunger, Miriam; Fedosov, Sergey; Nexo, Ebba; Kräutler, Bernhard

    2017-11-16

    The synthesis and structural characterization of Co-(dN) 25 -Cbl (Cbl: cobalamin; dN: deoxynucleotide) and Co-(dN) 39 -Cbl, which are organometallic DNA-B 12 conjugates with single DNA strands consisting of 25 and 39 deoxynucleotides, respectively, and binding studies of these two DNA-Cbl conjugates to three homologous human Cbl transporting proteins, transcobalamin (TC), intrinsic factor (IF), and haptocorrin (HC), are reported. This investigation tests the suitability of such DNA-Cbls for the task of eventual in vivo oligonucleotide delivery. The binding of DNA-Cbl to TC, IF, and HC was investigated in competition with either a fluorescent Cbl derivative and Co-(dN) 25 -Cbl, or radiolabeled vitamin B 12 ( 57 Co-CNCbl) and Co-(dN) 25 -Cbl or Co-(dN) 39 -Cbl. Binding of the new DNA-Cbl conjugates was fast and tight with TC, but poorer with HC and IF, which extends a similar original finding with the simpler DNA-Cbl, Co-(dN) 18 -Cbl. The contrasting affinities of TC versus IF and HC for the DNA-Cbl conjugates are rationalized herein by a stepwise mechanism of Cbl binding. Critical contributions to overall affinity result from gradual conformational adaptations of the Cbl-binding proteins to the DNA-Cbl, which is first bound to the respective β domains. This transition is fast with TC, but slow with IF and HC, with which weaker binding results. The invariably tight interaction of the DNA-Cbl conjugates with TC makes the Cbl moiety a potential natural vector for the specific delivery of oligonucleotide loads from the blood into cells. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions.

    PubMed

    Cánepa, Eduardo T; Scassa, María E; Ceruti, Julieta M; Marazita, Mariela C; Carcagno, Abel L; Sirkin, Pablo F; Ogara, María F

    2007-07-01

    The cyclin D-Cdk4-6/INK4/Rb/E2F pathway plays a key role in controlling cell growth by integrating multiple mitogenic and antimitogenic stimuli. The members of INK4 family, comprising p16(INK4a), p15(INK4b), p18(INK4c), and p19(INK4d), block the progression of the cell cycle by binding to either Cdk4 or Cdk6 and inhibiting the action of cyclin D. These INK4 proteins share a similar structure dominated by several ankyrin repeats. Although they appear to be structurally redundant and equally potent as inhibitors, the INK4 family members are differentially expressed during mouse development. The striking diversity in the pattern of expression of INK4 genes suggested that this family of cell cycle inhibitors might have cell lineage-specific or tissue-specific functions. The INK4 proteins are commonly lost or inactivated by mutations in diverse types of cancer, and they represent established or candidate tumor suppressors. Apart from their capacity to arrest cells in the G1-phase of the cell cycle they have been shown to participate in an increasing number of cellular processes. Given their emerging roles in fundamental physiological as well as pathological processes, it is interesting to explore the diverse roles for the individual INK4 family members in different functions other than cell cycle regulation. Extensive studies, over the past few years, uncover the involvement of INK4 proteins in senescence, apoptosis, DNA repair, and multistep oncogenesis. We will focus the discussion here on these unexpected issues.

  20. Allergic reaction to latex: a risk factor for unsuspected anaphylaxis.

    PubMed

    Warpinski, J R; Folgert, J; Cohen, M; Bush, R K

    1991-01-01

    Allergic reactions to latex, including anaphylaxis may be a problem in certain individuals exposed to latex. Four atopic patients with symptoms of rhinitis, asthma, anaphylaxis, and/or urticaria upon contact with latex products were studied. The patients showed IgE binding to latex RAST disks ranging from 1.0 to 27.3 times the negative control. Latex products (gloves, balloons, and condoms) directly bound IgE from all four patients. Eluted proteins from the latex products inhibited IgE binding to commercial latex RAST disks. SDS-PAGE demonstrated multiple latex protein bands by Coomassie Blue staining between 14 and 66 kD. Immunoblotting showed specific IgE binding to latex proteins at 30 and 66 kD. These results indicate that latex-allergic patients have IgE directed against specific latex proteins. Allergy to latex can pose a substantial health risk to susceptible individuals.

  1. Structural insights into the functional role of the Hcn sub-domain of the receptor-binding domain of the botulinum neurotoxin mosaic serotype C/D.

    PubMed

    Zhang, Yanfeng; Gardberg, Anna S; Edwards, Thomas E; Sankaran, Banumathi; Robinson, Howard; Varnum, Susan M; Buchko, Garry W

    2013-07-01

    Botulinum neurotoxin (BoNT), the causative agent of the deadly neuroparalytic disease botulism, is the most poisonous protein known for humans. Produced by different strains of the anaerobic bacterium Clostridium botulinum, BoNT effects cellular intoxication via a multistep mechanism executed by the three modules of the activated protein. Endocytosis, the first step of cellular intoxication, is triggered by the ~50 kDa, heavy-chain receptor-binding domain (HCR) that is specific for a ganglioside and a protein receptor on neuronal cell surfaces. This dual receptor recognition mechanism between BoNT and the host cell's membrane is well documented and occurs via specific intermolecular interactions with the C-terminal sub-domain, Hcc, of BoNT-HCR. The N-terminal sub-domain of BoNT-HCR, Hcn, comprises ~50% of BoNT-HCR and adopts a β-sheet jelly roll fold. While suspected in assisting cell surface recognition, no unambiguous function for the Hcn sub-domain in BoNT has been identified. To obtain insights into the potential function of the Hcn sub-domain in BoNT, the first crystal structure of a BoNT with an organic ligand bound to the Hcn sub-domain has been obtained. Here, we describe the crystal structure of BoNT/CD-HCR determined at 1.70 Å resolution with a tetraethylene glycol (PG4) moiety bound in a hydrophobic cleft between β-strands in the β-sheet jelly roll fold of the Hcn sub-domain. The PG4 moiety is completely engulfed in the cleft, making numerous hydrophilic (Y932, S959, W966, and D1042) and hydrophobic (S935, W977, L979, N1013, and I1066) contacts with the protein's side chain and backbone that may mimic in vivo interactions with the phospholipid membranes on neuronal cell surfaces. A sulfate ion was also observed bound to residues T1176, D1177, K1196, and R1243 in the Hcc sub-domain of BoNT/CD-HCR. In the crystal structure of a similar protein, BoNT/D-HCR, a sialic acid molecule was observed bound to the equivalent residues suggesting that residues T1176, D1177, K1196, and R1243 in BoNT/CD may play a role in ganglioside binding. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. The 87-kD A gamma-globin enhancer-binding protein is a product of the HOXB2(HOX2H) locus.

    PubMed

    Sengupta, P K; Lavelle, D E; DeSimone, J

    1994-03-01

    Developmental regulation of globin gene expression may be controlled by developmental stage-specific nuclear proteins that influence interactions between the locus control region and local regulatory sequences near individual globin genes. We previously isolated an 87-kD nuclear protein from K562 cells that bound to DNA sequences in the beta-globin locus control region, gamma-globin promoter, and A gamma-globin enhancer. The presence of this protein in fetal globin-expressing cells and its absence in adult globin-expressing cells suggested that it may be a developmental stage-specific factor. A lambda gt11 K562 cDNA clone encoding a portion of the HOXB2 (formerly HOX2H) homeobox gene was isolated on the basis of the ability of its beta-galactosidase fusion protein to bind to the same DNA sequences as the 87-kD K562 protein. Because no other relationship had been established between the 87-kD K562 protein and the HOXB2 protein other than their ability to bind ot the same DNA sequences, we have investigated whether the two proteins are related antigenically. Our data show that antisera produced against the HOXB2-beta-gal fusion protein and a synthetic HOXB2 decapeptide react specifically with an 87-kD protein from K562 nuclear extract, showing that the 87-kD K562 nuclear protein is a product of the HOXB2 locus, and is the first demonstration of cellular HOXB2 protein.

  3. Molecular modeling of class I and II alleles of the major histocompatibility complex in Salmo salar.

    PubMed

    Cárdenas, Constanza; Bidon-Chanal, Axel; Conejeros, Pablo; Arenas, Gloria; Marshall, Sergio; Luque, F Javier

    2010-12-01

    Knowledge of the 3D structure of the binding groove of major histocompatibility (MHC) molecules, which play a central role in the immune response, is crucial to shed light into the details of peptide recognition and polymorphism. This work reports molecular modeling studies aimed at providing 3D models for two class I and two class II MHC alleles from Salmo salar (Sasa), as the lack of experimental structures of fish MHC molecules represents a serious limitation to understand the specific preferences for peptide binding. The reliability of the structural models built up using bioinformatic tools was explored by means of molecular dynamics simulations of their complexes with representative peptides, and the energetics of the MHC-peptide interaction was determined by combining molecular mechanics interaction energies and implicit continuum solvation calculations. The structural models revealed the occurrence of notable differences in the nature of residues at specific positions in the binding groove not only between human and Sasa MHC proteins, but also between different Sasa alleles. Those differences lead to distinct trends in the structural features that mediate the binding of peptides to both class I and II MHC molecules, which are qualitatively reflected in the relative binding affinities. Overall, the structural models presented here are a valuable starting point to explore the interactions between MHC receptors and pathogen-specific interactions and to design vaccines against viral pathogens.

  4. Targeting with bovine CD154 enhances humoral immune responses induced by a DNA vaccine in sheep.

    PubMed

    Manoj, Sharmila; Griebel, Philip J; Babiuk, Lorne A; van Drunen Littel-van den Hurk, Sylvia

    2003-01-15

    CD40-CD154 interactions play an important role in regulating humoral and cell-mediated immune responses. Recently, these interactions have been exploited for the development of therapeutic and preventive treatments. The objective of this study was to test the ability of bovine CD154 to target a plasmid-encoded Ag to CD40-expressing APCs. To achieve this, a plasmid coding for bovine CD154 fused to a truncated secreted form of bovine herpesvirus 1 glycoprotein D (tgD), pSLIAtgD-CD154, was constructed. The chimeric tgD-CD154 was expressed in vitro in COS-7 cells and reacted with both glycoprotein D- and CD154-specific Abs. Both tgD and tgD-CD154 were capable of binding to epithelial cells, whereas only tgD-CD154 bound to B cells. Furthermore, dual-labeling of ovine PBMCs revealed that tgD-CD154 was bound by primarily B cells. The functional integrity of the tgD-CD154 chimera was confirmed by the induction of both IL-4-dependent B cell proliferation and tgD-specific lymphoproliferative responses in vitro. Finally, sheep immunized with pSLIAtgD-CD154 developed a more rapid primary tgD-specific Ab response and a significantly stronger tgD-specific secondary response when compared with animals immunized with pSLIAtgD and control animals. Similarly, virus-neutralizing Ab titers were significantly higher after secondary immunization with pSLIAtgD-CD154. These results demonstrate that using CD154 to target plasmid-expressed Ag can significantly enhance immune responses induced by a DNA vaccine.

  5. Unique carbohydrate binding platforms employed by the glucan phosphatases

    PubMed Central

    MEEKINS, David A.; GENTRY, Matthew S.

    2016-01-01

    Glucan phosphatases are a family of enzymes that are functionally conserved at the enzymatic level in animals and plants. These enzymes bind and dephosphorylate glycogen in animals and starch in plants. While the enzymatic function is conserved, the glucan phosphatases employ distinct mechanisms to bind and dephosphorylate glycogen or starch. The founding member of the family is a bimodular human protein called laforin that is comprised of a carbohydrate binding module 20 (CBM20) followed by a dual specificity phosphatase domain. Plants contain two glucan phosphatases: Starch EXcess4 (SEX4) and Like Sex Four2 (LSF2). SEX4 contains a chloroplast targeting peptide, dual specificity phosphatase (DSP) domain, a CBM45, and a carboxy-terminal motif. LSF2 is comprised of simply a chloroplast targeting peptide, DSP domain, and carboxy-terminal motif. SEX4 employs an integrated DSP-CBM glucan-binding platform to engage and dephosphorylate starch. LSF2 lacks a CBM and instead utilizes two surface binding sites to bind and dephosphorylate starch. Laforin is a dimeric protein in solution and it utilizes a tetramodular architecture and cooperativity to bind and dephosphorylate glycogen. This chapter describes the biological role of glucan phosphatases in glycogen and starch metabolism and compares and contrasts their ability to bind and dephosphorylate glucans. PMID:27147465

  6. Genome-wide inference of transcription factor-DNA binding specificity in cell regeneration using a combination strategy.

    PubMed

    Wang, Xiaofeng; Zhang, Aiqun; Ren, Weizheng; Chen, Caiyu; Dong, Jiahong

    2012-11-01

    The cell growth, development, and regeneration of tissue and organ are associated with a large number of gene regulation events, which are mediated in part by transcription factors (TFs) binding to cis-regulatory elements involved in the genome. Predicting the binding affinity and inferring the binding specificity of TF-DNA interactions at the genomic level would be fundamentally helpful for our understanding of the molecular mechanism and biological implication underlying sequence-specific TF-DNA recognition. In this study, we report the development of a combination method to characterize the interaction behavior of a 11-mer oligonucleotide segment and its mutations with the Gcn4p protein, a homodimeric, basic leucine zipper TF, and to predict the binding affinity and specificity of potential Gcn4p binders in the genome-wide scale. In this procedure, a position-mutated energy matrix is created based on molecular modeling analysis of native and mutated Gcn4p-DNA complex structures to describe the position-independent interaction energy profile of Gcn4p with different nucleotide types at each position of the oligonucleotide, and the energy terms extracted from the matrix and their interactives are then correlated with experimentally measured affinities of 19268 distinct oligonucleotides using statistical modeling methodology. Subsequently, the best one of built regression models is successfully applied to screen those of potential high-affinity Gcn4p binders from the complete genome. The findings arising from this study are briefly listed below: (i) The 11 positions of oligonucleotides are highly interactive and non-additive in contribution to Gcn4p-DNA binding affinity; (ii) Indirect conformational effects upon nucleotide mutations as well as associated subtle changes in interfacial atomic contacts, but not the direct nonbonded interactions, are primarily responsible for the sequence-specific recognition; (iii) The intrinsic synergistic effects among the sequence positions of oligonucleotides determine Gcn4p-DNA binding affinity and specificity; (iv) Linear regression models in conjunction with variable selection seem to perform fairly well in capturing the internal dependences hidden in the Gcn4p-DNA system, albeit ignoring nonlinear factors may lead the models to systematically underestimate and overestimate high- and low-affinity samples, respectively. © 2012 John Wiley & Sons A/S.

  7. [18F]CFT [(18F)WIN 35,428], a radioligand to study the dopamine transporter with PET: characterization in human subjects.

    PubMed

    Laakso, A; Bergman, J; Haaparanta, M; Vilkman, H; Solin, O; Hietala, J

    1998-03-01

    We have characterized the usage of [18F]CFT (also known as [18F]WIN 35,428) as a radioligand for in vivo studies of human dopamine transporter by PET. CFT was labeled with 18F to a high specific activity, and dynamic PET scans were conducted in healthy volunteers at various time points up to 5 h from [18F]CFT injection. The regional distribution of [18F]CFT uptake correlated well with the known distribution of dopaminergic nerve terminals in the human brain and also with that of other dopamine transporter radioligands. Striatal binding peaked at 225 min after injection and declined thereafter, demonstrating the reversible nature of the binding to the dopamine transporter. Therefore, due to the relatively long half-life of 18F (109.8 min), PET scans with [18F]CFT could easily be conducted during the binding equilibrium, allowing estimation of Bmax/Kd values (i.e., binding potential). Binding potentials for putamen and caudate measured at equilibrium were 4.79+/-0.11 and 4.50+/-0.23, respectively. We were able to also visualize midbrain dopaminergic neurons (substantia nigra) with [18F]CFT in some subjects. In conclusion, the labeling of CFT with 18F allows PET scans to be conducted at binding equilibrium, and therefore a high signal-to-noise ratio and reliable quantification of binding potential can be achieved. With a high resolution 3D PET scanner, the quantification of extrastriatal dopamine transporters should become possible.

  8. Dual inhibition of human type 4 phosphodiesterase isostates by (R, R)-(+/-)-methyl 3-acetyl-4-[3-(cyclopentyloxy)-4-methoxyphenyl]-3- methyl-1-pyrrolidinecarboxylate.

    PubMed

    Tian, G; Rocque, W J; Wiseman, J S; Thompson, I Z; Holmes, W D; Domanico, P L; Stafford, J A; Feldman, P L; Luther, M A

    1998-05-12

    Purified recombinant human type 4 phosphodiesterase B2B (HSPDE4B2B) exists in both a low- and a high-affinity state that bind (R)-rolipram with Kd's of ca. 500 and 1 nM, respectively [Rocque, W. J., Tian, G., Wiseman, J. S., Holmes, W. D., Thompson, I. Z., Willard, D. H., Patel, I. R., Wisely, G. B., Clay, W. C., Kadwell, S. H., Hoffman, C. R., and Luther, M. A. (1997) Biochemistry 36, 14250-14261]. Since the tissue distribution of the two isostates may be significantly different, development of inhibitors that effectively inhibit both forms may be advantageous pharmacologically. In this study, enzyme inhibition and binding of HSPDE4B2B by (R, R)-(+/-)-methyl 3-acetyl-4-[3-(cyclopentyloxy)-4-methoxyphenyl]-3-methyl-1-pyrrolidin ecarboxylate (1), a novel inhibitor of phosphodiesterase 4 (PDE 4), were investigated. Binding experiments demonstrated high-affinity binding of 1 to HSPDE4B2B with a stoichiometry of 1:1. Inhibition of PDE activity showed only a single transition with an observed Ki similar to the apparent Kd determined by the binding experiments. Deletional mutants of HSPDE4B2B, which have been shown to bind (R)-rolipram with low affinity, were shown to interact with 1 with high affinity, indistinguishable from the results obtained with the full-length enzyme. Bound 1 was completely displaced by (R)-rolipram, and the displacement showed a biphasic transition that resembles the biphasic inhibition of HSPDE4B2B by (R)-rolipram. Theoretical analysis of the two transitions exemplified in the interaction of (R)-rolipram with HSPDE4B2B indicated that the two isostates were nonexchangeable. Phosphorylation at serines 487 and 489 on HSPDE4B2B had no effect on the stoichiometry of binding, the affinity for binding, or the inhibition of the enzyme by 1. These data further illustrate the presence of two isostates in PDE 4 as shown previously for (R)-rolipram binding and inhibition. In contrast to (R)-rolipram, where only one of the two isostates of PDE 4 binds with high affinity, 1 is a potent, dual inhibitor of both of the isostates of PDE 4. Kinetic and thermodynamic models describing the interactions between the nonexchangeable isostates of PDE 4 and its ligands are discussed.

  9. Development of an assay for a biomarker of pregnancy and early fetal loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canfield, R.E.; O'Connor, J.F.; Birken, S.

    1987-10-01

    Human chorionic gonadotropin (hCG) is a glycoprotein hormone, secreted by the syncytiotrophoblast cells of the fertilized ovum, that enters the maternal circulation at the time of endometrial implantation. It is composed of two nonidentical subunits; ..cap alpha.. and ..beta.., with molecular weights of 14 kD and 23 kD, respectively. Human chorionic gonadotropin binds to the same receptor as hLH and displays the same biological response, namely, to stimulate the declining function of the corpus luteum to produce progestins and estrogen late in the menstrual cycle. The differences in the structures of hCG and hLH have been exploited to develop antibodiesmore » that can measure hCG specifically in the presence of hLH. Two-site antibody binding assays have been developed, based on a surface immunological concept of hCG epitopes, that involve four distinct regions to which antibodies against hCG can bind simultaneously. Antibody cooperative effects, in conjunction with kinetic advantages derived from the concentration factors by use of the sandwich assay technique (immunoradiometric assay, IRMA), have enabled development of extremely sensitive and specific measurement protocols for urinary hCG. The assay described herein permits the detection of pregnancy on an average 25.4 days after the first day of the preceding menses, as opposed to 29.5 days for conventional radioimmunoassay techniques. In addition, the greater sensitivity and specificity of this assay method has permitted the detection of episodes of fetal loss not detected by radioimmunoassay of urine specimens. A large scale epidemiological study is in progress using this assay technique as a way to identify pregnancies that are lost before becoming clinically apparent.« less

  10. Dimeric isoxazolyl-1,4-dihydropyridines have enhanced binding at the multi-drug resistance transporter.

    PubMed

    Steiger, Scott A; Li, Chun; Backos, Donald S; Reigan, Philip; Natale, N R

    2017-06-15

    A series of dimeric isoxazolyl-1,4-dihydropyridines (IDHPs) were prepared by click chemistry and examined for their ability to bind the multi-drug resistance transporter (MDR-1), a member of the ATP-binding cassette superfamily (ABC). Eight compounds in the present study exhibited single digit micromolar binding to this efflux transporter. One monomeric IDHP m-Br-1c, possessed submicromolar binding of 510nM at MDR-1. Three of the dimeric IDHPs possessed <1.5µM activity, and 4b and 4c were observed to have superior binding selectivity compared to their corresponding monomers verses the voltage gated calcium channel (VGCC). The dimer with the best combination of activity and selectivity for MDR-1 was analog 4c containing an m-Br phenyl moiety in the 3-position of the isoxazole, and a tether with five ethyleneoxy units, referred to herein as Isoxaquidar. Two important controls, mono-triazole 5 and pyridine 6, also were examined, indicating that the triazole - incorporated as part of the click assembly as a spacer - contributes to MDR-1 binding. Compounds were also assayed at the allosteric site of the mGluR5 receptor, as a GPCR 7TM control, indicating that the p-Br IDHPs 4d, 4e and 4f with tethers of from n=2 to 5 ethylenedioxy units, had sub-micromolar affinities with 4d being the most efficacious at 193nM at mGluR5. The results are interpreted using a docking study using a human ABC as our current working hypothesis, and suggest that the distinct SARs emerging for these three divergent classes of biomolecular targets may be tunable, and amenable to the development of further selectivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Linear scaffolds for multivalent targeting of melanocortin receptors.

    PubMed

    Dehigaspitiya, Dilani Chathurika; Anglin, Bobbi L; Smith, Kara R; Weber, Craig S; Lynch, Ronald M; Mash, Eugene A

    2015-12-21

    Molecules bearing one, two, three, or four copies of the tetrapeptide His-dPhe-Arg-Trp were attached to scaffolds based on ethylene glycol, glycerol, and d-mannitol by means of the copper-assisted azide-alkyne cyclization. The abilities of these compounds to block binding of a probe at the melanocortin 4 receptor were evaluated using a competitive binding assay. All of the multivalent molecules studied exhibited 30- to 40-fold higher apparent affinites when compared to a monovalent control. These results are consistent with divalent binding to receptor dimers. No evidence for tri- or tetravalent binding was obtained. Differences in the interligand spacing required for divalent binding, as opposed to tri- or tetravalent binding, may be responsible for these results.

  12. Synthesis and anion binding studies of tris(3-aminopropyl)amine-based tripodal urea and thiourea receptors: Proton transfer-induced selectivity for hydrogen sulfate over sulfate

    PubMed Central

    Khansari, Maryam Emami; Johnson, Corey R.; Basaran, Ismet; Nafis, Aemal; Wang, Jing

    2015-01-01

    Tris(3-aminopropyl)amine-based tripodal urea and thiourea receptors, tris([(4-cyanophenyl)amino]propyl)urea (L1) and tris([(4-cyanophenyl)amino]propyl)thiourea (L2), have been synthesized and their anion binding properties have been investigated for halides and oxoanions. As investigated by 1H NMR titrations, each receptor binds an anion with a 1:1 stoichiometry via hydrogen-bonding interactions (NH⋯anion), showing the binding trend in the order of F− > H2PO4− > HCO3− > HSO4− > CH3COO− > SO42− > Cl− > Br− > I in DMSO-d6. The interactions of the receptors were further studied by 2D NOESY, showing the loss of NOESY contacts of two NH resonances for the complexes of F−, H2PO4−, HCO3−, HSO4− or CH3COO− due to the strong NH⋯anion interactions. The observed higher binding affinity for HSO4− than SO42− is attributed to the proton transfer from HSO4− to the central nitrogen of L1 or L2 which was also supported by the DFT calculations, leading to the secondary acid-base interactions. The thiourea receptor L2 has a general trend to show a higher affinity for an anion as compared to the urea receptor L1 for the corresponding anion in DMSO-d6. In addition, the compound L2 has been exploited for its extraction properties for fluoride in water using a liquid-liquid extraction technique, and the results indicate that the receptor effectively extracts fluoride from water showing ca. 99% efficiency (based on L2). PMID:28184300

  13. Insights into the RNA quadruplex binding specificity of DDX21.

    PubMed

    McRae, Ewan K S; Davidson, David E; Dupas, Steven J; McKenna, Sean A

    2018-06-12

    Guanine quadruplexes can form in both DNA and RNA and influence many biological processes through various protein interactions. The DEAD-box RNA helicase protein DDX21 has been shown to bind and remodel RNA quadruplexes but little is known about its specificity for different quadruplex species. Previous reports have suggested DDX21 may interact with telomeric repeat containing RNA quadruplex (TERRA), an integral component of the telomere that contributes to telomeric heterochromatin formation and telomere length regulation. Here we report that the C-terminus of DDX21 specifically binds to TERRA. We use, for the first time, 2D saturation transfer difference NMR to map the protein binding site on a ribonucleic acid species and show that the quadruplex binding domain of DDX21 interacts primarily with the phosphoribose backbone of quadruplexes. Furthermore, by mutating the 2'OH of loop nucleotides we can drastically reduce DDX21's affinity for quadruplex, indicating that the recognition of quadruplex and specificity for TERRA is mediated by interactions with the 2'OH of loop nucleotides. Copyright © 2018. Published by Elsevier B.V.

  14. dsRNA binding properties of RDE-4 and TRBP reflect their distinct roles in RNAi.

    PubMed

    Parker, Greg S; Maity, Tuhin Subhra; Bass, Brenda L

    2008-12-26

    Double-stranded RNA (dsRNA)-binding proteins facilitate Dicer functions in RNA interference. Caenorhabditis elegans RDE-4 facilitates cleavage of long dsRNA to small interfering RNA (siRNA), while human trans-activation response RNA-binding protein (TRBP) functions downstream to pass siRNA to the RNA-induced silencing complex. We show that these distinct in vivo roles are reflected in in vitro binding properties. RDE-4 preferentially binds long dsRNA, while TRBP binds siRNA with an affinity that is independent of dsRNA length. These properties are mechanistically based on the fact that RDE-4 binds cooperatively, via contributions from multiple domains, while TRBP binds noncooperatively. Our studies offer a paradigm for how dsRNA-binding proteins, which are not sequence specific, discern dsRNA length. Additionally, analyses of the ability of RDE-4 deletion constructs and RDE-4/TRBP chimeras to reconstitute Dicer activity suggest RDE-4 promotes activity using its dsRNA-binding motif 2 to bind dsRNA, its linker region to interact with Dicer, and its C-terminus for Dicer activation.

  15. Lectin functionalized ZnO nanoarrays as a 3D nano-biointerface for bacterial detection.

    PubMed

    Zheng, Laibao; Wan, Yi; Qi, Peng; Sun, Yan; Zhang, Dun; Yu, Liangmin

    2017-05-15

    The detection of pathogenic bacteria is essential in various fields, such as food safety, water environmental analysis, or clinical diagnosis. Although rapid and selective techniques have been achieved based on the fast and specific binding of recognitions elements and target, the sensitive detection of bacterial pathogens was limited by their low targets-binding efficiency. The three-dimensional (3D) nano-biointerface, compared with the two-dimensional (2D) flat substrate, has a much higher binding capacity, which can offer more reactive sites to bind with bacterial targets, resulting in a great improvement of detection sensitivity. Herein, a lectin functionalized ZnO nanorod (ZnO-NR) array has been fabricated and employed as a 3D nano-biointerface for Escherichia coli (E. coli) capture and detection by multivalent binding of concanavalin A (ConA) with polysaccharides on the cellular surface of E. coli. The 3D lectin functionalized ZnO-NR array-based assay shows reasonable detection limit and efficiently expanded linear range (1.0×10 3 to 1.0×10 7 cfumL -1 ) for pathogen detection. The platform has a potential for further applications and provides an excellent sensitivity approach for detection of pathogenic bacteria. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Vibrational and electronic circular dichroism study of the interactions of cationic porphyrins with (dG-dC)10 and (dA-dT)10.

    PubMed

    Nový, Jakub; Urbanová, Marie

    2007-03-01

    The interactions of two different porphyrins, without axial ligands-5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin-Cu(II) tetrachloride (Cu(II)TMPyP) and with bulky meso substituents-5,10,15,20-tetrakis(N,N,N-trimethylanilinium-4-yl)porphyrin tetrachloride (TMAP), with (dG-dC)10 and (dA-dT)10 were studied by combination of vibrational circular dichroism (VCD) and electronic circular dichroism (ECD) spectroscopy at different [oligonucleotide]/[porphyrin] ratios, where [oligonucleotide] and [porphyrin] are the concentrations of oligonucleotide per base-pair and porphyrin, respectively. The combination of VCD and ECD spectroscopy enables us to identify the types of interactions, and to specify the sites of interactions: The intercalative binding mode of Cu(II)TMPyP with (dG-dC)(10), which has been well described, was characterized by a new VCD "marker" and it was shown that the interaction of Cu(II)TMPyP with (dA-dT)10 via external binding to the phosphate backbone and major groove binding caused transition from the B to the non-B conformer. TMAP interacted with the major groove of (dG-dC)10, was semi-intercalated into (dA-dT)10, and caused significant variation in the structure of both oligonucleotides at the higher concentration of porphyrin. The spectroscopic techniques used in this study revealed that porphyrin binding with AT sequences caused substantial variation of the DNA structure. It was shown that VCD spectroscopy is an effective tool for the conformational studies of nucleic acid-porphyrin complexes in solution. (c) 2007 Wiley Periodicals, Inc.

  17. Direct fluorescence polarization assay for the detection of glycopeptide antibiotics.

    PubMed

    Yu, Linliang; Zhong, Meng; Wei, Yinan

    2010-08-15

    Glycopeptide antibiotics are widely used in the treatment of infections caused by Gram-positive bacteria. They inhibit the biosynthesis of the bacterial cell wall through binding to the D-alanyl-D-alanine (D-Ala-D-Ala) terminal peptide of the peptidoglycan precursor. Taking advantage of this highly specific interaction, we developed a direct fluorescence polarization based method for the detection of glycopeptide antibiotics. Briefly, we labeled the acetylated tripeptide Ac-L-Lys-D-Ala-D-Ala-OH with a fluorophore to create a peptide probe. Using three glycopeptide antibiotics, vancomycin, teicoplanin, and telavancin, as model compounds, we demonstrated that the fluorescence polarization of the peptide probe increased upon binding to antibiotics in a concentration dependent manner. The dissociation constants (K(d)) between the peptide probes and the antibiotics were consistent with those reported between free d-Ala-d-Ala and the antibiotics in the literature. The assay is highly reproducible and selective toward glycopeptide antibiotics. Its detection limit and work concentration range are 0.5 microM and 0.5-4 microM for vancomycin, 0.25 microM and 0.25-2 microM for teicoplanin, and 1 microM and 1-8 microM for telavancin. Furthermore, we compared our assay in parallel with a commercial fluorescence polarization immunoassay (FPIA) kit in detecting teicoplanin spiked in human blood samples. The accuracy and precision of the two methods are comparable. We expect our assay to be useful in both research and clinical laboratories.

  18. Selective removal of 2,4-dichlorophenoxyacetic acid from water by molecularly-imprinted amino-functionalized silica gel sorbent.

    PubMed

    Han, Deman; Jia, Wenping; Liang, Huading

    2010-01-01

    A molecularly-imprinted amino-functionalized sorbent for selective removal of 2,4-dichlorophenoxyacetic acid (2,4-D) was prepared by a surface imprinting technique in combination with a sol-gel process. The 2,4-D-imprinted amino-functionalized silica sorbent was characterized by FT-IR, nitrogen adsorption and static adsorption experiments. The selectivity of the sorbent was investigated by a batch competitive binding experiment using an aqueous 2,4-D and 2,4-dichlorophenol (2,4-DCP) mixture or using an aqueous 2,4-D and 2,4-dichlorophenylacetic acid (DPAC) mixture. The largest selectivity coefficient for 2,4-D in the presence of 2,4-DCP was found to be over 18, the largest relative selectivity coefficient between 2,4-D and 2,4-DCP over 9. The static uptake capacity and selectivity coefficient of the 2,4-D-imprinted functionalized sorbent are higher than those of the non-imprinted sorbent. The imprinted functionalized silica gel sorbent offered a fast kinetics for the extraction/stripping of 2,4-D, 73% of binding capacity (200 mg/L 2,4-D onto 20 mg of imprinted sorbent) was obtained within 5 min and the adsorbed 2,4-D can be easily stripped by the mixture solution of ethanol and 6 mol/L HCl (V:V = 1:1). In a test of five extraction/stripping cycles, the adsorption capacity of the sorbent was all above 93% of that of the fresh sorbent. Experimental result showed the potential of molecularly-imprinted amino-functionalized sorbent for selective removal of 2,4-D.

  19. Nuclear translocation of p19INK4d in response to oxidative DNA damage promotes chromatin relaxation.

    PubMed

    Sonzogni, Silvina V; Ogara, María F; Castillo, Daniela S; Sirkin, Pablo F; Radicella, J Pablo; Cánepa, Eduardo T

    2015-01-01

    DNA is continuously exposed to damaging agents that can lead to changes in the genetic information with adverse consequences. Nonetheless, eukaryotic cells have mechanisms such as the DNA damage response (DDR) to prevent genomic instability. The DNA of eukaryotic cells is packaged into nucleosomes, which fold the genome into highly condensed chromatin, but relatively little is known about the role of chromatin accessibility in DNA repair. p19INK4d, a cyclin-dependent kinase inhibitor, plays an important role in cell cycle regulation and cellular DDR. Extensive data indicate that p19INK4d is a critical factor in the maintenance of genomic integrity and cell survival. p19INK4d is upregulated by various genotoxics, improving the repair efficiency for a variety of DNA lesions. The evidence of p19INK4d translocation into the nucleus and its low sequence specificity in its interaction with DNA prompted us to hypothesize that p19INK4d plays a role at an early stage of cellular DDR. In the present study, we demonstrate that upon oxidative DNA damage, p19INK4d strongly binds to and relaxes chromatin. Furthermore, in vitro accessibility assays show that DNA is more accessible to a restriction enzyme when a chromatinized plasmid is incubated in the presence of a protein extract with high levels of p19INK4d. Nuclear protein extracts from cells overexpressing p19INK4d are better able to repair a chromatinized and damaged plasmid. These observations support the notion that p19INK4d would act as a chromatin accessibility factor that allows the access of the repair machinery to the DNA damage site.

  20. Specific interaction of postsynaptic densities with membrane rafts isolated from synaptic plasma membranes.

    PubMed

    Liu, Qian; Yao, Wei-Dong; Suzuki, Tatsuo

    2013-06-01

    Postsynaptic membrane rafts are believed to play important roles in synaptic signaling, plasticity, and maintenance. We recently demonstrated the presence, at the electron microscopic level, of complexes consisting of membrane rafts and postsynaptic densities (PSDs) in detergent-resistant membranes (DRMs) prepared from synaptic plasma membranes (SPMs) ( Suzuki et al., 2011 , J Neurochem, 119, 64-77). To further explore these complexes, here we investigated the nature of the binding between purified SPM-DRMs and PSDs in vitro. In binding experiments, we used SPM-DRMs prepared after treating SPMs with n-octyl-β-d-glucoside, because at concentrations of 1.0% or higher it completely separates SPM-DRMs and PSDs, providing substantially PSD-free unique SPM-DRMs as well as DRM-free PSDs. PSD binding to PSD-free DRMs was identified by mass spectrometry, Western blotting, and electron microscopy. PSD proteins were not incorporated into SPMs, and significantly less PSD proteins were incorporated into DRMs prepared from liver membranes, providing in vitro evidence that binding of PSDs to DRMs is specific and suggestion of the presence of specific interacting molecules. These specific interactions may have important roles in synaptic development, function, and plasticity in vivo. In addition, the binding system we developed may be a good tool to search for binding molecules and binding mechanisms between PSDs and rafts.

Top